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Analytical treatment of the self-phase-modulation of an ultrashort light pulse is extended beyond the slowly
varying envelope approximation. The resulting wave equation is modified to include corrections to self-phase-
modulation due to higher-order spatial and temporal derivatives. Analytical solutions are found in the limiting
regimes of high nonlinearities and very short pulses. Our results reveal features that can significantly impact
both pulse shape and the evolution of the phase.
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I. INTRODUCTION

With laser science breaking the femtosecond barrier, it has
become more and more difficult to justify the application of
the slowly varying amplitude approximation(SVEA) to ex-
plain new physical phenomena. As light pulses become in-
creasingly shorter, new physical phenomena inaccessible to
the SVEA analysis begin to play an important role, and may
sometimes dominate the dynamics of ultrashort pulses and
field wave forms. Recent experiments demonstrating the
generation of attosecond pulses[1–3] and measurements
with these pulses[4,5] raise a number of equally challenging
and exciting issues related to the propagation and nonlinear-
optical interactions of pulses of extremely short durations. In
view of these breakthroughs, many classical results obtained
in the realm of ultrafast optics may have to be revised by
extending the analysis of Maxwell equations beyond the
SVEA. This task becomes especially urgent when ultrashort
pulses undergo nonlinear optical transformations while
propagating over large distances as, for example, in conven-
tional [6] or microstructure[7–10] fibers, or long-distance
pulse propagation in the atmosphere[11,12].

Recent numerical, non-SVEA studies of propagation and
nonlinear optical interactions of ultrashort light pulses have
revealed new interesting scenarios of spatiotemporal dynam-
ics and spectral evolution of ultrashort pulses[13–16], new
phenomena related to the ultrafast nonlinear response of a
medium[17,18], and the influence and interplay of propaga-
tion and phase-matching effects[19], to name a few. In the
absence of analytical solutions it therefore seems appropriate
and timely to attempt to put some of these results on a firmer
theoretical ground with a systematic analytical treatment of
non-SVEA effects. Accomplishing this task involves the re-
vision of the equations of motion for basic nonlinear optical
processes, such as self- and cross-phase modulation, har-
monic generation, four-wave mixing, and others, with the
inclusion arising from the inclusion of second-order longitu-
dinal, spatial, and temporal derivatives.

In this paper, we provide the non-SVEA analysis specifi-
cally for self-phase-modulation(SPM) as a part of this plan,
and find analytical solutions for the limiting regimes of high
nonlinearities and very short pulses. Close scrutiny of these

solutions then reveals important features in the dynamics of
the pulse envelope and phase related to non-SVEA effects.

II. REVISED EQUATION FOR
SELF-PHASE-MODULATION

We begin our analysis by writing the scalar wave equation
for the electric fieldE in an isotropic medium with no dis-
persion,

¹2E −
n2

c2

]2E
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=
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]2Pnl

] t2
, s1d

wheren is the refractive index andc is the speed of light in
the vacuum.

Without loss of generality, a short pulse propagating along
the z axis, of carrier frequencyv such thatk=vn/c, can be
expressed as follows:

Esx,y,z,td = «sx,y,z,tdeiskz−vtd + c.c. s2d

We write the nonlinear polarization of the medium in the
form of a power-series expansion, keeping the terms up to
the fifth order in the fieldE:

Pnl = xs3duEu2E + xs5duEu4E, s3d

wherexs3d and xs5d are the third- and fifth-order nonlinear-
optical susceptibilities, respectively. In writing Eq.s2d, we
assume that the carrier frequencyv can be defined for our
light pulse, which is true even for few-cycle pulses. In fact,
Eq. s2d is quite general in that it is equivalent to a coordinate
transformation. Expressions3d corresponds to the usual re-
gime of perturbative nonlinear optics. However, our analysis
will go beyond the standard SVEA treatment of self-phase-
modulation. We will find non-SVEA corrections to the SPM-
induced nonlinear phase shift and show that these corrections
can be described in terms of the effective fifth-order nonlin-
ear susceptibility. Since the term with the “true” fifth-order
susceptibility is kept in the expression for the nonlinear po-
larizationfEq. s3dg, we will be able to comparexs5d-like non-
SVEA corrections with the contribution of the true fifth-
order nonlinearity.

Substituting Eqs.(2) and(3) into Eq.(1) for a plane wave,
we arrive at

PHYSICAL REVIEW A 69, 053803(2004)

1050-2947/2004/69(5)/053803(6)/$22.50 ©2004 The American Physical Society69 053803-1



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
MAY 2004 

2. REPORT TYPE 
N/A 

3. DATES COVERED 
  -   

4. TITLE AND SUBTITLE 
Analytical treatment of self-phase-modulation beyond the slowly varying
envelope approximation 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Weapons Sciences Directorate, US Army Aviation and Missile Command,
Huntsville, Alabama 35898-5000, USA 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release, distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

SAR 

18. NUMBER
OF PAGES 

6 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



¹2 ' « +
]2«

] z2 + 2ik
] «

] z
−

n2

c2

]2«

] t2
+ 2iv

n2

c2

] «

] t

=
4p

c2 xs3dH ]2

] t2
− 2iv

]

] t
− v2Ju«u2« +

4p

c2 xs5d

3H ]2

] t2
− 2iv

]

] t
− v2Ju«u4«. s4d

To represent Eq.(4) in dimensionless form, we introduce
the nonlinear length 1/Lnl=s4pv2u«0u2/2kc2dxs3d, the nor-
malized running timet=st−nz/cd /t0 (wheret0 is the pulse
duration), and the dimensionless propagation coordinatej
=z/Lnl. We normalize the field with respect to its maximum
amplitudes«→« /«0d. With these transformations and scal-
ings and with an assumption that transverse effects are neg-
ligible, i.e., ¹2'«=0, Eq.(4) can be rewritten as
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Now we introduce the parametersmz=1/4p /l /Lnl and
mt=1/4p /l /ct0, representing the length and time scales, re-
spectively. Under normal circumstances, the nonlinear length
is much larger than the wavelength of light. By the same
token, even for a pulse only a few optical cycles in duration,
mt can be much smaller than unity. Therefore, keeping only
terms up to the first order inmz andmt in Eq. (5), we derive

i
] «
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= − mz

]2«

] j2 + mtH ]2«

] j ] t
− 4i

] su«u2«d
] t

J − u«u2«

−
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We now focus our attention on the higher-order spatial
and spatiotemporal derivatives that appear on the right-hand
side of Eq.(6). Differentiating Eq.(6) with respect toz, and
neglecting the terms of the order ofmz

2, mt
2, mzmt, andmxs5d,

we find

]2«

] j2 = imz
]3«

] j3 + i2u«u«
] u«u
] j

+ i u«u2
] «

] j
+ Osmtd

= − u«u4« + Osmtd + Osmzd. s7d

To estimate]u«u /]j, we represent the field as«= u«ueif and
substitute this expression into Eq.(6), which yields]u«u /]j
=Osmtd+Osmzd. To find the derivative]2« /]j]t, we once
again differentiate Eq.(6), this time with respect tot,

]2«

] j ] t
=

]

] t
fi u«u2« + Osmtd + Osmzdg. s8d

Then, substituting Eqs.s7d ands8d into Eq. s6d, and keeping
the terms of the zeroth and first orders inmt andmz, we find

i
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] j
= mzu«u4« −

u«0u2xs5d

xs3d u«u4« − H1 + 3imt

]

] t
Ju«u2«. s9d

Expression(9) gives a SPM equation revised to include
non-SVEA corrections related to higher-order derivatives in
Eq. (1), as well as the term related to the fifth-order nonlin-
earity. With mz=mt=0, Eq. (9) reduces to the standard,
SVEA equation for self-phase-modulation. The revised SPM
equation(9) is instructive from the physical point of view, as
it provides useful insights into the physical origin of the
first-order non-SVEA corrections and allows these correc-
tions to be compared with the contribution of the fifth-order
nonlinearity. The term involvingmz gives a xs5d-like, i.e.,
quintic in the field, correction to the SPM equation. This
finding is fundamental from the viewpoint of the basic prin-
ciples of nonlinear optics, as it reveals the existence of an
additional physical channel whereby effects quintic in the
field may contribute to the SPM of ultrashort laser pulses. In
the presence of diffraction, for example, axs5d-like term
would tend to defocus the beam, leading to increased non-
linear thresholds and modified spatiotemporal dynamics for
long distance propagation[15]. It can be easily seen from the
definition of mz that the role of thexs5d-like term in Eq.(9)
increases with the decrease in the nonlinear lengthLnl, i.e.,
with the growth in the nonlinearity. Thus,xs5d-like effects
may influence nonlinear-optical interactions governed by the
third-order nonlinearity even in the regimes of perturbative
nonlinear optics. The term involvingmt gives a small correc-
tion to the term proportional tou«u2«, which dominates the
SPM in the SVEA regime. This correction, as it follows from
the definition of the parametermt, becomes significant in the
case of very short, few- and single-cycle pulses. As will be
shown in the following sections, this correction may also
give rise to noticeable changes in the pulse envelope and
phase distribution evolution of self-phase-modulated pulses.

Expression(9) involves two terms quintic in the fieldE.
The physical origin of these two terms is different. While the
first term on the right-hand side originates from the non-
SVEA correction related to the second derivative inz, the
second term describes the contribution of the true fifth-order
nonlinearity of the medium. It would be instructive to gain a
general understanding of the relative significance of these
two terms in Eq.(9) by using the relation between off-
resonance nonlinear susceptibilities of different orders typi-
cal of the perturbative regime of nonlinear optics[20]:
xsnd~xs1d / uEatun−1, whereEat is the characteristic atomic field
(typically on the order of 108–109 V/cm). The first
two terms on the right-hand side of Eq.(9) can be
then estimated as u«0u2xs5d /xs3d~ u«0u2/ uEatu2 and
mzspu«0u2/n2dxs3d~sp /n2dxs1dsu«0u2/ uEatu2d~ u«0u2/ uEatu2. The
non-SVEA correction in a nonresonant situation is thus of
the same order of smallness as the term related to the true
fifth-order nonlinearity. These two channels of nonlinear-
optical interactions can, therefore, interfere either construc-
tively or destructively, giving rise to interesting effects, en-
hancing or suppressing nonlinear phenomena, depending on
the relative sign of the first two terms in Eq.(9). In what
follows, we will present an iterative procedure, allowing an
analytical integration of non-SVEA SPM equations for the
amplitude and the phase of ultrashort pulses including only
the cubic optical nonlinearity.
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III. ANALYTICAL SOLUTIONS TO THE NON-SVEA
SPM EQUATION

In this section, we will develop, following the plan out-
lined above, an iterative procedure solving the generic non-
SVEA SPM equation(9) for a medium with cubic and quin-
tic nonlinearities. Representing the field of a light pulse as
«sj ,td=Asj ,tdexpfifsj ,tdg, we arrive at the following set of
equations for the amplitudeA and the phasef of the field:

] A

] j
= − 9mtA

2] A

] t
,

] f

] j
= A2 − m̄zA

4 − 3mtA
2] f

] t
,

wherem̄z=mz− u«0u2xs5d /xs3d.
We now write the field amplitude as a series expansion in

the small parametermt,

A = As0d + mtAs1d + mt
2As2d + ¯ , s11d

whereAs0d is the SVEA solution to the SPM equation for the
field amplitude,

] As0d

] j
= 0, s12d

and As1d and As2d are the non-SVEA corrections of the first
and second orders inmt, respectively. The equation for the
first-order non-SVEA correction to the field amplitude is
then written as

] As1d

] j
= − 9As0d

2
] As0d

] t
. s13d

The solution to Eq.s12d is well known f20g: As0dsj ,td
=A0std, whereA0std is the initial pulse envelope normalized
to the maximum field amplitudefA0std=exps−t2d for a
Gaussian pulseg. Integration of Eq.s13d yields

As1dsj,td = − 9A0
2] A0

] t
j. s14d

The solution to the non-SVEA SPM equations9d in the first-
order approximation inmt is thus written as

Asj,td = A0 − 9mtA0
2] A0

] t
j, A0 ; A0s0,td. s15d

We can now proceed with the solution of the equation for
the phase in the set of Eqs.(10). We represent the phase as

f = fs0d + mtfs1d + mt
2fs2d + ¯ s16d

and take the solution to the equation

] fs0d

] j
= A2 − m̄zA

4 s17d

as the zeroth-order iteration. In view of Eq.s17d, the small
parameterm̄z also appears in the series expansions16d for the

phase. Substituting Eq.s16d into the second equation in the
set s10d, we derive the following equation for the first-order
non-SVEA correction to the phase:

] fs1d

] j
= − 3A2

] fs0d

] t
. s18d

Substituting the first-order non-SVEA solution(15) for
the amplitude into Eq.(18), keeping only the terms of the
zeroth and first orders inmt andm̄z in the resulting equation,
and assuming that the input pulse has no initial chirp, we
arrive at the following solution for the phase:

fs0dsj,td = SA0
2 − m̄zA0

4 − 18mtA0
3] A0std

] t
jDj,

fs1dsj,td = − 6A0
3] A0std

] t
j2.

Combining the solutions for the phase and the amplitude
given by Eqs.(15) and(19), we derive the following expres-
sion for the field:

«sj,td = A0F1 − 9mtA0
] A0

] t
jGexpfisfSVEA − Dfz − Dftdg,

s20d

where

fSVEA = A0
2j, s21d

is the SVEA solution for the SPM-induced phase shift,

Dft = 24mtA0
3] A0std

] t
j2 s22d

is the non-SVEA correction to the nonlinear phase shift re-
lated to the second derivative in time, and

Dfz = m̄zA0
4j s23d

is the non-SVEA correction originating from the second de-
rivative in z.

For a pulse with an initial phase modulationfs0,td
;f0std=at2 samt!1d, the correction to the nonlinear
phase shift is given by

Dft = 24mtA0
3] A0std

] t
j2 − 6mtA0

2a. s24d

Expression(23) suggests that the non-SVEA correction
Dfz to the SPM-induced phase shift is quartic in the field.
This functional dependence is typical ofxs5d nonlinear-
optical effects. In our case, however, the smallness of the
phase shiftDfz is related not only to the fifth-order suscep-
tibility xs5d, but is governed by the parameterm̄z, which is in
turn controlled by both the third- and fifth-order susceptibili-
ties xs3d and xs5d. In a practically important situation of a
medium with a resonance-enhanced third-order susceptibility
xs3d, the phase shiftDfz, given by Eq.(23) can, therefore,
noticeably exceed the truexs5d-induced phase shifts, giving
rise, as will be shown below, to detectable(and sometimes
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significant) xs5d-like corrections to the phase in the purely
perturbative regime of nonlinear-optical interactions.

Non-SVEA effects related to the second-order time de-
rivative, as can be seen from Eqs.(22) and(24), give rise to
distortions in the envelope of a light pulse, which becomesz
dependent even in the absence of group-velocity dispersion.
Expressions(22)–(24)are also instructive in demonstrating
that both pulse-envelope and phase-profile distortions related
to the non-SVEA effects accumulate withz as the pulse
propagates through the nonlinear medium. This dependence
on the longitudinal coordinate can lead to noticeable devia-
tions from the SVEA results for pulse envelopes and nonlin-
ear phase shifts for sufficiently large propagation distances,
as, for example, in the case of standard[6] or microstructure
optical fibers[7–10] or nonlinear-optical interactions in the
atmosphere[11,12].

IV. RESULTS AND DISCUSSION

To assess the role of non-SVEA effects in self-phase-
modulation, we use the solutions to the revised SPM equa-
tion derived above to calculate the non-SVEA phase shifts
and distortions in pulse envelopes for different values of pa-
rametersm̄z and mt. Figure 1 displays the nonlinear phase
shift fSVEA calculated within the framework of the standard
SVEA approach(solid line) and the non-SVEA correction
Dfz to the nonlinear phase shift related to the second-order
derivative inz (dashed line)for j=1. The non-SVEA phase
shift was calculated using Eq.(23) with m̄z,10−3 (which
corresponds toLnl=100mm in a medium withxs5d=0). Such
values ofm̄z can easily be achieved, for example, by propa-
gating light pulses with a wavelength of 1mm and the inten-
sity on the order of 1012 W/cm2 through fused silica(in the
absence of true fifth-order nonlinearity). The non-SVEA cor-
rection to the phase shift,Dfz, as can be seen from Fig. 1,
can reach a maximum of about 0.1 % under these conditions.
This part of the phase shift, however, increases proportion-
ally to m̄z, reaching 0.1 % form̄z=0.01. These estimates

show that non-SVEA phase shifts may play an important
role, for example, in nonlinear-optical experiments in micro-
structure fibers [10], where light intensities exceeding
1013 W/cm2 are often achieved by coupling femtosecond
pulses in a few-micron fiber core.

In the regime of very short pulses, withm̄z@mt, non-
SVEA pulse-envelope and phase-profile distortions accumu-
late as the pulse propagates through a medium. Figure 2
shows distortions in the envelope of a light pulse with an
initial pulse duration of about 30 fs caused by effects related
to the second-order time derivative in the wave equation. The
changes in the pulse envelope are already quite noticeable
for j=1. The influence of non-SVEA phase shifts is illus-
trated in Fig. 3, which compares the nonlinear phase shift of
a pulse with a duration of about 30 fs calculated within the
framework of the SVEA approach with the nonlinear phase
shift calculated with the use of Eqs.(20) and(22), including

FIG. 1. The nonlinear phase shiftfSVEA calculated within the
framework of the slowly varying envelope approximation(solid
line) and the non-SVEA correctionDfz to the nonlinear phase shift
related to the second-order derivative inz (dashed line)for j=1
with m̄z=10−3. The variablet is normalized to the pulse duration.

FIG. 2. The envelope of a self-phase-modulated pulse calculated
within the framework of the slowly varying envelope approxima-
tion (solid line)and with the use of Eq.(20) (dashed line), including
effects related to the second-order derivative int, for j=1 with
mt=10−2, m̄z@mt. The variable t is normalized to the pulse
duration.

FIG. 3. The nonlinear phase shiftfSVEA calculated within the
framework of the slowly varying envelope approximation(solid
line) and the correction to the phase shiftDft calculated with the
use of Eq. (22) (dashed line), including effects related to the
second-order derivative int, for j=1 with mt=10−2. The variablet
is normalized to the pulse duration.
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non-SVEA corrections related to the second-order time de-
rivative. Similar to pulse-envelope distortions, the deviation
of the non-SVEA nonlinear phase shift from the SVEA result
becomes quite noticeable already forj=1, increasing in the
process of pulse propagation in accordance with Eqs.(20)
and (22).

Putting an initial chirp on the pulse adds phase-control
aspects to the analysis of nonlinear interactions of ultrashort
pulses. Figures 4 and 5 show that such an analysis should
include non-SVEA effects, which may have a noticeable in-
fluence on phase-controlled nonlinear-processes. Figure 4
compares the SVEA nonlinear phase shift of a short pulse
having an initial linear chirp with a chirp parametera=
−0.5 andmt=10−2 with the results of calculations performed
with the use of Eq.(24), including effects related to the
second-order time derivative. The evolution of the nonlinear
phase shifts for transform-limited and initially chirped pulses
illustrated in Figs. 5(a)–5(c)shows how the non-SVEA part
of the nonlinear shift is accumulated and the distribution of
the nonlinear shift within the pulse becomes more and more
asymmetric as the pulse propagates through the nonlinear
medium. Non-SVEA phase corrections should be, therefore,
taken into consideration in coherent-control experiments
[21–26], where chirped ultrashort laser pulses are used to
steer molecular excitations, wave-packet motions, chemical
reactions, or nonlinear-optical interactions. Non-SVEA ef-
fects, as can be seen from Fig. 5, also noticeably influence
the SPM-phase-shift precompensation function of the initial
chirp, as the result of such a precompensation may deviate
from expectations based on the SVEA analysis. Positive ini-
tial chirp, as can be seen from the comparison of the evolu-
tions of the correctionsDft for transform-limited and ini-
tially chirped pulses shown by the dashed and dotted lines in
Figs. 5(a)–5(c), respectively, allows phase-profile distortions
related to non-SVEA effects to be reduced or precompen-
sated. This precompensation is effective, however, only
within propagation lengths on the order of the nonlinear

length[Fig. 5(a)]. Non-SVEA phase-profile distortions accu-
mulate as the pulse propagates through the medium[Figs.
5(b) and 5(c)], the first term in Eq.(24) starts to dominate,
and the expression for the non-SVEA phase-shift correction
Dft is reduced to Eq.(22). This analysis shows that a prop-
erly chosen initial chirp of short pulses may serve as an
important knob in phase-controlled molecular motions and
nonlinear interactions.

FIG. 4. The nonlinear phase shift of a short pulse with an initial
linear chirp calculated within the framework of the slowly varying
envelope approximation(solid line) and the correction to the phase
shift Dft calculated with the use of Eq.(24) (dashed line), includ-
ing effects related to the second-order derivative int, for j=1 with
a=−0.5 andmt=10−2.

FIG. 5. The nonlinear phase shift for an initially transform-
limited pulse calculated within the framework of the slowly varying
envelope approximation(solid lines)and the correction to the phase
shift Dft calculated with the use of Eq.(24) for an initially
transform-limited pulse witha=0 (dashed lines)and a pulse having
a linear initial chirp witha=0.5 (dotted lines)for j=1 (a), j=2 (b),
andj=5 (c); mt=10−2.
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V. CONCLUSION

Thus, analysis performed in this paper shows that the sce-
narios of nonlinear-optical interactions of ultrashort pulses
may sometimes noticeably differ from predictions of the
slowly varying envelope approximation. We have derived a
revised equation for self-phase modulation, including correc-
tions related to higher-order derivatives in the wave equa-
tion. We have also developed an iterative procedure allowing
the analytical solution of this equation for the limiting re-
gimes of high nonlinearities and very short pulses. Analysis
of these solutions reveals interesting features in the pulse-
envelope and phase-profile evolution related to non-SVEA
effects in self-phase-modulation. It was shown, in particular,
thatxs5d-like effects, i.e., effects of the fifth order in the laser
field, may influence nonlinear-optical interactions governed
by the third-order nonlinearity even in the regimes of pertur-
bative nonlinear optics. Many of the non-SVEA effects ac-
cumulate with the propagation coordinate, leading to notice-
able changes in the pulse envelope and the phase distribution

in the laser pulse for large propagation lengths, e.g., in opti-
cal fibers or in nonlinear-optical interactions in the atmo-
sphere. Non-SVEA phase corrections and pulse-envelope
distortions should be taken into consideration in coherent-
control experiments, where chirped ultrashort laser pulses are
used to steer molecular excitations, wave-packet motions,
chemical reactions, or nonlinear-optical interactions.
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