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1. Introduction

1.1 General

1.1.1 Application of composites to naval surface ships

The use of fiber-reinforced polymer (FRP) composite materials in naval surface

ships has its roots in the effort of the marine industry to optimize ship designs in terms of

weight, damage tolerance, and cost. The aim is to construct the entire ship or parts of the

ship's structure as lightweight and corrosion resistant as possible, without compromise to

structural strength and durability, and at the lowest overall cost.

The application of FRP composites meets this challenge because certain types of

composites, such as glass-reinforced plastic (GRP), combine good mechanical properties

with low weight and excellent corrosion resistance. Studies show that a patrol boat (up to

55 m long and 300 tons displacement) made of GRP has a structural weight that is 10%

less than a comparable aluminum boat and more than 35% less than a comparable steel

boat [1-3]. For larger ships, like corvettes (-85 m long and 1200 tons displacement), the

structural weight savings could be as much as 30%, with a full-load displacement

reduction up to 21 % [2]. The lower structural weight allows naval ship designers to

increase the military payload and to achieve higher speed [1-5].

A key parameter in the assessment of FRP composite use in naval surface ships is

cost. In general, the construction cost of a composite patrol boat is estimated to be about

30% higher than of an equivalent steel boat [2]. On the other hand, a comparative

analysis conducted by Goubalt and Mayes [3] suggested that the operating cost of a

composite patrol boat is less than of a similar steel design, resulting in a lower life-cycle

cost. In particular, the reduced maintenance cost due to the corrosion resistance of

composites and the lower fuel consumption due to the reduced structural weight could

effectively mean a life-cycle cost of a composite patrol boat of 6% less than for an

equivalent steel boat [3]. For corvettes, life-cycle cost savings of up to 15% could be

achieved [2].



In surface ship building, FRP composites can be utilized for the construction of

both primary and secondary structures [1, 2]. A summary of these structures where FRP

composite materials can be applied is listed in Table 1 [1, 2].

Table 1: Ship structures for potential application of FRP composites [1, 2, 6].

Structure Classification Structure Type

Primary - Hulls and hovercraft skirts

- Superstructures

- Masts

- Propulsion systems (propulsors and propulsion shafts)

Secondary - Funnels and stacks

- Bulkheads, decks, doors and hatches

- Enclosures and shields

- Rudders and stabilizing flaps

- Machinery and engine components

- Engine and equipment foundations

- Heat exchangers and pressure vessels

- Piping

- Ventilation ducts

- Deck gratings

1.1.1.1 Material characteristics of glass fiber / vinyl ester composites used in naval

surface ships

The majority of composites used in marine applications are based on glass fibers,

with some exceptions in which carbon fibers are utilized either for local strengthening of

the structure or occasionally for the complete hull construction [1-3, 5-16]. Glass fibers

come in two main types: E-glass and S-glass fibers. E-glass fibers are typically used in

ship building, while S-glass fibers are used in the aerospace industry for special

applications requiring higher performance [17]. S-glass has approximately 35% higher

strength, better fatigue resistance, and better retention of mechanical properties at



elevated temperatures than E-glass [6, 18]. A summary of typical properties of E-glass

and carbon fibers can be seen in Table 2 [7].

Table 2: Summary of typical properties of E-glass and carbon fibers [7].

Tensile Tensile Ultimate
Density 1995 Cost

Fiber Material Strength Modulus Elongation
[g/cm3 ] [$/lb]

[MPa] [GPa] [%]

E-Glass (24 oz WR) 2.60 3450 72.45 4.8 1.14

Carbon-PAN 1.76 2415-4830 227-393 0.38-2.0 12

Relative to carbon fibers, E-glass is a material exhibiting high strength, low

stiffness and low cost [18]. Glass strands may be chopped into short lengths (5 mm to 50

mm) for direct use in spray-up laminating, or may be treated with an emulsion or powder

binder and bound together into a loose fabric with more or less random fiber orientation,

resulting in a material called chopped-strand mat (CSM) [4, 8]. "The grades of CSM

commonly used in ship fabrication have weights in the range 300 g/m 2 to 900 g/m 2', [8].

A variation of mat is the continuous stand mat, which has longer strands than CSM, and

thus possesses improved mechanical properties compared to CSM [18]. Glass strands can

also be combined to form rovings, which can be woven into a coarse fabric called woven

roving (WR). Laminates made of mat are only 33-50% as strong as fabric laminates of

comparable thickness [18].

WR material is usually of plain weave with a balanced or biased configuration.

Specifically, a balanced fabric has an equal distribution of fibers along the warp and weft

directions, while a biased configuration has an unequal fiber distribution in the warp and

weft directions, based on the desired properties of the final product. Weights of WR

commonly employed in hand or automated laminating of ship and boat hulls range from

200 to 900 g/m2, although weights up to 4000 g/m 2 may be employed [8]. As an example,

DF1400 WR of weight 1350 g/m 2 is used for the monocoque hull construction of the

Huon Class minehunting vessels of the Royal Australian Navy [19]. For marine structural

applications, a 50% glass fiber weight fraction is preferred for WR [17]. WR alternating



with layers of mat is also a common marine construction material, which is often referred

to as a pair [9]. The use of mat between consecutive plies of WR provides better

interlaminar shear strength in laminates than a pure WR configuration [6, 20]. As an

example, Duomat@ 1230 (1230 g/m 2, WR 920 and CSM 300, stitched) and Duomat@

1960 (1960 g/m 2, WR 1500 and CSM 450, stitched) are used for the construction of the

superstructure and deck skins, respectively, of the Huon Class minehunters [19].

In warship designs and large marine structures, mostly balanced or nearly

balanced WR and unidirectional tapes are utilized, while CSM is used scarcely [6, 21].

Most U.S. Navy construction uses only WR [6]. The use of a CSM layer on the outer

surface of the ship hull is recommended as a protective barrier from water ingress to the

underlying WR layers [ 11, 22]. According to Chalmers [4], "fibers can now be woven or

knitted into three-dimensional arrangements giving an almost unlimited choice of

strength paths, constrained only by the necessity for wetting-out the fibers with resin, and

by the cost of the initial loom set-up."

Polyester and vinyl ester are the most widely used resin systems in marine

applications [1, 6, 16, 17, 22]. Vinyl ester in particular is becoming very popular in

marine construction because it demonstrates good structural performance combined with

excellent corrosion and chemical resistance, and excellent resistance to water absorption

[6, 15-18, 22]. Vinyl ester falls between polyester and epoxy in terms of cost and

performance [17, 18]. It exhibits higher failure strain, up to 6-9%, compared to 2-3% for

common polyesters [8, 20, 23]. GRP composites with vinyl ester matrices have

significantly better delamination strength (>25%) compared to laminates with an

isophthalic polyester resin matrix [10].

Additionally, glass fiber / vinyl ester composites exhibit improved toughness

compared to glass fiber / polyester composites, not only due to the tougher matrix, but

also because vinyl ester composites do not suffer from debonds and subcritical cracks

after curing to the extent that polysester-based composites do [15, 24]. Typical processing

methods for vinyl ester composites are hand lay-up, Resin Transfer Molding (RTM),

Vacuum Assisted Resin Transfer Molding (VARTM) and filament winding. The

disadvantage of vinyl ester compared to polyester resins is its higher cost [7, 16, 18], but



this is not an overriding drawback when higher material cost can be justified by enhanced

performance.

1.1.1.2 Construction of surface ship hulls with FRP composites

The composite structures employed in naval ship hull construction can be divided

into the following four major categories [1, 2, 7, 8, 11]:

* Framed single skin construction.

* Corrugated construction.

* Monocoque (frame-less) construction.

* Sandwich construction.

Examples of a framed single skin construction, a corrugated construction and a

monocoque construction for a minehunting vessel hull design are shown in Figure 1.

The framed single skin is the most common construction form for the

manufacturing of hulls, decks and bulkheads in large and small GRP hulls. In the framed

single skin construction, the hull consists of a thin FRP laminate shell stiffened with

longitudinal and transverse frames. The hull thickness is about 10 mm to 15 mm. The

stiffeners are usually of a "hat" section type and are formed by involving the lay-up of

strips of reinforcements (prepregs) over trapezoidal foam formers. The presence of the

stiffeners effectively reduces the unsupported span of shell or deck panels and provides

torsional stability under lateral or compressive loads. As a result, the framed single skin

hull displays adequate stiffness combined with excellent impact and underwater blast

resistance.

Another type of stiffening has the form of corrugations on the outer shell,

resulting in a corrugated structure. The corrugations are aligned in the direction of

dominant in-plane or bending stress. This kind of structure provides a number of

advantages compared to a conventional framed single skin design. Firstly, it displays

higher stiffness and strength, resulting in substantial weight saving. At the same time, it

has 25% lower construction cost because there is no need for separate fabrication of

stiffeners. Finally, it improves the reliability and impact resistance of the structure by

eliminating most of the bonded stiffener attachments.



Framed single skin construction
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Figure 1: Alternative minehunting vessel hull designs [8]. (Dimensions in mm)

The monocoque construction does not make use of a hull framing system in order

to achieve the required hull stiffness. Instead, it consists of a thick laminate hull without

the addition of longitudinal and transverse frames. In this case, designers are able to

design a structure that can withstand hull-bending and hydrostatic loads by varying the

thickness of the composite laminate from -50 mm near the main deck to - 180 mm at the

533

Monocoque construction



keel of the ship [19]. In some applications the thickness of the laminate can reach values

up to 230 mm [6]. Decks and main bulkheads also contribute to the overall stiffness of

the hull structure. Although this type of hull construction is suitable for automated

construction, it carries a large weight penalty. Monocoque hulls can be more than 10%

heavier than similar framed single-skin designs.

The sandwich construction consists of thin FRP face skins over a thick core of

medium density polyvinyl chloride foam or polyurethane foam or end grain balsa. The

skins provide high stiffness and strength to the structure, while the core provides high

shear resistance and low total weight [1, 2, 7, 8, 11, 23]. The sandwich construction can

be monocoque, without additional stiffening, or framed. A monocoque sandwich

construction provides smooth surfaces on both sides of the hull [23]. As an example,

monocoque sandwich composites are utilized for the construction of yacht hulls that

participate in the America's Cup. In this application, thin and stiff skins, combined with

relatively thick cores, provide the required hull stiffness. On the other hand, framed

sandwich construction permits the use of softer skins and core materials.

1.1.1.3 Construction of surface ship superstructures with FRP composites

Beyond hull manufacturing, FRP composites are utilized for the construction of

superstructures of naval surface ships [1, 2]. In more conservative approaches, only

elements of the superstructure, such as the helicopter hangar or the masts, are

manufactured with composite materials.

A comparison between traditional superstructures made of steel or aluminum and

composite superstructures reveals that the latter offers a number of advantages [1, 2, 5].

The use of FRP composites instead of steel lowers the structural weight of the

superstructure and provides better corrosion resistance and fatigue performance.

Compared to aluminum, FRP composites provide better corrosion resistance, fatigue

performance and fire resistance.

It is estimated that composite superstructures are 30% to 40% lighter than

equivalent steel structures [1]. Depending on the type of composite and the amount of

steel framing, the weight savings in a single skin composite structure stiffened by a steel

frame, can reach values up to 70% [2, 5]. The lower topside weight translates into better



stability and seakeeping performance of the design, while increasing the payload,

endurance and speed [5]. In contrast, composite superstructures are about 30% heavier

than similar aluminum structures [2]. The corrosion and fatigue resistance of FRP

composites means that less maintenance and fewer repairs of the structure are required.

H0yning and Taby [5] proposed the use of FRP composites instead of aluminum for

deckhouses and superstructures, because in the case of fire, aluminum without fire

insulation tends to loose strength, conduct heat from space to space, and melt. However,

the use of FRP composites increases the manufacturing cost of the superstructure by 18%

to 50% [1, 2]. Studies have shown that the cost of a composite superstructure with

applied radar signature reduction is 40% higher than the cost of a similar steel structure

[5].

Other estimates indicate an increase in the cost for composite superstructures of

medium-sized frigates up to 140% [2, 5]. This can be a prohibitive factor for the use of

composites when low acquisition cost is a requirement for the design. On the other hand,

"the key parameters in the cost comparison can change significantly if the weight saving

obtained by composites is used to optimize the hull shape and thereby increase speed or

reduce the cost of the machinery, reduce fuel consumption, or increase fuel or weapon

capacity" [5]. Finally, the radar cross-section of composite superstructures, which is an

extremely important attribute for naval ships, is reduced significantly [5, 14, 21]. GRP

does not provide proper electromagnetic reflection properties on its own, but its surface

"can be made reflective without adding weight of significant cost" [5].

The thickness of the laminate in composite superstructures, made with framed

single skin construction, varies roughly from 3 mm to 25 mm [3]. The U.S. Navy has

evaluated and demonstrated successfully the Seemann Composites Resin Injection

Molding Process (SCRIMP) for the fabrication of hat-stiffened panels with skin

thicknesses of -8 mm and -14.5 mm [13]. These panels can be utilized for the

construction of composite deckhouse, mast and foundation structures. Studies have

showed that a sandwich construction consisting of glass fiber / polyester face skins, with

thickness of 2 mm to 4 mm, and balsa core, with thickness of 40 mm to 60 mm, could

effectively be used for the construction of composite superstructures [5].



1.1.2 Repair schemes for composites and their application to the marine industry

1.1.2.1 Introduction to impact damage and repair of marine composites

A marine composite structure can be damaged in service due to mechanical

loading or environmental conditions [1]. In particular, the marine structures are highly

susceptible to impact damage throughout their lifetime (slamming due to waves and

concentrated impacts) [17, 25]. Impact damage of composites is a combination of three

types of damage: fracture of fibers, delaminations between laminas and through-thickness

splits along the fibers [11]. The impact resistance of marine composites depends on "the

toughness of the resin matrix, the quality of the fiber-matrix interface bond, and the

toughness of the fibers" [17]. Under ideal conditions, GRP laminates can absorb

elastically up to 15 times more impact energy than similar steel or aluminum plates [21].

"However, fabricated GRP structures are likely to have less overall impact strength than

equivalent steel or aluminum structures in which large amounts of energy can be

absorbed by plastic deformation."

The impact can be both of low and high velocity, while the resulting damage can

be of penetrating or non-penetrating nature [10]. Low-velocity impact damage can occur

either locally, such as a weight being dropped onto a surface, or from more general

collision between objects (for example, impact of the hull with a floating object). Beyond

the conventional cases of impact damage, a case of special interest for naval applications

is the battle inflicted high velocity impact damage. This special category of impact

damage includes damage due to projectiles and fragments. Warships may also be

damaged by explosions, either underwater or air blast (mine detonations, explosions close

to the structure from artillery shells, blasts from incoming missiles destroyed by the

ship's hard-kill system, or pressure waves from nuclear explosions) [5].

The purpose of any repair depends on the level to which the composite structure

properties need to be restored. In particular, the objective of repair can be identified as

follows:

* Restoration of surface profile.

* Restoration of static strength and stiffness.

* Restoration of fatigue performance and long-term durability.



Depending on the type, repair environment and structural significance of the

composite structure, the implemented repair may display the following characteristics [1,

26]:

* Minimum weight penalty.

* Simple application process and tooling.

* Use of readily available and easily storable repair materials.

* Removal as little sound material as possible.

* Minimum degradation or damage of the region surrounding the area under

repair.

* Minimum downtime of equipment.

* Minimum total cost.

The repair schemes can be classified based on their structural or non-structural

nature. Table 3 provides a summary of this classification [1]. The repair of minor surface

damage is not crucial unless aesthetic reasons apply or the long-term degradation of the

properties of the composite structure must be considered. On the other hand, the repair of

delaminations, broken fibers and joint failures is crucial when the structural integrity or

the water-tightness of the vessel is compromised. A non-structural repair, such as a

cosmetic repair, can be performed in an uncontrolled environment, but structural repairs

demand a strict control of the environmental conditions [27].

Although suggested requirements for bonded repair are enclosed area,

temperature and humidity control, and isolation of the cleaned surface of the laminate

prior to bonding, it is most favorable that the repair be conducted outdoors under realistic

shipyard conditions and even under bad weather conditions. This is extremely important

for repairs related to the structural integrity and survival of a ship deployed far from its

base or a repair facility, where depot level repairs can be performed. In naval

applications, the repairs are desired to be of field level, with quick application,

undertaken directly on the ship (on site), and in a situation where skilled personnel and /

or adequate facilities are unavailable. This level of repair becomes more significant when

it concerns battle damage repairs on warships.



Table 3: Description of damage types [1].

Repair
Damage Type Damage Description

Classification

Non-structural Mark and Monitor This approach is undertaken when the nature of the damage

does not warrant any form of repair. With this technique, it

is necessary to record all information about the nature of the

damage in order to be able to compare any worsening of the

defect while the structure is subjected to operational loading.

Cosmetic Cosmetic repairs are designed to repair localized surface

defects to the original profile and to prevent moisture

ingress.

Temporary Temporary repairs are to be conducted only when there are

operational reasons that prevent the recommended repair

approach. These types of repairs must be made permanent at

the next designated maintenance period.

Structural Minor Structural minor restoration of the structure to full

serviceability, requiring though increased inspection

frequencies to ensure that the repair remains effective.

Major Major restoration of the composite structure to its original

integrity.

1.1.2.2 Nondestructive evaluation of damage in marine composites

Damage assessment is an important step prior to repair. It involves a series of

inspections and evaluations in order to determine the extent of the damage. In the case of

damaged composites, the accurate detection of the damaged region is a complex task

because the damaged area can extend internally into the laminate via delamination

beyond the region identified visually. For example, in a military aircraft, a projectile of

23 mm in diameter can leave a hole 25 mm in diameter surrounded by a 15 mm or larger

delaminated strip [28]. Thus, accurate and reliable damage assessment methods are

required in order to detect and evaluate the damage, and to assess the quality of the

performed repair, without harming the composite structure.



Several nondestructive evaluation (NDE) methods are available for damage

assessment on composites in aerospace applications [17, 29, 30], but only a fraction of

them is applicable to marine composites [31]. The main restrictions are the increased

thickness of marine composite structures compared to the thickness of the composites

utilized in aerospace industry, and the distinctive characteristics of marine composite

structures (structure's geometry, type of construction, and accessibility of the site to be

inspected). The large thickness of marine composites, which can reach the extreme value

of -200 mm at the keel of a composite hull, especially makes the inspection of the

structure by NDE methods a challenging task [19]. The primary NDE methods used by

the marine industry (beyond visual inspection) are [19, 29, 31]:

* Ultrasonic pulse-echo.

* Infrared thermography.

* Automated coin tapping.

1.1.2.3 Repair schemes for marine composites

Several of the most common repair schemes for marine structures are the

following:

* Patch (lap) repair and flush patch repair.

* Scarf repair or step repair.

* Resin infusion repair.

Patch and scarf repairs are intended to "restore the load path removed by the

damage, ideally, without significantly changing the original load distribution" [26]. Patch

repairs are used for repairing minor structural damage to small marine crafts with hulls

thinner than 10 mm, or for repairing secondary structures (decks or superstructures) on

large composite ships, when a scarf repair is not applicable [1]. In the patch repair

technique, the repair material can be applied either on one or both sides of the composite

structure. A patch repair can be easily and quickly applied while the boat is dockside or at

sea. Patches rarely recover more than 70% of the original strength. Flush patch repairs are

a special category of a patch repair in which the patches are placed inside the hole created

by the removal of the damaged area.



A scarf repair is the most common type of composite repair for marine

applications reviewed by the various repair manuals [27, 32-34]. It can be single-sided,

double-sided or a partial-repair, depending on the type and the extent of inflicted damage,

and it may include the addition of extra applies over the scarf region (doubler). A scarf

repair is more structurally efficient than a patch repair; it can restore up to 90% of the

original stiffness and strength of the original structure [1]. Compared to a patch repair, it

demands a more complex application requiring special skills, and is more expensive and

time-consuming.

A step repair is a type of scarf repair. In a scarf repair the damaged laminate is

removed and the edges of the sound laminate are tapered back at a shallow angle (0<50),

while in a step repair a rectangular stepped surface is created by cutting into the

composite to a set depth and peeling out material within this area along the level of the

laminate. When applied in thick laminates, scarf and step repairs have the disadvantage

of requiring removal of a large amount of sound material around the damaged region

because of the shallow scarf angles required [26].

The resin infusion repair method is a relatively new technique [1]. It is utilized for

the restoration of minor structural damage in single-skin laminates and for repairing

disbonds between the skin and core of sandwich composites [1, 26, 27]. The resin

infusion repair procedure involves the injection of a compatible thermosetting resin into

the delaminated or disbonded region, directly (if the damaged area is exposed) or through

injection holes [26]. The process often requires preheating of the damaged area, and

pressure and temperature application, in order to improve the mating of the delaminated

surfaces. For the repair of delaminations in hull laminates and debonding of the internal

stiffener frames, Trask, Turton and Lay [35] and Elliott and Trask [36] recommended a

resin infusion repair technique similar to that employed by the SCHRIMP resin transfer

molding process. By utilizing this technique, "typically, 1 m section of debonded

stiffener could be fully repaired in five hours by two technicians, without an extended

period out of service and with minimal technical support other than that which can be

carried on site."



1.1.2.4 Alternative repair schemes for marine composites

The American Bureau of Shipping (ABS) [32] and United States Navy [33]

demonstrated a repair in way of through bolt failure on single-skin laminates in the form

of a plug combined with a partial scarf. In particular, the proposed repair process

included the following steps [32, 33]:

* Removal of the damaged laminate around the bolt hole to a diameter at least

50 mm.

* Addition of a backing plate on one side of the hole and securing of it with

either screws or resin putty.

* Filling the hole with resin putty.

* Introduction of a single side scarf repair made of GRP on the side of the plate

without the backing plate, with chopped strand mat as a first ply.

* Removal of the backing plate and addition of a backup ply on the far side of

the hole.

According to the Design Standard of the UK Navy [27], in GRP marine

structures, plug repairs could be applied either for minor repair of localized impact

damage of the hull that does not exceed 50 mm in diameter or for the repair of holes

created by the extraction of core plug samples from the hull for testing. The plug material

was the epoxy system UW43 (potting resin, manufacturer: Wessex Resins). It could be

applied alone or in combination with a patch consisting of up to seven plies of chopped

strand mat and woven roving. The repair procedure offered by the Design Standard of the

UK Navy for the application of plug repair for the minor repair of localized impact

damage is provided in Table 4 [27].

Wegman and Tullos [37] recommended the use of the plug concept as part of

repair schemes applied in special cases:

* For the repair of non-structural composite laminates containing minor

damage, they suggested the use of an adhesive plug combined with two plies

of glass cloth applied to the external face of the laminate.

* For the repair of non-structural composite laminates containing major damage,

they proposed the use of a plug made from the same material as the parent

laminate combined with two plies of glass cloth applied to the external face of



the laminate. In this case, the plug was -0.8 mm smaller on all sides than the

hole in the original panel and the remaining cavity was filled with a paste

adhesive.

Table 4: Repair procedure for application of plug repair for minor repair of

localized impact damage of hull that does not exceed 50 mm in diameter [27].

The damaged area is prepared with a bevel

of 10' to 150. The overlap area on the

surface surrounding the damage is rubbed
Step 1

down until the glass fibers are exposed.

Grease and dust are cleaned off by using a

good detergent.

A former (backing plate) following the

contour of the structure is secured to the

Step 2 laminate. A wax parting agent must be used

on the former to ensure a smooth, polished

surface is attained.

The UW43 resin system is applied. After

Step 3 the setting of the resin, the outer surface of

the repair may be sanded as necessary.

Baker, Dutton and Kelly [26] proposed plug repair techniques for minor repairs

such as minor depressions and indentations, skin damage and core replacement in

honeycomb panels, and fastener hole elongation. Particularly, they suggested, along with

Baker [38], the use of the plug concept as a repair method for the following cases:



* In the case of lightly loaded sandwich composites with honeycomb panels

where the composite skin has been penetrated, potted repairs could be applied

in order to stabilize the skin and to seal the damaged region. The potting

compound could be a compatible resin mixed with either chopped glass fibers

or ultrafine glass sphere fillers.

* Damage to attachment holes, such as minor hole elongation or wear, could be

repaired by filling the hole with a potting compound, provided the bearing

loads are low.

An alternative approach was to plug the cavity with glass cloth / epoxy prepeg or wet lay-

up [26, 38].

Armstrong, Bevan and Cole [17] recommended the application of the plug repair

scheme in the form of a potted repair in the case of a small hole found in a sandwich

composite with honeycomb core. The hole could be filled with a potting compound in

order to prevent water ingression until a permanent repair could be applied.

Vaidya, Basappa, Mathew and Sands [39] investigated the concept of the plug

repair scheme, alone or combined with doublers, as a repair method for S2-glass / vinyl

ester laminates manufactured by using the VARTM technique and bearing damage "in

the form of clean hole representative of perforation type of impact."

Damaged and repaired specimens made of S2-glass / vinyl ester were subjected

to fatigue flexural loading. One of the repair schemes considered was plugging the hole

with epoxy mixed with either micro-balloons or E-glass chopped strand mat. The

performed fatigue tests revealed that for a specimen with a hole 12.7 mm in diameter

filled with a micro-balloon / epoxy plug, the fatigue life efficiency was 85.14% of the

pristine sample, compared to 37.97 % of the same specimen with unfilled hole. For a

specimen with a hole 25.4 mm in diameter filled with micro-balloon / epoxy plug, the

fatigue life efficiency was 57.55 % of the pristine sample, compared to 37.26 % for the

same specimen with an unfilled hole. Furthermore, they demonstrated that samples

repaired with the combination of a plug made of micro-balloon / epoxy plug and carbon /

epoxy doublers bonded on both sides of the clean hole could exceed the fatigue efficiency

of the undamaged sample.



Hundman and Horn [40] examined the effect of bonding a solid plug in a centrally

located hole on the stress concentration around the hole in a composite plate, in order to

evaluate the repaired strength of damaged composite panels subjected to in-plane loads.

Their theoretical analysis was based on Lekhnitskii's theoretical solutions [41]. They also

conducted finite element analyses and experimental testing in order to evaluate the

bonded plug repair concept and to validate and refine their analytical predictions.

Both the plate and plug were made of Hercules AS4 graphite fibers in a

polyetheretherketone (PEEK) thermoplastic matrix, using the same stacking sequence.

The plugs were bonded into the circular cutouts of the plates by utilizing either PEEK

adhesive layers melted with the application of eddy currents or room temperature curing

epoxy paste adhesive (ATACS 4103). They concluded that the plug concept could be an

effective method of reducing stress concentrations around holes in repaired composite

panels by 50% or more, depending on the application.

Vlattas and Soutis [42] measured the compressive strength of carbon fiber / epoxy

laminates made of HTA/913C standard pre-preg with centrally located circular holes

filled with solid plugs, made of the same material by using the same lay-up. The

specimens were 215 mm in length, 50 mm in width and 3 mm thick (24 plies,

[(±45/02)3]s), and the drilled holes had a diameter of 10 mm. A standard high strength

adhesive (Araldite 2011) was used for the bonding of the plug. By fitting the plug in the

hole, the increase of the measured residual compressive strength was of the order of

approximately 10%.

1.2 Definition of the problem and thesis overview

In general, a repair scheme used for non-structural or structural restoration of a

composite structure should be the simplest and least intrusive. At the same time, a repair

method should be able to restore structural stiffness and strain capability to the required

level, without compromising other functions of the component or structure. The plug

concept seems to be an attractive repair scheme in terms of application speed, simplicity,

required skills and impact on the composite structure, but it is not clear if it can be

utilized for other than cosmetic, minor or temporary repairs.



Numerous analytical solutions, finite element analyses and experimental data

exist for patch and scarf repair schemes, especially for applications in the aerospace

industry [26, 43-48]. Although some studies on the plug repair concept also exist [28, 39,

40, 42], the application of the plug repair scheme for the repair of glass fiber / vinyl

ester marine composites has not been studied so extensively.

The main issue addressed in this thesis is whether a plug repair scheme, using

glass fiber / vinyl ester chopped strand mat (CSM) as the plug material, can be applied

for the repair of glass fiber / vinyl ester marine composites. The analyses to be

conducted will examine the effect of a CSM plug on the stress distribution around a hole

in a glass fiber / vinyl ester laminate, subjected to a uniaxial tensile stress. A reduction

in the stresses around the hole due to the presence of the plug will translate into an

increase in the strength of the damaged glass fiber / vinyl ester laminate. The aim is to

investigate if the plug repair scheme can be utilized only as a temporary or cosmetic

measure, or has the potential as a permanent repair, at least, for lightly loaded glass fiber

/ vinyl ester marine structures.

A potential procedure for the application of glass fiber / vinyl ester chopped

strand mat plug repair on a damaged glass fiber / vinyl ester laminate is summarized in

Table 5.



Table 5: Repair procedure for glass fiber / vinyl ester chopped strand mat plug

repair applied in glass fiber / vinyl ester laminate.

The damaged area of the glass

fiber / vinyl ester laminate is

removed by cutting a circular hole

in the plate. The sound material

inside and around the hole is first

sanded and then cleaned of dust

and other contaminants.

A backing plate is secured with

Step 2 screws or resin putty on the

laminate.

The hole is filled with glass fiber /
Step 3

vinyl ester chopped strand mat.

The backing plate is removed after

Step 4 the curing of the glass fiber / vinyl

ester chopped strand mat plug.

Step 1



2. Analytical approach of the plug repair scheme

2.1 Constitutive properties of glass fiber / vinyl ester woven roving and chopped

strand mat materials

The first step in the present analysis is the calculation of the constitutive

properties for the glass fiber / vinyl ester woven roving (WR) and chopped strand mat

(CSM) materials. The analytical calculation of these properties is provided in Appendices

A and B for the glass fiber / vinyl ester WR and the glass fiber / vinyl ester CSM,

respectively. The WR is modeled as an orthotropic material, while the CSM as an

isotropic.

A summary of the constitutive properties of the glass fiber / vinyl

given in Table 6, whereas a summary of the constitutive properties of the

vinyl ester CSM is given in Table 7. The properties of all the laminates

Table 6 correspond to a 29.2% fiber volume fraction. In Table 6 and 7, E

modulus, G is the shear modulus, and v is the Poisson's ratio.

ester WR is

glass fiber /

presented in

is the elastic

Table 6: Constitutive properties of glass fiber / vinyl ester woven roving (WR)

laminates, where the listed fiber percentage corresponds to the x-direction.

Ex E Gxy
Material Vxy

[GPa] [GPa] [GPa]

Balanced WR 23.42 23.42 8.86 0.09

WR 60% biased 26.45 20.38 8.86 0.11

WR 70% biased 29.49 17.34 8.86 0.12

WR 80% biased 32.53 14.30 8.86 0.15

WR 90% biased 35.56 11.27 8.86 0.19

Unidirectional 38.60 8.23 8.86 0.26



Table 7: Constitutive properties of glass fiber / vinyl ester chopped strand mat

(CSM) plugs.

Fiber volume fraction Vf [% ]
Property

0 2 5 6 10 13 16 20 23 27 31 36 40

E [GPa] 3.40 4.00 4.66 5.38 6.16 6.99 7.90 8.88 9.95 11.13 12.42 13.86 15.48

G [GPa] 1.25 1.48 1.73 2.00 2.29 2.61 2.95 3.31 3.71 4.15 4.64 5.18 5.79

V 0.36 0.35 0.35 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34

2.2 Lekhnitskii's theoretical solutions

The mathematical approach of the plug repair scheme that follows is based on

Lekhnitskii's theoretical solutions [41]. Lekhnitskii offered a number of expressions that

can be utilized to evaluate the stress distribution in an anisotropic homogeneous plate

having an elliptical or circular opening and deformed by stresses applied along the plate

edges. The plate was assumed to be infinite, so any effects of the external plate edge were

disregarded. A summary of the cases presented by Lekhnitskii is provided in Table 8.

Table 8: Schematics of cases analyzed by Lekhnitskii's analytical solutions for plate

with hole unfilled or filled with plug and subjected to in-plane loading [41].

Cases

y

Tension applied in one oTo
B

direction on orthotropic plate
1 At A x

with circular unfilled hole 0

(Lekhnitskii [41], pp. 171-190) B



Cases

Tension applied in one Oo - o

direction on orthotropic plate
2 A A x

with circular plugged hole

(Lekhnitskii [41], pp. 197-203)

Tension applied in two

directions on orthotropic plate
3 A A x

with circular plugged hole

(Lekhnitskii [41], pp. 203-207) B1

Shear stress applied along TO B TO

edges of orthotropic plate with A A x

circular plugged hole '

(Lekhnitskii [41], pp. 207-211) BI

In-plane bending of

orthotropic plate with circular
5 AI A x

plugged hole

(Lekhnitskii [41], pp. 212-216) BI



2.3 Glass fiber / vinyl ester composite plate with unfilled circular hole, subjected to

tensile load

Let us first examine the stress field along the edge of an unfilled hole in an

infinitely wide thin composite plate under a far-field tensile stress by considering the

two-dimensional geometry in Figure 2. The plate is rectangular and corresponds to an

orthotropic laminate made of glass fiber / vinyl ester woven roving. The applied stress is

parallel to the plane of the plate and aligned with the x-direction, which is a principal

material direction of the laminate. The uniformly distributed tensile stress ao acts along

the two edges of the plate, as shown in Figure 2. For our analysis, we employ two

coordinate systems, one Cartesian and one polar.

The origin of both coordinate systems is the center of the hole. In the Cartesian

system, the axes x and y are the principal directions of elasticity of the woven roving. In

the polar coordinate system, 0 is the polar angle measured from the x axis and r is the

radius measured from the center of the circular hole. The radius of the hole is a.

t

r-- 3F

Figure 2: Two-dimensional plate with circular hole under uniaxial tensile stress.A1  x IB1
1

Figure 2: Two-dimensional plate with circular hole under uniaxial tensile stress.

The analysis considers the plate to be an elastic body obeying the generalized

Hooke's law. The components of strain are linear functions of the components of stress.



The stress condition is plane stress, so the normal stress a, and both out-of-plane shear

stresses are zero. For a thin laminated plate in which the fibers are parallel to the x-y

plane and the plate is loaded by uniformly distributed stresses along the edges, the plane-

stress condition provides approximate results for the stresses with reasonable accuracy

[49-51]. Thus, the stress field throughout the plate can be examined using the two-

dimensional geometry of Figure 2.

For a homogeneous isotropic plate subjected to a uniaxial stress in the x-direction,

the stresses around the unfilled hole in polar coordinates arr, ao, and Tro are given by [50]

1 a2  3a 4  4a 2
o rr =-Co[(1 ) + 4  2 ) COs 29] (1)

2 r r r

1 a2  3a 4

0o = - 0o[(1 + - ) cos 20] (2)
2 r r

1 3a4  2a2
r = --- o(- 4 +-2 ) sin 20 (3)

2 r r

The stresses around the unfilled hole in the Cartesian coordinate system Uxx, ayy,

and rxy can be expressed in terms of the stresses in polar coordinates arr, coo, and Tfr as

[50]

xx= arr cos 2 + oooe sin 2 9- 2rO sin 09cos9 (4)

Yyy = Orr sin2 8 + ocos2 0 + 2rrsin 89cos9 (5)

rxy = (Orr - coo) sin 9cos 9 + rrO(cs 2 9-sin2 9) (6)

At the boundary of the hole (r=a), Equations (1)-(3) give

arr(r = a) = 0 (7)

roo(r = a) = oo(1- 2 cos 20) (8)

Z'rr(r = a) = 0 (9)



If Equations (7)-(9) are substituted into Equations (4)-(6), expressions for the stresses in

Cartesian coordinates ate the edge of the hole are obtained

oxx(r = a) = oe sin 2 0 (10)

Oyy(r = a) = U99cos 2 9 (11)

Z'xy(r = a) = -roo sin 0 cos 0 (12)

Equations (10)-(12) show that the stresses in Cartesian coordinates ax, ayy,, and ry along

the edge of the hole are a function only of the tangential stress aoo and the angle 0.

2.4 Glass fiber / vinyl ester composite plate with unfilled circular hole, subjected to

tension in one direction

In order to evaluate the stresses around the hole edge due to the applied remote

tensile stress, Lekhnitskii's [41] analytical solution for the stress distribution in an

orthotropic plate with a circular hole is used. The laminate's engineering constants in the

formulation are the Young's modulus in the x-direction Ex, the Young's modulus in the y-

direction Ey, the in-plane Poisson's ratio vy, and the in-plane shear modulus G,. We also

introduce the Young's modulus in the direction tangent to the hole Eo.

The circumferential stress oo, along the edge of an unfilled hole in an orthotropic

laminate, subjected to a uniaxial stress in the x-direction, is given by Lekhnitskii [41] as

eoo= ro -Ex[-k cos 2 + (1 + n) sin2 0] (13)

where

sin4 9 1 2Vxy) cos 4 04-1
EB = [ +( )sin 2 cos 2 9+ ] (14)Ex Gxy Ex Ey

k= (15)

Ex Ex
n=2( -vxy)+ (16)

Ey Gxy



and where Ex, Ey, G, and v, are laminate properties defined above.

By combining Equations (10), (11) and (13), we can evaluate the stresses ,xx and

uyy. The distribution of stress s0, xx and uyy will be symmetrical with respect to both

principal directions x and y. Referring to Figure 2, at points A and A] of the hole

boundary (where 0 is 00 and 1800, respectively), cr0 will obtain the value

Eo E 1 Co
coo = o -(-k) = o y- (-k) = co I (-k) = (17)

Ex Ex k k

At points B (0=900) and B1 (0=2700), coo becomes

go = o-(1+n) = cox -(+ n) = co( + n) (18)
Ex Ex

As Lekhnitskii notes, one of these values of tangential stress a00 will be the largest in

magnitude for the entire laminate, "but it is impossible to know beforehand which one

without knowing the elastic constants." Depending on the material and the geometry

examined, the largest stress could be either the tensile stress at points B and B1, or the

compressive stress at points A and A1.

For a laminate made of glass fiber / vinyl ester balanced woven roving (WR)

having engineering constants Ex = 23.76 GPa, Ey = 23.76 GPa, vxy = 0.0914, and Gxy

=8.86 GPa as shown in Table 6, the distribution of stress U00, xx, and ayy around the hole

edge is presented in Figure 3. Only the stress values corresponding to the arc AB (00-900)

are plotted due to the aforementioned symmetry. As noted earlier, a balanced WR is a

fabric that has an equal distribution of fibers along the warp and weft directions. In our

case, the warp and weft directions of the WR are aligned with the coordinate axe x and y,

respectively, and in a balanced laminate the percentage of fibers in the x-direction is

equal to the percentage of fibers in the y-direction.
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Figure 3: Stresses oo, ,,xx and ay, around edge of circular unfilled hole in

orthotropic laminate of glass fiber / vinyl ester balanced woven roving (WR) due to

uniaxial tension a, in x-direction

As anticipated, the maximum o00 and axx stresses around the edge of the hole (r =

a) are significantly higher than the applied stress. The largest absolute stress on the plate

is the tensile stress at points B and B1. The ratio of the greatest tensile stress to the

greatest compressive stress is approximately three.

Konish and Whitney [52], Tan [53, 54] and Barbero [55] provide mathematical

expressions for the calculation of the stress concentration factor (SCF) for an orthotropic

plate of infinite width containing an elliptical or circular hole. For a balanced symmetric

laminate under uniaxial in-plane loading, such as our case, the SCF Kto can be expressed

in terms of laminate properties as [55]



KEx ExKt =1+ 2( - v + (19)
Ey 2Gxy

For the balanced WR in Table 6, Equation (19) gives a stress concentration factor Kto

equal to 3.11, which agrees with the result of Leknitskii's mathematical model

( o max =3.11). Note that the SCF for a homogeneous isotropic plate is 3.00.
07o

Figure 4 shows the variation of the circumferential stress sto on an unfilled hole

as a function of the angle 0 for each of the woven roving laminates in Table 6. It is

evident that the material of the laminate has significant effect on the magnitude of the

maximum stress at the boundary of the hole. The smallest value of stress o00 corresponds

to the case of a balanced WR laminate.
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Figure 4: Stress ooo around edge of unfilled hole for different types of glass fiber /

vinyl ester woven roving (WR) laminates.

2.5 Glass fiber / vinyl ester laminate with circular hole filled with glass fiber / vinyl

ester plug, subjected to tension in one direction

Consider the geometry in Figure 2 but containing a circular hole filled with a plug

of glass fiber / vinyl ester chopped strand mat (CSM). Again, we make use of

Lekhnitskii's analytical solutions and, in particular, the mathematical model for the stress

distribution in an orthotropic plate with a circular filled hole. This model was derived by

using a complex variables solution technique. In particular, Lekhnitskii superposed the

stresses for a plate without a plug with those of an infinite plate with a hole. The

Balanced WR (50% in both x- and y-directions)

WR biased 60% in x-direction

WR biased 70% in x-direction
WR biased 80% in x-direction
WR biased 90% in x-direction

- - Unidirectional glass / vinyl-ester laminate (aligned with x-direction)3.5 --

30 35 40 45 50 55 60 65 70

Angle 0 [degrees]

I
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boundary conditions at the edge of the cutout were modified accordingly to represent the

effect of the plug's presence. Lekhnitskii's solution assumed the same thickness of the

laminate and plug, and perfect bonding between the plug and the hole boundary. It is

expected that the introduction of the plug in a damaged plate will decrease the stresses

around the hole.

The tangential stress aoo in the laminate along the edge of the hole is given by [41]

=To Ee
o-o = - { (A- qi) sin 6 + [A(n 2 - 2k) + (k +n)ql + (1+ 2k)q2

A Ex
-(2 + k)(l + n)q3] sin 4 0cos 2 0 + [k 2A - (1 + 2k)(k + n)q2 + (20)

k(2+k)q3+k(l+n)q4]sin2 9]sin 2 Ocos 4 9-k 2q4coS6 9}

where A, ql, q2, q3, and q4 are parameters given by

A = (qllq22 + qil'q22')k + q22(q66 + 2q12') + (qllq22 'k + q22q11 ')n
(21)

-(ql2 - q12 )2 k

qi = (q1 - qll')q22(n2 -k)+ [(qii-qii')q22+(q12- q12 )2 ]kn - q22(q12- q12 ') (22)

q2 = (qi - qii ')q22 + ql(ql2 - ql2')k(1 + n) (23)

q3= (qll- q11')(q22n + q22' k) + q22(ql2 - q12') + (q12- q12 )2 k (24)

q4 = -(ql i- qi ')q22'+ (ql2- qi2')[2q2 + q66 + qi(k + n)] - (q12- ql2 )2 (25)

q1i, q12, q22, q16, q26, and q66 are independent elastic compliances and are expressed in

terms of the engineering constants Ex, Ey, vxy and Gxy of the plate material as

qi = (26)
Ex

q22 = (27)
Ey

Vxy
q12 = (28)

Ex



q66 = (29)
Gxy

q16 = q26 = 0 (30)

qll', q]2 q22', q16, q26', and q66' are the elastic compliances of the plug and can be

expressed in terms of the plug's engineering constants Ex', Ey', vy'and Gx' as

1
qii I (31)

Ex'
1

q22'= (32)
Ey

q12= - (33)
Ex'

q66'= G
Gxy q26

ql6'= q26=- 0

(34)

(35)

Since in our analysis the plug material (CSM) is isotropic, the plug's constitutive

properties become Ex'= Ey'=E, vxy'=v and Gx'=G, where E, G, and v, are given in Table

7. Equations (31)-(34) therefore become

1
qlI'= q22 --

q12'
E

1
q66' 

G

(36)

(37)

(38)

By combining Equations (10), (11) and (20), we can compute the distribution of

stresses axx and ayy at the boundary of the hole for any given combination of laminate and

plug material. For a laminate of glass fiber / vinyl ester balanced WR and plugs made of

glass fiber / vinyl ester CSM of varying fiber volume fractions Vf, the distributions of a



and yy, around the boundary of the hole are plotted in Figure 5 and Figure 6, respectively.

As in Figure 3, only the stresses corresponding to the arc AB (00-900) are plotted due to

the symmetry with respect to both principal directions x and y. The engineering constants

utilized for Figure 3 and Figure 4 are given in Table 6 and Table 7.
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Figure 5: Stress .,, around hole in glass fiber / vinyl ester laminate of balanced

woven roving containing various plugs, and subjected to uniaxial tension o~ in x-

direction.



0.75

0.5

0.25

o 0 ---

I I

With CSM plug (Vf 2%)

-2 / -- -With CSM plug (Vf 5%)

C --- With CSM plug (Vf 7%)

S . With CSM plug (Vf 10%)

-L. _, _ With CSM plug (V 13%)

i I - With CSM plug (Vf 16%)

K i I With CSM plug (Vf 20%)

0.75 . - - - - - - -- With CSM plug (Vf 23%)
-07 With CSM plug (Vf 27%)

-1 With CSM plug (Vf 31%)
1 I--- I- i-- I-- I- - I -- i I I I-+ -- -- +

zv- With CSM plug (Vf 36%)

SWith CSM plug (Vf 40%)

-1.25 i i i i
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Angle 0 [degrees]

Figure 6: Stress qy around hole in glass fiber / vinyl ester laminate of balanced

woven roving containing various plugs, and subjected to uniaxial tension o~ in x-

direction.

Figure 5 and Figure 6 reveal that filling the hole with a plug of CSM has the

beneficial effect of reducing the maximum stresses around the hole boundary. The

introduction of the plug reduces considerably the magnitude of both the maximum tensile

stress and the maximum compressive stress. As the fiber volume fraction Vf of the plug

increases, the effect of the plug's presence in stress reduction also increases. In fact, by

the introduction of a CSM plug with Vf =27%, the maximum tensile stress at the hole

Without plug
-_ With Avinyl-ester plug (V 0%)

-4 -j- "



boundary is reduced by 50%, while the introduction of a CSM plug with Vf =40%

reduces the maximum tensile stress at the hole boundary by 58%. In this latter case a, is

only 31% higher than the applied tensile stress.

Figure 7 displays the effect of the increase of the percentage of glass fiber

volume fraction in the CSM plug on the maximum tensile stress a, around the edge of

the hole for a laminate of balanced WR. Figure 8 and Figure 9 show the effect of the

increase of the percentage of fiber volume fraction on the maximum stress a., and

minimum stress ay (that is, the maximum compressive stress), respectively, around the

edge of the hole for a laminate of balanced WR. Clearly, the increase in the fiber volume

fraction in the CSM plug contributes to the overall reduction of all stresses in the vicinity

of the filled hole.

Similar plots to Figure 5 through Figure 9 for different WR laminates, having

varying biased fiber configurations, are provided in Appendix C.

Figure 10 displays the effect of the changes in the fiber volume fraction in the

CSM plug on the maximum stress axx around the edge of the hole for various laminates.

Figure 11 and Figure 12 show the effect of changes in the fiber volume fraction in the

CSM plug on the maximum stress ayy and minimum stress ayy (that is, the maximum

compressive stress), respectively, around the edge of the hole for the same laminates. As

can be clearly seen, an increase of the fiber volume fraction in the plug results in the

general reduction of stresses around the edge of filled holes for all the laminates.
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Figure 10: Normalized maximum stress r,, at hole in several laminates of woven

roving (WR) for various chopped strand mat (CSM) plugs, subjected to uniaxial

tension qo in x-direction.
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2.6 The effect of plate thickness

The mathematical models presented in Sections 2.1 and 2.2 are plane stress, two-

dimensional, models for laminates containing open and plugged holes. An important

question arises as to the validity of these results as the laminate thickness increases,

thereby introducing thickness effects and forcing a portion of the laminate into plain

strain (Figure 13).
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Sternberg and Sadowsky [56] performed a three-dimensional analysis on an

isotropic plate that showed that the stress is slightly lower at the edge of the hole near

surface of the plate and somewhat higher at the hole periphery near the mid-plane, both

compared with the corresponding plane stress results. In particular, they showed that for

an isotropic plate, with Poisson's ratio v=0.3, of thickness equal to 1.5 times the radius of

the hole and subjected to uniaxial in-plane stress the maximum stress at the surface was

7% less than the maximum stress predicted by the two-dimensional model, while the

maximum stress at the mid-plane was 3% higher than the corresponding two-dimensional

value.

Folias and Wang [57] also presented an analytical solution for the three-

dimensional stresses in an isotropic plate of arbitrary thickness weakened by a cylindrical

hole. They provided several valuable observations and results [57]:

* The value of the SCF varies across the thickness of the isotropic plate and is a

hole radius a
function of the ratio hole radius - and the Poisson's ratio v of the

plate thickness t

material of the plate.

* For ratios of a >0.5, the maximum stress occurs nearer the midplane of the
t

plate than the free surface.

* For ratios of - <0.5, the maximum stress occurs nearer the free surface of the
t

plate, approximately one-hole radius from the surface.

Using finite elements, Young and Lee [58] confirmed the observations of

Sternberg and Sadowsky [56]. W.D. Pilkey and D.F. Pilkey [59] commented in their

discussion of holes in thick isotropic elements that "the usual two-dimensional stress

concentration factors are sufficiently accurate for design application to elements of

arbitrary thickness." Kotousov and Wang [60] stated that there is no global criterion

identifying what cases of plate thicknesses qualify as plane stress or plane strain and that

the decision of whether a plate should be treated as thin or thick is largely empirical.



Based in these discussions, although the plane-stress solutions offered here are

inadequate to provide information on the variation of stresses through the thickness of a

laminate, these results should provide useful design guidelines.

G o

Figure 13: Schematic of three-dimensional plate with cylindrical hole under

uniformly applied tensile stress.

3. Discussion, Conclusions, and Recommendations

3.1 Discussion and Conclusions

The performed analyses considered only the loading case of the laminate in which

the applied stress was parallel to the plane of the plate and aligned with the x-direction (a

principal material direction of the laminate), in part, because this case corresponded to

the largest induced stresses at the hole boundary. The stress distribution around the hole

is strongly influenced by the fiber orientation relative to the direction of the applied

stress. The variation of the stress distribution around the hole for various angles (p

between the principal material x-direction of the laminate and the direction of the tensile

load can be seen in Figure 14 and Figure 15 for a glass fiber / vinyl ester laminate of

balanced WR and a glass fiber / vinyl ester laminate of unidirectional composite,

respectively. Clearly, the corresponding stresses at the hole boundary are the highest

when the fibers are oriented parallel to the loading axis (qp= 0 0).



Lekniitskii's analytical expressions apply for cases of infinite plates. If the

damaged area is small compared to the size of the composite structure, then the stress

results of the performed analysis can be employed for finite width plates [61]. For the

case of a large damaged area compared to the size of the component, the obtained results

can still provide useful design guidelines.

If the laminate is made of laminas of different orientation, then the calculation of

the stress distribution at the hole boundary must be done on a lamina-by-lamina basis

[62]. Further complications arise in the stress evaluation around the damaged region

when the parameter thickness is introduced to the analysis, as discussed in Section 2.6.

Smith [8] recommended that the design allowable for stress and strain in a marine

composite structure should not exceed 30% of the ultimate failure stress and strain,

respectively. In glass fiber / polyester WR and CSM, it may be necessary to keep the

tensile strain at 25% to 30% of the ultimate failure strain [15]. According to Plessis [22],

a good design should ensure that FRP structures should never be stressed "above the 25%

threshold of damage." Other more conservative references have specified that the

sustained stress levels should not exceed 10% to 20% of the ultimate values [11].

Baley, Davies, Grohens and Dolto [15] have shown that safety factors proposed

for marine composite structures, which varied from 4 to 6 for static loads and up to 10 for

dynamic loads, were higher than those employed for similar metallic structures.

Based in these discussions, it appears that marine composite structures are

designed with large safety factors or equivalently for low applied stresses and strains.

Thus, it seems that the plug repair scheme can be utilized not only as a temporary repair

or a repair for non-structural components, but also as a permanent repair, at least, for

lightly loaded glass fiber / vinyl ester marine structures. Further, it may be employed for

the repair of highly loaded glass fiber / vinyl ester marine structures, but only after the

performance of a comprehensive stress analysis of the damaged region.
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Figure 14: Stress oqo around edge of unfilled hole in balanced glass fiber / vinyl ester

woven roving (WR) laminate for various angles (p, where (p is the angle between the

applied uniaxial tensile stress and the x-direction (principal material direction).

Note that, the introduction of the glass fiber / vinyl ester CSM plug considerably

reduces the stresses in these analyses, partly because the laminate does not possess high

moduli. In other words, it is the combination of the glass fiber / vinyl ester plug of

relatively low stiffness with the glass fiber / vinyl ester laminate also of relatively low

stiffness that provides the excellent stress reduction of the plug repair scheme in this

thesis. If the laminates were made of higher performance fibers such as carbon fibers,

then the performance of the glass fiber / vinyl ester plug in reducing the stresses at the

hole boundary would be reduced significantly.

In conclusion, damage analysis of composite structures should be based on the

investigation of the stress state around the damaged area. "Although current repair

methodology tends to bypass the damage analysis step and design the repair based on

past experience or similar structural damage" [63], the accurate evaluation of the stress
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field in the vicinity of a damaged area can assist in identifying the most appropriate and

cost-effective repair scheme. Thus, stress analyses as those performed in this thesis are

valuable steps in the design and selection of the best repair techniques and materials.
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Figure 15: Stress 'oo around edge of unfilled hole in unidirectional glass fiber / vinyl

ester laminate for various angles (p, where p is the angle between the applied

uniaxial tensile stress and the x-direction (principal material direction).

3.2 Recommendations

The strength and stiffness of a laminate vary depending on the loading conditions;

they are different when the laminate is loaded in tension, compression or bending. Thus,



the behavior of the portrayed plug repair scheme should be investigated further under

compression and bending, but also under combined loading. With respect to bending, a

thorough analysis of the plug repair scheme is crucial, since composite panels in marine

structures are "likely to be deflection limited rather than stress limited" due to the

relatively low stiffness of glass fiber / vinyl ester composites compared to metals [ 11].

Fatigue and creep should also be considered. Experimental and finite element analyses

should also be employed for further investigation of the plug repair scheme.

Finally, alternative repair schemes utilizing the plug concept appear to be

attractive. In particular, the following repair schemes should be examined for application

in marine glass fiber / vinyl ester laminates:

* The introduction of a CSM plug made of a different material from glass fiber

/ vinyl ester. For example, the use of chopped carbon fibers instead of

chopped glass fibers in the CSM plug should be investigated.

* The application of thin cross-piled or unidirectional glass fiber / vinyl ester

or carbon fiber / vinyl ester patches on top of the glass fiber / vinyl ester

plug. In particular, a repair scheme of this form may be suitable for major

structural repairs and could be more cost-effective than the traditional patch

and scarf repairs applied in marine composites.
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Appendix A

Approximate calculation of constitutive properties for glass fiber / vinyl ester woven

roving

Due to the lack of a reference for the complete set of constitutive properties for

glass fiber / vinyl ester woven roving (WR), an indirect approach is adopted for their

estimation.

A.1 Calculation of constitutive properties for unidirectional glass fiber / vinyl ester

composite material

The first step is to determine the constitutive properties of a unidirectional glass

fiber / vinyl ester composite. Table A-1 summarizes the constitutive properties of a

unidirectional glass fiber / epoxy composite [Al]. The unidirectional glass fiber / epoxy

composite is considered orthotropic and thus has nine independent elastic constants: Ex',

Ey', Ez' are the Young's moduli; Gxy', Gxz', Gxz' are the shear moduli; and vxy', vxz', vyz'are

the Poisson's ratios. The properties of the unidirectional glass fiber / epoxy material

presented in Table A-i correspond to a 29.6% fiber volume fraction.

Table A-1: Constitutive properties for unidirectional glass fiber / epoxy composite

material [Al].

Ex' E,' Gxy' Ez' Gxz' Gyz' IMaterial vxy' Vxz' Vyz'
[GPa] [GPa] [GPa] [GPa] [GPa] [GPa]

Glass fiber / Epoxy 38.61 8.27 4.14 0.26 8.27 4.14 3.45 0.26 0.34

The constitutive properties of the glass fiber / epoxy composite in Table A-1 are

selected as the reference material for the subsequent calculations. The reason for this

selection is that this composite has very similar constitutive properties to those of glass

fiber / vinyl ester according to generic property data provided in the literature [A2].

The properties for the unidirectional glass fiber / vinyl ester corresponding to a

29.2% fiber volume fraction, can be seen in Table A-2.



Table A-2: Constitutive properties for unidirectional glass fiber / vinyl ester

composite material.

Ex" Ey" Gxy" Ez" Gxz" GyZ"
Material Vxy" Vxz Vyz

[GPa] [GP[GP aGPa] [ [G] [GPa] [GPa]

Glass fiber / Vinyl ester 38.60 8.23 8.86 0.26 8.23 8.86 7.38 0.26 0.34

In Table A-2, Ex", Ey", Ez", Gxy", Gxz", V.y", and vx" for glass fiber / vinyl ester

were obtained directly from the literature [A2]. On the other hand, vyz" was assumed to

be the same as glass fiber / epoxy, since the values of vxy " and vxz" for glass fiber / vinyl

ester match the respective properties of glass fiber / epoxy. Further, Gyz" was

approximated using the formula

"GI

Gyz "Gyz (39)
Gx

A.2 Calculation of constitutive properties for glass fiber / vinyl ester woven roving

(WR)

The next step is to calculate the constitutive properties for a glass fiber / vinyl

ester woven roving (WR) for different types warp-weft configurations, based on the

calculated properties of the unidirectional glass fiber / vinyl ester composite. These

woven roving configurations vary in the percentage of glass fibers aligned with the warp

and weft (or fill) directions, which in the present analysis are the x- and y- directions,

respectively. In particular, the woven roving arrangement ranges from a balanced fabric,

where the reinforcement in the warp direction is equal to the reinforcement in the weft

direction (so-called 50% biased in the warp direction), up to a configuration of 100%

biased in the warp direction, which corresponds to a unidirectional tape.

Smith [A3] proposed a treatment for the desired mechanical properties of WR

materials. A bidirectional cloth ply was treated as a pair of equivalent, orthogonal,

unidirectional plies. The elastic properties of each ply were appropriately reduced by

being multiplied with a ply efficiency factor, corresponding to the percentage of fibers

aligned with the warp (or weft) direction. The equivalent unidirectional plies of balanced



cloth material would, for example, have an efficiency of 0.5. In the case of a biased

fabric, the uneven fiber distribution is represented by adopting different efficiencies in

the orthogonal directions. Furthermore, for a typical WR laminate the effective through-

thickness shear moduli was estimated by averaging the ply shear moduli Gx and Gyz.

Poisson's ratios vxz and vyz were found likewise.

Gay and Hoa [A4] suggested a similar approach as Smith [A3]. Their approach

also considered the fabric as two unidirectional plies crossing each other orthogonally.

The formulas proposed were [A4]

Ex = kE +(1 -k)E (40)

Ey=(1-k)Ex +kEy (41)

Gxy = G, (42)

Vxy
Vxy = (43)

k +(1-k) ,
Ey

where k is the percentage of fibers in the warp direction, and Ex", Ey", Gxy", and vxy" are

the Young's modulus in x-direction, the Young's modulus in y-direction, the in-plane

shear modulus, and the Poisson's ratio, respectively, of the unidirectional glass fiber /

vinyl ester composite. According to Gay and Hoa [A4], this formulation provides

stiffnesses that are higher than those of the physical WR by up to 15%. This error is the

result of the curvature of the glass fibers introduced during the weaving process of the

fabric [A4, A5]. This curvature "makes the woven fabric more deformable than two cross

plies when subjected to the same loading" [A4]. The compressive stiffness of the glass

fibers in WR is reduced compared to that of a similar unidirectional composite, because

"when a compression load is applied, they are already buckled" [A5].

The calculated constitutive planar properties of the glass fiber / vinyl ester

woven rovings using Equations (2)-(5) are provided in Table A-3.



Table A-3: Constitutive planar properties of glass fiber / vinyl ester woven roving

(WR) laminates.

Ex E, Gxy
Material k Vxy

[GPa] [GPa] [GPa]

Balanced WR 0.5 23.42 23.42 8.86 0.09

WR 60% biased 0.6 26.45 20.38 8.86 0.11

WR 70% biased 0.7 29.49 17.34 8.86 0.12

WR 80% biased 0.8 32.53 14.30 8.86 0.15

WR 90% biased 0.9 35.56 11.27 8.86 0.19

Unidirectional 1 38.60 8.23 8.86 0.26
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Appendix B

Approximate calculation of constitutive properties for glass fiber / vinyl ester

chopped strand mat (CSM)

B.1 Fiber and matrix volume fractions

The amounts of glass fiber and vinyl ester in glass fiber / vinyl ester composites

utilized in marine applications are expressed as either a weight fraction or a volume

fraction. The fiber volume fraction Vf and the matrix volume fraction Vm are calculated as

a function of the matrix weight fraction R by [B 1]

Yf

Vm = (44)
1 'f

-+ 1
R ym

Vf = 1 - Vm  (45)

where yf and ym are the specific gravities of the fiber and matrix, respectively. According

to Smith [B1], the matrix weight fraction R in chopped strand mat (CSM) was 65% to

75%. In other words, the typical weight fraction of the glass content in a CSM is 25% to

35%.

Table B-1 provides a summary of glass fiber volume fractions calculated by

using Equations (1) and (2), for vinyl ester matrix weight fractions varying from 40% to

100%, where yf and ym equal to 2.55 and 1.15, respectively.

Table B-i: Glass fiber volume fractions corresponding to various vinyl ester matrix

weight fractions in glass fiber / vinyl ester composite.

Matrix weight fraction R [%] 100 95 90 85 80 75 70 65 60 55 50 45 40

Fiber weight fraction 1-R [%] 0 5 10 15 20 25 30 35 40 45 50 55 60

Matrix volume fraction Vm [%] 100 98 95 93 90 87 84 80 77 73 69 64 60

Fiber volume fraction Vf [%] 0 2 5 7 10 13 16 20 23 27 31 36 40



B.2 Constitutive properties of unidirectional fiber reinforced composite

For a unidirectional fiber reinforced composite, the Young's modulus in the x-

direction Ex, the Young's modulus in the y-direction Ey, the major Poisson's ratio vxy, the

minor Poisson's ratio vyx, and the in-plane shear modulus Gxy, can be estimated by [B 1]:

Ex = EVf + EmVm (46)

1+ 2qiVEy = + 2 r Em (47)
1- qrl V

Vxy = VfVf + VmVm (48)

Ey
Vyx = Vxy (49)

Ex

1+ 22VGxy = 1+ 22V Gm (50)
1- q2Vf

Vf+ Vm= (51)

where Vf and Vm are the fiber and the matrix volume fractions, respectively, Efand Em are

the Young's moduli of the fiber and matrix, respectively, Gf and Gm are the shear moduli

of the fiber and matrix, respectively, vf and v, are the Poisson's ratio for the fiber and

matrix, respectively, and rl, j2 are parameters obtained from [B 1]:

Ef- 1

q= Em (52)
Ef

+2
Em

Gf
-1

Gm72 G (53)
f 

+1

Gm

Typical values for Ef, Em, Gf, Gm, v and vm are given in Table B-2.



Table B-2: Typical constitutive properties of E- glass fiber and vinyl ester materials.

By substituting the properties from Table B-2 into Equations (3)-(10), we can

obtain the constitutive properties of a unidirectional glass fiber / vinyl ester composite

for various glass fiber volume fractions. The calculated constitutive properties for fiber

volume fractions varying from 0% to 40% are summarized in Table B-3.

Table B-3: Constitutive properties of unidirectional glass fiber / vinyl ester

composite.

Fiber volume fraction Vf [% ]
Property

0 2 5 7 10 13 16 20 23 27 31 36 40

Ex [GPa] 3.40 4.99 6.67 8.46 10.35 12.36 14.51 16.80 19.26 21.89 24.72 27.78 31.08

E, [GPa] 3.40 3.61 3.84 4.10 4.39 4.71 5.07 5.49 5.97 6.53 7.18 7.97 8.92

Gx [GPa] 1.25 1.30 1.36 1.43 1.50 1.59 1.68 1.79 1.92 2.06 2.24 2.44 2.70

vy 0.36 0.36 0.35 0.35 0.35 0.34 0.34 0.33 0.33 0.32 0.32 0.31 0.30

Vyx 0.36 0.26 0.20 0.17 0.15 0.13 0.12 0.11 0.10 0.10 0.09 0.09 0.09

B.3 Constitutive properties for short fiber composites

Smith [B 1] offered an analytical methodology for the calculation of constitutive

properties of a composite with randomly oriented short fibers in a plane, such as glass

fiber / vinyl ester chopped strand mat (CSM). Due to the random orientation of its fibers

and the isotropic nature of its matrix (vinyl ester), the mechanical properties of CSM can
be considered independent of direction. Thus, CSM is treated as an isotropic material in

the x-y plane. The constitutive properties of CSM can be estimated by the following

expressions [B 1]:



(Ul + U4)(U1- U4)
E = (54)

U1

U1-U4
G =U-U (55)

2

E U4
v = (56)

2G-1 Ui

where E, G and v, are the Young's modulus, the shear modulus, and the Poisson's ratio of

the planar isotropic CSM, respectively, and U1 and U4 are invariants defined by Tsai and

Pagano [B2], and Halpin and Pagano [B3] as

3Cli + 3C22 + 2C12 + 4C66
U1 = (57)

8

U4 C11 + C22 + 6C12 - 4C66
U4 = (58)

8

In Equations (14) and (15), C11, C22, C12 and C66, are the stiffness coefficients provided

by [B2, B3]

Ex
C11 =- (59)

1- VxyVyx

Ey
C22 = , (60)

1- VxyVyx

VxyEy
C12 =-vEy (61)

1- VxyVyx

C66 = Gxy (62)

where Ex, Ey, G, vxy, and vyx are the Young's modulus in the x-direction, the Young's

modulus in the y-direction, the in-plane shear modulus, the major Poisson's ratio, and the

minor Poisson's ratio, respectively, of the unidirectional glass fiber / vinyl ester

composite.

By substituting the constitutive properties of unidirectional glass fiber / vinyl

ester given in Table B-3 into Equations (11)-(19), we obtain the constitutive properties of



the glass fiber / vinyl ester CSM for fiber volume fractions varying from 0% to 40%.

These are summarized in Table B-4.

Table B-4: Constitutive properties of glass fiber / vinyl ester chopped strand mat

(CSM).

Property Fiber volume fraction Vf [%]

0 2 5 6 10 13 16 20 23 27 31 36 40
E [GPa] 3.40 4.00 4.66 5.38 6.16 6.99 7.90 8.88 9.95 11.13 12.42 13.86 15.48

G [GPa] 1.25 1.48 1.73 2.00 2.29 2.61 2.95 3.31 3.71 4.15 4.64 5.18 5.79

v 0.36 0.35 0.35 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34
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Appendix C

C.1 Glass fiber / vinyl ester laminate of woven roving biased 60% in x-direction with

circular hole filled with plug of glass fiber / vinyl ester chopped strand mat,

subjected to tension in one direction

Figures C1 and C2 show the stresses a, and ayy, respectively, around the hole

boundary in a glass fiber / vinyl ester laminate of woven roving (WR) biased 60% in the

x-direction, containing various plugs of glass fiber / vinyl ester chopped strand mat

(CSM), and subjected to uniaxial tension qo in the x-direction. A biased WR is a fabric

with an unequal distribution of fibers along the warp and weft directions. In a 60% biased

woven roving, the reinforcement in warp direction is 60% of the total reinforcement,

while the reinforcement in weft direction is 40% of the total reinforcement.

Figure C3 displays the effect of an increase of the percentage of glass fiber

volume fraction in the CSM plug on the maximum tensile stress axx around the edge of

the hole in a laminate of WR biased 60% in x-direction. Figures C4 and C5 show the

effect of an increase of the percentage of fiber volume fraction on the maximum stress ayy
and the minimum stress yy,, respectively, around the edge of the hole in a laminate of WR

biased 60% in x-direction.
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Figure Cl: Stress a,, around hole in glass fiber / vinyl ester laminate of woven

roving biased 60% in x-direction containing various plugs, and subjected to uniaxial

tension a, in x-direction.
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Figure C2: Stress cr, around hole in glass fiber / vinyl ester laminate of woven

roving biased 60% in x-direction containing various plugs, and subjected to uniaxial

tension a, in x-direction.
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Figure C5: Normalized minimum stress 'y, around edge of hole in laminate of glass

fiber / vinyl ester woven roving (WR) biased 60% in x-direction for various chopped

strand mat (CSM) plugs, and subjected to uniaxial tension a, in x-direction.



C.2 Glass fiber / vinyl ester laminate of woven roving biased 70% in x-direction with

circular hole filled with plug of glass fiber / vinyl ester chopped strand mat,

subjected to tension in one direction

Figures C6 and C7 show the stresses a and oyy, respectively, around the hole

boundary in a glass fiber / vinyl ester laminate of woven roving (WR) biased 70% in the

x-direction, containing various plugs of glass fiber / vinyl ester chopped strand mat

(CSM), and subjected to uniaxial tension ao in the x-direction.

Figure C8 displays the effect of an increase of the percentage of glass fiber

volume fraction in the CSM plug on the maximum tensile stress ao around the edge of

the hole in a laminate of WR biased 70% in x-direction. Figures C9 and C10 show the

effect of an increase of the percentage of fiber volume fraction on the maximum stress oyy

and the minimum stress ayy, respectively, around the edge of the hole in a laminate of WR

biased 70% in x-direction.
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Figure C6: Stress a,, around hole in glass fiber / vinyl ester laminate of woven

roving biased 70% in x-direction containing various plugs, and subjected to uniaxial

tension a, in x-direction.
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fiber / vinyl ester woven roving (WR) biased 70% in x-direction for various chopped
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C.3 Glass fiber / vinyl ester laminate of woven roving biased 80% in x-direction with

circular hole filled with plug of glass fiber / vinyl ester chopped strand mat,

subjected to tension in one direction

Figures C11 and C12 show the stresses a, and oyy, respectively around the hole

boundary in a glass fiber / vinyl ester laminate of woven roving (WR) biased 80% in the

x-direction, containing various plugs of glass fiber / vinyl ester chopped strand mat

(CSM), and subjected to uniaxial tension ao in the x-direction.

Figure C13 displays the effect of an increase of the percentage of glass fiber

volume fraction in the CSM plug on the maximum tensile stress Ua around the edge of

the hole in a laminate of WR biased 80% in x-direction. Figures C14 and C15 show the

effect of an increase of the percentage of fiber volume fraction on the maximum stress Ua

and the minimum stress ayy, respectively, around the edge of the hole in a laminate of WR

biased 80% in x-direction.
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Figure C11: Stress ,,xx around hole in glass fiber / vinyl ester laminate of woven

roving biased 80% in x-direction containing various plugs, and subjected to uniaxial

tension a, in x-direction.
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roving biased 80% in x-direction containing various plugs, and subjected to uniaxial
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Figure C13: Normalized maximum stress x around edge of hole in laminate of

glass fiber / vinyl ester woven roving (WR) biased 80% in x-direction for various

chopped strand mat (CSM) plugs, and subjected to uniaxial tension a, in x-

direction.
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Figure C14: Normalized maximum stress y around edge of hole in laminate of

glass fiber / vinyl ester woven roving (WR) biased 80% in x-direction for various

chopped strand mat (CSM) plugs, and subjected to uniaxial tension ao in x-

direction.
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C.4 Glass fiber / vinyl ester laminate of woven roving biased 90% in x-direction with

circular hole filled with plug of glass fiber / vinyl ester chopped strand mat,

subjected to tension in one direction

Figures C16 and C17 show the stresses a, and ayy, respectively, around the hole

boundary in a glass fiber / vinyl ester laminate of woven roving (WR) biased 90% in the

x-direction, containing various plugs of glass fiber / vinyl ester chopped strand mat

(CSM), and subjected to uniaxial tension o, in the x-direction.

Figure C18 displays the effect of an increase of the percentage of glass fiber

volume fraction in the CSM plug on the maximum tensile stress a around the edge of

the hole in a laminate of WR biased 90% in x-direction. Figures C19 and C20 show the

effect of an increase of the percentage of fiber volume fraction on the maximum stress yy

and the minimum stress ayy, respectively, around the edge of the hole in a laminate of WR

biased 90% in x-direction.
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Figure C16: Stress a around hole in glass fiber / vinyl ester laminate of woven

roving biased 90% in x-direction containing various plugs, and subjected to uniaxial

tension qo in x-direction.
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Figure C17: Stress yy, around hole in glass fiber / vinyl ester laminate of woven

roving biased 90% in x-direction containing various plugs, and subjected to uniaxial

tension a, in x-direction.
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Figure C18: Normalized maximum stress a, around edge of hole in laminate of

glass fiber / vinyl ester woven roving (WR) biased 90% in x-direction for various

chopped strand mat (CSM) plugs, and subjected to uniaxial tension a, in x-

direction.

I._

I Normalized stress exxmax for hole filled with CSM plug

T Normalized stress oxxmax for hole without plug
S- --- I - -- --- -- I -----

::

I

:::



0.6

0.5 ---- -- -- ~ -- ----- ------ -f - I- - ---- --- -t -----------

T - - , - - - I - ---. .
I I II I I I I

o.4 -0.5- -- T' ' I -

--- Normalized stress a max for hole filled with CSM plug

H Normalized stress max for hole without plug0 .1 I I I I I I

- - - - - - - - - -

0
0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35 37.5 40

Glass fiber volume fraction in CSM plug [%]

Figure C19: Normalized maximum stress ay, around edge of hole in laminate of

glass fiber / vinyl ester woven roving (WR) biased 90% in x-direction for various

chopped strand mat (CSM) plugs, and subjected to uniaxial tension oa, in x-

direction.
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Figure C20: Normalized minimum stress yy, around edge of hole in laminate of glass

fiber / vinyl ester woven roving (WR) biased 90% in x-direction for various chopped

strand mat (CSM) plugs, and subjected to uniaxial tension o, in x-direction.

94



C.5 Glass fiber / vinyl ester laminate of unidirectional woven roving aligned with x-

direction with circular hole filled with plug of glass fiber / vinyl ester chopped

strand mat, subjected to tension in one direction

Figures C21 and C22 show the stresses ro and ,yy, respectively, around the hole

boundary in a glass fiber / vinyl ester laminate of unidirectional woven roving aligned

with the x-direction, containing various plugs of glass fiber / vinyl ester chopped strand

mat (CSM), and subjected to uniaxial tension a, in the x-direction.

Figure C23 displays the effect of an increase of the percentage of glass fiber

volume fraction in the CSM plug on the maximum tensile stress a around the edge of

the hole in a laminate of unidirectional woven roving aligned with the x-direction.

Figures C24 and C25 show the effect of an increase of the percentage of fiber volume

fraction on the maximum stress ayy and the minimum stress Uyy, respectively, around the

edge of the hole in a laminate of unidirectional woven roving aligned with x-direction.
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Figure C21: Stress ,,xx around hole in unidirectional glass fiber / vinyl ester laminate

(aligned with x-direction) containing various plugs, and subjected to uniaxial

tension o, in x-direction.
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Figure C22: Stress yy, around hole in unidirectional glass fiber / vinyl ester laminate

(aligned with x-direction) containing various plugs, and subjected to uniaxial

tension a, in x-direction.
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Figure C23: Normalized maximum stress exx around edge of hole in unidirectional

glass fiber / vinyl ester laminate (aligned with x-direction) for various chopped

strand mat (CSM) plugs, and subjected to uniaxial tension oa, in x-direction.
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Figure C24: Normalized maximum stress ay, around edge of hole in unidirectional

glass fiber / vinyl ester laminate (aligned with x-direction) for various chopped

strand mat (CSM) plugs, and subjected to uniaxial tension a, in x-direction.
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Figure C25: Normalized minimum stress qy around edge of hole in unidirectional

glass fiber / vinyl ester laminate (aligned with x-direction) for various chopped

strand mat (CSM) plugs, and subjected to uniaxial tension a, in x-direction.
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