Horizon brightness revisited:

measurements and a model of clear-sky radiances

Raymond L. Lee, Jr.

Clear daytime skies persistently display a subtle local maximum of radiance near the astronomical
horizon. Spectroradiometry and digital image analysis confirm this maximum’s reality, and they show
that its angular width and elevation vary with solar elevation, azimuth relative to the Sun, and aerosol
optical depth. Many existing models of atmospheric scattering do not generate this near-horizon
radiance maximum, but a simple second-order scattering model does, and it reproduces many of the

maximum’s details.
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Introduction

To the uninitiated, the clear daytime sky seems such
a commonplace that its radiance and brightness!
distribution surely must be well known. Research-
ers in fields ranging from solar energy engineering?3
to atmospheric optics%® have repeatedly measured
and modeled the angular distribution of clear-sky
radiances, and they have published scores of papers
on the subject. What can be left to know?

In fact, a great deal is left to know. In simple
models of scattering by the clear atmosphere, radi-
ance increases monotonically from the zenith to the
astronomical (i.e., dead-level) horizon.6” However, a
persistent feature of our cloudless atmosphere is a
local maximum of radiance several degrees above the
horizon, not at it. We have detected this near-
horizon radiance maximum in clear daytime skies
ranging from midlatitudes to the Antaretic, and from
midcontinent to the open sea. However, no one, to
my knowledge, has written about it. Why?

First, the maximum has rather low contrast, mak-
ing it visually subtle. We tend to measure and model
those sky features that call attention to themselves.
Like many phenomena in atmospheric optics, the
near-horizon maximum is obvious only to the initiated.
Second, before the advent of narrow field-of-view
(FOV) radiometers® and photographic analysis tech-
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niques,3-12 gecurate and detailed near-horizon radi-
ance measurements were difficult, if not impossible,
to make,

As a result, many previous models of clear-sky
radiances have been compared with measurements
that are fundamentally inadequate. This inad-
equacy stems from the measurements’ limited angu-
lar resolution, which is often 5°-20°.13-16  Obviously,
any clear-sky features that are angularly smaller
than this will either be eliminated or considerably
smoothed. This imprecision in measurement has
led, in turn, to models that fail to reproduce the
near-horizon radiance maximum.!?-16 Authors of
models that do produce a radiance maximum near the
horizon have not commented on this feature, perhaps
because they are unaware of its verisimilitude.4517

Thus our goal here is threefold. First, we want to
analyze clear-sky radiances near the horizon, using
both spectroradiometry and digital image analysis.
Second, we want to compare these radiance patterns
with those predicted by a simple, but physically
rigorous, solution of the radiative transfer equation
to see if we can account for the near-horizon maxi-
mum. Finally, we want to see if our model provides
us any insight into a simple physical explanation of
the phenomenon.

High-Resolution Measurements of Clear-Sky Radiances

We begin by electronically digitizing, at a color resolu-
tion of 24 bits per pixel, color slides of clear skies seen
at several sites and times of day (see Plates 37-40).
Algorithms developed earlier'® are used to calibrate
the images colorimetrically and radiometrically.
The digitized color slides yield relative radiance data
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whose angular resolution is limited only by the film; a
resolution of 1/65° is possible. Relative sky radi-
ances can then be extracted from the image data and
displayed as meridional radiance profiles (i.e., plots of
normalized, azimuthally averaged radiance versus
angular elevation). Figure 1 illustrates the major
features of a surface-based observer’s clear-sky scat-
tering geometry.

At one site, color slides were taken simultaneously
with narrow FOV spectra?® of the clear sky (see Plate
37). Comparisons of these two data sources give a
good indication of the photographic technique’s poten-
tial accuracy (see Fig. 2). For elevation angles > 0.5°
in Fig. 2, the root-mean-square (rms) difference be-
tween the two normalized meridional profiles is
0.00802. The radiometer’s maximum radiance oc-
curs 1.5° above the astronomical horizon, whereas
the photographic analysis placesitat ~2.4°. Depend-
ing on solar elevation, azimuth relative to the Sun,
and normal optical depth, the maximum may occur at
8° (or higher) and be much broader than that seen in
Fig. 2. The breadth of the maximum and the close
agreement of the photographic and the radiometer
data suggest that we are not seeing the photographic
equivalent of a Mach band (a possibility explored by
Lynch20),

Nevertheless, the photographic and the radiometer
data’s disagreement about the maximum’s elevation
illustrates some of the inherent differences between
the two techniques. First, the radiometer data were
acquired over a period of ~ 25 min, meaning that they
may incorporate temporal changes in sky radiance
patterns that the photograph does not. Second,
although the photographic data have been smoothed
over a 0.5° azimuthal FOV, this digital smoothing
may be somewhat different from that occurring opti-
cally in the radiometer. (The error bars of Fig. 3
illustrate the radiometric noise typical at this narrow

FOV for the photographic technique.) Finally, we
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Fig. 1. Clear-sky scattering geometry for an observer at point X
whose view zenith and azimuth angles are 6, and &,, respectively.
&yel is the difference between the sun’s azimuth and ¢,. Clear-sky
radiances reaching the observer include contributions from di-
rectly scattered sunlight, L,, and from multiply scattered surface
light and skylight, Lgiz. At each elemental scattering volume dV
along the observer’s line of sight, L; and Ly are scattered through
various angles ¥ (¥, for L, is shown above).
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Fig. 2. Comparison of photographic and spectroradiometric mea-
sures of clear-sky radiances at University Park, Pa., at 1605 GMT
on 6 October 1992 (see Plate 37). A running average has smoothed
the detailed photographic data of Fig. 3. The solar zenith angle
6y = 48°, the instruments’ azimuth with respect to the sun, ¢y, is
118°, and the equivalent Lambertian surface reflectance rs, = 0.25.

must correct the photographic analysis for any expo-
sure falloff or vignetting that occurs in the camera.

Our Fig. 2 comparison of photographic and radiom-
eter data suggests that, with careful geometric and
radiometric calibration of photographic data, we can
use digital image analysis when a radiometer is
unavailable. When we do so, the resulting photo-
graphic radiance profiles confirm that the near-
horizon maximum is a remarkably persistent feature
of the clear daytime sky. How can we explain it?
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Fig. 3. Normalized radiance versus view elevation angle for a
clear-sky scene at University Park, Pa., at 1605 GMT on 6 October
1992 (see Plate 37). The astronomical horizon corresponds to a
view elevation of 0°. These photographically derived data span a
0.5°-wide meridional swath near the scene’s center that matches
the FOV of spectroradiometer data taken simultaneously (see Fig.
2). Error bars span two standard deviations o, of the azimuthal
radiances at selected elevation angles.
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Second-Order Scattering Model
for Clear-Sky Radiances

As noted above, models of clear-sky radiances are not
in short supply.>® Indeed, scores of models are
available, ranging from the purely empirical to the
highly theoretical. Although we can easily reject
models that fail to produce the near-horizon maxi-
mum, why not use those that do?4+-5

Aside from the difficulty of successfully translating
others’ algorithms, their authors themselves raise
some cautions. Dave!? says of his spherical harmon-
ics model that ‘“because of the plane-parallel [atmo-
sphere] assumption and nature of the method of
computations, it is not possible to evaluate” sky
radiance at the astronomical horizon. Furthermore,
he describes his algorithm as “‘somewhat unreliable”
at 1° elevation, which is within the range where
radiance maxima can occur. Prasad et al.* use their
model (which incorporates van de Hulst’s doubling
method) to plot horizon-to-zenith profiles of sky
radiance for several azimuth angles (see their Fig. 8).
Surprisingly, their profiles do not appear to converge
at the zenith where, at a particular time and for a
particular atmosphere, only a single radiance is pos-
sible. Thus, despite the fact that these two models
incorporate higher-order multiple scattering, both
exhibit some shortcomings that are relevant to our
problem. Given these shortcomings, developing a
new model of sky radiance does not seem superfluous.

We start by applying the equation of radiative
transfer to a curved-shell atmosphere in which scat-
terer number density decreases exponentially with
altitude. Scatterers consist of molecules and spheri-
cal haze droplets, and slant optical paths are calcu-
lated by the use of Bohren and Fraser’s algorithm 2!
The scattering model accounts for variations in solar
elevation, scatterer optical depth, scale height, phase
function, and Lambertian surface reflectance. It
produces clear-sky radiances for a surface-based ob-
server as a function of view zenith angle 8, and view
azimuth ¢,.

In the model, 0 is the zenith angle, with 6 = 7 being
the nadir and 6 = 0 the zenith. ¢ is azimuth angle,
and ¢, is the relative azimuth (¢, = 0 is toward the
Sun, ¢, = 7 is in the antisolar direction; see Fig. 1).
T(8, d) is the scattering angle measured in spherical
coordinates 6, ¢. For scattering of direct sunlight,
Ty, is defined by the Sun, a scatterer (aerosol or
molecule), and the observer. Atmospheric absorp-
tion is parameterized by the single-scattering albedo
w,. For an observer at the Earth’s surface, the
diffuse clear-sky radiance Lg, in the direction 6,, ¢, is

f
Ly, = f J(¥, 7)exp(t — 77 )d, (1)
=0

where the source function J(¥, 1) = Jyg; + Zit1 Jag;
is the sum of direct single scattering J3. and all
higher orders of diffuse multiple scattering ZiZ Jgig;
along the total atmospheric slant optical path =,
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coinciding with the observer’s viewing direction.
Jair and Jg1 can easily be expanded as integrals over
7, 8, and ¢, and the integrals can then be evaluated
numerically. For realistic clear atmospheres, we
show that for ¥y > 20° the multiple-scattering
contributions to Jyg after the first term /g, do not
affect Lgy profiles appreciably. In other words, we
restrict our model to single plus double scattering,
making it a second-order scattering model.

Assuming the solar radiance L, is nearly constant
over the Sun’s small solid angle e,

L_swsp ir(\P) P r(q’)
Jaix = wo exp(—1) = = o, exp(—1) —;

(2)

where E, is the Earth’s solar constant (= L,w,),
Py, (P) is the scattering phase function for direct
scattering of sunlight, and 7 is the integration vari-
able in Eq. (1).

For diffuse multiple scattering, Jug; = (wo/4mw)
[ Paisr(¥)Lae(W)doo, or

21 T
Jaug = Ej f Pyig(0, &)Laig(0, d)sin(6)dodd,
T AT S0 om0
(3)

where Py is the scattering phase function for scatter-
ing of surface light and skylight from 6, ¢ into a
differential air volume dV that lies along an observ-
er’s line of sight in the direction 0,, ¢,. In general,
the angles ¥(8, &) for scattering surface light and
skylight into dV will not be the same as the observer’s
4. as he or she looks toward dV.

The diffuse radiances Lgg(0, &) that illuminate each
dV are calculated by integrating over vy, where Tggis
the slant-path optical depth from dV to the top (or
bottom, depending on 6) of the atmosphere in the
direction 6, . Specifically,

Ldiﬁ'(e’ ¢) =L 1 sfe exp(—'r t sfc)

wy [
+ Z; Es exp(—'red,)Ped, exp(T - Tdiﬁ)d’l'.

(4)

In Eq. (4), L4 is the radiance reflected upward
from the surface toward dV. L is attenuated
exponentially along the slant optical path 744, be-
tween the Earth’s surface and dV. Most of dV’s 0, ¢
directions do not intersect the Earth’s surface, so
L y ¢ = 0 for them.

We assume that the surface behaves as a Lamber-
tian reflector with reflectance ry., making L ;4 = E;
cos(0)exp(—7 | ere)stc/ ™. Ty st iS the slant optical path
of direct sunlight (at zenith angle 8, azimuth &)
down to the surface, and is itself a function of 0, .



E, cos(8y) is the fraction of the solar irradiance that is
projected normally onto the Lambertian surface.

Returning to Eq. (4), the 74 are the slant optical
paths defined by the direction of the sun (8, d,) and
points along the direction 6, ¢ from dV. Physically,
exp(—Te4) describes direct sunlight’s attenuation be-
tween the top of the atmosphere and those points
along 7 as we move toward dV. The phase function
Py, describes the scattering efficiency of direct sun-
light toward dV from the direction 6, ¢. Note that
all the scattering phase functions P(¥) used here are
f(7) because the ratio of aerosol to molecular scatter-
ing changes along the slant 7 (the ratio changes
because altitude changes along the slant paths).

In addition, two different aerosol phase functions
are used, and these are based on Mie scattering
calculations over two polydispersions, the Deirmend-
jian haze-L and haze-M size spectra.??2 Because we
assume that the incident solar radiance L, is unpolar-
ized, the intensity distribution function for aerosol
scattering (at the single-scattering level) is given by
Ref. 22’s Eq. (5-9). Our molecular-scattering phase
function follows the Rayleigh-scattering criterion de-
scribed in Eq. (4-37) of Ref. 22. When ¥y, = 90°,
both multiple scattering and our aerosol size spectra
will considerably reduce skylight’s linear polarization
from its theoretical upper limit of 100% (see, for
example, McCartney’s discussion?? on pp. 195-196
and 231-233).

Performance of the Second-Order Model

For a wide range of parameters, the second-order
scattering model does in fact generate a near-horizon
radiance maximum. The model’s maxima change
both in angular breadth and elevation with changes
in solar elevation, normal optical depth, and relative
azimuth. Bear in mind that this simple model will
not reproduce all the features found in more detailed
models, such as those by Prasad et al.* and Dave.l”
However, near the horizon and at large scattering
angles from the sun, the second-order model is often
morerealistic.22 Thus, for our purposes, its strengths
outweigh its weaknesses. We consider some specific
cases.

Unlike Prasad et al.’s model, the second-order
model produces azimuth-independent values of the
zenith radiance, as shown in Fig. 4. As far as is
possible in Fig. 4, we have matched model parameters
with those used in Prasad et al.’s Fig. 8. Note also
that, for this solar elevation and aerosol optical depth,
the second-order model predicts that, at view eleva-
tions of <20° the clear sky will be brighter in the
backward direction (¢, = 180°) than at right angles
to the Sun’s azimuth (¢, = 90°). Although Dave’s
model behaves similarly near the horizon (see his
model’s behavior in Prasad et al.’s Fig. 8), Prasad ef
al. predict just the opposite. Which claim is more
realistic?

Although no single set of measurements can be
conclusive, Fig. 5 seems to support the second-order
model’s claims about the azimuthal behavior of clear-
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Fig. 4. Second-order scattering model’s meridional radiance pro-
files for a combined molecular and aerosol atmosphere. Model
parameters were chosen to closely match those of Fig. 8 in Ref.
4. Multiplying the scaled radiances [which include a factor of 1/(w
sr)] by the solar spectral irradiance Eqcq at wavelength \ converts
them into absolute radiances.

sky radiances near the horizon. In Fig. 5, we see
how relative radiances vary azimuthally across Plate
38, averaged over view elevation angles of 1°-20°.
Now, using the same second-order model parameters
that produce the best fit to the measured meridional
radiance profile, we compare the azimuthal measure-
ments with the model’s behavior. The agreement
between measurements and the model is quite good
over the range &¢,q = 90°-122° (the curves’ rms
difference is 0.0011). We do not know if the trend of
Lg increasing with ¢ continues, but at least we
know that L{d.q) does not decrease monotonically
beyond ¢, = 90°. As we look toward higher ¢,
near the horizon in Plate 38, we are approaching the
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Fig. 5. Comparison of the azimuthal variation of clear-sky radi-
ances across Plate 38 with those predicted by the second-order
model, with the same model parameters that generate the best-fit
meridional radiance profile of Fig. 6. 7p, is the molecular normal
optical depth, 7, is the aerosol normal optical depth, and H,,, is
the aerosol scale height. A constant molecular scale height of 8.4
km and a single-scattering albedo w, of 0.97 are used throughout
this paper.
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aerosol backscattering maximum. Thus both na-
ture and simple physical reasoning suggest that the
second-order model is correct in saying that, near the
horizon, L(d,q = 180°) > L(d. = 90°).

The second-order model also produces the solar
aureole, as evidenced by the local maximum near 6, =
45° in Fig. 4’s L(¢ = 0°) curve. However, com-
pared with aureoles produced by Prasad et al.’s and
Dave’s models, the second-order model appears consis-
tently to underestimate the aureole’s magnitude.
These underestimates are not surprising because we
have considered only two scatterings and thus have
disallowed higher-order scatterings into directions
near the direct beam. In an atmosphere with a
pronounced forward-scattering peak, we can expect
this assumption to produce errors.

However, for ¥4, > 20° the radiances of the three
models are nearly equal. For example, at the zenith
(¥g; = 45° for 6 = 45°), the second-order model yields
aradiance that is ~23% larger than that predicted by
Dave’s'” model (see his Fig. 12) and ~6% smaller
than the average zenith radiance in Prasad et al.’st
Fig. 8. At 6, = 80° and . = 30° (Vg = 43.5°), the
second-order model differs from the other two models
by ~9%, with the signs of the differences being the
same as at the zenith (all comparisons have been
corrected for spectral variations in E;). These and
other comparisons of the models are the basis for my
above statement that we can usually ignore higher-
order scattering contributions to Lg, profiles if we
look at comparatively large scattering angles Wy,
from the Sun.

Comparisons of Measured and Modeled
Radiance Profiles

When we compare our measured radiance profiles
with those of the model, the agreement is usually
quite good. By careful (and realistic) choice of model
parameters, we can reduce the rms difference be-
tween the measured and the modeled radiance pro-
files to <0.04 for radiance profiles normalized by
their respective maxima.

In Figs. 6-10 we have plotted the measured meridi-
onal radiance profiles of Plates 37-40 and of Plate 41
in Ref. 24, With the exception of Fig. 10, each profile
is an azimuthal average across the entire scene (in
Fig. 10, the simulated azimuthal FOV is 0.5°), and a
typical standard deviation for these azimuthal radi-
ance averages is 0.02. All view elevation and zenith
angles are measured with respect to the astronomical
horizon. The rms differences between modeled and
measured radiances are limited to astronomical eleva-
tion angles above 0.25°-0.75° in order to reduce the
highly variable contributions of surface reflectance
(in Figs. 6 and 10, local topography rises ~ 0.5° above
the astronomical horizon).

Paired with each measured radiance profile is a
best-fit profile from the second-order model. Our
best-fit criterion attempts to minimize rms differ-
ences between the modeled and the measured profiles
while simultaneously requiring the model’s maxima
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Fig. 6. Comparison of measured and modeled clear-sky radiances
for the Bald Eagle Mountain scene at University Park, Pa., ~1530

GMT on 5 February 1987 (see Plate 38).

to occur within ~1° of the observations’ maxima.
The parameters 8, (solar zenith angle), ¢, {mean
relative azimuth in the scene), and r; (Lambertian
surface reflectance) either are known or can be mea-
sured from the digitized images. Because 7, (mo-
lecular normal optical depth) and w, (single-scatter-
ing albedo) are taken to be the constants 0.15 and
0.97, respectively, the variable parameters are the
aerosol normal optical depth 7, and the aerosol scale
height H,.,. Our best-fit values for these two param-
eters are quite plausible (see, for example, pp. 224—
225 of Ref. 21 and Fig. 3 of Ref. 25).

The best fit occurs in Fig. 10 (rms difference
0.00378), and the poorest fit is seen in Fig. 9 (rms
difference 0.035). The model’s performance in Fig.
10 is especially reassuring because here we have the
most detailed time, elevation, and azimuth data (see
Plate 37). These details mean that 6, and &, are
known quite accurately, thus reducing uncertainties
in the fitting algorithm.
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Fig. 7. Comparison of measured and modeled radiances for an
Antarctic clear-sky scene (see Plate 39). Although the snow is
brighter than the sky, radiances are still normalized here by a local
maximum occurring above the horizon.
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In Fig. 9 we know 0y and &4 with nearly the same
accuracy that we did in Fig. 10, yet Fig. 9 has the
largest rms difference of the five scenes analyzed.
Here the measurements and the model disagree
chiefly near the horizon. The same error pattern
occurs in Figs. 6 and 8, implying that the second-
order model’s parameterizing of surface contribu-
tions to L, is the source of the problem. Neverthe-
less, the model does accurately reproduce the position
and general features of the near-horizon maximum.
Because Prasad et al.’s and Dave’s models also use
Lambertian lower boundaries, they may have no
better success in accurately describing the sky radi-
ance distributions seen above real topography.

What general conclusions can we draw about the
behavior of the near-horizon maximum? First, note
that the maximum’s angular elevation tends to in-
crease with decreasing solar elevation and increasing
optical depth. For example, in Fig. 6 the Sun is well
above the horizon (8, = 63°), the atmosphere is very
clear (7, = 0.035), and the maximum occurs at 2.1°
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Fig. 10. Comparison of measured and modeled radiances for a

clear-sky scene at University Park, Pa., at 1605 GMT on 6 October

1992 (see Plate 37).

elevation. Conversely, in Fig. 9 the Sun has nearly
set (0o = 86°) and, although visibility is still good
(Taer = 0.0725), the radiance maximum’s elevation
has increased t0 8.3°. Second, the maximum’s angu-
lar breadth increases with increasing optical depth.
In Fig..11 we have combined the measured radiance
profiles from Figs. 6, 8, and 10. In order of increas-
ing aerosol normal optical depth are the Bald Eagle
Mountain sky of 5 February 1987 (r,,. = 0.035, Plate
38), the University Park sky of 6 October 1992
(Taer = 0.0925, Plate 387), and the Bermuda sky
{(Taer = 0.245, Plate 40). We can easily see in Fig. 11
that as aerosol loading increases, the radiance maxi-
mum broadens and becomes more poorly defined.

Using the Near-Horizon Maximum as a Quantitative
Remote-Sensing Tool

Clearly the near-horizon radiance maximum depends
on many variables, including solar elevation, atmo-
spheric and surface absorptivity, and aerosol and
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Fig. 9. Comparison of measured and modeled radiances for a

clear-sky scene on the Chesapeake Bay (North Beach, Md.) at 2300

GMT on 24 March 1992 (see Plate 41, Ref. 24).
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molecular scale heights and normal optical depths.
Can any useful, observable patterns be made to
emerge from this welter of details? The answer is
yes, provided that we constrain some of our variables.
For example, Fig. 12 is a nomogram from the second-
order model that shows the maximum’s angular
elevation as a function of aerosol normal optical
depth (or turbidity) and solar elevation. (Here we
use the turbidity definition given by McCartney,?? p.
206.) The nomogram is strictly valid only for fixed
values of &, Hyer, and rg., although in practice the
latter two parameters have a much smaller effect on
the diagram’s details than does the relative azimuth.
In Fig. 12, as elsewhere, the molecular normal optical
depth 7,4 = 0.15 and the single-scattering albedo
g = 0.97.

Figure 12 reiterates some points made above, includ-
ing the fact that the near-horizon maximum consis-
tently rises with increasing optical depth. The maxi-
mum also tends to rise with decreasing solar elevation.
To illustrate this trend, trace along a fixed optical
depth from high to low Sun elevations. Note, how-
ever, that at large aerosol optical depths (say,
Taer = 0.3), the maximum will set slightly as the Sun
moves downward from very high elevations.

Aside from illustrating the behavior of the second-
order model, Fig. 12 serves as a practical observing
tool: we can estimate aerosol optical depth based on
the near-horizon maximum’s elevation. For ex-
ample, if you see a radiance maximum 3° above the
antisolar horizon when the Sun’s elevation is 21°, the
normal aerosol optical depth is ~0.05 (turbidity
~1.33). Naturally such observations can be made
with a radiometer as well as with the naked eye.

However, before seizing on Fig. 12 as a panacea for
measuring turbidity, an important caveat needs to be
considered. The near-horizon maximum often is
visually subtle both because of its low contrast and
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Fig. 12. Contours of the clear-sky radiance maximum’s elevation
as a function of solar elevation and aerosol normal optical depth.
The observer is looking opposite the Sun (¢, = 180°), the surface
Lambertian reflectance rg, = 0.1, and the aerosol scale height
Hyer = 1km.
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because its color and brightness changes are com-
mingled (see Plate 38). Not surprisingly, the maxi-
mum’s contrast is lowest when the optical depth is
largest and multiple scattering is most pronounced
(see, for example, Plate 40). Thus, although the
maximum might exist at, say, 15° elevation, it may be
so broad and of such low contrast that a naked-eye
observer cannot see it or may misidentify its position.
Nevertheless, if used judiciously, Fig. 12 gives us a
way of turning a mere visual curiosity into a practical
remote-sensing tool.

Conclusions

One of our goals is a simple physical explanation of
the near-horizon radiance maximum. Figures 13
and 14 take two different tacks in attempting such an
explanation. In Fig. 13, model radiances for several
viewing directions near the horizon are plotted versus
slant optical path length as measured from the ob-
server. In other words, at each 7., along Fig. 13’s
ordinate, the three curves tell us what clear-sky
radiances we would receive from each direction 9, if
the atmosphere’s total optical depth were limited to
the particular 7g,,;. Obviously in the real atmo-
sphere 74, increases with 6,, so for each 9, in Fig. 13
we have labeled the slant optical paths 7/(6,) over the
entire atmosphere and their corresponding clear-sky
radiances L(6,).

Notice what happens in Fig. 13 if we limit the total
optical depth of the atmosphere [i.e., if we examine
L(8,) at Tgun < 7). For very shallow atmospheres
(say, Tgant < 1.6 for 6, = 87°~90°), radiance increases
monotonically as we approach the horizon (6, = 90°).
For larger and more realistic values of the total slant
optical path (74u > 3.8), the integrated clear-sky
radiance L(6,) is largest at intermediate elevation
angles (6, = 88.5°).

Why do we see this change from the shallower
atmosphere? As we thicken the atmosphere, in-
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Fig. 13. Second-order model radiances integrated over slant
optical path Tyane at several view zenith angles 6,. The total
optical path lengths 7¢(6,) are measured from the observer to the
atmosphere's top and are paired with the corresponding clear-sky
radiances Ls(6,).
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Fig. 14. Second-order model’s meridional radiance profiles at

rel = 180° in a nonabsorbing, purely molecular atmosphere with

different normal optical depths. In this atmosphere, the near-

horizon radiance maximum does not exist for the two smaller

optical depths, but it does for the two larger ones.

creased scattering of solar radiance L, reduces the
direct-beam source function Jy, at all altitudes.
These reductions in Jy,. are accompanied by corre-
sponding increases in the multiple-scattering source
functionJgy. However, if we make 7y,,,; large enough,
at low altitudes the reductions in Jg predominate
over the cumulative increases in J455. The net result
is that the total source function J(¥, 1) begins to
decrease as we look along atmospheric paths very
near the horizon (i.e., along paths dominated by
low-altitude scattering). All other factors being
equal, the 74.,; contribution to the local maximum
will be most pronounced at the antisolar azimuth
because 14,y is largest for Jy. there. Of course, the
scattering phase functions P(¥) and surface reflec-
tance ry. also affect the azimuthal behavior of the
meridional radiance profiles.

Figure 14 offers further evidence of the role that
optical depth plays in creating the near-horizon radi-
ance maximum. As does Fig. 4, Fig. 14 shows us
meridional radiance profiles from the second-order
model, this time for a nonabsorbing, purely molecular
atmosphere. (These curves have not been normal-
ized by their respective maxima; multiplying each by
E, . yields absolute radiances.) Now, however,
rather than keeping the atmosphere fixed and vary-
ing b, we fix b, at 180° and vary the normal optical
thickness of a purely molecular atmosphere. When
the atmosphere is thin (v,4 = 0.05), radiances do
indeed increase monotonically from zenith to horizon.
Trebling optical depth to 0.15 still does not produce a
local radiance maximum, although radiances increase
very slowly within 2° of the horizon. However, if we
increase T,y to 0.25 or 0.4, distinct local maxima
appear at 1.75° and 4.5° elevation, respectively.
Note too that as t,, increases, multiple scattering
makes the zenith progressively brighter, ultimately
at the expense of the horizon’s brightness.

Restricting ourselves to a molecular atmosphere
emphasizes the fact that the near-horizon radiance
maximum does not require a highly anisotropic scat-
tering medium. Although aerosols are not a prereg-
uisite for the maximum’s existence, they will usually
change its details. For example, even in a slightly
hazy atmosphere, a broad, intense solar aureole will
dominate the horizon sky in the vicinity of a low sun.
Because wy = 1.0 in Figure 14, the graph also
indicates that atmospheric absorption is not needed
to produce the near-horizon radiance maximum.
Although highly absorbing aerosols will darken the
horizon sky (and the zenith), we do not need to invoke
them to account for what we see.

Why does the clear daytime sky often have a
near-horizon radiance maximum? A preliminary an-
swer is that our atmosphere is just right: it absorbs
very little in the visible, and its optical path length
increases monotonically with decreasing view eleva-
tion angle (thus increasing total scattering along our
line of sight). At the time, attenuation of direct
sunlight reduces the source function J('¥, 1) when we
look very near the horizon. For many combinations
of normal optical depth and sun position, a subtle, yet
discernible, brightness maximum results just above
the horizon.
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