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Adhoc wireless network control: energy efficiency
and hidden terminal considerations

Abstract

In this project we investigated challenges of wireless networks design with focus on energy management on battery dependent
devices and the impact of a new hidden terminal problem on the operational efficiency of wireless networks. The results summarized
in this report have been presented in a number of papers published [1], [2] or submitted for publication [3], [4]. In the first part
of this work we consider the optimal control of wireless networks operating with rechargeable batteries under general arrival,
channel and recharge processes. The objective is to maximize total system utility while satisfying energy/power constraints. Starting
from a downlink scenario, we propose a policy with decoupled admission control and power allocation decisions that achieves
asymptotic optimality for sufficiently large battery capacity. Extensions to single-hop and multihop networks are also presented.
Such policies are particularly suitable for satellite downlinks or sensor networks. In the second part of this work, we investigated
performance unfairness (in terms of throughput and delay) on the Medium Access Control (MAC) mechanism of 802.11 standard
in the presence of hidden terminals. To eliminate the impacts from the physical layer (PHY), we assume good channel. In this
case, we may intuitively expect that all stations have equal success probabilities in their transmissions. This intuition is from the
random access scheme of Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) which is employed by 802.11
MAC protocol. However, we will show that the intuition is not true due to hidden terminals. Instead, the following fact is revealed
in this work: The success probability of a transmission is location-dependent. More specifically, the nodes far from the access
point see more hidden terminals than those close to the access point, so they experience more collisions and thus smaller success
probabilities. We build a model to analyze the throughput and collision probability for nodes at different locations, validate them
via simulations and compare with the measurement results from experiments.
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|. INTRODUCTION

In the concept of that project we investigate the challenges of wireless networks design with focus on energy managemei
on battery dependent devices and the impact of hidden terminals on their operational efficiency. This study provides idea
to explore and develop through that work. The report is organized in two parts. The fisrt one is affiliated with the energy
managment on limited-energy devices and the latter with the operational cost of hidden terminals.

Efficient energy management is a crucial component of wireless network design, since it can lead to increased throughput ar
network lifetime. The latter concept, which has numerous application-dependent definitions, is meaningful for battery operate
devices that do not have energy-harvesting capabilities (i. e. they cannot recharge themselves from ambient sources) ar
hence, become inactive once they run out of energy. On the other hand, there exist applications where the wireless transmitte
can replenish their batteries. Two common examples are solar-paneled satellites (where the recharge process depends on
satellite’s exposure to sunlight during its orbit and can be determangdori with high confidence) and sensor networks [5]
(which harvest solar or wind energy so that the recharge process depends on atmospheric conditions and is better modeled &
stochastic process). Such rechargeable systems are usually regarded as having infinité etina,long-term performance
metrics become appropriate.

This document initially considers the control of a wireless downlink operating in discrete time under rechargeable batteries
and later generalizes the analysis to single-hop and multihop networks. The relevant literature has greatly expanded in rece
years, with most works being based on a dynamic programming (DP) and/or Markov decision process (MDP) approach. Finit
horizon control problems are studied in [7], for a single satellite downlink subject to stochastic power demands and reward:
(although no packet dynamics are included), and [8], for a multihop network where the nodes have knowledge of the future
short-term recharge process (an assumption we dispense with in this work). The model in [8] is inspired by the virtual circuit
concept and, as such, performs resource allocation on a one-shot basis for each accepted service request (the latter is descr
by the source and destination nodes as well as the associated gained revenue). Specifically, a policy is developed that, for ee
accepted request, computes an appropriate energy-weighted shortest path from the source to the destination node of the req
and simultaneouslyeduces the energy of all nodes lying on the selected path by the required cost (provided that the gainec
revenue is larger than the expended cost). Since the policy drops any requests that cannot be immediately served, queue
effects are ignored. Additionally, the link-based energy costs do not depend on channel variations.

In [9], a rechargeable group of cells under realistic battery fatigue is examined, where the objective is maximization of the
energy delivered from the battery. Open and closed loop policies for finite and infinite horizon control also appear in [10].
Especially for sensor networks, [11] examines a scenario where the derived utility (namely, probability of event detection)
depends only on the number of active sensors. The sensors are either recharging or transmitting (but not both) and, on
completely drained, can only activate themselves when fully recharged. An upper bound for any feasible policy is derived anc
distributed threshold policies are proposed with a multiplicative guaranteed bound of 1/2 w. r. t. the optimal policy. In [12],
the sensors are allowed to be activated even when partially recharged and an asymptotically optimal (w. r. t. battery capacit
policy is proposed for Poisson and exponential recharge/discharge processes, respectively. Although the last two works dor
use DP (and hence scale well), the analytically derived bounds hold for a rather ideal setting. Finally, [13] focuses on the
temporal correlations between the events sensed by a single sensor and studies, in terms of an MDP, the structure of the optir
policy under various observability conditions. Efficient suboptimal policies are also proposed and numerically evaluated for
multiple node networks in [14]. References [11]-[14] focus exclusively on the sensing aspect of sensor networks rather thal
the network flow of information (i. e. what happeoscean event is detected), which is the main focus of this document.

Our model is distinct from the aforementioned works and is directly influenced by the cross-layer stochastic optimization
framework of [15], [16], which, in turn, was inspired by [17]. This framework was applied in [18], which proposed optimal
adaptive backpressure policies (collectively referred to as ABP) for non-rechargeable power-constrained networks under long
term average constraints, and introduced the concept of virtual queues to handle the latter, while [19] addressed fairness isst
in a similar setting. Unfortunately, the above methodology relies crucially on the fact that available controls depend only on
current channel states and are independent of prior history, and this condition is violated in our model, as will become apparel
later. Hence, this approach is not directly applicable. Our rechargeable model explicitly takes into account wireless channe
variations and packet dynamics and aims in maximizing a suitably defined measure of user satisfaction, while imposing minime
assumptions on the arrival, recharge and channel processes (the basic assumption is that these processes are rate-converge
defined in [15]). Since the lifetime of rechargeable systems is practically infinite, the inclusion of packet dynamics forces us
to study the stability properties of any policy under consideration. An adaptive stabilizing policy is proposed with guaranteed
performance bounds that imply asymptotic optimality for sufficiently large battery capacities.

This report is structured as follows. Subsection [I-A contains the system model and problem statement for a downlink
scenario and also presents a connection with an infinite battery problem which offers important insight. Subsection II-B
introduces the concept of virtual queues and proposes a policy for a rechargeable battery. Stability and performance analys

1if we take into account battery fatigue (i. e. the fact that recharge capability deteriorates as the number of recharge cycles increases), the lifetime is, strictl
speaking, finite. However, as shown in [6], proper design can lead to a lifetime of more than a year, for continuous operation (and even more for typical duty
cycles), which can be considered as infinite for engineering purposes.



for this policy is carried out in detail. The gained experience is used in Subsection II-C to propose policies for single-hop anc
multihop networks, with the latter requiring a more complex analysis (performance bounds are provided in all cases)

As a predominant wireless local area network (WLAN) technology, IEEE 802.11 [20] has defined both contention-free
point coordination function (PCF) and contention-based distributed coordination function (DCF) for medium access control
(MAC). Nonetheless, only the DCF protocol, which is a random access scheme based on carrier sensing multiple access wi
collision avoidance (CSMA/CA), has been widely deployed in the field. The DCF protocol has further incorporated a ready-to-
send/clear-to-send (RTS/CTS) handshake mechanism to mitigalédtien terminal problemwhich causes great performance
degradation if left unattended [21].

Most research on the hidden terminal problem has been focused on the performance degradation to the overall netwo
[22]-[23],[24]. This work, however, focuses on the level of the degradation imposé&tondual nodesWe find that the level
of performance degradation for a node is location-dependent. More specifically, it depends on the distance from the acce:
point (AP). As we will see from the measurement results in section IlI-F, stations at different distances from the AP experience
significantly different collisions probabilities and consequently achieve disparate throughput. Similar observations are mads
from our analysis and simulations (section 11I-D). In a 16-node WLAN, we observe that the throughput ratio between a node
close to the AP and a node at the edge of the network rangestin@® timeso as much agive times In order to establish
a solid theoretical foundation, we propose an analytical model for WLANSs in the presence of hidden terminals. To further
demonstrate the performance unfairness in practice, we further report results from experiments carried out in real environment

We will mainly focus on the scenario with RTS/CTS handshake in our analytical model, since the measurement results tc
be reported in section IlI-F corroborate that WiFi network performance in the presence of hidden nodes is much worse whel
RTS/CTS is turned off as compared to the case where RTS/CTS is switched on.

The rest of the second part will be organized as follows. Subsection IlI-G briefly summarizes the related work in the
literature. Subsection IlI-A describes the hidden node problem and the resulting performance unfairness. Subection 111-B build:
an analytical model for a 802.11 WLAN. Subsection I1I-D validates the model with simulations. Subsection IlI-F presents the
measurement results from our testbed. Finally, the Appendix provides the derivations of the hidden areas and Eq. 107.

Il. ASYMPTOTICALLY OPTIMAL CONTROL OF WIRELESS NETWORKS WITH RECHARGEABLE BATTERIES
A. System model and problem statement

As stated in the Introduction, the proposed policy applies to generic multihop networks under arbitrary rate-convergent
arrival, channel state and (energy) recharge processes. However, in order to simplify the discussion and gain essential insig
into the operation of the policy, we initially present the analysis for a downlink scenario with iid arrival, channel and recharge
processes and, in a later section, describe the modifications needed for the general case. Non-iid processes can be handlec
the T-slot analysis [16] of rate-convergent processes and are not covered here.

We consider a time-slotted system where glabrresponds to the time intervgl ¢+ 1). There exists a single base node
that transmits tal users (i. e. there exist wireless downlink. The link channels are time-varying so that we denote with
S(t) the channel state at slotand assume it is iid distributed over a finite sgti. e. S(t) € S for all t. We also define
Ts = Pr(S(t) = s), where, with no loss of generality, it holdss > 0 Vs. Channel conditions remain constant for the
duration of each slot but may change at slot boundaries. The base node has a distinct traffic stream for each downlink so th
A (t) stands for the number of exogenously generated bits during shait must be transmitted to (downlink) udefThese
bits enter the transport layer and are stored, in a FIFO manner, in an external queue awaiting admission into the network lay
and subsequent transmission. Admission control is necessary for the case of heavy traffic that exceeds the network capaci
When the bits are admitted into the network layer, they are first stored in an internal “network” queue, again in FIFO fashion,
until transmission occurs. Lét(t), U;(t) be, respectively, the number of bits stored at tifria the external/internal queues
of the base node and destined for uséthrough link).2 Denote withR; ;,,(¢) the number of bits moved from the external
to the internal queue (i. e. admitted into the network) of lirkt time¢, and definé R;,, (t) = (le(t))f:l. Supply/demand
constraints clearly requir®; ;,,(t) < Vi(t) + A;(¢) for all [,¢. It is further assumed that each exogenous arrival prodegs
has a deterministic upper bound (i. e. Ai(t) < A; Vt)andis iid distributed with expected value. We will write at times
AL (A)E, andX = ().

The base node is equipped with a rechargeable battery of maximal efigrgy The battery level at time is denoted as
E(t). The battery energy is depleted due to link transmissions but is also replenished due to a recharge process. Specifical
we denote withB(t) the amount of replenished energy during slowhere B(t) is assumed boundedi. e. B(t) < B Vi)
and iid distributed with an expected value Bf At the beginning of each time slof the network controller chooses a power
vector P(t) £ (Pl(t))f:l, where P, (t) is the selected transmission power in lihHuring slot¢. Available transmission power

2in the following, the terms usdrand link I will be used interchangeably, since there exists a 1-1 correspondence between them.

3for economy of expression, we will refer {G;(t) as the internal queue of link and similarly forV;(t).

4we hereafter use bold face to denote vector quantities. The vector's dimension will be apparent from context.

Sthe deterministic bound assumptions.4pn(t) and B(t) can be replaced by the weaker conditions of finite second moments, which leads to slightly modified
performance results (although the proposed policy is unaffected). We choose to stay with the former assumption in order not to obscure the discussion.



vectors may be channel-state dependent, iP&.) € Ps wheneverS(t) = s, wherePs is a finite seét for all s € S. The

only constraints imposed oRs are that for alls € S it holds 0 € Ps and Zlepl <P Vp € Ps, whereP < E,,q.. The

first constraint states that the system may always select to decline transmission while the second constraint models hardwze
limitations or standard regulations. The existence of the finite-energy battery further restricts the available power vectors fo
slot ¢t by the natural conditiorzle p < E(t) Vp e Ps-

To facilitate analysis, it is assumed that all values of the recharge prétgssas well as all members dPs are integer
multiples of an arbitrary constant (i. e. they are quantized), soZlgt effectively takes values in a countable set. For a given
state S(¢) and selected poweP(t), the transmission ratg(t) = (ul(t))fz1 in slot ¢ (i. e. the number of bits that can be
transmitted in each link) is upped bounded, component-wise, by a vector furdtt), P(t)) that satisfies the following
properties

« it holds¢ (s,p) = 0 for any s, p such thatp, = 0. A consequence of the previous statement is the factdbat0) = 0.

« for any s,p, and for alll, it holds ¢; (s,p) < ¢ (s,p) wherep, = d;pr anddy, is Kronecker's delta. The function

¢ (s, p) is non-decreasing, differentiable and concave w. g;.tInterpreting the first condition, it is equivalent to saying
that the maximum rate of link decreases (for a fixeg)) as the other links are assigned non-zero power, which follows
from interference properties. The second condition is also typical of most rate functions and appears often in literature.

« it holds 5 (s,0) < oo for all  ands.

Since all sets encountered so far are finite, we define the Bayril maxses, pepPg C1(S, D).

Under the previous assumptions and notation, the queles= (Vi(t))/_,, U(t) = (U;(t))j—, and the battery levek(t)
evolve a8

Uit +1) = [Ui(t) — ( () ())]++Rl,in(t)a )
E(t+1) = min <E(t) - ZPl(t) + B(1), Emax> : (3)
=1
where[z|* = max(z,0), subject to constraints
Rlzn()<W()+Al() Vl, t (4)
P(t) € Py, ZPl ) < min (E(t),P) Vi, (5)
0<pu(S(t ),P(t)) SCz (S@), P(t)) Vi, t. (6)

It can be argued that; (S(t), P(t)) should be replaced by, (S(t), P(t)) in (2) since, intuitively, there is no benefit in
transmitting fewer bits than those allowed by the selected power (assuming there are sufficient bits to transmit in the firs
place). Although this argument is indeed correct, we elect to keep the current notation and reach the same conclusion throu
the policy specification itself rather than mere intuition.

Denote withR;(t) the number of bitactually transmitted in linkl during slott so that the corresponding time-average rate
is

%ZERZ ™)

We also use the shorthamdt) = (FL(t))lL:1 and write7(t) = 1 Z‘;_:lOIE [R(7)]. Each usei derives a satisfactior (7;(¢))
based on its current time-average rai€t), where the utility functionf;(-) is assumed to be non-negative, increasing,
differentiable and concave We also impose the constrdiiity = 0, f/(0) < co. The total system satisfaction(7(t))
at timet is g (7(t)) = Y2, fi (7 (t)). We finally make the following natural

Assumption 1: At time = 0, all bit queues are empty.
No assumption is made regarding the initial battery level; hei(® can take any value if0 FE,,..]. Loosely speaking,
a decision rule is a procedure for selecting the control variathtgs(t), P(¢t) for a specific time slott subject to all
aforementioned constraints, while a policy is a sequence of decision rules for all time slots. We restrict attention to policies
that stabilize the network according to the definition of [15]. Specifically, a network with a composite fieués stable
iff limsup,_ . + Z E[Ui(7)] < oo V. Note that the notion of stability considers only the internal quEi{é) since the

Balthough in our case it holdBs = P Vs € S, since there is no reason for available power choices to depend on the channel state, there exist scenarios
where the available powers depend on a properly defined state space (which may include more components than channel conditions only). These cases ¢
fall under the considered model.

“unless otherwise noted, the accewill always denote an upper bound.

8unless otherwise noted, the indickss, p will hereafter range, respectively, over the sgis. .., L}, S, Ps (e. g. we writeV s instead of the formally
correctvV s € S, etc).



external queueV (t) is, by definition, not part of the network layer (in fact, for heavy arrival traffic that exceeds network
capacity,V (¢t) must grow without bound). Hence, we state our problem as follows

Problem 1: For the downlink scenario described by the queuing evolutions of (1)—(3) and the constraints of (4), (5), find
a stabilizing policy that maximizdam inf; ., g (7(¢)). The optimization is performed over the set of all stabilizing policies,
including those with perfect knowledge of future events. Denote the optimal objective vajfje as

Determination of the optimal policy in Problem 1 is very challenging, so we instead seek a policy with a system utility that
is close to the optimal one. Sinde B are considered to be system parameters, we can fix their values and restate the problem
as

Problem 2: Under the same assumptions as in Problem 1, find a policy that fot any achieves an objective value no
less thang?, — ¢, provided thatE,,., > E*(e) for a sufficiently largeE* (e).

Sinceg;, clearly depends ot,,,., a better notation would be’, (F,,...) but we elect to simplify notation and keep the
dependence implicit. Problems 1, 2 are essentially sequential decision problem that can, in principle, be attacked with dynam
programming (DP) and/or Markov chain techniques. However, these techniques are impractical since they suffer from the
dimensionality curse of DP and require extensive knowledge of system parameters,se \g.which may not be available
to the network controller. On the other hand, the Lyapunov drift framework of [16]-[19] assumes that at amy stetemay
always choose any of the available controlsHg. However, this is not the case in our model, as evidenced from (5), which
implies that whenE(t) < P the available powerd(t) depend explicitly on the battery levél(t). Hence, this approach is
not directly applicable to our problem. Nevertheless, it suggests the existence of a modified policy that solves Problem 2 whe
Epmaes > B, P. The intuition behind the last statement is explained below.

1) Some intuitive remarksEquations (3), (5) imply

t—1 L t—1 t—1 L
1 _
Pi(7) < Emas + B(7) = limsup — E P(r)| < B, 8
;;m ;() m su t; ;m (8)

where the first relation expresses conservation of energy and the second one follows from the first by taking expectation:
dividing with ¢ and taking a limsup as — oco. Eq. (8) implies thatiny policy (stabilizing or not) acting on the rechargeable
battery satisfies an average power constrainBefwhich in turn allows us to perform the following “thought experiment”.
Consider the same downlink problem as above and replace the rechargeable battery with an infinite capacity battery, whic
essentially removes (3) and tig) constraint in (5). Denote with;,, the maximum system utility achieved over all policies
acting on the infinite battery with average power constr&iftve collectively refer to these as “average” policies). This scenario
is treatable by the methodology in [18], which proposes an ABP-based adaptive policy whose performance can gproach
arbitrarily close. Since it clearly holdg.. < g;,,, Problem 2 is solved if we can find a policy (for the rechargeable battery)
that performs better thag;,, — €.

At this point, and since the finite energy content of the battery affects decisions onlyRiher: P, one might be tempted
to directly apply the ABP average policy on the rechargeable battery (obviously, when ABP selects a power that exceeds th
currently available energy, a best-effort action is taken). After all, assufiioy = E,,q. > P and applying the ABP average
policy, it would take a very long time for the battery level to drop belB\wwhere ABP is non-optimal. Hence, it can be
argued that such a policy is optimal “most of the time” and the asymptotic optimality is essentially “proved”. The previous
reasoning is wrong in an infinite horizon model in that it neglects what hapgfearsthe battery drops below. Specifically,
if ABP results in the battery level oscillating aroutitj or, worse, staying undep for extended intervals of time, then even
though ABP is optimal for the time interval before the battery dropped bétofer the first time, it becomes non-optimal
for long intervals of time after that. If this occurs for many sample paths, it is not evident that the suggested policy performs
close to optimal.

The previous paragraph effectively described a mechanism through which any policy acting on the rechargeable batter
suffers a performance loss with respect to the ABP average policy. The crucial point is that itaspnoti known (and
neither is it intuitively obvious) whether this loss can be made arbitrarily small. Another mechanism that leads to performance
degradation is the loss of recharged energy due tdthg, cap. Specifically, for a slot, it may hold E(t) > E,a. — B and
for a poor channel state the controller elects to transmit with low power (so that power is withheld for better channel states
which can offer increased utility) and when the battery is recharged, the replenishment is too high so that some energy is lo:
due to theF,,., cap. Obviously, if the controller knew in advance the exact amount of energy replenishment, it could elect
to increase the selected transmitted power by the amount of overflow @hgye This would have the effect that the battery
energy would still be the same at the end of the time slot but now the user has received a higher satisfaction. Clearly, the AB
average policy is immune to this effect, since there is no battery to overflow in the first place.

The previous observations indicate that a policy closely resembling the ABP average policyEiher P and under
which Pr(E(t) < 13) andPr(E a0 — B < E(t) < Enqz) are small should perform nearly optimally. This is quantified next.

B. Performance analysis



1) Virtual queues and policy specificatioe now focus on the rechargeable battery setting and, in the spirit of [15],
introduce a virtual queue for each linear long-term constraint. Two such constraints exist in our model, the first one due to the

finite arrivals, as modeled in (1), and the second one due to (8). Hence, we define virtual IrL(e)Jés(Yl(zf))lL:1 and D(t)
which evolve as

Yi(t+1) = [Yi(t) — R ()] +m(2), (9)
D(t+1)=[D(t) - (1= 6)BH)]" +>_ A1), (10)
=1

for some0 < ¢ < 1, where~,(¢) is an auxiliary process introduced for mathematical convenience. Ihg€),~v(¢t) are
determined by the policy, we can impose arbitrary bounds on them. Specifically, we rBguike), v;(t) < A, V1. The virtual

gueues are constructed in such a way that any policy that stabilizes them also satisfies the appropriate long-term constrair
(this novel insight was introduced in [18]). Eq. (10) is different from the standard approach of [18], which would replace
(1 —0)B(t) with B, since the latter is the actual constraint to be satisfied. This modification is an essential ingredient of our
approach and has important consequences, as will become apparent later. Fig. 1 represents the interconnections between
various physical and virtual queues, as defined by their evolutions in (1)—(3) and (9), (10). The dotted line in Fig. 1 is used

\ lvl (®)
Y :
gngrr gquantia
verflow :
E® ; Y, (0
BXTR R,
: \, : Y
D(Y) U,
T l v (SO.PO)
(1-3)B(t)
power-related queues bit-related queues

Fig. 1. Queue connections in the downlink scenario with reggeble battery.

to examine the aggregate queueHift), D(¢). Since the compound queue has an arrival rat& @) and a service rate of at
most (1 — 0)B(t), it is unstablée, a fact that will be of crucial importance later. In foresight, it will be used to show that the
queueE(t) is sufficiently loaded most of the time so tHat(E(t) < P) is small.

To assist the reader, the policy description is given first, followed by the stability and performance analysis in later sections
Specifically, we propose the following

Downlink rechargeable adaptive backpressure policy (DRABP)

1) at the beginning of slat, observe queue¥ (t),Y (¢), V (t) and selectR,, (t) bits for admission into the network layer
according to

L

R, (t) = argmax (nYi(t) = U (t)) r
g ; ny l 1 1)

st 0<r <min (w(t) + Al(t),/ll) Vi,
wheren is a tuning parameter used for balancing the congestion among the physical and virtual queues.

%n principle, the aggregate queue would still be unstable if we replated)B(t) with (1—4)B in (10), though the analysis would be more complicated.
Also, B may not be known to the controller whilB(¢) can be easily computed.



2) selecty(t) as the solution to the following problem

L
y(t) =argmax Y [V fi (w) = n¥i(t)v]
— (12)
st. 0L < /All Vl,
3) observeS(t) and selectP(t) as the solution to the following problem
L L
P(t) =argmax Y [Ui(t)u (S(t),p) — D(t)p] = argmax Y _ [Ui(t)er (S(t). p) — D(t)p]
=1 =1
(13)

L
st. pePgy, Zpl < min (E(t),ﬁ) )
=1

OSMZ (S(t)ap) <q (S(t)vp) VL
4) update queue¥ (t), Y (t), U(t), E(t), D(¢), in that order, according to the appropriate evolution equations.
The previous policy will occasionally be denoted as DRABR, V') to emphasize its dependence on these two parameters.
Its difference from the policy of [15] lies in the presence of the tdfin) in the constraint of (13). As previously mentioned,
this term causes the analysis of [15] to become inapplicable to our model so that a new approach required. The followin
observations can be made
o Eqg. (11) accepts a bang-bang solution of the form

R = | m (Viet) + 4i(0), Ar) if Ui(e) < Yi(e), "
- 0 otherwise

. the concave maximization problem in (12) is separable and has a closed form sol@fyrif(;) is analytically known
(the ! superscript denotes functional inverse).

« the problem in (13) is the most computationally expensive step of DRABP and, depending on the foim-pfiwhich

in turn depends on network interference properties), may not be separable.

Note that DRABP requires no knowledge of system parameters {&,d\) and the intuitive rule of transmitting with peak
rate for a giver power arose naturally through (13). It remains to examine the stability and performance properties of the abov
policy. The latter requires some additional notation and results to be introduced.

2) Some preliminary resultsThe following lemma, which is proved in [15], characterizes the optimal solution to the infinite
battery with average power constraint and, as stated in Section 1I-Al, provides an upper boangrirhargeable policy

Lemma 1: No downlink stabilizing policy acting on an infinite capacity battery under an average power constr&int of
can achieve an objective value larger than

L
g;;llg =max Zfl(”)
=1

(15)
st reRrR,
0<r <A,
where
L —
R={_reR"t: EWIS)ZO st.0<r < Z Z cl(s,p)wfﬂrs Vi, Z Z Zpﬂrfﬂrs < B, Z Wf,zl Vs p.
SeS pePg SeS pePg I=1 pPePg
(16)

Clearly, the quantityrf, in the definition ofR is a discrete pdf on the s@ts. In [15], it is interpreted as the probability with
which a randomized policy would select powemwhen the current channel stateds

The starting point for deriving a performance bound for any rechargeable policy is the following variation on a known result
[15, Lemma 5.3 and Theorem 5.4]

Lemma 2: Consider a concave functigfi) and stochastic processéKt), X (t), Z(t). If there exists a non-negative function
Ly (X (¢)) (referred to as a Lyapunov function) such tH{tLy (X (0))] < oo and the following relation is satisfied for all
and some constants, V' > 0

A(X (1))~ VE[g(Z(1)| X(D)] < C - Vg + Q(1), (17)

it then holds

N . C+Q
liminf g (2(t) 2 " — ——

(18)



where z(t) is the time-average of(t), A (X (t)) £ E[Ly (X (t+ 1)) — Ly (X (t)) | X (t)] and

£ lim sup = Z E[Q (29)

t—o0

See Appendix V-A for the proof. A variant of Lemma 2 can also be used to prove stability of any policy that satisfies a
modified version of (17); however, we will actually be able to prove a stronger result (namely deterministic queue bounds) by
examining the policy specification itself, so this variant is omitted.

We also define, fof < 6 < 1, the set

Rs 2 {r ERV: 3mp >0 st > prprs <(1-0)B, 0<n <Y al(s,p)rprs VI, > mp=1 VS}7 (20)

s,p,l s.p p

as the set of rates that can be stabilized by a randomized policy subject to an average power conétrairdt) 8f, and the
optimization problem

L
g5 =max Zfl(m)
=1

st 0<r <),
r €Rs.

(21)

Since0 € Ps Vs, it follows thatR; # @. Also, Rs has the following properties
« it is convex and compact
e 7 €ERsimpliesr; € Rs Vry <.
These properties are proved in a straightforward manner in [15], which also provides the following continuity result
%F()l 95 gavg (22)

3) Stability and performance properties of DRABPhe following result, proved in Appendix V-B, provides all necessary
information for the stability properties of DRABP
Lemma 3: Under DRABP, queuds(t), U(t), D(t) are deterministically bounded for atl as follows

VH0O) . oa
viy < 1O L 42y v
n
Uty <nVi+ A 20, V1, (23)
. Ca
< =
D(t)_lléllaSXL(Ul l)+P D,

where () £ maxges g” (s,0).
Hence, we have actuaIIy proved a much stronger result (namely determlnlstlc bounds) than stability for DRABP. In order to

derive a performance bound via Lemma 2, we define the composite qXiétie= (U (t), Y (¢), D(t)) and the Lyapunov
function

L
Ly(X(t)) = (UX(t) + nY2A(t)) + D2(t) (24)

From (2), (9), (10) and Lemma 4.3 of [15], it follows after a little algebra

UE(t+1) S UF(E) + i (S(1), P(t) + RE i (t) = 2U1(8) [ (S(t), P(t)) — Ru,in(t)], (25)
Y2(t+1) S VPA(t) + RE i () + 97 () = 2Y1(8) [Ru,in () — (1)), (26)
L 2 L
D2(t+1) < D*(t) + (1 — 0)*B%(t) + <Z Pl(t)> —2D(t) [(1 —6)B(t) — Z Pi(t) (27)
=1 =1
Summing (25), (26) ovel and using all the imposed bounds results in
L L
AX(1) <3 (@ + @+ 1)AF) + B2+ P2 = 2E | 37 U(E) [ (S(8), P(8)) — Ruin(0)] X(t)]
. =1 =1 . (28)
—2mE Z ) [Riin(t) —v(D)]| X(t)| —2D(t)E [(lé)B(t) =Y At X(t)] .
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Exploiting the iid nature ofB(t), which impliesE [B(t)| X (t)] = B, subtracting2V’ E [Zle fi (m(t))’ X(t)} from both
sides and rearranging terms yields

L
S (%(t))| X(1)

=1

A(X(t) - 2VE S VA ) = nYi)n(t)]

X (t)]

(29)
—2E | Y [Ui(t)u (S(1), P(t) — D(t) Pi(t)]

=1
—9(1-6)BD(t),

> Vi) = Ui(®)] Ruin (1)

X (t)]

whereC £ B2 + P2 + Zl 1 ( +(2n+ 1)A2) The last equation justifies, in retrospect, the specification of DRABP since
each step of DRABP is chosen so as to minimize the overall Lyapunov drift in (29).

Our intention is to bring (29) into the form of (17). To this end, we need to bound each term in (29) in such a way that the
policy actions (i. e P(t), R;,(t)) are removed due to cancellations. This procedure will occupy the entire current section. The
following remarks will be useful. For a giveX (¢) (which implies thatU (¢), D(t) are known) andS(t) = s, the solution to
the optimization in (13) is independent froR(t) when E(t) > P. We denote this solution gs; and use the notatiof (s, e)
for the solution to the same problem whéit) = e < P. Since the zero power vector is always an allowable selection, it
follows from optimality of (13) (recall tha(¢) is selected according to the DRABP policy)

M=

[Ui(t)er (S(t), P(t)) — ZUl a(S(t),0)=0 Vvt

N
I
-

(30)

=Y [Ult)a(s,P(s,e))— D(t)P,(s,e)] >0 Vs,e,t.

] =

N
Il
N

Consider now the joint probabilitys () = Pr(S(t) = s, E(t) = e| X (t)), when DRABP is applied, and denote with
E(t) the set of values that'(t) can take under DRABP (it is easy to show inductively thét) is countable). It holds
L

> Wit)e (S(1), P(1)) = D(t)Ai(t)

=1

L
>3 3 ST (Uit (5.95) — DO )] as.e 1)

SeSece(t) I=1

] > D Z Ui(t)er (s, P(s,e)) — D(t)Pi (5,¢)] s, (t)

SeSec(t) I=1

=Y Z Z Ui(t)er (s,p5) — DOpis] as.e(t) = Y Y > [Uit)ei (s,p5) — D()pf ] as.(t) (31)

SeS eck(t) I= ses eGS(At) =1

e<P

=3 3" [Uilt)er (s, p5) = D(twis] 7s = > S [Uilt)en (s,p5)) = D(t)pi..] Pr ( E(t) < P, S(t) = s| X (1))

Sses =1 Sses =1

L

> Z [Ui(t)er(s, ps) — D()pi ] 7s — > U Pr (E(t) < [3‘ X(t)) ;

SeSs I=1 =1

where the first inequality is due to (30), the fourth line is due to the independengg &bm e (the value of E(t)) and
the final line follows from the bounds ot/ (¢) (due to Lemma 3) and; (s,p). We also used the iid property to write
Y ses Us,e(t) = Pr(S(t) = s| X(t)) = ns in the transition from the third to the fourth line.

Pick any pdfwf, acting on the sePs. We have, from optimality of (13),

L

Z [Ul(t)cl (Sapg) - Dl(t)ﬁ,s} > Z [Ul(t)cl (S’p) - D(t)pl] Vi, s, p, (32)

=1 =1
so that multiplying withwf,ws, summing overs, p and exploiting the pdf propertEpEpS wls, =1 yields

L

L
S 3 S Uil (s.05) — Dtwis] whms = 3 3 S [Wilt)er (s,p) — D(t)pi] wyms

SES PePg I=1 S€SPePg I=1

=Y > [Uit)ei (s.p3) = Dt)pis] ms = > Y > [Uit)er (s,p) — D(t)p] mpys.

ses =1 seSpePg I=1

(33)
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Now pick anyr such that0 < r < X, whence it follows

A) 5 < Ae) < min (Vi(t) + Ai(0), Ar) VL (34)
l
Hence, A;(t)r;/\; belongs to the constraint set of the optimization in (11), so that
L
> Ya(t) = Ui(t)) Riin(t Z >Al<>Al vt, (35)

=1 =

where R; ;,,(t) is selected by the DRABP policy. The last expression contains the random varighle@), A;(¢) so that
taking conditional expectations updXi(¢) and using the iid nature of;(¢) provides

Z 77Yl )le()

L

X(t)] >3 (Yi(t) - Uie)m Vr: 0<7T <A (36)
=1

sinceE[A;(t)| X (t)] = A Also, the above- satisfies) < r; < A;, so that optimality of (12) implies

L L
Do WVA (@) =nYi®m@®)] = YV filn) —nYit)r] ¥Vr: 0<r <A, (37)
=1 =1

where~;(t), which is selected according to the DRABP policy, is a random variable. Clearly, a similar inequality is produced
for the conditional expectation upaX (¢) of the LHS of (37).
Inserting (37), (36), (33) in (29) produces

Zfl n(t

=1

=23 > N [Uit)a (s,p) — Dt)pd wprs + 226@ pr(B(t) < P

SeS pePg =1

L L
A(X(t) —2VE <C=2) (VA(m) —nYi(t)r) =2 (qYi(t) = Ui(t)
=1 =1

(38)

X(t)) —2(1-8)BD(t).

Equation (38) holds for any with 0 < » < X and any pdf7rs Hence, we can pick to be the maximizing argument of (21)
(i. e. the vector achievingy) andwzs) the pdf that corresponds to it according to (20). This creates some cancellations in (38)
and, through the definition dRs, strengthens (38) to

L L
AX(®) —2VE S fitu@)| Xt)| <C -2V +23 &l Pr (E(t) < 15} X(t)) Vi, (39)
=1 =1
A direct application of Lemma 2 now provides
L
o _ . ¢ XYral
htrgggf ; i) > g5 — v v h?lsot:lp ZPr ( ) (40)

sinceE[Pr(E(t) < P|X(t))] = Pr(E(t) < P).

4) Performance bound of DRABHEQ. (40) is not very informative since our original intention was to provide a bound for
the liminf of Zle fi (7 (t)) and notd_,~; fi (:(t)), which has no physical meaning. Additionally, we need to estimate the
limsup appearing in (40). The first issue is handled through the following Lemma, which essentially exploits the stabilizing
properties of DRABP. The result, whose proof is found in Appendix V-C, is initially stated in a general setting and then
reduced to our model

Lemma 4: Consider any compound queZig) (with physical or virtual components) with an arrival proceds, (t) and
a bounded service procegs,,,(t) that evolves asZ (t + 1) = [Z(t) — p,.(t)] " + Ain(t), with E[Z(0)] < co. Denote with
.. (t) the number of bitsctually transmitted at slot and define the long-term averagas, (t), i, (t), [y (t). Under
any stabilizing policy, it holds

liminf g (@in (t)) = liminf g (Fo,,(t)) < Hminf g (fy, (t)) (41)

whereg is any continuous and component-wise increasing function @. €.y impliesg(x) < g(y)).

Consider now the queués(t), U(t). These queues are stable (in fact, finite) under DRABP, so that applying the above
Lemma w. r. t. the evolution equations (9), (2) and setijiig) = Zle fi(z;) (this g clearly satisfies the conditions of the
Lemma) results in

L
- _ _ < _
htrglolgf lg_l i) hmlnf E Ji (FLin(t)) hmlnf E Ji (Frin( hmlnf E fi (7t (42)
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The following statement, proved in Appendix V-D, provides an estimation of the limsup appearing in (40)
Lemma 5: Under DRABP, it holds

o—1 i A~
P + D — Ema;v
< bt
hiris;jp ZPr ( < P) Pr (Z B(k 5 ) , (43)
whereo = [Epq. /P —1].
Combining Lemma 5 with (42), (40) yields the main result for the downlink case

Theorem 1: DRABP stabilizes the system and achieves a performance bound of

L o—1 ~ A
. . _ * . . P + D - Emax
11g£f;fl (Fi(t)) > g5 — C1 — Co Pr <;} B(k) < f> : (44)

whereC;, = C/(2V) and Cy = S, (&0))/ V.
An examination of Lemma 3 reveals that, D = ©(V), C = ©(1) andC} = O(1/V). Theorem 1 admits the following
Corollary 1: For given policy parameter¥, n > 0, a selection oft,,,, such thatF,,,, > P+D implies the following
performance bound for DRABP

L
Htfg;l}olflz: fi () > g5 — Ch. (45)
=1

SinceC; = O(1/V) and g§ — gany @S0 — 0, the above RHS can approagh,, arbitrarily close asiy — 0 andV — oo
(provided that it holds®,,., > P + D), which implies the asymptotic optimality of DRABP.

Additionally, a slightly more complicated asymptotic result can be established for the réginie— 00 B < Fpay < P+ D
(the regimeE,., > P + D is handled by Corollary 1) according to the following

Lemma 6:For given policy parameterg,n,d and iid recharge proces8(t), a selection off,,.. S.t. P+D—06B <
Epaw < P+ D implies the following bound for DRABP

ot (M _ B)
od

i~ P+D*Emaz
Pr Bk) ——— | <ex
(Gt oo

£(x) £ Sl;p (9:1: +6B—1nE [eeB(t)D . (47)

(46)

where

Due to the iid property, any value fercan be used in the last expectation.
Proof: See Appendix V-E. ]

The qualitative aspect of the above corollary could, in sgiext, be derived independently through the following

Lemma 7: The conditio®,,,,, > P + D implies E(t) + D(t) > Ena, for all t > 7 (where7 = inf{t : E(t) = Epaxz} IS
the first time the battery hit&,,..) and thereforeE(¢) > P forall t > 7.

Since 7 is finite w. p. 1 (due to the infinitely often overflow mentioned in Appendix V-D) and we are interested in the
infinite-horizon average utility, we expect that what happens in the finite part @puitl not contribute to the average. Since
for t > 7 the battery never falls below?, one of the loss mechanisms mentioned in Section 1I-Al is eliminated so that
performance loss (relative to an average policy with vdlue §) B) can only come from lost recharge. This implies a DRABP
bound similar to (45), where th€; term is now attributed to the remaining mechanism of lost recharge. Although it is not
used in the subsequent parts, the interested reader will find a proof of Lemma 7 and the previous intuition in Appendix V-F.

5) Removal of the assumptiofi(0) < co: The only reason for imposing the assumptiffif0) < oo in Section II-A is
that it allowed us to easily provide deterministic bounds for all queues according to Lemma 3. On the other hand, any utility
function of the formf(z) = z® with 0 < a < 1 satisfiesf’(0) = oo, so that the previous analysis must be modified. This is
described next.

Specifically, we still assume monotonicity and concavity for f&ll) as well asf;(0) = 0 (since any other condition is
unnatural) andf/(z) < co ¥z > 0. However, it may holdf/(0) = oo for somel. For a givens > 0, we propose the following
policy that is identical to DRABP except for the second step (selectiop(f) which is replaced by

« For! such thatf/(0) < oo, select

A (t) =argmax [V fi(y) — nYi(t)]

A (48)
st. 0<y <A,

i. e.7/(t) has the same value ag(t) in DRABP.
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For I such thatf/(0) = oo, first solve the problem

30(t) =argmax [V fi(v) — n¥i(t)y]

. 49
st. B<y <A, “9
and then select/’ (¢) as®
6 0 if vy(r) > YLD
Nt =9 5 o (50)
4, (t) otherwise

We denote the above policy @&sDRABP to emphasize its dependence @nThis policy is chosen so that it approximates
DRABP as$ — 0 and (most importantly) guarantees bounded queue¥ oy, U (¢), D(¢). In fact, a repetition of the proof
of Lemma 3 provides the following

Corollary 2: Application of 3-DRABP results in the following bounds for all

Yi(t) <Y = HLE L A f7(0) = oo,
1 >~ I — ~ .
%(O) + A; otherwise
. i s (51)

whereC; £ maxges 2% (s,0).

Denote withv;(¢) the solution to (12), so thay(t) = 7f(t) if £/(0) < oco. If f/(0) = o0, it holds eitherY;(t) < V f/(5)/n
or Yi(t) > V f/(8)/n. In the former case, concavity ¢f implies that the functiorV f;(x) — nY;(t)x is non-decreasing in the
interval [0 ], so that the argmax of (12) lies in the intenjal 4], and thereforeyf(t) = 7(t). In the latter case, the

argmax of (12) lies in the intervdd 5] while 715(15) = 0. Hence, the following bound holds in all cases

V1 (u(6) = @] = [V (77 0) = n¥i0nf (0] < max [V (@) - nYi()a]

0<z<p3 (52)
<Ogla§ﬁvﬁ( z) =V fi(B),

where we used the monotonicity ¢f. We defineF = {i: f/(0) = oo} so that the separability of (12) implies

i [Vfl (Vl (t )) —nYi(t } i [V fi (m) —nYa(t VZfz (53)

=1 =1 leF

for all 4 such that0 < v, < A;. Repeating the Lyapunov drift calculation of Section I1-B3 f&DRABP results in a form
identical to (29) with the addition of the ter@¥ ), _, fi(3) to the RHS. Hence, the following extension to Theorem 1 is
derived

Theorem 2:3-DRABP stabilizes the system, with the queue bounds of (51), and achieves a performance bound of

L o—1 A A
liminf Y " fi (7(t) > g5 = Y i) — C1 — C2Pr (Z B(k) < w> : (54)
=1 k=0

leF

Sincef; is continuous andf;(0) = 0, the term}_,_ - fi(3) can be made arbitrarily small by picking a small enoygffwith

a corresponding increase in queue bounds) so that asymptotic optimality is retained.

Hence, the assumptioff(0) < co can be removed w. |. 0. g. In the remaining sections, we keep this assumption to slightly
simplify the expressions under the implicit understanding that a generalization similar to the above is possible.

C. Extensions to single-hop and multihop networks

A careful examination of the proofs of the various statements in Section II-B reveals that, apart from algebraic manipulations
the optimality of DRABP rests on the following crucial point: quedég&), U (¢), D(t) are deterministically bounded (in fact,
the boundedness of each queue is used to prove the boundedness of the subsequent ones) and, by consXugtithre of
battery overflows infinitely often. Hence, we expect a policy that has the previous properties, when applied to a general network
to achieve similar performance to DRABP. This is studied next.

10clearly, 8 is used as a superscript, rather than an exponent, in this context.
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a) Single-hop networksConsider a single-hop network consistingfnodes, where each nodeis allowed to transmit
to any of its neighbors belonging to the €8f. The single-hop constraint implies that once a bit is transmitted, it also exits
the network layer. Hence, in terms of the bit queues, a single-hop network is just an aggrejaietefacting downlinks, so
that most of the notation of Sections II-A, II-B can be modified to fit the new model. Specifically, we denot& yfiththe
battery level of node: at timet, and with A,,;(¢) the exogenous arrival process at neddestined for nodé (wherel € O,,),
while B,,(t) is the amount of replenished energy of nodat timet¢. These processes are still assumed iid with mean values
of A, B, and upper bounded by,.;, B,, respectively. SimilarlyV,,;(t) denotes the external queue of nodevhere bits
destined for nodé are kept,R,,;,i»(t) the number of bits admitted at slointo noden destined for nodé etc. Denoting with
7 (t) the average rate up to timefrom noden to nodel, the objective is to maximizém inf; . >, ; fur (7u(t)), where
fn are, per link, utility functions with the properties mentioned in Section II-A. The evolution equations are essentially the
“vectorized”, w. r. t. the nodes, versions of the downlink evolutions, i. e.

an(t + 1) =V (ﬁ) + Anl(t) - Rnl,in (t), (55)
Uni(t +1) = [Uni(t) = pt (S(t), ()] + Rupin(t), (56)
En(t + 1) = min <En(t) — Z Pnl(t) + Bn(t); Emaz) 9 (57)
€Oy,
Ynl(t + 1) = [Ynl(t) - Rnl,in (t)]+ + Yni (t), (58)
Dy(t+1) = [Dat) = (1= 8)Ba()] T + Y Pult), (59)
€O,

subject to constraints
Rnl,in(t) S an(t) + Anl (t) VTL, la ta
P(t) € Pgyy, Y Pult) < min (En(t),ﬁ) Vn, t. (60)
€0,

Each node is therefore equipped with a set of queues connected as shown in Fig. 1. We denote the composite que
X (t) £ (U(t),Y (t), D(t)) and select a Lyapunov function (unless otherwise stated, the indi¢esill range over the sets

{1,..., N}, O,, respectively)
Ly (X(t) = Z (U @) +nY2(t) + Z D3 (t) (61)

n,l

The analogue of Lemma 1 becomes
~ Lemma 8: No stabilizing policy acting on a single-hop network with infinite batteries and an average power constraint of
B can achieve performance greater than

N

g:;vg =max Z Z fnl(rnl)
n=11€0,, (62)
st reR,

0<r <A,
where

R = {r : 37718, st.0<r,; < Z Z Cnl (S,p)ﬂ'gﬂ's Vn,l
SeS pePg

S>> pumprs <B, Vo, Y mp=1 Vs},

SeS pePg l€O,, PePg

(63)

with a similar definition forR; (i. e. replaceB,, with (1 — §)B,, in (63)). It still holdslimso g5 = Javgr Wheregs is the
solution to the optimization of (15), albeit with the new definition 0.

The reader can repeat the steps of Section 1I-B and arrive at a result similar to Theorem 1. To avoid redundant repetitiol
and assist the reader, we provide only the salient points of this procedure. Specifically, the Lyapunov drift under any policy
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satisfies the following analogue of (29)

> fat (i (1))

n,l

A(X(t) —2VE X(t)| <C=2E | > [V fur (yr(t)) = nYor(t) i (£)]

n,l

X(t)]

X(t)] —2E {Z Y31 (8) = Uni ()] Rutin (1)

n,l

—2E |:Z [Uni (@)t (S(t), P(t)) — D (t) Prui(t)]

n,l

—2(1-6))_ BnDn(t)

whereC' = NP2+ Y, B2+, ((217 +1)A2, + cm) is a policy independent parameter, with = maxs p ¢, (s, p). We
now propose the following policy, which is again a “vectorized” version of DRABP.
Single-hop rechargeable adaptive backpressure policy (SRABP)

« at the beginning of slot, observelU(t), Y (t), V(t) and admitR;,(¢) bits into the network layer according to
Rin(t) =argmax Y (Vo (t) = Uni(t)) rs
n,l
sit. 0<r, <min (V (t) + Ani(t), Anl) Vn,l,
« selecty(t) as the solution to the following problem

7v(t) =arg max Z V frr(ynr) = nYni () v

n,l (66)
st 0< v <An VYn,l,

«» observe channel stat(¢) and select transmission pow#Yt) according to

P(t) =argmax Y [Uni(t)cn (S(t), ) — Du(t)pn]

n,l

st. pePgy, Z Pri < min (En(ﬁ),P) Vn,

leO,

x( t)] (64)

(65)

(67)

Applying the above policy results in queu®dt), U(t), D(t) being deterministically bounded (essentially, the vectorized

version of Lemma 3, proved in an identical manner as in Appendix V-B, provides bagnds,.;, D,,). The finiteness of

D, (t) implies, with an argument identical to the one in Appendix V-D, that each battery overflows infinitely often and hence

o—1 ~ 2
) P+D,—E
Pr (En(t) <P, < t) < Pr (Z Bn(k) < w> : (68)
k=0

where7,, = inf{t: E,(t) = Enq.} IS the first time the battery of node hits E,,,,..
To derive the analogue of (31) under SRABP, we defigig () £ Pr(S(t) = s, E(t) = e| X (t)) and denote withP (s, e)

the general solution to (67). For the special casd¢f) > P (i. e. when all batteries are above so that the optimization
of (67) is independent oE(t)) we denoteP (s, e) = p§, so that it holds

>] =3 > > [Un)ew (s, P(s,€) = Du(t)Pui (s, €)] gs e(t)

scSece(t) nl

= Z Z Z Uni(t)eni (8,0%5) — Dn(t)Py.s] ¢s.e(t)

Ses eeg(t) n,l

E | Y [Un(t)ear (S(t), P(t) — Da(t) Pu(t)]| X (¢

n,l

=Y Z > [Uni(t)ent (5,95) — Du(O)pius] as.e®) = Y > > [Uni(t)ent (5,95) — Du(t)ph 5] 4s.e(t)
Sesece(t) nil Sesece(t) nil
exP

>3 > [Uni(t)eni (8,05) = Du(Ophrs] s — DY Uni(t)eni (s, p5) P <U{E(t)<f3,5’(t)s}

8eS n,l 8eS n,l
o)

8eS n,l

> S5 [Uni(t)ent (5,95) — Dalt)ply 6] 7s — (Zl emﬁnl) Pr ( Ql{En(t) <P}

(69)
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where we used the fact that, , [Uni(t)cn (s, P (s,e)) — Dy(t) Py (s,€e)] > 0 Vs, e (sincep = 0 is always an allowable
choice) in the second line and the gueue bounds on the last one. Using the maximization properties of SRABP in (65)—(67
and repeating the arguments used in the derivation of (32)—(37) results in

A(X () =2VE | > fur (ym)| X ()| < C =2 [V frr(rns) = nYur(B)rm] = 2> (0¥ (t) = Upi ()] 7
n,l n,l n,l
— 2> " [Uni(t)ent (8, ) — Do (t)pnt) mpms + 2chzUnl Pr ( U {E.) < P} X(t)) ~2(1-8)Y BuDalt)
S,P n,l n=1 n
(70)

The last equation holds for any pdﬁ andr s.t. 0 < r < A. Hence, we can pick = r* to be the vector achieving;
and wzs) the corresponding pdf. It then follows from the definition7d§

r <Y Y (s p)TpTs Yn,

SeS pePg

_ (71)
Z Z Z pnnrzs,ﬂs <(1-94)B, Vn,
SeS PePgleOy,
so that the analogue of (39) is
N
A(X(1) =2VE | Y fur ()| X(8)| < C =2Vg5 +2 " émUpu Pr ( UiE.) < P} X(t)> : (72)
n,l n,l n=1
We now invoke Lemmas 2, 4 to get the following
Theorem 3: SRABP stabilizes any single-hop network and achieves a performance bound of
.. C Zn 1 CnlUnl
hggolefnz Fui(t) 2 g5 — oy — =5 limsup ¢ ZPr U{E ) < P} (73)

Using the union bound, standard properties of limsup and the fact that each queue individually overflows infinitely often
(so that Lemma 5 is applicable) results in the following
Corollary 3: SRABP satisfies the following bound

.. _ % C n l CnlUnl iy p + Dn — Emaw
hggglefnl (Fni(t)) > 65 — 507 — ZP (kz_o By (k) < ——"—" ). (74)

Hence, selecting?,,... > P + max, D,, makes the probability appearing in the RHS of the last equation zero, so that SRABP
is asymptotically optimal.

1) Multihop networks:The main difference between single-hop and multihop networks is that in the latter case intra-node
traffic, in addition to exogenous arrivals, is explicitly allowed. This suggests that a vectorization of DRABP to a multihop
setting will be more involved. In fact, new notation is required to capture the fact that a packet may need many hops to
reach its destination. Specifically, we model a multihop network as a standard digvagh (with A" = {1,...,N}) and
use the commodity concept of [15] to assume that each bit belongs to a packet with an associated commkd{tyhich
minimally defines the packet destinatidtut may contain additional information). Hence, we denote \Miiﬂ(t) the number
of commodity ¢ bits exogenously generated at nodeand slott (we assumeA("’)( t) to be iid with expectation\Sf) and
an upper bound ofi{¢ ) with similar interpretations for the internal/external quelﬁéﬁ) (C)( t), respectively. We also
denote W|thR§fm( t) the number of externally admitted commoditybits at noden and slott while u(°)( t) is the number
of commodltyc bits transmitted on link(a,b) during slot¢. The total number of bits (for all commodities) transmitted
over a link is upper bounded by a vector functieiS(t), P(¢)) with the properties mentioned in Section II-A, so that
it holds > M(C)( S(t), P(t)) < cap (S(t), P(t)). We also defineﬁab = maxs,p cap (S, p). The objective is to maximiZé

liminf; oo Y, fre ( =(¢) ) wherer'?) (t () &1 Z E[R nm( )] and f,..(-) are typical utility functions.

nzn 1 n,mmn

11e. g., for sensor networks, different commodities may correspond to different data collection points (sinks).
12in the following, the indicesy, ¢ will range over the setd/, KC, respectively, unless otherwise stated.
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Motivated by the downlink and single-hop analysis, we introduce virtual quByés) and VAR (t) to handle the average
power and (finite) arrival constraints, respectively. Hence, the queues’ evolution is as follows

VOt +1) = V(1) + AL (t) — R, (8), (75)
+
U+ 1) < (U0 - S 1) (S P)| + RO, (0 + 3 6l (S(t), P(t)), (76)
b a
E,(t+1) = min (En@) = > Puslt) + Bu(0), Em> : (77)
b
YO+ 1) = Y00 - B, 0] 100, (78)
Dyt +1) = [Da(t) — (1= )BT + Y Pus(t), (79)

subject to constraints
RO (1) < V1) + AD(t) Yn,et,
oy = 0, piy) (S(0), P(#) =0 V(a,b) ¢ L)1, (80)
( )GPS(t)a anb t) <m1n( (t)ap) Vn,t,

where indicesu, b range over the set of incoming and outgoing neighbors of ngdespectively. The second constraint in
(80) models the fact that all commoditybits may be required to be transmitted through links belonging to a specific set
£ C £ only (setting£(®) = £ for all ¢ effectively removes this constraint so that all commodities can be routed to all links).
Finally, the reason for 876) being an inequality rather than an equality is that the actual amount of incoming trafficsto node
may be less thaf} ufﬁl (S(t), P(t)) due to low queue occupancy of the neighbors.

In order to derive an analogue of Lemma 1, we first introduce the following

Definition 1: For given node sed, commodity sefC and link constraint set<(®), a (consistent) multi-commodity flow

{fil’j)} is a vector that satisfies the following conditions for @lb € N andc € K

79 >0,

(a.b) & £ = 1) =0, (81)
c) __ (c) _

ftga) — Jdest(c),b T 0,

wheredest(c) is the destination node for commodity

In the subsequent analysis, the term “flow” will exclusively refer to a consistent flow. Reference [15] provides the following
Lemma 9: No stabilizing policy acting on a multihop network with infinite capacity batteries and an average power constraint

of B can achieve performance greater than

g:;'ug =Imax Z Jne (ngc))

st reR, (82)
0< Tﬁlc) < /\59 Vn,c,
where
R= {r = (rff)) : 37715), flow {fég)} st rld < Zfr(;)) - Zfé;) Vn,c, Zﬂ'zs) =1 Vs,
b a p
(83)

thg?gzz:cab(s,p)ﬂ'zﬂs Va,b, ZZanbﬂ'IS)ﬂ'SSBn Vn
s p o

c s D
_ In accordance with previous sections, we define théksein a manner similar taR except that the average power constraint
B is replaced by(1 — ) B. We also define the multihop analogue of (21) as

g; =max Z fne (rﬁf))

st reRs,
0<r <A,

(84)
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whereX 2 ()\ﬁf) . The continuity properties of (22) are still applicable as well. We denote the composite m{emé
(U(t),Y (t),D(t)) and select a Lyapunov function

Ly(X(1) =Y [(U,(f) (t)) +0(vO0) } + Z D2(t (85)

Squaring the evolution equations (76), (78), (79), performing some algebra and rearranging terms yields

A(X(t)) — 2VE Z foe (HOW)| X (W) < C =2 |37 [Vine (400)) =¥, (00O 0)] | X (t)]
—2E [Z S (U9 = U7 (1) ) (S(8), P(8)) = Da(t)Pus(t) |X<t>] (86)
a,b c

=2 | 3 [nv) - UL @)] R, ()

n,c

X(t)] —2(1-6))_ BnDn(t)

The rationale of minimizing overall Lyapunov drift suggests the following policy
Network rechargeable adaptive backpressure policy (NRABP)

« at the beginning of slot, observe queuds (¢), Y (¢), V(t) and seleciR,;,,(t) = (Rffzn( )) bits for admission according
to

Rin(t) =argmax > (n (1) — UL(1)) rl?
ne (87)
st. 0<79 < min (Vn(c) (t) + A (1), /155)) Vn,c,

« selecty(t) according to

v(t) = argma V fne 7(16) - Yn(c)(t) 7(16)
ramax 30 [V e (047) =007 o)
S.t. 0<7( <) <A( <) Vn,c,

» observeS(t) and selectP(t), ufﬁf (t) so as to maximize

Z ZW&? n) — (t)mb]

st. pe PS(t)’ anb < min (En(t), ]5) Vn,

(89)
Zﬂ < ca (S(t), P(t)) Va,b,

uEfJ =0 V(a,b) &L,

Wherewég) ) 2 UL ) — U,fc) (t) will be referred to as the differential backlog betweerb.
The following observations can be made. The problems in (87), (88) are separable and can be solved distributively. It i
also easy to show, using a greedy exchange argument, that the solution to (89) is equivalent to

P(t) =argmax Z {Wab(t)cab (S(t),p) — Da(t)pab}

llb R (90)
St pEPGy, D Pus < min (En(t), P) Vn,
b

where ©

T _ (c) . c

Wanlt) = max {UL0) - U} 0)} (91)
so that, for each time slot, we need only select a single commeljty) = arg maxc:(a,b)ew){Uéc)(t) - Ulfc) (t)} per link
(obviously, different links may carry different commodities). A casual glance at (90) also reveals that the optimal solution has
the property that?,;,(t) = 0 if W, (t) < 0. Hence, with no loss of optimality, we define

a0 =[ s, {000 -v0w)] (02)

c:(a,b)eL(®
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and use this value instead dfffab(t) in the subsequent expressions. Hence, the following result is true
Lemma 10: Application of NRABP results in the following conditions being satisfied

. for eachc € K, there exists a sufficiently largé(®) such thatR(C)n( t) = 0 whenever/s” (t) > F(©).

« for any link (a,b) such thatWab)( t) <0 it holds M(C)( t) = 0. As a result, the implicatiofV, (t) = 0 = Py (t) =0 is
true.

Proof: The first condition follows from the bang-bang property of the solution to (87) and the fact that all dﬂ%ﬁ@g‘»

are stable under NRABP (the latter is proved by a vectorization of the proof in Appendix V-B), while the second one has
already been proved. ]

Under the previous observations, (86) becomes

AXO)=2VE| 3 e (1) | x| <=2 |3 [V fe (400)) =¥ (007 1)] ‘ X(t)]
— 2K [Z (W (D)cas (S(0), P(1)) — Da(t)p] X(t)] =2 | 3 [y - vl 1)) RS, (1) X(t)] ®3)
a,b n,c
~2(1-06) Y BuDnl(t)
The main stability result, proved in Appendix V-G, is now stated
Lemma 11: NRABP stabilizes all queues according to the following bounds
i
n
Ul () < U, (94)

wherel/,, = max, U9 and ¢, = maxs S g;al; (s,0).
As before, we denote withs e(t) = Pr(S(t) = s, E(t) = e| X (t)) the respective probability under NRABP and with

P (s, e) the solution to (90) whei§ () = s and E(t) = e (whene > P, the solution is independent efand is denoted as
p%). The analogue of (31) is

E Z [Wap(t)can (S(t), P(t)) — Da(t)Pas(t) ] Z Z Z t)can (s, P(s,€)) — Da(t)Pay (s, €)] gs.e(t)

a,b SeSee&(t) ab

>3 3T N W (cas (5,95) — Da(t)ply 5] as.e(t)

ses eeg(t) ab

>P
> Z Z Z t)cab (8,0%) — Da(t)D}y, 5] s.e(t Z Z Z t)cab (3,05) — Da(t)p}y, 5] as.e(t)
seSee&(t) ab SeSeeg( (t) ab
ezP
. N
> Z Z t)cab (8,0%5) — Da(t)ply ] Ts — (Z Uaéab) Pr < U {En(t) < P} X(t)) ,
8eS ab a,b n=1

(95)

where the usual manipulations have been perforfed.

We now follow a procedure similar to the one that produced (33), (36), (37). Specifically, the maximizing properties of
NRABP vyield for allr s.t. 0 < rle) <\

> [me (%(f)(t)) — Y () (¢) }‘ ] > Z [me ( rl; ) — Y, (t)r (C)} : (96)

X<t>] =3 (Om - U)o, (97)

E

E|Y (79m - um) R ¢)

n,c

Bspecifically, the transition from the third to the fourth line of (95) relied on the fact Whigg () = Uéczb(t))(t) — U;C;b(t))(t) < l}a.
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The solution to (89) whet,, (t) > P for all n also implies

> [Win(D)cas (3,05) = DalO)Pins] = > Wy (£)can (8, ) = Da(t)pas)

a,b a,b

(98)
>y lz W Ol (s,p) - Da<t>pab] Vs €S, VpePs,

where the second inequality follows from the fa®ts, (t) > W ( ) for all candy ", M (s,p) < cap (8, p). Multiplying
the last inequality byrf,ws (Wherewf, is an arbitrary pdf) and summlng overp produces

D> [Wa(t)ca (5,P5) = Da()pips) ms = > D > [ZW Bty (s.p) — Da(t)l?abl THTs- (99)

S€ES a,b SeSPePg a,b c

We now insert (99), (97), (96), (95) into (93) and perform some algebra to get
}:ﬁu(n ) <O—2V§jvnc(9)+2§:U@ (O —2(1-6) S BuDa (1)
-2 > > [Z W0 (5.9) — Da(t)pas | whms +2 (z (}aéab) Pr ( U {Ba(t) < P) X(t)) ,

8eS pePg a,b c a,b n=1
ExpandingWa(g)(t) into U,g"’)(t) - Ulf"’)(t) and performing a change of indices so that all backlogs appear with mdethe
above relation yields for alt with 0 < » < A

LHS of (100)< C — QVZ Sne (rﬁf)) +2 Z Uff)(ﬁ) |: ZZM $,p) 7Tp7T3 + Z Z,uab s, D) 7Tp7T5

A(X(t) — 2VE X(t)

(100)

n,c Sp b Sp a

X(ﬂ) |

Selectingr as the solution to (84) amﬂf, as the corresponding pdf in the definition”®§ creates many cancellations in (101)
and finally produces

] (101)
+2;D |:Zanb7rp7r3— (1-946 B]+2<ZUCab)PI“<U{E <P}

SPp b

R N
LHS of (100)< C' — 2V g} + 2 (Z Ucb) Pr ( UJ{E.(t) < P}

a,b

X(t)) . (102)

n=1

As in previous sections, we invoke Lemmas 2, 5 (since each individual glig(t¢ overflows infinitely often) to get the
final
Theorem 4: NRABP stabilizes any multihop network and achieves a performance bound of

1 : al = P+D,-E
. . ( ) * - s A n - max
htrglorgf E e ( ) g5 — 2V v E UaCap g 1Pr < g B, (k) < — ) , (103)
a,b n= k=0
whereo = [Epnax/P —1].

IIl. THE HIDDEN COST OF HIDDEN TERMINALS
A. Where is Hidden Terminal?

The hidden terminal problem is closely related with the Transmission RangeR@ngje), Carrier Sensing Range (&Range)
and Interference Range (IRange) of stations in WLAN. The followings are the widely atimpdefinitions for these three
ranges [25] [26]. The TXRange is the range (with respect to the transmitting statigtiin which a transmitted frame can be
successfully received. The CBange is the range (with respect to the transmitting statighjn which the other stations detect
a transmission. The IlRange is the range within which stations in receive mode véll‘interfered with” by a transmitter,
and thus suffer a loss.

The measurement study by [25] shows the following relationship for 802.11b networkRange< IF_Range< CS_Range.
In addition, it shows that CRange is about 1.5 times of the TRange. We have also measured the three ranges in 802.11g
networks and got similar results [27]. From our measurementsR@6ge is between L:2TX_Range and 1.8TX_Range,
depending on the environment. Although the exact values of these two measurement results are different, their ratios betwe



21

Fig. 2. lllustration of the hidden terminal problem in ad hagtworks. For transmitte?”, stations in in the shaded area are hidden terminals.

CS _Range and TXRange are within the same range (1.2, 1.6). The differencaislyndue to different wireless cards used
for the measurements and different measuring environments.

As illustrated by Fig. 2, nodes within the interference range of a receiver and out of the carrier sensing range of the transmitte
are usually called hidden terminals [26]. In a single-cell WLAN, all nodes are within theR&Kge of the AP, so hidden
terminals are those within the TRange of the AP and out of the CBange of the transmitter, as illustrated by Fig. 3a. As
we can see from Fig. 3a, to eliminate hidden nodes,REfge must be no less thaxxPX_Range to make sure that a node
at the edge of a WLAN can sense all of the other nodes. However, both the measurement results from [25] and from us [27
show that CSRange is less thanx2T’X_Range for many existing 802.11 wireless cards. This is whydndnodes exist in
current 802.11 networks.

The performance degradation due to hidden terminals is best shown in the following example. In Figure 3a, a source statio
is trying to transmit to the access point (AP). It starts the transmission with a RTS/CTS handshake: The source station sends
RTS and the AP replies with a CTS. If the handshake is successful, all the nodes in the WLAN will be aware of the subsequer
transmission and keep silent during the transmission period. Note that RTS signal cannot be sensed by the hidden nodes, w
are beyond the CRange of the source station. So during the transmission of R¥EShidden nodes may initiate their own
transmissions if their backoff counters reach zero. In the 802.11 standard, the duration of RTS transmission is much longe
than that of a backoff slot. For instance, With a typical setting of 802.11g [28], a RTS takes abeutdtle a backoff slot
duration is 9us. This implies that each hidden terminal has at least six chances to initiate their own transmissions during a
RTS transmission, and collide with this RTS at the access point. The collisions waste channel time and thus degrade netwol
performance. In this example, we assumed that RTS/CTS mechanism is active. If not, the hidden terminals will have more
chances to initiate their own transmissions during the ongoing data packet transmission, which is much longer than the RT
transmission. Then the network performance will be degraded more severely.

Moreover, this performance degradation is not uniform for all nodes in a WLAN. Instead, it depends on the locations of the
nodes. Assuming stations are randomly located in the network, Figure 3 shows that a station sees more hidden nodes wher
is far away from the AP (Figure 3a), compared with the case when it is close to the AP (Figure 3b).

Various types of areas used in this paper are derived in the Appendix, which analytically shows the relationship betweer
the total hidden area and the distance from the transmitter to the AP (Eg. 183). The relationship is plotted in Fig. 4, where
the area is normalized by the whole network area and the distance is normalized with respecREndX As we can see,
the hidden area grows almost linearly as the distance increases.

B. An Analytical Model for the Hidden Terminal Problem
1) System ModelWe consider an 802.11 single-cell WLAN with only uplink traffic, wherein all transmissions are initiated

by stations and destined to access point (AP). The RTS/CTS mechanism is assumed to be enabled. The AP is located at 1
center of the network and the other stations are randomly located within the AP’s transmission range. Besides, we set

CS_Range = n x TX_Range, ne€ (1,2). (104)
Note that this range ofy well reflects the observations in independent WiFi measurements [25][27]. Other assumptions are

listed below.

1) No capture effect, i.e., when two or more packets collide with each other, all of them will fail.

2) No channel errors.

3) All transmissions are at the same data rate.

4) All stations are always in backlog state.

As in [29], the conception of “time slot” is extended to refer to any continuous time period that a station observes. It is no
longer only the backoff time slot in 802.11; instead, the duration of a time slot in our model can be one the followings:

¢ «: the duration of a successful transmission.
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Hidden Terminal Leetteaagzriee., .

Fig. 3. lllustration of the hidden terminal problem in infracture mode 802.11 networks. Note that the hidden area in (a) is larger than that in (b) (where
the source station is closer to the AP).
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Fig. 4. tincreases almost linearly with the distance to the AP

« [3: the duration of a collision period.
« ¢: the duration of a backoff time slot.
2) Network Analysisin [29], Bianchi models the 802.11 DCF with a two-dimensional Markov chain. For a given collision
probability P., the model predicts the transmission probabitity
2(1—2P,)
= 105
TT U 2P)(W + 1) + BWL — (2P)™] (105)
whereW is the initial backoff window size anth is the maximum number of backoff stages. On the other hand, the network
conditions for a transmitted packet to collide is that, in a time slot, at least one of the remaining stations transmits:

P.=1-(1-71)N"! (106)

where N is the number of nodes in the network. By solving these two equations numerically, Bianchi ebtaids>., based
on both of which he then computes the network throughput.

We will follow the same approach in our modeling. The main difference between Bianchi’'s analysis [29] and ours is that
we consider hidden terminals. To capture the location-dependent nature of hidden terminal’'s impacts (as described in Sectic
[lI-A), we slot the whole network area intd/ evenly spaced concentric annuluses centered at the AP, as shown in Fig. 5.
Let » be the TX Range of a station. Each annuldgi) (i > 2) is centered at AP and confined by two circles with radius
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Fig. 5. M evenly spaced concentric annuluses centered at theMP=(4 in this figure).

Fig. 6. lllustration of Hidden Aredd (¢, j) and Covered Are& (i, j).

r(¢ —1)/M andri/M respectively; whileA(1) is the interior of the innermost circle centered at AP and with radjd.
As we can see from Fig. 5, stations in annulig) are at approximately the same distad¢e) from the AP, so they observe
approximately the same number of hidden nodes. Therefore, they experience approximately the same collision probabilit
P.(i), which results in approximately the same transmission probabifity (from Eq. 106). Of course, the largdr is, the
better the approximations are. In fact, as we will show later, the approximations here are very accurate evéh iwten
small as 4.

As in [29], we adopt the key assumption that each station independently makes a transmission attempt at any time slot wit
a constant probability. However, there is a difference on the meaning-ofn [29], 7 is equal for all nodes, since the model
assumes no hidden nodes. But in our modedlepends on the distance between a node and the AP.

Following the same way that Bianchi derives Eq. 105 in [29], we obtain the relationship betéigemd P.(i) for a node
in annulusA(¢) (A brief derivation is presented in the Appendix):

Q) = 2(1 — 2P,(i))
(1 - QPC(’L))(W + 1) + Pc(i)W[l - (QP(:(i))m]
(i=1,2,...,M)

(107)

We now derive the network conditions for a transmitted packet to collide in the presence of hidden terminals. Let us first
define the hidden areH (i, j) and the covered areB(i, j), with ¢, j € [1, M]. For a source stationS¢c) located in annulus
A(z), H(i,j) is defined as the part of annuluy) that is out of the CSRange ofSrc; while E(, j) is defined as the part
of annulusA(y) that is within the CSRange ofSrc. Both of them are normalized with respect to the total area within the
AP’s TX_Range. Fig. 6 shows thH (i, j) and E(i, j) for a source station located iA(4). Note thatH (4, 1) is zero in this
example and not shown in the figure. The computations of the di¢as) and E(¢,j) can be found in Appendix.

We can then determine the expected number of nodes in hidderfdieq) and covered are& (i, j). Let the total number
of stations in the network b&/, then a station in annulud(:) sees an averag¥ H (i, j) hidden nodes an&/ E (i, j) covered
nodes in annulusi(y).

Let us consider the conditions for a successful transmission. The transmission procedure is a RTS-CTS-DATA-ACK four-way
handshake. Sinc8rc senses the channel before the transmission of RTS, we are sure that all nodesSwithi@S Range
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Fig. 7. Aggregate Network Throughput: Model VS. Simulation.

are idle in the time slot just before the RTS transmission. HoweSet, has no knowledge about the status of the hidden
nodes. Denote as the number of backoff time slots that a RTS transmission spans, that is,

trTs = po (108)

wheretrrs is RTS transmission time.

An obvious condition is that no nodes withBvc’'s CS_Range initiates transmissions in the same time slofasdoes.
Since Src¢’s RTS signal cannot be sensed by its hidden nodes, another condition is that no hidden nodes transmit during th
RTS transmission. Likewise, whe$rc initiates a transmission, a hidden node may already be transmitting a RTS,Ssince
cannot sense the RTS signal and is not aware of the transmission. So the third condition is that no hidden nodes transmits
the preceding rrs time. If all of the three conditions are satisfied, the RTS will be successfully received by the AP, which
then replies with a CTS.

Irrespective of whether they have received the RTS or not, all the nodes in the source statidR@@Swill not transmit
within a Distributed Interframe Space (DIFS) time. So they will not interfere with the CTS which is sent a Short Interframe
Space (SIFS) time after the completion of the RTS, because a SIFS is shorter than DIFS. So only hidden nodes might interfe
with the CTS. Therefore, the condition for the CTS to be successful is that no hidden node launches transmissions at th
same time slot as the AP transmits a CTS. Since all nodes in the network are within the AR&iQ¢€, they will find the
channel busy during the CTS transmission and not transmit. Once the RTS/CTS handshake is successful, the transmissi
is guaranteed to be successful, since all stations will set their Network Allocation Vector (NAV), which keeps them silent
during the transmission. Consequently, the conditional success probdhilitygiven that a node in annulu4(:) initiates a
transmission is

M

M
P(i) = JIO—7@MFED T r() Ve DHeD
j=1 j=1
M
= H [1 — 7(j)|NEED+Rp=DH )] (109)
j=1

Then the conditional collision probabilit¥.(i) given that a node in annulu4(s) initiates a transmissions is

M
P.(i) = 1- H [1 — 7(j)|NECD+Rp=DH )] (110)
j=1

(i=1,2,...,M)

With (107) and (110), we haveM equations an@M unknowns. Numerically solving the equations, we obtaff) and
P.(7) for ¢ from 1 to M.

C. Throughput

Normalizing the area of annulu4(i) with respect to the network area, we get
AG) = [2—(—-1)/M? i=1,2,...,M. (111)

Since we assume that nodes are randomly located in the network, the expected number of stations located iA(@nrulus
proportional to the normalized area of annulig):

N(i) = NA(i) = N[i* — (i — 1)?]/M?, i=1,2,...,M. (112)
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The probability that all stations are idle in a time slot is
M

Pae = ] =70 (113)

i=1
As the transmission probability(:) is very small and independent for each node, the probability that there is a successful
transmission in a time slot can be approximately expressed as

M
PSUCC@SS = Z N(l)T(l)(l - PC(Z)) (114)
i=1
The three different channel states in a time slot are: Successful Transmission, Collision and Idle. So the probability that ther
is a collision in a time slot is
Pcollision = 1- Psuccess - Pidle (115)

Since most collisions occurs when a node launches RTS during the transmission of a RTS by another node, the collision peric
is just the overlapping of these two RTS’s. Baapproximates twice ofgrs.
Let S be the expected aggregate throughput for the whole network, which can be computed in this way

S = Pauccess E[Payload]/T (116)
where E[Payload] is the expected payload length of a packet &his mean duration of a time slot

T = Pied + Psuccess® + Peollision3- (117)
The per-node throughput for a node in annul(g) is

S() = 7(i)(1 — P.())E[Payload)/T (118)

D. Simulation

To validate the model, we have run extensive simulations with the Network Simulator ns-2 v2.33 [30].

1) Simulation SettingsThe system parameters for the simulations and for obtaining numerical solutions from the model
have been set to values typical in 802.11g WLAN, as summarized in Table I. The capture effect has been turned off and th
channel is free of errors. The AP is located at the center of the network, while the other stations are uniformly located within

TABLE |
PARAMETERSUSED IN BOTH SIMULATIONS AND MODEL
Preamble Length 2@ss | Slot Time 9us
PLCP Header Length fs SIFS 10us
Max Propagation Delay 0.5s | DIFS 28 us
W (CWMin) 31 m (CWMax) 1023

the TX_Range of of the AP. The AP does not initiate transmissionsleathie other stations transmit UDP packets to the AP

at 6 Mbps. From our previous experimental measurements for 802.11g WLANR&@Ge is between 1.2 TRange and 1.6
TX_Range [27]. We also note that many existing papers assum®&fge-TX_Range, which is not realistic. Taking the
measurement results and the prevailing assumption into consideration, we decided to run simulations and obtain numeric
values from the model with CRange set to 1.0 TXRange, 1.3 TXRange and 1.6 TXRange respectively.

2) Performance of Saturated Networkin this subsection, we present the results from both analysis and simulations for
saturated networks. There are 16 uniformly-located nodes in the network. All nodes are at full load and the payload size ha
been fixed to 1500 bytes. The RTS/CST handshake has been turned on.

Fig. 7 compares the aggregate network throughput obtained from the analytical model and simulations. As shown in thi:
figure, the model is very accurate, since the average difference between the model and simulation results is around 49
Furthermore, this accuracy is observed for networks ranging from 4 nodes up to as many as 64 nodes. Besides, we note tt
the aggregate throughput does not change much #vith

Fig. 8 and Fig. 9 show the per-node throughput, collision probability and delay as a function of the distance from a node to
the AP. The distance has been normalized with respect to th&®a&dge. From Fig. 8, we can see that the per-node throughput
from our model matches its counterpart from simulations well. In addition, as we can see from Fig. 8 and 9, both the analytica
model and simulations reveal a significant unfairness in terms of both throughput and delay for nodes at different locations
Forn=1.0, 1.3 and 1.6, the throughput for the closest node to the AP is eight, five, and three times as much as that for a noc
at the edge of TXRange, respectively. The scenarie= 1.0, which is not realistic, is only for comparison with the literature.

So in practice, the throughput ratio between the closest and the furthest node rangdedetmfive It is also clear that the
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unfairness becomes less significantragcreases. Please note that we have assumed no channel errors in the model and se
the simulator free of channel errors, therefore, this unfairness has nothing to do with the path loss which causes more pack
loss for stations far from the AP than for stations close to the AP.

We have also run simulations with different network sizes (i.e., the number of nodes in the network), and obtained similar
results as Fig. 8 and 9. Due to space limitation, the results are not shown in this paper.

3) Simulation Results: Networks Without RTS/CA8:the previous sections are about networks with RTS/CTS handshake.
We note that RTS/CTS mechanism is disabled in most deployed 802.11 WLANS. To investigate the hidden terminal problen
in this case, we have run simulations with RTS/CTS disabled.

We have considered three scenarios with packet payload length set to 125, 500 and 1500 Bytes. The other simulation settin
are exactly the same as those in section IlI-D2.

The per-node throughput are shown in Fig. 10. As we can see with.3 and a 1500-Byte payload length, the throughput
ratio between the closest node and the furthest node is 760 with RTS/CTS disabled and 5 with RTS/CTS enabled. This shov
that the RTS/CTS mechanism does alleviate the performance unfairness due to hidden terminals, although it cannot complete
solve the problem.

E. Impact on Real-Time Service

To evaluate the the impacts of the performance unfairness to real-time services, we have done simulations with Voice ove
IP (MolIP) services in ns-2. We have adopted the ns-2 VolP framework established by [31] and [32].

The VoIP framework evaluates the Quality of Service (QoS) of VoIP sessions in termeanf Opinion Score (MOS$33].

The higher the value of MOS, the better the QoS is. The quality of VoIP service is considered to be good if the MOS is above
4 [34].

In the simulations, each node initiates two VoIP sessions and talks to the AP. All the other settings are the same as thos
in section 111-D2.

Fig. 11 shows the QoS of the VoIP services for nodes at different locations. As we can see, the QoS does not depend c
location when there are no hidden nodgs=(2.0); however, it greatly depends on location in the presence of hidden nodes
(n = 1.0,1.3,1.6). Besides, the unfairness becomes less significant with a grgatdote that when there are no hidden
nodes { = 2.0), the VoIP sessions for all nodes are with good quality (M@$ This indicates that the network is non-
saturated. Therefore, hidden terminals cause significant performance unfairness not only under saturated load, but also unc
non-saturatedoad.

F. Experimental Measurements

We have set up a testbed to measure the throughput and packet loss rate in a WLAN with hidden nodes and single acce
point. houses and WiFi hot spots, which keeps the experiments free from external interference.

We have used five laptop computews, B, C, D and E) running Linux Fedora 5 (kernel: 2.6.16-prep). Each laptop is
equipped with an Atheros 802.11g wireless card (chipset: Atheros AR5212) and udéadWéfi driver [35] (version 0.9.4).

To facilitate experimentation, the transmission power of each wireless card is fixed to 1 dBm (1.26 mW), which is greater thar
the minimum transmission power (1 mW) required by the 802.11 standard.

The topology of our experiments is shown and Fig. 12. All laptops are in a line, with |&ptoghe middle. LaptopC acts
as the AP and does not initiate transmissions; while the other laptops are at full load and transmit UDP packeith ta
fixed payload length of 1470 Bytes.

We first measure the TXRange with a method which is similar as the one used by [25] 86§ [n our measurements,
TX_Range is defined as the largest transmission distance whepatiket loss rate is maintained below 10%. kedenote
TX_Range, then CRange is betweeh.2r and 1.6r [27]. As observed from the topology in Fig. 12, nod8sand D which
are close to the access point see one hidden node, while nbdesl £ which are far away from the access point see two
hidden nodes. For examplg;, is 1.6r away from B, so B seesE as a hidden node; both nodésand £ are more thar.6r
away from A, so A sees both of them as hidden nodes.

With RTS/CTS handshake turning on or off and the data rate for all nodes setting to 6Mbps or 36Mbps, we made
measurements for four scenarios. The measured throughput and packet loss rate for each node are presented in Fig.
and Fig. 14, respectivelyf. These two figures tell us three things. Firstly, the performance of close stations hade node
D) are much better than that of far stations (notl@nd nodeF), in terms of both throughput and packet loss rate. This is
contrary to the case without hidden nodes, where all nodes enjoy equal chance to access the channel and the throughput
all nodes are almost the same, even if they transmit at different data rates [37].

Secondly, in both the 6Mbps and 36Mbps scenarios, enabling RTS/CTS significantly enhances the performance. Thi
contradicts with the ad-hoc case, where RTS/CTS handshake is not effective in dealing with the hidden node problem [26]

14As in [25], we also experienced a high variability in channel conditions thus making a comparison betwesadhelues of the results difficult
sometimes.
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Fig. 12. Topology: All stations are in a line, with access pamthe middle.
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This is because for a given distance between the transmitter and receiver, there are more hidden nodes in ad hoc netwol
than in single-cell WLANSs, which can be seen clearly by comparing Fig. 2 with Fig. 3a.

Thirdly, comparing the Packet Loss Rate (PLR) in scenarios “6Mbps without RTS” and “36Mbps without RTS”, we find
that the PLR'’s for close and far stations in the former scenario are about 20% greater than their counterparts in the latte
scenario. This agrees with our analysis very well: since the transmission time of DATA packet at 6Mbps is much longer than
that at 36Mbps, hidden nodes have more chances to initiate transmissions during the data packet transmission period, whi
gives rise to more collisions.

As we know, packet loss is mainly due to channel errors and collisions. As mentioned previously, we defiteng
as the maximum transmission distance when the packet loss rate is maintained below 10%. Since all nodes are within th
TX_Range of of the access point, the packet loss caused by champes is less than 10%. From Fig. 14 we can see that
most measured PLR’s are far more than 10%, so collisions are the dominating contributor to packet losses.

G. Related Work

The existing research on evaluating the impacts of hidden terminals to the performance of 802.11 networks can be roughl
categorized as follows. There are simulation-based studies [24] and analytical models [38]-[23]. A few papers also evaluat
the impacts of hidden nodes with experiments [23][36]. Our work belongs to all the the three categories.

Packet Loss Rate VS. Distance
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0
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Fig. 14. Measured Packet Loss Rate (PLR).
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Among the current analytical models, [38]-[39] are the closest to ours. These results can be classified into two groups, base
on whether they utilize the relationship between the transmission distance and the number of hidden nodes, which is reveale
in section IlI-A of this paper. In one group, the papers do not utilize this relationship. In both [38] and [40], Chhaya and
Gupta build an analytical model for 802.11 WLAN in the presence of hidden nodes and capture effects. The model reveals th
unfairness that the nodes far away from the access point (AP) have a less success probability of transmission than those clc
to the AP. However, the result is based on the assumption that every pair of nodes are hidden from each otlwmsitng
probability, which holds only for a few network topologies. Similarly, [22] evaluates the network performance by building a
model assuming that the number of hidden nodesgigal for all transmissions. In the other group, the relationship between
transmission distance and the number of hidden terminals is exploited. Both [41], a seminal work from 1984, and recent worl
[39] show the relationship for a special case where R&hge is the same as TRange, though CSRange is usually greater
than TX Range in practice. The focus of both papers is the analysiseohétwork performance.

Experimental studies of the hidden terminal problem has been very rare. Ng and Liew in [23] have measured the aggrega
network throughput of a 6-node ad-hoc network with hidden nodes. It does not conclude the performance unfairness problen
Our paper is distinct from the existing work on the hidden terminal problem in the following three ways. Firstly, none of
them answer why hidden terminals cause the performance unfairness problem. Secondly, no effort has been put on experimer
measurements to validate this performance unfairness problem. Finally, our model is one of the few models that focus on th

performance foindividual nodesather than the overall network.

IV. CONCLUSION AND FUTURE WORK

The first work presented an on-line adaptive policy for stabilization and optimal control of wireless networks operating under
rechargeable batteries. Using a Lyapunov drift argument and modifying the framework of [15] in subtle but non-trivial ways,
a performance bound was provided that ensures asymptotic optimaliy,as — oo (or Emaz/f? — 00, t0 be exact). The
policy requires only current information and is particularly suitable for satellite or wireless networks, which typically operate
under highE, . /P ratios.

Future work includes extensive numerical evaluation of the proposed policy, in order to develop practical rules for selecting
the Em,u/P ratio (i. e. how large should the ratio be so that the performance loss is negligible), since the theoretically derived
bounds are rather loose. The basic intuition may also be applicable to finite (non-rechargeable) batteries so that a nearly optirr
policy may be developed for the problem of lifetime maximization. This problem is expected to require a completely new
formulation and tools, and is of a more speculative nature.

In the second part of this project, we studied performance unfairness in 802.11 networks due to hidden nodes. We build a
analytical model and validated it with simulations. We also set up a testbed and made experimental measurements. From o
analysis, simulation and measurements, we conclude that the performance of a node in a randomly distributed 802.11 WLAI
depends on the distance from the node to the AP. More specifically, the nodes close to the AP get much better performan
than those far from the AP. Although our work is based on 802.11 networks, we believe it also applies to most random-acces
radio networks.

As future work, we are planning to extend the analysis for ad hoc networks. We will also design a MAC layer scheme to
mitigate the performance unfairness.

V. APPENDIX
A. Proof of Lemma 2

We will need the following result from analysis
Lemma V-A.1: For any functionf (¢), f2(¢), w(t) such thatf;(t) + w(t) = f2(t) andlim;_.. w(t) = 0, it holds

litm inf f1(t) = 1itm inf fa(t), (119)

with a similar equality for limsup.
Proof: Since w(t) — 0 ast — oo, it follows that (—w(t)) — 0 ast — oo and, henceliminf; .. w(t) = 0,
liminf;— - (—w(¢)) = 0. Using standard properties of liminf, we have

litm inf f1(t) = litm inf (f2(t) + (—w(t))) > litm inf fo(t) + htm inf(—w(t)) = litm inf fo(t),
litm inf fo(t) = 1itm inf (f1(t) + w(t)) > litm inf f1(¢) + litm infw(t) = 1itm inf f1(t),

which completes the proof. [ |
Following the approach in [16], we now take an expectationldf)(which produces

E[Ly (X(k+1)) - Ly (X(K))] - VE[g (Z(K))] < C = Vg" + E[Q(K)], (121)
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and sum the above telescoping series ot 0,...,¢t — 1 to arrive at

E[Ly (X (t))] - E|[Ly VZIE <(C—-Vg* t+ZE : (122)
k=0
Since Ly (X (t)) > 0, the above inequality can be strengthened to
(Vg* — t<ZIE )]+ E[Ly(X(0)]+V Y Elg(Z(k
t— 1 1 (123)
=g~ T o D EIQUR] < o B[Ly (X(O0)] + 7 > Elg (Z(K)
k=0 k=0
It also holds "y "y "y
LY ElEM)] <7 Y g EBZH) < (% ZE[Z(k>]> , (124)
k=0 k=0 k=0

where the first inequality is due to Jensen’s inequality and the second one follows from the concavifihef reader will
recognize the argument gfin the last RHS a%(¢). Combining (123), (124) yields

c 1 & 1
o — - = E[Q(k)] < — E[Ly (X z(t)). 125
7= v 2 Q) < g ELLy (XO) 9 (2(0) (125)
We now take a liminf in the last relation, exploit the properfiesinf > > > liminf andlim inf(—x,) = — limsup x,,

and use Lemma V-A.1. SindB[Ly (X (0))] /(Vt) — 0 ast — oo, it finally holds
Gy ZE ] <liminf g (2(t)) (126)
g* Vv 1?lsoljp 1gl£ g(z .

]

B. Proof of Lemma 3

The deterministic bounds of (23) are proved as follows. Examine (12) and note that it is a separable concave maximizatiol
over a compact set. Separability allows us to maximize individually &ser we seek the maximum &f f;(v;) — nYi(¢t)n
It clearly follows, by computing the first derivativ€ f/(v;) — nY;(¢), that if it holds V' f/(0) — nY;(t) < 0, the function
V fi(v) — nYi(t)~ is non-increasing (since concavity ¢f implies f'(;) < f/(0)) and therefore the maximum is achieved at
7 =0.

The bound forY;(¢) is now proved by induction. The bound is trivially true fio= 0. Assume now that it holds for some
i. e.Yi(t) < Vf/(0)/n+ A, and distinguish cases. It holds eith&(t) < V' f/(0)/n or V f/(0)/n < Yi(t) < V£/(0)/n+ A In
the former case, (9) and the boundt) < A; immediately imply the bound fo¥;(¢ + 1), while in the latter case we exploit
the fact that in this range df;(¢) it holds~;(¢t) = 0 so thatY;(¢t + 1) < Y'(¢) and the bound is again proved.

For the bound ori/;(t), note thatl;(t) > nY; implies U;(t) > nY;(t), whence it follows, from separability of (11) and
its “bang-bang” solution, thak; ;,,(t) = 0. The bound is now proved by induction eérand distinction of cases, in a similar
manner as in the previous paragraph. Finally, for the boundn, we exploit the assumptions fef (s, p) in Section II-A
and write for allt andp € PS(t)

Ui(t)er (8(t),p) — D(t)pr < Ui(t)er (S(t), (0,...,p1,...,0)) = D(t)pr VI

= [Ui(t)e (S(t),p el <> U ),(0,...,p1,...,0)) — D(t)p] .
=1

=1

(127)

Consider the maximization of the last RHS in (127) over the{geE PS(t) : pr < min (E(t),P) Vl}, which is actually

a superset of the constraint set of (13), and denote its solutld%t(a)s The new problem is separable and a repetition of
the derivative argument of the previous paragraphs reveals that it fpltls= 0 when U (¢ )6‘” (S(t),0) < D(t). Hence,

D(t) > maxj<j<r. (UlCl) implies P(t) = 0, which, combined with (127), yields

L
> [Uit)e (S(1),p) = D(t)pi] < 0. (128)

=1
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On the other hand, the last inequality becomes an equality wherD. Hence, with respect to the original problem in (13),
it holds P(t) = 0 wheneverD(t) > max;<;<z, (U;C; ). Using this statement in combination with (10), the boundZidt) is
proved by induction ornt, similarly to the previous bounds.

O

C. Proof of Lemma 4

It obviously holdsit,,;(t) < . (t) for all t. This impliesg,,,(t) < f,,:(t), which combined with the monotonicity af
and the liminf operator immediately produces the second inequality of Lemma 4. Hence, it remains to prove the first equality. It
is shown in [15] that for any stable queu&t) with E[Z(0)] < co and a bounded service procgss,, (¢) (i. €. p,,.(t) < C1
for a sufficiently largeC) it holds lim;_,., E[Z(t)]/t = 0. It also holds

E[Z(0) — Z(t)]

¢ +ain (t) = il’out (t)v (129)

Z0)+ Y An(r) = Z(0) + 3 figus(r) =
7=0 7=0

where the=- part follows from taking expectations and dividing bySinceE[Z(0) — Z(t)]/t — 0, it follows that for all
e > 0 there exists som&'(¢) such that for allt > T'(¢) it holds

Qin (t) —€el< iaout (t)5
l::”out (t) —€l < aln(ﬁ)’

If we pick e < C, (130) impliesa;, (t) < 2C for all t > T'(¢). Consider now the functiop with domain theL-dimensional
cube of lengt2C, i. e.g: x£ [0 2C] — R. Since the domain set is compact ani continuous, the Heine-Cantor theorem

asserts thay is uniformly continuous in its domain. Hence, for aay> 0 there exists ar (depending ore; only andnot
x) such that

(130)

lg(x) —gx—el)|<er=g(x—€l) >g(x) —e1 V. (131)

We now setr = a;,(t) andx = f1,,,(t) in (131) (theser obviously belong to the domain set gffor ¢t > T'(¢)) so that the
previous relation becomes

9(@in(t) —€l) > g(ain(t)) — e,
) (l::"out(t) - 61) > g (ﬁout(ﬁ)) — €1,

for all ¢ > T'(e). Combining the monotonicity o with (130), (132), it follows that for a giver, > 0 there existe(e;) and
T'(e) such that for allt > T'(¢) it holds

(132)

g (a’ln(t)) —€<g (a’ln(t) - 61) <g (ﬁout(ﬁ)) s (133)
9 (Bout(t)) — €1 < g (Roue(t) — €1) < g (@in(t)) -
Taking a liminf in the last equations produces
liminf g (@;,(t)) — €1 < liminf g (ﬁout(t)) ,
t—oo B t—oo (134)
htHl lnfg ([l’out(ﬁ)) —€ < htm lnfg (a’ln(t)) )
and using the fact that; is arbitrary completes the proof.
|

D. Proof of Lemma 5

We assume w. |. 0. g. that the lost recharge energy quanta of Fig. 1 enter a virtualyler@) of zero service rate, so
that F,,.(t) is a non-decreasing function of time. Viewing the queli¥s), D(t), E,..r(t) of Fig. 1 as a single compound
queue, this compound is unstable since it has an instantaneous arrival e aind a corresponding service rate of at most
(1 —6)B(t). However, queue®(t), D(t) are finite, the former by definition and the latter due to Lemma 3, which implies
thatlim;—, oo Foper(t) = 0o W. p. 1. SinceE,,..(t) is increasednly when E(t) overflows, it follows that, under DRABP, the
queueE(t) overflows infinitely often so that

Pr (ﬂ Uieo) = Emax}> =1=Pr (U ({EG) < Emax}> =0. (135)
t=0j=t t=0 j=t

The RHS of (135) also implieBr (N, {E(j) < Emas}) = 0 for all t. We define the random variable= inf{t : E(t) =
Enq:} as the first time, under DRABP, the battery hiis,,, (obviously,7 = 0 if E(0) = E,...). Clearly, 7 is finite
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w. p. 1 sincePr (7 = o0) = Pr (ﬂ‘;’;o{E(j) < Emas}) =0, due to the implication of (135). We also construct the decreasing
event sequencel; = {7 > j}, so that it holdsn2,A; = {7 = oo}. From standard probability theory we know that
Pr(A;) — Pr(7 = 00) =0 ast — oo.

We now exploit limsup properties to write

t—o0 t—o0

lim sup — ZPr( <P)*hmsuplz[Pr< ()<P,7~'§j)+Pr(E(j)<P,%>j)}

< limsup — ZPr( () < P,7 < )Jrhrnsup ZPr( )<15,%>j) (136)

t—o00 t—o0

< limsup — ZPr( j) < <P i< )Jrhrnsup ZPr (7>17).

t—o00 t—o0

SincePr(7 > j) — 0 asj — oo, it follows that for anye > 0 there exists a/ such thatPr(7 > j) < e for all j > J. Hence,
for t > J it holds

t—1 J t—1
1 .. 1 .. 1 . J+1 t—-J-1
EZPI‘(T>]):¥ZPI‘(T>])+E Z Pr(7<j) < Tt ; € (137)
j=0 j=0 j=J+1

Taking a limsup in the last equation and exploiting the fact thist arbitrary yieldslim sup,_, . (1/t) Z;;é Pr(7 > j) =0,
so that we only need to compute the left limsup in the last line of (136). We will now prove the following bound jor all

. ? i1 P D ? o-1 5 _
Pr(B() < P.7 <) <Pr (Z B(k) < %) < Pr <Z B(k) < w> . (@38)
k=0

k:‘l’j

where7; S sup,<;{s : E(s) = Emas} is the last time up to (and including) when the battery hit,,,... This quantity is
well defined for all;j with 7 < j. R
If 7 =j,thent; = j, E(j) = Emes and{E(j) < P,7 < j} = @, so that (138) holds trivially. Consider now the event

{E(j) < P,7 < j}. It holds )
{BG)<P7<j}cC {j—rj > [%w éa}, (139)

since the fastest way the battery can drop frBp,. (its value atr;) to E(j) is by transmitting with peak power and receiving
zero recharge for all intermediate slots. Examining the combined gBéte D(t) in the interval[r; j] yields

j—1
E(j) + D(j) — E(r;) — D(15) > & Z )+ D = Emaz 26> B( (140)

k=T k=T

where the last RHS is inferred by the boundednes®¢f). Note that (140) holds for any such thatE(j) < E,... and
7 < j. Hence, the following inclusion is true

Jj—1
{E(j) < P, <j} C {PJrDEmachS B(k)}, (141)
k=t;
and, due to (139), it also holds
j—1 Ti+o—1
p+D*EmazZ(SZB(k> g ]AD‘FD*EWWWIZ(S B(k) . (142)
k=T, k=T,

Combining (141), (142), taking probabilities in the resulting inclusion and using the stationaf&t pproduces (138). Since
the RHS of (138) is independent ¢f(and therefore invariant under a convex combination), the proof is complete.

O
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E. Proof of Lemma 6
It is easy to show through simple algebra that

o—1 ~ ~ o—1 ~ ~,
P+D—FEpos 1 _ P4+ D-—Enowx =
P B < — | =Pr| - B -Bl<——— —B|. 14
(kz_o (k) < = ) r(g [B(k) — B] < — ) (143)

In the selected regime fdt,, ., it holds (]5 +D— Ermaz)/(08) — B < 0 so that we can apply Chernoff’'s bound [42] in the
form we state below
Lemma V-E.1: For a sequenag, z», ... of iid random variables, it holds for ath and a < E[x;]

Pr(z1+z2+...+x, <na) <exp(—nl(a)), (144)

where/(a) = sup, (fa — InE[e*1]). The following properties hold fof(-)
e l(a) >0 Va.
e a=0%<{(a)=0.
» /(a) is a convex function of.

Constructing the iid random variables, = B(k) — B (with E[z;] = 0) and substitutings for n in the above lemma
immediately produces the desired result.

O

F. Proof of Lemma 7

We assume thak,,., > P + D and prove Lemma 7 by standard induction starting fiom 7. The hypothesis is trivially
true fort = 7, since it holds, by definitionE(7) = Ey,.. and therefore®(7) + D(7) > E,,q.- We now assume that for some
t it holds E(t) + D(t) > Eyuaz, and distinguish cases fdr(t + 1)

o if E(t+1)= Enq., it follows immediately thatF(t + 1) + D(t + 1) > Enaz-

o if E(t+1) < Epas, We use (3), (10) to write

L
E(t+1)=E(t) - Y _ P(t)+ B(t),
=1

. (145)
D(t+1) = D(t) = (1= 0)B(t) + Y _ A1),
1=1
and add the previous relations by parts to derive
E(t+1)+ D(t+1) = E(t) + D(t) + 6B(t) = E(t) + D(t) = Ema, (146)

where the last inequality follows from the inductive hypothesistfor
Hence, the hypothesis is also true for 1 and Lemma 7 is proved.

As mentioned in Section 1I-B4, the fact that the battery will eventually jt,,. in finite time and never fall below?
afterwards suggests that the finite portion of time before the first hit does not affect the infinite horizon utility. A rigorous
proof of this requires the following intermediate facts

Lemma V-F.1: Letr a random variable taking values if¥ with E[7] < oo and a stochastic procesg(t) such that
0 < Z(t) < Z a.s., whereZ is an arbitrary constant. It then holds

o t—1 t—1
]

E[7]

1 ; 1 1 .
Z N AL A g . < = _
- > E[Z(R) - Z=— <5 Y E[Z(F+k)] < > E[Z(k)]+Z = Vt>0. (147)
k=0 k=0 k=0
Proof: It holds
t—1 FHt—1 t—1 t+7—1 7—1
N Z@E+k)y= > Zk)=>_ Z(k) + Z(k)->_Z(k) Vt, (148)
k=0 k=7 k=0 k=t k=0
so that
t—1 t—1 7—1 t—1 7—1 R t—1 R
N Z(E+k) =Y Z(k) =D Z(k) =D Z(k) =Y 2= Z(k)- 27, (149)
k=0 k=0 k=0 k=0 k=0 k=0
and
t—1 t—1 t+7—1 t—1 t4+7—1 R t—1 R
N Z(F+k) <) Z(k)+ Z(k) <) Z(k) + 7= Z(k)+ Zr. (150)
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Taking expectations in the last two equations and dividing lopmpletes the proof. ]
Combining Lemmas V-A.1, V-F.1 produces the following
Corollary 4: For any random variabler taking values inN with E[7] < oo and stochastic procesg(t) such that0 <
Z(t) < Z a.s., it holds

lim inf ZE (7 + k)] = lim inf ZE (151)
The following result is the key to proving our intuitive claim
Lemma V-F.2: Lef = inf {¢ : E(t) = Eyq. ; be the first time the battery hifs,,,,, under DRABP. It then holdB[7] < oo
Proof: We use the well-known identity for discrete random variables

=Y Pr(7>j), (152)
j=0
and examine the joint queuégt), D(t) in the interval[0 j]. Since the battery has never overflowed up to tiimé holds

E(j) + D(j) — E(0) — D(0) > 52_: B(k) = Emas + D > 532_: B(k), (153)
k=0

so that the following inclusion is true

{7>j}c {Emaﬁbz&iB(k)}. (154)

k=0
Taking probabilities in the last inclusion and performing some algebra similar to Appendix V-E yields

Emaw+D 1 ~
Pr(7>j) <Pr| —— - 155
(7F>j) < ( 5 ]Z ) (155)

Hence forj > j*, wherej* = 1 + [(Emax + D)/(6B)], the LHS of the inequality in the second probability becomes
negative so that we can apply Lemma V-E.1 and exploit the monotoniciéy-pfo get

Ema;v + b

Pr (7 > j) gm( B z% B(k)) <exp(—jl(a*)) Vi>j, (156)

wherea* = (Epq. + D)/ (j*0) — B < 0. Having provided an exponentially small tail bound, it easily follows from a standard
procedure thaE[7] < co
Combining Corollary 4 with Lemma V-F.2 finally proves the original claim.

G. Proof of Lemma 11

The boundedness of," (t) has already been established in the proof of Lemma 10. Ali(zi,(f?f(t) is finitely bounded for
all n, ¢, then repeating the procedure of Appendix V-B f0F,(¢) provides the bound of (94). Hence, it remains to prove the
bound forU{”)(¢). Although it follows from (87) thatR(°) (t) = 0 wheneverU\”) () > n¥;{”), the boundedness . (t)

cannot be proved solely through the argument of Appendlx V-B due to the addltlonaﬁ%mﬁﬁf (S(t), P(t)) of intra-node
incoming traffic. Hence, a new approach is required.

To prove the desired result, we can equivalently prove the following

Lemma V-G.1: For any pollcy Whose apg)llcation satisfies the conditions of Lemma 10 (clearly, NRABP is such a policy),
there exists a finite sequencﬁe a such that it holds for alk, ¢

(( < (c) (¢)
L T Sk a7
Zl=k ~€F

where F(©) £ 5 max; <,,< v Y1) and |Z| denotes the cardinality of.

Note that the maximum is taken over all sets of given cardinality. The above statement, if true, mpl@%@a{f t) <

NE®© 4 a(( , which in turn implies the desired boundedness. Lemma V-G.1 will be proved by induction, and the following
facts will be used in the process
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Remark 1: Consider any policy that places an explicit upper bound on the exogenously admittedﬂﬁt[m) for all
nodesn and commoditieg (clearly, NRABP is such a policy). Then, there exists a sufficiently IéYmch that, under this
policy, it holds for all set< C {1,...,N}

S+ <> UM+ ¢ veek, (158)
€L €L
where is the commodity set.
Remark 2: Consider any index sétC {1,..., N}. This set can be uniquely partitioned @s= Lﬂézl Z; where

s @ if 17,
Il_{ {1,2,. .. ie, b 0 {1,200, } ST N, +1 ¢ T, (159)

and the remaining sets are defined recursively through
I; = {ig, ig, + 1,0, ) (160)

wherei., andiy, are uniquely defined by the following conditions
o fi >ej—1+2 (if 7y = @, we definee; = 0).

o {ic,., +1,...,i5, —1} CZ¢ where® denotes set complement.
Furthermore, for such a decomposition we can define the set
s ) 9 if l=1,
9= { {ie, +1,...,if, — 1} otherwise (161)

Remark 1 is true due to the fact that link rates are finitely bourtéledhile Remark 2 is a notational description of the
obvious fact that any index set can be uniquely decomposed into non-overlapping blocks of consecutive indices starting fror
low numbered indices, as shown in Fig. 15 (black nodes belofgvitiile white ones don't; two different examples are given
depending on whether € 7). The setG is essentially the set of indices located between the first and second blocks.

,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,

Fig. 15. Schematic decomposition Bfinto Z;. In the second case, it holdg = <.

The following result will also be used R
Lemma V-G.2: Let a non-increasing finite sequemge> xo > ... > xy such that it holdsZ?:1 z; < nH + a, for all
n=1,...,N. For consistency, defing = 0. Then, for any index subs&tC {1,..., N} consisting oft elements it holds
—k k —
12 Gny + 7711 QApy (162)

ng — Ny Ny — Ny

Zl’i < kH +
icT
wherek = |Z|, n1 = |T1|, m = |G|, no = m+k andZ;, G are defined in Remark 2. The above inequality is meaningful when
ng > Nj.
Proof: We explicitly use the notation of Remark 2 and distinguish cases as follows

« 1 ¢ 7. Then, by definition it hold€; = @, n; = 0 and the desired inequality becomes

k
R Gmehe (163)

? N m k ? N
;x— R —— ;z— +

m

,,,,,
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If I =1 so thatm = 0, we have to prové _,_; z; < kH + a, which is true by assumption. Fér> 1, sinceZ; = @ and
Z, IS @ non-increasing sequence, the arithmetic means of non-overlapping index sets satisfies a similar inequality, i. e.

%inZ%ZwiizmiZ%zwi- (164)

i€G i€l i€G €T
The monotonicity ofz; also implies
m+k
in—l—le_le_ m+kH+am+k, (165)
i€G €T

where the second inequality holds by assumption. Combining the last two equations yields

k
( +1)le_ m+ k) H+am+k:2x1§kH+ kam+k, (166)
€T €T
so that (162) is proved.
e 1 €7, sothatZ; # @. The casd = 1 is immediately eliminated since it implies = 0 andn, = ny = k. Hence, we
assumd > 1 so that the arithmetic means inequality is still applicable
>, (167)

m
— g x; > A g €T; = E x; > =
zeg zeZQ&J...wIl i€g 1 1€ZoW...WI;

and since it holds

sz—l—z,rz_ (m+k) H+am+k, (168)
i€T i€G

combining the last two equations yields

Zlﬂiﬁijinnl Z $i§(m+k)f{+am+k<:>zxi+

€L 1€, . W1 i€l

m .
p— <lezzxz sz> < (m+k)H + am+k

1€,

m
@(1+kn1)z:ri_(m+kH+ ZzlJraerk
1€T zEIl
(169)
Using the fact thad ., z; < nH + an, and performing simple algebra in the last equation results in (162).
|
We are now in position to prove Lemma V-G.1 inductively, sot thva are essentially looking for a sequem(ié), e ,a§§>

that satisfies (157). Clearly, the proof is essentially complete if we find such a sequence for aspderﬁme in the remainder
of the proof, we drop the dependence on all quantities (i. e. we wrlfg(t), a; etc. instead oU(°)( t),a )) Eq. (157) is
trivially true for ¢t = 0, since all queues are initially empty, provided thé‘i > 0. We assume that (157) holds foland we
examine what happens at+ 1.

Pick any sefZ C {1,..., N} and decompose it &= ZUZ, whereZ = {i € 7 : U;(t) > F'} andZ = {i € T : U;(t) < F'}.
We also assume, w. |. 0. g, th8% (¢t) > Ua(t) > ... > Un(t) and distinguish cases:

. it holdsZ # @. Using Remark 1, the definition of and the inductive hypothesis ahyields

S v+ <> v m =300 +> v +C

i€T i€T icl ieZ (170)
o 7 ~
<|ZIF@ + a3y + [ZIFC + C < |TIF + ap + C < |TF + ayg.

SinceZ # @, the hypothesis is true far+ 1 provided it holdsax1 > ax + Cforall k=1,...,N —1.

. it holdsZ = @ and the decomposition of according to Remark 2 consists of a single bIock (lelandZ =7 =
7). SinceZ; contains consecutive indices, it contains fhe= n; largest backlog indices. Additionally, the policy, by
construction, allows bit transfers only from higher backlog nodes to lower backlog. Hence any incoming traffic to a node
of Z must originate from another node i which implies

DN UE+1) = Ut +1) <Y U(t) < [Z|F +a;z = |ZIF +ayz, (171)
ieT iel iel

where the last inequality holds due to the inductive hypothesis.for
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« itholdsZ = @ and the decomposition @f consists of two blocks or more (i. £> 2). Using Remark 1 and Lemma V-G.2
yields

—k k — o 7 A
12 an, + e Gn, + C < kF + ay, (172)
ng — Ny ng — Ny

STUit+1) <> U +C <EkF +
i€l iel

wherek = |i| andni,no are defined in Remark 2. Hence, the inductive hypothesis is true-for if it holds

ng — k k — ny °
ap > max Gpy + ———an, | +C. (173)
nin2 N2 — Ny ng —ny
0<ni<k<n2<N

Gathering the previous conditions, Lemma V-G.1 is proved if there exists a sequence, a that satisfies the following
conditions

ar >0 Yk=0,...,N,
api1 > ap+C Vk=0,...,N—1,

ng —k k—n (174)
a > max [ 2 an, + 1an2}+0 Vk=1,...,N —1,
TLn2 ng —n ng — N
0<ni<k<no<N

where we defineyy = 0. Since the coefficients af,,,, a,, form a convex combination, a sequence satisfying (174) can be
easily constructed as follows. Pick any strictly increasing and strictly concave sequgnce by with by = 0 so that it

holds'® . .
Nno — — N1
b > max G, + Gy | (175)
nL.n2 ng — N ng —ny
0<n1<k<n2<N
and define
A .
cit= min [b —b
1 0<k<N—1 [ k+1 k] )
A , ng — k k—mnq (176)
co = min b — max bn, + by | |
1<k<N-1 ni,n2 ng — Ny ng — Ny
0<ni<k<no<N

The strict monotonicity and concavity imply that, c; > 0. It now follows, after some simple algebra, that the sequence

C
ag = by, ————, (177)
min(cy, ¢2)
satisfies (174), so that the hypothesis is truetferl and the induction is complete.
|

H. Total Hidden AreaS

We first compute the total hidden aréafor transmission from statio@, to stationO,, as illustrated by Fig. 16. The
distance between statiatl; and O, is d. The CSRange and TXRange areR and r respectively. In Fig. 16, the grey area
Sapp is the hidden area that we will compute.

From cosine theorem, we gétand ¢:

0 = arccos|[(r® +d* — R?*)/(2rd)] (178)
¢ = arccos[(d®> + R* —r?)/(2dR)] (179)
Then we easily get the following areas
Saop = ri(m—0)/2 (180)
SA0102 = drsin 9/2 (181)
Sao.c = R*¢/2 (182)

SinceSagp = 2(S40,8 + Sa0,0, — Sao,c), We have

[ r?(r—0)+drsinf — R*p ifr>R-—d
Sapp = { 0 otherwise (183)

After the normalization procedure described later in this section, the relationship is plotted in Fig. 4 R*henthe equation
is reduced to the one established in [41] and [39].

16an example of such a sequencebjs= 1 — e~ *.
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Fig. 16. lllustration of hidden area. The shaded region ishidelen area.

|. Hidden AreaH (i, ) and Covered Ared (i, j)

As shown in Fig. 6,H (i,j) and E(i, j) are the observed hidden and covered area in anndyis by a source station in
annulusA(i), respectively. Wher/ is large, the distancé from a source station in annulufi) to the AP approximates the
distance from the middle of annulu§(;) to the AP:

d=r(i—1/2)/M (184)

In Fig. 6, the hidden ared (i, j) can be considered as the difference between total hiddenie®) and S(i,j — 1),
whereS(i, j) is the total hidden area observed by a node in anndii@g when the TXRange of the AP isj/M (i.e., the
AP covers as far as annuluf;j)).1” In (183), by replacing TXRanger with rj/M and inserting the distanagfrom (184),
we get

Fli%(m = 0) + j(i — 3)sinf] — R%p

S(i,j) = j=M—i+1,....M (185)
0 otherwise
Then we get the desired the hidden area
Now let us discuss the covered arBg, j). Each annulusA(j) is composed of£ (i, j) and H (¢, j). So E(4, j) is:
where H (i, j) is expressed in (186) and the ardgj) is
A@j) = mr?[j* = (j - 1)%)/ M? (188)

For ease of mathematical manipulation, we normalize the above obtained areas with respect to the transmission area of
node, which isrr2.

J. Derivation of Eq. 107

We consider a station located in annuldéi) (Fig. 5) of a saturated network with nodes. Definen € (0,m) as the
backoff stage. The maximum backoff window size at stage W,, = 2"W. Let k be the stochastic process representing the
reading of the backoff counter for a given station. Then we get a discrete two-dimensional MarkovrchiiHg. 17) to
model the 802.11 DCF. It is the same as that in [29].

As in [29], the collision probabilityP. (i) is assumed to be independent of the statsf the station. From Fig. 17 we obtain
the transition probabilities of the Markov chain:

P{n,kin,k+1} =1, ke (0,W,, —2),
n € (0,m);
P{0,k|n,0} = (1 — P.())/Wo, ke (0,Wy—1),
n € (0,m);
P{n,kln—1,0} = P.(4)/W,, ke (0,W,—1),
n € (1,m);
P{m, k|m,0} = P.(i)/ W, ke (0,W,, —1).

1"This is only for the convenience of mathematical manipulation. The transmission ranges for all stations (including AR)sastated before.
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Fig. 17. The 2D Markov chain to model 802.11 DCF.

Denoteb,, , as the probability of state (n,k) in steady state. From the above transition probabilities, we get the following
relations:
bn,o = Pe(i)"boo, n € (0,m — 1);
P()™
bm,o = %C(i)bo,o,
bn_’k = Wv?/;kbn.’o, k S (O,Wn — 1)

With these three relations, each state probability can be expressed with (. Substitute,, ;, into the normalization condition

m W,—1

SN bar=1 (189)

n=0 k=0

we get the value ob o:
2[1 — 2P, (d)][1 — Pe(i)]

bo,0 = .
YOI 2P @)W+ 1) + Pe(WL — (2P(0)"]
As a transmission occurs only when the backoff counter is zero, the transmission probgbjlity the summation of the
probabilities for the states with = 0:

(190)

(i) =Y bno (191)
n=0

which leads to Eq. 107.



VI. LiST OF SYMBOLS, ABBREVIATIONS AND SYNONYMS

Notation || Definition

DRABP Downlink Rechargeable Adaptive Back-Pressure policy

NRABP Network Rechargeable Adaptive Back-Pressure policy
£ equal by denition

S(t) vector of channel states for slot

P(t) transmission power vector for slotselected by the network control policy

Ps set of power vectors wher®(¢) must belong when it holdS(¢) = s

K set of commodities

Ar(t) amount of exogenously generated bits during slottended for uset

ASf) () amount of commodity bits exogenously generated at nodeduring slot¢
Vi(t), Ui(t) amount of bits stored at timein the transport/network layer, respectively, queue of dser
Ve(t), US(t) || amount of commodity: bits stored at time in the transport/network layer, respectively, queue of node

E,(t) battery level of node: at time ¢ (in a downlink scenario, we just writ&(t))

B (t) amount of replenished energy during slodlue to battery recharge at node(in a downlink scenario, we just writ&(t))
Ry in(t) number of bits (intended for uséy admitted into the network layer at slot

Rgf)m(t) number of commodity: bits admitted into the network layer at nodeand slott
T time average of quantity (depending on context, may also denote expected value)
T deterministic upper bound imposed on quantity
R (t) number of bits actually transmitted on lirdkduring slot¢
71 (t) time average of?;(0) ... R;(t —1)
7 (t) time average of2{") (0) ... RO (t —1)

E [z] expectation of quantity:

Y (t) amount of bits stored at timein virtual bit queue of uset (downlink scenario only)
Dn(t) amount of bits stored at timein virtual power queue of node (in a downlink scenario, we just writ®(¢))
Y,gc)(t) amount of commodity bits stored at time in virtual bit queue of node:

TX_Range Transmission Range
CS_Range Carrier Sensing Range
IF_Range Interference Range
[ duration of a successful transmission
8 duration of a collision period
[ duration of a backoff time slot
W initial backoff eindow size
P, collision probability
T transmission probability

A1) annulus:
trTS RTS transmission time

P (7) conditional success probability given that a node in annul{ initiates a transmission

P.(7) conditional collision probability given that a node in arumilA(¢) initiates a transmission

P;aie probability that all stations are idle at a time slot

N(7) expected number of stations located at annuls)

Psuccess probability that is a successful transmission in a time slot

Pcollision

probability that is a collision in time slot

expected aggregate throughput for all network

T

mean duration of a time slot

5@

per node throughput in annulus A(i)
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