Award Number: W81XWH-06-1-0270

TITLE: A MicroRNA Cluster as a Potential Breast Cancer Oncogene

PRINCIPAL INVESTIGATOR: Gregory Hannon, Ph.D.

CONTRACTING ORGANIZATION: Cold Spring Harbor Laboratory
Cold Spring Harbor, NY 11724

REPORT DATE: March 2008

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
A MicroRNA Cluster as a Potential Breast Cancer Oncogene

Gregory Hannon, Ph.D.
Email: hannon@cshl.edu

Cold Spring Harbor Laboratory
Cold Spring Harbor, NY 11724

To date, most cancer research has focused on alterations in the sequence, gene structure, copy number and expression of protein coding genes. However, there are increasing studies discovering that a diversity of non-coding RNAs decoded in the genome also plays an essential role in cancer. MicroRNAs (miRNAs), which are small, 21-24nt RNAs generated by the key enzyme Dicer, represent a prominent class of such non-coding RNAs. It has been reported that some miRNAs act as oncogenes to promote tumor formation in collaboration with protein-coding oncogenes. On the other hand, several miRNAs are found to function as tumor suppressors. Our previous study revealed a miRNA family, miR-34, as direct transcriptional target of p53, the master tumor suppressor gene. To address the role of miR-34 in cancer formation and maintenance, we generated cell lines over-expressing miR-34. We have demonstrated that ectopic expression of miR-34 in both primary and tumor cell lines can induce growth arrest through repression of cell cycle genes, and we have shown in animal models that tumor cells over-expressing miR-34 have disadvantage in tumor initiation and maintenance. Our work placed miRNAs as one of the central mediators of p53 tumor suppressor network, which plays an important role in many cancer types, including breast cancer.

Dicer, microRNA, mir-34, mammary tumor stem cell
# Table of Contents

Cover..............................................................................................................................................1  
SF 298.............................................................................................................................................2  
Table of Contents..............................................................................................................................3  
Introduction......................................................................................................................................4  
Body..................................................................................................................................................5-7  
Key Research Accomplishments......................................................................................................7-8  
Reportable Outcomes.......................................................................................................................8  
Conclusions.....................................................................................................................................8-9  
References.......................................................................................................................................9
Introduction

Cancer arises from genetic lesions that result in uncontrolled proliferation, cell survival, loss of differentiation and invasive growth. So far, cancer studies have focused on genetic alterations in protein coding genes. It is only recently that non-coding RNAs, in particular, microRNAs (miRNAs) have been shown to play important roles in cancer. Since then, a number of studies support the idea that miRNAs can be components of oncogenic and tumor suppressor networks.

MicroRNAs are small, non-coding RNAs, which regulate gene expression through post-transcriptional repression. Nascent miRNA transcripts (pri-miRNAs) are first transcribed from the genome, and then processed sequentially by two key ribonuclease III enzymes, Drosha and Dicer, to generate mature miRNA duplexes which are 21nt to 24nt in length. Usually, one strand from the miRNA duplex is incorporated into the effector complex, the RNA-induced silencing complex (RISC). RISC recognizes specific target mRNAs through imperfect base-pairing, and down-regulates their expression by post-transcriptional gene silencing.

MiRNAs recognize their target genes by binding to their complementary base-pairing sites on the target mRNA. A series of mutational analyses indicated that the most critical interactions between the miRNA and its targets occur within the 5' region of the miRNA. Therefore, the eight nucleotides at the 5' end of a miRNA are designated as the “seed” sequence, whose complementarity to the target mRNA has been employed to search for candidate targets. In a recent study by Lewis et al., more than 5300 human genes are predicted as conserved miRNA targets, representing 30% of human genome.

Increasing evidence has suggested that miRNAs are components of oncogene and tumor suppressor pathways. Inappropriate expression and structural alterations of miRNA genes have been found in a variety of tumor types, and several functional studies have shown the oncogenic or tumor-suppressive potential of specific miRNA families. Our studies have placed the miR-34 family of miRNAs in the p53 tumor suppressor network. Functional studies of miR-34 have shown that miR-34 possesses anti-proliferative potential by repressing cell cycle genes. Deletion of miRNAs of the miR-34 family has been reported in several human tumors and cancer cell lines. Our animal data has indicated miR-34 may act as tumor suppressor which may afford new opportunities for diagnosis and treatment of human cancer.
Over-expression of *mir-34* induces cell cycle arrest

We identified a miRNA family, miR-34 a, b, c as direct transcriptional target of p53. To further investigate the function of miR-34, we generated human fibroblast cell lines expressing ectopic miR-34. The two major end effects of p53 activation are apoptosis and growth arrest, either transient (cell cycle arrest) or permanent (senescence). We found that, consistent with their function as p53 downstream effectors, ectopic expression of either miR-34a or miR-34b/c led to substantial growth inhibition (Fig. 1A). And we noted distinctive morphological alterations characteristic of cellular senescence in the cells (Fig. 1B, top panel). In accord with this observation, about 60% of the cells were positive (blue) for a senescence marker, SA-β-gal, at 6 days post selection ((Fig. 1B bottom panel). Similar effects were noted in mouse fibroblast cells (data not shown). Ectopic expression of miR-34 genes also led to growth arrest in a panel of tumor cell lines including HCT116 and A549 (Fig 1C).

![Fig1.](image)

**Fig1.** miR-34 family miRNAs mediate growth arrest in primary and tumor cell lines. **A.** Proliferation of human fibroblast cells (IMR90) was measured as cumulative population doublings following retroviral delivery of vectors directing expression of primary *mir-34a, mir-34b/c* or a control. **B.** IMR90 cells engineered to express pri-*mir-34a* or pri-*mir-34b/c* exhibited morphological alterations similar to those seen in senescent cells and stained with SA-β-gal. **C.** A549 were transfected with *mir-34*-mimetic siRNAs and cell cycle arrest was measured using a G2 trapping assay. Briefly, cells were treated with Nocodazole 24 hours post transfection. PI staining and FACS analysis were performed to monitor cell cycle distribution 16-20 hours after Nocodazole treatment. Proliferating cells accumulate in G2 phase, and only cells arrested in G1 or S prior to Nocodazole treatment retain those states.

miR-34 represses cell cycle genes

To determine the mechanisms through which miR-34 family contributes to growth arrest, a list of candidate targets of miR-34 was collected by bioinformatics approaches. Next, we used Western Blots to examine the protein levels for selected candidate miR-34 targets in two tumor cell lines: HCT116 and A549, transfected with *mir-34*. To exclude the possibility that protein
level down-regulation is due to non-specific transfection effects, GL3 siRNAs against luciferase and miR-124 miRNA (which should have no effects on miR-34 targets) were used as controls. For miR-34 targets, we expect that their protein levels will be specifically suppressed in miR-34 transfected cells. In our experiment, we found that a selection of candidate miR-34 targets, including cyclin E2 (Ccne2), cdk4, Met, revealed specific inhibition (Fig 2A). To test whether the regulation is direct, luciferase reporter assays were performed. The 3’-UTRs of cyclinE2, cdk4 and Met were cloned from genomic DNA, and their miR-34 seed complimentary sites were mutated. The level of luciferase of the three reporters were all reduced specifically upon miR-34 transfection, while the repression was eliminated when we mutated the miR-34 seed compliments in the cdk4 and met 3’-UTRs (Fig 2B)

Over expression of miR-34 antagonizes tumorigenesis

The observation that miR-34 induces growth arrest by repressing cell cycle genes triggered us to analyze whether miR-34 could act as a tumor suppressor in vivo. Thus, we transduced p53 null mouse hepatoblasts by retrovirus expressing control or miR-34s, together

Fig2. mir-34 regulates some cell cycle gene. A. Western blots measuring protein levels following mir-34 delivery for multiple candidate targets identified in the cell cycle overlap gene set. Protein lysate were collected after 48 hrs of siRNAs transient transfection. As a consequence of cdk and cyclins down-regulation, Rb phosphorylation is also reduced. B. luciferase reporter assay confirms the mir-34 targets. Wild type and seed region mutated 3-UTR fusing to a firefly luciferase reporter were co-transfected with mir-34 or mir-124 into Hela cells, Renilla luciferase construct was cotransfected as internal control. Cells were lysed and luciferase activities were measured 24 hrs post transfection.

Fig3. over-expressing mir-34 has disadvantage in tumor progression (A) Over-expressing mir34a or mir34b/c clusters resulted in delayed tumor growth. P53-/-; Ras liver progenitor cells were infected with miR34 harboring retrovirus (PIG vector) and selected with 2.5ug/ml puromycin for 2 days. 3X10^6 cells were injected in nude mice and tumor volume was measured by caliper. Value are mean+s.d. (n=10). (B) Negative selection against mir34 in the tumors. The percentage of cells retaining mir-34 retroviruses were quantified by GFP expressed from the PIG vector. D16 tumors (post injection) were digested by dispase to generate single cell suspension and sorted by FACS. The decrease of %GFP post injection indicated that either some tumor cells have lost mir-34 expression or the non-infected cells escaping the puro selection have taken over the tumor population.
with oncogenic ras (HrasV12). And the cells form tumors when grafted into a permissive environment in a recipient mouse. Tumor growth was measured by size and levels of GFP, which reflects miR-34 expression. As in Fig 3A, both miR-34a and miR-34b/c overexpression significantly suppressed tumor growth. Although tumors in the miR-34 group eventually grow to a significant size, we saw a decrease of GFP, in the tumors at day 16 compared to day 0 (Fig 3B), indicating the tumors select against miR-34 expressing cells.

Next, to address the role of miR-34 in tumor maintenance, we generated mouse liver tumor cells harboring inducible miR-34. The miRNA is not expressed in the absence of tetracycline (or its analog, Doxycycline, Dox), but is acutely induced upon Dox treatment. Upon tumor appearance, animals were treated with Dox or left untreated, and tumor growth was monitored by bioluminescence imaging through luciferase. It was soon apparent that tumors regressed after miR-34 activation (Fig 4). Overall, these results imply that miR-34 may act as tumor suppressor in vivo.

Fig4. Acute induction of mir34-a results in tumor regression. p53 null and Ras expressing murine liver tumor cells are infected with tet-on mir-34a retrovirus and injected into nude mice. The animals are either untreated (-Dox, upper panel) or treated with Doxycyclin (+Dox, lower panel) to induce the expression of mir-34a in vivo. Bioluminescence pictures of two representative animals in each group are shown.

Key Research Accomplishments

- The identification of a miRNA family, miR-34, as direct transcriptional targets of p53
- Ectopic expression of miR-34 induces growth arrest in both primary and tumor cell lines
- MiR-34 regulates cell cycle genes through post transcriptional repression
• Tumor cells over-expressing miR-34 have disadvantage in tumor initiation and maintenance

Reportable outcomes

Manuscripts


Conclusion

The p53 tumor suppressor gene responds to DNA damage or deregulated mitogenic oncogenes through the induction of cell cycle checkpoints, apoptosis, or cellular senescence. Mutations in p53 are often associated with aggressive tumor behavior and poor patient prognosis. The p53 tumor suppressor network has been intensively studied; however, genetic analyses have hinted the existence of some missing components in the p53 pathway. For example, although p53 is clearly a transcriptional activator, p53 also represses the expression of specific genes. The mechanism of p53 mediated gene suppression remained unclear until the recent discovery of miRNAs as p53 target genes. These studies offered the possibility that p53-mediated control of miRNA expression could allow it to act indirectly to repress target gene expression at the posttranscriptional level.

Our studies have identified miR-34 as a miRNA component of the p53 network, for the first time revealing interplay between proteins and non-coding RNAs in this pivotal tumor-suppressor pathway. Ectopic expression of miR-34 recapitulates the biological effects of p53, including growth arrest in our study and apoptosis by several other studies, through its ability to inhibit the expression of pro-proliferation and anti-apoptotic genes. Along with the fact that miR-34 family miRNAs has been found deleted in many cancer types, our animal work implies miR-34 as potential tumor suppressor in vivo. These findings suggest that miRNAs, and in a broader sense non-coding RNAs, may be previously unrecognized but integral components of established oncogene and tumor-suppressor networks.

Thus, it is critical to explore miRNA’s value as novel therapeutic targets and/or diagnosis markers in human cancers. As the in vivo delivery of sequence-specific miRNA mimics and antagonists has become technically possible, we gain the ability to express or inhibit certain miRNAs in tumors and test their role in tumor initiation and maintenance. In addition,
large-scale expression studies of miRNA profiles in multiple human tumor types have revealed that miRNA signatures are correlated with the developmental lineage and differentiation status of tumors. Moreover, miRNA signatures can be applied to distinguish certain poorly differentiated tumors, many of which were difficult to be classified based on mRNA profiles. Such findings suggest an unexpected potential of miRNAs in cancer diagnosis and therapy.

References