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Abstract

In this research, an algorithm is developed to estimate the index of refraction of an

unknown object using passive polarimetric images degraded by atmospheric turbu-

lence. The algorithm uses a variant of the maximum-likelihood blind-deconvolution

algorithm developed by LeMaster and Cain to recover the true object (i.e., the first

Stokes parameter), the degree of linear polarization, and the polarimetric-image point

spread functions. Nonlinear least squares is then used to find the value of the com-

plex index of refraction which best fits the theoretical degree of linear polarization,

derived using a polarimetric bidirectional reflectance distribution function, to the

turbulence-corrected degree of linear polarization. To verify the proposed material-

characterization algorithm, experimental results of two painted metal samples are

provided and analyzed. Possible uses of this novel algorithm include intelligence-

gathering and nondestructive inspection/evaluation applications such as corrosion

and crack detection/characterization.

Before the algorithm described above is implemented and experimentally veri-

fied, the results of two intermediate research steps are provided and discussed. The

purpose of the first research step is to verify the accuracy of the polarimetric bidirec-

tional reflectance distribution function chosen for this research. This is accomplished

by comparing predictions made using the model to exact electromagnetic solutions

of a rough perfect-reflecting surface and to experimental Mueller matrices of two

rough metallic samples. In the second research step, the polarimetric bidirectional

reflectance distribution function is used to create two material-classification algo-

rithms which use turbulence-degraded polarimetric imagery. The first algorithm is a

dielectric/metal classifier. It uses the blind-deconvolution algorithm mentioned above

iv



to remove atmospheric distortion and correctly classify the unknown object. The sec-

ond classification algorithm, an enhanced version of the first, determines whether an

object is composed of aluminum, iron, or dielectric materials. This enhanced material

classification provides functional information about the unknown object. Experimen-

tal results of two dielectric and metallic samples are provided to validate the proposed

classification algorithms. The results of these analyses are presented and discussed in

this dissertation.

After results of the two intermediate research steps and the material-characterization

algorithm have been analyzed, this dissertation is concluded. A summary of the work

performed in this dissertation and a discussion of possible future research areas related

to this work are provided.
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DETERMINING THE INDEX OF REFRACTION

OF AN UNKNOWN OBJECT

USING PASSIVE POLARIMETRIC IMAGERY

DEGRADED BY ATMOSPHERIC TURBULENCE

I. Introduction

R
emote sensing is a collection of techniques whose purpose is to determine some

piece of information about an object without physically handling the specimen.

The specimen, or object of interest, could be any number of things—the ocean, the

atmosphere, soils, tree canopies, an extrasolar planet, etc. Likewise, the desired

information can vary as well. For instance, one might be interested in ocean wave

height or current directions; another might be interested in detecting oil spills or

levels of polar ice [63]. One of the most famous remote-sensing examples comes from

the Cold War with the development of airborne sensors which could detect small

amounts of radioactive isotopes in the atmosphere signaling the detonation of an

atomic bomb [108]. Later, seismic detectors were developed to sense underground

atomic tests [108]. These are but a few examples of the remote-sensing applications

which exist in the literature.

In general, remote-sensing techniques can be divided into two categories—active

and passive remote sensing. In active remote sensing, the object of interest is il-

luminated with some form of transmitted energy (electromagnetic or acoustic are

the most common) which interacts with the object and then is measured by a sen-

sor [63]. Common examples of active remote sensing are radio detection and ranging

(RADAR), laser detection and ranging (LADAR), and sound navigation and ranging
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(SONAR). In passive remote sensing, the illumination source is not controlled, i.e.,

the sensor must rely on a natural illumination source like the sun [63]. The atomic

bomb detonation detectors discussed above are examples of passive remote sensors.

Another common passive remote-sensing technique is polarimetry. Polarimetry

uses polarimetric images (images taken of an object through a linear polarizer and

possibly also a retarder) to measure the polarization state of electromagnetic radia-

tion (typically infrared or visible light). Polarimetry can be a powerful sensing tool

since the manner in which light interacts with an object depends on the polarization

state. Researchers have exploited this simple measurement to develop remote-sensing

techniques which can detect objects hidden in clutter [51, 133], determine object

surface orientations [123], determine the dielectric and metallic elements of an ob-

ject [126, 141], and estimate the composition of an object [105, 123].

1.1 Research Goals

The goal of this research is to develop a method to determine the index of re-

fraction of an unknown object using passive polarimetric imagery which has been

degraded by atmospheric turbulence. This work differs from other remote-sensing

material-characterization techniques, namely, Refs. [105, 123], in that it accounts for

the deleterious effects atmospheric turbulence has on imaging. As a means of ac-

complishing the primary goal, two intermediate steps are required. The first is to

verify the accuracy of the surface scattering model chosen for this research [139, 140]

(see Chapter IV). This is accomplished in two ways. The first compares predic-

tions made using the surface scattering model to exact electromagnetic solutions of

a rough perfect-reflecting surface. The second uses a laboratory technique (ellipsom-

etry) to measure the full Mueller matrices (described in subsequent chapters) of two

rough metallic samples. The ellipsometric results are then compared to the surface
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scattering model values to determine accuracy.

In the second step, the surface scattering model (having been verified in the first

step) is used to create two material-classification algorithms. The first algorithm

determines whether an object is composed of dielectric or metallic materials (see

Chapter V). This work, while similar to Refs. [126, 141, 142, 143, 144], classifies

an object using turbulence-degraded polarimetric imagery as opposed to diffraction-

limited imagery. This novel algorithm makes use of a polarimetric blind-deconvolution

algorithm (variant of the algorithm presented in Ref. [74]) to remove the deleterious

effects of turbulence and make the classification decision. The second classification

algorithm, an enhanced version of the first, determines whether an object is com-

posed of aluminum, iron, or dielectric materials (see Chapter VI). Both classification

algorithms are verified experimentally on objects consisting of dielectric and metallic

materials.

Lastly, the full index-of-refraction algorithm is created (see Chapter VII). As is

the case in the material-classification algorithms, a variant of the blind-deconvolution

algorithm presented in Ref. [74] is used to remove the effects of turbulence. The

efficacy of the proposed algorithm is tested experimentally on complex materials, i.e.,

objects composed of both dielectric and metallic materials.

Classifying or characterizing an unknown object remotely has obvious utility to the

intelligence community. The polarimetric sensor utilized in this research is relatively

simple (consists of a narrowband filter, linear polarizer, and a camera in its most

basic form) and is easily miniaturized. In addition to intelligence gathering, the

techniques developed in this research also have nondestructive inspection/evaluation

(NDI/NDE) applications. For example, the methods presented in this dissertation

could easily be adapted to nondestructively characterize corrosion on a metal surface,

detect cracks in material coatings, etc.
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Imaging System

Illumination Source

Atmospheric TurbulenceAtmospheric Turbulence

Unknown Object

Figure 1. A hypothetical engagement scenario.

1.2 Scope and Assumptions

To demonstrate the difficulty of the remote-sensing material-characterization prob-

lem, consider the hypothetical engagement scenario shown in Fig. 1. The figure

depicts an unknown object, illuminated with sunlight, being imaged by a passing air-

craft. Note that a truly unknown object implies nothing is known about the object’s

surfaces, i.e., orientations, roughnesses, or compositions. Another unknown is the

distortion in the collected images caused by atmospheric turbulence. The aggregate

of all these unknowns is a highly complex, multidimensional problem space out of

which a single solution (the index of refraction), amongst perhaps an infinite number,

is sought. In order to make the goal of the proposed research achievable, the following

six simplifying assumptions, described in the paragraphs below, are made.

The first assumption of this research, which is depicted in Fig. 1, is that the

unknown object is illuminated with a natural (unpolarized, or randomly polarized)

light source. Several researchers have found that the amount of circularly polarized
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light, in light scattered from an object illuminated by a natural source, is extremely

small [27, 85, 123]. Thus, the stated assumption allows one to disregard the possi-

bility of receiving circularly polarized light. The implications of this assumption are

significant. First, the polarimetric imaging sensor need only consist of a linear polar-

izer and a camera. Second, the Mueller matrices modeling reflection from a material

surface can be reduced in dimension from 4 × 4 matrices to 3 × 3 matrices. Likewise,

the Stokes vectors describing the polarization states of incident and reflected light can

be reduced to length 3 vectors (from length 4 vectors). This assumption breaks down

(of course) when the illumination source is not randomly polarized. Skylight is an

example of an illumination source which is weakly polarized [27, 85]. Incorporating

the effects of polarized illumination sources are left to future work.

The second assumption of this research is an assumption which is universal to

remote-sensing material-classification and characterization techniques. Scatter from

a surface is composed of weighted contributions of specularly scattered light and

diffusely scattered light. As defined in subsequent chapters, specularly scattered light

is light which obeys the law of reflection (angle of incidence equals angle of reflection).

Since it is the result of a single surface reflection, specularly scattered light is assumed

to be polarized as a consequence of the interaction with the material surface. Diffusely

scattered light is light which is scattered evenly in all directions. Diffuse scattering

arises from multiple surface reflections or volumetric scattering and is thus assumed

to be unpolarized. From the definitions provided above, it is clear that meaningful

polarimetric imagery of a surface is impossible if diffuse scattering dominates. Thus,

a necessary condition for the polarimetric work presented in this research is that the

light scattered from a surface possess a significant specular component.

Another assumption of this research is that the unknown object is composed of

isotropic, nonmagnetic materials. As described in the next chapter, isotropic materi-

5



als are materials in which the index of refraction is independent of the polarization of

the incident light. This assumption reduces the index of refraction from its most gen-

eral form (a tensor) to a scalar. Nonmagnetic materials are materials which exhibit

little tendency to becoming magnetically polarized when subjected to an external

magnetic field. At optical frequencies, most materials are nonmagnetic. This as-

sumption makes the permeability of the materials investigated in this research equal

to that of vacuum. It also makes the index of refraction a function of permittivity

alone.

In addition to the assumptions stated above, it is assumed that the rms surface

height and surface correlation length are several times larger than the wavelength of

the incident field. This condition is necessary for the validity of the chosen surface

scattering model which is based on the geometrical optics (GO) approximation to

scattering. This condition can be loosened somewhat if physical optics (PO) is used

to model the surface scattering. This is left to future research.

Assumption number five is that the measured scattered light is obtained in the

specular plane. The specular plane is the plane which contains the following three

vectors: the vector modeling the direction of the incident light, the vector normal to

the material’s surface, and the vector modeling the direction of the reflected light.

This assumption implies that one possesses a priori knowledge about the geometrical

orientation of the object. This significantly reduces the dimensions of the problem

space. It also simplifies the surface scattering model. In addition to generalizing the

problem, out-of-specular-plane observation may permit one to sense other parameters

in addition to the index of refraction. This is also left to future research.

Lastly, weak atmospheric turbulence is assumed throughout. In weak atmospheric

turbulence, the atmosphere imparts random phase fluctuations to the passing light;

whereas, in strong atmospheric turbulence, the atmosphere imparts random phase and
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irradiance (called scintillation) fluctuations to the passing light. The atmospheric cor-

rection algorithm used in this research is incapable of correcting scintillation and thus,

the proposed research is only applicable to weak atmospheric turbulence scenarios.

In addition to the weak atmospheric turbulence requirement, the nature of the atmo-

spheric turbulence is assumed to be statistically isotropic and homogeneous [5, 44].

This is a very common requirement in research involving atmospheric turbulence

models.

1.3 Dissertation Organization

This dissertation is organized in the following manner. Chapter II provides the

necessary theoretical background including a description of the electric and mag-

netic properties of materials, polarization of electromagnetic waves, electromagnetic

scattering from material surfaces, and aspects of imaging. Chapter III presents a

summary of the relevant published work including an overview of optical material-

characterization (both laboratory and remote-sensing) techniques, a description of

surface scattering models, and an explanation of two blind-deconvolution algorithms.

Chapter IV presents the results of the first intermediate step of this research, namely,

verification of the selected surface scattering model. Chapters V and VI present re-

sults of the two material-classification algorithms developed during step two of this

research. Lastly, Chapter VII presents the results of the full index-of-refraction algo-

rithm.
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II. Theoretical Background

T
his chapter provides the background for the work presented in subsequent chap-

ters. In this chapter, the electric and magnetic properties of materials, polar-

ization of electromagnetic waves, electromagnetic scattering from material surfaces,

and pertinent aspects of imaging are discussed.

2.1 Maxwell’s Equations

Any study of light, be it microwaves, infrared, or visible light, begins with Maxwell’s

equations

∇×E = −M− jωB

∇×H = J + jωD

∇ ·D = qe

∇ ·B = qm

(1)

represented here in time-harmonic form [9, 16, 45, 56, 63]. The top two expressions

in Eq. (1) are known as Faraday’s law and Ampere’s law, respectively. Here, E is the

electric field amplitude, H is the magnetic field amplitude, M is the magnetic current

density (nonphysical quantity), J is the electric current density, B is the magnetic

flux density, D is the electric flux density, and ω is the angular frequency [9]. The

bottom two expressions in Eq. (1) are known as Gauss’ laws for electric and magnetic

fields. Here, qe is the electric charge density and qm is the magnetic charge density

(nonphysical quantity) [9]. The electric and magnetic flux densities are, in general,

related to the electric and magnetic fields by tensor relations [9, 146]:

D = ε ·E

B = µ ·H
(2)
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where ε and µ are the permittivity and permeability tensors of the medium, respec-

tively. This research assumes that all media are linear, homogeneous, and isotropic

thereby reducing the tensors to scalars, i.e.,

D = εE

B = µH

. (3)

Furthermore, all materials in this research are assumed to be nonmagnetic thereby

making

µ = µ0 (4)

where µ0 is the permeability of vacuum. Substituting Eqs. (3) and (4) into Eq. (1)

produces

∇×E = −M− jωµ0H

∇×H = J + jωεE

∇ ·E =
qe
ε

∇ ·H =
qm
µ0

. (5)

2.2 Helmholtz Wave Equation

Using Eq. (5) to find the electric and magnetic fields of a system is rather difficult

because the equations are first-order coupled partial differential equations. However,

using the first-order coupled curl equations, a second-order uncoupled equation can

be found which is more easily solved. The first step in deriving this expression is to

take the curl of both sides of Faraday’s law:

∇×∇×E = −∇×M− jωµ0∇×H . (6)
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Making use of the vector identity

∇×∇×A = ∇ (∇ ·A)−∇2A (7)

and Ampere’s law, Eq. (6) becomes

∇ (∇ ·E)−∇2E = −∇×M− jωµ0 (J + jωεE) . (8)

Substituting in Gauss’ law for electric fields and rearranging terms results in the

Helmholtz electric field wave equation

∇2E + k2E = ∇×M+ jωµ0J +
1

ε
∇qe (9)

where k = ω(εµ0)
1/2 is the wavenumber. If sources are not contained in the region of

interest, Eq. (9) simplifies to the source-free Helmholtz wave equation:

∇2E + k2E = 0. (10)

This form of the wave equation is the one most often seen in the literature.

Solving Eq. (10) is accomplished by first expanding the electric field into its com-

ponents, namely

∇2 (x̂Ex + ŷEy + ẑEz) + k2 (x̂Ex + ŷEy + ẑEz) = 0. (11)

Note that no coupling occurs between the components of the field, i.e., the x compo-

nent of the field does not contribute to the other two orthogonal components. This
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allows one to write Eq. (11) as three scalar equations of the form

∇2Ex + k2Ex = 0

∇2Ey + k2Ey = 0

∇2Ez + k2Ez = 0

. (12)

Note that all three scalar equations have the same mathematical form; therefore, their

solutions have the same form. Expanding the scalar Laplacian operator in Eq. (12)

produces

∂2

∂x2
Eα +

∂2

∂y2
Eα +

∂2

∂z2
Eα + k2Eα = 0 (13)

where α = x, y, z. Using separation of variables, i.e., the solution is assumed to be of

the form

Eα = f (x) g (y)h (z) , (14)

transforms Eq. (13) into

1

f

d2f

dx2
+

1

g

d2g

dy2
+

1

h

d2h

dz2
= −k2. (15)

Since f , g, and h are functions of one variable independent of the other two, Eq. (15)

can be further simplified to
1

f

d2f

dx2
= −k2x

1

g

d2g

dy2
= −k2y

1

h

d2h

dz2
= −k2z

, (16)

where k2 = k2x + k2y + k2z . The expressions in Eq. (16) are now second-order linear

homogeneous differential equations and all have the solution

b (α) = C1e
−jkαα + C2e

jkαα (17)

11



where b = f, g, h and, as before, α = x, y, z. Substituting Eq. (17) into Eq. (14)

produces the desired result

Eα =
(
A1e

−jkxx + A2e
jkxx
) (
B1e

−jkyy +B2e
jkyy
) (
C1e

−jkzz + C2e
jkzz
)

(18)

where the coefficients, A1, A2, B1, B2, C1, C2, are found by enforcing the boundary

conditions of the problem. The interested reader is referred to Ref. [9] for other

solutions of the Helmholtz wave equation.

2.3 Transverse-Electromagnetic Waves

For electromagnetic wave propagation (far from the source) in free-space or infinite

media, the field can be approximated as a plane wave in which the electric and

magnetic fields are orthogonal to the direction of propagation and each other, i.e.,

E⊥H⊥k. This arrangement is called transverse electromagnetic (TEM). In order

to find expressions for the electric and magnetic fields of a TEM wave, a direction

of propagation must be specified. This direction is of course arbitrary; however, for

consistency, a wave propagating in the z direction is assumed. By specifying a z-

directed wave, the electric and magnetic fields must now be confined to the xy plane,

i.e.,

Ex = E+
x e

−jkz + E−
x e

jkz

Ey = E+
y e

−jkz + E−
y e

jkz

Hx = H+
x e

−jkz +H−
x e

jkz

Hy = H+
y e

−jkz +H−
y e

jkz

(19)

where the fields’ time dependencies have been suppressed. Note that since the wave is

z directed, k = kz. This permits the coefficients in Eq. (18) to be combined producing

Eq. (19). Expressions relating the electric and magnetic field amplitude coefficients
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in Eq. (19) can be found using Faraday’s law or Ampere’s law. Substituting Eq. (19)

into Ampere’s law produces

H+
x = −ωε

k
E+

y

H+
y =

ωε

k
E+

x

H−
x =

ωε

k
E−

y

H−
y = −ωε

k
E−

x

, (20)

or in a more general form

H =
ωε

k

(
k̂ ×E

)
=

1

Z

(
k̂ ×E

)
(21)

where k̂ is the unit vector pointing in the direction of wave propagation and Z is the

intrinsic impedance of the medium [9]. Inherent in Eq. (19) is the concept of field

polarization which is discussed in detail later in this chapter.

2.4 Electric and Magnetic Properties of Materials

A material’s response to electromagnetic waves can be characterized by three

macroscopic parameters—permittivity, permeability, and conductance. This section

introduces these three parameters and describes the physical processes which give rise

to these quantities.

2.4.1 Permittivity.

Materials can be loosely divided into three categories—insulators (dielectrics),

conductors, and magnetic materials. Dielectrics are defined as materials whose dom-

inant charges in atoms and molecules are bound negative and positive charges that

are held in place by atomic and molecular forces [9]. Dielectrics, therefore, do not

conduct electric current. Common examples of dielectrics are acrylic, Teflon, glass,
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distilled water, crystalline salt, lithium niobate, etc. When no field is applied, the

electron clouds of the atoms making up the dielectric are, in general, symmetrically

distributed about the nuclei. When an external field is applied, the dielectric’s elec-

tron clouds shift in a direction related to the polarity of the applied field, thus creating

numerous electric dipoles [9]. This interaction allows the dielectric to store energy,

much like stretching a spring [9]. This storing of energy is quantitatively captured

in the dielectric’s permittivity value (also known as the dielectric constant). Permit-

tivity, for natural materials, is a positive quantity and is typically represented as a

value relative to the permittivity of vacuum, ε0 ≈ 8.854 × 10−12 F/m. For example,

the static dc relative permittivity of water is 81 [9]. Water, therefore, possesses 81

times the energy storage capacity as that of vacuum. It is important to note that

permittivity is a function of frequency or equivalently wavelength.

2.4.2 Conductance.

Materials which do not fit the definition of dielectrics are termed conductors.

Conductors are materials whose atoms’ outer electrons are loosely bound to their nu-

clei [9]. These electrons are therefore free to move [9]. When no field is applied, these

free electrons move in random directions resulting in a zero net electric current [9].

When an external field is applied, the free electrons move in the opposite direction

of the applied field generating a net current [9]. The measure of a conductor’s ability

to transmit electric current is called conductivity σ; its reciprocal is called resistivity.

The conductivity of a material is always positive. A useful hypothetical material,

called a perfect electrical conductor (PEC), has an infinite conductance. Natural

conductors, like gold, silver, and copper, have very high but finite conductance val-

ues. Resistance to the flow of current, i.e., a finite conductance value, arises from

crystal lattice vibrations in the material [9]. Since these lattice vibrations increase
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as temperature increases, conductivity tends to decrease with rising temperature [9].

Like the permittivity of a material, conductivity is a function of the applied field’s

frequency.

2.4.3 Complex Permittivity.

For simplicity, the permittivity and conductance of a material are combined into

a single complex quantity termed the complex permittivity. The form of a material’s

complex permittivity can be readily found by using Ampere’s law Eq. (1):

∇×H = σE + jωεE (22)

where σE has been substituted for the conduction current J . Factoring out jωE

produces

∇×H = jω
(
ε− j

σ

ω

)
E, (23)

where ε − jσ/ω is the material’s complex permittivity. This quantity is typically

represented in the literature as ε′− jε′′ where ε′ is the dielectric constant and ε′′ is the

dielectric loss. To see why the imaginary part of the complex permittivity represents

energy dissipation or loss, ε′ − jε′′ must be substituted into the expression for the

wavenumber k

k = ω
√
µ0 (ε′ − jε′′) = k′ − jk′′. (24)

Substituting Eq. (24) into the expression for a z-directed TEM wave, derived above,

produces

Eα = E+
α e

−j(k′−jk′′)z = E+
α e

−k′′ze−jk′z, (25)

where α = x, y. The first exponential term in Eq. (25) models a decaying wave

envelope, thus showing that the imaginary part of the complex permittivity is a
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measure of a material’s loss.

2.4.4 Permeability.

The last broad category of material that exists is magnetic materials. Magnetic

materials are materials which exhibit magnetic polarization when subjected to an

external magnetic field [9]. Since the property of magnetism arises from orbiting and

spinning electrons, all materials are somewhat magnetic [22]. Most natural materi-

als are so magnetically weak that they can be safely approximated as nonmagnetic.

For other materials, such as ferrites (contain iron, cobalt, or nickel), the magnetic

property can be quite strong. The quantity which describes a material’s response to

an applied magnetic field is called permeability. Like permittivity, it is positive for

natural materials and is typically represented as a quantity relative to the perme-

ability of vacuum µ0 = 4π × 10−7 H/m. Materials which possess large permeabilities

can be thought of as being composed of magnetic domains [22]. These domains are

areas of the material in which the magnetic moments of the atoms are aligned in

the same general direction [22]. When an external magnetic field is applied, all the

domains which compose the material align with the field [22]. The result is a magnet.

Making up rather large segments of the material, the domains cannot keep up with

the oscillation of high frequency magnetic fields. Thus, materials which exhibit mag-

netic properties at optical frequencies are not common [22]. Like permittivity and

conductivity, permeability is a function of frequency.

2.4.5 Complex Index of Refraction.

In optics, it is common to combine the permittivity, conductance, and permeability

of a material into a single parameter called the complex index of refraction η =

n− jκ [22]. By definition, the real part of the complex index of refraction is the ratio
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of the speed of light in vacuum to the speed of light in the material, i.e.,

n =
c

υ
(26)

where c = 1/(ε0µ0)
1/2 = 2.998 × 108 m/s [22]. The imaginary part of the complex

index of refraction κ is called the coefficient of extinction and, like the imaginary

part of permittivity, is a measure of a material’s loss [141]. The relation between

the permittivity, conductance, and permeability of a material to its complex index of

refraction can be found by applying Eq. (26), namely

η =
1/
√
ε0µ0

1/
√
εµ

=
√
εrµr, (27)

where εr and µr are the relative complex permittivity and relative complex permeabil-

ity, respectively [22]. For this research, all materials are assumed to be nonmagnetic;

therefore µr = 1. Substituting µr = 1 and the expression for complex permittivity

[Eq. (23)] into Eq. (27) and simplifying produces

η = n− jκ =
√
εr

=
1√
2

((ε′r)2 + ( σ

ωε0

)2
)1/2

+ ε′r

1/2

− j√
2

((ε′r)2 + ( σ

ωε0

)2
)1/2

− ε′r

1/2

. (28)

Using the stated constraints on permittivity and conductance values of natural ma-

terials, it is clear from Eq. (28) that n > 0 and κ ≥ 0.

It should be noted that the description for the electric and magnetic properties

of materials given above is only accurate for isotropic, linear, and homogenous ma-

terials. In general, the manner in which materials respond to electromagnetic fields
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depends on the intensity and polarization of the incident field. This transforms the

permittivity, permeability, and conductance (as well as the index of refraction) into

tensors which can become quite complicated [146]. A good example of a material

which possesses a permittivity tensor is lithium niobate. Its crystalline structure

gives it a dielectric constant which depends on the polarization of the incident field

relative to its crystal axis.

2.5 Polarization

As referenced above, inherent in the TEM field expressions in Eq. (19) is the

concept of polarization. Polarization, in essence, is the orientation of the electric

field vector. There are four types of polarized light—linear, circular, elliptical, and

unpolarized light. This section defines each polarization type and introduces two

vector notations (Jones vectors and Stokes vectors) to handle polarized light.

2.5.1 Polarization Types.

Consider the TEM field expressions in Eq. (19):

E = (x̂Ex + ŷEy) e
−jkz (29)

where, for brevity, only the forward traveling wave is shown. The magnetic field

is also removed since its orientation is irrelevant to this discussion on polarization

[its direction can be found by applying Eq. (21)]. The values of the electric field

coefficients in Eq. (29) determine the polarization state of the field. If both Ex and

Ey are real, then the polarization state of the field is linear [56]. Figure 2 shows a

plot of the path traced out by the electric field vector of a linear polarized wave.

The angle the electric field vector makes with respect to the x or y axes is related to

the relative amplitudes of Ex and Ey. There are two types of linear polarization—
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Figure 2. Linear, circular, elliptical, and random polarizations.

horizontal and vertical polarization. Horizontal polarization occurs when Ey = 0;

vertical polarization occurs when Ex = 0.

If |Ex| = |Ey|, yet |∠Ex − ∠Ey| = 90◦, the result is a circularly polarized wave [56],

i.e.,

E = E0 (x̂+ jŷ) e−jkz. (30)

Figure 2 shows a plot of circular polarization. Note that the electric field vector

appears to rotate either clockwise or counterclockwise depending on whether Ex leads

or lags Ey. If Ex or Ey are complex and the above relationships do not hold, then the

result is an elliptically polarized wave [56]. It is evident that linear polarization and

circular polarization are just special cases of elliptical polarization. Figure 2 shows a

plot of an elliptically polarized wave. The orientation of the ellipse mapped out by

the electric field vector as well as the vector’s rotation direction are determined by

the relative amplitudes and phases of Ex and Ey.

The last polarization state of light (typically not considered a polarization state)
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is called unpolarized light, or randomly polarized light. This polarization state arises

from light’s creation via spontaneous emission. Light emitted from an incandescent

bulb, light emitting diode (LED), or the sun (i.e., natural light sources) is the result

of a very large number of randomly orientated sources emitting light at random

times [44, 56]. This results in rapidly changing, random field amplitude coefficients

Ex and Ey [44, 56]. As described in Ref. [56], the term unpolarized light is a misnomer,

since in actuality the light is composed of a rapidly varying succession of different

polarization states. The polarization state changes occur so rapidly that attempts to

resolve any single resultant polarization state are futile. Figure 2 shows a depiction of

unpolarized light. States of polarization between unpolarized and fully polarized light

are possible. The quantity degree of polarization is defined as the ratio of the fully

polarized light power (irradiance) to the total light power [16, 44, 56]. It is formally

introduced below.

2.5.2 Jones Vectors and Matrices.

Having introduced polarization, attention can now be turned to describing two

formalisms developed to handle polarized light. The first formalism was introduced

by R. Clark Jones in 1941 [56]. It was designed to handle polarized light only and

therefore is not applicable to scenarios involving unpolarized light. Jones’ formalism

(also known as Jones vectors) is extremely straightforward. Light is represented as a

2 × 1 vector of x and y field component complex amplitudes, i.e.,

E =

[
Ex Ey

]T
. (31)
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Common examples of Jones vectors are

[
1 0

]T
Horizontal polarization[

0 1

]T
Vertical polarization[

cosα sinα

]T
Linear polarization at angle α

1√
2

[
1 j

]T
Circular polarization

. (32)

Optical components which alter polarization state, like linear polarizers, wave plates,

and material surfaces (discussed later), are represented as 2 × 2 matrices (known as

Jones matrices). Some common examples are

1 0

0 0

 Horizontal linear polarizer

0 0

0 1

 Vertical linear polarizer

ejπ/4

1 0

0 −j

 Quarter-wave plate, fast axis vertical

 cosα sinα

− sinα cosα

 Rotation of angle α

. (33)

Note that the Jones matrix for a linear polarizer (LP) or a quarter-wave plate (QWP)

at any angle can be found by using the rotation matrix. For example, the Jones matrix
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for a LP at α is

R (−α)JhpR (α) =

cosα − sinα

sinα cosα


1 0

0 0


 cosα sinα

− sinα cosα


=

 cos2α cosα sinα

cosα sinα sin2α


. (34)

What makes Jones vectors/matrices particularly useful is how simple they make cal-

culating the polarization state of light after it has encountered one or more optical

components. For instance, suppose one is interested in the polarization state of light

emerging from a QWP (fast axis vertical) immediately preceded by a LP at 45◦ given

a horizontally polarized incident beam. The solution using Jones vectors/matrices is

Ex

Ey

 = ejπ/4

1 0

0 −j

1
2

1 1

1 1


1
0

 =
ejπ/4

2

 1

−j

 (35)

where the vectors/matrices from right to left represent the incident beam, the LP at

45◦ [obtained using Eq. (34)], and the QWP with fast axis vertical, respectively. One

can see from Eq. (35) that the light exiting this optical system is circularly polarized.

2.5.3 Stokes Vectors and Mueller Matrices.

The last polarization formalism introduced here is called Stokes vectors. Stokes

vectors were introduced by G. G. Stokes in 1852 [16, 56]. Unlike Jones vectors which

deal directly with field amplitudes, Stokes vectors deal with field powers (or irra-

diances). Because of the way they are formulated, Stokes vectors can represent all
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polarization states including unpolarized light. Stokes vectors are 4 × 1 vectors, i.e.,

S =

[
S0 S1 S2 S3

]T
. (36)

The first element S0 is equal to the total irradiance [16]. The parameter S1 is equiva-

lent to the difference between the irradiance of light passed by a horizontal polarizer

and the irradiance of light passed by a vertical polarizer [16]. The parameter S2 is

equal to the difference between the irradiance of light passed by a polarizer at 45◦

and the irradiance of light passed by a polarizer at 135◦ (or equivalently -45◦) [16].

Lastly, S3 is equal to the excess in irradiance of light passed by a device which ac-

cepts right-handed circular polarization over that passed by a device which accepts

left-handed circular polarization [16]. The elements of the Stokes vector are related

to the Jones vector elements by



S0

S1

S2

S3


=



⟨
|Ex|2

⟩
+
⟨
|Ey|2

⟩
⟨
|Ex|2

⟩
−
⟨
|Ey|2

⟩
2 ⟨|Ex| |Ey| cos (φx − φy)⟩

2 ⟨|Ex| |Ey| sin (φx − φy)⟩


(37)

where ⟨ ⟩ represents the time average and φx and φy are the phases of the x and y

field components, respectively [16]. Common Stokes vectors are

[
1 0 0 0

]T
Unpolarized[

1 1 0 0

]T
Horizontal polarization[

1 −1 0 0

]T
Vertical polarization[

1 0 0 1

]T
Right circular polarization

. (38)
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Note that Stokes vectors are typically shown normalized to the S0 parameter value. As

in Jones’ formalism, optical components which alter polarization state are represented

as matrices (4 × 4). These matrices are called Mueller matrices. Mueller matrices

were introduced by Hans Mueller in 1943 and operate on Stokes vectors [56]. The

Mueller matrices for common optical components can be found in Refs. [14, 25, 56, 92,

116]. As an example of how Mueller matrices and Stokes vectors are used, consider

the same example cited above—horizontally polarized light is incident on a LP at 45◦

immediately followed by a QWP (fast axis vertical):

Sout =



1 0 0 0

0 1 0 0

0 0 0 −1

0 0 1 0


1

2



1 0 1 0

0 0 0 0

1 0 1 0

0 0 0 0





1

1

0

0


=

1

2



1

0

0

1


. (39)

In Eq. (39), the vectors/matrices from right to left represent the incident beam, the

LP at 45◦, and the QWP with fast axis vertical, respectively. As expected, the result is

a circularly polarized beam. Note that like Stokes vectors, it is common to normalize

Mueller matrices to the m00 (or first row, first column) element value. Since Stokes

vectors/Mueller matrices incorporate unpolarized light, it is possible to define the

degree of polarization (DOP) of light in terms of Stokes parameters [16, 56, 85, 86]:

P =

√
S2
1 + S2

2 + S2
3

S0

. (40)

Also of importance is the angle of polarization (AOP) [85, 86, 92, 116],

α =
1

2
tan−1

(
S2

S1

)
. (41)

Note that α is undefined when dealing with circular polarization or unpolarized light.
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2.6 TEM Waves at Smooth Boundaries

At material boundaries, light can be reflected (scattered) or transmitted. The

amount of light scattered or transmitted depends on the index of refraction of the

material and the polarization state of the incident field. It should be noted that

the exact polarization state of light is rather arbitrary, i.e., one must fix an orthog-

onal coordinate system to the plane containing the electric and magnetic fields to

define linear, circular, or elliptical polarization. The choice of coordinate system is

arbitrary. When light encounters a material, it becomes convenient to let the vector

normal to the material boundary be the z axis and the material’s surface be the xy

plane. The polarization state of light is then referenced to this coordinate system.

The plane containing the material’s surface normal (defined above to be ẑ), the inci-

dent wave’s direction vector ki, and the reflected wave’s direction vector kr is called

the specular plane. The incident electric field vector component which resides in this

plane is called the parallel field component because it lies parallel to the specular

plane. The incident electric field vector component which resides in the plane or-

thogonal to the specular plane is called the perpendicular field component because

it lies perpendicular to the specular plane. If the electric field vector lies completely

in the specular plane, the polarization state of the incident light is referred to as

parallel polarization, or p-pol. Likewise, if the electric field vector resides completely

in the plane perpendicular to the specular plane, the polarization state of the in-

cident light is referred to as perpendicular polarization, or s-pol (from the German

word senkrecht meaning perpendicular). Derived below are the expressions for the

reflection and transmission coefficients for both s- and p-pols as well as the Fresnel

reflectances [16, 42, 56, 92, 116, 123]. Also shown are the Jones and Mueller matrices

for reflection from a smooth material surface.
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Figure 3. S-pol and p-pol scattering geometries.

2.6.1 S-Pol and P-Pol Fresnel Reflectances.

The s-pol and p-pol Fresnel reflectances are given in numerous references [16,

42, 56, 92, 116, 123]. The purpose of this section is to derive the expressions from

electromagnetic field distributions. Consider the geometry shown in Fig. 3—a TEM

wave is incident on an electrically large, planar conductive medium of complex index

of refraction η = n− jκ. The incident, reflected, and transmitted fields take the forms

of the plane-wave solutions of Maxwell’s equations, namely
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Ei = E0

 −ŷ

x̂ cos θi − ẑ sin θi

e−jk0x sin θie−jk0z cos θi

H i =
E0

Z0

x̂ cos θi − ẑ sin θi

ŷ

e−jk0x sin θie−jk0z cos θi

Er = E0

 −rsŷ

−rp (x̂ cos θr + ẑ sin θr)

e−jk0x sin θrejk0z cos θr

Hr =
E0

Z0

−rs (x̂ cos θr + ẑ sin θr)

rpŷ

e−jk0x sin θrejk0z cos θr

Et = E0

 −tsŷ

tp (x̂ cos θt − ẑ sin θt)

e−jkx sin θte−jkz cos θt

H t =
E0

Z

ts (x̂ cos θt − ẑ sin θt)

tpŷ

e−jkx sin θte−jkz cos θt

where E0 is the amplitude of the incident field and Z0 and Z are the intrinsic

impedances of free space and the material, respectively [9]. Here a bracket nota-

tion is used to show both s- and p-pols—s-pol is the first row, p-pol is the second

row. Enforcing the continuity of electric and magnetic fields tangential to the free-

space/material interface results in

 1

cos θi

e−jk0x sin θi +

 rs

−rp cos θr

e−jk0x sin θr =

 ts

tp cos θt

e−jkx sin θt

cos θi
1

e−jk0x sin θi +

−rs cos θr
rp

e−jk0x sin θr =
Z0

Z

ts cos θt
tp

e−jkx sin θt

. (42)

Expanding Eq. (42) into real and imaginary parts and algebraically combining the

resulting expressions produces the law of reflection and Snell’s law of refraction [9],
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i.e.,

θi = θr

sin θi = η sin θt

. (43)

Substituting Eq. (43) into Eq. (42) and simplifying produces

 1

cos θi

+

 rs

−rp cos θi

 =

 ts

tp cos θt


cos θi

1

+

−rs cos θi
rp

 =
Z0

Z

ts cos θt
tp


. (44)

Solving Eq. (44) for rs and rp results in the s- and p-pol Fresnel reflection coefficients:

rs =
Z cos θi − Z0 cos θt
Z cos θi + Z0 cos θt

=
cos θi − η cos θt
cos θi + η cos θt

rp =
Z0 cos θi − Z cos θt
Z0 cos θi + Z cos θt

=
η cos θi − cos θt
η cos θi + cos θt

. (45)

Likewise, although not utilized in this research, solving Eq. (44) for ts and tp results

in the s- and p-pol Fresnel transmission coefficients:

ts =
2 cos θi

cos θi + η cos θt

tp =
2 cos θi

η cos θi + cos θt

. (46)

In order to find expressions for the Fresnel reflectances in a form useful for remote-

sensing applications, the angle of transmission θt must be removed from Eq. (45).

Using the Pythagorean theorem and Snell’s law of refraction, the s-pol reflection

coefficient becomes

rs =
cos θi −

√
η2 − sin2θi

cos θi +
√
η2 − sin2θi

. (47)
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Using the relation for the square root of a complex number [71],

√
a+ jb =

√√
a2 + b2 + a

2
+ jsgn (b)

√√
a2 + b2 − a

2
, (48)

results in

rs =
cos θi − (A− jB)

cos θi + (A− jB)

A =
√√

C+D
2

B =
√√

C−D
2

C = 4n2κ2 +D2

D = n2 − κ2 − sin2θi

. (49)

Taking the magnitude squared of Eq. (49) produces the s-pol Fresnel reflectance,

namely,

Rs = |rs|2 =
(cos θi − A)2 +B2

(cos θi + A)2 +B2
. (50)

The Fresnel reflectance for p-pol can be found in terms of Rs by noting that

rp =
tan (θi − θt)

tan (θi + θt)
= −rs

cos (θi + θt)

cos (θi − θt)
. (51)

These expressions are easily found by using Snell’s law of refraction and Eq. (45). Ex-

panding Eq. (51) and substituting cos θt = (A− jB)/η and sin θt = sin θi/η produces

rp = −rs
cos θi (A− jB)− sin2θi
cos θi (A− jB) + sin2θi

= −rs
A− sin θi tan θi − jB

A+ sin θi tan θi − jB
. (52)

Taking the magnitude squared of Eq. (52) produces the desired result

Rp = |rp|2 =
(A− sin θi tan θi)

2 +B2

(A+ sin θi tan θi)
2 +B2

Rs. (53)
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These exact forms of the s- and p-pol Fresnel reflectances appear in Refs. [42, 92, 116,

123].

2.6.2 Jones and Mueller Matrices for Reflection.

From the expressions derived above, Jones and Mueller matrices can be formed

which model the behavior of light at a smooth material interface. The Jones matrix

for light scattered from a smooth material boundary is simply

Er
s

Er
p

 =

rs 0

0 rp


Ei

s

Ei
p

 (54)

where rs and rp are given in Eqs. (49) and (52), respectively [42, 92, 103, 104, 116].

From Eq. (54), the Mueller matrix for reflection from a smooth material surface can

be derived. The general expressions relating Eq. (54) to the Mueller matrix elements

are shown in the next chapter. For reflection from a smooth surface, the Mueller

matrix takes the form



Sr
0

Sr
1

Sr
2

Sr
3


=

1

2



Rs +Rp Rs −Rp 0 0

Rs −Rp Rs +Rp 0 0

0 0 2Re
{
rsr

∗
p

}
2Im

{
rsr

∗
p

}
0 0 −2Im

{
rsr

∗
p

}
2Re

{
rsr

∗
p

}





Si
0

Si
1

Si
2

Si
3


(55)

where Rs and Rp are given in Eqs. (50) and (53), respectively [42, 92, 103, 104, 116].

Here, Re { } and Im { } are the real and imaginary parts of the argument, respectively.

Before concluding, it is worth noting an important aspect of the ideas just pre-

sented. Figure 4 shows a plot of the s- and p-pol Fresnel reflectances for glass (amor-

phous SiO2) and iron at a wavelength of 1 µm versus angle (θi = θr). Note that

the s-pol reflectance is larger than the p-pol reflectance over nearly all angles. This
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Figure 4. Fresnel reflectances of glass and iron at 1 µm versus angle. The index of
refraction at 1 µm for glass is 1.45025− j0 [99] and iron is 3.23− j4.35 [100].

implies that unpolarized incident light, when scattered by a surface, becomes par-

tially polarized and its plane of vibration is the s-pol plane. This is easy to verify

mathematically using Stokes vectors/Mueller matrices:



Sr
0

Sr
1

Sr
2

Sr
3


=

1

2



Rs +Rp Rs −Rp 0 0

Rs −Rp Rs +Rp 0 0

0 0 2Re
{
rsr

∗
p

}
2Im

{
rsr

∗
p

}
0 0 −2Im

{
rsr

∗
p

}
2Re

{
rsr

∗
p

}





1

0

0

0


=

1

2



Rs +Rp

Rs −Rp

0

0


.

(56)

The DOP and AOP, using Eqs. (40) and (41), are

P =
Rs −Rp

Rs +Rp
α = 0. (57)

Since P depends on the s- and p-pol reflectances and they, in turn, are functions of

the material’s complex index of refraction, P is a function of the index of refraction.
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This observation and the manner in which unpolarized light scatters from a material

surface are fundamental to this research.

2.7 Scattering from Rough Surfaces

The previous section described how light behaves when it encounters a smooth

material boundary. Obviously, (perfectly) smooth material surfaces do not exist in

nature. Whether the expressions derived above are sufficient to accurately model

how light scatters from a boundary depends on the ratio of the wavelength of the

incident light to the roughness of the surface. If the incident light’s wavelength is

several times the roughness of the surface, the Fresnel reflectances derived above

should be sufficient. Physically, this implies that the incident light does not “see”

the randomness of the material surface and thus the surface can be approximated as

perfectly smooth. This scenario is often encountered in remote sensing using radio

frequencies where wavelengths can range from centimeters to meters. On the other

hand, if the incident light’s wavelength is on the order of or smaller than the roughness

of the surface, the Fresnel reflectances derived above must be altered to account for

the randomness of the material surface. This scenario (applicable to this research) is

encountered in remote sensing using infrared or optical frequencies where wavelengths

range from hundreds of nanometers to microns. The purpose of this section is to define

a framework for dealing with rough surface scattering. More details and descriptions

of the framework utilized for this research are reserved for the next chapter.

2.7.1 Bidirectional Reflectance Distribution Functions.

Before introducing the theoretical framework used to deal with rough surface

scattering, it is important to understand how surface roughness affects the scattering

of light. Consider light reflected from a relatively smooth object like a mirror. The
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Figure 5. Radiance distributions for near-specular, diffuse, and generalized surfaces [92,
112].
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scattered light from such a surface (a near-specular surface) obeys the law of reflection,

i.e., the scattered light is nearly contained in the specular plane at the specular angle

(θi = θr). This is shown in Fig. 5. Contrast that mirror-like surface with a rough

surface like a projector screen. The projector screen scatters light equally in all

directions making the screen visible to anyone in the room (shown in Fig. 5). This

type of surface is referred to as a diffuse or Lambertian surface. These two examples

represent the extremes of surface roughness. Most surfaces lie somewhere in between

these two extremes (shown in Fig. 5). In optics, scattering from rough surfaces is

modeled using a bidirectional reflectance distribution function (BRDF). The BRDF

is defined as the amount of light scattered into all directions from a surface illuminated

by a source at an arbitrary position above the hemisphere of the material [116]. The

BRDF is given by

f (θi, ϕi; θr, ϕr;λ) =
dLr (θr, ϕr)

dE (θi, ϕi)

[
sr−1

]
(58)

where Lr is the radiance [W/(m2sr)] leaving the surface and E is the incident irradi-

ance [W/m2] [42, 92, 96, 97, 116, 123]. The BRDF geometry is shown in Fig. 6 [123].

Most materials are azimuthally symmetric about the surface normal z; therefore,

the azimuthal angles ϕi and ϕr can be combined into a single angle ϕ = |ϕi − ϕr|

where ϕ = π (180◦) corresponds to the forward scatter angle and defines the specular

plane [42, 92, 116]. Another important quantity related to the BRDF is the directional

hemispherical reflectance (DHR). The DHR is the ratio of the total energy reflected

into the entire hemisphere above a material surface to the total energy incident from

a particular direction [42, 92, 103, 104, 116, 139]:

ρDHR (θi, ϕ, λ) =

2π∫
0

π/2∫
0

f (θi; θr;ϕ;λ) cos (θr) sin (θr) dθrdϕ. (59)
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Figure 6. Bidirectional reflectance distribution function (BRDF) geometry [123].

For a perfect reflector (equivalently a PEC), ρDHR must be equal to 1 (conservation of

energy) [139]. Easily derived from Eq. (59) is the BRDF for a diffuse or Lambertian

surface. Recall that a diffuse surface scatters light equally in all directions; therefore,

one expects the BRDF of such a surface to be completely independent of incident or

observation angles, i.e.,

ρDHR = f

2π∫
0

π/2∫
0

cos (θr) sin (θr) dθrdϕ. (60)

Carrying out the integration and solving for f produces [42, 92, 116]

f =
ρDHR

π
. (61)

2.7.2 Polarimetric BRDF’s.

A more general form of the scalar BRDF, defined in Eq. (58), is the polarimetric

BRDF, or pBRDF. The pBRDF predicts the polarization effects of material surface
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scattering as well as the amount of light scattered from a surface [42, 92, 116]. It is

defined as

F (θi, ϕi; θr, ϕr;λ) =
dLr (θr, ϕr)

dE (θi, ϕi)
, (62)

where Lr and E (same as above) are now Stokes vectors [42, 92, 116, 123] and the

pBRDF F is a Mueller matrix. Note that the f00 element of Eq. (62) is equivalent to

the scalar BRDF defined in Eq. (58) [42, 92, 116].

2.7.3 Types of BRDF’s.

BRDF’s come in two varieties—empirical and analytical BRDF’s [116]. As the

name implies, empirical BRDF’s are BRDF’s which arise from measurements. They

are not of particular interest to this research and therefore are not discussed. Infor-

mation regarding empirical BRDF’s including measurement systems and techniques

can be found in Ref. [116]. Analytical BRDF’s are theoretical expressions derived

from the physics of light’s interaction with surfaces. They, in addition to being func-

tions of incident and observation angles, are also functions of surface roughness and

complex index of refraction. Analytical BRDF’s can be divided into two types—PO-

and GO-based models. PO BRDF’s are based on the physical optics approximation

of scattering [9, 11, 16, 136]. They tend to be more accurate than GO BRDF’s; yet,

they possess more complicated mathematical forms than their GO counterparts. The

development and experimental verification of a PO BRDF is shown in Ref. [3]. GO

BRDF’s are based on the ray approximation of light [9, 16, 56]. While being less

accurate than PO BRDF’s, their simple mathematical forms make them especially

attractive. The BRDF model chosen for this research (discussed in detail in the next

chapter) is a GO BRDF.
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2.8 Aspects of Imaging

This section gives the reader a brief background on the effects of aperture size

and atmospheric turbulence on imaging. Excellent references discussing these topics

in detail are [5, 44, 63, 111].

2.8.1 Diffraction-Limited Imaging.

The image produced by a camera is a measure of the irradiance of the light reflected

or emitted by the object. The image received at the camera can be modeled as

i (y) =

∞∫
−∞

o (x)h (y − x) dx, (63)

or in the discrete case (applicable to modern digital cameras)

i (y) =
∑
x

o (x)h (y − x). (64)

Here, x is the object-plane coordinate pair (or object-plane pixel pair), y is the image-

plane coordinate pair (or image-plane pixel pair), o is the reflected irradiance of the

object, h is the point spread function (PSF), and i is the received irradiance at the

focal plane [45, 44, 74, 114]. Note that the received irradiance (or the image) is the

object’s irradiance convolved (two-dimensional convolution since x is a coordinate

pair) with the PSF. In the case of a perfect image

h (y − x) = δ (y − x) , (65)

where δ is the Dirac function. Real-world effects contribute to cause h to deviate

from δ. Two main causes of this deviation are finite aperture size and atmospheric

turbulence. Finite aperture size degrades image quality via diffraction. Diffraction
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Figure 7. Diffraction-limited images (bottom row) of the object (top row) viewed
through three differently-sized circular apertures (second row). Note that an increase
in aperture size results in an increase in image resolution. The diffraction-limited PSF’s
are also shown (third row).
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is an optical scattering effect in which light scattered from the edges of a collecting

aperture interferes with the main lobe. The result is a limit in resolution. Figure 7

shows this effect for finite circular apertures of varying sizes. The PSF, incorporating

the size and shape of the aperture, is

h (x) =

∣∣∣∣∣∣
∞∫

−∞

A (u) e−j2πKx·udu

∣∣∣∣∣∣
2

(66)

or in the discrete case

h (x) =

∣∣∣∣∣∑
u

A (u) e−j2πKx·u

∣∣∣∣∣
2

. (67)

Here, u is the aperture-plane coordinate pair, K is a constant which depends on the

wavelength and the distance to the image plane, and A is the aperture function [45,

74, 114].

2.8.2 Atmospheric Turbulence.

The second image degradation cause, atmospheric turbulence, is typically far more

severe than the first. Atmospheric turbulence is caused by temperature and pressure

gradients in the atmosphere. These gradients cause the index of refraction to vary

randomly in both time and space [5, 44]. At point r and time t, the index of refraction

of the atmosphere can be expressed as

n (r, t) = n0 + n1 (r, t) (68)

where n0 = ⟨n (r, t)⟩ ≈ 1 and n1 (r, t) represents the random deviation of n (r, t) from

its mean value [5, 44]. In terms of temperature and pressure, the index of refraction

is

n (r, t) = 1 + 77.6× 10−6
(
1 + 7.52× 10−3λ−2

) P (r, t)

T (r, t)
(69)
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where λ is the wavelength in microns, P is the atmospheric pressure in millibars, and

T is the temperature in kelvin [5, 44].

Of particular relevance to the work presented here is the refractive-index power

spectral density (PSD) developed by Kolmogorov. Kolmogorov reasoned that the

PSD contained three regions demarcated by the smallest and largest sizes of turbulent

“eddies” known as the inner (ℓ0) and outer scales (L0), respectively [5, 44]. Typical

values for ℓ0 and L0 are a few millimeters and 1–100 m, respectively [44]. For turbulent

eddy sizes lying in between the inner and outer scales (also known as the inertial

subrange), i.e., ℓ0 < L < L0, the Kolmogorov PSD takes the form

Φn (κx, κy, z) = 0.033C2
n (z)

(
κ2x + κ2y

)−11/6
(70)

where κα = 2π/α (α = x, y), z is the propagation distance, and C2
n is the index-of-

refraction structure constant which serves as a measure of the strength of index-of-

refraction fluctuations [5, 44]. Several functional forms exist in the literature for C2
n

(see Ref. [5] for discussions on these models). Note that the Kolmogorov PSD is only

applicable for eddy sizes which reside in the inertial subrange. For eddy sizes which

reside outside the inertial subrange another PSD must be used. Common examples

of such PSD’s are the von Kármán and the modified atmospheric PSD’s [5, 44].

Atmospheric phase screens and phase wheels used in this research to model tur-

bulence are created in the manner outlined by Frehlich:

φ (i∆x, l∆y) = Re

{
Nx∑
n=0

Ny∑
m=0

[a (n,m) + jb (n,m)] exp

[
j2π

(
in

Nx

+
lm

Ny

)]}
(71)

where ∆x and ∆y are the x and y grid spacings in the spatial domain, a (n,m) and

b (n,m) are matrices of zero mean uncorrelated Gaussian random numbers, and Nx

and Ny are the x and y lengths of a (n,m) and b (n,m) [39]. The variances of a (n,m)
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and b (n,m) are

⟨
a2 (n,m)

⟩
=
⟨
b2 (n,m)

⟩
= 2π

(
2π

λ

)2(
2π

Nx∆x

)(
2π

Ny∆y

)
Φn

(
2πn

Nx∆x
,
2πm

Ny∆y
, z

), (72)

where ∆z is the phase screen thickness and Φn is the refractive-index PSD [39].

Substitution of the Kolmogorov PSD [Eq. (70)] into Eq. (72) produces

⟨
a2 (n,m)

⟩
=
⟨
b2 (n,m)

⟩
= 2π∆z

(
2π

λ

)2(
2π

Nx∆x

)(
2π

Ny∆y

)
0.033C2

n

[(
2πn

Nx∆x

)2

+

(
2πm

Ny∆y

)2
]−11/6


(73)

where C2
n is assumed constant over the phase screen thickness ∆z. At this point, it

becomes convenient to introduce the atmospheric coherence width (or Fried’s param-

eter) [5, 44, 111]:

r0 =

0.423(2π

λ

)2
∆z∫
0

C2
n (z) dz

−3/5

(74)

where for small ∆z

r0 ≈

[
0.423

(
2π

λ

)2

C2
n∆z

]−3/5

. (75)

The atmospheric coherence width is an extremely important parameter in imaging and

serves as an “effective” pupil diameter when imaging in the presence of turbulence.

This physical interpretation of r0 is deduced by considering the Rayleigh resolution

of a diffraction-limited imaging system utilizing a circular pupil:

δ = 1.22
λzi
D

(76)
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where D is the diameter of the imaging aperture and zi is the image distance from

the pupil [16, 56, 45]. Andrews and Phillips note that the resolution of an imaging

system in the presence of atmospheric turbulence is [5]

δ ≈ 1.22
λzi
r0
. (77)

By comparing Eqs. (76) and (77), one can see that r0 behaves as an “effective”

aperture diameter. Note that the above equations imply that when imaging through

turbulence, resolution is limited by r0 and not D (assuming D > r0 which is typically

the case). Substituting Eq. (75) into Eq. (73) and simplifying yields

⟨
a2 (n,m)

⟩
=
⟨
b2 (n,m)

⟩
=

0.0229

Nx∆xNy∆y
r
−5/3
0

[(
n

Nx∆x

)2

+

(
m

Ny∆y

)2
]−11/6. (78)

If Nx = Ny and ∆x = ∆y, then Eq. (78) simplifies to

⟨
a2 (n,m)

⟩
=
⟨
b2 (n,m)

⟩
= 0.0229

(
D

r0

)5/3(
n2 +m2

)−11/6
. (79)

Phase screens and phase wheels can now be created by first generating two matrices

of Gaussian random numbers. The Gaussian random numbers should be zero mean

and have a variance given by Eq. (79). Utilizing Eq. (71) produces the desired result.

The effects of light propagating through the atmosphere are phase (occurs in weak

and strong turbulence) and irradiance (occurs in strong turbulence) fluctuations in

the field. The demarcation between weak and strong turbulence is determined by the
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Rytov number or Rytov variance [5]. For a plane wave, the Rytov variance is [5]

σ2
R (L) = 2.25

(
2π

λ

)7/6

L5/6

L∫
0

C2
n (z)

(
1− z

L

)5/6
dz. (80)

Assuming constant C2
n and substituting in Eq. (75) produces

σ2
R = 2.91

[
L

(2π/λ) r20

]5/6
. (81)

Weak turbulence is loosely defined as turbulence in which σ2
R < 0.2; strong turbulence

is defined as turbulence in which σ2
R > 0.2 [5]. Note that the values of σ2

R used in

this research are much less than 0.2. Figure 8 shows the effects of weak atmospheric

turbulence on the same object imaged in Fig. 7. Phase screens for this simulation

are created as outlined above with D/r0 ≈ 43. Note, as implied by Eq. (77) and

discussed above, an increase in aperture size does not improve the quality of the

image. Incorporating atmospheric turbulence into the PSF [Eq. (66)] results in

h (x) =

∣∣∣∣∣∣
∞∫

−∞

A (u) ejφ(u)e−j2πKx·udu

∣∣∣∣∣∣
2

(82)

or in the discrete case

h (x) =

∣∣∣∣∣∑
u

A (u) ejφ(u)e−j2πKx·u

∣∣∣∣∣
2

. (83)

Here, φ models the random phase effects caused by propagation through the atmo-

sphere [44, 74, 114]. Note that modeling turbulence in this manner is only accurate

for σ2
R ≪ 0.2. For strong turbulence scenarios, this model must be adapted. Note

also that this model for the PSF is the same used by LeMaster and Cain and Schulz

(discussed in more detail in the next chapter) [74, 114]. Image degradation caused
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Figure 8. Turbulence-degraded images (bottom row) of the object (top row) viewed
through three differently-sized circular apertures (second row). Note that an increase
in aperture size does not improve image quality. The turbulence-degraded PSF’s are
also shown (third row).
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by atmospheric turbulence is, at least in part, correctable. One technique used to

remove atmospheric degradation is adaptive optics. Adaptive optics (AO) relies on a

wavefront sensor and deformable mirror to correct phase aberrations caused by the

atmosphere. References describing adaptive optics systems are [1, 75, 135]. The other

technique, utilized in this research, is called blind deconvolution. Blind deconvolu-

tion is the process of recovering the true object, o in Eq. (64), from the degraded

image having little or no information about h (PSF) or o [70]. Blind deconvolution

is formally developed in the next chapter.
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III. Summary of Published Research

T
his chapter provides a review of the relevant published work. Included in this

literature summary is an overview of optical material-characterization (both

laboratory and remote-sensing) techniques, a description of three BRDF’s, and an

explanation of two blind-deconvolution algorithms.

3.1 Optical Material Characterization

Material characterization requires one to solve forward and inverse problems. The

forward problem involves finding theoretical expressions for the particular measure-

ment geometry. In some instances, the forward problem can be algebraicly inverted

resulting in direct closed-form expressions for index of refraction in terms of measur-

able quantities. However, in most circumstances, the inverse problem must be solved

using numerical-inversion techniques such as the Newton-Raphson method, Gauss-

Newton nonlinear least squares, or the Levenberg-Marquardt algorithm [79]. It is

important to keep these two steps in mind as the following index-of-refraction mea-

surement techniques are introduced. These two material-characterization problems

form the basis of this research.

This section is organized in the following manner. Discussed first are laboratory

material-characterization techniques followed by remote-sensing material-classification

(defined below) and characterization algorithms. Note that many more techniques for

determining the index of refraction exist in the literature [99, 100]. The techniques

described below are chosen because they are the most popular and relevant to this

research.
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3.1.1 Laboratory Techniques.

The laboratory material-characterization techniques highlighted below are Brewster’s-

angle, minimum-deviation angle (prism methods), interferometric, and ellipsometric

techniques. As stated above, this list is not all inclusive [99, 100].

3.1.1.1 Brewster’s Angle.

The Brewster’s-angle technique, along with the minimum-deviation angle method

(discussed below), are the most mature optical material-characterization algorithms.

The basic concept behind this measurement technique is accurately determining the

Brewster’s angle of a material. Recall the expression for the p-pol Fresnel reflectance

given in Eq. (53):

Rp =

[
(A− sin θi tan θi)

2 +B2

(A+ sin θi tan θi)
2 +B2

][
(cos θi − A)2 +B2

(cos θi + A)2 +B2

]

A =
√√

C+D
2

B =
√√

C−D
2

C = 4n2κ2 +D2

D = n2 − κ2 − sin2θi

. (84)

Note that for a lossless material, i.e., κ = 0, there exists an angle at which Rp = 0.

This angle is called Brewster’s angle θB [9, 16, 56]. Brewster’s angle can be found in

terms of index of refraction by making the necessary substitutions into Eq. (84):

θB = tan−1 (n) . (85)

This expression can easily be inverted to produce a function of index of refraction in

terms of Brewster’s angle:

n = tan (θB) . (86)
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Figure 9. A photograph (top) of a goniophotometer used by Bell [12] and a schematic
(bottom) of a goniophotometer used by Mian et al. [93].

It is important to understand physically what the mathematics above implies. P-pol

light, which is incident at Brewster’s angle, is completely transmitted (no reflection)

into the material. Therefore, exposing an unknown material to p-pol incident light

and finding the angle at which the scattered irradiance is a minimum provides a

simple means of determining the index of refraction via Eq. (86). This process forms

the basis of the material-measurement technique.

Brewster’s angle is found experimentally using an instrument known as a gonio-

photometer [12]. A goniophotometer consists of two arms and a precision rotation

stage (see Fig. 9). The first arm contains the light source (typically a laser) produc-

ing p-pol light; the second arm contains the optical detector (typically a camera).

The rotation stage, which contains the sample, is situated immediately following the

source arm. When searching for Brewster’s angle, the movement of the detector arm

must be coordinated with the movement of the rotation stage to ensure the detec-

tor remains in the specular direction. This is accomplished with mechanical gearing
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which ensures the rotation stage moves at one-half the rate of rotation of the detector

arm [12].

While being elegantly simple, this technique suffers from several shortcomings.

The first is optical alignment. As stated above, the detector arm must be positioned

in the specular direction for the technique to produce accurate index-of-refraction

values. This is no small task. Both Bell [12] and Mian et al. [93] spend time dis-

cussing instrument alignment techniques in their respective papers. Next is specimen

preparation. While, mathematically, p-pol incident light at Brewster’s angle is not

scattered, in actuality, some light is reflected from the material. This is caused by dif-

fuse scattering from the surface of the material under test (MUT) [12]. Since diffuse

scattering is caused by surface roughness, the surface of the MUT must be smooth

enough to ensure specular scattering dominates. If the MUT’s surface is too rough,

such that diffuse scattering dominates, it is impossible to accurately determine the

angle of minimum scattered irradiance. Lastly, the technique (as described) cannot

be used to find the MUT’s coefficient of extinction κ because it lacks a second inde-

pendent measurement. This can be overcome by measuring the scattered irradiance

at a second angle or by measuring the scattered irradiance at Brewster’s angle when

s-pol light is incident. These methods and several others are described in Ref. [99].

3.1.1.2 Minimum-Deviation Angle (Prism Techniques).

It has been known for centuries that when light passes through a prism, it bends.

The degree to which the light bends depends on the index of refraction of the prism.

This simple observation forms the basis of the minimum-deviation angle material-

measurement technique. Figure 10 shows a diagram of the measurement geometry.

Using Snell’s law of refraction and some simple trigonometry, one can derive an ex-

pression for the deviation angle ψ in terms of the index of refraction and prism angle
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Figure 10. Minimum-deviation angle measurement geometry.

ϕ:

ψ = sin−1

[
n sin

(
ϕ− sin−1

(
sin θ

n

))]
+ θ − ϕ. (87)

It can be shown that ψ is a minimum when the light ray passing through the prism

is parallel to the prism’s base. Solving for the index of refraction in terms of ψmin

results in

n =
sin [(ψmin + ϕ)/2]

sin (ϕ/2)
. (88)

Finding the minimum deviation angle experimentally is accomplished using a de-

vice very similar to a goniophotometer (see Fig. 9). The measurement device consists

of a light source (typically a laser) followed by a rotation stage, which holds the ma-

terial prism, followed lastly by an optical detector. Since this technique relies on the

light transmitted through the material, there is no need for the detector to move with

the rotation stage. In order to measure the deviation angle, part of the source beam

must be passed by the prism undeviated to provide a reference [58].

Several examples of this technique, or derivatives of it, exist in the literature [28,

29, 58, 88]. Three of the cited papers discuss measuring anisotropic materials at

cryogenic temperatures [28, 29, 58]. It is worth discussing two of the issues with

this measurement technique before concluding this summary. The first is that the

50



Figure 11. Schematic of a Mach-Zehnder interferometer used by Goodwin et al. [46].

minimum-deviation angle technique is a transmission measurement. While this cer-

tainly aids with optical alignment, it limits the applicability of this technique to

low κ materials. The second measurement issue is specimen preparation. Like the

Brewster’s-angle technique, the faces of the MUT prism must be smooth enough to

ensure light passes through the prism in the manner predicted by Snell’s law. If

the prism faces are too rough, light is transmitted at angles other than the Snell’s

law transmission angle (transmission equivalent of light being scattered in directions

other than the specular direction). This makes finding ψmin difficult. In addition to

smooth prism faces, MUT prism construction can also be an issue. For an isotropic

MUT, prism construction is less of a problem; however, for an anisotropic MUT, the

prism faces must be correctly oriented relative to the MUT’s crystal axes.

3.1.1.3 Interferometers.

Interferometric material-measurement techniques rely on the pattern formed when

two light beams from the same source constructively and destructively interfere. In-

terferometers split light from a common source along two optical paths. The first

path, known as the reference path, proceeds to the detector unimpeded. The second

51



path is sent through the MUT before interfering with the reference beam. The pat-

tern produced on the optical detector is a series of peaks and nulls known as fringes.

Figure 11 shows a schematic of a Mach-Zehnder interferometer which is commonly

used for interferometric material measurements [46, 95] (for other interferometers see

Refs. [19, 46, 89, 99]). The irradiance distribution detected by the camera is equal to

the magnitude squared of the coherent sum of the two optical fields at the exit of the

second beam splitter:

i = |u1 (t) + u2 (t)|2 (89)

where u1 and u2 represent the optical fields in the first (reference beam) and second

arms of the interferometer, respectively. If the losses in the mirrors and beam splitters

are assumed to be equal for both optical paths, then

u1 = Aejωt

u2 = Aτ (n, κ; d) ejθ(n,κ;d)ejωtejϕ
(90)

where A is the amplitude of the field, τ exp jθ is the complex field transmission coef-

ficient (a function of n, κ, and the MUT thickness d), and ϕ is the controllable phase

delay introduced by the adjustable mirror. Note that an expression for the field

transmission coefficient can be found using electromagnetic theory. The transmission

coefficient takes the form

τejθ =
2η

jη2 sin
(
2πη
λ
d
)
+ 2η cos

(
2πη
λ
d
)
+ j sin

(
2πη
λ
d
) (91)

where η = n− jκ is the complex index of refraction. Placing the above expression into

magnitude and phase form is left to the reader. Substituting Eq. (90) into Eq. (89)
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and simplifying produces

i (n, κ;ϕ, d) = A2 + A2τ 2 + 2Aτ cos (θ + ϕ) . (92)

Note that if A and the thickness d are known, then only two measurements are

necessary (ϕ = 0 and π/2, for instance). If the field amplitude and the MUT thickness

are unknown, then more measurements are needed [46, 99].

Like the other methods described above, interferometric material-measurement

techniques are not perfect. MUT surface roughness and optical alignment are cer-

tainly issues that one must overcome when using an interferometric technique. Also,

since interferometric material measurements are predominately transmission type

measurements, the MUT must possess a low κ value (or be thin enough) to permit

enough light through to noticeably interfere with the reference beam. This limitation

can be overcome by redesigning the interferometer to operate in reflection mode. An

example of such an instrument is a Kösters-prism interferometer. Details of its im-

plementation can be found in Ref. [99]. Even with these limitations, interferometric

techniques are very robust. They can be used to measure the thicknesses of thin

films very accurately [99], to determine the index of refraction of ultrathin coal sam-

ples [89], to characterize gradient index materials (materials whose index of refraction

changes along a direction) [95], and to measure the index of refraction of materials in

wavelengths other than visible light (ultraviolet in this case) [19].

3.1.1.4 Ellipsometry.

Ellipsometry is the most powerful material-measurement technique of the methods

described above. It makes use of the change in polarization state of light upon

reflection in order to determine the material properties of the MUT. At the heart

of ellipsometry is a device called an ellipsometer. While several different designs for
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Figure 12. Schematic of a classic ellipsometer [127].

ellipsometers exist [14, 32, 73, 84, 118, 127, 133], the instrument described here is

a classic ellipsometer. A classic ellipsometer consists of two arms—the polarization

state generator (PSG) and the polarization state analyzer (PSA) [14, 25, 127]. The

PSG consists of a light source followed by a linear polarizer (LP) and a quarter-

wave plate (QWP) [14, 127]. The PSG is capable of producing four-independent

polarization states [25]. The PSA consist of a QWP followed by a LP and an optical

detector (essentially the mirror image of the PSG) [14, 127]. The MUT is placed in

between the two arms of the ellipsometer (see Fig. 12). With this instrument, one

is able to determine, unambiguously, the Mueller matrix of a sample. One can also

determine, using an ellipsometer, the index of refraction (both the real and imaginary

parts) and the thickness of the MUT (transmission ellipsometry).

In order to find the index of refraction of the MUT using an ellipsometer, a

theoretical expression must be found for the irradiance received at the optical detector.

This is best accomplished using Mueller matrices, i.e.,

Sout
0 =

[
1 0 0 0

]
P (ζ)Q (ψ)M (n, κ; θ)Q (β)P (α)

[
Sin
0 0 0 0

]T
(93)

where P, Q, and M are the Mueller matrices for a LP, a QWP, and reflection from

a material, respectively (these matrices can be found in Ref. [14]). Here, ζ, ψ, β,
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and α are angles measured with respect to the optic axis, θ is the angle of incidence

(or reflection, since θi = θr) the light makes with the MUT, and Sin
0 is the source

irradiance. Note that with this ellipsometer, described mathematically in Eq. (93),

16-independent measurements are possible at each θ. If the source irradiance Sin
0 is

known, then only two of those 16 measurements are needed (else, three are required).

This allows for the removal of the QWP’s from the ellipsometer. It also allows the

LP angles to be set equal (ζ = α). Making these simplifications and performing the

matrix multiplication in Eq. (93) produces

Sout
0 =

Sin
0

2
[Rs +Rp + 2 (Rs −Rp) cos 2α

+ (Rs +Rp) cos
22α+ 2Re

{
rsr

∗
p

}
sin22α

]
.

(94)

Choosing two values for α (α = 0 and π/4 are especially convenient) and a value for

θ other than 0 or π/2 results in a system of nonlinear equations given by

Sout
0 (α = 0) = 2Sin

0 Rs

Sout
0 (α = π/4) =

Sin
0

2

[
Rs +Rp + 2Re

{
rsr

∗
p

}]. (95)

A two-dimensional Newton-Raphson search can be performed on Eq. (95) to find the

index of refraction n and the coefficient of extinction κ. Note that although only

two measurements are required to find n and κ all 16 could be used to provide an

overdetermined system. Gauss-Newton nonlinear least squares could then be used to

find the values for n and κ which best fit the measurements.

Ellipsometry suffers from two main sources of error. The first is optical align-

ment. In order for the ellipsometric measurement to be accurate, one must know

precisely the orientation of the PSG and the PSA relative to the material’s sur-

face normal. This issue can be alleviated by operating the ellipsometer in trans-
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mission mode [14, 25, 84, 133]; however, this limits MUT’s to low κ or ultrathin

materials. MUT surface roughness is less of an issue than the other techniques

because pBRDF models can be incorporated into the theoretical ellipsometric ex-

pressions [103, 104, 123]. The second source of measurement error comes from the

technique’s use of polarization optics (LP’s and QWP’s). In the theoretical model

for the received irradiance, these optical devices are assumed perfect. In actuality,

a LP does allow light in the “blocked” polarization to pass, and a QWP does not

exactly delay one polarization component a quarter-wave relative to the orthogonal

component. In addition to these imperfections, LP’s and QWP’s are also dispersive

(properties change with frequency); therefore, they must be changed (or theoreti-

cally accounted for) if one desires index-of-refraction values of the MUT at multiple

wavelengths.

3.1.2 Remote-Sensing Techniques.

What separates remote-sensing material-measurement techniques from the lab-

oratory methods described above is the inability to control certain variables. For

instance, in remote sensing, transmission methods like minimum-deviation angle and

interferometric techniques cannot be used because one cannot be certain of the ob-

servation geometry or that the MUT is translucent. Thus, one is relegated to a

reflection-based technique. The Brewster’s-angle technique could be used; however,

not knowing the MUT geometry makes it difficult to ensure the MUT is illuminated

with p-pol light. Ellipsometry presents the same problem as the Brewster’s-angle

technique, namely, the inability to control incident geometry and polarization state.

On the other hand, it does permit the observer to control the measurement of the

received polarization state via the PSA. Although not capable of 16-independent

measurements like an ellipsometer, the PSA is capable of making 4-independent mea-
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Figure 13. Photograph of the polarimeter used by Matchko and Gerhart [86].

surements, i.e., enough to deduce the Stokes vector. In remote sensing, this instru-

ment, essentially one-half of an ellipsometer, is called a polarimeter. Described below

are four remote-sensing applications which use this instrument. The first discusses

methods for determining the DOP and AOP from passive polarimetric images, the

second and third are passive material-classification algorithms, and the last is a pas-

sive material-characterization technique.

3.1.2.1 DOP and AOP Measurements.

The key to measuring the DOP and AOP of light reflected from an object is to

determine the four Stokes parameters embedded in the polarimetric images. Once the

Stokes parameters have been determined, the DOP and AOP can be found by using

Eqs. (40) and (41), respectively. This research deals predominately with the DOP as

a means of finding the index of refraction; therefore, not much emphasis is placed on

measuring the AOP. Note that in future research on this subject, the AOP will be

investigated. It provides a means of passively determining observation geometry [85].

Three papers are highlighted in this section on passive DOP and AOP measure-

57



ments. The first two are authored by Matchko and Gerhart [85, 86]. In the first

paper, the authors measure the DOP and AOP of skylight [85]. In the second, the

authors develop a technique to measure the DOP and AOP of an object using a com-

mercial off-the-shelf (COTS) digital camera [86]. The instrument (polarimeter) used

by the authors is shown in Fig. 13. It consists of a filter, retarder (ideally, a QWP),

LP, and a digital camera. In order to find the Stokes parameters, four irradiance

measurements are made: (1) LP at 0◦—I1, (2) LP at 90◦—I2, (3) LP at 45◦—I3,

and (4) retarder at 0◦ and LP at 45◦—I4. Note that authors’ polarimeter allowed

for the precise movement of the retarder into and out of the optical path. This is

why irradiance measurements (1)–(3) do not specify a retarder location. The Stokes

parameters are related to the above irradiance measurements by

S0 = I1 + I2

S1 = I1 − I2

S2 = 2I3 − S0

S3 =
2I4 − S0 − S2 cos ϵ

sin ϵ

(96)

where ϵ is the phase difference introduced by the retarder [86]. Note the ϵ is ide-

ally π/2. It was necessary for the authors to include a variable retardance because

they sought the Stokes parameters at wavelengths other than the optimal (tuned)

wavelength of the retarder (see Ref. [86] for more details). Performing the above

calculations for each pixel and using Eqs. (40) and (41), the authors formed DOP

and AOP images of a vehicle under natural illumination (see Fig. 14). Note that the

edges of the vehicle are clearly visible in the DOP image. The authors attribute this

to the fact that at the time of day the images were taken, sunlight incident on the

vehicle’s panels was predominately scattered toward the ground. The vehicle’s edges,

being rounded, allowed sunlight to be scattered toward the detector. This explains
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Figure 14. Measured DOP and AOP images of a scene published by Matchko and
Gerhart [86].
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the contrast difference between the vehicle’s panels and edges in the DOP image [85].

Despite this, different paints are clearly visible in the image. Before concluding, it

is worth noting one final observation made by the authors. The authors, along with

Coulson and Thilak et al., note that under natural sunlit conditions, the amount of

reflected circularly polarized light is insignificant [27, 85, 123]. This implies that the

fourth Stokes parameter (as well as the fourth row and fourth column of Mueller

matrices) can be removed. This simplification is used throughout this research.

The third and final paper discussed in this section is research published by Goudail

et al. [51]. The purpose of the paper was to demonstrate target detection using a

liquid-crystal-based polarimeter. While Goudial et al. dedicate most of their paper to

target detection, the section describing the workings of their polarimeter is interesting

and relevant. The polarimeter used by Goudail et al. for their research consists of a

filter, two liquid crystal retarders, a LP, and a camera. Goudail et al. determined the

Stokes parameters of a scene by applying Stokes vectors/Mueller matrices, namely,

Sout = MPOLMR (δ1)MR (δ2)Sin = MglobalSin (97)

where MPOL is the Mueller matrix for a LP and MR (δ) is the Mueller matrix for a

retarder with retardance δ [51]. Note that in this polarimeter, all elements remain

stationary. The independent polarization state measurements are generated by a

series of controllable phase differences introduced by the liquid crystal retarders. The

irradiance detected at the camera is

I = Sout
0 = A (δ1, δ2)S

in
0 +B (δ1, δ2)S

in
1 + C (δ1, δ2)S

in
2 +D (δ1, δ2)S

in
3 (98)

where A, B, C, and D are the elements of the first row of Mglobal. As stated above,

4 measurements are required to unambiguously resolve the Stokes parameters. How-
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Figure 15. Visible image of two trucks in the shade (top), long-wave IR intensity image
(bottom left), and long-wave IR polarization image (bottom right). Note that the
trucks are visible in the polarimetric image [133].

ever, since the design of the authors’ polarimeter makes collecting polarimetric images

simple (does not require elements to be physically rotated), collecting more than four

measurements is an easy task. Generalizing the above equation to multiple irradiance

measurements produces
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(99)

where Eq. (99) is best solved using linear least squares when N > 4. The authors note

that N should be at least 8 to ensure good results for the Stokes parameters [51]. In

the remainder of the paper, the authors apply their polarimeter to target detection.

While not relevant to this work, a few words on target detection using polarimetric
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imagery are warranted. Polarimetric target detection is based on the premise that

natural objects (tree canopies, for instance) tend to be diffuse scatterers. While

manmade objects, like vehicles, aircraft, etc., tend to scatter polarized light. An

example of target detection using passive polarimetric imagery is shown in Fig. 15.

Note that the two trucks, hidden under the canopy, are visible in the polarimetric

image. For more on polarimetric target detection see Ref. [51].

3.1.2.2 Material Classification.

Material classification differs from material characterization in one aspect—the

inverse problem. Whereas material characterization requires one to solve forward

and inverse problems, material classification only requires the solution to the forward

problem. In material classification, a rule is deduced from the solution of the forward

problem which discriminates one type of material from another. The parameter on

which the rule is based is then measured and a choice is made between two (or

more) possible outcomes based on the value of the measured parameter. In the two

papers discussed below, dielectric materials are distinguished from metals based on

the measured polarization Fresnel ratio (discussed below) and DOP, respectively.

In the first paper by Lawrence B. Wolff, the author develops a technique to classify

dielectric and metallic objects in a scene using the polarization Fresnel ratio (also

known as the Fresnel ratio) [141]. The polarization Fresnel ratio is defined as F⊥/F∥

where F⊥ and F∥ are the s- and p-pol Fresnel reflectances, respectively (using the

author’s notation). The author notes that a Fresnel ratio of greater than 2.0 is

indicative of a dielectric surface; whereas, a Fresnel ratio of less than 2.0 is indicative

of a metallic surface [141]. This simple thresholding scheme forms the basis of the

classification algorithm.

Wolff models light scattered from a material surface using the microfacet model.
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The microfacet model stipulates that a rough surface is composed of a large collection

of randomly distributed facets each scattering light in the manner postulated by

Fresnel’s equations [103, 104]. Thus, light scattered from a surface is a combination

of the following phenomena: (1) light waves which specularly reflect off a planar

interface with the surface, significantly larger than the wavelength, a single time;

(2) light waves which go through at least two specular reflections amongst multiple

microfacets; (3) light waves which penetrate the top layer of the material surface,

multiply refract, and then are reflected back out (volumetric scattering); and (4)

light waves which diffract from interfaces with surface detail about the same size or

smaller than the wavelength of the incident light wave [141]. Note that mechanism

(1) is the specular component of reflection and mechanisms (2)–(4) combine to form

the diffuse component of reflection (assumed to be unpolarized) [141]. Assuming

unpolarized incident light and observation in the specular plane, Wolff’s model for

the received irradiance when viewed through a LP at angle θ relative to the specular

plane (see Fig. 16) is

I(θ) =
1

2
Id +

F∥cos
2θ + F⊥sin

2θ

F∥ + F⊥
Is (100)

where Is and Id are the specular and diffuse irradiances, respectively. Note that

Eq. (100) sinusoidally varies between a maximum received irradiance value Imax when

θ = π/2 and a minimum received irradiance value Imin when θ = 0:

Imax =
1

2
Id +

F⊥

F∥ + F⊥
Is

Imin =
1

2
Id +

F∥

F∥ + F⊥
Is

. (101)

The Fresnel ratio is formed by algebraically manipulating these two equations such
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Figure 16. Material classification geometry used by Wolff and Tominaga and Ki-
machi [126].

that [141]

F⊥

F∥
=
Imax − Id/2

Imin − Id/2
. (102)

Wolff now makes two assumptions: (1) the specular component of reflection is far

larger than the diffuse component of reflection (this implies Imax ≫ Id) and (2)

Imin ≫ Id. Applying these assumptions to Eq. (102) produces Wolff’s Fresnel ratio

approximation, i.e.,

F⊥

F∥
≈ Imax

Imin

. (103)

The author notes that this approximation always underestimates the true Fresnel

ratio. This is especially evident near Brewster’s angle when F∥ for dielectric surfaces

approaches zero. He also notes that the accuracy of the approximation depends

on scattered light in which the specular component dominates. Note that this is a

requirement for all polarimetric material-classification or characterization algorithms

including the one developed in this research. Classification is achieved using Wolff’s

algorithm by first experimentally measuring Imax and Imin. This is accomplished
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Figure 17. Results of Wolff’s material-classification algorithm. The figure on the left is
a pair of scissors. Clearly evident are the dielectric handles (bottom photo) and metallic
blades (top photo). Also evident are the spots of corrosion (rust) on the blades (bottom
photo). The figure on the right is a circuit board. The top picture contains the part of
the circuit board classified metallic; the bottom picture contains the part of the circuit
board classified as dielectric [141].

by making 4-irradiance measurements with the polarizer at 0◦, 45◦, 90◦, and 135◦,

respectively. A sine curve is then fit to these values for each pixel in the image. Imax

and Imin are then readily deduced. Lastly, Eq. (103) is applied to each pixel in the

image and the following test applied

Imax/Imin ≤ 2.0 Metallic

Imax/Imin > 2.0 Dielectric
. (104)

Wolff concludes his paper by applying his classification technique to several dif-

ferent objects. Two of his results are shown in Fig. 17. The figure on the left is a pair

of scissors. Note that the metallic blades (top photo) and dielectric handles (bottom

photo) of the scissors are clearly visible. Note also that the algorithm correctly clas-

sifies corrosion (rust) on the blades as a dielectric (spots on the bottom photo). The

figure on the right is a printed circuit board. The top picture contains the elements
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of the circuit board which are classified as a metal; the bottom picture contains the

elements of the circuit board which are classified as a dielectric [141].

The second and final material-classification paper presented is by Tominaga and

Kimachi [126]. The authors use the DOP to discriminate dielectric and metallic ob-

jects in a scene. They accomplish this by observing the shape of the two-dimensional

DOP surface (authors refer to it as a DOP map) around the specular highlight point

of the material. The authors note that the DOP map becomes convex for dielectric

materials and concave, or nearly flat, for metals (see Ref. [126] for detailed explana-

tion of this phenomena). The concavity or convexity (i.e., the decision rule) of the

DOP map is determined by calculating the second derivative (i.e., Laplacian) of the

DOP map at the specular highlight point or by fitting a quadratic surface to the

DOP map and noting the sign of the second-order coefficient. If the second derivative

or the second-order fitted coefficient is positive, then the surface is categorized as a

metal; else, the surface is categorized as a dielectric [126].

Tominaga and Kimachi assume the same measurement geometry as Wolff (see

Fig. 16). Their model for received light is very similar as well, i.e.,

I (x, y, θ) = TnId (x, y)

+ Tp
F∥ (x, y) sin

2 (θ − θ0) + F⊥ (x, y) cos2 (θ − θ0)

F∥ (x, y) + F⊥ (x, y)
Is (x, y)

(105)

where θ0 denotes the direction of the s-pol plane, x and y are pixel coordinates, and Tp

and Tn are the transmittances of the polarizer for linearly polarized and unpolarized

light, respectively (ideally, Tn = Tp/2). The symbols Id, Is, F∥, and F⊥ have been

defined previously. Note that Eq. (105) varies sinusoidally with a maximum Imax (x, y)
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at θ = θ0, θ0 + π and a minimum Imin (x, y) at θ = θ0 ± π/2 given by

Imax (x, y) =
F⊥ (x, y)

F∥ (x, y) + F⊥ (x, y)
TpIs (x, y) + TnId (x, y)

Imin (x, y) =
F∥ (x, y)

F∥ (x, y) + F⊥ (x, y)
TpIs (x, y) + TnId (x, y)

. (106)

The difference between Imax (x, y) and Imin (x, y) equals the irradiance of received light

which is completely polarized. The DOP can now be found by dividing this quantity

by the total received irradiance, namely, (using the authors’ notation)

ρ (x, y) =
Imax (x, y)− Imin (x, y)

Imax (x, y) + Imin (x, y)
. (107)

Classification using Tominaga and Kimachi’s algorithm begins in precisely the same

manner as Wolff’s, i.e., experimentally finding Imax (x, y) and Imin (x, y). Once that

is achieved, Eq. (107) is applied to each pixel in the image, thus forming the DOP

map. The following test is then applied

∇2ρ (x, y)|x=x0
y=y0

> 0 Metallic

∇2ρ (x, y)|x=x0
y=y0

< 0 Dielectric
(108)

where (x0, y0) is the pixel coordinate corresponding to the specular highlight point.

Figure 18 shows some of the measurement results for the Tominaga and Kimachi

material-classification algorithm. The top photographs show the MUT’s—on the left

is vinyl, on the right is copper. The bottom figures are the DOPmaps for each MUT at

30◦ and 60◦ incident angles. The white dot in each figure marks the specular highlight

point. The measured second derivatives at that point are −0.0072 and −0.0015 for

vinyl and 0.0022 and 0.0021 for copper [126]. Both materials are classified correctly.
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Figure 18. Results of Tominaga and Kimachi’s material-classification algorithm. The
top photographs show the materials classified using the algorithm. The image on the
left is vinyl; the image on the right is copper. The bottom plots are the DOP maps for
each material at 30◦ and 60◦ incident angles. The white dot in each plot is the specular
highlight point [126].
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Figure 19. Measurement geometry used by Thilak et al. [123].

3.1.2.3 Material Characterization.

One of the few, if only, passive remote-sensing material-characterization papers is

a paper by Thilak et al. [123]. The paper introduces a method to find the complex

index of refraction and reflection angle of MUT’s from DOP measurements made at

several different incident angles. The authors’ measurement geometry is shown in

Fig. 19. The object is modeled using the Priest and Meier pBRDF (discussed in more

detail in the next section) [104]. The authors make the following assumptions: (1)

the object’s position remains fixed; (2) the position of the unpolarized illumination

source changes between measurements; (3) the source position with respect to the

camera is known, i.e., θsc1 and θsc2 in Fig. 19 are known; (4) observation is restricted

to the specular plane; and (5) in accordance with the findings of [27, 85], the amount

of circularly polarized light in the reflected signal is negligible [123].

As stated above, the authors model scattering from the MUT using the Priest and
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Meier pBRDF [104]. The form of this pBRDF is

fjl (θi, θr, ϕ) =
1

(2π) (4σ2) cos4θ

exp [−tan2θ/ (2σ2)]

cos θr cos θi
mjl (θi, θr, ϕ) (109)

where fjl is the element in the jth row, lth column of the Mueller matrix pBRDF, mjl

is the element in the jth row, lth column of the Mueller matrix for reflection [Eq. (55)],

θ is the angle of orientation of microfacets relative to the mean surface normal, ϕ is

the azimuth angle, and σ is the surface roughness parameter [123]. Note that since

the amount of circularly polarized light in the reflected signal is assumed negligible,

j, l = 0, 1, 2. The angle θ is related to the angles of incidence and reflection by [123]

θ = cos−1

(
cos θi + cos θr

2 cos β

)
(110)

where

cos 2β = cos θr cos θi + sin θr sin θi cosϕ. (111)

Recall that for scattering in the specular plane ϕ = π. This simplifies Eqs. (110) and

(111) to

θ = (θr − θi) /2 β = (θr + θi) /2. (112)

Since the source is unpolarized, the scattered radiance is (using the authors’ notation)


sr0

sr1

sr2

 =


f00 f10 0

f10 f00 0

0 0 f22



1

0

0

 =


f00

f10

0

. (113)

Using Eq. (40), the DOP of the scattered light becomes

P =
f10
f00

=
Rs −Rp

Rs +Rp

(114)
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where Rs and Rp are the s- and p-pol Fresnel reflectances, respectively. Substituting

in Rs and Rp [given in Eqs. (50) and (53)] and Eq. (112) into Eq. (114) and simplifying

produces the desired result

P (n, κ, β) =
2Asin2β cos β

A2cos2β + sin4β +B2cos2β

A =
√√

C+D
2

B =
√√

C−D
2

C = 4n2κ2 +D2

D = n2 − κ2 − sin2β

(115)

where the expressions for A, B, C, and D have been restated for convenience.

Equation (115) is the solution to the forward problem in the authors’ material-

characterization algorithm [123].

The authors’ inverse problem, the step necessary to find the desired parameters,

is a two-step process [123]. In the first step, the authors use nonlinear least squares

to find the values of n and κ which best fit Eq. (115) to DOP measurements. The

angle β is assumed known:

Pj (n, κ) =
2Ajsin

2βj cos βj
A2

jcos
2βj + sin4βj +B2

j cos
2βj

(116)

where j corresponds to a measurement number, j ∈ [1, 2, · · · , T ]. Obviously T must

be greater than or equal to 3 for a unique solution to exist. In the second step, the

n and κ values found in the first step are incorporated into Eq. (115). The value

of the reflection angle θr is then found (via nonlinear least squares) using the DOP

measurements from the first step:

Pj (θij, θr) =
2Ajsin

2
(

θij+θr
2

)
cos
(

θij+θr
2

)
A2

jcos
2
(

θij+θr
2

)
+ sin4

(
θij+θr

2

)
+B2

j cos
2
(

θij+θr
2

) . (117)
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Table 1. “Low-noise” simulation results for copper published by Thilak et al. The true
index of refraction is n = 0.314 and κ = 3.544 while the true reflection angle is 60◦. The
results are obtained from 500 Monte Carlo trials [123].

Number of Measurements n̂ RMSEn̂ κ̂ RMSEκ̂ θ̂r (◦) RMSEθ̂r

3 (55◦ − 65◦) 2.479± 0.301 4.052 7.837± 0.595 8.254 60.039± 0.008 0.098

5 (50◦ − 70◦) 1.474± 0.254 3.117 5.734± 0.482 5.911 59.823± 0.120 1.382

10 (35◦ − 80◦) 0.421± 0.075 0.866 3.768± 0.164 1.822 59.695± 0.130 1.508

In order to verify the technique, the authors perform simulations as well as lab-

oratory measurements. The simulated data sets are formed by using Eq. (115) with

specific values for n, κ, and θr and a sequence of values for θi. Gaussian noise is

then added to the data sets to simulate measurement noise. Two noise levels are

considered—a “low-noise” scenario (defined to be Gaussian noise with a variance of

0.1% of the maximum DOP value) and a “high-noise” scenario (defined to be Gaussian

noise with a variance of 1% of the maximum DOP value) [123]. Tables 1 and 2 show

the results of the algorithm for a simulated copper (0.314− j3.554) surface—Table 1

is the “low-noise” scenario and Table 2 is the “high-noise” scenario. The authors

note that the algorithm occasionally converges to physically unrealizable values, i.e.,

n, κ < 0, θr < 0◦, or θr > 90◦ [123]. When this occurs, the results are ignored and

the algorithm is restarted. Note that the technique performs well.

Lastly, the authors verify the method experimentally. The authors use a polarime-

ter to form Stokes images. A single Stokes image is formed from ten polarimetric

images collected with the polarizer rotated in 15◦ steps for each image [123]. The

DOP values are calculated by averaging at least 100 × 100 pixels in the Stokes im-

ages [123]. Shown below is the published result for roughened copper (Table 3 and

Fig. 20). More simulation and measurement results are available in Ref. [123].
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Table 2. “High-noise” simulation results for copper published by Thilak et al. The
true index of refraction is n = 0.314 and κ = 3.544 while the true reflection angle is 60◦.
The results are obtained from 200 Monte Carlo trials [123].

Number of Measurements n̂ RMSEn̂ κ̂ RMSEκ̂ θ̂r (◦) RMSEθ̂r

3 (55◦ − 65◦) 7.865± 0.826 9.610 15.669± 1.353 15.545 59.904± 0.195 1.409

5 (50◦ − 70◦) 6.918± 0.964 9.580 13.321± 1.361 13.832 59.701± 0.339 2.461

10 (35◦ − 80◦) 3.319± 0.822 6.637 8.031± 1.177 9.579 59.815± 0.210 1.525

19 (35◦ − 80◦) 1.310± 0.449 3.378 5.373± 0.719 5.486 59.281± 0.776 5.629

Table 3. Measurement results for copper published by Thilak et al. The true index of
refraction is n = 0.4 and κ = 2.95. The angle of incidence is varied in steps of 5◦ [123].

Angle of Incidence (◦) Reflection Angle (◦) n̂ κ̂ θ̂r (◦)

35− 70 60 0.54 3.19 59.51

35− 70 55 0.53 3.26 54.63

35− 70 50 0.53 3.32 49.62

35− 70 45 0.51 3.37 44.85

Figure 20. Measurement results for copper published by Thilak et al. [123].
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3.1.2.4 Other Papers.

A couple of other papers are worth mentioning before proceeding to the pertinent

literature on BRDF’s. The first is a paper by Terrier et al. in which an algorithm

is developed which discriminates objects in a scene based on their roughness [120].

The technique uses a polarimetric version of the Torrance and Sparrow BRDF [128]

(discussed below) to predict the scattered Stokes parameters from a material surface.

The index of refraction of the material is estimated first by minimizing the difference

between the measured S2/S1 and the theoretical S2/S1 at multiple incident angles

via nonlinear least squares. Lastly, the surface roughness is estimated (again via

nonlinear least squares) using the measured and theoretical specular component of

reflection. The technique is very similar in nature to that of Thilak et al.; however,

the technique utilizes a more accurate pBRDF (discussed below) as well as an active

source (i.e., polarization state of source is controlled).

The other is a paper by Hong in which a technique is proposed to estimate the

refractive index of specular surfaces at a given view angle by direct inversion of Fres-

nel’s equations [60]. Note that in general Rs and Rp are transcendental expressions

of η; however, under specific circumstances (see Ref. [60]) closed-form analytical ex-

pressions can be found for n and κ in terms of Rs and Rp. The author uses these

expressions along with a related approximation developed in the paper to estimate

the index of refraction of water from ultraviolet (200 nm) to microwave (18.75 cm)

wavelengths. Details can be found in Ref. [60].

3.2 BRDF’s

This section deals with three BRDF’s each one building on the one that preceded

it. The last BRDF introduced in this section is the one chosen for this research. Note

that many other BRDF’s exists (see Refs. [3, 42, 87, 92, 116]). The three described
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Figure 21. Measurement results for aluminum and magnesium oxide ceramic at λ =
0.5 µm published by Torrance and Sparrow. The top subfigure shows the results for
aluminum, σm = 1.3 µm. The bottom subfigure shows the results for magnesium oxide
ceramic, σm = 1.9 µm. Note that the values for reflectance are normalized to the
reflectance value at the specular angle. Off-specular peaks occur when the plotted
values become greater than unity; they are visible at angles greater than 40◦ [128].

below are the most relevant to this research.

3.2.1 Torrance and Sparrow.

Torrance and Sparrow’s 1967 paper is the seminal paper for GO BRDF’s [128].

The authors were motivated to describe mathematically the scattering phenomena

known as off-specular peaks. An off-specular peak is a maximum in reflected irra-

diance which occurs at an angle larger than the specular angle [128]. Off-specular

peaks commonly appear in measured data for both metallic and dielectric surfaces
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Figure 22. Scattering geometry used by Torrance and Sparrow. The figure shows a light
beam (incident at angle ψ and of solid angle dωi) incident on a small area of material
dA. The reflected light, scattered from microfacets whose normals are inclined at angle
α from the z axis, is scattered at polar angle θ and azimuth angle ϕ [128].

(see Fig. 21). Empirical evidence predicts their appearance when the rms surface

roughness σm is on the order of or greater than the wavelength of the incident field,

i.e., σm/λ ≥ 1 [128]. Note that electromagnetic theory states that all scattering oc-

curs in the specular direction for surfaces much larger than the wavelength of the

incident field; therefore, this phenomenon must be related to surface roughness. Re-

searchers, prior to Torrance and Sparrow, understood this; however, none could for-

mulate an expression to accurately model off-specular peaks. BRDF’s (prior to Tor-

rance and Sparrow) either predicted infinite scattered irradiance as the incident angle

approached grazing or did not predict the feature at all [128]. Needless to say, the

work of Torrance and Sparrow remedied this problem.

Torrance and Sparrow’s initial premise is that light reflected from a rough surface

is composed of two components—a specular component and a diffuse component, i.e.,

dNr (ψ; θ, ϕ) = dNr,s (ψ; θ, ϕ) + dNr,d (ψ) (118)

where ψ is the angle of incidence (source angle), θ is the angle of observation (re-
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flection angle), and ϕ is the azimuth angle (rotational symmetry is assumed). The

Torrance and Sparrow scattering geometry is shown in Fig. 22. Note that the authors’

notation is used throughout. In accordance with the microfacet surface model (on

which the Torrance and Sparrow BRDF is based), the specular component of the scat-

tered irradiance is the result of specular reflections (obeying Fresnel’s equations) from

a large number of small mirror-like facets which compose the surface [103, 104, 128].

These facets are assumed to distributed symmetrically about the mean surface nor-

mal according to a slope distribution function [104]. Torrance and Sparrow utilize

Gaussian-shaped distribution, namely,

P (α) = b exp
(
−c2α2

)
(119)

where α is the angle between the facet surface normal and the mean surface normal

and b and c are fit parameters. Torrance and Sparrow’s expression for the specular

component of the scattered irradiance is

dNr,s (ψ; θ, ϕ) = (fNidωi/4)F (ψ′, n̂) [G (ψp, θp)/cos θ]P (α) . (120)

where f is the area of a facet, Ni is the incident flux, dωi is the solid angle subtended
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by the source, and F is the Fresnel reflectance (either s- or p-pol). Also in Eq. (120),

ψ′ =
1

2
cos−1 (cos θ cosψ − sin θ sinψ cosϕ)

α = cos−1 (cosψ cosψ′ + sinψ sinψ′ cos β1)

ψp = tan−1 (cos β2 tanψ)

θp = ψp + 2α

β1 = sin−1 (sinϕ sin θ/sin 2ψ′)

β2 = π − sin−1 (sin β1 sinψ
′/sinα)

n̂ = n− jκ

. (121)

The only term not formally defined in Eq. (120) is the function G. Its significance is

discussed later. The diffuse component of the scattered irradiance arises from multiple

reflections among facets and from internal scattering (volumetric scattering) [128].

The form chosen by Torrance and Sparrow for the diffuse component of the scattered

irradiance is

dNr,d (ψ) = aNi cosψ (122)

where a is a fit parameter. Putting Eqs. (120) and (122) together produces the

Torrance and Sparrow BRDF, i.e.,

ρ =
dNr (ψ; θ, ϕ)

Ni cosψdωi

=
bfF (ψ′, n̂)G (ψp, θp) exp

(
−c2α2

)
4 cosψ cos θ

+
a

dωi

. (123)

What truly separates the Torrance and Sparrow BRDF from previous BRDF’s

is the function G. Mathematically, G is the fraction of an illuminated facet that

contributes to the scattered irradiance [128]. Physically, it models the shadowing

and masking of a facet by an adjacent facet [128]. Torrance and Sparrow call this
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Figure 23. V-groove cavity geometry used by Torrance and Sparrow [128].

term the geometrical attenuation factor. The form of the geometrical attenuation

factor is derived under the following assumptions: (1) each specularly reflecting facet

comprises one side of a symmetric V-groove cavity; (2) the longitudinal axis of the

cavity is parallel to the plane of the mean surface; (3) all azimuthal orientations of

the longitudinal axis of the cavity are assumed equally probable; (4) all masking and

shadowing effects take place within cavities; this is equivalent to assuming that the

upper edges of all V-groove cavities lie in the same plane; (5) only the first reflection of

an incident beam is added to the specularly reflected flux; (6) all multiple reflections

are assumed to be perfectly diffuse [128]. The V-groove cavity geometry is shown in

Fig. 23. After much trigonometry (details can be found in Ref. [128]), Torrance and

Sparrow derive the geometrical attenuation factor

G (ψp, θp) = 1− 1−
√
1− A2

A
(124)
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where

A =
sin2θp − cos2 [(θp − ψp)/2]

cos2 [(θp − ψp)/2]− cos (θp − ψp) sin
2θp

. (125)

The authors also include a table stipulating how it should be used (see Table I in

Ref. [128]). It should be noted that Blinn derived an easier method for determining

its value [15]. Blinn found that the value for the geometrical attenuation factor is the

minimum of Ga, Gb, and Gc, namely

G = min (Ga, Gb, Gc)

Ga = 1 Gb =
2 cosα cos θ

cosψ′ Gc =
2 cosα cosψ

cosψ′

. (126)

The geometrical attenuation factor is vital because it serves to attenuate the

scattered irradiance at angles near grazing [128]. This keeps the Torrance and Sparrow

BRDF from asymptotically approaching infinity as the incident or observation angles

approach 90◦. In addition to keeping the Torrance and Sparrow BRDF well behaved

near the grazing angles, the geometrical attenuation factor also serves to accurately

predict the position and magnitude (parameter fitting is required to ensure this) of off-

specular peaks. Note that G is a function of geometry, i.e., it depends on the angles

of incidence, observation, and azimuth, and not a function of material parameters

n−jκ [128]. This aspect ofG is in accordance with intuition and experiment. Torrance

and Sparrow conclude their paper by comparing predictions made using their BRDF

to the aluminum and magnesium oxide ceramic measurement results shown above.

Figure 24 shows their results. Note the accurate prediction of the off-specular peaks.

3.2.2 Priest and Germer.

In 2000, Priest and Germer developed a polarized version of the Torrance and

Sparrow BRDF [103]. Note that in 2002, Priest and Meier published this pBRDF and
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Figure 24. Predicted results (rightmost figures) for aluminum and magnesium oxide
ceramic at λ = 0.5 µm published by Torrance and Sparrow. The top subfigure shows
the results for aluminum. The bottom subfigure shows the results for magnesium
oxide ceramic. For ease of comparison, the measurement results (shown in Fig. 21)
are reproduced here (leftmost figures). Note that the Torrance and Sparrow BRDF
accurately predicts the off-specular peaks. Information regarding the values of the fit
parameters can be found in Ref. [128].
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presented measurement results [104]. Both papers (the first a conference proceeding,

the second a journal article) are very similar. Much of the information presented

below comes from the 2002 Priest and Meier journal paper. Note that the Priest and

Germer pBRDF and the Priest and Meier pBRDF are identical. Both terms are used

interchangeably in this research.

Like the Torrance and Sparrow BRDF, the Priest and Germer pBRDF is based on

the microfacet surface model. The microfacet model postulates that a rough surface

is composed of a large number of small mirror-like facets each obeying Fresnel’s equa-

tions [103, 104]. These facets are symmetrically distributed about the mean surface

normal according to a distribution function [103, 104]. The most common distribu-

tion used (and the one used by Priest and Germer) is a Gaussian distribution [11],

i.e.,

p (θ) =
1

2πσ2cos3θ
exp

(
−tan2θ

2σ2

)
(127)

where θ is the angle between the mean surface normal and the facet normal and σ2 is

the slope variance. Note that Beckmann provides a more physical definition for the

slope variance:

σ2 =
2σ2

h

ℓ2
(128)

where σh is the rms surface height and ℓ is the surface correlation length [11]. With

a Gaussian facet distribution, the expression for the Priest and Germer scalar BRDF

is

f =
1

2π

1

4σ2

1

cos4θ

exp [−tan2θ/ (2σ2)]

cos θr cos θi
ρ (β) . (129)

For brevity, the derivation of Eq. (129) is not shown. References detailing its deriva-

tion can be found in [103, 104, 119]. In Eq. (129), β is the angle of incidence onto

or angle of reflection from a facet, θi is the angle of incidence with the respect to

the mean surface normal, θr is the angle of reflection with respect to the mean sur-

82



n̂̂n

θ

Figure 25. Microfacet scattering geometry used by Priest and Germer [42].

face normal, and ρ is the applicable Fresnel reflectance (either s- or p-pol). Using

trigonometry, expressions can be found relating θ and β to θi, θr, and ϕ, namely,

cos θ =
cos θi + cos θr

2 cos β

cos 2β = cos θi cos θr + sin θi sin θr cosϕ

. (130)

In order to generalize Eq. (129) to the case of polarized light, the authors use

a Jones matrix approach [103, 104]. Consider the microfacet scattering geometry

shown in Fig. 25. Only microfacets aligned at angle θ scatter light in the manner

depicted. The angle ηi is the angle between the plane of incidence as defined by the

incident light ray and mean surface normal (macro plane of incidence) and the plane

of incidence as defined by the incident light ray and the microfacet surface normal

(micro plane of incidence) [42]. Likewise, the angle ηr is the angle between the plane

of reflection as defined by the reflected light ray and mean surface normal (macro

plane of reflection) and the plane of reflection as defined by the reflected light ray

and the microfacet surface normal (micro plane of reflection) [42]. The angles ηi and
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ηr are related to θi, θr, and ϕ by

cos ηi =
cos θ − cos θi cos β

sin θi sin β

cos ηr =
cos θ − cos θr cos β

sin θr sin β

(131)

derived using trigonometry [103, 104]. In accordance with the microfacet surface

model, the Jones matrix for light scattered from a microfacet is given by Eq. (54).

This expression, however, is referenced to the local s- and p-pol geometry of a micro-

facet. Thus, two coordinate rotations are required to model the scattering depicted in

Fig. 25. The first rotates the macro plane of incidence to align with the micro plane

of incidence; the second rotates the micro plane of reflection to align with the macro

plane of reflection. The Jones vector/matrix formalism modeling this process is

Er
s

Er
p

 =

 cos ηr sin ηr

− sin ηr cos ηr


rs 0

0 rp


cos ηi − sin ηi

sin ηi cos ηi


Ei

s

Ei
p


=

Tss Tps

Tsp Tpp


Ei

s

Ei
p


(132)

where rs and rp are the s- and p-pol Fresnel reflection coefficients [Eqs. (49) and (51)],

respectively [103, 104]. In order to arrive at the desired Mueller matrix representation,

expressions are required which relate the Jones matrix elements (derived above) to

the Mueller matrix elements. These expressions are given in Refs. [103, 104] and
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shown here
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TssT

∗
pp − T ∗

ssTpp
)]

m30 =
1

2

[
j
(
TssT

∗
sp − T ∗

ssTsp
)
+ j
(
TpsT

∗
pp − T ∗

psTpp
)]

m31 =
1

2

[
j
(
TssT

∗
sp − T ∗

ssTsp
)
− j
(
TpsT

∗
pp − T ∗

psTpp
)]

m32 =
1

2

[
j
(
TssT

∗
pp − T ∗

ssTpp
)
+ j
(
TpsT

∗
sp − T ∗

psTsp
)]

m33 =
1

2

[(
TssT

∗
pp + T ∗

ssTpp
)
−
(
TpsT

∗
sp + T ∗

psTsp
)]

. (133)

Here, ∗ is the complex conjugate operation. Substituting Eq. (133) into Eq. (129) for

ρ produces the desired result, i.e.,

fjk (θi, θr, ϕ) =
1

2π

1

4σ2

1

cos4θ

exp [−tan2θ/ (2σ2)]

cos θr cos θi
mjk (θi, θr, ϕ) (134)

where j and k can take any integer value between 0 and 3 [103, 104]. Note that for
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in-plane scattering (i.e., ϕ = π)

m00 = m11

m01 = m10

m22 = m33

m23 = −m32

(135)

producing the Mueller matrix for reflection given in Eq. (55).

It is worth discussing the measurement results published by Priest and Meier and

a few aspects of their pBRDF before concluding. Figure 26 shows Mueller matrix

measurement results compared to theoretical predictions made using Eq. (134) for

two material samples. The top subfigure shows the results for Enhanced Martin

Black (an anodized aluminum, dyed-black coating on an aluminum substrate) [104].

Enhanced Martin Black is a rough highly-absorbing material. The bottom subfigure

shows the results for LabSphere Infragold [72] (plasma sprayed copper overcoated

with electroplated gold on an aluminum substrate) [104]. LabSphere Infragold is a

rough highly-reflective material. Both material samples were measured at 3.39 µm.

The Mueller matrices for these samples were collected at in-plane scattering condi-

tions (ϕ = π) and at the specular angle (θi = θr). Note that for the Enhanced

Martin Black sample, the Priest and Germer pBRDF performs admirably; however,

discrepancies exist between the Priest and Germer pBRDF predictions and the mea-

surement results for LabSphere Infragold. The authors interpret these results to mean

that reflection from a highly-absorbing surface (like Enhanced Martin Black) leaves

the surface after a single bounce. The remaining light is absorbed. For scattering

from a highly-reflective surface (like LabSphere Infragold), the reflected light is a

product of numerous random reflections which depolarize the light. This results in a

significant diffuse contribution to the scattered light. The pBRDF given in Eq. (134)
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Figure 26. Mueller matrix measurement results comparing predictions made by the
Priest and Germer pBRDF to experimental data. The top subfigure shows the results
for Enhanced Martin Black; the bottom subfigure shows the results for LabSphere
Infragold. Both material samples were measured at 3.39 µm. The Mueller matrices
for both samples were collected at in-plane scattering conditions and at the specular
angle [104].
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Figure 27. DHR’s calculated using the Priest and Germer pBRDF for three PEC
surfaces of differing surface roughness (1◦, 5◦, and 15◦ rms slope roughnesses).

includes no depolarizing or diffuse term and therefore suffers when trying to accu-

rately predict the scattering from highly-reflective surfaces. The authors propose how

a diffuse BRDF component could be derived; however, they do not include it in the

paper [103, 104]. Wellems et al. include this term in their pBRDF (discussed be-

low) [139]. In addition to the diffuse component of scatter, the Priest and Germer

pBRDF does not include the geometrical attenuation factor derived by Torrance and

Sparrow. While the full impact of this omission is demonstrated below, the lack of the

geometrical attenuation factor causes the Priest and Germer pBRDF to asymptoti-

cally approach infinity as the angle of incidence or observation approaches grazing.

Thus, for large angles of incidence (or observation), the Priest and Germer pBRDF

does not obey the conservation of energy.
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3.2.3 Wellems et al..

While the Priest and Germer pBRDF is elegantly simple, it predicts nonphysical

scattering results for angles approaching grazing. This is because the model does

not conserve energy. Recall from the previous chapter that the DHR for a PEC

surface must equal 1. In other words, all light incident on a PEC surface, regardless

of roughness, is scattered back into the hemisphere containing the incident light.

Collection of this scattered light (via integration) over the entire hemisphere should

result in a scattered energy value equal to the amount of incident energy. Shown

in Fig. 27 are the DHR’s for a 1◦, 5◦, and 15◦ rms surface roughness PEC. The

DHR’s in the figure are calculated using the Priest and Germer pBRDF. Note that

the DHR’s are calculated by integrating over the whole sphere, not just the upper

hemisphere [103, 104]. According to Priest and Germer, the physical meaning of this

is that their pBRDF allows light to be scattered below the surface. Obviously, a

PEC does not permit light to enter. This “transmitted” light is actually a result of

multiple facet reflections and thus can serve as a depolarizing (diffuse) contribution

to the Priest and Germer pBRDF [103, 104]. In order to incorporate the diffuse

term, as suggested by Refs. [103, 104], the pBRDF must first be made to obey the

conservation of energy (ρDHR ≤ 1). This was achieved by Wellems et al.

The two key additions of Wellems et al. to the Priest and Germer pBRDF were

the inclusion of the Torrance and Sparrow geometrical attenuation factor and the

derivation of a simple diffuse component to the pBRDF [139]. As discussed above,

Torrance and Sparrow’s geometrical attenuation factor serves a vital function. It at-

tenuates the amount of scattered irradiance at angles near-grazing causing the BRDF

to remain bounded. The inclusion of this term causes the Priest and Germer pBRDF

to obey the conservation of energy [139]. Figure 28 shows the DHR, calculating using

the Priest and Germer pBRDF (unshadowed Priest and Germer pBRDF), for a PEC
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Figure 28. DHR, calculated using the unshadowed Priest and Germer pBRDF, for a
PEC surface with a 10◦ rms slope roughness compared to the DHR’s, calculated using
the shadowed Priest and Germer pBRDF, for two PEC surfaces with 10◦ and 20◦ rms
slope roughnesses, respectively.
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surface with a 10◦ rms slope roughness compared to the DHR’s, calculated using the

Priest and Germer pBRDF with the geometrical attenuation factor included (shad-

owed Priest and Germer pBRDF), for two PEC surfaces with 10◦ and 20◦ rms slope

roughnesses, respectively. Note that the DHR’s calculated using the shadowed Priest

and Germer pBRDF are never greater than 1.

Since inclusion of the Torrance and Sparrow geometrical attenuation factor into

the Priest and Germer pBRDF results in a pBRDF which obeys the conservation of

energy, attention can now be turned to deriving a diffuse component to the Priest

and Germer pBRDF. Wellems et al. state that the diffuse component to the pBRDF

is simply the difference between 1 (i.e., the correct conservation of energy value) and

the calculated DHR value divided by π:

fdiff =
1− ρDHR

π
. (136)

To understand the factor of 1/π, see the derivation of the Lambertian BRDF in the

previous chapter. The Wellems pBRDF is now formed by adding the shadowed Priest

and Germer pBRDF to the diffuse component, i.e.,

fjk (θi, θr, ϕ, σ) = f spec
jk (θi, θr, ϕ, σ) + fdiff

jk (θi, θr, ϕ, σ) (137)

where

f spec
jk (θi, θr, ϕ, σ) =

G (θi, θr, ϕ)

(2π) (4σ2) cos4θ

exp [−tan2θ/ (2σ2)]

cos θr cos θi
mjk (θi, θr, ϕ)

fdiff
jk (θi, θr, ϕ, σ) =


[1− ρDHR (θi, σ)]m00 (θi, θr, ϕ)/π j = 0, k = 0

0 else

ρDHR (θi, σ) =

2π∫
0

π/2∫
0

G (θi, θr, ϕ)

(2π) (4σ2) cos4θ

exp [−tan2θ/ (2σ2)]

cos θr cos θi
cos θr sin θrdθrdϕ

. (138)
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Figure 29. Measurement results of roughened glass published by Wellems et al. The fig-
ures compare measurements of |S1/S0| to predictions made using the Wellems pBRDF.
The figure on the left shows the results for a 60◦ view angle. The figure on the right
shows the results for an 80◦ view angle. The green curve is the measurement; the red
curve is the prediction. The error bars on the red curve are the result of an uncertainty
in the index of refraction of glass [139].

Note that, in accordance with intuition, the only Mueller matrix element the diffuse

component contributes to is the m00 element. Equation (137) is the BRDF that is

used in this research.

Wellems et al. conclude their paper by comparing |S1/S0| measurements of rough-

ened glass to |S1/S0| predictions made using their pBRDF. Figure 29 shows the results

for 60◦ (left) and 80◦ (right) view angles. The green curve is the measurement; the

red curve is the prediction. The error bars on the red curve are the result of an

uncertainty in the index of refraction of glass (see Ref. [139] for more details). Note

that the Wellems pBRDF performs well at both angles; its performance at 80◦ is

especially impressive.

Another reference which discusses this pBRDF is Ref. [140]. In the paper, Wellems

et al. present a two-parameter hyper-Cauchy facet distribution function. Numerous

experimental results of (S2
1 + S2

2)
1/2
/S0 and S2/S1 at 8.5–9.5 µm of roughened glass

and unprepared metal and painted surfaces are presented demonstrating the flexibility

of the new facet distribution function.
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3.3 Blind Deconvolution

Recall from the previous chapter the definition of blind deconvolution: blind de-

convolution is the process of recovering the true object from the degraded image

having little or no information about the PSF or the true object [70]. Two blind-

deconvolution papers are reviewed in this section. The first by Schulz (an improve-

ment on the work of Holmes [59]) presents a method for estimating the PSF’s and

the true object from images degraded by atmospheric turbulence. The second paper

by LeMaster and Cain estimates the polarized and unpolarized components of scene,

as well as the AOP and PSF’s, from polarimetric images degraded by atmospheric

turbulence. Both papers employ the maximum-likelihood (ML) estimation approach.

ML estimation is a means of estimating a set of parameters θ = [θ1, θ2, · · · , θm]T of

a statistical distribution based upon data x = [x1, x2, · · · , xn]T drawn according to

that distribution [94]. The goal of ML estimation is to determine values of θ which

maximize the probability of observing x, i.e.,

θML = argmax
θ

f (x|θ) = argmax
θ

lx (θ) (139)

where f is the probability density function (PDF) of the data x conditioned on the

sought parameters θ [94]. Here, lx is referred to as the likelihood function. Note

that in many instances, especially when dealing with exponential-type statistical dis-

tributions (Poisson, Gaussian, exponential, Rayleigh, etc.), it is convenient to work

with the log of the likelihood function. Since the log function is monotonically in-

creasing, maximizing the likelihood function is equal to maximizing the log-likelihood

function [94]. Finding θML involves solving the system of nonlinear equations shown
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here [94]
∂

∂θ1
lx (θ1, θ2, · · · , θm) = 0

∂

∂θ2
lx (θ1, θ2, · · · , θm) = 0

...

∂

∂θm
lx (θ1, θ2, · · · , θm) = 0

. (140)

While techniques such as the Newton-Raphson method can be used, a simpler al-

ternative known as the expectation-maximization (EM), or generalized expectation-

maximization (GEM) algorithm can be used [70]. This is the technique employed

by the authors of the two papers discussed below. The EM algorithm is an iterative

technique which consists of two steps from which it derives its name—the expecta-

tion step and the maximization step. In the expectation step, the observed data

x (called the incomplete data) are represented as the aggregate of some underly-

ing distribution (called the complete data y) [74]. Note that the complete data are

not observed directly, nor do they need to have any physical significance [74, 94].

They do, however, need to have the same statistical distribution as the incomplete

data [74]. The expectation step gets its name from the calculation of the expectation

of the complete-data log-likelihood function when conditioned upon the incomplete

data and the most recent parameter estimates θ(k) [74, 94]:

Q
(
θ|θ(k)

)
= E

{
ln [f (y|θ)]|x,θ(k)

}
. (141)

The function Q is called the objective function [74]. In the final step of the EM

algorithm (the maximization step), the values of the estimated parameters are found

such that the objective function is maximized or (at least) increased in value [74, 94]:

θ(k+1) = argmax
θ

Q
(
θ|θ(k)

)
. (142)
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The EM algorithm is then iterated until the sought parameters satisfy an arbitrary

stopping criterion [74, 94]. Having provided the necessary background, attention can

now be turned to reviews of the research published by Schulz and LeMaster and Cain.

3.3.1 Schulz.

One drawback of the unconstrained ML estimation approach to blind deconvo-

lution is its tendency to produce a trivial estimate [114]. The trivial estimate is

obtained when the object is estimated as a point source and the PSF as the mea-

sured data [114]. The purpose of Schulz’s paper is to present methods for overcoming

this shortfall. Two such techniques are presented. The first is a penalized-ML esti-

mator. This technique adds a penalty term to the standard log-likelihood function

which discourages object estimates which resemble a point source [114]. The second

method is an ML estimator in which the PSF’s are parameterized by phase errors

distributed over the imaging aperture [114]. This technique, being the most relevant

to this research, is the one highlighted. Information regarding Schulz’s penalized-ML

estimator can be found in Ref. [114].

Recall from the previous chapter the expression for the detected irradiance, i.e.,

Eq. (64). If K images are collected, Eq. (64) becomes

ik (y; o, hk) =
∑
x

o (x)hk (y − x) (143)

where the index k = 1, · · · , K. As previously defined, x is the object-plane coordi-

nate pair, y is the image-plane coordinate pair, o is the true object, and hk is the PSF

for the kth captured frame. Note that the measurement of ik is never perfect. Several

noise sources are responsible for its corruption. The two most common are readout

noise and shot, or photon noise. The assumption made by Schulz is that shot noise

is the dominant noise source [114]. Shot noise is caused by the random arrival times
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of individual photons at the camera’s detector array [44]. The number of photons

which arrive in a given time is Poisson distributed; thus, the photon count (related

to the detected irradiance) at a certain location in the camera’s detector array is a

Poisson random variable [44, 114]. Schulz defines the photon count at location y in

the kth frame as dk (y) where dk (y) is a Poisson random variable with mean equal

to ik [114]:

ik (y; o, hk) = E [dk (y)] . (144)

The log-likelihood function based on the Poisson distribution is

L (o, h) =
K∑
k=1

{
−
∑
y

ik (y; o, hk) +
∑
y

dk (y) ln [ik (y; o, hk)]

}
+A.T. (145)

where A.T. is another term that depends on neither o nor hk and thus does not affect

the maximization [114].

This is the point at which Schulz introduces the parameterized form of the PSF.

The expression is very similar to Eq. (83):

hk (y − x; αk, θk) = αk

∣∣∣∣∣∑
u

A (u) ejθk(u)e−j2πKu·(y−x)

∣∣∣∣∣
2

= αkg (y − x; θk) (146)

where, as before, A is the aperture function of the imaging system and θk models

the random phase effects caused by propagation through the atmosphere. Note that

the phase effects are permitted to differ from frame to frame. The new variables in

Eq. (146) not yet defined are αk, which models the gain of the kth PSF, and K, which

is a constant whose value depends primarily on the sample spacing used to perform

the discrete Fourier transform (DFT) [114]. Substitution of Eq. (146) into Eq. (145)
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produces the log-likelihood function

L (o, h) = −
∑
k

∑
y

∑
x

αkg (y − x; θk) o (x) +
∑
k

∑
y

dk (y) lnαk

+
∑
k

∑
y

dk (y) ln

[∑
x

g (y − x; θk) o (x)

] . (147)

Differentiating the above expression with respect to αk, setting the subsequent equa-

tion equal to zero, and solving yields the ML estimate for αk, namely,

α̂k = Dk/G

Dk =
∑
y

dk (y) G =
∑
x

g (x; θk)
. (148)

The estimates (actually, the update equations) for the other parameters θk and o are

found using the EM algorithm. For the sake of brevity, the details are not shown.

They can be found in Ref. [114]. The update equations for θk and o are

onew (x) =
1∑

k

Dk

oold (x)
∑
k

∑
y

α̂kg
(
y − x; θoldk

)
ik
(
y; oold; holdk

) dk (y)

θnewk (u) =


θ̃ (u)

∑
x

ξ
(
x; θoldk

)
ln g

(
x; θ̃

)
≥
∑
x

ξ
(
x; θoldk

)
ln g

(
x; θoldk

)
θoldk (u) else

(149)

where

ξ
(
x; θoldk

)
= g

(
x; θoldk

) [∑
y

oold (y − x)

ik
(
y; oold; holdk

)dk (y)]

θ̃ (u) = phase

{
F−1
x

{√
ξ
(
x; θoldk

)
exp

{
jphase

[
g̃
(
x; θoldk

)]}}}
g̃
(
x; θoldk

)
= Fu

{
A (u) exp

[
jθoldk (u)

]}
. (150)

Note that the update for θk is accomplished using one, or more, iterations of the
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Gerchberg-Saxton (GS) phase retrieval algorithm [43]. This completes the review of

Schultz’s ML blind-deconvolution algorithm.

Figure 30 shows simulation results performed using Schulz’s algorithm. The sim-

ulated data sets are produced by convolving two PSF’s (second row) with the object

(top row). The resulting images are then corrupted with shot noise (simulated) so

that each image contains approximately 1,000,000 photons (third row). The esti-

mated PSF’s (fourth row) and object (last row) are obtained after 1,000 iterations of

the algorithm. Note that the object is recovered.

3.3.2 LeMaster and Cain.

This section presents a polarimetric version of Schulz’s blind-deconvolution al-

gorithm. The technique, published by LeMaster and Cain, decomposes Schulz’s

polarization-insensitive complete-data formulation into polarized and unpolarized com-

ponents [74]. From polarimetric images of a scene, the algorithm returns estimates of

the polarized and unpolarized image components as well as the AOP and polarimetric

channel PSF’s. A close variant of this algorithm is used in this research.

As stated above, LeMaster and Cain’s polarimetric ML blind-deconvolution al-

gorithm is very similar to Schulz’s. The measured polarimetric images (incomplete

data) dc are assumed to be Poisson random variables, such that the mean of dc is ic:

E [dc (y)] = ic (y) =
∑
x

oc (x)hc (y − x). (151)

This expression is the same as Eq. (143) with the exception that the object oc is

permitted to vary between polarimetric images. LeMaster and Cain model the object
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Figure 30. Simulation results using Schulz’s ML blind-deconvolution algorithm. The
simulated images are produced by convolving two PSF’s (second row) with the object
(top row). The images are then corrupted with simulated shot noise so that each image
contains approximately 1,000,000 photons (third row). The estimated PSF’s (fourth
row) and object (last row) are obtained after 1,000 iterations of the algorithm.
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in channel c as

oc (x) =
1

2
[1− P (x)]S0 (x) + P (x)S0 (x) cos

2 [α (x)− θc]

=
1

2
λu (x) + λp (x) cos

2 [α (x)− θc]

(152)

where S0 is the total irradiance (i.e., the first Stokes parameter), P is the DOP, α

is the AOP, and θc is the angular orientation of the LP with respect to the optic

axis [74]. The terms λu and λp are the unpolarized and polarized components of

the object irradiance, respectively. These are the images which are estimated by the

algorithm.

LeMaster and Cain split each dc into polarized and unpolarized components,

d̃pc (y,x) and d̃uc (y,x), which in accordance with the requirements of the EM al-

gorithm become the complete data:

dc (y) =
∑
x

d̃uc (y,x) +
∑
x

d̃pc (y,x)

E
[
d̃uc (y,x)

]
=

1

2
λu (x)hc (y − x)

E
[
d̃pc (y,x)

]
= λp (x) cos

2 [α (x)− θc]hc (y − x)

. (153)

The expression for the log-likelihood function becomes

L (λu, λp, α, hc) =
∑
c

∑
y

∑
x

[
d̃uc ln

(
1
2
λuhc

)
− 1

2
λuhc

]
+
∑
c

∑
y

∑
x

{
d̃pc ln [λpcos

2 (α− θc)hc]− λpcos
2 (α− θc)hc

} (154)

where, for brevity, the functional dependencies of d̃pc, d̃uc, λp, λu, α, and hc have been

omitted [74]. The first step of the EM algorithm, the expectation step, is accomplished

by calculating the conditional expectation of the complete-data log-likelihood function

100



[Eq. (154)], i.e.,

Qn+1 (λu, λp, α, hc) = E
[
L (λu, λp, α, hc)| dc, λnu, λnp , αn, hnc

]
. (155)

Calculating the expectation produces the objective function given by

Qn+1 (λu, λp, α, hc) =
∑
c

∑
y

∑
x

[
ψn+1
uc ln

(
1
2
λuhc

)
− 1

2
λuhc

]
+
∑
c

∑
y

∑
x

{
ψn+1
pc ln [λpcos

2 (α− θc)hc]− λpcos
2 (α− θc)hc

} (156)

where

ψn+1
uc (y,x) =

1

2

dc (y)

inc (y)
λnu (x)h

n
c (y − x)

ψn+1
pc (y,x) =

dc (y)

inc (y)
λnp (x) cos

2 [αn (x)− θc]h
n
c (y − x)

. (157)

With the expectation step complete, attention is now turned to the maximization

step. Taking derivatives of Eq. (156) with respect to λp, λu, α, and hc and setting

those expressions equal to zero yields

∂Qn+1

∂λp (x0)
= 0 =

∑
c

∑
y

ψn+1
pc (y,x0)

λp (x0)
−
∑
c

cos2 [α (x0)− θc]

∂Qn+1

∂λu (x0)
= 0 =

∑
c

∑
y

ψn+1
uc (y,x0)

λu (x0)
− c

2

∂Qn+1

∂α (x0)
= 0 = −2

∑
c

∑
y

ψn+1
pc (y,x0) tan [α (x0)− θc]

+
∑
c

λp (x0) sin {2 [α (x0)− θc]}

∂Qn+1

∂hc (z)
= 0 =

∑
y

ψn+1
pc (y,y − z) + ψn+1

uc (y,y − z)

hc (z)
−
∑
y

on+1
c (y − z)

(158)

where z = y − x0 has been substituted into the maximization equation for hc [74].

Note that the update equation for hc is precisely the same as Schulz’s and thus can

be directly incorporated. This result makes physical sense since one does not expect
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atmospheric turbulence to affect the polarization state of passing light . The authors

also note that if the orientations of the LP are chosen wisely, i.e., in a manner such

that θc is evenly distributed over all possible linear polarization states (0◦, 60◦, and

-60◦ for the three channel scenario), then

∑
c

cos2 (α− θc) =
c

2∑
c

sin [2 (α− θc)] = 0

(159)

no matter the value of α [74]. Note that this arrangement of LP measurements has

been shown to maximizes signal-to-noise ratio (SNR) [132]. This simplification has

the effect of completely decoupling the above update equations so that

λn+1
p (x0) =

2

c

∑
c

∑
y

ψn+1
pc (y,x0)

λn+1
u (x0) =

2

c

∑
c

∑
y

ψn+1
uc (y,x0)

αn+1 (x0) =
1

2
tan−1S

n+1
2 (x0)

Sn+1
1 (x0)

. (160)

Here, Sn+1
1 and Sn+1

2 are intermediate Stokes parameters. Their derivations can be

found in Appendix A of Ref. [74].

With the derivation complete, LeMaster and Cain present measurement results

using their algorithm. The object utilized by LeMaster and Cain consists of two

fully polarized bars back illuminated by a 660 nm diode. The AOP’s of the two bars

are 2◦ for the top bar and -83◦ for the bottom bar. Three polarimetric images are

collected—the first with the polarizer at 0◦, the second with the polarizer at 60◦, and

the third with the polarizer at -60◦. A phase screen is placed at the imaging aperture

for the 60◦ and -60◦ polarimetric images to simulate atmospheric turbulence. The

published results are shown in Figs. 31–33. Figure 31 shows the 0◦ (top left), 60◦ (top
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Figure 31. Measured polarimetric images published by LeMaster and Cain. The object
is a set of two back illuminated bars. The top bar is polarized at an angle of 2◦; the
bottom bar is polarized at an angle of -83◦. The leftmost figure on the top row is an
image of the object taken through a LP orientated at an angle of 0◦. The rightmost
figure on the top row is an image of the object taken through a LP orientated at 60◦.
The figure on the bottom row is an image of the object taken through a LP orientated
at -60◦ [74].

right), and -60◦ (bottom left) polarimetric images. The top row of Fig. 32 (from left

to right) shows the initial guesses for λu and λp. The bottom row shows the estimates

for λu and λp after 500 iterations of the algorithm. Note that the λu estimate is nearly

all dark as one would expect for this fully polarized object. Lastly, Fig. 33 shows the

results for the AOP estimate. The estimated angles are -8◦ for the top bar and -72◦

for the bottom bar. For a discussion on possible sources of error, see Ref. [74].
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Figure 32. Estimation results published by LeMaster and Cain. The images on the
top row (from left to right) are the initial guesses for λu and λp. The images on the
bottom row (from left to right) are the estimates for λu and λp after 500 iterations of
the algorithm [74].

Figure 33. Estimation results published by LeMaster and Cain. This figure shows the
result of the AOP estimate [74].
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IV. pBRDF Verification

T
he contents of this chapter were published in Optics Express, vol. 17, no. 24

on 18 Nov 2009.

4.1 Introduction

Rough surface scattering has been an active area of research for nearly half a

century. One of the early areas of research dealt with radio [10] and acoustic [31, 54]

wave scatter from the ocean surface. Measurement of this scatter led to methods for

sensing ocean wave heights [69]. In another application, in preparation for the NASA

Apollo missions, analysis of light scattered from the lunar surface led researchers to

conclude that the moon’s surface is composed of a particulate material [53]. Study

of the scattering from rough surfaces has also been applied to predict reflections

from tree canopies [57, 68], biological/medical sensing [145, 148], and computer/video

graphics [15, 26, 55].

Scattering from a rough surface is typically modeled using a bidirectional re-

flectance distribution function (BRDF) or its polarimetric counterpart, a polarimetric

BRDF. BRDF’s are generally classified in two main types—empirical and analytical

BRDF’s. As the name implies, empirical BRDF’s are formulated from measure-

ments. An example of such a BRDF can be found in Ref. [52]. Analytical BRDF’s

are typically derived using either physical optics or geometrical optics. Physical optics

BRDF’s rely on the electromagnetic physical optics approximation [16, 136] (known

as the Kirchoff approximation in optics) to predict the scatter from rough surfaces.

The seminal work in this type of BRDF is that of Beckmann and Spizzichino [11].

Another work which presents an excellent description of the Kirchoff approximation

of rough surface scattering is that of Ishimaru [63]. More recently, Beckmann and
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Spizzichino’s BRDF has been extended to include shadowing (described below) and

polarization [3, 55]. Geometrical optics BRDF’s rely on the ray approximation of

light [16, 91]. The seminal paper in this BRDF genre is that of Torrance and Spar-

row [128]. Since Torrance and Sparrow, numerous geometrical optics BRDF’s have

been developed. These include BRDF’s specialized to predict IR signatures of air-

craft [110], full polarimetric geometrical optics BRDF’s [34, 103, 104, 139, 140], and

BRDF’s derived to predict scatter from multilayer coatings [33]. Both types of an-

alytical BRDF’s discussed here require the surface roughness features to be several

times larger than the wavelength of the incident light. Since physical optics BRDF’s

are based on a more sound approximation, they tend to be more accurate than geo-

metrical optics BRDF’s. However, geometrical optics BRDF’s tend to be simpler in

mathematical form and thus more numerically efficient. They also tend to be more

physically intuitive than their physical optics counterparts.

The geometrical optics BRDF introduced here is a full polarimetric BRDF (pBRDF).

It is very similar in form to the pBRDF introduced by Priest and Germer [103, 104];

however, this pBRDF includes a shadowing function (in particular, the Torrance and

Sparrow [128] shadowing function) and a Lambertian (diffuse) pBRDF component.

It is shown that the pBRDF satisfies reciprocity and conserves energy. Section 4.2

introduces the theoretical form of the pBRDF. Section 4.3 compares the pBRDF pre-

diction of the scatter from a rough perfectly-reflecting surface to that of an exact

electromagnetic solution. In Section 4.4, Mueller matrix predictions are made using

the pBRDF and compared to measurements made using a Mueller matrix ellipsome-

ter [127] in order to validate the model. Lastly, the chapter is concluded with a

summary of the work presented.

106



y

z

φi

θi θrdωi
dωr

dA

x

y

φr

ηdA

Figure 34. Macroscopic surface scattering geometry. Light subtending solid angle dωi

is incident from the (θi, ϕi) direction on a small area dA of a much larger rough surface
with complex index of refraction η = n− jκ. Light is scattered and observed within solid
angle dωr in the (θr, ϕr) direction.

4.2 Methodology

Consider the scattering geometry shown in Fig. 34. Light, subtending solid angle

dωi and centered on polar angle θi and azimuth angle ϕi, is incident on a small area

dA of a larger rough surface with complex index of refraction η = n − jκ. Light is

scattered from the surface and observed within solid angle dωr at polar angle θr and

azimuth angle ϕr. The BRDF is defined as the ratio of the scattered radiance to the

incident irradiance:

f (θi, θr, ϕ) =
dLr (θr, ϕ)

dEi (θi)
=

dLr (θr, ϕ)

Li (θi) cos θidωi

(161)

where dLr is the scattered radiance, dEi is the incident irradiance, and ϕ = |ϕr − ϕi|

(i.e., surface is isotropic and homogeneous). Note that the incident irradiance is

equivalent to the product of the incident radiance and the projected solid angle
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cos θidωi [4, 38, 96, 97, 112, 116, 119, 128]. In the general polarimetric case, the scat-

tered radiance and incident irradiance are replaced by Stokes vectors and the BRDF

(now a pBRDF) by a Mueller matrix, i.e. [4, 14, 38, 41, 103, 104, 112, 116, 139],

F (θi, θr, ϕ) =
dLr (θr, ϕ)

Li (θi) cos θidωi

. (162)

Note that f of Eq. (161) equals F00 where the subscript 00 is the element in the

first row and first column of the pBRDF Mueller matrix [112, 116]. It is common in

literature to express the scattered radiance as the sum of the radiance which leaves

the surface after one reflection and the radiance which leaves the surface after multiple

reflections [26, 33, 41, 87, 112, 116, 119, 128, 139, 140]:

Lr (θr, ϕ) = Lsingle
r (θr, ϕ) + Lmultiple

r (θr, ϕ) (163)

implying that

F = Fsingle + Fmultiple. (164)

It follows that light leaving the surface after a single scattering event (for convenience

termed the first reflection) models the specular component of reflection. This com-

ponent carries with it all polarimetric information gained from interaction with the

material surface. The multiple scattering term models the diffuse, or Lambertian

component of reflection. One can glean this by considering the effect on polarization

after multiple random surface reflections. In general, the first reflection is partially

polarized and directed in the specular direction relative to the local surface normal of

the illuminated area. If a portion of the first reflection is incident on another part of

the material surface, the second reflection is a partially polarized version of the first,

directed, once again, in the specular direction relative to the local surface normal of

that illuminated area. This being repeated numerous times results in scatter which

108



y

z

α

n

β
β

γ

x

y

η

t
γ
i γ

r

Figure 35. Scattering geometry of a single microfacet. The angle α is the polar angle
from the mean surface normal to the microfacet normal n. The angle β is the incident
angle onto and reflected angle from a microfacet as measured from the microfacet
normal. The angle γi is the angle between the macroscopic plane of incidence and the
scattering plane of the microfacet (depicted in the figure as the plane containing the
vectors n and t). Likewise, the angle γr is the angle between the macroscopic plane of
reflection and the scattering plane of the microfacet.

is unpolarized and of uniform radiance throughout the scattering hemisphere. There-

fore, a pBRDF can be expressed as the sum of a polarized specular component and

of an unpolarized diffuse component [26, 41, 87, 112, 116, 119, 128, 139, 140]:

Fs = Fsingle, Fd = Fmultiple

F = Fs + Fd

. (165)

As noted by Sun [119], Maxwell and Beard [87], and Ellis [33], this assumption is not

always valid; however, it is an assumption which is very common in literature and,

for the purpose of keeping the mathematical form of the pBRDF simple, is utilized

here. In the next subsection, the form of the specular pBRDF component is shown

and discussed.
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4.2.1 Specular pBRDF Component.

The pBRDF here makes use of the microfacet surface model introduced by Tor-

rance and Sparrow [128]. The model assumes that a rough surface is composed of a

collection of randomly (according to some distribution) oriented facets each scatter-

ing light in the manner stipulated by Fresnel’s equations (see Fig. 35). For Fresnel’s

equations to be an accurate model for reflection from the surface of a microfacet, the

size of the facet must be large compared to the incident wavelength λ. This implies

that the “roughness” of the macroscopic surface should be large compared to λ. As

discussed by Sun [119], the microfacet surface model can be considered accurate when

the surface height standard deviation σh and the surface correlation length ℓ are large

compared to λ, i.e., σh, ℓ≫ λ. The specular component of a microfacet model-based

pBRDF takes the form

Fs (θi, θr, ϕ;σh, ℓ; η) =
P (α;σh, ℓ)M (β; η)G (θi, θr, ϕ)

4 cos θi cos θr cosα
(166)

where P is the distribution function modeling the orientation of the facets around

the mean surface normal (z direction in Figs. 34 and 35), M is the Mueller matrix

modeling the polarimetric scattering from the material surface, and G is the visibility

function (shadowing/masking factor) [103, 104, 112, 116, 119, 139, 140]. Note that

the angles α and β are derived using spherical trigonometry:

cosα = (cos θi + cos θr) / (2 cos β)

cos 2β = cos θi cos θr + sin θi sin θr cosϕ

. (167)

For the sake of brevity, the derivation of Eq. (166) is not shown. A full derivation of

the expression can be found in Ref. [119]. It should be noted that Eq. (166) differs

from that given in Refs. [112, 116] by a factor of cosα in the denominator. Shell [116]
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notes that the impact of this factor is minimal since the BRDF magnitude rapidly

decreases with increasing α such that division by a decreasing cosα is negligible.

Since the height distributions of most natural surfaces are Gaussian [119], the

facet distribution function utilized in this pBRDF is that of Beckmann [11]:

P (α; σh, ℓ) =
ℓ2 exp [−ℓ2tan2α/ (4σ2

h)]

4πσ2
hcos

3α
. (168)

Note that while this facet distribution function is very common, utilized in Refs. [26,

103, 104, 119, 139], other facet distributions do exist. For example, Torrance and

Sparrow [128] utilize a simpler unnormalized distribution function of Gaussian shape,

Shell [116] and Gartley [42] discuss Cauchy facet distribution functions in their re-

search, and Wellems et al. [140] introduce a two-parameter hyper-Cauchy facet dis-

tribution function in their work.

The elements of the Mueller matrix M in Eq. (166) can be found by starting with

Jones vectors and matrices, i.e.,

Es
r

Ep
r

 =

 cos γr sin γr

− sin γr cos γr


rs 0

0 rp


cos γi − sin γi

sin γi cos γi


Es

i

Ep
i


Es

r

Ep
r

 =

Tss Tps

Tsp Tpp


Es

i

Ep
i


(169)

where Es
i and Es

r are the s-pol (perpendicular polarization), incident and reflected,

complex electric field components, Ep
i and Ep

r are the p-pol (parallel polarization),

incident and reflected, complex electric field components, and rs and rp are the com-

plex Fresnel field reflection coefficients for the s- and p-pol, respectively [42, 103, 104,

112, 116, 139, 140]. Note that s- and p-polarization for Es
i , E

s
r , E

p
i , and E

p
r are de-

fined with respect to the macroscopic coordinate system (see Fig. 34); however, the
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complex Fresnel field reflection coefficients are defined with respect to the microfacet

coordinate system (see Fig. 35). Thus, it is necessary to perform coordinate system

rotations to align the macroscopic planes of incidence and reflection with the micro-

facet planes of incidence and reflection. This fact explains the rotation matrices in

Eq. (169). Relating the angles γi and γr to the macroscopic angles is, once again,

accomplished using trigonometry [42, 103, 104, 112, 116, 139, 140]:

cos γi = (cosα− cos θi cos β)/ (sin θi sin β)

cos γr = (cosα− cos θr cos β)/ (sin θr sin β)

. (170)

Before converting the Jones matrix into a Mueller matrix, it is important to discuss

briefly the physical interpretation of the Jones scattering matrix in Eq. (169). The

Jones matrix elements, Tss, Tps, Tsp, and Tpp, can be interpreted as modeling how

s- or p-pol incident light couples into s- or p-pol reflected light. For instance, the

Tps element models how incident s-pol light couples into p-pol reflected light. The

other elements can be interpreted in a similar manner. For scattering in the specular

plane (i.e., ϕ = π), intuition leads one to conclude that the Jones scattering matrix

in Eq. (169) becomes diagonal, i.e., incident s-pol and incident p-pol couple into

reflected s-pol and reflected p-pol, respectively. This conclusion is easily confirmed

by substituting ϕ = π into Eq. (170). Converting the Jones matrix in Eq. (169) to a
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Mueller matrix is performed using the analysis in Ref. [38]:

M =
1

2



M00 M01 0 0

M01 M00 0 0

0 0 M22 jM23

0 0 −jM23 M22


M00 = |Tss|2 + |Tsp|2 + |Tps|2 + |Tpp|2

M01 = |Tss|2 + |Tsp|2 − |Tps|2 − |Tpp|2

M22 = TssT
∗
pp + T ∗

ssTpp + TpsT
∗
sp + T ∗

psTsp

M23 = TpsT
∗
sp − T ∗

psTsp − TssT
∗
pp + T ∗

ssTpp

, (171)

where ∗ is the complex conjugate operation. For the sake of brevity, the expressions

for all 16 elements are not shown. The Mueller matrix represented in Eq. (171) occurs

when observation is confined to the specular plane as is done for the measurement

results presented in Section 4.4. The full expressions can be found in Refs. [42, 103,

104, 112, 116, 139, 140]. Note that the Mueller matrix in Eq. (171) has a similar

physical interpretation as the Jones scattering matrix discussed above. For instance,

the M23 element of the above Mueller matrix models how the fourth Stokes parameter

(circular polarization) couples into the third Stokes parameter (linear polarization)

upon reflection.

The shadowing/masking function utilized in this pBRDF is that derived by Tor-

rance and Sparrow [128] and simplified by Blinn [15]:

G (θi, θr, ϕ) = min

(
1;

2 cosα cos θr
cos β

;
2 cosα cos θi

cos β

)
. (172)

This expression is derived assuming that each microfacet comprises one side of a sym-

metric v-shaped groove (see Fig. 36). Mathematically, G determines the fraction of
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Figure 36. Scattering geometry of a v-shaped groove. The top subfigure depicts shad-
owing while the bottom subfigure depicts masking. Shadowing occurs when the angle of
incidence approaches grazing. Similarly, masking occurs when the angle of observation
nears grazing.
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Figure 37. Comparisons of the F00 elements of the Priest and Germer pBRDF [103, 104]
and the pBRDF in Eq. (173) for θi = 45◦, 60◦, 75◦, and 85◦ with 21/2σh/ℓ = 0.3. The
pBRDF’s are evaluated in the specular plane (ϕ = π) and using a perfect reflecting
surface.

an illuminated microfacet which contributes to the scattered radiance. Physically, as

is evident from Fig. 36, G models the incident and reflected light blocked by adjacent

microfacets. Most of the BRDF’s/pBRDF’s in literature include a shadowing/mask-

ing function of some form [26, 87, 119, 128, 139, 140]. The function is instrumental

in keeping the BRDF bounded and thus satisfying the conservation of energy. A

notable exception to this is the pBRDF of Priest and Germer [103, 104]. The lack of

G causes their pBRDF to asymptotically approach infinity as the angle of incidence

or observation approaches grazing [139, 140].

The desired specular component of the pBRDF can now be formed by substituting

the facet distribution function P [Eq. (168)], the Mueller matrix M [Eq. (171)], and

the shadowing/masking function G [Eq. (172)] into Eq. (166) [139, 140]:

Fs
jk (θi, θr, ϕ; σh, ℓ; η) =

ℓ2 exp [−ℓ2tan2α/ (4σ2
h)]

16πσ2
h cos θi cos θrcos

4α
G (θi, θr, ϕ)Mjk (β; η) . (173)
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Note that the form of Eq. (173) is very similar to that of Priest and Germer [103, 104]

with the important difference being the addition of the shadowing/masking function

G in Eq. (173). As is stated above, G plays a critical role in keeping the pBRDF

bounded and thus a realistic physical model. In order to demonstrate the function’s

importance, consider the pBRDF predictions shown in Fig. 37. The figure shows

traces comparing the F00 elements of the Priest and Germer pBRDF [103, 104] and the

pBRDF in Eq. (173) for θi = 45◦, 60◦, 75◦, and 85◦ with 21/2σh/ℓ = 0.3. The pBRDF’s

are evaluated in the specular plane (ϕ = π) and using a perfect reflecting surface,

i.e., a perfect electric conductor (PEC). The figure clearly shows that the pBRDF

in Eq. (173) remains bounded while the Priest and Germer pBRDF diverges as θr

approaches 90◦. Having developed and discussed the specular pBRDF component,

attention can now be turned to the diffuse component.

4.2.2 Diffuse pBRDF Component.

Before the diffuse component of the pBRDF can be developed, the concept of

directional hemispherical reflectance (DHR) must be reviewed. The DHR is defined

as the ratio of the total energy reflected into the entire hemisphere above a material

surface to the total energy incident from a particular direction [38, 42, 103, 104, 112,

116, 119, 139, 140]:

ρDHR (θi; σh, ℓ) =

2π∫
0

π/2∫
0

F00 (θi, θr, ϕ;σh, ℓ; η) cos θr sin θrdθrdϕ. (174)

Note that ρDHR 6 1, otherwise the pBRDF violates the conservation of energy (as-

suming a passive material). The stated condition becomes an equality when the

surface is a PEC. Substituting Eq. (165) into the DHR expression and applying the
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equality condition (a PEC surface) produces

1 =

2π∫
0

π/2∫
0

Fs, PEC
00 cos θr sin θrdθrdϕ+

2π∫
0

π/2∫
0

Fd, PEC
00 cos θr sin θrdθrdϕ. (175)

Note that Eq. (175) is a statement of the conservation of energy. The diffuse term is

assumed to obey Lambert’s law; thus,

Fd, PEC
00 (θi;σh, ℓ) =

1

π

1−
2π∫
0

π/2∫
0

Fs, PEC
00 cos θr sin θrdθrdϕ


Fd, PEC
00 (θi;σh, ℓ) =

1

π

[
1− ρs, PECDHR (θi;σh, ℓ)

] . (176)

Note that Eq. (176) represents the fraction of scattered light not comprising the

specular lobe, or equivalently, the fraction of light which is scattered multiple times.

Therefore, generalizing Eq. (176) to a surface other than a PEC is simply a matter of

multiplying Fd, PEC
00 times M00 [139, 140]. Eq. (176) possesses two notable character-

istics which make it an attractive model for the diffuse pBRDF component. First, it

depends only on the angle of incidence and the statistical properties of the rough sur-

face. One’s intuition dictates that for a “smooth” surface light leaves the surface after

a single reflection and therefore most of the scattered radiance is contained within

the specular lobe. This can be verified mathematically by noting that as σh → 0, the

facet distribution function in Eq. (173) becomes a Dirac delta function. Substitut-

ing this expression into Eq. (176) results in Fd
00 = 0. Likewise, as surface roughness

increases, one would expect light to be scattered multiple times before leaving the

material surface. Mathematically this can be verified by observing that Fs
00 → 0 as

σh → ∞. Substituting Fs
00 = 0 into Eq. (176) produces the trivial result Fd

00 = 1/π

(i.e., pure diffuse scattering). The second characteristic of note in favor of modeling

the diffuse pBRDF component in the manner outlined above is that no fitted coeffi-
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cients are required to model the strength of the diffuse pBRDF component. The use

of coefficients, whose values are determined by fitting the BRDF to measured data,

is a common feature in other BRDF’s [26, 41, 42, 87, 112, 116, 128].

4.2.3 Summary of Theory.

Combining the specular pBRDF term [Eq. (173)] and the diffuse pBRDF term

[Eq. (176)] produces the desired result [139, 140]

F00 (θi, θr, ϕ; σh, ℓ; η) = Fs
00 (θi, θr, ϕ;σh, ℓ; η) +

1

π

[
1− ρs, PECDHR (θi;σh, ℓ)

]
M00 (β; η)

Fjk (θi, θr, ϕ; σh, ℓ; η) = Fs
jk (θi, θr, ϕ; σh, ℓ; η) j, k ̸= 0

.

(177)

Note that since it is assumed to be unpolarized, the diffuse component only con-

tributes to the F00 element of the pBRDF Mueller matrix.

In order to show that the above expression satisfies electromagnetic reciprocity,

θi and ϕi must be switched with θr and ϕr. It is easy to show that doing so produces

the same expression as that in Eq. (177); thus, the pBRDF satisfies the reciprocity

condition. Proving that Eq. (177) conserves energy requires one to show that ρDHR 6

1. Note that the conservation of energy is enforced when finding the value of the

diffuse pBRDF component (detailed above). Therefore, Eq. (177) conserves energy

as well.

Summarizing the theory, Eq. (177) possesses two characteristics which distin-

guishes it from existing geometrical optics pBRDF’s in literature. The first is the ad-

dition of the shadowing/masking function G. As discussed above, G keeps Eq. (177)

bounded and thus a realistic physical model. The second is the development of a

diffuse pBRDF component. As previously stated, this component depends only on

physical parameters and does not need to be fit to measured data. In the next section,

predictions made using Eq. (177) of a rough PEC surface are compared to Method of
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Figure 38. Scattering geometry of the MoM solutions. The surface is a 15, 000λ long
random (surface height is Gaussian distributed) PEC surface. The surface is assumed
to be invariant in the z direction.

Moments [101] (MoM) solutions for the purpose of validating the model.

4.3 Simulation

Before analyzing the simulation results, a brief background on the MoM is war-

ranted. The MoM is a technique to solve integral equations which arise frequently

in electromagnetics. The problem of interest here is a 15, 000λ long random (surface

height is Gaussian distributed) PEC surface. The surface is invariant in the z di-

rection (see Fig. 38) significantly reducing the number of unknowns in the problem.

Also, as is shown in Fig. 38, only s-pol is considered here. The electric field integral

equation (EFIE) for the scattering problem depicted in Fig. 38 (assuming plane wave

excitation) is formulated by applying the transverse electric field boundary condition

at the random PEC surface, i.e., Ez
r = −Ez

i :

πZ0

2λ

∫
C′

Jz (ρ′)H
(2)
0

(
2π

λ
|ρ− ρ′|

)
dC ′ = exp

[
−j

2π

λ
(ki · ρ)

]
ρ ∈ C ′ (178)
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where Z0 is the intrinsic impedance of free-space (approximately 377 Ω), ρ = xx+yy is

the observation vector, ρ′ = xx′+yy′ is the source vector, ki = x sin θi−y cos θi is the

propagation vector of the incident field, Jz is the current induced on the PEC surface

by the field, and H
(2)
0 is a zeroth order Hankel function of the second kind. Note that

the integral in Eq. (178) is over the parameterized surface contour denoted by C ′.

The unknown in Eq. (178) is the surface current Jz. Note that assuming J = 2n×Hi

forms the basis of the physical optics, or Kirchoff approximation [11, 16, 63, 136]. In

the MoM, Jz is expanded in a set of basis functions (in this case, fixed width pulses):

Jz (ρ′) =
N∑

n=1

αnpn (ρ
′). (179)

After simplification, the resulting expression is then tested using another set of func-

tions (in this case, Dirac delta functions located at the center of each pulse) to produce

an N ×N matrix equation where N is the number of unknowns, i.e.,



a11 a12 · · · a1N

a21 a22 · · · a2N
...

...
. . .

...

aN1 aN2 · · · aNN





α1

α2

...

αN


=



Ez
i,1

Ez
i,2

...

Ez
i,N


. (180)

Note, for example, that the 2N element of the MoM matrix shown above models

how the N th source current segment contributes to the scattered field at the 2nd

observation segment. The other elements of the MoM matrix can be interpreted in a

similar manner. Solving Eq. (180) yields the unknown current. Once Jz is computed,
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the scattered field can be found at any observation point by

Ez
r (x, y) =

πZ0

2λ

N∑
n=1

αn

∫
C′

n

H
(2)
0

(
2π

λ
|ρ− ρ′|

)
dC ′

n

lim
ρ→∞

Ez
r (ρ, θr) =

Z0

2
√
ρλ

exp

[
−j

(
2π

λ
ρ− π

4

)]
N∑

n=1

αn

∫
C′

n

exp

[
j
2π

λ
(x′ sin θr + y′ cos θr)

]
dC ′

n

(181)

where C ′
n is the segment of the parameterized contour represented by the nth pulse

and ρ = (x2 + y2)
1/2

is the Euclidean distance from the origin. The second line

of the above expression assumes that the observation point ρ is in the far-field as

defined by Fraunhofer [16]. Note that the MoM solution shown above is a coherent

field solution. Since the incoherent solution is the one desired, the 15, 000λ surface

is divided up into M = 100 partitions and the scattered field from each partition

is summed incoherently [6, 23, 40, 125]. Also, in order to minimize the effect of

edge diffraction from the surface partitions, i.e., approximate an infinite surface, Jz

is windowed using a Gaussian taper:

Wm (x) = exp

[
−
(
x− xm
w

)2
]
, (182)

where the index m represents the mth surface partition, xm is the center of the mth

partition, and w is the taper width [6, 23, 40, 125]. The incoherent far-field reflectance

distribution can now be found from

σ (θr) =
1

w
√
π/2

(
1

M
lim
ρ→∞

2πρ
M∑

m=1

∣∣Ez
r,m

∣∣2) , (183)

where Ez
r,m is the scattered field from the mth partition [6, 23, 40, 125]. Note that the

above expression is the average incoherent radar cross section (RCS) of the random
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Figure 39. Comparisons of the reflectance distributions predicted by MoM solutions of
a 15, 000λ long random (surface height is Gaussian distributed) PEC surface with those
of the pBRDF in Eq. (177) for θi = 10◦, 30◦, 45◦, 60◦, and 75◦ and 21/2σh/ℓ = 0.3. Note
that the reflectance distributions in the figure are normalized with respect to their
values at the specular angles (θi = θr). Observation for both the MoM and the pBRDF
predictions is in the specular plane (ϕ = π).

PEC surface normalized by the effective illumination length. Detailed analysis of

these steps can be found in Refs. [6, 23, 40, 125]. Having provided the necessary

background on the MoM, attention can now be turned to the simulation results.

The simulation results are shown in Fig. 39. As mentioned above, the simulation

surface is a 15, 000λ long random (surface height is Gaussian distributed) PEC surface.

The Gaussian surface is generated as shown in Ref. [40] with roughness equal to

21/2σh/ℓ = 0.3. The traces on the figure are far-field reflectance distributions for

θi = 10◦, 30◦, 45◦, 60◦, and 75◦. Note that the reflectance distributions in the

figure are normalized with respect to their values at the specular angles (θi = θr),

and observation for both the MoM and pBRDF predictions is in the specular plane

(ϕ = π). Overall, the pBRDF predictions match very well with the exact MoM
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solutions. At some incident angles, the pBRDF predictions deviate from the MoM

solutions; however, there is almost unanimous agreement between the pBRDF and

MoM solutions on the locations and magnitudes of reflectance maxima. Note that

ripples are visible in the MoM solution traces for θi = 45◦, 60◦, and 75◦. These

ripples are caused by constructive and destructive interference in the scattered field.

Incoherent scatter should not interfere; however, as discussed above, the MoM solution

is coherent. The incoherent scatter is being approximated by summing the scattered

field incoherently over 100 partitions of the entire 15, 000λ surface. Although this

should be sufficient [6], some interference is still occurring. Summing the scattered

field incoherently over more partitions should lessen the interference ripples; however,

the cost is a longer simulation run time. The results shown here are sufficient to

demonstrate the validity of the pBRDF. In the next section, Mueller matrix element

predictions made using Eq. (177) are compared to experimental measurement results

in order to further validate the pBRDF.

4.4 Mueller Matrix Measurement Results

The instrument used to collect the Mueller matrix data presented here is an ellip-

someter [127] at the Air Force Research Laboratory (AFRL), Wright-Patterson Air

Force Base, Ohio. A photograph of the ellipsometer is shown in Fig. 40. It, like

all ellipsometers, consists of two arms—the polarization state generator (PSG) and

the polarization state analyzer (PSA). The material under test (MUT) is placed in

between the PSG and PSA in a sample holder which is able to rotate. The PSG of

the instrument shown in Fig. 40 consists of a 1064 nm laser followed by polarization

optics mounted on a stationary optical rail. Note that the polarization state of the

laser is set using a polarizing beam splitter. The PSG polarization optics consist of

two half-wave plates (HWP) and a quarter-wave plate (QWP). They are contained
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Polarization OpticsPolarization Optics

1064 nm LaserSample HolderDetector

Figure 40. Photograph of the Mueller matrix ellipsometer used in this experiment.
The ellipsometer is located at the Air Force Research Laboratory, Wright-Patterson
Air Force Base, Ohio.

within a mechanical housing which allows them to be moved precisely into and out

of the source beam. This allows the PSG to generate four-independent polarization

states to interrogate the MUT. As is common, the PSA of the ellipsometer shown

in Fig. 40 is a mirror image of the PSG. It consists of a set of polarization optics

followed by a horizontal linear polarizer and a detector mounted on a rotating base.

The PSA is able to rotate independently of the MUT sample holder, thus allowing

any (θi, θr) to be measured. The polarization optics used in the PSA are identical to

and are contained within the same type of mechanical housing as that of the PSG.

This allows the PSA to analyze four-independent polarization states. Overall, the

instrument is able to make 16-independent polarimetric measurements of a MUT,

thereby providing all the necessary information to deduce the MUT’s Mueller matrix.

Before the MUT is measured, the instrument is calibrated using the Eigenvalue

Calibration Method (ECM) [25]. The ECM is a calibration technique developed by

Compain et al. [25] in which the Mueller matrices of a set of known standards are
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Figure 41. Mueller matrix measurement results for LabSphere Infragold [72] compared
to predictions made using the pBRDF. The measurement results are plotted as sym-
bols; the pBRDF predictions are plotted as solid lines. Note that the measurements
are made in the specular plane (ϕ = π). The complex index of refraction used for
gold is η = 0.285 − j7.3523 [76] and 21/2σh/ℓ = 0.44. The plotted values for the measured
Mueller matrix elements of LabSphere Infragold are the means of 256 irradiance mea-
surements. The bars on the figure represent ±1σ, i.e., one standard deviation of those
256 measurements.

measured in order to compute the experimental Mueller matrices for the PSG and

PSA. Once these matrices have been determined (see Ref. [25] for details), the desired

Mueller matrix of the MUT can be found by

M = A−1SW−1 (184)

where S is a 4 × 4 matrix of measured (ellipsometric) irradiances, W is the experi-

mental Mueller matrix of the PSG, and A is the experimental Mueller matrix of the

PSA. In the measurement results presented here, the standards used to calibrate the

ellipsometer are a no sample measurement, a linear polarizer (LP), and a QWP. The

LP is measured at 0◦, 60◦, and 120◦; the QWP is measured at 45◦.
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Figure 42. Mueller matrix measurement results for flame sprayed aluminum (FSA)
compared to predictions made using the pBRDF. The measurement results are plotted
as symbols; the pBRDF predictions are plotted as solid lines. Note that the measure-
ments are made in the specular plane (ϕ = π). The complex index of refraction used
for aluminum is η = 1.226 − j10.413 [76] and 21/2σh/ℓ = 0.43. The plotted values for the
measured Mueller matrix elements of FSA are the means of 256 irradiance measure-
ments. The bars on the figure represent ±1σ, i.e., one standard deviation of those 256
measurements.
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The Mueller matrix measurement results are shown in Figs. 41 and 42. Figure 41

shows the Mueller matrix measurement results for LabSphere Infragold [72]. The

complex index of refraction for gold (η = 0.285− j7.3523) is obtained from Ref. [76].

The figure shows the experimental M01, M11, M22, and M23 elements compared to

predictions made using the pBRDF in Eq. (177). Note that all measurements are

made in the specular plane (ϕ = π), and the Mueller matrix elements are normalized

with respect to the M00 element as annotated on the figure. The plotted values

for the measured Mueller matrix elements of LabSphere Infragold are the means

of 256 irradiance measurements. The bars on the figure represent ±1σ, i.e., one

standard deviation of those 256 measurements. Note that the LabSphere Infragold

results are consistent with those published by Priest and Meier [104]. Although there

are discrepancies between the measured Mueller matrix elements and the pBRDF

(especially at 10◦ and 20◦), the pBRDF predictions agree well with the measurements.

The most important aspect of the results is that the pBRDF captures the trend of

the data (i.e., the physics of the material surface interaction) as the observation angle

(or equivalently incident angle) approaches grazing.

Figure 42 shows the Mueller matrix measurement results for flame sprayed alu-

minum (FSA). The complex index of refraction for aluminum is η = 1.226−j10.413 [76].

Shown in the figure are the same Mueller matrix elements as Fig. 41. As before, all

measurements are made in the specular plane (ϕ = π), and the Mueller matrix ele-

ments are normalized with respect to the M00 element. Once again, the plotted values

for the measured Mueller matrix elements of FSA are the means of 256 irradiance

measurements. The bars on the figure represent ±1σ of those 256 measurements.

As is the case in Fig. 41, discrepancies do exist between the measured data and

the pBRDF predictions; however, the pBRDF, once again, captures the trend of the

measured data.
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Before concluding, it is worth discussing a possible cause of the discrepancies

observed in Figs. 41 and 42. It is assumed that the published values of η for gold

and aluminum are accurate for the LabSphere Infragold and FSA samples measured

in this experiment. As noted in Ref. [76], the value of η can vary greatly depending

on sample quality, sample preparation, or measurement technique. If, instead of

using the published values for η, the best values for η are found via nonlinear least

squares, one obtains for LabSphere Infragold η = 0.4364− j5.2526 and for FSA η =

0.8886− j3.4602. While it is possible that the best-fit index for LabSphere Infragold

could be more representative of the true η value for the specimen (considering how

LabSphere Infragold is manufactured [72]), the best-fit FSA index is more difficult to

explain. One possibility is that the FSA specimen used in this experiment is slightly

oxidized (i.e., a thin coating of Al2O3). This hypothesis would explain the sharper

than predicted rise in the measured M22/M00 element in Fig. 42.

4.5 Conclusion

In this chapter, a geometrical optics pBRDF is presented. As discussed, the

pBRDF is composed of a specular (single reflection) component and a diffuse (mul-

tiple reflection) component. The specular component, derived using the microfacet

surface model [128], is shown to consist of a facet distribution function, a Mueller ma-

trix modeling the polarimetric scattering from the material surface, and a visibility

(shadowing/masking) function. Each one of these constituent functions is discussed

in detail. The diffuse component is derived using the DHR and the conservation of

energy. It is shown that a diffuse pBRDF component derived in this fashion depends

only on geometrical parameters (angle of incidence, surface height standard deviation,

and surface correlation length) and does not require coefficients fit to measured data.

Taken as a whole (i.e., adding the specular and diffuse components), the pBRDF is
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shown to satisfy electromagnetic reciprocity and the conservation of energy. Lastly,

in order to validate the pBRDF, predictions made using the pBRDF are compared to

MoM solutions of a rough PEC surface and experimental Mueller matrix data for two

rough metallic samples. It is shown, via these results, that the pBRDF accurately

models the physics of the light/material surface interaction.

The pBRDF presented in this chapter possesses two characteristics which distin-

guishes it from existing geometrical optics pBRDF’s in literature. The first is the

addition of the visibility (shadowing/masking) function. As shown and discussed,

the visibility function keeps the pBRDF bounded and thus a realistic physical model.

The second is the development of a diffuse pBRDF component. This component al-

lows for better modeling of rough reflective surfaces which tend to depolarize light

via multiple surface reflections.
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V. Material Classification Using Polarimetric Imagery

Degraded by Atmospheric Turbulence

T
he contents of this chapter were accepted for publication in IEEE Transactions

on Geoscience and Remote Sensing on 13 June 2010.

5.1 Introduction

Polarization-based material-classification techniques can generally be divided into

two types—active polarimetric and passive polarimetric techniques. Active polarime-

try is the measure of the polarization state of scattered light when the source exci-

tation is controlled. Examples of material-classification (and characterization) tech-

niques using active polarimetry can be found in Refs. [21, 48, 49, 81, 82, 83, 90, 98,

102, 113, 120, 124, 127, 129, 131, 134]. Passive polarimetry, most relevant to the

work presented here, is the measure of the polarization state of scattered light when

the source excitation is uncontrolled. In most cases, the source excitation is consid-

ered to be spatially incoherent and unpolarized, e.g., the sun. Since this scenario

is the one most often encountered in remote sensing, there is a great deal of re-

search in this area. A review of the available research yields index-of-refraction-based

material-classification (and characterization) techniques [122, 123], a degree-of-linear-

polarization (DOLP)-based method [126], algorithms based on the measured Fresnel

ratio [141, 142, 143, 144], and multispectral polarimetric methods [17, 20, 66, 147].

While an extensive body of material-classification research and techniques exists, to

the author’s knowledge a solution to the problem of polarization-based material clas-

sification using images degraded by atmospheric turbulence has not been proposed.

In this chapter, a material-classification technique using polarimetric imagery de-

graded by atmospheric turbulence is presented (see Fig. 43). The classification tech-
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nique described here determines whether an object is composed of dielectric or metal-

lic materials. The technique uses a variant of the polarimetric maximum-likelihood

blind-deconvolution algorithm developed by LeMaster and Cain [74] to recover the

true object’s irradiance (i.e., the first Stokes parameter), the DOLP, the angle of po-

larization (AOP), and the polarimetric-image point spread functions (PSF’s) from

turbulence-degraded imagery. Added to LeMaster and Cain’s algorithm are two

novel DOLP priors (defined and discussed later), one representative of a dielectric

and the other representative of a metal. The DOLP estimate which maximizes the

log-likelihood function determines whether the image pixel is classified as a dielectric

or a metal. The proposed material-classification technique assumes that the object

is illuminated with spatially incoherent and unpolarized light (i.e, passive polarime-

try) as depicted in Fig. 43. As a result of this assumption, circular polarization can

generally be ignored [27]. It should be noted that this assumption is invalid when

dealing with circularly dichroic materials which are encountered in biological appli-

cations [2, 30]. Another assumption of this work is that the unknown material must

be able to produce polarized scatter from unpolarized illumination, i.e., the material

must have some diattenuation. The proposed technique is not designed to handle

diffuse scatterers or materials which are purely retarding. This assumption limits the

location of the observer to somewhere near the specular plane (defined and explained

below). In addition to this observational requirement, the proposed technique also

requires that the incident θi and observation θr angles be off normal, i.e., θi, θr > 30◦.

This is due to the fact that natural materials weakly polarize scattered light at near-

normal collection geometries. This limitation of the proposed technique is discussed

in more detail below. Note that these assumptions are common in existing polari-

metric material-classification techniques [20, 122, 123, 126, 141, 142, 143, 144, 147].
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Figure 43. Measurement geometry of proposed material-classification technique. Un-

polarized light with Stokes vector
[
Si
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]T
illuminates an unknown object. Upon

reflection, the light is partially polarized with Stokes vector
[
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1 Sr
2

]T
, is distorted

by atmospheric turbulence with random phase distribution φ (u), and is received by a
polarimetric sensor of aperture A (u).

In the next section, the LeMaster and Cain algorithm is reviewed. The modified

form of the LeMaster and Cain algorithm necessary for this research effort is also pre-

sented and discussed. In addition to presenting the blind-deconvolution algorithm, a

discussion of the novel dielectric and metallic DOLP priors, particulary, how they are

formed and their mathematical representations is presented. In Section 5.3, experi-

mental results of the material-classification technique are presented and discussed in

order to validate the algorithm. Lastly, the chapter is concluded with a summary of

the research presented.

5.2 Theory

This section provides a review of the LeMaster and Cain [74] blind-deconvolution

algorithm which is an integral part of the material-classification technique. The algo-

rithm is a maximum-likelihood blind-deconvolution algorithm (see Ref. [70] for back-
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ground) for spatially incoherent polarimetric imagery and is a generalization of the

multiframe blind-deconvolution algorithm developed by Schulz [114]. The algorithm,

as presented in Ref. [74] and in Chapter III, estimates the polarized and unpolarized

image components of a scene, as well as the AOP and polarimetric-image PSF’s [44].

For use in the proposed classification technique, it is more convenient to have the al-

gorithm estimate the first Stokes parameter S0, the DOLP, the AOP, and the image

PSF’s. This form of the LeMaster and Cain algorithm is the one discussed below. In

addition to the algorithm review, modification of the LeMaster and Cain algorithm

to include a DOLP prior is also shown and discussed. Subsection 5.2.2 provides the

physical insight and discusses the mathematical forms of the dielectric and metallic

DOLP priors used to make the classification decision. Lastly, this section concludes

with a summary of the theoretical work presented.

It should be noted before beginning the deconvolution algorithm review that if

the inner scale of atmospheric turbulence (typically a few millimeters) is much larger

than the wavelength of the field, the polarization state of the transmitted field is

not affected [5, 63, 111]. For optical wavelengths, this is typically the case. The

negligible effect of atmospheric turbulence on polarization state was recently verified

experimentally by Toyoshima et al. [130]. Although turbulence does not alter the

polarization state of passing light, it does have the effect of mixing scattered light

from different parts of the object of interest (i.e., blurring). LeMaster and Cain’s

deconvolution algorithm serves to demix the scattered light.
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5.2.1 Review of LeMaster and Cain’s Polarimetric Blind-Deconvolution

Algorithm.

It is easily shown that the irradiance received through a linear polarizer is

I (θ) =
1

2
S0 +

1

2
S1 cos 2θ +

1

2
S2 sin 2θ

=
1

2
(1−P)S0 + PS0cos

2 (α− θ)

(185)

where S0, S1, and S2 are the first three Stokes parameters, P is the DOLP, α is

the AOP, and θ is the angular orientation of the linear polarizer [16]. Note that

the first and second terms on line 2 of Eq. (185) are the unpolarized and polarized

contributions to the irradiance, respectively. Incorporating the effects of the viewing

aperture and the atmosphere is accomplished via the parameterized form of the PSF:

h (y − x) =

∣∣∣∣∣∑
u

A (u) exp [jφ (u)] e−j2πκu·(y−x)

∣∣∣∣∣
2

(186)

where φ (u) models the random phase effects caused by propagation through the

atmosphere, A (u) is the aperture function of the imaging system (radius r)

A (u) =


1 |u| 6 r

0 |u| > r

, (187)

and κ is a constant related to the wavelength and the spatial sampling frequency

(i.e., the spatial wavenumber). Since modern cameras collect data over a discrete

grid and solutions are formed on a digital computer, the above expression for the

PSF [Eq. (186)] is represented as a discrete sum rather than an integral [114]. Note

that x represents an object-plane pixel pair (x1, x2), y represents an image-plane

pixel pair (y1, y2), and u represents an aperture-plane pixel pair (u1, u2) as depicted
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in Fig. 43. The noiseless image, or irradiance received at the camera, is the irradiance

received through a linear polarizer [Eq. (185)] convolved with the PSF [Eq. (186)]:

in (y) =
∑
x

1

2
[1− P (x)]S0 (x)hn (y − x)

+
∑
x

P (x)S0 (x) cos
2 [α (x)− θn]hn (y − x)

, (188)

where the index n is introduced to represent the nth of N total polarimetric images.

The index is included on the PSF h to allow for the possibility that the turbulence

varies from polarimetric image to polarimetric image. Note that Eq. (188), being

noiseless, is never attained experimentally. Two of the more common camera noise

sources responsible for its corruption are readout noise and shot, or photon noise.

In LeMaster and Cain’s algorithm, shot noise is assumed to be the dominant noise

source [74]. Shot noise is caused by the random arrival times of individual photons

at the camera’s detector array [44]. The number of photons which arrive in a given

time is Poisson distributed; thus, the photon count at a certain grid location in

the camera’s detector array is a Poisson random variable [44]. Let dn (y) (i.e., the

measured polarimetric images) be defined as the photon count at location y in the

nth polarimetric image. Note that dn (y) is a Poisson random variable with mean

equal to in, namely,

E [dn (y)] = in (y) (189)

where in (y) is assumed to be in units of photon counts.

Maximizing the likelihood of dn (y) directly is impractical [74]; thus, the problem

is reformulated using the expectation-maximization (EM) algorithm (see Ref. [94]

for details). In accordance with the requirements of the algorithm, the incomplete

data dn (y) (the measured images themselves) are represented as the aggregate of the

complete data. In this case, the complete data are the unpolarized and polarized
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components, d̃un (y,x) and d̃pn (y,x), of dn (y) such that

dn (y) =
∑
x

d̃un (y,x) +
∑
x

d̃pn (y,x)

E
[
d̃un

]
=

1

2
(1− P)S0hn

E
[
d̃pn

]
= PS0cos

2 (α− θn)hn

(190)

where, for notational convenience, the variable dependencies in the bottom two ex-

pressions of Eq. (190) are omitted. Note that d̃un (y,x) and d̃pn (y,x) are also Poisson

distributed. Hence, the complete-data log-likelihood function is

LCD = LCD
u (P, S0, hn) + LCD

p (P, S0, α, hn) + LCD
prior (P)

LCD
u =

∑
n

∑
y

∑
x

d̃un ln

[
1

2
(1− P)S0hn

]
−
∑
n

∑
y

∑
x

1

2
(1− P)S0hn

LCD
p =

∑
n

∑
y

∑
x

d̃pn ln
[
PS0cos

2 (α− θn)hn
]

−
∑
n

∑
y

∑
x

PS0cos
2 (α− θn)hn

LCD
prior =

∑
n

∑
y

∑
x

ln [Π (P)]

. (191)

The function Π is the polarization prior and does not appear in LeMaster and Cain’s

complete-data log-likelihood function. It is formulated in the next subsection. In

Eq. (191), P , S0, α, and hn are the desired parameters; they are considered to be

deterministic. The random quantities in Eq. (191) are the complete data d̃un (y,x)

and d̃pn (y,x).

It should be noted that adding the polarization prior onto LeMaster and Cain’s

log-likelihood function, as is done in Eq. (191), changes the P estimate from an ML
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estimate to a maximum a posteriori (MAP) estimate [137]. In MAP estimation, the

log-likelihood function is generally the sum of two PDF’s (actually, the natural logs of

the PDF’s) [137]. The first PDF is the probability density function of the measured

data conditioned on the sought parameter. In Eq. (191), this PDF is the sum of

the LCD
u and LCD

p terms. The second PDF is the probability density function of the

sought parameter. This is the polarization prior term in Eq. (191). If Π (P) = 0,

the MAP P estimate becomes an ML estimate as originally presented in LeMaster

and Cain [74]. The reader is referred to Ref. [137] for more information on MAP

estimation.

Calculating the conditional expectation of the complete-data log-likelihood (i.e,

the first step of the EM algorithm),

Qi+1 (P, S0, α, hn) =

E
[
LCD (P, S0, α, hn) |dn,P i, Si

0, α
i, hin

] , (192)

produces the objective function Q. The index i represents the EM algorithm iteration

count; thus, P i is the estimated DOLP value after the ith iteration. Note, as men-

tioned above, the only random quantities in the log-likelihood function [Eq. (191)]

are the complete data. Therefore, the expectation in Eq. (192) can be brought inside

the summations and applied to the complete data:

E
[
d̃un|dn,P i, Si

0, α
i, hin

]
= ψi+1

un (y,x)

=
1

2

dn
iin

(
1− P i

)
Si
0h

i
n

E
[
d̃pn|dn,P i, Si

0, α
i, hin

]
= ψi+1

pn (y,x)

=
dn
iin
P iSi

0cos
2
(
αi − θn

)
hin

(193)

where, for brevity, ψi+1
un (y,x) and ψi+1

pn (y,x) are introduced to represent the condi-
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tional expectations. The full expression for the objective function Q can be formed

by substituting the above expressions into Eq. (191) for the complete data d̃un (y,x)

and d̃pn (y,x). For the sake of brevity, the full functional form of Q is not shown

here.

Maximizing Q with respect to the estimated parameters P , S0, α, and hn (i.e.,

step two of the EM algorithm) at pixel location x0 produces

0 = P (1− P)
∑
n

∑
y

1

Π (P)

dΠ (P)

dP

− P
∑
n

∑
y

(
ψi+1
un + ψi+1

pn

)
+
∑
n

∑
y

ψi+1
pn

S0 =
2

N

∑
n

∑
y

(
ψi+1
un + ψi+1

pn

)
0 =

∑
n

∑
y

ψi+1
pn tan (α− θn)

hn (z) =
1

Dn

∑
y

[
ψi+1
un (y,y − z) + ψi+1

pn (y,y − z)
]

(194)

where z = y − x0 has been substituted into the update equation for hn and Dn =∑
y dn (y). Note that to arrive at the above expressions, the polarizer angles θn must

be chosen such that they are evenly spaced between 0◦ and 180◦. As discussed in

Ref. [132], this set of polarimeter measurements optimizes SNR. The update equations

for an arbitrary set of polarizer angles are given in Ref. [74] and in Chapter III. Note

that these expressions are coupled among the parameters of interest, namely, S0, P ,

α, and hn, and are more difficult to solve. Also inherent in the above expressions is the

requirement that
∑

x hn (x) = 1. Note that the update equation for hn is equivalent to

that derived by Schulz (Eq. (43) in Ref. [114] and Eqs. (149) and (150) in Chapter III);

thus, Schulz’s PSF estimator is directly incorporated. A more explicit form for the

AOP update equation [third expression in Eq. (194)] can be found in Ref. [74] and

in Chapter III. To arrive at that form requires more algorithm background, which
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for the sake of brevity, is not included here. This concludes the summary and DOLP

prior modification of LeMaster and Cain’s blind-deconvolution algorithm. In the next

subsection, the mathematical expressions of the novel DOLP priors are presented and

discussed.

5.2.2 DOLP Priors.

A prior, in essence, is information one possesses about the solution of an estimated

parameter. A prior serves to weight certain estimates more than others, thereby steer-

ing the estimation algorithm to search for solutions in certain regions of the parameter

space. In this subsection, two priors for the DOLP estimate are formulated—one phys-

ically representative of the DOLP values obtained from dielectric materials and the

other physically representative of the DOLP values obtained from metallic materials.

To formulate these priors, one must understand how these materials polarize light.

In very general terms, dielectrics strongly polarize scattered light, whereas metals

weakly polarize scattered light. This simple observation forms the basis of several

other material-classification techniques [21, 126, 141, 142, 143, 144].

To derive mathematical expressions for the DOLP priors of these material classes,

the DOLP’s for a representative sample of metals and dielectrics are predicted using

a pBRDF [62, 139, 140] (see Chapter IV). Using a pBRDF to predict the DOLP’s

permits several different variables, like surface roughness 21/2σh/ℓ (defined in Chap-

ter IV), lighting (source) direction θi, and observation direction (θr, ϕ), to be consid-

ered. Figure 44 shows the pBRDF (Eq. (177) in Chapter IV) calculated DOLP’s for

aluminum (Figs. 44a and 44b), iron (Figs. 44c and 44d), glass (Figs. 44e and 44f), and

Teflon (Figs. 44g and 44h). The angle of incidence θi in all the figures is 45◦. The left-

most figures, Figs. 44a, 44c, 44e, and 44g, show the calculated DOLP’s when the sur-

face roughness is 21/2σh/ℓ = 0.1. The rightmost figures, Figs. 44b, 44d, 44f, and 44h,
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(a) DOLP of Al, 21/2σh/ℓ = 0.1.
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(b) DOLP of Al, 21/2σh/ℓ = 0.6.
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(c) DOLP of Fe, 21/2σh/ℓ = 0.1.
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(d) DOLP of Fe, 21/2σh/ℓ = 0.6.
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(e) DOLP of glass, 21/2σh/ℓ =
0.1.
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(f) DOLP of glass, 21/2σh/ℓ =
0.6.
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(g) DOLP of Teflon, 21/2σh/ℓ =
0.1.
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(h) DOLP of Teflon, 21/2σh/ℓ =
0.6.

Figure 44. DOLP contour plots of aluminum, iron, glass, and Teflon versus azimuth
angle ϕ and polar angle θr (the radial direction in the figures) predicted using a pBRDF.
The incident angle θi in all the figures is 45◦. Note that the complex indices of refraction
(at 1550 nm) used for aluminum, iron, glass, and Teflon are 1.44 − j16, 3.60 − j5.88,
1.44− j0.0, and 1.35− j0.0, respectively [76].
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show the calculated DOLP’s when the surface roughness is 21/2σh/ℓ = 0.6. Viewing

the DOLP’s in this manner allows one to gain an understanding of how observation

geometry (θr, ϕ) and surface roughness affect the DOLP of scattered light. Note that

for a relatively “smooth” surface, 21/2σh/ℓ = 0.1, most of the observable DOLP is

contained in a small lobe in the specular plane (i.e., ϕ = |ϕr − ϕi| = π). As the surface

becomes rough, 21/2σh/ℓ = 0.6, the observable DOLP spreads out from the specular

plane but also loses magnitude. Physically, this is the result of two effects caused

by surface roughness—the broadening of the specular lobe and the increase in diffuse

scattering. Note that this necessitates the assumption that the observer’s location be

near the specular plane. The largest DOLP value obtained in Fig. 44 is approximately

1 (diffuse scattering prevents this from ever being exactly 1) by both glass and Teflon

at an observation angle of approximately 60◦. Note that this maximum in DOLP

occurs at Brewster’s angle and is characteristic of dielectric materials. The largest

DOLP value obtained by the metals is approximately 0.3 by iron at pseudo-Brewster’s

angle, which is near grazing for most metals at optical wavelengths [65]. Note that

the largest DOLP value obtained by aluminum is roughly an order of magnitude less

than that of iron at approximately the same observation angle. Other common met-

als with DOLP’s similar to iron are titanium, chromium, and nickel. Metals with

DOLP’s similar to aluminum are copper, gold, and silver. Note that these metal

relationships hold for visual and near-infrared optical wavelengths. Dispersion may

cause these relationships to break down for other electromagnetic bands.

From the calculated DOLP traces shown in Fig. 44, a metal DOLP prior in the

shape of a uniform probability density centered at a DOLP value of 0.15 and ex-

tending to 0 and 0.3 would capture the range of DOLP values shown in Fig. 44. A

uniform probability density also serves to model the uncertainty in collection geom-

etry as generally as possible (with the exception that θi and θr be off normal, as
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discussed previously). Unfortunately, utilizing a uniform density for the metal DOLP

prior is problematic because the distribution is not differentiable as required in the

DOLP update equation [Eq. (194)]. It is convenient (shown and discussed below) to

approximate a uniform distribution using a super-Gaussian distribution:

Π (P) = c1 exp {−[c2 (P − c3)]
m} , (195)

where c1 is a constant which ensures the above expression integrates to unity, c2 is

a constant which behaves as a “variance” term for the super Gaussian (i.e., controls

the width of the distribution), c3 is a constant which controls where the distribution

is centered, and m is an even integer [64]. It is clear from the form of Eq. (195) that

the prior density approaches a uniform probability as m approaches infinity. Letting

c1 = 1, c2 = 7.2, c3 = 0.15, and m = 10 produces the metal DOLP prior depicted in

Fig. 45.

A mathematical form for the dielectric DOLP prior can be found in the same

manner as the metal DOLP prior just discussed. From the calculated DOLP traces

shown in Fig. 44, it is evident that DOLP values for dielectric materials extend from

0 to approximately 1. While it is possible to develop a DOLP prior which covers

this entire range of DOLP values, it would be ineffective for classification purposes

because it encapsulates the metal DOLP prior. Thus, it is necessary to formulate

the dielectric DOLP prior in a manner such that it excludes the metal DOLP prior.

Note that a dielectric DOLP prior in the shape of a uniform probability centered at

a DOLP value of 0.65 and extending to 0.3 and 1 would capture a vast majority of

the observable dielectric DOLP values shown in Fig. 44. As is the case for the metal

DOLP prior (and for the same reason), this uniform probability is approximated

using a super-Gaussian distribution of the form shown in Eq. (195). Letting c1 = 1,

c2 = 3.1, c3 = 0.65, and m = 10 produces the dielectric DOLP prior depicted in
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Figure 45. Metal DOLP prior, obtained by setting c1 = 1, c2 = 7.2, c3 = 0.15, and
m = 10 in Eq. (195), and the dielectric DOLP prior, obtained by setting c1 = 1, c2 = 3.1,
c3 = 0.65, and m = 10 in Eq. (195).

Fig. 45.

It must be stated that the DOLP priors just introduced are not universally ap-

plicable. Since DOLP is a function of index of refraction (itself a function of wave-

length [60, 115]) and observation geometry, dispersion and collection geometry have a

major impact on the expected DOLP from a material surface. For most applications,

wavelength and observation geometry can, at the very least, be estimated and a set

of DOLP priors can be formed in the manner outlined above. The DOLP priors, as

defined above, are applicable to visual/near-infrared wavelengths and incident and

observation angles θi and θr > 30◦. Note that this technique as a whole will have

difficulty accurately classifying materials at near-normal incident angles regardless

of wavelength or θr. This is because materials polarize scattered light very weakly

at near-normal incident angles. Thus, the technique, as proposed and under these

conditions, can be expected to poorly classify dielectric materials.
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5.2.3 Summary of Theory.

Before presenting measurement results, it is necessary to show the new DOLP

update equation when the general form of the DOLP priors [Eq. (195)] is substituted

into Eq. (194):

0 = mcm2 P2(P − c3)
m−1 −mcm2 P(P − c3)

m−1

− P
∑
n

∑
y

(
ψi+1
un + ψi+1

pn

)
+
∑
n

∑
y

ψi+1
pn

. (196)

Note that Eq. (196) is a (m+ 1)-order polynomial equation where only one of the

roots is physically realizable, i.e., 0 6 P (x0) 6 1 [64]. This is an attractive feature of

choosing super-Gaussian priors because the roots of polynomials can be found quickly

(requiring no a priori knowledge unlike other nonlinear root finders, e.g., Newton’s

method) using the companion matrix method [138].

Summarizing the technique, the material-classification algorithm introduced here

(shown as a flowchart in Fig. 46) determines whether an unknown object is com-

posed of dielectric or metallic materials using passive polarimetric imagery degraded

by atmospheric turbulence. The technique uses a variant of the polarimetric blind-

deconvolution algorithm developed by LeMaster and Cain [74] to recover the true ob-

ject S0, the DOLP P , the AOP α, and the PSF’s hn (reviewed above). Incorporated

into the blind-deconvolution algorithm are two novel DOLP priors, one representative

of a dielectric, the other representative of a metal (discussed in the previous subsec-

tion). The DOLP update [Eq. (196)] resulting from each prior is substituted into the

log-likelihood function [Eq. (191)]. The DOLP update (either the update resulting

from the dielectric DOLP prior or the update resulting from the metal DOLP prior)

which maximizes the log-likelihood function determines whether that pixel in the im-

age is classified as a dielectric or a metal. The algorithm is iterated until the stopping
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Figure 46. Flowchart of proposed material-classification algorithm, ith iteration. S.C.
represents the stopping criterion.
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criterion is met. Iteration count is used as the stopping criterion in this research.

Another stopping criterion based on the variance difference between the estimated

and measured images is presented in Ref. [78]. In the next section, measurement

results using the proposed material-classification algorithm are presented to validate

the technique.

5.3 Experimental Verification

5.3.1 Instrument Description.

The instrument used to collect the Stokes imagery presented here is a Stokes

polarimeter in the Optical Turbulence Estimation, Compensation, and Simulation

(OPTECS) laboratory at the Air Force Institute of Technology. A photograph of the

instrument is shown in Fig. 47. The instrument consists of three main sections—the

source/sample section, the atmospheric turbulence simulator (ATS) [13] section, and

the polarimetric imager (analyzer) section. The first section, the source/sample sec-

tion, consists of two precision rotation stages. The lower rotation stage holds the

source, a 1550 nm light emitting diode (LED), and the upper rotation stage, which

holds the sample. By rotating the lower stage in combination with the upper ro-

tation stage, any in-specular-plane incident/observation geometry θi + θr ≥ 48◦ is

possible. The second section of the Stokes polarimeter shown in Fig. 47 is the ATS

section [13]. The ATS section comprises three sets of doublet lenses and a rotating

phase wheel. The phase wheel has a pattern machined into it that has phase prop-

erties consistent with Kolmogorov turbulence [5, 44, 63, 111] and is located between

the second and third set of doublet lenses. By changing its location between the

set of doublets, the atmospheric turbulence coherence diameter (Fried’s parameter)

r0 [5, 44, 111] can be precisely controlled. Rotating the phase wheel allows one to

model the temporal effects of atmospheric turbulence, i.e., the Tyler and Greenwood
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Figure 47. Photograph of the Stokes polarimeter, including painted steel and aluminum
samples, used in this experiment.

time constants [5, 111]. Several independent experiments have been performed to

verify the realism of the ATS by comparing measured turbulence parameters to the

theoretical expressions. In regards to this experiment, modulation transfer functions

(MTF’s) were measured and compared to the theoretical short-exposure MTF’s [44]

to determine the r0 values at different phase wheel locations. Excellent fits were ob-

tained between the experimental and theoretical MTF’s (see Fig. 48). Mantravadi et

al. [80] and Rhoadarmer and Angel [107], the designers of the ATS, report similar re-

sults comparing the experimental phase structure function Dϕ to the theoretical Dϕ.

The last section of the instrument is the polarimetric imager, or analyzer section.

The analyzer section consists of a lens for imaging (aperture sized to r = 12.5 mm

to ensure proper pupil-plane sampling for the deconvolution algorithm), a linear po-

larizer, and a FLIR Systems Alpha VisGaAs digital camera [35, 36]. The size of the

Alpha VisGaAs’s focal-plane array is 250 × 316 with a 30 µm pitch [35, 36]. The

lenses in the ATS and analyzer sections of the Stokes polarimeter are such that the

magnification is 2.25; thus, the resulting image represents a region on the sample

approximately 3.33 mm × 4.21 mm at normal incidence.
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5.3.2 Experimental Procedure.

For the measurement results presented here, Stokes images, i.e., S0, S1, and S2,

are created from four polarimetric images, θ = 0◦, 45◦, 90◦, and 135◦, respectively [47,

50, 132]:

1

2



1 1 0

1 0 1

1 −1 0

1 0 −1




S0

S1

S2

 =



I (0◦)

I (45◦)

I (90◦)

I (135◦)


. (197)

Dark-frame images, images taken with the camera’s lens cap on, are also collected

and subtracted from the raw polarimetric images prior to converting to Stokes images.

In this experiment, the phase wheel locations are chosen such that the ratio of the

aperture diameter D to Fried’s parameter r0 is approximately D/r0 ≈ 7.9, 10.5, and

12.9. Note that these values were experimentally determined by fitting the theoretical

short-exposure MTF to the measured MTF as discussed above and shown in Fig. 48.

The phase wheel is not rotated between polarimetric images; thus, each polarimet-
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ric image experiences the same atmospheric turbulence. The purpose for not rotating

the phase wheel between polarimetric images is to avoid pixel misregistration, a well

documented issue in Stokes polarimetry [112, 133]. Traditionally, pixel misregistration

arises from the movement of the object or the imager between polarimetric images.

Since Stokes polarimetry requires multiple images (or measurements) and analysis

performed on a per-pixel basis, any motion of the object or sensor produces errors

in the resulting Stokes images [112]. Atmospheric turbulence tends to exacerbate

this problem via random wavefront inclination, or tilt. Tilt has the effect of “steer-

ing” the resulting image to different parts of the focal plane (in the case of strong

tilt, off the focal plane entirely). Therefore, even in a scenario in which traditional

misregistration is not a concern (i.e., object and sensor do not move between polari-

metric images), misregistration still occurs if the turbulence (in particular, the tilt)

changes between polarimetric measurements. Interestingly, the Stokes polarimeter ar-

chitectures designed to combat traditional misregistration should be effective against

tilt misregistration. Two architectures which are commonly utilized for this purpose

are the division of amplitude polarimeter (DoAmP) and the division of aperture po-

larimeter [112, 133]. In the experimental results to follow, the a priori knowledge

that each polarimetric channel experiences the same turbulence is included in the

deconvolution algorithm. In this way, a DoAmP is modeled. Even if a DoAmP or a

division of aperture polarimeter is used, it may be advantageous to assume no relation

exists between the polarimetric-channel PSF’s and allow the deconvolution algorithm

to estimate them independently. This would allow differences in aberrations among

optical paths (also known as non-common optical path aberrations) to be corrected.

Note that experimental results were also obtained operating the algorithm assuming

no relation exists between channel PSF’s. The results are very similar to those shown

below.
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The painted aluminum and steel (behaves like iron) samples used in this experi-

ment (see Fig. 47) were first cleaned with acetone. A layer of Rust-Oleum White

Primer [109] was applied followed lastly by a coat of KRYLON R⃝ gloss Hunter

Green [121]. Sections of each sample were left unpainted (i.e., bare metal) to test

the technique on an object consisting of both dielectric and metallic parts. Prior to

performing the deconvolution, the raw polarimetric images were tiled to 512 pixel ×

512 pixel images. The resulting tiled images were then spatially windowed using a

super-Gaussian window to mitigate the ringing artifacts caused by the fast Fourier

transforms executed in the deconvolution algorithm [106]. Initial guesses input into

the deconvolution algorithm for S0, P , and α are an image whose pixel values are

one, an image whose pixels values are 1/2, and an image whose pixel values are

zero, respectively. The initial guess for h is a randomly drawn Kolmogorov phase

screen (D/r0 = 10), with piston and tilt removed, created in the manner described

in Ref. [39].

5.3.3 Classification Results.

In Fig. 49, Figs. 49a, 49d, and 49g show the no-turbulence, turbulence-degraded,

and estimated (after 250 algorithm iterations) S0 images for the painted aluminum

sample collected at θi = θr = 50◦, respectively. The no-turbulence, turbulence-

degraded, and estimated DOLP images for the painted aluminum sample are shown in

Figs. 49b, 49e, and 49h. Figures 49c, 49f, and 49i show the classification results. The

no-turbulence and turbulence-degraded material-classification results are computed

from a simple DOLP-thresholding scheme, i.e., P < 0.30 implies metal, P ≥ 0.30

implies dielectric. This threshold is the DOLP value of equal probability between

the metal and dielectric DOLP priors. The experimental results for the painted steel

sample are shown in Fig. 50 and are orientated in the same manner as just described.

150



x1 (mm)

x
2

(m
m

)

−2 −1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

(a) No-turbulence S0.

x1 (mm)
x

2
(m

m
)

 

 

−2 −1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

0.2 0.4 0.6 0.8

(b) No-turbulence P.

x1 (mm)

x
2

(m
m

)

 

 

−2 −1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

Metal Dielectric

(c) No-turbulence classifica-
tion.
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(d) Turbulence-degraded S0.
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(e) Turbulence-degraded P.
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(f) Turbulence-degraded clas-
sification.
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(g) Estimated S0.
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(h) Estimated P.
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(i) Estimated classification.

Figure 49. Experimental results of the material-classification algorithm for the painted
aluminum (D/r0 ≈ 12.9) sample (see Fig. 47). The images depict the right side of the
letter s and the left side of the letter t formed using a template. The collection geom-
etry is θi = θr = 50◦. The dimensions annotated on the figures are object coordinates
x = (x1, x2) at normal incidence. For the no-turbulence and turbulence-degraded clas-
sification results, P < 0.30 implies metal, P ≥ 0.30 implies dielectric. The estimated
classification result uses the metal and dielectric DOLP priors derived in Section 5.2.2.
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(b) No-turbulence P.
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(c) No-turbulence classifica-
tion.
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(d) Turbulence-degraded S0.
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(e) Turbulence-degraded P.
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(f) Turbulence-degraded clas-
sification.
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(g) Estimated S0.
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(h) Estimated P.
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(i) Estimated classification.

Figure 50. Experimental results of the material-classification algorithm for the painted
steel (D/r0 ≈ 7.9) sample (see Fig. 47). The images depict the right side of the letter s
and the left side of the letter t formed using a template. The collection geometry is θi =
θr = 50◦. The dimensions annotated on the figures are object coordinates x = (x1, x2) at
normal incidence. For the no-turbulence and turbulence-degraded classification results,
P < 0.30 implies metal, P ≥ 0.30 implies dielectric. The estimated classification result
uses the metal and dielectric DOLP priors derived in Section 5.2.2.
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Note that the algorithm accurately classifies both the aluminum and steel samples

and recovers object features lost in the turbulence-degraded images, especially small

features along the metal/paint boundaries. These features are evident in the DOLP

images in Figs. 49 and 50. They are difficult to discern in the S0 images because

of the irradiance contrast between the metal and painted regions of the objects.

Spatial (correlation coefficient and RMSE) and histogram image similarity metrics

calculated in the frequency domain generally show that the spectrums of the estimated

images better match (convincingly so, depending on the metric) the no-turbulence

image spectrums than that of their turbulence-degraded counterparts. Note that

the algorithm was experimentally tested on other scenes, specifically, half-painted

half-metal objects. The algorithm clearly recovered small scratches and nicks in the

metal portions of the objects lost in the turbulence-degraded images. In some cases,

the scratches were so clearly resolved by the algorithm that they were misclassified

as dielectric due to the fact that more light is scattered in the polarization state

parallel to the scratches than in the orthogonal polarization state (i.e., the scattering

phenomenon exploited to create wire-grid polarizers and polarimetric edge-detection

algorithms).

Table 5 shows the results of the classification quantitatively. Columns 1–3 report

the fractions of pixels incorrectly classified as metal, the fractions of pixels incorrectly

classified as dielectric, and the total pixels incorrectly classified, respectively, using

the no-turbulence classification results as truths. The fourth column reports the cor-

relation coefficients for the turbulence-degraded and estimated classification images

correlated with the no-turbulence classification images. The fifth column reports the

root-mean-square errors (RMSE’s) for the turbulence-degraded and estimated clas-

sification images using the no-turbulence classification images as truths. Note that

the algorithm outperforms the turbulence-degraded (no-correction) case in classifying
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Table 4. Material-classification results for the painted aluminum and painted steel
samples at θi = θr = 50◦.

Aluminum Sample
Frac. Incor. M Frac. Incor. D Frac. Incor. Tot. Corr. Coef. RMSE

Turb. D/r0 ≈ 7.9 0.0322 0.0709 0.0476 0.9005 0.2183
Est. D/r0 ≈ 7.9 0.0244 0.0835 0.0480 0.8999 0.2190
Turb. D/r0 ≈ 10.5 0.0332 0.0898 0.0558 0.8834 0.2362
Est. D/r0 ≈ 10.5 0.0264 0.0992 0.0555 0.8843 0.2355
Turb. D/r0 ≈ 12.9 0.0339 0.0950 0.0583 0.8782 0.2414
Est. D/r0 ≈ 12.9 0.0293 0.0971 0.0564 0.8823 0.2374

Steel Sample
Frac. Incor. M Frac. Incor. D Frac. Incor. Tot. Corr. Coef. RMSE

Turb. D/r0 ≈ 7.9 0.0236 0.0571 0.0402 0.9200 0.2005
Est. D/r0 ≈ 7.9 0.0147 0.0708 0.0424 0.9165 0.2060
Turb. D/r0 ≈ 10.5 0.0227 0.0776 0.0498 0.9015 0.2233
Est. D/r0 ≈ 10.5 0.0164 0.0724 0.0441 0.9131 0.2100
Turb. D/r0 ≈ 12.9 0.0236 0.0911 0.0570 0.8879 0.2387
Est. D/r0 ≈ 12.9 0.0209 0.0847 0.0524 0.8968 0.2290

the metal portions of the object. Performance of the algorithm also improves as the

atmospheric phase fluctuations become stronger (i.e., D/r0 increases). For the D/r0

values and scenes used in this experiment, the quantitative improvement is marginal

for the spatially-based image metrics reported in Table 5. It is expected that the clas-

sification improvement provided by using the algorithm will become more apparent

for larger D/r0 values or a more complex scene.

5.3.4 Limitations.

Figures 51 and 52 show the results of the material-classification algorithm for

θi = θr = 24◦. The layouts of the figures are exactly the same as Figs. 49 and 50. The

no-turbulence (Figs. 51c and 52c) and turbulence-degraded (Figs. 51f and 52f) clas-

sification results are computed using the same DOLP-thresholding scheme as above

with the threshold value equal to 0.08 (determined by inspecting the histogram of the

no-turbulence DOLP). To demonstrate a key limitation of the proposed technique,

the estimated classification results (Figs. 51i and 52i) are computed using the DOLP
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(c) No-turbulence classifica-
tion.
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(d) Turbulence-degraded S0.
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(f) Turbulence-degraded clas-
sification.
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(i) Estimated classification.

Figure 51. Experimental results of the material-classification algorithm for the painted
aluminum (D/r0 ≈ 7.9) sample (see Fig. 47). The images depict the right side of the
letter s and the left side of the letter t formed using a template. The collection geom-
etry is θi = θr = 24◦. The dimensions annotated on the figures are object coordinates
x = (x1, x2) at normal incidence. For the no-turbulence and turbulence-degraded clas-
sification results, P < 0.08 implies metal, P ≥ 0.08 implies dielectric. The estimated
classification result uses the metal and dielectric DOLP priors derived in Section 5.2.2.
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(b) No-turbulence P.
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(c) No-turbulence classifica-
tion.
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(d) Turbulence-degraded S0.
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(e) Turbulence-degraded P.
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(f) Turbulence-degraded clas-
sification.
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(g) Estimated S0.
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(i) Estimated classification.

Figure 52. Experimental results of the material-classification algorithm for the painted
steel (D/r0 ≈ 12.9) sample (see Fig. 47). The images depict the right side of the letter s
and the left side of the letter t formed using a template. The collection geometry is θi =
θr = 24◦. The dimensions annotated on the figures are object coordinates x = (x1, x2) at
normal incidence. For the no-turbulence and turbulence-degraded classification results,
P < 0.08 implies metal, P ≥ 0.08 implies dielectric. The estimated classification result
uses the metal and dielectric DOLP priors derived in Section 5.2.2.
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priors derived in Section 5.2.2 (applicable to θi, θr > 30◦). As expected, the algo-

rithm (as currently constituted) poorly classifies dielectric materials for near-normal

collection geometries. It is possible to modify the algorithm to perform better in

these collection scenarios. The most promising modification is to adaptively update

the DOLP priors as more information becomes known about the scene. This can

be accomplished by inspecting the histogram of the DOLP estimate and choosing

new values for c2 and c3 in Eq. (196). This modification has the possibility of ex-

tending the region of validity of the algorithm to θi, θr ≈ 15◦ (not experimentally

verified). Collection geometries θi, θr < 15◦ will be difficult to correctly classify even

with this modification because of the very weak manner in which natural materials

polarize scattered light under these conditions. Although poor classification perfor-

mance should be expected from the proposed method for near-normal geometries,

as a result of the blind-deconvolution algorithm, improved S0 and P images are still

obtained.

5.4 Conclusion

In this chapter, a material-classification technique using polarimetric imagery de-

graded by atmospheric turbulence is presented. At the technique’s core is the LeMas-

ter and Cain polarimetric blind-deconvolution algorithm (reviewed above) [74]. The

algorithm estimates the true object’s irradiance S0, the DOLP P , the AOP α, and

the PSF’s hn from turbulence-degraded polarimetric imagery. Added to LeMaster

and Cain’s algorithm are two novel DOLP priors (derived above), one representative

of a dielectric and one representative of a metal. The DOLP estimate (i.e., the esti-

mate resulting from the dielectric DOLP prior or the estimate resulting from the metal

DOLP prior) which maximizes the log-likelihood function determines whether the im-

age pixel is classified as a dielectric or a metal. Experimental results of two painted
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metal samples are provided to validate the classification technique. The proposed

algorithm is found to perform well for off-normal collection geometries (θi, θr > 30◦).

For near-normal geometries, the algorithm, as expected, poorly classifies dielectric

materials. As discussed, it may be possible to alleviate this limitation through adap-

tive DOLP priors.
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VI. Enhanced Material Classification Using Polarimetric

Imagery Degraded by Atmospheric Turbulence

T
he contents of this chapter were submitted to Optics Letters, June 2010.

6.1 Introduction

Polarization-based material-classification techniques can generally be divided into

two types—active polarimetric [21, 120] and, most relevant to the work presented

here, passive [61, 126, 141] polarimetric techniques. In Chapter V, a passive polari-

metric material-classification technique was introduced which determines whether an

object is composed of dielectric or metallic materials using turbulence-degraded po-

larimetric imagery. The technique uses a variant of the LeMaster and Cain [74] blind-

deconvolution algorithm to recover the first Stokes parameter S0, the degree of linear

polarization P (DOLP), the angle of polarization α (AOP), and the polarimetric-

image point spread functions hn (PSF’s). The dielectric/metal classification decision

is based on DOLP maximum-likelihood estimates provided by two DOLP priors (one

representative of dielectric materials, the other representative of metallic materials).

The DOLP estimate which maximizes the log-likelihood function determines the im-

age pixel’s classification.

In this chapter, the existing algorithm in Chapter V is enhanced to provide a more

detailed object classification. This is accomplished by redesigning the DOLP priors to

include subclasses of materials. For the research presented here, the metal classifica-

tion is divided into an aluminum group (includes aluminum, copper, gold, and silver)

classification and an iron group (includes iron, titanium, nickel, and chromium) clas-

sification. This new classification provides functional information about the object

which is not provided by existing dielectric/metal classifiers. A discussion of these
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new DOLP priors, particularly, the physical motivation behind their mathematical

forms, is provided. Experimental results of the enhanced classification technique are

also presented and discussed. Note that the enhanced classification algorithm pre-

sented here utilizes the same framework as that presented in Chapter V; therefore,

all assumptions and limitations stated in Chapter V apply here as well.

6.2 DOLP Priors

Before the aluminum group, iron group, and dielectric DOLP priors can be formed,

one must understand how these materials polarize light. To gain the necessary

understanding, a polarimetric bidirectional distribution function (see Chapter IV)

(pBRDF) is used to predict the DOLP’s of the metals making up the aluminum

and iron groups as well as a representative sample of dielectric materials. A similar

analysis, considering surface roughness and out-of-plane observation, is performed in

Chapter V. Figure 53a shows the DOLP’s predicted using the pBRDF (see Chap-

ter IV). Note the similarities in DOLP among the materials within each of the three

classifications. More importantly, note the differences in DOLP between the different

classification groups. As is evident in Fig. 53a, dielectric materials tend to strongly

polarize scattered light with DOLP values encompassing the entire possible range, i.e.,

0 6 P 6 1. Metals, such as aluminum, copper, gold, and silver, tend to polarize scat-

tered light very weakly with P ≪ 0.1. Other metals, such as iron, titanium, nickel,

and chromium, polarize light more strongly than aluminum group metals, however,

not as strongly as dielectric materials. Metals in the iron group have DOLP values

which range between 0 6 P 6 0.3.

From the DOLP traces depicted in Fig. 53a, priors in the shape of uniform prob-

ability densities extending from 0 to 0.07, from 0.07 to 0.3, and from 0.3 to 1 would

capture a large majority of the DOLP values shown in Fig. 53a for the aluminum group
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Figure 53. DOLP plots of the aluminum group, iron group, Teflon, glass, and alumina
(dielectrics) versus observation angle θr (incident angle θi = 45◦) predicted using a
pBRDF (Fig. 53a). The aluminum group, iron group, and dielectric DOLP priors
(Fig. 53b).
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metals, iron group metals, and dielectric materials, respectively. Unfortunately, the

uniform probability density is not differentiable and therefore cannot serve as a prior

in the deconvolution algorithm [61]. A differentiable approximation to a uniform

distribution is a super-Gaussian distribution, namely,

Π (P) = c1 exp {−[c2 (P − c3)]
m} (198)

where c1 is a constant which ensures the above expression integrates to unity, c2

is a constant which controls the width of the distribution, c3 is a constant which

controls where the distribution is centered, and m is an even integer (see Chapter V).

It is clear from the form of Eq. (198) that the prior density approaches a uniform

probability as m approaches infinity. Figure 53b shows plots of the newly-designed

aluminum group, iron group, and dielectric DOLP priors. To produce the aluminum

group, iron group, and dielectric DOLP prior traces, c1 = (1, 1, 1), c2 = (35, 10.5, 3.4),

c3 = (0.035, 0.185, 0.65), and m = (10, 10, 10), respectively. It should be noted that

the DOLP relationships between aluminum group metals and iron group metals are

applicable to visual and near-infrared optical bands only. Dispersion may cause these

relationships to break down for other wavelengths. Having discussed the formulation

of the aluminum group, iron group, and dielectric DOLP priors, attention can now

be turned to experimental verification of the enhanced classification algorithm.

6.3 Experimental Results

The instrument (see Fig. 47) used to collect the Stokes imagery presented here

is a Stokes polarimeter in the OPTECS laboratory at the Air Force Institute of

Technology. A detailed description of the instrument can be found in Chapter V. The

Stokes images, i.e, S0, S1, and S2, are created from four polarimetric images, analyzer
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Figure 54. S0 correction results of the enhanced material-classification algorithm. Fig-
ures 54a and 54d show the no-turbulence images, Figs. 54b and 54e show the turbulence-
degraded S0 images, and Figs. 54c and 54f show the corrected S0 images for the painted
aluminum and painted steel samples, respectively. The images shown here are collected
at θi = θr = 55◦.

angle θ = 0◦, 45◦, 90◦, and 135◦, respectively [47, 50, 132]. Dark-frame images, which

are taken with the camera’s lens cap on, are also collected and subtracted from the

raw polarimetric images prior to converting to Stokes images. The objects imaged

in this experiment are a 25.8 cm2 aluminum sample and a 25.8 cm2 steel sample. A

coat of white primer followed lastly by a coat of green paint is applied to half of each

sample to produce an object consisting of both dielectric and metallic parts.

Experimental results of the enhanced material-classification algorithm are shown

in Figs. 54 and 55. In Fig. 54, Fig. 54a shows the no-turbulence S0, Fig. 54b shows the

turbulence-degraded S0 (D/r0 ≈ 7.9, where D is the diameter of the pupil and r0 is

the atmospheric seeing parameter [44]), and Fig. 54c shows the corrected S0 (after 250

deconvolution iterations) for the painted aluminum sample. Likewise, Fig. 54d shows

the no-turbulence S0, Fig. 54e shows the turbulence-degraded S0 (D/r0 ≈ 12.9), and

Fig. 54f shows the corrected S0 (after 250 deconvolution iterations) for the painted

steel sample. Note that object features lost in the turbulence-degraded S0 images are
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Figure 55. Classification results of the enhanced material-classification algorithm. Fig-
ure 55a shows the results for the painted aluminum sample; Fig. 55b shows the results
for the painted steel sample.

successfully recovered in the corrected S0 images.

Figure 55 shows the classification results for the painted aluminum (Fig. 55a)

and painted steel (Fig. 55b) samples. Note the excellent classification results for the

painted steel sample. Also note that the classification errors for the painted aluminum

sample occur at scratches in the metal’s surface and at the metal/paint boundary.

The classification errors at the scratches occur because more light is scattered in the

polarization state parallel to the scratches than the polarization state perpendicular

to the scratches. Thus, scattered light from the scratches is polarized more strongly

than the surrounding aluminum explaining the incorrect iron classification. This scat-

tering phenomenon is the same used to create wire-grid polarizers and polarimetric

edge-detection algorithms. The classification errors at the metal/paint boundary are

caused by the manner in which the primer and paint are applied to the metal sam-

ples. Masking tape is used to ensure that half of the sample remains bare metal. This

unfortunately creates a discontinuity at the metal/tape boundary causing the primer
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and paint to be applied unevenly in this region. Removing the tape, after the paint

has dried, disbonds the primer/paint layers from the metal substrate. This is the

dark region clearly seen in Fig. 54a. The same metal/paint boundary effect occurs

for the steel sample results (see Fig. 54d); however, since the algorithm classifies that

region as iron, no errors are evident in Fig. 55b.

6.4 Conclusion

In this chapter, the dielectric/metal classifier presented in Chapter V is enhanced

to provide a more detailed metal classification. This is accomplished by redesign-

ing the DOLP priors to include an aluminum group (includes aluminum, copper,

gold, and silver) classification and an iron group (includes iron, titanium, nickel, and

chromium) classification. It is experimentally demonstrated that the algorithm is

able to determine whether an object is composed of aluminum, iron, or dielectric

materials. This new metal classification provides functional information about the

object which is not provided by existing dielectric/metal classifiers.
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VII. Material Characterization Using Polarimetric Imagery

Degraded by Atmospheric Turbulence

T
he major developments and results of this chapter were submitted to Optical

Engineering, June 2010.

7.1 Introduction

Electromagnetic material characterization is the science of determining a mate-

rial’s constituent parameters. At microwave wavelengths, the material parameters

of interest are typically complex permittivity and permeability; at optical wave-

lengths, complex index of refraction is typically the sought material parameter. A

search of available literature on the subject yields numerous laboratory material-

characterization techniques, such as Brewster’s angle [12, 99], prism [28, 29, 58, 88],

interferometric [19, 46, 89, 95, 99], and ellipsometric [73, 118, 127] methods. How-

ever, very little research exists in material characterization performed remotely, that

is, remote-sensing material characterization. The techniques which are available in

literature, Refs. [60, 105, 120, 123], use polarimetry to measure the Stokes vector of

scattered light from a material’s surface. With the measured Stokes vector, the re-

searchers are able to obtain the complex index of refraction of the material via numeri-

cal inversion of the theoretical Stokes vector derived using a polarimetric bidirectional

reflectance distribution function (pBRDF) [103, 104, 128]. While the experimental

material-characterization results presented in the referenced papers are impressive,

the researchers utilize diffraction-limited imagery in their material-characterization

experiments and do not account for any effects of atmospheric turbulence. The

purpose of this chapter is to present a remote-sensing material-characterization tech-

nique using polarimetric images degraded by atmospheric turbulence. To the author’s
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knowledge, no such technique currently exists.

The material-characterization technique presented here (measurement geometry is

depicted in Fig. 56) extracts the complex index of refraction (index of refraction and

coefficient of extinction) of a material. The method uses a variant of the polarimet-

ric maximum-likelihood blind-deconvolution algorithm developed by LeMaster and

Cain [74] (see Chapter V) to recover the true object’s irradiance (i.e., the first Stokes

parameter), the degree of linear polarization (DOLP) P , and the polarimetric-image

point spread functions (PSF’s) from turbulence-degraded imagery. The estimated

(or corrected) DOLP’s Pmeas (at multiple angles of incidence θi and angles of reflec-

tion, or observation θr) are then compared to the theoretical DOLP’s Pthy, obtained

using a pBRDF [62, 140, 139] (see Chapter IV), and the difference minimized via

nonlinear least squares to yield the complex index of refraction and surface roughness

parameter, i.e., ∣∣Pthy (η;σ; θi1, θr1)− Pmeas
1

∣∣ 6 δ∣∣Pthy (η;σ; θi2, θr2)− Pmeas
2

∣∣ 6 δ

...∣∣Pthy (η;σ; θiN, θrN)− Pmeas
N

∣∣ 6 δ

(199)

where δ is a user-defined tolerance. The proposed material-characterization technique

assumes that the object is illuminated with spatially incoherent and unpolarized light

(i.e, passive polarimetry) as depicted in Fig. 56. Note that as a result of this assump-

tion, circular polarization can generally be ignored [27]. It should be noted that this

assumption is invalid when dealing with circularly dichroic materials which are en-

countered in biological applications [2, 30]. Another assumption of this work is that

the unknown material must be able to produce polarized scatter from unpolarized il-

lumination, i.e., the material must have some diattenuation. This proposed technique

is not designed to handle diffuse scatterers or materials which are purely retarding.

167



Unpolarized

Light

Partially

( )1 2,= u uu

( )1 2,= y yy
Atmospheric

Turbulence

( )ϕ u

Image Plane
Polarimetric

Imager

( )A u

T

0 0 0  
iS

Partially

Polarized Light

Object

( )1 2,=x x x

T

0 1 0  
r rS S

0 0 0  S

( ) ( ) ( )jη κ= −nx x x

Index of Refraction

θi
θr

Surface Roughness

( )σ x

Figure 56. Measurement geometry of proposed material-characterization technique.

Unpolarized light with Stokes vector
[
Si
0 0 0

]T
illuminates an object of complex in-

dex of refraction η (x) = n (x)− jκ (x) and roughness σ (x). Upon reflection, the light is

partially polarized with Stokes vector
[
Sr
0 Sr

1 0
]T

, is distorted by atmospheric turbu-
lence with random phase distribution φ (u), and is received by a polarimetric sensor of
aperture A (u).
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Lastly, this research assumes that the measurement geometry is known a priori (i.e.,

θi and θr are known) and that the measured polarimetric images are obtained in the

specular plane (defined and explained below). Note that these same assumptions are

utilized in the remote-sensing material-characterization references cited above.

In the next section, the theoretical development of the proposed material-character-

ization technique is discussed. Included in this section are the derivation of the

theoretical DOLP and a brief review of the LeMaster and Cain blind-deconvolution

algorithm (needed to correct the deleterious effects of atmospheric turbulence). Sec-

tion 7.3 of this chapter presents experimental results of the material-characterization

technique in order to validate the method. Lastly, this chapter is concluded with a

summary of the work presented.

7.2 Theoretical Development

Before progressing to the theoretical derivation of the technique, it is impor-

tant to note that material characterization requires one to solve forward and in-

verse problems. The forward problem involves finding theoretical expressions for

the particular measurement geometry (see Fig. 56). The forward problem of this

material-characterization technique is the derivation of the theoretical DOLP (topic

of Section 7.2.1). In some rare instances, the forward problem can be algebraically in-

verted resulting in direct closed-form expressions for the desired parameters in terms

of measurable quantities, e.g., Brewster’s angle and prism methods. However, in

most circumstances (including the one discussed in this chapter), the inverse problem

must be solved using numerical techniques such as the Gauss-Newton method, the

Levenberg-Marquardt algorithm, etc. [79]. As a consequence of turbulence degrada-

tion of the measured data, an additional step must be added to the inverse problem

of the material-characterization technique presented here. This added step, deconvo-
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lution, is the subject of Section 7.2.2.

7.2.1 The Forward Problem.

The pBRDF chosen to derive the theoretical DOLP is the one described in Refs. [62,

139, 140] and in Chapter IV. Only the details necessary to arrive at a theoretical

DOLP expression are presented here. For more information and physical insight, the

reader is referred to the aforementioned papers and Chapter IV of this dissertation.

7.2.1.1 Derivation of the Theoretical DOLP.

Recall from Chapter IV that the full pBRDF expression (observation in the spec-

ular plane ϕ = π) is [62, 139, 140]

F00 (θi, θr, π;σ; η) = Fs
00 (θi, θr, π;σ; η) +

Rs +Rp

2π

[
1− ρs, PECDHR (θi;σ)

]
Fjk (θi, θr, π;σ; η) = Fs

jk (θi, θr, π; σ; η) j, k ̸= 0

. (200)

As depicted in Fig. 56, an unpolarized and spatially incoherent light source illumi-

nates an object of complex index of refraction η and roughness σ. Determining the

polarization state of the scattered light in this scenario is accomplished using the

Stokes/Mueller formalism [112], i.e.,


F00 F01 0

F01 F00 0

0 0 F22



Si
0

0

0

 = Si
0


F00

F01

0

. (201)

Note that the above expression is only applicable when circular polarization can be

ignored and observation is in the specular plane. The theoretical DOLP is readily

identified as

Pthy =
F01

F00

. (202)
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Substituting the applicable elements of Eq. (200) into the above expression and sim-

plifying yields the desired result, i.e.,

Pthy (η; σ; θi, θr) =

(
Rs −Rp

Rs +Rp

) Γ (θi, θr, π; σ)

Γ (θi, θr, π;σ) +
[
1− ρs, PECDHR (θi; σ)

]
/π

 (203)

where Γ is

Γ (θi, θr, ϕ; σ) =
G (θi, θr, ϕ) exp [− tan2 α/ (2σ2)]

8πσ2 cos θi cos θr cos4 α
. (204)

Before discussing the inverse problem, it is important to interpret the theoretical

DOLP expression in Eq. (203). The first term on the right hand side of Eq. (203), i.e.,

(Rs−Rp)/(Rs+Rp), is readily identified as the DOLP of scattered light (unpolarized

incident light) from an object with an optically smooth surface [16]. Recall that the

microfacet surface model [128] forms the basis of the pBRDF model and by extension

Eq. (203). Thus, (Rs − Rp)/(Rs + Rp) physically represents the DOLP of scattered

light from a surface composed of optically smooth facets, i.e., microfacets. Note that

this is the theoretical expression for the DOLP derived by Thilak et al. [123] using

the Priest and Germer pBRDF [103, 104]. While it is simple to derive and more

importantly invert, the expression does not account for diffuse scattering, which has

the physical effect of lowering the DOLP. When viewed in this context, the second

term on the right hand side of Eq. (203) represents a diffuse-scattering correction to

the DOLP. Consistent with one’s intuition, its value varies between 0, for a rough

high-σ surface, and 1, for a smooth low-σ surface.

7.2.2 The Inverse Problem.

As previously mentioned, an additional step is required in the inverse problem of

the material-characterization technique presented here. This extra step, deconvolu-

tion, is necessary because of the degradation of the measured polarimetric data due
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to atmospheric turbulence. This subsection provides the necessary background on the

deconvolution algorithm utilized in this research. For more information on deconvo-

lution, the reader is referred to Refs. [59, 70, 74, 94, 114] and Chapters III and V of

this dissertation.

7.2.2.1 LeMaster and Cain’s Polarimetric Blind-Deconvolution Al-

gorithm.

The deconvolution algorithm utilized here is the one developed by LeMaster and

Cain [74]. The algorithm, as presented in Ref. [74] and in Chapter III, estimates

the polarized and unpolarized image components of a scene, as well as the angle of

polarization and polarimetric-image PSF’s [44]. For use in the proposed characteriza-

tion technique, it is more convenient to have the algorithm estimate the first Stokes

parameter S0, the DOLP, and the image PSF’s (see Chapter V). Note that the as-

sumptions of unpolarized illumination and observation in the specular plane imply

that the angle of polarization is equal to zero. Thus, there is no need to have the algo-

rithm estimate it. In addition to this simple change, LeMaster and Cain’s algorithm

is modified to include a DOLP prior (defined and discussed in Chapter V) to aid in

the DOLP estimate. Note that two DOLP priors are used here—one representative

of a dielectric material, the other representative of a metallic material. The DOLP

estimate (the one resulting from the dielectric prior or the one resulting from the

metallic prior) which maximizes the log-likelihood function is the accepted estimate.

For the sake of brevity, only the deconvolution update equations are shown below.

The reader is referred to Refs. [61, 74] and Chapters III and V for more detail.

The update equations applicable to the material-characterization technique devel-
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oped in this chapter are

0 = mcm2 P2(P − c3)
m−1 −mcm2 P(P − c3)

m−1

− P
∑
n

∑
y

(
ψi+1
un + ψi+1

pn

)
+
∑
n

∑
y

ψi+1
pn

S0 =
2

N

∑
n

∑
y

(
ψi+1
un + ψi+1

pn

)
hn (z) =

1

Dn

∑
y

[
ψi+1
un (y,y − z) + ψi+1

pn (y,y − z)
]
. (205)

These update equations are derived in the same manner as outlined in Chapter V.

The constants of the DOLP priors are c1 = 1, c2 = 4, c3 = 0.7, m = 10 for the

dielectric DOLP prior and c1 = 1, c2 = 7, c3 = 0.15, m = 10 for the metal DOLP

prior.

7.2.3 Summary of Material-Characterization Technique.

The material-characterization technique introduced here (shown as a flowchart

in Fig. 57) extracts the complex index of refraction of a material using polarimetric

imagery degraded by atmospheric turbulence. The technique uses a variant of the

LeMaster and Cain [74] blind-deconvolution algorithm to recover S0, the DOLP P ,

and the PSF’s hn (described briefly above and in more detail in Chapter V). The

estimate for the DOLP is aided by the use of two DOLP priors—one representative

of a dielectric material, the other representative of a metallic material. The DOLP

estimate which maximizes the log-likelihood function is the accepted DOLP estimate.

The deconvolution algorithm is iterated until the stopping criterion is met. Iteration

count is used as the stopping criterion in this research. Another stopping criterion

based on the variance difference between the estimated and measured images is pre-

sented in Ref. [78]. The desired values of n, κ, and σ are found by minimizing the

difference between the estimated, or corrected DOLP’s (at multiple θi and θr) and
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Figure 57. Flowchart of proposed material-characterization algorithm. The ith decon-
volution iteration is depicted. S.C. represents the stopping criterion.

the theoretical DOLP’s [Eq. (203)] via nonlinear least squares. In the next section,

measurement results using the proposed material-characterization algorithm are pre-

sented to validate the technique.

7.3 Experimental Verification

7.3.1 Experiment Description and Procedure.

The instrument (see Fig. 47) used to collect the Stokes imagery presented here

is the same as that described in Chapter V. For this experiment, the Stokes image

formation process (identical to that described in Chapter V) is repeated at seven

specular observation geometries, i.e., θi = θr = 30◦, 35◦, 40◦, 45◦, 50◦, 55◦, and 60◦,

to provide the measured DOLP data necessary to extract n and κ. Note that this

set of angular measurements makes determining σ difficult. This is demonstrated in
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Figure 58. DOLP, demonstrating the effect of σ, of glass (n = 1.5, κ = 0) and iron
(n = 3.6, κ = 5.9) predicted at θi = θr = 30◦, 35◦, 40◦, 45◦, 50◦, 55◦, and 60◦.

Fig. 58 which shows the small effect σ has on the DOLP when observed specularly.

A better way to find σ would be to make DOLP measurements by varying θr while

keeping θi constant or vice versa (equivalent due to reciprocity). For this observation

scheme to work, however, there must be enough light in the off-specular measurements

(θi ̸= θr) to determine the DOLP. Unfortunately, the Stokes polarimeter utilized here

is not sensitive enough to make measurements of this sort. It is for this reason that

experimental results employing this observation scheme are not presented. The σ’s

of the samples characterized in this experiment (shown in Fig. 47) are determined by

measuring the width of the specular lobe. While not as accurate as the off-specular

scheme described above (results in a per-pixel estimate of σ), this method does result

in a mean σ of the sample. For the samples used in this experiment, σ < 1◦, i.e., they

are highly specular.

In this experiment, the phase wheel locations are chosen such that the ratio of the

aperture diameter D to Fried’s parameter r0 [5, 44, 111] is approximately D/r0 ≈ 7.9

and 12.9. For the same reason specified in Chapter V (i.e., to avoid pixel misregistra-
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tion due to tilt), the phase wheel is not rotated throughout the data-collection process.

In addition to requiring pixel registration during the Stokes image formation process,

the material-characterization technique described above requires registration of Stokes

images collected over multiple observation angles. This algorithm requirement can

result in misregistration due to the fact that as the observation angle changes, the

image is stretched or compressed (depending on whether θr is increasing or decreas-

ing). This imaging phenomenon is known as the Scheimpflug condition, or keystone

distortion [117]. For the algorithm to yield meaningful index-of-refraction values, the

misregistration due to keystone distortion must be corrected. For the measurement

results presented here, all images are registered to the polarimetric images of the ob-

ject at θi = θr = 30◦. This is accomplished by cropping (by the appropriate amount)

the polarimetric images collected at the other observation angles and digitally ex-

panding them back to their original size (250 × 316). It should be noted that tilt, or

turbulence misregistration is an issue here as well. It can be mitigated with the use

of a tilt sensor and a fast steering mirror or with post-processing image-registration

techniques.

The painted aluminum and steel samples used in this experiment (see Fig. 47)

were prepared in the same manner as that described in Chapter V. Processing of the

raw polarimetric images and initial guesses input into the deconvolution algorithm

for S0, P , and hn are also the same as that described in Chapter V.

7.3.2 Characterization Results.

Figure 59 shows the no-turbulence, turbulence-degraded, and corrected (after 250

deconvolution iterations) S0 images at θi = θr = 30◦ for the painted aluminum and

painted steel samples, respectively. Note that in the corrected S0 images for both

the aluminum and steel samples, the algorithm successfully recovers features lost
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(b) Painted steel, no-turbulence S0.
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(c) Painted Al, turbulence-degraded
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(d) Painted steel, turbulence-degraded
S0.
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(e) Painted Al, corrected S0.
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(f) Painted steel, corrected S0.

Figure 59. S0 experimental results for the painted aluminum (D/r0 ≈ 12.9) and painted
steel (D/r0 ≈ 7.9) samples. The S0 images of the samples are those collected at θi =
θr = 30◦. The dimensions annotated on the figures are object coordinates x = (x1, x2) at
normal incidence.
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(b) Painted steel, no-turbulence n.
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(c) Painted Al, turbulence-degraded n.
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(d) Painted steel, turbulence-degraded
n.
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(e) Painted Al, corrected n.
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(f) Painted steel, corrected n.

Figure 60. Index of refraction n experimental results for the painted aluminum (D/r0 ≈
12.9) and painted steel (D/r0 ≈ 7.9) samples. The n values for aluminum, steel, and
green paint are n = 1.44, 3.60, and 1.39, respectively. The dimensions annotated on
the figures are object coordinates x = (x1, x2) at normal incidence.
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Table 5. Means and standard deviations of n and κ for the painted aluminum and
painted steel samples.

Aluminum (n = 1.44, κ = 16) Area Steel (n = 3.60, κ = 5.88) Area
E [n] σn E [κ] σκ E [n] σn E [κ] σκ

No Turb. 3.8614 1.487 11.1757 3.7652 3.8649 1.6921 5.7123 1.6088
Turb. D/r0 ≈ 7.9 4.1437 1.1708 11.9855 2.8092 4.4741 1.1529 6.3506 1.0067
Turb. D/r0 ≈ 12.9 4.2454 1.0718 12.2713 2.7750 4.8632 0.52165 6.7198 0.59269
Corr. D/r0 ≈ 7.9 3.9451 1.2605 11.3748 3.1434 4.6241 1.2863 4.6493 1.3366
Corr. D/r0 ≈ 12.9 3.9762 1.0008 11.9791 2.2400 4.8465 0.84901 5.0693 1.0472

Green Paint (n = 1.39, κ = 0.34) Area Green Paint (n = 1.39, κ = 0.34) Area
E [n] σn E [κ] σκ E [n] σn E [κ] σκ

No Turb. 2.2467 1.2717 1.4073 1.4859 2.1424 1.1946 1.1951 1.0491
Turb. D/r0 ≈ 7.9 2.2420 1.2777 1.5772 1.9564 2.3459 1.2942 1.4020 1.6017
Turb. D/r0 ≈ 12.9 2.3074 1.3033 1.8434 2.5221 2.3819 1.3459 1.7714 2.207
Corr. D/r0 ≈ 7.9 1.2832 0.30757 0.68629 0.14007 1.3290 0.40899 0.63531 0.22920
Corr. D/r0 ≈ 12.9 1.3586 0.49623 0.77617 0.34729 1.3874 0.67263 0.74994 0.65207

in the turbulence-degraded S0 images. Figures 60 and 61 show plots of the index

of refraction n and the coefficient of extinction κ extracted from the no-turbulence,

turbulence-degraded, and corrected DOLP’s. Means and standard deviations of the

n and κ values are shown in Table 5. Note that the accepted index-of-refraction and

coefficient-of-extinction values for aluminum and steel (iron) at 1550 nm are n = 1.44,

κ = 16.0 and n = 3.60, κ = 5.88, respectively [76]. No accepted complex index-of-

refraction value exists for green paint; however, the results obtained by Thilak et

al. [123] at 650 nm (n = 1.39, κ = 0.34) and Wellems et al. [140] at approximately

9 µm (n = 1.41, κ = 0.24) are consistent. The interior-reflective Newton method

is used to extract n and κ [24]. It is a bounded solver, i.e., it searches for the best

solution on a specified domain. The bounds chosen for n and κ here are n ∈ [0, 5]

and κ ∈ [0, 25]. Note that these bounds encompass a majority of the complex index-

of-refraction values one would expect from metals and common dielectric materials

at 1550 nm.

Overall, the material-characterization technique performs well. The characteri-

zation results for the green paint (dielectric) regions of the samples are especially

impressive. The characterization results for the metal regions of the samples are erro-
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(a) Painted Al, no-turbulence κ.
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(b) Painted steel, no-turbulence κ.
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(c) Painted Al, turbulence-degraded κ.
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(d) Painted steel, turbulence-degraded
κ.
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(e) Painted Al, corrected κ.
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(f) Painted steel, corrected κ.

Figure 61. Coefficient of extinction κ experimental results for the painted aluminum
(D/r0 ≈ 12.9) and painted steel (D/r0 ≈ 7.9) samples. The κ values for aluminum, steel,
and green paint are κ = 16, 5.88, and 0.34, respectively. The dimensions annotated on
the figures are object coordinates x = (x1, x2) at normal incidence.
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neous. In particular, the n values extracted from the metals are inconsistent with the

accepted values. Note, however, that the results for κ are more accurate. There are

two main reasons for this metal-characterization error. The first is due to the greater

difficulty in measuring the DOLP of light scattered from metal surfaces. This diffi-

culty arises from the fact that over most observation angles the Fresnel reflectances

(Rs and Rp) of metals are approximately equal, i.e, Rs ≈ Rp. This makes measuring

the difference in irradiance between the two polarization states difficult and thus leads

to greater error (greater noise susceptibility) in the DOLP measurement. Note that

the opposite is true for dielectric surfaces. Over most observation angles Rs is several

times Rp. It is therefore much easier to discern a difference in irradiance between

the two polarization states resulting in a more accurate DOLP measurement. This is

clearly evident in the results presented in Table 5. Note that DOLP measurements

of metal surfaces made beyond θi = θr = 80◦ (pseudo-Brewster’s angle [65], i.e., max

Rs − Rp) should help the characterization; however, these near-grazing observation

angles are especially difficult in imaging because of keystone distortion. The second

possible reason for the error is oxidation. Metallic aluminum reacts with oxygen to

form alumina, a dielectric. Likewise, steel (actually, the iron in it) reacts with oxygen

to form rust, another dielectric. Thin coatings of alumina and rust on the metal

regions of the samples would affect the DOLP of light scattered from those regions

and thus affect the index of refraction.

Before concluding, it is worth noting a couple more aspects of the experimental

results. In the n and κ images, Figs. 60 and 61, respectively, the scratches in the

metal are characterized differently than the metal itself. This erroneous characteri-

zation is due to the behavior of electromagnetic waves at edge-like structures. The

scratches in the samples scatter more light in the polarization state parallel to the

scratches than the polarization orthogonal to the scratches. Thus, scattered light
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from the scratches is polarized more strongly than the surrounding metal explaining

the mischaracterization. This scattering phenomenon is the same exploited to create

wire-grid polarizers and polarimetric edge-detection algorithms. Note that although

these features are mischaracterized, they are resolved in the corrected n and κ images

after being lost in the turbulence-degraded images. Also, in the corrected n and κ

images, a distinct boundary is resolved between the metal and green paint regions of

the samples. Note that this occurs as a result of the deconvolution algorithm and is

a highly desirable aspect of the proposed material-characterization technique.

7.4 Conclusion

In this chapter, a material-characterization technique using passive polarimetric

imagery degraded by atmospheric turbulence is presented. The technique uses a

variant of the LeMaster and Cain deconvolution algorithm [74] (discussed briefly

above and in more detail in Chapter V) to recover the object S0, the DOLP P ,

and the PSF’s hn from turbulence-degraded polarimetric imagery. Nonlinear least

squares is then used to find the values of index of refraction n and coefficient of

extinction κ which best fit the theoretical DOLP (shown above), derived using a

pBRDF [62, 139, 140] (see Chapter IV), to the turbulence-corrected DOLP. Lastly,

experimental characterization results of two painted metal samples are provided to

verify the proposed technique. It is found that the technique performs well. It recovers

object features lost in the turbulence-degraded imagery, provides a clear demarcation

between the material types of the samples, and characterizes the dielectric (painted)

regions of the samples very accurately. The characterization results for the metal

regions of the samples are less accurate with the results for κ being more accurate

than n. As discussed, this metal-characterization error is likely due to the inherent

difficulty in measuring the DOLP of metal surfaces (i.e., greater noise susceptibility
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in the measurement) and possible oxidation of the metal portions of the samples.

The main contribution of the work presented in this chapter is a method to pas-

sively characterize materials with imagery degraded by turbulence. Future research

in this subject will include extension of the technique to situations where the observa-

tion geometry is unknown, out-of-specular-plane observation, and active illumination

scenarios.
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VIII. Conclusions

In this dissertation, an algorithm is developed to estimate the index of refrac-

tion of an unknown object using passive polarimetric images degraded by atmo-

spheric turbulence (see Chapter VII). The algorithm uses a variant of the LeMaster

and Cain polarimetric maximum-likelihood blind-deconvolution algorithm to estimate

the true object S0, the degree of linear polarization (DOLP), and the point spread

functions (PSF’s) from turbulence-degraded polarimetric imagery. The values for

the index of refraction n and the coefficient of extinction κ are found by minimiz-

ing the difference between the theoretical DOLP (derived using a pBRDF) and the

turbulence-corrected DOLP via nonlinear least squares. Experimental characteriza-

tion results of two painted metal samples are provided to verify the technique. It

is found that the characterization technique performs well. It recovers object fea-

tures lost in the turbulence-degraded imagery, provides a clear demarcation between

the material types of the samples, and characterizes the dielectric (painted) regions

of the samples very accurately. The characterization results for the metal regions

of the samples are less accurate with the results for κ being more accurate than n.

As discussed, this metal-characterization error is likely due to the inherent difficulty

in measuring the DOLP of metal surfaces (i.e., greater noise susceptibility in the

measurement) and possible oxidation of the metal portions of the samples.

In addition to the material-characterization algorithm discussed above, the pBRDF

used to solve the forward problem is validated in two ways (see Chapter IV). The

first compares predictions made using the pBRDF to MoM solutions of a rough PEC

surface. The second compares predictions made using the pBRDF to experimen-

tal Mueller matrix results of LabSphere Infragold and flame-sprayed aluminum. It

is shown, via these results, that the pBRDF accurately models the physics of the

light/material surface interaction. While the pBRDF itself is not new research, it has
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never been fully validated until now. Comparing predictions made using the pBRDF

to exact electromagnetic solutions of a surface is a novel approach to validating a

pBRDF.

Lastly, two material-classification techniques (Chapters V and VI) are developed

in this dissertation as well. The first classification algorithm determines whether

an object is composed of metal or dielectric materials using turbulence-degraded

polarimetric imagery. As is the case for the material-characterization algorithm dis-

cussed above, the classification algorithm uses a variant of the LeMaster and Cain

deconvolution algorithm to estimate S0, the DOLP, the AOP, and the PSF’s from

turbulence-degraded polarimetric imagery. The metal/dielectric classification deci-

sion is made depending on which DOLP estimate (the estimate resulting from the

dielectric DOLP prior or the estimate resulting from the metal DOLP prior) maxi-

mizes the log-likelihood function. Experimental results of two painted metal samples

are provided to validate the technique. It is found that the algorithm performs well

for off-normal collection geometries. For near-normal geometries, the algorithm, as

expected, poorly classifies dielectric materials. As discussed, it may be possible to al-

leviate this limitation through adaptive DOLP priors (discussed below). The second

classification algorithm is an enhanced version of the first. It determines whether an

object is composed of aluminum, iron, or dielectric materials. This is accomplished

by redesigning the DOLP priors used to make the classification decision. It is exper-

imentally demonstrated that the algorithm is able to determine whether an object

is composed of aluminum, iron, or dielectric materials. This new metal classification

provides functional information about the object which is not provided by existing

dielectric/metal classifiers.
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8.1 Future Work

There are several areas of this research that can be investigated further. Listed

below are a few examples.

8.1.1 Adaptive DOLP Priors for the Material-Classification Algorithms.

As discussed above (and in the previous chapters), the material-classification algo-

rithms designed in this dissertation perform poorly for near-normal collection geome-

tries. This poor performance is due to the fact that natural material weakly polarize

scattered light at near-normal incident angles. This limitation can be alleviated some-

what by adaptively updating the DOLP priors as more information becomes known

about the scene. This can be accomplished by inspecting the histogram of the DOLP

estimate and choosing new values for the constants in Eqs. (196) and (198) in Chap-

ters V and VI, respectively. This modification has the possibility of extending the

region of validity of the algorithm to θi, θr ≈ 15◦. Collection geometries θi, θr < 15◦

will be difficult to correctly classify even with this modification because of the very

weak manner in which natural materials polarize scattered light under these condi-

tions.

8.1.2 Incorporating the Angle of Polarization.

Not really considered in this research is the angle of polarization (AOP). In passive

polarimetry, the AOP provides information about the object geometry. Consider an

unpolarized source illuminating a material surface observed through a linear polarizer
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(LP). The Stokes vector/Mueller matrix representation of this scenario is

I (θ) =

[
1 0 0

]
1 cos 2θ sin 2θ

cos 2θ cos22θ cos 2θ sin 2θ

sin 2θ cos 2θ sin 2θ sin22θ



F00 F01 F02

F10 F11 F12

F20 F21 F22



1

0

0

 (206)

where θ is the LP angle and Fij are the pBRDF components defined in Eq. (177).

Carrying out the matrix multiplication results in

AOP =
1

2
tan−1

(
S2

S1

)
= γr. (207)

Recall from Chapter IV (Fig. 35) that γr is the angle between the macroscopic plane

of reflection and the scattering plane of the microfacet. It is related to the incident

and observation angles by rather complicated expressions:

cos γr = (cosα− cos θr cos β) / (sin θr sin β)

cosα = (cos θi + cos θr) / (2 cos β)

cos 2β = cos θi cos θr + sin θi sin θr cosϕ

. (208)

When ϕ = 0 is substituted into the Eq. (208), AOP = γr = 0. Thus, AOP = 0

implies observation in the specular plane. While it may be possible to find the ob-

servation geometry exactly with the AOP alone (does not appear likely), the AOP

(independent of the index of refraction of the material) is still useful as a measure of

how far in azimuth ϕ the observer is away from the specular plane. This informa-

tion can be incorporated into the material-characterization algorithm developed in

Chapter VII to extend the technique to out-of-specular-plane observation geometries.

Note that θi and θr still have to be known. Since many remote-sensing platforms are

likely to possess a global positioning system or an inertial navigation system onboard,
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these angles, at the very least, can be estimated [123].

8.1.3 Active Polarimetry.

As described in the previous chapters, active polarimetry is the measure of the

polarization state of scattered light when the source excitation is controlled. A very

good example of active polarimetry is ellipsometry [127]. When one considers how

powerful a tool ellipsometry is, it becomes apparent that redesigning the algorithms

developed in this dissertation to work under active illumination scenarios could pro-

vide a great deal more information about the object than the current passive tech-

niques. As with any engineering decision, utilizing active illumination brings with it

some complications not encountered in passive polarimetry. First, the mathemati-

cal simplifications associated with using a passive source do not apply under active

illumination scenarios. For instance, circular polarization cannot be ignored in ac-

tive polarimetry. Second, active illumination in remote sensing typically utilizes a

coherent source such as a laser. This introduces speckle which is not encountered in

incoherent imaging. Third, the techniques developed in this research are bistatic in

nature, i.e., the source and observer are in different locations. This is important in

polarimetry because change in polarization state occurs for off-normal collection ge-

ometries (i.e., bistatic measurements). Active illumination in remote sensing is most

commonly performed with the source and observer in the same location, i.e., a mono-

static measurement. Examples of this include RADAR, SONAR, and LADAR. The

fact that a bistatic measurement is necessary to observe a polarization state change

does somewhat limit the feasibility of using active polarimetry in the field. Note that

there exist a great amount of research dealing with a phenomenon known as enhanced

backscatter [8, 7, 18, 67, 77]. Enhanced backscatter occurs when light interacts with

a very rough surface and is the result of multiple surface reflections (at least two).
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This scattering effect may be exploitable for active polarimetry using coherent illu-

mination. The author does not possess a strong understanding of this phenomenon,

and therefore the interested researcher should review the referenced papers as well

as the literature (especially work by Ezekiel Bahar) before proceeding. Lastly, since

polarization is defined using the object’s coordinate system, not knowing the object

geometry makes active polarimetry much more difficult than passive polarimetry. For

instance, transmitting a

[
1 0 1 0

]T
beam does not necessarily mean that will be

the polarization state which interrogates the object. Passive polarimetry, on the other

hand, assumes that the illumination is unpolarized. This assumption implies that no

matter the orientation of the target relative to the source, an unpolarized beam in-

terrogates the object. These challenges aside, extending the algorithms developed in

this dissertation to work under active illumination scenarios is a rich area of future

research.

8.1.4 Field Testing.

Having demonstrated classification and characterization of materials using polari-

metric imagery degraded by atmospheric turbulence in the laboratory, the next step

is to test the algorithms developed in this dissertation on actual scenes degraded by

actual turbulence. Unfortunately, this is not possible using the polarimeter described

in the previous chapters. Thus, future field research using the algorithms developed

in this dissertation will require a new, compact polarimeter. One suitable for this fu-

ture polarimetric research is depicted in Fig. 62. The polarimeter shown in the figure

is a division of amplitude polarimeter (DoAmP) developed by FluxData, Inc. [37].

Light enters the camera’s aperture and is split three ways. The light along each

optical path passes through a LP orientated at a certain angle before being sensed

by a charged-coupled device (CCD). In this manner, S0, S1, and S2 images can be
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Figure 62. A compact division of amplitude polarimeter (DoAmP) from FluxData,
Inc. [37].

obtained simultaneously. The device has a programmable electronic shutter (equiva-

lent to integration time) which can be set to any value between 1 µs and 65 s. The

maximum frame rate is 120 Hz; this value does depend on the specified CCD arrays.

The polarimeter shown above can easily be incorporated into the existing laboratory

configuration for controlled testing or mounted on a tripod and used in the field.

8.1.5 Improvement of the pBRDF.

The accuracy of any material-characterization technique relies heavily on the ac-

curacy of the solution to the forward problem. In this research, the solution to the

forward problem, i.e., the theoretical degree of linear polarization, is derived using a

geometrical optics pBRDF. As discussed in the previous chapters, geometrical optics

is an asymptotic approach to scattering which approximates light as a ray. It does

not (in its most basic form) account for wave effects associated with scattering. For

instance, geometrical optics predicts that light incident on a smooth surface of size X

is scattered completely in the specular direction (i.e., the scattered light possesses no

lobing structure) which is only true when the wavelength λ→ 0 or when X → ∞.

Physical optics, like geometrical optics, is also an asymptotic approach to scat-

tering. It, being based on a more rigorous approximation, more accurately predicts
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the light scattered from a surface than does geometrical optics. For instance, phys-

ical optics predicts that light incident on a smooth surface of size X is scattered in

non-specular directions (that is, the scattered light possesses a lobing structure). The

amount of light scattered in the non-specular directions is related to X/λ.

One obvious improvement to the material-characterization algorithm developed

in Chapter VII is to replace the geometrical optics pBRDF with a pBRDF based

on physical optics. A physical optics pBRDF that can be used to solve the forward

problem is the one developed by An and Zeringue [3]. It should be noted that even

physical optics breaks down when object or surface features fall below 5λ and edge

effects become significant. For these situations, a more rigorous approximation, like

the Physical Theory of Diffraction (PTD) [136], can possibly be used to develop a

new pBRDF.

8.1.6 Deconvolution Algorithm and Atmospheric Correction.

The deconvolution algorithm used in this research is a close variant of the one

published by LeMaster and Cain [74]. One possible improvement is to redesign the

algorithm to estimate the ellipticity angle χ along with S0, the DOP, the AOP α,

and the PSF’s. In order to make this change, the irradiance received through a

quarter-wave plate (QWP) and a LP must be modeled:

I (θLP, θQWP) =

[
1 0 0 0

]
MLP (θLP)MQWP (θQWP)

PS0



1

cos 2α cos 2χ

sin 2α cos 2χ

sin 2χ


+ (1−P)S0



1

0

0

0




. (209)
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Carrying out the matrix multiplications and simplifying produces

I (θLP, θQWP) =
1

2
(1−P)S0 +

1

2
PS0

[1 + cos 2χ cos (2θLP − 2θQWP) cos (2α− 2θQWP) + sin 2χ sin (2θLP − 2θQWP)]

(210)

Note that this expression is very similar to Eq. (185) in Chapter V and thus the same

method used in that chapter to derive the update equations can be applied here as

well. With this change to LeMaster and Cain’s algorithm, the algorithm would now

be able to recover any polarization state, or equivalently any Stokes vector. This is

a necessary step if one wishes to adapt the algorithms developed in this dissertation

to work under active illumination scenarios.

Another possible improvement to LeMaster and Cain’s algorithm, in regards to the

material-characterization technique derived in Chapter VII, would be to redesign the

algorithm to estimate n and κ directly. Attempting to estimate n and κ directly, using

the algorithm in its current form, results in very complex coupled update equations.

In order for this to work, the algorithm would have to be completely redesigned.

In addition to these possible improvements to the deconvolution algorithm, the

techniques developed in this research could be applied to data captured using a po-

larimeter where the atmospheric distortion is corrected using an adaptive optics sys-

tem. The OPTECS laboratory already contains all the necessary AO hardware to

perform the experiments. Some redesign of the current layout of the optical bench

would be required.
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In this research, an algorithm is developed to estimate the index of refraction of an unknown object using passive
polarimetric images degraded by atmospheric turbulence. The algorithm uses a variant of the maximum-likelihood
blind-deconvolution algorithm developed by LeMaster and Cain to recover the true object (i.e., the first Stokes
parameter), the degree of linear polarization, and the polarimetric-image point spread functions. Nonlinear least squares
is then used to find the value of the complex index of refraction which best fits the theoretical degree of linear
polarization, derived using a polarimetric bidirectional reflectance distribution function, to the turbulence-corrected
degree of linear polarization. To verify the proposed material-characterization algorithm, experimental results of two
painted metal samples are provided and analyzed. Possible uses of this novel algorithm include intelligence-gathering and
nondestructive inspection/evaluation applications such as corrosion and crack detection/characterization.
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