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Texture Mixing via Universal Simulation∗

Gustavo Brown,† Guillermo Sapiro,‡ and Gadiel Seroussi§

Abstract

A framework for studying texture in general, and for texture
mixing in particular, is presented in this paper. The work
follows concepts from universal type classes and universal
simulation. Based on the well-known Lempel and Ziv (LZ)
universal compression scheme, the universal type class of a
one dimensional sequence is defined as the set of possible
sequences of the same length which produce the same dic-
tionary (or parsing tree) with the classical LZ incremental
parsing algorithm. Universal simulation is realized by sam-
pling uniformly from the universal type class, which can be
efficiently implemented. Starting with a source texture im-
age, we use universal simulation to synthesize new textures
that have, asymptotically, the same statistics of any order as
the source texture, yet have as much uncertainty as possible,
in the sense that they are sampled from the broadest pool
of possible sequences that comply with the statistical con-
straint. When considering two or more textures, a parsing
tree is constructed for each one, and samples from the trees
are randomly interleaved according to pre-defined propor-
tions, thus obtaining a mixed texture. As with single texture
synthesis, thek-th order statistics of this mixture, for any
k, asymptotically approach the weighted mixture of thek-th
order statistics of each individual texture used in the mixing.
We present the underlying principles of universal types, uni-
versal simulation, and their extensions and application to
mixing two or more textures with pre-defined proportions.

1 Introduction and Motivation

Understanding texture is one of the most fundamental prob-
lems in image sciences. Questions that have been asked,
and still remain largely unanswered, include what is tex-
ture [10], how to characterize texture [15, 16], what are the
different texture components [4], how to mix textures and
create intermediate ones [1], and how to synthesize texture
[3] (the latter probably being the one that has been most
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successfully addressed so far). For significant advances in
these directions, see the above mentioned works and refer-
ences therein.

In this work, we consider a new, information-theoretic,
direction, which proves useful in mixing textures so that the
statistics of the resulting texture provably satisfies intuitive
notions of “mixture,” within a framework that can also fur-
ther our understanding of basic properties of texture. Our
proposed study is based on the concept of universal type
classes [13] and universal simulation [9, 13]. The universal
type class, [13], of a one-dimensional sequence is defined
as the set of sequences of the same length that produce the
same tree (dictionary) under the Lempel-Ziv (LZ) incre-
mental parsing defined in the well-known LZ78 universal
compression scheme [8]. More formally, letxn be an input
sequence ofn symbols from an alphabetΛ of cardinality
α. The LZ incremental parsing rule[8] writesxn as a con-
catenation,xn = p0p1p2...pc−1tx, of substrings (phrases),
with p0 being the null string (λ), pi, 1 ≤ i < c, the shortest
substring ofxn starting one symbol after the end ofpi−1

and such thatpi 6= pj for all j < i, andtx (the tail of xn) a
(possibly empty) suffix for which the parsing rule was trun-
cated due to the end ofxn. By construction, each non-null
phrase is an extension of a previous phrase by one symbol,
and the tailtx must be equal to one of the phrasespi.

Let Txn := {p0, p1, ..., pc−1} denote thedictionary, or
set of phrases, in the incremental parsing ofxn. The nota-
tion hints to the fact thatTxn is best represented by a rooted
α-ary tree, where branches are labelled with alphabet sym-
bols, and each node represents a phrase. The root corre-
sponds top0 = λ, and a node (phrase)pi is connected to its
extensionpi = pja via a branch labelled with the symbol
a ∈ Λ. Thus, each phrase is read off the branches of the path
from the root to the corresponding node. Theuniversal type
classof xn is defined asU(xn) := {yn ∈ Λn : Txn = Tyn}
[13]. It is shown in [13] that ifyn ∈ U(xn), then for every
integerk ≥ 1, thek-th order empirical distributions ofxn

andyn converge in the variational sense asn →∞. On the
other hand, any set,S, of sequences whose elements sat-
isfy this property cannot be much larger thanU(xn), in the
sense thatlog |S| ≤ log |U(xn)| + ε for any ε > 0 and all
but a vanishing fraction of sequencesxn (see [13]). Thus,
sampling uniformly at random fromU(xn) results in a se-
quence that has (asymptotically) the same statistics asxn,
and maximum possible entropy (uncertainty) given the sta-
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tistical constraint.

We use the above properties of universal type classes
to simulate and mix textures. Starting from a source tex-
ture image, we represent its universal type class, and sam-
ple uniformly from it to obtain textures that approach the
same statistics as the source texture, yet they are sampled
from the broadest pool of possible sequences that comply
with the statistical constraint. An efficient generic proce-
dure for sampling from a universal type class is given in
[13]. A modified procedure, adapted for textures, is intro-
duced in this paper. This procedure is the basis of a further
modification that leads to texture mixture by combining the
parsing trees corresponding to the different source textures
(Appendix A). By extension of the theory in [13], it can be
shown that thek-th order statistics of this mixture, for allk,
approaches the weighted mixture of thek-th order statistics
of each individual texture used in the mix.

Beyond its importance in applications such as multidi-
mensional data visualization [7], studying how to mix tex-
tures can help us obtain a better understanding of texture in
general. Mixing textures has been much less studied than
pure texture synthesis. The reasons for this are twofold; on
one hand it is a more difficult problem, and on the other
hand it is not universally defined. In other words, what do
we exactly mean by mixing textures? Intuitively, we want a
texture “in between” given samples, though this needs to be
formally defined. One of the contributions of this work is
that thanks to the results on universal types and simulation,
we can formally define the process of mixing textures, as
one that, as mentioned above, leads to a new signal which
(asymptotically) is statistically identical to the mixture of
the individual statistics, for statistics of arbitrary order, and
with maximal uncertainty.

We briefly discuss previous art in mixing textures. Leav-
ing aside works on texture blending [2] and mixing of pre-
separated texture characteristics [6], probably the most fun-
damental work is [1]. While their approach is based on
mixing by computing the mutual source (the distribution
that minimizes the Kullbak-Leibler divergence to the given
sources), ours is based on the concepts of universal types
and universal simulation and leads as mentioned above to a
texture with the prescribed mixture of statistics of the orig-
inal textures. Although both techniques are based on trees,
the one in [1] is obtained from a wavelets decomposition,
while ours is derived from the Lempel-Ziv universal pars-
ing (which, see below, can be combined with wavelet de-
compositions). Our approach does not suffer from some
of the problems reported in [1], where special procedures
need to be designed to avoid getting locked into one texture.
Also, the flexibility of our framework allows for mixing the
textures at arbitrary user-provided proportions as well as to
mix more than two samples; these features are not reported
in [1].

It is interesting to observe that although the LZ com-
pression algorithm is one of the most widely used lossless
compression techniques, and its more general combinato-
rial and statistical properties have been extensively studied
in the information theory literature, it has received very lit-
tle attention from the imaging community beyond compres-
sion. Our investigation demonstrates that when properly ex-
tended and adapted, these well studied properties can lead to
new applications in the imaging sciences. We should also
note that the LZ parsing, together with the modifications
described in this paper, is just one example of a univer-
sal modeling tool that can be brought to bear on problems
such as texture synthesis and mixture. Other information-
theoretic tools could also be similarly used, e.g., univer-
sal context modeling [12]. These modeling tools tend to
be very good at capturing the local statistical behavior of
images and textures, but are weaker for global structure or
“large” patterns. Thus, these tools are best utilized in con-
junction with multiresolution techniques from more tradi-
tional image processing. Our practical implementations of
texture mixture employ such a combination in a very sim-
ple form, as briefly discussed in Section 2, and shown in
the examples. A full discussion and description are given
in the forthcoming full paper; see also Section 3 for open
questions in this direction.

The rest of this paper deals with the presentation of the
framework and its use for mixing texture. The presentation
is mostly conceptual, with some technical details deferred
to the appendix. Several examples are presented.

2 Universal Simulation of Mixed Tex-
tures

We start from the description of how to simulate (synthe-
size) a single texture from a single source, and then extend
this to the task at hand of mixing multiple sources.

To generate a simulated texture image we first perform
an LZ incremental parsing of the input image. Since the
original LZ parsing is inherently one-dimensional, we tra-
verse the image following a Hilbert scan [5, 11] (which is
optimal based on proximity measures). This, of course,
is one of various options available to deal with the two-
dimensionality of image data. Other two-dimensional gen-
eralizations of LZ studied in the literature could also be em-
ployed. Using the dictionary tree resulting from the scan-
ning and the parsing, we draw a new sequence at random
from the universal type class (universal simulation), follow-
ing an adaptation of the algorithm described in [13]. Finally,
we convert the simulated (1D) sequence to form the new 2D
image. This is done with a modified Hilbert scan that better
preserves the texture orientations.1

1This modified Hilbert process tracks the orientations during the orig-
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To adapt the general universal simulation approach in-
troduced in [13] to processing textures, a number of mod-
ifications and improvements are introduced (in addition to
the modified Hilbert scan already mentioned above). The
first modification deals with the way the sampling algorithm
works. One of the known problems of the LZ parsing as a
modeling tool is the “loss of context” occurring at phrase
boundaries. Since phrases are randomly permuted to form
the simulated texture, there might be a loss of coherence be-
tween two consecutive phrases (which are “snippets” from
potentially different places in the original texture). While
the effect of this “discontinuity” is statistically negligible
(this fact is at the heart of the proof in [13]), it might be
visually unpleasant. To make the random sampling output
more visually coherent phrases, we extended the LZ incre-
mental parsing algorithm to collect side information while
constructing the tree, so that, for each phrasep, a list of
“preferred” phrases is kept which have previously occurred
preceded by a “context” of a prescribed lengthm matching
the m-suffix of p. These phrase will be preferred as con-
tinuations ofp, thus preserving context in the phrase tran-
sition. In terms of the parsing tree, this modification can
be interpreted as causing the sampling algorithm to restart,
if possible, at depthm in the tree after outputting a phrase,
rather than restarting from the root, as in [13]. When no pre-
ferred phrases are available, the conventional restart rule is
used. As other modifications described here, this improve-
ment in visual quality of the reproduced texture comes at
the expense of a slight reduction in the entropy of the out-
put. Properties of statistical similarity are unaffected.

Another known problem of context modeling tools when
applied to practical images (one can regard the LZ parsing
as such a tool; see, e.g., [12]) is that of “context dilution.”
Since the symbol alphabet in continuous tone images is rel-
atively large, there are usually very few exact context rep-
etitions in an image of practical size, except for very short
context lengths. In the LZ setting, this means that phrases
will tend to be quite short, and will not capture higher or-
der dependencies in the data. To ameliorate this problem,
we employ symbol quantization and allow “approximate
matches” in the incremental parsing, in order to allow the
dictionary to collect longer phrases that better capture im-
age patterns. However, we only quantize the data for the
purpose of building the LZ-tree, but keep track of the exact,
unique, input string that lead to the creation of the node.
When producing the simulated output texture, the original
strings are faithfully reproduced, thus preserving the statis-
tics of the texture. As before, this modification, which also
improves visual quality, is done at the expense of the output
entropy. The quantization threshold is adaptively set in or-
der to achieve a certain mean length for the phrases in the

inal texture scanning process and then uses them, permuted following the
universal simulation, during the reconstruction of the synthesized texture.

LZ-tree, which can be used as a parameter of the algorithm.
Finally, to avoid possible artifacts due to the Hilbert scan

(“false contours”), we used a steerable decomposition [14].
After performing the texture synthesis following the above
described algorithm, the high bands obtained from the steer-
able decomposition of the simulated texture are adjusted us-
ing the corresponding permuted high bands of the original
texture. The permutation is obtained from the universal sim-
ulation. The texture is then reconstructed from these mod-
ified high bands and the un-modified lower bands from the
simulated texture. The use of these type of decompositions
will be further discussed in Section 3.

With a few additional modifications, the above frame-
work for simulating textures can also be used to mix two or
more textures. The basic idea is to generate an extended LZ
parsing tree for each texture, as described above. To pro-
duce a mixed output texture, phrases are randomly sampled
from all the trees, drawing the source of the next phrase
with probabilities dictated by the pre-specified weight (per-
centage) of each source texture, as well as the amount of
output already drawn from each. Once a tree is selected,
the procedure for selecting the next phrase is the same as in
the single-texture universal simulation scheme. The com-
bined mixing procedure is described in more detail in Ap-
pendix A.

3 Examples and Conclusions

We performed a series of universal simulations for mix-
ing two or three different textures at a time, with a va-
riety of texture weight distributions. For dealing with
color images, we first converted them to the YCrCb
color space and determined the phrase permutation utiliz-
ing only the information in the luminance channel, keep-
ing track of the full color information for each sam-
ple. Figures 1 and 2 show the examples, see also
http://www.ece.umn.edu/users/gusbro/iccv.html.

In this work we reported results on the use of universal
simulation ideas to study textures. This is based on concepts
of universal types, derived from the well known Lempel-
Ziv parsing algorithm. The goal is not just to synthesize
mixed textures, but to understand what texture is. We are
currently investigating the projection of textures onto the
universal class, or in other words, how much of a given tex-
ture is obtained from the universal simulation (following re-
cent trends on separating different components of an image,
e.g., [4, 10]). While the result of a universal simulation may
show some visual artifacts that distinguish it from the orig-
inal texture, a second iteration of the universal simulation
on the result of the first will be visually indistinguishable
from its input. This, the universal simulation proposed here
indeed behaves like a type of projection that might lead to a
better understanding of “visual randomness” in images. In

3



a sense, the universal simulation procedure does a faithful
job within the constraints of the (implicit or explicit) sta-
tistical model used. The output of a universal simulation
shows us how the chosen model “sees” the texture, and pro-
vides guidance to improving and refining the model. In a
closely related direction, and as frequently done for texture
analysis/synthesis and mixing, multiscale/multi-orientation
decomposition should be incorporated more fully into our
approach. This can be done either performing the universal
simulation in each band separately or working with vectors,
incorporating all or part of the bands as the dictionaryΛ.
Results in these directions will be reported elsewhere.

A Mixture Random Sampling from
Multiple Universal Type Classes

We describe, in pseudo-code form, the sampling procedure that
produces a mixture of given input textures. We assume thatN
texture samples are given, and each has been Hilbert-scanned and
parsed with the LZ incremental parsing algorithm, modified as de-
scribed in Section 2 to avoid the “context dilution” problem. Thus,
treesT1, T2, . . . , TN , each corresponding to a respective texture,
have been produced, and that each nodet in each tree represents
a substrings(t) from the corresponding input sample (we assume
that the substring is stored in the node, since, due to the quanti-
zation mentioned in Section 2, we may not be able to reconstruct
it solely from the path leading to the node). Furthermore, we as-
sume that positive real numbersR1, R2, . . . , RN are given, such
that

∑
i Ri = 1, andRi is the desired proportion of texturei in the

output mixture. We also assume that a desired lengthn of the out-
put sequence is specified, and that the size of thei-th input sample
is at leastni = dnRie. For simplicity, the description omits the
enhancement introduced to combat the “loss of context” problem,
also discussed in Section 2. This visual enhancement is rather in-
dependent of other properties of the scheme, and when the restart
depth parameterm is fixed, it does not affect the main statistical
properties of the sampling algorithm. We also omit the reverse
Hilbert scan procedure previously described.

Each nodet of the trees is marked asused or unused , each
stores an auxiliary variableV (t) counting the number of currently
unused nodes in the subtree rooted att, and the depth oft in the
tree is denoted|t|. For each treeTi, we keep a countCi of the
number of symbols output that originated in phrases fromTi. We
also keep an overall output symbol countL =

∑
i Ci.

1. Initialization. For eachi, 1 ≤ i ≤ N , setCi = 0. For
each nodet of each treeTi, mark t as unused , and set
V (t) = ct, the size of the subtree rooted att. SetL = 0.

2. Draw an integer i with probability P (i=j) =
(nRj−Cj)/(n−L), 1≤j≤N , and set t=λi, the root
of Ti.

3. If t is unused :
(a) If Ci + |t| > nRi, pick a nodev of depthdnRie−Ci

uniformly in Ti, and sett = v.
(b) Outputs(t), markt asused , setV (t) = V (t) − 1,

Ci = Ci + |t|, andL = L + |t|.
(c) If L ≥ n, stop. Else, go to Step 2.

4. Draw a symbol a∈Λ with probability P (a=b) =
V (tb)/V (t), b ∈ Λ. SetV (t) = V (t)−1, t = ta, and
go to Step 3 (note: we get to this step only withV (t)>0).
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Figure 1: Examples of texture mixture. The first row shows two original textures followed by their universal simulation
results (which correspond to percentiles of 100-0 and 0-100 in the mixture). The second row show results of the mixture for
percentiles of 30-70, 50-50, and 70-30 respectively. This is repeated for a second set of textures in the last two rows. (This is
a color figure.)
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Figure 2:Mixing three textures. The respective percentiles, from let to right and top to bottom, are 100-0-0, 0-100-0, 0-0-100,
10-30-60, 25-25-50, 33-33-33, 25-50-25, 30-60-10, and 60-10-30, respectively. (This is a color figure.)
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