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ABSTRACT 

Reliability-based design optimization (RBDO) seeks the best design for a structural 

system under uncertainty. Typically, uncertainty arises from random loads such as wind 

pressure and random material properties such as yield stress. A reliable design must 

account for uncertainties to ensure safety.    

Various methods have been proposed to solve the nonlinear optimization models 

that RBDO uses. However, these methods are theoretically and computationally 

troublesome as they involve constraints on failure probability, and failure probability is 

difficult to handle in optimization algorithms. This thesis considers an alternative 

approach to RBDO that uses the “buffered failure probability,” and develops four new 

solution algorithms based on sample-average approximations. Buffered failure 

probability is more conservative than failure probability and it is much easier to handle in 

optimization algorithms.  

We test the algorithms on six engineering-design examples from the literature. 

The examples range from simple systems with two design variables to complicated ones 

with ten. Results show that the new algorithms may reduce solution time by an average 

factor of 560 compared to an existing algorithm. Furthermore, they can handle problem 

instances with two orders of magnitude larger sample sizes, which may be important for 

reasons of accuracy. 
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EXECUTIVE SUMMARY 

Reliability-based design optimization (RBDO) deals with how to best design a 

structural system under uncertainty while considering reliability constraints. Uncertainty 

present in engineering systems typically arises from random loads such as wind pressure 

and random material properties such as buckling stress. A reliable design must account 

for these uncertainties in order to ensure safety.  

Various methods have been proposed to solve the nonlinear optimization models 

that RBDO uses. However, these methods are theoretically and computationally 

troublesome as they involve constraints on failure probability, and failure probability is 

difficult to handle in nonlinear optimization algorithms. The constraints based on failure 

probability may yield difficult-to-solve optimization problems.  

This thesis considers an alternative approach to RBDO that uses “buffered failure 

probability,” and considers five solution algorithms based on sample-average 

approximations. The buffered failure probability approach is more conservative than the 

traditional approach based on the failure probability, meaning that a design that satisfies a 

reliability constraint based on buffered failure probability is guaranteed to satisfy one 

based on failure probability. The buffered failure probability is also much easier to handle 

in nonlinear optimization algorithms.  

The first three algorithms each solve models that incorporate a single sample-

average approximation of the buffered failure probability constraint. Algorithm 1 is a 

well-known method based on a model reformulation and solves a single, large nonlinear 

program. Algorithms 2–5 are new algorithms developed in this thesis. Algorithm 2 is an 

active-set implementation of Algorithm 1. Algorithm 3 uses exponential smoothing of a 

max-function to avoid the large-scale reformulation of Algorithm 1. Algorithm 4 

approximately solves a sequence of sample-average approximations within an adaptive 

sample-adjustment scheme that ensures the sample size is gradually increased to infinity. 

Algorithm 5 is similar to Algorithm 4, but includes an active-set strategy.  



 xvi

We test the algorithms on six engineering-design examples from the literature. 

The examples range from simple systems with two design variables to complicated ones 

with ten design variables. Results from Algorithm 2 show an average speed-up in 

solution time by a factor of 560 over Algorithm 1. Algorithm 3 exhibits a speed-up by a 

factor of 31 over Algorithm 1. Algorithms 2 and 3 can handle problem instances with 

large sample sizes, in fact, one and two orders of magnitude larger than that of Algorithm 

1, respectively. The ability to handle large sample sizes is important, for reasons of 

accuracy. Algorithms 4 and 5 obtain high-quality solutions in minutes without the need 

for a user to specify a sample size, which may be difficult in practice.  

The results in this thesis show that Algorithms 2–5 have significantly improved 

engineers’ ability to relatively quickly generate cost efficient designs that satisfy a failure 

probability constraint. 
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I. INTRODUCTION 

A. PROBLEM STATEMENT 

This thesis considers the reliability-based design-optimization problem (RBDO) 

of minimizing the design cost of a structural system subject to a constraint on its 

reliability and other quantities. We characterize a system’s reliability in terms of the 

probability of failure with respect to one or more performance requirements.  

We approximate this problem by replacing the failure probability constraint with 

a buffered failure probability constraint and develop four algorithms for solving the 

resulting nonlinear program.  

B. MOTIVATION 

Engineers aim to minimize design costs of structural systems such as aircraft 

wings, vehicle frames, ship hulls, bridges, and buildings. The minimization typically is 

subject to one or more constraints on system reliability. The parameters that describe the 

shape and characteristics of the system are referred to as design variables. These variables 

are controlled by the engineer and are manipulated so that the cost of the system is 

minimized and the reliability is sufficiently large. Therefore, the challenge for an 

engineer is to reduce the design cost while satisfying requirements for system 

performance and reliability.  

A system’s reliability accounts for uncertain loads that act on the system, and the 

uncertain capacity of the system to withstand these loads. There are a variety of 

uncertainties that engineers need to consider. A system’s performance depends on the 

type and magnitude of loads and the strength of the system, which is related to properties 

of materials used in the design. The loads and system strength can be described by 

random (uncontrollable) variables. As an example, for a building, wind pressure is an 

uncontrollable load that can be modeled using random variables. The loads may lead the 

system to not being able to meet functional and safety requirements. The result can be  
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loss of serviceability, or a complete destruction of the system. The functional 

requirements are called limit states of the system and, when they are exceeded, we say 

that the system is failed. 

Various methods have been proposed for solving the nonlinear programs arising 

in RBDO. However, these methods are theoretically and computationally troublesome as 

they involve the failure probability, which may be nonsmooth and nonconvex and 

therefore difficult to handle by standard nonlinear programming solvers such as SNOPT 

(Gill, Murray, & Saunders, 1998), LANCELOT (Conn, Gould, & Toint, 1992), and 

NLPQL (Schittkowski, 1985). This thesis explores another approach to RBDO based on 

buffered failure probability. The buffered failure probability approach is more 

conservative than the traditional approach based on the failure probability (Rockafellar & 

Royset, 2010). Thus, a design that satisfies the reliability constraint based on the buffered 

failure probability also satisfies one based on the failure probability. The buffered failure 

probability is computationally easier to handle due to the algorithmic advances of this 

thesis. Rockafellar and Royset (2010) also discuss other potential advantages that 

buffered failure probability has over failure probability in this context.  However, this 

thesis shows that the computational advantages alone are sufficient to warrant a 

preference for the buffered failure probability approach. 

C. SCOPE AND LIMITATIONS 

We represent uncertainties as random variables. In principle, the random variables 

can be either discrete or continuous. However, we only consider continuous random 

variables in this thesis.    

We assume that we know the joint distribution of the random variables and that 

the corresponding cumulative distribution function is strictly increasing.  

A real-life structural system generally is composed of several components. If 

failure of any one of these components constitutes failure for the entire system, then we 

call the structure a series system. In contrast, parallel systems are those that need the 

failure of all the components for a system failure. In this thesis, we focus on series 

systems with, consequently, one failure probability constraint. 
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D. LITERATURE REVIEW 

The classical methods for solving the RBDO perform a double-loop approach: an 

outer optimization loop and an inner reliability assessment loop; see Du and Chen (2004). 

The reliability assessment is performed by two different methods: Reliability Index 

Approach (RIA) (Lee, Yang, & Ruy, 2002) or Performance Measure Approach (PMA) 

(Tu, Choi, & Park, 1999). Both of these methods approximate the failure probability by 

surrogates of unknown accuracy and hence cannot guarantee the convergence to globally, 

locally, or stationary solutions of RBDO problems. A single-loop RBDO approach is 

proposed by Liang, Mourelatos, and Tu (2008). This method utilizes the fact that a 

surrogate for the failure probability can be evaluated by solving a nonlinear program. 

Hence, the RBDO problem with a failure probability constraint can be approximated by 

an optimization model with equilibrium constraint. However, the resulting model may be 

difficult to solve due to nonconvexity, nonsmoothness, and/or lack of a constraint 

qualification. Moreover, as the accuracy of the surrogate for the failure probability is 

unknown, the computed design may be nonoptimal and violate failure probability 

constraints.  We refer to Rockafellar and Royset (2010) and Royset, Der Kiureghian, and 

Polak (2006) for a more comprehensive literature review and difficulties associated with 

current approaches. 
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II. BACKGROUND AND PROBLEM DEFINITION 

A. LIMIT-STATE FUNCTIONS AND FAILURE PROBABILITY 

A system response relative to a functional requirement, viewed as a function of 

the design and random variables, is referred to as a limit-state function and denoted by 

( , )g x V . Here   x = (x1,x2,...,xn ′)  is a vector of design variables (where prime ′ denotes 

the transpose of a vector) and 1 2( , ,..., )mV V V V ′=  is a vector of random variables. The 

joint probability distribution of the random variables is known. We denote realizations of 

V  by .v  For a given    x,    g(x,v)  represents the performance of the system under 

realization v  of V .  An unsatisfactory performance, i.e., “failure,” occurs when 

( , ) 0g x v > . If ( , ) 0g x v ≤  then the system performance is acceptable.   

In complex systems, there may be multiple limit-state functions; for example, see 

Example 5 in the Appendix, taken from Rao (2009, pp. 472–473). We denote these 

functions as gk (x,v) , k ∈K , where {1, 2,..., }.K m=  We also define  

 { }( , ) max ( , ) .kk K
g x v g x v

∈
=  (1) 

We can characterize the reliability of the system by its failure probability defined 

by
              

 [ ]( ) ( , ) 0 .p x Prob g x V= >  (2) 

The following simplified example illustrates a design process based on the failure 

probability. (Note: For clarity, this example uses discrete ,x  but we note that this thesis 

develops solution methods only for continuous .x ) 

Example 1. A TOW missile is a heavy anti-tank missile. One component of the 

missile’s launcher is an optical system. Suppose that two different optical systems, 1 and 

2, are available for incorporation in a final design: setting 1ix =  means system i  is 

selected and 0ix = , otherwise. The decision maker plans to procure and incorporate the 

system with lower failure probability. Systems 1 and 2 have an operational capability 

down to −28 °F and −30 °F, respectively. The procurement cost of system 2 is higher 
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than system 1. The missile will be operated under severe conditions in a certain mission 

area. Let V represent the random temperature in Fahrenheit degrees, which is known to 

be normally distributed with mean −20 °F and standard deviation 3 °F in that area. 

Engineers have characterized the reliability of the system by the following limit-state 

function 

 1 2( , ) 0.9 28 30 ,g x v v x x= − − −  (3) 

where x1 + x2 = 1 and x1, x2 ∈{0,1}. The coefficient 0.9 is a scaling factor and represents 

the impact of the current temperature on the system. If ( , )g x v  is positive for a given 

temperature v , the system fails. We compute that designs 1 and 2 have failure 

probabilities of 41.06 10−×  and 64.406 10−× , respectively. Thus, system 2 will be 

procured. 

For a given design x , the computation of failure probability requires the 

evaluation of a high-dimensional integral.  That is, 

 ( ) 1( ) ... ( , )  ( ) ... ,V mp x I g x v f V dv dv= ∫ ∫  (4) 

where fV (V )  is the joint probability density function for the random vector  ,V  and  

( ) 1I z =  if  0,z >  and ( ) 0I z =  otherwise. 

B. DESIGN OPTIMIZATION OF A SYSTEM SUBJECT TO A FAILURE 
PROBABILITY CONSTRAINT 

Engineers often seek to solve the design-optimization problem (Rockafellar & 

Royset, 2010) 

 

 

                              

:       min  ( )               

             s.t.    ( ) 1

,x

f xx

p x

X

α

∈

≤ −

P

 (5) 

where f (x)  is a deterministic and continuously differentiable cost function for the 

system, X  is a continuous region of allowable designs, and α  is a desired reliability 

level in (0,1]. We also assume that X  is convex. 
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Problem P represents the current approach to RBDO. Typically, P is difficult to 

solve even approximately because the computation of the failure probability in (4) is 

computationally challenging. Furthermore, the integrand in (4) is non-smooth, i.e., is not 

differentiable at every point, and this may cause difficulties during optimization. 

Moreover, p(x)  is generally nonconvex. With lack of convexity, a solution algorithm 

may yield only a locally optimal solution.  

Solving P is also difficult because computation of the failure probability requires 

the evaluation of the high-dimensional integral in (4). For a real-world system, the limit-

state functions are highly complex and involve many different random variables. (See 

Example 6 in the Appendix, taken from Samson, Thoomu, Fadel, & Reneke 2009). 

Consequently, failure reliability can only be estimated: the standard approach uses Monte 

Carlo simulation (MCS) (Melchers, 1999; Choi, Grandhi, & Canfield, 2007). 

MCS is a sampling method that estimates expectation and probability. When 

estimating the probability of failure, MCS computes the following estimate of the 

probability of failure in (4): 

 
1

1ˆ ( ) ( ( , )),
N

j

j
p x I g x v

N =

= ∑  (6) 

where N  is the number of random, sampled, vector realizations v j . The function p̂(x)  is 

an unbiased estimator of p(x)  (Rubinstein & Kroese, 2008). The standard deviation of 

p̂(x)  is inversely proportional to the square root of the sample size N . Hence, the 

accuracy of failure probability estimates is poor for small samples, especially for small 

failure probabilities. Therefore, replacing the failure probability by its estimator in (6) 

computed with a large N  leads to long solution times for sampled approximations to P. 

Furthermore, (6) is not differentiable because of the indicator function, and this may 

cause convergence difficulties for standard nonlinear optimization algorithms. We refer 

to Rockafellar and Royset (2010) for more detailed explanations of difficulties associated 

with ( )p x . 
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C. BUFFERED FAILURE PROBABILITY 

As discussed above, the failure probability has several undesirable properties that 

may cause difficulties for a standard nonlinear optimization algorithm. We now introduce 

an alternative approach to the design-optimization problem using another measure of 

failure, the buffered failure probability (Rockafellar & Royset, 2010). The buffered 

failure probability approach is based on the conditional value-at-risk (Rockafellar & 

Uryasev, 2000; Rockafellar & Uryasev, 2002), which is used in financial engineering to 

compute optimal investment portfolios. We next define the buffered failure probability. 

Suppose we wish to solve P with a failure probability level 1 α− . Instead of 

imposing the constraint ( ) 1 ,p x α≤ −  we introduce ( ) 1p x α≤ −  as an alternative, 

where ( )p x  denotes the buffered failure probability (Rockafellar & Royset, 2010). A 

design that satisfies the buffered failure probability constraint also satisfies the failure 

probability requirements, as we describe later, and the constraint ( ) 1p x α≤ −  is easier 

to handle computationally. The following description follows Rockafellar and Royset 

(2010) closely. 

Let the cumulative distribution function of ( , )g x V  be denoted by 

 ( )( ) ( , ) ,xF Prob g x Vγ γ= ≤  (7) 

which we assume to be continuous and strictly increasing. We next define the -α quantile 

function, or simply -α quantile, which is denoted as qα (x).  For a probability level ,α  

 1( ) ( ).xq x Fα α−=  (8) 

In addition, we define the -α superquantile function, or simply -α superquantile, by  

 [ ]( ) ( , ) | ( , ) ( ) .q x E g x V g x V q xα α= ≥  (9) 

Integration is also useful in finding the superquantile. That is, 

 
11( ) ( ) .

1
q x q x dα β

α

β
α

=
− ∫  (10) 

The superquantile can be interpreted as the value of ( , )g x V  that splits the area under the 

probability density function in the interval [qα (x),∞)  into two balancing parts. That is, it 

represents the average value of the limit-state function, conditioned on ( , )g x V  being no 



 9

less than the -α quantile. The superquantile is identical to the conditional value-at-risk, 

but we follow Rockafellar and Royset (2010) here and use the term superquantile. When 

the superquantile equals zero at a probability level α , then the buffered failure 

probability ( )p x  is equal to 1 .α−  Hence, the buffered failure probability may be 

defined as  

 
0

( ) ( , ) ( ) ,p x Prob g x V q xα⎡ ⎤= ≥⎣ ⎦  (11) 

where 0α  is such as 
0
( ) 0q xα =  (Rockafellar & Royset, 2010).   

Figure 1 illustrates the probability density function for an example limit-state 

function at a fixed ˆ,x x= where 0α  has been identified such that 
0

ˆ( ) 0.q xα =  
0

ˆ( )q xα  splits 

the area under the probability density function to the right of 2−  into two balancing parts. 

Hence, the quantile 
0

ˆ( ) 2q xα = − . We also see in Figure 2, which represents the 

cumulative distribution function for the same limit-state function, that 0α  therefore must 

equal 0.85. Thus, we calculate the buffered failure probability for this example as 

1 0.85,− which is 0.15.  

0
ˆ( ) 2q xα = − 0

ˆ( ) 0q xα =

 

Figure 1.   Example Probability Density Function (pdf) for ˆ( , )g x V  when That 
Function is Normally Distributed 

ˆ( , )g x v
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1
ˆ( ) 0q xα =

0
ˆ( ) 2q xα = −

0 0.85α =
1 0.96α =

 

Figure 2.   Example Cumulative Distribution Function (cdf) for ˆ( , )g x V  when That 
Function is Normally Distributed 

In general, for any α  value and any ,x X∈  ( ) ( )q x q xα α≤  and thus 

( ) ( ).p x p x≤  Hence, the buffered failure probability is a conservative estimate of the 

failure probability. The relationship ( ) ( )p x p x≤  is easily obtained from the following 

argument. Suppose ˆx x=  is fixed, and 0α  is chosen so that  0
ˆ( ) 0.q xα =  Then, by the 

definition of the superquantile, it follows that 
0

ˆ( ) 0.q xα ≤  Since 
0

ˆ( ) 0,q xα = the buffered 

failure probability ˆ( )p x  equals to 01 .α−  It follows from the definition of the failure 

probability that if 
1

ˆ( ) 0q xα =  for some 1,α  then 1ˆ( ) 1 .p x α= −  Since 
0 1

ˆ ˆ( ) ( ),q x q xα α≤  it 

must be true that 0 1.α α≤  Thus, 01 α−  is no smaller than 11 .α−  Since the arguments 

above hold for any x̂ X∈  we have the result that ( ) ( )p x p x≤  for all .x X∈  Figure 2 

illustrates this situation with 1 0.96,α =  0 0.85,α =  
1

ˆ( ) 0,q xα =  and  
0

ˆ( ) 2.q xα = −  

The computation of the buffered failure probability appears cumbersome.  As we 

see below, however, we never directly use this definition in computations and instead use 

alternative expressions easily incorporated in optimization models. 

 

ˆ( , )g x v

ˆ( ( , ))xF g x v
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The buffered failure probability constraint p(x) ≤ 1−α  is satisfied if  

 ( ) 0.q xα ≤  (12)  

Rockafellar and Uryasev (2002) show that for any x X∈  

 
0

0                ( ) min ( , ),
z

q x z xα αφ=  (13) 

where 0z  is an auxiliary design variable and   

 { }0 0 0
1( , ) max 0, ( , ) .

1
z x z E g x V zαφ α

= + −⎡ ⎤⎣ ⎦−
 (14) 

Therefore, a design x X∈  and a value for 0z  that satisfy 

 0( , ) 0z xαφ ≤  (15)  

also satisfy p(x) ≤ 1−α.  

Although p(x)  generally overestimates ( ),p x  the numerical examples that we 

discuss in Chapter IV show that the difference between the two probabilities need not be 

great.  

We can formulate a restriction of P, by replacing the reliability constraint in P 

with (15). Thus, a restriction to P using buffered failure probability takes the form 

 { }

0

0 0

,
:              min  ( )                     

1       s.t.   max 0, ( , ) 0
1

                                                                   .

x z
f x

z E g x V z

x X

α
+ − ≤⎡ ⎤⎣ ⎦−

∈

BP

 (16) 

With BP being a restriction of P, the solution of BP is also feasible in P, but may not be 

optimal in P. However, the constraint (16) is easier to handle than (5) as it is convex 

when each ( , ),  kg x v k K∈  is convex in x  for all v  (Rockafellar & Royset, 2010).   

Moreover, in contrast to the nonsmoothness of the indicator function in (4), the 

nonsmoothnesss in (16) is easily handled (as described in Chapter III). Thus, computation 

of optimal values is easier in BP than in P. We also note that the buffered failure 

probability accounts for the tail of the distribution of ( , )g x V  in a different way than does 

failure probability. We refer to Rockafellar and Royset (2010) for a discussion of why 

this might be an advantage for RBDO. 
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We next illustrate the failure probability and buffered failure probability 

approaches on a stochastic, continuous knapsack problem with random knapsack 

capacity. Let c  and w  be deterministic vectors of per-unit item values and item weights, 

respectively, let α  be a user-defined reliability level, let V  be a random variable 

describing the total capacity of the knapsack in terms of weight, and let x  be a vector of 

decision variables that chooses the amount of each item to placed in the knapsack. We 

assume that V  is normally distributed with mean μ  and standard deviation σ . The 

knapsack problem then takes the form: 

 

 

                                         .

 :           max                        

        s.t.    ( ) 

0

c xx

Prob w x V

x

α

′

′ ≤ ≥

≥

KP

 (17) 

In our notation, this problem instance has only one limit-state function: 

 ( , ) .g x V w x V′= −  (18) 

Since limit-state function values greater than zero represent failure, the following 

equation becomes the reliability constraint: 

 ( 0) 1 ,Prob w x V α′ − > ≤ −  (19) 

where ′w x − V  is normally distributed with mean ′w x − μ  and standard deviation σ . 

The reliability constraint in (19) takes the following form:  

 0 ( )1 1 ,w x V α
σ
′− −⎛ ⎞−Φ ≤ −⎜ ⎟

⎝ ⎠
 (20) 

where ( )Φ ⋅  represents the cumulative distribution function of the standard normal 

distribution. Thus, the problem KP  is equivalent to 

 1

             

                                                   

:   min                         

             s.t.     ( ) 0

  0. 

c xx

w x

x

μ σ α−

′ ′−

′ − + Φ ≤

≥

KP

 (21) 

Next, we consider the buffered failure probability approach. In this case BP takes the 

form  
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:      min                          

                  s.t.     ( ) 0

0.

c xx

q x

x

α

′−

≤

≥

KBP

 (22) 

Since g(x,V )  is normally distributed with mean ′w x − μ  and standard deviation σ , the 

superquantile qα (x)  is easily computed (Truncated Normal Distribution, Wikipedia, n.d.) 

and we obtain 

 ( )( )
( ) ,

1
q x

q x α
α

σ φ
μ

α
= +

−
 (23)

 
 

where ( )φ ⋅  is the standard normal probability density function. Therefore, KBP  takes the 

following equivalent form: 

 ( )1

                                                                 

:                 min                               

 ( )
               s.t.      0

1

0. 

c xx

w x

x

σ φ α
μ

α

−

′ ′−

Φ
′ − + ≤

−

≥

KBP

 (24) 

Thus, for this knapsack problem, the difference between the reliability constraints of the 

failure and buffered failure probabilities corresponds to the difference between (21) and 

(24). Table 1 gives the near-optimal solutions of K ′P  and KB ′P  when V  is normally 

distributed with mean 3.5 and standard deviation 0.1, ′c = (2,1) , ′w = (1.1,2.1) , and 

α = 0.99 . From Table 1 we see that the buffered failure probability approach results in a 

conservative design, with a failure probability that is about 40% lower than required.  

 

Problem x1  x2  c x′−  ( )p x  

K ′P  1.06124  1.00000  ‐3.12248  0.0100 

KB ′P  1.03043  1.00000  ‐3.06087  0.0039 

Table 1.   Comparison of Solutions Using Failure and Buffered Failure Probabilities 
for a Knapsack Problem with 2~ (3.5,0.1 ),V N  (2,1),c′ =   (1.1, 2.1),w′ =  and 

α = 0.99  
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III. ALGORITHMS FOR RBDO BASED ON BUFFERED FAILURE 
PROBABILITY 

This chapter examines five algorithms that exploit the properties of buffered 

failure probability to compute an approximated solution of BP in a relatively short time 

and with high accuracy. Since BP is a restriction of P, each solution also represents an 

approximate solution of P. Algorithm 1 is a well-known method based on the solution of 

a reformulation of BP. Algorithms 2–5 are new algorithms developed in this thesis. 

Algorithm 2 is an active-set strategy implementation of Algorithm 1. Algorithm 3 

implements exponential smoothing of the max-function in (16) and proceeds to solve a 

smoothed problem. Algorithms 1–3 approximate the expectation 0[max{0, ( , ) }]E g x v z−  

in (16) by its sample average for a fixed sample size N , i.e., 

 { }0
1

1 max 0, ( , )
N

j

j
g x v z

N =

−∑  (25) 

with random vector realizations jv , 1, 2,...,j N= . Thus, the reliability constraint in (16) 

takes the following form: 

 { }0 0
1

1 max 0, ( , ) 0.
(1 )

N
j

j
z g x v z

N α =

+ − ≤
− ∑  (26) 

Algorithm 4 implements an adaptive sample-adjustment scheme that ensures the 

sample size is gradually increased to infinity. Iterates generated by Algorithm 4 are 

guaranteed to converge to a stationary point of BP (Royset, 2010b). Algorithm 5 is 

similar to Algorithm 4 but includes an active-set strategy. We next discuss each algorithm 

in turn. 

A. ALGORITHMS WITH FIXED SAMPLE SIZE 

1. Algorithm 1: Reformulation of BP Using Sampling and Auxiliary 
Variables 

The constraint (26) is non-smooth and is therefore not tractable by standard 

nonlinear optimization algorithms. Algorithm 1, an existing algorithm, uses a 
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reformulation to overcome this difficulty. This reformulation was first proposed in 

Rockafellar and Royset (2010). 

We introduce auxiliary variables zj ,   j = 1,...,N , and find that for any j , 

 { }0max 0, ( , )j
jg x v z z− ≤  (27) 

is equivalent to  

 0 jz≤  (28) 

and  

 0( , ) .j
jg x v z z− ≤  (29) 

Hence, we can use (28) and (29) to reformulate the “max” part of the constraint in (26). 

This results in the following transcription:                     

 
0

1

,
:           min ( )

1 s.t.  0
(1 )

N

N

j
j

x z
f x

z z
N α =

+ ≤
− ∑

BP

 (30) 

                                                    0( , ) ,          j
k jg x v z z j J k K− ≤ ∀ ∈ ∀ ∈  (31)

                   

                                                     0,      jz j J≥ ∀ ∈  (32)

   
                                                                                     

,x X∈

        

  

where z = (z0 , z1,..., zN ′)  and {1,2,..., }J N= . For large N , BPN is approximately 

equivalent to BP (Rockafellar & Royset, 2010). However, BPN  necessitates introducing a 

new auxiliary design variable, i.e., zj , for every realization of the random vector: This 

typically results in large-scale problems. Given BPN, our first algorithm takes the 

following simple form: 

Algorithm 1: Apply a standard nonlinear solver to BPN. 

We use the SNOPT (Gill et al. 1998) solver here and below in the following algorithms 

in computational experiments.  
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2. Algorithm 2: External Active-Set Strategy 

BPN becomes a large-scale problem as N  increases. Algorithm 2 aims to 

overcome this difficulty by using an active-set strategy proposed in Chung, Polak, and 

Sastry (2010). 

In this approach, we do not let the standard nonlinear solver consider constraints 

and variables assumed to be “unimportant” at an optimal solution. The following is an 

adaptation of the algorithm proposed in Chung et al. (2010) to BPN. Let y = (x, z )  and 

ε > 0 . Then, we let 

 0( ) ( , ) ,             j j
k k jy g x v z z j J k Kω = − − ∀ ∈ ∀ ∈  (33) 

 

 ,
                  

( ) max ( )     
 

j
kj J k K

y yχ ω
∈ ∈

=  (34) 

 

                  ( ) max{0, ( )}y yχ χ+ =  (35) 
           
 ( ) {( , ) | ( ) ( ) },j

kw y j k J K y yε ω χ ε+= ∈ × ≥ −  (36) 

where wε (y)  represents “active” constraints at y .  In each iteration of this algorithm we 

limit the number of iterations of the solver. Let ( )n
WA y  denote the solution from n  

iterations of the solver, starting from y , applied to the following problem:                  

 
0

,
( ) :           min ( )

1             s.t.  0
(1 )

N

j
j W

x z
W f x

z z
N α ∈

+ ≤
− ∑

BP

 (37)                             

                                                     0( , ) ,     ( , )j
k jg x v z z j k W− ≤ ∈  (38) 

                                                                0,           jz j≥ ∀  (39) 
                                                                                            .x X∈  

We note that for j J∈  such that ( , )j k W∉  for any k K∈ , jz  in ( )N WBP  can be set to 

zero. 

Algorithm 2: 

Data: y0  initial guess for variable values, ε > 0 , 0υ > , and 0n >  an integer. 
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Step 0: Set i = 0  and initial working set Wi = wε (yi ) . 

Step 1: Compute 1 ( )
i

n
W iiy A y+ = . 

Step 2: Compute 1( )iyχ + .  

If 1( ) 0iyχ + ≤  and 1( ) ( )i iy yχ χ υ+ − ≤  

         STOP, 

            else compute 1( ),iw yε +  

                     1 1{ ( )},i i iW W w yε+ += ∪  

                     Replace i  by 1i +  and go to Step 1. 

In Algorithm 2, we hope to reduce the solution time by considering only the 

active constraints in the optimization. 

3. Algorithm 3: Exponential Smoothing of Max-Function 

We next introduce exponential smoothing for BPN. Let L = 0,1,2,...,m{ } and 

  g0(x,v) = 0  for all x  and v . Then, the following equations represent the exponential 

smoothing of the max-function in (26) (Polak, Womersley, & Yin, 2008): 

 0 0( , ) ( , ) ,         j j
k kx z g x v z j J k Lη = − ∀ ∈ ∀ ∈  (40) 

 
 0 0 

( , ) max ( , ),     
k L

j j
kx z x z j Jζ η

∈
= ∀ ∈  (41) 

and 

 0 0

0 0

0

( , ) ( , )1( , ) ( , ) log ,  
j

km
j j
p

k

jp x z x z
x z x z e j J

p

ζη
δ ζ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

=

−⎛ ⎞
⎜ ⎟= + ∀ ∈
⎜ ⎟
⎝ ⎠
∑  (42) 

where 0p >  is a smoothing parameter. Thus, replacing the reliability constraint in (26) 

by (42) we obtain the following approximation to BPN: 
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0

0 0
1

,
:           min  ( )                            

1                ( , ) 0
(1 )

                                                      . 

Np

N
j
p

j

x z
f x

z x z
N

x X

δ
α =

+ ≤
−

∈

∑

BP

 (43) 

If all the limit-state functions are continuously differentiable, which we assume they are 

in this thesis, then δ p
j (x, z0 ),   j ∈ J , are also continuously differentiable.    

We improve the quality of the smoothing approximation as we increase the value 

of p . That is, the error in the constraint due to smoothing vanishes, as p → ∞  (Polak, 

Womersley, & Yin, 2008). Our third algorithm then takes the following form:  

Algorithm 3: Apply a standard nonlinear solver to BPNp. 

B. ALGORITHMS WITH INCREASING SAMPLE SIZE 

We next introduce another approach, which adaptively increases the sample size 

during the optimization process. This approach intends to avoid using unnecessarily large 

sample sizes.  Suppose that  

 { }| ( ) 0,   1, 2,..., ,jX x f x j q= ≤ =  (44) 

where f j (x)  represents nonlinear and non-negativity constraints and 

 0 0 0
1

1( , ) ( , )
(1 )Np

N
j
p

j
x z z x z

N
ς δ

α =
= +

− ∑  (45) 

represents the reliability constraint defined in (43).
 
Moreover, let  

 { }00                                 1, ...,
( , ),    max     ( )( , ) max ,j

NpNp j q
x z f xx z ςψ ==  (46)

 
 { }0 0( , ) max 0, ( , ) ,Np Npx z x zψ ψ+ =  (47) 

and 

0 0,
( , ) min max ( , ) ( ) ,{{Np Nph
x z x z f x h

ξ
θ ψ + ′= − +∇

 

                    
00 0 0 0max ( , ) ( , ) ( , ) ( , ) ,[ Np Np x Np z Npx z x z x z h x zς ψ ς ς ξ+ ′ ′− +∇ +∇          

                           2 2
01,...,

1 1max{ ( ) ( , ) ( ) } + + .
2 2

]} }j j
Npj q

f x x z f x h hψ ξ+=
′− +∇  (48) 
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We note that the calculation of 0( , )Np x zθ  requires the solution of a convex quadratic 

program and can therefore be carried out in finite time (Royset, 2010a). We use these 

terms in the definition of Algorithms 4 and 5 below.   

1. Algorithm 4: Adaptive Sample-Size Algorithm 

Algorithm 4 is similar to one described in Royset (2010a), but includes the use of 

smoothing; see Royset (2010b). Let 0( , )n
NpA x z  denote the solution from n  iterations, 

starting from x  and 0z , of a standard nonlinear solver applied to BPNp.    

Algorithm 4: 

Data: 0N  initial sample size, 0 0p >  initial smoothing parameter, (0.1]s∈  sample-size 

increase factor, x0  initial design vector, ε > 0  error control threshold, (0,1)e∈  decrease 

factor for ε , sample set 1 2( , ,...)v v ′Ω =  generated by independent sampling of ,V  and n  

an integer.  

 Step 0: Set i = 0  and 0 0iz = . 

Step 1: Compute 1 0 1 0( , ) ( , )
i i

n
i i N p i ix z A x z+ + =  

Step 2: Compute 1 0 1( , )
i iN p i ix zθ + +  and 1 0 1( , )

i iN p i ix zψ + +  

  If 1 0 1( , )
i iN p i ix zθ ε+ + ≥ −  and 1 0 1( , )

i iN p i ix zψ ε+ + ≤    

             Set { }4min ,1 10iN sN= ×⎢ ⎥⎣ ⎦% , 

             1i iN N N+ = + % , 

   1 1 /1000i ip N+ += , 

                       and replace ε  by eε . 

             else 

                      1i iN N+ = , 1i ip p+ = . 
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Step 3: Replace i  by 1i +  and go to Step 1. 

2. Algorithm 5: Adaptive Sample Size Algorithm with Active-Set 
Strategy 

Algorithm 5 is a modification of Algorithm 4. In this algorithm we only consider 

a working set of sample points, denoted by ,S  in each iteration. We use the same 

parameters as in Algorithm 4, but additionally introduce a parameter γ  that we use to 

determine which sample points to include in S . Algorithm 5 is identical to Algorithm 4 

when γ = ∞ . Let 0( , )n
NpSA x z  denote the solution from n  iterations, starting from x  and 

0z , of the solver as applied to the following problem:  

 
0

0 0

,
:          min  ( )                             1                ( , ) 0,

(1 )
                                                       . 

NpS

j
p

j S

x z
f x

z x z
N

x X

δ
α ∈

+ ≤
−

∈

∑

BP

 (49) 

We also define 0( , )NpS x zθ  by (48) where (46) is replaced by 

 { }0 0 1,...,
( , ) max ( , ),  max ( ) ,j

NpS NpS j q
x z x z f xψ ς

∈
=  (50) 

where  

 0 0 0
1( , ) ( , ).

(1 )NpS
j
p

j S
x z z x z

N
ς δ

α ∈
= +

− ∑  (51) 

Algorithm 5: 

Data: As in Algorithm 4 and γ > 0 .  

Step 0: Set i = 0 , 0 0iz = , and  1 2{ , ,..., }iN
iS v v v= . 

           Step 1: Compute 1 0 1 0( , ) ( , )
i i i

n
i i N p S i ix z A x z+ + =  and 

           
{ }1{1,2,..., } | ( , ) 0 .j

i iS j N g x v γ+= ∈ + >%  

           Step 2: Compute 1 0 1( , )
i i i iN p S x zθ + +%  and 1 0 1( , )

i i i iN p S x zψ + +%  

   If 1 0 1( , )
i i i iN p S x zθ ε+ + ≥ −%  and 1 0 1( , )

i i i iN p S x zψ ε+ + ≤%    
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                     Set { }4min ,1 10iN sN= ×⎢ ⎥⎣ ⎦% , 

                    1i iN N N+ = + % , 

                    
{ }1 1 1{1,2,..., } | ( , ) 0j

i i iS j N g x v γ+ + += ∈ + >
 

                    1 1 /1000i ip N+ += , and replace ε  by eε . 

             else 

                    1i iN N+ = , 1i ip p+ = , and 1 .i iS S S+ = ∪ %  

Step 3: Replace i  by 1i +   and go to Step 1. 

 

We next compare the five algorithms described in this chapter on six test 

examples from the literature. 
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IV. NUMERICAL EXAMPLES 

In order to evaluate the quality of solutions obtained by Algorithms 1–5 we use a 

method proposed by Royset (2010a). That procedure gives a confidence interval for a 

measure of distance, called theta, between a design x  and a Fritz-John point (e.g., 

Bertsekas, 1999, pp. 323–335) of BP and a confidence interval for constraint violation in 

BP. If the confidence interval for theta for a given x  degenerates to the point zero and the 

constraint violation is nonpositive, then x  is a feasible Fritz-John point of BP. If the left 

end point of the confidence interval for theta as well as the right end point of the 

confidence interval for the constraint violation are close to zero for a specific x , then x  

is near a Fritz-John point.  

We test Algorithms 1–5 on six engineering design examples from the litrature. 

These examples range from simple models with two design variables to complicated 

structural designs; see Table 2 for an overview of the examples with number of design 

variables (# DV), limit state functions (# LS), and random variables (# RV). The 

examples include a mix of both linear and nonlinear objective and limit-state functions. 

We refer to the Appendix for detailed information about the examples. We implement 

Algorithms 1–5 in MATLAB and use the TOMLAB/SNOPT (Holmstrom, 1999) as 

nonlinear solver. The computations are run on a desktop computer with 3.25 GB RAM 

and 3.16 GHz processor speed. We use 1− α = 0.001349898  in examples, which 

corresponds to the 3−  quantile of the standard normal distribution.  
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Example Description # DV  # LS  # RV 

1 
Analytical example (Hock & Schittkowski, 

1981). 
2 2 2 

2 
Design of a cantilever beam subject to horizontal 

and vertical loads (Eldred & Binchon, 2006). 
2 2 4 

3 
Design of a rectangular short column (Bichon, 

Mahadevan, & Eldred, 2009). 
2 1 3 

4 

Design of a uniform column of tubular section 

with hinge joints at both ends subject to a 

random compressive load (Rao, 2009, pp. 10-

14).. 

2 2 1 

5 
Design of a speed reducer (Rao, 2009,  pp. 472-

473). 
7 9 7 

6 
Vehicle design considering side-impact 

crashworthiness (Samson et al. 2009).  
11 10 7 

Table 2.   Overview of Examples (# DV Denotes Number of Design Variables, # LS 
Denotes Number of Limit-state Functions, # RV Denotes Number of Random 

Variables) 

Tables 3–8 show numerical results for Algorithms 1–3  when applied to Examples 

1–6. Here, we set algorithm parameters ,    ,nε  ,p  and υ  equal to 0.001, 5, 1000, and 

61 10−×  respectively. The sample size N  is varied. We stop Algorithms 1 and 3 when 

SNOPT’s default optimality tolerance is satisfied. Algorithm 2 stops as specified by its 

Step 2.  
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Example 1 Algorithm 
Objective 

Function Value 

Solution Time 

(seconds) 
Theta Interval 

1 15.867436 5.9 (− 0.0901,0] 
2 15.867436 0.1 (− 0.0905,0] N = 1000 
3 15.867808 1.6 (− 0.0779,0] 
1 15.873157 213.2 (− 0.0163,0] 
2 15.873157 0.6 (− 0.0165,0] N = 5000 
3 15.873291 7.4 (− 0.0217,0] 
1 15.872825 1406.1 (− 0.0042,0] 
2 15.872824 0.7 (− 0.0032,0] N = 10000 
3 15.873006 15.9 (− 0.0027,0] 

Table 3.   Results for Algorithms 1–3 on Example 1 

Table 3 shows that Algorithms 1–3 with a larger sample size yield a smaller theta 

interval, which means that the corresponding solutions become closer to a Fritz-John 

point as N  increases. That is, the design quality improves as N  increases. However, the 

solution time for Algorithm 1 increases dramatically with larger sample sizes.  

Example 2 Algorithm 
Objective 

Function Value 

Solution Time 

(seconds) 
Theta Interval 

1 9.592329 10.6 (− 724.3833,0] 
2 9.592329 0.4 (− 723.3969,0] N = 1000 
3 9.592329 24.4 (− 707.6998,0] 
1 9.697515 298.7 (− 379.4498,0] 
2 9.697515 48.9 (− 385.1690,0] N = 5000 
3 9.697515 30.3 (− 384.0893,0] 
1 9.818805 1966.6 (− 230.7896,0] 
2 9.818805 199.4 (− 225.4224,0] N = 10000 
3 9.818805 42.3 (− 228.1197,0] 

Table 4.   Results for Algorithms 1–3 on Example 2 

Table 4 shows that the designs computed with the given sample sizes are not 

particularly close to a Fritz-John point as the theta intervals are large. For this example 

we compute a design with theta interval (−1.3523,0] with a sample of size 52 10×  in 

1207.8 seconds using Algorithm 3.  
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Example 3 Algorithm 
Objective 

Function Value 

Solution Time 

(seconds) 
Theta Interval 

1 236.350524 5.3 (− 0.0468,0] 
2 236.350525 0.1 (− 0.0475,0] N = 1000 
3 236.422249 4.9 (− 0.0434,0] 
1 246.780726 152.2 (− 0.0452,0] 
2 246.780726 0.2 (− 0.0474,0] N = 5000 
3 246.794029 13.7 (− 0.0463,0] 
1 247.759968 1020.8 (− 0.0644,0] 
2 247.760098 1.1 (− 0.0657,0] N = 10000 
3 247.769011 30.3 (− 0.0636,0] 

Table 5.   Results for Algorithms 1–3 on Example 3 

 
Example 4 Algorithm 

Objective 

Function Value 

Solution Time 

(seconds) 
Theta Interval 

1 26.726018 2.0 (− 0.6408,0] 
2 26.726018 0.2 (− 0.6388,0] N = 1000 
3 26.726054 5.1 (− 0.6323,0] 
1 26.740881 17.3 (− 0.0916,0] 
2 26.740881 2.8 (− 0.0916,0] N = 5000 
3 26.740904 31.6 (− 0.0982,0] 
1 26.742723 435.8 (− 0.0982,0] 
2 26.742723 9.8 (− 0.0982,0] N = 10000 
3 26.742745 56.9 (− 0.0982,0] 

Table 6.   Results for Algorithms 1–3 on Example 4 

Example 5 Algorithm 
Objective 

Function Value 

Solution Time 

(seconds) 
Theta Interval 

1 3469.238339 3.2 (− 8.2179,0] 
2 3469.238338 0.2 (− 8.2447,0] N = 1000 
3 3472.067164 14.1 (− 8.2455,0] 
1 3723.733266 17.8 (− 0.7182,0] 
2 3723.733267 1.1 (− 0.6977,0] N = 5000 
3 3725.084942 86.9 (− 0.7243,0] 
1 3760.540797 1500.0 (− 0.1234,0] 
2 3760.540798 4.3 (− 0.1256,0] N = 10000 
3 3761.796161 156.1 (− 0.1216,0] 

Table 7.   Results for Algorithms 1–3 on Example 5 
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We see in Tables 3–7 that for Algorithm 2, the solution times with different 

sample sizes are close, meaning that Algorithm 2 is not highly affected by the increase in 

sample size. 

Example 6 Algorithm 
Objective 

Function Value 

Solution Time 

(seconds) 
Theta Interval 

1 24.597346 2.6 (− 0.4643,0] 
2 24.597347 0.2 (− 0.4619,0] N = 1000 
3 24.605073 7.3 (− 0.4532,0] 
1 24.774812 20.8 (− 0.0288,0] 
2 24.774808 0.8 (− 0.0289,0] N = 5000 
3 24.779162 29.6 (− 0.0265,0] 
1 24.850419 118.0 (− 0.0124,0] 
2 24.850436 1.9 (− 0.0135,0] N = 10000 
3 24.853971 68.8 (− 0.0086,0] 

Table 8.   Results for Algorithms 1–3 on Example 6 

Tables 3–8 show that the objective function values computed with Algorithms 1 

and 2 are close to each other. However, the solution times, which are quite similar for small 

sample sizes, differ as we increase the sample size. This is because we add one more 

variable and constraint for every limit-state function for each increment in the sample size. 

For example, the Example 5 solution-time ratio for Algorithm 1 to Algorithm 2 is 16 for 

1000N = , while it is 349 for 10000N = . Therefore, we conclude that for more complex 

problems, Algorithm 1 has large memory and longer solution time requirements. For 

Algorithm 3, the objective function value is worse than that of Algorithms 1 and 2. 

However, we do not see a dramatic increase in solution times with larger sample sizes for 

Algorithm 3. We have the largest increase in solution time in Example 4, where the time 

for 10000N =  is 11 times larger than that for 1000N = . However, the solution time for 

Algorithm 1 increases by a factor of 218 for the same example. We next discuss the 

differences in solutions for different algorithm parameter changes. 

Although we see that Algorithm 2 is able to solve Examples 1–6 quickly and with 

high accuracy, the choice of user-defined algorithm parameters yields differences in 

solution times. Tables 9–12 present solution times for Algorithm 2 in seconds for different 
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sample sizes as the algorithm parameters change. The row numbers 0.01, 0.001 and 0.0001 

and the column numbers from 1 to 10 are the values for ε  and n , respectively. 

ε  Iteration Limit for the Solver (n)  

 1 2 3 4 5 6 7 8 9 10 
0.01 28.7 16.8 8.4 5.7 4.4 4.8 4.4 5.6 6.2 8.4 

0.001 29.2 17.3 9.6 7.9 6.3 6.7 7.7 7.1 7.6 9.6 
0.0001 29.9 18.2 10.9 8.7 7.0 7.8 7.5 7.8 8.3 10.0 

Table 9.   Run Times (sec) for Algorithm 2 on Example 5 with N = 12000  Given  Different 
Algorithm Parameter Settings 

Table 9 shows that as ε  increases the solver needs more time. Moreover, the 

computation times improve from 1n =  through 5n = , and gradually deteriorate for 

larger values of n . But in Table 9 we see that the choice of algorithm parameters does 

not yield much different solution times for Example 5 with N = 12000 . 

ε  Iteration Limit for the Solver (n)  

 1 2 3 4 5 6 7 8 9 10 
0.01 335 212 146 153 187 215 148 662 1157 149 

0.001 372 238 357 335 429 632 691 775 1139 1586 
0.0001 417 302 632 538 612 769 862 944 1207 1691 

Table 10.   Run Times (sec) for Algorithm 2 on Example 5 with N = 120000  Given 
Different Algorithm Parameter Settings 

We see in Table 10 that with a larger sample the variability in solution times is 

more evident. Moreover, we see that the results in Table 10 do not follow the 

characteristics of those on Table 9, where the run times are unevenly increasing or 

decreasing with respect to parameter choices. 

ε  Iteration Limit for the Solver (n)  

 1 2 3 4 5 6 7 8 9 10 
0.01 6.24 2.22 2.61 3.44 3.06 3.37 3.08 3.03 3.05 2.99 

0.001 4.17 4.65 5.09 5.08 5.12 5.21 5.21 5.28 5.23 5.36 
0.0001 6.43 5.18 6.14 6.11 6.09 6.20 6.19 6.24 6.22 6.19 

Table 11.   Run Times (sec) for Algorithm 2 on Example 6 with N = 12000  Given  Different 
Algorithm Parameter Settings 
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We see in Table 11 that larger ε  values yield longer run times. However, we do 

not see a clear increasing or decreasing pattern in solution times depending on .n   

ε  Iteration Limit for the Solver (n)  

 1 2 3 4 5 6 7 8 9 10 
0.01 174 85 45 45 46 47 47 47 49 49 

0.001 117 130 191 150 152 151 149 151 150 150 
0.0001 254 199 305 284 288 287 287 287 287 288 

Table 12.   Run Times (sec) for Algorithm 2 on Example 6 with N = 120000  Given 
Different Algorithm Parameter Settings 

Tables 9–12 show that there is no single parameter value that is best in all 

examples for Algorithm 2. Thus, we conclude that the parameter choice gives different 

solution-time results not only for the different examples but also for the same example 

with different sample sizes. Furthermore, ε  values larger than 0.01 effectively lead to 

large working sets and turn Algorithm 2 into Algorithm 1. We next discuss the effects of 

parameter choice for Algorithm 2 on solution quality. 

We select 0.01ε =  and 1n =  as the base parameter choices for Tables 13 and 14. 

We then optimize with different values of ε  and ,n  and then calculate the absolute 

differences in the objective function values from that obtained using the base values of ε  

and .n  

ε  Iteration Limit for the Solver (n)  

 1 2 3 4 5 6 7 8 9 10 
0.01 0 0.8 0.8 0.09 0.09 0.09 0.09 0.09 0.09 0.09 

0.001 136 0.04 25 3360 0.09 0.09 0.09 0.09 0.09 0.09 
0.0001 113 4.2 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 

Table 13.   Objective Function Value Differences (in 10-7) for the Parameter Selections with 
Respect to Objective Function of the Base Parameter Choice (with Algorithm 2 

on Example 5 with 12000)N =  
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ε  Iteration Limit for the Solver (n)  

 1 2 3 4 5 6 7 8 9 10 
0.01 0 3.7 4.1 3.7 3.7 3.7 3.7 3.7 3.7 3.7 

0.001 3.0 6.7 5.3 7.7 3.7 3.7 3.7 3.7 3.7 3.7 
0.0001 16 204 11 11 3.7 3.7 3.7 3.7 3.7 3.7 

Table 14.   Objective Function Value Differences (in 10-7) for the Parameter Selections with 
Respect to Objective Function of the Base Parameter Choice (with Algorithm 2 

on Example 6 with 120000)N =  

We see in Tables 13 and 14 that there is no dramatic variability in objective function 

values computed with various parameters. Thus, we conclude that the parameter choice 

does not affect the quality of the design. We next discuss Algorithm 3 with various 

smoothing parameter p  values.  

We apply Algorithm 3 on Example 1 with a sample size of 15000. We optimize 

the design with different values of ,p  compute the theta interval in order to evaluate the 

design quality, and display the results in Table 15.  

p  
Objective Function 

Value 

Solution Time 

(seconds) 
Theta Interval 

1 20.62291723 24.5 (− 1.4575161,0] 
10 16.29547551 17.2 (− 0.5836538,0] 

100 15.88688647 27.2 (− 0.3088083,0] 
1000 15.87386166 30.8 (− 0.0062922,0] 

10000 15.87370318 33.8 (− 0.0064495,0] 
100000 15.87370048 35.4 (− 0.0062150,0] 

1000000 15.87370032 38.5 (− 0.0063207,0] 
10000000 15.87370031 41.1 (− 0.0061170,0] 

Table 15.   Algorithm 3 on Example 1 with Different p  Values 

Table 15 shows that design quality improves as we increase the value of p . 

However, we do not have much improvement in the theta interval after p = 1000 . 

Instead, we see only run-time increases with larger values of p . Since large p  values 

may result in ill-conditioning and slow convergence of the solver, we use p = 1000  as 

default.  
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We conclude that Algorithm 1 cannot handle large sample sizes due to memory 

difficulty. In fact, Algorithm 1 solves NBP  that include more than Nm nonlinear 

constraints and N  variables. Algorithm 2 may need to consider the same number of 

constraints and variables, but the numerical tests indicate that its active-set strategy is 

reasonably efficient in practice. On solutions of Examples 1–6, we find that  ( )N WBP  

contains on average 0.2% of nonlinear constraints that we have in NBP .  Finally, in 

Algorithm 3 in contrast to Algorithms 1 and 2 we have only one nonlinear constraint 

associated with limit-state functions and number of design variables does not increase 

with sample size. Therefore, Algorithms 2 and 3 efficiently compute near-optimal 

designs for large N . Algorithm 2 can handle large samples, but lacks the ability to deal 

with extremely large problems. But we apply Algorithm 3 on Example 6 with a sample 

size of 71 10×  and compute the design, with a ( 0.0006,0]−  theta interval in 18 hours. 

Thus, we conclude that Algorithm 3 is able to solve BPN with exceptionally large sample 

sizes. We next discuss consequences of various algorithm parameters for Algorithms 4 

and 5. 

We apply Algorithm 4 to Example 6 to see the theta interval differences due to 

the choice of algorithm parameters. Table 16 presents the results for Algorithm 4 with a 

run-time limit used as the stopping criterion. That is, the algorithm stops after a specific 

time, here 15 minutes, and evaluates the quality of the last computed design.  

e  s  n  Theta Interval Final Sample Size 

0.1 0.3 15 (− 0.0273379,0] 10598 
0.1 0.3 20 (− 0.0175738,0] 13777 
0.1 0.5 15 (− 0.0089000,0] 45624 
0.1 0.5 20  (− 0.0089010,0] 45624 
0.3 0.3 15 (− 0.0202027,0] 30267 
0.3 0.3 20 (− 0.0079490,0] 69347 
0.3 0.5 15 (− 0.0599124,0] 45624 
0.3 0.5 20 (− 0.0041565,0] 85624 
0.5 0.3 15 (− 0.0116882,0] 89342 
0.5 0.3 20 (− 0.0035743,0] 69347 
0.5 0.5 15 (− 0.0054132,0] 95624 
0.5 0.5 20 (− 0.0077265,0] 95624 

Table 16.   Parameter Comparison for Example 6 with Algorithm 4 Starting From Initial  
N = 1000  With 15-Minute Run Time Limit 
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From Table 16, we see that for larger values of e  the sample size tends to increase 

more compared to smaller e  values, which in turn may cause memory difficulty for more 

complex structural design examples. We obtain better results with 20n =  than with 

15n =  for fixed e  and s . We also see that we get generally better results with 0.5s =  

when the other parameters are hold constant. Therefore, we conclude that 0.1e = , 

0.5s = , and 20n =  is an appropriate choice for parameter values and use them in the 

following calculations. We next present Algorithm 5 results for different γ  values. 

As discussed in Chapter III, we use γ  to determine the active sample points. We 

apply Algorithm 5 to Example 1 with various -γ values and construct Table 17 after 15-

minute runs. 

γ  Constraint Violation Theta Interval Final Sample Size 
0.0000001 (−∞ ,1.52274) (− 1.3017056,0] 75624 
0.000001 (−∞ ,-0.57666) (− 3.0074925,0] 55624 
0.00001 (−∞ ,0.00037) (− 0.0041879,0] 65624 

0.0001 (−∞ ,0.00009) (− 0.0017403,0] 55624 
0.001 (−∞ ,-0.00201) (− 0.0026550,0] 45624 
0.01 (−∞ ,0.00037) (− 0.0004014,0] 45624 

1 (−∞ ,-0.00028) (− 0.0001733,0] 145624 
10 (−∞ ,-0.00024) (− 0.0009416,0] 385624 

100 (−∞ ,0.00047) (− 0.0011301,0] 425624 
1000 (−∞ ,-0.00123) (− 0.0009869,0] 95624 

10000 (−∞ ,0.00056) (− 0.0007012,0] 95624 
100000 (−∞ ,0.00050) (− 0.0009243,0] 105624 

1000000 (−∞ ,-0.00014) (− 0.0019971,0] 125624 
10000000 (−∞ ,0.00026) (− 0.0018027,0] 135624 

Table 17.   γ  Comparison With Algorithm 5 on Example 1 with Initial 
1000,   0.1,   0.5,   20N e s n= = = =  with 15-Minute Run Time Limit 

Table 17 shows that solution quality improves as we increase γ from 0.0000001 

to 1, but degrades for 1γ > . Since the smallest theta interval appears to occur at 1,γ =  

we want to investigate the values of γ near 1, and use 0.1, 1, and 10, in the following 

calculations.  

We present below the results for Algorithms 4 and 5 on Examples 1–6. In order to 

show the performance of the algorithms we set a run-time limit as the stopping criterion. 

We use different run times in accordance with the complexity of the example. For 
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relatively simple Examples 1 and 3, we set the time limit to 15 and 30 minutes, 

respectively; the time limit is set to 60 minutes for the rest. Rather than setting a time 

limit, however, the user may prefer to modify Algorithms 4 and 5 to iteratively check the 

design quality and stop when a user-defined quality level is reached. We start with initial 

N = 1000 . 

 e  s  n  γ  
Final Sample 

Size 

Constraint 

Violation  
Theta Interval 

0.1 0.5 5 - 45624 (−∞ ,0.00014) (− 0.00036,0] Alg. 4 0.3 0.5 5 - 105624 (−∞ ,− 0.00104) (− 0.00047,0] 
0.1 0.5 20 0.1 145624 (−∞ ,− 0.00028) (− 0.00017,0] 
0.1 0.5 20 1 385624 (−∞ ,− 0.00024) (− 0.00094,0] Alg. 5 
0.1 0.5 20 10 425624 (−∞ ,0.00046) (− 0.00113,0] 

Table 18.   Results for Algorithms 4 and 5 on Example 1 with 15-Minute Run Time 

We see in Table 18 that we have the best theta interval with Algorithm 5, when 

0.1γ = . The design computed by Algorithm 4 with 0.1e =  has also a small theta interval 

and its constraint violation is less than for Algorithm 5. 

 e  s  n  γ  
Final Sample 

Size 

Constraint 

Violation Theta Interval 

0.1 0.5 20 - 335624 (−∞ ,0.94085) (− 1.24864,0] Alg. 4 0.3 0.5 20 - 205624 (−∞ ,1.79601) (− 2.15182,0] 
0.1 0.5 20 0.1 194581 (−∞ ,0.09473) (− 0.54203,0] 
0.1 0.5 20 1 2891871 (−∞ ,0.19126) (− 0.66174,0] Alg. 5 
0.1 0.5 20 10 3491871 (−∞ ,0.40577) (− 0.60458,0] 

Table 19.   Results for Algorithms 4 and 5 on Example 2 with 60-Minute Run Time 

Table 19 shows that the sample size rapidly increases for Algorithm 5. However, 

Algorithm 5 only considers active constraints. Therefore, Algorithm 4 is more likely to 

cause memory difficulty for highly complex structural design examples.  
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 e  s  n  γ  
Final Sample 

Size 

Constraint 

Violation Theta Interval 

0.1 0.5 20 - 215624 (−∞ ,0.00000) (− 0.00863,0] Alg. 4 0.3 0.5 20 - 205624 (−∞ ,0.00123) (− 0.00676,0] 
0.1 0.5 20 0.1 691871 (−∞ ,7.43356) (− 1.67174,0] 
0.1 0.5 20 1 1591871 (−∞ ,0.00034) (− 0.00941,0] Alg. 5 
0.1 0.5 20 10 2491871 (−∞ ,0.00095) (− 0.00437,0] 

Table 20.   Results for Algorithms 4 and 5 on Example 3 with 30-Minute Run Time 

From Table 20, we see that Algorithm 5 with 0.1γ =  results in an unsatisfactory 

solution. Since the theta interval is large and the right end point of the constraint violation 

interval is also large, we conclude that the solution is infeasible. 

 e  s  n  γ  
Final Sample 

Size 

Constraint 

Violation Theta Interval 

0.1 0.5 20 - 85624 (−∞ ,− 0.04217) (− 0.09810,0] Alg. 4 0.3 0.5 20 - 75624 (−∞ ,0.07769) (− 0.18332,0] 
0.1 0.5 20 0.1 119721 (−∞ ,0.00000) (− 0.17360,0] 
0.1 0.5 20 1 129721 (−∞ ,0.52574) (− 0.65265,0] Alg. 5 
0.1 0.5 20 10 991871 (−∞ ,− 0.02971) (− 0.09809,0] 

Table 21.   Results for Algorithms 4 and 5 on Example 4 with 60-Minute Run Time 

Table 21 shows that for Example 4, the quality of the designs by Algorithm 4 with 

0.1e =  and Algorithm 5 with 10γ =  are almost equal.  

 e  s  n  γ  
Final Sample 

Size 

Constraint 

Violation Theta Interval 

0.3 0.5 20 - 11389 (−∞ ,1.85124) (− 1.96464,0] Alg. 4 0.8 0.5 20 - 65624 (−∞ ,0.21324) (− 0.24076,0] 
0.8 0.5 20 0.1 129721 (−∞ ,0.21682) (− 0.23135,0] 
0.8 0.5 20 1 129721 (−∞ ,0.04015) (− 0.05877,0] Alg. 5 
0.8 0.5 20 10 129721 (−∞ ,0.08343) (− 0.10257,0] 

Table 22.   Results for Algorithms 4 and 5 on Example 5 with 60-Minute Run Time 

We see in Table 22 that for Example 5, Algorithm 5 yields better theta intervals 

and small constraint violations than Algorithm 4. 
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 e  s  n  γ  
Final Sample 

Size 

Constraint 

Violation Theta Interval 

0.1 0.5 20 - 65624 ( −∞ ,0.00659) (− 0.01540,0] Alg. 4 0.3 0.5 20 - 125624 ( −∞ ,0.00000) (− 0.00464,0] 
0.1 0.5 20 0.1 2491871 ( −∞ ,0.00003) (− 0.00168,0] 
0.1 0.5 20 1 2691871 ( −∞ ,0.00041) (− 0.00183,0] Alg. 5 
0.1 0.5 20 10 2591871 ( −∞ ,0.00029) (− 0.00068,0] 

Table 23.   Results for Algorithms 4 and 5 on Example 6 with 60-Minute Run Time 

From Table 23, we see that we obtain a good design with Algorithm 5 when 

γ = 10 . The lower end point of the theta interval is almost the same as that obtained after 

18 hours using Algorithm 3 with 71 10N = × . 

We see in Tables 18–23 that Algorithm 5 is capable of handling larger sample 

sizes, and thus Algorithm 5 generally computes better designs compared to Algorithm 4. 

Moreover, because Algorithm 5 only considers the active sample points the iterations 

take less time compared to Algorithm 4. Therefore, with a stopping criterion based on a 

user-defined quality level, Algorithm 5 is likely to be faster. 

We next present failure probability and buffered failure probability comparisons 

for a given design. For each example, we select the design with the closest theta interval 

among the solutions presented in Tables 3–8 and Tables 18–23. We calculate a 95% 

confidence interval (CI) using MCS for the failure probability. Using the same sample, 

we also estimate the buffered failure probability. Since we use the same sample, we 

assume that the error in the buffered failure probability calculation is similar to that in the 

failure probability estimate. Table 24 presents the resulting estimates. We see that the 

buffered failure probability is greater than the failure probability for the same design as 

expected; see Chapter I. On average, the buffered failure probability is 30% of the failure 

probability.  
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Example Design 
Theta 

Interval 
CI for Failure Probability 

Buffered Failure 

Probability 

Estimate 

1 8.90895 
2.81726 (− 0.00017,0] (0.00052, +/−  0.00005) 0.001329 

2 3.88551 
2.73362 (− 0.54202,0] (0.000001, +/−  0.0000006) 0.001015 

3 9.82582 
25 (− 0.00437,0]                 (0.00052, +/−  0.00005) 0.001402 

4 5.45094 
0.29593 (− 0.09820,0]                (0.00037, +/− 0.000036) 0.000971 

5 

3.6 
0.72 

19.52866 
7.56277 
8.28022 
3.47997 
5.40634 

(− 0.12156,0] (0.00047, +/− 0.000046) 0.004488 

6 

0.5 
1.43498 

0.5 
1.25441 
1.05796 

0.5 
0.34 

0.345 
15 
15 

(− 0.00068,0] (0.00031, +/− 0.00003) 0.001382 

Table 24.   Computational Comparisons of Failure Probabilities and Buffered Failure 
Probabilities 

 

 



 37

V. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS  

Reliability-based design optimization (RBDO) aims to determine a minimum-cost 

design for an engineering structure subject to one or more reliability constraints; this 

thesis considers models having a single reliability constraint. Traditionally, the reliability 

constraint is given in terms of an upper bound on the failure probability, i.e., the 

probability that the system performs unsatisfactory. This approach is theoretically and 

computationally troublesome since a constraint on the failure probability is difficult to 

deal with in the algorithms used to solve the nonlinear programs arising in RBDO. This 

thesis considers an alternative approach to RBDO based on “buffered failure probability,” 

and examines five solution algorithms, four of which are developed in this thesis, that use 

sample-average approximations. Buffered failure probability is more conservative than 

the traditional failure probability. Thus, a design that satisfies a reliability constraint 

based on the buffered failure probability also satisfies one based on the failure 

probability. Finally, the buffered failure probability is much easier to handle in 

optimization algorithms as it results in smooth and possibly convex optimization 

problems. 

The buffered failure probability approach uses sample averages to estimate 

expectations. In numerical tests, we show that the sample size needs to be set relatively 

large to ensure high-quality solutions, and that one standard algorithm may break down 

because of the resulting memory and run-time requirements. We develop new algorithms 

that overcome this difficulty and obtain an average speed-up in solution time by a factor 

of 560 in comparison with the existing methodology based on a standard nonlinear 

solver. We are able to handle sample sizes two orders of magnitude larger in comparison 

with the existing method. We also avoid the need for preselecting sample sizes, which 

can be difficulty in practice, by using adaptive sample-adjustment schemes.  

We examine the difference between the failure probability and buffered failure 

probability approaches in a stochastic knapsack problem as well as other examples and 
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find that for these test examples the buffered failure probability averages typically three 

times larger than the failure probability for a design computed with buffered failure 

probability approach.  Hence, a design based on the buffered failure probability approach 

may result in a more costly but more reliable design than that obtained using a failure 

probability approach. However, in view of the computational difficulties associated with 

this approach, we believe that the buffered failure probability approach is a viable 

alternative. 

B. SUGGESTED WORK AHEAD 

This research area is open to more developments in efficiency and accuracy of the 

algorithms. We believe the active-set strategy deserves the interest of future researchers 

with the goal to eliminate its sensitivity to user-specified parameters.   
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APPENDIX 

This appendix describes the six computational examples tested in this thesis. 

 

Example 1: Analytical problem (Hock & Schittkowski, 1981).  

DESIGN VARIABLES 

Variable Description 
Lower 

bound 

Upper 

bound 

        x1  Design variable 2 50 

        x2  Design variable 0 50 

Table 25.   Design Variable Descriptions and Bounds for Example 1  

RANDOM VARIABLES 

V  Description Distribution 
Parameters 

(μ,σ )  

V1  Random vector  Normal (25, 0.03) 

V2  Random vector Normal            (25, 0.03) 

Table 26.   Random Variable Descriptions and Distribution Parameters for Example 1  

 

Objective function: 

min  0.1x1
2x2

2  

Limit-state functions: 

g1(x,v) = v1 − x1x2  

g2(x,v) = v2 − x1
2 − x2

2  



 44

Example 2: Cantilever beam (Eldred & Binchon, 2006). 

DESIGN VARIABLES 

Variable Description 
Lower 

bound 

Upper 

bound 

        x1  Thickness of the beam (cm) 1 4 

        x2  Width of the beam (cm) 1 4 

Table 27.   Design Variable Descriptions and Bounds for Example 2  

 

RANDOM VARIABLES 

V  Description Distribution 
Parameters 

(μ,σ )  

V1  Yield stress Normal 4 3(4 10 ,2 10 )× ×  

V2  Young’s Modulus Normal 7 6(2.9 10 ,1.45 10 )× ×  

V3  Horizontal loads (kg) Lognormal (5,0.5) 

V4  Vertical loads (kg) Lognormal (5,0.5) 

Table 28.   Random Variable Descriptions and Distribution Parameters for Example 2  

Objective function: 

min  x1x2  

Limit-state functions: 

g1(x,v) =
600v4

x1
2x2

+
600v3

x1x2
2
− v1  

g2 (x,v) =
4000000

v2x1x2

−
v4

2

x1
4 +

v3
2

x2
4

⎛
⎝⎜

⎞
⎠⎟

    − 2.25  
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Example 3: Rectangular short column (Bichon, Mahadevan, & Eldred, 2009). 

DESIGN VARIABLES 

Variable Description 
Lower 

bound 

Upper 

bound 

       x1  Column cross section width (cm) 5 15 

       x2  Column cross section depth (cm) 15 25 

Table 29.   Design Variable Descriptions and Bounds for Example 3  

RANDOM VARIABLES 

V  Description Distribution 
Parameters 

(μ,σ )  

V1  Axial force (kg) Normal (500,100) 

V2  Bending moment Normal (2000,400) 

V3  Yield stress Lognormal (5,0.5) 

Table 30.   Random Variable Descriptions and Distribution Parameters for Example 3  

Objective function: 

min  x1x2  

Limit-state function: 

g(x,v) =
4v2

x1x2v3

+
v1

2

x1
2x2

2v3
2
−1
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Example 4: Tubular column (Rao, 2009, pp. 10-14).. 

DESIGN VARIABLES 

Variable Description 
Lower 

bound 

Upper 

bound 

        x1  Diameter of the column (cm) 2 14 

        x2  Thickness of the tube (cm) 0.2 0.8 

Table 31.   Design Variable Descriptions and Bounds for Example 4  

 

RANDOM VARIABLES 

V  Description Distribution 
Parameters 

(μ,σ )  

V  Load on the system (kg) Normal (2500, 10) 

Table 32.   Random Variable Descriptions and Distribution Parameters for Example 4  

 

Objective function: 

min  9.82x1x2 + 2x1  

Limit-state functions: 

g1(x,v) =
v

πx1x2

− 500  

2 2 2
2 1 2

1 2

( , ) 1.7 ( )vg x v x x
x x

π
π

= − −  
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Example 5: Speed reducer (Rao, 2009,  pp. 472-473). 

DESIGN VARIABLES 

Variable Description 
Lower 

bound 

Upper 

bound 

       x1  Face width (cm) 2.6 3.6 

       x2  Module of teeth (cm) 0.7 0.8 

       x3  Number of teeth on pinion 17 28 

       x4  Length of shaft 1 (cm) 7.3 8.3 

       x5  Length of shaft 2 (cm) 7.3 8.3 

       x6  Diameter of shaft 1 (cm) 2.9 3.9 

       x7  Diameter of shaft 2 (cm) 5.0 5.5 

Table 33.   Design Variable Descriptions and Bounds for Example 5  

RANDOM VARIABLES 

V  Description Distribution 
Parameters 

(μ,σ )  

V1  Material property Normal (x1,  0.03)  

V2  Material property Normal (x2 ,  0.03)  

V3  Material property Normal (x3,  0.03)  

V4  Material property Normal (x4 ,  0.03)  

V5  Material property Normal (x5 ,  0.03)  

V6  Material property Normal (x6 ,  0.03)  

V7  Material property Normal (x7 ,  0.03)  
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Table 34.   Random Variable Descriptions and Distribution Parameters for Example 5  

Objective function: 

2 2 2 2
1 2 3 3 1 6 7

3 3 2 2
6 7 4 6 5 7

min  0.7854 (3.33333 14.9334 43.0934) 1.508 ( )

7.477( ) 0.7854( )

x x x x x x x

x x x x x x

+ − − + +

+ + +
 

Limit-state functions: 

g1(x,v) =
27

v1v2
2v3

−1  

g2 (x,v) =
397.5

v1v2
2v3

2
−1  

g3(x,v) =
1.93v4

3

v2v3v6
4
−1  

g4 (x,v) =
1.93v5

3

v2v3v7
4
−1  

0.52
74

2 3

5 3
6

745 1.69 10

( , ) 1100
0.1

v
v v

g x v
v

⎡ ⎤⎛ ⎞
⎢ ⎥+ ×⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦= −  

0.52
85

2 3

6 3
7

745 1..575 10

( , ) 850
0.1

v
v v

g x v
v

⎡ ⎤⎛ ⎞
⎢ ⎥+ ×⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦= −  

g7 (x,v) = v2v3 − 40  

6
8

4

(1.5 1.9)( , ) 1vg x v
v
+

= −  

7
9

5

(1.1 1.9)( , ) 1vg x v
v
+

= −  
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Example 6: Vehicle side-impact crashworthiness problem (Samson et al. 2009). 

DESIGN VARIABLES 

Variable Description 
Lower 

bound 

Upper 

bound 

x1  Thickness of B-pillar inner (cm) 0.5 1.5 

x2  Thickness of B-pillar reinforce (cm) 0.5 1.5 

x3  Thickness of floor side inner (cm) 0.5 1.5 

x4  Thickness of cross member (cm) 0.5 1.5 

x5  Thickness of door beam (cm) 0.5 1.5 

x6  Thickness of door belt line (cm) 0.5 1.5 

x7  Thickness of roof rail (cm) 0.5 1.5 

x8  Material property of B-pillar inner 0.345 0.345 

x9  Material property of floor side inner 0.345 0.345 

x10  Barrier hitting height (cm) 15 15 

x11  Barrier hitting position (cm) 15 15 

Table 35.   Design Variable Descriptions and Bounds for Example 6  
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RANDOM VARIABLES 

V  Description Distribution 
Parameters 

(μ,σ )  

V1  Material property Normal (x1,  0.03)  

V2  Material property Normal (x2 ,  0.03)  

V3  Material property Normal (x3,  0.03)  

V4  Material property Normal (x4 ,  0.03)  

V5  Material property Normal (x5 ,  0.03)  

V6  Material property Normal (x6 ,  0.03)  

V7  Material property Normal (x7 ,  0.03)  

Table 36.   Random Variable Descriptions and Distribution Parameters for Example 6  

 

Objective functions: 

min  1.98 + 4.9x1 + 6.67x2 + 6.98x3 + 4.01x4 + 1.78x5 + 2.73x7  

Limit-state function: 

g1(x,v) = 1.16 − 0.3717v2v4 − 0.00931v2x10 − 0.484v3x9 + 0.01343v6x10 −1  

2 1 2 1 8 2 7 3 5 5 10

6 9 8 11 10 11

( , ) 0.261 0.0159 0.188 0.019 0.0144 0.0008757
                0.080445 0.00139 0.00001575 0.32 
g x v v v v x v v v v v x

v x x x x x
= − − − + + +

+ − −
 

3 5 1 8 1 9 2 6 2 7

3 8 3 9 5 6 5 10 6 10

8 11

( , ) 0.214 0.00817 0.131 0.0704 0.03099 0.018
               0.0208 0.121 0.00364 0.0007715 0.0005354
               0.00121 0.32

g x v v v x v x v v v v
v x v x v v v x v x
x x

= + − − + − +

+ − + − +
−

 

g4(x,v) = 0.74 − 0.61v2 − 0.163v3x8 + 0.001232v3x10 − 0.166v7x9 + 0.0227v2
2 − 0.32  

g5 (x,v) = 28.98 − 3.81v3 − 4.2v1v2 + 0.0207v5x10 + 6.63v6x9 − 7.7v7x8 + 0.32x9x10 − 32  
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6 3 10 1 2 2 8 5 10 7 8

8 9

( , ) 33.86 2.95 0.1792 5.057 11 0.0215 9.98
               22 32
g x v v x v v v x v x v x

x x
= + + − − − − +

−
 

g7 (x,v) = 46.36 − 9.9v2 −12.9v1x8 + 0.1107v3x10 − 32  

g8(x,v) = 4.72 − 0.5v4 − 0.19v2v3 − 0.0122v4x10 + 0.009325v6x10 + 0.000191x11
2 − 4  

g9 (x,v) = 10.58 − 0.674v1v2 − 1.95v2x8 + 0.02054v3x10 − 0.0198v4 x10 + 0.028v6x10 − 9.9  

g10(x,v) = 16.45 − 0.489v3v7 − 0.843v5v6 + 0.0432x9x10 − 0.0556x9x11 − 0.000786x11
2 −15.57
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