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ABSTRACT 

Every month the U.S. Army G1 uses an Enlisted Specialty (ES) 

model consisting of a simulation and an optimization to 

forecast the Army’s enlisted manpower program by Military 

Occupational Specialty and grade.  The model is responsible 

for operating a 30.64 billion dollar manpower program that 

currently manages 460,000 enlisted Soldiers.  The research 

in this thesis studies the objective function coefficients 

associated with decision variables in the ES optimization 

model.  Experimental design and analysis techniques were 

used to study how changes in the coefficients affect the 

assignment of current enlisted soldiers to vacant positions 

in the Army.  Results of the thesis show that by adjusting 

eight of the coefficients in the optimization model, the 

deviation between authorizations and inventory can be 

reduced by 14%. This improves the U.S. Army’s force 

structure alignment and ensures the Army is ready to fight 

the nation’s wars.   
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EXECUTIVE SUMMARY 

The U.S. Army G1 is responsible for developing, managing, 

and executing all manpower and personnel plans, programs, 

and policies for the Army.  In order to accomplish a portion 

of this task, the G1 uses a very large, complex mathematical 

model known as the Enlisted Specialty (ES) model.  The total 

annual Army manpower budget is 46 billion dollars and the 

enlisted Soldier annual budget is 30.64 billion dollars. The 

ES model is a vital piece in managing the enlisted Soldiers.     

The ES model forecasts the future enlisted force for a 

seven year projection using historical data to determine 

rates and factors for changes.  This projection is 

responsible for 460,000 enlisted Soldiers that are 

segregated into approximately 190 occupational specialties 

and numerous subspecialties, their different ranks, and 

years of service. The model, consisting of a simulation 

component and an optimization component, calculates the 

future force and minimizes the deviation between the 

Soldiers on hand and the authorized positions.  The model 

itself takes into account 859,633 variables and calculates 

projections against 224,473 constraints.   

The thesis work presented here uses design of 

experiments and data analysis to study the optimization 

component of the ES model.  Specifically, the purpose of 

this thesis is to evaluate objective function coefficients 

that place weights on decision variables. The research 

contained in this thesis uses statistical techniques to  
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manipulate thesis weights in an attempt to reduce the 

deviation between the on hand quantity of Soldiers and the 

authorized positions. 

The Enlisted Specialty model was deployed on Naval 

Postgraduate School computers in order to exploit multiple 

processers and advanced statistical methods of analysis.  

Several different types of analytical tools were used to 

provide valuable insight into the ES model. The analysis 

resulted in recommended changes to current practices of 

using the ES model. The suggested changes demonstrated that 

a 14.6% decrease in the deviation could be achieved.     

The research and methodology developed in this thesis 

used September 2009 data to illustrate that lower deviation 

could be achieved through manipulation of the weighting 

coefficients for the decision variables in the optimization 

portion of the ES model. The proposed changes to the 

coefficient values were sent to the Army G1 to be 

implemented on the March 2010 data set.  The suggested 

changes to the coefficients resulted in a reduction of the 

deviation of 18.7%.  This is equivalent to an average drop 

of 8,355 miss aligned Soldiers (equivalent to two combat 

brigades) a month for the seven-year planning horizon.   The 

suggested changes resulting from this thesis illustrated 

that a substantial drop in the deviation between 

authorizations and on hand strength can be achieved. Further 

testing continues and the proposed changes to the model are 

still under review at the Army G1 to examine the overall 

feasibility in making the changes set forth. 
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I. INTRODUCTION  

A. OVERVIEW 

Title 10, United States Code (USC), provides the 

authority for personnel strengths for each of the armed 

services (2010).  The Army G1 is responsible for developing, 

managing and executing all manpower and personnel plans, 

programs and policies—all Army Components—for the entire 

Army team (G1 Mission Statement, 2010).  As of March 2010, 

there were approximately 559,783 Army Soldiers on active 

duty, of which, roughly 460,000 were enlisted (Defense 

Manpower Data Center, 2010). The enlisted population is 

extremely diverse in terms of their Military Occupational 

Specialty (MOS) and the amount of training each of those 

jobs require.  Of the approximate 190 MOSs available for 

enlisted Soldiers the training for these occupations ranges 

anywhere from 13 weeks to 60 weeks (“Enlisted Jobs”, 2010).  

The Army is allocated a budget of 30.64 billion dollars 

annually to support the enlisted force.  In order to 

maintain this enlisted force, a very large and complex 

simulation and optimization program is used by the Army G1 

to forecast the planning and allocation of MOS by grade over 

a seven-year planning horizon.  

B. BACKGROUND 

Army analysts working at the Deputy Chief of Staff, G1 

(Personnel) are responsible for effectively managing the 

Army. This is accomplished with the aid of multiple 

mathematical models on the Army’s personnel projections that 
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are used to ensure the Army has Soldiers with needed 

specialties and seniority (Cashbaugh, Hall, Kwinn, Sriver, & 

Womer, 2007).  The Army G3 (Operations and Plans) and the 

Army G1 work together to create the Personnel Management 

Authorization Document (PMAD) that meets the requirements 

for manning the force (Cashbaugh et al., 2007).  The PMAD 

states the personnel authorizations for all units within the 

Army.  These authorizations ensure the Army conforms to law 

and policy for the next seven years as set forth by 

Congress.   

The PMAD is used to create a distribution plan and 

estimate the cost of the manpower program for the Army.  In 

order to achieve this forecast, the Army uses an integrated 

suite of forecasting models know as the Active Army Strength 

Forecaster (A2SF).  The A2SF consists of three individual 

models that are dependent upon each other to make an 

accurate overall forecast.  The three models are the 

Individual Accounts (IA) model, the Enlisted Grade (EG) 

model, and the Enlisted Specialty (ES) model. Figure 1 

provides a graphical depiction of the A2SF.  
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Figure 1.   A2SF Model Overview 

1. A2SF Description 

The Individual Accounts (IA) model is used to forecasts 

Soldiers that are not permanently assigned to a unit.  These 

are Soldiers that are in transition from one unit to 

another, medical holding, or are in school.  These groups of 

Soldiers are commonly lumped together into what is reported 

as Trainees, Transients, Holdees, and Students (TTHS) in 

Army reports.  The IA is important because the Soldiers 

currently being tracked in this model are not counted 

against the active Army’s end strength (Cashbaugh et al., 

2007).    
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The IA model calculates transitional probabilities for 

Soldiers moving into and out of the IA model for up to 84 

months in 24 sub-categories of individuals based on 

historical data (Cashbaugh et al., 2007).  The results of 

the IA model, specifically the probabilities it generates, 

are then fed into the Enlisted Grade (EG) Model. 

The EG model is used to forecast the total number of 

Soldiers in the Army by pay grade.  This model is combined 

with the Officer Forecast Model (OFM) to produce a forecast 

for strength, accessions, losses, and promotions.  This 

forecast is based on grade, gender, months of service, and 

terms of service of the Soldiers currently being modeled 

(Cashbaugh et al., 2007).  Results from the EG are used for 

creating the Active Army Military Manpower Program (AAMMP) 

and the President’s Budget.  These results become a series 

of constraints for the Enlisted Specialty (ES) model to 

allocate personnel against. 

The ES model is comprised of an optimization and 

simulation that forecast the Army’s enlisted manpower 

program by Military Occupational Specialty (MOS) and grade 

across a seven year planning horizon.  The ES model is used 

to study both force-structure changes and policy 

implications for the United States Army (Cashbaugh et al., 

2007).  A single run of the ES model results in projected 

manpower inventory (by month, skill, and grade).  This data 

is processed and becomes input for the Analyst Projection 

Assistance System (APAS) in Human Resources Command (HRC) to 

be used for personnel distribution planning.   

The APAS planning includes setting promotion rates for 

enlisted Soldiers, influencing the Army Training 
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Requirements and Resources System (ATRRS), and directing the 

accession mission for new and prior service Soldiers 

entering the Army.   

The ES model, the third component in the A2SF suite, is 

the focus of this thesis and is discussed in further detail 

in the next section. 

2. Enlisted Specialty Model 

The ES model is designed to forecast strength, gain, 

losses, promotions, training graduates, reclassifications, 

and conversions for enlisted Soldiers.  The model allows 

further subdividing of certain specialties to incorporate 

more skill identifiers, such as language proficiency.  Since 

the ES model aligns operating strength with authorizations 

at individual MOS and grade level it is more specific in its 

allocation of Soldiers than the EG model.  As noted in 

Chapter I.A.1, the EG model only evaluates, or takes into 

account, Soldiers by their pay grade.   

The ES model simulates the predicted flow of Army 

personnel on a monthly basis using historical data to 

determine input rates and factors for future transactions.  

The personnel inventory is comprised of two components, the 

individual account, which is made up of Soldiers not 

available for operational assignments due to training, 

transitions, holdee status or student status, and the 

operating strength account, which is made up of Soldiers 

available for assignment against an authorization.   

The optimization portion of the model strives to 

minimize the absolute deviation between the operating 

strength portion of the personnel inventory and the 
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authorizations to best meet the force structure requirements 

while satisfying all of the constraints.   

Objective function coefficients set penalties and 

rewards for the optimization.  By adjusting the penalties 

and rewards, the user can focus the optimization on certain 

aspects that the user wants to investigate to see impacts of 

future decisions.  Examples of these rewards and penalties 

include increasing the penalties for branch transfers to 

investigate the effects of limiting Soldiers abilities to 

switch from one MOS to another and how that affects basic 

training requirements to fill a needed MOS.  Additionally, 

rewards to retirement losses can be used to investigate the 

effects of downsizing the senior Non-Commissioned Officer 

ranks.   

The ES model is focused on individual MOSs, and it uses 

the pay grade requirement computed in the EG model as a 

constraint, but it is able to allocate changes to each MOS 

to achieve its various goals (strength, gain, losses, 

promotions, training graduates, reclassifications, and 

conversions) in assigning Soldiers.  When the ES model is 

complete, it aligns the projected forces with the 

authorizations due to the various constraints (training 

seats, promotion rates, force structure changes etc.) as 

closely as possible.  The difference in the projected force 

from the authorizations is referred to as a deviation.   

The deviation between the authorized number of Soldiers 

and what the model is able to allocate becomes a source of 

friction in force management and the Army G1 seeks ways to 

minimize this deviation.  The deviation becomes a bench mark 

to see how well the force structure can be allocated.  If 
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over the seven year planning horizon the model stays closely 

aligned to the Authorizations, then the Operating Strength 

Deviation (OSD) will stay relatively close to zero.  As the 

OSD increases the gap between on-hand Soldiers and 

authorizations is increased, and there is either a shortage 

or excess of Soldiers in certain MOSs. 

3. Enlisted Specialty Model Specifications 

The ES model was originally built to replace the 

Military Occupational Specialty Level System (MOSLS) that 

was developed in the early 1970s by General Research 

Corporation, which is now a part of AT&T Government 

Solutions (Hall, 2004).  MOSLS was an earlier generation of 

the current ES model and had essentially the same mission to 

balance MOSs and grade level requirements with the available 

population of Soldiers.  AT&T Government Solutions developed 

the ES model for the G1 and continues to provide direct 

support to the Army G1 when they are exercising the model.   

A typical model instances consists of approximately 

860,000 variables with 225,000 constraints (Interview with 

J. Vergilio, on December 01, 2009 at AT&T Government 

Solutions, Vienna Virginia). Several iterations of the model 

are run in order to converge to a feasible solution.  The 

optimizer prescribes the promotions, accessions and 

reclassifications rates to minimize the OSD while still 

staying within the constraints (Hall, 2004).  The simulator 

is used to adjust for changes in behavior due to the 

different promotion, accession, and reclassification 

programs. 
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In the first iteration, the simulator estimates the 

number of transactions necessary to meet the Force Structure 

objective.  In order to do this, the simulator models 

Soldiers loss from war-fighting units to training.  It then 

corrects the data base, for any MOSs that are being deleted 

or converted to other MOSs.  The simulator then simulates 

Soldiers that are reclassifying from one MOS to another and 

losses or Soldiers getting out of the Army.  The simulator 

then figures out the percentage of Soldiers being promoted 

from one rank to another, the gains the Army will have in 

the war fighting units from training and from the THS 

program, and then finally ages everyone modeled in the 

simulation to the next month.  This process is depicted in 

Figure 2.  

 

Figure 2.   Simulation Overview 
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The simulator executes each of the steps in Figure 2 in 

a linear order for each projection month of the seven year 

forecast.  The ES program’s simulator predicted transactions 

then become bounds on the optimizer, which is run for 15 

iterations.  The first 12 iterations of the optimizer are 

solved with CPLEX using the barrier quadratic method and the 

last three iterations are solved with mixed integer 

programming using a barrier plus crossover program.  The 

CPLEX barrier quadratic method is designed to solve linear 

and quadratic problems.  The method calculates the feasible 

region of a problem and adds a very large (near infinity) 

penalty term to the calculated solution if that solution 

moves outside the feasible region of the problem.  This 

design ensures that a minimization problem stays within the 

feasible region.  A Mixed-Integer Program (MIP) is the 

minimization (or maximization) of a linear function subject 

to linear constraints where some of the decision variables 

are constrained to have only integer values (CPLEX, 2010).     

The final iteration of the optimizer produces a 

forecast that is an integer value and resolves any final 

discrepancies between the ES and EG projections.  As the 

program is currently configured, it takes approximately four 

hours to determine rates and factors and then 17 hours for 

the model to process through all 15 simulation and 

optimizations iterations using the AT&T Government 

Solutions’ servers and database. 

C. PROBLEM STATEMENT 

The Army manpower program is a 30.64 billion dollar 

annual investment.  Its size, diversity in the skills it 

needs, the cost in terms of dollars, and years to produce 
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skilled Soldiers requires that the manpower program be 

closely managed.  Currently, the ES model is operating and 

generating feasible solutions to the very complex problem it 

receives from its A2SF counterparts.  The question remains, 

can a better solution be found than is being generated now?   

This thesis uses design and analysis of experiments to 

study the ES model in an attempt to answer a fundamental 

question: 

• What are the objective function coefficient values 

that have the greatest effect on lowering the 

absolute deviation between the operating strength 

and the authorizations?   

The answer to this question gains insights that 

generate better solutions for matching personnel to 

authorizations and lower the OSD.  This helps ensure the 

model results indicate the Army has the right number of 

Soldiers with the correct skill sets and rank to manage the 

Army.  

D. THESIS OUTLINE 

Chapter II gives an accounting of the objectives of 

this thesis and why it is important.  This chapter also 

discusses the methodology of Design of Experiments (DOX), 

including the screening experiments and design augmentation 

along with the scope, limitations, and assumptions used in 

this thesis.  Chapter III discusses the inputs, outputs, and 

the design matrices used in the course of experimentation.  

Chapter IV discusses the results of the design matrices used 

and the mathematical formulation to predict the outcome and 

recommended changes to the current coefficient settings.  

Chapter V discusses the conclusions and recommendations for 

future research.   
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II. METHODOLOGY 

A. OBJECTIVES 

This thesis explores the ES model’s coefficients in an 

attempt to study the impact on OSD. This involves 

determining how sensitive results of the model (OSD values) 

are to changes in the objective function coefficients.  The 

primary means to examine the ES model is through design of 

experiments.  The ultimate goal of this research is to see 

how the coefficients in the objective function of the ES 

model can be better manipulated to bring the OSD closer in 

line with the authorizations.   

The information obtained through this research will 

subsequently affect the recommended personnel distribution 

plan for the active Army.  A one percent change in the 

overall efficiency of the program could lead to an annual 

savings of 300 million dollars.  By examining the ES model, 

and bringing the enlisted manpower program closer to its 

authorized levels, there is a potential decrease in the 

excess or shortage amounts of Soldiers in the United States 

Army by MOS and grade.   

B. METHDOLOGY OVERVIEW 

Design of Experiment (DOX) is a systematic way of 

exploring a problem where variations are present.  The 

experiments are designed so an analyst can conduct 

simultaneous examination of multiple factors and explore 

these factors and their relationship to output responses.  

This allows researchers to identify, compare, and contrast 
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current values while minimizing the number of experiments 

that need to be conducted.  Practicing good experimental 

design techniques allows for the most cost-effective (in 

terms of computer processing time, money, etc.) collection 

of data for future analysis.  DOX principles (Montgomery, 

2009) will guide the execution of experiments on the ES 

model and ensure a comprehensive exploration of the problem 

space and efficient use of computer processing resources.  

The DOX will dictate what design factor values are varied 

during multiple experiments, so that the data is capable of 

providing valuable insight into how the coefficient inputs 

can reduce the OSD.   

1. Screening Experiments 

When an experiment is very large with multiple factors, 

it is often appropriate for a screening experiment (or 

characterization experiment) to be conducted (Montgomery, 

2009).  The screening experiments allow researchers to learn 

which of the factors being tested are of importance with 

respect to a response variable of interest. In order to 

accomplish this screening, an experiment is designed that 

allows us to estimate the magnitude and direction of the 

factor effects (such as main effects and two factor 

interactions) in relation to the response variable.  The 

subset of factors that represented the greatest amount of 

information about the response variable can then be further 

analyzed.  By having a fewer number of factors more 

concentrated, experiments can be conducted on only those 

factors that have a substantial impact on the response 

variable in question.  The process of screening is  
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especially important in studying models that take a long 

time to run, such as the case of the ES model, which takes 

21 hours to complete.  

2.  Design Augmentation 

In some situations, it is useful and more economical to 

augment an existing design rather than to perform a 

completely new experiment.  This augmentation is very useful 

when the optimum factor settings for an experiment are 

within the original experimental region.  This is because 

the design can be augmented around the already established 

response surface.  Design augmentation can also be used when 

the initial experiment cannot distinguish between confounded 

or multiple significant effects.  The design augmentation is 

able to break certain confounded strings from an original 

experiment.  Design augmentation can also be used when 

additional experimentation is expensive or too lengthy to 

conduct.  Augmentation allows the reuse of information from 

an initial screening experiment; therefore, time and energy 

does not have to be wasted from the previous experiments 

conducted. 

C. SCOPE, LIMITATIONS, AND MANPOWER DATA ASSUMPTIONS 

1. Scope 

The scope of this project is limited to the examination 

of the model’s objective function coefficient data inputs.  

Specifically, this design of experiment will explore the 52 

coefficients involving grade, non-network constraint, and  
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objective function arc coefficients in the ES model 

objective function.  These coefficients have a variety of 

possible input ranges.   

The 52 objective function coefficients are shown in the 

Appendix (acronym definition provided on page xiii).  

Additionally, their value ranges and current default setting 

are also provided.  The possible minimum and maximum ranges 

for the coefficients is determined from the Graphical User 

Interface.  Experimentation on the range of entries that 

allow the optimization and simulation to converge is limited 

and explained in Chapter III of this thesis. 

2. Limitations 

Given the immense size of the ES program, this thesis 

only looks at the September 2009 data set and objective 

function coefficients of the ES model.  This thesis holds 

the other inputs to the model constant and does not look at 

variations of those inputs.  The internal workings of the ES 

program’s optimization and simulation programming are not 

changed or modified in the course of this study.  

Furthermore, the priority of transactions or a cost-benefit 

analysis of decisions made in terms of OSD are not examined.  

3. Assumptions 

The thesis is based on the assumption that the PMAD the 

G3 created will remain constant for all seven years of the 

forecast.  Additionally, it is assumed that the historical 

data and distributions set forth in the simulation are 

indicative of future events.  
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III. DESIGN OF EXPERIMENTS: MATRIX AND RESULTS 

In this chapter, we discuss the inputs to the model 

along with limitations those inputs have.  The meaning 

behind the output is examined in this chapter along with a 

discussion about the Plackett-Burman experimental design 

matrix. 

A. INPUTS AND OUTPUTS 

1. Inputs 

The allowable entries for each of the coefficients from 

the Graphical User Interface are quite vast in the range of 

numbers that could be entered.  A few initial runs of the ES 

program were designed to test and determine if the program 

was able to converge on an answer when given the extreme 

values.  In all test cases where the extreme values were 

used, the program was unable to converge on an answer.  

Given this, the next step was to determine the range of 

values to test in the model for each factor that would allow 

the program to converge on an answer.  AT&T Government 

Solutions provided some insight into acceptable ranges that 

allow the model to converge.  Specifically, they stated:  

1) If promotion factor coefficients are set to positive 

values, the model may be unstable.  

2) strength factors should not be set to negative 

numbers.   

3) If the MOSS Shred coefficient and/or SL1 constraints 

coefficient are set to zero, the model is unstable.  
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4) Non-zero values for NCO Constraint increase the 

model size.   

5) If MOS Deletions is not set to zero the model has 

great trouble converging to an answer.   

6) Demotion, loss (PML) and percent bound on pool flows 

coefficients are no longer used in the model and 

have no effect on the model.   

Given the input from AT&T, NCO constraint, MOS 

deletions, demotion, loss (PML) and percent bound on pool 

flows coefficient values and not be changed during testing 

in this thesis.  Several additional test runs of extreme 

values for each coefficient were conducted.  At the 

conclusion of those tests it is determined that the range of 

possible input values for most of the coefficients are 

limited to +/- 20% of the possible input range centered 

around the default value.   

Table 1 depicts the minimum and maximum ranges that are 

used in the course of research along with the current 

default values used in the model.  The values in Table 1 

represent the actual number ranges for values entered during 

a single run of the ES model.  During the analysis, these 

number ranges are all converted into coded units [-1, 1] in 

order to standardize all model coefficient values.   
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Grade 
Coefficients

Min 
Range

Max 
Range

Default 
Value

Non-Network 
Constraint 
Coefficients

Min 
Range

Max 
Range

Default 
Value

Promotion 
Factors E3 -200 -1 -120 MOSS Shred Target 0.01 0.32 0.13
Promotion 
Factors E4 -30 -1 -4 NCO Constraint 0 0 0
Promotion 
Factors E5 -30 -1 -4 SL1 Constraint 0.1 0.5 0.3
Promotion 
Factors E6 -30 -1 -4

Promotion 
Factors E7 -30 -1 -4

Objective 
Function Arc 
Coefficients

Min 
Range

Max 
Range

Default 
Value

Promotion 
Factors E8 -30 -1 -4 Conversion -9500 -5500 -7500
Promotion 
Factors E9 -30 -1 -4 MOS Deletion 0 0 0
Reclass 
Factors E3 3000 7000 5000 Demotions -6000 -6000 -6000
Reclass 
Factors E4 1 400 5000 LOSSES (ETS) -9999 -8000 -9999
Reclass 
Factors E5 1 400 200 LOSSES (Other) -9999 -8000 -9999
Reclass 
Factors E6 1 400 200 LOSSES (PML) -50 -50 -50

Reclass 
Factors E7 1 400 200

LOSSES 
(Retirement) -9999 -8000 -9999

Reclass 
Factors E8 1 400 200 LOSSES (Training) -9999 -8000 -9999
Reclass 
Factors E9 1 400 200 Promotion (VBU) -7000 -3000 -5000
Strength 
Factors E3 0 200 0

Percent Bound on 
Pool Flows 100 100 100

Strength 
Factors E4 1 4000 2000

Reclassification 
(Mandatory) -9999 -8000 -9999

Strength 
Factors E5 1000 5000 3000

Reclassification 
(Reenlistee) -9999 -8000 -9999

Strength 
Factors E6 2000 6000 4000

Reclassification 
(Voluntary) 0 100 1

Strength 
Factors E7 3000 7000 5000

Same-Grade 
Reclassifications 0 100 10

Strength 
Factors E8 4000 8000 6000 THS -9100 -5100 -7100
Strength 
Factors E9 5000 9000 7000 BCT Training 0 65 31
Target 
Factors E3 0.01 1 0.1

NPS Without 
Training 1200 5200 3200

Target 
Factors E4 0.01 1 0.1 OSUT Training 0 65 33
Target 
Factors E5 0.01 1 1 PS with Training 0 65 34
Target 
Factors E6 0.01 1 1

PS Without 
Training 1500 5500 3500

Target 
Factors E7 0.01 1 1

Training 
Deletions to 
Pools 0 80 40

Target 
Factors E8 0.01 1 1
Target 
Factors E9 0.01 1 1  

Table 1. 52 Objective Function Coefficients with Experiment 
and Default Values  
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2. Output 

The response variable for this design of experiment is 

the Operating Strength Deviation (OSD) or the sum of the 

absolute deviations between the authorizations and allocated 

number of Soldiers by month for the projected seven years.  

The range for the OSD is zero, indicating perfect alignment 

between authorizations and Soldiers available, to 38 

million, indicating a complete misalignment for the entire 

seven year projection.   

B.  STATISTICAL ANALYSIS SOFTWARE 

When the ES program is completed with its run, it 

produces five output Comma Separated Values (CSV) files.  

These files vary in size but contain all the output 

information from the ES model run.  Programming code for 

Statistical Analysis Software (SAS) was written to combine 

the five CSV files into one complete CSV file.  From this 

one file, the OSD is computed.    

C. PLACKETT-BURMAN EXPERIMENTAL DESIGN MATRIX 

The Plackett-Burman design is a widely used screening 

design for experiments that require a large number of 

factors.  The Plackett-Burman design, developed by Plackett 

and Burman (1946), is a non-regular factorial design with a 

low number of experiments.  A non-regular design is one that 

involves partially confounded factors.  Thus, main effects 

are partially confounded with higher order interactions and 

non-linear terms. However, higher order terms are not 

expected to have large contributions or dominate the 

results.  Additionally, in the screening experiment, the 
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main effects and two factor interactions are of most 

interest.  For examining the ES model a Plackett-Burman 

model is used to determine which of the 52 Objective 

Coefficient Variables will be important in terms of the 

response variable OSD.   

The Plackett-Burman model has a few unique 

characteristics to it.  It can be used when the sample size 

is a multiple of four rather than a power of two as seen in 

other fractional factorial designs (Montgomery, 2009). The 

main effects of the design are orthogonal and two-factor 

interactions are only partially confounded with the main 

effects.  The max correlation between pairs of two-factor 

interactions is +/- 1/3.   

A Plackett-Burman design is created by establishing a 

base design consisting of a Hadamard matrix.  The Hadamard 

matrix is a square matrix with entries that are either -1 or 

+1 (representing the low and high coded coefficient values) 

and has all the rows mutually orthogonal to each other.  

Once that is complete, the columns in the matrix can be 

manipulated so that in the second column the last term 

(either -1 or +1) is moved to the top position and all other 

terms are shifted down one row.  The third column is created 

by taking the last two terms and moving them to the top 

position and shifting all the other terms down two rows and 

so on until you have manipulated all the columns in the 

matrix.  Once this is complete, a row of either -1 or +1 is 

added to ensure there is an equal number of -1’s and +1’s in 

the column to the top of the matrix.  

A portion of a Plackett-Burman screening with 52 

factors in coded units is shown in Table 2.  
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X1 X2 X3 ……. X49 X50 X51 X52 Y
1 -1 -1 -1 -1 -1 -1 -1 .
2 -1 -1 -1 1 1 1 1 .
3 -1 -1 1 -1 1 -1 1 .
4 -1 -1 1 1 -1 1 -1 .
5 -1 -1 1 1 1 1 -1 .
6 -1 -1 1 -1 -1 -1 1 .
7 -1 -1 1 1 1 -1 -1 .

……
49 1 1 1 1 1 1 -1 .
50 1 1 1 -1 -1 -1 1 .
51 1 1 1 -1 -1 -1 1 .
52 1 1 1 1 1 1 -1 .
53 1 1 1 1 -1 -1 -1 .
54 1 1 1 -1 1 1 1 .
55 1 1 1 -1 1 1 -1 .
56 1 1 1 1 -1 -1 1 .  

Table 2. Plackett-Burman Screening Design Matrix 

Coding the units -1, 1 allows the researcher to 

directly compare magnitude and direction of effects on a 

unitless scale. 

The Plackett-Burman design in engineering units for the 

ES model is depicted in Table 3.  
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Promotion 
Factors E3

Promotion 
Factors E4

Promotion 
Factors E5 .....

PS with 
Training

PS Without 
Training

Training 
Deletions 
to Pools

OSD 
Response 
Variable

1 -200 -30 -30 0 1500 0 .
2 -200 -30 -30 65 5500 80 .
3 -200 -30 -1 65 1500 80 .
4 -200 -30 -1 0 5500 0 .
5 -200 -30 -1 65 5500 0 .
6 -200 -30 -1 0 1500 80 .
7 -200 -30 -1 65 1500 0 .

....
49 -1 -1 -1 65 5500 0 .
50 -1 -1 -1 0 1500 80 .
51 -1 -1 -1 0 1500 80 .
52 -1 -1 -1 65 5500 0 .
53 -1 -1 -1 0 1500 0 .
54 -1 -1 -1 65 5500 80 .
55 -1 -1 -1 65 5500 0 .
56 -1 -1 -1 0 1500 80 .

Average -100 -15 -15 33 3500 40 .  

Table 3. Plackett-Burman Screening Design Matrix with 
Engineering Units  

The initial screening of the 52 coefficients in the 

Plackett-Burman design of experiments requires 56 runs.  

These 56 runs provide insight into what factors are 

important in relation to the OSD and which factors require 

more testing.  Note, that a run is equivalent to a single 

experiment, meaning the ES model is programmed and executed 

with the values prescribed by a single row in the design 

matrix (Table 3). 
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IV. ANALYSIS 

This chapter discusses the results of the ES model 

experimentation.  The prediction equation for determining 

the OSD is highlighted along with recommended changes to the 

objective function coefficients.  

A. ENLISTED SPECIALTY MODEL AUGMENTATION   

In order to conduct testing of the ES model, AT&T 

Government Solutions designed a reduced model for work on 

this thesis.  This reduced model consisted of the September 

2009 data set and pre-calculated the rates and factors for 

the previous four years.  With this model, the Simulation 

Experiments & Efficient Design (SEED) Center at the Naval 

Postgraduate School were able to deploy the model on their 

cluster of computers.  With use of the cluster of computers, 

the reduced model was able to run five separate design 

points every 8-10 hours.  Without this reduced model and the 

SEED center, work on this thesis would have been limited to 

one design point calculated every 21 hours.  

B. SCREEING DESIGN RESULTS   

1. Testing Standard Deviation 

Standard deviation is a measurement of the variability 

or the variation from the mean in an experiment.  A low 

standard deviation means the data tends to be very close to 

the mean.  The ES program uses a six digit random number 

generator that changes the value of the random seed in both 

the simulator and optimizer and creates variability in the 



 24

program.  Sixteen experiments were conducted using the 

default coefficient settings to test the standard deviation 

of the model.   Figure 3 depicts a cumulative graph of the 

empirical standard deviation from the 16 experiments 

conducted and shows that the standard deviation converges to 

a value of 6,000.  
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Figure 3.   Standard Deviation of Random Seed Values 

In the experiments, the standard deviation was 

calculated to be 5,666.  When compared to an OSD average of 

approximately 3.3 million, the standard deviation caused by 

the random number accounts for less than 0.18% variation in 

the model’s overall OSD. This low-standard deviation 

indicates that the deviation caused by the random number 

generator is very close to the mean.  

2. Screening Experiment Results from Plackett-Burman 

The results from the Plackett-Burman screening 

experiments had a wide range of OSD outcomes.  For 
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calculating a baseline to compare these results, the default 

coefficient values were used.  When the default values are 

entered and the program is executed, the OSD is 3,306,497.  

In the 56 Plackett-Burman experiments, the minimum OSD 

achieved was 2,834,534 and the maximum OSD was 4,859,177.  

Normalizing each experiment in relation to the default OSD 

makes the results easier to understand.  The percentage of 

change from each experiment is shown in Figure 4.  As 

illustrated, there is quite a difference in the percentage 

of change from one experiment to another with six 

experiments resulting in a lower OSD than using the default 

coefficient values.   
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Figure 4.   Plackett-Burman OSD Percentage Results 

The results of these experiments were examined using 

JMP® software (JMP®, 2010). Stepwise linear regression was 

used to find statistically important factors to predict the 

OSD.  All 52 coefficient main effects and all possible two 

factor combinations (also known as two factor interactions  
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or 2FI) were added as potential effects.  This results in 

1,431 terms that were analyzed to look for statistical 

significance.  

Note, that this is far more terms than design points 

initially.  The Plackett Burman design is irregular, which 

means correlations are present in the terms and significant 

terms must be deconfounded in the additional runs of the 

model.  The irregular design allows the use of stepwise 

regression for this large amount of terms.  

The theory behind mixed forward and backwards stepwise 

linear regression is to start with no variables in a model 

and try out the variables one by one and including them, if 

they have statistically significant importance.  After a new 

variable is added to the model, a test is made to check if 

some of the variables already added can be deleted without 

dramatically increasing the residual sum of squares.  This 

continues until all the possible variables are analyzed.   

Once the stepwise regression results were completed, 

least squares regression was used to build a model to 

predict the OSD outcome.  The least squared regression 

models developed in this thesis always had far fewer terms 

than design points.    

Least squares regression is designed to build a 

mathematical model that fits a line using the factors 

determined to be of importance (through stepwise linear 

regression).  The equation for the line is designed to come 

as close as possible to the observed points in the data.  

The closer the line comes to the observed points; the lower 

the sum of the square errors is between points and the 

better the model.   
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In order to measure how accurate a least squares 

regression prediction is to observed data, R2 and adjusted 

R2 are used.  R2 is the proportion of variability in a data 

set that is accounted for by the statistical model.  The 

values of R2 can vary from 0 to 1, with higher values being 

more desirable.  The problem with R2 is that the number can 

be artificially inflated by adding more terms to the 

equation.  Adjusted R2, which adjusts for the number of 

terms in a model can account for this artificial inflation.  

The adjusted R2 value increases only if the new term 

improves the model by reducing the residual mean square 

[Montgomery, Peck, & Vining, 2006].  The results from the 

screening experiments are presented in Table 4 (Summary of 

Fit) and Table 5 (Significant Factors).  

 

 

Table 4. JMP® Output of Summary of Fit from Plackett-Burman 
Experiments 
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Table 5. JMP® Output of Significant Factors from Plackett-
Burman Experiments 

The “Term” column in Table 5 shows which coefficient 

factors (linear or interaction) from the ES model were 

determined to be of importance for the least squares model.  

The “Estimate” column contains the linear model coefficient 

values.  For example, increasing the SL1 constraint by a 

single unit decreases the OSD by approximately 1,131.  This 

is due to the fact that increasing SL1 constraint means that 

a higher priority is placed on skill level 1 Soldiers.  

Notice that there are a large number of two-factor 

interactions present. By design, these interactions have 

partial confounding with other two factor interactions. 
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Therefore, additional experimentation is necessary to 

estimate these effects and determine whether they are truly 

significant. The next section discusses the additional 

experimental trials.      

C. ADDITIONAL EXPERIMENTS AND MODEL REFINEMENT 

1. D-Optimal Latin Hypercube  

Once the significant factors were determined from the 

Plakett-Burman, a D-Optimal Latin Hypercube design (D-Opt 

LHD) was conducted.  The D-Opt LHD was only used on the top 

nine factors from the previous experiment and holding the 

other 43 coefficients at their default values.   

A D-Opt LHD (Jones, Johnson, & Montgomery, 2010) is a 

space-filling design where the design points are nearly 

orthogonal (or perpendicular) to each other.  The D-Opt LHD 

is a flexible experimental design technique that provides a 

compromise between a D-optimal design and a Latin Hypercube 

design (LHD).  A D-optimal design is one that minimizes the 

joint confidence region around the unknown model 

coefficients. The D-optimal design is only optimal with 

respect to the linear model specified.  The LHD is a space-

filling design that attempts to sample over many portions 

within the design region.  Results from the Plackett-Burman 

presented in the last section guided the specification of 

the a priori model used to generate the D-Opt LHD. The terms 

that were found to be significant were included as terms 

used for optimizing the experimental design.   

In the previous section, it was mentioned that some of 

the significant terms could have partial confounding due to 
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the initial choice of the Plackett-Burman design.  By 

specifying the fitted model in the creation of the D-Opt LHD 

confounding was removed from the significant terms in the 

model, and the resulting design matrix was very nearly 

orthogonal. The maximum correlation between any potentially 

significant factors was below 0.1.   

A D-Opt LHD with 20 experiments was generated and run.  

Once complete, the results of the 20 runs were processed 

through the SAS code and compared to the default coefficient 

OSD listed as experiment 21 on the graph (Figure 5).    
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Figure 5.   D-Optimal Latin Hypercube OSD Percentage 
Results 

Figure 5 illustrates that by manipulating nine 

coefficients and holding the rest at their default values, 

75% of the OSDs fall below the current default OSD.  These 

results are encouraging and show that these nine 

coefficients are important and can be used to reduce the 

overall OSD in future experiments.  The R2 and Adjusted R2 

from the model created based on the combined data from the 
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Plackett-Burman and D-Optimal experiments are shown in Table 

6, and the significant factors are shown in Table 7. 

 

Table 6. JMP® Output of Summary of Fit from D-Optimal 
Experiments 

 

Table 7. JMP® Output of Significant Factors from Plackett-
Burman and D-Optimal Latin Hypercube Experiments 
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Once again, the list of significant factors is 

extensive and further testing is required to see if this 

list of significant terms can be reduced.  The amount of 

terms that are significant at the 0.05 level indicate 

possible over-fitting.  The problem of over-fitting can be 

mitigated by manually controlling the stepwise regression.  

This technique is discussed further in the next section.     

2. Results of Design Augmentation 

The different experiments conducted provide enough data 

points to begin formulating a simpler mathematical model 

that maintains high accuracy and precision for predicting 

the OSD value.      

D. MATHEMATICAL FORMULATION OF PREDICTED ENLISTED 
SPECIALTY OPERATING STRENGTH DIVIATION 

1. Cross Validation 

All of the experiments completed were tested to see 

which coefficients were robust with respect to predictive 

abilities.  The data points were placed into JMP® except for 

10 randomly excluded points.  Stepwise and least squares 

regressions were executed and JMP® selected the coefficients 

and that played a significant role in predicting the OSD.  

Once that was completed, the mathematical equation obtained 

was used against the 10 previously excluded points.  The 

predicted values matched up closely to the actual values 

from the original experiments.   

This process was conducted 10 times with 10 points 

randomly excluded each time with surprising results.  In all 

10 experiments, the predicted values were very close to the 
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actual values and the R2 and adjusted R2 were 0.993 or 

better.  A few of the most influential terms appeared in 

most of the models. However, there were a large number of 

terms with small effects. These terms with small effects 

tended to change from one fit to the next.  In the 10 

experiments conducted, a total of 210 different coefficient 

combinations were used.  Among all trials, there were a 

total of 156 coefficients that were significant at the 0.05% 

level and yet they only appear in one of the 10 models.  It 

appears the Stepwise regression was adding in too many 

coefficients causing the model to become over-fit and 

important terms were becoming diluted and then excluded when 

they should not have been.  Note that this was not due to 

the main effects correlation structure because the D-optimal 

design removed significant inter-variable dependencies.  

In order to prevent the over fitting problem, only the 

top 10 significant terms were taken from the stepwise 

regression and used in the Least Squares regression.  Taking 

only the top 10 coefficients eliminated the problem of over-

fitting but still resulted in the R2 and adjusted R2 being 

above the 0.90 level.  The predictions from these models 

were plotted against the actual outcome, and the cross 

validated predictions were generally within five percent of 

the original point.   

The benefit from limiting the information used from the 

Stepwise regression was that the coefficients in the model 

were more similar than before.  Whereas before when the 

model was over-fit the coefficients being used seemed 

random, now the models being produced are more closely 

aligned with each other and only a total of 24 different 
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coefficient combinations are used.  Of those 24 coefficient 

combinations used, four coefficients were present in all 10 

of the experiments.  One coefficient appeared in nine of the 

experiments, one coefficient was in seven experiments, and 

four appeared in five experiments with another four 

appearing in only three experiments.  Two coefficients 

appeared in two experiments and eight coefficients only 

appeared in one of the experiments.  This is significantly 

better than before where similarities between models were 

few and far between.  Figure 6 shows the coefficients that 

appeared in the 10 experiments and their frequency rate. 
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Figure 6.   Common Coefficients in 10 Experiments 

2. Formulation 

Using all design points from the Plakett-Burman and the 

D-Opt LHD stepwise regression was conducted.  The top 10 

factors from Stepwise were then used in least squares 

regression.  The OSD prediction equation was calculated to 

be:  
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OSD = 2965898 + (421044·(Reclass Factors E6)2) + 

(213409·Strength Factors E7·Target Factors E9) - 

(189725·Strength Factors E4) + (193432·Strength 

Factors E9·Target Factors E9) - (117673·Target Factors 

E4) + (133118·SL1 Constraint) + (422804·(Promotion 

Factors E8)2) - (92834·Promotion Factors E5·Reclass 

Factors E9) + (74403·LOSSES (Other)·BCT Training) + 

(77190·Promotion Factors E3·OSUT Training) 
 

The predicted OSD values based off the formula above in 

coded (-1 to 1) values were then plotted against the actual 

experiments.  The maximum average deviation between the 

actual value and the predicted value was 3.2%.  Figure 7 

graphically shows the predictions verse the actual 

calculated values for the OSD. 
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Figure 7.   Prediction versus Actual OSD values 
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By taking the first and second derivatives of the 

prediction equation, the coded values that are needed to 

minimize the OSD can be obtained.  These coded values are 

shown in Table 8, along with the corresponding actual units. 

Strength Factors E4 = 1 4000
Target Factors E4 = 1 1
SL1 Constraint = ‐1 0.1
Reclass Factors E6 = 0 200
Promotion Factors E8 = 0 ‐15

Reclass Factors E9 = 1 ‐1 400 1
Promotion Factors E5 = 1 ‐1 ‐1 ‐30

LOSSES (Other) = ‐1 1 ‐9999 ‐8000
BCT Training = 1 ‐1 65 0

Promotion Factors E3 = ‐1 1 ‐200 ‐1
OSUT Training = 1 ‐1 65 0

Strength Factors E7 = ‐1 1 3000 7000
Strength Factors E9 = ‐1 1 5000 9000
Target Factors E9 = 1 ‐1 0.01 ‐1

Actual UnitsCoded Units

or

or

or

or or

or

or

or

 

Table 8. Prediction Model First and Second Derivatives 
Results  

Using the OSD prediction formula with the specific 

values listed in Table 8 had mixed results. The model is 

able to accurately predict points that fall within the 

cluster of data but when attempting to calculate a point far 

removed from the cluster the prediction equation cannot 

extrapolate an accurate answer.  This is the result of 

hidden extrapolation.  Coefficient values that result in the 

lowest OSD are discussed in the next section. 
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E. COEFFICIENTS THAT MINIMIZE THE ABSOLUTE DEVIATION IN 
OSD 

1. Key Coefficients 

In the course of experimentation, there were 13 

experiments that resulted in the OSD being at least 10% 

below the default value of 3,306,497.  Of the 13 

experiments, 12 share similar values for the coefficients.  

Given the similarities of these 12 experiments, the 

coefficient values were averaged and the standard deviation 

for each coefficient was calculated (results shown in Table 

9).  
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Untested Coefficients Tested Min/Max Values Defaults Value Average Standard Deviation
NCO Constraint 0/0 0 0 0
MOS Deletion 0/0 0 0 0
Demotions ‐6000 / ‐6000 ‐6000 ‐6000 0
LOSSES (PML) ‐50/‐50 ‐50 ‐50 0
Percent Bound on Pool Flows 100/100 100 100 0

Coefficients Requiring No Change Tested Min/Max Values Defaults Value Average Standard Deviation
Promotion Factors E3 ‐30/‐1 ‐120 ‐132 31.90
Promotion Factors E4 ‐30/‐1 ‐4 ‐5.58 2.35
Promotion Factors E5 ‐30/‐1 ‐4 ‐7.17 7.53
Promotion Factors E6 ‐30/‐1 ‐4 ‐4.42 1.08
Promotion Factors E7 ‐30/‐1 ‐4 ‐4.67 1.61
Promotion Factors E9 ‐30/‐1 ‐4 ‐4.42 1.08
Reclass Factors E3 3000/7000 5000 5083 135.20
Reclass Factors E4 3000/7000 5000 5045 145.76
Reclass Factors E5 1/400 200 196 11.89
Reclass Factors E6 1/400 200 194 13.16
Reclass Factors E7 1/400 200 195 11.98
Reclass Factors E8 1/400 200 211 16.86
Reclass Factors E9 1/400 200 203 85.28
Strength Factors E3 0/200 0 6 12.47
Strength Factors E5 1000/5000 3000 3083 135.20
Strength Factors E6 2000/6000 4000 3917 135.20
Strength Factors E7 3000/7000 5000 4839 1057.65
Strength Factors E8 4000/8000 6000 6223 636.36
Strength Factors E9 5000/9000 7000 6505 756.82
Target Factors E5 .01/1 1 0.97 0.05
Target Factors E6 .01/1 1 0.96 0.08
Target Factors E7 .01/1 1 0.97 0.06
Target Factors E8 .01/1 1 0.97 0.05
MOSS Shred Target .01/.32 0.13 0.13 0.01
Conversion ‐9500/5500 ‐7500 ‐7458 148.93
LOSSES (ETS) ‐9999/‐8000 ‐9999 ‐9864 199.95
LOSSES (Other) ‐9999/8000 ‐9999 ‐9947 112.33
LOSSES (Retirement) ‐9999/8000 ‐9999 ‐9872 188.22
LOSSES (Training) ‐9999/8000 ‐9999 ‐9873 186.72
Promotion (VBU) ‐7000/‐3000 ‐5000 ‐4955 145.76
Reclassification (Mandatory) ‐9999/‐8000 ‐9999 ‐9880 178.27
Reclassification (Reenlistee) ‐9999/‐8000 ‐9999 ‐9858 209.11
Reclassification (Voluntary) 0/100 1 4.25 6.43
Same‐Grade Reclassifications 0/100 10 11.75 3.84
THS ‐9100/‐5100 ‐7100 ‐7017 135.20
NPS Without Training 1200/5200 3200 3294 145.76
PS with Training 0/65 34 32 2.57
PS Without Training 1500/5500 3500 3838 586.69
Training Deletions to Pools 0/80 40 39 2.57

Recommended Coefficients Change Tested Min/Max Values Default Value Average Standard Deviation % Change from Default
Promotion Factors E8 ‐30/‐1 ‐4 ‐15 4.11 ‐273.2
Strength Factors E4 1/4000 2000 2993 622.95 49.7
Target Factors E3 .01/1 0.10 0.16 0.09 59.2
Target Factors E4 .01/1 0.10 0.72 0.19 617.4
Target Factors E9 .01/1 1.00 0.72 0.18 ‐27.9
SL1 Constraint .1/.5 0.30 0.25 0.08 ‐16.9
BCT Training 0/65 31 44 13.65 41.1
OSUT Training 0/65 33 41 15.43 23.3  

Table 9. Coefficient Results 
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Of the 52 coefficients, 39 coefficients had an average 

that was very close to their default and five were never 

changed. There are, however, eight coefficients that have an 

average value that was significantly different from their 

default value.  The standard deviation for these eight 

coefficients is relatively small, and so one last experiment 

was conducted to test these eight coefficients to ensure the 

OSD significantly decreased from the default values.  The 

last experiment using these eight new values was conducted 

and resulted in an OSD of 2,824,303, which is 85.4% of the 

default OSD.        

2. Interpreting the Results 

Understanding the eight coefficients that reduce the 

OSD can shed light on how the simulation and optimization 

programs run in the ES model.   

Promotion Factors E8: Decreasing the default value from 

-4 to -15 increases the reward in the optimization program 

for assigning Soldiers to authorized positions.  It is 

unclear exactly how this increased reward is affecting the 

model and further study could be devoted to this in follow-

on research. 

Strength Factors E4: The Strength Factors coefficients 

are designed to preferentially fill the higher ranks of each 

MOS before the lower ranks. By increasing the penalty from 

2,000 to 2,993, the optimization program has greater 

incentive to allocate Soldiers to the E4 ranks.  

Target Factors E3 and E4: The Target Factors 

Coefficients is designed to help separate the E3 and E4 

ranks from the E5 and above ranks.  Increasing the values of 
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Target Factors E3 and E4 from 0.10 and 0.10 to 0.16 and 

0.72, respectfully, will make filling E3 and E4 ranks a 

higher priority in adjusting to the authorized targets.  By 

the same token, reducing Target Factors E9 from 1.00 to 0.72 

will reduce the priority of filling the E9 ranks and allow 

more flexibility in the optimization to decrease the OSD in 

other areas of the program.  It is possible that the 

increased reward given to Promotion Factor E8 could be 

offsetting this reduction in another portion of the 

simulator and optimizer while still preserving the 

flexibility the reduction gives to Target Factors E3 and E4.  

Once again, more research could be devoted to this area of 

study. 

SL1 Constraint: The Skill Level 1 constraint is used to 

balance the Skill Level 1 strength across grades E3 and E4.  

By lowering the coefficient value from 0.3 to 0.25 the ES 

program is adding more emphasis on the individual grades and 

not trying to combine the two. 

BCT and OSUT Coefficients: The BCT and OSUT 

Coefficients are designed to generate a quadratic penalty 

for deviation from the ATRRS training accession program.  By 

increasing the coefficient values from 31 and 33 to 44 and 

41, respectfully, the penalty for failing to send Soldiers 

to training is increased and the ES program has more 

incentive to train Soldiers.   

The changes to these eight coefficients will cause a 

reduction in the OSD by a significant amount.  The common 

thread between these results is increased flexibility in the 

higher ranks and more focus in filling deviations in lower 
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ranks.  The lower ranks have higher numbers of Soldiers and 

tend to carry much of the OSD value. 

3. Exploratory Expansion of Results 

The design of experiments for this thesis has all been 

directed towards the September 2009 data set, and this 

thesis has proven that by changing the coefficient values a 

lower OSD could have been achieved.  Given this fact, the 

proposed changes to the coefficient values were sent to the 

Army G1, and they were asked to see if these values could be 

used on a different month’s data set.  The Army G1 

implemented these changes on the March 2010 data set and 

compared results to the different settings.  The changes to 

the coefficients resulted in a reduction of the OSD from 

3,761,887 to 3,060,009, which was an 18.7% drop in that 

month’s OSD level.  This is an average drop of 8,355 mis- 

aligned Soldiers (equivalent to two combat brigades) a month 

for the seven year planning horizon.   Although the 

coefficient changes have only been tested on two months 

worth of data (September 2009 and March 2010), in both cases 

there was a substantial drop in the deviation between 

authorizations and strength.  Given that the model deviation 

resulting from the random numbers is small, these values are 

promising.   
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V. CONCLUSIONS AND RECOMMENDATIONS 

Conclusions to this thesis work and recommendations for 

future study are discussed in this chapter. 

A. MANPOWER READINESS DISCUSSION 

The work in this thesis was able to reduce the OSD from 

its current level by 14% for September 2009 and by 18% for 

March 2010 by changing a few of the objective function 

coefficients.  By reducing the OSD, the on-hand quantity of 

Soldiers in the Army is more closely aligned with the 

authorizations and designated force-structure.  This 

improved alignment increases the force manning by decreasing 

the overages and shortages the Army currently has within the 

force by the equivalent of two combat brigades.   

The Army G1 now has different coefficient values they 

can use to potentially lower the OSD during future 

applications of the ES model.  The full extent of the 

changes to the OSD based off the coefficient change will not 

be known until the output from the ES model is sent to    

the Analyst Projection Assistance System (APAS) in HRC.  At 

APAS, they can look at the feasibility of implementation and 

an overall impact study can begin to calculate the full 

extent of what the changes mean in terms of resources, 

budget, and manning for the U.S. Army.   

B. RECOMMENDATIONS FOR FUTURE STUDY  

The coefficients obtained in this thesis were only 

applied to two months worth of data.  Although in both 

cases, there was a significant drop in the OSD.  Further 
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study is required to determine if the overall change is 

universal.  Further research should be directed at looking 

at the first time this model was implemented with the 

original default values.  Is it possible the coefficient 

values should have always been different from what the 

defaults are currently set to, or was there a major event 

such as force structure change or policy change that 

occurred and now change is required?  Understanding those 

questions should lead to policy decisions on annual or 

periodical reviews of the model and additional 

experimentation to be conducted. 

This thesis also looked at a subsection of the user 

inputs to the ES model.  Further investigation on 

prioritizing the quantity of one MOS over another MOS, which 

is possible with the ES model, could be further examined.  

All MOSs in the Army are important, but there are some 

(Infantry, Military Police, etc.) that are more highly 

desirable than others.  An analysis of the tradeoff between 

prioritizing one MOS over another could lead to new and 

insightful aspects to the ES model.   

Another area of potential research is the 

identification of emerging trends.  Can the ES model be used 

to identify emerging trends in data in a timely manner?  If 

the ES model data is able to show trends in data before they 

are currently being detected, the Army G1 and HRC could be 

proactive in heading off potential problems.  The ability to 

stop an area of concern before it expands to a major problem 

in the manpower arena can save the Army millions of dollars 

and improve force readiness.  If you consider the cost of 

training and equipping a Soldier for a specialty that is 



 45

unknowingly going to be over strength in a year, and the 

cost of retraining that same Soldier once the realization is 

made the costs are extraordinary.  In a major manpower 

program where the decisions made have lasting consequence, 

the ability to see trends and requirements early have great 

long term savings.  

It should also be noted that this thesis had a very 

narrow focus on the values the 52 coefficients could take on 

during the course of experimentation.  Future research in 

the area of acceptable inputs (minimum and maximum values) 

should be conducted.  Finding the extreme values that can be 

used as inputs could give greater insight into the ES models 

behavior and lead to a more significant decrease in the OSD.   

Another option for future research is in the model 

development.  It is possible that the ES model has run its 

course and the G1 may need to begin looking at other ways of 

developing a seven year forecast.  This could involve using 

a less complex model or replacing one or more components.   
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APPENDIX.  OBJECTIVE FUNTION COEFFICIENTS 

Grade 
Coefficients Min Range Max Range

Default 
Value

Non-Network 
Constraint 
Coefficients Min Range Max Range

Default 
Value

Promotion 
Factors E3 -9999 9999 -120 MOSS Shred Target 0 1 0.13
Promotion 
Factors E4 -9999 9999 -4 NCO Constraint 0 1 0
Promotion 
Factors E5 -9999 9999 -4 SL1 Constraint 0 1 0.3
Promotion 
Factors E6 -9999 9999 -4

Promotion 
Factors E7 -9999 9999 -4

Objective 
Function Arc 
Coefficients Min Range Max Range

Default 
Value

Promotion 
Factors E8 -9999 9999 -4 Conversion -9999 0 -7500
Promotion 
Factors E9 -9999 9999 -4 MOS Deletion -10 0 0
Reclass 
Factors E3 0 9999 5000 Demotions -9999 0 -6000
Reclass 
Factors E4 0 9999 5000 LOSSES (ETS) -9999 0 -9999
Reclass 
Factors E5 0 9999 200 LOSSES (Other) -9999 0 -9999
Reclass 
Factors E6 0 9999 200 LOSSES (PML) -9999 0 -50
Reclass 
Factors E7 0 9999 200

LOSSES 
(Retirement) -9999 0 -9999

Reclass 
Factors E8 0 9999 200 LOSSES (Training) -9999 0 -9999
Reclass 
Factors E9 0 9999 200 Promotion (VBU) -9999 0 -5000
Strength 
Factors E3 -9999 9999 0

Percent Bound on 
Pool Flows 0 100 100

Strength 
Factors E4 -9999 9999 2000

Reclassification 
(Mandatory) -9999 0 -9999

Strength 
Factors E5 -9999 9999 3000

Reclassification 
(Reenlistee) -9999 0 -9999

Strength 
Factors E6 -9999 9999 4000

Reclassification 
(Voluntary) 0 9999 1

Strength 
Factors E7 -9999 9999 5000

Same-Grade 
Reclassifications 0 9999 10

Strength 
Factors E8 -9999 9999 6000 THS -9999 0 -7100
Strength 
Factors E9 -9999 9999 7000 BCT Training 0 9999 31
Target 
Factors E3 0.01 1 0.1

NPS Without 
Training 0 9999 3200

Target 
Factors E4 0.01 1 0.1 OSUT Training 0 9999 33
Target 
Factors E5 0.01 1 1 PS with Training 0 9999 34
Target 
Factors E6 0.01 1 1

PS Without 
Training 0 9999 3500

Target 
Factors E7 0.01 1 1

Training 
Deletions to 
Pools 0 9999 40

Target 
Factors E8 0.01 1 1
Target 
Factors E9 0.01 1 1   

 

Table 10. Objective Function Coefficients with Minimum, 
Maximum, and Default Values 
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