Molecular and Cellular Probes

The Location, Diagnosis and Monitoring of Disease by Molecular, Immunological and Proteomic Techniques

Volume 24 Number 6 August 2019 ISSN 6090-8508

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/copyright
Flaviviruses are a highly diverse group of RNA viruses classified within the genus Flavivirus, family Flaviviridae. Most flaviviruses are arthropod-borne, requiring a mosquito or tick vector. Several flaviviruses are highly pathogenic to humans; however, their high genetic diversity and immunological relatedness makes them extremely challenging to diagnose. In this study, we developed and evaluated a broad-range Flavivirus assay designed to detect both tick- and mosquito-borne flaviviruses by using RT-PCR/electrospray ionization mass spectrometry (RT-PCR/ESI-MS) on the Ibis T5000 platform. The assay was evaluated with a panel of 13 different flaviviruses. All samples were correctly identified to the species level. To determine the limit of detection for the mosquito-borne primer sets, serial dilutions of RNA from West Nile virus (WNV) were assayed and could be detected down to an equivalent viral titer of 0.2 plaque-forming units/mL. Analysis of flaviviruses in their natural biological background included testing Aedes aegypti mosquitoes that were laboratory-infected with dengue-1 virus. The assay accurately identified the virus within infected mosquitoes, and we determined the average viral genome per mosquito to be 2.0 × 10^6. Using human blood, serum, and urine spiked with WNV and mouse blood and brain tissues from Karshi virus-infected mice, we showed that these clinical matrices did not inhibit the detection of these viruses. Finally, we used the assay to test field-collected Ixodes scapularis ticks collected from sites in New York and Connecticut. We found 16/322 (5% infection rate) ticks positive for deer tick virus, a subtype of Powassan virus. In summary, we developed a single high-throughput Flavivirus assay that could detect multiple tick- and mosquito-borne flaviviruses and thus provides a new analytical tool for their medical diagnosis and epidemiological surveillance.
<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT unclassified</td>
<td>Same as Report (SAR)</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>
Rapid identification of vector-borne flaviviruses by mass spectrometry

Rebecca J. Grant-Klein, Carson D. Baldwin, Michael J. Turell, Cynthia A. Rossi, Feng Li, Robert Lovari, Chris D. Crowder, Heather E. Matthews, Megan A. Rounds, Mark W. Eshoo, Lawrence B. Blyn, David J. Ecker, Rangarajan Sampath, Chris A. Whitehouse

A R T I C L E I N F O
Article history:
Received 5 February 2010
Accepted 5 April 2010
Available online 20 April 2010

Keywords:
Ibis-T5000
Electrospray ionization
Tick-borne
Mosquito-borne
Arbovirus

A B S T R A C T
Flaviviruses are a highly diverse group of RNA viruses classified within the genus *Flavivirus*, family *Flaviviridae*. Most flaviviruses are arthropod-borne, requiring a mosquito or tick vector. Several flaviviruses are highly pathogenic to humans; however, their high genetic diversity and immunological relatedness makes them extremely challenging to diagnose. In this study, we developed and evaluated a broad-range flavivirus assay designed to detect both tick- and mosquito-borne flaviviruses by using RT-PCR/electrospray ionization mass spectrometry (RT-PCR/ESI-MS) on the Ibis T5000 platform. The assay was evaluated with a panel of 13 different flaviviruses. All samples were correctly identified to the species level. To determine the limit of detection for the mosquito-borne primer sets, serial dilutions of RNA from West Nile virus (WNV) were assayed and could be detected down to an equivalent viral titer of 0.2 plaque-forming units/ml. Analysis of flaviviruses in their natural biological background included testing *Aedes aegypti* mosquitoes that were laboratory-infected with dengue-1 virus. The assay accurately identified the virus within infected mosquitoes, and we determined the average viral genome per mosquito to be 2.0×10^6. Using human blood, serum, and urine spiked with WNV and mouse blood and brain tissues from Karshi virus-infected mice, we showed that these clinical matrices did not inhibit the detection of these viruses. Finally, we used the assay to test field-collected *Ixodes scapularis* ticks collected from sites in New York and Connecticut. We found 16/322 (5% infection rate) ticks positive for deer tick virus, a subtype of Powassan virus. In summary, we developed a single high-throughput flavivirus assay that could detect multiple tick- and mosquito-borne flaviviruses and thus provides a new analytical tool for their medical diagnosis and epidemiological surveillance.

1. Introduction
Flaviviruses are single-stranded, positive-sense, RNA viruses classified in the genus *Flavivirus* within the family *Flaviviridae*. There are more than 50 virus species within the genus, and most are arthropod-borne, being transmitted to vertebrates by infected mosquitoes or ticks [16]. Phylogenetic analysis has demonstrated three major groups of flaviviruses, comprising the mosquito-borne, tick-borne, and no-known-vector clades [21]. Of the known flaviviruses, approximately 50% are recognized human pathogens causing fever, encephalitis, or hemorrhagic disease; however, for many of the others, their pathogenic potential has not been well-studied [16]. Important mosquito-borne flaviviruses include dengue viruses serotypes 1–4 (DENV 1–4), yellow fever virus (YFV), West Nile virus (WNV), Japanese encephalitis virus (JEV), and St. Louis encephalitis (SLEV).

Viruses in the tick-borne encephalitis virus (TBEV) complex are significant human pathogens in various parts of Europe and Asia [15] and have been defined geographically and phylogenetically into the European, Far Eastern, and Siberian subtypes [9]. Several tick-borne flaviviruses can also cause hemorrhagic disease. Important examples of these viruses include Omsk hemorrhagic fever virus (OHFV) in Russia, Kyasanur Forest disease virus (KFDV) in India, and the closely related Akhurma hemorrhagic fever virus (AHFV), which has been a rare cause of hemorrhagic fever in Saudi Arabia since its initial description in 1995 [36]. Powassan virus (POWV) is the only recognized tick-borne flavivirus pathogenic to humans in the Americas [6]. It occurs in parts of eastern Russia, Canada, and in isolated foci in the northeastern and north-central United States. Cases of encephalitic disease caused by this virus...
appear to be on the increase in the United States [17]. Deer tick virus (DTV), which is closely related to POWV, was first isolated from Ixodes scapularis ticks in 1997 from North America [14,32]. DTV is now considered a genetic subtype of POWV and was recently shown to be a cause of fatal encephalitis [31].

Development of broad-range flavivirus diagnostic assays has been problematic largely because of the high degree of genetic diversity and immunological cross-reactivity among these viruses. Many molecular amplification assays for flaviviruses have been developed over the years [22]. Several attempts to develop broad-range or universal flavivirus detection assays have also been made, typically using RT-PCR with degenerate primers targeted to conserved regions of the genome. However, these assays require either the sequencing of the resulting amplicons [2,24,26] or analysis by restriction digestion of the amplicons [13]. While the use of mass spectrometry as a diagnostic tool has made great strides in recent years [11], it has mostly been used for bacterial identification by the examination of protein or lipid profiles using matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF). In contrast, the Ibis T5000 (Ibis Biosciences, Inc., a subsidiary of Abbott Molecular) analyses DNA and determines the base composition (A x G x T x C x) of PCR amplicons by using electrospray ionization mass spectrometry (ESI-MS) (Fig. 1) [8,28]. In the present study, we developed an 8-primer-pair broad-range flavivirus assay using RT-PCR coupled with ESI-MS. Using this assay, we tested multiple strains of viruses, representing both mosquito-virus assay using RT-PCR coupled with ESI-MS. Using this assay, we developed an 8-primer-pair broad-range flavivirus diagnostic assay that has been problematic largely because of the high degree of genetic diversity and immunological cross-reactivity among these viruses. Many molecular amplification assays for flaviviruses have been developed over the years [22]. Several attempts to develop broad-range or universal flavivirus detection assays have also been made, typically using RT-PCR with degenerate primers targeted to conserved regions of the genome. However, these assays require either the sequencing of the resulting amplicons [2,24,26] or analysis by restriction digestion of the amplicons [13]. While the use of mass spectrometry as a diagnostic tool has made great strides in recent years [11], it has mostly been used for bacterial identification by the examination of protein or lipid profiles using matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF). In contrast, the Ibis T5000 (Ibis Biosciences, Inc., a subsidiary of Abbott Molecular) analyses DNA and determines the base composition (A x G x T x C x) of PCR amplicons by using electrospray ionization mass spectrometry (ESI-MS) (Fig. 1) [8,28]. In the present study, we developed an 8-primer-pair broad-range flavivirus assay using RT-PCR coupled with ESI-MS. Using this assay, we tested multiple strains of viruses, representing both mosquito-borne and tick-borne flaviviruses. In addition, to show that the assay is capable of detecting viruses in biologically- and clinically-relevant matrices, we examined laboratory-infected mosquitoes, blood and brain tissues from laboratory-infected mice, and virus-infected human clinical specimens. Furthermore, field-collected ticks from several sites in the U.S. Northeast were tested for the presence of naturally occurring Flavivirus infection. Due to the increased geographic distribution and severity of disease caused by members of the Flavivirus genus, novel methods for their detection are critical for both vector surveillance efforts and clinical diagnosis.

2. Materials and methods

2.1. Viral isolates, plaque assay, and RNA extraction

The viruses used in this study were part of the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID) virus culture collection, and their characteristics are listed in Table 1. RNA from virus cultures and from pooled mosquitoes was extracted using TRIzol-LS® (Invitrogen Corp., Carlsbad, CA) according to the manufacturer’s instructions. RNA was quantified and checked for quality by measuring absorbance at 260 and 280 nm. Samples were stored at −70 °C until used.

2.2. Tick collections

Adult ticks were collected by flagging from multiple sites in New York and Connecticut. Ticks were homogenized using a combination of large and small yttria-stabilized zirconium oxide beads (Glen Mills, Clifton, NJ) and total nucleic acids were extracted using QIAzol-Lysis Reagent (Invitrogen Corp., Carlsbad, CA) according to the manufacturer’s instructions. RNA was quantified and checked for quality by measuring absorbance at 260 and 280 nm. Samples were stored at −70 °C until used.

2.3. Mosquito inoculation and virus plaque assay

Aedes aegypti mosquitoes (Rockefeller strain) were obtained from the Uniformed Services University of Health Sciences and inoculated intrathoracically with 0.3 μL of a virus suspension containing about 10^5 plaque-forming units (PFU)/μL (10^5.5 PFU inoculated per mosquito) of DENV1-4, or YFV. After inoculation, mosquitoes were held in cardboard containers in an incubator maintained at 26 °C for 7 days and were provided apple slices daily as a carbohydrate source. The mosquitoes were triturated in 0.6 mL of diluent containing 10% heat-inactivated fetal bovine serum in Medium 199 with Earle’s salts, 5 μg of amphotericin B, 50 μg of gentamicin, 100 units of penicillin, and 100 μg of streptomycin per mL. An aliquot of 0.1 mL of each suspension was added to 0.9 mL of diluent and frozen at −70 °C until tested for virus by plaque assay.

Fig. 1. Theoretical species resolution for a subset of medically important Flavivirus sequences in GenBank. Most major species are clearly differentiated from each other. Additional primer pairs designed to specific species groups will provide added resolving power within a cluster (data not shown).
Before being transported from the biosafety level-3 suite, 1.5 mL of TRIzol-LS® was added to the remaining 0.5 mL of mosquito suspension, and this sample was then split in half to produce two 1-ml aliquots. RNA was extracted from one of these suspensions as described above. The diluted mosquito suspensions were thawed, serial 10-fold dilutions made, and then tested by plaque assay on LLC-MK-2 cell monolayers to determine the amount of infectious virus present. Methods were essentially identical to those described by Gargan et al. [12], except that the second overlay, containing neutral red, was added 5, rather than 4 days after the initial overlay. Plaques were counted the following day, and titers containing neutral red, was added 5, rather than 4 days after the initial overlay. Plaques were counted the following day, and titers were expressed as log10 PFU per mL of mosquito suspension. For quantitative analysis, infected mosquito pools contained a single virus-infected mosquito and nine uninfected mosquitoes. For the mixed infected mosquito pools, two infected mosquitoes (each containing a different virus) were combined with eight uninfected mosquitoes.

2.4. Spiking of human clinical specimen with WNV

Purified WNV was diluted to a final concentration of 1 × 10^6 PFU/mL in human blood, serum, or urine (Bioréclamation, Inc., Liverpool, NY), or phosphate-buffered saline (PBS) control. Duplicate aliquots of 250 μl of each spiked sample were added to 750 μl of TRIzol-LS®, and the RNA was extracted as described above.

2.5. Tissues from Karshi virus-infected mice

Karshi virus-infected tissues were obtained from suckling mice that were inoculated subcutaneously when 2-day-old with a sucking mouse passage of this virus as part of a previous study on the tissue distribution of this virus [34]. The presence of Karshi virus in the samples was previously confirmed by a Karshi virus-specific quantitative real-time PCR assay performed on the Roche LightCycler as described [34].

2.6. Primer design

Eight primer pairs were designed to target the various members of the genus Flavivirus (Table 2). The assay was designed to amplify all mosquito- and tick-borne flaviviruses, with four primer pairs (VIR2215, VIR2217, VIR2211, and VIR2216) being pan-Flavivirus, one primer pair (VIR2208) targeting all mosquito-borne flaviviruses, one primer pair (VIR2234) targeting all four serotypes of DENV, and two primer pairs (VIR1026 and VIR1028) targeting all strains of WNV (Table 2). The VIR2217 primer pair targets the RNA-dependent RNA polymerase (RdRp, NS5) gene that is conserved across all known flaviviruses. For each primer region, a database of expected base compositions {AGCT} from all known Flavivirus sequences in GenBank was generated (data not shown) and used in the identification and classification. All primers used in this study had a thymine nucleotide at the 5’ end in order to minimize the addition of non-template adenosines during amplification using Taq polymerase [4].

2.7. One-step RT-PCR

A PerkinElmer Janus robot (Waltham, MA) was used to set-up each one-step RT-PCR reaction. All RT-PCR reactions were performed in 40 μl reaction using 96-well microtiter plates and an Eppendorf® Mastercycler® thermocycler (Eppendorf, Hamburg, Germany). Each RT-PCR reaction buffer consisted of 3.0 U of Ampli Taq Gold (Applied Biosystems, Foster City, CA), 20 m mM Tris (pH 8.3), 75 mM KCl, 1.5 mM MgCl2, 0.4 M betaine, 200 μM dATP, 200 μM dCTP, 200 μM dGTP, 200 μM dTTP (each dNTP from Bioline USA, Randolph, MA), 200 μM 13C-enriched dGTP (Spectra Stable Isotopes, Columbia, MD), 10 mM diithiothreitol, 100 ng of sonicated poly-A DNA (Sigma Corp, St Louis, MO), and 250 nM of each primer. The following PCR conditions were used to amplify sequences: 60 °C for 5 min, 4 °C for 10 min, 55 °C for 45 min followed by 8 cycles of 95 °C for 30 s, and 48 °C for 30 s, and 72 °C for 30 s followed by 37 cycles of 95 °C for 15 s, 56 °C for 20 s, and 72 °C for 20 s. The RT-PCR cycle ended with a final extension of 72 °C for 2 min followed by a 4 °C hold.

2.8. Internal positive control RNA

To determine the efficiency of the RT-PCR, each reaction contained a synthetic internal positive DNA control (IPC). The IPC was produced by in vitro transcription from a T7 promoter present on

Table 1

<table>
<thead>
<tr>
<th>Virus name</th>
<th>Abbreviation</th>
<th>Strain</th>
<th>Origin/location/year of isolation</th>
<th>GenBank accession no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mosquito-borne viruses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dengue virus 1</td>
<td>DENV-1</td>
<td>Hawaii</td>
<td>Human/Hawaii/1944</td>
<td>EU848545</td>
</tr>
<tr>
<td>Dengue virus 2</td>
<td>DENV-2</td>
<td>SI6803</td>
<td>Thailand?</td>
<td></td>
</tr>
<tr>
<td>Dengue virus 3</td>
<td>DENV-3</td>
<td>H87</td>
<td>Human/1956</td>
<td>M93130</td>
</tr>
<tr>
<td>Dengue virus 4</td>
<td>DENV-4</td>
<td>H241</td>
<td>Human/1956</td>
<td>AY947539</td>
</tr>
<tr>
<td>Japanese encephalitis virus</td>
<td>JEV</td>
<td>Nakayama</td>
<td>Human/Japan/1935</td>
<td>EF571853</td>
</tr>
<tr>
<td>St. Louis encephalitis virus</td>
<td>SLEV</td>
<td>MS1-7</td>
<td>Sparrow/Mississippi/1975</td>
<td>EU076711</td>
</tr>
<tr>
<td>St. Louis encephalitis virus</td>
<td>SLEV</td>
<td>TBH-28</td>
<td>Human/Florida/1962</td>
<td>EU090145</td>
</tr>
<tr>
<td>St. Louis encephalitis virus</td>
<td>SLEV</td>
<td>Parton</td>
<td>Human/Missouri/1933</td>
<td>EU084877</td>
</tr>
<tr>
<td>West Nile virus</td>
<td>WN/V</td>
<td>157</td>
<td>Mosquito/1955</td>
<td>NR</td>
</tr>
<tr>
<td>Yellow fever virus</td>
<td>YFV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tick-borne viruses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central European subtype TBEV</td>
<td>TBEV-CE</td>
<td>Hypr</td>
<td>Human/ ~ 1944</td>
<td>EU303231</td>
</tr>
<tr>
<td>Central European subtype TBEV</td>
<td>TBEV-CE</td>
<td>Vergina</td>
<td>Goat/1969</td>
<td>NR</td>
</tr>
<tr>
<td>Far Eastern subtype TBEV</td>
<td>TBEV-FE</td>
<td>Sofje</td>
<td>Human/1937</td>
<td>AF013399</td>
</tr>
<tr>
<td>Far Eastern subtype TBEV</td>
<td>TBEV-FE</td>
<td>Mass 93</td>
<td>Human/1993</td>
<td>NR</td>
</tr>
<tr>
<td>Karshi virus</td>
<td>KV</td>
<td>UZ-2247</td>
<td>Ticks/Uzbekistan?</td>
<td>NR</td>
</tr>
<tr>
<td>Kyasanur Forest disease virus</td>
<td>KFDV</td>
<td>W371</td>
<td>Human/India/1957</td>
<td>AF013385</td>
</tr>
<tr>
<td>Langat</td>
<td>LGTV</td>
<td>TP-21</td>
<td>Tick/Malaysia/1956</td>
<td>EU790644</td>
</tr>
<tr>
<td>Omok hemorrhagic fever virus</td>
<td>OHFV</td>
<td>Belangul</td>
<td>Human/1947</td>
<td>NR</td>
</tr>
<tr>
<td>Powassan</td>
<td>POWW</td>
<td>LB</td>
<td>Human/Canada/1958</td>
<td>L06436</td>
</tr>
</tbody>
</table>

* Tick-borne encephalitis virus group; NR, not recorded.
a cloned synthetic DNA template containing the target regions for the eight primer pairs. The IPC was present in each reaction at a pre-determined concentration (100 copies/RT-PCR reaction) and acted as a calibrant to determine the RT-PCR assay’s efficiency and provide semi-quantitative information.

2.9. Mass spectrometry and base composition analysis

After PCR, approximately 30 μl of each RT-PCR reaction was bound to a weak anion exchange matrix where a series of wash steps removed salts and excess reaction reagents as previously described [19]. After clean-up, the purified RT-PCR products were eluted from the stationary phase using a volatile buffer. The Bruker Daltonics microToF (Billerica, MA) mass spectrometer (MS) was used for analyzing the purified DNA [18]. Products from each reaction well were individually sprayed into the MS using a LEAP autosampler (LEAP Technologies, Carrboro, NC). Internal mass standards and plasmid calibrants were utilized to reach a mass accuracy of about 5–10 ppm and provided accurate measurements with high-resolution mass spectra for each sample by previously described protocols [18]. Proprietary signal-processing software was used to deconvolute raw data from mass per charge. This computation process improves the confidence of correct organism classification and reduces the possibility of false positives [7]. For every RT-PCR reaction well, the signal amplitude of the IPC and the sample were compared and interpreted to give quantitative results.

3. Results

3.1. Detection of flaviviruses with broad-range PCR primer pairs

Flaviviruses are a genetically diverse group of viruses and thus pose a major challenge for broad-range molecular detection assays. The goal of the work described here was to develop an assay that would allow for the broad detection of all the diverse members of this group of viruses, with emphasis on the medically important vector-borne viruses. To accomplish this goal, a large number of primer pairs were designed and tested (data not shown). Of these, eight primer pairs, which target the NS5 and NS3 viral genes, were chosen for the final assay format (Table 2). Fig. 2 shows a multiple sequence alignment of the pan-Flavivirus primer pair, VIR2217, against the known sequences of several flaviviruses in GenBank. For each primer region, a database of expected base compositions was generated (data not shown). Several of the isolates used in this study did not have genomic sequences in GenBank and thus base compositions for the target amplicons were determined experimentally.

3.2. Detection of diverse flaviviruses

The 8-primer pair pan-Flavivirus ESI-MS assay was evaluated for its ability to detect a panel of diverse flaviviruses comprising both mosquito- and tick-borne viruses, which included viral isolates where there was limited sequence data information in GenBank. Isolates with known sequences showed 100% matches to expected base compositions (Fig. 3). Primer pairs VIR2215 and VIR2217 showed the broadest coverage and amplified all isolates (Fig. 3). Base compositions were taken from at least two or more amplicons for the various primer pairs to give species resolution and for distinguishing isolates at the subtype level. We also determined that additional virus passages in culture did not alter the base composition results (see multiple lots of the same virus in Fig. 3).

Table 2

<table>
<thead>
<tr>
<th>Primer pair name</th>
<th>Gene target</th>
<th>Coverage</th>
<th>Primer coordinates</th>
<th>Orientation</th>
<th>Primer sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIR2215</td>
<td>NS5</td>
<td>pan-Flavivirus</td>
<td>8874–8966</td>
<td>F</td>
<td>5'-TACGCCGAGGACGTTTGAGA-3'</td>
</tr>
<tr>
<td>VIR2217</td>
<td>NS5</td>
<td>pan-Flavivirus</td>
<td>8812–8907</td>
<td>F</td>
<td>5'-TACCTGCTACCCGCTGGGACGAGA-3'</td>
</tr>
<tr>
<td>VIR2208</td>
<td>NS5</td>
<td>pan-mosquito-borne viruses</td>
<td>8971–9080</td>
<td>F</td>
<td>5'-TACCTGCTACCCGCTGGGACGAGA-3'</td>
</tr>
<tr>
<td>VIR2234</td>
<td>NS3</td>
<td>pan-dengue viruses</td>
<td>5270–5365</td>
<td>F</td>
<td>5'-TACCTGCTACCCGCTGGGACGAGA-3'</td>
</tr>
<tr>
<td>VIR2211</td>
<td>NS5</td>
<td>pan-Flavivirus</td>
<td>8885–8964</td>
<td>F</td>
<td>5'-TACCTGCTACCCGCTGGGACGAGA-3'</td>
</tr>
<tr>
<td>VIR2216</td>
<td>NS5</td>
<td>pan-Flavivirus</td>
<td>8865–8951</td>
<td>F</td>
<td>5'-TACCTGCTACCCGCTGGGACGAGA-3'</td>
</tr>
<tr>
<td>VIR1026</td>
<td>NS5</td>
<td>WNV</td>
<td>10,135–10,237</td>
<td>F</td>
<td>5'-TACCTGCTACCCGCTGGGACGAGA-3'</td>
</tr>
<tr>
<td>VIR1028</td>
<td>NS3</td>
<td>WNV</td>
<td>5696–5783</td>
<td>F</td>
<td>5'-TACCTGCTACCCGCTGGGACGAGA-3'</td>
</tr>
</tbody>
</table>

*Coordinate numbers for West Nile virus (WNV) primers (VIR1026 and VIR1028) are based on WNV strain 956, GenBank accession number NC_001563. All other primer coordinate numbers are based on dengue virus type 2, GenBank accession number NC_001474.
Fig. 2. Multiple sequence alignment of the Flavivirus primer pair VIR2217 targeting the NS5 gene and containing over 230 different sequences representing all known flaviviruses. Two representative sequences from each major clade within this genus are shown here. Dots in the column represent identity of each target virus sequence to the primer sequence (top row). Primer pair coordinates shown here are based on the dengue virus 2 (GenBank accession number NC001474).

Fig. 3. Base composition [A G C T] data of the RT-PCR amplicons generated by the pan-Flavivirus ESI-MS assay. Identical base compositions within a column are the same color. Unique base compositions are shown with white backgrounds. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
As evidence of the assay’s ability to detect mixtures of viruses in a sample, a presumably pure laboratory preparation of OHFV was tested and found to be contaminated with YFV. Examining the base composition for four different gene target amplicons (VIR2216 only generated a base composition for YFV) and the mass spectra generated for the forward and reverse DNA strands of the amplicons, it was clear that there were two distinct DNA signatures, which were identified as OHFV and YFV by the Flavivirus RT-PCR/ESI-MS assay (Fig. 4).

3.3. Sensitivity of the broad-range PCR primer pairs

To determine the sensitivity of the mosquito-borne primer pairs, WNV was serially diluted 2-fold from a known titer and tested in replicates of 10. All six mosquito-borne primer sets (VIR2215, VIR2217, VIR2216, VIR1026, VIR1028) had 100% sensitivity (10/10 reactions were positive) at 25 PFU/mL and all, except VIR2217, were 100% sensitive down to 1.6 PFU/mL (Fig. 5). Overall, the Flavivirus RT-PCR/ESI-MS assay could accurately identify WNV down to 0.2 PFU/mL with VIR2216 having 50% sensitivity, VIR2211 having 20% sensitivity, and VIR2215, VIR1026, VIR1028 having 10% sensitivity (Fig. 5).

3.4. Testing of WNV spiked clinical matrices

To test the assay’s ability to detect and correctly identify a flavivirus within relevant human clinical matrices, WNV was spiked into specimens of human blood, urine, and serum and tested with the PCR/ESI-MS assay. The six mosquito-borne Flavivirus primer sets had 100% agreement for detecting and identifying WNV from all three of the clinical matrices, which included blood, urine, serum, and a PBS control. Each of the base compositions for each primer set were 100% identical for the four different sample backgrounds (Table 3).

3.5. Identification of Karshi virus from laboratory-infected mice

To further evaluate the assay’s performance with Flavivirus-infected mammalian tissues, Karshi virus-infected blood and brain tissues were obtained from suckling mice that were inoculated subcutaneously when 2-days-old with virus as part of a previous study on the tissue distribution of this virus. RT-PCR/ESI-MS analysis clearly detected Karshi virus in both blood and brain tissues and confirmed high levels of this neurotropic virus in the brain of infected mice (Table 4) as was shown previously using a Karshi virus-specific quantitative real-time RT-PCR assay [34].

3.6. Detection of flaviviruses from laboratory-infected mosquitoes

The ability of the RT-PCR/ESI-MS assay to detect Flavivirus RNA from infected mosquitoes was tested by using a blinded set of laboratory-infected mosquitoes and uninfected controls. From 16 different mosquito pools, the correct virus was identified in 15 of the samples (94% correct), highlighting the assay’s ability to distinguish between closely related DENV serotypes (Table 5). However, in one sample (W123) only a DENV 3-infected mosquito was present in the sample, and the system also identified DENV 2. And another sample (W131) was a mixed pool containing both DENV 1 and DENV 2; however, the system only detected DENV 2. The one sample that was completely incorrect (T136) was a negative control containing only uninfected mosquitoes and the system identified it as containing WNV. No WNV was used to infect any of the mosquitoes; however, we cannot rule out possible contamination of the sample with WNV RNA or PCR amplicon.

3.7. Quantification of DENV viral load in individual infected mosquitoes

Each reaction well in the RT-PCR/ESI-MS assay contained an IPC to allow for quantitative analysis. Thus, we wanted to test the quantitative ability of the assay to determine the viral load (based on genome equivalents) of DENV 1 present in individual virus-infected mosquitoes and compare that to plaque titer of the same mosquitoes. Ten mosquito pools consisting of one DENV 1-infected and nine uninfected mosquitoes were tested in duplicate using the RT-PCR/ESI-MS assay and virus plaque assay. The mean number of genome equivalents per mosquito was determined to be 2.0×10^5.

Fig. 4. Mass spectra of RT-PCR amplicons derived from an Omsk hemorrhagic fever virus (OHFV) stock culture contaminated with YFV. Labels and signals are colored according to the theoretical spectra for each organism: blue = OHFV, green = YFV. Actual spectra generated are traced in black and correspond to the sense and antisense DNA strands. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
and the mean plaque titer was approximately 100-fold less at 1.3 \times 10^4 \text{ PFU per mosquito} (Fig. 6).

3.8. Screening of field-collected ticks for Powassan virus

The \textit{pan-Flavivirus} primer pairs, VIR2215 and VIR2217, were used to screen field-collected \textit{I. scapularis} ticks collected from multiple sites in New York and Connecticut during the 2008 and 2009 tick seasons (Table 6). We found 16 ticks out of a total of 322 tested (5\% infection rate) positive for POWV and many of these positive ticks were further characterized as having deer tick virus, a recognized subtype of POWV. Distinct signals can be seen for both the forward and reverse strands of amplicon DNA obtained from specimen G110708MR-5 using the \textit{pan-Flavivirus} primer sets VIR2215 and VIR2217 (Fig. 7). Of note, the assay was able to distinguish three different POWV signatures based on base composition data (Table 6). Approximately 700 nucleotides of viral RNA from specimens G110708MR-5 and G082908CP-11 were sequenced using the primers of Telford et al. [32]. The resulting sequences showed 97\% identity to DTV, but only 87\% identity to the virus subtype due to limited sample volume.

4. Discussion

With over 70 different viral species classified in the genus \textit{Flavivirus}, broad-range detection of these viruses has been extremely problematic. Detection and identification of flaviviruses is made even more complicated by the fact that these viruses are RNA viruses, which evolve rapidly, and therefore, subtle changes in their genomes can rapidly make a once highly sensitive and specific molecular based assay obsolete. In the current study, we have developed a broad-range (i.e., \textit{pan-Flavivirus}) RT-PCR/ESI-MS assay that could rapidly identify and discriminate multiple species of vector-borne flaviviruses in a single high-throughput assay. This assay, performed on the Ibis T5000 system, uses standard one-step RT-PCR with broad-range primers targeting the breadth of the genus \textit{Flavivirus}, followed by base composition determination using a time-of-flight mass spectrometer. In this study, we showed that the RT-PCR/ESI-MS assay accurately detected and identified a wide range of flaviviruses including multiple tick- and mosquito-borne viruses (Fig. 3). Using WNV, the sensitivity of the assay was determined to be approximately 2 PFU/mL; however, detection was still possible with some of the primer sets, albeit at lower sensitivities, down to 0.2 PFU/mL (Fig. 5). This limit of detection is consistent with those reported for various traditional and real-time RT-PCR assays for WNV and other flaviviruses [22,23] and other mosquito-borne arboviruses [35]. It is also consistent with the sensitivity of a previously developed RT-PCR/ESI-MS assay for the

Table 3

<table>
<thead>
<tr>
<th>Sample matrix</th>
<th>GE*</th>
<th>Primer pairs [A G C T]</th>
<th>2217</th>
<th>2215</th>
<th>2216</th>
<th>2211</th>
<th>1028</th>
<th>1026</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood</td>
<td>3.8</td>
<td>[15 15 33 33]</td>
<td>[26 23 27 17]</td>
<td>[22 20 28 17]</td>
<td>[24 17 27 12]</td>
<td>[18 15 25 30]</td>
<td>[17 16 34 36]</td>
<td></td>
</tr>
<tr>
<td>Serum</td>
<td>3.1</td>
<td>[15 15 33 33]</td>
<td>[26 23 27 17]</td>
<td>[22 20 28 17]</td>
<td>[24 17 27 12]</td>
<td>[18 15 25 30]</td>
<td>[17 16 34 36]</td>
<td></td>
</tr>
<tr>
<td>Urine</td>
<td>3.7</td>
<td>[15 15 33 33]</td>
<td>[26 23 27 17]</td>
<td>[22 20 28 17]</td>
<td>[24 17 27 12]</td>
<td>[18 15 25 30]</td>
<td>[17 16 34 36]</td>
<td></td>
</tr>
<tr>
<td>PBS</td>
<td>3.5</td>
<td>[15 15 33 33]</td>
<td>[26 23 27 17]</td>
<td>[22 20 28 17]</td>
<td>[24 17 27 12]</td>
<td>[18 15 25 30]</td>
<td>[17 16 34 36]</td>
<td></td>
</tr>
</tbody>
</table>

* Mean logarithm_{10} genome equivalents per mL.
alphaviruses (assuming that 30 genome equivalents is approximately equal to 3 PFU) [10].

One benefit of the pan-Flavivirus RT-PCR/ESI-MS assay is its ability to identify more than one type of virus in a sample. This was evident while we were using the assay to perform quality control of our purified virus stocks for our culture collection. For example, one sample of OHFV was clearly contaminated with YFV (Fig. 4). This characteristic of the assay would also have clear benefits for use in vector surveillance where two or more flaviviruses are co-circulating within the same geographic region, as is the case for WNV and DENV or for multiple serotypes of DENV for example. Because mosquitoes are often tested in pools of up to 50 or even 100, it would be very possible to have more than one-infected mosquito within any given pool. Likewise, individuals living in geographic regions with multiple arboviruses co-circulate, are at risk of infections, which has been documented previously [29,30].

We further demonstrated the quantitative nature of the assay by determining the average number of viral genomes of DENV 1 per individual laboratory-infected Ae. aegypti mosquito. The average viral load per infected mosquito was calculated to be 2×10^6 genomes or 1.3×10^7 PFU (Fig. 6), which is consistent with previous studies [1,20]. Furthermore, our finding that the number of genomes per individual infected mosquito was about 100-fold higher than the plaque titer is consistent with other studies showing that PFU was consistently lower than RNA copy number by $2-3 \times 10^7$ for both cell culture and mosquitoes infected with DENV [27].

美食

Table 4 Comparison of a Karshi virus-specific quantitative real-time RT-PCR assay and the pan-Flavivirus RT-PCR/ESI-MS assay for testing of blood and brain tissues from experimentally-infected mice.

<table>
<thead>
<tr>
<th>Mouse ID</th>
<th>Tissue type</th>
<th>Days post-infection</th>
<th>Quantitative real-time RT-PCR (GEa)</th>
<th>pan-Flavivirus RT-PCR/ESI-MS System ID</th>
<th>GEb</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>Blood</td>
<td>1</td>
<td>5.3</td>
<td>Pos-Karshi virus</td>
<td>5.8</td>
</tr>
<tr>
<td>114</td>
<td>Brain</td>
<td>5</td>
<td>9.2</td>
<td>Pos-Karshi virus</td>
<td>NDc</td>
</tr>
<tr>
<td>119</td>
<td>Brain</td>
<td>6</td>
<td>11.0</td>
<td>Pos-Karshi virus</td>
<td>ND</td>
</tr>
<tr>
<td>134</td>
<td>Brain</td>
<td>9</td>
<td>10.3</td>
<td>Pos-Karshi virus</td>
<td>ND</td>
</tr>
</tbody>
</table>

a The quantitative real-time RT-PCR assay used here was developed and published previously [34].
b Mean logarithm 10^7 genome equivalents per mL of blood or g of tissue.
c Not determined due to the high genome equivalents present in the brain tissue.

Though it was important to validate the assay with well-characterized samples that have been tested on other diagnostic platforms, the detection of viruses such as Tilibus and Langat viruses demonstrates the assay’s ability to identify less known flaviviruses where little or no sequence data are available. This attribute of the assay will be particularly useful in detecting rapidly evolving RNA viruses, or those that are completely novel, especially from field-collected specimens. The high-throughput and broad nature of the LifeSense platform makes it highly amendable to public health laboratory surveillance work. In particular, the previously developed pan-Alphavirus ESI-MS assay could be combined with the pan-Flavivirus assay developed in this study into a single “Arbovirus Kit” and used for mosquito and/or tick-borne arbovirus surveillance. To demonstrate the usefulness of the flaviviruses in vector-borne pathogen surveillance, we screened 322 field-collected *I. scapularis* ticks collected from New York and Connecticut for the presence of flaviviruses. While several medically important tick-borne flaviviruses are known to occur and cause severe neurological disease in Europe and Asia (e.g., tick-borne encephalitis virus), PENV is the only recognized tick-borne flavivirus in the U.S. [6,14]. This is consistent with the fact that DTV, a subtype of POWV, was the only flavivirus found among the ticks tested. Furthermore, we

![Fig. 6. Viral load per individual mosquito as estimated by the quantitative pan-Flavivirus ESI-MS assay and plaque assay. Seven *Aedes aegypti* mosquitoes were inoculated intratracheally with approximately 10^7 PFU of DENV-1. Seven days after inoculation, mosquitoes were processed as described in the Materials and methods and were tested. Horizontal line indicates mean titer. GE, genome equivalents; PFU.](image-url)
determined a 5% infection rate among the I. scapularis tested from the selected collection sites in New York and Connecticut. Previously published tick infection rates were much lower than our findings. For instance, in the original publication describing DTV from New England in 1995, they found only a 0.4% infection rate among 465 I. scapularis ticks collected from Connecticut and Massachusetts [32]. More recent data from a northern Wisconsin focus shows a 1.3% infection rate among 1335 ticks tested [3]. In a 2009 survey of I. scapularis collected from several locations surrounding New York City, Tokarz et al. found a 2.0% infection rate for Powassan virus using a Mass Tag PCR approach [33]. Although more studies are needed, our data suggest that the prevalence Powassan virus, and particularly the DTV subtype, may be increasing in the U.S. northeast, and this virus may emerge as an important public health concern in the future.

In conclusion, the ability of the pan-Flavivirus RT-PCR/ESI-MS assay to rapidly and sensitively identify known and emerging flaviviruses is critical for disease surveillance and for advancing the molecular diagnostic field past single-virus detection assays. We have shown that this assay has the ability to be a broad-range detection tool for known and rare flaviviral species that cause human disease and could benefit clinical diagnostics or studies on the ecology and epidemiology of this important group of viruses.

Acknowledgements

The authors thank Dr. Stuart Nichol, Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia for helpful discussions and for supplying tick-borne encephalitis virus isolates for initial testing of the assay. The authors acknowledge the Defense Advanced Research Projects Agency (DARPA), the Department of Homeland Security (DHS) contract number W81XWH-05-C-0116, the U.S. Defense Threat Reduction Agency (DTRA) (USAMRIID Research Plan #114538) for financial support. Additionally, the assay development and testing has been funded in part with Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN266200400100C. This research was performed while R.J.G.-K. held a National Research Council Research Associateship Award at USAMRIID. For the Flavivirus surveillance of field-collected ticks, we acknowledge the Lyme Disease Association, the Tami Fund, and the National Institutes of Health, National Institute of Allergy and Infectious Diseases grant #1R43AI077156-01 for financial support.

Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the U.S. Army, Department of Defense, or the National Institutes of Health.

References