An analytical treatment of self-phase-modulation beyond the slowly varying envelope approximation

M. S. Syrchin,1 A. M. Zheltikov,1,2 and M. Scalora3

1Physics Department, M.V. Lomonosov Moscow State University, 119899 Moscow, Russia
2International Laser Center, M.V. Lomonosov Moscow State University, 119899 Moscow, Russia
3Weapons Sciences Directorate, US Army Aviation and Missile Command, Huntsville, Alabama 35898-5000, USA

(Received 19 June 2003; published 6 May 2004)

DOI: 10.1103/PhysRevA.69.053803

PACS number(s): 42.65.Jx, 42.65.Sf

I. INTRODUCTION

With laser science breaking the femtosecond barrier, it has become more and more difficult to justify the application of the slowly varying amplitude approximation (SVEA) to explain new physical phenomena. As light pulses become increasingly shorter, new physical phenomena inaccessible to the SVEA analysis begin to play an important role, and may sometimes dominate the dynamics of ultrashort pulses and field wave forms. Recent experiments demonstrating the generation of attosecond pulses [1–3] and measurements with these pulses [4,5] raise a number of equally challenging and exciting issues related to the propagation and nonlinear-optical interactions of pulses of extremely short durations. In view of these breakthroughs, many classical results obtained in the realm of ultrafast optics may have to be revised by extending the analysis of Maxwell equations beyond the SVEA. This task becomes especially urgent when ultrashort pulses undergo nonlinear optical transformations while propagating over large distances as, for example, in conventional [6] or microstructure [7–10] fibers, or long-distance pulse propagation in the atmosphere [11,12].

Recent numerical, non-SVEA studies of propagation and nonlinear optical interactions of ultrashort light pulses have revealed new interesting scenarios of spatiotemporal dynamics and spectral evolution of ultrashort pulses [13–16], new phenomena related to the ultrafast nonlinear response of a medium [17,18], and the influence and interplay of propagation and phase-matching effects [19], to name a few. In the absence of analytical solutions it therefore seems appropriate and timely to attempt to put some of these results on a firmer theoretical ground with a systematic analytical treatment of non-SVEA effects. Accomplishing this task involves the revision of the equations of motion for basic nonlinear optical processes, such as self- and cross-phase modulation, harmonic generation, four-wave mixing, and others, with the inclusion arising from the inclusion of second-order longitudinal, spatial, and temporal derivatives.

In this paper, we provide the non-SVEA analysis specifically for self-phase-modulation (SPM) as a part of this plan, and find analytical solutions for the limiting regimes of high nonlinearities and very short pulses. Close scrutiny of these solutions then reveals important features in the dynamics of the pulse envelope and phase related to non-SVEA effects.

II. REVISED EQUATION FOR SELF-PHASE-MODULATION

We begin our analysis by writing the scalar wave equation for the electric field \( E \) in an isotropic medium with no dispersion,

\[
\nabla^2 E - \frac{n^2}{c^2} \frac{\partial^2 E}{\partial t^2} = \frac{4\pi}{c^2} \frac{\partial^2 P_{nl}}{\partial t^2},
\]

where \( n \) is the refractive index and \( c \) is the speed of light in the vacuum.

Without loss of generality, a short pulse propagating along the \( z \) axis, of carrier frequency \( \omega \) such that \( k = \omega n/c \), can be expressed as follows:

\[
E(x,y,z,t) = e^{i(kz-\omega t)} + c.c.
\]

We write the nonlinear polarization of the medium in the form of a power-series expansion, keeping the terms up to the fifth order in the field \( E \):

\[
P_{nl} = \chi^{(3)} |E|^2 E + \chi^{(5)} |E|^4 E.
\]

where \( \chi^{(3)} \) and \( \chi^{(5)} \) are the third- and fifth-order nonlinear-optical susceptibilities, respectively. In writing Eq. (2), we assume that the carrier frequency \( \omega \) can be defined for our light pulse, which is true even for few-cycle pulses. In fact, Eq. (2) is quite general in that it is equivalent to a coordinate transformation. Expression (3) corresponds to the usual regime of perturbative nonlinear optics. However, our analysis will go beyond the standard SVEA treatment of self-phase-modulation. We will find non-SVEA corrections to the SPM-induced nonlinear phase shift and show that these corrections can be described in terms of the effective fifth-order nonlinear susceptibility. Since the term with the “true” fifth-order susceptibility is kept in the expression for the nonlinear polarization [Eq. (3)], we will be able to compare \( \chi^{(5)} \)-like non-SVEA corrections with the contribution of the true fifth-order nonlinearity.

Substituting Eqs. (2) and (3) into Eq. (1) for a plane wave, we arrive at

\[053803-1\]
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204. Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. REPORT DATE  
MAY 2004

2. REPORT TYPE  
N/A

3. DATES COVERED  
-

4. TITLE AND SUBTITLE  
Analytical treatment of self-phase-modulation beyond the slowly varying envelope approximation

5a. CONTRACT NUMBER  
-

5b. GRANT NUMBER  
-

5c. PROGRAM ELEMENT NUMBER  
-

5d. PROJECT NUMBER  
-

5e. TASK NUMBER  
-

5f. WORK UNIT NUMBER  
-

6. AUTHOR(S)  
-

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)  
Weapons Sciences Directorate, US Army Aviation and Missile Command, Huntsville, Alabama 35898-5000, USA

8. PERFORMING ORGANIZATION REPORT NUMBER  
-

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)  
-

10. SPONSOR/MONITOR’S ACRONYM(S)  
-

11. SPONSOR/MONITOR’S REPORT NUMBER(S)  
-

12. DISTRIBUTION/AVAILABILITY STATEMENT  
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES  
-

14. ABSTRACT  
-

15. SUBJECT TERMS  
-

16. SECURITY CLASSIFICATION OF:  
unclassified

a. REPORT  
unclassified

b. ABSTRACT  
unclassified

c. THIS PAGE  
unclassified

17. LIMITATION OF ABSTRACT  
SAR

18. NUMBER OF PAGES  
6

19a. NAME OF RESPONSIBLE PERSON  
-

Standard Form 298 (Rev. 8-98)  
Prescribed by ANSI Std Z39-18
\[ \nabla^2 e + \frac{\partial^2 e}{\partial z^2} + 2ik \frac{\partial e}{\partial z} - \frac{n^2 \partial^2 e}{c^2 \partial t^2} + 2i \omega n^2 \frac{\partial^2 e}{c^2 \partial t} = \frac{4 \pi}{c} \chi^{(3)} \left[ \frac{\partial^2 e}{\partial t^2} - 2i \omega \frac{\partial}{\partial t} - \omega^2 \right] |e|^2 e + \frac{4 \pi}{c} \chi^{(5)} \times \left\{ \frac{\partial^2 e}{\partial t^2} - 2i \omega \frac{\partial}{\partial t} - \omega^2 \right\} |e|^4 e. \] (4)

To represent Eq. (4) in dimensionless form, we introduce the nonlinear length \( L_{nl} = \frac{1}{4 \pi \omega^2 |\chi_0|^2 / 2 e^2 c^3} \chi^{(3)} \), the normalized running time \( \tau = (t - nz/c) / \tau_0 \) (where \( \tau_0 \) is the pulse duration), and the dimensionless propagation coordinate \( \xi = z/L_{nl} \). We normalize the field with respect to its maximum amplitude (\( e \to e/|e_0| \)). With these transformations and scalings and with an assumption that transverse effects are negligible, i.e., \( \nabla^2 \bot e = 0 \), Eq. (4) can be rewritten as

\[ i \frac{\partial e}{\partial \xi} + \frac{1}{4 \pi} \left[ \frac{\partial^2 e}{\partial \xi^2} - \frac{\omega^2}{c^2} \frac{\partial^2 e}{\partial \tau^2} - i \frac{\partial}{\partial \tau} \left( \frac{|e|^2 e}{\tau} \right) \right] = \frac{|e_0|^2 \chi^{(5)}}{\chi^{(3)}} |e|^4 e. \] (5)

Now we introduce the parameters \( \mu_\tau = 1 / 4 \pi \lambda / L_{nl} \) and \( \mu_\xi = \mu \lambda / c \tau_0 \), representing the length and time scales, respectively. Under normal circumstances, the nonlinear length is much larger than the wavelength of light. By the same token, even for a pulse only a few optical cycles in duration, \( \mu_\tau \) can be much smaller than unity. Therefore, keeping only terms up to the first order in \( \mu_\tau \) and \( \mu_\xi \), in Eq. (5), we derive

\[ i \frac{\partial e}{\partial \xi} - \mu_\tau \frac{\partial^2 e}{\partial \xi^2} + \mu_\tau \left[ \frac{\partial^2 e}{\partial \xi \partial \tau} - 4i \frac{\partial}{\partial \tau} \left( \frac{|e|^2 e}{\tau} \right) \right] = \frac{|e_0|^2 \chi^{(5)}}{\chi^{(3)}} |e|^4 e. \] (6)

We now focus our attention on the higher-order spatial and spatiotemporal derivatives that appear on the right-hand side of Eq. (6). Differentiating Eq. (6) with respect to \( \xi \) and neglecting the terms of the order of \( \mu_\tau^2, \mu_\xi^2, \mu_\tau \mu_\xi \), and \( \mu_\tau \chi^{(5)} \), we find

\[ \frac{\partial^2 e}{\partial \xi^2} = i \mu_\tau \frac{\partial^2 e}{\partial \xi^3} + i 2 |e|^2 \frac{\partial e}{\partial \xi} + i |e|^2 \frac{\partial^2 e}{\partial \xi} + O(\mu_\tau), \]

\[ = - |e|^2 e + O(\mu_\tau) + O(\mu_\xi). \] (7)

To estimate \( \partial e / \partial \xi \), we represent the field as \( e = |e| e^{i \phi} \) and substitute this expression into Eq. (6), which yields \( \partial e / \partial \xi = O(\mu_\tau) + O(\mu_\xi) \). To find the derivative \( \partial^2 e / \partial \xi \partial \tau \), we once again differentiate Eq. (6), this time with respect to \( \tau \).

\[ \frac{\partial^2 e}{\partial \xi \partial \tau} = \frac{\partial}{\partial \tau} \left[ i |e|^2 e + O(\mu_\tau) + O(\mu_\xi) \right]. \] (8)

Then, substituting Eqs. (7) and (8) into Eq. (6), and keeping the terms of the zeroth and first orders in \( \mu_\tau \) and \( \mu_\xi \), we find

\[ \frac{\partial e}{\partial \xi} = \frac{\partial e}{\partial \tau} \left[ |e|^2 e + O(\mu_\tau) + O(\mu_\xi) \right]. \] (9)

Expression (9) gives a SPM equation revised to include non-SVEA corrections related to higher-order derivatives in Eq. (1), as well as the term related to the fifth-order nonlinearity. With \( \mu_\tau = \mu_\xi = 0 \), Eq. (9) reduces to the standard SVEA equation for self-phase-modulation. The revised SPM equation (9) is instructive from the physical point of view, as it provides useful insights into the physical origin of the first-order non-SVEA corrections and allows these corrections to be compared with the contribution of the fifth-order nonlinearity. The term involving \( \mu_\tau \) gives a \( \chi^{(5)} \)-like, i.e., quintic in the field, correction to the SPM equation. This finding is fundamental from the viewpoint of the basic principles of nonlinear optics, as it reveals the existence of an additional physical channel whereby effects quintic in the field may contribute to the SPM of ultrashort laser pulses. In the presence of diffraction, for example, a \( \chi^{(5)} \)-like term would tend to defocus the beam, leading to increased nonlinear thresholds and modified spatiotemporal dynamics for long distance propagation [15]. It can be easily seen from the definition of \( \mu_\tau \), that the role of the \( \chi^{(5)} \)-like term in Eq. (9) increases with the decrease in the nonlinear length \( L_{nl} \), i.e., with the growth in the nonlinearity. Thus, \( \chi^{(5)} \)-like effects may influence nonlinear-optical interactions governed by the third-order nonlinearity even in the regimes of perturbative nonlinear optics. The term involving \( \mu_\xi \) gives a small correction to the term proportional to \( |e|^2 e \), which dominates the SPM in the SVEA regime. This correction, as it follows from the definition of the parameter \( \mu_\xi \), becomes significant in the case of very short, few- and single-cycle pulses. As will be shown in the following sections, this correction may also give rise to noticeable changes in the pulse envelope and phase distribution evolution of self-phase-modulated pulses. Expression (9) involves two terms quintic in the field \( E \). The physical origin of these two terms is different. While the first term on the right-hand side originates from the non-SVEA correction related to the second derivative in \( \xi \), the second term describes the contribution of the true fifth-order nonlinearity of the medium. It would be instructive to gain a general understanding of the relative significance of these two terms in Eq. (9) by using the relation between off-resonance nonlinear susceptibilities of different orders typical of the perturbative regime of nonlinear optics [20]: \( \lambda^{(n)} = \chi^{(1)} / |E_a|^{n-1} \), where \( E_a \) is the characteristic atomic field (typically on the order of \( 10^6-10^8 \) V/cm). The first two terms on the right-hand side of Eq. (9) can be then estimated as \( |e_0|^2 \chi^{(5)} / \chi^{(3)} |e_0|^2 / |E_a|^{12} \) and \( \mu_\tau (|e_0|^2 / n^2) \chi^{(5)} / (n^2 \chi^{(5)} |e_0|^2 / |E_a|^{14}) \). The non-SVEA correction in a nonresonant situation is thus of the same order of smallness as the term related to the true fifth-order nonlinearity. These two channels of nonlinear-optical interactions can, therefore, interfere either constructively or destructively, giving rise to interesting effects, enhancing or suppressing nonlinear phenomena, depending on the relative sign of the first two terms in Eq. (9). In what follows, we will present an iterative procedure, allowing an analytical integration of non-SVEA SPM equations for the amplitude and the phase of ultrashort pulses including only the cubic optical nonlinearity.
III. ANALYTICAL SOLUTIONS TO THE NON-SVEA SPM EQUATION

In this section, we will develop, following the plan outlined above, an iterative procedure solving the generic non-SVEA SPM equation (9) for a medium with cubic and quintic nonlinearities. Representing the field of a light pulse as 
\[ \varepsilon(\xi, \tau) = A(\xi, \tau) \exp[i\phi(\xi, \tau)], \]
we arrive at the following set of equations for the amplitude \( A \) and the phase \( \phi \) of the field:

\[ \frac{\partial A}{\partial \xi} = -9\mu_A^2 \frac{\partial^2 A}{\partial \tau^2}, \]
\[ \frac{\partial \phi}{\partial \xi} = A^2 - \mu_e A^4 - 3\mu_A^2 \frac{\partial \phi}{\partial \tau}, \]
where \( \mu_e = \mu_e - |\varepsilon_0|^2 \chi(5)/\chi(3). \)

We now write the field amplitude as a series expansion in the small parameter \( \mu_e \)

\[ A = A_0 + \mu_e A_1 + \mu_e^2 A_2 + \cdots, \tag{11} \]
where \( A_0 \) is the SVEA solution to the SPM equation for the field amplitude,

\[ \frac{\partial A_0}{\partial \xi} = 0, \tag{12} \]
and \( A_1 \) and \( A_2 \) are the non-SVEA corrections of the first and second orders in \( \mu_e \), respectively. The equation for the first-order non-SVEA correction to the field amplitude is then written as

\[ \frac{\partial A_1}{\partial \xi} = -9A_0^2 \frac{\partial A_0}{\partial \tau}, \tag{13} \]
The solution to Eq. (12) is well known [20]: \( A_0(\xi, \tau) = A_0(\tau) \), where \( A_0(\tau) \) is the initial pulse envelope normalized to the maximum field amplitude \( A_0(\tau) = \exp(-\tau^2) \) for a Gaussian pulse. Integration of Eq. (13) yields

\[ A_1(\xi, \tau) = -9A_0^2 \frac{\partial A_0}{\partial \tau} \xi. \tag{14} \]
The solution to the non-SVEA SPM equation (9) in the first-order approximation in \( \mu_e \) is thus written as

\[ A(\xi, \tau) = A_0 - 9\mu_e A_0^2 \frac{\partial A_0}{\partial \tau} \xi, \quad A_0 = A_0(0, \tau). \tag{15} \]

We can now proceed with the solution of the equation for the phase in the set of Eqs. (10). We represent the phase as

\[ \phi = \phi_0(\xi) + \mu_e \phi_1(\xi) + \mu_e^2 \phi_2(\xi) + \cdots \tag{16} \]

and take the solution to the equation

\[ \frac{\partial \phi_0(\xi)}{\partial \xi} = A^2 - \mu_e A^4 \]
as the zeroth-order iteration. In view of Eq. (17), the small parameter \( \mu_e \) also appears in the series expansion (16) for the phase. Substituting Eq. (16) into the second equation in the set (10), we derive the following equation for the first-order non-SVEA correction to the phase:

\[ \frac{\partial \phi_1(\xi)}{\partial \xi} = -3A^2 \frac{\partial \phi_0(\xi)}{\partial \tau}. \tag{18} \]

Substituting the first-order non-SVEA solution (15) for the amplitude into Eq. (18), keeping only the terms of the zeroth and first orders in \( \mu_e \), we arrive at the following solution for the phase:

\[ \phi_0(\xi, \tau) = \left( A_0^2 - \mu_e A_0^4 - 18\mu_A \frac{\partial A_0(\tau)}{\partial \tau} \xi \right) \xi, \]
\[ \phi_1(\xi, \tau) = -6A_0^2 \frac{\partial A_0(\tau)}{\partial \tau} \xi^2. \]

Combining the solutions for the phase and the amplitude given by Eqs. (15) and (19), we derive the following expression for the field:

\[ \varepsilon(\xi, \tau) = A_0 \left[ 1 - 9\mu_e \frac{\partial A_0}{\partial \tau} \xi \right] \exp[i(\phi_{SVEA} - \Delta \phi_e - \Delta \phi_s)], \tag{20} \]

where

\[ \phi_{SVEA} = A_0^2 \xi, \tag{21} \]
is the SVEA solution for the SPM-induced phase shift,

\[ \Delta \phi_s = 24\mu_e \frac{\partial A_0^2}{\partial \tau} \xi^2 \tag{22} \]
is the non-SVEA correction to the nonlinear phase shift related to the second derivative in time, and

\[ \Delta \phi_e = \mu_e A_0^4 \xi \tag{23} \]
is the non-SVEA correction originating from the second derivative in \( \xi \).

For a pulse with an initial phase modulation \( \phi(0, \tau) = \phi_0(\tau) = \alpha \xi^2 \), \( \alpha \mu_e \ll 1 \), the correction to the nonlinear phase shift is given by

\[ \Delta \phi_s = 24\mu_e \frac{\partial A_0^2}{\partial \tau} \xi^2 - 6\mu_e A_0^2 \alpha. \tag{24} \]

Expression (23) suggests that the non-SVEA correction \( \Delta \phi_e \) to the SPM-induced phase shift is quartic in the field. This functional dependence is typical of \( \chi(5) \) nonlinear-optical effects. In our case, however, the smallness of the phase shift \( \Delta \phi_e \) is related not only to the fifth-order susceptibility \( \chi(5) \), but is governed by the parameter \( \mu_e \), which is in turn controlled by both the third- and fifth-order susceptibilities \( \chi(3) \) and \( \chi(5) \). In a practically important situation of a medium with a resonance-enhanced third-order susceptibility \( \chi(3) \), the phase shift \( \Delta \phi_e \), given by Eq. (23) can, therefore, noticeably exceed the true \( \chi(3) \)-induced phase shifts, giving rise, as will be shown below, to detectable (and sometimes
significantly) $\chi^{(3)}$-like corrections to the phase in the purely perturbative regime of nonlinear-optical interactions.

Non-SVEA effects related to the second-order time derivative, as can be seen from Eqs. (22) and (24), give rise to distortions in the envelope of a light pulse, which becomes $z$ dependent even in the absence of group-velocity dispersion. Expressions (22)–(24) are also instructive in demonstrating that both pulse-envelope and phase-profile distortions related to the non-SVEA effects accumulate with $z$ as the pulse propagates through the nonlinear medium. This dependence on the longitudinal coordinate can lead to noticeable deviations from the SVEA results for pulse envelopes and nonlinear phase shifts for sufficiently large propagation distances, as, for example, in the case of standard [6] or microstructure optical fibers [7–10] or nonlinear-optical interactions in the atmosphere [11,12].

**IV. RESULTS AND DISCUSSION**

To assess the role of non-SVEA effects in self-phase-modulation, we use the solutions to the revised SPM equation derived above to calculate the non-SVEA phase shifts and distortions in pulse envelopes for different values of parameters $\mu_c$ and $\mu_r$. Figure 1 displays the nonlinear phase shift $\phi_{\text{SVEA}}$ calculated within the framework of the standard SVEA approach (solid line) and the non-SVEA correction $\Delta \phi$ to the nonlinear phase shift related to the second-order derivative in $z$ (dashed line) for $\xi=1$ with $\mu_{z}=10^{-3}$. The variable $\tau$ is normalized to the pulse duration. This part of the phase shift, however, increases proportionally to $\mu_z$, reaching 0.1% for $\mu_z=0.01$. These estimates show that non-SVEA phase shifts may play an important role, for example, in nonlinear-optical experiments in microstructure fibers [10], where light intensities exceeding $10^{13}$ W/cm$^2$ are often achieved by coupling femtosecond pulses in a few-micron fiber core.

In the regime of very short pulses, with $\mu_{z} \gg \mu_r$, non-SVEA pulse-envelope and phase-profile distortions accumulate as the pulse propagates through a medium. Figure 2 shows distortions in the envelope of a light pulse with an initial pulse duration of about 30 fs caused by effects related to the second-order time derivative in the wave equation. The changes in the pulse envelope are already quite noticeable for $\xi=1$. The influence of non-SVEA phase shifts is illustrated in Fig. 3, which compares the nonlinear phase shift of a pulse with a duration of about 30 fs calculated with the use of the SVEA approach with the nonlinear phase shift calculated with the use of Eqs. (20) and (22), including
non-SVEA corrections related to the second-order time derivative. Similar to pulse-envelope distortions, the deviation of the non-SVEA nonlinear phase shift from the SVEA result becomes quite noticeable already for $j=1$, increasing in the process of pulse propagation in accordance with Eqs. (20) and (22).

Putting an initial chirp on the pulse adds phase-control aspects to the analysis of nonlinear interactions of ultrashort pulses. Figures 4 and 5 show that such an analysis should include non-SVEA effects, which may have a noticeable influence on phase-controlled nonlinear processes. Figure 4 compares the SVEA nonlinear phase shift of a short pulse having an initial linear chirp with a chirp parameter $\alpha=-0.5$ and $\mu_t=10^{-2}$ with the results of calculations performed with the use of Eq. (24), including effects related to the second-order time derivative. The evolution of the nonlinear phase shifts for transform-limited and initially chirped pulses illustrated in Figs. 5(a)–5(c) shows how the non-SVEA part of the nonlinear shift is accumulated and the distribution of the nonlinear shift within the pulse becomes more and more asymmetric as the pulse propagates through the nonlinear medium. Non-SVEA phase corrections should be, therefore, taken into consideration in coherent-control experiments [21–26], where chirped ultrashort laser pulses are used to steer molecular excitations, wave-packet motions, chemical reactions, or nonlinear-optical interactions. Non-SVEA effects, as can be seen from Fig. 5, also noticeably influence the SPM-phase-shift precompensation function of the initial chirp, as the result of such a precompensation may deviate from expectations based on the SVEA analysis. Positive initial chirp, as can be seen from the comparison of the evolution of the corrections $\Delta \phi_j$ for transform-limited and initially chirped pulses shown by the dashed and dotted lines in Figs. 5(a)–5(c), respectively, allows phase-profile distortions related to non-SVEA effects to be reduced or precompensated. This precompensation is effective, however, only within propagation lengths on the order of the nonlinear physical length [Fig. 5(a)]. Non-SVEA phase-profile distortions accumulate as the pulse propagates through the medium [Figs. 5(b) and 5(c)], the first term in Eq. (24) starts to dominate, and the expression for the non-SVEA phase-shift correction $\Delta \phi_j$ is reduced to Eq. (22). This analysis shows that a properly chosen initial chirp of short pulses may serve as an important knob in phase-controlled molecular motions and nonlinear interactions.
V. CONCLUSION

Thus, analysis performed in this paper shows that the scenarios of nonlinear-optical interactions of ultrashort pulses may sometimes noticeably differ from predictions of the slowly varying envelope approximation. We have derived a revised equation for self-phase modulation, including corrections related to higher-order derivatives in the wave equation. We have also developed an iterative procedure allowing the analytical solution of this equation for the limiting regimes of high nonlinearities and very short pulses. Analysis of these solutions reveals interesting features in the pulse-envelope and phase-profile evolution related to non-SVEA effects in self-phase-modulation. It was shown, in particular, that $\chi^{(5)}$-like effects, i.e., effects of the fifth order in the laser field, may influence nonlinear-optical interactions governed by the third-order nonlinearity even in the regimes of perturbative nonlinear optics. Many of the non-SVEA effects accumulate with the propagation coordinate, leading to noticeable changes in the pulse envelope and the phase distribution in the laser pulse for large propagation lengths, e.g., in optical fibers or in nonlinear-optical interactions in the atmosphere. Non-SVEA phase corrections and pulse-envelope distortions should be taken into consideration in coherent control experiments, where chirped ultrashort laser pulses are used to steer molecular excitations, wave-packet motions, chemical reactions, or nonlinear-optical interactions.

ACKNOWLEDGMENTS

This study was supported in part by the President of Russian Federation Grant No. MD-42.2003.02, the Russian Foundation for Basic Research (Project Nos. 03-02-16929 and 02-02-17098), the U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union (Award No. RP2–2558), and the Volkswagen Foundation (Project No. I76 869). This material is also based upon the work supported by the European Research Office of the US Army under Contract No. 62558-03-M-0033.