DOCKET NO. SA-516

EXHIBIT NO. 20F

NATIONAL TRANSPORTATION SAFETY BOARD
WASHINGTON, D.C.

EXPLOSION OF AVIATION KEROSENE (JET A) VAPORS
(22 pages)
Explosion of Aviation Kerosene (Jet A) Vapors
Explosion of Aviation Kerosene (Jet A) Vapors

J. E. Shepherd
Graduate Aeronautical Laboratories
California Institute of Technology
Pasadena, CA 91125

October 7, 1997

Sponsored by the National Transportation Safety Board under Order NTSB12-97-SP-0127
Caltech Research Program

- Motivated by TWA 800 crash investigation

- Present Jet A data base inadequate

- Issues:
 - Chemical composition of fuel vapors vs liquid
 * Effect of temperature (T)
 * Effect of fuel amount (M/V)
 - How does flammability depend on ignition energy?
 - Laminar and turbulent flame speeds?
 - Combustion within multi-compartment, vented tanks?
Scope of Presentation

Results of basic studies on Jet A

• Chemical composition

• Vapor pressure

• Ignition energy and flammability

• Flame speed

• Explosion development
Chemical Composition I.

- Kerosene is a mixture of many species,

![Graph of chemical composition over time for liquid and vapor](image)

Liquid
Vapor (40°C, 300 kg/m³)
Gas-Chromatograph Mass Spectrometer studies at CIT.

- Chemical composition is the key to understanding combustion

- New Studies needed for quantification

 - C1-C8 equivalence, headspace GC at University of Nevada, Reno (Woodrow)

 - Detailed speciation at Desert Research Institute, Reno (Sagebiel)

Vapor and liquid composition are very different, depend on both temperature and mass loading.
Results of UNR/DRI studies

- Mean molar mass of vapor 120 to 140 depends on fuel origin, handling & weathering
- H/C ratio of 1.8 in vapor
- Over 160 species in vapor, up to C=12.
- Depletion of light ends observed for small mass loading
- Light ends enhanced at higher temperatures
Significance of Vapor Pressure P_σ

- Liquid evaporation creates flammable vapor-air mixtures

- P_σ determines fuel-air mixture fraction

$$X = \frac{P_\sigma(T_{fuel})}{P_{air}} \quad \text{mass:} \quad f = \frac{P_\sigma(T_{fuel}) W_{fuel}}{P_{air} W_{air}}$$

- Flammability limits

$$f > f_{LFL} \sim 0.035 \quad \text{or} \quad X > X_{LFL} \sim 0.7 - 0.8\%$$

- Determines peak pressure caused by combustion

$$\Delta P_{max} = \frac{W_{fuel}}{W_{air}} \frac{q}{c_v T_1} P_\sigma(T_{fuel})$$
Vapor Pressure Measurements

Issues:

- dissolved air. (degassing)
- multicomponent (stirring)
- batch dependent
- Reid method inadequate
- existing correlations unreliable
- New measurements needed
Vapor Pressure Results

Raw data, simple mixture model:

Comparison with published "data":

Jet A 400 kg/m3
Jet A, 3 kg/m3
Binary model, M/V = 3
Binary model, large M/V

Jet-A Lefebvre
Jet-A Ott
Kerosene, Rose and Cooper
T-1, TC-1 Russian
CRC 530
Reid VP Test
Jet A (CIT 4/11/97)
Multicomponent Mixture

Issues:

- wide range of C_nH_m in Jet A
- preferential evaporation of “light ends”
- dependence of P_{σ}, composition on M/V

Simple model:

- use 8 components from UNR measurements
 - mixture vapor pressure
 $$P_{\sigma} = \sum x_i \gamma_i P_{\sigma,i}$$
 - activity coefficients γ_i estimated ≈ 1.
- Requires validation
Flammability and Explosion

- Flammability depends on many factors
 - Ignition source (energy, temperature)
 - Fuel state (vapor vs mist, mass loading)
 - Turbulence
 - Temperature
 - Pressure

Standard approaches:

- Flash point test (ASTM D56) Jet A: 40 to 60 °C
 LAX Jet A, 46 to 48°C

 10 to 15 °C above explosion limits. Not representative of actual explosion behavior.

- Vessel studies.

 Previous work used fixed energy (16-25 J), large mass loading (100 to 120 kg/m³)

 Not representative of many ignition sources, and empty fuel tank conditions.
Previous Studies on Flammability

Ignition Energy

Propane-Air mixtures, 300 K, 1 bar

- Minimum of 0.25 mJ occurs for rich mixtures
- Strong dependence on concentration
- Ignition energy very high (100 J) near LFL
- Not previously measured for JET A vapor
- Thermal sources require separate consideration
CIT Ignition Testing

Emphasizes:

- fuel mass loading M/V
- spray injection vs stagnant pools
- ignition energy
- jet ignition vs sparks

Ignition vessel:

- 1.84 liter volume
- video schlieren
- spark ignition source
- $P(t), T(t)$
 - 1 mJ to 100 J
 - 3.3 mm gap
Jet A Flammability

![Graph showing flammability data]

- **Flammable 3 kg/m³**
- **Nonflammable 3 kg/m³**
- **Flammable 200 kg/m³**
- **Nonflammable 200 kg/m³**

- **Energy (J)** on the y-axis.
- **Temperature (°C)** on the x-axis.
- **Peak pressure (bar)** on the y-axis for the lower graph.

Legend:
- 3 kg/m³, CIT 1.8 l
- 200 kg/m³, CIT 1.8 l
- Ott, center ignition
- Ott, end ignition
- 3 kg/m³, CIT 1180 l
Explosion Development

• Issues
 – peak pressure
 – burn time
 – flame speed
 – quenching behavior
 – turbulent flame speed
 – multi-compartment burns

• Parameters:
 – mass loading M/V
 – fuel temperature T
 – ambient pressure P
 – ignition source, fans, partitions, etc.
HYJET Facility

[Diagram of HYJET Facility]

[Graph showing pressure over time for Driver and Receiver]
Jet A, 40°C I.

- Receiver Pressure, bar vs. Time, s
 - 300, 400, 500, 700 ml
 - 200 ml
 - 150 ml
 - No Fuel (100°C)
 - Inject at 14 kft
 - Inject at 35 kft

17
Jet A, 40°C II.

LAX Jet A in air at 14 kft

300 ml at 40°C
(Injected at .239 bar)

30 ml at 100°C

Receiver Pressure, bar

Time, s

fuel loading factor (kg/m³)

peak pressure (bar)
• Effect of fuel loading and state

• 1180 liter vessel

• Stagnant puddle of fuel (1 gal) in 4 cases

• fan on in one case

• spray injection in one case
Summary I.

• vapor composition very different than bulk liquid

• vapor pressure alone not useful without vapor composition

• multicomponent fuels do not have unique vapor pressure

• mass loading M/V affects composition

• flash point is not a useful characterization of explosion hazard
Summary II.

- MIE a strong function of composition

- .25 mJ not characteristic of near limit fuels

- MIE of Jet A is 100 J at 35°C

- MIE of Jet A is < 1 mJ at 55°C

- mass loading M/V effect mild for MIE and peak pressure

- $\Delta P_{max} = 4$ bar at 40 to 55°C ($P_o = .585$ bar) for $M/V \geq 3 \text{ kg/m}^3$
Acknowledgements

- Merritt Birky & Vern Ellingstad (NTSB)
- Julian Lee (CIT)
- Chris Krok (CIT)
- Jim Woodrow (UNR)
- John Sagebiel (DRI)