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Abstract

Using a semi-geostrophic, reduced gravity thin jet model, we analytically study the
evolution of initial meanders into pinched-off rings. The model used is similar to the
path equation developed by Flierl and Robinson (1984) for vertically coherent mean-
ders. However, in the present model, the meanders are baroclinic, and a stretching
term arises due to the motion of the interface.

It can be shown that the equation governing the time-dependent meander of this
jet (Pratt, 1988) can be transformed into the Modified Korteweg- deVries (MKdV)
equation in intrinsic coordinates. The MKdV equation admits two types of solitary
wave solutions, loop solitons and breathers. The breathers are permanent meanders
which propagate on the path, and some are able to form rings.

Using the inverse scattering transform, we can predict breather and ring for-
mation for simple initial meanders. The inverse scattering transform is applied to
S and Q shaped meanders with piecewise constant and continuous curvature. S
shaped meanders, or steps, must be multi-valued to form breathers, and must have
very steep angles in order to form rings. Due to integral constraints, Q shaped
meanders, or lobes, are unable to pinch together to form rings unless they are wide
enough so that the two side flanks of the lobe act as two independent steps. The
numerical solutions indicate that the breathers predicted by the inverse scattering
is a very good approximation to the full solution.
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Chapter 1

Introduction

One of the most prominent features of the Gulf Stream east of Cape Hatteras is

its meandering; the stream fluctuates north and south as a coherent structure in

a wavelike pattern. Meanders are also present in other strong currents such as

the Kuroshio and the Agulhas. Large meanders may pinch off and form rings,

transporting heat and momentum across the stream in the process.

The variability in the location of the Gulf Stream has long been known. Hydro-

graphic work in the 1930's (Iselin, 1936; Church 1937) was able to demonstrate that

the position of the Gulf Stream changes rapidly. In the early 1950's, Fuglister and

Worthington (1951) were able to show that the Stream moves in a wavelike pattern.

More recently, Hansen (1970) found that the meanders have a propagation speed of

5 to 20 cm s-1, and slowly grow as they propagate downstream.

Since the advent of remote sensing techniques, the meandering pattern is clearly

visible in infrared satellite images, and data from other remote sensing instruments.

With a time sequence of IES images, the propagation, and pinch off, of these me-

anders can be observed. Vasquez and Watts (1985) and Tracey and Watts (1986)

calculated dispersion relations for long wavelength meanders, finding a propagation

speed of Cph = 11km day-1 for a wavelength of 630 km. Kontoyiannis and Watts

(1990) were able to calculate dispersion relations for the meanders. They found

that short meanders propagate faster than long meanders, with phase speeds rang-



ing from Cph = 6 km day-1 for a wavelength of 700 km, to Cph = 50 km day-'

for a 150 km meander. Their dispersion relation indicates that the long wave me-

anders are slowly propagating with a time scale proportional to the third power of

the wavelength. While these meanders are waves on a current, they do not seem to

change the basic velocity profile. East of Cape Hatteras, the Gulf Stream is highly

variable, with eddy kinetic energies of 1500cm 2 s-2 at 73"W (Halkin and Rossby

1985). However, Halkin and Rossby also showed that two-thirds of this eddy ki-

netic energy is due to meandering, and not the mesoscale eddy field. In fact, in a

streamwise reference frame, the eddy kinetic energy due to changes in the structure

of the front is only three times as large as mid-ocean values found by Richardson

(1983). They conclude that the Gulf Stream is a well-defined structure, even though

its position may widely vary.

By assuming that the Gulf Stream moves coherently as a "frozen jet," the me-

andering can be modeled as the motion of the jet axis due to potential vorticity

constraints. When the deformation radius and the width of the Gulf Stream are

small compared to the length scale of the meanders, the Stream is approximated

as a thin jet. In thin jet models it is possible to solve for the cross-stream struc-

ture of the flow at the outset, a simplification which often allows consideration and

tractability of strongly non-linear processes.

This thesis uses the thin jet approach to model the meander evolution of a

reduced gravity jet. The rest of this chapter contains a discussion of previous thin

jet models, and their relation to the model used here. In the rest of the thesis, the

evolution of various isolated meanders will be studied using numerical solutions, and

the inverse scattering transform, with the object of finding criteria for ring-formation

based on the shape of the initial condition. The inverse scattering transform is

outlined in Chapter 2, and applied to several simple initial conditions in Chapters

2 and 3.



1.1 Previous Work on Thin Jets

The thin-jet approach was suggested by Warren (1963) who modeled steady state

meanders as a balance among planetary vorticity, the curvature of the stream, and

topographic effects. Robinson and Niiler (1967) found a similar vorticity balance,

and expressed it in streamwise coordinates. However, Robinson (1967) found that

these models, and the first time-dependent models based on them, could not fit the

meander and mean-path data. He concluded that stretching can not be left out of

a time-dependent thin jet model.

A later model including time-dependent meandering was the Robinson, Luyten

and Flierl model (1975). The motion of the axis of a quasi-geostrophic, stratified jet

is governed by a vorticity balance due to the curvature of the axis, the beta effect,

interactions between the downstream flow and the meander field, and stretching.

The path equation is obtained by integrating the vorticity equation across the jet

horizontally, and in the vertical. This model contains a mechanism that allows the

jet to form a closed loop, analogous to ring-formation in the Gulf Stream.

Flierl and Robinson (1984) later corrected inconsistencies in the non-dimensional

parameters, so that cross-stream widths are much smaller than along stream scales,

making the cross-stream momentum equation ageostrophic. The cross-stream in-

tegration of the vorticity equation forces the meanders to be matched with the

barotropic eddies on either side of the jet. They were also able to show that the

dispersion relation for small-amplitude meanders was identical to the dispersion re-

lation found for long wave perturbations to a quasi-geostrophic jet using standard

instability theory.

Using contour dynamics, Pratt and Stern (1986), modeled the evolution of a

single front of potential vorticity in a quasi-geostrophic, 11 layer model. They found

that short waves are advected eastward by the mean flow, while longer waves are

slowed by vortex induction effects. Using contour dynamics, they modeled initial

meanders shaped like steps, and lobes. All steps dispersed, while tall, thin lobes

were able to form rings. Ring-formation was enhanced by the presence of short



waves to the west, or the presence of a second lobe of the opposite sign.

This paper also included a long wave approximation to the contour dynamics

equations of motion, which was explored in Pratt (1988). The meander wavelengths

are assumed to be long compared to a deformation radius so that

L(x,t) = 61n(X,t)

X = x

They found that by making a long wave assumption the meandering motion of the

front could be determined by a local equation. The time scale, which was determined

by the dynamics, is proportional to the cube of the wavelength. In this limit the

velocity 2 of the front normal to itself is proportional to the rate of change of

frontal curvature r, with respect to distance s along the front.

an 18Orx1-n = - --- (1.1)at 2 as

Although equation 1.1 appears very simple, its solutions contain a rich variety of

physical behavior. Numerical solutions to isolated initial meanders show that initial

conditions with large amplitudes or wavenumbers form slow, coherent meanders that

fluctuate from the north to the south. After several fluctuations, these meanders

begin to pinch together, forming a closed loop. Pratt found that the amplitude of

these meanders grew with time after they became multi-valued, implying a form of

finite amplitude instability.

More recently, Cushman-Roisin et al. (1991), hereafter referred to as CPR, have

generalized Equation 1.1, forming a semi-geostrophic, reduced gravity path equation

on the beta plane, governing the motion of the axis of a thin jet. In this model, the

advection of planetary vorticity is the same size as the advection of the curvature

term. The path equation is then

On Oic
= a + bsin0 (1.2)

at OS



The meandering motion of the jet, 8 is governed by vortex induction (a8), and

the advection of planetary vorticity. (bsinO), where 0 is the angle the jet makes

with East (Figure 1.1). The relative sizes of these two effects are determined by a

and b, which depend on the velocity structure of the jet.

a = ffoo hh2dn,
h h,,, n(1.3)

b =h- 0 0 +h..
2

h is the interface depth, where hoo and h-oo are the depths of the interface on either

side of the jet.

Since the model is semi-geostrophic, -hn is just the pathwise velocity of the jet

itself, so the parameters a and b are related to moments of the velocity profile.

This equation is the thin jet model used in this thesis, and the next section shows

how this equation arises from the Robinson, Luyten and Flierl model (1975), if 112

layer stratification is assumed. Section 1.3 presents estimates of the parameters a

and b, based on the shape of isopycnals at 680 W.

1.2 Relation Between The Path Equation and

The RLF Model

In this section we show that the path equation 1.2 is a 1} layer version of the

Robinson, Luyten and Flierl (1974) (hereafter referred to as RLF) path equation

for full stratification. Following Robinson, Luyten and Flierl (1974), and Flierl and

Robinson (1984) (FR), we rederive their vorticity equation in the intrinsic coordinate

system defined in Figure 1.1. This vorticity in the upper layer is then integrated

in the vertical and across the stream to get the path equation. The model is a

rotating, inviscid, Boussinesq, hydrostatic fluid on the beta plane. For generality,

we will assume full stratification as long as possible.

As in RLF, the structure of the jet is assumed known, and the jet velocity and

axis velocity are assumed to be horizontally non-divergent. For full stratification, the



meandering is assumed independent of depth, so the whole jet meanders coherently.

The coordinate system is the right-handed intrinsic coordinate system shown in

Figure 1. Distances are measured along the axis of the jet with s. The coordinate

n is defined by constructing a positive normal at every point along the jet.- The

transformation to this coordinate system associates every point (x, y) near the jet,

with the coordinates (s, n)

X Y
x = X - n(1.4)

as

Y - x
as

X(s, t), Y(s, t) are the coordinates of the point on the axis of the jet, whose exact

position is determined by the meandering motion. The axis of the jet will be chosen

to be the position of the front. The Jacobian of the transformation is given by

D (n, s) _ 1
a(x, y) 1-n

where n = is the local curvature of the jet. The path angle 0 is the angle the

jet makes with the East.

0 = tan-(a)aX
In order for the coordinate transformation to remain valid, the scale of the cross-

stream structure n must be small compared to tc1 ; at a distance n = 1/,

the coordinate transformation becomes singular. This coordinate system is slightly

different from the coordinate system used by RLF because the tangential variable s

is used as an independent variable instead of X. We have chosen to define n to be

positive to the left of positive s, making the coordinate system (s, n) is right-handed.

The total velocities within this coordinate system are defined as U, the velocity

along the jet, and V the velocity across the jet. We can find them by rotating the



eastward (u) and northward (v) velocities into the local coordinate system.

U = u sin® - v cosO

V = u cos® + v sin® (1.5)

As in RLF, the velocity field (U, V) is decomposed into the jet velocity (Uo, 0), the

axis velocities (A, C), which are the velocities at which the reference frame meanders,

and the residual velocity-field induced by the meanders, (Umn, Vm). For simplicity

we will assume that (Xo, Y), the inlet point, is fixed.

In order to formulate the model we introduce the following scales:

S ~ = down-stream scale

n ~ £ = cross-stream scale

z ~ H = characteristic depth of the ocean

t ~ T = meandering time scale

f ~ fo = Coriolis parameter = fo (1+ y)

U ~ Vo = jet velocity scale

C, A ~ VA = axis velocity scale

p ~N fofUo = geostrophic pressure scale

Henceforth, all variables in the model have been non-dimensionalized by these

scales. In order to characterize the equations of motion, RLF then introduced the

non-dimensional parameters.

t
IL

- f

=

V0

SVA
- V0

N 2 . H2

= V0

ratio of cross-stream scales to along-stream scales

downstream Rossby number

ratio of planetary vorticity gradient to relative vorticity gradient

relative velocity of the axis

non-dimensional Brunt-Vaisala frequency squared

relative velocity of the meanders

)3

N 2

m



The full non-dimensional equations of motion (from RLF 3.6 -3.8) are

'DU DO p
] fV + -J - 0 (1.6)

[ DV DO 1 p

_V_ __ I U I-w

v f V OU O - 0 (1.8)
an L' L s Oz

where

U =Uo + aA + mUm +... (1.9)

V = aC + mVm + ... (1.10)

w = cWm + ... (1.11)

and J = 1 - Lnn. The total derivative ; is defined by

D 0 £ 0 £
- a - + J(U-aA+a-tnOt)- + -(V-aC) (1.12)Dt at L as L an

In the intrinsic coordinate system, there is an apparent force due to the curvature

of the path. This apparent force appears as the 2y terms in Equations 1.6 and 1.7.

We are interested in long-wavelength meanders of a semi-geostrophic jet. Small

changes in the jet velocity field are induced by the meandering field, as (Un, Vm).

Cross-stream variations in the isopycnals are large, so the cross-stream width of the

jet is of the order of the deformation radius. This assumption was not made by

RLF, but was included in the FR model. The beta effect and curvature play an

equal role in the dynamics. These assumptions imply:

c << 1

m = 0(e)

f - 0(c)

N 2

# 1



With this choice of parameters, we may carry out an expansion in e,

e.g. h = ho + Ehi + V(C2 )

The cross-stream momentum equation (Equation 1.7) is geostrophic:

ap
fUO = (1.13)

On

while the along-stream momentum equation is ageostrophic. The vorticity equation

(equation 4 in FR) can be derived by cross-differentiating the momentum equations,

and using continuity.

Fo(s,t) + Uo(n,z)Fi(s,t) + UO(n,z)F 2(s,t) - (1.14)

where the functionals F are given in Table 1. I, also given in Table 1, is an

interaction term, representing the interaction of the jet with the meander field. The

size of 5 (the ratio of the axis velocities to the jet velocities) is to be determined by

the dynamics. For the moment we assume that a ; 1.

After vertical and horizontal integrations, (over an area normal to the flow of

the jet) Flierl and Robinson are left with their path equation (equation 6 of FR).

Fo(st) + F1(s,t) dn dzUo + F2(s,t) dn dzUO2 = d
2

(1.15)

where d denotes the width of the jet. With the assumptions of a rigid lid, and a flat

bottom the vertical integration has eliminated the stretching term. By vertically

integrating the vorticity equation across the jet, the right side of Equation 1.14 (the

interaction term) vanishes for all of the modes except for the barotropic mode. The

horizontal integration of the interaction term imposes a matching condition on the

barotropic component of the meander field.

In 11 layers the area integration across the jet leads to a slightly different path

equation. We expect that the baroclinic meanders will travel much slower than the



barotropic meanders, and so in the 1! layer model & = O(e). This greatly simplifies

Equation 1.15:

U aw
Uoy + U02- 

0z
= [-- Uo + RUm
an Dt Dt

D= UoA is the advection due to the jet

and

D = Um I + Vm- is the advection due to the residual fields

In 11 layers, the vertical integration is carried out over the active upper layer,

from the surface to the interface between the two layers. At this interface, the

vertical velocity does not vanish :

Oh1  Oho
Winterface = UO + (Vm)

s vn

The vertically integrated vorticity equation becomes

(1.17)

( Uodz) YS + ( U02dz) K. - [U0h1 . + Vmhon]

Using cross-stream geostrophy (Equation 1.13

=ho
On

'U 0 + DU1]
(1.18)

and the ageostrophic along-

stream momentum equation (from Equation 1.6, with a = O(e)):

iU 0Dt
+ D Um

Dt
Ohi
Os + (Vm + C1 )

leads to

Ys Uodz + c, U02dz + C ho, - O
on

ho(E-Uo +
Dt

We then integrate this equation across the jet from n = -oo to n = +oo (i.e.

to where the jet has decayed away, so ho. -+ 0, or to where the lower layer outcrops,

where

(1.16)

(1.19)

Dt
(1.20)



so ho = 0). The right side vanishs, leaving

Y Uodzdn + roJ U02dzdn - C1 UOdn = 0 (1.21)

Because U - -h, this is the path equation 1.2 (recalling the definition of the

parameters a and b from Equation 1.3, and that C is the velocity of the meandering

motion as the jet moves normal to itself, i.e. g). The absence of a barotropic mode

allows the jet to meander in isolation. Because the baroclinic deformation radius is

much smaller than the barotropic radius, the path is not affected by the far field in

the reduced gravity.

The 1} layer path equation 1.2 can not be found from the final path equation in

Flierl and Robinson (1984) for full stratification by simply modifying the coefficients

of the path equation (the moments of U0 ) so that the velocity obeys a 11 layer

structure. Because of the absence of the barotropic mode, the vertical integration

of the vorticity equation leaves a stretching term that comes from the meandering

front.

1.3 Model Parameters

The model derivation is independent of the current structure, leaving the parameters

a and b free to be specified. These parameters can be estimated by approximating

the shape of the interface between the two layers by the shape of an isopycnal in

a jet. Estimates of the model parameters a and b were made using a Gulf Stream

density cross-section taken at 680 W, by Hall. Five estimates were made with

the isopycnals indicated in Figure 1.2 (from Hall and Fofonoff, 1991). Two of the

isopycnals, o- = 26.5, and Us = 26.6 outcrop, and the surface was defined as the

northern edge of the Stream. If the profile did not outcrop, the edges of the stream

were chosen to be where a -+ 0.

In order to calculate the parameters, the shape of the isopycnal must be expressed

non-dimensionally. The depth of the isopycnal is scaled by H, the depth of that



isopycnal on the southern edge of the Gulf Stream. Values of H range from 550 m

for the 26.5 contour, to 1330 m for the 27.7 contour.

Cross-stream distances were non-dimensionalized using the deformation radius

Rd = (g'H)/fo. At 68" W, the Gulf Stream has a latitude of approximately

400 N, so the Coriolis parameter is fo = 9.4 X 10' sec 1 . The reduced gravity

was calculated according to the formula for a two layer system g' = g( P-i1), where

po is the density of the lower layer, and p1 is the density of the upper layer. The

densities for each isopycnal were estimated by averaging the density of the water

above and below the isopycnal. Because the deep ocean is much more homogeneous

than the water at and above the thermocline, the density of the lower layer will be

the same for all five of the isopycnals, approximately 1028 kg/m. The deformation

radius for all five of the isopycnals was found to be approximately 40 kilometers.

Once the isopycnal profiles were non-dimensionalized, a and b were calculated

using equation 1.3. For the calculation of a, h was calculated by discretizing the

depth, and then using center differencing to find the derivative in between the grid

points. Using Simpson's Rule, the integral was then carried out across the Stream.

The calculation of b is a simple average of the depth of the isopycnal at the two

edges of the Stream.

Table 2 contains the values of a and b for each of the five isopycnals. The

parameter b depends on whether the isopycnal outcrops or not. For outcropping

isopycnals, b = 0.5. As the isopycnals get deeper, b increases to approximately

0.7. The upper two outcropping isopycnals, and the two middle isopycnals have

a ~ 0.15. The 27.7 isopycnal has a much lower value of a (a = 0.09). This

isopycnal is slightly deeper than the core of the current, so its slope a is smaller

than the other isopycnals, leading to a smaller estimate of a. Because this isopycnal

misses the current core, it is not a good choice for the shape of the interface.



Table 1. Functionals from the Vorticity Equation

Fo(s, t)

F1 (s, t)

F 2(s, t)

=5-2

+52 A tc

+a4 (AsinO + CcosO)

= 2i C + ii Cas

+ aA, 3 + a 8 tc + /~sinO

- [-(Uo+ aA) + -Um + aC-®]

where

= a + Uo

= Um2 + VMa + EWm

Table 2. Estimates of a and b

ao Rd a b

26.5 40.7 0.149 0.50

26.6 42.0 0.150 0.50

27.4 42.6 0.144 0.64

27.6 39.8 0.150 0.70

27.7 36.8 0.099 0.75
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Figure 1-1: Model Geometry for the 11 layer Path Equation.
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Chapter 2

Step Meanders

2.1 Introduction

We would like to be able to use the path equation to characterize the types of

initial conditions that will form rings. Pratt (1988) approached this question by

numerically integrating Equation 1.1, the f-plane path equation, for initial conditions

of the form, £(x, 0) = e-(!)coskox. He found that the all the initial meanders shed

a train of short waves to the east. If the initial meander was steep enough then

a large amplitude, slowly-propagating, oscillatory meander emerged. After further

integration, the meander eventually pinched off, (Figure 2.1 (from Pratt 1988)).

This approach illustrates the changes a path goes through in forming a ring, but

the range in initial parameter space explored is limited by the slow and expensive

numerical integration of the path equation. More recently, CPR has shown that

the path equation can be solved by the inverse scattering transform, an elegant

method that identifies the large-amplitude, slowly-propagating meander, without

fully integrating the path equation.

This chapter outlines this solution method and applies it to steps, or "S"-shaped

paths which are the simplest types of meanders in a zonal jet. The large-amplitude

meanders evolving from piecewise constant curvature steps can be identified alge-

braically. A class of smooth steps is also considered and criteria for ring-formation



are established based on the angle of the initial step.

2.2 Inverse Scattering Transform

Following CPR, we may show that equation 1.2 may be written only in terms of 0,

the path angle. Differentiating equation 1.2 twice with respect to s, and using the

relation

nt = YtcosO - XtsinO (2.1)

leads to

(-sinOXt + cosOYt - (Ot - aO,,, - boscosO) (2.2)

Adding 2.2 and 1.2 together, multiplying the result by 0,, and integrating with

respect to s, leads to
1

Ot = -a0W + aO... + cO, (2.3)
2

where c = bcos 0 - , 2

The subscript zero denotes the value at the fixed inlet point, s = 0. If the initial

meander is isolated, so that 0 -+ 0 as x --+ oo, then the path equation (Equation

2.3 ) can be rewritten as

O- b, = a03 + a8,, (2.4)

Transferring to the coordinate frame moving with the Rossby long wave speed, so

9 = (s + bt), and taking the derivative with respect to 9, leads to an equation for

the curvature, I = 8

Kt - 32,K - assg; = 0 (2.5)
2

If we let u = Kx, x = -a .s, and rescaling the time by a2, then we obtain

ut + 6u 2 ux + uzz, = 0 (2.6)



This is the Modified Korteweg-deVries (MKdV) equation, one of a class of non-

linear evolution equations that may be solved using the inverse scattering trans-

form (Ablowitz et al. 1974). This solution method, which can be thought of as a

nonlinear extension of the Fourier transform method, allows us to easily find- the

large-amplitude meander that evolves from an initial condition. Appendix A gives

a detailed discussion of the inverse scattering transform; a brief description is given

here.

The initial condition is mapped into a spectral space by associating the initial

condition with a linear eigenvalue problem. For the MKdV equation, the eigenvalue

problem is

$2 + [2+(u 2(x,0)+iu'(x,0))]o = 0

(2.7)

#(x) eiX, x -+ -oo

O(x) ~ B( )e' x + A( )e- x, x -+ +oo

This is the time-independent Schrodinger equation with u2 + i ux acting as a poten-

tial, for the eigenfunction b, and eigenvalue (. An incident wave, with wavenumber

(, and amplitude A( ) reaches the potential from +oo. A wave of unit amplitude

is transmitted, and one of amplitude B( ) is reflected. The eigenvalues of Equation

2.8 lie in a continuous spectrum along the real axis. There may be a finite number

of discrete eigenvalues which lie in the upper complex plane, either on the imag-

inary axis, = ir/, or in pairs located symmetrically about the imaginary axis,

6 = ta(1 + iA). These discrete eigenvalues may be thought of as bound states to

the scattering problem, and occur at the poles of the transmission coefficient, the

zeros of A(6).

As u(x, t) evolves according to the MKdV equation, then the amplitudes A(6)

and B(6) evolve linearly. (Ablowitz, et al. 1974). Once we know these amplitudes

at a later time, the transform may be inverted to find the solution of the MKdV

equation at that time. This is the most complicated step of the inverse scattering



method, involving a set of integral equations that must be solved numerically. How-

ever, the transformation may be simplified by approximating u(x, t) as a potential

with the same discrete spectrum, but no continuous spectrum. This approximation

is valid at large times, because the continuous spectrum of the scattering problem

corresponds to the short dispersive waves that quickly propagate away (Segur 1981)

as the initial condition evolves into the final large-amplitude meander. Numerical

results of Pratt (1988) suggest that these dispersive waves are too small to pinch off

as rings, so we will disregard this part of the solution.

By disregarding the continuous spectrum, we are left with the solution associated

with the discrete spectrum, a set of solitons. A single imaginary eigenvalue, =i,

corresponds to a loop soliton.

u(x, t) = ±2qsech(27 x - 87 3 t + A) (2.8)

where A, the phase of the loop, is determined by B( ). Because the curvature,

( = 2a+2u) is of one sign, an initially uncrossed path can not evolve into a single

loop soliton.

For each pair of complex eigenvalues ( = a(±l + iA) ,the solitary wave is known

as a breather. Expressing the breather solution in terms of the path angle, 0,

0 = -4 tan-'[A sin(2a-2a(s - cpt) - O)sech(2a--aA(s - cet) + 0e)] (2.9)

Figure 2.2 shows several breathers with different A. The breather is an oscilla-

tory pattern, with wavenumber 2a-2a, confined within an envelope of wavenumber

2a-2la. O, and 0e are phases of the breather and are determined by B( ) (Appendix

A). O, determines the orientation of the oscillation with respect to the envelope, and

0e determines the position of the envelope.

The envelope speed ce = 12a2(1 _ A2 ) is the speed at which the envelope

propagates along the path. Breathers with small A, i.e. small steepness, have an

envelope speed close to the group speed for linear waves with the same wavelength



2aia, so they are hard to distinguish from the background dispersive wavetrain.

The phase speed, c, = 4a 2 (1 - 3A 2 ), determines the speed at which the oscillations

propagate. Because the envelope and oscillations move at different speeds, the

pattern fluctuates as successive maxima of the sinusoid pass through the peak of

the envelope. The period for these fluctuations is

-1

2, (Cp- Ce) r a 2

T = 2 +(c-e) = (2.10)
2a2 a 8a 3(l + A2 )

The steepness of the breather is determined by A. If A > tan(!), then lema>

2' and the path becomes multi-valued (Figure 2.2b). Pratt (1988) showed that

when a meander becomes multi-valued (so that dx becomes negative) its amplitude

increases, because the area f dx remains constant with time. He concluded that

multi-valuedness is a possible indication of a finite amplitude instability mechanism.

Multi-valued breathers have a "neck" which is defined as the smallest separation

in longitude between two points on the path. As A increases, the breather steepens,

forming a narrower neck. When the neck width vanishes, points separated along the

path come into grazing contact, and the coordinate transformation of section 1.2 is

no longer valid. Because the path is pinched together, other physical processes are

dominant which we assume aid the detachment of the closed meander. The actual

neck width of a breather must be calculated numerically, and it vanishes at some time

when A > 1. Figure 2.3 shows the A = 1 breather at several times in its oscillation

cycle. Although it is pinched together when the path is symmetric (t = 0, , T),

at other times the path is unclosed. We can determine which initial conditions form

rings, by finding the initial conditions for which the scattering problem, Equation

2.8 yields eigenvalues for which A > 1.

The MKdV equation arises in plasma physics (Torve, 1981) and electric circuit

theory (Scott, 1970). Redekopp (1977) found that certain finite amplitude Rossby

waves in a stratified fluid are described by the MKdV equation and Redekopp and

Weidman (1978) briefly discuss the breather solutions. However, because these

examples of the MKdV equation arise in very specific physical settings, there has



been little work on actually applying the inverse scattering transform to specific

initial value problems of the MKdV equation. In this thesis the evolution of several

different kinds of initial meanders will be predicted using the inverse scattering

transform. We are specifically interested in determining how an initial meander

must be shaped in order to evolve into a pinched off ring.

2.3 Piecewise Constant Curvature

In quantum mechanics, a piecewise constant potential is often used as the simplest

potential which is capable of having bound states. This scattering problem may be

solved algebraically and although it is highly idealized, it illustrates how the size

and shape of a potential determine the discrete eigenvalue spectrum. Following this

approach, we will first consider piecewise constant curvature meanders in order to

determine which shapes will evolve into breathers.

When the meander has piecewise constant curvature, it is easier to solve the scat-

tering equation (Equation 2.8) as the equivalent set of coupled first order equations

(Lamb, 1980),

+ i"41 = U(X)02

(2.11)

- i042 = -UW)1

with boundary conditions

S, x -+ -oo (2.12)2 0
01 Ae-id

~ ,j x -+ +00

#2 Beit"



For a single "square well" of curvature, the potential can be written,

U i if lo < x < lo + 1i (2.13)
0 otherwise

According to Equation 2.11, the solution to the left of the well is

0 = 
(2.14)

2= 0

Inside the well, the solutions are the standing waves,

41 = C cosAix + D sinA1 x (2.15)

02 = C(itcosAix - g-sinAx) + D(g-cosAix + ilsinAix)

where A 1 = + 2. To the right of the well, the solution is

01 = A 1 eitx (2.16)

02 = B1 eitx

where {A 1, B 1} are the amplitudes we want to find. The constants {C, D, A1, B 1 }

are determined by matching 41 and 02 at lo and 1o + 11. We find {A 1, B 1} to be

A1 = (cosAili - sinA1li) eil1 (2.17)
A1

B1 = (-$sinAili) e't (2.18)

By finding the zeros of A 1 ( ), we can determine the solitons that will evolve from

this initial path, with a single well of curvature. Because the initial path has only one

sign of curavture, it does not represent a meander in a zonal jet (and is therefore not

realistic for the model), but rather a "bent" path, like a hairpin. By examination, we

see that the only ('s that are zeros of A1 are purely imaginary, corresponding to the

loop soliton which also has one sign of curvature. We can determine the minimum



size of the square well which forms a loop soliton, by determining the value of

uili that satisfies A1 = 0, when ( = 0. By examination we find uli = I, which2'

corresponds to a path that is curved completely back on itself (0 = 2u111 = 7r).

This idea can be extended to find {An, B,}, the amplitude coefficients for an

n-square well potential. Figure 2.4 shows a 3-square well potential and its associated

path.

Knowing {Ai- 1, B;_1 }, the right edge amplitudes in the absence of the ith square

well, which has length li, and amplitude ui, we can find {Ai, B;}, the amplitude

coefficients at the right edge, (at x = 1 , = L;) with the following iterative

formula

A; = (cos Ail - -L' sinAgli) ej ' Ai- 1 + ( usin Aili) eit(Li+Li-) Bi_1 (2.19)

B, = (-- sinAil) e-(L,+L,-,) Ai- 1 + (cos Ail; + . sinAili)e-'" Bi1 (2.20)
Ai Ai

where Ao = 1, Bo = 0. The breathers associated with a specific n-square well

path may then be found by locating the zeros of An using Newton's method in the

complex plane. Because we have an algebraic expression for An, we can fully explore

the parameter space made up of the u;'s, and the li's, testing how variations in path

angles and arc lengths change the location of the eigenvalues, a(t1 + iA).

The scattering problem is linear, so all of the wavenumbers and length scales are

linearly related. Therefore, for each scattering problem, we choose one of the li's as

a fixed scale, (li = 1), and measure all of the other lengths relative to this scale.

Because we are mainly concerned with when breathers just begin to form (A = 0),
where they can be multi-valued, (A = tan(!)), and ring formating (A = 1),

we will in practice specify the eigenvalue, and determine which parameters satisfy

Equation 2.20.

In this chapter, the iterative formula will be used to find the breathers asso-

ciated with several piecewise constant curvature steps. A step has two regions of

length 11, and 13, with constant curvature u1 , and us. The path must be zonal



on either side of the step, so the two curvature regions must form the same angle

2uil1 = -2u 3l3 = 00. These two uniform curvature segments may be adjacent

or separated by a straight line segment of length 12.

The scattering coefficients associated with this type of meander are

A = [(cos Aili - _ sin Aili )(cos A 313 - sinA ) eis 1 +)
A1  A3

- UUs A2lisin A 313  2e 1+3) (2.21)

U3 __1+1)2t

B = [--sin A 3l3 (cos Al - i Asin Al1)e-i 12 e-i(l3+l) e- 2il2

- (cos A 3 l3 + i- sinAal3)A sinAili ei(l3+1] (2.22)
A3

Figure 2.5 shows how the zeros of Equation 2.21 vary with the step angle, when

the step is symmetric and has no center curvature region. When the step has a

small angle, the only zeros to Equation 2.21 are in the lower complex plane, region

I, so there are no breathers formed. As the angle increases, the zeros move across

the real axis, into the upper complex plane where the pair a(i1 + iA) is associated

with a breather. When A < tan(!), the breathers are single-valued. As the step

angle increases further, the zeros move into region III, where they are associated

with steps that form multi-valued breathers. For steps with A > 1, the zeros are in

region IV, and can form rings.

We can determine the critical angle at which breathers form, by determining the

step angle at which the zeros cross the real axis. For a symmetric (l1 = 13) step,

which also has 12 = 0, this angle can be found analytically. Setting A = 0, in

Equation 2.21,

2

A = (1-2i-sinAlicosAili - 2-sin2Al 1 e-2 itt (2.23)



Setting the real and imaginary part of A to 0, leads to

sinAlicosAli = 0

_A 1sin 2A~l1  A,
2Ce2

This implies that Aili = , and A 2 = 2U. Combining these we can find

the minimum angle for breather formation, 00 = i

An asymmetric step is formed when 11 / 13, so the radius of curvature for

the two folds are different. In order to isolate the effect of the symmetry, 12, the

length of the straight center piece (indicated by the dashed line in Figure 2.3), will

be set to 0. According to Equation 2.22, B(s) depends on the relative position

of the small and large folds, so the phases of the breather, O, and 0e, will depend

on the positioning. However, the zeros of Equation 2.21 do not depend on the

positioning, only the relative radii of the two folds. Two steps with the same size

small fold, but opposite positions of this fold will form identical breathers, but they

will have different positions and orientations. Equation 2.21 indicates that there is a

similarity in the solutions. If the lengths l; are replaced with 1', then the eigenvalues

become 1.

Figure 2.6 shows how the shape of the breather depends on 0o and the symmetry,

which is defined as the ratio of the small radius of curvature to large. For simplicity,

we will assume that 11 = 1, so that the symmetry is just 13, which is less than

1. A step which lies to the reight of the dashed line intersects itself, and is thus

unphysical. For small values of 0o, region I, the step disperses into a train of

short waves. As 00 increases beyond ', the step falls in region II, breathers are

possible and the step evolves into a broad, single-valued packet of waves, because

A < tan('). As the symmetry of the step decreases, the angle at which breathers

form slowly increases until the symmetry is very small, where it rises sharply to

7r. As the symmetry decreases below 0.05 several very short single-valued breathers

begin to arise. Because they arise at such small symmetries, they stay crowded

into the region of the parameter plane to the right of the critical angle for breather



formation, and lie below 13 = 0.05. In addition, these secondary breathers are

short, fast and indistinguishable from the dispersive wavetrain, and they will not be

apparent in the solution.

The steeper steps of region III form multi-valued breathers, with A > tan().

The symmetric step begins to form multi-valued breathers when O0 ~ 7r. As the

symmetry decreases, the angle at which multi-valued breathers form gently increases

until the smaller radius of curvature is less than _L of the larger. Then this angle

abruptly decays back to x.

Steps within region IV have angles steep enough so that the breather forms a

closed loop. For a symmetric step, when 0 0 = 4.16 a ring can form. This critical

angle is insensitive to changes in symmetry until the symmetry is ~ 1, where the

critical angle goes to 7r.

The size of the breather also decreases most rapidly with decreasing symmetry,

at small symmetries. Figure 2.7 shows a, the oscillation wavenumber, for breathers

with A = tan(!). These breathers lie on the lines dividing regions II and III in

Figure 2.6. The symmetry decreases to 0.2 before the wavenumber has doubled.

As the symmetry decreases further to 0.1, the wavenumber rapidly increases to ten

times its value for the symmetric step. Not only does this indicate that a much

smaller breather is formed, but also a thousand-fold decrease in the time scale.

We can interpret the small symmetry limit by turning back to the single square

well discussed at the beginning of this section. As the step becomes more asym-

metric, one of the two curvature wells becomes infinitely long, but has no curvature

associated with it. while the other well becomes a delta function of curvature. Loop

solitons are possible then, and the solution passes from a dispersive wavetrain, di-

rectly to loop solitons as the path angle passes through 7r (recall that this is the

path angle associated with loop solitons found for the single square well).

A stretched symmetric step is one for which 11 = l3, and 12 $ 0. In this case

the length scale 1 is set equal to 1. Figure 2.8 shows how 0o and 12 determine

the properties of the breather that evolves out of a wide, symmetric step. Region I

again denotes the dispersive steps, and region II the breather- forming steps. As 12



increases from 0, the step angle at which breathers form quickly decreases, and then

slowly asymptotes to 1. The angles at which multi-valued and closed breathers (the

lines denoting regions III and IV) also quickly decrease to asymptotic values.

At large values of 12, multiple single-valued breathers can form, as they did for the

step with small symmetry. A second multi-valued breather is possible for extremely

wide (12), and steep (Oo _ 7r) steps (Figure 2.8).

The asymptotic values and the secondary breathers can be found by turning

back to the scattering problem. As the separation between the wells gets large, the

wavelength of the breather increases, so the width of the wells (fixed by the scaling

11 = 1) becomes small relative to this wavelength. The scattering problem begins

to resemble the elementary physics problem of reflections in a thin film. From this

type of problem we know (see e.g. Feynmann, 1965) that as 12 -+ 00,

a'2 - ( 2 1' where n' = 1,2 ... (2.24)

The number of breathers, or trapped waves in the scattering problem, is deter-

mined by n'. Using this relation in equation 2.16, we find

Cos2 + s - = 0 (2.25)

which reduces to

cos0 0 = -tanhA(27z - 1) (2.26)
2

The angles for multi-valued breather and ring formation at large 12 can be deter-

mined from this equation, with n' = 1, and are indicated in Figure 2.8. The

minimum angle for ring formation is 00 = 2.73. The shorter secondary breathers

(n' = 2, 3, ... ) of Figure 2.8 are harmonics of the scattering problem. The step must

be essentially closed (00 = 3.12, at large 12) for a closed breather with n' = 2

to form, so only one ring can form from a piecewise constant curvature step. When

A = 0, we see that the minimum angle for breather formation is always !. Thus,

the step must be multi-valued to form breathers.



With the iterative formula developed in this section, we can determine the soli-

tons that will emerge from a path with an arbitrary number of constant curvature

sections. As a simple first example, a path with two curvature regions is considered.

This curvature distribution forms a step which disperses unless its maximum angle

is greater than some critical value. If the step is symmetric, and the regions of

constant curvature are adjacent to each other, than the step must have a maximum

angle greater than /, in order for breathers to form. If the step is made steeper,

so that 00 > -x, then a multi-valued breather may emerge. As the maximum angle

increases beyond 00 e 4.1, then a pinched off ring will form. If the step is made

asymmetric, so that the two curvature regions are asymmetric, the critical angles

for breather, multi-valued breather, and ring formation all asymptote to 7, as the

symmetry of the step approaches 0. At small symmetries, below 0.05, regions with

small curvature get long, and multiple single-valued breathers may form. As the

symmetry decreases further, the step is passing through the single square well limit,

where only a loop soliton is possible, This occurs when ®0 = 7r, where the step

collapses on itself, and is unphysical.

The presence of a flat center section stretches the step, causing the angles at

which breathers and rings form to decrease. For wide steps, such that 12 >> 11, we

can show that the minimum angle for breather formation is 1; piecewise constant

curvature steps must be multi-valued to form breathers. The minimum angle for

ring formation is found to be 0o e 2.7.

2.4 Smooth Steps

We now compare the criteria found for the simple piecewise constant steps with

criteria for more realistic smooth steps. The scattering problem (equation 2.4) must

be solved numerically for the smooth steps. Eigenvalue problems of this sort are

often solved using shooting methods (e.g. Press, 1986). However, this method

relies on a good initial guess of (, and proved to be to difficult to use. Instead

the scattering problem was broken up into a matrix eigenvalue problem by center



differencing the differential equation.

1 0 0 ... 0 0 0 0 0

A p 0 ... 0 0 1 0

P2 A 0 0 0 #2 0* (2.27)

0 0 0 ... n p_1 I Onp_1 0

. 0 0 0 0 0 0 1 _ L n, 0

where np is the number of points used in the center differencing with grid spacing

Ax = 1/(np-1). p, = -± u ?+iux +4 2 . The np eigenvalues for this asymmetric

operator were calculated using the NAG library. Most of the eigenvalues lie on the

real axis; these eigenvalues correspond to the continuous spectrum of the eigenvalue

problem. A small number of eigenvalues will occur in complex pairs of the form

( = a(il + iA). We can not find the eigenvalues with A near 0 because they are

hard to distinguish from the eigenvalues on the real axis.

A smooth symmetric step can be defined as

0 = Oosech(ks). (2.28)

The wavenumber k will set the scale of the breather, so a will be scaled by k. The

shape of the breather, which is determined by A, is only a function of the step angle

because of the scaling of solutions.

Only one pair of discrete eigenvalues was identified for the smooth steps, in-

dicating that there is only one breather. Figure 2.9 shows the location of these

eigenvalues, for symmetric steps with angles ranging from 3.0 to 4.4. Comparing

this curve to Figure 2.4, we see a qualitative similarity in the shape of these curves,

although the wavenumber a for the smooth steps varies less with Oo. Figure 2.10

compares A, the steepness parameter for the breather, as a function of the step angle

for smooth steps and piecewise constant, symmetric, 12 = 0, steps. A is always

larger for the piecewise constant steps, but parallels the smooth step curve. Multi-



valued breathers will form when 00 > 3.35, and closed loops form when 00 > 4.31.

These are ~ 5% larger than the critical angles determined for piecewise constant

curvature steps, however, the piecewise constant results also indicate that the crit-

ical angles decrease as the step was made wider. Smooth steps are not as wide as

piecewise constant steps with the same angle and amplitude, so this increase in the

critical angles is consistent with the piecewise constant results.

Asymmetry was introduced by varying the scale of the step in the downstream

path.

0 = 0o(sech ks) s <0 (2.29)

0= o(sech krs) s > 0

The discrete eigenvalues were found for r ranging from 1 to 10 with 00 = 3.5, and

k = 1. As for the piecewise constant curvature asymmetric step, there is only one

breather. The wavenumber gently increases as the symmetry decreases, reaching

approximately twice of its value when the symmetry (r-') is 0.2 (Figure 2.11).

This is consistent with the decrease in size with asymmetry found for the piecewise

constant curvature steps. A also gently increases as the symmetry increases, and

then jumps nearly to 1 at small symmetries; this can be seen in Figure 2.12 which

shows the location of the eigenvalues in the complex plane as r varies. We expect

that if the wavenumber rk was associated with s < 0, the same breathers would be

formed.

2.4.1 Full Numerical Solutions

The full path equation (Equation 2.3) was solved numerically using center-differencing

in space, and using a leapfrog trapezoidal method, for the time stepping. Von Neu-

mann analysis predicts conditional stability when At < v/ [ + ] For

simplicity, b will be set to 0. This is equivalent to solving the path equation in a ref-

erence frame moving with the Rossby long wave speed. The parameter a can be set

to 1, without loss of generality, because it only scales the space and time variables

appropriately. At the west end of the path, the path angle and curavture were fixed



to 0, while at the east end, the angle was brought down to 0 by extrapolation. This

supressed reflection from this boundary.

The numerical evolution allows us to follow the evolution and propagation of

the breather, and show that the dispersive wavetrain does not form multi-valued,

or closed meanders. Figure 2.13 shows the results for the symmetric step with

00 = 3.93, k = 1.0. At t = 1,2, the short dispersive waves are evident. While

they remain for the entire integration, they are always single-valued, and unable

to close on themselves and form rings. A multi-valued meander is apparent at t =

2.0. It fluctuates from the north (t = 6,11,15,20) to south (t = 8,13,18) side of the

path, as it slowly propagates downstream. A breather with a = 0.38, A = 0.72

was expected based on the Inverse Scattering results. This breather would have

an oscillation period of 4.76 and amplitude of ; 3, which is consistent with the

numerical breather. The integration was carried out for several oscillation periods,

and the meander did not pinch off.

Only one of the initial conditions we chose formed a ring in the numerical inte-

gration. This step, with ®o = 4.32, k = 0.5 (Figure 2.14) does not get to the

fluctuating stage; instead it forms a closed loop during the first stages of breather

evolution (t = 5.0). The scattering solution predicted a breather with a = 0.2,

and A = 0.97 (Figure 2.15). This breather is not completely closed, although it is

nearly so. The numerical integration shows that the dispersive waves are still quite

strong just downstream of the step at t = 5, and it appears they play some kind of

role in closing the ring.

We also consider the evolution of two asymmetric steps, with the small radius

of curvature in the upstream and downstream path. The symmetric step with the

same 00 = 3.5, and k = 1 forms a large slowly-propagating meander (Figure

2.16). The breather expected by the scattering has a = 0.39, and A = 0.49.

The two asymmetric steps, shown in Figures 2.17, and 2.18 have a smaller radius

of curvature in the downstream and upstream paths, respectively, with r = 5.

The piecewise constant curvature section predicted, but did not quantify, a phase

difference depending on whether the smaller radius of curvature was upstream or



downstream. These piecewise constant curvature results, and the numerical inverse

scattering results, predict that the asymmetric steps will produce a smaller, steeper

breather than a symmetric step with the same 00, and k.

Both of the asymmetric steps form a very small breather with a = 0.8, and

A = 0.63. The breather in Figure 18 lags behind that of Figure 17, as the piecewise

constant results predicted.

2.5 Conclusions

The numerical solutions to the path equation imply that the dispersive wavetrain is

unable to steepen and form rings, and we are able to approximate the solution to the

path equation using the inverse scattering transform. Piecewise constant curvature

paths can be solved easily using the iterative formula 3.16, and even the predictions

from the very simple 3-square well steps agree qualitatively well with the results for

similar smooth steps.

Symmetric steps with 12 = 0 form breathers when 0  = and form only

one, with a wavelength the same order as the length of the original step. Rings can

pinch off from these steps when 0o m 4.1.

It appears that introducing asymmetry in the step does not have much affect

on breather formation until 13 is less than 0.2. When the symmetry decreases, the

angle for breather formation increases, and the angle for ring formation decreases.

Both angles approach ir, as the symmetry approaches 0. As the step becomes

less symmetric, the size of the breather decreases. Asymmetric piecewise constant

curvature steps and smooth steps form breathers half the size of the breathers that

evolve from symmetric steps when the symmetry (l3 for the piecewise constant

curvature step, and r for the smooth steps) is 0.2.

Increasing the width of the step by separating the square wells does moderately

affect breather formation, causing breathers and rings to form at smaller angles. The

minimum angle for breather formation is 1, implying that only multi-valued steps

can form rings. This is consistent with the contour dynamics results of Pratt and



Stern (1986), who limited themselves to single-valued steps, and found that all steps

dispersed. Very broad steps, with large 12 can form closed loops with 80 ~ 2.7.

The smooth steps, which are narrower than the piecewise constant curvature steps,

form rings when 0 > 4.31.
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Chapter 3

Lobes

3.1 Introduction

In the previous chapter we saw that steep, multi-valued steps were able to evolve into

self-intersecting breathers. In this chapter we consider lobes, a-shaped meanders

that return to their initial latitude, to see what parameters determine ring formation.

We again consider piecewise constant curvature paths for which the breathers may

be found using the iterative formulae 2.19, 2.20. We also consider the evolution of

several smooth lobes, and compare the maximum amplitude and curvature of the

evolving meander with the breather expected by inverse scattering.

3.2 Integral Constraints on the Infinite Domain

Before considering the lobes in detail we first discuss two integral constraints on the

curvature distribution that will aid our understanding of these lobes, and other more

complicated paths. Both integral constraints apply to all isolated disturbances along

an infinite path, including the steps considered in the previous chapter. However,

they are included here because they help us understand the single lobe.



Integrating Equation along the entire path leads to

ad9 = [ 3 + ani]+ = 0 (3.1)

Thus the total curvature of an initial isolated disturbance will remain a constant,

although it may be distributed among the dispersive waves and the solitary waves.

If the disturbance is in a zonal jet then

Icds = IOdg = 0 (3.2)

Initially the total curvature is 0. Equation 2.8 can be rewritten as

OS = 4 astan-1 exp(-2ka12(s + 4k 3 t) + InA)] (3.3)

and by integrating this along the path we see that [] = 2ir. Thus a single loop

soliton can not arise as the solution to a non-intersecting initial condition. From

Equation 4, we also see that the breather has f Kd5 = 0. Although the dispersive

waves have some curvature associated with them, no net curvature leaves the region

of the breather.

An integral constraint on the distribution of curvature can be found by multi-

plying equation 2.2 by K and then integrating along the path.

- I2d9 = - [3 -4 + 2 r K + -00 (3.4)

Thus, f K 2 d,9 is also conserved. This is one of the infinite number of conservation

laws associated with the MKdV equation which constrain the evolution of an initial

disturbance. Indeed, one of the early characterizations of equations that have soliton

solutions is that they are associated with an infinite number of conservation laws,

which account for the stability of the soliton solutions.

An initial condition has some f K 2d9 which gets distributed among the dispersive



waves and the breathers. Because f r 2 d9 is a positive quantity we expect,

(f 2) initial / (I 12d) breather (3.5)

where the equality holds only if the there are no dispersive waves. Although the

breather and the initial condition have the same amount of total curvature (zero),

this inequality shows that the distribution of curvature must change. Because the

integrand is tc2 , most of the contribution to this integral comes from regions of the

path where the curvature is the highest. Because of the dispersion of curvature,

we might expect that the initial peaks of large curvature will get spread out over

a larger region of the path, as the breather forms, causing f r,2ds to be less for the

breather. We will see that this "spreading" of the curvature distribution hinders

ring-formation in a single lobe.

3.3 Thin Lobes

The simplest lobe is the thin lobe which has a center peak of curvature. We will

consider symmetric piecewise constant curvature lobes, for which

u1 Lo<x<L1

U u2 L 1 <x<L2  (3.6)

u1 L 2 <x<L3

where 2u 1 = -u 212, and 13 = 11 (Figure 3.1). The thin lobe may be described in

terms of two parameters, its maximum angle, e0 = 2uli, and 11, the distance along

the path to the first inflection point. 12, the arclength of the center peak between

the two inflection points, will be set to unity for the thin lobe.

As was the case for piecewise constant curvature steps, we solve Equations 2.19,

2.20 numerically, searching for the angles and arclengths at which A = 0, tan(!)

and 1. Figure 3.2 shows the division of parameter space. Lobes with small angles

0o, and arclengths li that fall within the Region I will disperse, or gradually decay



with time. At larger angles the lobe that lies within Region II will form at least one

single-valued breather solution.

As was the case for the wide step, and the asymmetric step, when at least

one of the curvature regions is long, with small curvature, secondary single-valued

breathers can form. Figure 3.3 indicates which lobes form more than 1 breather.

Each solid line denotes the minimum angle at which a breather begins to form. The

line furthest to the left on the parameter plane is the smallest angle for breather

formation. It is the boundary between region I and II of Figure 3.2. The numbers in

Figure 3.3 denote the number of breathers that will form. While multiple breathers

can form, at most one of them is multi-valued.

For the very short, squat lobes, (li -+ 0) the largest breather can form when

00= , but as the lobe elongates, it can be single-valued (0o < 1), and still2'

able to form a breather. Figure 3.2 indicates that the minimum angle for breather

formation occurs at 00 = 1.15 and 11 = 2.72. At larger values of 12, the critical

angle increases back to .

A single multi-valued breather forms from the lobes in region III of Figure 3.2.

The minimum angle at which lobes form multi-valued breathers rapidly decreases

from 7r, as 11 increases from 0. When 11 > 6, the angle for multi-valued breathers

increases. These lobes, with large 11, have most of their curvature concentrated in

the small center region.

Figure 3.4 shows a lobe that lies in this region with its breather. Because the

side flanks are long compared to the center of the lobe, there is a strong peak in

curvature at the center. This center region makes the largest contribution to f , 2d-,
so as the breather forms, and this quantity gets spread out among the breather and

the dispersive waves, we might expect the strong center peak of curvature to get

spread out. The original lobe has li = 3, and 0, = 1.8 so f x2 d9 = 15.12. The

breather has a = 0.57, and A = 0.53, with f i, 2d. = 9.67. As the lobe evolves,

the center region with rapidly changing curvature is dispersed, which widens and

shortens the lobe.

The most striking feature of Figure 3.2 is the absence of any significant ring-



forming region, although the line at which A = 1 is indicated on the parameter

plot. For squat lobes, with small 11, the thin lobe is narrow enough so that it is self-

intersecting at angles smaller than the critical angle for ring formation. So squat

lobes can not form rings. As 11 increases the minimum angle for ring formation

decreases faster than the self-intersecting line, so when 11 > 4.4 physically possible

lobes may form rings. The largest neck width for these lobes that may form closed

breathers is 1 % of the lobe's amplitude, so small that the thin lobe is essentially

pinched together before the evolution can take place.

We also consider smooth, thin lobes, for which

0 = - sech(ks)tanh(rks). (3.7)
S(r)

Increasing r forces the inflection point closer to the peak of the lobe. S(r), is just

Isech(s)tanh(rs)max a shape parameter that normalizes the curve so that it has a

maximum angle of 0o. These lobes are similar to the tall, thin piecewise constant

curvature lobes with 12 > 7, although slightly thinner. Because of the similarity of

solutions k simply sets an overall size, and time scale for the final solutions, but

does not affect the shape of the breather that is formed.

The eigenvalues for these lobes were calculated numerically as they were for the

smooth steps. A single pair of discrete eigenvalues was found, indicating that one

breather may form, as for the piecewise constant curvature thin lobes. As the in-

flection point gets closer to the peak of the lobe, the critical angle for multi-valued

breather formation increases slightly, while the critical angle for ring-formation de-

creases, consistent with the piecewise constant curvature lobes (Figure 3.5). Paths

with r = 2 form rings when 00 = 1.98. Paths with r = 1 form rings when

00 = 2.03, but since the smooth lobes have smaller neck-widths than piecewise

constant curvature lobes with the same amplitude and angle, the initial lobe is

self-intersecting at an angle smaller than this critical angle for ring-formation.

A lobe with 00 = 1.8, r = 1 and k = 2.0 is used in the numerical solution to

the path equation (Figure 3.6). The scattering predicts a breather with a = 1.12,



and A = 0.62, with an oscillation time of 0.20. This breather will be multi-valued

but not ring-forming. At early times, (t = 0.0156, t = 0.0312), the upstream face of

the lobe has flattened, while the downstream face has steepened, pushing a trough

to the southwest. At later times (t =0.078, t = 0.094), the trough has moved to

the east, while the upstream face continues to flatten. This process widens the lobe,

forming a breather.

In order to better compare the numerical solution to the expected breather, we

compare the time series of the maximum amplitude of the meander |Ylmax, and

the maximum curvature for the numerical solution, and its associated breather.

Figure 3.7a gives the maximum value of JYJ, as a function of t. Within the first

oscillation period, the amplitude rapidly decays to 0.58, or 40% of its original value.

As the meander fluctuates, the amplitude fluctuates, reaching a secondary maximum

at one oscillation period, however this amplitude is less than half of the original

amplitude, indicating the lobe decays as it evolves, rather than elongating. As

time passes the meander fluctuates with a period of T = 0.20. Figure 3.7b

shows the maximum amplitude of the breather expected from the Inverse Scattering.

The breather fluctuates in amplitude every period but always reaches the same

maximum amplitude. The numerical solution has approximately the same amplitude

as the breather, (the average maximum amplitude for the breather is 0.7, while the

average maximum for the numerical solution, after the initial decay, is 0.71). and

the amplitude varies at the same period as the breather. However, the numerical

solution also appears to have a slow variation in |Yjmax, with a period of T = 0.63.

The breather itself does not have significant energy at this period. The breather

and the numerical solution also slowly get out of phase, so that by the end of the

time series the phase difference between the two series as shifted approximately 80"

from the beginning of the time series.

Figure 3.8a indicates how the maximum curvature of the numerical solution

evolves with time. There is an initial decay in curvature during the first oscillation

cycle, and then the curvature fluctuates, with a mean value of 5.2, which is the same

average maximum curvature of the breather (Figure 3.8b). The curvature for the



numerical solution is also slowly-varying, with maxima in amplitude corresponding

to maxima in the curvature.

Figure 3.9 shows the time evolution for the lobe with 00 = 2.0, r = 1, and

k = 2.0. Inverse Scattering predicts that a breather will form with a = 0.98, and

A = 0.93. This lobe has a neck-width of 0.001 at t = 0.0. With such a narrow neck,

the path should be considered closed because other physical processes are dominant

at this wavelength. However, this evolution demonstrates how the dispersion of

curvature hinders ring formation in the simple lobe. As the lobe evolves, the neck

steadily widens (see e.g. t = 0.06), and we see that the single lobe actually pulls

itself apart, rather than closing. After approximately half of an oscillation cycle

(t = 0.12), the lobe has switched direction, and has a visibly wider neck width.

After a full oscillation cycle (t = 0.24), the neck width has narrowed again, and is

nearly closed, but it is still wider than the original lobe.

The initial curvature decays from its peak value (Figure 3.10), and then oscillates

around a mean of 6.58, while the breather has a mean curvature of 6.56. Figure 3.11

shows the time series of the maximum amplitude. Within the first oscillation period,

the maximum amplitude decays to a small secondary maximum (at t = 0.12), and

then reaches another, larger maximum at t = 0.23, (one oscillation period). The

maximum amplitude then fluctuates about a mean of 0.75. The evolution of the

maximum amplitude for the breather also fluctuates about this mean of 0.75. As

for the previous lobe, the maximum amplitude of the numerical meander is slowly-

varying, while the amplitude for the breather is not. The amplitude of the numerical

solution can increase beyond that of the breather, but it does not grow indefinitely,

and there is no other indication of an instability process. Instead it appears that

the initial condition evolves into a structure that is close to the breather, but is still

being affected by the surrounding dispersive wavetrain.
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3.4 Wide Lobes

We next turn to lobes with a wider neck-width, to see if a single symmetric lobe

can ever form rings with a physically possible initial condition. It is possible that

the short, squat lobes are able to redistribute their two curvature peaks and form a

closed loop, if they start out more widely spaced. For piecewise constant curvature,

this width will be approximated by adding a line with zero curvature in the center.

The lobe then has curvature

u1 ,Lo < x < L1

u 2,L 1 < x < L2

U = OL 2 < x < L3  (3.8)

u2 ,L 3 < x < L4

u1 ,L 4 < x < L5

The lobe is again symmetric, with 2uli = -2U 2 12, so the lobe can be parameterized

in terms of li, Oo (or 2U2 12 ), and 13, the length of the center section. 12 is chosen

to be unity. As 13 increases beyond l1 , the lobe resembles two separated steps, and

we expect that at large separations, breathers may form. Because there are three

parameters, we will need a series of parameter space plots to see how they affect the

shapes of the breathers. We construct plots of the parameter plane (Go, li), with

four different values of center width (13 = 0, 1, 2, 5) in Figure 3.12. Figure 3.12a

shows the parameter plane for lobes with 13 = 0. This figure is the same as Figure

3.2, except that the ordinate is compressed because 12 is the length of only one of

the negative curvature regions.

The line indicating single-valued breathers is not included, in any of the four

parameter planes. Breathers always form with 0o ~ !. As 13 increases, the straight

line region increases, separating the potential wells, and creating a zone where several

single-valued breathers form as the resonant harmonics to the scattering problem.

Because these breathers are hard to distinguish from the dispersive waves, they are

not indicated in the plots, and region I denotes dispersive lobes, and lobes that form



only single-valued breathers.

Tall lobes, with li > 1, are unaffected by the addition of a short center region,

and still form one multi-valued meander for lobes with maximum angles of 00 Z 2

(region II of Figure 3.12b). This maximum angle increases to 2.7, as the separation

13 increases beyond 2 (Figure 3.12c,d). The squat lobes, with 11 ; 1, also form one

multi-valued breather, in region III, for angles near 0 = r. Lobes with li << 13

look like two widely separated asymmetric steps. Like the very asymmetric step,

they are unable to form multi-valued meanders, except at lobe angles greater than

7r.

At larger angles, two multi-valued breathers can form (region IV). When 13 = 1,

the minimum angle for two multi-valued breathers to form is 0 = 2.8. As 13

increases, this angle must increase, and is near 7r, when l3 = 5. As the separation

13 increases, the size of region IV increases, because l3 > li for more of parameter

space, and the lobe behaves more like two asymmetric steps.

When the lobe is very steep, with maximum angles greater than 4, two different

rings can form, in region V. These lobes always have l1 < 13, so the two closed

breathers arise because the lobe is evolving as two steps. The minimum angle at

which these rings form is the same as the corresponding asymmetric step. For

example, when l3 = 1, or 13 = 5, two breathers form with 0 = 4.1 and 1i = 0.5.

These closed breathers both have the same a = 1.3, which is the same wavenumber

as the breather associated with the step with asymmetry 0.5.

The parameter space plots have shown that it is possible for two multi-valued

breathers to form, but have shown nothing about the relative sizes of those breathers.

The shape and size of the breather is determined by the location of the associated

zero in the complex plane. Figure 3.13 shows how the position of the two zeros

changes in the complex plane as a lobe gets wider. Recalling that A determines the

steepness of the breather, the plane is divided into dispersive solutions (region I),

single-valued breather solutions (region II), multi-valued breather solutions (region

III), and ring-forming solutions (region IV), depending on the location of the zero.

a is a scaled wavenumber, so breathers with large a will be small and fast.
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For this figure, the lobes all have angle, 0o = 3.5, and fixed side length 11 = 1.

The center spacing 13 varies between 0 and 5. When l3 = 0, the zeros are located

at the edges of the spiral (Figure 3.13). The large, slow breather lies within region

IV, while the small fast breather lies within region II. (Recall from Figure 3.2, that

this lobe, with no center, would be self-intersecting.) As the center span increases,

the zeros spiral towards each other. The small meander gets steeper and larger, and

the large meander gets less steep, and smaller; both become multi-valued, but not

ring-forming. When the center span is as large as the breathers themselves, the two

faces of the lobe are able to act independently. The two zeros are indistinguishable,

and located at the same point as a symmetric step with 00 = 3.5.

A wide piecewise constant curvature lobe can form a closed loop, but only if the

lobe is wide enough so that the two faces of the lobe act as two independent steps, so

two rings are formed. At smaller angles, the wide lobe can produce two breathers.

When the width is smaller than the sides of the lobe, then one of the breathers is

large and steep, and the other is small and single-valued. Because the single-valued

one is small, we expect it to propagate faster than the steeper, larger breather. As

the width of the lobe increases, the two breathers begin to resemble each other.

These tendencies can be seen in smooth wide lobes, for which

0 = Go (sech(s) - sech(s + W)) (3.9)

With the wide lobes, a larger domain is needed to solve the eigenvalue problem

than can be created. Without solving the scattering problem for the smooth wide

lobes, we can compare the numerical evolution of initial lobes with the tendencies

predicted for the much simpler piecewise constant curvature lobes.

Figure 3.14 shows the numerical solution for 00 = 3.5, and W = 10. The

smaller steeper breather forms quickly, while a broad slower meander lags behind.

At t = 0.1, it appears that the smaller breather is about to pinch off, but at t = 0.22,

it is much broader.

Figure 3.15 is the numerical solution for a very wide initial lobe, with 0 = 3.5,



and W = 20. With such a wide separation between the sides of the lobe, the

initial condition looks like two steps, and two breathers with similar shapes, and

propagation speeds are formed.

An initial wide lobe can form two distinguishable breathers, even when the sep-

aration is less than other length scales of the problem. While these wide lobes can

form closed meanders, they only appear to do so when they are wide enough apart

so that the lobe behaves as two steps.

3.5 Modifications of Single Lobes

We found that the dispersion of curvature made it difficult for a lobe to pinch

together and form a single ring. It is possible that modifications of the single

symmetric lobe may form closed loops. For example, the numerical solutions indicate

that an asymmetric structure, perhaps like the meander in Figure 3.9 at t = 0.06,

will form a closed path, after a short time.

Another possible modification is the presence of a second meander. Figure 3.16

shows a two lobe structure. The upstream lobe has

6 = -1.5 sech(2s) tanh(2s) (3.10)

and the downstream lobe has the same shape as the lobe in Figure 3.6, with

e = 1.8 sech(2s) tanh(2s) (3.11)

This shape produces two breathers, the second slower breather is the steeper one,

although both are multi-valued. The steep breather does not appear to be signifi-

cantly steeper than the breather formed in Figure 3.6, implying that the presence of

a meander of the opposite sign does not enhance ring formation. The faster breather

interacts with the steeper breather in the early stages of evolution (t = 0.02,0.04)

but the two do not form a pinched ring.
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If the upstream lobe has the same sign as the downstream lobe (Figure 3.17),

then the structure still appears to form two breathers but the leading breather is

single-valued and the trailing breather is steeper than the breathers in Figure 3.16.

The steeper breather does pinch off at t = 0.16. The second lobe of the same sign

as the original lobe does allow the curvature to redistribute to form a closed path.

3.6 Conclusions

The inverse scattering method predicts that a breather will emerge from some initial

conditions after enough time has passed for the dispersive waves to pass away. In the

section on the thin lobes, it appears that the initial conditions quickly evolve into

solutions with the same periods, and average amplitudes and curvature maxima as

the breather. Although the dominant feature of the numerical solution appears to

be the breather, the numerical solutions also indicate that the breather is modified,

perhaps by interaction with the dispersive waves. Even with this interaction, the

numerical solution does not appear to drift away from the breather. Instead, the

breather appears to be a stable, oscillating meander, that the numerical solution

appears to resemble.

The tall thin lobes have high curvature in their center region, and smaller cur-

vature to the sides. Most of the contribution to the integral f 2 d comes from the

center region. Because of the integral constraints, the peak of the curvature must

be reduced, and even a small reduction in the center curvature causes the tall, thin

lobes to spread out, making it difficult for a closed breather to form. It appears that

the only symmetric, thin lobes that can form rings are already essentially closed.

Short squat lobes with small 11, have two regions of large curvature, separated by

a long arc of small curvature. Geometrically, these lobes must intersect themselves

before they have enough curvature to form closed rings. If the squat lobe is made

wider, with the addition of a flat, center region, then two closed loops may form.

These two rings form because the lobe has a center region larger than the size of

the two faces of the lobe, so they evolve separately as two identical steps.



Figure 3-1: Three square well scattering problem for the lobe (a), and the associated

path (b).
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Figure 3-2: Parameter plane for thin lobes. Region I lobes disperse, region II lobes
form single-valued breathers and region III lobes form multi-valued breathers. The
region to the right of the dashed line indicates self-intersecting lobes.
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Figure 3-3: Parameter planes showing the multiple breathers for the tall, thin lobes

(a), and the short thin lobes (b). The numbers indicate the number of breathers

that form within each region. All breathers except the first will be single-valued.
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Figure 3-4: (a) Piecewise constant curvature lobe with Oo = 1.8, 1 = 3 . (b)
The breather associated with this lobe, with a = 0.57, and A = 0.53 (b).
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Figure 3-5: Steepness parameter A, as a function of step angle for r = 1 (solid
line), and r = 2 (dashed line).
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Figure 3-6: Numerical evolution for an initial thin lobe with E)= 1.8, r = ,and
k = 2.
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Figure 3-7: Maximum amplitude versus time for the numerical solution of Figure
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Figure 3-8: Maximum curvature versus time for the numerical solution of Figure 3.6
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Figure 3-9: Numerical evolution for an initial thin lobe with 0 = 2.0, r 1,k = 2.
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3.9 (a) and the breather (b).
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Figure 3-12: Parameter planes for the wide lobes with 13 = 0,1,2,5. Region I;
dispersive and single-valued breather forming lobes. Regions II and III :lobes that

form one multi-valued breather. Region IV (grey) : lobes that form two multi-valued
meanders. Region V (dark grey) : lobes that form two rings.
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Figure 3-14: Numerical evolution for the wide step with ®o = 3.5, and W 10.
Note that the larger, slower breather lags behind a smaller steeper breather.

84



35 35t=0.22

30t=.2
t=0.18

25- 0.16

t=0.14

20t =0.12

>- 15
t = 0.08

10- t = 0.06

t = 0.04

5 - t = 0.02

0 
t. = t0.0

-5

-5 1

-5 0 5 10 15 20 25

x

Figure 3-15: Numerical evolution for the wide step with Oo = 3.5, and W = 20.
Essentially two identical breathers are formed because the initial condition resembles
two steps.
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Figure 3-16: Numerical evolution for the two lobe structure, with opposite signs.
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Figure 3-17: Numerical evolution for the two lobe structure, with same signs. Note
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Chapter 4

Conclusions

In this thesis we are concerned with predicting whether an initial meander will form

a ring at some later time. In order to examine this problem we use a simple physical

model to understand the physical mechanisms involved in the formation of a ring.

The model used in the thesis is a 11 layer thin jet model on the beta plane.

By assuming that the jet is thin, we are assuming that cross stream scales are

much smaller than along stream scales. This limits the model to meanders which

are much larger than a deformation radius. By making this approximation, the

meandering motion of the front can be separated from the detailed structure of

the jet. The Gulf Stream, and other meandering jets, have meanders with a wide

variety of length scales so this model can only be used as a guide in understanding

the mechanism of ring-formation due to long wavelength processes, and not as an

accurate predictor of pinch-off events. Since we have assumed that 8 = 0(1), the

thin jet assumption also implies that Rossby waves are unable to radiate away from

the meandering jet.

By reducing the stratification to 11 layers, a baroclinic current can be studied

using a simple physical model. However, Meacham (1990) has recently shown that

the absence of the barotropic mode causes order 1 differences in the finite amplitude

solutions to initial value problems. With the barotropic mode, large-scale interac-

tions (on the order of the barotropic deformation radius) between the jet and the
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far field take place (Flierl and Robinson 1984). Thus the barotropic mode of the

meanders must be matched to surrounding barotropic eddy field. If the barotropic

mode is removed, as it was in section 1.2, then the interaction is reduced to a re-

gion within a deformation radius. Because of the smaller deformation radius, the 112

layer meanders are much slower than barotropic ones. The motion of the jet is deter-

mined by the local shape of the path, and can be expressed as a differential equation

(equation 1.30). Although the 11 layer path equation lacks a barotropic mode, the

dispersion relation calculated for long wavelength meanders by Kontoyiannis and

Watts (1990) is suprisingly close to the dispersion relation found in Pratt (1988).

The 1} layer assumption is inherent in this thesis. Because the time scale is slow,

soliton structures are possible in the model. By transforming the path equation

to the MKdV equation, these breathers can be found using the inverse scattering

transform. Using the inverse scattering method, an initial value problem for this

nonlinear partial differential equation reduces to a linear integral equation where the

time appears only implicitly. The full inverse scattering transform allows an exact

solution to an initial value problem, which consists of a train of small amplitude

dispersive waves and perhaps some solitary waves. The dispersive waves appear

unable to form closed loops by themselves, based on the numerical solutions to the

full path equation. However, they may play a role in ring-formation by interacting

with breathers that are not quite able to pinch off by themselves (Figures 2.14, 3.20).

By solving the linear eigenvalue problem (Equation 2.8), the shape, size and speed

of the final breather can be found, based only on the shape of the initial condition.

The MKdV equation admits two kinds of solitary waves. A loop soliton corre-

sponds to a single eigenvalue lying on the imaginary axis. Because of the integral

constraints on the curvature distribution, a single loop soliton can not evolve from

a non-intersecting zonal path. The breather corresponds to the pair of complex

eigenvalues a(i1 + iA). We can see from Equation that the overall size and time

scale of the breather is determined by a, while the shape, or steepness is determined

only by A. As the breather gets steeper the speed at which it propagates lessens due

to the retarding effect of vortex induction. When A > 1, then at some time within



an oscillation period, a closed path is possible. When the path intersects itself we

assume that other physical processes are dominant which will aid ring-formation.

Thus we use A > 1 as a criterion for pinch off.

There are an infinite number of conservation integrals associated with equations

that can be solved using the inverse scattering method. Because of these integral

constraints, the time evolution must be very restricted. Two of these integral con-

straints were briefly discussed in chapter 3. If the initial meander is isolated along

an infinite path then y 2f Kds = 0, and y f xOds = 0. These integral constraints

hinder ring formation in initial conditions with a single spike of curvature, such

as the thin lobes of chapter 3 (which have a large center spike, and two long side

flanks, with small curvature). Pratt(1988) found two other integral constraints on

the shape of the path: y f YdX = 0, and y f Y 2 dX = 0. For the initial steps

of chapter 2, f YdX = oo, while a breather has some finite value of f YdX. The

step must shed an infinite number of dispersive waves in order to erode its jump in

latitude. These dispersive waves are readily apparent in the numerical integrations

of chapter 2.

It would be interesting to use the inverse scattering transform on meander shapes

taken from satellite images of the Gulf Stream. In order to see if the method was

able to predict ring-formation, it would be necessary to find a time sequence of

images showing a meander at some initial time evolving into a closed ring. The

initial meander should be isolated along the path, so that other meanders from

downstream do not overtake, and change, the meander of interest. In practice, this

would be difficult to try because of the problems in obtaining a sequence of cloud-

free images with enough spatial coverage. A more practical test of this model is to

calculate the spectrum associated with some meander, at two different times, and

see if the discrete eigenvalues associated with the meander remain the same.

Instead of applying the method to meander shapes obtained from a jet like the

Gulf Stream, the inverse scattering transform was used to predict ring-formation for

simple shapes, in order to find criteria for ring-formation that may be applied to more

realistic paths. Breathers were found for piecewise constant curvature meanders, and
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smooth meanders with similar shapes. The scattering problem for the smooth shapes

must be solved numerically, and there are numerical errors if the domain is not large

enough to contain the meander. The piecewise constant curvature predictions agree

well with the predictions for the more complicated smooth paths on the number,

shape and size of the breathers. Because of the iterative formula (Equations 2.19,

2.20) the piecewise constant curvature scattering problem is easily solved, allowing

a thorough examination of how variations in the shapes effect ring formation.

Steplike initial conditions were approximated as two piecewise constant curvature

regions of the opposite sign. Chapter 2 discusses the evolution of these S-shaped

meanders. Typically steps form one breather, with the size and shape determined

by the size and angle of the initial step. Secondary breathers can form from a step

if the path contains a long region of low curvature. These breathers are always

single-valued and unable to form rings.

Because the symmetric, 12 = 0, is so simple, we can analytically find that

symmetric steps with no elongation form breathers when Oo ' 2. As the step

angle increases the breather formed is steeper, with a larger A. When 0o > 4.1 then

a closed path is possible.

If the step is elongated so that the folds of the step are separated by a straight

line segment, then the minimum angles for breather and ring-formation decrease

to asymptotic values, which can be found analytically. We find that 00> 2 for a

breather to form. Thus, all single-valued steps must disperse away; the step must

be curved back on itself before non-linear steepening and breather formation can

occur. If 00 > 2.7 then the step can form a ring.

Several smooth steps were also considered. The minimum angle for ring forma-

tion is 4.3, which is slightly greater than the critical angle for the piecewise constant

curvature step (0o = 4.1). However, the folds in these smooth steps are closer

together than the piecewise constant curvature steps, so this increase in the critical

angles is consistent with the piecewise constant curvature results.

Chapter 2 also discusses piecewise constant curvature and smooth asymmetric

steps. We find that as the step becomes more asymmetric, the size of the breather



decreases. Both the smooth and piecewise constant curvature steps double the size

of a (halving the size of the breather) as the small radius of curvature becomes

one-fifth the size of the larger. The asymmetry does not seem to change the critical

angles for breather and ring formation until the symmetry is quite small, i.e. where

the small radius of curvature is one-tenth that of the larger. If the step is made

more asymmetric, then the critical angles for breather and ring formation converge

to r.

The numerical integrations of several smooth steps shows the presence of the

expected breather and a dispersive wavetrain. As mentioned earler, because of the

integral constraints of Pratt (1988), an infinite amount of f YdX must be released

in the form of dispersive waves as the latitudinal jump is eroded. These dispersive

waves are not steep and do not ever become multi-valued. They may aid ring-

formation in some initial conditions whose breathers are not quite ring-forming

(Figure 2.14).

Chapter 3 discusses lobes, or Q shaped meanders that return to their initial

latitude. Lobes were approximated as three regions of uniform curvature with al-

ternating signs. The piecewise constant curvature results indicate that it is difficult

for a single lobe to pinch off as a ring, unless the neck width is so narrow that other

smaller scale processes are probably dominant. A single lobe has a sharp maximum

of curvature in its peak. As the lobe evolves, this curvature is dispersed, and in the

process the lobe is widened (Figure 3.9).

Pratt and Stern (1986) also found that single lobes resisted ring formation. Using

contour dynamics, they found that tall, thin lobes formed rings more readily than

shorter, squatter lobes, although the initial lobe must be very narrow. This result is

consistent with the parameter plane (Figure 3.2) for the piecewise constant curvature

lobes. The squat lobes, with short side flanks (small li), are self-intersecting at angles

smaller than the angle at which ring-formation is possible.

Two numerical solutions in Chapter 3 are compared with the breather expected

by inverse scattering by examining time series of the maximum curvature and am-

plitude |Y|. Although the numerical oscillations in curvature and IYI appear to be



modulated by some other process due to the interaction of the primary breather with

the rest of the full solution, the dominant period and amplitude for the breather

and the numerical solution are very similar. These comparisons show that the lobe

does not undergo any type of instability as it evolves.

A single lobe can become ring forming if its neck width is made wider by the

presence of a straight center section. In this case, the only lobes that are ring-

forming are those for which the center section is the same size as the side flanks of

the lobe. Then the two sides of the step act independently and two rings are formed,

at the same critical angle as the single step. At smaller angles two breathers may

form. One of the breathers will be large and steep, while the other is smaller and

single-valued. The smaller breather is faster than the steep breather, so it quickly

propagates away from the large breather (Figure 3.14).

Chapter 3 indicates that it is difficult for a ring to form from a single lobe, but

there are some suggestions that modifications to the single lobe may enhance ring

formation. If the initial lobe were asymmetric, then the path could pinch off when

the evolving breather becomes symmetric. There is also the suggestion in section

3.5 that dispersive waves, or other, faster breathers, may overtake a slow, steep

breather. It is possible that the interaction between two breathers may produce a

closed path, although the interactions between the two breathers of Figures 3.16,

and 3.17 do not force a pinch off.



Appendix A

The Inverse Scattering Transform

The inverse scattering transform is a non-linear extension of Fourier analysis which

can be used to solve nonlinear partial differential equations which have soliton so-

lutions. The method was first developed by Gardner, Greene, Kruskal and Miura

(1968) for the Korteweg-deVries equation. It was later extended to the nonlinear

Schrodinger equation by Zakharov and Shabat (1974) in a paper that opened the

way for solutions to many other nonlinear evolution equations such as the modified

Korteweg-deVries equation and sine-Gordon equation. Rather than directly solving

the nonlinear equation, the inverse scattering method allows us to find the evolution

of a given initial state by solving the problem in three linear steps : i) the scattering

problem, ii) the time evolution of the scattering coefficients and iii) the determi-

nation of the final state by inverse scattering. This appendix outlines these three

steps, as described by Ablowitz, Kaup, Newell and Segur (1974).

A.1 The Scattering Problem

As in the main text, we consider the following eigenvalue problem

L O = f # (A.1)



where

L = a 0 + 0(A.2)
0 y U 0

with boundary conditions

41e-i~
02 L0 -

(A.3)

1 Ae-ix 1
42 Bei , +

If we consider the wave, 4 = 41 + i 42, then Equation A.1 may be rewritten

as the Schrodinger equation, Equation 2.8.

kXX + [V2 + (u2(x, 0) + iX(x, 0))]o = 0

(A.4)

(x) ~ e--ix, x -+ -00

(x) - iB( )eikx + A( )e-inx, x -+00

This describes the scattering of an initial wave with amplitude A($) from +oo,

from the complex potential u2 + iuX, which is determined by the shape of the initial

condition. A wave with unit amplitude is transmitted through the potential, and one

of amplitude B(() is reflected back to +oo. Scattering problems like the Schrodinger

equation are known to have two distinct types of solutions. The oscillatory states

are the states which oscillate in the limit x -+ too. The spectrum of the eigenvalues

corresponding to these states lie along the real axis in a continuous distribution.

A bound state occurs when there is a pole in the transmission coefficient, which

is defined as the amplitude of the transmitted wave normalized by the amplitude

of the incident wave, or 1. Thus, a bound state is a localized or trapped, wave

with complex wavenumber . The bound states occur at a finite number of discrete

wavenumbers which are determined by the potential. In the scattering step we map



the initial condition into a continuous spectrum, a discrete spectrum of eigenvalues

and the amplitude coefficients for 4 as x -+ ±oo. We will call this information:

{ , A( , t), B( , t)}, the "scattering data".

A.2 Spectral Evolution

Given the "scattering data" in spectral space, we can determine how it evolves with

time, if we know that u evolves according to the MKdV equation (Equation 2.6).

We will assume that the eigenfunctions evolve linearly according to

AO = 4t (A.5)

where A is some linear differential operator to be determined. Differentiating A.1

with respect to time, we find

(A.6)Lt4 + Lot = .024 + (2 4$.

Then using equation A.5,

Lto + LAO = 4 + A( 2 4),

which can be rewritten as the operator equation,

Lt-AL+LA =

With the proper choice of A, ( will be a constant. In addition, if A is

restricted, then we will find an expression Lt - AL + LA = 0 that is

operator equation, but rather a differential equation that contains only u

(A.7)

(A.8)

further

not an

and its



derivatives with respect to x and t. For example, if we choose

a0
A = a ax (A.9)

0 ax _

then will be a constant, provided that

ut - aux = 0 (A.10)

so any potential of the form u(x + at) will have the same bound states.

We are interested in the evolution operator A which gives us the MKdV equation

when we evaluate Lt - AL + LA = 0. The evolution is then governed by

A = [ -4~2 u2i(u 2 - 2(2) 4g 2 u + 2iux - 2us - UXX (A.1
-4 2U + 2ilux + 2u' + uxx -2il(u 2 _ 2 2)

We now have an equation for the evolution of the eigenfunctions as u evolves ac-

cording to the MKdV equation. The evolution of # itself is determined by u and its

spatial derivatives; however, as x --+ oo, u and its derivatives vanish, so

4t = q4 , x -+ oo . (A.12)

Ai..
As x -+ -oo, we find the time dependence of 4 to be 4 = 4oe-4 3 t. As x approaches

+00, then

= 40e-4i'3 [ ] (A.13)

taking the derivative of this expression with respect to time, we find

-4i 3 At -Ait34= [ 1+ = [ 1 (A.14)

or At = 0 and B = 8iW. Thus, if u vanishes as x -+ ±oo, then the time evolution



has become a simple linear problem in spectral space.

A.3 Inverse Scattering

Now we know the scattering data at some later time, but we don't know the u(x, t)

that caused this scattering data. The determination of u(x, t) from the scattering

data is an inverse problem like those in quantum mechanics or seismology. Waves

are reflected and transmitted by layers of rock, and knowledge of the incoming and

outgoing waves give us information about the scatterer by an inverse scattering

problem. In our case we need to invert the scattering problem A.1, to find the

structure of u(x, t).

This inverse problem is solved using Fourier transforms and the solution is given

by the coupled pair of Marchenko equations

B2 (x, y) + dx'Bi(x, x') (x' + y) = 0 (A.15)

-BI(x, y) + O(x + y) + dx'B 2(x, x')fQ(x' + y) = 0

where

(zei (B( , t) B(, t) eitz (A.16)
-oo0 27r A( ,t) At(6nt)

and the solution u(x, t) is given by

u(x) = 2B 1(x, x) or u2 (x) = 2 B 2(x, x) (A.17)

Now the problem is reduced to solving these linear integral equations. If u(x, 0)

has no continuous spectrum associated with it, then the integral equations may be

solved exactly, with solutions given by Lamb(1980),

d r Imdet(M
U = 2--tan-1 I t(M) (A.18)

dx Redet(M)]
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where if N is the number of discrete eigenvalues, then M is an N x N matrix with

elements,

- z B($j, t) e+i( +6)X (A.19)
't A( j ,0) ((;+ (g)

When N = 1, and = iy, then this reduces to the expression for the single soliton

(equation 2.5)

u(x, t) = i2ysech(2yx - 8773 t + A) (A.20)

where the phase is

A = In (( '0 2- (A.21)

If N = 2, and the eigenvalues occur in the pair a(i1 + iA), then the solution

is the breather

u = -2-tan- [Asin(2a(x + cpt) - O6)sech(2Aa(x + cet) + 0e)] (A.22)Ox
where the phases O, and 0e are

e B( )/At= e = n|B()/Ad|(1 + A2)- (A.23)

These are the individual solitary wave solutions. The full solution may be found

from the Marchenko integral equations (A.15) in principle, but in practice, these

equations would have to be solved numerically. Segur (1973) shows that the general

solution to an initial value problem can be approximated by the solitons as t -+ oo

because the oscillatory solution decays with time. While this approximation may

not be strictly valid at finite times, the numerical solutions suggest that only the

solitary waves are steep enough to form rings.

A.4 Summary

The inverse scattering transform may be used to find the evolution of isolated dis-

turbances, governed by certain nonlinear partial differential equations. The method
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allows the solution to be found by solving three linear problems: i) a linear eigen-

value problem, ii) a linear evolution equation, and iii) a linear integral equation for

the inversion.

The key to this approach is that the eigenvalues (a remain constant in time, if

the "potential" u(x, t) evolves according to one of these evolution equations, such

as the MKdV equation. The number and shape of the solitons that will emerge

from the initial condition is determined by the number and location of the discrete

eigenvalues. These solitons are the asymptotic solution to the initial value problem.

The time-dependence in spectral space is linear, and not dependent on the shape of

u(x). Thus the final solution, determined by a linear integral equation, only has an

implicit time dependence.
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