On the Computer Generation of
Adaptive Numerical Libraries

A Dissertation Submitted in Partial Fulfillment of
the Requirements for the Degree of Doctor of Philosophy

FREDERIC DE MESMAY

Supervised by Markus Puschel
May 2010

Electrical and Computer Engineering,
Carnegie Mellon University,
Pittsburgh, Pennsylvania, USA

Report Documentation Page

Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,

including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it

does not display a currently valid OMB control number.

1. REPORT DATE
MAY 2010

2. REPORT TYPE

3. DATES COVERED
00-00-2010 to 00-00-2010

4. TITLEAND SUBTITLE

On the Computer Generation of Adaptive Numerical Libraries

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Melon University,Electrical and Computer

Engineering,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Very fast runtimeiscrucial in many applicationsin scientific computing, multimedia processing
communication, and control. Most of these applications spend the bulk of the computation in wellknown
mathematical functionswhich are provided by highly optimized libraries. The development and
maintenance of these libraries has become extraordinarily difficult. Optimal performancerequires
multiple-core balancing, careful use of vector instruction sets, and locality optimization. These
optimizations require highly-skilled programmer s and ar e often platfor m-specific, which means
maintenance is a consider able effort given the short processor release cycles. The Spiral system has
successfully addr essed these issues by automatically generating high performance libraries given only a
high-level mathematical algorithm description in a language called SPL . Spiral produced high
performance code using a number of techniquesincluding SPL rewriting systemsand a form iterative
compilation. However, to date Spiral has been limited in two key aspects. First, Spiral could only generate
librariesfor the domain of linear transforms; second all optimizationsfor a specific target platform are
performed during the sour ce code generation, that is, the produced librariesthemselves had no dynamic
platform-adaptation mechanism. I n thisthesis we make progress on both fronts. We present a framework
and itsimplementation for the computer generation of functionalitiesthat are not transfor ms, specifically
matrix multiplication and convolutional decoding. The framework builds on the operator language (OL)
that we introduce and that extends SPL. Similar to prior work on transforms, we then develop OL
rewriting system to explore algorithm choice, to vectorize and parallelize, and to derivethe basic library
structure called recursion step closure. The actual code is obtained through a backend that supports
different target languages. The generated libraries exhibit a performance comparableto librariesthat are
hand-written for commodity workstations. Further, we enable the generation of platform-adaptive
libraries, through adaptation modulesthat can beinserted into our libraries, which are generated to
support different waysto compute the same function. We distinguish between online adaptation and offline
adaptation and provide mechanism for both. Online adaptation happens during the actual user function
call when theinput sizeisprovided. Given thissize, thelibrary searchesfor the best computation strategy
inside thelibrary, which can then be used for subsequent computations of thissize. We provide the
dynamic programming strategy used in prior work and introduce a novel kind of M onte-Carlo search on
graphs. Finally, we present a machine learning appr oach that performs offline (during installation time)
adaptation with an online adaptivelibrary. First a

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Same as 153
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

To Be Examined and Approved by the Doctoral Committee:

Professor ALBERT COHEN, INRIA Saclay, France

Professor FRANZ FRANCHETTI, Carnegie Mellon University
Professor JOSE MOURA, Carnegie Mellon University

Professor KESHAV PINGALI, University of Texas, Austin

Professor MARKUS PUSCHEL (Advisor), Carnegie Mellon University

This work was supported by NSF through awards 0325687, 0702386 and by DARPA
through DOI grant NBCH1050009.

(© Copyright 2010, Frédéric de Mesmay, All rights reserved.

In memory of my friends Félix and Rémi,
who both chose to leave the party a bit early

Abstract

Very fast runtime is crucial in many applications in scientific computing, multimedia processing,
communication, and control. Most of these applications spend the bulk of the computation in well-
known mathematical functions which are provided by highly optimized libraries. The development
and maintenance of these libraries has become extraordinarily difficult. Optimal performance re-
quires multiple-core balancing, careful use of vector instruction sets, and locality optimization.
These optimizations require highly-skilled programmers and are often platform-specific, which
means maintenance is a considerable effort given the short processor release cycles.

The Spiral system has successfully addressed these issues by automatically generating high
performance libraries given only a high-level mathematical algorithm description in a language
called SPL. Spiral produced high performance code using a number of techniques including SPL
rewriting systems and a form iterative compilation. However, to date Spiral has been limited in two
key aspects. First, Spiral could only generate libraries for the domain of linear transforms; second,
all optimizations for a specific target platform are performed during the source code generation, that
is, the produced libraries themselves had no dynamic platform-adaptation mechanism.

In this thesis we make progress on both fronts. We present a framework and its implementation
for the computer generation of functionalities that are not transforms, specifically matrix multipli-
cation and convolutional decoding. The framework builds on the operator language (OL) that we
introduce and that extends SPL. Similar to prior work on transforms, we then develop OL rewrit-
ing system to explore algorithm choice, to vectorize and parallelize, and to derive the basic library
structure called recursion step closure. The actual code is obtained through a backend that supports
different target languages. The generated libraries exhibit a performance comparable to libraries
that are hand-written for commodity workstations.

Further, we enable the generation of platform-adaptive libraries, through adaptation modules
that can be inserted into our libraries, which are generated to support different ways to compute

Vi Abstract

the same function. We distinguish between online adaptation and offline adaptation and provide
mechanism for both. Online adaptation happens during the actual user function call when the input
size is provided. Given this size, the library searches for the best computation strategy inside the
library, which can then be used for subsequent computations of this size. We provide the dynamic
programming strategy used in prior work and introduce a novel kind of Monte-Carlo search on
graphs. Finally, we present a machine learning approach that performs offline (during installation
time) adaptation with an online adaptive library. First a search is run to produce solutions for a set
of sizes. Based on the result, a learning algorithm derives solutions for all sizes in the form of a set
of decision trees that are then inserted into the library to render it deterministic. Experiments show
the viability of both approaches.

Table of Contents

TitlePage e i
Dedication iii
ADStract e v
Tableof Contents vii
Listof Figures e xi
Listof Tables e XV
Foreword Xvii
Acknowledgments e e XiX

1 Introduction 1
L1 OVEIVIEW . . . oo o 1
12 Goalofthethesis 3
1.3 Compared benefits of different library types 6
1.4 Contributions of the Thesis 8
15 Relatedwork 10
1.5.1 Ilterative Compilation 10

1.5.2 Automatic Performance Tuning and Program Generation 11

1.6 Organization ofthe Thesis 12

2 Representing Algorithms 13
2.1 Signal Processing Language (SPL) 13

2.1.1 Linear Transforms 13

viii

Table of Contents

2.2

2.3

2.1.2 Fast Transform Algorithms and SPL

2.1.3

2.2.1
2.2.2

2.3.1
2.3.2

Insights from Spiral
Operator Language (OL)
Elements of the Language
Matrix-Matrix Multiplication
OL for Applications Example: Viterbi Decoding
Convolutional Codes
Viterbi Decoding
2.3.3 Forward Pass Formulation in OL

Library Core Generation

3.1 Library Structure Derivation

3.2

3.3

Adaptation

4.1 Structure of the Exploration Space
Motivation: Degrees of Freedom and Heuristics
4.1.2 Structure of the Search Space
4.1.3 Online and Offline Adaptation
Online Adaptation
Planning System
Dynamic Programming (DP)

4.2

3.1.1 Loop Merging with Sigma-OL
3.1.2 Recursion Step Closure
3.1.2.1 Example
3.1.2.2 General Procedure
3.1.3 Hot and Cold Partitioning
3.1.4
Library Implementation
3.2.1 Sigma-OL Compiler
3.2.2 Base Case Generation
3.2.3 Source-to-Source Optimizer
Parallelism
3.3.1 Generalized Tensor
3.3.2
3.33

411

421
422

3.1.2.3 Recursion Step Extraction

LibraryPlan

Vectorization
Parallelization
3.4 Putting it all together

Table of Contents iX
4.2.3 Bandit-Based Algorithm o 82

4231 ntuition 83

4232 Algorithmoverview 85

4233 TheTAG Algorithm 87

4.3 Offline Adaptation e 90
4.3.1 Overviewofthe Approach 93

4.3.2 Background: Inducing Classification Models 93

4.3.3 Generating Decision Trees for Libraries 96

4.3.3.1 Mapping of the Problem 97

4.3.3.2 Advanced Manipulation of the Decision Trees 97

5 Experimental Results 101
5.1 Matrix-matrix multiplication 101
5.2 Viterbidecoding 105
5.3 Generated Java Libraries 108
54 Online Adaptation 109
5.5 Offline Adaptation 112

6 Conclusions 117
Bibliography 121

List of Figures

11
1.2
1.3

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Underlying factors for performance
Architecture of the library generator
Possible inputs to the library generator

The architecture of the early versionsof Spiral
Blocking matrix multiplication C = A B along three dimensions
Naive triple loop implementationinC
Hardware implementation and finite state machine representation of an encoder . .
Viterbi trellis representation of a Viterbiencoder
Viterbi trellis at different phases in the algorithm
The Viterbi trellis consists of shuffles and butterflies
Dataflow of the Pease algorithm for computingthe WHT,

Library Core Generation OVerview v i it
Static call graphs of matrix-matrix multiplication libraries
Direct mappingof OLtocode
Recursionstepclosure e
Derivation of the Recursion StepClosure
Unoptimized base case for MMM.,;, 1. -« - o o v o oo oo oo
Generated unrolled base case for MMM, .y« - v 2 v o o v oo oo
A vector addition in the SIMD vector paradigm
The shared memory paradigm

3.10 Static call graph for matrix-matrix multiplication

19
23
24
27

Xii

List of Figures

3.11

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
421

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13

Automatically generated vectorized looped basecase 65
Visualization of the impact of radix choice 69
Two fully expanded ruletrees for DFT15 69
Number of DFT algorithms, naive implementation 70
DFT Radix heuristic by Moronenko 71
Number of DFT algorithms, multiple basecases 71
FFTW 2.x-like implementation of the DFT 72
Augmented closure graph for asimple DFT library 73
Augmented closure graph for a restricted simple DFT library 74
Augmented closure graph for a complicated DFT library 74
Naive recursion steps interface for online adaptation 79
Planner interface for online adaptation 80
Dynamic programming for five DFT libraries that differ by their code size 82
Monte-Carlo Go e 84
A3-armed bandit 85
Formal grammar and associated derivationgraph 87
Visualization of the three mainstepsinTAG 88
Bandit graphdescent 89
Pseudo-code for the TAG Algorithm 91
The offline adaptive library creation stack: generation, installation and utilization . 92
Decision tree generated by C4.5 for the “weather” dataset 95
A computer-generated heuristic for choosing theradix 99
GEMM library performance on x86, square case v v v v ... 102
GEMM library performance on x86, non-square heatmaps 102
Performance of rank-k updatesonx86 103
GEMM library performance on an IBM Cell SPU, squarecase 104
Size-performance tradeoff 104
Web Interface to the Viterbi Decoder Software Generator 105
Performance comparison between the generated and hand-optimized decoders . . . 106
Performance of generated decoders for rates 1/2, 1/3and 1/4 107
Performance of generated Java libraries 108
Sensitivity of TAG with respect to the parameter s 110
Comparison between TAG and Monte-Carlo 110
Comparison between TAG and dynamic programming 111
Comparison of DP and TAG together with concurrent FFT libraries. 111

List of Figures xiii

5.14 A heuristic automatically crafted to replace an expert-written heuristic 113
5.15 Different DFT radix heuristicsatwork 113
5.16 Clothesline experiments. 114

5.17 Offline Library Performance on Mixed Sizes 115

List of Tables

11

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3

Different libraries types and their properties 7
Definition of important linear transforms 14
SPL grammar in Backus-Naur form 17
Examples of SPL breakdown rules for DFT,, and DCT-2,, 18
Definition of basic OL operators i 20
RulestoconvertOLto > -OL 42
d>>-OLloopmergingrules 42
>-OL index simplificationrules 43
Recursion Step SelectionRules 48
Library planexample 51
Templates to translate > -OLtocode 53
Different general size library types and their properties 75
The famous “weather” machine learning dataset 94
Possible split points for the temperature feature of the weather dataset 96

Let the machine take care of the machines
and 1’1l go spend more time with my family,
or golf.

— MARK GODDARD

Acknowledgments

I would like to express my deepest gratitude to all those that supported me during these past years.
Faculty, staff, students, friends and family members helped me complete this dissertation and |
would like to thank them all for their advice, their interest and their patience. Some of them have
gone out of their ways for me and |1 mention them out here but, truly, lots contributed. Thank you
all!

First things first, 1d like to thank both my parents Olivier and Nelly for making it all possi-
ble. During the long years of my education, they have provided me much of the moral support,
encouragement, lots of freedom and trust that helped me making great strides in any direction |
chose. Besides, they also gave me my younger brother Arnaud with whom they probably intended
to correct most of my (secret?) design flaws. History being recursive, let me also have a special
thought for their own parents, my Mom’s who | never had the chance to meet and my Dad’s who
both passed away along the course of this PhD.

At the core of this dissertation lies the vision of my advisor Markus Puschel that | hope to push
forward with this thesis. Throughout these years, he has been strong and understanding, always
having faith in my work and being my best advocate. At times where my motivation was in the
trough of the wave, his stubborn optimism always helped me return back to the crest. Thank you.

Franz Franchetti and Yevgen Voronenko have always been generous with their precious time and
immense knowledge. They both played a key role in this thesis: Franz with the initial ideas for the
operator language underlying part of this thesis work, and Yevgen for creating so many interesting
challenges with his general input size library framework. Hours of discussions with them helped me
draft the blueprint for this work and secure the foundations of this dissertation. They built so many
of the tools I’ve used during these last years that I’m glad | payed them back by teaching them how
to barbecue!

Committee member José Moura has been the wise person in the background, mostly calm but

XX Acknowledgments

guick and sharp when needed. Reviewing my work at periodical times, he helped me to set the bar
high. .. and also paid for the beverages after technical demonstrations!

Albert Cohen and Keshav Pingali graciously agreed to be the external members of my thesis
committee and | would like to thank them for taking the time. Their feedback on my thesis prospec-
tus gave rise to many interesting ideas and helped structure this document. On a more personal note,
I am very grateful to Albert for graciously offering me an office in France so | could be at home
while writing this dissertation.

PhD candidates like to eat too! | would like to acknowledge here the sponsors who provided
my funding and put the food on my table: the National Science Foundation (NSF) through awards
0325687 and 0702386 and the Defense Advanced Research Projects Agency (DARPA) through the
DOI grant NBCH10500009.

Helping me organize my ideas, the Spiral group as a whole has been very helpful, suggesting
many extensions, triggering interesting discussions and providing support in many ways. Among
them, | would like to specifically mention Srinivas Chellappa, Marek Telgarsky, Peter Milder and
Volodymyr Arbatov with whom I had the occasion to collaborate more closely. With lots of patience,
they have reviewed and restructured my work, helping me transform raw products into finished
goods. Of course, we sometimes ended up discussing less technical and more interesting subjects
over less innocent and more spirited drinks. .. Oh, by the way, do you guys remember when we got
escorted out of the hotel room? Those were great times indeed!

While in the US, | was offered the occasion to collaborate with a French team including my
long time friend Arpad Rimmel and a colleague of his, Olivier Teytaud. It was a great deal of fun
to work together and even more fun that it worked out in the end! Wanna know the the relationship
between the board game of Go and adaptive libraries? Stay on board!

Some of my undergraduate teachers at the Ecole Polytechnique have really been inspirational
to me. Among them, Olivier Temam, Francois Pottier, Dale Miller, Behshad Behzadi, Jean-Jacques
Levy and Albert (again!) have stirred and deepened my interest for computer science in general
and compilers / computer architecture in particular. This triggered my decision to leave for the US
where | also had the occasion to meet sharp professors like Babak Falsafi and James Hoe. In fact,
Babak being the one that dug my CMU application out of the stack, he may have triggered the chain
of events that is concluded with this dissertation.

I also would like to thank the anonymous users of the online interface to the software Viterbi
decoder generator for their comments and continued interest in my work. They convinced me that
some of my research is useful in the real world!

There were times where work didn’t seem to go anywhere and, in these periods, it was always
great to take my mind off things with all the friends | made in the "Burgh. Joyful Italians, spotless
housemates, sophisticated exiles, Dithridge girls, Firehouse rounders, Tarot players, ego volunteers,
mighty climbers, screen-tanned office-mates, Harris grillers, rotten tomatoes enthusiasts, happy
hour drinkers, Greek architects, and all the others I surely forgot, the cherished time | spent with

Acknowledgments XXi

them gave me the strength to continue digging forward.

Despite my lengthy stay across the ocean, | have to mention these priceless friends in France
who regularly welcomed me with open arms, as if | never left. Specialists of doing nothing around
a sofa, amateurs of questionable movies and geeks from before the Internet (1), they know who they
are and what they mean to me.

The acknowledgments wouldn’t nearly be complete without mentioning my cousin Rémi Laure
and my friend Félix Rubio-Nevado. | spent a big part of my childhood with each of them, and they
taught me many of the tricks I still use every day. Even my very desire to do research originated in
a conversation | had with Félix about dream jobs. It’s hard to believe they left.

And finally, there’s a very special thank you to my girlfriend Laure who weathered the storm
with me for the past three years. She fought quasi-total absence, noisy communications, adverse
time zones and hopeless flight attendant strikes with her pristine serenity, her good spirit and her
crazy humor. One could even say she was kind of a lighthouse all this time, but, just in case you
need directions too, let me warn you, she doesn’t know her left from her right.

Paris, May 2010

e —

—

FREDERIC DE MESMAY

CHAPTER 1

Introduction

1.1 Overview

Very high runtime performance is one of the key quality aspects for software in a wide range of
domains, including scientific computing, image/video processing, communications, and control. In
many of these applications, the bulk of the computation is spent inside well known mathematical
functions such as matrix multiplications, discrete Fourier transforms, or others. For efficiency rea-
sons, these functions are typically provided by external high-performance libraries. A good example
is Intel’s Integrated Performance Primitives (IPP), which implements around 10,000 functions from
16 different domains [Intel, 2009a].

Designing and implementing such libraries has become very difficult due to the complexity of
current computing platforms. The optimal performance tolerates no bottleneck and every aspect of
the code needs to be carefully designed. Memory hierarchy reuse, multiple core load-balancing,
vector code scheduling, are but a few of the optimization techniques required to reach the best
possible performance. To illustrate the impact of these optimizations, we show in Figure 1.1 the
performance of four implementations of a square matrix-matrix multiplication on a commodity
guad-core platform. Performance is measured in giga-floating point operations per second (GFlop/s)
and all implementations are compiled with a state-of-the-art optimizing compiler from Intel. At the
bottom is a naive triple loop. Optimizing for the memory hierarchy yields about 20x improvement,
explicit use of short vector instructions another 2x, and threading for 4 cores another 4x for a total
speedup of 160x.

This large gap shows that the optimizing compiler does not perform the necessary optimizations
automatically. There could be three fundamental reasons behind this failure: the lack of domain-
specific algorithmic knowledge, the weaknesses of the loop optimizer framework, or the lack of a
good performance model to decide which transformations are beneficial. The difficult optimization

2 Chapter 1. Introduction

Matrix-Matrix Multiplication on 2x Core 2 Extreme 3GHz
Performance [Gflop/s]

50
45 e Best vector and parallel code

40 —
35
30 i
Multiple threads: 4x
25
20

15 Best vector code
O

10

5 Best scalar code Vector instructions: 2x
0 Triple loop, Memory hierarchy: 20x
e T T T T T T 1
0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrixes size n

FIGURE 1.1: Underlying factors for performance. The plot shows four double precision imple-
mentations multiplying n x n matrices. The operations count is exactly the same in all four cases:
o3,

task is therefore left with the library developer. Exacerbating the problem, optimal code is platform-
dependent and thus, re-optimization and re-implementation is required for each new architecture or
even microarchitecture.

Often, library performance objectives are achieved by having experts write different optimized
routines for the same function, one for each of the supported architectures. Famous academic and
commercial libraries (e.g., GotoBLAS [Goto, 2008], MKL [Intel, 2009b]) use this approach but it
requires a continual development in order to support the constantly changing computing platforms.
The resulting high development costs of this approach have spawned academic research efforts on
mechanizing the optimization process.

One approach to tackle the problem has been to design adaptive libraries: In such libraries,
the developers allows for a wide range of different implementations of the exact same function and
the fastest one on the considered architecture is mechanically found by empirical search. This ap-
proach has been successfully demonstrated in various domains, including basic dense linear algebra
(ATLAS [Whaley and Dongarra, 1998]), sparse linear algebra (OSKI [Vuduc et al., 2005]), sort-
ing (Adaptive Sorting Library [Li et al., 2004]), and linear transforms (FFTW [Frigo and Johnson,
2005], UHFFT [Ali et al., 2007]).

Another approach to the problem is to raise the abstraction level and have machines, rather than
experts, create optimized source code. Humans, of course, are still needed to formalize the algo-
rithm space but the difficult and repetitive task of implementing them, optimizing them and com-
bining them is then fully automatized. Such systems, that we call library generators, are domain-
specific iterative compilers: their input is an algorithm specification given in a high-level mathemat-
ical form and their output is optimized source code implementing it. Along the way, multiple com-
pilation phases are necessary to generate and evaluate a pool of variants. So far, progress has been
reported in advanced dense linear algebra (FLAME [Bientinesi, 2006]), quantum chemistry (Tensor

1.2. Goal of the thesis 3

Contraction Engine [Baumgartner et al., 2005]), and linear transforms (Spiral [Piischel et al., 2005],
detailed later).

Library generators offer multiple advantages over standard performance libraries. First, they are
easily maintainable, and thus extensible, since algorithms, optimizing transformations, and search
mechanisms clearly reside in different layers. Second, they offer flexibility: it is for instance possi-
ble to target different languages, customize for different needs or even change the library interface.
Third, they are rigorous in that the generated implementations and their proofs grow hand in hand
and are therefore correct by construction [Dijkstra, 1972]. Of course, library generators also have
drawbacks, mainly that the expressivity of their algorithm specification language inherently limits
them to a specific domain and that their offline nature might forbid drop-in replacements in legacy
user code.

1.2 Goal of the thesis

In this thesis, we push back both these limitations in the context of the library generator Spiral
[Plschel et al., 2005]. As of 2010, Spiral has demonstrated that high-performance automatically
generated code could make it into commercial performance libraries in the form of fixed input size
functionalities [Intel, 2009a]. Recently, the capability of generating general input size libraries has
been added to the system, but it comes at a price: automatic platform adaptation has been lost
[Voronenko et al., 2008b]. Finally Spiral’s domain has to date been restricted to linear transforms.

The goal of the thesis is to extend Spiral’s high-performance library generation frame-
work in two orthogonal ways:

1. We extend the formal framework and the generator to new functionalities be-
yond linear transforms, notably matrix-matrix multiplication and Viterbi de-
coding.

2. We enable the automatic generation of adaptive general input size libraries. We
provide both novel online (at runtime) and offline (at installation time) adapta-
tion mechanisms that can be inserted into Spiral-generated libraries.

The library generator we build is schematically displayed in Figure 1.2. It can first be seen as a
“black box” with multiple inputs: the target library functionality, the target platform characteristics
and the pool of algorithms.

e The target library functionality describes the precise operations that the generated library
will provide to its users (e.g., row-major or column-major matrix multiplication, forward or

4 Chapter 1. Introduction

Target Target
Library Platform
Functionality Characteristics

e 4

Algorithms g Recursion Step Closure

as Rules Library Planning

Base Case Generation “Library Core”
Generation
Compilation

Code Generation

Heuristics/Models Addition Classifier Addition
Adaptation

‘ Offline Search Search Modules Addition

Non-Adaptive Library ‘ ‘ Offline Adaptive Library

Fixed-Problem Library Online Adaptive Library

FIGURE 1.2: Architecture of the library generator.

inverse discrete Fourier transform). It is represented as an expression in a domain-specific
language, called OL, that we introduce.

e The target platform characteristics captures specifics about the architecture that we are gen-
erating the library for. It consists of tags that we attach to expressions in our domain-specific
language. These specify if the code should be vectorized or threaded.

e The pool of algorithms is a set of widely known algorithms such as blocked matrix multipli-
cation, fast Fourier transforms or Viterbi decoding that we represent as rules in OL, extending
prior Spiral work.

The system is able to produce libraries of four different types: heuristic-based general input size
libraries, fixed input size libraries, online adaptive general input size libraries, and offline adaptive
general input size libraries. Before we explain these types of libraries, we first use Figure 1.3 to give
possible examples of generated libraries.

In Figure 1.3a, the system is configured to generate a matrix-multiplication library conform-
ing with the general matrix multiplication (GEMM) specification which is a popular interface in
the linear algebra community [Dongarra et al., 1990]. The algorithm space consists of recursive
block matrix multiplications and the library should be optimized for commodity processors using
important features such as multicores and short vector extensions (here, 2-way SSE). The generator
outputs a library core which consists of a dozen of mutually recursive functions and corresponding

1.2. Goal of the thesis 5

2-way Java
GEMM SSE DFT single
interface OpenMP interface precision
block matrix ___ l l Cooley-Tukey _, ‘
multiplication EET rule
rules
ATLAS-like ‘
vectorized & FFTW-like
multi-threaded single precision
DGEMM library Java DFT library
(@) (b)
CDMA 8-way
2000 integer
spec. SSE
Viterbi ‘ ‘
algorithm —
rules

vectorized Viterbi

decoder for 3G

communications

(©
FIGURE 1.3: Some possible inputs to the library generator and the corresponding generated li-

braries.

base cases, totalizing more than 10,000 lines of C++ code, filled with SSE vector intrinsics and
OpenMP threading pragmas. It is not yet usable though: since it can capture a vast domain of algo-
rithmic variants, it has many degrees of freedom that require decisions before any computation can
occur. In the presented example, the system has been configured to generate an offline adaptive li-
brary, which means that these degrees of freedom are to be determined on the target platform during
installation time (similarly to ATLAS [Whaley and Dongarra, 1998]). We achieve this by deploying
the library core to the user with a statistical classifier and the necessary installation scripts. Dur-
ing installation on a user platform, the classifier will generate multiple decision trees that will be
plugged back inside the library core to take the required decisions and hence render the computation
deterministic.

In Figure 1.3b, the system is configured to generate a discrete Fourier transform (DFT) li-
brary using the Cooley-Tukey algorithm, which is the most famous fast Fourier transform (FFT)
[Cooley and Tukey, 1965]. In this case, the target platform is a Java virtual machine and compu-

6 Chapter 1. Introduction

tations should use single-precision floating-point numbers. In this case, the generator produces a
library core that consists of multiple Java classes. Again, it is not directly usable since any single
function inside still has multiple open degrees of freedom (e.g, the choice of radix). In this example,
the system has been configured to generate an online adaptive library, which means that the degrees
of freedom are fixed on the target platform at runtime (similarly to FFTW [Frigo and Johnson,
2005]). The core has therefore to be bundled with one of the available search modules that we
provide before being released.

In Figure 1.3c, the system is configured to generate a Viterbi decoder [Viterbi, 1995] for the
CDMA 2000 standard that is used in 3G cellphones communications. The selected target platform
supports 8-way SSE integer operations. In this embedded systems setup, we assume that the com-
putation and platforms are fully specified before generation. In this case, we search offline, during
the generation process, and produce a deterministic library specifically tailored for this problem and
platform.

1.3 Compared benefits of different library types

As shown in Figure 1.2, one of the goals of the thesis is to enable the computer generation of libraries
of four different types within the same framework: fixed input size (prior work, [Puschel et al.,
2005]), heuristics based general input size (prior work, [Voronenko, 2008]), online adaptive general
input size (this thesis) and offline adaptive general input size (this thesis). Each of these library
flavors inherently possesses different properties that favor or prevent a given usage scenario. We
have collected the advantages and limitations of each type of library in Table 1.1.

The first column represents fixed input size libraries such as the ones provided by the Spiral-
generated IPPgen [Intel, 2009a]. Such libraries are inherently designed to perform a specific com-
putation (or, alternatively, a collection of specific computations) on a specific platform. Without
a generator, they are expensive to develop and of limited use which restricts their scope to high-
performance kernels on high-profile applications such as the ones that are used inside the Goto-
BLAS [Goto, 2008]. These restrictions are considerably relaxed when a generator is made directly
available to the user which is for instance what we propose, as part of this work, for Viterbi de-
coders [de Mesmay et al., 2010a]. However, library users might still not be able to accommodate
the change in the interface that requires the problem to be of fixed input size. In comparison, all
other columns capture a different kind of libraries that we denote as general input size. Such li-
braries are more flexible since the users can dynamically choose the parameters of the computation
that has to be performed.

The second column captures general input size non-adaptive performance libraries in which
the developers have fixed the inherent degrees of freedom of the implementation space through
heuristics. This category, which contains most commercial and scientific libraries, is, by nature,
extremely sensible to changes in hardware. The whole library may have to be rewritten if the

1.3. Compared benefits of different library types

Fixed input size

General input size

Heuristics based

Online adaptive

Offline adaptive

Example library

Example interface

Supports legacy interface
Adaptation

User view

When size changes
When platform changes
When paradigm changes

Developer view

(without generator)
When size changes
When platform changes
When paradigm changes

Developer view

(with generator)

When size changes
When platform changes
When paradigm changes

Generatable by Spiral

IPPgen-like
[Intel, 2009a]

f_8(X,Y)

N
none

discard

pray
discard

rewrite the library
rewrite the library
rewrite the library

regenerate
regenerate
retune the generator

[Plschel et al., 2005]

MKL-like
[Intel, 2009b]

£(8.X.Y)

Y
none

pray
discard

retune heuristics
rewrite the library

retune heuristics
retune the generator

[Voronenko, 2008]

FFTW-like
[Frigo, 1999]

d = £(8)
{d(X,Y)
N
online (planner)

replan
replan
discard

rewrite the library

retune the generator

this dissertation

ATLAS-like
[Whaley et al., 2001]

£(8.X.Y)

Y
offline (setup)

reinstall
discard

rewrite the library

retune the generator

this dissertation

TaBLE 1.1: Different libraries for a hypothetical functionality ¥ and their properties. The second
row shows the corresponding user interface for a call of £ with input X of size 8 and output Y. “Pray”
upon a platform change means nothing in the library is changed; hence, the resulting performance
may or may not be good. Observe that wrappers can fake the legacy interface for both the fixed
input size and the online adaptive library if the sizes of interest are known but they cannot handle

arbitrary sizes.

8 Chapter 1. Introduction

platform substantially changes and even minor architectural modifications may require a new tuning
of the heuristics. The recent doctoral thesis of Voronenko developed an extension to Spiral that has
enabled the computer generation of such libraries for linear transforms [Voronenko, 2008]. This
way, the library developers can update the generator and regenerate the library instead of rewriting
the library if major changes are needed. However, this generative approach still has one limitation
which is that the automation is complete: the heuristics still have to be designed by hand.

The third column captures online adaptive libraries such as FFTW [Frigo and Johnson, 2005]
that split the computation into two phases: the creation of a problem descriptor or plan (called d
in the table) and the use of that descriptor to actually perform the computation. The idea there
is that a space of different algorithms can be explored during plan creation and that overhead can
be compensated over time since users usually perform the desired computations more than once
for the same problem size (here: 8). The thesis intends to enable the generation of such libraries
which would free the library developers of the heuristics design. To achieve this, we design different
search strategies for the planner, from the “traditional” dynamic programming to advanced decision
making strategies based on reinforcement learning. These are then implemented in a way that they
can be inserted into the libraries generated by us or the transform libraries from [Voronenko, 2008].

The fourth column captures offline adaptive libraries such as ATLAS [Whaley and Dongarra,
1998] that adapt to the platform during installation. The difference to online adaptive libraries is
that, after setup, the library is readily available to the user who can now use it through the legacy
interface. This dissertation presents a mechanism for the computer generation of offline adaptive
libraries from online adaptive libraries by creating deterministic decision-trees during the setup of
the library.

1.4 Contributions of the Thesis

The main contributions of this thesis include the following:

e A domain-specific mathematical language, called the Operator Language (OL), to symboli-
cally represent numerical algorithms that have data-independent control flows. OL is a su-
perset of SPL [Xiong et al., 2001], the signal processing language at the core of Spiral. We
show that OL can describe linear transforms (the domain of SPL), matrix-multiplications and
Viterbi decoding [de Mesmay et al., 2010a; Franchetti et al., 2009].

e Compiler transformations that enable the generation of high-performance code directly from
OL specifications. This includes optimization passes on intermediate languages and rewriting
systems to formally vectorize and parallelize at a high level of abstraction.

e OL extensions to Voronenko’s recursion step closure which is the key phase in deriving the set
of mutually recursive functions necessary to provide efficient general input size libraries for

1.4. Contributions of the Thesis 9

linear transforms [Voronenko, 2008; Voronenko et al., 2009]. In particular, data reorderings
across recursion steps for OL are supported.

e Modular platform-adaptation mechanisms that search the space of alternative algorithms. No-
tably, we generate offline adaptive (at installation time) and online adaptive (at runtime) li-
braries. Offline adaptation is achieved using a statistical classifier that generates decision
trees at installation time [de Mesmay et al., 2010b]. Online adaptation is performed by run-
time planning using several search modules that include dynamic programming and a novel
algorithm based on Monte-Carlo tree search [de Mesmay et al., 2009].

e A generator prototype that extends previous work and implements the above contributions to
allow “push-button” adaptive library generation for different domains.

Evaluation. We evaluate the results of this thesis on two key aspects, the performance of the
generated libraries and the versatility of the code generator. Performance is assessed with compar-
isons against relevant academic and industrial competitors on commodity platforms. Versatility is
shown by the range of different libraries that can be generated. In particular, we demonstrate the
following:

e A library generator for different domains: linear transforms, basic linear algebra, and con-
volutional decoding. For linear transforms, the general input size library generation problem
was solved by [Voronenko, 2008]. In this case, our work makes it possible to render these
libraries adaptive (see below).

e Experimental results that show that the generated libraries have a performance that is com-
petitive with existing academic and industrial competitors.

e A system that can generate different types of libraries: collections of fixed input size prob-
lem (prior work), heuristic based libraries (prior work), planner-based adaptive libraries or
adaptive libraries that infer a decision tree at installation time.

e A back-end that can target different languages: Besides C++, we will produce C code and
Java code.

e A customization mechanism that allows interesting tradeoffs, notably trading library code
size for performance or for problem coverage.

e A compiler that can optimize for different targets most notably scalar, vectorized, and parallel
code.

o Different planners that provide different online search strategies, including dynamic program-
ming, Monte-Carlo, and a novel technique based on reinforcement learning.

10 Chapter 1. Introduction

e A mechanism that automatically generates customized heuristics in order to generate offline
adaptive libraries.

1.5 Related work

The motivation for program generation and automatic platform adaptation arises from the inability
of optimizing compilers to achieve the performance levels of hand-optimization (see, for example,
Figure 1.1). This is evidenced by the fact that most platform vendors offer specific performance
libraries: Intel (Math Kernel Library & Integrated Performance Primitives), AMD (Core Math
Library & Framewave), IBM (Engineering and Scientific Subroutine Library), and others.

The core reason for this shortcoming of compilers is that the increasing complexity of comput-
ing platforms prevents the development of accurate platform models that are needed to assess the
profitability of compiler transformations and hence choose among the large set of otherwise legal
optimizations. Two different avenues of research related to our work have started to address these
problems: iterative compilation and automatic performance tuning / program generation.

1.5.1 Iterative Compilation

Several researchers have proposed iterative compilation which places the compiler at the center of
a feedback-driven optimization loop [Bodin et al., 1998; Fursin et al., 2005b; Kisuki et al., 2000a].
The idea is attractive but, in practice, going beyond the research demonstrator is difficult because
there are actually many compiler parameters to evaluate and even more if we start looking at se-
guences of transformations. As of 2010, several propositions have been made to render iterative
compilation practical and we distinguish four major research directions:

e Machine learning techniques can be used to model the search space and therefore reduce
the number of actual evaluations needed [Cavazos and O’Boyle, 2006; Cooper et al., 2002;
Leather et al., 2009; Monsifrot et al., 2002; Stephenson and Amarasinghe, 2005].

e Sampling methodologies propose to reduce the duration of each run by evaluating only
a carefully chosen subset of the computation phases of the benchmark program, therefore
scanning more points within the same amount of time [Fursin et al., 2005a; Lau et al., 2005;
Sherwood et al., 2002].

e Using developer hints can direct the compiler towards the right transformations and therefore
reduce the number of points to evaluate. This is done by providing a framework to help
developers express their own transformations [Barthou et al., 2007; Beckmann et al., 2004;
Cohen et al., 2006; Donadio et al., 2006].

e Structuring the transformation space can directly reduce the number of points to evaluated.
Typically, structuration is a “grassroot” approach where one focuses on a specific domain and

1.5. Related work 11

gradually grows it towards more general cases. The polyhedral model framework is possibly
the most general approach in that it can deal with a certain type of loops and can describe
entire compositions of optimizing transformations for them [Ahmed et al., 2000; Bastoul,
2004; Cohen et al., 2005].

1.5.2 Automatic Performance Tuning and Program Generation

A different approach (even though in some aspects related to iterative compilation) to overcoming
compiler shortcomings has been the development of automatic performance tuning and program
generation techniques. We overview some prominent examples starting with Spiral which underlies
this thesis.

Spiral. Our work builds on Spiral, a library generator for linear transforms [Puschel et al.,
2005]. Representing linear transforms using a declarative domain-specific language [Xiong et al.,
2001] based on Van Loan’s formalism [Van Loan, 1992], Spiral formally manipulates the structure
of the algorithms to map them to various targets: parallel shared memory code [Franchetti et al.,
2006b], distributed message passing code [Bonelli et al., 2006], vectorized code [Franchetti et al.,
2006c¢], and hardware descriptions [Milder et al., 2008]. The associated search space has been mod-
eled using machine learning techniques [Singer and Veloso, 2001, 2002]. Spiral has long been
limited to generating collections of fixed input size functionalities but the recent doctoral thesis of
Voronenko [Voronenko, 2008] enables the generation of general input size libraries. Such libraries
achieve very high performance [Voronenko et al., 2009] but, since they are generated without feed-
back, the degrees of freedom have to be determined with properly chosen heuristics. In this the-
sis, we extend Spiral in two orthogonal directions: 1) the computer generation of non-transform
functionalities, notably matrix-multiplication libraries and Viterbi decoders, and 2) the computer
generation of online and offline adaptive general input size libraries.

ATLAS. ATLAS is an offline adaptive library providing automatically tuned basic linear algebra
operations (BLAS) [Whaley and Dongarra, 1998; Whaley et al., 2001]. The different implementa-
tions of the matrix multiplication operation arise from different combinations of important param-
eters such as the block sizes or the unrolling factor. Interesting parameter combinations are tested
on the target platform at installation time and the best ones are selected for inclusion in the final
library. This approach has been very successful for years but lacks expressivity to represent more
advanced transformations such as vectorization or packing that are required on new commaodity ar-
chitectures. As a result, ATLAS is now mainly used as an infrastructure around user-contributed
kernels [Whaley, 2001]. In comparison, this thesis targets the generation of vectorized GEMM li-
braries. Considering that a high-performance BLAS 3 can be built from a high-performance GEMM
[Kagstrom et al., 1998], this thesis could serve as a basis for an offline adaptive BLAS library.

FFTW and UHFFT. FFTW and UHFFT are online adaptive libraries for linear transforms
[Frigo and Johnson, 2005; Mirkovi¢, 2001]. The core idea of both libraries is to provide a set

12 Chapter 1. Introduction

of different recursions for the computation of the DFT. At runtime, the libraries use a so-called
planner to select the best recursions with dynamic programming. Using the work from [Voronenko,
2008] as a basis to generate linear transform recursive libraries, this thesis builds the infrastructure
to add a runtime planner to our generated libraries, making them generated online adaptive libraries.
Multiple search mechanisms are proposed to drive the planner.

FLAME. FLAME is a library generator for advanced dense linear algebra algorithms (e.g.,
LU Factorization) [Gunnels et al., 2001; van de Geijn and Quintana-Orti, 2008]. Algorithms are
described using blocked matrix equations and transformed all the way to source code implementa-
tions with key steps being the discovery of possible loop invariants and the parallelization using task
queues [Bientinesi, 2006]. Note that FLAME relies on an existing high-performance BLAS library.

TCE. TCE is a library generator for tensor contractions that are needed in quantum chemistry
[Baumgartner et al., 2005]. The input to the system is a tensor expression and main optimization
steps include operation count minimization, locality optimization, and problem partition among
different processors [Gao et al., 2005]. It also relies on an external performance library to supply it
with BLAS functionality.

1.6 Organization of the Thesis

In the remainder of this document, we will explain the mechanisms at work inside the library gen-
erator. For the explanation, we will mostly focus on a single functionality, the matrix-matrix multi-
plication but other functionalities are in principle possible.

In Chapter 2, we present the domain-specific language OL that we use to describe algorithms
and we show how to automatically generate imperative code from OL. In Chapter 3, we derive
library cores from our algorithms: undetermined optimized recursive libraries that naturally capture
a spectrum of different implementations. We then study how to determine the degrees of freedom
inside these library cores using online and offline exploration mechanisms in Chapter 4. Finally, we
present results in Chapter 5 before concluding.

CHAPTER 2

Representing Algorithms

This chapter introduces the Operator Language (OL), a mathematical domain-specific language
designed to describe structured algorithms for data-independent functions. It is used as the input
language of our library generator, which generates an optimized library through a sequence of trans-
formations.

We start by providing background on the Signal Processing Language (SPL, [Xiong et al.,
2001]), which is a subset of OL, and describes algorithms for linear transforms and underlies Spi-
ral [Puschel et al., 2005]. We then extend SPL beyond the transform domain by introducing OL
primitives needed for matrix-matrix multiplication. Finally, we show how OL can be used to model
subsets of more involved functions using a Viterbi decoder as example.

2.1 Signal Processing Language (SPL)

2.1.1 Linear Transforms

Although often presented in the literature as summations, linear transforms can be equivalently
defined as a matrix-vector products
y= Mz,

where z and y are, respectively, the input and the output vectors, and M is a fixed matrix that, by
slight abuse of notation, we also call the transform.
Many transforms are important for signal processing and data compression, notably:

o the Discrete Fourier transform (DFT), widely used for spectral analysis [Tolimieri et al., 1997;
Van Loan, 1992] and its real-valued counterpart, the real DFT (RDFT) [Bergland, 1968;
Voronenko and Pischel, 2009];

14 Chapter 2. Representing Algorithms

[o [2kl & _in
DFT, — 6—271']1%/71} . 2=-1 RDFT, — 0052 " ife<| 2|
L 0<k,l<n | - sin =75, else o<k ln
'WHT WHT _ 11
WHTn = n/2 n/2 s with WHTQ =
WHT, , —WHT,), 1 -1
DCT-1, = |cos ’“‘i] DCT-2,, = [cos 22227
n=1]o<k,e<n . 2n Jlo<ke<n
DCT-3, = DCT-2Z _ [COS (2k+1)€7r} DCT-4, — 'COS (2k+1)(2€+1)7r]
2n 0<k,l<n L 4n 0<k,l<n
(2k+1)(264+14n)w
MDCT,, = COST}OSIM
0<l<2n

TABLE 2.1: Definition of important linear transforms.

e the Walsh-Hadamard transform (WHT), used for instance inside the high-definition video
standards Blu-Ray and HD-DVD [Beauchamp, 1984];

o the four main types of discrete cosine transforms (DCTSs), used for instance in the JPEG image
format and MPEG video format [Rao and Yip, 1990] and [Puschel and Moura, 2008];

o the modified discrete cosine transform (MDCT), used in numerous modern lossy audio for-
mats such as MP3, AC-3 or WMA [Malvar, 1992].

These transforms are all defined for every input size n, except the WHT which only exists for
two-powers n = 2*. Further, all transforms are n x n square matrices with the exception of the
MDCT. Their general form is presented in Table 2.1. Note that many more transforms exist, but are
possibly less relevant.

2.1.2 Fast Transform Algorithms and SPL

©(n?) arithmetic operations are required for a generic dense matrix-vector product [Burgisser et al.,
1997] but the particular structure of many transforms, including those in Table 2.1, allows their
computation with O(n log n) operations.

Fast transform algorithms can be represented as factorizations of the typically dense transform
into a product of sparse structured matrices. We provide a simple example with the DCT-2 of size
4, defined by:

17 3 51 Vs
COS] COS] COS] COS]

21 61 61 21
COS] COS] COS] COS]

3 T 1m 5w
_COS] COS] COS] COS]

DCT-2, = (2.1)

2.1. Signal Processing Language (SPL) 15

Computing y = DCT-2, z naively requires 12 additions and 12 multiplications®. Yet, it is easy to
verify (but not easy to derive) that the following factorization holds:

1 . .)] 1 1 . B I |

1 . COS%7r COS%7r . . 101
DCT-2, = (2.2)

17 3T
1 COS g~ COS g 1 . . -1

3T T
1 . . cosg cosg| |- 1 -1

Using Equation 2.2, y = DCT-24 z can be computed in 3 successive matrix-vector products and
reduces the number of operations to 8 additions and 6 multiplications.

The Signal Processing Language (SPL) extends the Kronecker product formalism introduced
by [Johnson et al., 1990a; Van Loan, 1992]. It was first presented in [Xiong et al., 2001] and fur-
ther extended in [Puschel et al., 2005]. It is a domain-specific language that captures transform
algorithms such as Equation 2.2 using formulas that are constructed from transforms, matrices, and
matrix constructs.

Matrices. Basic matrices are the building blocks of SPL. They are described using standard
mathematical notations. Examples include the n x n identity I,, and the n x n “flip” matrix J,,:

Important permutations are also given symbols such as the stride permutation L7, defined by its
underlying permutation

L} :jk+i—im+jfor0<i<k,0<j<mwithn=mk. (2.3)

Matrix constructs. The strength of SPL lies in its ability to capture the structure of the trans-
form algorithms. Matrix constructs are used for this purpose and the most important ones are the
matrix product, the direct sum, and the tensor product.

We have already used the matrix product A - B = A B in the DCT-2,4 example (Equation 2.2).
We note that, in SPL, a matrix product is not supposed to be computed using a matrix-matrix com-
putation but is viewed as a two stage matrix-vector multiplication algorithm: ¢ = Bz, y = At. The
iterative product H:.L:‘Ol A,; extends the matrix product and expresses that the computation be done in
n successive steps.

1\We assume that multiplications by 1 and -1 do not count.

16 Chapter 2. Representing Algorithms

The direct sum & composes two matrices into a block diagonal matrix:

AeB=
B

The most important matrix construct in SPL is the tensor (or Kronecker) product ®, defined as:
A®B= [akJ B], where A = [akJ]. (2.9)

Two important special cases arise when A or B is the identity matrix. If the identity appears on
the left side, then the tensor product degenerates into a direct sum that is a simple block diagonal

matrix:
B

I, ®B=B&.---pB=
N— ——
n times B

As we will see later I, ® B can be interpreted as a computation that is perfectly parallelizable on a
machine using n processors. If the identity appears on the right side, as in A ®1,,, the tensor product
also presents a very particular structure where each entry is replicated n times, for instance,

a

We will see later that computations of this type can be perfectly mapped to machine supporting
SIMD vector extensions.

Finally, we introduce the indexed tensor product for n matrices B;, 7 = 0...n — 1, of the same
size:
Bo
I,®;Bj=Bo@ @&By1 =
Bn—l
B; ®,1, is defined analogously.

Formulas and breakdown rules. SPL expressions are called formulas and their grammar is
sketched in Table 2.2. It is possible for two different formulas to be mathematically equal in which
case each formula can be read as an algorithm and both algorithms ultimately perform the same
computation. For instance, the definition for DCT-2, (Equation 2.1) presents a trivial strategy to

2.1. Signal Processing Language (SPL) 17

(formula) = (matrix) | (transform) |
(formula) (formula) | product
(formula) & (formula) | direct sum
(formula) ® (formula) tensor product
(matrix) = [2b]| L, | Jn | LY ...
(transform) = DFT, | RDFT, | DCT-2, | ...

TABLE 2.2: SPL grammar [Puschel et al., 2005] in Backus-Naur form [Harrison, 1978] showing
that an SPL formula is either a matrix, a transform, or is constructed using matrix constructs.
a,b,c,d,n and k are integers.

compute it, whereas the factorization Equation 2.2 describes a fast algorithm for it.

A breakdown rule is a formula equality involving a transform of arbitrary size such as DCT-2,,
(as opposed to fixed size such as DCT-2,4). It captures a divide-and-conquer algorithm for the
transform by breaking it down into several other transforms.

For example, the breakdown rule that generalizes Equation 2.2 is

I,y J,
DCT-2, — L, - (DCT-2,,), & DCT-4,,,) - [i Jn;j} :

Note that we write “—” instead of “=" to denote that it is a rule. The most iconic example, and
also a recurring character of this dissertation, is the rule corresponding to the well known general-
radix Cooley-Tukey Fast Fourier transform (FFT), the first special case of which was introduced in
[Cooley and Tukey, 1965]:

DFT, — (DFT ®1,)T7" (I ® DFT,,)L}, n=km. (2.6)

The above equality shows that DFT',, can be computed in four successive steps, namely, a permu-
tation, Kk DFT,,s, a scaling2 and m DFT}s.

The literature contains many dozens of such fast algorithms, for instance [Elliott and Rao,
1983; Nussbaumer, 1982; Puischel and Moura, 2008; Tolimieri et al., 1997; Voronenko and Piischel,
2009]. Table 2.3 presents a few of these breakdown rules for DF'T,, and DCT-2,,, including the fa-
mous prime-factor [Good, 1958] (Equation 2.8), Rader [Rader, 1968] (Equation 2.9), and Bluestein
[Bluestein, 1970] FFTs.

2.1.3 Insights from Spiral

Spiral [Puschel et al., 2005; Voronenko et al., 2009] automatically generates high-performance li-
braries for linear transforms. The generated programs are automatically tuned to a given target

27 is a diagonal matrix whose precise entries are irrelevant here.

18 Chapter 2. Representing Algorithms

DFT, — (DFT,®L,)T"(I; ® DFT,,)LY, n=km (2.7)
DFT, — Vn;’}C(DFTk @1) (I @ DET) Vi gy, n=km, ged(k,m)=1. (2.8)
DFT, — W, '(I, ® DFT,_)E,(I, ® DFT,_{)W,, nprime (2.9)
DFT,, — B, , Dy DFT,, D, DFT,, D, By m, m>2n-1 (2.10)
DFT, — PkT/Q,Zm (DF Ty @ (I /21 ®; Com tDF Ty ((i +1)/k))) (RDFT), ®1,,)
(2.11)
DCT-2, — L!,(DCT-2,, ®DCT-4,,) “nfi —ﬁfﬂ (2.12)
DCT-2, — S,RDFT, K} (2.13)

DCT-2, — By, (DCT-22, K™ @ (Ij)2-1 @ Noy RDFT-33,))
(L3 © 1) (In © RDET}) Qoo (214)

TABLE 2.3: Examples of SPL breakdown rules for DF'T,, and DCT-2,,. Above, Q, P, K, V,W
are various permutation matrices, D are diagonal matrices, and B, C, E, G, N, S are other sparse
matrices, whose precise form is irrelevant. Arrows are used in place of equalities to emphasize that
the left-hand side should be replaced by the right-hand side.

platform using both a rewriting system that structurally optimizes algorithms and a feedback di-
rected search in the space of alternative algorithms.

More precisely, Spiral can be viewed as an iterative compiler for SPL® as shown in Figure 2.1.
The input to Spiral is a transform of fixed size such as DCT-24 (that we used earlier) or DFT'g24;
the output is an optimized C program that computes the transform. Like other iterative compilation
frameworks [Fursin et al., 2005b; Kisuki et al., 2000b], Spiral replaces traditional static cost models
for optimization choices by providing an evaluation and a search module that work in unison: the
evaluation feeds back timing information that are exploited by the search in order to drive the current
optimization strategy towards the best implementations.

One of the key characteristics of the project is that it is limited to a specific domain, linear signal
transforms. Because generality has been forfeited, the level of abstraction of the source language
of the compiler, SPL, is much higher than the one of traditional languages like C. This has two
interesting consequences: first, entire algorithms, not just loop transformations, can be captured
and searched upon and second, optimizations, during the implementation stage, can be made more
general and more powerful due to the limited variety of inputs coming into the compiler.

In this dissertation, our first goal is to enlarge the source language of Spiral in a way that different
primitives, non-transforms, can be captured. The major difficulty in doing this is that each layer of
the system is tightly integrated: adding a primitive to the description language requires to propagate

3As we will see later, this affirmation is only partially true for the later versions of Spiral

2.2. Operator Language (OL) 19

Linear transform and size

|

Algorithm Formula Generation controls
Level Formula Optimization
‘ algorithm as formula
in SPL language
Implementation Implementation controls 'E;
Level Code Optimization §

C/Fortran
implementation
Evaluation Compilation

Level Performance Evaluation

i

Optimized/adapted implementation

performance

FIGURE 2.1: The architecture of the early versions of Spiral.

changes throughout the compiler. We present our candidate language, the Operator Language, in
the next section.

2.2 Operator Language (OL)

The Operator Language (OL) is a domain-specific language that extends SPL. Just as SPL, it aims
to express algorithms at a high abstraction level and to be mathematical and declarative in that it
describes the structure and the index space of the data layout of computations without specifying
how to perform them. The language to date is restricted to express computations that are data
independent and that possess a suitable structure to be handled efficiently.

This section starts by presenting the building blocks of the language followed by an overview
of how to capture a simple dense matrix-matrix multiplication using the language.

2.2.1 Elements of the Language

OL is a language of mathematical nature that is a superset of SPL (Subsection 2.1.2). Its main
building blocks are operators, combined into formulas by higher-order operators.

Operators. An operator is a function that consumes and produces a set of vectors. An operator
of arity (r, s) consumes r vectors and produces s vectors. An operator can be (multi)linear or not.
Linear operators of arity (1, 1) are precisely linear transforms, i.e., mappings « +— Mz, where M
is a fixed matrix.

20 Chapter 2. Representing Algorithms

Name Definition

Linear, arity (1,1)

Identity L,:C"—-C" z—x
Transposition of an m x n matrix Lmn . Ccmn 5 C™y A AT
Matrix M € C™*" M:C"— C™; x> Mx

Multilinear, arity (2,1)

Point-wise product Pp:C" x C" = C"5 ((x4), (33)) = (wiy:)
Scalar product Ry :C" x C" = C; ((z4), (4:)) = D (ways)
Kronecker product Kmxn : C™ x C" —= C™; ((2:),y)) = (z:y)

TABLE 2.4: Definition of basic OL operators. The operators are here assumed to operate on
complex numbers but extension to other base sets is straightforward. Boldface fonts represent
vectors or matrices linearized in memory. A vector is sometimes written as « = (z;) to identify the
components.

Matrices are viewed as vectors stored linearized in memory in row major order. For example,
the operator that transposes an m x n matrix®, denoted with L™, is of arity (1, 1). Table 2.4 defines
a set of basic operators that we use.

Functionalities. A functionality is an operator for which we want to generate fast code. For
instance, the matrix-matrix multiplication MIMIM.,,, ;. ,, is an operator that consumes two matrices
and produces one®:

MMMm,k,n : Rmk X Rkn — Rmn; (A, B) — AB.

The discrete Fourier transform DFT,, is another functionality example. It is a linear operator of
arity (1, 1) that performs the following matrix-vector product:

DFT,:C"—>C" 2 [e‘zmkl/”]ogkknl"-

In this document, functionalities are bold-faced.

Higher-order operators. Higher-order operators are functions on operators. A simple example
is the composition, denoted in standard infix notation by o. For instance, using the P, operator
defined in Table 2.4,

mn
L)" o Py,

is the arity (2, 1) operator that first multiplies point-wise two matrices of size m x n, and then
transposes the result.

“The transposition operator is functionality equivalent to the stride permutation introduced in Equation 2.3 and is
sometimes referred to as a corner turn in the literature.

®Note that this definition is purely mathematical and thus differs from commonly used interfaces such as the DGEMM
[Dongarra et al., 1990]. This will be taken into account later in this thesis.

2.2. Operator Language (OL) 21

The cross product of two operators applies the first operator to the first input set and the second
operator to the second input set, and then combines the outputs. For example,

mn
L)" X Py,

is the arity (3,2) operator that transposes its first argument and multiplies the second and third
argument pointwise, producing two output vectors.

The most important higher order operator in this language is the tensor product. For linear
operators A, B of arity (1,1) (i.e., matrices), the new tensor product corresponds to the tensor or
Kronecker product of matrices defined in Equation 2.4.

As we have seen in Table 2.3, the Kronecker product is very useful for concisely describing
transform algorithms. Its usefulness resides in its ability to captures loop structures, data indepen-
dence, and parallelism. Therefore, it really is a key construct in SPL and we now formally extend
its definition to more general operators, focusing on the case of two operators with arity (2,1); the
generalization is straightforward.

Let A: CP x C? — C" be amulti-linear operator and let B : C™ x C™ — C* be any operator.
We stress that .4, being multi-linear, is not interchangeable with B by using a calligraphic font for
it. We denote the 7th canonical basis vector of C" with e}'. Then

p—1g—-1

(A®B)(x,y) = A(e?,e) @ B((e! @ L)z, (e ©1,)y),
i=0 j=0
p=la-l T T

(B® A)(z,y) = B((In @€), (I, @ €1)y) © A(e?, e?).
i=0 j=0

Intuitively, .4, whether on the left or on the right of the tensor product, describes how to operate
on the chunks of data produced by B. If it is on the left, .4 describes the coarse structure of the
computation. If it is on the right, .4 describes the internal structure (as in Equation 2.5). Obviously,
if B is also multilinear, then both properties hold simultaneously.

We give a few examples to better illustrate the tensor product. First, let A = P, be the pointwise
product of two vectors of length 2. Then, the relationship between P, and P, ® B (arbitrary B) is
as follows (the superscripts U and L denote the upper and lower halves of a vector):

(20} [w0) A [0 %0 (VN (") nes (BGY.4"))
1 : Y1 - 1 Y1 7 \xL/X\yL} \B(ﬂfL,yL)/. @19

22 Chapter 2. Representing Algorithms

Next, we choose A = R», the scalar product of vector of length 2:

B Yo\ Re /\ /y\R2®B i
. X " Hie%;l}xz Yi, \ / \y} ie{Z[J;L}B($>Z/)-

Finally, we choose A = K>«2, the Kronecker product K>«o (now viewed as operator of arity
(2,1) on vectors, see Table 2.4, not viewed as higher order operator):

(20) (w0 xoe [arw () () s [
) ") e vy ey

zl -y B(z*

In all three cases, the multilinear part .4 of the tensor product describes how blocks are arranged and
B prescribes the local operations to perform on the blocks. Comparing these three examples, A = P
yields a tensor product in which only corresponding parts of the input vectors are computed on and
results are juxtaposed, A = R does essentially the same computation but results are accumulated
and A = K yields a tensor product in which all combinations are computed on and stored.

2.2.2 Matrix-Matrix Multiplication

This subsection outlines how OL can be used by developing a whole space of alternative implemen-
tations for a simple example functionality: the dense matrix-matrix multiplication. This is achieved
by plugging divide-and-conquer algorithms into each other and terminating the recursion using base
cases.

Breakdown rules. We express recursive algorithms for functionalities as OL equations and call
them breakdown rules. As example, we consider a blocked matrix multiplication. While it does
not improve the arithmetic cost over a naive implementation, blocking increases reuse and therefore
can improve performance [Whaley et al., 2001; Yotov et al., 2005]. Note that we do not draw a firm
line between cache and register blocking since this difference is related to unrolling which is only
performed later in our framework. We start with blocking along one dimension.

Figure 2.2a shows a picture of a horizontally blocked matrix. Each part of the result C'is pro-
duced by multiplying the corresponding part of A by the whole matrix B. In OL, this computation
is expressed by a tensor product with a Kronecker product:

MMMm,k,n - Km/mbxl ® MMMmb,k,n . (216)

Note that the number of blocks m /my, is a degree of freedom under the constraint that m is divisible
by m®; in the picture, m /my, is equal to 2 (white block and black block).

®1n general, blocks may be of different sizes but this is not easily expressible with the tensor product.

2.2. Operator Language (OL) 23

mowm -0 I

(a) Horizontal blocking (b) Vertical blocking (c) Depth blocking

FIGURE 2.2: Blocking matrix multiplication along each one of the three dimensions. For the
horizontal and vertical blocking, the white (black) part of the result is computed by multiplying the
white (black) part of the blocked input with the other, gray, input. For the depth blocking, the result
is computed by multiplying both white parts and both black parts and adding the results.

Figure 2.2b shows a picture of a vertically tiled matrix. The result is computed by multiplying
parts of the matrix B with A so the underlying tensor product again uses a Kronecker product.
However, since matrices are linearized in row-major order, we now need two additional stages: a
pre-processing stage where the parts of B are de-interleaved and a post-processing stage where the
parts of C are re-interleaved’:

MMM, .., — (L, @ L} /nb) o (MMM, ., @K1 /my) © (Lemx (Ix @ L)), (2.17)

Finally, Figure 2.2c shows a picture of a matrix tiled in the “depth.” This time, parts of one input
corresponds to parts of the other input but all results are added together. Therefore, the correspond-
ing tensor product is not done with a Kronecker product but with a scalar product:

k/k
MMM,y 1. = (Rijk, @ MMM, 4,0) © ((Lkm/k/b P @ Iy) X Tin). (2.18)

The three blocking rules we just described can actually be combined into a single rule with three

degrees of freedom:

MMM, . — (L jmy, @ LI0™™ @ I,) 0 (MMM, i, &7k fry @ MMM, 1 0,)

O((Im/mb ®Lz77ki/kb®lkb) X (Ik/kb ®Lkbn/nb®jnb))'

n/nyg
2.19)

The above rule captures the well-known mathematical fact that a matrix multiplication of size
(m, k,n) can be done by repeatedly using block multiplications of size (m, ky, np). Interestingly, a
blocked matrix multiplication can be described as a tensor product in which both the coarse and fine
structures are themselves matrix multiplications®. This fact was already observed by [Johnson et al.,
1990b], albeit expressed somewhat differently.

Base cases. Recursive algorithms need to be terminated by base cases that correspond to sizes

As we will explain later, the three stages here are fused during the loop merging optimization, so three OL stages do
not necessary imply three different passes through the data.

80bserve that any one of the matrix multiplications can actually be chosen as the coarse structure since both operators
are multilinear.

24 Chapter 2. Representing Algorithms

for (p=0; p<k; p++)
for (i=0; i<m; i++)
for (J=0; j<n; j++)
CLi*n+j] += A[i*k+p] * B[p*n+j] :

FIGURE 2.3: Naive triple loop implementation of a matrix-matrix multiplication in C. We assume
the output matrix to be initialized with zeros.

for which the computation of the functionality is done straightforward.

In the blocked multiplication case, the three dimensions can be reduced independently. There-
fore, it is sufficient to know how to handle each one to be able to tackle any size. In the first two
cases, the matrix multiplication degenerates into Kronecker products; in the last case, it simplifies
into a scalar product:

MMMmJ,l — Klea (220)
MMMLL” — len, (221)
MMMLRJ — Rk. (222)

Note that these three rules are degenerate special cases of the blocking rules in Equation 2.16,
Equation 2.17 and Equation 2.18.

Algorithm space. A complete algorithm to compute a functionality is obtained by inserting
the breakdown rules into each other and varying the degrees of freedom. For instance, Figure 2.3
presents the naive algorithm that accumulates outer products in order to compute a matrix multipli-
cation.

In OL, the equivalent algorithm can be obtained by successively applying to MMM,,, ;. ,, the
rule in Equation 2.18 with k;, = 1, the rule in Equation 2.16 with m; = 1 and finally the rule in
Equation 2.21. The derivation is shown below (obvious simplifications are performed for improved
readability):

MMM, . — (R, @ MMMy, 1,) o (L% x I,
— (R ® (Kpnx1 ® MMMy 1)) 0 (L7 x I1,)
= (R ® (Kmx1 ® K1xn)) o (LP™ X Ip). (2.23)

The last line exactly corresponds to the four lines of pseudocode above. This exhibits the three
strengths of OL.:

1. it concisely captures the structure of the computation,

2. itis index-free (no dummy indices 4, j and p),

2.3. OL for Applications Example: Viterbi Decoding 25

3. it is point-free® (no explicit input-output arrays A, B, C).

Also note that we actually derived the final algorithm, thereby giving a proof of correctness, assum-
ing Equation 2.16, Equation 2.17 and Equation 2.18 are correct.

And beyond. More complex algorithms can be generated by following the same principle. For
instance, the above rules capture both the standard “recursive” and “iterative” class of algorithms
[Yotov et al., 2007]. Furthermore, algorithms with sub-cubic cost can also be described in OL. For
instance, Strassen’s method to multiply 2 x 2 matrices using only 7 multiplications (instead of 8) is
captured as a base case for MMM, 5 5 [Strassen, 1969]:

10 0 1 10 0 1
L 00 1-1 0 1 01 0 1 1 00 0
01010 0 0 1 0 0 0 0 0 1-1

MMMbsoo— 1| 5 0 1 0 1 0 ol °Fro 000 1|XxX]|]-1100 . (2.24)
1.1 100 10 1 0 1 0 00 0 1
-1 1 0 0 1 0 1 0
0 0 1-1 01 0 1

Since blocking is a tensor product of two MMMSs (Equation 2.19), the Strassen base case
can then be used in the coarse part of the tensor while standard matrix blocking rules are used in
the fine structure. Such algorithms are called hybrid Strassen and they are among the fastest (albeit
numerically unstable) methods to compute the matrix multiplication [D’Alberto and Nicolau, 2007].
However, this will unfortunately remain purely speculative for this dissertation as current limitations
in the compiler prevent us from generating code for non canonical tensor products such as this one.

2.3 OL for Applications Example: Viterbi Decoding

Many real world applications have little global structure and therefore OL cannot reasonably be
extended to cover them. However, for many compute intensive applications, most of the time is
spent within a single functionality which is the performance bottleneck [Intel, 2009d; Jain, 1991].
Sometimes OL can be enlarged to capture these kernels. Spiral can then be used to deliver highly
optimized performance critical parts of full applications. There are two main reasons for using a
domain-specific language. First, it structures and simplifies the implementation of our software
generator. Second, it can enable the automatic SIMD vectorization of the bottleneck. This section
presents one such application that was considerably sped up with OL, namely Viterbi decoding.

Note that OL has been also extended to support other applications, notably synthetic aperture
radar [McFarlin et al., 2009] and sorting [Franchetti et al., 2009]. The most demanding part of the
encoding algorithm for the image compression standard JPEG 2000 [ISO, 2004] has also been
captured [Shen, 2008].

Viterbi decoding. Viterbi decoding is a maximum likelihood sequence decoder method intro-
duced in [Viterbi, 1967], and finds wide usage in communications, speech recognition, and sta-

®For a good example of point-free notation, see [Gibbons, 1999].

26 Chapter 2. Representing Algorithms

tistical parsing. As a decoder for convolutional codes, it is used in a broad range of everyday
applications and telecommunication standards including wireless communication (e.g., cell phones
and satellites) and high-definition television [Viterbi, 2006]. In the past, the high throughput re-
quirements for decoding demanded dedicated hardware implementations [Black and Meng, 1992,
1997; Kang and Willson, 1998; Lin et al., 2005]. However, the dramatically growing processor per-
formance has started to change this situation: expensive processing is now often done in software
for reasons of cost and flexibility. A prominent example is software defined radio [Mitola, 2002].

In this section, we start by introducing convolutional codes and the Viterbi algorithm. We
then explain how the Viterbi algorithm is usually split it into two parts, the forward pass and the
traceback. We finally rewrite the forward pass, which is the computation bottleneck, and capture it
in OL.

2.3.1 Convolutional Codes

The purpose of forward error-correcting codes (FEC) is to prevent the corruption of a message by
adding redundant information before the message is sent over a channel. At the receiver side the
redundant data is used to reconstruct the original message. In this dissertation, we focus on a single
type of FEC, namely convolutional codes. These codes are heavily used in telecommunications
including Global System for Mobile communications (GSM) and Code Division Multiple Access
(CDMA).

A convolutional encoder takes as input a bit stream and convolves it with a number of fixed bit
sequences to obtain the output bit stream. Since convolution is equivalent to polynomial multipli-
cation, the fixed bit sequences are often called polynomials.

Formal specification. Formally, a convolutional code is specified by N polynomials of degree
K — 1, denoted with pq, ..., px. Such a code is said to have a constraint length K and a rate 1/N,
i.e., for each input bit, the encoder produces N output bits.

We view each polynomial p, alternatively as bit sequencel®, integer, or actual polynomial
pe(z) with binary coefficients. An example polynomial for K = 3 is

pe=101y < p=5 < pz)=a>+1.

More generally, if a = ay, ..., as—1 is a sequence of bits, then a(z) = Zf:_ol a;x’.

Encoding now works as follows. The bit stream to be encoded is divided into blocks of length
S. Such a block of bits a = ay, . .., ag_1 is convolved (denoted with x) witheach p,, £ =1,... N,

O\we denote bit sequences like this: 101 2.
1n the literature, integers for polynomials are often expressed in octal or hexadecimal format.

2.3. OL for Applications Example: Viterbi Decoding 27
input output
bit bits
ﬂ-‘_
A\ 4
(@) (b)
FIGURE 2.4: (a) Hardware implementation with a shift register and (b) Finite state machine repre-
sentations of the encoder r = 1/2, K = 3 with polynomials 7 < 2% +z + 1and 5 < 22 + 1.
which is equivalent to polynomial multiplication:
bl=pixa < bi(z) = pi(z)a(x)
W=pyxa < bV(2)=pn(x)a(z).
The bit streams b',...,b" are interleaved to yield the output bit stream b. Each b‘ has length

F =5+ K — 1, called the frame length. It is convenient to view the output stream as a sequence

of F' many words of IV bits each.

Example. Assume we want to encode the bit-stream a = 1010+ with polynomials p; = 7 and

pr=>5,ie, N=2and K =3

bi(z) = (2 +z+ 1) (23 +)
=2+t +a?+ 2

< bl =1101105 .

Similarly, b(z) = (2% + 1)(23 + z) < b = 100010. Therefore the final output stream is

b=1110001011005 . (2.25)

Hardware implementation. A different way to look at a convolutional code is to consider its

actual hardware implementation, represented for our example in Figure 2.4a.

A shift-register with K —1 flip-flops is used to delay the input stream so that modulo-2 additions
can be performed between the K newest bits. The actual wiring of the adders is determined by the
bit representation of the polynomials p,. The initial content of all registers is 0 and that the input

stream is padded with K — 1 trailing zeros to flush the message through the channel.

For instance, assume the two registers in Figure 2.4a contain 0 and 1 and a 1 enters the encoder.
In this case, the top output bitisa 0 (= 0+ 1 + 1) and the bottom output bitisal(=0+ +1)so

28 Chapter 2. Representing Algorithms

the aggregated output is 01 . Shifting the values to the left, the registers now contains 1 and 1.

Finite state machine (FSM) representation. Equivalently, the encoding process can be rep-
resented by a finite state machine with 2~ states (the possible states of the shift register) that
outputs N bits on each transition. The FSM equivalent to Figure 2.4a is shown in Figure 2.4b.

Each state in the finite state machine has a O-transition (input bit is 0, solid arrow) and a 1-
transition (input bit is 1, dashed arrow) to other states. More precisely, there exists a O-transition
between states n and m if m = 2n mod 251, Similarly, there exists a 1-transition between states
nand m if m = (2n + 1) mod 251, The output bit in b (corresponding to the polynomial py)
when transitioning from state n to state m is computed as

A @ (pg&:(Qn ® (m&l))) .
Here, & is the bit-wise AND, @ is the bit-wise XOR, and the initial @ performs an XOR on all
bits. As said before, the initial state is assumed to be 0 and the input stream is padded with K — 1
trailing zeros.

In our running example (Figure 2.4b), assume the current state is 01 . If the input bit is 1 then
the FSM outputs 01 5 and transitions to state 11 5.

Viterbi trellis. A third representation of the encoding process “unrolls” the finite state machine
in time to yield the Viterbi trellis, shown in Figure 2.5 for our running example. Each path from the
initial state to the final state represents a possible message that can be sent in a single frame.

The different states of the encoder are placed vertically, the different time steps, or stages are
placed horizontally. For example the first line contains state 00, at different stages, the second line
contains state 01 and so on. The initial state (first stage) when starting a frame is 0. The zero
padding explained previously implies that the last K — 1 transitions are O-transitions. Therefore,
there is a unique final state and it is zero.

In our example, the message 1010 is first padded to 101000+ then encoded in the finite state
machine. The path that results is highlighted in Figure 2.5. Collecting the corresponding output bits
yields Equation 2.25 again.

2.3.2 Viterbi Decoding

The Viterbi algorithm is a dynamic programming method that performs maximum likelihood se-
guence decoding on a convolutionally encoded stream. Intuitively, the decoder receives a bit stream
from the receiver and has to find the path in the Viterbi trellis that best corresponds to it, which,
ideally, would be the same path the encoder took. It is composed of three phases, the branch metric
computation, the path metric computation, and the traceback. The best visualization of the Viterbi
algorithm again uses the Viterbi trellis but its purpose is now reversed: the incoming message is
fixed and the path is to be found.

2.3. OL for Applications Example: Viterbi Decoding 29

stages

states

l

FIGURE 2.5: Viterbi trellis representation of the encoder » = 1/2, K = 3 with polynomials
7 224+ x+1and5 < 22 + 1 encoding 1010, (padded to 101000 5).

O-transition 01\\

1-transition

Branch metrics computation. In the first phase, the Viterbi algorithm assigns a cost, called the
branch metric, to each edge in the trellis. This value represents how well the received bits would
match if we knew the encoder took the transition corresponding to a given edge. It is computed
by taking the Hamming distances between the bits the transition should output and the actually
received ones.

Building on our example, we assume the decoder just received the message 1110100011004
(which is the message in Equation 2.25 with two bit flips corresponding to injected errors) and we
aligned it vertically with the corresponding stages (top row in Figure 2.6a). The branch metrics that
have been placed on each arrow are the Hamming distance between the actually received bits and
the output bits of the transition (shown in Figure 2.5)

Path metrics computation. After the previous phase, the problem is equivalent to finding the
shortest path between the entry and the exit vertices on a directed acyclic graph with weighted
edges. Therefore, the second phase is a breadth-first forward traversal of the graph. It progressively
computes the path metric, which is the shortest path to get from the root to each vertex. If a state
has the path metric , there exists one message that ends in the state with 7 corrupted bits and this
message is less or equally corrupted than all other messages. While computing this, the predecessor
of each node is remembered as a decision bit!2.

In our example (Figure 2.6b), path metrics have been written inside each state and decision bits
are represented by removing the discarded incoming edge.

Traceback. The decision bits describe the ancestor of each vertex. Given this information
and the final state, one can reconstruct the shortest path, called the survivor path by reading off
predecessors.

In our example, remembering that solid lines correspond to the zero input bit and dashed lines
to the one input bit, one can simply read off the shortest path on the Figure 2.6b by starting in the

2The structure of the FSM guarantees that there are exactly two incoming edges into each vertex, except for the
leftmost nodes in the trellis where there is only one.

30 Chapter 2. Representing Algorithms

FIGURE 2.6: The same Viterbi trellis at different phases in the algorithm: (a) After branch metrics
have been computed and (b) After path metrics have been propagated and predecessors have been
decided.

final state and reading backwards to get 101000 .

In a software Viterbi decoder, it is important to perform branch and path metrics computations
simultaneously to improve the ratio of operations over memory accesses. The fusion of these two
phases is called the forward pass. For more information about the Viterbi algorithm, we refer the
reader to [Fleming, 2006].

Soft decisions. In actual applications, Viterbi decoders are usually placed downstream of a
receiver that converts analog channel symbols to a digital format. If the receiver classifies incoming
symbols as either zero or one, the system is said to be using hard decisions. However, doing so
hides uncertainty which can be useful for decoding. For example, assuming symbols on the channel
are internally mapped by the receiver to reals between zero and one, 0.9 makes a more convincing
1 than 0.6.

This observation underlies a soft-decision receiver, which directly encodes its confidence level
and passes this information to the decoder. Let Q be the number of levels in which the information
is encoded: for instance, if Q = 8, the receiver classifies in 8 different levels and if Q = 2 the
system is actually making hard decisions. The higher @, the less emphasis is put on ambiguous
symbols, resulting in an overall better decoding.

In a hard decision decoder as shown in Figure 2.6, the decoder receives 1 bit per polynomial
per stage and branch metrics are therefore comprised between 0 (perfect match) and NV (bits differ
on all polynomials). Formally, let 8¢ _,,. be the branch metric for the transition from state n to m

at stage ¢ and let s} denote the bit for the ¢-th polynomial at stage i. Then, the Hamming distance
expression is

N
) . ¢
1Z1—>m = Z |32 - bn—>m| :
=1

In a soft-decision system with @ levels of quantization, the branch metrics range between 0 and
(Q — 1)N since the maximal mistake that can be done on each polynomial is @ — 1. Redefining s,
to be the symbol (i.e., a value between 0 and @) — 1) for the ¢-th polynomial at stage ¢, the Hamming

2.3. OL for Applications Example: Viterbi Decoding 31

S S |
one stage one butterfly

FIGURE 2.7: Each stage in the Viterbi trellis consists of a perfect shuffle and 2 =2 parallel butter-
flies (here K = 3 and F' = 6).

distance generalizes to
N
4 . '
=1

Viterbi butterflies. The trellis shown in Figure 2.5 has a regular structure except for the initial
and final stages. The initial stage can be handled like all other stages by inserting prohibitively high
path metrics as appropriate. Handling the final stage like all other stages simply involves computing
all path metrics—the useless ones are automatically discarded.

Closer inspection of the trellis structure now shows that each stage of the forward pass can be
decomposed in two phases: a fixed permutation called a perfect shuffle and a parallel operation on
2K=2 2_py-2 substructures called butterflies (see Figure 2.7). In the following, we denote the states
of a butterfly as shown below:

During the path metric computation, each butterfly does two Add-Compare-Select operations
to compute the path metrics 7;; and 7y from the path metrics w4 and 7 and the branch metrics

Ba—v, Basv, By and Bp_y:

Ty = ming, (14 + Basvu, 7B + Be-U)

Ty = ming, (74 + fa—v, 7B + Be-v) .

Note that the minimum operator min,(a, b) actually performs both the compare and select opera-
tions simultaneously. It returns the actual minimum of « and b and stores the binary decision in the
decision bit d.

Symmetries. Code designers usually impose additional properties on the polynomials that trig-
ger symmetries in the trellis and simplify the computation [Taipale, 2004].

In particular, if states A and B can both transition into the same state U, then all lower bits
of A and B must be the same. In fact, the two states differ precisely in their most significant bit,
the one that is shifted out (Figure 2.4a). Now, if a polynomial has degree K — 1, the outgoing bit

32 Chapter 2. Representing Algorithms

is guaranteed to be taken into account and thus, the corresponding output bits for A and B have
to be complements of each other. Therefore, if all polynomials have this property’3, then the two
incoming transitions into the same state always have symbols that complement each other (it can be
observed in Figure 2.5). Therefore, one branch metric computation can be deduced from the other
one: Bpsu = (Q —1)N — Basu.

In our running example, since Q = 2 and N = 2, we can verify in Figure 2.6a that all pairs of
arrows entering the same state either have branch metrics (0,2) or (1,1).

Similarly, if state A can reach both state U and state V, then U and V only differ by the lowest
significant bit. Therefore, if all polynomials have their constant coefficient equal to one®4, the output
bits for all pairs of arrow that stem from the same state are complement of each other. Therefore,
the branch computation can also be reduced: 54—y = (Q — 1)N — Sa-u.

In our running example, since Q = 2 and N = 2, we can verify in Figure 2.6a that all pairs of
arrows outgoing from the same state either have branch metrics (0,2) or (1,1).

By combining both symmetries, the computation carried out by the butterflies during the pass
metric propagation can be simplified to use only one branch metric instead of four:

Ty = ming, (14 + fasv, ™+ (Q — 1)N — Basv)

my = ming, (74 + (Q — 1)N — Basvu, B + Basv) .

Forward pass with both symmetries. Since the transition A — U is always a O-transition,
the computation carried out by the j-th butterfly at stage ¢ during the forward pass (branch and path
metrics computation), assuming both symmetries explained above hold, can therefore be simplified
to
Br = Xili s @ [(Q—1)(@ (peke2))]

B-=(Q—-1)N —p4

' : i—1 i—1
mh = ming; (my;" + B, my 0 +6-)

' . i1 i—1
Toj41 = mlnd§j+1(ﬂ-2j + B Ty + B+) -

Note that the computation can be reduced further by introducing the tabulated branch ¢, a pre-
computed two-dimensional array containing numbers resulting from the polynomials in the follow-
ing way:

t; = (Q — 1)(@ (pe&e2))) . (2.26)

3This condition is equivalent to saying that the integers representing the polynomials are all bigger than 25! and
also equivalent to saying that the final register is always connected to one of the adders.

This condition is equivalent to saying that the integers representing the polynomials are all odd and also equivalent
to saying that the input is always connected to one of the adders.

2.3. OL for Applications Example: Viterbi Decoding 33

FIGURE 2.8: Dataflow of the Pease algorithm for computing the WHT 4.

2.3.3 Forward Pass Formulation in OL

From now on, we only consider the forward pass, excluding the traceback. The reason is that the
traceback is computationally much cheaper than the forward pass, requiring O(F’) operations versus
O(2K F) for the forward pass. Hence, in practice, except for very short constraint lengths, a generic
traceback is not the performance bottleneck.

Intuition: Pease FFT algorithms. Among the many fast (i.e., O(n log n)) algorithms to com-
pute the DFT and WHT (see Table 2.1), the so-called Pease algorithms [Pease, 1968] stand out
for having maximal regularity, which makes them good candidates for hardware implementation
[Milder et al., 2008].

We denote the n x n bit-reversal permutation with R,, and the twiddle diagonal matrix with 77"
Their exact definition is not important here. The DFT butterfly'® matrix F5 corresponds to a DFT
on two points: Fy = H _} } In SPL, the Pease algorithms for WHT and DFT are written as:

n—1
WHT27L — H ((Ignfl ® FZ)L§:—1) (227)
=0
n—1
DF Ty —Ron [[(T7(Ionr ® F2)L3, 1) . (2.28)
=0

The dataflow for the Pease WHT of size 4 is shown in Figure 2.8 (the Pease DFT dataflow
is analogous, except for the final bit-reversal). Note the similarity to the Viterbi trellis shown in
Figure 2.7, but remember that the butterflies operate differently. The resemblance between the DFT,
the WHT and the Viterbi forward pass was already noticed in [Forney, 1973], [Rader, 1981] and
[Gilhousen et al., 1971]. Omega networks also share this dataflow [Lawrie, 1975].

Forward pass. The forward pass of the Viterbi algorithm is not linear and therefore cannot be
expressed in the SPL framework. It is however captured by the OL tensor product which can handle
non-linear operators.

Observe that the DFT butterfly F5 is a two-by-two matrix but can equivalently be seen as an

BThe Viterbi butterfly is not to be confused with the DFT butterfly.

34 Chapter 2. Representing Algorithms

operator that takes two inputs xq and 1 and produces two outputs yo and y1:

Yo = xo + T1

Yy =g — X1 -

Similarly, we view the j-th Viterbi butterfly decoding the i-th codeword as an operator B; ; that
takes two inputs xy and z; and produces two outputs o and ;. The difference between I and B; ;
is that, depending on its position, the Viterbi butterfly uses values from two global arrays, namely
the received symbols s and the tabulated branch ¢, and it also writes values to the decision bit array
d (through the “select” part of the minimum operator). Formally, it computes

Br =1l 5s® tgj
- =(Q—-1)N - 54
Yo = mindgj (w0 + B4, o1+)

| = mmd;jﬂ(fﬂo + 8-, x1+ B+).

Using OL, the forward pass of a Viterbi decoder with constraint length K, frame length F,
denoted Vit r can therefore be expressed as

F
Vit r = [(s 5 Broig) 3 s) (2.29)
=1

Not surprisingly, the VL formulation of the forward pass looks very similar to the Pease algorithms
(Equation 2.27 and Equation 2.28).

CHAPTER 3

Library Core Generation

In the library generation framework that we present (Figure 1.2), the first block (Library Core Gen-
eration) takes as input functionality, algorithms, and platform characteristics and derives the imple-
mentation of the library core for this functionality. The library core can be viewed as an adaptive
library that has been stripped of its search logic. It is therefore capable of computing a given func-
tionality using different methods that typically all yield a different performance. Various adaptation
mechanisms that can be added to the library core will be presented in the next chapter.

Overview of the problem. High-performance library users want the best code possible for
their machine and their problem set. The popularity of libraries such as FFTW ([Frigo and Johnson,
2005]) and ATLAS ([Whaley and Dongarra, 1998]) shows that most of them are willing to pay a
fixed cost for this specialization, either at runtime (online adaptation) or at installation time (offline
adaptation). We want the library generation framework that we develop to support both cases. It
therefore needs to support the most constraining case which is to specialize based on parameters
specified by the user at runtime.

The runtime requirement imposes the adaptation to be robust, portable and fast, ruling out the
possibility of invoking any compiler. Hence, this adaptation problem creates the paradoxical situa-
tion where the code has to be generated first, but the algorithmic transformation space is determined
only later. In this thesis, we solve this apparent contradiction by operating at a meta-level': what
we really compute during the library core generation is the transformation space for all possible
parameters. This generic space is then instantiated at runtime with the user-provided parameters
using the search mechanisms.

In practice, it is not possible to generate every variant of a code, so the generic transformation
space has to be somehow closed during the library generation. This closure problem is difficult in

1See meta-programming [Sheard and Jones, 2002]

36 Chapter 3. Library Core Generation

Target Target
Library Platform
Functionality Characteristics

b

Set of
Algorithms as - Recursion Step Closure

Breakd Rul Library
reakdown Rules .
Hot/Cold Partitioning Structure
Derivation
Plan Specification
Library
Description
in Z-OL
Recursions Base Cases
Compilation Selection
Optimization Iterative Compilation

Library
Implementation
Integration

Code Generation

|

Library Core

FIGURE 3.1: Library Core Generation Overview.

the general case and might not even have solutions. However, by restricting to SPL and the specific
domain of linear transforms, [Voronenko, 2008] solved this problem by deriving the recursion step
closure, which is the set of mutually recursive functions that are needed to capture the interactions
of multiple transform algorithms after locality optimizations.

Our approach. In this thesis, we recognize the recursion step closure derivation as a critical
step in the automatic generation of libraries, even beyond linear transforms. The existing SPL
framework was therefore enlarged to support OL which can capture additional functionalities such
as the matrix-matrix multiplication. This extension leveraged some of the previous work but also
requires an expansion of its foundations.

The library core generation from Figure 1.2 is depicted in larger detail in Figure 3.1 and can be
decomposed in two components: the library structure derivation and the library implementation.
The first section of this chapter covers the library structure derivation and focuses on the generation
of the global structure of the library using the aforementioned recursion step closure. It produces
a precise description of each recursion step, or function, in the library. This description uses the
intermediary language » -OL that we introduce and which is derived from > _-SPL [Franchetti et al.,
2005].

The second section covers the library implementation, which translates the > -OL description
to the target language C, C++ or Java. Specifically, it produces the recursive functions in the clo-
sure and combines them with properly selected base cases to form the library core. These base

3.1. Library Structure Derivation 37

cases are generated directly from > -OL, similar to the generation of fixed input size transforms
[Puschel et al., 2005]. To achieve these goals, we expanded the capabilities of the original iterative
compiler to support OL and included a few new optimization passes.

Finally, the last section explains how parallelization and vectorization are performed. In prac-
tice, these are captured as rules that directly manipulate loop nests. New operators are therefore
introduced that extend the GT index-free notation [Voronenko, 2008] to > "-OL.

3.1 Library Structure Derivation

The goal of this section is to automatically derive the structure of the library that is being gen-
erated (first block in Figure 3.1). More precisely, the mechanisms presented here are responsible
for determining the specifications of all the functions that compose the library based on the target
functionality and the breakdown rules used. In practice, the target platform characteristics (e.g.,
vectorization, parallelization) also play a role in the specification but this part will be specifically
covered in Section 3.3.

We start with a brief example. Assume that:

e the target functionality is a dense row major matrix multiplication C = A B,
o the target platform does not have SIMD or multiprocessing capabilities,

e and the chosen breakdown rules are the three standard matrix blocking rules: Equation 2.16,
Equation 2.17, and Equation 2.18.

The target functionality that interests the user constitutes what we call a recursion step: a class of
problems that only differ by some parameters, here, the dimensions of the matrices and the actual
pointers to the data. Typically, a recursion step can be thought of as being an equivalent to the
specification of a function in a traditional imperative language. For example, in this case, the target
functionality is the first recursion step (RS1) and would have the following signature in C:

void RS1(int m, int k, int n, doublex A, doublex B, doublex C);

After blocking, the smaller matrix multiplications are performed on matrices that are not contigu-
ous in memory. Hence, this function alone is not suitable for a recursive implementation without
generating a prohibitive number of explicit copies. A helper recursion step is therefore needed and
it takes the following signature, assuming Ida, Idb, and Idc are the leading dimensions of the
matrices A, B, and C?:

void RS2(int m, int k, int n, int Ida,
int Idb, int Idc, doubl ex A, doubl ex B, doublex C);

20ur denominations for leading dimensions are intentionally compatible with the ones from the commonly used
DGEMM interface [Dongarra et al., 1990].

38 Chapter 3. Library Core Generation

RS 1

l

l PZINN
RS 1 D RS 2) RS 3 RS 4 RS 5
(@) (b) (©)

FIGURE 3.2: Static call graphs of three matrix-matrix multiplication libraries. We call the set that
comprises all recursion steps of a given library the recursion step closure of the library. The first
recursion step (RS1) captures the functionality that the user is interested in and is therefore part of
the API (Application Program Interface): it is common to all libraries. However, the strategy to
compute it is not fixed and, in particular, it can be decomposed into other recursion steps which are
internal to the library. () is the naive implementation and (b) is obtained after removing unneces-
sary explicit copies from it. Note that the closure can become more complicated, for instance (c) is
obtained after an optimization to provide looped base cases.

The differences in the structure of the two possible libraries are best understood with the static
call graphs of the libraries, presented in Figure 3.2. In these graphs, the nodes are the recursion
steps and the arrows show which steps call which other steps. The set of all recursion steps for a
given library is called the recursion step closure of the library. The first library closure is trivial: it is
uniquely composed of RS1 and is displayed in Figure 3.2a. The second library closure was obtained
by removing explicit copies, it is composed of RS1 and RS2 and is displayed in Figure 3.2b. Note
that other optimizations can further complicate the closure: for instance, using the generalized
tensor operator to capture loops (Subsection 3.3.1) enables the generation of looped base cases and
leads to the closure in Figure 3.2c.

Also note the following:

o Ultimately, only the original recursion step (RS1 in Figure 3.2) ever needs to be exposed to
the final user through the library interface since it is the only one that actually captures the
problems he or she is interested in.

e There might be different rules to break down a given recursion step. Choosing which rule to
apply is considered a degree of freedom. Chapter 4 will explain mechanisms that make good
decisions.

¢ In the present case (Figure 3.2c), the existence of the five different recursion steps allows the
library to use every possible regular® blocking strategy, for any given input.

In the first part of this section, we introduce > -OL, a lower-level extension of OL that makes
loops and index mappings explicit. Using rewriting systems, > -OL solves the problem of loop

3By regular, we mean that no blocking step produces leftover rows or columns.

3.1. Library Structure Derivation 39

merging whose derivation is a key issue in recursive library generation as we will see later. -
OL is a generalization of) -SPL, which was designed for linear transforms and introduced in
[Franchetti et al., 2005].

The second part of this section presents the recursion step closure which is the key step of the
library generation since it automatically provides the specification of all the recursion steps needed
in the process. It was first introduced by [Voronenko, 2008] for linear transforms.

Lastly, we explain how to partition function parameters into two classes, the cold parameters
which provide degrees of freedom and the hot parameters which don’t. This partition impacts the
function signatures in general and the user interface in particular.

3.1.1 Loop Merging with Sigma-OL

OL describes the data-flow of algorithms. In particular, data accesses are represented as explicit
permutations as, for example, can be seen in the right-hand sides of the Cooley-Tukey FFT rule
(Equation 2.6) and the MMM vertical blocking rule (Equation 2.17). A straightforward mapping to
code would explicitly perform these permutations which would be detrimental to the performance.
The goal of loop merging is to fuse these permutations with adjacent computations to increase
locality. We perform this loop merging is performed by rewriting expressions in > _-OL, which is
an extension of > -SPL [Franchetti et al., 2005] that supports operators of higher arities. Note that,
while maximizing reuse through loop merging has been proved NP-hard in its most general form
[Kennedy and McKinley, 1994], it becomes tractable in our domain-specific framework because the
structure of the computation is explicit.

Motivation. In the previous chapter, we derived in Equation 2.23 a naive OL algorithm to
compute the matrix-multiplication. We restate it here:

MMMm,k,n — (sz X (Kmxl & len)) o (L?k X Ikn) (31)

Parsing this expression, we observe the two following distinct stages: first, the first input matrix
is transposed and second, an accumulation of Kronecker products is performed. A direct mapping
of the algorithm to code would therefore yield the code in Figure 3.3 which is different and worse
than the expected code for this naive algorithm (presented earlier in Figure 2.3). This extra stage is,
in a sense, the price paid by the expressiveness of OL. In this subsection, we describe a rewriting
system that fuses data reorderings into the subsequent computational loops.

The loop merging process is a rewriting system that can conceptually decomposed into two
steps. First, the OL expressions are converted into > -OL, which introduces explicit loops. For
example, after the conversion into » -OL, the right-hand side of Equation 3.1 becomes:

SO DD Stk o Pro(Glhih) x GlhER)) | o (L X I

0<p<k 0<i<m 0<j<n

40 Chapter 3. Library Core Generation

for (t=0; t<m*k; t++)
TL(%k)*m + /K] = A[t] ;
for (p=0; p<k; p++)
for (i=0; i<m; i++)
for (J=0; j<n; j++)
CLi*n+j] += T[p*m+i] * B[p*n+j] ;

FIGURE 3.3: Direct mapping of Equation 3.1 to code. The matrix A is explicitly transposed to a
temporary matrix T, a step that could be merged with the subsequent computation and yield more
efficient code shown in Figure 2.3. The purpose of the > -OL rewriting system is to perform this
kind of loop merging automatically.

Then, a set of rewriting rules propagates the data shuffles (here: (LZ’"L’€ X I,m)) into the sums
which represent loops. In our example, we get:

DD D ST 0 Pro(G(hip i) x GlhptEm)). (3.2)

0<p<k 0<i<m 0<j<n

In summary, the OL tensors, which expressed the structure of the algorithm, are converted
into) -OL iterative sums and indexing. Within these sums, the data points are first gathered us-
ing index mapping functions, multiplied together and scattered into the result array. Note that, in
Equation 3.2, the triple loop nature of the algorithm becomes apparent.

Next, we provide a more formal description of > -OL and loop-merging.

Definition.) -OL is composed of three components: index mapping functions, parametrized
operators, and iterative sums.

Index mapping functions are functions mapping interval into intervals. In this thesis, we will
only use three of them, the identity +*, the stride 4, and the transposition ¢. Let I, denote the integer
interval {0, ...,n — 1}, then

R e A

hEST s Ty — Ly i b+ s,

E;ﬂk_)mk ¢ Lok — Lo L%J + k(i mod m).

The stride index mapping Ay, s strides the input by a factor s starting at b. The transposition is the
permutation underlying the transposition operator L introduced in Equation 2.3.

Parametrized operators are operators whose definition depends on an index mapping function.
We will define three of them: the gather G(f), the scatter S(f), and the permutation perm(f). We
define here arity-(1,1) parametrized operators (i.e., parametrized matrices); higher-arities paramet-
rized operators follow. Let f9=" be an index mapping function from I; into I and let e’ be the ith

4For backwards compatibility with legacy notations, the symbol of the identity index mapping is an ¢ without dot
[Franchetti et al., 2005].

3.1. Library Structure Derivation 41

canonical basis vector of C™, then

To give the reader some intuition, consider a simple example where one wants to extract d = 2
data points at stride s = 4 among a set of » = 8 points. In) _-OL, this translates to a gather operator
which corresponds to a simple rectangular matrix:

10 000O00O0O0

G(his®) =
00001000

If the data points are gathered at the same stride but are also offset by b = 1, we get:

01 00O0O0O0CO

G(hy®) =
’ 000O0O0OT1O0TO0
The last component of > -OL is the iterative sum, denoted with the usual > symbol. Sums are
indexed over an interval and express the concepts of loops and iterations. Formally, we define for a
series of arity-(1,1) operators A; and a series of arity-(2,1) operators B;:

7 [

Observe that the original definition of iterative sums [Franchetti et al., 2005] guarantees that the
different A;x are non-overlapping and that therefore, the resulting iterative sum is a convenient
mathematical representation that does not incur any additional computational cost. We do not take
such a view in our definition and stick with the mathematical definition. We therefore default the
optimization of useless sums onto the compiler.

Rewriting OL into > -OL. The purpose of > -OL is to be an intermediate language between
OL and imperative code. In this paragraph we explain how to transform OL expressions into > --OL
expressions.

As we have seen earlier, the main difference between OL and > -OL is that tensors are converted
into iterative sums which represent loops. The transformation from one into the other is done by
parsing the OL expression tree top down, recursively matching and replacing subtrees with the
parametrized > -OL templates listed in Table 3.1.

Simultaneously with the introduction of loops that tend to complicate the expression, other sets

42 Chapter 3. Library Core Generation

Iy @ AT77 = 3" S(hi ™) 0 Ao G(hg ™) (3.3)
0<i<m
AT @I, = > S(hy ™) 0 Ao G(h ™) (3.4)
0<i<m
Py @A™ R o N7 S () 0 Ao(G(RE, ™) x GR,T)) (35)
0<i<p
AR QP = > S(hEPE) 0 Ao(G(RP™) x G(RY,T™)) (3.6)
0<i<p
AT N Ao(G(hy, ™) x Glhi,) (3.7)
0<i<p
AT IR QR, = > Ao(G(RILTP™) x G(RI™) (3.8)
0<i<p
Kpuq @ A™7F = 3" N S(h P 1) 0 Ao(Ghin, (™) x G(h], ™) (3.9)
0<i<p 0<j<q
AR QK g = > > S(hip P) 0 Ao(G(R ™) x G(h M) (3.10)
0<i<p 0<5<q
Kqu — Kqu ® Pl (3.11)
R, — R,® P, (3.12)

TaBLE 3.1: Rules to convert OL to > -OL. Depending on the superscripts, A is assumed to be
either a (1,1)-operator from C? into C" or a (2,1)-operator from C™ x C™ into C*

()OB%(ZJAJ-OB) (3.13)
Bo(z A,)%(Z.BOA-) (3.14)
(AxB)o(CxD)— (AoC) x (BoD) (3.15)
S(f1) o S(f2) = S(fio f2) (3.16)
G(f1) o G(f2) = G(f20 f1) (3.17)
G(f) operm(p) = G(po f) (3.18)
perm(p) o S(f) = S(p~" o f) (3.19)

TABLE 3.2: > -OL loop merging rules. Assume A and B are operators, C and D are operators
which can be composed to A and B (they need to have compatible signatures), f, f1, f2 are index
mapping functions, and p is a bijective index mapping function.

3.1. Library Structure Derivation 43

I, — perm(z .
L — perm(£k—mk) (3.21)
(é;cnk—wnk)—l N [mk—)mk (322)
ka%mk ° hz_?lmk N h?,?nmk (323)
Wy TN o hp N s hEN (3.24)
— 1 .
o1 — .
f f 3.26
10 — .
f 3.27

TaBLE 3.3: >_-OL index simplification rules. f is an arbitrary index function.

of rewriting rules are applied to simplify the expressions, notably the loop merging rules (Table 3.2)
and the index mapping simplification rules (Table 3.3). The rewriting system is designed to be
confluent, which means that the order of application of the rules does not have an impact on the
final outcome (see [Baader and Nipkow, 1998] for more information on rewriting systems).

As an example, we derive the optimized > -OL expression in Equation 3.2 from the initial naive
OL algorithm (in Equation 3.1). The steps are annotated with the rewriting rules used:

(R ® (Kmx1 ® Kixn)) o (L™ x Irn)

= (O] (Kmx1 @ Kixn) 0 (G(hpmt™) x G(hpt™))) © (perm(£*7™) x perm(:*"**")) @7).(321)
0<p<k

— Z (Kimx1 ® Kixn) 0 (G(Z}C”kﬂmlC o h;izfm) X G(zk"”k” o hg,jf")) (3.13), (3.15), (3.18)
0<p<k

= > (Kmx1 ® Kixn) 0 (G(hy3*™) x G(hypt™)) (3.23),3.27)
0<p<k

= > (D> S(hiA™) 0 Kixn o (G(hix™) x G(hgy'™))) o (G(hyi ™) x G(hpt™)) 39)
0<p<k 0<Zi<m

— Z Z SR ™) 0 Kisn 0 (GRS 0 hIT™) x G(hi '™ 0™ 7™)) (3.13), (3.15), (3.17), (3.25)

0<p<k 0<i<m

= 30 3 3T ST e ki) o Pro (G(AYE 04" X Gl o hiTT))
0<p<k 0<i<m 0<j<n (3.11), (3.13), (3.15), (3.17), (3.24), (3.27), (3.25)

= > 3T DT ST 0 Pro (G(RiTE) X Glhy i) (3.24), (3.27)

0<p<k 0<i<m 0<j<n

The final expression shows various properties of > -OL.: it is compact, mathematical, declarative
and close to imperative code but it is still point-free (no references to the input and output arrays).

3.1.2 Recursion Step Closure

The computation of the recursion step closure is probably the most critical step of the library core
generation. It was first introduced in the context of library generation for linear transforms by

44 Chapter 3. Library Core Generation

[Voronenko, 2008] who recognized that » *-SPL could be used not only to manipulate codelets but
also purely symbolic expressions. In this thesis, we extend the concept and derivation to OL and
will therefore present it using a matrix multiplication library as example.

The recursion step closure derivation is the set of mutually recursive functions necessary to “ef-
ficiently” implement the target interface. The recursion step closure is derived automatically using
a rewriting system expressed in) _-OL which identifies the auxiliary functions needed and also de-
rives their implementations. The resulting set of mutually recursive functions depends on both the
actual algorithms used and the platform parameters set. Efficient means that it minimizes the num-
ber of data reorderings needed to compute the target functionality. In many aspects what is really
performed during the computation of the closure is loop merging across function prototypes. We
note that in some cases (Prefetching, TLB optimizations), the literature suggests that some copying
of the data actually boosts performance ([Goto and van de Geijn, 2008; Temam et al., 1993]). This
could be modeled in our framework but is not implemented in this thesis.

3.1.2.1 Example

We first explain the closure computation with an example. Assume we again want to create a
recursive matrix-multiplication library which performs C' = AB where the matrices dimensions
are m x k and k£ x n and all matrices are tightly packed in a row-major order. The associated
interface is:

MMM(int m, int k, int n, double*x A, double*x B, doublex C); ‘

The pseudocode of a blocked implementation is given on the left column of Figure 3.4a. Since
matrices have to be tightly packed to fit the interface, explicit copies need to be introduced to
“compact” blocks that are scattered in memory into contiguous buffers, so that the same function
can be called recursively. These copies are a direct consequence of the chosen interface. To optimize
this code, we start by extracting the body of the loop and “outlining” it; we will call this new
auxiliary function T (left column of Figure 3.4b). While this intermediary step does not in itself
remove inefficient copies, it reveals that T is actually a performing a matrix multiplication, only
on matrices that are scattered in memory. Therefore, blocking could be applied again, yielding a
self-contained recursive implementation of T (left column of Figure 3.4c). Note that there is not a
single explicit copy left in this optimized version.

Using > _-OL, the exact same optimization can be derived automatically as we sketch in the right
columns of the figures. In all three figures, the > -OL rule in the right column precisely specifies
the imperative code in the left column. In the right column of Figure 3.4a, we show the smallest
base case for the matrix-matrix multiplication and a) -OL translation of the OL matrix blocking
algorithm of Equation 2.19. The loop body is exactly the argument S, o MMM oG x G of
the nested > "-OL sums. Note how in Figure 3.4a, the gathers and scatters are performed explicitly
in the corresponding code. Pulling out the loop body as T yields Figure 3.4b. Using a simple

3.1. Library Structure Derivation 45

MMM(m, k, n, A, B, C){ MMM, 11— P

ifm=k=n=1
C[0] = A[0]+B[O] MMMy, k,n —
m/my n/ny k/ky,

else
determine mb nb kb Z Z Z S..oMMM, kyn, ©G... X G...

loop i =0 .. m/mb i=0 j—0 p=0
loop j =0 .. n/nb
loop p =0 .. k/kb (~)

Ab <- submatrix(A, -..)

Bb <- submatrix(B, -..)

Cb <= 0 MMM
MMM(mb, kb, nb,Ab,Bb,Cb)

submatrix(C, -...) += Cb}

(a) Naive version. Inefficient explicit copies are needed to collect blocks scattered in memory into contiguous buffers.

MMM(m, k, n, A, B, C){ MMM, 1, — P,
Icho]= : ;[8];8%0] m/my, n/ny k/ky
else MMM, 5, — Z Z Z Ty kpomp,...
determine mb nb kb i=0 j=0 p=0
loop i =0 .. m/mb T N
loop j =0 .. n/nb 5Ky s
loop p = 0 .. k/kb { S..oMMM,,, kyn, ©G... X G,

T(mb,kb,nb,A,B,C,...)}

T(mb, kb, nb, A, B, C, ...){

Ab <- submatrix(A, -...)

Bb <- submatrix(B, -..) MMM 4] T
Cb <- 0 e
MMM(mb, kb ,nb,Ab,Bb,Cb)

submatrix(C, -..) += Cb}

(b) Intermediate step. The body of the loop has been put in a different function that we call T.

MMMgm, k: n,_A, ?,)4 MMM, 11 — P
ifm=k=n=1)y /iy Kk
C[0] = A[01*B[0] "
else MMM, k,n — Z Z Z LRI T
determine mb nb kb =0 j=0 p=0
legp 0 =0 - mAm T11,1,.. +S..0PioG.. . xG..
loop j =0 .. n/nb B
loop p =0 .. k/kb Ty by, =
T(mb,kb,nb,A,B,C, D} mp /My Ny /Nbo kb /Ko
Z Z Z Tonpg kpaimon,-.:
T(mb, kb, nb, A, B, C, ...){ i9=0 73=0 p3=0
ifmb =kb =nb =1
CLi*n+j]+=ALi*k+p]*B[p*n+j];
else (/—\V
determine mb2 nb2 kb2
loop 12 = 0 .. mb/mb2 MMM - T
loop j2 = 0 .. nb/nb2
loop p2 = 0 .. pp<kb/kb2

T(mb2,kb2,nb2,A,B,C, ...)}

(c) Optimized version. The former body of the loop (T) is recognized as a function that multiplies matrices scattered
in memory (i.e., with optional leading dimension). Not a single explicit copy is needed anymore.

FIGURE 3.4: Recursion step closure. Three different recursive matrix multiplication implementations are
displayed, simultaneously in imperative code (left) and in > _-OL (top right). The corresponding static call
graphs are given (bottom right). The closure derives the optimized version (c) from the naive one (a).

46 Chapter 3. Library Core Generation

derivation, one can now discover a new self-contained rule for T (all parameters are omitted for
clarity):

T = SoMMMo GxG
—=So(}> > SoMMMo GxG)o (GxG)
=333 (SoMMMo G x G)

=227

Indeed, applying the MMM rule of Figure 3.4a inside the definition of T and rewriting using
Table 3.2 and Table 3.3 yields an optimized algorithm (right part of Figure 3.4c) for T that does
not require explicit copies. The resulting closure consists of both the functions MMM and T.

This example illustrates how the recursion step closure can be derived automatically so that the
mutually recursive functions that compose the library avoid explicit data movements. This optimiza-
tion should be of critical importance for a number of applications that are forced to reuse existing
performance libraries because redevelopment is expensive. For instance, the quantum chemistry
software NWChem [Bylaska et al., 2007] uses code that calls a general matrix-multiplication but
precedes and succeeds the call by transpositions which seriously impacts the performance. Using
the above procedure, the development effort would be reduced and these transpositions could be
folded into the library for potentially major performance gains.

3.1.2.2 General Procedure

We provide now the general procedure to derive the recursion step closure. Extending the original
recursion step closure algorithm [Voronenko, 2008] for OL is relatively straightforward. More
precisely, the preceding and following layers of the compilation stack were engineered so that this
step would be almost exactly compatible with the existing procedure in the linear transform library
generator.

The input is a functionality F and a set of OL rules R. The output is a set of) -OL expressions
that characterizes all the recursion steps required in the generated library and a set of > -OL rules
for these recursion steps that capture all possible recursions.

Figure 3.5 presents the global procedure for computing the recursion step closure in detail: one
needs to try all OL rules on each recursion step which can optionally produce new recursion steps.
When no new recursion steps are found, the closure is reached.

We provide now some additional details for the application of rules and possible generation of
new recursion steps. As depicted in Figure 3.5, it happens in a loop of three successive steps:

1. Application of a given OL breakdown rule to a recursion step.

2. Rewriting of the OL formula into a _-OL formula using Table 3.1, Table 3.2 and Table 3.3.

3.1. Library Structure Derivation

47

Functionality F Set of OL rules R

|

no new
rstep

no

l

Initiate rsteps ={F}
recursions = @

\

For all

rsteps

no new
For all rule

OL rulesin R

l

OL rule
applicable to
rstep?

lyes

1. Apply the OL rule
2. Rewrite into Z-OL and

add the result to recursions

3. Extract new recursion steps

and add to rsteps

I

!

rsteps and recursions

FIGURE 3.5: Derivation of the Recursion Step Closure.

3. Extraction of the recursion steps.

The last step is explained next.

3.1.2.3 Recursion Step Extraction

The recursion step extraction is responsible for the generation of new recursion steps directly from
>-OL formulas. For example, in Figure 3.4, the additional recursion step that is automatically
derived is T. Since the overall goal is to avoid data permutations, new recursion steps are obtained
by fusing existing recursion steps with adjacent data accesses (scatters and gathers). In > "-OL,
this process happens in two phases: first, the new recursion steps are selected using a rewriting
system and second, the new recursion steps are parametrized so that they can be turned into proper

operators.

48 Chapter 3. Library Core Generation

{A}oG — {AoG} (3.28)
{A} o (GxG) = {Ao(GxG)} (3.29)
Sof{A} — {So A} (3.30)

TABLE 3.4: Recursion Step Selection Rules.

Recursion step selection. The first stage of the extraction marks the parts of the OL formula that
are to be encapsulated into their own recursion steps. In practice, this is done by a simple rewriting
system whose target is to locate clusters comprised of functionalities and their corresponding data
access. To represent these clusters, we introduce special delimiters inside > -OL that we denote by
curly brackets {} and that mark the boundaries of the future recursion step.

For example, we consider the full >_-OL expression corresponding to the rule displayed to the
right of Figure 3.4a. We first initiate the rewriting process by enclosing all functionalities within the
brackets and then rewrite using the rules of Table 3.4:

>3 Y s @ h) o { MMMy s, § o (GO @ B) x Gl @ b))

imy,1 jng,1

N Z {S(hmbﬁm ® hnb—vn) ° MMM’mkaanb O(G(hmbﬁm ® hkb%k) % G(hkb—»k ® hnb—vn))}

imy,1 Jjnp,1 imyp,1 pkp,1 pkyp,1 Jjny,1

As it can be seen, all nearby data permutations are pulled inside the newly delimited recursion
step. Observe that it prefigures the recursion step that we called T in Figure 3.4b.

Recursion step parametrization. The recursion step selection marks a subexpression of a > -
OL expression but does not define a proper recursion step yet since no binding information has been
provided. In an imperative language, the difference between the two would be understood as the
difference between a macro and a function.

The parametrization creates a proper recursion step out of a given > "-OL formula. It does so by
1) replacing all expressions by new variables and 2) enforcing > -OL constraints between the new

variables. We explain the procedure continuing with our previous example.
First, all existing variables except constants are replaced by fresh ones:

{S(hulﬂuz ® hu4%u5) o MMMU«?,us,ug O(G(humﬂun ® huls?um) X G(huleﬁun ® humﬂuzo))}.

us,1 ue,1 u12,1 u1s, u1s,1 u21,1

Second, for the above expression to be a valid > -OL expression, compositions must have do-
mains and ranges that match, which creates additional constraints. The first composition yields two
equalities, one for each dimension: u; = w; and uqy = ug. The second composition yields four

3.1. Library Structure Derivation 49

equalities (two dimensions times two inputs): w; = u1g, ug = u13, ug = U1g, and ug = uqg.
We resolve the system by substitution and we can therefore properly define the auxiliary recur-
sion step T

T

U2,U3,Us5,U6,UT7,US,U9,ULT,U12,U14,U15,U1T7,U18,U20,U21 ~—

S(h 7" @ hET™) © MMM,y o G @ RT) x GRS @ i),
(3.31)

Observe that the recursion step T might seem complicated at first glance but it is nothing more
than a more general matrix multiplication that operates on matrices scattered in memory. As seen
in the above example, the advantage to using T is that it is naturally self-contained.

3.1.3 Hot and Cold Partitioning

The hot and cold partitioning of the parameters is the second block of the library structure derivation
in Figure 3.1. It analyzes the closure and partitions the different recursion step parameters into two
groups that each need to be initialized simultaneously.

Indeed, recursion steps are actual mathematical functions but traditional imperative languages
like C are too restrictive to capture their functional nature. In particular, one could want to curry
them so that two different recursion steps share some precomputations when some of their param-
eters are similar. Therefore, object languages such as C++ are more suitable to describe recursion
steps since they directly map to classes.

In the context of adaptive library generation, one precomputation that is interesting to share is
the search. Indeed, some parameters, called the hot parameters (following [Voronenko, 2008]), do
not impact the performance so it is interesting to do the search without taking them into account.
By opposition, the parameters that influence the search are called the cold parameters.

As illustrating example, we consider the recursion step MMM, ;. ,, and its implementation
MMM(m, k, n, A, B, C) from Figure 3.4a. Obviously, the algorithm choice can heavily de-
pend on the sizes of the input matrices m, k and n, which therefore should be cold. Simultaneously,
the performance is oblivious to the actual values of A, B and C, which are therefore hot>. From
a functional language point of view, this observation means that MMM(m, k, n)(A, B, C)is
the “natural” curried form of MMM(m, k, n, A, B, C) since it makes sense to search for the
best matrix multiplication of some size regardless of the location of the matrices.

A possible C++ implementation of the curried form is given next (the actual implementation of
the search mechanisms is delayed until Section 4.2).

%In fact, the pointers are so hot that they have been entirely implicit until now. Note that this is not exactly true if the
target code is vectorized since proper alignment is required. However, under the assumption that the pointers are aligned,
the above assumption is reasonable.

50 Chapter 3. Library Core Generation

cl ass MMM{
int m, k, n;
MMM(m, k, n);
compute(doubl ex A, doubl ex B, doubl ex C);

}:

The hot/cold partitioning is responsible for automatically assigning all recursion step parame-
ters a category, either cold or hot. We use the iterative algorithm proposed in [Voronenko, 2008],
which also has a precise description. Basically, considering the closure as a whole, the algorithm
maximizes the number of cold parameters, under the following constraints:

1. Pointers are hot,
2. Parameters that depend on loop variables are hot, and
3. Parameters that depend on hot parameters are hot.

Note that while hot/cold partitioning might have been seemed simple for MMM,,, ;. ,, alone,
other recursion steps are more challenging. For instance, one can verify that the correct partition
for the recursion step T in Equation 3.31 according to the above rules is T(u2, u5, u7, u8,
u9, ull, ul4d, ul7, u20)(u3, u6, ul2, ul5, ul8, u2l, A, B, C).

3.1.4 Library Plan

The last step in the library structure generation (Figure 3.1) is the generation of the library plan
which is a data structure that entirely describes the library. All recursion steps are successively
described in details: their formula, their parameters partition and their rules are specified. Rules
are themselves characterized by their conditions of applicability, their degree of freedom and their
associated formulas.

In Table 3.5, we show the library plan corresponding to our running example. Note that, for
readability, we use the C function call notation to bind variables to recursion steps parameters but it
is not exactly proper since it hides the hot and cold partial evaluation.

3.2 Library Implementation

The library plan contains all recursion steps and makes explicit how they recurse into each other
using > -OL. This section explains how to turn the plan into code, which requires three main tasks
to be performed for each recursion step (Figure 3.1): First, the code corresponding to the recursions
needs to be generated (left block); second, one must determine and generate base cases to terminate
the recursions (right block); finally, the recursions and the base cases need to be integrated into a
complete library.

3.2. Library Implementation 51

RS1
Formula: MMMy, vy ,us
Cold Parameters: w1, uz, us
Hot Parameters: input and output pointers
Rule 1: MMM-Base
* Applicability: vy = 1, us = 1,and ug = 1
* Freedoms: none
* Formula: P,
Rule 2: MMM-Block
* Applicability: w3 > 1, u2 > 1,0ruz > 1
* Freedoms: f1 € divisors(u1), f2 € divisors(uz), and f3 € divisors(us)
* Formula: Sou)/t STus s 522002 RSD(us, us, f1, fa, f3,u1, Uz, Uz, us, if1, 5 f3,if1, pf2, pf2, 5 fs)
RS2
Formula: S(hY77*? ® hzgj%) 0 MMM, ug ug ©(G(hy T 71" @ hyB 7)) x G(hyS 717 @ hy? 71'20))

ug,1 ui2,1 uys,1 u1g,1 ug1,1

Cold Parameters: u2, us, U7, Us, U9, W11, 14, U17, U20
Hot Parameters: us, us, u12, u1s, u1s, u21, input and output pointers
Rule 1: MMM-Base

* Applicability: u7 = 1,us = 1,and ug = 1

* Freedoms: none

*Formula: S(h,, 1% @ hy %) 0 Pro (G(hy [@ hy 7U34) x G(hy 147 @ hyM20))
Rule 2: MMM-Block

* Applicability: m > 1,k > 1,orn > 1

* Freedoms: f1 € divisors(ur), f2 € divisors(us), and f3 € divisors(ug)

* Formula: Z?;éfl Zjiéfg ZZi{)b RS2(U2, us, f17 f2, fg, U111, U14, W17, U20,

us + if1,ue + jfs, w12 + if1, urs + pfe, uis + pfa, u21 + jf3)

TABLE 3.5: Library plan corresponding to the closure in Figure 3.4c.

We start this chapter by describing the >"-OL compiler which is used to compile > _-OL expres-
sions into a C-like internal language that we simply call “code.” Note that our target language, C,
C++, or Java, is other compilers source language, which means that we leave other compilers carry
the library the last mile, from source code to byte code®. We then explain in details the base case
generation procedure and conclude with an overview of the source-to-source optimizations that are
performed in the compiler.

3.2.1 Sigma-OL Compiler

The > -OL compiler is responsible for the transformation of) -OL expressions into pieces of
code. One of the characteristics of the operation is that it requires to go from “point-free” to “point-

® Attempts have been made to actually generate assembly directly from Spiral but there is great hassle and actually
little benefit in doing so since most local optimizations are already performed well by optimizing compilers. Global
optimizations, on the other hand, are carried out more efficiently if they had it been done earlier, higher up inside Spiral.

52 Chapter 3. Library Core Generation

wise”’, which means that the data arrays that the functions were implicitly working on need to be
explicited. The overall task is performed using parametrized code templates that gradually replace
the mathematical expressions in the) -OL expression tree top-down. Some of these templates are

presented in Table 3.6.
As example, consider the following > -OL expression from the rule in the right column of
Figure 3.4a:

m/my n/ny k/ky

S S S @) o MMM, oG @ R x GURSE @ 1),
=0

pkp,1 pkp,1 jnp,1
j=0 p=0

When compiling it, the input and output arrays A, B and C are reintroduced and the following
code is produced:

for (int 1=0;i<m/mb;i++)
for (int j=0;j<n/nb;j++)
for (int p=0;p<k/kb;p++){
for (int r=0;r<mbxkb;r++)
ApLr1=AL(i*mbx*k)+p*kb+(r/mb)*k+(r%mb)];
for (int r=0;r<kbxnb;r++)
Bp[r1=B[p*kb*n+j*nb+(r/nb)*n+(r%nb)];
for (int t=0;t<mb*nb;t++)
Cp[t]=0;
mmm(mb, kb ,nb,Ap,Bp,Cp);
for (int r=0;r<mbxnb;r++)
CLi*mb*n+j*nb+(r/nb)=n+(r¥%nb)]+=Cp[r];
}

Observe how the recursive call to MMM in > -OL is transformed into a function call to mmm
in the imperative code®.

3.2.2 Base Case Generation

Besides the implementation of recursions, the compiler is also responsible for selecting which base
cases to implement and compiling them properly. We explain this process using the MMM, ;. ,,
recursion step Table 3.5 but the method is generally analogous to the one used in [Voronenko, 2008]
for transforms.

A list of sizes is first specified by the user for the main functionality; for instance, (m, k,n) €
{1,2}x{1, 2} x{1,2}. This triggers the offline search system to search for the best implementations
of MMM, ; 1, MMM, ; 2, MMM, 2 ;, MMM, 22, MMMy ; 1, MMM ; 2, MMM3 1,
and MMM, 5 », using the set of rules that have been enabled inside the algorithmic pool.

"These expressions are quite common in the Haskell community.
8Again, we use a C call notation which is not entirely proper since mb, kb and nb are cold parameters that therefore
need to be initialized before the hot parameters.

3.2. Library Implementation 53

Operator S Code
arity (1,1) code for y = S(x)
G(fdﬁr) for (i=0; i<d; i++)
yl[i]l = x[f(i)];
S(fdﬁr) for (i=0; i<d; i++)
y[f(i)] += x[i];
AoB <code for t = B x>
<code for y = A t>
Socicr Ai for (i=0; i<k; i++)

{<code for y = A_i x>}

arity (2,1) code for y = S(CC17:C2)
P y[0] = x_1[0] * x_2[0];
ZO</'<kAi for (i=0; i<k; i++)

{<code for y = A i1 (x_1, x_2)>}

arity (2,2) code for (yi1,y2) = S(z1,z2)
AxB <code for y 1 = A x_1>
<code for y 2 = B x_2>

TABLE 3.6: Templates to translate > -OL to code. A and B are assumed to be generic operators.

In fact, these implementations are also inserted into all the other recursion steps as well, since all
of them are variants of MMM. In our example, it means that eight base cases would also be gener-
ated for T, 1, n,..... Note that, in particular, if a recursion step is looped, then the implementations
naturally become looped base cases.

For instance, assume that the compiler is building an implementation for MMM, ; 5. Depend-

ing on the available rules, one of the option is to break down to the naive matrix multiplication from
earlier:

Z Z Z S(h%:é’,l) oPyo (G(h’llJ:;fl) X G(@;ﬁé‘@))

0<p<10<i<20<5<2

After replacement by the parametrized templates from Table 3.6, the rewriting yields code that
is functionally correct but is clearly not optimized (Figure 3.6).

This source code and the other alternatives to implement MMM, ; » are then compiled using
an external optimizing compiler. They are then timed on the target platform and only the fastest
implementation remains in the library®.

In practice, external optimizing compilers do not provide the best performance for code such

®Actually, one is not forced to do this selection stage offline: the search mechanism can entirely support multiple
implementations of the same base case and automatically search for the fastest at runtime.

54 Chapter 3. Library Core Generation

for (p=0; p<l; p++)
for (i=0; i<2; i++)
for (g=0; j<2; j++) {

for (q1=0; ql<l; ql++)
tl[gl] = A[i+p+ql];

for (g2=0; g2<1; g2++)
t2[q2] = B[p*2+j+q2];

t3[0] = t1[0] = t2[0];

for (g3=0; g3<1l; g3++)
C[2i+j+q3] += t3[q3];

FIGURE 3.6: A base case for MMM, . ,, that has not been yet optimized. It implements
MMM, ; ». The seemingly “extra” for loops correspond to the gathers and the scatters
(Table 3.6).

as the one that comes directly out of the rewriting stage. We therefore pipe the result into our own
source-to-source optimizing compiler which is the topic of the next subsection.

3.2.3 Source-to-Source Optimizer

Traditionally, there has been two complementary strategies to obtain performance in computation
kernels: on one hand, recursive algorithms designers tend to fully unroll their base cases in order to
reduce the control flow overhead and increase the instruction level parallelism of the computation.
On the other hand, experts writing iterative algorithms usually try to develop small kernels that
function at peak performance inside a loop by carefully allocating the computing resources [Agner,
2010; Intel, 2009c].

The source-to-source optimizer is the component of the library generator that ensures that both
types of code can be generated and are efficient. It produces better code directly from code by
successively applying a series of optimizations. Note that the source-to-source optimizer does not
need to perform the entire palette of optimizations since it is ultimately backed up by an external
optimizing source-to-bytecode compiler. Therefore, it only makes sense to implement those op-
timizations where either we possess more information than compilers or where compilers do not
handle properly the kind of code we generate.

The optimizer does not attempt to perform any advanced restructurings since doing so would
defeat the purpose of having a separate algorithmic space search mechanism. In particular, op-
timizations such as vectorization or parallelization are expressed and performed in the algorithm
space (see next section) and are therefore already performed during the > "-OL compilation stage.

This section briefly overviews the various optimizations that are performed. These are fairly
common in the compiler literature (see, for instance, [Allen and Kennedy, 2002]) and in prior work
on library generation [Frigo, 1999; Rizzolo and Padua, 2004; Whaley and Dongarra, 1998; Xiong,
2001].

3.2. Library Implementation 55

if (m==2) && (k==1) & (n == 2)) {
doubl e al39, al40, al4l, ald2, s45, s46,
s47, s49, sb0, sb2, s53, sb5;
s45 = A[O];
s46 = B[O0];
s47 = (s45 * s46);
al39 = C[0];
s49 = A[1];
s50 = (s49 * s46);
al40 = C[2];
sb2 = B[1];
sb3 = (s45 * sb52);
al4l = C[1];
sb5 = (s49 * sb52);
al42 = C[3];
C[0] = (a139 + s47);
C[2] = (a140 + s50);
C[1] = (al141 + s53);
CI[3] = (al142 + sb5);
return;
}

FIGURE 3.7: An unrolled base case for MMM,,, ;. . It implements MMM, ; > and has been
generated by Spiral (which explains the seemingly random naming of the variables). Note that the
external 1 statement constrains the applicability conditions of the base case to what it can really
handle.

Basic optimizations. The code presented above in Figure 3.6 has obvious shortcomings: sin-
gle iteration loops and unscalarized arrays (which reduces the instruction level parallelism). The
optimizer thus performs array scalarization on all internal arrays and unrolls all loops that have a
constant number of iterations. The compiler also uses common subexpression elimination to mini-
mize the number of index operations done. Whenever needed, it also converts the code to the single
static assignment form (SSA). For our previous code, the final result can be seen in Figure 3.7.

Advanced optimizations. Basic optimizations are sufficient to reproduce the kind of code
that is generated by unrolling recursions, that is, vanilla base cases. However, the next section
will introduce a new operator that captures an entire loop nest. Plugging back base cases inside
them therefore produces looped base cases, which is code that is traditionally thought of as being
iterative. An additional set of optimizations are then required: loop induction variable manipulations
(detection, fusion, associated strength reduction and rematerialization) and loop invariants hoisting
(including index computation minimization).

Code generation. Ultimately, code is generated from the library core using a modular unparser.
Efficient online search and precomputation for linear transforms suggest a language that supports
function closures. For this reason, we target C++° as the original system for transforms. Further, we

©0object-oriented programming is equivalent to function closures.

56 Chapter 3. Library Core Generation

support library generation in Java, which is widely used, mainly for its ease of access and security
features.

Note that, despite that object-oriented languages are highly preferable for use with online search
mechanisms, some search mechanisms have been ported to support simpler languages such as C.

3.3 Parallelism

One goal of the library generator is to leverage the on-chip parallelism which means that the gener-
ated code should be threaded and vectorized. We capture these optimizations at the OL level which
is the “right” level of abstraction since it is upstream of the recursion step closure. The closure can
then automatically discover and formalize the additional recursion steps that need to be introduced.

Note that this choice of capturing vectorization and parallelization as just any other algorithm
in our system has an important consequence: since we start by producing additional recursion steps,
the profitability of vectorization and parallelization cannot be evaluated during the library genera-
tion. The decision of applying a given algorithm or not is left as a choice that is decided later by the
search mechanisms (which will be described in Chapter 4).

In order to capture parallelism in our framework, we introduce a new tool, the generalized tensor
for the OL notation. It can capture and manipulate loops of OL objects and logically flows from the
generalized tensor for the SPL notation introduced in [Voronenko, 2008]. Our notation is then used
to provide both parallelization and vectorization in a way that earlier work is leveraged, particularly
the vector and parallel compilers developed in [Franchetti et al., 2006a,c].

3.3.1 Generalized Tensor

The generalized tensor (GT) is an OL construct that serves the purpose of describing loop nests
(loops, loops of loops and so on) in a way that is functional (index free) to allow for easier handling
by the rewriting engine.

Rank-1 GT. Arank-1 GT captures a single > -OL loop:

k—1

GT(A,g,s,[k]) =) _S(si) o AoG(g) (3.32)

i=0

In this expression, A is the kernel, k is the number of iterations and s; and g, are scatter and gather
index mapping functions like the ones we defined before. The functions s and ¢ are defined in
the functional programming paradigm [Johnsson, 1985]: they are the A-lifted versions of s; and
g; which means, in classical terms, that while s; and g; are functions, s and ¢ are functions of
functions that map i to s; and g;. Since they have one unbound variable, we say that g and s are

rank-1 functions. Analogously, g; and s; are called rank-0 functions. In essence, GT(A, g, s, [k])
in Equation 3.32 expresses the sum in an index-free form, i.e., without the index variable s.

3.3. Parallelism 57

Ranks and downranks. We define the rank-k£ GT as an OL operator that can capture % nested
loops. The downranking rule converts a rank-£ GT into a loop of rank-(k — 1) GTs; arank-1 GT is
transformed into a simple loop.

To perform this operation, we introduce the bind operator that simply binds a variable inside a
function that has free variables. We write bind(f, i = j) to symbolize that all instances of 7 inside f
should be replaced by the expression j. To simplify further, we denote bind(f,i = i) as bind(f,1).

For example, downranking the rank-1 GT in Equation 3.32 yields:

k—1
GT(A, g, s, [k]) S0, S™ bind(GT(A, g, 5,). 1)
=0

Ed
—_

S(bind(s,4)) o bind(A, i) o G(bind(g, 1))

>
I
_ O

S(si) o AoG(g:)

Il
o

7

A rank-2 GT has to be downranked twice before it is entirely expressed as loops:

GT-Downrank(2)

GT(A,g,s, [k,) > i—obind(GT(A, g, s, [k]), /)

GT-Downrank(1)

52526 21 bind(bind(GT(A, g,5,[)), 1),)
= e g S(si) © Ao Glgij)

We specify the index of the loop variable to be downranked as an argument to the downranking rule.
Loop interchange. Since a GT represents a fully permutable loop nests, various loop trans-
formations can be applied. We describe here how to do a simple loop interchange to introduce the
reader to GT transformations.
Obviously, in our previous example, the loop interchange can be trivially achieved by down-
ranking in the other order; first with respect to k£ and then, with respect to ¢:

GT-Downrank(1)

GT(A,g,s, [k 0] S S bind(GT(A, g, s, [€]),7)

GT-Downrank(2)

> ig Y=g bind(bind(GT(A, g, 5,), 4). 1)
= Yy Y20 S(si5) © Ao Glgiy)

58 Chapter 3. Library Core Generation

The same transformation can be performed directly on the GT level with a direct loop inter-
change rule:

GT-Interchange
_—

GT(A,g,s, [k, 1) GT(A,g,s, [l k])

MMM using GT. While GT has been originally developed for the exclusive use with linear
transforms [Voronenko, 2008]*!, one insight of our research is that the GT theory is applicable
to more general operators, provided that the considered loop nest remains fully permutable. We
therefore present here the formulation of the matrix-multiplication blocking rules using GT.

To do this, we start by introducing the rank-% index mapping stride function hy, s 5, ... s, Which
is no more than a standard mapping with base b and stride s that is wrapped inside & loops with
vector strides sq, ..., si:

n—N

Possy,ssr 2 W1y s Ji) P> b+ si+ s+ + Sk
Observe that:

b,8,81,-+,5k b+5pJp;8,51,--,8p—1,Sp+1,--,5k

Using this function, the horizontal blocking of MMM, ;. ,, into a many panels (captured in
Equation 2.16) can be re-expressed as:

MMM, xn = GT(MMM,, /010> (Ro1,m/a @ ho1) X (ho1 @ ho 1), hotm/a @ hot,[a])-
Note that the notation exposes multiple mathematical properties of the matrix multiplication:

1. The operation is recursive in nature and requires a loop of « iterations.

2. Two inputs are coming in, as highlighted by the cross product x.

3. The two inputs and the single output are two dimensional, as highlighted by the tensor prod-
ucts ®.

4. The first input and the output (otherwise denoted as the matrices A and C) are dependent on
the loop since their index mapping functions are of rank-1. The block slice happens in the
external dimension (otherwise denoted as the height of the matrices).

For reference, we provide here the two other MMM blocking rules, that respectively cut the

"The reader that actually goes to the original reference might be puzzled by the description of the GT there. Indeed,
the formulation there is slightly different since it exposes the implementation of the lambda system inside the rewriting
engine. Because it is not our focus here, we choose to simply abstract it away using our bind functions.

3.3. Parallelism 59

Vector registers

vl

Vector operation
add v2, v0, vl

v2

FIGURE 3.8: A vector addition in the SIMD vector paradigm.

matrices in b vertical panels and in ¢ depth panels:

MMM, x,n = GT(MMM,,, 1./ s (ho,1 @ ho 1) X (ho1,k/6 @ ho,1)s ho1 @ ho 1, [0]),
MMMm,k,n — GT(MMMm,k,n/cv (hO,l X hO,l) X (h(],l ® hO,l,n/C)v hO,l & hO,l,n/cv [C])

3.3.2 \ectorization

We choose to abstract complex computing platforms behind coarse structural descriptions of ma-
chines that we call paradigms. This subsection presents how the single instruction multiple data
(SIMD) vector instruction paradigm can be harnessed using GT; the next subsection discusses the
shared memory paradigm. Observe that paradigms can be hierarchically composed: for instance, an
Intel Core2 Duo is characterized as a two-processor shared memory system (cache line is 64 bytes)
where both CPUs are 4-way SIMD vector units (in single precision floating-point mode).

Background. The SIMD vector paradigm models a class of processors with the following
characteristics:

e The processor implements a vector register file and standard vector operations that operate
pointwise: addition (Figure 3.8), multiplication, and others. The use of vector operations
usually results in a significant speed-up over scalar operations.

e The most efficient data movement between memory and the vector register file is through
aligned vector loads and stores. Unaligned memory accesses or subvector memory accesses
are more expensive.

e The processor implements shuffle instructions that rearrange data inside a vector register
(intra-register moves).

Most important examples of vector instruction sets are Intel’s SSE family, the newly announced
Intel extensions AVX, AMD’s 3DNow! family, Motorola’s AltiVec family including the IBM-
developed variants for the Cell and Power processors.

Automatic compiler vectorization is available in common optimizing compilers (e.g.:. GCC
[Naishlos, 2004], Intel Compiler [Bik et al., 2002]) but its applicability is limited to simple cases.
The reasons are that:

60 Chapter 3. Library Core Generation

1. The expressivity of many languages make it difficult to analyze the code and decide the le-
gality of some transformations, and

2. The underlying variability in the architectures makes it difficult to provide performance mod-
els to assess the profitability of the transformations.

Therefore, most performance libraries are still vectorized by hand as of 2010. It is usually done
either by directly programming in assembly or using vendor provided compiler intrinsics for C.

Vectorization in OL. Designing a mathematical framework for vectorization was one of the
original motivations to come up with the Kronecker product formalism [Johnson et al., 1990a].
Since the tensor product simultaneously expresses structure and data independence, SPL has a very
convenient way to describe perfectly vectorizable computation. The most important example is
A ®I, where A is any transform and v is the vector length. Vectorized code for y = (A ®1,)z can
be obtained by replacing every scalar operation in the code for y = A x by its corresponding v-way
vector instruction [Franchetti et al., 2006c].

OL mathematically extends the tensor product to multiple inputs and outputs, hence it is no
surprise that it can also describe vectorizable structures. The identity 7,,, however, has to be replaced
with the point-wise product P, 2. For instance, if A is an arity-(2,1) operator from C* x C™ into
C™, then A ® P, denotes the operator from CYF x C¥™ into C¥" that performs v interleaved As, i.e.,
the relationship between A and A ® P, is as for transforms before.

Overview of the implementation. The vectorization process in our framework is fully inte-
grated with the recursion step closure. It is performed in three steps:

1. Tagging and propagation of the loops that need to be vectorized,

2. Vectorization using either as-hoc rules or using the vector strip-mining GT rule that we intro-
duce, and

3. Implementation of the vectorized loops using vector operations.

Tagging. The first step is simply a mean to indicate the intent to vectorize a given OL construct.
For instance, if the target machine supports v-way vector instructions, a target functionality (e.g.
MMM) could be “tagged” with a simple mark:

—_—————
vec(v)

Propagation of the vectorization tag is assured by rules such a