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1. Objective 

The Future Force (FF) Soldier will be equipped with a wide array of new technology, all 
requiring electrical power for operation.  It will be critical to incorporate energy harvesting 
systems into the Soldier’s gear to accommodate the power demands and lessen the dependence 
on cumbersome batteries.  Photovoltaic (PV) technology is one such option, but is currently 
impractical due to its high cost and low efficiency, and implementation barriers.  The 
evolutionary development of biological systems (for this research, the optical protein 
bacteriorhodopsin [bR], which is an opto-electric protein found in the membrane of the 
extremophile bacterium Halobacterium salinarum) has created natural and sustainable nanoscale 
materials with capabilities beyond that of current technology, including a wider absorbance 
spectrum.  Integrating this biological material with inorganics, including semiconductor quantum 
dots (QDs) and titanium dioxide nanotubes (NTs), opens new possibilities for protein sensitized 
solar cells (PSSC).  The objective of this research is to better understand the mechanism of 
efficient photocurrent generation in bio-nano hybrid PSSC material for use in photovoltaic 
applications.  

2. Approach 

Structurally similar to the visual rhodopsin found in the mammalian eye, bR has a wide spectral 
absorbance and most strongly absorbs visible light in the 570-nm spectral region, as shown in 
figure 1a.  With the absorbed photonic energy, the protein’s retinal undergoes an isomerization 
and initiates proton pumping across the 5.5-nm-thick protein. Studies have demonstrated that bR 
can create a constant current output upon illumination, as shown in figure 1b. 

 

Figure 1. (a) QD absorbance (blue) and emission (orange) properties of QDs and absorbance (purple) of bR; and 
(b) the photocurrent generated from six oriented monolayers of bR. 
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Previous research has theorized the utility of bR in PV applications, calculating bR’s maximal 
theoretical light-harvesting efficiency to be 25% and its average specific power as 2,103 W/kg, 
compared to only 18% and 32 W/kg, respectively, for silicon (1).  Preliminary studies show 
(figure 1a) that the addition of QDs into the bR PV system greatly extends its absorptive 
capabilities into the ultraviolet (UV) and shorter wavelength visible range.  The QDs can be 
engineered to re-emit the absorbed light at the wavelength that is most efficiently absorbed by 
bR, thus increasing the amount of solar energy harvested.  In mammalian rhodopsin, the photon 
bleached retinal (a vitamin A derivative) is expelled from the protein, requiring a supply of fresh 
retinal from the host.  bR does not expel the retinal but instead catalyzes it back to the 
unbleached form making it a more adaptable photo material.  

Tests conducted by Griep et al. (2–4) showed an increase in the photoelectric response of bR due 
to photon scavenging of bound semiconductor QDs.  Figure 2a shows the increase in 
fluorescence between just bR and bR with attached QDs to confirm the linkage.  Figure 2b 
shows an ~35% increase in the bR/QD photovoltage over that of just bR.  This confirms that 
QDs play an important role in enhancing the electrical output of the bR in a photon scavenging 
system.  With this evidence, the current work has focused on integrating bR with one-
dimensional (1-D) nanostructures, a necessary next step in understanding the contributions of 
incremental advances in a bio-nano-hybrid photon harvester. 

 

Figure 2.  Attachment of QDs to bR is confirmed by the large increase of fluorescence upon UV 
illumination (left).  The QD fluorescence and resonance energy transfer to the bR increases the 
photovoltage by ~35% (right). 

Research was conducted (4) that quantified the relative influence of chemically attached QDs on 
bR absorption.  It was determined that QDs will effectively absorb light at short solar 
wavelengths and re-emit that light allowing the bR to use it in its native charge separation  
process.  This is in addition to the fact that bR has a relatively broad absorption spectrum 
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compared to narrow wavelength absorption/conversion of inorganic materials because of 
bandgap matching. 

The bR PSSC has an advantage over a dye sensitized solar cell (DSSC) in the way in which 
charge is moved.  bR is most often used in the form of native cell membrane patches containing 
many bR monomers.  The membrane patches (termed purple membrane [PM]) have a charge 
differential across the sides of the membrane at neutral pH.  Thus, the PM can be oriented and 
deposited in an electric field, which results in the charge being directed vectorally into the 
underlying substrate.  However, because the bR pumps a proton, this fact may have applicability 
in helping maintain an adequate supply of “holes” at the bR/electrolyte interface to inhibit 
exciton recombination.  Additionally, the bR pumps a proton (hole) each 10 ms and replaces that 
proton from the aqueous electrolyte, freeing an electron.  This is a directed chemical process so 
the probability of the electron-proton recombination may be reduced. 

For the current PSSC, titania (TiO2) NTs were investigated as the 1-D electron transport 
substrate (5).  TiO2 NTs were synthesized by anodization of bulk high purity titanium (Ti) foils 
and Ti6Al4V alloy foils, and into thin-film Ti evaporated onto substrates including indium tin 
oxide (ITO).  ITO is both transparent and electrically conductive and could serve as one or both 
electrodes in the PSSC, especially since TiO2 NTs can be made transparent.  This could 
potentially double the capacity of the PSSC by having two bR/substrate assemblies per cell, 
connected either in series or parallel depending on the individual orientation of the PM on each. 

3. Results 

The TiO2 NTs were electrochemically etched in a solution of ammonium fluoride (NH4F) in 
ethylene glycol and water at 60 VDC.  Figure 3 shows the resulting structures in bulk Ti foils 
and figure 4 is in evaporated thin-film Ti on ITO-glass.  As these figures show, the fabrication of 
TiO2 NTs can be accomplished in bulk Ti foil and micron-thick Ti sputtered onto other material 
substrates.  This provides initial results showing that TiO2 PSSCs might be fabricated onto a 
variety of rigid or flexible, thin and lightweight substrates. 

 

Figure 3.  TiO2 NTs etched in bulk Ti foils with 0.2 Wt% NH4F at 60 VDC for 2 h.  The scale bars are 50 µm (left), 
2 µm (center), and 1 µm (right) (5).  
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Figure 4.  TiO2 NTs etched in 2-µm-thick sputtered Ti on ITO with 0.2 Wt% NH4Fat 
60 VDC for 2 h. The scale bars are 500 nm (left) and 500 nm (right) (5).  

Figure 5 shows a substrate architecture composed of loosely bound TiO2 nanotubes or zinc oxide 
(ZnO) nanowires on ITO-glass, coated with an oriented layer of bR of unknown thickness 
(estimates are approximately 20 µm) (6).  The assembly was immersed in 0.1 M potassium 
chloride (KCl) electrolyte as an electrochemical cell with transient voltages recorded. 
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Figure 5.  Architecture and preliminary results of PSSC of TiO2 NTs (upper left) showing voltage output of 35 mV 
(plot shows output through 10× isolation amplifier) and ZnO nanowires (bottom) showing light cycling 
and 100 mV output (plot shows output through 10× isolation amplifier) (6). 

Bacteriorhodopsin was oriented and deposited onto ITO glass without an underlying 1-D 
material.  This was performed to investigate the effect of an electrolyte commonly used in 
DSSCs, that electrolyte being an iodine/tri-iodide solution.  The architecture and preliminary 
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result are shown in figure 6.  Here, the output is not magnified and shows ~600 mV of output.  
One preliminary test (not shown here) resulted in a current output of approximately 0.8 µA with 
an active area 5 mm in diameter.  Conventional solar calculator cells provide approximately 
0.2 µA of current with a much larger active area. 

bR - ITO Iodine solution

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
-5 0 5 10 15 20

Time (sec)

V
ol

ta
ge

 (V
)

 

Figure 6. Output of bR/ITO-glass photon harvester in electrochemical cell and iodine/tri-iodide electrolyte 
solution (6).  

4. Conclusions 

The first-year work, building upon prior results, has shown that the photovoltage output of bR is 
enhanced with the integration of semiconductor QDs attached via the biotin-streptavidin linkage.  
This represents the first incremental improvement in increasing photon-to-electrical transduction 
in the bio-nano hybrid.  Building upon this, substrates of 1-D TiO2 NTs were fabricated in bulk 
and thin-film material with “green” chemistry, and in a relatively short time, for use as the carrier 
generating medium for our nano-bio hybrid solar cell platform.  This process can be easily scaled 
up to industrial production and adapted to substrates with arbitrary shape.  Using the 1-D TiO2 
NTs and bR, we showed that with oriented bR, the nano-bio hybrid platform performs as an 
effective photon harvester.  Results are still preliminary and the various efficiency metrics have 
not yet been determined; however, the initial set of results appears to be encouraging.  The next 
incremental step will be to investigate gel-type electrolytes that do not degrade the bR protein.  
Additional work will study the temporal stability of simple bR solar cells under extended periods 
of activity and diurnal light cycling. 
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6. Transitions 

This work will be continued in the second-year Director’s Research Imitative (DRI) for further 
development. 



 

8 

List of Symbols, Abbreviations, and Acronyms 

1-D one-dimensional  

ARL U.S. Army Research Laboratory  

bR bacteriorhodopsin  

DRI Director’s Research Initiative 

DSSC dye sensitized solar cell  

FF Future Force  

ITO indium tin oxide  

NTs nanotubes  

PM purple membrane  

PSSC  protein sensitized solar cells  

PV photovoltaic  

QDs quantum dots  

Ti titanium  

TiO2 titanium dioxide or titania 

UV ultraviolet  

ZnO  zinc oxide  

 

 



 

9 

No. of 
Copies Organization 
 
 1 ADMNSTR 
 ELEC DEFNS TECHL INFO CTR 
  ATTN  DTIC OCP 
  8725 JOHN J KINGMAN RD STE 0944 
  FT BELVOIR VA 22060-6218 
 
 15 HCS US ARMY RSRCH LAB 
 1 CD ATTN  RDRL CIM G  T  LANDFRIED 
  ATTN RDRL WM S KARNA (15 COPIES) 
  BLDG 4600 
  ABERDEEN PROVING GROUND MD  
  21005-5066 
 
 3 CDS US ARMY RSRCH LAB 
  ATTN  IMNE ALC HRR  
  MAIL & RECORDS MGMT 
  ATTN  RDRL CIM L TECHL LIB 
  ATTN  RDRL CIM P TECHL PUB  
  ADELPHI MD 20783-1197 
 
TOTAL: 20 (1 ELEC, 4 CDS, 15 HCS) 
 



 

10 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

INTENTIONALLY LEFT BLANK. 
 
 


	List of Figures
	Acknowledgments
	1. Objective
	2. Approach
	3. Results
	4. Conclusions
	5. References
	6. Transitions
	List of Symbols, Abbreviations, and Acronyms

