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Nomenclature 
 

A  = area of the duct 

Pc  = specific heat of perfect gas per unit of mass at constant pressure 

k  = Boltzmann constant 

M  = Mach number 

m  = mass of gas molecule 

m  = mass flux through the duct 

n  = number density 

P  = pressure 

T  = temperature 

u  = fluid velocity 

x  = axis along the duct  

  = enthalpy per unit of mass at the duck inlet 

  = gaseous constant 

  = heat input per unit of mass 

  = mass density 

 

 

I.  Introduction 

One-dimensional compressible flows of calorically perfect gases in which only a single driving potential is 

present are called simple flows
1, 2, 3

. Because Mach number and property relations for simple flows can be expressed 

in closed form, such flows are usually treated individually. Most introductory compressible flow courses and most 

compressible flow textbooks discuss three types of simple flows: isentropic flow in a variable area duct, the heat 

addition (or rejection) flow in constant area duct (Rayleigh flow), and adiabatic flow in a constant area duct with 

gas-wall-surface friction (Fanno flow). A more complicated case of a simple mass addition flow is described in 

literature
4
. In the present paper we consider a case of two driving potentials: heat addition and variable area duct. 

Therefore, the obtained governing ordinary differential equations cannot be solved analytically, as in the case of 

simple flows, but they can be easily solved numerically.  This research has been inspired by recent papers
5, 6

, where 

the authors discussed the thrust augmentation of solid rocket motors by heating the alumina particles in the exhaust 

of the motor by a microwave beam generated by a ground-based microwave generation facility. Thus, the equations 
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obtained in the paper can be used, for example, as benchmarks for numerical investigation of gas flows in a nozzle 

heated by an external heating source, such as in
5, 6

.  

 

II. Theory  

A set of equations describing a one-dimensional gas flow in a nozzle heated by an external heating source, Fig. 

1, can be written as 
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where the first, second, and the equations correspond to the laws of conservation of mass, momentum, and energy. 

 

 

 

 

 

 

 

  

Introducing the gas enthalpy per unit mass at the inlet of the duct, Fig. 1, we obtain from Eq. (3) that  

   
2

2u
TcP          (4) 

Substituting  

 
Aum

m
n





     and     














 

2

1 2u

c
T

P

      (5)         

where T is obtained from Eq. (4), into the equation for pressure TknP  , we obtain 
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Fig. 1. Schematic of gas flow through the nozzle 



 3 

 






































 






2

)1(

2

22 u

Au

mu

Aucm

km
P

P


     (6) 

Here we have used   for a perfect gas, i.e., Pcmk  //)1(  . Substituting Eq. (6) for P  and Amu / , Eq. 

(1), into Eq. (2) after simple algebra we obtain a governing equation for flow velocity u  vs. x  
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where 3/5 ,  is an input constant and   and A  are input functions on x .   

  Let us obtain a governing equation for Mach number. Substituting T  from Eq. (5) into the expression for 

Mach number 
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Substituting Eq. (9) into Eq. (7) after some algebra we obtain a governing equation for Mach number: 
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Unlike in the case of a simple flow, Eq. (10) generally cannot be solved in radicals; however, it can be solved 

numerically via standard methods. It can be shown that the governing equations for isentropic and Rayleigh flows 

(the cases of 0  and constA  , respectively) can be derived from Eq. (10).    
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