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Summary

Steganography is the art and science of invisible communication. Its aim is the trans-
mission of information embedded invisibly into carrier data. The goal of steganalysis
is to discover steganographic alterations to carrier data.

The project BEST (Better Steganalysis) explored the influence of image content
when detecting steganography. If this influence, which interferes with the detector
statistics, is reduced, the reliability of steganalysis can be increased. Steganalysis
can be regarded as an attempt to separate image (or carrier) content from embedded
steganographic signals.

This project consisted of two phases. During its first phase, a new technique to
scan elements of potential steganograms allowed a more fine-grained evaluation of the
group size, a parameter of the RS attack by Fridrich et al., which affects the detection
performance.

The results of Phase 2 include newly developed attacks for advanced JPEG
steganography like MB2 that use targeted features to blockiness reduction artefacts.
Phase 2 also comprises a new generic methodology to apply spatial domain attacks
in the DCT domain.

All attacks are implemented in a software package called steganographic work-
bench (swb), which is described in this report. The package also includes implemen-
tations of some previous state of the art attacks that have been used for evaluation.
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Chapter 1

Introduction

Steganography is the ancient art and young science of hiding the communication in
such a way that the existence of the private message cannot be detected. It works
by hiding the secret message in a harmless carrier object. While cryptography merely
ensures the confidentiality of the message content, steganography adds another layer
of secrecy by concealing the fact that secret communication takes place.

Progress in steganography is tightly coupled with improvements of steganalysis,
the detection of hidden information. In this report we introduce several techniques that
aim to reduce the interfering influence of image content on steganalysis:

• optimisation of the group size parameter for RS steganalysis,

• separation of error sources for measurement of the influence of image content,

• a generic methodology to apply spatial domain attacks to frequency domain,

• two new more reliable higher order statistical attacks on randomised Jsteg, one
for small and one for large images, and

• a powerful attack on MB2 using targeted features to blockiness reduction arte-
facts.

11
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Chapter 2

Methods, Assumptions, and
Procedures

2.1 A Steganographic Workbench
This report is intended to present the key ideas supported by the software in practical
examples.

The software of this project, the steganographic workbench or swb package is
implemented in R. Some parts are optimised for performance reasons in C.

R is a free programming language and computing environment that has become
a de-facto standard among statisticians for the development of statistical software.
Despite its strong points, and its large user base among statisticians, it is fair to say
that R and its commercial cousin S-PLUS are not widely used in the signal processing
community.

As far as our experience goes, R can significantly lower the threshold for experi-
mental prototype implementations. While nested loops are necessary to process im-
age files in C or C++, it is just one line of code in R due to the compact, clear and
math-like syntax. Apart from the time saved while writing and reading the code, one
source of its errors—the complexity—is suppressed.

To run the “steganographic workbench,” an installed version of R is necessary
(www.r-project.org). To install the swb package on Windows, start the R GUI envi-
ronment and select “Install package(s) from local zip file. . . ” in the “Packages” menu.
Then choose the location of swb.zip and confirm.

On Unix systems this is accomplished by the shell command line

bash# R CMD INSTALL swb

where the package file swb.tgz must reside in the current working directory. You
need supervisor rights to make packages available to all users. If you don’t have
these rights or want to install it only in your home directory, create and specify your
own target for R libraries first:

bash$ export R_LIBS=~/.R

13
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bash$ mkdir -p $R_LIBS
bash$ R CMD INSTALL swb

Once the swb package is installed, the user can load it into R using the command
library(swb). This makes a the following collection of functions available:

I/O

Read or write image data
from/to files.

read.gif1

read.jpg
read.pgm1

read.png
read.pnm1

write.png

Attacks/Feature Sets

Predict the use of stegano-
graphy, estimate the length
of the embedded message,
or extract a feature vector
in order to train a classifier.

abs.moments.attack
ca.attacks1

ca.estimate
ca.jphide1

ca.jsteg1

eca1

eca.jphide1

eca.jsteg1

gca.jphide1

gca.jsteg1

gca.new.jsteg1

f5attack1

f5estimate1

hcfcom.attack
jphide.normalise1

jsteg.normalise
jpairs.attack
jrs.attack

jspa.attack
jws.attack
mb1.esorics.attack1

mle.estimate
pairs.attack
rs.attack
spa.attack
qem
qem2
wb.attack
yu.attack1

yu.estimate
zp.attack1

zp.estimate
f231

f2741

f3241

ext.dct.features1

ext.markov.features1

merged.features1

ROC Curve Handling

Assess the quality (power/
accuracy) of attacks or plot
an ROC curve.

assess.roc1

eer1

farid1

fpr.thresholds1

ker1

plot.roc1

prepare.roc
rho1

thresholds1

tpr.thresholds1

Embedding/Extraction

Simulate the embedding of
a message.

jphide.embed
jsteg.embed
lsb.embed
lsb.extract
ltsb.embed
ltsb.extract
pm1.embed
pm1.extract

Transformations

DCT, quantisation, and
scanning along a plane fill-
ing curve.

ndctq1

nidctq1

jndctq1

jnidctq1

scanpath
plot.scanpath

Integer Operators

Most of these operators
are available in R, but re-
quire time-consuming con-
versions to and from float-
ing point format. For per-
formance reasons we im-
plemented integer versions
in C.

iabs
1There is currently no man page for functions that are rather for internal use in the swb

package.
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iand
iasr
ilsr
ior
irange
isign

iterative.mean.int1

iterative.mean1

ixor
ctbl1

dtbl1

mtbl1

tbl
jcalibrate1

jhist
jnzcoeff1

For some functions there is an online help available. For instance, the user can
display the man page of read.jpg by entering ?read.jpg into R.

2.2 Recursive Scanpaths
Many tools that detect steganographic payload extract a sequence of elements from
the carrier media (e.g., images). In most cases the ordering of this sequence was just
proposed by the ordering of the elements in the file. However, other sequences can
lead to better detection performance. In addition we can turn a two-dimensional object
like an image into a one-dimensional sequence object. Thus we can design detectors
independently of an object’s dimensionality.

Discrete objects of arbitrary complexity can be recursively scanned, if the recur-
sion depth is chosen appropriately. We used recursive scanpaths to improve the de-
tection power of the Pairs attack in images [23]. A space filling curve is a continuous
map of a two-dimensional area (plane-filling) or a three-dimensional volume into a
one-dimensional interval. David Hilbert, a German mathematician, invented a simple
space-filling curve known as the Hilbert curve, which fills a square. The Hilbert curve
can be encoded with the initial string L and the following string rewriting rules [20].

L −→ +RF − LFL− FR +
R −→ −LF + RFR + FL−
F −→ go one pixel forward
+ −→ turn right
− −→ turn left

These rules terminate after a specific recursion depth.
Figure 2.1 shows the well-known Hilbert curve for the recursion depths 1, 2, and

3. The bold enumeration follows the curve and the italic follows the pixels in the file,
which are stored row by row. The swb package provides a function scanpath that
accepts the parameters width x and height y of the scanned image. The recursion
depth d is internally determined for a Hilbert curve that is large enough to cover all
pixels in the image:

d = dlog2 max(x , y )e (2.1)

In most cases the Hilbert curve is able to cover more pixels than the actual image
contains. The result of scanpath is a vector of x · y indices2, which are used to

2The return type is actually a matrix that is used as an index vector. The two dimensions
given as parameters to the function are stored as a dimension attribute for convenience.
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Figure 2.1: Hilbert curves for the recursion depths 1, 2, and 3

permute the pixels.

Example
lena <- read.png("lena.png")
sp <- scanpath(lena)
# or: sp<-scanpath(dim(lena)[1], dim(lena)[2], "hilbert1")
permuted.lena <- lena[sp]

In the permuted sequence of the image (i.e., pixels scanned along the Hilbert
curve) almost all pixels are direct neighbours. This is also true if scanned row by row.
However, also second order neighbours (every other pixel in the sequence) have a
small mean distance (about

√
2), while this distance is about 2 in the original row-by-

row order in the file. As a consequence, close pixels in the permuted sequence show
a stronger correlation than before. This property was used in the aforementioned
improvement of the Pairs attack.

The swb package implements further scan methods, "hilbert1" is only the de-
fault. The remaining are listed in the online help (enter ?scanpath in the R command
line). An example for a scan method can be displayed using the plot.scanpath
method (e.g., plot.scanpath("zigzag")).

2.3 RS Group Sizes
RS analysis, which is another attack on LSB steganography, computes statistics on
small disjoint groups of adjacent pixels[8]. Here it became evident that groups of
pixels arranged in a square of m ×m deliver better results than slices of n × 1 pixels
[8, 13]. This can be explained by the fact that locally close pixels differ less in colour or
brightness than more distant ones. Certain types of systematically added randomness
(e.g., LSB replaced by steganographic noise) are more easily detected in groups of
closely related pixels with low variance in brightness. Unfortunately the quadratic
shape scales in broad steps (group size g = 1, 4, 9, . . .; see Fig. 2.2), which might
impede the group size to be adapted to the image size in an optimal way. Scanning
pixels along a recursive scan path will allow us to refine the step size and close the
gap for the groups of pixels. Therefore it could improve RS if the optimal is in the
middle of one of the previous coarse steps in group size.
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Figure 2.2: Conventional square shape of groups (above) compared to finer
step size with proposed group shapes (below)

Along with refining the group size, recursive scanning can sequence elements:
The pixels are no longer shaped in two dimensions. Therefore RS can work with
slices of n pixels. In our experiments we consider all possible masks with n = 2 . . . 10.
However, we cannot expect different results for isomorphic masks, e.g. for the mirrored
masks 00101 and 10100. Likewise with the mirrored version of an image: RS will give
a similar result for it. Not so for mask 01010. Although the bits are just shifted by
one position, it is different if the bit to be flipped (1 in the mask) is at the end of the
mask (influencing only one neighbour difference in the noise measure) or in the middle
(influencing two differences). The rules to reproduce this set are:

1. include the binary pattern of ascending unsigned integers with n = 2 . . . 10 bits
unless a subsequent condition is fulfilled,

2. exclude masks where all bits are the same, since they are unusable for RS,

3. exclude a mask if it is a mirrored version of a mask that is already included,

4. exclude a mask if it is a version of a previously included mask that was shifted
to the left by two or more positions.

Table 2.1 shows an example for RS masks of length n = 4 that can be skipped in
the experiments due to isomorphism. There are 776 different masks with n = 2 . . . 10
bits; about one quarter of the workload is saved due to isomorphism.

2.4 Separation of Error Sources
In this project we proposed some methods that estimate the length of the embedded
message. We will average length estimates in order to separate different sources of
errors. Böhme and Ker defined three error-measures [1], which are evaluated in our
experiments.
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Table 2.1: Drop isomorphic RS masks

Mask Drop-reason or “3”
all equal (unusable)
3

3

3

shift left by 2 or more
3

3

3

shift left by 2 or more
3

mirrored
3

shift left by 2 or more
mirrored
mirrored
all equal (unusable)

A cell is a set of steganograms, produced when different messages of the same
length are embedded into one particular carrier medium. To separate the error sources
we measure the statistical dispersion (inter quartile range, IQR, difference between
0.75- and 0.25-quantile) and the central tendency (median, 0.5-quantile) of length
estimations for each cell. From these two measures we derive three kinds of error (cf.
Fig. 2.3):

1. The within-image error is the median of all cell IQRs. This kind of error is in-
duced by the message and the secret key that is used for embedding. The
distribution of the cell IQRs passed tests of normality.

2. The between-image error is the IQR of all cell medians. This is an image-
specific error. The cell medians are rather Student-t distributed with ν = 1 . . . 10
degrees of freedom for the proposed set of attacks.

3. Finally, the bias is the median of the cell medians. This error can be pre-
computed for a given source of images and a particular length estimating attack.

2.5 Aspects of High Performance Computing

The separation of error sources requires a large number of repetitions for each image
in the test database. Apart from that, the experiments cover a number of independent
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Figure 2.3: Separation of within-image error, between-image error, and bias

variations, such as five different image sizes (600×840, 400×560, 200×280, 80×112,
and 40× 56 pixels), with quality q = 0.8. The medium sized images (200× 280) have
been compressed at seven different qualities (q = 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99).
We applied 8 different embedding rates (1 %, 5 %, 10 %, 20 %, 40 %, 60 %, 80 %, and
100 % of the steganographic capacity).

We repeat the embedding with 400 random messages for over 600 images, at 11
combinations of size and quality, and at 8 embedding rates, detecting the result with
78 attacks. This results in about 1700 million length estimations.

Since 630 cell IQRs seem to follow a Gaussian distribution, the application of the
median will reduce the error by a factor

√
630 to a negligible level (4 %). The reduction

for Student-t distributed values is slightly more efficient.
If the steps to load an image, embed, and estimate the length of the embedded

message required about one second, a first naive estimation will expect an execution
time of 54 years (472,000 hours). Hence the goal is (a) to combine as many steps as
possible, but also (b) generate executions steps that are as small as possible to allow
fair scheduling without pushing up the costs for loading the runtime environment.

Let tl be the time to load an image into the system, te the time for embedding
a random message, and ta the time to execute an attack (length estimation). If we
load an image only once for all related operations, and if we embed a message only
once before applying the 78 attacks (cf. Figure 2.4), the necessary execution time is
estimated as follows:3

ttotal = 11 · 630 · (tl + (8 · 400 · (te + 78 · ta) + 78 · ta))

3It is not necessary to repeat the attack for embedding rate 0.
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Figure 2.4: Pipeline for high performance computing

Different image sizes are weighted differently:

ttotal = (1 + 0.48 + 7 · 0.10 + 0.03 + 0.02) · 630 · (tl + (8 · 400 · (te + 78 · ta) + 78 · ta))

With tl = 0.123s, te = 0.335s, and ta = 0.0577s, we expect an execution time of about
252 days. However, on a PC farm with about 2500 CPU cores at TU Dresden, this
job was reduced to some hours wall time. Nevertheless, it was still challenging to
aggregate and analyse all these results.

2.6 Applying Attacks from Spatial Domain in DCT
Domain

During Phase 2 of BEST we applied spatial domain attacks in the DCT domain. In
2006 we published a paper on new histogram based attacks against Jsteg and JPhide
(category attack). To be honest, we were not very confident about the contribution of
this paper. Histogram based attacks have been used for a long time in the spatial do-
main. Such attacks (using first order statistics) have been outperformed in subsequent
years by RS, SPA, WS. While the first histogram based attack (chi-square attack) has
been used in both spatial domain and DCT domain, all the subsequent improvements
were designed for the spatial domain only. RS, SPA, and WS were crying for a trans-
lation to the DCT domain. However, it was not obvious how to do so.

Apart from that, the chi-square attack can even be outperformed by other first order
methods, e.g., dual statistics. Dual statistics have been ported to the DCT domain in
the 2006 paper—a provoking result, since it was not only an improvement compared to
the aged chi-square attack, but also outperforming contemporary blind attacks. This
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result was followed by papers proposing blind attacks with an increased number of
features that enabled a more reliable detection.

In this section we describe the functions in the swb package that have been used
for the evaluation of spatial methods in the DCT domain.

2.6.1 JPEG Image Handling

All these methods will operate on DCT coefficients. The function that reads a JPEG
file and creates an R structure is called read.jpg. Its implementation uses the libjpeg.
The

require(swb) # load swb library
j <- read.jpg("lena.jpg") # store data from lena.jpg in j

The structure of its return value is modelled on Phil Sallee’s JPEG toolbox for Matlab.4

j contains the losslessly decompressed DCT coefficients along with the quantisation
tables and other meta-information.

> str(j)
List of 14
$ width : int 512
$ height : int 512
$ icolor : int 1
$ ncomp : int 1
$ jcolor : int 1
$ njpegcomp : int 1
$ optimize.coding: logi FALSE
$ comments : int 1
$ coefficients :List of 1
..$ : int [1:64, 1:4096] 47 2 1 0 0 0 0 0 2 0 ...

$ qtables :List of 1
..$ : int [1:8, 1:8] 5 3 3 5 7 12 15 18 4 4 ...

$ ac.huff.tables : int 1
$ dc.huff.tables : int 1
$ info :List of 6
..$ component.id : int 1
..$ h.samp.factor: int 2
..$ v.samp.factor: int 2
..$ quant.tbl.no : int 1
..$ dc.tbl.no : int 1
..$ ac.tbl.no : int 1

$ progressive : int 0

4During this project we also implemented his MB1 and MB2 methods in R and consequently
needed a compatible input function
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The above image “Lena” has 512 by 512 pixels. The structure of this JPEG image
in j can be displayed using R’s built-in function str. For JPEG files, the image is
decomposed into disjoint blocks of 8 × 8 pixels. Hence, the “Lena” image consists of
64×64 = 4096 blocks, each of which is transformed using the DCT into 64 coefficients.
Since this is a greyscale image, the file contains only one brightness channel. The
coefficients of the first and only channel can be extracted by

coeffs <- j$coefficients[[1]]

2.6.2 Scanpaths
coeffs is arranged in a 64 × 4096 matrix. The first row contains all 4096 DC coef-
ficients, rows 2 . . . 64 the AC coefficients. If we have a sorted image database with
equally sized images, we can pre-calculate the index vectors for some scanpaths in
advance:

d <- sqrt(dim(coeffs)[2]) # sqrt(4096)=64
HP <- scanpath(d, d)
HP2 <- scanpath(d, d, "hilbert2")
SL <- scanpath(d, d, "slalom")

There is also a function to embed a random message. The embedding method is
Jsteg along a randomised embedding path. In the next example, we use 10 percent
of the capacity (embedding rate 0.1) and store the resulting steganogram in s:

s <- jsteg.embed(coeffs, 0.1)

Before the set of steganalytic attacks is applied to the steganogram s, its elements can
be reordered. If the matrix s is converted to a vector, the coefficients are in intra block
order, i.e., the first 64 coefficients belong to the same 8×8 pixel block. Another option
is the zigzag order that is used in the JPEG standard and easily achieved by permu-
tation of the 64 columns in the matrix here. For this purpose the swb package has
a global variable zigzagorder containing the appropriate permutation. R provides
a function t() that transposes a matrix (turns rows into columns and vice versa). It
can be used to switch from intra to inter block scan. In the transposed matrix, each
4096 elements belong to the same frequency, starting with the DC coefficients, and
two consecutive coefficients belong to two different 8× 8 pixel blocks.

x <- s intra block scan
x <- s[zigzagorder,] zigzag order
x <- t(s) inter block scan row by row

In addition, the block ordering can be permuted using one of the pre-calculated index
vectors for Hilbert 1 path HP, Hilbert 2 path HP2, or slalom SL.

x <- t(s[,HP]) inter block scan Hilbert 1 path
x <- t(s[,HP2]) inter block scan Hilbert 2 path
x <- t(s[,SL]) inter block scan slalom path
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we can remove the DC coefficients from each of the aforementioned scanpaths. Al-
though DC coefficients are affected by Jsteg, some steganalytic methods perform
better if only AC coefficients are used for the attack [15]. The first column of a ma-
trix is easily deleted in R by a −1 in the column index. (s[-1,] is equivalent to
s[2:64,1:4096], selecting all but the first column.)

x <- s[-1,] intra block scan (AC only)
x <- s[zigzagorder,][-1,] zigzag order (AC only)
x <- t(s[-1,]) inter block scan row by row (AC only)
x <- t(s[-1,HP]) inter block scan Hilbert 1 path (AC only)
x <- t(s[-1,HP2]) inter block scan Hilbert 2 path (AC only)
x <- t(s[-1,SL]) inter block scan slalom path (AC only)

2.6.3 Histogram-Based Attacks
We will use three known histogram-based detection methods for randomised Jsteg
to evaluate the reliability and precision of the methods that are proposed in the next
subsection. The method of Zhang and Ping (ZP) divides the histogram into two inter-
leaved groups [28], the attack of Yu et al. estimates the probability density function
of the quantised values on a basis that is invariant to steganographic embedding [27].
The category attack (CA) compares equalising and complementary pairs of values
with each other [15]. All three can estimate the length of the embedded message. For
further details the reader is directed to the description in the respective original pub-
lications. As suggested in Section 2.5, reusable intermediate results are computed
only once per image. Since the histogram is used in all three attacks, it is determined
with a separate function jhist. The estimated embedding rate is stored in p.

hr <- jhist(x)
p <- zp.estimate(hr)
p <- yu.estimate(hr)
p <- ca.estimate(hr)

2.6.4 Proposed Attacks
While there have been several proposals to use higher order statistics in the spatial
domain, no specific method existed to the best of our knowledge for the DCT domain.
In the following we will apply several techniques that are known from the spatial do-
main to (selected) DCT coefficients, which have been scanned along different paths
(intrablock and interblock).

In this subsection the spatial domain attacks RS, Pairs, SPA, and WS [8, 10, 4, 7]
are adapted to DCT coefficients [25]. In most cases it was easy to make the upper
input limit of the attacks (usually fixed at 255 for maximum brightness) a more gen-
eral parameter. For further details the reader is directed to the respective original
publications.

There are two basic requirements for the input if attacks have been designed for
brightness or colour intensity values.
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1. The input should be non-negative. (However, DCT coefficients are positive and
negative integers.)

2. The input should not contain any values that are excluded from embedding.
(However, the DCT values 0 and 1 are not used for embedding by randomised
Jsteg.)

The function jsteg.normalise processes the sequence of coefficients to match the
two requirements:

nc <- jsteg.normalise(x)

The modified attacks are applied directly to the normalised coefficients. An excep-
tion is the newly developed WB attack that also considers steganographically unused
coefficients in its prediction. Hence it is applied to the coefficients in x. The JRS at-
tack has a mask parameter. We used the two masks and in our experiments.
The functions for JRS, JPairs, JSPA, JWS, and WB are used as follows (the estimated
length will be stored in p):

p <- jrs.attack(nc, c(0,1))
p <- jrs.attack(nc, c(0,1,1,0))
p <- jpairs.attack(nc)
p <- jspa.attack(nc)
p <- jws.attack(nc)
p <- wb.attack(x)

2.7 Attacks on Some Advanced Embedding Meth-
ods

2.7.1 Plus-Minus-One Embedding

One common embedding method is known as plus-minus-one embedding (PM1). Due
to its simplicity it is not really “advanced.” It is a rather simple derivative of the LSB
replacement method. However, while the ubiquitous LSB embedding method can
be detected with high reliability, PM1 requires advanced steganalytic methods to be
detected.

To illustrate LSB embedding, let us consider greyscale images with pixel values in
the range 0. . . 255 as carrier medium. LSB steganography replaces the least signif-
icant bit of each pixel value in the image with the corresponding bit of the message
to be hidden. An even-valued pixel will either retain its value or be incremented by
one. However, it will never be decremented. The converse is true for odd-valued pix-
els. This asymmetry introduces a statistical anomaly in the histogram of brightness
values: pairs of values (PoV) that consist of an even value and its successor tend to
exhibit the same frequency if the image contains an LSB embedded message. This
can be exploited for steganalytic purposes [26, 8, 4, 10, 7].
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PM1, also known as LSB matching, overcomes this asymmetry: Whenever the
LSB needs to be changed, the algorithm “flips a coin.” If the obverse is up, the value
is incremented, otherwise decremented. Although the change is never greater than
one, this strategy can affect higher bits than just the LSB. For example 127 could be
incremented to 128. This will change all eight bits.

PM1 embedding adjusts the least significant bit of carrier elements (e.g., pixel
values) to match the message bit. Its result is compatible to LSB extraction, the em-
bedded (and possibly encrypted) message is directly read from a sequence of least
significant bits.

We looked at existing literature on PM1 detection and implemented some of those
detectors. They performed less reliably than expected. Our initial goal to develop a
targeted detector for PM1 seemed to move afar. We did not like to go the path to derive
generic blind feature sets, but watched the development. The most promising feature
set with a comprehensive evaluation was contributed by Giacomo Cancelli recently
[2].

Histogram Characteristic Function Center of Mass (HCFCOM)

Harmsen and Pearlman noted that PM1 embedding acts as a low-pass filter for the
histogram h1 of the image. Therefore the high frequency power in the histograms of
PM1 steganograms is reduced. In other words, the FFT of the histogram H1, also
referred to as the histogram characteristic function (HCF), is likely to be significantly
affected by PM1 embedding. In fact, its center of mass (COM), defined as

c1(H1) =
∑127

k=0 k |H1(k )|∑127
k=0 |H1(k )|

,

will be shifted toward the origin. The symmetric part of the FFT (128 ≤ k ≤ 255) is
ignored here. This attack can be used with the swb package.

> require(swb)
> cover <- read.png("lena.png")$grey
> stego <- pm1.embed(cover)
> hcfcom.attack(cover)
[1] 8.326196
> hcfcom.attack(stego)
[1] 8.943867

This approach can be extended to multidimensional signals, e.g., RGB images, by
using a multidimensional FFT and computing a multidimensional COM. Experimental
results [14] have shown that the HCF strategy performs better with RGB images than
with greyscale images.

Ker [14] suggested that this difference in performance is due to a lack of sparsity
in the histogram of greyscale images. To address this issue, Ker proposed using a
two dimensional adjacency histogram h2(k , l), which tabulates how often each pixel
intensity is observed next to another.
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Amplitude of Local Extrema (ALE)

The neighbourhood in the two dimensional adjacency histogram h2(k , l) can be de-
fined in four different ways: horizontal, vertical, main diagonal, and minor diagonal.
[3]

Wavelet Absolute Moments (WAM)

One of the earlier feature sets that can be used for blind detection of PM1 embedding
is called Wavelet Absolute Moments (WAM) [11]. These features can be extracted
with the function abs.moments.attack.

> abs.moments.attack(stego)
Loading required package: rwt0

[1] 0.174671834 0.054164606 0.023816770 0.013684569 0.009844786 0.008620941
[7] 0.009000971 0.011008924 0.015468531 0.024383003 0.042012892 0.077243565
[13] 0.149049799 0.041256937 0.016352419 0.008503192 0.005523534 0.004302428
[19] 0.003876143 0.003922311 0.004359665 0.005234122 0.006699314 0.009043658
[25] 0.204717740 0.071622717 0.035275153 0.022848144 0.018702908 0.018731848
[31] 0.022321434 0.030907515 0.048688359 0.085451097 0.163569729 0.334627520

2.7.2 Model-Based Steganography
Sallee modelled the marginal distribution of the DCT coefficients in JPEG images by
the generalised Cauchy distribution [18]. In contrast to LSB steganography, the pairs
of values are not equalised with his model-based approach. Instead, the embedded
message is adapted to the generalised Cauchy distribution of each AC DCT subband
in the JPEG carrier file. This adaptation is implemented as arithmetic decoding. Arith-
metic coding transforms unevenly distributed bitstreams into shorter, uniform ones.
Conversely, the arithmetic decoding can take a uniformly distributed bitstream (the
message to be embedded) to produce a bitstream that is adapted to given proba-
bilities of 0 and 1 according to the present generalised Cauchy distribution. In case
the chosen distribution fits to the JPEG file, the first order statistics is preserved after
embedding the adapted bitstream into the LSBs of the coefficients. This procedure is
known as MB1 today.

One weak property of MB1 is that block artefacts increase with growing size of
the payload. MB2 was developed to overcome this weakness [19]. It embeds the
message in the same way as MB1 does but offers only half the capacity of MB1 to
the user. The other half of the nonzero DCT coefficients are reserved for blockiness
reduction. Early assessment by Fridrich showed good security compared to MB1 [6].
In later analyses, however, the tables have been turned [21, 17].

For the sake of simplicity we focus on the deblocking function and our most pow-
erful feature set here. The reader is directed to our IWDW07 paper [22] for further
information about other attacks on MB2 that we developed during this project.

Our key innovations behind MB2 detection are:

1. a gradient aware blockiness measure,
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2. a classification of coefficient types regarding the blockiness reduction, and

3. a collection of suitable adjustment and calibration methods.

Blockiness

To reduce the blockiness, Sallee used a simple blockiness measure based on the
difference of pixels at block boundaries. In Fig. 2.5a these pixels are marked grey.
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Figure 2.5: Pixels tested for (a) simple and (b) gradient aware blockiness

Each block has a north, west, south, and east boundary (with the pixels denoted by
n∗, w∗, s∗, and e∗, respectively). The simple blockiness bs is defined by the following
sum of absolute differences:

bs =
8∑

i=1

(|n1i − n2i | + |w1i − w2i | + |s1i − s2i | + |e1i − e2i |)

Corner pixels belong to several boundaries at the same time, e. g., n28 = e21.
This simple blockiness measure is suitable as optimisation goal to be minimised

if the gradients at the block boundary were initially flat. If there is a smooth gradient
across the block boundary, even in the absence of a steganographic message, e.g. a
transition from dark to light, then the blockiness reduction will equalise the brightness
at the boundary. This would introduce a stairstep in brightness, which is not only a
visible artefact but also detectable using a gradient aware blockiness measure.

We developed an improved measure that respects the gradient within the block
while measuring the difference at the boundary [24]. Figure 2.5b shows more pixels
(marked grey) that are considered to estimate the boundary gradient. The mean of
the differences of the surrounding should be equal to the difference at the boundary
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(2.2). This leads to the new, gradient corrected version of the blockiness measure bg
(2.5).

n2i − n3i ≈
(n1i − n2i ) + (n3i − n4i )

2
(2.2)

0 ≈ n1i − 3n2i + 3n3i − n4i (2.3)

b(λ)
g,n =

8∑
i=1

|n1i − 3n2i + 3n3i − n4i |λ (2.4)

b(λ)
g = b(λ)

g,n + b(λ)
g,w + b(λ)

g,s + b(λ)
g,e (2.5)

λ can be 1 or 2, depending on whether the absolute differences or a squared measure
is desired.

Coefficient Types

The blockiness adjustment in MB2 leads to a differentiation of coefficients. The reason
for this is that neither the coefficients used for embedding nor the coefficients that do
not decrease the blockiness are altered during the blockiness adjustment. Regarding
the blockiness reduction three sets of coefficient types can be defined. These three
are the

fixed coefficients F , characterised by the fact that they cannot be altered because
of model restriction even though they would decrease the blockiness if changed.
The

different coefficients D are the ones that can be altered and if so they would de-
crease the blockiness. The remaining

indifferent coefficients I could be altered or not but if they are altered the blockiness
would increase.

In order to categorise the coefficients a blockiness minimal image needs to be created.
This is done with the function deblock_delta in the MB2 algorithm, which is also
used for blockiness reduction. It is advisable to separate the coefficient types further
into the disjoint sets DC, AC1 and AC0 of coefficients. AC0 coefficients are the AC
coefficients that are zero. The separation is useful because MB1 and MB2 do not use
DC and AC0 coefficients for embedding. Having the blockiness minimal image at hand
the indifferent coefficients can be enumerated. Doing this we get indifferent AC1, DC
and AC0 coefficients. To separate the different from the fixed coefficients we need to
take a closer look at the restrictions of the blockiness adjustment. MB1 and MB2 only
modify coefficients within their bin in order to keep the low precision bins unchanged
so the receiver of the steganogram can calculate the same model of the image. Thus,
if a coefficient value needed to be altered into another low precision bin in order to
decrease the blockiness it is a fixed coefficient because it must not be altered that way
to keep the extraction of the model parameters correct. This again could happen with
DC, AC1 and AC0 coefficients. The remaining coefficients are the different ones. They
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differ between the image and the blockiness minimal image but they could be altered
without changing low precision bins and if so cause the blockiness to decrease.

In the case of MB1 a decrease of fixed and indifferent coefficients is expected while
the different coefficients become more frequent. With MB2 the number of different
coefficients should decrease because the longer the embedded message length the
more coefficients are changed in order to decrease the blockiness, which can only be
done by the different coefficients. Thus, the number of fixed coefficients increases, be-
cause different coefficients can only become indifferent or fixed. Since the blockiness
is increasing during embedding the number of indifferent coefficients cannot increase
significantly and so the fixed coefficients need to increase. Empirical analysis shows
that the indifferent coefficients increase in most cases (92 %) too.

Adjustment and Calibration Methods

We apply the calibration method described by Fridrich et al. [9]: The JPEG image A
is dequantised and decompressed to spatial domain, cropped by a margin of 4 pixels
from the left and from the top, then recompressed to the calibrated JPEG image B
using the quantisation table of A. The cropping shifts the DCT block raster by half a
block size.

Since the size of the payload embedded into the image under test is unknown, we
produce the image at full embedding rate. However, in most cases the full embedding
rate causes the MB2 blockiness adjustment to fail. For this reason we embed only
95 % of the capacity with both, MB1 and MB2 (separately, not on top of MB1, yielding
two JPEG images).

Feature Set

The most powerful feature set F that we developed includes five features, which we
extract from six variants of the JPEG image. The resulting 30 features can be denoted
as follows:

F =



b(1)
g ,

b(2)
g ,

|FAC0|,
|D|, and
|IAC0|


extracted from



A,
B,

A + 95 % MB1 embedding,
A + 95 % MB2 embedding,

B + 95 % MB1 embedding, and
B + 95 % MB2 embedding.


. (2.6)
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Chapter 3

Results and Discussion

3.1 Possible sources of error
A meaningful comparison with previous state of the art is nearly impossible if the re-
sults are validated only by a single experiment carried out on the famous “Lena” image
and the algorithm is vaguely described. However, even if the algorithm is precisely de-
scribed and all parameters are listed in a table, the validity still depends on the data
set that is needed to obtain the same results of the original paper.

   

    
  

    
  

   
   

 
   

    
 

Sample
Population

Figure 3.1: Coverage error of a sample, represented in a Venn diagram

A coverage error occurs when all members of the population do not have an equal
(or known) probability of being included in the sample. If the sample is not carefully
matched, the performance of a detector can considerably deviate in different evalua-
tions.

Sampling error or estimation error is the error caused by observing a sample in-
stead of the whole population, which is always the case in steganalysis. This type

31
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of error decreases as the sample grows. High performance computing enables tests
with larger image databases.

3.2 Spatial Domain
In the original version of RS, Fridrich et al. divided the image into “disjoint groups of n
adjacent pixels (x1, . . . , xn).” [8] The group size is variable. The masks that performed
best in their experiments are groups of 4×1 pixels with the mask as well as 2×2
pixels with the mask .

Ker asked whether the groups should be disjoint or overlap [13]. In the similar
case of Pairs Attack [10], where the homogeneity of colour cuts is measured, he ar-
gued conclusively that the groups of pairs must overlap so that every pair of adjacent
pixels is considered. Also Dumitrescu used overlapping groups in their Sample Pairs
Analysis (SPA) [4, 5]. However, Ker found lower reliability of RS for overlapping groups
compared to their original disjoint version.

Ker experimented compared at least five linear masks and five square shaped
masks [12]. He found that groups of 3 × 3 pixels and the mask performed best,
leading to a significant improvement compared to the standard mask [13]. Al-
though we appreciate the way he set-up his image database, it was not possible for
us to reproduce this improvement with our own image database. This might be a dif-
ference in implementation, since we got improved results for other 3× 3 masks, but it
could also be a property of our image database that consists only of never compressed
images—a typical covering error problem (cf. Section 3.1).

Standard RS determines the estimated length of the embedded message by solv-
ing a quadratic equation based on the cardinalities of regular and singular groups.
RS fails if this equation has no real solution. Ker introduced a different measure that
completely ignores singular groups, but is a relative difference based on the terms of
regular groups only. This significantly improves the reliability of RS. Ker observed that
the new mask with the larger group size provides no improvement when combined
with the relative difference measure.

Only a handful of all possible masks has been tested in the literature. We
guess that in terms of performance there are cross-dependencies between mask pat-
tern, type of length estimation (relative difference or standard length estimation), and
whether groups are disjoint or overlap.

We used 10,000 original images from the BOWS-2 image database. These images
were taken with a number of different digital cameras. The shorter edge of the images
was scaled to 512 pixels, then the center 512× 512 pixels were taken and converted
to 8 bit greyscale. In contrast to the 10,000 images offered on the BOWS-2 webpage,
the images used here do not contain any BOWS-2 watermark.

We considered 4 mask patterns with 2 × 2 pixels, 100 with 3 × 3 pixels, and 776
linear mask patterns with length 2 . . . 10 pixels. The linear masks were applied three
times: after scanning row by row and along a Hilbert 1 and 2 path. The attack was
applied in four variants:

1. standard length estimation and disjoint groups (original),
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Table 3.1: 3 × 3 disjoint groups (a) with length estimation (b) with relative
difference measure

(a)
Rank Mask reliability

1 0.6789
2 0.6759
3 0.6751
4 0.6747
5 0.6709
6 0.6690
7 0.6659
8 0.6651
9 0.6597

10 0.6594
. . .

91 0.5486
92 0.5484
93 0.5362
94 0.5339
95 0.5323
96 0.5229
97 0.5168
98 0.4915
99 0.4737

100 0.4495

(b)
Rank Mask reliability

1 0.7108
2 0.7027
3 0.7014
4 0.7002
5 0.6984
6 0.6984
7 0.6956
8 0.6941
9 0.6917

10 0.6898
. . .

91 0.5845
92 0.5808
93 0.5803
94 0.5734
95 0.5635
96 0.5588
97 0.5487
98 0.5102
99 0.5031

100 0.4880

2. standard length estimation and overlapping groups,

3. relative difference measure and disjoint groups, and

4. relative difference measure and overlapping groups.

Each image was attacked twice, before and after embedding a random message that
uses 3 % of the capacity. This amounts to a total of almost 200 million RS attacks,
which will be presented in the following rank tables (Tables 3.1 . . . 3.7).

3.2.1 Results for 3× 3 Groups
Table 3.1 considers 100 mask patterns with 3 × 3 pixels. All of the following rank
tables present the first ten and last ten ranks. This ranking also depends on the image
source and probably also on the actual embedded message. Table 3.1 presents the
results for disjoint, non-overlapping groups. The attack seems to be more reliably for
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“heavy” masks (more ones than zeros) than for “light.” The reliability is between 1
(perfect separation) and 0 (when the area under the ROC curve is 0.5). The standard
RS length estimation considers the cardinalities of both sets, the regular groups R and
singular groups S to estimate the length. Since we are not interested in the precision,
but only in the reliability in this case, we compare its performance to one of the relative
difference (|R−m| − |Rm|)/(|R−m| + |Rm|), where m is the mask used to determine if
groups are regular.

The case for overlapping 3 × 3 mask patterns is shown in Table 3.2. Apart from

Table 3.2: 3× 3 overlapping groups (a) with length estimation (b) with relative
difference measure

(a)
Rank Mask reliability

1 0.7729
2 0.7639
3 0.7637
4 0.7630
5 0.7620
6 0.7619
7 0.7614
8 0.7611
9 0.7610

10 0.7603
. . .

91 0.7374
92 0.7372
93 0.7364
94 0.7363
95 0.7316
96 0.7297
97 0.7258
98 0.7250
99 0.7072

100 0.7041

(b)
Rank Mask reliability

1 0.7899
2 0.7851
3 0.7811
4 0.7798
5 0.7798
6 0.7790
7 0.7786
8 0.7783
9 0.7779

10 0.7772
. . .

91 0.7495
92 0.7484
93 0.7478
94 0.7426
95 0.7422
96 0.7405
97 0.7384
98 0.7246
99 0.7139

100 0.6693

the image margin, each pixel will be used in every position of the mask pattern here.
We notice an improvement compared to the case of disjoint groups. The previous
dependence between the weight of the mask and its reliability disappeared in the
overlapping case. Also the difference between the two measures (standard RS length
estimation; relative difference of R) is less distinctive. The mask selected by Ker
[12] performed rather poor here. However, we verified the dominance of 3× 3 masks,
which performed best in our experiments.
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3.2.2 Results for 2× 2 Groups
There are only four 2 × 2 mask patterns (apart from isomorphic variants). Table 3.3
presents the ranking for their disjoint application, and Table 3.4 for overlapping. Again,

Table 3.3: 2 × 2 disjoint groups (a) with length estimation (b) with relative
difference measure

(a)
Rank Mask reliability

1 0.6729
2 0.6532
3 0.6153
4 0.5692

(b)
Rank Mask reliability

1 0.6807
2 0.6590
3 0.6572
4 0.5802

Table 3.4: 2× 2 overlapping groups (a) with length estimation (b) with relative
difference measure

(a)
Rank Mask reliability

1 0.7493
2 0.7482
3 0.7080
4 0.7046

(b)
Rank Mask reliability

1 0.7354
2 0.7248
3 0.7184
4 0.6697

like in the 3× 3 case, the attack works more reliably in the overlapping case. Also the
dependence between heavy masks and stronger reliability could be true. However,
while in the disjoint case the relative difference seems to be slightly more reliable
compared to the standard RS length estimation, this is reversed in the overlapping
case. Surprisingly, the heavy mask pattern performed better than the proposed

by Fridrich et al. [8].

3.2.3 Results for Groups with Linear Masks
This part of experiments considered linear mask that are usually applied row by row.
We also applied these masks along the two different versions of the Hilbert curve (cf.
Fig. 2.2). Indeed, the optimum group size for our image set was slightly above 4
pixels, but below 9 pixels. However, the desired gain by using recursive scanpaths
was not found. The usual row by row scan exceeded the reliability of Hilbert paths,
regardless the masks are applied disjoint or overlapping, and regardless the measure
was standard length estimation or relative difference of R. Table 3.5 shows the results
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Table 3.5: Linear disjoint groups, scanned (a) row by row (b) along a Hilbert 1
curve (c) along a Hilbert 2 curve

(a)
Rank Mask reliability

1 0.6956
2 0.6922
3 0.6879
4 0.6865
5 0.6860
6 0.6844
7 0.6833
8 0.6830
9 0.6828

10 0.6808
. . .

767 0.4913
768 0.4894
769 0.4871
770 0.4834
771 0.4760
772 0.4735
773 0.4500
774 0.4366
775 0.4255
776 0.3895

(b)
Rank Mask reliability

1 0.6548
2 0.6527
3 0.6521
4 0.6511
5 0.6506
6 0.6492
7 0.6490
8 0.6456
9 0.6438

10 0.6433
. . .

767 0.4678
768 0.4659
769 0.4578
770 0.4565
771 0.4537
772 0.4441
773 0.4308
774 0.4181
775 0.4050
776 0.3879

(c)
Rank Mask reliability

1 0.6790
2 0.6746
3 0.6744
4 0.6739
5 0.6680
6 0.6666
7 0.6666
8 0.6663
9 0.6647

10 0.6645
. . .

767 0.4790
768 0.4789
769 0.4752
770 0.4738
771 0.4734
772 0.4693
773 0.4229
774 0.4147
775 0.4126
776 0.4003

for the particular scanpaths, standard RS length estimation, and disjoint application
of groups. Again we can see an advantage for heavy mask patterns. There is no
significant difference between the favourite that was experimentally determined
by Fridrich and the best reliability that we found in our experiments for linear masks
and conventional row by row scanpath.

Table 3.6 presents the reliability for the relative difference measure of R. This is a
minor improvement against the standard RS length estimation.

We yielded a much stronger gain when groups overlap. As mentioned earlier the
other scanpaths performed worse and are omitted in Table 3.7. We noticed a marginal
performance gain for the relative difference. Interestingly, there is a characteristic pat-
tern at the top that includes a repeated sequence 0-1-0-1. Overlapping linear groups,
scanned row by row, evaluated by relative difference yield the second best reliability,
right after the 3× 3 pixel masks.
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Table 3.6: Linear groups with relative difference measure, scanned (a) row by
row (b) along a Hilbert 1 curve (c) along a Hilbert 2 curve

(a)
Rank Mask reliability

1 0.7139
2 0.7111
3 0.7093
4 0.7084
5 0.7083
6 0.7065
7 0.7064
8 0.7058
9 0.7056

10 0.7044
. . .

767 0.5297
768 0.5261
769 0.5212
770 0.5179
771 0.5157
772 0.5148
773 0.4931
774 0.4765
775 0.4679
776 0.4296

(b)
Rank Mask reliability

1 0.6719
2 0.6704
3 0.6682
4 0.6681
5 0.6668
6 0.6663
7 0.6651
8 0.6638
9 0.6636

10 0.6635
. . .

767 0.5009
768 0.4971
769 0.4934
770 0.4923
771 0.4917
772 0.4799
773 0.4681
774 0.4559
775 0.4424
776 0.4228

(c)
Rank Mask reliability

1 0.7068
2 0.7007
3 0.6934
4 0.6920
5 0.6911
6 0.6908
7 0.6897
8 0.6895
9 0.6881

10 0.6879
. . .

767 0.5176
768 0.5175
769 0.5150
770 0.5128
771 0.5069
772 0.5017
773 0.4659
774 0.4549
775 0.4524
776 0.4388

3.3 DCT Domain

3.3.1 Impact of Image Size

For the comparison in Fig. 3.2 we downloaded 630 large TIFF images (1500 × 2100
pixels) from the NRCS database [16]. These images have been downsized (using
pnmscale) to five different sizes (600 × 840, 400 × 560, 200 × 280, 80 × 112, and
40 × 56 pixels), converted to greyscale, and JPEG compressed with quality q = 0. 8.
For the comparison in Fig. 3.2, we selected images with an embedding rate of 1 %
of the capacity. In abundance of results we show only the best representative for
each fundamental estimation method. This selection is based on the between-image
error at an embedding rate of 1 % of the capacity (600 × 840, JPEG quality 0.8).
The between-image error is related to the detection power, since this kind of error
dominates at low embedding rates, while the within-image error is negligible and the
overall bias in the estimation is without influence to reliability. The representatives
are the JPairs attack [25] applied to AC coefficients only, scanned interblock along a
Hilbert 1 path, the JSPA attack [25] applied to AC coefficients only, scanned interblock
row by row, the attack by Zhang and Ping [29], the category attack by Lee et al. [15],
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Table 3.7: Overlapping linear groups, scanned row by row (a) with length esti-
mation (b) with relative difference measure

(a)
Rank Mask reliability

1 0.7695
2 0.7689
3 0.7689
4 0.7689
5 0.7689
6 0.7689
7 0.7643
8 0.7643
9 0.7643

10 0.7643
. . .

767 0.7030
768 0.7023
769 0.7023
770 0.7023
771 0.7023
772 0.7022
773 0.7022
774 0.7022
775 0.7022
776 0.7022

(b)
Rank Mask reliability

1 0.7732
2 0.7732
3 0.7732
4 0.7732
5 0.7732
6 0.7726
7 0.7726
8 0.7726
9 0.7726

10 0.7726
. . .

767 0.7090
768 0.7090
769 0.7072
770 0.7072
771 0.7072
772 0.7072
773 0.7072
774 0.7072
775 0.7072
776 0.7071

the JWS attack [25] applied to AC coefficients only, scanned interblock row by row,
the WB attack [25] applied to both AC and DC coefficients, scanned interblock along
a slalom path, the JRS attack [25] with mask (0, 1) applied to AC coefficients only,
scanned intrablock in zigzag order, and finally the attack by Yu et al. [27]. As expected,
the between-image error decreases with increasing image size. While the between-
image error of the JPairs attack is smallest for images larger than 200×280, there are
more suitable candidates for thumbnail images (40× 56), where WB attack, category
attack, and the attack by Yu et al. do a better job. Interestingly, the JWS attack, which is
closely related to the front runner WB, has the biggest problem with thumbnail images.
One possible explanation could be the increased variance in downscaled images.

3.3.2 Impact of JPEG Quality

The medium sized images (200×280) have been compressed at seven different qual-
ities (q = 0. 5, 0. 6, 0. 7, 0. 8, 0. 9, 0. 95, 0. 99). Again, we only selected images with an
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Figure 3.2: Between-image error as a function of the image size

embedding rate of 1 % of the image capacity here. Figure 3.3 shows the between-
image error as a function of the JPEG quality. Except for the category attack and the
attack by Zhang and Ping, this kind of error is increased for qualities above 0.9.

3.4 Steganalysis of Model-Based Steganography
For our experimental evaluation we downloaded 2300 large TIFF images (2100 ×
1500 pixels) and 630 further images (1500 × 2100 pixels) from the NRCS database
[16]. These images have been downsized to 840 × 600 pixels by pnmscale’s default
method, converted to greyscale, and JPEG compressed with quality q = 0. 8. The
rather small payload was 0.02 bits per nonzero coefficient for both, MB1 and MB2,
using the original implementation by Phil Sallee.

The training was based on 2300 images and the classification was done by LDA
based on 630 images. Table 3.8 shows the results, where “23” represents the attack
by Fridrich with 23 DCT features [6], “274” the one with 274 mixed DCT and Markov
features by Pevný and Fridrich [17], and “324” the set by Shi et al. [21] with the 324
Markov features. “81” and “193” is a segmentation of the 274 features, where “81”
contains the calibrated averaged Markov features. F is the proposed feature set,
defined in Eq. 2.6 on page 29.
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Figure 3.3: Between-image error as a function of the JPEG quality

Table 3.8: Detection reliability for feature combinations

Additional Number of features
features 23 324 274 81 193

Reliability
MB1 — 0.181 0.597 0.698 0.585 0.516

F 0.596 0.793 0.791 0.743 0.708

MB2 — 0.187 0.659 0.759 0.666 0.518
F 0.873 0.924 0.937 0.919 0.909

False alarm rate
at 50 % detection

MB1 — 0.348 0.133 0.077 0.133 0.136
F 0.140 0.050 0.041 0.060 0.080

MB2 — 0.370 0.105 0.042 0.086 0.147
F 0.019 0.008 0.006 0.011 0.011



Chapter 4

Conclusions

In our comprehensive study of the RS attack we found that there is no single mask
pattern that works best in all cases. Instead we found inter-dependencies between all
parameters, e.g. mask shape (squared or linear), application (disjoint or overlapping
groups), and the measure used for detection (length estimate or relative difference).
The surprising result is that not a single change of a particular parameter makes an
appreciable difference. However, if we change several of them at once, the detection
power of RS grows significantly for mask patterns that did not receive attention in the
literature so far, despite the fact that LSB replacement in spatial domain images is
probably the best understood steganalysis problem today.

We also contributed to the “harder” problems in steganalysis, namely the detection
of model-based steganography MB2. Our proposed feature set is based on coefficient
types that can be derived from the blockiness adjustment of MB2. Used in combination
with existing blind feature sets the false positive rate is reduced from 10 % to 1 % for
a very low embedding rate (0.02 bits per non-zero coefficient).

We developed a methodology to apply higher order steganalytic attacks from the
spatial domain in the transformed domain. Based on 1700 million attacks, we evalu-
ated the performance of the proposed attacks under diverse image parameters (size,
quality), and determined the most advisable schemes (WB for small images, JPairs
for larger ones).

The implementation of our steganographic workbench will almost certainly be ex-
tended during the next years. It will shorten the development and evaluation cycles for
new attacks and new steganographic embedding methods.

41
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List of Symbols, Abbreviations,
and Acronyms

AC alternating current (DCT subbands with nonzero video frequency)
ALE amplitude of local extrema, a feature set
BEST Better Steganalysis, project title
BEST2 Better Steganalysis, phase 2
BIE between image error
CA Category Attack
COM center of mass
CPU Central Processing Unit
DC direct current (DCT subbands with zero video frequency)
DCT discrete cosine transform
FFT fast Fourier transform
GPL General Public Licence
HCF histogram characteristic function
IQR inter quartile range
JPairs Pairs attack adopted to JPEG domain
JPEG Joint Photographic Experts Group (lossy image compression format)
JRS RS attack adopted to JPEG domain
JSPA SPA adopted to JPEG domain
JWS WS attack adopted to JPEG domain
LSB Least Significant Bit
LTSB Least Two Significant Bits
MB1 Model-based steganography (initial variant)
MB2 Model-based steganography (with deblocking)
Pairs Pairs attack
PMk Plus-Minus-k embedding
PNG Portable Network Graphics (lossless image compression format)
ROC Receiver Operating Characteristic
RS An attack based on regular and singular groups of pixels
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48 List of Symbols, Abbreviations, and Acronyms

SPA Sample Pairs analysis attack by Dumitrescu
sqrt square root
WAM wavelet absolute moments, a feature set
WB weighted non-steganographic boundary attack
WIE within image error
WPC Wet Paper Codes
WS An attack based on an estimation weighted statistics from surrounding

pixels by Fridrich and Goljan
Yu attack to Jsteg-like embedding using modified Cauchy model fitting by

Yu et al.
ZP simple attack by Zhang and Ping
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