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Constrained Regularization of Digital Terrain
Elevation Data

Anish Mohan,1 Alberto Bartesaghi,2 andGuillermo Sapiro1

1. Electrical and Computer Engineering, University of Minnesota
Minneapolis, MN 55455, guille@ece.umn.edu; and 2. National Institutes of Health, Bethesda, MD 20892.

Abstract— A framework for geometric regularization of eleva-
tion maps is introduced in this paper. The framework takes into
account errors in the data, which form part of standard elevation
maps specifications, as well as possible additional user/application
dependent constraints. The algorithm is based on adapting the
theory of geometric active surfaces to the problem of regular-
izing elevation maps. We present the underlying concepts and
numerical experiments showing the effectiveness and potential
of this theory.

Index terms:Elevation data, geometric active surfaces, regular-
ization, absolute errors, constraints.

I. I NTRODUCTION

Elevation data often comes with information
about measurements uncertainty. In particular, the
standard specification of the National-Geospatial
Intelligence Agency (formerly NIMA) for digital
terrain elevation data (DTED) includes information
about absolute vertical and horizontal errors (see for
example http://www.fas.org/irp/program/core/dted.htm and
http://mountains.ece.umn.edu/∼guille/dtedspecification.pdf
for a copy of the official DTED specification.). Any given
post reading (e.g., with posts spaced approximately 30 meters
apart for the DTED-2 data used for this paper) can actually
“move” up/down or to the sides, following the absolute
vertical and horizontal errors specified within the dataset.
These errors/adjustments can be, for example, of 5-10 meters
vertically and 10-15 meters horizontally.

Due to such intrinsic uncertainties in elevation data, its
regularization is often needed, both for visualization and for
processing (e.g., compression). In this paper we introduce a
framework to perform this regularization, while maintaining
the constraints given by the provided information about verti-
cal and horizontal absolute errors. These errors are represented
in our work by “uncertainty cylinders,” centered at the given
data points, see Figure 1. The cylinder’s height represents the
absolute vertical accuracy, while base diameter corresponds
to horizontal accuracy.1 We search for a smooth surface that
deforms the original data while keeping the points inside their
corresponding cylinders. Such an important constraint, that is
dictated by the elevation dataset specifications, has not been
exploited by previous state-of-the-art approaches such as those

1If other noise models are considered, e.g., Gaussian distributions, the cylin-
ders are to be replaced by other three dimensional shapes such as ellipsoids.
We opt to work with cylinders since the standard DTED-2 specification does
provide absolute errors.

in [2], [13]. We thus examine techniques based on geometric
partial differential equations [8], [9], [10], and in particular
the geodesic active contours and minimal surfaces framework
[1], [5]. In this note we propose a means to extend these
works to the problem of regularization with constraints for
elevation maps. We show that the framework is valid not
only in order to respect the absolute vertical and horizontal
errors provided by the DTED specification, but can also deal
with other constraints, such as the preservation of geometric
features.

The problem of regularization with constraints has been
addressed in the literature. Kimeldorf and Wahba, [6], showed
how to compute one dimensional splines with hard vertical-
error constraints. While this elegant approach can easily be
extended to higher dimensions, it doesn’t include the hori-
zontal freedom given by the horizontal absolute error. It is
also not developed for the additional geometric constraints
that are natural to add in our framework. The theory oftotal
least squares[4] also addresses the “freedom of motion” of
the given data, both in the vertical and horizontal position. In
it’s original form, although computationally very efficient, the
framework does not provide hard constraints (that is, the error
is not guaranteed to be bellow the allowed bounds), neither
does include any kind of explicit regularization or geometric
terms. In order to add these important constraints, the problem
has to be transformed into a variational framework much of
the flavor here introduced.

Before proceeding with the framework description, we
should comment that we opt in this work to regularize the
whole data set at once (as a function on the plane), and not
just individual iso-height lines. Although we could use the
same framework for regularizing lines, this is a non-consistent
approach. That is, when regularizing “on demand” individual
iso-height lines with the absolute errors constraints, terrain
points can be assigned to multiple elevations. For example,
considering a vertical error of 10 meters, a point measured at
95 meters could be assigned both to lines at 90 or 100 meters
if the corresponding iso-level lines are treated independently.

II. REGULARIZATION WITH CONSTRAINTS VIA

GEOMETRIC ACTIVE SURFACES

Let us begin with the general description of the minimal
surfaces approach [1], which we then adapt to the problem at
hand. LetS be a two dimensional (2D) surface embedded in
the Euclidean spaceR3. Let alsoI : R3 → R be some given
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Fig. 1. Problem description (data in meters): The given surface is allowed to
move inside the uncertainty cylinders, which are determined by the absolute
horizontal and vertical accuracy of the measurements (as described in the NGA
DTED Performance Specification Document and provided in the standard
DTED file).

data, which constraints the surface (e.g., a gradient map if we
are concerned with segmentation, the original motivation for
the minimal surfaces model), andg : R → R a function that
acts on this data. The basic idea is to find a surfaceS such
that it minimizes the energy given by∫

S
g(I(S))da, (1)

whereda is the classical element of area on the surfaceS. In
words, the above energy is minimizing the measureg on the
surfaceS. In the case of image segmentation for example,g
is often a decreasing function of the image gradient, and in
such a way,S is constrained to be at regions of large gradient,
thereby being attracted to object boundaries in simple models.

The above energy is often minimized via a gradient descent
flow, leading to the evolution equation

∂S
∂t

= (κg(I(S))−∇g · ~N) ~N, (2)

whereκ is the surface mean curvature and~N is the surface
unit normal. The above equation is iteratively run to steady
state starting from some initial guessS0. It has been shown in
the literature, [1], that the flow is regularizing the surface (due
to the curvature component) while being constraint to move it
to areas of lowg.

With respect to our surface elevation data, we selectg to
be a function of the distance to the uncertainty cylinders (see
also [14] for the use of distance constraints in the problem of
surface reconstruction from scattered data). That is, inside the
cylinders we selectg = 0 (or some very smallε > 0 value for
additional smoothness), and outside of the cylinders we select

g(x, y, z) = f(d(x, y, z)),

where f(·) is any increasing function (in our examples we
select the unit constant function), andd(x, y, z) is the Eu-
clidean distance between the 3D point(x, y, z) and the setCi

of cylinders (see Figure 1).

Another important adaptation to our problem at hand is
that the elevation data is not a generic surface but a height
function h(x, y) : R2 → R+ (S = (x, y, h(x, y))). Thereby,
considering the vector~z a unit vector in the vertical direction,
the above flow becomes a simple scalar motion:

∂h

∂t
= (κd(x, y, h(x, y))−∇d(x, y, h(x, y)) · ~N) ~N · ~z. (3)

Here, the genericg function has been replaced with the
cylinder/distance-based version described above.

In addition, for functions, it is well known that (subscripts
indicate derivatives)

~N =
1√

h2
x + h2

y + 1
(−hx,−hy, 1)

and

κ = −1
2

div

 1√
h2

x + h2
y + 1

(−hx,−hy, 1)

 ,

making the numerical implementation of the above mentioned
flow quite straightforward.

A. Extensions

The framework introduced above is flexible and natural for
extensions that are relevant for the regularization of elevation
maps. For example, the following procedures may be imple-
mented:

1) If, in-spite of the existence of the absolute vertical
and horizontal errors, a certain feature in the original
elevation data is not to be allowed to move, all that
needs to be done is to place a zero height and zero
width (or as small as desired) cylinder for that point. If
for example a ridge is to be preserved, after it has been
detected by a desired manual or automatic technique, the
corresponding points in the DTED file are marked and
their cylinders are reduced to the desired size (which can
be null for absolute no motion). Note that this can be
done for a group of points representing lines of interest
as well as for entire regions. Of course, the algorithm
works for cylinders of different sizes and also general
shapes of “allowed motion.” This is easily handled by
the distance function and from it the penaltyg function.

2) If other characteristics of the data are to be preserved,
these can be incorporated in the form of hard or soft
constraints to the variational formulation. For example,
a slope preserving term can be easily added, leading to
an energy of the form∫

h

g(h)da + λ

∫
‖ ∇h−∇h0 ‖2 dxdy,

whereh0 is the original (noisy) data andλ is a standard
Lagrange multiplier. Proximity constraints to desired
coordinates can be added as well to force regions to
be either preserved or moved towards a certain target.



3

III. E XPERIMENTAL RESULTS

We experimented with DTED-2 data (30 meters post separa-
tion) with 10 meters of vertical absolute error and 13 meters of
horizontal absolute error, as dictated by the data specification.
To capture the size of these errors, we constructed a refined
grid, 7 times larger in each horizontal dimension (that is, the
original data is linearly interpolated to posts at 30/7 meters
to produceh0, the initial condition for Equation (3)). A
finer refinement, which will increase the computational cost,
was not found to be needed. This data was then regularized
with the technique described above, using standard numerical
techniques [10]. If desired, fast numerical implementations fol-
lowing [3], [7] could be used as well. Figures 2 and 3 present
two examples showing original and regularized results. Figure
4 shows the histogram of the vertical motion (adjustment)
introduced by the surface regularization algorithm. Note that
while the data is being regularized, the motions are between
the permitted margin dictated by the data.

IV. CONCLUDING REMARKS

In this paper we have exploited important components of
DTED specifications that have been widely ignored when
processing elevation maps. Extending work on geometric
active surfaces we have shown how the maps can be regu-
larized while maintaining the data in the intervals allowed by
the pre-specified errors. Additional constraints can be easily
incorporated to the framework as well. The framework can also
be applied to non-grid data properly adapting the numerical
implementation.

We are currently working with the framework described in
[12] to provide an alternative to the approach here presented.
We are also investigating the use of the results obtained here
for compression of elevation maps, [11], and working on
adding constraints to the regularization process. Results in
these directions will be reported elsewhere.
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