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1 Introduction 
In the past term we have continued our effort towards understanding amplification in 
single as well as double wavelength pumped parametric amplifiers when these are 
operated in depletion. Two applications that we have in mind are wavelength 
conversion and signal regeneration. In addition, we have also looked into the 
possibility of using the fourth order derivative of the propagation constant 4β  to 
obtain phase matching at large wavelength shifts from the wavelength of the pump.  

Our effort has been mainly theoretical however, we are in the process of designing 
and putting together a new phase sensitive amplifier. The following sections provide a 
status report on our results. In Section 2 results on investigations of fluctuations of the 
group velocity dispersion on the gain spectrum of a parametric fiber amplifier are 
described. This effort has resulted in a publication at the forthcoming OSA Topical 
meeting on nonlinear photonics. The manuscript is included in enclosure 1. In Section 
3 theoretical results on depletion and nonlinear Stokes analysis is described. We are 
currently putting these results together in two publications that we expect to submit to 
Optics Express within the coming months. Both papers at their current state are 
included to this report as enclosures 2 and 3. Finally, Section 4, describes our current 
effort. 

Section 5 concludes this status report. 

 

 

2 Influence of variations of group velocity dispersion (enclosure 1) 
The spectral shape of the gain of a parametric process in an optical fiber depends on 
the group velocity dispersion of the optical fiber, the initial pump and signal powers, 
and the wavelength of the pump. These parameters can be chosen to create a balance 
between the second and fourth order group velocity dispersion terms, such that the 
gain spectrum consists of two gain regions on each side of the wavelength of the 
pump, see Fig 1, which show the gain spectrum resulting from a 350 m long fiber 
pumped by 1 Watt. Three cases are considered corresponding to three different pump 
wavelengths. The second gain region, i.e. the gain region furthest away from the 
pump, is of interest for broad wavelength conversion or when working outside the 
conventional C and L bands. For narrow peaks (< 1 nm) it also enables applications 
such as a narrow-band filter with gain or as a gain medium in fiber lasers with 
tuneable wavelength. On the other hand if the gain spectrum is broad (> 10 nm), it 
could be used for amplification in WDM systems, while still avoiding four wave 
mixing between the channels. 

The numerical simulations shown in Fig.1, illustrate how random fluctuations, 
according to a normal distribution, of the group velocity dispersion along the fiber 
strongly influence both gain peaks in the gain spectrum and especially the gain peak 
occurring furthest away from the pump wavelength. The considered fluctuations in 
the group velocity dispersion, are similar to those existing in state of the art highly 
nonlinear optical fibers. From the figure it is obvious that the spectral gain profile is 
strongly modified and the second gain peak disappears. 
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Further details/discussions on this topic are found in enclosure 1, which is a copy of 
the manuscript accepted for presentation at the forthcoming OSA Topical Meeting on 
Nonlinear Photonics, to be held in Karlsruhe, Germany, June 21-24, 2010.. 

 

 
Figure 1: Gain versus signal wavelength for three pump wavelengths. The launched signal and idler 
power is 0.1 mW. The lines reaching 25 dB of gain are with no variations in group velocity dispersion, 
whereas the other lines are obtained with realistic variations in group velocity dispersion. 

 

 

3 Other results  
In addition to the work on impact do to fluctuations in group velocity dispersion we 
have continued our effort on theoretical modelling of the parametric fiber amplifiers. 
Our most recent results are described below. 

 
3.1 Semi-analytical model (enclosure 2): 
One important application of the parametric amplifier is when it is operated in 
depletion, since this has use in communication systems as regenerating amplifiers or 
as wavelength converters. 

We have derived a semi-analytic model of the dual pumped parametric amplifier that 
includes pump depletion. The analytic solution is found by using Jacobian Elliptic 
functions. These functions are not easy to use however, with a few but reasonable 
approximations we have obtained some much simpler and useful expressions. We 
have used this model to show that wide and flat gain is achievable with the dual 
pumped FOPA. In addition, the theoretical modelling shows that a phase mismatch 
which equals the product of the nonlinear strength times the signal power leads to 
complete power conversion. 

Further details and discussions are found in enclosure 2, which is a version of a 
manuscript that we are currently writing, which describes the semi-analytical model 
of the depleted parametric amplifier. We plan on submitting the manuscript to Optics 
Express within May.  

 
3.2 Nonlinear Stokes analysis (enclosure 3) 
To get further into a detailed description of noise issues we have studied the dynamics 
of the four-wave mixing (FWM) equations using a Stokes like parametrization of the 
Fields. The parametrization is chosen so as to use symmetry of the Gauge invariance 
of the FWM equations. This has enabled us to reduce the dynamics of FWM to the 
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one-dimensional intersection between the phase-plane of the conserved Hamiltonian 
and the closed two-dimensional iso-power surface in a three-dimensional phase-space. 
In this way both the phases and amplitudes of the mixing fields can be visualized 
simultaneously giving a complete overview of the FWM dynamics. Further details are 
described in enclosure 3, which is a current version of manuscript that we are 
planning on submitting to Optics Express within the coming months. 

The analysis is advantageous since non-degenerate FWM as in two pump optical 
parametric amplification is strongly phase dependent. The analysis also visualize the 
effect of noise as noise will manifest itself as a perturbation of the iso-power surface 
which might be useful for analysis of the noise limits for depleted parametric 
amplifiers. 

 

 
4. Ongoing activities 
The activities described above are all completed to a level where results are close to 
being submitted for publication or even published. In addition to these activities we 
also have activities that we are currently working on, but where we at present time do 
not have results that may be published. 

Most important are our activities related to systems demonstrations of phase sensitive 
amplifications. These activities have been funded by the Danish technical research 
council but have been seeded by this current project. We have only just started the 
project and have hired a post doc and one ph.d. student. However, at this point in time 
we have no results. 

In addition to the program on phase sensitive amplifiers we have initiated a master 
student project entitled: “Pulse-deformation in parametric amplifier” Within the 
project a parametric amplifier will be used as the amplifier in a fiber ring laser, and 
formation of short pulses will be studied. The program has just been initiated and at 
this point in time the project has not given any results.  

Finally, in collaboration with Colin Mc.Kinstrie, Alcatel-Lucent, NJ, USA, we have 
been working on Self Seeded Four wave mixing. This is the process where strong 
pumps interact during propagation and create two additional self-seeded pumps. The 
two strong pumps interact in degenerate parametric amplification to create two 
sidebands. When these are created, all four also interacts in a non-degenerate 
parametric process. The evolution of these four pumps is investigated with focus on 
creating four equal pumps suited for multicasting. 

We have performed a theoretical study of this process and are currently discussing the 
results. 
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5. Conclusion 
In the term covered by this report we have focussed partly on the impact of 
fluctuations along the length of the fiber through which amplification is achieved in 
the parametric amplifier and partly on theoretical modeling.   

In parametric amplifiers there exists two gain peaks one relatively close to the pump, 
tens of nanometers from the pump, and one further away, up to hundreds of 
nanometers from the pump. The second peak is very interesting for the purpose of 
wavelength conversion. However, we have demonstrated that due to variations in the 
group velocity dispersion, similar to those existing in state of the art highly nonlinear 
optical fibers, the spectral gain profile is strongly modified and the second gain peak 
disappears.  

Regarding the theoretical modelling we have shown a semi-analytical model which is 
capable of predicting gain of single as well as dual pumped parametric amplifiers 
when these are operated in depletion. From the theoretical modelling it is shown that a 
phase mismatch which equals the product of the nonlinear strength times the signal 
power leads to complete power conversion. 
 

5.1 Publications from the project  
L. S. Rishøj and K. Rottwitt, ”Influence of Variations of the GVD on Wavelength Conversion at 
Second Gain Region of a Parametric Process,” Accepted for presentation at Nonlinear Photonics 2010 
 
K. Rottwitt, J. R. Ott, H. Steffensen, S. Ramachandran, “Spontaneous emission from saturated 
parametric amplifiers,” ICTON’09 Azores, Portugal, 2009 
 
C. Peucheret, M. Lorenzen, J. Seoane, D. Noordegraaf, C.V. Nielsen, L. Grüner-Nielsen and K. 
Rottwitt, ”Amplitude regeneration of RZ-DPSK signals in single pump fiber optics parametric 
amplifiers,” IEE photonics Technol. Letters, Vol. 21, No. 13, p 872, 2009 
 
M. R. Lorenzen, D. Noordegraaf, C.V. Nielsen, O. Odgaard, L. Grüner-Nielsen and K. Rottwitt, 
”Suppression of Brillouin scattering in fibre-optical parametric amplifier by applying temperature 
control and phase modulation,” Electron Lett. Vol. 45, No. 2, p 125, 2009 
 
M. R. Lorenzen, D. Noordegraaf, C.V. Nielsen, O. Odgaard, L. Grüner-Nielsen and K. Rottwitt, 
”Brillouin Suppression in a fiber optical parametric amplifier by combining temperature distribution 
and phase modulation,” in proc. OFC’08, paper OML1, 2008 
 
C. Peucheret, M. Lorenzen, J. Seoane, D. Noordegraaf, C.V. Nielsen, L. Grüner-Nielsen and K. 
Rottwitt, ”Dynamic range enhancemend and amplitude regeneration in single pump fibre optic 
parametric amplifiers using DPSK modulation,” in proc ECOC’08, Brussels 
 
K. Rottwitt, M. Lorenzen, D. Noordegraaf and C. Peucheret, “ Gain characteristics of a saturated fiber 
optic parametric amplifier,” in Proc. ICTON’08 Athens Greece, paper Mo.D1.1 
 
J.M. Chavez Boggio, J. R. Windmiller, M. Knutzen, R.Jiang, C. Bres, N. Alic, B. Stossel, K. Rottwitt 
and S. Radic, “730 nm optical parametric conversion from near to short wave infrared band,” Optics 
Express, vol. 16, No. 8, p 5435, Apr. 2008 
 
J.M. Chavez Boggio, M. Knutzen, R.Jiang, C. Bres, N. Alic, J. R. Windmiller, B. Stossel, K. Rottwitt 
and S. Radic, “730 nm optical parametric conversion from near to short wave infrared band,” Optics 
Express, vol. 16, No. 8, p 5435, Apr. 2008 
 
D. Noordegraff, M. Lorenzen, C.V. Nielsen and K. Rottwitt, “Brillouin scattering in fiber optical 
parametric amplifiers,” ICTON’07, paper We.A1.5 
 

http://orbit.dtu.dk/query?person=12308
http://orbit.dtu.dk/query?person=22803
http://orbit.dtu.dk/query?person=22737
http://orbit.dtu.dk/query?person=54430
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6. Future work 
 
People: 
Within the period of this report, Toke Lund Hansen has started as a post doc. 
supervised by Karsten Rottwitt. Toke will be performing mainly experimental 
research on phase sensitive amplification. In addition, a new ph.d. student Valentina 
Christofioi has just started studies toward a PhD degree on parametric fiber 
amplifiers. In addition, activities within the systems group at DTU Fotonik, has 
intensified through two new ph.d positions within parametric amplifiers, one partly 
funded through a research program on phase sensitive amplifiers funded through the 
Danish technical research council and the other funded by a so-called 
internationalization program. 
 

Activities: 
As indicated in the above DTU Fotonik now has significant activities on using 
parametric processes in optical fibers. This includes fundamental studies on noise 
issues, fibers for parametric devices and also system aspects of parametric amplifiers 
and more specifically phase sensitive amplifiers and amplification of very short pulses 
(few hundred femto second in pulse width). In addition, DTU Fotonik also have 
initiated collaboration external partners in relation to parametric amplifiers, this 
include collaboration with OFS Fitel Denmark, with Prof. Stojan Radic, University of 
San Diego and Prof. Siddharth Ramachandran Boston University. 
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Abstract: Impact on the second gain region in a parametric process, caused by random variations
of the group velocity dispersion along the fiber is demonstrated. The model includes both pump
depletion and fiber loss.
c© 2010 Optical Society of America
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1. Introduction

The shape of the gain spectrum depends on the group velocity dispersion (GVD) of the fiber, the initial pump and
signal powers, and the wavelength of the pump. These parameters can be chosen to create a balance between the
second and fourth order dispersion terms, such that the gain spectrum consists of two gain regions on each side of the
wavelength of the pump. Through simulations this paper focuses on the gain peak occurring furthest away from the
pump wavelength, referred to as the second gain region. This gain region is of interest for broad wavelength conversion
or when working outside the conventional C and L bands. For narrow peaks (< 1 nm) it also enables applications such
as a narrow-band filter with gain or as a gain medium in fiber lasers with tunable wavelength. On the other hand if the
gain spectrum is broad (> 10 nm), it could be used for amplification in WDM systems and hereby avoiding FWM
phase matching between the channels. Unlike previous publications within this field, this model also accounts for
pump depletion and fiber loss. The former of these have previously been neglected, by arguing that pump depletion
rarely occurs in experiments. However, it is important when trying to obtain large power transfer during wavelength
conversion. Also, recently depleted parametric amplifiers have been used for signal regeneration [1].

2. Description of the Model

A crucial criterion for the parametric process is to achieve phase matching between the interacting waves, i.e. between
the signal, idler, and pump. In the case of a degenerated pump, the parametric process depends on the linear phase
mismatch [2]. By Taylor expanding this around the frequency of the pump, one yields

∆β = 2

∞∑

m=1

β2m,p

(2m)!
(ωs − ωp)

2m
. (1)

From this it is seen that any variations of the GVD along the fiber will influence the gain spectrum in an unknown
manner. The fiber parameters used for the simulations are for a highly nonlinear dispersion shifted fiber (HNLF). This
fiber has a nonlinear coefficient ofγ = 11.5 W−1m−1 and a loss ofα = 0.74 dB/km, these are assumed to be
independent of wavelength. Furthermore, the fiber has a zero dispersion wavelength ofλ0 = 1559.5 nm and a slope
at this wavelength equal toS = 0.015 ps/(nm2km). For this HNLFβ4,p > 0, thus by ensuring thatβ2,p < 0, it is
possible to obtain gain by balancing the two first terms of Eq. (1). Simulations have shown that if no variation of the
GVD is included it is possible to obtain wavelength conversion over more than300 nm by using merely1 W of pump
power, by selecting the wavelength of the pump accordingly.

Variations of the GVD in fibers are caused by changes in the core radius and the refractive index along the
fiber. The latter contribution has been neglected in the model, furthermore the effect these core changes has on the
effective area and thus the nonlinear coefficient has also been neglected. The relative change in the core diameter is
for recent fabricated HNLF reported to be around±0.03 % over500 m [3]. Using a full vectorial mode solver it was
found that a change of0.03 % in the core diameter of the HNLF described above, leads to a change in the GVD of
0.03 ps/(nm · km) at λ0; this coresponds to a change in the zero dispersion wavelength of2 nm. Furthermore, the
simulations with the mode solver verified that it is only a minor asumption to model the variations of the GVD as
vertical translations of the entire GVD curve, hence this is utilized in the following simulations. The GVD along the
fiber is modeled by adding variations according to a stochastic variable following a normal distribution, this is similar
to the method used in [4, 5]. The distance between these random generated points is denotedLvar and the GVD
between these points are aproximated to be linear. The symbol used for the standard deviation isσ.



3. Simulation Results

It is found that the pump is fully depleted when the pump wavelength isλp = 1564 nm and no variations of the GVD
are included, if the signal wavelength isλs = 1554 nm and the fiber length isLopt = 347 m, hence working in the
first gain region. This situation is referred to as ideal and has been used for normalization. Since a stochastic variable is
included, the simulations have been carried out 1000 times. It was seen that the distribution for any parameters follows
an exponential behavior, which peaks at a normalized idler power of one. However, the spread becomes narrower as
Lvar andσ decrease, these results have not been included here. In Fig. 1 it is seen that the minimum power of the idler
increases asLvar andσ decrease. This indicates that even in the worst case scenario a significant conversion efficiency
is obtained, if the variations are on the order of or shorter than a few meters.
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Fig. 1. The parameters for the simulation areλs = 1554 nm andλp =
1564 nm. The minimum normalized idler power after the optimal length
of propagation. The bottom 10% of the simulations have been removed
in order not to obscure the tendensies. The legend indicates the standard
deviation of the normal distribution in units ofps/(nm · km).
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Fig. 2. The gain spectrum for different wavelengths and with afiber
length ofL = 350 m. The parameters arePp,i = 1 W andPs,i =
0.1 mW. The lines reaching gain over25 dB are with no variations of
the GVD, whereas the remaining lines are for variations whereσ =
0.01 ps/(nm · km) andLvar = 1 m.

Next, a similar analysis is performed for the gain region that occurs further away from the wavelength of the pump,
also referred to as the second gain region. In these simulationsλs andL was chosen such that full depletion of the pump
is obtained, if no variations of the GVD are included. It was seen that hardly any idler power is generated. In general the
tendency is that asLvar decreases orσ increases the distribution becomes narrower and closer to zero. Also the spread
of the idler powers becomes larger asλp becomes smaller, these results are not included here. Fig. 2 shows the gain
spectra for three different wavelengths of the pump, both with no variations of the GVD and with six different random
variations, the initial signal power is set toPs,0 = 0.1 mW. It is seen that the gain spectrum is seriously degraded by
the introduction of variations, especially it is noticeable that the second gain region is basically non-exciting for all of
the three wavelengths of the pump. However, a certain amount of gain is still obtained for wavelengths close to the
wavelength of the pump. This is not obvious by observing the Taylor expansion of the phase matching condition, since
asλp gets closer toλ0 the relative change inβ2,p due to the same sized variations gets larger, which would increase
the impact of the variations. On the other hand the gain peak is moved such that|ωp − ωs| becomes smaller and also
the gain peak becomes wider, which both reduce the impact from the variations. A solution would be to increase the
pump power and thereby reduce the needed fiber length, and thus in effect reduce the impact of the variations of the
GVD.

4. Conclusion

It was shown that introducing variations of the GVD of a magnitude similar to those expected in modern HNLF, the
parametric process was influenced to an extend such that the gain peak, caused by the balancing of the terms involving
β2,p andβ4,p in the phase matching condition, would cease to exist.
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Abstract: This paper solves the four coupled equations describing
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optical parametric amplifier (FOPA). Based on the full analytic solution,
a simple approximate solution describing the gain is developed. The
advantage of this new approximation is that it includes the depletion of the
pumps, which is lacking in the usual quasi-linearized approximation. Using
this approximate solution we demonstrate the possibility of achieving a flat
gain over 87 nm centered at 1560.5 nm.
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1. Introduction

Parametric amplifiers have shown promising features in a wide variety of applications beside
just amplification of signals. It has potential as optical regenerators [1, 2, 3] based on either one
or two pumps, to suppress level fluctuation [4], and also as noise limiters, for instance to limit
amplified spontaneous emission (ASE) noise or to reduce nonlinear phase noise [5].

Dual pumped Parametric amplifiers show potential application as amplifiers with a very wide
bandwidth of operation and a flat gain throughout the bandwidth window of operation [6].
However, it is more complicated to predict their performance analytically since four coupled
wave equations needs to be solved. In this work we demonstrate the existing analytical solutions
using elliptic Jacobian functions [7, 8], and based on these we show that simple approximations
exist that enable predictions of depletion performance of double wavelength pumped parametric
amplifiers.

Previously Kylemark et al. [9] have derived a useful approximation for a single pump FOPA
operated at the total conversion phase mismatch. This paper uses a similar approach on the dual
pumped FOPA and extends it to the full range of phase mismatch. We use the approximation
on a specific example where it is shown that a flat and wide gain is achieved with pumps
placed symmetric around the zero dispersion wavelength (ZDW). A flat gain over 25 nm have
previously been experimentally realized, [10], but in this paper we predict a flat broadband gain
over 87 nm.

2. Theory

In general we consider an electric field consisting of four CW waves, at frequenciesω1 through
ω4. In non-denegerate FWM, the four distinct waves interact with each other under the condi-
tion thatω1+ω4 = ω2+ω3. Two of these, number 2 and 3, are in this paper used as pumps,
while 1 is a signal, also denoteds, that is to be amplified, and 4 is the idler,i, that arise when
the signal is amplified. The envelope of the field is, for parallel pumps and signal, governed by
[11, 12]

dA1

dz
= iβ1A1+ iγ

{[
∣A1∣

2+2
(
∣A2∣

2+ ∣A3∣
2+ ∣A4∣

2)]A1+2A2A3A∗
4

}
(1a)

dA2

dz
= iβ2A2+ iγ

{[
∣A2∣

2+2
(
∣A1∣

2+ ∣A3∣
2+ ∣A4∣

2)]A2+2A1A∗
3A4
}

(1b)

dA3

dz
= iβ3A3+ iγ

{[
∣A3∣

2+2
(
∣A1∣

2+ ∣A2∣
2+ ∣A4∣

2)]A3+2A1A∗
2A4
}

(1c)

dA4

dz
= iβ4A4+ iγ

{[
∣A4∣

2+2
(
∣A1∣

2+ ∣A2∣
2+ ∣A3∣

2)]A4+2A∗
1A2A3

}
, (1d)

whereγ is the nonlinear strength andβα is the wave number, indexα may be either 1, 2, 3 or 4.
In the case of perpendicular pumps and sidebands, the factor of 2 in the coupling term should
be changed to a 1 [13, 14]. The most common method of solving Eq. (1) is by assuming that
the pump powers remain much greater than the signal and idler power at all times and that the



power loss of the pumps is negligible [15]. This will quasi-linearize the differential equations
and for pumps with identical power,Pp, result in

Ps(z) =Ps(0)

{
1+

[
2γPp

g
sinh(gz)

]2
}

(2)

Pi(z) =Ps(0)

[
2γPp

g
sinh(gz)

]2

(3)

whereg2 = (2γPp)
2− (κ/2)2 andκ = 2γPp+∆β . ∆β is the phase mismatch given as∆β =

β1−β2−β3+β4, and sincePp is the pump power in each pump and these are assumed identical,
the expression resembles the expression known from single pumped parametric amplifiers [15].
Based on this solution, the highest growing gain,G(z) =Ps(z)/Ps(0), is obtained withκ = 0,
thus requiring that∆β =−2γPp. Generally, gain exist when−6γPp<∆β < 2γPp. The problem
with this solution is that it does not account for either pump depletion or nonlinear detuning,
which is caused by the change in relative phase as the power is transferred.

Instead of rewriting the complex amplitudeA in Eq. (1) into the real variables, powerP and
phaseφ , asAα =

√
Pαexp(iφα), the differential equations are instead written as

dPα
dz

= sα4γ
√

∏
β

Pβ sin(θ) (4)

dφα
dz

= βα + γ(2∑
β

Pβ −Pα)+2γ
√

∏β Pβ

Pα
cos(θ) (5)

whereθ = φ1 + φ4 − φ2 − φ3 and sα = dθ
dφα

. It is seen that only the relative phase,θ , and
not the individual phases, is important, thus the phase equations can be reduced to one single
differential equation. As seen from Eq. (4), this relative phase is important as it shows to which
direction the power flows, if the relative phase is positive, the power is transferred from the
pumps to the signal and idler, if the relative phase is negative, the opposite happens. As power
is transferred from the pumps to the signal and idler, nonlinear detuning occurs which reduces
the coupling. At some point the relative phase can be changed so much that the power flow is
reversed and the power begins to couple back to the pumps.

Because the parametric process is symmetric, the signal and the idler have the same increase
in power, while the pumps have the same decrease, also written asdz(Ps−Pi) = 0 anddz(P2−
P3) = 0. Finally, the process is power conserving thus∑α Pα(z) =Ptotal. Based on this, all
powers are related to each other, and can thus be described by only one variable according to
the Manley-Rowe relations [16, 17]. This variable,F , is chosen to be the power of the idler
which is assumed zero atz= 0, i.e.

P1 = Ps+F (6a)

P2 =P3 = Pp−F (6b)

P4 = F, (6c)

wherePs is the input power of the signal, andPp is the input power for each of the two pumps.
With this notation, the gain of the signal is found as

G(z) =
Ps(z)
Ps(0)

= 1+
F(z)
Ps

. (7)



From Eq. (6), two governing differential equations can be setup for the power,F , and the phase,
θ ,

dF
dz

=4γ(Pp−F)
√

F(Ps+F)sin(θ) (8)

dθ
dz

=2γ

[
(Pp−F)

(√
F

Ps+F
+

√
Ps+F

F

)
−2
√

F(Ps+F)

]
cos(θ)

+ γδ −4γF (9)

where

δ =
∆β
γ

+2Pp−Ps, (10)

This effective phase mismatch also includes the signal power, which in the quasi-linearized case
is omitted due to the assumptions made. The two differential equations have the Hamiltonian

H = 4γ(Pp−F)
√

F(Ps+F)cos(θ)+ γ (δ −2F)F. (11)

This has been found by using a qualified guess and knowing it has to fulfill Hamilton’s equations
as given by

dF
dz

=−
∂H
∂θ

,
dθ
dz

=
∂H
∂F

. (12)

The first term on the RHS of Eq. (11) is due to FWM, while the second contains the linear
and nonlinear phase terms. Because the Hamiltonian is independent ofz, it is constant. It is
therefore used to reduce the problem to one variable. SinceF is initially zero, the value of the
Hamiltonian is also zero. With this the phase,θ , can be determined as

cos(θ) =
−(δ −2F)F

4(Pp−F)
√

F(Ps+F)
. (13)

From Eq. (8) a potential equation may be obtained forF , by squaring the equation and inserting
the expression forθ , resulting in

(
dF
dz

)2

= γ2
[
16(Pp−F)2F(Ps+F)− (δ −2F)2F2

]
(14)

For any given value of the wave-number mismatch, this can be written as
(

dF
dz

)2

=12γ2F( f1−F)( f2−F)(F − f3) (15)

where f j , ( j ∈ (1,2,3)) are the roots of the polynomial andf1 ≥ f2 > F(0)> f3. The ordering
of these roots are important because it affects the structure of the solution. The solution forF
will be bounded by the roots of the potential equation. The lower boundary is zero, and the
upper boundary is the rootf2. The value of this root will thus be the maximum value of the
added power to both the signal and the idler. The differential equation can be solved using
Jacobian Elliptic Functions [18], the solution is:

F(z) =
f3 f2sn2

[
γz
√

3 f1( f2− f3),m
]

− f2+ f3+ f2sn2
[
γz
√

3 f1( f2− f3),m
] (16)



where sn is a Jacobian Elliptic function and the squared modulus

m2 =
f2( f1− f3)
f1( f2− f3)

, (17)

It is possible to achieve complete power conversion from the pumps to the signal and idler.
In this case the power of the idler equals the initial power of the pumps, thusF = Pp. When
inserted into the Hamiltonian, knowing that the value of the Hamiltonian is zero, one see that
the requirement of complete power conversion is thatδ = 2Pp, giving a wave-number mismatch
of

∆β = γPs. (18)

This differs significantly from the usually desired value of−2γPp which results in the initially
fastest growing signal. From Eq. (2), the initial growth rate for∆β = −2γPp is G(z) =1+
sinh2 [2γPpz], whereas the growth rate for∆β = γPs is G(z)≈ 1+ 4

3sinh2
[√

3γPpz
]
. With ∆β =

γPs the roots of Eq. (9) aref1 = f2 = Pp and f3 = −4Ps/3. In this case,m= 1, reducing
the Jacobian Elliptic Function, sn, to hyperbolic tangens functions, tanh. The solution is thus
rewritten as

F(z) =
4PpPssinh2

[
γz
√

Pp(3Pp+4Ps)
]

3Pp+4Ps+4Pssinh2
[
γz
√

Pp(3Pp+4Ps)
] . (19)

In the interval−6γPp < ∆β < 2γPp, in which g is a real parameter, approximate solutions to
the roots of Eq. (14) is found by treatingPs as a small perturbation to the potential equation.
Doing this result in three non-zero roots,

ra =−16Ps
P2

p(
Pp+

1
6

∆β
γ

)(
Pp− 1

2
∆β
γ

) (20)

rb = Pp+
1
6

∆β
γ

−12Ps

Ps−
∆β
γ

2Pp−
∆β
γ

(21)

rc = Pp−
1
2

∆β
γ

−4Ps

3Pp+2∆β
γ

6Pp+
∆β
γ

. (22)

The first root,ra is the lowest root, thus it is equivalent tof3, and it is seen that this root
is proportional to−Ps. The other two roots are equivalent tof1 and f2, however asrb is not
always greater thanrc, it will depend on the values of∆β , which root is equivalent to whichf .
However, the important thing is to see that they are both proportional toPp. Therefore, under
the assumption thatPp ≫ Ps, m≈ 1, the elliptic function sn can be approximated with tanh for
small values ofz. Thus, the solution can be expressed as

F(z)≈

− f2 f3
f2− f3

sinh2
[
γz
√

3 f1( f2− f3)
]

1+ 1
f2

− f2 f3
f2− f3

sinh2
[
γz
√

3 f1( f2− f3)
] . (23)

For very small values ofz, the second term in the denominator can be neglected, reducing it to
an expression similar to Eq. (3) Consequently, we may apply the relations:

√
3 f1( f2− f3)≈

g
γ

(24)

−
f2 f3

f2− f3
≈ Ps

(
2γPp

g

)2

, (25)



which for the interval−4γPp < ∆β < γPp, have a relative error of less than 1% forPs= 0 dBm,
and this error decrease with decreasing input power. With thisF may be expressed as

F(z)≈
FQL(z)

1+
FQL(z)

Psat

= Ps

[
2γPp

g sinh2 [gz]
]2

1+ Ps
Psat

[
2γPp

g sinh2 [gz]
]2 (26)

whereg2 = (2γPp)
2− (κ/2)2, κ = 2γPp+∆β , and

Psat = f2 ≈

{
1
6(

∆β
γ −Ps)+Pp, −6Pp <

∆β
γ < Ps

−1
2(

∆β
γ −Ps)+Pp, Ps <

∆β
γ < 2Pp

(27)

This final expression forF is a simple expression, using the quasi-linearized result to create
an expression that includes the saturation of the pumps.Psat is the upper limit of the power
that can be coupled into the idler. From this it is also clear that using a linear phase mismatch
that equals the nonlinear phase shift per unit length of the signal,γPs, enables complete power
transfer from the pumps into the signal and idler, while when using a linear phase mismatch
identical to the nonlinear phase shift of the pump i.e.∆β =−2γPp only can convert about 67%.
However, in the latter case when∆β =−2γPp the initial coupling efficiency is higher.

If the two pumps have different power calledPa and Pb, wherePa > Pb, then all that is
necessary to change is to replace(Pp−F)2 with (Pa−F)(Pb−F) in Eq. (14), and 2Pp with
Pa +Pb in Eq. (10). When this is done, the solution is the same as Eq. (16). Because of the
different pump powers, the phase mismatch resulting in full power transfer from the smallest
pump is∆β = γPs+ γ(Pa−Pb), whereas the fastest growing gain is when∆β =−γ(Pa+Pb).

3. Discussion

How well Eq. (26) describes the evolution of the idler, compared to Eq. (2) is shown in Fig. 1.
From the figure it is seen that the new expression fits well until the power begins to couple back
into the pump. In all cases the new approximate expression has a better correlation with the
analytic solution than the conventional quasi-linear result in Eq. (2).

Fig. 2 shows the gain for different input powers. The gain has been evaluated by using
Eqs. (2), (23) and (26) and it also shows that the new approximation, Eq. (26), is a better
approximation to Eq. (23) than the usual approximation, Eq. (2). The new approximation takes
the saturation into account, but since it does not include back coupling, it is only useful until
back coupling becomes significant. Before the system is in depletion, the gain is symmetric
aroundκ = 0 as predicted by Eq. (2), but when saturation set in, the gain profile becomes
asymmetric which the new approximation also takes into account. If a setup is constructed with
two pumps placed symmetric around the ZDW, then it is possible to obtain a flat gain spectrum
over a range of wavelengths, with very high signal gain. The phase mismatch is estimated by
Taylor expanding all the propagation constants around the ZDW. Because of the chosen pump
symmetry, allβn = dnβ (ω)/dωn∣ωZD , wheren is odd, will cancel out, and sinceβ2 is zero at
the ZDW, the first term that has influence isβ4 which for this setup is 8.8197×10−56 s4/m.
The phase mismatch is thus approximated as

∆β =
β4

12

[
(ωs−ωZD)

4− (ωp−ωZD)
4] (28)

When using symmetrically placed pumps and the value ofβ4 is positive [19], it is very difficult
to obtain∆β = −2γPp, unless the pumps are placed very far from the ZDW, however∆β is
close to zero for a large range, resulting in a high possible power transfer in this region. Fig. 3
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(a) ∆β/γ =−2Pp.
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(b) ∆β/γ = 0.
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(c) ∆β/γ = Ps.
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Fig. 1. Evolution of the power of the idler withPp = 30 dBm andPs= 0 dBm. The solid line
shows the full analytic solution, the dash-dotted is the usual quasi-linearized solution while
the dashed is the approximate solution found in this paper. It is evident that the setup in
(c) results in complete power transfer while the usual desired setup (a) results in the fastest
growing idler. (b) shows that a zero wave-number mismatch results in almost complete
power transfer.
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(a) Ps =−20 dBm
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(b) Ps =−10 dBm
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(c) Ps = 0 dBm

Fig. 2. Gain calculated atγL = 3 W−1 with Pp = 30 dBm. The solid line is the analytically
calculated gain, the dashed line is the gain calculated with Eq. (2) while the dash-dotted
line is calculated with the approximation found in this paper. In (a) the pumps are not in
saturation, thus there is no significant difference between them. However in (b) the pumps
begin to be in saturation, which Eq. (2) does not take into account. In (c) the input power
is so high that the pumps have depleted and for some values of∆β/γ the power has started
to couple back into the pumps resulting in a lower gain, only the full analytic solution
accounts for this phenomenon.

shows gain profiles for a fiber with L = 250 m,λZD = 1560.5 nm, andγ = 11.5 W−1km−1

calculated with Eq. (26).
Because the pumps are placed symmetric around the ZDW, it is, as seen in Fig. 3, possible to

achieve a high and flat gain over a broad spectrum. Even if the symmetry is slightly broken, the
gain remains reasonably flat, and even increase the spectrum. If Eq. (1) is solved numerically
and including loss of 0.74 dB/km, the same spectrum is achieved, only the gain is 1.5 to 2 dB
lower.
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(a) Symmetrically placed pumps
with λp = 1564 nm and 1557 nm.
The signal power is -20 dBm, thus
the pumps are undepleted.
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(b) Symmetrically placed pumps
with λp = 1568 nm and 1553 nm. the
signal power is 0 dBm, thus resulting
in depleted pumps.
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(c) Asymmetrically placed pumps
with λp = 1564 nm and 1558 nm and
a signal power of -20 dBm.

Fig. 3. Gain profiles for a case with 30 dBm pumps. With symmetrically placed pumps,
the gain is very flat over a large bandwidth whereas with slightly asymmetrically placed
pumps, the gain is a little less flat, but the spectrum becomes wider.

4. Conclusion

We have shown the exact solution of a dual pumped FOPA as well as a simple yet very useful
approximation to the solution which includes pump depletion. With the dual pumped scheme it
is possible to obtain a very flat gain over a wide bandwidth. With symmetrically placed pumps,
Fig. 3(a), the width of the gain, within 3 dB of max, is 87 nm, in the case of asymmetrically
placed pumps, Fig. 3(c), the width is increased to 113 nm. The bandwidth may be further
broadened by using slightly asymmetrically placed pumps. However this is only obtainable at
the expense of a less flat gain.
We have also shown that although the gain is increasing more rapid as a function of fiber length
when∆β = −2γPp, then this phase mismatch will not result in a complete power conversion
as is the case when∆β = γPs.
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We consider the phenomenon of four-wave mixing. The evolution is analyzed using a variable
transform, making it possible to visualize the power and phase information simultaneously. A
method of evaluating the dynamics of the system graphically without use of complicated calculations
is then proposed. The current version is a draft and therefore contain most calculations.

I. INTRODUCTION

The optical parametric process of four-wave mixing (FWM) is currently used for several optical communication
schemes such as amplification, signal copying, phase conjugation, sampling and regeneration [1, 2].

The governing equations and their evolution given by solutions to elliptic integrals are at this point well known [3, 4],
but the usual methods to evaluate power and phase can seem complicated. A recent analysis used the assumption of
strong pumps to visualize a specific scheme by the use of a coordinate transform to Stokes-like variables [5] following
a routine which has previously been used to describe the evolution of polarization [6].

In the current work we propose an easy way of visualizing the field amplitudes and relative phase of the full
nonlinear problem simultaneously as dynamics on a closed 2 dimensional surface in a 3 dimensional space. Using the
method proposed, the dynamics is found without having to evaluate any pesky integrals nor differential equations,
but simply plotting two implicit equations and and observe their intersection. A similar approach has been used
previously for three wave mixing in quadratic nonlinear media [7]. This showed a geometric interpretation of the
phenomenon and gave a simple method of visualizing quasi-phase matching used in parametric amplification with
quadratic materials.

The following analysis will start by introducing the governing equations for FWM in section II. Furthermore this
section review the structure of the Hamiltonian and the use of Poisson bracket formalism for equating governing
equations. Section III introduce the geometric representation of the FWM equations using Stokes vectors and the
Hamiltonian in this new space is found and the governing equations for the FWM in Stokes space are solved. In
section IV the geometric representation is used to evaluate the dynamics of some optical communication schemes
showing the advantages of the proposed method.

II. THE FOUR-WAVE EQUATIONS AND THEIR SYMMETRIES

In the following section the four-wave phenomenon is shortly reviewed along with the Hamiltonian and the use of
the Poisson bracket formalism with the Hamiltonian. The well known governing equations for the non-degenerate

∗Electronic address: johan.raunkjaerott@fotonik.dtu.dk
†Electronic address: mckinstrie@alcatel-lucent.com
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FWM process are [8]

dA1

dz
= iγK[|A1|

2 + 2(|A2|
2 + |A3|

2 + |A4|
2)]A1 + 2iγKA2A3A

∗
4e

−i∆βz, (1a)

dA2

dz
= iγK[|A2|

2 + 2(|A1|
2 + |A3|

2 + |A4|
2)]A2 + 2iγKA1A

∗
3A4e

i∆βz, (1b)

dA3

dz
= iγK[|A3|

2 + 2(|A1|
2 + |A2|

2 + |A4|
2)]A3 + 2iγKA1A

∗
2A4e

i∆βz, (1c)

dA4

dz
= iγK[|A4|

2 + 2(|A1|
2 + |A2|

2 + |A3|
2)]A4 + 2iγKA∗

1A2A3e
−i∆βz. (1d)

These are obtained by a slowly varying amplitude approximation of Maxwell’s equations for resonant interaction of
four lightwaves propagating in a centrosymmetric material. Aj is the slowly varying complex field envelopes for the
j’th field, γK is the nonlinear Kerr coefficient assumed to be frequency independent, and ∆β = β1 − β2 − β3 + β4 is
the wavenumber mismatch with the wavenumber of the j’th field being βj = β(ωj). The numbering is either from
high to low frequency or from low to high. The waves 1 and 4 are thus the side bands while 2 and 3 denote the inner
bands.

By inspection, the set of Eqns. (1) has the Hamiltonian

H̃ = γK

4∑

n=1

4∑

m=1

dn,m|An|
2|Am|2 + 2γK

(
A∗

1A2A3A
∗
4e

−i∆βz + A1A
∗
2A

∗
3A4e

i∆βz
)
, (2)

with dn,n = 1
2 and dn,m = 1 when n 6= m.

Making use of the conservation of power Pt =
∑4

n=1 |An|
2 and introducing the change of variables ξ = γKPt and

the rescaled rotating frame

Aj = qj

√
Pte

−iβjz+2iγKPtz (3)

the four-wave equations become

dq1

dξ
= iΓ1q1 − i|q1|

2q1 + 2iq2q3q
∗
4 , (4a)

dq2

dξ
= iΓ2q2 − i|q2|

2q2 + 2iq1q
∗
3q4, (4b)

dq3

dξ
= iΓ3q3 − i|q3|

2q3 + 2iq1q
∗
2q4, (4c)

dq4

dξ
= iΓ4q4 − i|q4|

2q4 + 2iq∗1q2q3, (4d)

with Γj =
βj

γKPt
being the rescaled wavenumber.

The Hamiltonian for these normalized fields is

H =

4∑

n=1

Γn|qn|
2 −

1

2

4∑

n=1

|qn|
4 + 2 (q∗1q2q3q

∗
4 + q1q

∗
2q∗3q4) . (5)

Thereby the equations have the canonical Hamiltonian structure

dqj

dz
= i{qj ,H} = i

∂H

∂q∗j
, (6)

with the Poisson bracket defined as [9]

{P,Q}qα,q∗

α
=

∑

α

(
∂P

∂qα

∂Q

∂q∗α
−

∂P

∂q∗α

∂Q

∂qα

)
, (7)

with {P, P} = 0 and {P,Q} = −{Q,P}, which is the classical counterpart to the quantum mechanical commutator.
The index qα, q∗α denote the choice of canonical variables for the Poisson bracket and will be omitted in the following.
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Due to the normalization, Eq. (3), the Hamiltonian no longer explicitly depend on the propagation parameter, it is
a constant of motion. Furthermore the governing equations have the conserved quantities

K1 = |q1|
2 − |q4|

2, (8a)

K2 = |q2|
2 − |q3|

2, (8b)

K3 = |q1|
2 + |q2|

2, (8c)

K4 = |q3|
2 + |q4|

2, (8d)

P = |q1|
2 + |q2|

2 + |q3|
2 + |q4|

2, (8e)

also known as the Manley-Rowe relations (MRR)s [10, 11]. The physical significance of these can most easily be
understood by a quantum mechanical interpretation as follows. The first two of the relations signify that in the inner
and outer bands, photons are created or annihilated in pairs. The third and fourth relation signify that creating
the photon pairs in the inner or outer bands annihilates photon pairs in the outer or inner bands. Using the first
two relations either of the fields in the third and fourth relation can be interchanged with its field pair partner, i.e.
K3 − K1 = |q4|

2 + |q2|
2 which is the same as interchanging 1 and 4. The last of the relations signify conservation of

photons and due to the rescaling of the fields P = 1. The MRRs are seen to be a overfull set so that only three of
them are independent.

Furthermore the Hamiltonian, and thus the governing equations for the fields, is seen only to depend on the phase
difference ∆φ = φ2 +φ3−φ1−φ4, where the phase is defined by qj(ξ) = |qj(ξ)|e

iφj(ξ). Therefore the eight coupled real
nonlinear differential equations governing FWM can be reduced to four equations governing the real amplitudes and
one governing equation for the phase difference. This can be reduced to a single potential equation for either of the
amplitudes which is solvable using elliptic integrals. Subsequently all the other amplitudes and the phase difference
can be calculated [3, 4]. In the following the problem will be solved in another way giving a geometric interpretation
of all the powers and the phase difference simultaneously. The current solution method also include the common one
as a special case.

As stated by Noether’s Theorem the four invariant MRRs correspond to four symmetries of the governing equations,
Eqs. (4). These symmetries are the Gauge invariances

(q1, q2, q3, q4) → (q1e
−iφ1 , q2, q3, q4e

iφ1), (9a)

(q1, q2, q3, q4) → (q1, q2e
−iφ2 , q3e

iφ2 , q4), (9b)

(q1, q2, q3, q4) → (q1e
−iφ3 , q2e

−iφ3 , q3, q4), (9c)

(q1, q2, q3, q4) → (q1, q2, q3e
−iφ4 , q4e

−iφ4). (9d)

This is seen by letting either of the MRRs act as the Hamiltonian in Eq. (6) and determining the effect of the

evolution, i.e. calculating
dqj

dξ = {qj ,Kk}. E.g. for K1 this would result in

dq1

dξ
= i{q1,K1} = i

dK1

dq∗1
= iq1, (10a)

dq2

dξ
= i{q2,K1} = i

dK1

dq∗2
= 0, (10b)

dq3

dξ
= i{q3,K1} = i

dK1

dq∗3
= 0, (10c)

dq4

dξ
= i{q4,K1} = i

dK1

dq∗4
= iq4, (10d)

i.e. an equal, but opposite, phase shift of q1 and q4 which corresponds to the Gauge invariance Eq. (9a).
It is easy to show that the four-wave equations, Eqs. (4), are invariant under the Gauge transforms, Eqs. (9).

III. REDUCTION TO FOUR-WAVE SURFACES

In this section the dynamics of the four-wave equations will be reduced to dynamics on a closed surface in a 3
dimensional space. A simple example of previous use of such reduction is that of projection of polarization onto
the Poincaré sphere. In that case the reduction of dimension is performed by using a set of invariant coordinates
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with respect to the phase symmetry of the polarization, the Stokes parameters, that project the dynamics onto the
Pointcaré sphere. Similar in our case a set of Stokes-like parameters which are invariant under the same Gauge
transforms must be chosen. Such a set of real parameters X, Y and Z could thus be chosen as

X + iY = q∗1q2q3q
∗
4 , (11a)

Z =
4∑

n=1

pn|qn|
2, (11b)

with pn being some constants that can be chosen freely to focus an analysis on specific properties. Choices of the pj ’s
will be further investigated shortly.

By taking the square modulus of X + iY and expressing the |qj |
2’s in terms of the Z-coordinate and the MRRs one

obtain the expression

X2 + Y 2 = |q1|
2|q2|

2|q3|
2|q4|

2 = κ4(Z − Z1)(Z + Z2)(Z + Z3)(Z − Z4), (12)

with κ = (p1 − p2 − p3 + p4)
−1 and

Z1 = p2K3 + p3(K1 + K4) − p4K1, (13a)

Z2 = −p1K3 + p3K2 − p4(K2 + K4), (13b)

Z3 = −p1(K1 + K4) − p2K2 − p4K4, (13c)

Z4 = p1K1 + p2(K2 + K4) + p3K4. (13d)

The constants Zj ’s can be written in matrix notation as





Z1

Z2

Z3

Z4



 =





0 K3 K1 + K4 −K1

−K3 0 K2 −(K2 + K4)
−(K1 + K4) −K2 0 −K4

K1 K2 + K4 K4 0









p1

p2

p3

p4



 (14)

from which it is seen that the choice of signs for the Zj ’s in Eq. (12), ensure a symmetric matrix.
The coefficients Zj can be found by inserting the MRR in Z leaving only |qj |

2 which can then be isolated, i.e. for
Z1

Z = p1|q1|
2 + p2|q2|

2 + p3|q3|
2 + p4|q4|

2

= p1|q1|
2 + p2(K3 − |q1|

2) + p3(K1 + K4 − |q1|
2) + p4(|q1|

2 − K1)

= (p1 − p2 − p3 + p4)|q1|
2 + p2K2 + p3(K1 + K4) − p4K1

= κ−1|q1|
2 + Z1, (15)

while for Z2

Z = p1|q1|
2 + p2|q2|

2 + p3|q3|
2 + p4|q4|

2

= p1(K3 − |q2|
2) + p2|q2|

2 + p3(−K2 + |q2|
2) + p4(K1 + K4 − |q2|

2)

= (p1 − p2 − p3 + p4)|q1|
2 + p1K2 − p3K2 + p4(K1 + K4)

= −κ−1|q2|
2 − Z2. (16)

By defining

φ = X2 + Y 2 − κ4(Z − Z1)(Z + Z2)(Z + Z3)(Z − Z4) (17)

we immediately acquire the implicit equation, φ = 0, from Eq. (12), which yield the four-wave surface in (X,Y, Z)
space. This surface restricts the evolution of the fields and phase to a two dimensional surface in a three dimensional
space. This space describe the relative phase of the fields through the X and Y coordinates and specific field intensities
through Z, specified by the choice of the pj parameters. Choosing pj = 1 while pn6=j = 0 yield the evolution of the
j’th field intensity giving the exact same result as the usual analysis. Choosing instead p1 = p4 = 1 or p2 = p3 = 1
yield the evolution of the either the side bands or the inner bands intensities while choosing p1 = p4 = 1 = −p2 = −p3

investigate the transfer of energy between the inner bands and the side bands.
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The Hamiltonian in terms of the (X,Y, Z) coordinates is given by

H = κ [Γ1(Z − Z1) − Γ2(Z + Z2) − Γ3(Z + Z3) + Γ4(Z − Z4)]

−
κ2

2

[
(Z − Z1)

2 + (Z + Z2)
2 + (Z + Z3)

2 + (Z − Z4)
2
]
+ 4X

= κ∆ΓZ − κ (Γ1Z1 + Γ2Z2 + Γ3Z3 + Γ4Z4)

−
κ2

2

[
4Z2 − 2(Z1 − Z2 − Z3 + Z4)Z + Z2

1 + Z2
2 + Z2

3 + Z2
4

]
+ 4X

= −2κ2Z2 + κ [∆Γ + κ(Z1 − Z2 − Z3 + Z4)] Z

− κ
[
Γ1Z1 + Γ2Z2 + Γ3Z3 + Γ4Z4 +

κ

2

(
Z2

1 + Z2
2 + Z2

3 + Z2
4

)]
+ 4X

= −2κ2Z2 + κΩZ − Π + 4X (18)

which should be noted to be independent of Y , linear in X and quadratic in Z. Here the rescaled wave number
mismatch ∆Γ = Γ1 − Γ2 − Γ3 + Γ4 = ∆β

γKPt
, the phase mismatch Ω = ∆Γ + κ(Z1 − Z2 − Z3 + Z4) and Π =

κ
[
Γ1Z1 + Γ2Z2 + Γ3Z3 + Γ4Z4 + κ

2

(
Z2

1 + Z2
2 + Z2

3 + Z2
4

)]
has been defined for convenience. The dynamics of the

variables (X,Y, Z) lie on the orbits formed by the intersection of the Hamiltonian with the surface, φ = 0.
The evolution of the four-wave equations can of cause be solved analytically in the new coordinate system which

will be done in the following. Any readers who are not interested in rigorous math can though with great benefit skip
this and go to section IV.

The Poisson bracket relations for the new variables are

{Y,X} =

4∑

n=1

(
∂Y

∂qn

∂X

∂q∗n
−

∂Y

∂q∗n

∂X

∂qn

)

=
i

4

4∑

n=1

(
∂q∗1q2q3q

∗
4 + q1q

∗
2q∗3q4

∂qn

∂q∗1q2q3q
∗
4 − q1q

∗
2q∗3q4

∂q∗n

−
∂q∗1q2q3q

∗
4 + q1q

∗
2q∗3q4

∂q∗n

∂q∗1q2q3q
∗
4 − q1q

∗
2q∗3q4

∂qn

)

=
i

2

(
|q2|

2|q3|
2|q4|

2 − |q1|
2|q3|

2|q4|
2 − |q1|

2|q2|
2|q4|

2 + |q1|
2|q2|

2|q3|
2
)

=
κ3i

2

[
(Z + Z2)(Z + Z3)(Z − Z4) + (Z − Z1)(Z + Z3)(Z − Z4)

+ (Z − Z1)(Z + Z2)(Z − Z4) + (Z − Z1)(Z + Z2)(Z + Z3)
]

= −
i

2κ

∂φ

∂Z
, (19a)

{X,Z} =
1

2
(p1 − p2 − p3 + p4) (q∗1q2q3q

∗
4 − q1q

∗
2q∗3q4)

= −iκ−1Y, (19b)

{Y,Z} = −
1

2i
(p1 − p2 − p3 + p4) (q∗1q2q3q

∗
4 + q1q

∗
2q∗3q4)

= iκ−1X,

{X,Z2} =

4∑

n=1

(
∂X

∂qn

∂Z2

∂q∗n
−

∂X

∂q∗n

∂Z2

∂qn

)

= 2Z

4∑

n=1

(
∂X

∂qn

∂Z

∂q∗n
−

∂X

∂q∗n

∂Z

∂qn

)

= 2Z{X,Z}. (19c)
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Using these the dynamical equations for the (X,Y, Z) coordinates are

dX

dξ
= i{X,H}

= −2κ2i{X,Z2} + κΩi{X,Z} − i{X,Π} + 4i{X,X}

= −2κ2i
(
−2iZκ−1Y

)
+ κΩi

(
−iκ−1Y

)
− 0 + 0

= −(4κZ − Ω)Y, (20a)

dY

dξ
= −2κ2i{Y,Z2} + κΩi{Y,Z} − i{Y,Π} + 4i{Y,X}

= −2κ2i
(
2iZκ−1X

)
+ κΩi

(
iκ−1X

)
− 0 + 4i

(
−

i

2κ

∂φ

∂Z

)

= (4κZ − Ω)X + 2
∂φ

∂Z
, (20b)

dZ

dξ
= −2κ2i{Z,Z2} + κΩi{Z,Z} − i{Z,Π} + 4i{Z,X}

= −0 + 0 − 0 + 4i
(
iκ−1Y

)

= −4κ−1Y. (20c)

In this form the coupling between X and Y , i.e. the evolution of the phase, consist of a contribution equivalent to
a harmonic oscillator with frequency Ω and a power dependent contribution. This clearly show the relation that the
phase of the four-wave interaction is dependent on the power.

Differentiation of the equation for Z, inserting the equation for Y and eliminating X using the conservation of the
Hamiltonian H gives

d2Z

dξ2
= −4κ−1 dY

dξ

= −4κ−1

[
(4κZ − Ω)X + 2

∂φ

∂Z

]

= −κ−1(4κZ − Ω)(H + 2κ2Z2 − κΩZ + Π) − 8κ−1 ∂φ

∂Z
(21)

= −κ−1[8κ3Z3 − 6κ2ΩZ2 + κ(4H + 4Π + Ω2)Z − Ω(H + Π)] − 8κ−1 ∂φ

∂Z

= −f(Z). (22)

Then, by using the common tricks that

2
dZ

dξ

d2Z

dξ2
=

d

dξ

(
dZ

dξ

)2

(23)

and that

dZ

dξ
g(Z) =

d

dξ

∫
g(Z)dZ, (24)

it is possible to write the equation for Z as the potential equation

1

2

(
dZ

dξ

)2

+ U(Z) = E, (25)

where

U(z) = 2κ2Z4 − 2κΩZ3 + 2

[
H + Π +

(
Ω

2

)2
]

Z2 −
Ω

κ
(H + Π) − 8κ−1φ(X = Y = 0, Z), (26)

and E is a constant of integration. The potential is thus a fourth order polynomial and the potential equation can
thus be solved using elliptic equations. The equations of X and Y can thus be written on the form

d

dξ

(
X
Y

)
=

(
0 −[4κZ(ξ) − Ω]

4κZ(ξ) − Ω 0

)(
X
Y

)
+ 2

∂φ

∂Z

(
0
1

)
(27)
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having a solution on the form

(
X
Y

)
=

(
Xhom

Yhom

)
+

(
0

Yinhom

)
, (28)

where Xhom, Yhom and Yinhom are the solutions to

d

dξ

(
Xhom

Yhom

)
=

(
0 −g(ξ)

g(ξ) 0

)
, (29)

with

g(ξ) = 4κZ(ξ) − Ω, (30)

and

dYinhom

dξ
= 2

∂φ

∂Z
. (31)

This procedure will produce the evolution in the (X,Y, Z) coordinates which can be related to the relative phase
from the X and Y dynamics and the intensities using the specific choice of Z and the MRRs. The phases of the
specific field can then be found by splitting the governing equations for complex fields qj into equations for the real
amplitude and phases, inserting the solutions for the amplitudes into the equations for the phases and integrating.

This method of calculating the evolution though seem cumbersome and yield the same results as the usual. Another
simple method giving an intuitive geometric representation with a minimum of calculations will be described in the
next section.

IV. THE REDUCED PHASE SPACE

In the last section the four-wave system has been shown to lie on a trajectory in the (X,Y, Z) space and the method
for finding the trajectory was sketched. In this section another way of acquiring knowledge of the dynamics of the
system is described.

As shown the four-wave system was restricted to the dynamics on the surface given by φ = 0. This surface is
determined strictly from the definitions of (X,Y, Z) and the conserved MRRs and not the physical parameters of the
system such as dispersion and nonlinearity and neither the phases of the fields. Using that the Hamiltonian is also
a constant of motion, the trajectory of the four-wave system can be found as the intersection between the four-wave
surface and the Hamiltonian. The Hamiltonian depends on the dispersion and the phase of the fields.

An example of this could be a single pump parametric amplifier, i.e. the degenerate case at which q2 = q3. By
choosing p1 = p4 = −p2 = −p3 = 1 the transfer of energy is considered since Z = −1 signify that all energy is in
the inner band(s), q2 and q3, while Z = 1 signify that all energy is in the outer bands q1 and q4. As an example

lets have the initial values q1(0) =
√

1
5eiπ/2, q2(0) = q3(0) =

√
2
5 and q4(0) = 0, i.e for copying a signal from q1

to q4 or the amplification of q1. Such initial values yield the four-wave surface shown in Fig. 1(a). The surface is
seen to be tear-drop shaped between Zmin = − 3

5 and Zmax = 1. The lower bound show that all power cannot be

transferred to the pump which is well known for the case where |q1(0)|2 6= |q4(0)|2. The pointy top of the tear-
drop show the full conversion of energy to the sidebands and the non-analytical shape of the surface show that the
conversion can only happen in the infinite time limit. In the case where |q1(0)|2 = |q4(0)|2 and |q2(0)|2 = |q3(0)|2 the
possibility of full conversion both to the side bands and to the inner bands exist, giving two pointy ends of the sphere
as shown in Fig. 1(b) with the initial values |q1(0)|2 = |q4(0)|2 = 1

6 and |q2(0)|2 = |q3(0)|2 = 2
6 . If on the other hand

|q1(0)|2 6= |q4(0)|2 and |q2(0)|2 6= |q3(0)|2 it is not possible to have full power transfer and thus the four-wave surface
is smooth as shown in Fig. 1(c) for the initial values |q1(0)|2 = 1

10 , |q2(0)|2 = 3
10 , |q3(0)|2 = 4

10 and |q4(0)|2 = 2
10 . The

last example could of cause not happen for the degenerate scheme as, per definition, q2 = q3 in that case.
Lets get back to the single pump parametric amplifier. In order to determine the evolution on the four-wave surface

we only need to calculate the Hamiltonian and observe the intersection with the four-wave surface. For an amplifier
setup having the dispersion Γ1 = 0.1, Γ2 = Γ3 = 0.2 and Γ4 = 0.3, i.e. having zero wave-number mismatch, ∆Γ = 0,
the Hamiltonian is shown in Fig. 2(a) and the intersection between the Hamiltonian and the four-wave surface is shown
in Fig. 2(b). As seen the zero wave-number mismatch does not yield the full energy transfer as is well known. The full
energy transfer is though possible for ∆Γ = |q1(0)|2 + |q4(0)|2 which is seen by setting H0 = Hopt and isolating ∆Γ,
where the index 0 denote the fields at ξ = 0 and opt denote the optimal power transfer, i.e. Xopt = 0 and Zopt = 1.
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(a) (b) (c)

FIG. 1: The four-wave surface with p1 = p4 = −p2 = −p3 = 1 and the initial values (a) |q1(0)|2 = 1

5
, |q2(0)|2 = |q3(0)|2 = 2

5

and |q4(0)|2 = 0, (b) |q1(0)|2 = |q4(0)|2 = 1

6
and |q2(0)|2 = |q3(0)|2 = 2

6
, and (c) |q1(0)|2 = 1

10
, |q2(0)|2 = 3

10
, |q3(0)|2 = 4

10
and

|q4(0)|2 = 2

10
.

(a) (b) (c)

FIG. 2: (a) The four-wave Hamiltonian and (b) the intersection between the four-wave surface and the Hamiltonian. Both

with the initial values q1(0) =
√

1

5
e

iπ/2, q2(0) = q3(0) =
√

2

5
and q4(0) = 0, while p1 = p4 = −p2 = −p3 = 1 and Γ1 = 0.1,

Γ2 = Γ3 = 0.2 and Γ4 = 0.3. (c) The intersection between the four-wave surface and the Hamiltonian with the initial values

q1(0) =
√

1

5
e

iπ/2, q2(0) = q3(0) =
√

2

5
and q4(0) = 0, while p1 = p4 = −p2 = −p3 = 1 and Γ1 = 0.1, Γ2 = Γ3 = 0.2 and

Γ4 = 0.5 giving ∆Γ = 0.2 = |q1(0)|2.

An example of full energy transfer is shown in Fig. 2(c) with the initial values q1(0) =
√

1
5eiπ/2, q2(0) = q3(0) =

√
2
5

and q4(0) = 0, while p1 = p4 = −p2 = −p3 = 1 and Γ1 = 0.1, Γ2 = Γ3 = 0.2 and Γ4 = 0.5 giving ∆Γ = 0.2 = |q1(0)|2.
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