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Adhoc wireless network control: energy efficiency
and hidden terminal considerations

Abstract

In this project we investigated challenges of wireless networks design with focus on energy management on battery dependent
devices and the impact of a new hidden terminal problem on the operational efficiency of wireless networks. The results summarized
in this report have been presented in a number of papers published [1], [2] or submitted for publication [3], [4]. In the first part
of this work we consider the optimal control of wireless networks operating with rechargeable batteries under general arrival,
channel and recharge processes. The objective is to maximize total system utility while satisfying energy/power constraints. Starting
from a downlink scenario, we propose a policy with decoupled admission control and power allocation decisions that achieves
asymptotic optimality for sufficiently large battery capacity. Extensions to single-hop and multihop networks are also presented.
Such policies are particularly suitable for satellite downlinks or sensor networks. In the second part of this work, we investigated
performance unfairness (in terms of throughput and delay) on the Medium Access Control (MAC) mechanism of 802.11 standard
in the presence of hidden terminals. To eliminate the impacts from the physical layer (PHY), we assume good channel. In this
case, we may intuitively expect that all stations have equal success probabilities in their transmissions. This intuition is from the
random access scheme of Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) which is employed by 802.11
MAC protocol. However, we will show that the intuition is not true due to hidden terminals. Instead, the following fact is revealed
in this work: The success probability of a transmission is location-dependent. More specifically, the nodes far from the access
point see more hidden terminals than those close to the access point, so they experience more collisions and thus smaller success
probabilities. We build a model to analyze the throughput and collision probability for nodes at different locations, validate them
via simulations and compare with the measurement results from experiments.
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I . INTRODUCTION

In the concept of that project we investigate the challenges of wireless networks design with focus on energy management
on battery dependent devices and the impact of hidden terminals on their operational efficiency. This study provides ideas
to explore and develop through that work. The report is organized in two parts. The fisrt one is affiliated with the energy
managment on limited-energy devices and the latter with the operational cost of hidden terminals.

Efficient energy management is a crucial component of wireless network design, since it can lead to increased throughput and
network lifetime. The latter concept, which has numerous application-dependent definitions, is meaningful for battery operated
devices that do not have energy-harvesting capabilities (i. e. they cannot recharge themselves from ambient sources) and,
hence, become inactive once they run out of energy. On the other hand, there exist applications where the wireless transmitters
can replenish their batteries. Two common examples are solar-paneled satellites (where the recharge process depends on the
satellite’s exposure to sunlight during its orbit and can be determineda priori with high confidence) and sensor networks [5]
(which harvest solar or wind energy so that the recharge process depends on atmospheric conditions and is better modeled as a
stochastic process). Such rechargeable systems are usually regarded as having infinite lifetime,1 so that long-term performance
metrics become appropriate.

This document initially considers the control of a wireless downlink operating in discrete time under rechargeable batteries,
and later generalizes the analysis to single-hop and multihop networks. The relevant literature has greatly expanded in recent
years, with most works being based on a dynamic programming (DP) and/or Markov decision process (MDP) approach. Finite
horizon control problems are studied in [7], for a single satellite downlink subject to stochastic power demands and rewards
(although no packet dynamics are included), and [8], for a multihop network where the nodes have knowledge of the future
short-term recharge process (an assumption we dispense with in this work). The model in [8] is inspired by the virtual circuit
concept and, as such, performs resource allocation on a one-shot basis for each accepted service request (the latter is described
by the source and destination nodes as well as the associated gained revenue). Specifically, a policy is developed that, for each
accepted request, computes an appropriate energy-weighted shortest path from the source to the destination node of the request
and simultaneouslyreduces the energy of all nodes lying on the selected path by the required cost (provided that the gained
revenue is larger than the expended cost). Since the policy drops any requests that cannot be immediately served, queueing
effects are ignored. Additionally, the link-based energy costs do not depend on channel variations.

In [9], a rechargeable group of cells under realistic battery fatigue is examined, where the objective is maximization of the
energy delivered from the battery. Open and closed loop policies for finite and infinite horizon control also appear in [10].
Especially for sensor networks, [11] examines a scenario where the derived utility (namely, probability of event detection)
depends only on the number of active sensors. The sensors are either recharging or transmitting (but not both) and, once
completely drained, can only activate themselves when fully recharged. An upper bound for any feasible policy is derived and
distributed threshold policies are proposed with a multiplicative guaranteed bound of 1/2 w. r. t. the optimal policy. In [12],
the sensors are allowed to be activated even when partially recharged and an asymptotically optimal (w. r. t. battery capacity)
policy is proposed for Poisson and exponential recharge/discharge processes, respectively. Although the last two works don’t
use DP (and hence scale well), the analytically derived bounds hold for a rather ideal setting. Finally, [13] focuses on the
temporal correlations between the events sensed by a single sensor and studies, in terms of an MDP, the structure of the optimal
policy under various observability conditions. Efficient suboptimal policies are also proposed and numerically evaluated for
multiple node networks in [14]. References [11]–[14] focus exclusively on the sensing aspect of sensor networks rather than
the network flow of information (i. e. what happensoncean event is detected), which is the main focus of this document.

Our model is distinct from the aforementioned works and is directly influenced by the cross-layer stochastic optimization
framework of [15], [16], which, in turn, was inspired by [17]. This framework was applied in [18], which proposed optimal
adaptive backpressure policies (collectively referred to as ABP) for non-rechargeable power-constrained networks under long-
term average constraints, and introduced the concept of virtual queues to handle the latter, while [19] addressed fairness issues
in a similar setting. Unfortunately, the above methodology relies crucially on the fact that available controls depend only on
current channel states and are independent of prior history, and this condition is violated in our model, as will become apparent
later. Hence, this approach is not directly applicable. Our rechargeable model explicitly takes into account wireless channel
variations and packet dynamics and aims in maximizing a suitably defined measure of user satisfaction, while imposing minimal
assumptions on the arrival, recharge and channel processes (the basic assumption is that these processes are rate-convergent, as
defined in [15]). Since the lifetime of rechargeable systems is practically infinite, the inclusion of packet dynamics forces us
to study the stability properties of any policy under consideration. An adaptive stabilizing policy is proposed with guaranteed
performance bounds that imply asymptotic optimality for sufficiently large battery capacities.

This report is structured as follows. Subsection II-A contains the system model and problem statement for a downlink
scenario and also presents a connection with an infinite battery problem which offers important insight. Subsection II-B
introduces the concept of virtual queues and proposes a policy for a rechargeable battery. Stability and performance analysis

1if we take into account battery fatigue (i. e. the fact that recharge capability deteriorates as the number of recharge cycles increases), the lifetime is, strictly
speaking, finite. However, as shown in [6], proper design can lead to a lifetime of more than a year, for continuous operation (and even more for typical duty
cycles), which can be considered as infinite for engineering purposes.
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for this policy is carried out in detail. The gained experience is used in Subsection II-C to propose policies for single-hop and
multihop networks, with the latter requiring a more complex analysis (performance bounds are provided in all cases)

As a predominant wireless local area network (WLAN) technology, IEEE 802.11 [20] has defined both contention-free
point coordination function (PCF) and contention-based distributed coordination function (DCF) for medium access control
(MAC). Nonetheless, only the DCF protocol, which is a random access scheme based on carrier sensing multiple access with
collision avoidance (CSMA/CA), has been widely deployed in the field. The DCF protocol has further incorporated a ready-to-
send/clear-to-send (RTS/CTS) handshake mechanism to mitigate thehidden terminal problem, which causes great performance
degradation if left unattended [21].

Most research on the hidden terminal problem has been focused on the performance degradation to the overall network
[22]-[23],[24]. This work, however, focuses on the level of the degradation imposed onindividual nodes. We find that the level
of performance degradation for a node is location-dependent. More specifically, it depends on the distance from the access
point (AP). As we will see from the measurement results in section III-F, stations at different distances from the AP experience
significantly different collisions probabilities and consequently achieve disparate throughput. Similar observations are made
from our analysis and simulations (section III-D). In a 16-node WLAN, we observe that the throughput ratio between a node
close to the AP and a node at the edge of the network ranges fromthree timesto as much asfive times. In order to establish
a solid theoretical foundation, we propose an analytical model for WLANs in the presence of hidden terminals. To further
demonstrate the performance unfairness in practice, we further report results from experiments carried out in real environments.

We will mainly focus on the scenario with RTS/CTS handshake in our analytical model, since the measurement results to
be reported in section III-F corroborate that WiFi network performance in the presence of hidden nodes is much worse when
RTS/CTS is turned off as compared to the case where RTS/CTS is switched on.

The rest of the second part will be organized as follows. Subsection III-G briefly summarizes the related work in the
literature. Subsection III-A describes the hidden node problem and the resulting performance unfairness. Subection III-B builds
an analytical model for a 802.11 WLAN. Subsection III-D validates the model with simulations. Subsection III-F presents the
measurement results from our testbed. Finally, the Appendix provides the derivations of the hidden areas and Eq. 107.

II. A SYMPTOTICALLY OPTIMAL CONTROL OF WIRELESS NETWORKS WITH RECHARGEABLE BATTERIES

A. System model and problem statement

As stated in the Introduction, the proposed policy applies to generic multihop networks under arbitrary rate-convergent
arrival, channel state and (energy) recharge processes. However, in order to simplify the discussion and gain essential insight
into the operation of the policy, we initially present the analysis for a downlink scenario with iid arrival, channel and recharge
processes and, in a later section, describe the modifications needed for the general case. Non-iid processes can be handled by
the T -slot analysis [16] of rate-convergent processes and are not covered here.

We consider a time-slotted system where slott corresponds to the time interval[t t + 1). There exists a single base node
that transmits toL users (i. e. there existL wireless downlinks2). The link channels are time-varying so that we denote with
S(t) the channel state at slott and assume it is iid distributed over a finite setS, i. e. S(t) ∈ S for all t. We also define
πs

△

= Pr (S(t) = s), where, with no loss of generality, it holdsπs > 0 ∀ s. Channel conditions remain constant for the
duration of each slot but may change at slot boundaries. The base node has a distinct traffic stream for each downlink so that
Al(t) stands for the number of exogenously generated bits during slott that must be transmitted to (downlink) userl. These
bits enter the transport layer and are stored, in a FIFO manner, in an external queue awaiting admission into the network layer
and subsequent transmission. Admission control is necessary for the case of heavy traffic that exceeds the network capacity.
When the bits are admitted into the network layer, they are first stored in an internal “network” queue, again in FIFO fashion,
until transmission occurs. LetVl(t), Ul(t) be, respectively, the number of bits stored at timet in the external/internal queues
of the base node and destined for userl (through link l).3 Denote withRl,in(t) the number of bits moved from the external
to the internal queue (i. e. admitted into the network) of linkl at time t, and define4 Rin(t)

△

= (Rl,in(t))L

l=1. Supply/demand
constraints clearly requireRl,in(t) ≤ Vl(t) + Al(t) for all l, t. It is further assumed that each exogenous arrival processAl(t)
has a deterministic upper bound̂Al (i. e. Al(t) ≤ Âl ∀ t) and is iid distributed with expected valueλl. We will write at times
Â

△

= (Âl)
L
l=1 andλ

△

= (λl)
L
l=1.

The base node is equipped with a rechargeable battery of maximal energyEmax. The battery level at timet is denoted as
E(t). The battery energy is depleted due to link transmissions but is also replenished due to a recharge process. Specifically,
we denote withB(t) the amount of replenished energy during slott, whereB(t) is assumed bounded5 (i. e. B(t) ≤ B̂ ∀ t)
and iid distributed with an expected value ofB̄. At the beginning of each time slott, the network controller chooses a power
vectorP (t)

△

= (Pl(t))
L
l=1, wherePl(t) is the selected transmission power in linkl during slott. Available transmission power

2in the following, the terms userl and link l will be used interchangeably, since there exists a 1-1 correspondence between them.
3for economy of expression, we will refer toUl(t) as the internal queue of linkl, and similarly forVl(t).
4we hereafter use bold face to denote vector quantities. The vector’s dimension will be apparent from context.
5the deterministic bound assumptions onAl(t) andB(t) can be replaced by the weaker conditions of finite second moments, which leads to slightly modified

performance results (although the proposed policy is unaffected). We choose to stay with the former assumption in order not to obscure the discussion.
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vectors may be channel-state dependent, i. e.P (t) ∈ Ps wheneverS(t) = s, wherePs is a finite set6 for all s ∈ S. The
only constraints imposed onPs are that for alls ∈ S it holds 0 ∈ Ps and

∑L
l=1 pl ≤ P̂ ∀p ∈ Ps, whereP̂ ≤ Emax. The

first constraint states that the system may always select to decline transmission while the second constraint models hardware
limitations or standard regulations. The existence of the finite-energy battery further restricts the available power vectors for
slot t by the natural condition

∑L
l=1 pl ≤ E(t) ∀p ∈ PS(t).

To facilitate analysis, it is assumed that all values of the recharge processB(t) as well as all members ofPs are integer
multiples of an arbitrary constant (i. e. they are quantized), so thatE(t) effectively takes values in a countable set. For a given
stateS(t) and selected powerP (t), the transmission rateµ(t)

△

= (µl(t))
L
l=1 in slot t (i. e. the number of bits that can be

transmitted in each link) is upped bounded, component-wise, by a vector functionc (S(t), P (t)) that satisfies the following
properties

• it holdscl (s, p) = 0 for anys, p such thatpl = 0. A consequence of the previous statement is the fact thatc (s,0) = 0.
• for any s, p, and for all l, it holds cl (s, p) ≤ cl (s, p̃) where p̃k = δlkpk and δlk is Kronecker’s delta. The function

cl (s, p̃) is non-decreasing, differentiable and concave w. r. t.pl. Interpreting the first condition, it is equivalent to saying
that the maximum rate of linkl decreases (for a fixedpl) as the other links are assigned non-zero power, which follows
from interference properties. The second condition is also typical of most rate functions and appears often in literature.

• it holds ∂cl

∂pl
(s,0) < ∞ for all l ands.

Since all sets encountered so far are finite, we define the bound7 ĉl
△

= maxs∈S,p∈Ps cl(s, p).

Under the previous assumptions and notation, the queuesV (t)
△

= (Vl(t))
L
l=1, U(t)

△

= (Ul(t))
L
l=1 and the battery levelE(t)

evolve as8

Vl(t + 1) = Vl(t) + Al(t) − Rl,in(t), (1)

Ul(t + 1) = [Ul(t) − µl (S(t), P (t))]
+

+ Rl,in(t), (2)

E(t + 1) = min

(

E(t) −
L
∑

l=1

Pl(t) + B(t), Emax

)

, (3)

where[x]+ = max(x, 0), subject to constraints

Rl,in(t) ≤ Vl(t) + Al(t) ∀ l, t, (4)

P (t) ∈ PS(t),

L
∑

l=1

Pl(t) ≤ min
(

E(t), P̂
)

∀ t, (5)

0 ≤ µl (S(t), P (t)) ≤ cl (S(t), P (t)) ∀ l, t. (6)

It can be argued thatµl (S(t), P (t)) should be replaced bycl (S(t), P (t)) in (2) since, intuitively, there is no benefit in
transmitting fewer bits than those allowed by the selected power (assuming there are sufficient bits to transmit in the first
place). Although this argument is indeed correct, we elect to keep the current notation and reach the same conclusion through
the policy specification itself rather than mere intuition.

Denote withRl(t) the number of bitsactually transmitted in linkl during slott so that the corresponding time-average rate
is

r̄l(t)
△

=
1

t

t−1
∑

τ=0

E[Rl(τ)]. (7)

We also use the shorthand̄r(t)
△

= (r̄L(t))L
l=1 and writer̄(t) = 1

t

∑t−1
τ=0 E [R(τ)]. Each userl derives a satisfactionfl (r̄l(t))

based on its current time-average rater̄l(t), where the utility functionfl(·) is assumed to be non-negative, increasing,
differentiable and concave. We also impose the constraintsfl(0) = 0, f ′

l (0) < ∞. The total system satisfactiong (r̄(t))

at time t is g (r̄(t))
△

=
∑L

l=1 fl (r̄l(t)). We finally make the following natural
Assumption 1: At timet = 0, all bit queues are empty.

No assumption is made regarding the initial battery level; henceE(0) can take any value in[0 Emax]. Loosely speaking,
a decision rule is a procedure for selecting the control variablesRin(t), P (t) for a specific time slott subject to all
aforementioned constraints, while a policy is a sequence of decision rules for all time slots. We restrict attention to policies
that stabilize the network according to the definition of [15]. Specifically, a network with a composite queueU(t) is stable
iff lim supt→∞

1
t

∑t−1
τ=0 E[Ul(τ)] < ∞ ∀ l. Note that the notion of stability considers only the internal queueU(t) since the

6although in our case it holdsPs = P ∀s ∈ S, since there is no reason for available power choices to depend on the channel state, there exist scenarios
where the available powers depend on a properly defined state space (which may include more components than channel conditions only). These cases also
fall under the considered model.

7unless otherwise noted, the accentˆwill always denote an upper bound.
8unless otherwise noted, the indicesl, s, p will hereafter range, respectively, over the sets{1, . . . , L},S,Ps (e. g. we write∀s instead of the formally

correct∀s ∈ S, etc).
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external queueV (t) is, by definition, not part of the network layer (in fact, for heavy arrival traffic that exceeds network
capacity,V (t) must grow without bound). Hence, we state our problem as follows

Problem 1: For the downlink scenario described by the queuing evolutions of (1)–(3) and the constraints of (4), (5), find
a stabilizing policy that maximizeslim inft→∞ g (r̄(t)). The optimization is performed over the set of all stabilizing policies,
including those with perfect knowledge of future events. Denote the optimal objective value asg∗re.

Determination of the optimal policy in Problem 1 is very challenging, so we instead seek a policy with a system utility that
is close to the optimal one. SincêP , B̂ are considered to be system parameters, we can fix their values and restate the problem
as

Problem 2: Under the same assumptions as in Problem 1, find a policy that for anyǫ > 0 achieves an objective value no
less thang∗re − ǫ, provided thatEmax > E∗(ǫ) for a sufficiently largeE∗(ǫ).

Sinceg∗re clearly depends onEmax, a better notation would beg∗re(Emax) but we elect to simplify notation and keep the
dependence implicit. Problems 1, 2 are essentially sequential decision problem that can, in principle, be attacked with dynamic
programming (DP) and/or Markov chain techniques. However, these techniques are impractical since they suffer from the
dimensionality curse of DP and require extensive knowledge of system parameters, e. g.πs, λ, which may not be available
to the network controller. On the other hand, the Lyapunov drift framework of [16]–[19] assumes that at any states, one may
always choose any of the available controls inPs. However, this is not the case in our model, as evidenced from (5), which
implies that whenE(t) < P̂ the available powersP (t) depend explicitly on the battery levelE(t). Hence, this approach is
not directly applicable to our problem. Nevertheless, it suggests the existence of a modified policy that solves Problem 2 when
Emax ≫ B̂, P̂ . The intuition behind the last statement is explained below.

1) Some intuitive remarks:Equations (3), (5) imply

t−1
∑

τ=0

L
∑

l=1

Pl(τ) ≤ Emax +

t−1
∑

τ=0

B(τ) ⇒ lim sup
t→∞

1

t

t−1
∑

τ=0

E

[

L
∑

l=1

Pl(τ)

]

≤ B̄, (8)

where the first relation expresses conservation of energy and the second one follows from the first by taking expectations,
dividing with t and taking a limsup ast → ∞. Eq. (8) implies thatany policy (stabilizing or not) acting on the rechargeable
battery satisfies an average power constraint ofB̄, which in turn allows us to perform the following “thought experiment”.
Consider the same downlink problem as above and replace the rechargeable battery with an infinite capacity battery, which
essentially removes (3) and theE(t) constraint in (5). Denote withg∗avg the maximum system utility achieved over all policies
acting on the infinite battery with average power constraintB̄ (we collectively refer to these as “average” policies). This scenario
is treatable by the methodology in [18], which proposes an ABP-based adaptive policy whose performance can approachg∗avg

arbitrarily close. Since it clearly holdsgre ≤ g∗avg, Problem 2 is solved if we can find a policy (for the rechargeable battery)
that performs better thang∗avg − ǫ.

At this point, and since the finite energy content of the battery affects decisions only whenE(t) < P̂ , one might be tempted
to directly apply the ABP average policy on the rechargeable battery (obviously, when ABP selects a power that exceeds the
currently available energy, a best-effort action is taken). After all, assumingE(0) = Emax ≫ P̂ and applying the ABP average
policy, it would take a very long time for the battery level to drop belowP̂ , where ABP is non-optimal. Hence, it can be
argued that such a policy is optimal “most of the time” and the asymptotic optimality is essentially “proved”. The previous
reasoning is wrong in an infinite horizon model in that it neglects what happensafter the battery drops beloŵP . Specifically,
if ABP results in the battery level oscillating around̂P , or, worse, staying under̂P for extended intervals of time, then even
though ABP is optimal for the time interval before the battery dropped belowP̂ for the first time, it becomes non-optimal
for long intervals of time after that. If this occurs for many sample paths, it is not evident that the suggested policy performs
close to optimal.

The previous paragraph effectively described a mechanism through which any policy acting on the rechargeable battery
suffers a performance loss with respect to the ABP average policy. The crucial point is that it is nota priori known (and
neither is it intuitively obvious) whether this loss can be made arbitrarily small. Another mechanism that leads to performance
degradation is the loss of recharged energy due to theEmax cap. Specifically, for a slott, it may holdE(t) ≥ Emax − B̂ and
for a poor channel state the controller elects to transmit with low power (so that power is withheld for better channel states
which can offer increased utility) and when the battery is recharged, the replenishment is too high so that some energy is lost
due to theEmax cap. Obviously, if the controller knew in advance the exact amount of energy replenishment, it could elect
to increase the selected transmitted power by the amount of overflow aboveEmax. This would have the effect that the battery
energy would still be the same at the end of the time slot but now the user has received a higher satisfaction. Clearly, the ABP
average policy is immune to this effect, since there is no battery to overflow in the first place.

The previous observations indicate that a policy closely resembling the ABP average policy whenE(t) ≥ P̂ and under
which Pr(E(t) < P̂ ) andPr(Emax − B̂ < E(t) ≤ Emax) are small should perform nearly optimally. This is quantified next.

B. Performance analysis
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1) Virtual queues and policy specification:We now focus on the rechargeable battery setting and, in the spirit of [15],
introduce a virtual queue for each linear long-term constraint. Two such constraints exist in our model, the first one due to the
finite arrivals, as modeled in (1), and the second one due to (8). Hence, we define virtual queuesY (t)

△

= (Yl(t))
L
l=1 andD(t)

which evolve as

Yl(t + 1) = [Yl(t) − Rl,in(t)]
+

+ γl(t), (9)

D(t + 1) = [D(t) − (1 − δ)B(t)]
+

+

L
∑

l=1

Pl(t), (10)

for some0 < δ < 1, whereγl(t) is an auxiliary process introduced for mathematical convenience. SinceRin(t), γ(t) are
determined by the policy, we can impose arbitrary bounds on them. Specifically, we requireRl,in(t), γl(t) ≤ Âl ∀ l. The virtual
queues are constructed in such a way that any policy that stabilizes them also satisfies the appropriate long-term constraints
(this novel insight was introduced in [18]). Eq. (10) is different from the standard approach of [18], which would replace
(1 − δ)B(t) with B̄, since the latter is the actual constraint to be satisfied. This modification is an essential ingredient of our
approach and has important consequences, as will become apparent later. Fig. 1 represents the interconnections between the
various physical and virtual queues, as defined by their evolutions in (1)–(3) and (9), (10). The dotted line in Fig. 1 is used

(1−δ)B(t)

P
l
(t)Σ l

energy quanta
overflow

γ
l
(t)

U
l
(t)

Y
l
(t)

c
l
(S(t),P(t))

R
l,in

(t)

D(t)

power−related queues

E(t)

B(t)

bit−related queues

Fig. 1. Queue connections in the downlink scenario with rechargeable battery.

to examine the aggregate queue ofE(t), D(t). Since the compound queue has an arrival rate ofB(t) and a service rate of at
most (1 − δ)B(t), it is unstable,9 a fact that will be of crucial importance later. In foresight, it will be used to show that the
queueE(t) is sufficiently loaded most of the time so thatPr(E(t) < P̂ ) is small.

To assist the reader, the policy description is given first, followed by the stability and performance analysis in later sections.
Specifically, we propose the following

Downlink rechargeable adaptive backpressure policy (DRABP)

1) at the beginning of slott, observe queuesU(t), Y (t), V (t) and selectRin(t) bits for admission into the network layer
according to

Rin(t) = argmax

L
∑

l=1

(ηYl(t) − Ul(t)) rl

s.t. 0 ≤ rl ≤ min
(

Vl(t) + Al(t), Âl

)

∀ l,

(11)

whereη is a tuning parameter used for balancing the congestion among the physical and virtual queues.

9in principle, the aggregate queue would still be unstable if we replaced(1−δ)B(t) with (1−δ)B̄ in (10), though the analysis would be more complicated.
Also, B̄ may not be known to the controller whileB(t) can be easily computed.
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2) selectγ(t) as the solution to the following problem

γ(t) =arg max

L
∑

l=1

[V fl (γl) − ηYl(t)γl]

s.t. 0 ≤ γl ≤ Âl ∀ l,

(12)

3) observeS(t) and selectP (t) as the solution to the following problem

P (t) = argmax

L
∑

l=1

[Ul(t)µl (S(t), p) − D(t)pl] = arg max

L
∑

l=1

[Ul(t)cl (S(t), p) − D(t)pl]

s.t. p ∈ PS(t),
L
∑

l=1

pl ≤ min
(

E(t), P̂
)

,

0 ≤ µl (S(t), p) ≤ cl (S(t), p) ∀ l,

(13)

4) update queuesV (t), Y (t), U (t), E(t), D(t), in that order, according to the appropriate evolution equations.

The previous policy will occasionally be denoted as DRABP(δ, η, V ) to emphasize its dependence on these two parameters.
Its difference from the policy of [15] lies in the presence of the termE(t) in the constraint of (13). As previously mentioned,
this term causes the analysis of [15] to become inapplicable to our model so that a new approach required. The following
observations can be made

• Eq. (11) accepts a bang-bang solution of the form

Rl,in(t) =

{

min
(

Vl(t) + Al(t), Âl

)

if Ul(t) < ηYl(t),

0 otherwise,
(14)

• the concave maximization problem in (12) is separable and has a closed form solution if(f ′
l )

−1(γl) is analytically known
(the −1 superscript denotes functional inverse).

• the problem in (13) is the most computationally expensive step of DRABP and, depending on the form ofcl (·, ·) (which
in turn depends on network interference properties), may not be separable.

Note that DRABP requires no knowledge of system parameters (e. g.πs, λ) and the intuitive rule of transmitting with peak
rate for a giver power arose naturally through (13). It remains to examine the stability and performance properties of the above
policy. The latter requires some additional notation and results to be introduced.

2) Some preliminary results:The following lemma, which is proved in [15], characterizes the optimal solution to the infinite
battery with average power constraint and, as stated in Section II-A1, provides an upper bound forany rechargeable policy

Lemma 1: No downlink stabilizing policy acting on an infinite capacity battery under an average power constraint ofB̄
can achieve an objective value larger than

g∗avg =max

L
∑

l=1

fl(rl)

s.t. r ∈ R,

0 ≤ r ≤ λ,

(15)

where

R =







r ∈ R
L : ∃πs

p ≥ 0 s.t. 0 ≤ rl ≤
∑

s∈S

∑

p∈Ps

cl (s, p)πs
pπs ∀ l,

∑

s∈S

∑

p∈Ps

L
∑

l=1

plπ
s
pπs ≤ B̄,

∑

p∈Ps

πs
p = 1 ∀ s







.

(16)
Clearly, the quantityπs

p in the definition ofR is a discrete pdf on the setPs. In [15], it is interpreted as the probability with
which a randomized policy would select powerp when the current channel state iss.

The starting point for deriving a performance bound for any rechargeable policy is the following variation on a known result
[15, Lemma 5.3 and Theorem 5.4]

Lemma 2: Consider a concave functiong(·) and stochastic processesQ(t), X(t), Z(t). If there exists a non-negative function
Ly (X(t)) (referred to as a Lyapunov function) such thatE[Ly (X(0))] < ∞ and the following relation is satisfied for allt
and some constantsC, V > 0

∆ (X(t)) − V E [g (Z(t))|X(t)] ≤ C − V g∗ + Q(t), (17)

it then holds

lim inf
t→∞

g (z̄(t)) ≥ g∗ −
C + Q̄

V
, (18)



9

where z̄(t) is the time-average ofZ(t), ∆(X(t))
△

= E [Ly (X(t + 1)) − Ly (X(t)) |X(t)] and

Q̄
△

= lim sup
t→∞

1

t

t−1
∑

j=0

E[Q(j)]. (19)

See Appendix V-A for the proof. A variant of Lemma 2 can also be used to prove stability of any policy that satisfies a
modified version of (17); however, we will actually be able to prove a stronger result (namely deterministic queue bounds) by
examining the policy specification itself, so this variant is omitted.

We also define, for0 < δ < 1, the set

Rδ
△

=







r ∈ R
L : ∃πs

p ≥ 0 s.t.
∑

s,p,l

plπ
s
pπs ≤ (1 − δ)B̄, 0 ≤ rl ≤

∑

s,p

cl (s, p)πs
pπs ∀ l,

∑

p

πs
p = 1 ∀ s







, (20)

as the set of rates that can be stabilized by a randomized policy subject to an average power constraint of(1 − δ)B̄, and the
optimization problem

g∗δ =max

L
∑

l=1

fl(rl)

s.t. 0 ≤ r ≤ λ,

r ∈ Rδ.

(21)

Since0 ∈ Ps ∀ s, it follows thatRδ 6= ∅. Also, Rδ has the following properties

• it is convex and compact
• r ∈ Rδ implies r1 ∈ Rδ ∀ r1 ≤ r.

These properties are proved in a straightforward manner in [15], which also provides the following continuity result

lim
δ↓0

g∗δ = g∗avg (22)

3) Stability and performance properties of DRABP:The following result, proved in Appendix V-B, provides all necessary
information for the stability properties of DRABP

Lemma 3: Under DRABP, queuesY (t), U(t), D(t) are deterministically bounded for allt as follows

Yl(t) ≤
V f ′

l (0)

η
+ Âl

△

= Ŷl ∀ l,

Ul(t) ≤ ηŶl + Âl
△

= Ûl ∀ l,

D(t) ≤ max
1≤l≤L

(

ÛlĈl

)

+ P̂
△

= D̂,

(23)

whereĈl
△

= maxs∈S
∂cl

∂pl
(s,0).

Hence, we have actually proved a much stronger result (namely deterministic bounds) than stability for DRABP. In order to
derive a performance bound via Lemma 2, we define the composite queueX(t)

△

= (U(t), Y (t), D(t)) and the Lyapunov
function

Ly (X(t)) =
L
∑

l=1

(

U2
l (t) + ηY 2

l (t)
)

+ D2(t) (24)

From (2), (9), (10) and Lemma 4.3 of [15], it follows after a little algebra

U2
l (t + 1) ≤ U2

l (t) + µ2
l (S(t), P (t)) + R2

l,in(t) − 2Ul(t) [µl (S(t), P (t)) − Rl,in(t)] , (25)

Y 2
l (t + 1) ≤ Y 2

l (t) + R2
l,in(t) + γ2

l (t) − 2Yl(t) [Rl,in(t) − γl(t)] , (26)

D2(t + 1) ≤ D2(t) + (1 − δ)2B2(t) +

(

L
∑

l=1

Pl(t)

)2

− 2D(t)

[

(1 − δ)B(t) −
L
∑

l=1

Pl(t)

]

. (27)

Summing (25), (26) overl and using all the imposed bounds results in

∆(X(t)) ≤
L
∑

l=1

(

ĉ2
l + (2η + 1)Â2

l

)

+ B̂2 + P̂ 2 − 2 E

[

L
∑

l=1

Ul(t) [µl (S(t), P (t)) − Rl,in(t)]

∣

∣

∣

∣

∣

X(t)

]

− 2η E

[

L
∑

l=1

Yl(t) [Rl,in(t) − γl(t)]

∣

∣

∣

∣

∣

X(t)

]

− 2D(t) E

[

(1 − δ)B(t) −
L
∑

l=1

Pl(t)

∣

∣

∣

∣

∣

X(t)

]

.

(28)
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Exploiting the iid nature ofB(t), which impliesE [B(t)|X(t)] = B̄, subtracting2V E

[

∑L
l=1 fl (γl(t))

∣

∣

∣
X(t)

]

from both
sides and rearranging terms yields

∆(X(t)) − 2V E

[

L
∑

l=1

fl (γl(t))

∣

∣

∣

∣

∣

X(t)

]

≤ Ċ − 2 E

[

L
∑

l=1

[V fl (γl(t)) − ηYl(t)γl(t)]

∣

∣

∣

∣

∣

X(t)

]

− 2 E

[

L
∑

l=1

[Ul(t)µl (S(t), P (t)) − D(t)Pl(t)]

∣

∣

∣

∣

∣

X(t)

]

− 2 E

[

L
∑

l=1

[ηYl(t) − Ul(t)] Rl,in(t)

∣

∣

∣

∣

∣

X(t)

]

− 2(1 − δ)B̄D(t),

(29)

whereĊ
△

= B̂2 + P̂ 2 +
∑L

l=1

(

ĉ2
l + (2η + 1)Â2

l

)

. The last equation justifies, in retrospect, the specification of DRABP since
each step of DRABP is chosen so as to minimize the overall Lyapunov drift in (29).

Our intention is to bring (29) into the form of (17). To this end, we need to bound each term in (29) in such a way that the
policy actions (i. e.P (t), Rin(t)) are removed due to cancellations. This procedure will occupy the entire current section. The
following remarks will be useful. For a givenX(t) (which implies thatU(t), D(t) are known) andS(t) = s, the solution to
the optimization in (13) is independent fromE(t) whenE(t) ≥ P̂ . We denote this solution asp∗

s and use the notationP (s, e)
for the solution to the same problem whenE(t) = e < P̂ . Since the zero power vector is always an allowable selection, it
follows from optimality of (13) (recall thatP (t) is selected according to the DRABP policy)

L
∑

l=1

[Ul(t)cl (S(t), P (t)) − D(t)Pl(t)] ≥
l
∑

l=1

Ul(t)cl (S(t),0) = 0 ∀ t

⇒
L
∑

l=1

[Ul(t)cl (s, P (s, e)) − D(t)Pl (s, e)] ≥ 0 ∀ s, e, t.

(30)

Consider now the joint probabilityqs,e(t)
△

= Pr (S(t) = s, E(t) = e|X(t)), when DRABP is applied, and denote with
E(t) the set of values thatE(t) can take under DRABP (it is easy to show inductively thatE(t) is countable). It holds

E

[

L
∑

l=1

[Ul(t)cl (S(t), P (t)) − D(t)Pl(t)]

∣

∣

∣

∣

∣

X(t)

]

=
∑

s∈S

∑

e∈E(t)

L
∑

l=1

[Ul(t)cl (s, P (s, e)) − D(t)Pl (s, e)] qs,e(t)

≥
∑

s∈S

∑

e∈E(t)

e≥P̂

L
∑

l=1

[

Ul(t)cl (s, p∗
s) − D(t)p∗l,s

]

qs,e(t)

=
∑

s∈S

∑

e∈E(t)

L
∑

l=1

[

Ul(t)cl (s, p∗
s) − D(t)p∗l,s

]

qs,e(t) −
∑

s∈S

∑

e∈E(t)

e<P̂

L
∑

l=1

[

Ul(t)cl (s, p∗
s) − D(t)p∗l,s

]

qs,e(t)

=
∑

s∈S

L
∑

l=1

[

Ul(t)cl (s, p∗
s) − D(t)p∗l,s

]

πs −
∑

s∈S

L
∑

l=1

[

Ul(t)cl (s, p∗
s)) − D(t)p∗l,s

]

Pr
(

E(t) < P̂ , S(t) = s
∣

∣

∣X(t)
)

≥
∑

s∈S

L
∑

l=1

[

Ul(t)cl(s, p∗
s) − D(t)p∗l,s

]

πs −
L
∑

l=1

ĉlÛl Pr
(

E(t) < P̂
∣

∣

∣X(t)
)

,

(31)

where the first inequality is due to (30), the fourth line is due to the independence ofp∗
s from e (the value ofE(t)) and

the final line follows from the bounds onU(t) (due to Lemma 3) andcl (s, p). We also used the iid property to write
∑

s∈S qs,e(t) = Pr (S(t) = s|X(t)) = πs in the transition from the third to the fourth line.
Pick any pdfπs

p acting on the setPs. We have, from optimality of (13),

L
∑

l=1

[

Ul(t)cl (s, p∗
s) − Dl(t)p

∗
l,s
]

≥
L
∑

l=1

[Ul(t)cl (s, p) − D(t)pl] ∀ t, s, p, (32)

so that multiplying withπs
pπs, summing overs, p and exploiting the pdf property

∑

p∈Ps
πs
p = 1 yields

∑

s∈S

∑

p∈Ps

L
∑

l=1

[

Ul(t)cl (s, p∗
s) − D(t)p∗l,s

]

πs
pπs ≥

∑

s∈S

∑

p∈Ps

L
∑

l=1

[Ul(t)cl (s, p) − D(t)pl]π
s
pπs

⇒
∑

s∈S

L
∑

l=1

[

Ul(t)cl (s, p∗
s) − D(t)p∗l,s

]

πs ≥
∑

s∈S

∑

p∈Ps

L
∑

l=1

[Ul(t)cl (s, p) − D(t)pl] π
s
pπs.

(33)
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Now pick anyr such that0 ≤ r ≤ λ, whence it follows

Al(t)
rl

λl

≤ Al(t) ≤ min
(

Vl(t) + Al(t), Âl

)

∀ l, t. (34)

Hence,Al(t)rl/λl belongs to the constraint set of the optimization in (11), so that

L
∑

l=1

(ηYl(t) − Ul(t))Rl,in(t) ≥
L
∑

l=1

(ηYl(t) − Ul(t)) Al(t)
rl

λl

∀ t, (35)

whereRl,in(t) is selected by the DRABP policy. The last expression contains the random variablesRl,in(t), Al(t) so that
taking conditional expectations uponX(t) and using the iid nature ofAl(t) provides

E

[

L
∑

l=1

(ηYl(t) − Ul(t)) Rl,in(t)

∣

∣

∣

∣

∣

X(t)

]

≥
L
∑

l=1

(ηYl(t) − Ul(t)) rl ∀ r : 0 ≤ r ≤ λ, (36)

sinceE[Al(t)|X(t)] = λl. Also, the abover satisfies0 ≤ rl ≤ Âl, so that optimality of (12) implies

L
∑

l=1

[V fl (γl(t)) − ηYl(t)γl(t)] ≥
L
∑

l=1

[V fl(rl) − ηYl(t)rl] ∀ r : 0 ≤ r ≤ λ, (37)

whereγl(t), which is selected according to the DRABP policy, is a random variable. Clearly, a similar inequality is produced
for the conditional expectation uponX(t) of the LHS of (37).

Inserting (37), (36), (33) in (29) produces

∆(X(t)) − 2V E

[

L
∑

l=1

fl (γl(t))

∣

∣

∣

∣

∣

X(t)

]

≤ Ċ − 2

L
∑

l=1

(V fl(rl) − ηYl(t)rl) − 2

L
∑

l=1

(ηYl(t) − Ul(t)) rl

− 2
∑

s∈S

∑

p∈Ps

L
∑

l=1

[Ul(t)cl (s, p) − D(t)pl] π
s
pπs + 2

L
∑

l=1

ĉlÛl Pr
(

E(t) < P̂
∣

∣

∣X(t)
)

− 2(1 − δ)B̄D(t).

(38)

Equation (38) holds for anyr with 0 ≤ r ≤ λ and any pdfπs
p. Hence, we can pickr to be the maximizing argument of (21)

(i. e. the vector achievingg∗δ ) andπs
p the pdf that corresponds to it according to (20). This creates some cancellations in (38)

and, through the definition ofRδ, strengthens (38) to

∆(X(t)) − 2V E

[

L
∑

l=1

fl (γl(t))

∣

∣

∣

∣

∣

X(t)

]

≤ Ċ − 2V g∗δ + 2

L
∑

l=1

ĉlÛl Pr
(

E(t) < P̂
∣

∣

∣X(t)
)

∀ t. (39)

A direct application of Lemma 2 now provides

lim inf
t→∞

L
∑

l=1

fl (γ̄l(t)) ≥ g∗δ −
Ċ

2V
−

∑L
l=1 ĉlÛl

V
lim sup

t→∞

1

t

t−1
∑

j=0

Pr
(

E(j) < P̂
)

, (40)

sinceE[Pr(E(t) < P̂ |X(t))] = Pr(E(t) < P̂ ).
4) Performance bound of DRABP:Eq. (40) is not very informative since our original intention was to provide a bound for

the liminf of
∑L

l=1 fl (r̄l(t)) and not
∑L

l=1 fl (γ̄l(t)), which has no physical meaning. Additionally, we need to estimate the
limsup appearing in (40). The first issue is handled through the following Lemma, which essentially exploits the stabilizing
properties of DRABP. The result, whose proof is found in Appendix V-C, is initially stated in a general setting and then
reduced to our model

Lemma 4: Consider any compound queueZ(t) (with physical or virtual components) with an arrival processAin(t) and
a bounded service processµout(t) that evolves asZ(t + 1) = [Z(t) − µout(t)]

+
+ Ain(t), with E[Z(0)] < ∞. Denote with

µ̃out(t) the number of bitsactually transmitted at slott and define the long-term averagesāin(t), µ̄out(t), ¯̃µout(t). Under
any stabilizing policy, it holds

lim inf
t→∞

g (āin(t)) = lim inf
t→∞

g (¯̃µout(t)) ≤ lim inf
t→∞

g (µ̄out(t)) , (41)

whereg is any continuous and component-wise increasing function (i. e.x ≤ y impliesg(x) ≤ g(y)).
Consider now the queuesY (t), U(t). These queues are stable (in fact, finite) under DRABP, so that applying the above

Lemma w. r. t. the evolution equations (9), (2) and settingg(x) =
∑L

l=1 fl(xl) (this g clearly satisfies the conditions of the
Lemma) results in

lim inf
t→∞

L
∑

l=1

fl (γ̄l(t)) = lim inf
t→∞

L
∑

l=1

fl (¯̃rl,in(t)) ≤ lim inf
t→∞

L
∑

l=1

fl (r̄l,in(t)) = lim inf
t→∞

L
∑

l=1

fl (r̄l(t).) (42)
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The following statement, proved in Appendix V-D, provides an estimation of the limsup appearing in (40)
Lemma 5: Under DRABP, it holds

lim sup
t→∞

1

t

t−1
∑

j=0

Pr
(

E(j) < P̂
)

≤ Pr

(

σ−1
∑

k=0

B(k) ≤
P̂ + D̂ − Emax

δ

)

, (43)

whereσ = ⌈Emax/P̂ − 1⌉.
Combining Lemma 5 with (42), (40) yields the main result for the downlink case

Theorem 1: DRABP stabilizes the system and achieves a performance bound of

lim inf
t→∞

L
∑

l=1

fl (r̄l(t)) ≥ g∗δ − Ċ1 − Ċ2 Pr

(

σ−1
∑

k=0

B(k) ≤
P̂ + D̂ − Emax

δ

)

, (44)

whereĊ1 = Ċ/(2V ) and Ċ2 =
∑L

l=1(ĉlÛl)/V .
An examination of Lemma 3 reveals thatÛl, D̂ = Θ(V ), Ċ = Θ(1) and Ċ1 = O(1/V ). Theorem 1 admits the following
Corollary 1: For given policy parametersV, η > 0, a selection ofEmax such thatEmax > P̂ + D̂ implies the following

performance bound for DRABP

lim inf
t→∞

L
∑

l=1

fl (r̄l(t)) ≥ g∗δ − Ċ1. (45)

SinceĊ1 = O(1/V ) and g∗δ → g∗avg as δ → 0, the above RHS can approachg∗avg arbitrarily close asδ → 0 and V → ∞

(provided that it holdsEmax > P̂ + D̂), which implies the asymptotic optimality of DRABP.
Additionally, a slightly more complicated asymptotic result can be established for the regimeP̂ +D̂−δσB̄ < Emax ≤ P̂ +D̂

(the regimeEmax > P̂ + D̂ is handled by Corollary 1) according to the following
Lemma 6:For given policy parametersV, η, δ and iid recharge processB(t), a selection ofEmax s.t. P̂ + D̂ − σδB̄ <

Emax ≤ P̂ + D̂ implies the following bound for DRABP

Pr

(

σ−1
∑

k=0

B(k) ≤
P̂ + D̂ − Emax

δ

)

≤ exp

[

σ ℓ

(

P̂ + D̂ − Emax

σδ
− B̄

)]

, (46)

where
ℓ(x)

△

= sup
θ

(

θx + θB̄ − ln E

[

eθB(t)
])

. (47)

Due to the iid property, any value fort can be used in the last expectation.
Proof: See Appendix V-E.

The qualitative aspect of the above corollary could, in retrospect, be derived independently through the following
Lemma 7: The conditionEmax > P̂ + D̂ impliesE(t) + D(t) ≥ Emax for all t ≥ τ̃ (where τ̃ = inf{t : E(t) = Emax} is

the first time the battery hitsEmax) and thereforeE(t) ≥ P̂ for all t ≥ τ̃ .
Since τ̃ is finite w. p. 1 (due to the infinitely often overflow mentioned in Appendix V-D) and we are interested in the

infinite-horizon average utility, we expect that what happens in the finite part up toτ̃ will not contribute to the average. Since
for t ≥ τ̃ the battery never falls beloŵP , one of the loss mechanisms mentioned in Section II-A1 is eliminated so that
performance loss (relative to an average policy with value(1− δ)B̄) can only come from lost recharge. This implies a DRABP
bound similar to (45), where thėC1 term is now attributed to the remaining mechanism of lost recharge. Although it is not
used in the subsequent parts, the interested reader will find a proof of Lemma 7 and the previous intuition in Appendix V-F.

5) Removal of the assumptionf ′
l (0) < ∞: The only reason for imposing the assumptionf ′

l (0) < ∞ in Section II-A is
that it allowed us to easily provide deterministic bounds for all queues according to Lemma 3. On the other hand, any utility
function of the formf(x) = xa with 0 < a < 1 satisfiesf ′(0) = ∞, so that the previous analysis must be modified. This is
described next.

Specifically, we still assume monotonicity and concavity for allfl(·) as well asfl(0) = 0 (since any other condition is
unnatural) andf ′

l (x) < ∞ ∀x > 0. However, it may holdf ′
l (0) = ∞ for somel. For a givenβ > 0, we propose the following

policy that is identical to DRABP except for the second step (selection ofγ(t)) which is replaced by

• For l such thatf ′
l (0) < ∞, select

γβ
l (t) = argmax [V fl(γl) − ηYl(t)γl]

s.t. 0 ≤ γl ≤ Âl,
(48)

i. e. γβ
l (t) has the same value asγl(t) in DRABP.



13

For l such thatf ′
l (0) = ∞, first solve the problem

γ̃β
l (t) = argmax [V fl(γl) − ηYl(t)γl]

s.t. β ≤ γl ≤ Âl,
(49)

and then selectγβ
l (t) as10

γβ
l (t) =

{

0 if Yl(t) ≥
V f ′

l (β)
η

,

γ̃β
l (t) otherwise.

(50)

We denote the above policy asβ-DRABP to emphasize its dependence onβ. This policy is chosen so that it approximates
DRABP asβ → 0 and (most importantly) guarantees bounded queues forY (t), U(t), D(t). In fact, a repetition of the proof
of Lemma 3 provides the following

Corollary 2: Application ofβ-DRABP results in the following bounds for allt

Yl(t) ≤ Ŷl
△

=

{

V f ′

l (β)
η

+ Âl if f ′
l (0) = ∞,

V f ′

l (0)
η

+ Âl otherwise,

Ul(t) ≤ ηŶl + Âl
△

= Ûl,

D(t) ≤ max
1≤l≤L

(

ÛlĈl

)

+ P̂
△

= D̂,

(51)

whereĈl
△

= maxs∈S
∂cl

∂pl
(s,0).

Denote withγl(t) the solution to (12), so thatγl(t) = γβ
l (t) if f ′

l (0) < ∞. If f ′
l (0) = ∞, it holds eitherYl(t) < V f ′

l (β)/η
or Yl(t) ≥ V f ′

l (β)/η. In the former case, concavity offl implies that the functionV fl(x) − ηYl(t)x is non-decreasing in the
interval [0 β], so that the argmax of (12) lies in the interval[β Âl], and thereforeγβ

l (t) = γl(t). In the latter case, the
argmax of (12) lies in the interval[0 β] while γβ

l (t) = 0. Hence, the following bound holds in all cases

[V fl (γl(t)) − ηYl(t)γl(t)] −
[

V fl

(

γβ
l (t)

)

− ηYl(t)γ
β
l (t)

]

≤ max
0≤x≤β

[V fl(x) − ηYl(t)x]

≤ max
0≤x≤β

V fl(x) = V fl(β),
(52)

where we used the monotonicity offl. We defineF = {l : f ′
l (0) = ∞} so that the separability of (12) implies

L
∑

l=1

[

V fl

(

γβ
l (t)

)

− ηYl(t)γ
β
l (t)

]

≥
L
∑

l=1

[V fl (γl) − ηYl(t)γl] − V
∑

l∈F

fl(β), (53)

for all γ such that0 ≤ γl ≤ Âl. Repeating the Lyapunov drift calculation of Section II-B3 forβ-DRABP results in a form
identical to (29) with the addition of the term2V

∑

l∈F fl(β) to the RHS. Hence, the following extension to Theorem 1 is
derived

Theorem 2:β-DRABP stabilizes the system, with the queue bounds of (51), and achieves a performance bound of

lim inf
t→∞

L
∑

l=1

fl (r̄l(t)) ≥ g∗δ −
∑

l∈F

fl(β) − Ċ1 − Ċ2 Pr

(

σ−1
∑

k=0

B(k) ≤
P̂ + D̂ − Emax

δ

)

. (54)

Sincefl is continuous andfl(0) = 0, the term
∑

l∈F fl(β) can be made arbitrarily small by picking a small enoughβ (with
a corresponding increase in queue bounds) so that asymptotic optimality is retained.
Hence, the assumptionf ′

l (0) < ∞ can be removed w. l. o. g. In the remaining sections, we keep this assumption to slightly
simplify the expressions under the implicit understanding that a generalization similar to the above is possible.

C. Extensions to single-hop and multihop networks

A careful examination of the proofs of the various statements in Section II-B reveals that, apart from algebraic manipulations,
the optimality of DRABP rests on the following crucial point: queuesY (t), U (t), D(t) are deterministically bounded (in fact,
the boundedness of each queue is used to prove the boundedness of the subsequent ones) and, by construction ofD(t), the
battery overflows infinitely often. Hence, we expect a policy that has the previous properties, when applied to a general network,
to achieve similar performance to DRABP. This is studied next.

10clearly, β is used as a superscript, rather than an exponent, in this context.
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a) Single-hop networks:Consider a single-hop network consisting ofN nodes, where each noden is allowed to transmit
to any of its neighbors belonging to the setOn. The single-hop constraint implies that once a bit is transmitted, it also exits
the network layer. Hence, in terms of the bit queues, a single-hop network is just an aggregate ofN interacting downlinks, so
that most of the notation of Sections II-A, II-B can be modified to fit the new model. Specifically, we denote withEn(t) the
battery level of noden at timet, and withAnl(t) the exogenous arrival process at noden destined for nodel (wherel ∈ On),
while Bn(t) is the amount of replenished energy of noden at time t. These processes are still assumed iid with mean values
of λnl, B̄n and upper bounded bŷAnl, B̂n, respectively. Similarly,Vnl(t) denotes the external queue of noden where bits
destined for nodel are kept,Rnl,in(t) the number of bits admitted at slott into noden destined for nodel etc. Denoting with
r̄nl(t) the average rate up to timet from noden to nodel, the objective is to maximizelim inft→∞

∑

n,l fnl (r̄nl(t)), where
fnl are, per link, utility functions with the properties mentioned in Section II-A. The evolution equations are essentially the
“vectorized”, w. r. t. the nodes, versions of the downlink evolutions, i. e.

Vnl(t + 1) = Vnl(t) + Anl(t) − Rnl,in(t), (55)

Unl(t + 1) = [Unl(t) − µnl (S(t), P (t))]
+

+ Rnl,in(t), (56)

En(t + 1) = min

(

En(t) −
∑

l∈On

Pnl(t) + Bn(t), Emax

)

, (57)

Ynl(t + 1) = [Ynl(t) − Rnl,in(t)]
+

+ γnl(t), (58)

Dn(t + 1) = [Dn(t) − (1 − δ)Bn(t)]
+

+
∑

l∈On

Pnl(t), (59)

subject to constraints

Rnl,in(t) ≤ Vnl(t) + Anl(t) ∀n, l, t,

P (t) ∈ PS(t),
∑

l∈On

Pnl(t) ≤ min
(

En(t), P̂
)

∀n, t. (60)

Each node is therefore equipped with a set of queues connected as shown in Fig. 1. We denote the composite queue
X(t)

△

= (U(t), Y (t), D(t)) and select a Lyapunov function (unless otherwise stated, the indicesn, l will range over the sets
{1, . . . , N}, On, respectively)

Ly (X(t)) =
∑

n,l

(

U2
nl(t) + ηY 2

nl(t)
)

+
∑

n

D2
n(t) (61)

The analogue of Lemma 1 becomes
Lemma 8: No stabilizing policy acting on a single-hop network with infinite batteries and an average power constraint of

B̄ can achieve performance greater than

g∗avg =max
N
∑

n=1

∑

l∈On

fnl(rnl)

s.t. r ∈ R,

0 ≤ r ≤ λ,

(62)

where

R =

{

r : ∃πs
p s.t. 0 ≤ rnl ≤

∑

s∈S

∑

p∈Ps

cnl (s, p)πs
pπs ∀n, l

∑

s∈S

∑

p∈Ps

∑

l∈On

pnlπ
s
pπs ≤ B̄n ∀n,

∑

p∈Ps

πs
p = 1 ∀ s

}

,

(63)

with a similar definition forRδ (i. e. replaceB̄n with (1 − δ)B̄n in (63)). It still holds limδ↓0 g∗δ = g∗avg, whereg∗δ is the
solution to the optimization of (15), albeit with the new definition forRδ.

The reader can repeat the steps of Section II-B and arrive at a result similar to Theorem 1. To avoid redundant repetition
and assist the reader, we provide only the salient points of this procedure. Specifically, the Lyapunov drift under any policy
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satisfies the following analogue of (29)

∆(X(t)) − 2V E





∑

n,l

fnl (γnl(t))

∣

∣

∣

∣

∣

∣

X(t)



 ≤ Ċ − 2 E





∑

n,l

[V fnl (γnl(t)) − ηYnl(t)γnl(t)]

∣

∣

∣

∣

∣

∣

X(t)





− 2 E





∑

n,l

[Unl(t)µnl (S(t), P (t)) − Dn(t)Pnl(t)]

∣

∣

∣

∣

∣

∣

X(t)



− 2 E





∑

n,l

[ηYnl(t) − Unl(t)] Rnl,in(t)

∣

∣

∣

∣

∣

∣

X(t)





− 2(1 − δ)
∑

n

B̄nDn(t),

(64)

whereĊ
△

= NP̂ 2 +
∑

n B̂2
n +

∑

n,l

(

(2η + 1)Â2
nl + ĉ2

nl

)

is a policy independent parameter, withĉnl = maxs,p cnl (s, p). We
now propose the following policy, which is again a “vectorized” version of DRABP.

Single-hop rechargeable adaptive backpressure policy (SRABP)
• at the beginning of slott, observeU(t), Y (t), V (t) and admitRin(t) bits into the network layer according to

Rin(t) = argmax
∑

n,l

(ηYnl(t) − Unl(t)) rnl

s.t. 0 ≤ rnl ≤ min
(

Vnl(t) + Anl(t), Ânl

)

∀n, l,

(65)

• selectγ(t) as the solution to the following problem

γ(t) = argmax
∑

n,l

[V fnl(γnl) − ηYnl(t)γnl]

s.t. 0 ≤ γnl ≤ Ânl ∀n, l,

(66)

• observe channel stateS(t) and select transmission powerP (t) according to

P (t) =arg max
∑

n,l

[Unl(t)cnl (S(t), p) − Dn(t)pnl]

s.t. p ∈ PS(t),
∑

l∈On

pnl ≤ min
(

En(t), P̂
)

∀n,
(67)

Applying the above policy results in queuesY (t), U(t), D(t) being deterministically bounded (essentially, the vectorized
version of Lemma 3, proved in an identical manner as in Appendix V-B, provides boundsŶnl, Ûnl, D̂n). The finiteness of
Dn(t) implies, with an argument identical to the one in Appendix V-D, that each battery overflows infinitely often and hence

Pr
(

En(t) < P̂ , τ̃n ≤ t
)

≤ Pr

(

σ−1
∑

k=0

Bn(k) ≤
P̂ + D̂n − Emax

δ

)

, (68)

whereτ̃n = inf{t : En(t) = Emax} is the first time the battery of noden hits Emax.
To derive the analogue of (31) under SRABP, we defineqs,e(t)

△

= Pr (S(t) = s, E(t) = e|X(t)) and denote withP (s, e)
the general solution to (67). For the special case ofE(t) ≥ P̂ (i. e. when all batteries are abovêP , so that the optimization
of (67) is independent ofE(t)) we denoteP (s, e) = p∗s, so that it holds

E





∑

n,l

[Unl(t)cnl (S(t), P (t)) − Dn(t)Pnl(t)]

∣

∣

∣

∣

∣

∣

X(t)



 =
∑

s∈S

∑

e∈E(t)

∑

n,l

[Unl(t)cnl (s, P (s, e)) − Dn(t)Pnl (s, e)] qs,e(t)

≥
∑

s∈S

∑

e∈E(t)

e≥
ˆP

∑

n,l

[

Unl(t)cnl (s, p∗
s) − Dn(t)p∗nl,s

]

qs,e(t)

=
∑

s∈S

∑

e∈E(t)

∑

n,l

[

Unl(t)cnl (s, p∗
s) − Dn(t)p∗nl,s

]

qs,e(t) −
∑

s∈S

∑

e∈E(t)

e6≥
ˆP

∑

n,l

[

Unl(t)cnl (s, p∗
s) − Dn(t)p∗nl,s

]

qs,e(t)

≥
∑

s∈S

∑

n,l

[

Unl(t)cnl (s, p∗
s) − Dn(t)p∗nl,s

]

πs −
∑

s∈S

∑

n,l

Unl(t)cnl (s, p∗
s) Pr

(

N
⋃

n=1

{En(t) < P̂ , S(t) = s}

∣

∣

∣

∣

∣

X(t)

)

≥
∑

s∈S

∑

n,l

[

Unl(t)cnl (s, p∗
s) − Dn(t)p∗nl,s

]

πs −





∑

n,l

ĉnlÛnl



Pr

(

N
⋃

n=1

{En(t) < P̂}

∣

∣

∣

∣

∣

X(t)

)

,

(69)
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where we used the fact that
∑

n,l [Unl(t)cnl (s, P (s, e)) − Dn(t)Pnl (s, e)] ≥ 0 ∀ s, e (sincep = 0 is always an allowable
choice) in the second line and the queue bounds on the last one. Using the maximization properties of SRABP in (65)–(67)
and repeating the arguments used in the derivation of (32)–(37) results in

∆(X(t)) − 2V E





∑

n,l

fnl (γnl(t))

∣

∣

∣

∣

∣

∣

X(t)



 ≤ Ċ − 2
∑

n,l

[V fnl(rnl) − ηYnl(t)rnl] − 2
∑

n,l

[ηYnl(t) − Unl(t)] rnl

− 2
∑

s,p

∑

n,l

[Unl(t)cnl (s, p) − Dn(t)pnl] π
s
pπs + 2

∑

n,l

ĉnlÛnl Pr

(

N
⋃

n=1

{En(t) < P̂}

∣

∣

∣

∣

∣

X(t)

)

− 2(1 − δ)
∑

n

B̄nDn(t).

(70)

The last equation holds for any pdfπs
p and r s.t. 0 ≤ r ≤ λ. Hence, we can pickr = r∗ to be the vector achievingg∗δ

andπs
p the corresponding pdf. It then follows from the definition ofRδ

r∗nl ≤
∑

s∈S

∑

p∈Ps

cnl (s, p)πs
pπs ∀n, l,

∑

s∈S

∑

p∈Ps

∑

l∈On

pnlπ
s
pπs ≤ (1 − δ)B̄n ∀n,

(71)

so that the analogue of (39) is

∆(X(t)) − 2V E





∑

n,l

fnl (γnl(t))

∣

∣

∣

∣

∣

∣

X(t)



 ≤ Ċ − 2V g∗δ + 2
∑

n,l

ĉnlÛnl Pr

(

N
⋃

n=1

{En(t) < P̂}

∣

∣

∣

∣

∣

X(t)

)

. (72)

We now invoke Lemmas 2, 4 to get the following
Theorem 3: SRABP stabilizes any single-hop network and achieves a performance bound of

lim inf
t→∞

∑

n,l

fnl (r̄nl(t)) ≥ g∗δ −
Ċ

2V
−

∑

n,l ĉnlÛnl

V
lim sup

t→∞

1

t

t−1
∑

j=0

Pr

(

N
⋃

n=1

{En(j) < P̂}

)

. (73)

Using the union bound, standard properties of limsup and the fact that each queue individually overflows infinitely often
(so that Lemma 5 is applicable) results in the following

Corollary 3: SRABP satisfies the following bound

lim inf
t→∞

∑

n,l

fnl (r̄nl(t)) ≥ g∗δ −
Ċ

2V
−

∑

n,l ĉnlÛnl

V

N
∑

n=1

Pr

(

σ−1
∑

k=0

Bn(k) ≤
P̂ + D̂n − Emax

δ

)

. (74)

Hence, selectingEmax > P̂ +maxn D̂n makes the probability appearing in the RHS of the last equation zero, so that SRABP
is asymptotically optimal.

1) Multihop networks:The main difference between single-hop and multihop networks is that in the latter case intra-node
traffic, in addition to exogenous arrivals, is explicitly allowed. This suggests that a vectorization of DRABP to a multihop
setting will be more involved. In fact, new notation is required to capture the fact that a packet may need many hops to
reach its destination. Specifically, we model a multihop network as a standard digraph(N ,L) (with N = {1, . . . , N}) and
use the commodity concept of [15] to assume that each bit belongs to a packet with an associated commodityc ∈ K (which
minimally defines the packet destination11 but may contain additional information). Hence, we denote withA

(c)
n (t) the number

of commodity c bits exogenously generated at noden and slot t (we assumeA(c)
n (t) to be iid with expectationλ(c)

n and
an upper bound of̂A(c)

n ) with similar interpretations for the internal/external queuesU
(c)
n (t), V

(c)
n (t), respectively. We also

denote withR
(c)
n,in(t) the number of externally admitted commodityc bits at noden and slott, while µ

(c)
ab (t) is the number

of commodity c bits transmitted on link(a, b) during slot t. The total number of bits (for all commodities) transmitted
over a link is upper bounded by a vector functionc (S(t), P (t)) with the properties mentioned in Section II-A, so that
it holds

∑

c µ
(c)
ab (S(t), P (t)) ≤ cab (S(t), P (t)). We also definêcab

△

= maxs,p cab (s, p). The objective is to maximize12

lim inft→∞

∑

n,c fnc

(

r̄
(c)
n,in

)

, wherer̄
(c)
n,in(t)

△

= 1
t

∑t−1
τ=0 E[R

(c)
n,in(τ)] andfnc(·) are typical utility functions.

11e. g., for sensor networks, different commodities may correspond to different data collection points (sinks).
12in the following, the indicesn, c will range over the setsN , K, respectively, unless otherwise stated.
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Motivated by the downlink and single-hop analysis, we introduce virtual queuesDn(t) andY
(c)
n (t) to handle the average

power and (finite) arrival constraints, respectively. Hence, the queues’ evolution is as follows

V (c)
n (t + 1) = V (c)

n (t) + A(c)
n (t) − R

(c)
n,in(t), (75)

U (c)
n (t + 1) ≤

[

U (c)
n (t) −

∑

b

µ
(c)
nb (S(t), P (t))

]+

+ R
(c)
n,in(t) +

∑

a

µ(c)
an (S(t), P (t)) , (76)

En(t + 1) = min

(

En(t) −
∑

b

Pnb(t) + Bn(t), Emax

)

, (77)

Y (c)
n (t + 1) =

[

Y (c)
n (t) − R

(c)
n,in(t)

]+

+ γ(c)
n (t), (78)

Dn(t + 1) = [Dn(t) − (1 − δ)Bn(t)]
+

+
∑

b

Pnb(t), (79)

subject to constraints

R
(c)
n,in(t) ≤ V (c)

n (t) + A(c)
n (t) ∀n, c, t,

µ
(c)
ab ≥ 0, µ

(c)
ab (S(t), P (t)) = 0 ∀ (a, b) 6∈ L(c), t,

P (t) ∈ PS(t),
∑

b

Pnb(t) ≤ min
(

En(t), P̂
)

∀n, t,

(80)

where indicesa, b range over the set of incoming and outgoing neighbors of noden, respectively. The second constraint in
(80) models the fact that all commodityc bits may be required to be transmitted through links belonging to a specific set
L(c) ⊆ L only (settingL(c) = L for all c effectively removes this constraint so that all commodities can be routed to all links).
Finally, the reason for (76) being an inequality rather than an equality is that the actual amount of incoming traffic to noden

may be less than
∑

a µ
(c)
an (S(t), P (t)) due to low queue occupancy of the neighbors.

In order to derive an analogue of Lemma 1, we first introduce the following
Definition 1: For given node setN , commodity setK and link constraint setsL(c), a (consistent) multi-commodity flow

{

f
(c)
ab

}

is a vector that satisfies the following conditions for alla, b ∈ N and c ∈ K

f
(c)
ab ≥ 0,

(a, b) 6∈ L(c) ⇒ f
(c)
ab = 0,

f (c)
aa = f

(c)
dest(c),b = 0,

(81)

wheredest(c) is the destination node for commodityc.
In the subsequent analysis, the term “flow” will exclusively refer to a consistent flow. Reference [15] provides the following

Lemma 9: No stabilizing policy acting on a multihop network with infinite capacity batteries and an average power constraint
of B̄ can achieve performance greater than

g∗avg =max
∑

n,c

fnc

(

r(c)
n

)

s.t. r ∈ R,

0 ≤ r(c)
n ≤ λ(c)

n ∀n, c,

(82)

where

R =

{

r =
(

r(c)
n

)

: ∃πs
p, flow {f

(c)
ab } s.t. r(c)

n ≤
∑

b

f
(c)
nb −

∑

a

f (c)
an ∀n, c,

∑

p

πs
p = 1 ∀ s,

∑

c

f
(c)
ab ≤

∑

s

∑

p

cab (s, p)πs
pπs ∀ a, b,

∑

s

∑

p

∑

b

pnbπ
s
pπs ≤ B̄n ∀n







.

(83)

In accordance with previous sections, we define the setRδ in a manner similar toR except that the average power constraint
B̄ is replaced by(1 − δ)B̄. We also define the multihop analogue of (21) as

g∗δ = max
∑

n,c

fnc

(

r(c)
n

)

s.t. r ∈ Rδ,

0 ≤ r ≤ λ,

(84)
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whereλ
△

=
(

λ
(c)
n

)

n,c
. The continuity properties of (22) are still applicable as well. We denote the composite queueX(t)

△

=

(U(t), Y (t), D(t)) and select a Lyapunov function

Ly (X(t)) =
∑

n,c

[

(

U (c)
n (t)

)2

+ η
(

Y (c)
n (t)

)2
]

+
∑

n

D2
n(t). (85)

Squaring the evolution equations (76), (78), (79), performing some algebra and rearranging terms yields

∆(X(t)) − 2V E

[

∑

n,c

fnc

(

γ(c)
n (t)

)

∣

∣

∣

∣

∣

X(t)

]

≤ Ċ − 2E

[

∑

n,c

[

V fnc

(

γ(c)
n (t)

)

− ηY (c)
n (t)γ(c)

n (t)
]

∣

∣

∣

∣

∣

X(t)

]

− 2E





∑

a,b

[

∑

c

(

U (c)
a (t) − U

(c)
b (t)

)

µ
(c)
ab (S(t), P (t)) − Da(t)Pab(t)

]

∣

∣

∣

∣

∣

∣

X(t)





− 2E

[

∑

n,c

[

ηY (c)
n (t) − U (c)

n (t)
]

R
(c)
n,in(t)

∣

∣

∣

∣

∣

X(t)

]

− 2(1 − δ)
∑

n

B̄nDn(t).

(86)

The rationale of minimizing overall Lyapunov drift suggests the following policy
Network rechargeable adaptive backpressure policy (NRABP)

• at the beginning of slott, observe queuesU(t), Y (t), V (t) and selectRin(t) =
(

R
(c)
n,in(t)

)

bits for admission according
to

Rin(t) =arg max
∑

n,c

(

ηY (c)
n (t) − U (c)

n (t)
)

r(c)
n

s.t. 0 ≤ r(c)
n ≤ min

(

V (c)
n (t) + A(c)

n (t), Â(c)
n

)

∀n, c,

(87)

• selectγ(t) according to

γ(t) =arg max
∑

n,c

[

V fnc

(

γ(c)
n

)

− ηY (c)
n (t)γ(c)

n

]

s.t. 0 ≤ γ(c)
n ≤ Â(c)

n ∀n, c,

(88)

• observeS(t) and selectP (t), µ
(c)
ab (t) so as to maximize

∑

ab

[

∑

c

W
(c)
ab (t)µ

(c)
ab − Da(t)pab

]

s.t. p ∈ PS(t),
∑

b

pnb ≤ min
(

En(t), P̂
)

∀n,

∑

c

µ
(c)
ab ≤ cab (S(t), P (t)) ∀ a, b,

µ
(c)
ab = 0 ∀ (a, b) 6∈ L(c),

(89)

whereW
(c)
ab (t)

△

= U
(c)
a (t) − U

(c)
b (t) will be referred to as the differential backlog betweena, b.

The following observations can be made. The problems in (87), (88) are separable and can be solved distributively. It is
also easy to show, using a greedy exchange argument, that the solution to (89) is equivalent to

P (t) = argmax
∑

ab

[

W̃ab(t)cab (S(t), p) − Da(t)pab

]

s.t. p ∈ PS(t),
∑

b

pnb ≤ min
(

En(t), P̂
)

∀n,
(90)

where
W̃ab(t) = max

c:(a,b)∈L(c)

{

U (c)
a (t) − U

(c)
b (t)

}

, (91)

so that, for each time slot, we need only select a single commodityc∗ab(t) = argmaxc:(a,b)∈L(c){U
(c)
a (t) − U

(c)
b (t)} per link

(obviously, different links may carry different commodities). A casual glance at (90) also reveals that the optimal solution has
the property thatPab(t) = 0 if W̃ab(t) ≤ 0. Hence, with no loss of optimality, we define

W ∗
ab(t) =

[

max
c:(a,b)∈L(c)

{

U (c)
a (t) − U

(c)
b (t)

}

]+

, (92)
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and use this value instead of̃Wab(t) in the subsequent expressions. Hence, the following result is true
Lemma 10: Application of NRABP results in the following conditions being satisfied

• for eachc ∈ K, there exists a sufficiently largêF (c) such thatR(c)
n,in(t) = 0 wheneverU (c)

n (t) > F̂ (c).

• for any link (a, b) such thatW (c)
ab (t) ≤ 0 it holds µ

(c)
ab (t) = 0. As a result, the implicationW ∗

ab(t) = 0 ⇒ Pab(t) = 0 is
true.

Proof: The first condition follows from the bang-bang property of the solution to (87) and the fact that all queuesY
(c)
n (t)

are stable under NRABP (the latter is proved by a vectorization of the proof in Appendix V-B), while the second one has
already been proved.

Under the previous observations, (86) becomes

∆(X(t)) − 2V E

[

∑

n,c

fnc

(

γ(c)
n (t)

)

∣

∣

∣

∣

∣

X(t)

]

≤ Ċ − 2E

[

∑

n,c

[

V fnc

(

γ(c)
n (t)

)

− ηY (c)
n (t)γ(c)

n (t)
]

∣

∣

∣

∣

∣

X(t)

]

− 2E





∑

a,b

[

W ∗
a,b(t)cab (S(t), P (t)) − Da(t)pab

]

∣

∣

∣

∣

∣

∣

X(t)



 − 2E

[

∑

n,c

[

ηY (c)
n (t) − U (c)

n (t)
]

R
(c)
n,in(t)

∣

∣

∣

∣

∣

X(t)

]

− 2(1 − δ)
∑

n

B̄nDn(t).

(93)

The main stability result, proved in Appendix V-G, is now stated
Lemma 11: NRABP stabilizes all queues according to the following bounds

Y (c)
n (t) ≤

V f ′
nc(0)

η
+ Â(c)

n

△

= Ŷ (c)
n ,

U (c)
n (t) ≤ Û (c)

n ,

Dn(t) ≤ ˆ̇UnĈn + P̂n
△

= D̂n,

(94)

where ˆ̇Un = maxc Û
(c)
n and Ĉn = maxs

∑

b
∂cab

∂pab
(s,0).

As before, we denote withqs,e(t) = Pr (S(t) = s, E(t) = e|X(t)) the respective probability under NRABP and with
P (s, e) the solution to (90) whenS(t) = s andE(t) = e (whene ≥ P̂ , the solution is independent ofe and is denoted as
p∗
s). The analogue of (31) is

E





∑

a,b

[W ∗
ab(t)cab (S(t), P (t)) − Da(t)Pab(t)]

∣

∣

∣

∣

∣

∣

X(t)



 =
∑

s∈S

∑

e∈E(t)

∑

a,b

[W ∗
ab(t)cab (s, P (s, e)) − Da(t)Pab (s, e)] qs,e(t)

≥
∑

s∈S

∑

e∈E(t)

e≥P̂

∑

a,b

[

W ∗
ab(t)cab (s, p∗

s) − Da(t)p∗ab,s
]

qs,e(t)

≥
∑

s∈S

∑

e∈E(t)

∑

a,b

[

W ∗
ab(t)cab (s, p∗

s) − Da(t)p∗ab,s
]

qs,e(t) −
∑

s∈S

∑

e∈E(t)

e6≥
ˆP

∑

a,b

[

W ∗
ab(t)cab (s, p∗

s) − Da(t)p∗ab,s
]

qs,e(t)

≥
∑

s∈S

∑

a,b

[

W ∗
ab(t)cab (s, p∗

s) − Da(t)p∗ab,s
]

πs −





∑

a,b

ˆ̇Uaĉab



Pr

(

N
⋃

n=1

{En(t) < P̂}

∣

∣

∣

∣

∣

X(t)

)

,

(95)

where the usual manipulations have been performed.13

We now follow a procedure similar to the one that produced (33), (36), (37). Specifically, the maximizing properties of
NRABP yield for all r s.t. 0 ≤ r

(c)
n ≤ λ

(c)
n

E

[

∑

n,c

[

V fnc

(

γ(c)
n (t)

)

− ηY (c)
n (t)γ(c)

n (t)
]

∣

∣

∣

∣

∣

X(t)

]

≥
∑

n,c

[

V fnc

(

r(c)
n

)

− ηY (c)
n (t)r(c)

n

]

, (96)

E

[

∑

n,c

(

ηY (c)
n (t) − U (c)

n (t)
)

R
(c)
n,in(t)

∣

∣

∣

∣

∣

X(t)

]

≥
∑

n,c

(

ηY (c)
n (t) − U (c)

n (t)
)

r(c)
n . (97)

13specifically, the transition from the third to the fourth line of (95) relied on the fact thatW ∗
ab

(t) = U
(c∗ab(t))
a (t) − U

(c∗ab(t))

b
(t) ≤ ˆ̇

Ua.
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The solution to (89) whenEn(t) ≥ P̂ for all n also implies
∑

a,b

[

W ∗
ab(t)cab (s, p∗

s) − Da(t)p∗ab,s
]

≥
∑

a,b

[W ∗
ab(t)cab (s, p) − Da(t)pab]

≥
∑

a,b

[

∑

c

W
(c)
ab (t)µ

(c)
ab (s, p) − Da(t)pab

]

∀ s ∈ S, ∀p ∈ Ps,

(98)

where the second inequality follows from the factsW ∗
ab(t) ≥ W

(c)
ab (t) for all c and

∑

c µ
(c)
ab (s, p) ≤ cab (s, p). Multiplying

the last inequality byπs
pπs (whereπs

p is an arbitrary pdf) and summing overs, p produces

∑

s∈S

∑

a,b

[

W ∗
ab(t)cab (s, p∗

s) − Da(t)p
∗
ab,s

]

πs ≥
∑

s∈S

∑

p∈Ps

∑

a,b

[

∑

c

W
(c)
ab (t)µ

(c)
ab (s, p) − Da(t)pab

]

πs
pπs. (99)

We now insert (99), (97), (96), (95) into (93) and perform some algebra to get

∆(X(t)) − 2V E

[

∑

n,c

fnc

(

γ(c)
n (t)

)

∣

∣

∣

∣

∣

X(t)

]

≤ Ċ − 2V
∑

n,c

V fnc

(

r(c)
n

)

+ 2
∑

n,c

U (c)
n (t)r(c)

n − 2(1 − δ)
∑

n

B̄nDn(t)

− 2
∑

s∈S

∑

p∈Ps

∑

a,b

[

∑

c

W
(c)
ab (t)µ

(c)
ab (s, p) − Da(t)pab

]

πs
pπs + 2





∑

a,b

ˆ̇Uaĉab



Pr

(

N
⋃

n=1

{En(t) < P̂}

∣

∣

∣

∣

∣

X(t)

)

.

(100)

ExpandingW (c)
ab (t) into U

(c)
a (t)−U

(c)
b (t) and performing a change of indices so that all backlogs appear with indexn in the

above relation yields for allr with 0 ≤ r ≤ λ

LHS of (100)≤ Ċ − 2V
∑

n,c

fnc

(

r(c)
n

)

+ 2
∑

n,c

U (c)
n (t)



r(c)
n −

∑

s,p

∑

b

µ
(c)
nb (s, p)πs

pπs +
∑

s,p

∑

a

µ
(c)
ab (s, p)πs

pπs





+ 2
∑

n

Dn(t)





∑

s,p

∑

b

pnbπ
s
pπs − (1 − δ)B̄n



+ 2





∑

a,b

ˆ̇Uaĉab



Pr

(

N
⋃

n=1

{En(t) < P̂}

∣

∣

∣

∣

∣

X(t)

)

.

(101)

Selectingr as the solution to (84) andπs
p as the corresponding pdf in the definition ofRδ creates many cancellations in (101)

and finally produces

LHS of (100)≤ Ċ − 2V g∗δ + 2





∑

a,b

ˆ̇Uaĉab



Pr

(

N
⋃

n=1

{En(t) < P̂}

∣

∣

∣

∣

∣

X(t)

)

. (102)

As in previous sections, we invoke Lemmas 2, 5 (since each individual queueEn(t) overflows infinitely often) to get the
final

Theorem 4: NRABP stabilizes any multihop network and achieves a performance bound of

lim inf
t→∞

∑

n,c

fnc

(

r̄(c)
n (t)

)

≥ g∗δ −
Ċ

2V
−

1

V





∑

a,b

ˆ̇Uaĉab





N
∑

n=1

Pr

(

σ−1
∑

k=0

Bn(k) ≤
P̂ + D̂n − Emax

δ

)

, (103)

whereσ = ⌈Emax/P̂ − 1⌉.

III. T HE HIDDEN COST OF HIDDEN TERMINALS

A. Where is Hidden Terminal?

The hidden terminal problem is closely related with the Transmission Range (TXRange), Carrier Sensing Range (CSRange)
and Interference Range (IFRange) of stations in WLAN. The followings are the widely adopted definitions for these three
ranges [25] [26]. The TXRange is the range (with respect to the transmitting station)within which a transmitted frame can be
successfully received. The CSRange is the range (with respect to the transmitting station)within which the other stations detect
a transmission. The IFRange is the range within which stations in receive mode will be “interfered with” by a transmitter,
and thus suffer a loss.

The measurement study by [25] shows the following relationship for 802.11b networks: TXRange< IF Range< CS Range.
In addition, it shows that CSRange is about 1.5 times of the TXRange. We have also measured the three ranges in 802.11g
networks and got similar results [27]. From our measurements, CSRange is between 1.2×TX Range and 1.6×TX Range,
depending on the environment. Although the exact values of these two measurement results are different, their ratios between
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Fig. 2. Illustration of the hidden terminal problem in ad hoc networks. For transmitterT , stations in in the shaded area are hidden terminals.

CS Range and TXRange are within the same range (1.2, 1.6). The difference is mainly due to different wireless cards used
for the measurements and different measuring environments.

As illustrated by Fig. 2, nodes within the interference range of a receiver and out of the carrier sensing range of the transmitter
are usually called hidden terminals [26]. In a single-cell WLAN, all nodes are within the TXRange of the AP, so hidden
terminals are those within the TXRange of the AP and out of the CSRange of the transmitter, as illustrated by Fig. 3a. As
we can see from Fig. 3a, to eliminate hidden nodes, CSRange must be no less than 2×TX Range to make sure that a node
at the edge of a WLAN can sense all of the other nodes. However, both the measurement results from [25] and from us [27]
show that CSRange is less than 2×TX Range for many existing 802.11 wireless cards. This is why hidden nodes exist in
current 802.11 networks.

The performance degradation due to hidden terminals is best shown in the following example. In Figure 3a, a source station
is trying to transmit to the access point (AP). It starts the transmission with a RTS/CTS handshake: The source station sends a
RTS and the AP replies with a CTS. If the handshake is successful, all the nodes in the WLAN will be aware of the subsequent
transmission and keep silent during the transmission period. Note that RTS signal cannot be sensed by the hidden nodes, who
are beyond the CSRange of the source station. So during the transmission of RTS, the hidden nodes may initiate their own
transmissions if their backoff counters reach zero. In the 802.11 standard, the duration of RTS transmission is much longer
than that of a backoff slot. For instance, With a typical setting of 802.11g [28], a RTS takes about 59µs while a backoff slot
duration is 9µs. This implies that each hidden terminal has at least six chances to initiate their own transmissions during a
RTS transmission, and collide with this RTS at the access point. The collisions waste channel time and thus degrade network
performance. In this example, we assumed that RTS/CTS mechanism is active. If not, the hidden terminals will have more
chances to initiate their own transmissions during the ongoing data packet transmission, which is much longer than the RTS
transmission. Then the network performance will be degraded more severely.

Moreover, this performance degradation is not uniform for all nodes in a WLAN. Instead, it depends on the locations of the
nodes. Assuming stations are randomly located in the network, Figure 3 shows that a station sees more hidden nodes when it
is far away from the AP (Figure 3a), compared with the case when it is close to the AP (Figure 3b).

Various types of areas used in this paper are derived in the Appendix, which analytically shows the relationship between
the total hidden area and the distance from the transmitter to the AP (Eq. 183). The relationship is plotted in Fig. 4, where
the area is normalized by the whole network area and the distance is normalized with respect to TXRange. As we can see,
the hidden area grows almost linearly as the distance increases.

B. An Analytical Model for the Hidden Terminal Problem

1) System Model:We consider an 802.11 single-cell WLAN with only uplink traffic, wherein all transmissions are initiated
by stations and destined to access point (AP). The RTS/CTS mechanism is assumed to be enabled. The AP is located at the
center of the network and the other stations are randomly located within the AP’s transmission range. Besides, we set

CS Range = η × TX Range, η ∈ (1, 2). (104)

Note that this range ofη well reflects the observations in independent WiFi measurements [25][27]. Other assumptions are
listed below.

1) No capture effect, i.e., when two or more packets collide with each other, all of them will fail.
2) No channel errors.
3) All transmissions are at the same data rate.
4) All stations are always in backlog state.
As in [29], the conception of “time slot” is extended to refer to any continuous time period that a station observes. It is no

longer only the backoff time slot in 802.11; instead, the duration of a time slot in our model can be one the followings:
• α: the duration of a successful transmission.
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Fig. 3. Illustration of the hidden terminal problem in infrastructure mode 802.11 networks. Note that the hidden area in (a) is larger than that in (b) (where
the source station is closer to the AP).
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• β: the duration of a collision period.
• δ: the duration of a backoff time slot.

2) Network Analysis:In [29], Bianchi models the 802.11 DCF with a two-dimensional Markov chain. For a given collision
probability Pc, the model predicts the transmission probabilityτ :

τ =
2(1 − 2Pc)

(1 − 2Pc)(W + 1) + PcW [1 − (2Pc)m]
(105)

whereW is the initial backoff window size andm is the maximum number of backoff stages. On the other hand, the network
conditions for a transmitted packet to collide is that, in a time slot, at least one of the remaining stations transmits:

Pc = 1 − (1 − τ)N−1 (106)

whereN is the number of nodes in the network. By solving these two equations numerically, Bianchi obtainsτ andPc, based
on both of which he then computes the network throughput.

We will follow the same approach in our modeling. The main difference between Bianchi’s analysis [29] and ours is that
we consider hidden terminals. To capture the location-dependent nature of hidden terminal’s impacts (as described in Section
III-A), we slot the whole network area intoM evenly spaced concentric annuluses centered at the AP, as shown in Fig. 5.
Let r be the TX Range of a station. Each annulusA(i) (i > 2) is centered at AP and confined by two circles with radius
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Fig. 5. M evenly spaced concentric annuluses centered at the AP (M = 4 in this figure).

Fig. 6. Illustration of Hidden AreaH(i, j) and Covered AreaE(i, j).

r(i − 1)/M and ri/M respectively; whileA(1) is the interior of the innermost circle centered at AP and with radiusr/M .
As we can see from Fig. 5, stations in annulusA(i) are at approximately the same distanced(i) from the AP, so they observe
approximately the same number of hidden nodes. Therefore, they experience approximately the same collision probability
Pc(i), which results in approximately the same transmission probabilityτ(i) (from Eq. 106). Of course, the largerM is, the
better the approximations are. In fact, as we will show later, the approximations here are very accurate even whenM is as
small as 4.

As in [29], we adopt the key assumption that each station independently makes a transmission attempt at any time slot with
a constant probabilityτ . However, there is a difference on the meaning ofτ . In [29], τ is equal for all nodes, since the model
assumes no hidden nodes. But in our model,τ depends on the distance between a node and the AP.

Following the same way that Bianchi derives Eq. 105 in [29], we obtain the relationship betweenτ(i) andPc(i) for a node
in annulusA(i) (A brief derivation is presented in the Appendix):

τ(i) =
2(1 − 2Pc(i))

(1 − 2Pc(i))(W + 1) + Pc(i)W [1 − (2Pc(i))m]
(107)

(i = 1, 2, . . . , M)

We now derive the network conditions for a transmitted packet to collide in the presence of hidden terminals. Let us first
define the hidden areaH(i, j) and the covered areaE(i, j), with i, j ∈ [1, M ]. For a source station (Src) located in annulus
A(i), H(i, j) is defined as the part of annulusA(j) that is out of the CSRange ofSrc; while E(i, j) is defined as the part
of annulusA(j) that is within the CSRange ofSrc. Both of them are normalized with respect to the total area within the
AP’s TX Range. Fig. 6 shows theH(i, j) andE(i, j) for a source station located inA(4). Note thatH(4, 1) is zero in this
example and not shown in the figure. The computations of the areasH(i, j) andE(i, j) can be found in Appendix.

We can then determine the expected number of nodes in hidden areaH(i, j) and covered areaE(i, j). Let the total number
of stations in the network beN , then a station in annulusA(i) sees an averageNH(i, j) hidden nodes andNE(i, j) covered
nodes in annulusA(j).

Let us consider the conditions for a successful transmission. The transmission procedure is a RTS-CTS-DATA-ACK four-way
handshake. SinceSrc senses the channel before the transmission of RTS, we are sure that all nodes withinSrc’s CS Range
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are idle in the time slot just before the RTS transmission. However,Src has no knowledge about the status of the hidden
nodes. Denoteρ as the number of backoff time slots that a RTS transmission spans, that is,

tRTS = ρδ (108)

wheretRTS is RTS transmission time.
An obvious condition is that no nodes withinSrc’s CS Range initiates transmissions in the same time slot asSrc does.

SinceSrc’s RTS signal cannot be sensed by its hidden nodes, another condition is that no hidden nodes transmit during the
RTS transmission. Likewise, whenSrc initiates a transmission, a hidden node may already be transmitting a RTS, sinceSrc
cannot sense the RTS signal and is not aware of the transmission. So the third condition is that no hidden nodes transmits in
the precedingtRTS time. If all of the three conditions are satisfied, the RTS will be successfully received by the AP, which
then replies with a CTS.

Irrespective of whether they have received the RTS or not, all the nodes in the source station’s CSRange will not transmit
within a Distributed Interframe Space (DIFS) time. So they will not interfere with the CTS which is sent a Short Interframe
Space (SIFS) time after the completion of the RTS, because a SIFS is shorter than DIFS. So only hidden nodes might interfere
with the CTS. Therefore, the condition for the CTS to be successful is that no hidden node launches transmissions at the
same time slot as the AP transmits a CTS. Since all nodes in the network are within the AP’s TXRange, they will find the
channel busy during the CTS transmission and not transmit. Once the RTS/CTS handshake is successful, the transmission
is guaranteed to be successful, since all stations will set their Network Allocation Vector (NAV), which keeps them silent
during the transmission. Consequently, the conditional success probabilityPs(i) given that a node in annulusA(i) initiates a
transmission is

Ps(i) =

M
∏

j=1

[1 − τ(j)]NE(i,j)
M
∏

j=1

[1 − τ(j)]N(2ρ−1)H(i,j)

=

M
∏

j=1

[1 − τ(j)]N [E(i,j)+(2ρ−1)H(i,j)] (109)

Then the conditional collision probabilityPc(i) given that a node in annulusA(i) initiates a transmissions is

Pc(i) = 1 −
M
∏

j=1

[1 − τ(j)]N [E(i,j)+(2ρ−1)H(i,j)] (110)

(i = 1, 2, . . . , M)

With (107) and (110), we have2M equations and2M unknowns. Numerically solving the equations, we obtainτ(i) and
Pc(i) for i from 1 to M .

C. Throughput

Normalizing the area of annulusA(i) with respect to the network area, we get

A(i) = [i2 − (i − 1)2]/M2, i = 1, 2, . . . , M. (111)

Since we assume that nodes are randomly located in the network, the expected number of stations located in annulusA(i) is
proportional to the normalized area of annulusA(i):

N(i) = NA(i) = N [i2 − (i − 1)2]/M2, i = 1, 2, . . . , M. (112)
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The probability that all stations are idle in a time slot is

Pidle =

M
∏

i=1

[1 − τ(i)]N(i). (113)

As the transmission probabilityτ(i) is very small and independent for each node, the probability that there is a successful
transmission in a time slot can be approximately expressed as

Psuccess =

M
∑

i=1

N(i)τ(i)(1 − Pc(i)) (114)

The three different channel states in a time slot are: Successful Transmission, Collision and Idle. So the probability that there
is a collision in a time slot is

Pcollision = 1 − Psuccess − Pidle (115)

Since most collisions occurs when a node launches RTS during the transmission of a RTS by another node, the collision period
is just the overlapping of these two RTS’s. Soβ approximates twice oftRTS .

Let S be the expected aggregate throughput for the whole network, which can be computed in this way

S = PsuccessE[Payload]/T (116)

whereE[Payload] is the expected payload length of a packet andT is mean duration of a time slot

T = Pidleδ + Psuccessα + Pcollisionβ. (117)

The per-node throughput for a node in annulusA(i) is

S(i) = τ(i)(1 − Pc(i))E[Payload]/T (118)

D. Simulation

To validate the model, we have run extensive simulations with the Network Simulator ns-2 v2.33 [30].
1) Simulation Settings:The system parameters for the simulations and for obtaining numerical solutions from the model

have been set to values typical in 802.11g WLAN, as summarized in Table I. The capture effect has been turned off and the
channel is free of errors. The AP is located at the center of the network, while the other stations are uniformly located within

TABLE I
PARAMETERSUSED IN BOTH SIMULATIONS AND MODEL

Preamble Length 20µs Slot Time 9µs
PLCP Header Length 4µs SIFS 10µs
Max Propagation Delay 0.5µs DIFS 28µs

W (CWMin) 31 m (CWMax) 1023

the TX Range of of the AP. The AP does not initiate transmissions, while the other stations transmit UDP packets to the AP
at 6 Mbps. From our previous experimental measurements for 802.11g WLAN, CSRange is between 1.2 TXRange and 1.6
TX Range [27]. We also note that many existing papers assume CSRange=TX Range, which is not realistic. Taking the
measurement results and the prevailing assumption into consideration, we decided to run simulations and obtain numerical
values from the model with CSRange set to 1.0 TXRange, 1.3 TXRange and 1.6 TXRange respectively.

2) Performance of Saturated Networks:In this subsection, we present the results from both analysis and simulations for
saturated networks. There are 16 uniformly-located nodes in the network. All nodes are at full load and the payload size has
been fixed to 1500 bytes. The RTS/CST handshake has been turned on.

Fig. 7 compares the aggregate network throughput obtained from the analytical model and simulations. As shown in this
figure, the model is very accurate, since the average difference between the model and simulation results is around 4%.
Furthermore, this accuracy is observed for networks ranging from 4 nodes up to as many as 64 nodes. Besides, we note that
the aggregate throughput does not change much withη.

Fig. 8 and Fig. 9 show the per-node throughput, collision probability and delay as a function of the distance from a node to
the AP. The distance has been normalized with respect to the TXRange. From Fig. 8, we can see that the per-node throughput
from our model matches its counterpart from simulations well. In addition, as we can see from Fig. 8 and 9, both the analytical
model and simulations reveal a significant unfairness in terms of both throughput and delay for nodes at different locations.
For η=1.0, 1.3 and 1.6, the throughput for the closest node to the AP is eight, five, and three times as much as that for a node
at the edge of TXRange, respectively. The scenarioη = 1.0, which is not realistic, is only for comparison with the literature.
So in practice, the throughput ratio between the closest and the furthest node ranges fromthree to five. It is also clear that the
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unfairness becomes less significant asη increases. Please note that we have assumed no channel errors in the model and set
the simulator free of channel errors, therefore, this unfairness has nothing to do with the path loss which causes more packet
loss for stations far from the AP than for stations close to the AP.

We have also run simulations with different network sizes (i.e., the number of nodes in the network), and obtained similar
results as Fig. 8 and 9. Due to space limitation, the results are not shown in this paper.

3) Simulation Results: Networks Without RTS/CTS:All the previous sections are about networks with RTS/CTS handshake.
We note that RTS/CTS mechanism is disabled in most deployed 802.11 WLANs. To investigate the hidden terminal problem
in this case, we have run simulations with RTS/CTS disabled.

We have considered three scenarios with packet payload length set to 125, 500 and 1500 Bytes. The other simulation settings
are exactly the same as those in section III-D2.

The per-node throughput are shown in Fig. 10. As we can see, withη = 1.3 and a 1500-Byte payload length, the throughput
ratio between the closest node and the furthest node is 760 with RTS/CTS disabled and 5 with RTS/CTS enabled. This shows
that the RTS/CTS mechanism does alleviate the performance unfairness due to hidden terminals, although it cannot completely
solve the problem.

E. Impact on Real-Time Service

To evaluate the the impacts of the performance unfairness to real-time services, we have done simulations with Voice over
IP (VoIP) services in ns-2. We have adopted the ns-2 VoIP framework established by [31] and [32].

The VoIP framework evaluates the Quality of Service (QoS) of VoIP sessions in terms ofMean Opinion Score (MOS)[33].
The higher the value of MOS, the better the QoS is. The quality of VoIP service is considered to be good if the MOS is above
4 [34].

In the simulations, each node initiates two VoIP sessions and talks to the AP. All the other settings are the same as those
in section III-D2.

Fig. 11 shows the QoS of the VoIP services for nodes at different locations. As we can see, the QoS does not depend on
location when there are no hidden nodes (η = 2.0); however, it greatly depends on location in the presence of hidden nodes
(η = 1.0, 1.3, 1.6). Besides, the unfairness becomes less significant with a greaterη. Note that when there are no hidden
nodes (η = 2.0), the VoIP sessions for all nodes are with good quality (MOS>4). This indicates that the network is non-
saturated. Therefore, hidden terminals cause significant performance unfairness not only under saturated load, but also under
non-saturatedload.

F. Experimental Measurements

We have set up a testbed to measure the throughput and packet loss rate in a WLAN with hidden nodes and single access
point. houses and WiFi hot spots, which keeps the experiments free from external interference.

We have used five laptop computers (A, B, C, D and E) running Linux Fedora 5 (kernel: 2.6.16-prep). Each laptop is
equipped with an Atheros 802.11g wireless card (chipset: Atheros AR5212) and uses theMadWifi driver [35] (version 0.9.4).
To facilitate experimentation, the transmission power of each wireless card is fixed to 1 dBm (1.26 mW), which is greater than
the minimum transmission power (1 mW) required by the 802.11 standard.

The topology of our experiments is shown and Fig. 12. All laptops are in a line, with laptopC in the middle. LaptopC acts
as the AP and does not initiate transmissions; while the other laptops are at full load and transmit UDP packets toC with a
fixed payload length of 1470 Bytes.

We first measure the TXRange with a method which is similar as the one used by [25] and [36]. In our measurements,
TX Range is defined as the largest transmission distance when thepacket loss rate is maintained below 10%. Letr denote
TX Range, then CSRange is between1.2r and 1.6r [27]. As observed from the topology in Fig. 12, nodesB andD which
are close to the access point see one hidden node, while nodesA and E which are far away from the access point see two
hidden nodes. For example,E is 1.6r away fromB, soB seesE as a hidden node; both nodesD andE are more than1.6r
away fromA, so A sees both of them as hidden nodes.

With RTS/CTS handshake turning on or off and the data rate for all nodes setting to 6Mbps or 36Mbps, we made
measurements for four scenarios. The measured throughput and packet loss rate for each node are presented in Fig. 13
and Fig. 14, respectively.14 These two figures tell us three things. Firstly, the performance of close stations (nodeB and node
D) are much better than that of far stations (nodeA and nodeE), in terms of both throughput and packet loss rate. This is
contrary to the case without hidden nodes, where all nodes enjoy equal chance to access the channel and the throughput for
all nodes are almost the same, even if they transmit at different data rates [37].

Secondly, in both the 6Mbps and 36Mbps scenarios, enabling RTS/CTS significantly enhances the performance. This
contradicts with the ad-hoc case, where RTS/CTS handshake is not effective in dealing with the hidden node problem [26].

14As in [25], we also experienced a high variability in channel conditions thus making a comparison between theexact values of the results difficult
sometimes.
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Fig. 12. Topology: All stations are in a line, with access point in the middle.
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This is because for a given distance between the transmitter and receiver, there are more hidden nodes in ad hoc networks
than in single-cell WLANs, which can be seen clearly by comparing Fig. 2 with Fig. 3a.

Thirdly, comparing the Packet Loss Rate (PLR) in scenarios “6Mbps without RTS” and “36Mbps without RTS”, we find
that the PLR’s for close and far stations in the former scenario are about 20% greater than their counterparts in the latter
scenario. This agrees with our analysis very well: since the transmission time of DATA packet at 6Mbps is much longer than
that at 36Mbps, hidden nodes have more chances to initiate transmissions during the data packet transmission period, which
gives rise to more collisions.

As we know, packet loss is mainly due to channel errors and collisions. As mentioned previously, we define TXRange
as the maximum transmission distance when the packet loss rate is maintained below 10%. Since all nodes are within the
TX Range of of the access point, the packet loss caused by channelerrors is less than 10%. From Fig. 14 we can see that
most measured PLR’s are far more than 10%, so collisions are the dominating contributor to packet losses.

G. Related Work

The existing research on evaluating the impacts of hidden terminals to the performance of 802.11 networks can be roughly
categorized as follows. There are simulation-based studies [24] and analytical models [38]-[23]. A few papers also evaluate
the impacts of hidden nodes with experiments [23][36]. Our work belongs to all the the three categories.
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Among the current analytical models, [38]-[39] are the closest to ours. These results can be classified into two groups, based
on whether they utilize the relationship between the transmission distance and the number of hidden nodes, which is revealed
in section III-A of this paper. In one group, the papers do not utilize this relationship. In both [38] and [40], Chhaya and
Gupta build an analytical model for 802.11 WLAN in the presence of hidden nodes and capture effects. The model reveals the
unfairness that the nodes far away from the access point (AP) have a less success probability of transmission than those close
to the AP. However, the result is based on the assumption that every pair of nodes are hidden from each other with aconstant
probability, which holds only for a few network topologies. Similarly, [22] evaluates the network performance by building a
model assuming that the number of hidden nodes isequal for all transmissions. In the other group, the relationship between
transmission distance and the number of hidden terminals is exploited. Both [41], a seminal work from 1984, and recent work
[39] show the relationship for a special case where CSRange is the same as TXRange, though CSRange is usually greater
than TX Range in practice. The focus of both papers is the analysis of the network performance.

Experimental studies of the hidden terminal problem has been very rare. Ng and Liew in [23] have measured the aggregate
network throughput of a 6-node ad-hoc network with hidden nodes. It does not conclude the performance unfairness problem.

Our paper is distinct from the existing work on the hidden terminal problem in the following three ways. Firstly, none of
them answer why hidden terminals cause the performance unfairness problem. Secondly, no effort has been put on experimental
measurements to validate this performance unfairness problem. Finally, our model is one of the few models that focus on the
performance forindividual nodesrather than the overall network.

IV. CONCLUSION AND FUTURE WORK

The first work presented an on-line adaptive policy for stabilization and optimal control of wireless networks operating under
rechargeable batteries. Using a Lyapunov drift argument and modifying the framework of [15] in subtle but non-trivial ways,
a performance bound was provided that ensures asymptotic optimality asEmax → ∞ (or Emax/P̂ → ∞, to be exact). The
policy requires only current information and is particularly suitable for satellite or wireless networks, which typically operate
under highEmax/P̂ ratios.

Future work includes extensive numerical evaluation of the proposed policy, in order to develop practical rules for selecting
theEmax/P̂ ratio (i. e. how large should the ratio be so that the performance loss is negligible), since the theoretically derived
bounds are rather loose. The basic intuition may also be applicable to finite (non-rechargeable) batteries so that a nearly optimal
policy may be developed for the problem of lifetime maximization. This problem is expected to require a completely new
formulation and tools, and is of a more speculative nature.

In the second part of this project, we studied performance unfairness in 802.11 networks due to hidden nodes. We build an
analytical model and validated it with simulations. We also set up a testbed and made experimental measurements. From our
analysis, simulation and measurements, we conclude that the performance of a node in a randomly distributed 802.11 WLAN
depends on the distance from the node to the AP. More specifically, the nodes close to the AP get much better performance
than those far from the AP. Although our work is based on 802.11 networks, we believe it also applies to most random-access
radio networks.

As future work, we are planning to extend the analysis for ad hoc networks. We will also design a MAC layer scheme to
mitigate the performance unfairness.

V. A PPENDIX

A. Proof of Lemma 2

We will need the following result from analysis
Lemma V-A.1: For any functionsf1(t), f2(t), w(t) such thatf1(t) + w(t) = f2(t) and limt→∞ w(t) = 0, it holds

lim inf
t→∞

f1(t) = lim inf
t→∞

f2(t), (119)

with a similar equality for limsup.
Proof: Since w(t) → 0 as t → ∞, it follows that (−w(t)) → 0 as t → ∞ and, hence,lim inf t→∞ w(t) = 0,

lim inft→∞ (−w(t)) = 0. Using standard properties of liminf, we have

lim inf
t→∞

f1(t) = lim inf
t→∞

(f2(t) + (−w(t))) ≥ lim inf
t→∞

f2(t) + lim inf
t→∞

(−w(t)) = lim inf
t→∞

f2(t),

lim inf
t→∞

f2(t) = lim inf
t→∞

(f1(t) + w(t)) ≥ lim inf
t→∞

f1(t) + lim inf
t→∞

w(t) = lim inf
t→∞

f1(t),
(120)

which completes the proof.
Following the approach in [16], we now take an expectation of (17), which produces

E [Ly (X(k + 1)) − Ly (X(k))] − V E [g (Z(k))] ≤ C − V g∗ + E[Q(k)], (121)
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and sum the above telescoping series fork = 0, . . . , t − 1 to arrive at

E [Ly (X(t))] − E [Ly (X(0))] − V

t−1
∑

k=0

E [g (Z(k))] ≤ (C − V g∗)t +

t−1
∑

k=0

E[Q(k)]. (122)

SinceLy (X(t)) ≥ 0, the above inequality can be strengthened to

(V g∗ − C)t ≤
t−1
∑

k=0

E[Q(k)] + E [Ly (X(0))] + V

t−1
∑

k=0

E [g (Z(k))]

⇒g∗ −
C

V
−

1

V t

t−1
∑

k=0

E[Q(k)] ≤
1

V t
E [Ly (X(0))] +

1

t

t−1
∑

k=0

E [g (Z(k))] .

(123)

It also holds
1

t

t−1
∑

k=0

E [g (Z(k))] ≤
1

t

t−1
∑

k=0

g (E[Z(k)]) ≤ g

(

1

t

t−1
∑

k=0

E [Z(k)]

)

, (124)

where the first inequality is due to Jensen’s inequality and the second one follows from the concavity ofg. The reader will
recognize the argument ofg in the last RHS as̄z(t). Combining (123), (124) yields

g∗ −
C

V
−

1

V t

t−1
∑

k=0

E[Q(k)] ≤
1

V t
E [Ly (X(0))] + g (z̄(t)) . (125)

We now take a liminf in the last relation, exploit the propertieslim inf
∑

≥
∑

lim inf and lim inf(−xn) = − lim sup xn,
and use Lemma V-A.1. SinceE [Ly (X(0))] /(V t) → 0 as t → ∞, it finally holds

g∗ −
C

V
−

1

V
lim sup

t→∞

1

t

t−1
∑

k=0

E[Q(k)] ≤ lim inf
t→∞

g (z̄(t)) . (126)

B. Proof of Lemma 3

The deterministic bounds of (23) are proved as follows. Examine (12) and note that it is a separable concave maximization
over a compact set. Separability allows us to maximize individually overl so we seek the maximum ofV fl(γl) − ηYl(t)γl.
It clearly follows, by computing the first derivativeV f ′

l (γl) − ηYl(t), that if it holds V f ′
l (0) − ηYl(t) ≤ 0, the function

V fl(γl)− ηYl(t)γl is non-increasing (since concavity offl impliesf ′(γl) ≤ f ′
l (0)) and therefore the maximum is achieved at

γl = 0.
The bound forYl(t) is now proved by induction. The bound is trivially true fort = 0. Assume now that it holds for somet,

i. e. Yl(t) ≤ V f ′
l (0)/η+ Âl and distinguish cases. It holds eitherYl(t) < V f ′

l (0)/η or V f ′
l (0)/η ≤ Yl(t) ≤ V f ′

l (0)/η+ Âl. In
the former case, (9) and the boundγl(t) ≤ Âl immediately imply the bound forYl(t + 1), while in the latter case we exploit
the fact that in this range ofYl(t) it holds γl(t) = 0 so thatYl(t + 1) ≤ Y (t) and the bound is again proved.

For the bound onUl(t), note thatUl(t) > ηŶl implies Ul(t) > ηYl(t), whence it follows, from separability of (11) and
its “bang-bang” solution, thatRl,in(t) = 0. The bound is now proved by induction ont and distinction of cases, in a similar
manner as in the previous paragraph. Finally, for the bound onD(t), we exploit the assumptions forcl (s, p) in Section II-A
and write for allt andp ∈ PS(t)

Ul(t)cl (S(t), p) − D(t)pl ≤ Ul(t)cl (S(t), (0, . . . , pl, . . . , 0)) − D(t)pl ∀ l

⇒
L
∑

l=1

[Ul(t)cl (S(t), p) − D(t)pl] ≤
L
∑

l=1

[Ul(t)cl (S(t), (0, . . . , pl, . . . , 0)) − D(t)pl] .
(127)

Consider the maximization of the last RHS in (127) over the set
{

p ∈ PS(t) : pl ≤ min
(

E(t), P̂
)

∀ l
}

, which is actually

a superset of the constraint set of (13), and denote its solution asP̊ (t). The new problem is separable and a repetition of
the derivative argument of the previous paragraphs reveals that it holdsP̊l(t) = 0 when Ul(t)

∂cl

∂pl
(S(t),0) < D(t). Hence,

D(t) > max1≤l≤L

(

ÛlĈl

)

implies P̊ (t) = 0, which, combined with (127), yields

L
∑

l=1

[Ul(t)cl (S(t), p) − D(t)pl] ≤ 0. (128)
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On the other hand, the last inequality becomes an equality whenp = 0. Hence, with respect to the original problem in (13),
it holdsP (t) = 0 wheneverD(t) > max1≤l≤L

(

ÛlĈl

)

. Using this statement in combination with (10), the bound forD(t) is
proved by induction ont, similarly to the previous bounds.

C. Proof of Lemma 4

It obviously holdsµ̃out(t) ≤ µout(t) for all t. This implies¯̃µout(t) ≤ µ̄out(t), which combined with the monotonicity ofg
and the liminf operator immediately produces the second inequality of Lemma 4. Hence, it remains to prove the first equality. It
is shown in [15] that for any stable queueZ(t) with E[Z(0)] < ∞ and a bounded service processµout(t) (i. e. µout(t) ≤ C1

for a sufficiently largeC) it holds limt→∞ E[Z(t)]/t = 0. It also holds

Z(0) +
t−1
∑

τ=0

Ain(τ) = Z(t) +
t−1
∑

τ=0

µ̃out(τ) ⇒
E[Z(0) − Z(t)]

t
+ āin(t) = ¯̃µout(t), (129)

where the⇒ part follows from taking expectations and dividing byt. SinceE[Z(0) − Z(t)]/t → 0, it follows that for all
ǫ > 0 there exists someT (ǫ) such that for allt > T (ǫ) it holds

āin(t) − ǫ1 ≤ ¯̃µout(t),

¯̃µout(t) − ǫ1 ≤ āin(t),
(130)

If we pick ǫ < C, (130) impliesāin(t) ≤ 2C for all t > T (ǫ). Consider now the functiong with domain theL-dimensional
cube of length2C, i. e. g : ×L

l=1[0 2C] 7→ R. Since the domain set is compact andg is continuous, the Heine-Cantor theorem
asserts thatg is uniformly continuous in its domain. Hence, for anyǫ1 > 0 there exists anǫ (depending onǫ1 only andnot
x) such that

|g (x) − g (x − ǫ1)| < ǫ1 ⇒ g (x − ǫ1) > g (x) − ǫ1 ∀x. (131)

We now setx = āin(t) andx = ¯̃µout(t) in (131) (thesex obviously belong to the domain set ofg for t > T (ǫ)) so that the
previous relation becomes

g (āin(t) − ǫ1) ≥ g (āin(t)) − ǫ1,

g (¯̃µout(t) − ǫ1) ≥ g (¯̃µout(t)) − ǫ1,
(132)

for all t > T (ǫ). Combining the monotonicity ofg with (130), (132), it follows that for a givenǫ1 > 0 there existǫ(ǫ1) and
T (ǫ) such that for allt > T (ǫ) it holds

g (āin(t)) − ǫ1 ≤ g (āin(t) − ǫ1) ≤ g (¯̃µout(t)) ,

g (¯̃µout(t)) − ǫ1 ≤ g (¯̃µout(t) − ǫ1) ≤ g (āin(t)) .
(133)

Taking a liminf in the last equations produces

lim inf
t→∞

g (āin(t)) − ǫ1 ≤ lim inf
t→∞

g (¯̃µout(t)) ,

lim inf
t→∞

g (¯̃µout(t)) − ǫ1 ≤ lim inf
t→∞

g (āin(t)) ,
(134)

and using the fact thatǫ1 is arbitrary completes the proof.

D. Proof of Lemma 5

We assume w. l. o. g. that the lost recharge energy quanta of Fig. 1 enter a virtual queueEover(t) of zero service rate, so
that Eover(t) is a non-decreasing function of time. Viewing the queuesE(t), D(t), Eover(t) of Fig. 1 as a single compound
queue, this compound is unstable since it has an instantaneous arrival rate ofB(t) and a corresponding service rate of at most
(1 − δ)B(t). However, queuesE(t), D(t) are finite, the former by definition and the latter due to Lemma 3, which implies
that limt→∞ Eover(t) = ∞ w. p. 1. SinceEover(t) is increasedonly whenE(t) overflows, it follows that, under DRABP, the
queueE(t) overflows infinitely often so that

Pr





∞
⋂

t=0

∞
⋃

j=t

{E(j) = Emax}



 = 1 ⇒ Pr





∞
⋃

t=0

∞
⋂

j=t

{E(j) < Emax}



 = 0. (135)

The RHS of (135) also impliesPr
(

∩∞
j=t{E(j) < Emax}

)

= 0 for all t. We define the random variablẽτ
△

= inf{t : E(t) =
Emax} as the first time, under DRABP, the battery hitsEmax (obviously, τ̃ = 0 if E(0) = Emax). Clearly, τ̃ is finite
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w. p. 1 sincePr (τ̃ = ∞) = Pr
(

∩∞
j=0{E(j) < Emax}

)

= 0, due to the implication of (135). We also construct the decreasing
event sequenceAj = {τ̃ > j}, so that it holds∩∞

j=0Aj = {τ̃ = ∞}. From standard probability theory we know that
Pr(Aj) → Pr(τ̃ = ∞) = 0 as t → ∞.

We now exploit limsup properties to write

lim sup
t→∞

1

t

t−1
∑

j=0

Pr
(

E(j) < P̂
)

= lim sup
t→∞

1

t

t−1
∑

j=0

[

Pr
(

E(j) < P̂ , τ̃ ≤ j
)

+ Pr
(

E(j) < P̂ , τ̃ > j
)]

≤ lim sup
t→∞

1

t

t−1
∑

j=0

Pr
(

E(j) < P̂ , τ̃ ≤ j
)

+ lim sup
t→∞

1

t

t−1
∑

j=0

Pr
(

E(j) < P̂ , τ̃ > j
)

≤ lim sup
t→∞

1

t

t−1
∑

j=0

Pr
(

E(j) < P̂ , τ̃ ≤ j
)

+ lim sup
t→∞

1

t

t−1
∑

j=0

Pr (τ̃ > j) .

(136)

SincePr(τ̃ > j) → 0 asj → ∞, it follows that for anyǫ > 0 there exists aJ such thatPr(τ̃ > j) < ǫ for all j > J . Hence,
for t > J it holds

1

t

t−1
∑

j=0

Pr (τ̃ > j) =
1

t

J
∑

j=0

Pr (τ̃ > j) +
1

t

t−1
∑

j=J+1

Pr (τ̃ < j) ≤
J + 1

t
+

t − J − 1

t
ǫ (137)

Taking a limsup in the last equation and exploiting the fact thatǫ is arbitrary yieldslim supt→∞(1/t)
∑t−1

j=0 Pr(τ̃ > j) = 0,
so that we only need to compute the left limsup in the last line of (136). We will now prove the following bound for allj

Pr
(

E(j) < P̂ , τ̃ ≤ j
) ?
≤ Pr





j−1
∑

k=τj

B(k) ≤
P̂ + D̂ − Emax

δ





?
≤ Pr

(

σ−1
∑

k=0

B(k) ≤
P̂ + D̂ − Emax

δ

)

, (138)

whereτj
△

= sups≤j{s : E(s) = Emax} is the last time up to (and including)j when the battery hitEmax. This quantity is
well defined for allj with τ̃ ≤ j.

If τ̃ = j, thenτj = j, E(j) = Emax and {E(j) < P̂ , τ̃ ≤ j} = ∅, so that (138) holds trivially. Consider now the event
{E(j) < P̂ , τ̃ < j}. It holds

{

E(j) < P̂ , τ̃ < j
}

⊆

{

j − τj ≥

⌈

Emax − P̂

P̂

⌉

△

= σ

}

, (139)

since the fastest way the battery can drop fromEmax (its value atτj ) to E(j) is by transmitting with peak power and receiving
zero recharge for all intermediate slots. Examining the combined queueE(t), D(t) in the interval[τj j] yields

E(j) + D(j) − E(τj) − D(τj) ≥ δ

j−1
∑

k=τj

B(k) ⇒ E(j) + D̂ − Emax ≥ δ

j−1
∑

k=τj

B(k), (140)

where the last RHS is inferred by the boundedness ofD(t). Note that (140) holds for anyj such thatE(j) < Emax and
τ̃ < j. Hence, the following inclusion is true

{E(j) < P̂ , τ̃ < j} ⊆







P̂ + D̂ − Emax ≥ δ

j−1
∑

k=τj

B(k)







, (141)

and, due to (139), it also holds






P̂ + D̂ − Emax ≥ δ

j−1
∑

k=τj

B(k)







⊆







P̂ + D̂ − Emax ≥ δ

τj+σ−1
∑

k=τj

B(k)







. (142)

Combining (141), (142), taking probabilities in the resulting inclusion and using the stationarity ofB(t) produces (138). Since
the RHS of (138) is independent ofj (and therefore invariant under a convex combination), the proof is complete.
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E. Proof of Lemma 6

It is easy to show through simple algebra that

Pr

(

σ−1
∑

k=0

B(k) ≤
P̂ + D̂ − Emax

δ

)

= Pr

(

1

σ

σ−1
∑

k=0

[B(k) − B̄] ≤
P̂ + D̂ − Emax

σδ
− B̄

)

. (143)

In the selected regime forEmax, it holds (P̂ + D̂ −Emax)/(σδ) − B̄ < 0 so that we can apply Chernoff’s bound [42] in the
form we state below

Lemma V-E.1: For a sequencex1, x2, . . . of iid random variables, it holds for alln and a < E[x1]

Pr (x1 + x2 + . . . + xn ≤ na) ≤ exp (−nℓ(a)) , (144)

whereℓ(a)
△

= supθ

(

θa − ln E[eθx1 ]
)

. The following properties hold forℓ(·)

• ℓ(a) ≥ 0 ∀ a.
• a = 0 ⇔ ℓ(a) = 0.
• ℓ(a) is a convex function ofa.

Constructing the iid random variablesxk = B(k) − B̄ (with E[xk] = 0) and substitutingσ for n in the above lemma
immediately produces the desired result.

F. Proof of Lemma 7

We assume thatEmax > P̂ + D̂ and prove Lemma 7 by standard induction starting fromt = τ̃ . The hypothesis is trivially
true for t = τ̃ , since it holds, by definition,E(τ̃ ) = Emax and thereforeE(τ̃ )+D(τ̃) ≥ Emax. We now assume that for some
t it holds E(t) + D(t) ≥ Emax, and distinguish cases forE(t + 1)

• if E(t + 1) = Emax, it follows immediately thatE(t + 1) + D(t + 1) ≥ Emax.
• if E(t + 1) < Emax, we use (3), (10) to write

E(t + 1) = E(t) −
L
∑

l=1

Pl(t) + B(t),

D(t + 1) ≥ D(t) − (1 − δ)B(t) +

L
∑

l=1

Pl(t),

(145)

and add the previous relations by parts to derive

E(t + 1) + D(t + 1) ≥ E(t) + D(t) + δB(t) ≥ E(t) + D(t) ≥ Emax, (146)

where the last inequality follows from the inductive hypothesis fort.

Hence, the hypothesis is also true fort + 1 and Lemma 7 is proved.
As mentioned in Section II-B4, the fact that the battery will eventually hitEmax in finite time and never fall beloŵP

afterwards suggests that the finite portion of time before the first hit does not affect the infinite horizon utility. A rigorous
proof of this requires the following intermediate facts

Lemma V-F.1: Let̊τ a random variable taking values inN with E[̊τ ] < ∞ and a stochastic processZ(t) such that
0 ≤ Z(t) ≤ Ẑ a.s., whereẐ is an arbitrary constant. It then holds

1

t

t−1
∑

k=0

E[Z(k)] − Ẑ
E[̊τ ]

t
≤

1

t

t−1
∑

k=0

E[Z (̊τ + k)] ≤
1

t

t−1
∑

k=0

E[Z(k)] + Ẑ
E[̊τ ]

t
∀ t > 0. (147)

Proof: It holds
t−1
∑

k=0

Z (̊τ + k) =

τ̊+t−1
∑

k=τ̊

Z(k) =

t−1
∑

k=0

Z(k) +

t+τ̊−1
∑

k=t

Z(k) −
τ̊−1
∑

k=0

Z(k) ∀ t, (148)

so that
t−1
∑

k=0

Z (̊τ + k) ≥
t−1
∑

k=0

Z(k) −
τ̊−1
∑

k=0

Z(k) ≥
t−1
∑

k=0

Z(k) −
τ̊−1
∑

k=0

Ẑ =

t−1
∑

k=0

Z(k) − Ẑτ̊ , (149)

and
t−1
∑

k=0

Z (̊τ + k) ≤
t−1
∑

k=0

Z(k) +

t+τ̊−1
∑

k=t

Z(k) ≤
t−1
∑

k=0

Z(k) +

t+τ̊−1
∑

k=t

Ẑ =

t−1
∑

k=0

Z(k) + Ẑτ̊ . (150)
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Taking expectations in the last two equations and dividing byt completes the proof.
Combining Lemmas V-A.1, V-F.1 produces the following
Corollary 4: For any random variable̊τ taking values inN with E[̊τ ] < ∞ and stochastic processZ(t) such that0 ≤

Z(t) ≤ Ẑ a.s., it holds

lim inf
t→∞

1

t

t−1
∑

k=0

E[Z (̊τ + k)] = lim inf
t→∞

1

t

t−1
∑

k=0

E[Z(k)]. (151)

The following result is the key to proving our intuitive claim
Lemma V-F.2: Let̃τ = inf {t : E(t) = Emax} be the first time the battery hitsEmax under DRABP. It then holdsE[τ̃ ] < ∞.

Proof: We use the well-known identity for discrete random variables

E[τ̃ ] =

∞
∑

j=0

Pr(τ̃ > j), (152)

and examine the joint queuesU(t), D(t) in the interval[0 j]. Since the battery has never overflowed up to timej, it holds

E(j) + D(j) − E(0) − D(0) ≥ δ

j−1
∑

k=0

B(k) ⇒ Emax + D̂ ≥ δ

j−1
∑

k=0

B(k), (153)

so that the following inclusion is true

{τ̃ > j} ⊆

{

Emax + D̂ ≥ δ

j−1
∑

k=0

B(k)

}

. (154)

Taking probabilities in the last inclusion and performing some algebra similar to Appendix V-E yields

Pr (τ̃ > j) ≤ Pr

(

Emax + D̂

jδ
− B̄ ≥

1

j

j−1
∑

k=0

[B(k) − B̄]

)

. (155)

Hence forj > j∗, wherej∗ = 1 + ⌈(Emax + D̂)/(δB̄)⌉, the LHS of the inequality in the second probability becomes
negative so that we can apply Lemma V-E.1 and exploit the monotonicity ofℓ(·) to get

Pr (τ̃ > j) ≤ Pr

(

Emax + D̂

jδ
− B̄ ≥

1

j

j−1
∑

k=0

B(k)

)

≤ exp (−jℓ(a∗)) ∀ j > j∗, (156)

wherea∗ = (Emax + D̂)/(j∗δ)− B̄ < 0. Having provided an exponentially small tail bound, it easily follows from a standard
procedure thatE[τ̃ ] < ∞.

Combining Corollary 4 with Lemma V-F.2 finally proves the original claim.

G. Proof of Lemma 11

The boundedness ofY (c)
n (t) has already been established in the proof of Lemma 10. Also, ifU

(c)
n (t) is finitely bounded for

all n, c, then repeating the procedure of Appendix V-B forDn(t) provides the bound of (94). Hence, it remains to prove the
bound forU (c)

n (t). Although it follows from (87) thatR(c)
n,in(t) = 0 wheneverU (c)

n (t) > ηŶ
(c)
n , the boundedness ofU (c)

n (t)

cannot be proved solely through the argument of Appendix V-B due to the additional term
∑

a µ
(c)
an (S(t), P (t)) of intra-node

incoming traffic. Hence, a new approach is required.
To prove the desired result, we can equivalently prove the following
Lemma V-G.1: For any policy whose application satisfies the conditions of Lemma 10 (clearly, NRABP is such a policy),

there exists a finite sequencea
(c)
1 , a

(c)
2 , . . . , a

(c)
N such that it holds for allt, c

max
I⊆{1,...,N}

|I|=k

∑

i∈I

U
(c)
i (t) ≤ kF̂ (c) + a

(c)
k , (157)

whereF̂ (c) △

= η max1≤n≤N Ŷ
(c)
n and |I| denotes the cardinality ofI.

Note that the maximum is taken over all sets of given cardinality. The above statement, if true, implies that
∑N

i=1 U
(c)
i (t) ≤

NF̂ (c) + a
(c)
N , which in turn implies the desired boundedness. Lemma V-G.1 will be proved by induction, and the following

facts will be used in the process
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Remark 1: Consider any policy that places an explicit upper bound on the exogenously admitted trafficR
(c)
n,in(t) for all

nodesn and commoditiesc (clearly, NRABP is such a policy). Then, there exists a sufficiently largeC̊ such that, under this
policy, it holds for all setsI ⊆ {1, . . . , N}

∑

i∈I

U
(c)
i (t + 1) ≤

∑

i∈I

U
(c)
i (t) + C̊ ∀ c ∈ K, (158)

whereK is the commodity set.
Remark 2: Consider any index setI ⊆ {1, . . . , N}. This set can be uniquely partitioned asI =

⊎l
j=1 Ij where

I1
△

=

{

∅ if 1 6∈ I,
{1, 2, . . . , ie1} if {1, 2, . . . , ie1} ⊆ I ∧ ie1 + 1 6∈ I,

(159)

and the remaining sets are defined recursively through

Ij
△

=
{

ifj
, ifj

+ 1, . . . , iej

}

(160)

whereiej
and ifj

are uniquely defined by the following conditions

• fj ≥ ej−1 + 2 (if I1 = ∅, we definee1 = 0).
•
{

iej−1 + 1, . . . , ifj
− 1
}

⊆ Ic, wherec denotes set complement.

Furthermore, for such a decomposition we can define the set

G
△

=

{

∅ if l = 1,
{ie1 + 1, . . . , if2 − 1} otherwise,

(161)

Remark 1 is true due to the fact that link rates are finitely bounded,15 while Remark 2 is a notational description of the
obvious fact that any index set can be uniquely decomposed into non-overlapping blocks of consecutive indices starting from
low numbered indices, as shown in Fig. 15 (black nodes belong toI while white ones don’t; two different examples are given
depending on whether1 ∈ I). The setG is essentially the set of indices located between the first and second blocks.

I1

I2

I2

I3

I3

I4

I4

G

G

Fig. 15. Schematic decomposition ofI into Ij . In the second case, it holdsI1 = ∅.

The following result will also be used
Lemma V-G.2: Let a non-increasing finite sequencex1 ≥ x2 ≥ . . . ≥ xN such that it holds

∑n
i=1 xi ≤ nĤ + an for all

n = 1, . . . , N . For consistency, definea0 = 0. Then, for any index subsetI ⊆ {1, . . . , N} consisting ofk elements it holds
∑

i∈I

xi ≤ kĤ +
n2 − k

n2 − n1
an1 +

k − n1

n2 − n1
an2 , (162)

wherek = |I|, n1 = |I1|, m = |G|, n2 = m+ k andI1, G are defined in Remark 2. The above inequality is meaningful when
n2 > n1.

Proof: We explicitly use the notation of Remark 2 and distinguish cases as follows

• 1 6∈ I. Then, by definition it holdsI1 = ∅, n1 = 0 and the desired inequality becomes
∑

i∈I

xi

?
≤ kĤ +

m

m + k
a0 +

k

m + k
am+k ⇔

∑

i∈I

xi

?
≤ kĤ +

k

m + k
am+k. (163)

15in fact, it is easy to show that (158) is true for anẙC ≥ maxI⊆{1,...,N} maxc

P

i∈I

“

Â
(c)
i +

P

a ĉai

”

.
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If l = 1 so thatm = 0, we have to prove
∑

i∈I xi ≤ kĤ +ak, which is true by assumption. Forl > 1, sinceI1 = ∅ and
xn is a non-increasing sequence, the arithmetic means of non-overlapping index sets satisfies a similar inequality, i. e.

1

m

∑

i∈G

xi ≥
1

k

∑

i∈I

xi ⇒
∑

i∈G

xi ≥
m

k

∑

i∈I

xi. (164)

The monotonicity ofxi also implies

∑

i∈G

xi +
∑

i∈I

xi ≤
m+k
∑

i=1

xi ≤ (m + k)Ĥ + am+k, (165)

where the second inequality holds by assumption. Combining the last two equations yields
(m

k
+ 1
)

∑

i∈I

xi ≤ (m + k)Ĥ + am+k ⇒
∑

i∈I

xi ≤ kĤ +
k

m + k
am+k, (166)

so that (162) is proved.
• 1 ∈ I, so thatI1 6= ∅. The casel = 1 is immediately eliminated since it impliesm = 0 andn2 = n1 = k. Hence, we

assumel > 1 so that the arithmetic means inequality is still applicable

1

m

∑

i∈G

xi ≥
1

k − n1

∑

i∈I2⊎...⊎Il

xi ⇒
∑

i∈G

xi ≥
m

k − n1

∑

i∈I2⊎...⊎Il

xi, (167)

and since it holds
∑

i∈I

xi +
∑

i∈G

xi ≤ (m + k)Ĥ + am+k, (168)

combining the last two equations yields

∑

i∈I

xi +
m

k − n1

∑

i∈I2⊎...⊎Il

xi ≤ (m + k)Ĥ + am+k ⇔
∑

i∈I

xi +
m

k − n1

(

∑

i∈I

xi −
∑

i∈I1

xi

)

≤ (m + k)Ĥ + am+k

⇔

(

1 +
m

k − n1

)

∑

i∈I

xi ≤ (m + k)Ĥ +
m

k − n1

∑

i∈I1

xi + am+k.

(169)

Using the fact that
∑

i∈I1
xi ≤ n1Ĥ + an1 and performing simple algebra in the last equation results in (162).

We are now in position to prove Lemma V-G.1 inductively, so that we are essentially looking for a sequencea
(c)
1 , . . . , a

(c)
N

that satisfies (157). Clearly, the proof is essentially complete if we find such a sequence for a specificc. Hence, in the remainder
of the proof, we drop thec dependence on all quantities (i. e. we writeUi(t), ak etc. instead ofU (c)

i (t), a
(c)
k ). Eq. (157) is

trivially true for t = 0, since all queues are initially empty, provided thata
(c)
k ≥ 0. We assume that (157) holds fort and we

examine what happens att + 1.
Pick any setI ⊆ {1, . . . , N} and decompose it asI = Î ∪Ĩ, whereÎ = {i ∈ I : Ui(t) > F̂} andĨ = {i ∈ I : Ui(t) ≤ F̂}.

We also assume, w. l. o. g, thatU1(t) ≥ U2(t) ≥ . . . ≥ UN (t) and distinguish cases:

• it holds Ĩ 6= ∅. Using Remark 1, the definition of̃I and the inductive hypothesis on̂S yields
∑

i∈I

U
(c)
i (t + 1) ≤

∑

i∈I

U
(c)
i (t) + C̊ =

∑

i∈Î

U
(c)
i (t) +

∑

i∈Ĩ

U
(c)
i (t) + C̊

≤ |Î|F̂ (c) + a|Î| + |Ĩ|F̂ (c) + C̊ ≤ |I|F̂ (c) + a|Î| + C̊
?
≤ |I|F̂ (c) + a|I|.

(170)

SinceĨ 6= ∅, the hypothesis is true fort + 1 provided it holdsak+1 ≥ ak + C̊ for all k = 1, . . . , N − 1.
• it holds Ĩ = ∅ and the decomposition of̂I according to Remark 2 consists of a single block (i. e.l = 1 andI = Î =

Î1). Since Î1 contains consecutive indices, it contains thek = n1 largest backlog indices. Additionally, the policy, by
construction, allows bit transfers only from higher backlog nodes to lower backlog. Hence any incoming traffic to a node
of Î must originate from another node in̂I, which implies

∑

i∈I

Ui(t + 1) =
∑

i∈Î

Ui(t + 1) ≤
∑

i∈Î

Ui(t) ≤ |Î|F̂ + a|Î| = |I|F̂ + a|I|, (171)

where the last inequality holds due to the inductive hypothesis fort.
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• it holdsĨ = ∅ and the decomposition of̂I consists of two blocks or more (i. e.l ≥ 2). Using Remark 1 and Lemma V-G.2
yields

∑

i∈I

Ui(t + 1) ≤
∑

i∈Î

Ui(t) + C̊ ≤ kF̂ +
n2 − k

n2 − n1
an1 +

k − n1

n2 − n1
an2 + C̊

?
≤ kF̂ + ak, (172)

wherek = |Î| andn1, n2 are defined in Remark 2. Hence, the inductive hypothesis is true fort + 1 if it holds

ak ≥ max
n1,n2

0≤n1<k<n2≤N

[

n2 − k

n2 − n1
an1 +

k − n1

n2 − n1
an2

]

+ C̊. (173)

Gathering the previous conditions, Lemma V-G.1 is proved if there exists a sequencea1, . . . , aN that satisfies the following
conditions

ak ≥ 0 ∀ k = 0, . . . , N,

ak+1 ≥ ak + C̊ ∀ k = 0, . . . , N − 1,

ak ≥ max
n1,n2

0≤n1<k<n2≤N

[

n2 − k

n2 − n1
an1 +

k − n1

n2 − n1
an2

]

+ C̊ ∀ k = 1, . . . , N − 1,

(174)

where we definea0 = 0. Since the coefficients ofan1 , an2 form a convex combination, a sequence satisfying (174) can be
easily constructed as follows. Pick any strictly increasing and strictly concave sequenceb0, . . . , bN with b0 = 0 so that it
holds16

bk > max
n1,n2

0≤n1<k<n2≤N

[

n2 − k

n2 − n1
an1 +

k − n1

n2 − n1
an2

]

, (175)

and define

c1
△

= min
0≤k≤N−1

[bk+1 − bk] ,

c2
△

= min
1≤k≤N−1



bk − max
n1,n2

0≤n1<k<n2≤N

[

n2 − k

n2 − n1
bn1 +

k − n1

n2 − n1
bn2

]



 ,
(176)

The strict monotonicity and concavity imply thatc1, c2 > 0. It now follows, after some simple algebra, that the sequence

ak = bk

C̊

min(c1, c2)
, (177)

satisfies (174), so that the hypothesis is true fort + 1 and the induction is complete.

H. Total Hidden AreaS

We first compute the total hidden areaS for transmission from stationO2 to stationO1, as illustrated by Fig. 16. The
distance between stationO2 andO1 is d. The CS Range and TXRange areR and r respectively. In Fig. 16, the grey area
SABD is the hidden area that we will compute.

From cosine theorem, we getθ andϕ:

θ = arccos[(r2 + d2 − R2)/(2rd)] (178)

ϕ = arccos[(d2 + R2 − r2)/(2dR)] (179)

Then we easily get the following areas

SAO1B = r2(π − θ)/2 (180)

SAO1O2 = dr sin θ/2 (181)

SAO2C = R2ϕ/2 (182)

SinceSABD = 2(SAO1B + SAO1O2 − SAO2C), we have

SABD =

{

r2(π − θ) + dr sin θ − R2ϕ if r > R − d
0 otherwise

(183)

After the normalization procedure described later in this section, the relationship is plotted in Fig. 4. WhenR = r, the equation
is reduced to the one established in [41] and [39].

16an example of such a sequence isbk = 1 − e−k .
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Fig. 16. Illustration of hidden area. The shaded region is thehidden area.

I. Hidden AreaH(i, j) and Covered AreaE(i, j)

As shown in Fig. 6,H(i, j) andE(i, j) are the observed hidden and covered area in annulusA(j) by a source station in
annulusA(i), respectively. WhenM is large, the distanced from a source station in annulusA(i) to the AP approximates the
distance from the middle of annulusA(i) to the AP:

d = r(i − 1/2)/M (184)

In Fig. 6, the hidden areaH(i, j) can be considered as the difference between total hidden areaS(i, j) and S(i, j − 1),
whereS(i, j) is the total hidden area observed by a node in annulusA(i) when the TX Range of the AP isrj/M (i.e., the
AP covers as far as annulusA(j)).17 In (183), by replacing TXRanger with rj/M and inserting the distanced from (184),
we get

S(i, j) =







r2

M2 [j2(π − θ) + j(i − 1
2 ) sin θ] − R2ϕ

j = M − i + 1, . . . , M
0 otherwise

(185)

Then we get the desired the hidden area
H(i, j) = S(i, j) − S(i, j − 1) (186)

Now let us discuss the covered areaE(i, j). Each annulusA(j) is composed ofE(i, j) andH(i, j). SoE(i, j) is:

E(i, j) = A(j) − H(i, j) (187)

whereH(i, j) is expressed in (186) and the areaA(j) is

A(j) = πr2[j2 − (j − 1)2]/M2 (188)

For ease of mathematical manipulation, we normalize the above obtained areas with respect to the transmission area of a
node, which isπr2.

J. Derivation of Eq. 107

We consider a station located in annulusA(i) (Fig. 5) of a saturated network withN nodes. Definen ∈ (0, m) as the
backoff stage. The maximum backoff window size at stagen is Wn = 2nW . Let k be the stochastic process representing the
reading of the backoff counter for a given station. Then we get a discrete two-dimensional Markov chain (n, k) (Fig. 17) to
model the 802.11 DCF. It is the same as that in [29].

As in [29], the collision probabilityPc(i) is assumed to be independent of the staten of the station. From Fig. 17 we obtain
the transition probabilities of the Markov chain:







































P{n, k|n, k + 1} = 1, k ∈ (0, Wn − 2),
n ∈ (0, m);

P{0, k|n, 0} = (1 − Pc(i))/W0, k ∈ (0, W0 − 1),
n ∈ (0, m);

P{n, k|n− 1, 0} = Pc(i)/Wn, k ∈ (0, Wn − 1),
n ∈ (1, m);

P{m, k|m, 0} = Pc(i)/Wm, k ∈ (0, Wm − 1).

17This is only for the convenience of mathematical manipulation. The transmission ranges for all stations (including AP) arer, as stated before.
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Fig. 17. The 2D Markov chain to model 802.11 DCF.

Denotebn,k as the probability of state (n,k) in steady state. From the above transition probabilities, we get the following
relations: 









bn,0 = Pc(i)
nb0,0, n ∈ (0, m − 1);

bm,0 = Pc(i)m

1−Pc(i)
b0,0,

bn,k = Wn−k
Wn

bn,0, k ∈ (0, Wn − 1).

With these three relations, each state probabilitybn,k can be expressed withb0,0. Substitutebn,k into the normalization condition

m
∑

n=0

Wn−1
∑

k=0

bn,k = 1 (189)

we get the value ofb0,0:

b0,0 =
2[1 − 2Pc(i)][1 − Pc(i)]

[1 − 2Pc(i)](W + 1) + Pc(i)W [1 − (2Pc(i))m]
. (190)

As a transmission occurs only when the backoff counter is zero, the transmission probabilityτ(i) is the summation of the
probabilities for the states withk = 0:

τ(i) =

m
∑

n=0

bn,0 (191)

which leads to Eq. 107.
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VI. L IST OF SYMBOLS, ABBREVIATIONS AND SYNONYMS

Notation Definition

DRABP Downlink Rechargeable Adaptive Back-Pressure policy
NRABP Network Rechargeable Adaptive Back-Pressure policy

△

= equal by denition
S(t) vector of channel states for slott

P (t) transmission power vector for slott selected by the network control policy
Ps set of power vectors whereP (t) must belong when it holdsS(t) = s

K set of commodities
Al(t) amount of exogenously generated bits during slott intended for userl

A
(c)
n (t) amount of commodityc bits exogenously generated at noden during slott

Vl(t), Ul(t) amount of bits stored at timet in the transport/network layer, respectively, queue of userl

V c
n (t), Uc

n(t) amount of commodityc bits stored at timet in the transport/network layer, respectively, queue of noden

En(t) battery level of noden at time t (in a downlink scenario, we just writeE(t))
Bn(t) amount of replenished energy during slott due to battery recharge at noden (in a downlink scenario, we just writeB(t))

Rl,in(t) number of bits (intended for userl) admitted into the network layer at slott

R
(c)
n,in(t) number of commodityc bits admitted into the network layer at noden and slott

x̄ time average of quantityx (depending on context, may also denote expected value)
x̂ deterministic upper bound imposed on quantityx

Rl(t) number of bits actually transmitted on linkl during slot t
r̄l(t) time average ofRl(0) . . . Rl(t − 1)

r̄
(c)
n (t) time average ofR(c)

n (0) . . . R
(c)
n (t − 1)

E [x] expectation of quantityx
Yl(t) amount of bits stored at timet in virtual bit queue of userl (downlink scenario only)
Dn(t) amount of bits stored at timet in virtual power queue of noden (in a downlink scenario, we just writeD(t))

Y
(c)
n (t) amount of commodityc bits stored at timet in virtual bit queue of noden

TX Range Transmission Range
CS Range Carrier Sensing Range
IF Range Interference Range

α duration of a successful transmission
β duration of a collision period
δ duration of a backoff time slot
W initial backoff eindow size
Pc collision probability
τ transmission probability

A(i) annulusi
tRTS RTS transmission time
Ps(i) conditional success probability given that a node in annulusA(i) initiates a transmission
Pc(i) conditional collision probability given that a node in annulus A(i) initiates a transmission
Pidle probability that all stations are idle at a time slot
N(i) expected number of stations located at annulusA(i)

Psuccess probability that is a successful transmission in a time slot
Pcollision probability that is a collision in time slot

S expected aggregate throughput for all network
T mean duration of a time slot

S(i) per node throughput in annulus A(i)
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