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ABSTRACT 

This thesis extends the game-theoretic network-interdiction model of Washburn & Wood 

(1995) to handle multiple types of interdiction assets (e.g., aircraft, ground-based 

inspection teams), referred to here as “inspectors.” A single evader attempts to traverse a 

path between two vertices in a directed network while an interdictor, controlling 

inspectors of different types, attempts to detect the evader by assigning inspectors to 

edges in the network. Each edge has a known probability of detection if the evader 

traverses the edge when an inspector of a given type is present. The problem for the 

interdictor is to find a mixed inspector-to-edge assignment strategy that maximizes the 

average probability of detecting the evader, i.e., the “interdiction probability.” The 

problem for the evader is to find a mixed “path-selection strategy” that minimizes the 

interdiction probability.  

The problem is formulated as a two-person zero-sum game with a surrogate 

objective that evaluates expected number of detections. That model is solved with a 

“direct solution procedure” and a “marginal-probability solution procedure.” On 

numerous test problems, both procedures correctly compute expected number of 

detections, but the latter more often finds a solution that simultaneously optimizes 

interdiction probability. The latter procedure is also much faster and is therefore preferred.  
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EXECUTIVE SUMMARY 

This thesis extends the game-theoretic network-interdiction model of Washburn & Wood 

(1995) to handle multiple types of interdiction assets (e.g., aircraft, ground-based 

inspection teams), referred to here as “inspectors.” A single evader attempts to traverse a 

path between two vertices in a directed network while an interdictor, controlling 

inspectors of different types, attempts to detect the evader by assigning inspectors to 

individual edges in the network. Each edge has a known probability of detection if the 

evader traverses the edge when an inspector of a given type is present. The problem for 

the interdictor is to find a mixed inspector-to-edge assignment strategy that maximizes 

the average probability of detecting the evader, i.e., the “interdiction probability.” The 

problem for the evader is to find a mixed “path-selection strategy” that minimizes the 

interdiction probability.  

We use two procedures to find an optimal solution to the network-interdiction 

problem described above. The first is the “direct solution procedure,” which uses a 

column generation algorithm to find the pure inspector assignment strategy in a single 

phase. The second one is a “marginal-probability (solution) procedure” that (a) first 

solves a relaxed model to identify what is hoped to be an optimal marginal probability 

distribution for inspector-to-edge assignments, and then (b) uses a column-generation 

algorithm to find a mixed strategy, i.e., a joint distribution, that matches the marginal 

distribution, if this is possible.  

The problem is formulated as a two-person zero-sum game with a surrogate 

objective that evaluates expected number of detections. Ideally, we would like that 

objective to measure probability of detection, i.e., “interdiction probability.” When the 

number of inspectors does not exceed the cardinality of a minimum-cardinality cut in the 

network, both models optimize expected number of detections correctly. However, that is 

not true for the interdiction probability in the network. The marginal-probability 

procedure often finds a mixed strategy in which probability of detection equals expected 

number of detections, while the direct solution procedure does not, but the opposite never 

happens.   



 xiv

Multiple tests of both procedures are made to (a) find optimal inspection 

strategies, (b) to identify cases, if any, that the procedures do not solve correctly, and (c) 

to specify conditions under which the procedures are guaranteed to work or not work.  

On numerous test problems, both procedures correctly compute expected number 

of detections, but the marginal-probability procedure more often finds a solution that 

simultaneously optimizes interdiction probability. In particular, the direct solution 

procedure sometimes places inspectors on two or more edges that appear in single path 

that the evader will use with positive probability; but probability of detection is not 

additive in this case. The marginal-probability procedure, on the other hand, always 

returns the correct answer given that the number of inspectors is less than the cardinality 

of minimum cardinality cut in the network.  (Strictly speaking, we mean minimum-

cardinality among cuts that contain no edges with a zero probability of detection.) This is 

true because, under these conditions, this procedure can never place more than a single 

inspector on a path that the evader might use.  

The marginal-probability procedure also has an advantage in terms of solution 

times. For example, the directed-solution procedure solves one problem with 145 vertices, 

544 edges and 12 inspectors (six of each of two types) in about half an hour on a fast 

personal computer; in contrast, the marginal probability procedure solves the same 

problem in about 15 seconds. Because of the advantages in accuracy and speed, the 

marginal-probability procedure is clearly preferred. 
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I. INTRODUCTION 

 This thesis models and solves a two-person, zero-sum, network-interdiction game. 

The model represents an “interdictor” who wishes to assign “inspectors” to cover edges 

(links) of a network, in an attempt to detect an “evader,” moving through that network 

between two specified vertices. Imperfect detections and a limited number of inspectors 

lead to a simultaneous-play (Cournot) game in which the interdictor chooses a 

probabilistic inspector-to-edge assignment strategy, while the evader chooses a 

probabilistic “path-selection strategy.” The interdictor seeks to maximize the probability 

of detection and the evader to minimize that probability, although we model probability 

of detection through a surrogate, expected number of detections.  

 The model applies to the problem of optimally allocating search assets of a border-

control authority seeking to detect illegal border crossings.  

A. BACKGROUND 

 This thesis extends the game-theoretic network-interdiction model described by 

Washburn & Wood (1995) to handle multiple types of interdiction assets, referred to here 

as inspectors. The Washburn and Wood model represents a situation in which a single 

evader attempts to traverse a path between two vertices in a network while a single 

inspector tries to detect the evader by setting up an inspection point along one of the 

network edges. The inspector selects an edge e  in the network and sets up an inspection 

site there. Without knowledge of the inspector’s location, the evader chooses a path. If 

the evader traverses edge e  on that path, he is detected with probability ep ; otherwise, he 

goes undetected. Both the evader and inspector know the detection probability for each 

edge in the network. The problem for the inspector is to find a probabilistic “edge-

inspection strategy” that maximizes the overall probability of detecting the evader—we 

call this the interdiction probability—while the problem for the evader is to find a 

probabilistic “path-selection strategy” that minimizes the interdiction probability. 

Washburn and Wood formulate this problem as a two-person zero-sum matrix game, and  
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then show how it can be solved using a maximum-flow network model. They also show 

how the solution extends to multiple, homogeneous inspectors, under certain 

circumstances. 

The thesis extends Washburn and Wood model by modeling an interdictor who 

controls multiple types of inspectors. The interdictor has rm  inspectors available of each 

type r R∈ . For instance if { }1, 2R = , 1r =  might represent a single type of UAV 

(unmanned aerial vehicle), and 2r =  might represent “inspection teams” that consist of 

ground forces. In this thesis we assume that the inspectors detect independently of each 

other, and that the number of inspectors per edge is limited to one. Although not critical 

to the formulation, that the reader may assume that R  is small, say three or four. (For 

instance, the interdictor might control two types of UAVs, one type of manned aircraft 

and a group of homogeneous ground teams, implying 4R = .) The evader’s pure 

strategies correspond to paths as in Washburn and Wood model, but the interdictor’s pure 

strategies, called the “inspector-assignment strategies,” are more complex in the new 

model.  

B. LITERATURE REVIEW 

The literature on network interdiction can be divided roughly into two categories: 

sequential-play games (Stackelberg games) and simultaneous-play games (Cournot 

games). We are concerned with a simultaneous-play model, but briefly discuss 

sequential-play models here to clarify the differences. (See Gibbons 1997 for a general 

discussion and comparison of simultaneous-play and sequential-play games.) 

In a sequential-play interdiction game, the interdictor and the evader play their 

strategies one after the other. For instance, consider a simplified version of the network-

interdiction model described by Pan et al. (2003) (and which is related, using a 

logarithmic transformation in the objective function, to the “shortest-path interdiction 

models” of Fulkerson & Harding 1977, Golden 1978, and Israeli & Wood 2002). An 

interdictor controls multiple inspectors and plays first by placing those inspectors on 

edges in a network. An evader sees exactly where the inspectors have been placed and 
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chooses a path that minimizes some overall probability of detection; detection probability 

depends on probabilities of detection on individual edges and on which inspectors, if any, 

are encountered along the path. (There may be a non-zero “local probability of detection” 

on an edge even if an inspector is not present.) In other Stackelberg network-interdiction 

models, the interdictor may disrupt edges or vertices in the network so that the 

functionality that a “network user” can derive from the network is minimized. 

Functionality may be defined in such terms as maximum flow (Wood 1993), shortest-

path length (Fulkerson & Harding 1977, Golden 1978, Israeli & Wood 2002), or cost of a 

multi-commodity flow (Lim & Smith 2007); see also Wollmer (1964).  Bayrak & Bailey 

(2008) consider a more complicated model involving asymmetric information. 

This thesis is concerned with the second main type of network-interdiction model, 

however, the type involving simultaneous play. In a simultaneous-play network-

interdiction game, the interdictor and evader act at the same time, or at least without 

knowing what each other’s strategy is.  

Washburn & Wood (1995) describe what appears to be the first simultaneous-play 

game that is called a “network-interdiction game,” but at least one earlier simultaneous-

play model has the flavor of network interdiction. In particular, Caulkins et al. (1993) 

investigate how the adaptive reactions of an evader to an interdictor’s strategies affect 

interdiction probability in a network. The authors use Monte Carlo simulation for an 

interdiction game involving an interdictor and cocaine smugglers. Basically, the 

smugglers make shipments on “routes,” and the interdictor tries to detect those shipments 

by searching some of the routes. A smuggler computes the risk of being interdicted by 

using a “time-weighted estimate” of risk for each route, which is based on the interdiction 

history of the routes; he chooses a route for the a shipment probabilistically, using 

probabilities that are inversely proportional to the risk estimates. We note that the 

network of routes in this model is extremely simple and, in fact, may be viewed as a set 

of parallel edges between a single origin and single destination. 

We find numerous references to Washburn & Wood (1995) in the literature, but 

find only one paper that studies a model having a close connection to that of Washburn 

and Wood, viz., Kodialam & Lakshman (2003).  Kodialam and Lakshman model a game-
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theoretic situation in which an “intruder” attempts to inject a malicious package into a 

vertex of communications network, and would like the package to reach a given target 

vertex undetected. Simultaneously, a “service provider” inspects a subset of the packages 

as the move across the network’s links, in an attempt to detect the intrusion. That is, the 

service provider samples the flow of packages on certain network edges. Sampling must 

be used because it is computationally impossible to check all packages.  The intruder tries 

to hide his package by sending it along edges that have high nominal levels of package 

flow.  Detection probability on an edge corresponds to the proportion of package flow 

that is sampled. This model differs from other interdiction models because it uses 

sampling to detect “the intruder,” rather than using a discrete allocation of inspectors. As 

in Washburn and Wood (1995), the inspector’s (service provider’s) optimal mixed 

strategy involves a minimum-weight cut.  In this case, and edge’s weight is inversely 

proportional to the magnitude of the nominal package flow on the edge. 

C. THESIS OUTLINE 

The thesis is outlined as follows. Chapter II introduces the two-person zero-sum 

network interdiction game with multiple inspector types; Chapter III describes a single-

phase column-generation procedure, or “direct procedure” to solve the game; Chapter IV 

describes an alternative, two-phase “marginal-probability procedure”; Chapter V presents 

basic computational results for three test problems with different networks and with up to 

three inspector types; and Chapter VI presents summary, conclusions, and suggestions for 

further research. 
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II. MODELING TWO-PERSON ZERO-SUM NETWORK 
INTERDICTION GAME WITH MULTIPLE INSPECTOR 

TYPES 

The key limitation of the model of Washburn & Wood (1995) is that of a single 

inspector type. That assumption might be appropriate if the interdictor controls only, say, 

ground-based, mobile inspection teams, but is unrealistic if he “inspects” the road 

network with several types of assets such as (a) unmanned aerial vehicles (UAVs) of a 

particular type, (b) UAVs of a different type, (c) electronic sensors, and (d) ground-based 

inspection teams. Each type of inspector will normally have a different probability of 

detection, which is likely to depend on location. For instance, a UAV might have a 

relatively high probability of detecting an evader in mountainous terrain, while a ground 

team might be less effective over the same area. In contrast, a ground team might be a 

better choice over UAV in an area in which harsh weather conditions prevail. Thus, our 

key goal is to extend Washburn and Wood model to handle multiple inspector types. 

In our model, we wish to maximize the interdictor’s overall probability of 

detection, i.e., the interdiction probability, but will write an objective function that 

computes expected number of detections because: 

 1. That objective is easy to define and simplifies modeling, 

 2. It corresponds closely to probability of detection when overall 
 detection probabilities are small−this is a realistic situation−and, 

 3. It corresponds exactly to probability of detection if an optimal 
 inspection policy means that the evader has only one detection 
 opportunity on any path he might choose with positive probability. 

Since inspection assets are likely to be limited compared to the size of the network, the 

situation under point three is likely to occur.  

This chapter begins by defining the notation that will be used throughout the 

thesis, and starts to discuss how the extension from Washburn and Wood’s single-

inspector-type model to our multiple-inspector-type model will be achieved. It then 

discusses the structure of a matrix game for a general network-interdiction model, and 

finally describes the extended model. 
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A. NOTATION 

The following notation will be used throughout this thesis: 

Indices and Index Sets 

,i j V∈  vertices in a directed network ( , )G V E=  
,s t  special vertices s Vt≠ ∈ .  s  is the “source vertex” where the evader will start 

his traversal through the network, and t  is the “sink vertex” which is the 

evader’s final destination (after reaching t , the evader cannot be detected) 

e E∈   edges ( , ) and ( , )e i j e j i= =   in a directed network ( , )G V E=  
e E′∈     edges, incident from source vertex (s,v) and to sink vertex (v,t), which have zero           

probabilities; E E′ ⊂  

L∈   s-t paths in ( , )G V E=  (pure strategies for the evader) 

r R∈       inspector types 

a A∈       a pure inspection strategy, i.e., an assignment of inspectors to edges in G   

Data 

eg   1 if s-t path  contains edge e , and 0 otherwise 

erah      1 if inspection strategy a  puts an inspector of type r on the edge e , and 0       

otherwise 

erp   probability an inspector of type r , when assigned to edge e , will detect the 

evader if the evader traverses that edge  

ˆ
ad   expected number of detections achieved by pure inspection strategy a  if the 

evader traverses path  ( ˆ
e era ere E r Rad g h p

∈ ∈
=∑ ∑ ) 

rm   number of inspectors of type r available for assignment  

F   vertex-edge incidence matrix for ;G  ief =1 if ( , ) Ee i j= ∈ , 1ief = − if 

( , ) Ee j i= ∈ , and 0ief = otherwise 

ib   1sb = , 1tb = − and 0 \{ , }ib i V s t= ∀ ∈ ) 

Variables 

For the “basic model”: 
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ax′   probability that interdictor chooses pure edge-inspection strategy a  (vector 

form ′x )  

y′   probability that the evader chooses path  (vector form ′y ) 

ey   (marginal) probability that the evader traverses edge e  ( ee L
y g y

∈
′= ∑ ; vector 

form y ) 

For the “marginal-probability procedure”: 

erx  (marginal) probability that an inspector of type r is assigned to edge e (vector 

form x ) 

erv           unassigned probability which we are trying to minimize  

For the “column-generation procedure” used after computing marginal probabilities: 

erh          1 if an inspector of type r  is assigned to edge e , and 0 otherwise 

B. A MATRIX GAME FOR NETWORK INTERDICTION MODEL  

The basic model in this thesis has the same two players as in the Washburn and 

Wood model, but the interdictor will control rm  inspectors of each type r R∈ . The pure 

strategies for the evader are the same as in Washburn and Wood model, i.e., they will 

correspond to paths.  A pure strategy for the interdictor involves a generalization, 

however: simultaneous assignments of multiple inspectors to edges. A pure strategy, 

indexed by ,a  is called an inspector-assignment strategy, or simply an inspection 

strategy. The interdictor will normally have many potential, pure inspection strategies, 

and each such strategy will have a probability of being used by the interdictor: together, 

those define a mixed inspector-assignment strategy, or simply a mixed assignment 

strategy. For simplicity, we allow at most one inspector on any edge in any pure strategy. 

Also for simplicity, we assume that an inspector of any type when assigned to edge ( , )i j  

can detect an evader who travels over that edge, but cannot detect one who travels over 

the anti-parallel edge ( , )j i . 

Let ax′   denote the probability that the interdictor chooses inspection strategy a  

for the multiple inspectors under his control, and let y′  denote the path-selection 
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probability for the evader, which is the probability that the evader chooses path  to 

traverse. As in Washburn & Wood (1995), the interdictor seeks a randomized strategy ′x  

that maximizes the expected number of detections of the evader, given that the evader 

uses a randomized strategy ′y  that minimizes the same objective. Let  ˆ
ad   be the 

expected number of detections if evader chooses path  and the interdictor chooses 

inspection strategy a . This problem fits into the form of a matrix game with matrix 

ˆˆ [ ]aD d=  and can be stated as follows. 

 

MAXMIN1 

MAXMIN1
ˆmax minz D

′′ ≥≥
′ ′=

y 0x 0
x y

   
              (1) 

s.t.  1a
a A

x
∈

′ =∑
   

               (2)
       

1
L

y
∈

′ =∑
                 

(3) 

The objective function (1) evaluates expected number of detections. Constraint 

(2) requires that the interdictor choose a valid mixed strategy of assignments; constraint 

(3) requires that the evader choose a valid mixed path-selection strategy.  

Under certain circumstances, the expected number of detections, MAXMIN1z or “ DE ,” 

equals the interdiction probability, which will be denoted IP . This is possible when: (a) 

the interdictor’s inspector-assignment strategies put the inspectors on edges that form an 

s-t cut, i.e., a disconnecting set, (b) the pure strategies do not place the inspectors on 

subsequent edges, or do not assign more than one inspectors on the edges of the same 

path , and (c) none of the pure strategies puts more than one inspector to any individual 

edge.  

We can reformulate MAXMIN1 as: 
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MAXMIN2 

MAXMIN2 max min a e era er
a A L e E r R

z x g h p y
′′ ≥≥

∈ ∈ ∈ ∈

′ ′= ∑ ∑∑∑y 0x 0
                    (4) 

s.t.  (2), (3) 

 

where erah =1 if pure inspector-assignment strategy a  puts an inspector of type r  on the 

edge e  and 0erah =  otherwise; erp  is the probability that an inspector of type r  detects 

the evader on e  given that  the evader traverses edge e ; and ax′  is the probability that the 

interdictor chooses pure edge-inspection strategy  a .  

 Defining ey as the “edge-traversal probability” for the evader on edge e , we can 

write the new problem as follows: 

 

MAXMIN3 

MAXMIN3 max min a era er e
a A e E r R

z x h p y
′ ≥≥ ∈ ∈ ∈

⎛ ⎞′= ⎜ ⎟
⎝ ⎠

∑ ∑ ∑y 0x 0
             (5)

  
s.t.  (2), (3), 

      e
L

ey g e Ey
∈

′= ∀ ∈∑
  

(6)   

      F =y b                        (7) 

     Washburn & Wood show that nothing is lost by eliminating constraints (3) and 

(6), and we follow that approach to arrive at the following model:  

  

MAXMIN4 

 
MAXMIN4 max min a era er e

a A e E r R
z x h p y

′ ≥≥ ∈ ∈ ∈

⎛ ⎞′= ⎜ ⎟
⎝ ⎠

∑ ∑ ∑y 0x 0
  

[Dual Variables]
                    

(8) 

s.t.  1a
a A

x
∈

′ =∑
             

[ ]θ
                     

(9) 

           F =y b              [ ]γ                    (10) 
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            If we (a) fix the interdictor’s probabilities of edge-inspection strategy ′x , (b) take 

dual of evader’s resulting linear program and then, (c) release ′x , we obtain the 

following master problem: 

 

MP1 ( )A  

MP1 max s tz γ γ
′≥ ≥

= −
x 0, γ 0

       [Dual Variables]                   (11) 

s.t. ( )0 ,i j era er a
a A r R

h p x e i j Eγ γ
∈ ∈

⎛ ⎞ ′− − ≤ ∀ = ∈⎜ ⎟
⎝ ⎠

∑ ∑               [ ]eπ                               (12) 

                                        1a
a A

x
∈

′ =∑                  [ ]θ                    (13) 

The number of variables in MP1(A) will be exponential in |E| and rm , so the 

model cannot be solved directly for large networks. The next chapter describes a solution 

approach. 
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III. SOLVING THE MATRIX GAME BY COLUMN GENERATION 

Setting up and solving MP1(A) directly will be impossible for networks of even 

modest size, because the number of variables or “columns” will be huge. But, because the 

number of constraints is modest it is possible to generate columns on an “as-needed” 

basis in a column-generation algorithm.  We are going to use the “column generation 

technique” as described by Ahuja et al. (pp. 665–670): 

The key idea in column generation is never to list explicitly all of the 
columns of the problem formulation, but rather to generate them as 
needed. To find the simplex multipliers, the method requires no 
information about columns (variables) not in the basis. It then uses the 
multipliers to price-out the nonbasic columns, that is, compute their 
reduced costs. If any reduced cost is positive (assuming a maximization 
formulation), the method will introduce one nonbasic variable into the 
basis in place of one of the current basic variables, and then recompute the 
simplex multipliers, and repeat these computations. 

The basics of this approach, when applied to solving the MP1(A), are similar to 

the column-generation algorithm for solving the multi-commodity flow problem (Ford & 

Fulkerson 1956). That algorithm is, in turn, a special case of a Dantzig-Wolfe 

decomposition algorithm for a general linear program (Dantzig & Wolfe 1958).  

In this chapter, a subproblem will be defined for the master problem MP1(A) 

from the previous chapter, and an optimal mixed edge-inspection strategy will be 

produced by column generation. We will introduce a single-phase column-generation 

procedure, or simply direct solution procedure to find the interdictor’s optimal mixed 

strategy. 

A. COLUMN GENERATION SUBPROBLEM 

Assume we have enumerated a subset of pure inspection strategies A A′ ⊂ . We 

solve MP1( A′ ) and retrieve optimal dual variables ˆˆ( , )θπ . We may view that solution as 

a basic feasible solution for MP1(A). It may be possible to improve that solution if we 

can find a variable , \ax a A A′ ′∈  with positive reduced cost, i.e., 
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ˆˆ0 0er era e
e E r R

p h π θ
∈ ∈

− − >∑∑
. 

The following subproblem generates a column (variable) with the most positive 

reduced cost, if one exists.  

SUB1 ˆˆ( )θπ,  

SUB1
ˆˆmax er er e

e E r R
z p h π θ

∈ ∈

= − −∑∑h
                           (14) 

s.t. er r
e E

h m r R
∈

= ∀ ∈∑                             (15) 

      1er
r R

h e E
∈

≤ ∀ ∈∑               (16) 

           { }0,1 ,erh e E r R∈ ∀ ∈ ∈                           (17)  

B. COLUMN GENERATION ALGORITHM TO SOLVE MP1(A) 

To solve the MP1(A) problem efficiently, we will use the following column-

generation algorithm.  

Algorithm 1 

Input: ( , )G V E= ; source vertex s ; sink vertex t ; ,erp r R e E∀ ∈ ∈ ; .rm r R∀ ∈   

/*Input assumes rr
m E≤∑ .*/ 

Output: Optimal mixed strategy for MP1(A) encoded through 

,AA′ ⊂ , ,erah e E r R a A′∀ ∈ ∈ ∈  and probabilities  0ax a A′ ′> ∀ ∈ . 

1. /* Create an initial feasible assignment of inspectors. */ 
1;a ←  

 for (all r in R) {for (i=1 to rm ) { e e+1;← 1;erah ← }} 

{ };A a′ ←  

2. Solve MP1 ( )A′  for the dual solution ˆˆ( , )θπ  and primal solution ˆ ′x ; 
3. Solve SUB1 ˆˆ( , )θπ  for ˆ( , )subz h ; 

If ( 0)subz = { 
        /*Current solution to MP1 ( )A′  solves MP1 ( )A */  
            Print ( , , | 0)aerah e E r R a A x′ ′∀ ∈ ∈ ∈ > ; 

                        Print ( | 0)a ax a A x′ ′ ′∀ ∈ > ; 
            Halt; 
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 }else{  
 
             1a a← + ; 
  ˆ ,era erh h e r← ∀ ; 
  { }A A a′ ′← ∪ ; 

            go to step 2; 
       } 
 

Suppose we wish to use Algorithm 1 to solve two instances of MP1(A) on the 

network of Figure 1. 

 

 

Figure 1.   Small network with five vertices and six edges to illustrate a solution of the 
efficiency of direct solution procedure. 

Figure 2 and Figure 3 use the network of Figure 1 to illustrate optimal mixed 

inspection strategies for an interdictor who controls one inspector (Figure 2), and two 

inspectors of a given type (Figure 3).  
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Figure 2.   Optimal mixed assignment strategy for the interdictor. Results for direct 
solution procedure on the small network of Figure 1, when one inspector of type 1 
is used only, and ( ,2)1 0.35sp = , ( ,3)1 0.56sp = , ( ,4)1 0.51sp = , (2,5)1 0.52p = , 

(3,5)1 0.45p = , (4,5)1 0.38p = . The solution gives 0.1764.I DP E= =  The dark edges 
indicate the inspector assignment in each of three pure strategies, and the 
associated value for ax′  is given at the bottom of each subfigure.  Note that the 
interdictor’s inspector-to-edge assignments form an s-t cut in the network.  

s=1 t=5

4

3

2

s=1 t=5

4

3

2

s=1 t=5

4

3

2

Strategy 1: 0.3701 Strategy 2: 0.3216 Strategy 3: 0.3083

(a) (b) (c)  
Figure 3.   Optimal inspector assignments analogous to Figure 2 when two inspectors of 

type 1 are used only and no others, and ( ,2)2 0.45sp = , ( ,3)2 0.55sp = , 

( ,4)2 0.42sp = , (2,5)2 0.39p = , (3,5)2 0.49p = , and (4,5)2 0.52p = . The solution gives 
0.3528.I DP E= =    

 As can be seen in the first two examples, the direct solution procedure can 

produce acceptable strategies for the interdictor in which  .I DP E=  That is because the 

interdictor’s pure inspector assignment strategies put at most one inspector on any path. 

However consider the previous example modified to have exactly two inspectors of type 

1, and suppose all 1ep  are the same, say 1 0.1,ep e E= ∀ ∈ . Figure 4 displays the results: 
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Figure 4.   Optimal inspector assignments produced by the direct solution procedure 
when two inspectors of type 1 are used only (none from any other types), and 

1 0.1ep e E= ∀ ∈ . The solution gives 0.0667.DE =  In this example, the edges with 
positive probability of inspection define an s-t cut but that cut is not minimal.  

In this example, the direct solution procedure gives 0.0667DE = . Each of the 

interdictor’s pure strategies puts two inspectors on edges that appear in a single path, and 

thus .I DP E≠  In fact, 0.0633IP =  in this solution.  IP  and DE  do not differ by much here 

because the expected number of detections does not equal the actual interdiction 

probability here, because the 1ep  are small.  But, consider the same example but 

1 0.9,ep e E= ∀ ∈ .  Then, the solution procedure yields 0.60DE = , while 0.33IP = . 

Actually there exists a solution with 0.60I DP E= =  (for example, the mixed inspection 

strategy that chooses each pair of edges incident to s with equal probability), but the 

direct solution procedure does not find it.  Thus, we can conclude that the model is 

potentially useful and sometimes produces correct solutions, but can also give incorrect 

solutions. To circumvent this difficulty, at least part of the time, the next chapter 

describes a solution procedure based on marginal probabilities. 
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IV. MARGINAL-PROBABILITY PROCEDURE 

The solution procedure for MAXMIN3 described in this chapter first finds a set 

of “marginal probabilities” for inspector assignments that satisfies a relaxed version of 

that model. Those marginal probabilities represent how much the edges should be used in 

the interdictor’s mixed strategy, if possible. Then, column generation is used in an 

attempt to find a mixed inspector-assignment strategy that matches those marginal 

probabilities. If a valid mixed strategy is found, it must be optimal. This approach has 

two advantages over solution of the direct solution procedure: (a) if the number of 

inspectors does not exceed the cardinality of a minimum cardinality cut, by construction, 

no strategy will ever be found in which an evader, acting optimally, will encounter more 

than one inspector, so the objective function does represent interdiction probability, and 

(b) computational efficiency can be much better. Since this new solution procedure first 

finds the marginal probabilities for each edge, and then by using those marginal 

probabilities tries to find a mixed inspector-assignment strategy for the interdictor; we 

will call the procedure two-phase marginal-probability and column-generation procedure, 

or simply marginal-probability procedure.   

A. A MARGINAL-PROBABILITY MODEL FOR MAXMIN3 

The following model, MAXMIN4, expresses MAXMIN3 in terms of marginal 

edge-inspection probabilities erx . MAXMIN4 is a relaxation of MAXMIN3, but if a 

valid mixed strategy can then be found that matches the marginal probability distribution, 

that distribution and the corresponding mixed strategy must be optimal. The new model 

is: 
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MAXMIN4
 

MAXMIN4 max min

                      

er er e
e E r R

z x p y
≥≥

∈ ∈

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑ ∑y 0x 0  [dual variables]         (18)

s.t. er r
e E

x m r R
∈

∀≤ ∈∑
 

[ ]rα   
            (19)

 

       
1er

r R
x e E

∈

≤ ∀ ∈∑
       

[ ]eβ                         
                    

(20) 

           F =y b                                                           [ ]γ        (21) 

            The objective function (18) evaluates the probability of detection of the evader. 

Constraints (19) require that, on average, all inspectors be assigned to an edge; 

constraints (20) require that, on average, no more than one inspector may be assigned to 

any edge. Flow-balance constraints for the evader, (21), represent a relaxed version of the 

constraints that require the path-traversal probabilities sum to one.  

Now let us move from MAXMIN4 to complete the procedure using column 

generation. To solve this problem for the evader’s optimal strategy, we will (a) fix 

evader’s edge traversal probabilities y, (b) take dual of interdictor’s resulting linear 

program and then, (c) release y.  The following model results: 

 

MIN4 

MIN4 , ,
min r r e

r R e E
z mα β

≥ ≥ ≥
∈ ∈

= +∑ ∑y 0 α 0 β 0             (22) 

s.t. 0 ,r e er ep y e E r Rα β+ − ≥ ∀ ∈ ∈             (23) 

                         F =y b              (24)  

Letting γ denote the vector of dual variables for the flow-balance constraint (21), 

we can create a model to compute optimal marginal, inspector-assignment probabilities 

erx : 
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MAX4 

MAX4 ,
max s tz γ γ
≥

= −
x 0 γ               

(25) 

 s.t.  0 ( , )i j er er
r R

p x e i j Eγ γ
∈

− − ≤ ∀ = ∈∑
                                                                        (26)

                          
  er r
e E

x m r R
∈

≤ ∀ ∈∑                                                                                  (27) 

                         
  1  er
r R

x e E
∈

≤ ∀ ∈∑
                                                                                     (28)

                              

A new “probability-allocation model” uses column generation to find a subset of 

assignments A A′ ⊂ , and associated probabilities, to match the marginal probabilities 

computed in MAX4 if this is possible: 

MP2 ( )A   

  
min er

e E r R
z v

′≥ ≥
∈ ∈

= ∑∑MP2 v 0,x 0                                      [dual variables]           (29) 

ˆs.t. ,er era a er
a A

v h x x e E r R
′∈

′+ = ∀ ∈ ∈∑                 [ ]erπ                                (30) 

                    =1,a
a A

x
′∈

′∑                                                  [ ]θ                                         (31) 

where 1erah =  if strategy a  puts an inspector of type r on the edge ,e  and 0erah =  

otherwise; erv  is “unallocated probability,” the sum of which we are trying to minimize; 

and ˆerx  is the probability that an inspector of type r  is assigned on edge e (the marginal 

probabilities obtained from MAX4.)     

 

 We will try to generate a “column” of MP2 ( )A  that has negative reduced cost. 

Any column corresponds to a pure assignment strategy for the interdictor, and thus the 

following column-generation subproblem results: 
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SUB2 ˆˆ( , )θπ  

 SUB2
ˆˆmin er er

e E r R
z hπ θ

∈ ∈

= − −∑∑h
                                       (32) 

s.t.  1er
r R

h e E
∈

≤ ∀ ∈∑  (33) 

       er r
e E

h m r R
∈

= ∀ ∈∑  (34) 

          { }0,1 ,erh e r∈ ∀  (35) 

  

Given a solution êrh  to SUB2 ˆˆ( , )θπ  for all e E∈  and r R∈ , we define a new 

column index a′ , let ˆ ,erera e Eh h r R′ = ∀ ∈ ∈ , add a′  to A′ , and return to MP2 ( )A′ .  

This procedure continues until no new columns with negative reduced cost can be found, 

or until 0 ,erv e r= ∀ . If all 0,erv =  we have solved the original model MAXMIN1.  

Now, let us attempt to overcome the difficulty we encountered in the direct 

solution procedure in Chapter III by using the marginal-probability procedure. The 

interdictor has two inspectors of type 1 and none from any other types, and 1 0.1ep =  for 

all edges e . The marginal-probability procedure produces the results shown in Figure 5, 

for which 0.0667.D IE P= =   The marginal probabilities produced by MAX4, in the first 

phase of the solution procedure are all 0.3333. 

 

 

Figure 5.   Solution to the problem in Figure 3 produced by marginal-probability 
procedure ( 1 0.1ep e E= ∀ ∈ ). The solution gives 0.0667.D IE P= =   
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We have already verified the correctness in finding expected number of detections 

for the marginal-probability model coupled with column generation for computing an 

implementable mixed strategy for the interdictor. In addition to that, when computing 

interdiction probability, the marginal-probability procedure works well and computes IP  

correctly for the specific example with two inspectors for which the direct solution 

procedure fails to produce a correct value for IP . Although both direct solution procedure 

and marginal-probability procedure produce correct results for expected number of 

detections, the former does not provide the correct solution for interdiction probability. 

The next chapter will test the two procedures on larger networks. 
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V. COMPUTATIONAL RESULTS 

This chapter investigates the solution of three sets of test problems. 

Computational tests are carried out on the first two problem sets for both the direct and 

the marginal-probability solution procedures. Because the marginal-probability procedure 

turns out to be substantially more efficient, only that procedure is applied to the last set of 

test problems, which involves large networks. All tests are carried out on a laptop 

computer with an Intel Core 2 Duo T6400 / 2 GHz (Dual-Core) processor, 4 gigabytes of 

RAM, the Microsoft Windows Vista Home Premium operating system, and with 

programs written and compiled using General Algebraic Modeling System (GAMS 2009) 

and with the CPLEX optimizer (GAMS-CPLEX 2009). “Solution times” reported here 

include all model-generation solution and report-writing time. Only default options are 

used with CPLEX. 

A. TEST PROBLEMS 

The test problems for this thesis cover (a) an “infiltration network” used to model 

the interdiction of an evader trying to enter illegally into the United States at the Arizona-

Mexico border (see Appendix A), (b) a “Large Grid” network based on an 11×13 

rectangular grid of vertices (this network has 145 vertices and 544 directed edges), and 

(c) a collection of “Larger Grid” networks with up to 2,000 vertices and 10,260 directed 

edges. All the edges have a detection probability known by both inspector and evader. 

Only the edges, e E′∈ , i.e., those edges of the form (s,v) and (v,t) have zero probabilities. 

All the networks in those test problems are actually directed networks, but for simplicity 

are drawn as if they were undirected edges.  Each “undirected edge,” except if incident to 

s or t, actually represents a pair of anti-parallel directed edges. 

The test problems here vary in numbers of edges, number of vertices, number of 

inspectors, and edge detection probabilities. We will test both solution procedures and 

determine at what point each has “difficulties” with respect to correctly computing IP , 

and with respect to computational efficiency. Also, by changing edge detection 
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probabilities, the solution procedures are tested in terms of number of iterations and 

solution times. Table 1 summarizes the test problems that will be used in this chapter. 

Network |E| |V| Instance 
Code 

Num. of 
Inspectors (mi) 

Edge Detection 
Probabilities 

M.1.E 1 1m =  All equal 
M.1.D 1 1m =  All different 
M.3.D 1 3m =  All different 

M.2T.D 1 21, 1m m= =  All different 

M.2T.V.D 1

2

various
various

m
m

=
=

 All different 

M.3T.V.D
1

2

3

various
various
various

m
m
m

=
=
=

 All different 

M.10.E 1 10m =  All equal 

Mexico-
Arizona 

Infiltration 
109 39 

M.14.E 1 14m =  All equal 
L.1.D 1 1m =  All different 

Large Grid 544 145 
L.2T.V.D 1

2

various
various

m
m

=
=

 All different 

Larger Grid Up to 
10260 

Up to 
2000  1

2

various
various

m
m

=
=

 All different 

Table 1.   Summary of test-problem statistics. The codes are used in the text to  refer 
to particular problems. 

B. RESULTS FOR TEST PROBLEM 1 

Figure 6 illustrates the infiltration network near the Arizona-Mexico border.  The 

network is based loosely on the network used in Pulat (2005) for testing a sequential-play 

network-interdiction model. An evader is trying to traverse from the source vertex in 

Mexico (vertex s at the bottom) to sink vertex in Phoenix, Arizona (vertex t at the top.) 

Each edge emanating from the source vertex has a probability of detection equaling zero 

because this area is not under the control of the American interdictor. The detection 

probability is zero on each edge that enters the sink vertex because once the evader 

reaches those edges, it becomes impossible to detect him. (The northernmost echelon of 

vertices lies on an interstate freeway, so once the evader reaches there, he is “home 
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free.”) The interdictor has control over three inspector types. The first inspector type has 

detection probabilities 1 [0.01,0.30] \ep e E E′∈ ∀ ∈ , the second inspector type has 

detection probabilities 2 [0.01,0.15] \ep e E E′∈ ∀ ∈ , and the third inspector type has 

detection probabilities 3 [0.01,0. \25] .ep e E E′∈ ∀ ∈  Each probability is randomly 

generated, using a uniform distribution, for each edge. 

 

 
Figure 6.   Infiltration network near the Arizona-Mexico border. The dashed straight lines 

indicate the borders between Arizona and Mexico, Arizona and New Mexico, and 
Arizona and California. Green (lighter) edges have a probability of detection of 
zero and black edges have detection probability greater than zero. The actual test 
network is directed and has 39 vertices and 109 directed edges; see the Appendix 
for details.  

We will run some tests for different situations to (a) find the optimal expected 

number of detections, (b) determine if that matches interdiction probability, and (c) 

actually find the interdictor’s optimal mixed inspector-assignment strategy if a valid one 

exists. The maximum solution time for any of the problems in this section is 47 seconds. 
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Because these times are so short, we do not compare solution times until we have a larger 

network to investigate, in the following section. We will use both of the solution 

procedures, starting with the direct solution procedure, then looking at the marginal-

probability procedure, and finally comparing results. 

In problem instance M.1.E, we assume that the interdictor has only one inspector of 

type 1 and none of any other types. Also, all detection probabilities are equal ( 1 1,m =  and 

1 0.1 \ep e E E′= ∀ ∈ ). The results from both procedures give exactly the same optimal 

mixed strategy for the interdictor with 0.01IDE P= = . The union of pure strategies forms a 

minimum-cardinality cut in the network, which has a cardinality of 10.  (Actually, when 

speaking of “minimum cardinality cuts” we restrict consideration to those whose edges all 

have a probability of detection greater than 0.)  

In problem instance M.1.D, we assume that the interdictor has only one inspector of a 

first inspector type and none from any other type. This time the detection probabilities are 

different, however: 1 [0.01,0.30] \ep e E E′∈ ∀ ∈ .  

The direct solution procedure produces the solution we expect. Table 2 shows the 

optimal mixed inspector assignment strategy.  

a  ax′  Edge Assignment 
for Inspector 

1 0.1957 (2,11)
2 0.0799 (6,35)
3 0.0584 (9,20)
4 0.0955 (10,34)
5 0.0851 (10,37)
6 0.0778 (14,13)
7 0.0416 (14,31)
8 0.0638 (16,20)
9 0.0425 (17,24)
10 0.1039 (18,19)
11 0.0408 (18,25)
12 0.0515 (21,31)
13 0.0635 (26,27)

Table 2.   Test M.1.D: Optimal mixed inspector-assignment strategy produced by the 
direct solution procedure when one inspector of type 1 is used and none of any 
other types 1( [0.01,0. \30] )ep e E E′∈ ∀ ∈ .  The solution gives 0.0117IDE P= = . 
Pure assignment strategies consist of assigning the interdictor to a single edge. 
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Figure 7 displays the optimal mixed strategy for the interdictor as produced by the 

direct solution procedure. In this case, the pure strategies involve the assignment of the 

inspector to one of 13 edges. The edges that have an inspector assigned to them form an 

s-t cut (although not a minimum-cardinality cut as in M.1.E).  

 
Figure 7.   Test M.1.D: Pure inspector-to-edge assignment strategies found by the direct 

solution procedure, indicated by thick blue lines: a pure strategy consists of 
selecting a single edge in this test problem.  The solution gives 0.0117IDE P= = . 

The marginal-probability procedure produces identical results. 

There might be an administrative advantage to assigning inspectors to the fewest 

edges possible. Therefore, we would like to determine IP  when the inspector is restricted 

to the minimum cardinality cut, and find out how much we lose in interdiction probability 

if we do that. Since the minimum cardinality cut for this network has 10 edges, and the 

strategies for this particular problem instance form a cut with 13 edges, we try to save our  
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effort to assign inspectors on fewer edges if the restricted solution is the same as the 

original one. Table 3 displays the optimal mixed strategy when the inspector is restricted 

to the edges in the minimum-cardinality cut. 

a  ax′  Edge Assignment 
for Inspector 

1 0.3582 (1,10)
2 0.1075 (2,11)
3 0.0448 (4,26)
4 0.0303 (5,8)
5 0.0626 (6,8)
6 0.1535 (6,17)
7 0.0504 (6,18)
8 0.0439 (6,35)
9 0.1057 (7,14)
10 0.0433 (15,21)

Table 3.   Test M.1.D: Optimal mixed strategy produced by the marginal-probability 
procedure when one inspector of type 1 is used and no others and the solution is 
restricted to the minimum cardinality cut ( 1 [0.01,0.30] \ep e E E′∈ ∀ ∈ ).  The 
solution gives 0.0064.D IE P= =  

Figure 8 shows the unique minimum cardinality cut in the infiltration network.  

The overall interdiction probability becomes 0.0064 when the solution for the problem 

instance M.1.D is restricted on the minimum cardinality cut. Each thick blue line 

represents a pure inspector assignment for the interdictor. 
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Figure 8.   Test M.1.D: Union of pure inspector assignment strategies in the infiltration 
network when the solution is restricted to the minimum cardinality cut indicated 
by thick blue lines ( 1 [0.01,0.30] \ep e E E′∈ ∀ ∈ ). The solution gives 

0.0064IDE P= = . 

If we do not restrict inspectors to the minimum-cardinality cut, we achieve 

0.0117IP = , which is better than the value of 0.0064 for the restricted solution. So, it is 

up to the interdictor to decide whether the administrative advantage of having the 

inspector work on fewer edges outweighs the loss in interdiction probability.    

In problem instance M.3.D, we assume that we have three inspectors of type 1, 

none of any other types, and 1 [0.01,0.30] \ep e E E′∈ ∀ ∈ . Table 4 shows the pure 

inspection strategies (those that have positive probability) produced by direct solution 

procedure: 
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Inspector Assignments (Pure Strategies)  

1a  2a  
3a 4a 5a 6a 7a 8a 9a 10a 11a  

12a  
13a

(2,11)    1   1 1 1   1 1 
(6,35)   1      1    1 
(9,20) 1        1     

(10,34) 1     1     1   
(10,37)   1 1   1       
(14,13)     1  1       
(14,31)   1       1  1  
(16,20) 1 1         1   
(17,24)  1    1        
(18,19)  1   1 1     1   
(18,25)    1      1   1 
(21,31)     1   1    1  

Edges 

(26,27)        1  1    

Table 4.   Test M.3.D: Inspector assignment strategies ( ia ) for the interdictor 
produced by the direct solution procedure.  There are three interdictors of type 1, 
none of any other types, and 1 [0.01,0.30] \ep e E E′∈ ∀ ∈ . For instance, 1a  puts 
one inspector on edge (9,20), a second on edge (10,34), and a third on edge 
(16,20).  

 When we look at the pure inspector assignment strategies produced by the direct 

solution procedure, we see that the first edge is used in six different strategies. The union 

of the edges in the interdictor’s pure strategies forms an s-t cut with 13 edges. When the 

very same problem is solved with the marginal-probability procedure, we obtain the same 

expected number of detection and interdiction probability, which is 0.0352. The marginal 

probabilities that both models produce are exactly the same. But the strategies differ 

because there are multiple optimal solutions to the problem. So, when we solve the same 

problem with the marginal-probability procedure, we find the 13 pure strategies as shown 

in Table 5. 
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Inspector Assignments (Pure Strategies)  

1a  2a  
3a 4a 5a 6a 7a 8a 9a 10a 11a  

12a  
13a

(2,11) 1   1 1  1     1  
(6,35)     1 1        
(9,20)       1   1   1 

(10,34) 1     1   1     
(10,37)    1       1   
(14,13)   1 1         1 
(14,31)   1    1       
(16,20) 1       1      
(17,24)          1 1 1  
(18,19)  1    1  1    1  
(18,25)  1        1    
(21,31)  1       1  1  1 

Edges 

(26,27)   1  1   1 1     

Table 5.   Test M.3.D: Inspector assignment strategies ( ia ) for the interdictor 
produced by the marginal-probability procedure ( 1 [0.01,0.30] \ep e E E′∈ ∀ ∈ ). 

 For this problem 0.0352D IE P= = . Let us again look to see if the overall 

interdiction probability will change if we decide to restrict our solution to the minimum 

cardinality cut. Table 6 shows the strategies produced on the minimum cardinality cut: 

Inspector Assignments (Pure Strategies)  

1a  2a 3a 4a 5a 6a 7a 8a 9a  
(1,10) 1 1 1 1 1 1 1 1 1 
(2,11) 1    1 1    
(4,26)      1    
(5,8)    1      
(6,8)    1    1 1 

(6,17)  1   1  1   
(6,18) 1      1   
(6,35)   1     1  
(7,14)  1        

Edges 

(15,21)   1      1 

Table 6.   Test M.3.D: Inspector assignment strategies ( ia ) for the interdictor 
produced by the marginal-probability procedure on the minimum cardinality cut.  
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 When we restrict the solution to the minimum cardinality cut, the overall 

interdiction probability drops from 0.0352 to 0.0180. Table 6 shows the corresponding 

strategies from the marginal-probability procedure. 

In the next test, problem instance M.2T.D, we have one inspector of each of two 

types. We will again solve the problem with each of the two procedures, and then 

investigate what happens if we restrict the solutions to the minimum cardinality cut. 

Table 7 shows the probability of each pure assignment strategy for the interdictor: 

Marginal-Probability Procedure Direct Solution Procedure 
a  Edge 

Assignment 
for r=1 

Edge 
Assignment 

for r=2 

ax′  a  Edge 
Assignment 

for r=1 

Edge 
Assignment 

for r=2 

ax′  

1 (16,20) (2,11) 0.0746 1 (9,20) (6,18) 0.0977
2 (17,18) (6,18) 0.0618 2 (16,20) (1,10) 0.1626
3 (17,24) (6,35) 0.1084 3 (17,18) (6,35) 0.0618
4 (18,19) (7,14) 0.1619 4 (18,19) (2,11) 0.1566
5 (18,25) (1,10) 0.0615 5 (21,31) (1,10) 0.0607
6 (9,20) (6,35) 0.0788 6 (17,24) (6,35) 0.1084
7 (26,27) (1,10) 0.1617 7 (26,27) (7,14) 0.1617
8 (18,25) (2,11) 0.0020 8 (18,25) (7,14) 0.0635
9 (16,20) (6,18) 0.0359 9 (21,31) (6,35) 0.0691
10 (9,20) (7,14) 0.0701 10 (9,20) (2,11) 0.0511
11 (21,31) (2,11) 0.1312 11 (21,31) (7,14) 0.0014
12 (16,20) (6,35) 0.0522 12 (18,19) (7,14) 0.0052

Table 7.   Test M.2T.D: Mixed inspector assignment strategy for the interdictor 
produced by the marginal-probability and direct solution procedures when one 
inspector of each of two types is used ( 1 [0.01,0.30],ep ∈  

2 [0.01,0.15] \ep e E E′∈ ∀ ∈ ).  The solution gives 0.0299IDE P= = . 

 Both procedures produce the same optimal objective value, 0.0299D IE P= = . 

The interdictor’s pure inspector assignments put the inspectors on edges that form an s-t 

cut that has 12 edges for the marginal-probability procedure and 13 edges for the direct 

solution procedure. As was the case in the previous example, the strategies differ and that 

is again because there are multiple optimal solutions to the problem.  

 Let us now look at how much we lose if we restrict our solution to the minimum 

cardinality cut.  
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a  Edge Assignment 
for r=1 

Edge Assignment 
for r=2 

ax′  

1 (4,26) (1,10) 0.0052 
2 (6,8) (6,18) 0.1483 
3 (6,17) (6,35) 0.1756 
4 (6,17) (1,10) 0.1599 
5 (6,35) (7,14) 0.0012 
6 (6,17) (2,11) 0.1536 
7 (5,8) (7,14) 0.1038 
8 (4,26) (15,21) 0.1484 
9 (6,8) (7,14) 0.0664 
10 (6,17) (6,18) 0.0376 

Table 8.   Test M.2T.D: Optimal mixed assignment strategy for the interdictor when 
one inspector of each of the two types is used ( 1 2[0.01,0.30], [0.01,0.15]e ep p∈ ∈  

\e E E′∀ ∈ ).  This solution gives 0.0221IDE P= = . 

 The overall interdiction probability for the original problem is 0.0299. When we 

restrict the solution to putting an inspector on edges of the minimum-cardinality cut, the 

interdiction probability drops to 0.0221; the number of pure strategies decreases from 12 

to 10, however Again, the interdictor’s would not determine if the loss of detection 

probability is worth the advantage of having fewer edges to deal with. 

 The problem instances, so far, have shown that both of the solution procedures 

produce same expected number of detections and interdiction probability for the 

interdictor in the infiltration network. Also the problems indicate that the number of 

detection decreases when the solution is restricted on the minimum cardinality cut. In the 

next test, on problem instance M.2T.V.D, we extend M.2T.D to different numbers of 

inspectors. Table 9 summarizes the results for both procedures. 
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1m  2m DIP E=  
1 1 0.0299
1 2 0.0424
2 1 0.0461
1 3 0.0537
3 1 0.0611
2 3 0.0728
3 2 0.0761
3 3 0.0898
5 5 0.1449

Table 9.   Test M.2T.V.D: Optimal interdiction probabilities for different number of 
inspectors of each of two inspector types ( 1 2[0.01,0.30], [0.01,0.15]e ep p∈ ∈  

\e E E′∀ ∈ ). 

Next, in problem instance M.3T.V.D, we extend M.2T.V.D to different numbers 

of inspectors and types. Table 10 summarizes the problem variants and results.  Both 

solution methods produced the same results. 

m1 m2 m3 DIP E=
1 1 1 0.0447
1 1 2 0.0576
1 2 3 0.0831
1 3 3 0.0958
2 3 3 0.1161
3 2 4 0.1322
3 3 3 0.1331
3 3 4 0.1420
8 1 1 0.1438
4 3 3 0.1466
5 2 3 0.1481

Table 10.   Test M.3T.V.D: Various examples with different number of inspectors of 
each of three inspector type and expected number of detections associated with it. 
One can see that each interdiction probability matches the expected number of 
detections. ( 1 2[0.01,0.30], [0.01,0.15]e ep p∈ ∈  3 [0.01,0.25] \ep e E E′∈ ∀ ∈ ). 

 For all tests conducted thus far, both solution procedures produce solutions with 

DIP E= . The pure inspector assignment strategies provided by the solution procedures 

put the inspectors on edges that form an s-t cut in the network and also no more than one 

inspector has been assigned to more than one edge on a path that the evader might use. 
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 In the next test, M.10.E, we set 1 0.1 \ep e E E′= ∀ ∈  and use 10 inspectors of type 

1 (and none from any other types). This number of inspectors equals the number of edges 

in the minimum cardinality cut, and we expect the union of pure strategies to  identify 

just that cut. We run the problem with the direct solution procedure and get 0.1DE = . 

The direct solution procedure produces six different pure strategies that are not contained 

entirely with the minimum cardinality cut. Additionally, some pure strategies place 

inspectors such that the evader has more than one detection opportunity on a given path.  

Thus, interdiction probability and expected number of detections will not be equal in this 

solution. In contrast, the marginal-probability procedure finds a solution with I DP E= . 

It is also important to note that the solution time for the direct solution procedure 

is 44.7 seconds whereas the solution time for the marginal-probability procedure is only 

0.5 seconds.  

 As a final example, in problem instance M.14.E, when both of the procedures are 

run with 14 inspectors of type 1 with 1 0.1 \ep e E E′= ∀ ∈ , we obtain 0.1267DE = . Both 

solution procedures fail to give correct answers since the number of inspectors exceeds 

the cardinality of the minimum cardinality cut. 
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C. RESULTS FOR TEST PROBLEM 2 

 
Figure 9.   Large Grid network. The actual edges are directed, and the directed network 

has 145 vertices, including source and sink, and 544 edges. “s” is the source 
vertex or starting point and “t” is the sink vertex or destination point.  

The directed version of the grid network in Figure 9 has 145 vertices and 544 

edges. It is a large network and we have two inspector types with various values for rm . 

We compute optimal interdiction probabilities for different numbers of inspectors of each 

type and present those values in Table 11; corresponding solution times for the marginal-

probability solution procedure appear in Table 12, and for the direct solution procedure in 

Table 13. The interdiction probability increases for each additional inspector that we add.  

Solution times for the marginal-probability procedure are modest when compared to the 

solution times when the direct solution procedure is used. For example when six 

inspectors of each of two types are used, the marginal-probability procedure solves the 

network interdiction problem (in Figure 9) in about 15 seconds, whereas the direct 

solution procedure solves the same problem in about 26 minutes.  
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 2r =  

 rm  1 2 3 4 5 6 

1 0.0440 0.0664 0.0871 0.1073 0.1275 0.1476 
2 0.0636 0.0880 0.1110 0.1328 0.1541 0.1743 
3 0.0812 0.1091 0.1321 0.1550 0.1774 0.1982 
4 0.0985 0.1272 0.1531 0.1761 0.1979 0.2192 
5 0.1151 0.1449 0.1729 0.1961 0.2177 0.2392 

1r =  

6 0.1317 0.1624 0.1906 0.2160 0.2376 0.2590 

Table 11.   Test L.2T.V.D: Optimal interdiction probabilities for different number of 
inspectors of each of two inspector types. 

 

 2r =  

 rm  1 2 3 4 5 6 

1 6.2 7.5 7.8 8.8 7.7 12.5
2 6.3 5.4 6.3 7.1 7.3 7.6
3 5.8 5.9 5.9 6.4 9.7 10.2
4 5.7 6.2 7.6 8.7 9.7 9.9
5 5.8 7.1 7.8 8.8 9.7 10.2

1r =  

6 6.4 9.6 9.7 10.8 12.4 14.9

Table 12.   Test L.2T.V.D: Solution time (seconds) for the marginal-probability 
procedure for varying numbers of inspectors of two types. 

 
 2r =  

 rm  1 2 3 4 5 6 

1 423.4 469.6 555.9 557.6 618.1 703.7 
2 475.7 561.4 645.3 694.2 712.8 735.0 
3 564.5 662.3 745.6 779.0 872.7 964.6 
4 644.5 718.4 801.1 1016.4 1048.5 1255.8 
5 709.7 722.2 843.1 1052.6 1160.4 1424.6 

1r =  

6 684.5 899.9 1079.9 1200.3 1451.6 1572.3 

Table 13.   Test L.2T.V.D: Solution time (seconds) for the direct solution procdure 
for varying number of inspectors of two types. 
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D. RESULTS FOR “LARGER GRID” NETWORKS 

From the computations performed so far, we find that the direct solution 

procedure is substantially slower than the marginal-probability solution procedure, and 

does not always yield a solution in which expected number of detections equals 

interdiction probability. So, we will not investigate further computations using the direct 

solution procedure. We now explore the computational efficiency of the marginal-

probability procedure on larger networks, and will specify a number of inspectors of two 

types that is not so large that the solution is in danger of being invalid. That is, we will 

not specify a total number of inspectors that exceeds the size of a minimum cardinality 

cut. We investigate grid networks that resemble the large grid network of the previous 

section. 

Now, let us start by expanding our grid network in Figure 9 and test the 

computational efficiency of marginal-probability procedure in various larger grid 

networks. In these tests we assume that 1 [0.10,0.40], \ep e E E′∈ ∀ ∈ , and 

2 [0.30,0.60], \ep e E E′∈ ∀ ∈ . 

1m  2m  IP  Num. of 
Iterations 

Soln. Time 
(sec.) 

1 1 0.0415 1021 54 
1 2 0.0667 1019 50 
2 2 0.0830 1061 48 
3 4 0.1502 1075 54 
4 4 0.1659 1029 50 
3 5 0.1752 1034 54 
5 5 0.2112 1051 57 
6 6 0.2489 1072 51 
7 6 0.2645 1035 58 
8 8 0.3318 1097 75 
8 9 0.3574 1070 81 
10 10 0.4143 1097 79 

Table 14.   Computational efficiency of the marginal-probability procedure as a 
function of the number of inspectors in a Large Grid network with 402 vertices 
(with a rectangular grid (height × length) = (20 × 20)). 
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Table 14 shows that the number of iterations and solution time increase only 

moderately as the number of inspectors increases.  

 
1ep  2ep  IP  Num. of 

Iterations 
Soln. Time 

(sec.) 
[0.01,0.02] [0.01,0.02] 0.0086 1377 89 
[0.01,0.02] [0.90,0.95] 0.2376 1292 83 
[0.15,0.20] [0.05,0.15] 0.0801 1195 83 
[0.15,0.20] [0.35,0.45] 0.1689 1253 69 
[0.45,0.50] [0.90,0.95] 0.3564 857 64 
[0.45,0.50] [0.45,0.50] 0.2437 815 51 
[0.90,0.95] [0.90,0.95] 0.4688 816 51 

Table 15.   Computational efficiency of the marginal-probability procedure as a 
function of detection probabilities with 1 2 5m m= =  on the same 20×20 grid 
network as in Table 14.   

In Table 15, we change the detection probabilities for one case from Table 14 and 

that is: the interdictor has five inspectors of each of the two types. For instance when 

1 [0.01,0.02],ep ∈ 2 [0.90,0.95],ep ∈ \e E E′∀ ∈  the interdiction probability 

becomes, 0.2376I DP E= = , and the number of iterations to obtain that solution becomes 

1292. On the other hand when we have 1 [0.45,0.50],ep ∈  2 [0.90,0.95],ep ∈ \e E E′∀ ∈ , 

we find 0.3564I DP E= = , and the number of iterations to reach that solution is 857. So, 

it can be seen that when we decrease detection probability for the edges, it not only 

affects the interdiction probability but also increases notably the number of iterations. 
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Network Size 
(Height × Width) 

L/M/H 1m  2m  IP  Num. of 
Iterations 

Soln. Time 
(sec.) 

15 × 20 Low 1 1 0.0705 740 47
15 × 20 Med. 3 3 0.2114 830 46
15 × 20 High 6 6 0.4229 950 54
25 × 30 Low 2 2 0.0703 2414 131

        25 × 30 Med. 6 6 0.2111 2771 143
25 × 30 High 10 10 0.3516 2997 181
30 × 30 Low 3 3 0.1055 2748 156
30 × 30 Med. 9 9 0.3164 2824 170
30 × 30 High 12 12 0.4221 3241 187
30 × 40 Low 7 7 0.2461 3672 1341
40 × 50 Med. 9 12 0.2502 6665 2355

Table 16.   Computational efficiency of the marginal-probability procedure as grid-
network size increases.  The number of inspectors is “low,” “medium” and “high” 
for each network size (but the total number for “high” is still less than a 
minimum-cardinality cut). 

 In Table 16, we have 1 2[0.80,0.90], [0.10,0.20], \e ep p e E E′∈ ∈ ∀ ∈ . When the 

network size is increased, the solution time and number of iterations changes depending 

on the number of inspectors. Specifically as the network size grows large, it becomes 

harder for the marginal-probability procedure to solve the problem, and solution time and 

number of iterations grow at a super linear rate. 

E. CONCLUSIONS ON COMPUTATIONAL TESTS 

Computational testing indicates that 

1. The direct solution procedure finds a mixed strategy for the interdictor in a 

single phase, and always computes the expected number of detections 

correctly. But the expected number of detections does not always reflect 

the interdiction probability in the network. The pure strategies produced 

by the direct solution procedure sometimes place the inspectors on more 

than one edge on a path that the evader might use, even when the number 

of inspectors used is less than cardinality of the minimum cardinality cut. 

That results in a difference between the and IDE P . Although this 

difference may not be large when the detection probabilities are small, it 
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may be large if the detection probabilities are large. We conclude that the 

direct solution procedure sometimes yields correct solutions, but also can 

give incorrect solutions, and is much slower than the marginal-probability 

procedure. Thus, the marginal-probability procedure is preferred. 

2. For the marginal-probability procedure, we find that an optimal solution is 

always produced unless the number of inspectors exceeds the minimum 

cardinality cut. It is notably faster than the direct solution procedure, but 

solution times grow super linearly as the network size gets larger. 

a. The marginal-probability procedure is a two-phase procedure 

which first needs a set of marginal probabilities for interdictor’s 

edge inspection and then uses those probabilities to find a mixed 

inspector-assignment strategy for the interdictor.  

b. The marginal-probability procedure computes the expected number 

of detections like the direct solution procedure does. But, if the 

number of inspectors does not exceed the cardinality of a minimum 

cardinality cut, the procedure always gives an answer in which 

expected number of detections equals interdiction probability.. 

c. The various examples in Figure 9 on the large grid network 

indicated that the marginal-probability procedure is better than the 

direct solution procedure in terms of solution time. But the solution 

time and number of iterations in other larger networks such as a 

network with 2,000 vertices and 5,000 edges, increase and become 

large.  
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VI. CONCLUSIONS 

This thesis has developed two different solution procedures for a model in which 

an “interdictor,” who controls multiple inspectors of different types, seeks to detect an 

“evader” that is traveling through a directed network from a known source vertex s, to a 

known sink vertex t. The model is formulated and solved as a two-person, zero-sum, 

simultaneous-play, network-interdiction game.  The objective for the interdictor is to find 

a probabilistic (mixed) inspector-to-edge assignment strategy that maximizes 

“interdiction probability,” i.e., the probability that the evader is detected while trying to 

traverse the network. The evader seeks to minimize interdiction probability through a 

probabilistic path-selection strategy.  

Several simplifying assumptions are made: (a) an inspector assigned to an edge 

( , )i j  cannot detect an evader that is travelling on edge ( , )j i , (b) only one inspector can 

be assigned to each edge, (c) there is one origin and one destination for the evader and 

they are known by the interdictor, and (d) the detection probability associated with each 

edge is known by both of the players.  The basic model also uses a surrogate objective 

function that evaluates expected number of detections.  One goal of the thesis is to 

determine when a solution that maximizes that objective also maximizes interdiction 

probability.  

Two different solution procedures are presented to find an optimal mixed 

inspector-assignment strategy.  (The evader’s optimal strategy is not particularly 

important to us.) The first “direct solution procedure,” finds an optimal solution in a 

single phase using a column-generation algorithm. The second “marginal-probability 

(solution) procedure” has two phases.  The first-phase computes a marginal probability 

distribution for inspector-to-edge assignments in a relaxed linear-programming model; 

that probability distribution may or may not be valid. In a second column-generation 

phase, a complete, mixed strategy (i.e., joint distribution) is found with a marginal 

distribution that matches that found in the first phase, if possible.  The linear program of 

the first phase is straightforward, and the column-generation problem in the second phase 

is simpler than the column-generation problem of the direct solution procedure.   
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The objective function of our network-interdiction model measures expected 

number of detections for simplicity.  However, we would like that objective to measure 

the probability of detecting the evader, i.e., interdiction probability. Computational 

results indicate that, under reasonable restrictions on the data—the total number of 

inspectors should not exceed the cardinality of a minimum-cardinality cut—both solution 

procedures will solve correctly for expected number of detections.  Furthermore, given 

those same restrictions, the expected number of detections can equal interdiction 

probability.  However, even given those restrictions, the marginal probability procedure 

may be successful in finding a solution that optimizes both objectives when the direct 

procedure does not. The opposite situation never occurs. 

A variety of computational tests indicate that the marginal-probability procedure 

is much faster than the direct procedure. For instance, for a grid network with 145 

vertices, 544 edges, and 12 inspectors split evenly between two types, the marginal-

probability procedure yields a solution in 15 seconds whereas direct solution procedure 

requires almost a half hour to solve the problem.  Given that the marginal-probability 

solution procedure more often finds a solution that computes interdiction probability 

properly, and it is much faster, it is clearly preferred over the direct solution procedure. 

A. RECOMMENDATIONS FOR FUTURE RESEARCH 

This thesis has developed several models and algorithms without formal proofs, 

and without a discussion of theoretical computational complexity.  These omissions 

should be corrected. 

This thesis concerns itself only with network-interdiction problems involving a 

single evader. Further research may wish to address the problem of multiple evaders 

operating in a coordinated fashion; for example, see Hespanha et al. (1999), and Vidal et 

al. (2002). 

The interdiction assets, i.e., different types of inspectors, are assumed in this 

thesis to have the same detection probability on a given edge at all times and under all 

weather conditions. That may not be true in reality, and the topic of variable detection 

probabilities warrants further study. 
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Extensions of the model in this thesis should also be considered (a) to account for 

uncertainty about the evader’s origin and destination (see Pan et al. 2003), (b) to model 

an inspector who, when assigned to a edge ( , )i j , can detect an evader traveling on ( , )j i  

as well as on ( , )i j , and (c) to handle situations in which the number of inspectors is large 

compared to the cardinality of a minimum-cardinality cut in the network. Note that issue 

(b) relates to modeling an undirected network. 
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APPENDIX. INPUT DATA FOR INFILTRATION NETWORK 

This table specifies data for the “infiltration network” tested in Chapter V. 

from to r=1 r=2 r=3   from to r=1 r=2 r=3  from to r=1 r=2 r=3 
s 1 0.000 0.000 0.000  12 11 0.192 0.104 0.176 23 22 0.209 0.102 0.201
s 2 0.000 0.000 0.000  12 13 0.254 0.096 0.176 23 32 0.256 0.027 0.256
s 3 0.000 0.000 0.000  12 22 0.082 0.065 0.098 23 33 0.231 0.022 0.265
s 4 0.000 0.000 0.000  13 11 0.214 0.137 0.123 24 17 0.260 0.044 0.159
s 5 0.000 0.000 0.000  13 12 0.254 0.096 0.176 24 t 0.000 0.000 0.000
s 6 0.000 0.000 0.000  13 14 0.151 0.035 0.131 25 18 0.288 0.053 0.178
1 10 0.018 0.134 0.122  13 22 0.243 0.114 0.199 25 t 0.000 0.000 0.000
2 11 0.060 0.144 0.111  14 7 0.061 0.129 0.122 26 4 0.144 0.064 0.144
3 7 0.240 0.025 0.145  14 13 0.151 0.035 0.131 26 9 0.106 0.067 0.167
4 7 0.290 0.150 0.190  14 31 0.282 0.132 0.199 26 21 0.162 0.058 0.111
4 15 0.219 0.113 0.156  15 4 0.219 0.113 0.156 26 27 0.185 0.119 0.119
4 26 0.144 0.064 0.144  15 7 0.189 0.087 0.088 27 26 0.185 0.119 0.119
5 8 0.213 0.109 0.109  15 21 0.149 0.149 0.148 27 t 0.000 0.000 0.000
6 8 0.103 0.075 0.089  16 8 0.123 0.112 0.111 28 19 0.147 0.061 0.132
6 17 0.042 0.028 0.049  16 9 0.017 0.053 0.098 28 t 0.000 0.000 0.000
6 18 0.128 0.119 0.111  16 20 0.184 0.106 0.185 30 19 0.146 0.061 0.128
6 35 0.147 0.125 0.127  17 6 0.042 0.028 0.049 30 t 0.000 0.000 0.000
7 3 0.240 0.025 0.145  17 18 0.188 0.097 0.098 31 14 0.282 0.132 0.199
7 4 0.290 0.150 0.190  17 24 0.276 0.044 0.159 31 21 0.228 0.042 0.231
7 14 0.061 0.129 0.122  18 6 0.128 0.119 0.111 31 t 0.000 0.000 0.000
7 15 0.189 0.087 0.088  18 17 0.188 0.097 0.098 32 23 0.256 0.027 0.256
8 5 0.213 0.109 0.109  18 19 0.113 0.043 0.034 32 t 0.000 0.000 0.000
8 6 0.103 0.075 0.089  18 25 0.288 0.053 0.178 33 23 0.231 0.022 0.265
8 9 0.253 0.133 0.111  19 18 0.113 0.043 0.034 33 t 0.000 0.000 0.000
8 16 0.123 0.112 0.111  19 28 0.147 0.061 0.132 34 10 0.123 0.098 0.132
9 8 0.253 0.133 0.111  19 30 0.146 0.061 0.128 34 11 0.007 0.042 0.017
9 16 0.017 0.053 0.098  19 35 0.040 0.000 0.043 34 37 0.244 0.150 0.223
9 20 0.201 0.098 0.053  20 9 0.201 0.098 0.053 34 t 0.000 0.000 0.000
9 26 0.106 0.067 0.167  20 16 0.184 0.106 0.185 35 6 0.147 0.125 0.127

10 1 0.018 0.134 0.122  20 t 0.000 0.000 0.000 35 19 0.040 0.000 0.043
10 34 0.123 0.098 0.132  21 15 0.149 0.149 0.148 35 30 0.204 0.050 0.109
10 37 0.138 0.143 0.151  21 16 0.263 0.041 0.246 35 36 0.061 0.045 0.054
11 2 0.060 0.144 0.111  21 31 0.228 0.042 0.231 36 35 0.061 0.045 0.054
11 12 0.192 0.104 0.176  22 12 0.082 0.065 0.098 36 t 0.000 0.000 0.000
11 13 0.214 0.137 0.123  22 13 0.243 0.114 0.199 37 10 0.138 0.143 0.151
11 34 0.007 0.042 0.017  22 23 0.209 0.102 0.201 37 34 0.244 0.150 0.223

           37 t 0.000 0.000 0.000
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