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Digital Representation of Materials Grain 
Structure  

Michael A. Groeber 

Abstract 

Recent initiatives to accelerate the insertion of materials and link the materials de-
sign and systems design processes have called for the advancement of microstruc-
ture-property relationships.  In order to achieve these goals, the development of 
digital microstructure models in conjunction with computational methods for si-
mulating material response is a necessity.  There have been significant advance-
ments in the collection and representation of microstructure, which coupled with 
computational power increases, has yielded microstructure models with increasing 
complexity and accuracy.  It is the emphasis of this chapter to discuss the state-of-
the-art methods and current limitations in the field of microstructure representa-
tion.  Specific focus will be paid to the areas of: experimental data collection, fea-
ture identification, mesh generation, quantitative characterization and synthetic 
structure generation.  In presenting the status of the field, the key links to other 
fields that must be developed will also be addressed wherever possible.   

3.1 Introduction 

This book is motivated by the practical assessment that many questions remain 
to be answered regarding the effect of microstructure on materials response.  At-
tempts to answer these questions have produced microstructure-property relation-
ships with varying levels of detail and empiricism.  The empiricism of such rela-
tionships has limited the integration of materials design in the systems design 
process.  Instead, the systems design community tends to use databases developed 
through extensive experimental testing to select existing materials with a set of re-
quired performance properties.  The last chapter of this book outlines the prospect 
of designing new materials to a desired set of properties and doing so in an accele-
rated fashion.  One factor limiting the advancement of microstructure-property re-
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lationships to allow for accelerated materials design is the disjointed treatment of 
microstructure by the systems design, materials processing and materials devel-
opment communities.  The current “industry standard” in the systems design 
community is to treat microstructure as a set of notes or ASTM specifications on a 
part drawing.  As a result, the processing community uses these 
notes/specifications as guidelines and quality control metrics when producing ma-
terials.  This approach to microstructure description is inconsistent with that used 
in most computational microstructure-property models.  This chapter attempts to 
address these inconsistencies in microstructure description and outline a process 
for digital representation of microstructure, which allows for the more accurate in-
clusion of microstructure in property models. 

 
It has become common practice to generate microstructure models for property 

prediction simulations with limited amounts of microstructural information in-
cluded.  Typically, simple geometric shapes or tessellations are used to represent 
microstructural features with little attention paid to accuracy beyond average val-
ues.  Often though, the use of simple average quantities such as ‘grain size’ is like-
ly to be inadequate in some microstructure-property relationships; instead one may 
need to consider the possibility that the full three-dimensional (3D) microstructure 
is important.  The complexity and interplay of features in the 3D structure dictates 
that calculations by hand are generally impractical.  Fortunately, computational 
power has provided a new pathway for the materials scientist to investigate micro-
structure-property relationships through microstructure modeling.  However, 
computational modeling of materials requires the ability to generate digital micro-
structures in which the most relevant features are sufficiently described.  There are 
multiple ways to tackle the challenge of generating 3D digital representations of 
microstructure.  The obvious approach is to explicitly represent structure by col-
lecting sample volumes of microstructure experimentally, whether it involves re-
constructing direct images from serial sectioning or by reconstructing diffraction 
information from various 3D tomography techniques.  A second, less direct ap-
proach is to represent structure statistically by developing tools to generate syn-
thetic structures with statistics equivalent to some desired set, likely obtained from 
some experimental observation technique(s).  Both of these approaches will be 
discussed in detail in this chapter. 

 
With regard to the explicit representation of structure, this chapter focuses on 

the specific topics of experimental interrogation techniques, data processing, and 
mesh generation.  Experimental techniques to characterize microstructure in 3D 
have undergone dramatic improvements in the past decade, and there now exists a 
host of methodologies that are capable of collecting 3D microstructural informa-
tion that range from counting individual atoms (nms) to imaging macro-scale vo-
lumes (mms).  However, it is important to note that there are still gaps that exist in 
structure collection; for example, dislocation structures cannot be readily imaged 
in 3D.  The state-of-the-art for this field has been reviewed recently in a View-
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point Set for Scripta Materialia (Spanos 2006) and thus will not be presented here.  
Currently there are two main experimental interrogation pathways to collect in-
formation about microstructural features in 3D.  Serial sectioning experiments are 
more commonplace but consume the sample as part of the experiment, while x-ray 
methods are non-destructive but typically require the use of high-intensity x-ray 
sources.  For the x-ray methods, there are a handful of groups world-wide that are 
working towards spatially-resolved crystallographic analysis of grain structures in 
3D using high-intensity X-ray systems (Schmidt et al. 2004, Lauridsen et al. 2006, 
Budai et al. 2004, 2008, Suter et al. 2007).  These methods have a significant ad-
vantage in that the sample remains intact after analysis, allowing for the possibili-
ty of time-dependent studies of microstructural changes due to thermal or mechan-
ical input.  Nonetheless, these experiments require the high brilliance of a 
synchrotron source that puts significant restrictions on the general applicability of 
the methods.  Therefore, this chapter will skew its focus towards the processing 
and analysis of grain-level data using more universally-accessible serial sectioning 
experiments.  Electron backscattered diffraction (EBSD) maps are often coupled 
with the sectioning process as an integral component of the characterization me-
thod.  The incorporation of crystallographic maps enables a straightforward ap-
proach to define and segment the individual grains or precipitates that compose 
aggregate assemblies, and also allow for orientation-based data analysis.  Most of 
the data-processing steps presented here are tailored for the EBSD-based section 
data, but all are generic in their end goal of reconstructing and segmenting features 
with limited experimental artifacts.  Lastly, the reconstructed and processed data 
must be translated into a meshed structure for simulation.  Various methods for 
surface representation and mesh generation will be presented with focus paid to 
the complexity, quality and physical accuracy of their resultant meshes.  

 
The quantification of microstructure and generation of equivalent synthetic 

structures will be discussed in the context of the statistical representation of mate-
rials structure.  The motivation for such an approach is the ability to generate 
many different representative microstructures that match statistically the mea-
surements on the material of interest to a pre-determined degree of accuracy.  The 
ability to generate synthetic structures is meant to limit the need for abundant data 
collection as well as supplement when direct 3D information is unavailable.  The 
experimental methods discussed in the section on explicit representation of struc-
ture provide direct 3D information.  Three-dimensional (3D) characterization me-
thods are then required to quantify the structure so as to serve as the input infor-
mation for the synthetic structure generation process.  In contrast to the use of 
direct 3D statistics, the prospect of inferring 3D statistical descriptors from 2D ob-
servations is also a topic of interest.  These stereological approaches are necessary 
to develop due to the fact that 3D experimental techniques remain unavailable to a 
large portion of the materials community. 

 

3



The development of computational materials models with specific focus on the 
accurate incorporation of microstructure is the ultimate goal of this chapter.  Two 
approaches for representing structure, explicit and statistical, will be addressed.  
The major steps in each of these processes will be described.  The explicit ap-
proach requires experimental investigation, data processing and mesh generation.  
The statistical approach consists of statistical quantification of experimental ob-
servations and synthetic structure generation also requiring subsequent mesh gen-
eration.   

3.2 Challenges and Previous Work 

3.2.1 Characterization 

Characterizing microstructure has been classically limited to two dimensional 
(2D) measurements and simplistic extrapolations to three dimensions (3D).  Many 
microstructural features can be estimated with reasonable accuracy in this manner, 
but arguably far more are inaccurate, if calculable at all.  Limitations in these 
techniques have fueled a drive towards direct 3D data collection.  Early attempts 
to collect direct 3D data [refs] were somewhat successful, but only recently have 
experimental and computational tools advanced to make 3D data collection readily 
feasible.  Additionally, many of the early 3D experiments provided only visualiza-
tions and not quantitative microstructural descriptors.  Equally important in the 
collection of microstructure are the current limits on the automation of microstruc-
ture feature identification and segmentation.  Direct 3D data has proven to be ex-
haustive and tedious to reconstruct and segment, which has greatly hindered its 
applicability.  Even 2D measurements have been slowed by the common inability 
to distinguish features of microstructure.  Some microstructures display the ability 
to easily segment features using only either optical or Scanning Electron Micro-
scope (SEM) imaging, but this is not always the case, especially as microstruc-
tures grow in complexity.  The development of Orientation Imaging Microscopy 
(OIM) via electron back-scatter diffraction (EBSD) has cleared a path to auto-
mated segmentation of grains and phases over restricted scales, but does increase 
data collection times.  Lastly, and arguably most important, the quantitative de-
scription of microstructure has been left incomplete and inconsistent.  Often only 
average values are measured neglecting the distributions of features, leaving the 
microstructure incompletely described.  The distributions of parameters are cer-
tainly more arduous to measure and this is usually the cause for their absence in 
many characterizations.  However, recent developments in data collection and fea-
ture identification have allowed for these measurements to be made relatively 
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easily for many microstructures.  Additionally, parameters are generally measured 
independently, resulting in the inability to correlate relationships between parame-
ters.  This is a major concern when representing microstructure, because correla-
tions may describe the tendency of features to cluster, which may have significant 
affects on properties.  Inconsistencies in microstructure description may arise due 
to a number of descriptors that quantify the same microstructural feature or para-
meter, but vary in their meanings and dimensionalities (for example mean linear 
intercept, equivalent sphere diameter, true grain volume and mean width).  The 
various descriptors, when scaled to be comparable, can deviate significantly, caus-
ing confusion in which to use. 

3.2.2 Modeling 

The representation of microstructure has traditionally been significantly limited 
by computational power, which has led to the common practice of grossly simpli-
fying microstructure in many computational models.  It is quite a standard ap-
proach to represent microstructural features as simple geometrical shapes, often 
with no size distribution, because “size” is rarely a part of model physics.  Even in 
cases where attempts are made to match quantified microstructural parameters; 
there are generally not more than one or two parameters represented and rarely a 
correlation between multiple parameters.  For some properties (i.e. texture or yield 
stress), it is possible that detailed morphological structure is unnecessary.  How-
ever, other properties (i.e. fracture or strain hardening) are likely to require not on-
ly initial detailed structure, but evolving structure as well.  The assumptions made 
in the representation of microstructure may significantly hinder the ability of 
physical models to predict material response.  That is, a model which is developed 
from physical understanding of a process may be applied to a non-physical micro-
structure, and as a result the simulation is inherently constrained and biased.  Fur-
ther, when deviations between simulations and experiments are encountered, they 
become difficult to classify as errors in microstructure representation or errors in 
the physical model itself.  The inability to decipher the cause of error forces incor-
poration of scaling constants and other relatively empirical factors to match re-
sults.  Additionally, when explicit 3D structures are available, the inability to 
mesh the structures with a consistent quality has limited the ability to analyze the 
structures.  The mesh generation issue remains a key concern for computation ma-
terials modeling.  Lastly, determination of the necessary size of a simulated vo-
lume has proven complicated.  Identification of the so called representative vo-
lume element (RVE) has become an entire area of study.  The combination of 
detailed structure quantification, accurate digital representation, robust meshing 
techniques, properly developed constitutive laws and significant computational 
power is required to determine an RVE for a given property.  Given that the RVE 
is likely to change for various properties and the significance of a simulation is 
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strongly linked to the use of an RVE, it becomes immediately clear that the 
aforementioned tools are key in the development of computational materials mod-
eling. 

3.3 Explicit Representation of Structure 

The most straightforward and likely most accurate method for representation of 
3D microstructure is to explicitly translate an experimentally collected volume in-
to a computational model.  The direct inclusion of experimentally obtained micro-
structural information requires few or even no assumptions about the microstruc-
ture itself; although, the data collection technique may require some prior 
knowledge of the microstructure.  There are many experimental techniques that 
are capable of yielding information about the 3D grain structure of a material.  In 
general, these techniques tend to fall in one of two categories: x-ray based me-
thods and serial sectioning methods.  Both of these general categories have advan-
tages over the other, as well as inherent limitations.  X-ray based techniques have 
the major advantage of being non-destructive, but are often limited by resolution 
and cost/availability.  Serial sectioning, given the many tools capable of undertak-
ing it, provides adequate resolution across a significantly wide range of length 
scales (i.e. 100s of nm to 10s of mm).  However, the process is destructive and can 
be time-consuming and erratic.  This chapter will only briefly mention some as-
pects about the collection processes themselves; rather the processing, analysis, 
and application of the resultant data will be the main focus.  Further technical de-
tails can be found earlier in this book as well as elsewhere for the various x-ray 
(Schmidt et al. 2004, Lauridsen et al. 2006, Budai et al. 2004, 2008, Suter et al. 
2007 and serial sectioning (Rowenhorst, Groeber, Raabe, Voorhies) techniques. 

 
Serial sectioning experiments are comprised of two main tasks—sectioning and 

data collection—which are repeated until the desired volume of material has been 
interrogated.  The sectioning process involves the removal of a known volume 
slice of material, usually determined primarily by the size-scale of the microstruc-
tural features that are to be examined.  A typical rule-of-thumb is to acquire a min-
imum of 10 sections per average feature if feature shape is to be determined.  The 
section thickness is often a compromise between the desire for high-fidelity data 
and the constraints of both personnel and instrument time to collect the data sets.  
After sectioning, the surface-of-interest is characterized through standard imaging 
methods or other mapping methods such as Electron Backscatter Diffraction 
(EBSD), Electron Dispersive Spectroscopy (EDS), etc.  The resultant data ob-
tained from a serial sectioning experiment is thus a series of parallel images that 
likely contain some alignment errors, require some form of feature segmentation, 
and may need some smoothing to account for the digital (or pixilated) images of 
the microstructure.   
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X-ray based experiments involve exposing the sample of interest with an inci-

dent beam of x-rays and measuring various aspects of the interaction of the x-rays 
with the sample.  The fluorescence, absorption and diffraction scattering are ex-
amples of measurable results.  The group of techniques that provide a description 
of the position and topology of the internal features of the sample are generally re-
ferred to as tomographic techniques.  Within the broad class of tomography, there 
are multiple methods for obtaining contrast between the features of interest; for 
example, phase contrast tomography.  In addition to obtaining topologi-
cal/morphological information, if diffraction scattering is analyzed, the crystallo-
graphic information of the features can be measured as well.  The limit on resolu-
tion and size of the data collected is closely linked to the intensity of the incident 
x-ray beam.  The resultant data obtained from the x-ray experiment is a set of 3D 
positions with associated values of absorption (or other measures) and possibly 
coupled with crystallographic information.   Similar to serial sectioning, there are 
usually artifacts in the x-ray data as well, many of which require filtering to allow 
for feature segmentation. 

 
The important point to consider is that the data collection technique, while it 

may certainly dictate/demand some specific processing sub-steps, does not greatly 
change the major post-collection steps necessary to represent the experimental da-
ta as a 3D model of microstructure.  Every 3D dataset requires a thorough applica-
tion of a series of tools to align consecutive images, segment features of interest, 
and represent feature boundaries.  Each of these major issues will be discussed 
with more focus towards serial section data.  Figure 1 shows examples of some re-
constructed 3D volumes obtained by serial sectioning. 

 

 
Figure 1: Sample reconstructions of (left) a nickel-base superalloy obtained 
through FIB-based sectioning and (right) a titanium alloy obtained by manual me-
chanical polishing. 

7



3.3.1 Reconstruction and Feature Identification 

3.3.1.1 Image Alignment and Stacking 

It is often the case that misalignment between sections occurs during the sec-
tioning experiment and can cause difficulties in the subsequent analysis of the da-
taset.  These misalignments can be minimized through the use of fiducial marks 
coupled with manual and automated alignment tools during the data collection 
process, but can rarely be totally avoided.  This section will address techniques 
used to adjust sections after the collection process has completed.  First, the more 
general alignment solution for image data is discussed and then the more unique 
condition involving specialized data, such as EBSD, is presented.  

 
The most straight-forward registration procedures involve applying simple 

translations to sections to improve section-to-section alignment.  In the general 
case, this can be done with images and image processing techniques like least-
square difference fitting or image convolution.  In these procedures, images are 
translated (generally at multiples of the pixel size) in the x and y directions of the 
image until either a minimum difference or maximum product between pixels in 
consecutive images is obtained.  Sub-pixel alignment can also be obtained by 
moving images fractions of the pixel size and interpolating the values on the new 
grid.  Rotational alignment can also be achieved through these image processing 
procedures if interpolation is used to generate a grid coincident with the reference 
image.  It should be mentioned that for these techniques to function properly, con-
secutive images should have consistent conditions (i.e. brightness and contrast).  
Often, this requirement necessitates a certain amount of image processing prior to 
the alignment procedures. 

 
In many cases, the registration of separate serial sections requires more than 

simple translations to gain proper alignment of the image stack.  This is most pre-
valent when combining data collected by different methods, such as micrographs 
from a light optical microscope and EBSD scans from a SEM, where there may be 
different coordinate systems, orientations, and scaling between pixels.  More 
complex alignment procedures are also needed when the sectioning experiment 
lacks a fixed reference frame.  If the sections are obtained by sectioning slabs 
through a sample rather than polishing away material, the slabs, when mounted 
separately, may be rotated, translated and tilted relative to one another.  Alignment 
of these images begins by identifying a number of point features (examples would 
include the centers of grains, triple junctions or sample edges). One then must 
choose a reference frame for to which images are aligned, such as an optical im-
age (here by noted as

 

′ X , ′ Y ). The points (

 

X,Y ) in a corresponding EBSD scan, 
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for example, should then be brought into coincidence with the optical image refer-
ence frame.  The transformation from the EBSD image to the reference optical 
image is given by: 

 

′ X 
′ Y 

1

 

 

 
 

 

 

 
 

= T
X
Y
1

 

 

 
 
 

 

 

 
 
 

    (3.1) 

where T is a two-dimensional transformation matrix of the form: 

 

T =
t11 t21 t31

t12 t22 t32

0 0 1

 

 

 
 
 

 

 

 
 
 
     

For an affine transform, where image rotation and separate translations, scaling 
and skewing are allowed for the two directions, T is solved for all values without 
constraint, using the pseudo inverse matrix (a least squares fit to a system of linear 
equations).   

 
However, when allowing skewing of the images, it is not possible to indepen-

dently determine the rigid rotation of the two coordinate frames, which is neces-
sary to correct the measurement of the crystallographic orientations between each 
EBSD section.  Therefore a limited transformation matrix can be used that only al-
lows independent scaling in the x-direction and y-direction, S, translations in the 
x-direction and y-direction, P, and finally an image rotation normal to the section-
ing plane, R.  Thus:  

 

T = RPS     (3.2) 
where: 

 

R =
cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 

 

 
 
 

 

 

 
 
 
; 

 

P =
1 0 Px

0 1 Py

0 0 1

 

 

 
 
 

 

 

 
 
 

; 

 

S =
Sx 0 0

0 Sy 0

0 0 1

 

 

 
 
 

 

 

 
 
 
  

The terms in the transformation matrix are then determined by a least-squares op-
timization.  As mentioned, the decoupling of the matrix T is only required to cor-
rect crystallographic data associated with EBSD and is not necessary to do for da-
ta without such information.  Further, the z-components of the matrices can be 
included to correct tilt errors introduced by remounting or non-parallel polishing. 

 
As mentioned, alignment errors can be corrected in image space by processes 

such as least-square difference fitting, image convolutions, and Fourier trans-
forms.  However, these methods may not utilize all of the data in an image equally 
and image conditions can vary significantly between sections.  Varying image 
conditions can create problems identifying features as the same feature in con-
secutive images.  EBSD or other special data types on consecutive sections 
enables the use of all data points equally and generally provide a more invariant 

9



parameter to follow between sections.  The misorientation between a data point 
and the corresponding data point on a neighboring section can be calculated for all 
points in a given section.  A parameter (Ψ) can then be created to define the 
amount of misalignment between the two sections.  The definition of Ψ is given 
by: 

( ) ( )∑∑
= =

Ψ=Ψ
max max

0 0

,,
y

j

x

i
kjik    (3.3) 

where, xmax and ymax are the total number of data-points in the corresponding direc-

tions and ( )kji ,,Ψ  is given by: 

 ( ) ( ) ( )[ ]


 ≥−

=Ψ
otherwise

kjiPkjiPMif
kji

0

51,,,,,1
,,



  

   

where, ( ) ( )[ ]1,,,,, −kjiPkjiPM  is the misorientation between points i,j,k and 

i,j,k-1.  The calculation of misorientation is discussed further in the following sec-
tion on feature segmentation.  The section k can be translated, by multiples of the 
EBSD step-size, in the x and y direction until a position with minimum Ψ is lo-

cated.  The parameter ( )kji ,,Ψ  need not be binary and can be adjusted to han-

dle criterion tailored to other data types.  Sub-pixel alignment can also be obtained 
using EBSD data by connecting triple points on consecutive sections and minimiz-
ing their alignment (Rollett et al. 2008). 

3.3.1.2 Feature Segmentation and Clean-Up 

Segmentation of individual features is necessary to allow for the measurement 
of each separately.  Additionally, identifying and separating microstructural con-
stituents provides the ability to investigate features removed from their surround-
ings.  Grain segmentation is greatly aided by the quantitative orientation informa-
tion provided by the EBSD maps, as local orientation information is the most 
direct means to group voxels which reduces issues of image contrast, thresholding 
and feature identification.  There have been other, image-based techniques shown 
to be applicable to feature segmentation, but few have been utilized to segment 
features in 3D without significant user intervention (Rowenhorst, DeGraef).  Fea-
ture segmentation using EBSD allows for the complete automation of the segmen-
tation process.  During segmentation, grains are identified as groups of voxels that 
share a similar orientation.  Algorithms for identifying these groups of voxels have 
been presented previously (Groeber 2007, Bhandari 2007, Ghosh 2008).  Com-
mercial analysis packages (TSL, HKL) likely use a similar approach to identifying 
grains.  The major steps of the algorithm are outlined in this section. 
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The initiation of each identified grain is the selection of a seed voxel.  General-
ly, it is a useful idea to select a voxel that has been deemed to be of ‘good’ quality.  
Quality is defined by the EBSD data collection software and refers to the sharp-
ness of the pattern, which is often correlated with the confidence in the assigned 
orientation.  Usually the highest quality data tends to lie within the center of a 
grain, and these voxels serve as a reliable point to begin grain segmentation.  A 
grain is then defined as the set of voxels contiguous to and with the same orienta-
tion as the seed voxel.  The requirement of the voxels to have the same orientation 
(within a defined tolerance) is based on the fact that all regions within a grain 
should share a similar orientation.  A list of voxels assigned to the grain is created, 
which initially contains only the seed voxel.  The voxels that neighbor the seed 
voxel are checked to determine whether they have a similar orientation.  The mi-
sorientation is measured to evaluate the orientation difference between the seed 
voxel and each of its neighbors.  The value of misorientation is given by the fol-
lowing equation: 
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where, cO  is the crystal symmetry operator and Ag  and Bg  are the rotation ma-

trices of voxel A and B and are given by: 
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where (φ1,Φ,φ2) are the Euler angles of the voxel.  If the misorientation is less than 
the defined tolerance (i.e. ~5º), then that voxel is added to the list of voxels of the 
grain being segmented.  Each voxel on the list undergoes the same process of 
checking its neighboring voxels until no new voxels are added to the list.  After 
the list is complete a new seed point is generated and the voxel assignment is re-
peated for the next grain.  An option during segmentation is to terminate the 
process when no unassigned voxels remain above a data quality tolerance.  This 
ensures that no grains can be formed that include all low quality voxels.  ‘Clean-
up’ routines can be implemented to handle low quality points either before or after 
assignment.  Some examples of clean-up routines will be discussed later. 

 
The process of grouping voxels is not unique to data with orientation informa-

tion.  Similar algorithms can be used for image data or chemical data, where vox-
els of similar grayscale or chemistry are grouped together.  In all three case, it may 
be important to consider the possibility of gradients in the data.  Rarely is the in-
terface between neighboring features perfectly sharp in the collected data.  The 
grouping criterion may allow for additive deviation from the original seed voxel if 
only immediate neighbors are checked.  Possible solutions include comparing the 
new voxel to both its immediate neighbors and the original seed voxel or compar-
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ing the new voxel to an updated average value of all the previously grouped vox-
els.   

 
Clean-up routines are important to handle low quality data as well as treat fea-

tures that may be non-physical or difficult for the simulation tools to handle.  
Clean-up should ideally be performed in 3D, in order to provide the most informa-
tion during the clean-up process.  In any experimental technique, there will be data 
points that are indexed incorrectly, due either to sample preparation or collection 
error.  These points will either be left unassigned during the feature segmentation 
process of they will be identified as a feature of their own.  The latter case results 
in a large number of extremely small features that will be difficult for the simula-
tion to handle.  A minimum feature size criterion can be used to filter any ex-
tremely small features.  A feature which contains less than a defined number vox-
els can be dissolved and its voxels reassigned to neighboring features.  The 
motivation to remove extremely small grains is the inability to accurately charac-
terize features made of so few voxels and the trouble obtaining results in the simu-
lation at those regions.  The minimum size should be carefully defined and not se-
lected arbitrarily.  One important factor in selecting the minimum size is the 
number of voxels needed to generate a reasonable description of feature shape.  
Another factor in selecting the minimum size is the fraction of features that will be 
removed by the filter.  Generally, it is undesirable to remove a large percentage of 
features with any one filter.  If more than a few percent of the features are re-
moved due to the minimum size criteria, it may be an indication that the resolution 
or quality of the data is insufficient. 

 
Any remaining voxels, whether unassigned during or dissolved after the seg-

mentation process, should still be assigned to neighboring features to create a fully 
dense structure.  There are multiple options for deciding how to assign these re-
main points, each of which have advantages and disadvantages.  The remaining 
low quality points can be assigned to the feature with which they share the most 
surface area, to the feature which owns the highest quality neighbor of the unas-
signed voxel, or to the largest feature which they neighbor.  In addition to the as-
signment of problem voxels, there are a variety of additional data processing pro-
cedures that can be applied to the 3D EBSD data, many of which are simple 
extensions of the 2D filters supplied in commercial EBSD analysis programs.  For 
example, the average orientation of each grain can be calculated and assigned to 
all the voxels that constitute the grain.  The average orientation is the orientation 
that minimizes the total misorientation with all the voxels in the grain.  The aver-
age orientation can be solved for numerically as shown by Dawson (Dawson et al. 
2001).  Generally, an adequate initial estimate of the average orientation can be 
obtained by transforming the orientation of each voxel into a single fundamental 
zone and finding the center of mass of the resultant point cloud in orientation 
space.  Additionally, the dataset can be scanned for grains are that are fully con-
tained within another grain and as a result have only one neighbor.  These grains 
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could potentially be small subgrains that are misoriented only slightly larger than 
the misorientation tolerance. Datasets may also contain grains with special boun-
daries (i.e. twin boundaries) that can be identified and omitted from certain ana-
lyses if desired.  Grains sharing these special misorientations can be merged to-
gether to leave only general grain boundaries in the dataset.  These processing 
possibilities are provided as selected examples and not meant to comprise a full 
list of the options available to further process 3D EBSD data. 

3.3.2 Feature Surface Representation and Mesh Generation 

The following section will discuss a set of mesh generation techniques.  Each 
technique will be critiqued with focus on its surface representation/structure, mesh 
quality, difficulty of implementation, inherent physicality and user bias.  It is not 
the author’s intent to identify a ‘best’ technique, but rather to highlight the 
strengths and weaknesses of each technique.  All of these techniques are designed 
to accept as input, a discrete voxel-based structure that has been segmented and 
labeled as unique features.  It is not necessary for the discrete data to be on a cubic 
grid, although the grid should be orthogonal to produce the best results in most 
cases.  Additionally, the data need not be obtained experimentally; a synthetic 
structure builder can be used to generate the voxel-based structure, which will be 
discussed later in this chapter.  Figure 2 shows a grain with different surface re-
presentations to illustrate the effect of the techniques discussed here. 

3.3.2.1 Voxel-Based Mesh 

Many, if not all, experimental methods collect data on a regular, discrete gird.  
The resultant data can then be treated as either a set of pixels in 2D or a set of 
voxels in 3D.  Pixels and voxels provide a useful construction for automated mesh 
generation without the need for a separate surface representation step.  The pixels 
or voxels can be directly imported into a Finite Element (FE) or Fast Fourier 
Transform (FFT) analysis code as brick elements or integration points, respective-
ly.  Another advantage of the voxel-based mesh is that the voxels (or brick ele-
ments) have good quality metrics.  Two common measures of a mesh’s quality are 
the distribution of dihedral angles of the elements and the size distribution of the 
elements.  Voxels, even rectangular voxels, have all dihedral angles equal to 90º, 
which is nearly optimal for FE analysis.  In general, all dihedral angles between 
20º and 160º are acceptable for most analyses.  The size distribution of a voxel-
based mesh is a delta function at the grid spacing of the experimental data.  Thus, 
there is no distribution in size of the voxels, unless some non-homogenous deci-
mation process has been employed.  With a single element size, there is no con-
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cern of tiny elements much smaller than the average element size.  Tiny elements 
are problematic when simulating the structure using FE. 

 
However, the voxel-based mesh is not without issues to consider.  Voxels 

create two major concerns that must be discussed to determine the suitability of 
this technique.  First, the voxel-based construction produces a surface structure 
that is aliased or ‘stair-stepped’.  The stepped nature of the surface is directly 
linked to the facts that the elements have all dihedral angles equal to 90º and no 
surface representation step is used.  The edges and corners of elements on the sur-
face create sharp discontinuities between features and can give rise to mesh insta-
bilities.  These sharp features can behave as stress concentrations during deforma-
tion simulations, leading to artificial stress and strain localizations.  Second, the 
lack of a distribution in the size of elements often creates an abundant number of 
elements.  If the microstructural features vary in size, it is practical to have ele-
ments that vary in size as well.  Also, even if the microstructural features are of 
uniform size, the mesh size need not be uniform.  The gradient in the property of 
interest can be used to grade the mesh size, where larger elements should be used 
where the gradient is small and smaller elements used where the gradient is large.  
In general, feature boundaries are areas of high gradient and the feature centers 
exhibit lower gradients.  It is possible to decimate the voxel structure by combin-
ing neighboring voxels together in regions with small gradients in the property of 
interest, but not without some additional mesh compatibility steps that won’t be 
discussed here. 

 
The voxel-based mesh technique is certainly the simplest to implement of the 

techniques to be presented here.  The mesh quality is also very high.  The other 
techniques can also produce high quality meshes, but none have the inherent 
quality of the voxel-based mesh.  However, the voxel-based mesh has arguably the 
worst surface structure due mainly to its complete lack of physical meaning.  The 
‘stair-stepped’ structure is solely an artifact of the data collection process and not 
any true physical structure.  The user bias is eliminated by simply using the expe-
rimental data, which at least confines the error to only the data collection itself.  
Due to the relative simplicity of implementation, many investigators have used the 
voxel-based construct for both FE and FFT simulations.  Details regarding their 
processes and results can be found in (Lewis 2006, Deka 2004) 

3.3.2.2 CAD-Based Surface Fitting 

The voxel structure obtained from experimental data collection can be used as 
input into a surface fitting algorithm.  It is often practical to perform the surface 
fitting and subsequent surface reconstruction in a CAD environment.  The goal of 
CAD-based surface fitting is to correct the ‘stair-stepped’ nature of the voxel 
structure.  The process consists of identifying the set of voxels that make up the 
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boundary/interface between two microstructural features and fitting a polynomial 
or spline surface through them.  After completing this step for every interface, 
each microstructural feature is defined as the region bounded by all of the fit sur-
faces corresponding to the interfaces between itself and its neighbors.  The intrica-
cies of this approach have been detailed previously (Bhandari 2007, Ghosh 2008) 
and are far too extensive for this chapter. 

 
The advantage of this technique is the smooth surface representation that re-

sults from the adjustment of the polynomial surfaces or splines.  However, there 
are difficulties encountered during the fitting and reconstruction/bounding 
process.  First, the surfaces can be adjusted to be increasing more complex by in-
creasing the order of the polynomial or spline.  Increasing the order of the surface 
generally improves the fit to the voxels, but also creates issues like self intersec-
tion and local degenerate solutions.  A practical limit for the surface order has 
been shown to be around three for a typical engineered microstructure (Bhandari 
2007, Ghosh 2008).  Second, creating the region bounded by a set of fit surfaces is 
not trivial.  Each surface is fit independently and there can be incompatibilities at 
the areas of their intersection.  Neighboring surfaces may not actually intersect or 
may intersect at a point significantly away from the true feature surface.  This is 
due in large part to the lower number of data points at the edges of the surfaces.  
Also, data at the edges and corners of features tends to have a higher propensity 
for error.  These issues combined with the high order fit surfaces can lead to spu-
rious events at the areas where surfaces intersect.  In addition, each feature is 
bounded separately and thus overlaps and gaps can be artificially created between 
neighboring features.  These generally small artifacts are often the result of locally 
perturbing fit surfaces to ensure their intersection.  Artifact cleaning routines can 
correct the overlaps and gaps by overlaying the original voxel data (Bhandari 
2007, Ghosh 2008), but not without significant user intervention or advanced 
CAD programming.   

 
Following the bounding of each feature and artifact correction, a volume mesh 

must be generated.  Each surface of the bounded region can be discretized, with 
local curvatures of the surface dictating the local density of points on the surface.  
The points on the surface serve as nodes for a FE mesh.  Additional nodes are re-
quired in the interior of the feature and can be positioned with various goals, such 
as a graded size distribution towards the center of the feature, where gradients are 
often lower.  The volume node generation process becomes a balance between 
spacing nodes homogeneously to ensure the best possible dihedral angle distribu-
tion and grading the node density to yield a graded mesh structure.  Once the sur-
face and volume nodes are created, the nodes can be connected by a Delaunay tri-
angulation process to generate a set of tetrahedrons that will be the elements for a 
FE analysis.  The nature of the Delaunay process results in a near-optimal mesh 
for the given nodes.  However, the tetrahedral elements generated by the Delaunay 
triangulation will likely still require some clean-up processes to ensure proper 
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element quality.  In the interest of brevity, these clean-uproutines will not be dis-
cussed here, but can be found elsewhere (refs). 

 
The CAD-based technique is likely the most time intensive technique to im-

plement.  The mesh quality can be very high, provided the clean-up tools are de-
signed properly, but it does not have the inherent quality of the voxel-based con-
struct.  The largest benefit of the CAD-based mesh is the smooth surface structure, 
which is arguably better than any of the other techniques.  The ‘stair-stepped’ 
structure is generally completely eliminated.  However, the process for smoothing 
the surfaces is not inherently physical.  For example, the surface fitting criteria are 
generally defined to smooth while minimizing deviation from the experimental da-
ta and not to approach some physical property like minimum surface area or speci-
fied angle of surface intersection.  The user bias can also be significant during the 
artifact correction steps, where overlaps and gaps must be assigned to neighboring 
features.  Bhandari et al (2007) developed come physically-based tools to correct 
these artifacts with limited bias. 

3.3.2.3 Direct Image-Based Meshing 

Direct image-based meshing is similar to the voxel-based approach, but with 
some attempt to smooth the surface structure.  The central tool used in most direct 
image-based approaches is the marching cubes algorithm first developed by Lo-
rensen and Cline (1987) and modified by others (refs).  The marching cubes algo-
rithm breaks a voxel-based structure into tetrahedrons based on local voxel neigh-
borhoods.  The tetrahedrons are generally high quality elements because of their 
tendency to be right tetrahedrons with dihedral angles of 45º and 90º.  The surface 
structure is also generally improved over that of the voxel-based representation.  
The voxels on the surfaces of features are broken in a manner that removes many 
of the abrupt 90º angles that causes the ‘stair-stepped’ surface structure discussed 
previously.   

 
The marching cubes algorithm creates an extremely large number of elements, 

because each voxel is broken into multiple tetrahedrons.  The tetrahedrons tend to 
be close to uniform in size and thus, they are far from efficient in meshing the mi-
crostructural features.  The tetrahedrons can be decimated to improve the mesh ef-
ficiency by reducing the number of elements.  The decimation of the tetrahedral 
mesh is actually more straightforward than the decimation of the voxel-based 
structure directly.  The surface representation, while improved, is still far from the 
smooth surfaces generated by the CAD-based surface fitting approach.  Some 
commercial programs designed to generate direct image-based meshes have 
smoothing tools built in, but it is not known to this author what, if any, physical 
criteria are used.  It is also possible to combine techniques by running a marching 
cubes algorithm on the original voxel-based structure before passing the semi-
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smoothed structure on to a CAD-based approach.  The semi-smooth structure is 
likely to improve the CAD-based approach by supplying a smoother initial surface 
structure, which may allow for the use of lower order fit surfaces. 

 
The direct image-based approach has nearly the same pros and cons as the vox-

el-based approach, albeit the surface representation is improved.  The ease of im-
plementation, high quality metrics, and limited user bias are key advantages, but 
the relatively poor surface representation and the lack of physical smoothing crite-
ria are drawbacks.   

3.3.2.4 Surface Area/Line Tension-Based Smoothing Methods  

The surface area/line tension smoothing technique is an attempt to combine the 
direct image-based method with a semi-physical smoothing process.  The first step 
in this method is to run the marching cubes algorithm on the original voxel-based 
structure.  After the voxel-based structure is converted into a tetrahedral mesh, a 
surface smoothing algorithm is applied to improve the surface represtentation.  
The difference between this smoothing algorithm and the CAD-based approach is 
that this algorithm has a physical driving force and the features are not treated in-
dependently.  The physical driving force is related to the general belief that inter-
faces between features will tend to minimize their surface area in an attempt to 
minimize the energy of the structure.  The smoothing process is presented in detail 
by Lee (ref) and will only be outlined here. 

 
The smoothing process begins with the identification of all quadruple points, 

which are points where four features meet.  Each quadruple point is connected to 
another quadruple point (with three of the same four features) and these connec-
tions make up the triple line network.  The triple lines are not made by connecting 
the points directly with a line segment; they are connected by following edges of 
the tetrahedrons in the directions of the original voxel edges.  The triple lines are 
initially ‘jagged’ from following along edges of the original voxels, but will be 
smoothed by balancing the minimization of both line length and deviation from 
the experimental data.  The smoothing process involves starting at one end of the 
line and progressively skipping edge segments on the triple lines and monitoring 
the deviation of the new line from the original ‘jagged’ line.  If a user defined to-
lerance is exceeded, the current segment is fixed and a new segment is initiated.  
The process continues until the other end of the triple line is reached.  After all the 
triple lines have been smoothed the surfaces must also be smoothed.  The surfaces 
are treated as a series of lines connecting triple lines across the surface.  These 
lines are smoothed using the same process as the triple lines.  The end points of all 
the line segments on the triple lines and surface lines are the surface nodes, similar 
to the nodes placed on the fit surfaces in the CAD-based method.  Volume nodes 
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are added and connected using the same ideas discussed in the CAD-based sec-
tion.   

 
The surface area/line tension smoothing approach is an attempt to smooth the 

data based on physical ideas, while still being true to the experimental data.  The 
implementation is rather simple, especially when compared to the CAD-based ap-
proach.  The quality of the elements is similar to the CAD-based approach, due 
mainly to the similar Delaunay triangulation method for element creation used in 
both methods.  The physically-based smoothing criterion makes for the most ‘rea-
listic’ surface representation of the methods presented here.  The user bias howev-
er, is still somewhat significant due to the user defined tolerance for deviation 
from the experimental data. 

 

 
Figure 2: Surface representations of a grain using (left) voxel-based meshing, 
(middle) marching cubes without smoothing as commonly used in direct image-
based meshing and (right) marching cubes coupled with line tension-based 
smoothing.  

3.4 Statistical Representation of Structure 

Representing structure in a statistical sense has multiple benefits to the compu-
tational material scientist.  First, some material properties show a significant 
amount of scatter with the apparent cause linked to specific local feature interac-
tions.  Thus, an individual experimental volume may not accurately represent the 
variation in locally critical neighborhoods.  Statistically-equivalent instantiations 
of the experimental volume may highlight the likelihood of the occurrence of such 
neighborhoods and permit simulation of their influence on behavior.  Additionally, 
statistically quantifying structure can offer insight in to the representative nature 
of a structure in relation to a specific property of interest.  That is, the convergence 
of a property and some set of statistical descriptors can be linked to determine a 
representative volume element (RVE) for that property.  Further, statistical-based 
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structure builders can be used when the 3D structure is not available.  If the 3D 
statistics of a structure can be inferred from 2D observations, which will be dis-
cussed later, then a 3D structure can be created where one was not available.  
Lastly, the statistical description of structure, if coupled with rapid and robust in-
stantiation tools, can allow for the compression of data from large experimental 
datasets to a list of statistical descriptors used to generate structures when needed. 

 
The following section will discuss the critical steps in generation of statistical-

ly-based synthetic structures, specifically statistical quantification methods, struc-
ture generation processes, and metrics for the validation of equivalence. 

3.4.1 Quantitative Description of Structure 

3.4.1.1 Feature Size & Volume 

Feature volume can be calculated simply by summing the number of voxels 
that are assigned to each feature.  Each voxel has an associated volume given by 

2
voxelV δε= , where δ is the section thickness and ε is the pixel/step-size of the 

2D image or EBSD map.  The feature volume is calculated by 

grain v voxelV N V= ⋅ , where Nv is the number of voxels in the grain.  In addition to 

measuring the true feature volume, the equivalent sphere radius (ESR) can be cal-
culated (Groeber 2007).  The distribution of ESRs is useful for comparison with 
classical descriptions of feature size (or radius/diameter), which often involved 
some extrapolation from 2D.  Additionally, various theoretical distributions have 
been developed to fit the ESR distribution (Enomoto 2004, Feltham 1957, Hillert 
1965, Louat 1974).  Figure 3 shows a sample distribution of ESR for a nickel-base 
superalloy along with fit theoretical distributions. 
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Figure 3: Plot of equivalent sphere radius (ESR) for a nickel-base superalloy along 
with three fit theoretical distributions. 

 
Another measure of feature size is the mean width of the feature.  The mean 

width is given by: 
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where, v is the number of edges on the feature, ε is the length of the edge and β is 
the angle between the normals of the faces that meet at the edge.  Mean width is a 
measure of the linear dimension of a feature and was shown by Hadwiger (1957) 
to exhibit the property of additivity.  Mean width can be calculated analytically for 
all flat-faced polyhedra (MacPhearson and Srolovitz 2007), which means that 
mean width can be easily computed for all grains after any of the surface mesh 
generation processes discussed previously.   

3.4.1.2 Feature Shape 

The irregular geometries that are typical of features in some materials make 
feature shape a difficult parameter to unambiguously describe.  This is especially 
true due to the lack of general shape descriptors, where most descriptions of shape 
involve combining groups of size parameters to generate a unitless value (Russ 
1983).  Examples of possible shape descriptors include: length/width (aspect ra-
tio), area/convex area (solidity) and length/fiber length (curl).  A common practice 
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is to fit an ellipsoid (or ellipse in 2D) to the feature (Saylor 2004, Brahme 2006).  
A systematic method of generating ellipsoidal inclusions from voxel data obtained 
by serial-sectioning has also been developed (Ghosh 1999).  In this method, the 
zeroth order moment (I0), first order moments (Ix, Iy, Iz) and second order moments 
(Ixx, Iyy, Izz) are first calculated for each feature by adding the contribution of each 
voxel belonging to an identified feature.  The coordinates of the centroid for the 
best-fit ellipsoid are computed from the zeroth and first order moments as: 
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Next, the principal directions, corresponding to the principal axes of the ellip-
soid are calculated from the eigenvalues and eigenvectors of the second order 

moments , , 1,2,3ijI i j = .  The major axis (2a), minor axis (2c) and intermediate 

axis (2b) of the ellipsoidal grain are solved from the relations of the principal 
second moments of inertia as: 
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where, A, B and C are given by: 
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Figure 4: Plot of (left) the distribution of grain aspect ratios for a nickel-base supe-
ralloy, obtained from a best-fit ellipsoid and (right) the accuracy indicator, termed 
ellipsoidal misfit, that describes the closeness of the fit ellisoids. 

 
In some cases the ellipsoidal representation of features is an oversimplification 

that should be quantified.  Correspondingly, an accuracy indicator of the ellipsoid-
al representation can be developed (Groeber 2007).  The best-fit ellipsoid based on 
the moment analysis is scaled slightly to be of the same volume as the grain with 
the same aspect ratios and orientation.  The fraction of the grain’s voxels that lie 
within the best-fit ellipsoid is calculated.  If the grain is perfectly ellipsoidal then 
the value of this quantity would be very near 1 (with the voxel size relative to the 
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feature size controlling the nearness to 1).  Decreasing values indicate more com-
plex and likely concave shapes that are poorly represented by an ellipsoid.  Figure 
4 shows a sample plot of the distribution of grain aspect ratios for a nickel-base 
superalloy as well as the corresponding accuracy indicator plot. 

 
 

 
Figure 5: Plot of the relationship between Ω3 and n, where n is the exponent in the 
superellipsoid equation given by equation 8.  

 
In the case that the ellipsoidal representation is not sufficient, higher order 

moments may need to be considered.  However, there is more information in the 
second-order moments, beyond the aspect ratios, that is rarely used in microstruc-
ture description.  For the second order moments, there are three moment inva-
riants.  The third moment invariant, where the first two are essentially the aspect 
ratios, offers more detail on the shape of a feature (MacSleyne et al 2008).  While 
it is true that the three invariants of the second order moments are not sufficient in 
describing the true shape of the feature, there are techniques that can be used to 
incorporate all three invariants and improve on the current description of shape.  
For example, if a class of shapes is selected (i.e. superellipsoids or truncated octa-
hedrons), the third moment invariant can be linked to parameters that fully define 
these shapes.  In the case of the superellipsoid, the third invariant, known as Ω3, 
can be linked to the exponent in the equation that defines a ‘superellipsoid’ (Mac-
Sleyne et al 2008): 
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where, a, b and c are the semi-axes of the superellipsoid.  The relationship of Ω3 to 
n  is given by: 

22



[ ]nF 3
3 =Ω     (3.9) 

where, 

[ ]
3

5

3

3
1

3

51
1

20





 +Γ



Γ





Γ



 +Γ

=

nn

nnnF     

and Г[x] is the complete Gamma function.  Figure 5 shows the relationship of Ω3 
and n, along with some example feature shapes for selected values of n.  It be-
comes obvious from the plot that utilizing Ω3 enables the description of shape var-
iation beyond just aspect ratio changes.   

3.4.1.3 Number of Neighbors 

 
Figure 6: Plot of the distribution of the number of neighbors for grains in a nickel-
base superalloy. 

 
In addition to the shape of features, the number of nearest neighbors is another 

example of a parameter that cannot be determined directly from 2D measurements 
but is easily determined in 3D.  Here, the voxels of each feature are checked to see 
if they neighbor another feature.  If a neighboring voxel belongs to a different fea-
ture, the two features are neighbors.  This process is exceedingly useful because it 
not only determines the number of neighbors, but it identifies the feature connec-
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tivity in the structure, which allows for further automated investigation of any pa-
rameter involving neighbor interactions.  Note that when checking neighboring 
voxels, only voxels that share a common face, not a common edge or corner, are 
considered.  This requires the features share some actual area and avoids counting 
features that meet at only an edge or point.  Figure 6 shows a sample plot of the 
number of neighbors distribution for a nickel-base superalloy. 

3.4.1.4 Correlations between Parameters 

The correlation or mutual relationship between parameters may be important 
because it provides additional information regarding the morphology and spatial 
arrangement of features.  The feature connectivity coupled with the parameters of 
each individual feature allows for the relationships between parameters as well as 
the clustering of critical features to be studied.  It is desirable to quantify the de-
gree of correlation between two selected parameters.  A quantity called the corre-
lation ratio, η2, can be used for this purpose (Kenney 1947).  The correlation ratio 
is a preferred metric in comparison to the correlation coefficient, r, because it can 
be used with non-linear relationships.  The correlation ratio is the square of the 
correlation coefficient (r2) if the relationship is linear.  If the relationship is non-
linear, the magnitude of the correlation ratio is larger, but retains a value between 
0 and 1.  The formula for the correlation ratio is given by:   
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where, Ng is the total number of features, Nb is the number of bins, nb is the num-
ber of observations in a given bin b and, 
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The correlation ratio can be thought of as the percent of the total variance of the 

dependent variable accounted for by the variance between groups of the indepen-
dent variable.  Seen in the equation is that if there is a large difference between the 
mean of the whole data set and the means of the individual bins, then the correla-
tion ratio is high.  Figure 7 shows a correlation plot relating feature size to a num-
ber of morphological parameters for a nickel-base superalloy.  The grains of the 
superalloy were separated by their ESD and the averages of other morphological 
parameters were calculated for grains of similar ESD.  The averages for each size 
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bin were then normalized by the average of the corresponding morphological pa-
rameter for all sizes.  It becomes quite clear which parameters are strongly corre-
lated with size when observing the trends in Fig. 7. 

 

 
Figure 7: Plot of the correlation between grain size (i.e. ESD=2*ESR) and other 
morphological parameters.  Bin average refers to the average of a parameter for all 
grains within a given size bin and sample average refers to the average of the pa-
rameter for all grains, regardless of size bin. 

3.4.1.5 Crystallographic Texture 

Many of the traditional analysis of 3D EBSD data are directly analogous to the 
traditional two-dimensional counter analysis.  For example the volume fraction of 
a particular phase and the Orientation Distribution Function (ODF), since the area 
fraction is exactly equal to the volume fraction for a random section through a ma-
terial.  However, the 3D analysis can often add inform these analysis, for example, 
only through a 3D analysis can the preferred morphological orientation, such as 
that measured by the ellipsoid of fit, be correlated with the crystallographic texture 
measured in the ODF.   

 
Other measurements have 2D to 3D analogs that are related through stereologi-

cal relationships that give a statistical equivalence of the properties.  An example 
of this would be the distribution of misorienations across feature boundaries in a 
material.  In the 2D section, one can easily measure the misorientation across the 
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boundary, but the line-length of a given boundary is not directly related to that 
boundaries area.  However, if enough boundaries are collected in 2D section with 
a similar misorientation, one can apply the stereological relation, SV = 4BA/π 
where SV is the surface area per unit volume, and BA is the boundary length per 
unit area (Russ 1986).  It should be noted a very large number of boundaries need 
to be present in the 2D section in order to obtain a statistically significant number 
of boundaries for each misorientation type for this analysis to be valid.  In the case 
of a 3D reconstruction, the measurement of the misorientation distribution is rela-
tively straightforward since, as discussed above the feature’s nearest neighbor mi-
sorientations and their boundary areas can be directly calculated from the 3D re-
construction, thus the misorientation distribution function can be directly 
measured without assumption.  Figure 8 shows a set of pole figures and the miso-
rientation distribution for a nickel-base superalloy.   

 

 
Figure 8: Plot of (top) pole figures for a nickel-base superalloy and (bottom) the 
misorientation distribution of the same nickel-base superalloy. 

3.4.1.6 Interface Character Distribution 

There are many analyses that can only be measured directly through 3D recon-
struction of the material.  In a very general sense, these analyses can be seen as the 
correlation of a specific 3D geometry with the crystallographic orientation.  One 
of the most relevant applications of this is the determination of crystallographic in-
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terface orientations, which requires directly correlating the crystallographic orien-
tation of an object with the local interface normal.   

 
One of the most common 3D visualization techniques is to form a surface mesh 

of the object so that the interface of the object is described as a 3D mesh of dis-
crete interconnected triangles.  The conversion from a regularly gridded 3D array 
of data (such as a stack of images) is most often accomplished using a fast-
marching cubes algorithm that converts the volumetric regular array data form to a 
surface mesh (Lorenson and Cline, 1987).   Often it is necessary to apply some 
degree of surface smoothing in order to remove pixel-like artifacts from the sur-
face mesh, as discussed in the section on surface representation and mesh genera-
tion.  Once the surface is described in terms of a set of triangles, the properties of 
these triangles can be used to quantify the interfaces of the 3D reconstruction, par-
ticularly the local interface normal. The normal 

 

¦ n  and the area A of each triangle 
in the surface mesh is given by:  



 

ˆ n =
e 1 × e 2
e 1 × e 2

; 


 

A = e 1 × e 2 /2   (3.11) 

where, 


 

e 1 and 


 

e 2 are the two edge vectors of the triangle. 
   
One powerful construction that can be formed from this type of data is the In-

terface Normal Distribution (IND) (Kammer & Voorhees 2006).  The IND is con-
structed by first placing the collection of all the interface normal vectors on to a 
unit sphere.  The normals are then binned (weighted by the surface areas of the tri-
angles) according to orientation, then normalized by a random distribution of 
orientations. Therefore, an orientation on the spherical histogram that has a strong 
intensity corresponds to a large surface area that shares that orientation.  This 
spherical histogram is then projected to a 2D plot using a stereographic projection 
(typically along the +z direction, but this is a matter of how one wants to represent 
the data), preserving the angular relationships between the orientations in the plot 
producing the IND plot. It should be noted that if the binning of the data occurred 
on the projected data space of the stereoplot, rather than on the unit sphere, the in-
tensities of the histogram would be altered by the nonequal-area nature of the ste-
reographic projection. Because the binning of the data occurs on the unit sphere, 
this artifact is avoided and a randomly distributed shape (like a sphere) would 
have a flat intensity.  For INDs that contain peaks, the exact shape of peaks on the 
stereoplot would still be slightly altered by the projection especially close to the 
center poles and edges of the stereoplot.  The stereographic projection has ex-
tremely large distortions for orientations that have a –z component.  To avoid this 
often it is necessary to project each hemisphere separately, however this can be 
avoided if there is crystallographic symmetry, which allows the plot to be com-
pressed to a stereographic triangle.   
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The inclusion of the local crystallographic orientation along with the local in-
terface normal means that the interface normals can be expressed in the crystallo-
graphic coordinate system as well, creating a Crystallographic Interface Normal 
Distribution (CIND). The only variation in the construction of the CIND is that 
before the normals are binned on the unit sphere, they are rotated to the crystallo-
graphic coordinate system using the euler angles of the object in question.  There 
are two analyses that especially lend themselves to this type construction, the ex-
amination of individual objects and examining the overall crystal interface texture 
in a sample, which will be briefly reviewed. 

 
Rowenhorst et. al. (2006) used the CIND analysis to examine the facet planes 

on individual coarse martensite crystals, as shown in Figure 9 (right).  By identify-
ing the peaks within the CIND, and fitting planes to the corresponding triangles 
the average crystallographic facet normal was determined.  This article also intro-
duced a unique visualization technique in which the interfaces in the 3D recon-
struction of the martensite crystals were colored according to the local interface 
crystallographic normal (Fig. 9 middle).  The coloring scheme is identical to that 
used to create an Inverse Pole Figure (IPF) but unlike the IPF, where each point in 
the image is colored according the crystallographic direction that points along an 
arbitrary section plane direction (Fig. 9 left), here the interface was colored ac-
cording the crystallographic direction that is parallel with the surface normal.  
This visualization contains essentially the same exact information as the CIND 
construction with the added advantage of being able to link crystallographic orien-
tation to specific morphological features, but unlike the CIND, the information 
presented is not quantitative.   
 

Saylor et. al. (2004) significantly expanded on the CIND construction to in-
clude not only the interface distrpoibution of grain boundaries in poly-crystalline 
MgO, but to include the full five parameter space of the grain boundaries, con-
structing the Grain Boundary Character Distribution (GBCD).  By examining the 
full five parameter space, they were able to not only determine the interface tex-
ture for the system, but also the interface texture for particular grain misorienta-
tions.   Since this initial study, the GBCD has been determined for many more ma-
terials systems including  Al, Ni, Cu, Brass, and Ti-6-4 (Saylor, 2004; Randle 
2008a; Randle 2004; Randle 2008b). 
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Figure 9: Reconstruction of two coarse martensite crystals in HSLA-100 steel.  
(left) Color indicates the crystallographic direction that is parallel with the z-axis.   
The difference in color indicates that the martensite crystals represent separate 
martensite variants. (middle) Color indicates the crystallographic orientation of the 
local interface normal at each local patch of the interface.  Note that while the 
crystals represent different variants, the crystal facets have similar crystallographic 
normals. (right) Crystallographic Interface Normal Distribution (CIND) plots of 
the two martensite crystals, where the upper and lower CINDs correspond respec-
tively to the purple and yellow crystals in the left image. The peaks in the CIND 
indicate the average orientation of the facet planes of the crystals; peak intensities 
indicate Multiples of a Random Distribution (MRD). 

3.4.1.7 N-Point Statistics 

Two-point through N-point correlation functions are a useful set of descriptors 
that characterize the spatial arrangement of microstructural features.  Generally, 
these correlation functions, most common of which is the two-point correlation 
function, are used to analyze spatial arrangement of particles or voids in materials 
such as: discontinuously reinforced composites, foams, geological samples, etc. 
(Torquato 2002).  However, correlation functions can also be utilized to describe 
the spatial arrangement of grains with certain microstuctural parameters.  For ex-
ample, the spatial arrangement of grains with a given orientation in a polycrystal 
could be quantified using correlation functions.  Two-point correlation functions 
can be determined by systematically placing line segments in the structure and 
noting where the endpoints lie.  Therefore, for a microstructure with two entities, 
be they phases, orientations, sizes, shapes, etc., there are exactly four two-point 

correlation functions: rP11 , rP12 , rP21 , rP22 .  rPnm  is 

the average probability that endpoint 1 and endpoint 2 of a randomly oriented line 
segment of length r lie in entity n and entity m, respectively (Tewari et al 2003).  
Note that here the term entity is being used to mean a certain property and not a 
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specific feature.  Thus, for rP11 , it is not a requirement that both endpoints lie 

within the same particle/feature with entity 1, just that both endpoints lie within a 
particle with entity 1.  Two-point correlation functions can also be directionally 
dependent and thus, the values of each correlation function can be calculated as a 
function of the orientation of the line segment within the sample.  The extension 
of two-point correlation functions to n-point correlation functions simply involves 
placing an n-cornered polygon, rather than a line segment, in the sample and not-
ing the position of the endpoints.  The number of functions increases with n and 
with the number of entities in the sample.   

 
N-point correlation functions could be used to describe the local neighborhood 

around a grain in a polycrystal.  A specific property of a grain, its size, for exam-
ple, could be chosen as entity 1 and all other sizes could be chosen as entity 2.  
Then line segments of varying lengths could be drawn from the centroids of all 
grains with size equal to (or near that) of entity 1.  The resultant two-point correla-
tion functions would describe the spatial arrangement of grains with size equal to 
(or near that) of entity 1.  This same process could be carried out for the Schmid 
factor of a grain or its orientation, which would likely offer key insight into the 
clustering of critical orientations.   

3.4.1.8 Limitations/Concerns when Using Statistical Descriptors 

The statistical descriptors presented here certainly offer a great deal of informa-
tion about the microstruture, but are by no means a complete set.  Other classical 
morphological descriptors, such as the number of faces, edges and corners of a 
feature have not been presented here, but are readily available in the 3D volume.  
Mean width was explained to be the integral of a feature’s curvature and the IND 
analysis was the shown to be the complete distribution of interface normals, but 
the curvatures of a grain’s individual boundaries have not been correlated to the 
grain’s size and shape or to the curvatures of neighboring boundaries.  In general, 
the near-neighbor analyses have been limited to only contiguous neighbors and 
not next-nearest neighbors and beyond.  These issues are not truly limitations of 
the descriptors themselves; rather they are an illustration of the abundant amount 
of information available in just one experimental volume.  The limitation is actual-
ly in the ability to quantify every aspect of the structure, which has yet to be 
shown, is in fact necessary.  It should be the goal of a concerted characterization-
modeling effort to define to what extent microstructure needs to be quantified and 
represented for each property.   

 
Some areas of the current analysis remain incomplete.  The correlation between 

descriptors is one of the areas most lacking.  Especially when three or more de-
scriptors are related, it becomes difficult to quantify their dependencies on one 
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another.  This is most frequently the result of an insufficient number of features in 
the interrogated volume.  This can be corrected by collecting larger volumes, but 
limitations of experimental capabilities and availabilities may be preventative.  
Additionally, the statistical analyses have not yet advanced to the point of accu-
rately informing the experimentalist of the proper number of features to collect for 
each type of analysis.  Another area that is currently under-investigated, at least in 
the context of materials microstructure, is the analysis of rare events.  The ex-
treme-value statistics of the microstructure are not well understood and have not 
been well addressed in the quantification and comparison of structures.  The stan-
dard distributions (i.e. lognormal, beta, weibull) used to describe most descriptors 
provide a ‘good’ fit over much of the descriptor’s range.  However, when the ex-
treme-values are closely investigated, the experimental observations often appear 
to deviate systematically from the fit distribution in a manner that suggests more 
than simply sampling error.  Until the extreme-value statistics are properly quanti-
fied and accounted for in digital microstructures, simulations of properties that are 
believed to be controlled by rare events or neighborhoods should be treated with 
some sense of skepticism. 

3.4.2 Synthetic Structure Builders 

The synthetic builders that will be discussed here consist of two major steps.  
First, the features to be placed in the synthetic volume are generated.  These fea-
tures are generated by sampling the size, shape and morphological and crystallo-
graphic orientation distributions of the features observed by some experimental 
technique.  Second, the features are placed in the volume with specific focus on 
the local neighborhoods created by neighboring features.  The sampling procedure 
for generating representative features as well as the constraints used to place the 
features in the volume will be described here.  Figure 10 shows some example 
synthetic volumes generated by the different techniques discussed in this section.   

3.4.2.1 Representative Feature Generation 

A representative feature generation process is responsible for the creation of a 
collection of idealized ellipsoidal (or alternative representation) features having 
distributions of size, shape and morphological and crystallographic orientation 
equivalent to those observed in the experimental volume.  In this representation, 
each grain is modeled as an ellipsoid as defined in the previous section on feature 
shape.  The size corresponds to the volume of each ellipsoid, the shape corres-
ponds to the aspect ratios of the principal axes (b/a, c/a and c/b) and the morpho-
logical orientation corresponds to the orientation of the major principal axis 
( :a a b c≥ ≥ ) relative to the global coordinates.  The first step in the process is 
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to sample the experimental feature volume distribution, which is represented by 
the cumulative probability distribution function (CPDF) fit to the experimental da-
ta.  Many investigations have shown the feature volume distribution to be best 
represented by a lognormal distribution (Zhang et al 2004, Groeber et al 2008), 
whose CPDF is given by: 
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where, V  is the feature volume, ( )P V  is its cumulative probability, which has 0 

and 1 as its limits.  The average feature volume ( AVG
gV ) and the standard devia-

tion ( STD
gV ) are parameters that determine the precise shape of the distribution 

function.  During volume assignment, a number within the limits of ( )P V  is ran-

domly generated and the corresponding volume, given by equation 1, is assigned.  
This assignment process is continued until the total volume of all features generat-
ed equals a threshold defined as 110% of the volume of the synthetic microstruc-
tural model.  The additional volume is needed because some features may lie par-
tially outside the domain of the microstructural model or overlap other features.  
This issue will be discussed further in the next subsection.   
 

Subsequent to the volume assignment, feature shapes are assigned in conformi-
ty with CPDFs of the ellipsoid aspect ratios (b/a, c/a and c/b) that have been estab-
lished a priori from the experimental data.  The corresponding CPDFs can be 
represented in terms of a beta distribution, with the form:   
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In equation 3.13, ( )
1

11

0

( , ) 1
qpB p q t t dt−−= −∫  is the beta function, p and q are 

the shape parameters and ( / )P b a  is the cumulative probability.  The statistical 

analysis establishes the correlation between the shape and the size of each grain, 
represented by the aspect ratios and volume of each ellipsoid.  To establish this 
correlation for the synthetic ellipsoidal features, each volume is converted to an 
equivalent sphere diameter (ESD) using the relation:   
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The correlation is determined by assigning aspect ratios to different volumetric 
bins that are represented by ranges of ESD values.  The two aspect ratios that de-
fine an ellipsoid (b/a and c/a) each have a CPDF in each volume bin.  The sam-
pling of the b/a and c/a CPDFs is identical to that of the feature volume CPDF.  
This process ensures appropriate correlation between the shape and size distribu-
tions. 

 
In addition to a correlation with volume, the aspect ratios b/a and c/a should al-

so be mutually correlated.  However, often there is an insufficient number of fea-
tures in the experimental volume to determine this correlation table between the 
grain volume V, and both of the aspect ratios b/a and c/a.  To overcome this short-
coming, individual correlation functions are generated between V and each of the 
aspect ratios separately.  In this process, values of b/a and c/a are evaluated cor-

responding to randomly chosen ( )
bP
a

 and ( )
cP
a

 values from the ( ) ( )
b bP
a a

−  

and ( ) ( )
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−  plots, respectively.  The consequent aspect ratio 
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evaluated and its probability density 
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experimentally observed distribution.  The two individually generated aspect ra-
tios are accepted with the same probability density of ( / )p c b . 

 
The third variable, the morphological orientation of each ellipsoidal feature, is 

defined by a set of rotations (θ,λ,ψ) needed to transform the global coordinates 
(X,Y,Z) onto the principal axes of the ellipsoid (A,B,C).  The probability density 

function, ( ) gN
f g g

N
∆

∆ =  is the probability of observing an orientation G in 

the interval g G g g≤ ≤ + ∆ , where gN∆ is the number of orientations be-

tween g and g g+ ∆  and N is the total number of experimentally observed ellip-

soidal features.  If N(i) is the number of observations in the ith orientation space 
element ranging from ( , , )θ λ ψ and ( , , )θ θ λ λ ψ ψ+ ∆ + ∆ + ∆ , then the den-

sity of orientations can be expressed as 
( )iN

N
.  To evaluate this density, the entire 

orientation space is defined as a finite cube with edge length π (180º) with the or i-
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gin at one of its vertices.  For the purpose of creating ranges in the orientation da-
ta, the orientation space is discretized into cubic bins of dimension π/36 or 5º.  The 
morphological orientation density in each bin is calculated by dividing the number 
of orientations in the bin by the total number of orientations in the experimental 
data and normalizing by the size of the bin.  Ellipsoidal orientations are created 
and assigned based on this probability density function. 

 
In summary, the output of this process is a set of representative ellipsoidal fea-

tures having statistically equivalent volume, aspect ratio and morphological orien-
tations as the experimental reference data.  However, this process does not arrange 
the features in their appropriate spatial locations, which is the function of the next 
process.  A final step in this procedure can be included either before or after the 
feature placement routine.  This step is the assignment of crystallographic orienta-
tions to the generated features.  The process of assigning crystallographic orienta-
tions is exactly identical to that of the morphological orientation assignment 
process previous described.  Here the only difference is that the rotations assigned 
are those to transform the global coordinate axes to the coordinate system of the 
crystal, rather than the principal axes of the grain. 

3.4.2.2 Feature Placement 

After generating a set of ellipsoids that is representative of the 3D features, the 
focus must be shifted to the placement of the ellipsoids in the volume.  There are 
multiple issues to consider when packing the ellipsoids.  The density of the objects 
represented by the ellipsoids is one of the largest factors in developing the packing 
algorithm.  For example, ellipsoids representing particles of a low volume fraction 
phase will certainly be placed differently than ellipsoids representing grains in a 
fully dense polycrystalline material.  In the fully dense grain example, care must 
be taken to pack the volume as densely as possible, but minimize overlap between 
ellipsoids in order to retain each ellipsoid’s prescribed shape.  In both cases, the 
local neighborhood of the ellipsoid (i.e. neighboring ellipsoids) must also be ad-
dressed during placement.  The low volume fraction particles should be spaced 
equivalently to the experimental/reference data and the densely packed grains 
should neighbor grains of similar sizes and shapes as seen in the experimen-
tal/reference data. 

  
Two inherently different, but viable options for ellipsoid packing will be dis-

cussed here.  The first approach involves overpopulating the volume with a large 
number of ellipsoids.  This approach is presented in greater detail elsewhere (Say-
lor 2004, Brahme 2006).  A large set of representative ellipsoids are placed into 
the model volume.  The ellipsoids should have a total volume much larger than the 
volume to be filled and are allowed to overlap and extend outside of the volume.  
A simulated annealing procedure can then be employed to determine an “optimal” 

34



set of ellipsoids.  An optimal set of ellipsoids would maximize space-filling, while 
minimizing overlap of ellipsoids.  Saylor (2004) and Brahme (2006) outline the 
development of a penalty function that promotes optimal space filling.  It is easy 
to imagine the adjustment of this function to address the less dense packing of the 
distant particle case.  At present, only the space-filling nature of the ellipsoids is 
addressed in this technique and not the local neighborhood of an ellipsoid.   How-
ever, it is conceivable that penalty functions could be developed to encourage de-
sired clustering or spacing of ellipsoids of given sizes or shapes.  Once an active 
set of ellipsoids are selected by this method, a voxelized structure is generated us-
ing Cellular Automata (CA) where the centroid for each ellipsoid is a seed point in 
the simulation and voxels are added starting at this seed point until the entire 
structure is filled. The growth is constrained initially such that only those voxel 
locations that are located inside the ellipsoids are added. When each ellipsoid is 
completely filled then the constraint is dropped and the remaining free volume is 
consumed. 

 
A second approach to the ellipsoid packing problem is to sequentially place the 

ellipsoids while using statistical descriptors from the experimental/reference data 
as constraints.  One such implementation of this approach is presented by Groeber 
et al (2008).  Here, the set of representative ellipsoids should have a total volume 
much nearer to the model volume than the first approach.  The ellipsoids are al-
lowed to extend outside the volume, similar to the first approach, and thus the total 
volume should be some small amount (i.e. ~10%) above the model volume.  Each 
ellipsoid is randomly placed in a sequential fashion and checked against a number 
of constraints to determine if its current position is acceptable.  Constraints can in-
clude, but are not limited to: overlap limits, number of neighboring ellipsoids and 
size distributions of neighboring ellipsoids.  This approach generally yields optim-
al space-filling through the overlap limits and produces realistic neighborhoods by 
constraining placement to locations that improve the surroundings of previously 
placed grains.  Though this technique presents some advantages over the previous, 
there are complications that arise as well.  In any sequential process there should 
be concerns of a failure to locate a suitable position, especially near the end of the 
process.  Generally, the process is more efficient and successful when the largest 
grains are placed first, when there is sufficient room left for their placement.  Ad-
ditionally, the number of constraints greatly affects the feasibility of locating a 
suitable position and thus should be optimized. 

3.4.3 Measures of Goodness 

The ‘goodness’ of the synthetic structure can be defined relative to two objec-
tives, which may or may not be completely related.  First, the statistical descrip-
tors of the synthetic structure can be compared to those of the experimental struc-
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ture.  The similarity of these descriptors is certainly one measure of ‘goodness’ 
and will be a focus of the following subsections.  Second, the simulation results of 
the two structures can be compared.  This definition of ‘goodness’ is arguably a 
more practical one, in that the response of the material is often the overriding goal.  
However, depending on the property of interest, the two structures may be ‘equiv-
alent’ with respect to the statistics chosen, but still yield different simulation re-
sults.  This is likely to be the case when the experimental structure is smaller than 
a representative volume element (RVE) for the specific property or the statistical 
descriptors chosen are not directly linked to the response property.  This section 
will not deal with the second definition; due mainly to a lack of simulation results, 
but it should be considered carefully in future structure-property relation investi-
gations. 
 

 
Figure 10: Example synthetic structures produced by (left) the sequential grain 
placement algorithm using ellipsoidal grains and (right) the sequential grain 
placement algorithm using superellipsoidal grains.  Note that the grains generally 
appear less “idealized” in the right image where the superellipsoid representation 
described section 3.4.1.2 was used.  

3.4.3.1 Size(s) 

Measuring the “size” of a grain may appear to be a simple matter at first sight.  
Even in 2D sections, however, computing the circle-equivalent diameter yields a 
(slightly) different result than the average linear intercept (Underwood 1970).  In 
3D, one must be concerned with all three dimensions, of which measuring the vo-
lume and surface area of a grain is intuitively obvious.  Less obvious is how best 
to measure the linear dimension of a grain, since there are so many possibilities 
(linear intercept, sphere-equivalent radius, etc.).  The recent publication by Mac-
Pherson and Srolovitz (2007) on the theory of grain growth has, however, pointed 
out to the materials science community that “mean width” is not only a useful 
measure of integral curvature of objects such as grains, but that it also is unique in 
its property of additivity.  Hadwiger (1957) showed that there is only one measure 
in each dimension that has the property of additivity, which means that the vo-
lume/area/mean width of the union of two overlapping objects is the sum of the 
separate quantities, minus the volume/area/mean width of the overlapping region.  
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This suggests that the distributions of the three basic quantities (volume, area and 
mean width) should be part of the validation of a digital microstructure.  Moreo-
ver, ratios between pairs of these quantities, as shown in Figure 11, also provide 
basic information on the shape of objects.  Fitting to distributions of such ratios 
may also be part of the development of feature geometry in 3D models. 
 

 
Figure 11: Blasche diagram combining the properties that exhibit additivity in the 
three dimensions.  The x-axis is the square root of surface area normalized by 
mean width and the y-axis is the volume normalized by mean width.  The posi-
tions where some standard geometrical shapes reside on the plot are noted.    

3.4.3.2 Shape(s) 

A typical approach to quantifying the shape of grains is to fit an ellipsoid and 
report the aspect ratios (Groeber et al 2008, Saylor et al 2004).  This approach is 
useful in describing the distribution of the amount of elongation of the grains.  
However, aspect ratios are ambiguous in reference to many aspects of shape.  For 
example, it is possible for an ellipsoid and a rectangular prism to have the same set 
of aspect ratios.  The local curvatures of grain boundaries are often disregarded 
when a ‘simple’ geometric feature is fit to represent a grain.  It is this issue that 
makes shape one of the more complicated parameters to describe. 
 

MacSleyne et al (2008) have presented a method for distinguishing shapes by 
utilizing all three of the second order moment invariants.  The moment invariant 
technique creates a three-dimensional moment invariant space to represent a 
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grain’s shape rather than the limited two-dimensional space defined by a pair of 
aspect ratios.  In the moment invariant space, shapes with similar aspect ratios lie 
on the same arc, but are separated along the third dimension, Ω3.  Additionally, 
combinations of the calculated moments can yield interesting insights into the 
types of shapes present in the structure.  An example of a moment invariant analy-
sis is shown in Figure 12.  The analysis provides the distribution of aspect ratios, 
which appears roughly equivalent for the two structures.  However, when the val-
ue of Ω3 is compared, there is a noticeable shift in the distribution between the two 
structures.  Finally, the largest difference between the two structures can be seen 
in the comparison of the distribution of V/Vconv.  Vconv is the volume of the convex 
hull of the grain and V is the volume of the grain itself.  The ratio of these two vo-
lumes is bounded by 0 and 1 and compares the relative concavity of the grain.  It 
should be clear that the aspect ratio comparison alone does not accurately high-
light many of the differences between the shapes in the two structures. 

 

 
Figure 12: Example of results from a moment invariant analysis.  The upper set 

of plots is from an experimentally collected volume (Groeber 2008).  The lower 
set of plots is from a synthetic microstructure generated with the goal of matching 
the experimental volume’s statistics, using methods presented by Groeber (2008).  
The analysis highlights the need (and ability) to look past lower order descriptors 
like aspect ratios. 

3.4.3.3 Neighborhood(s) 

The local neighborhood of a grain can be a complicated aggregate of features 
that can be described by a number of different parameters.  For example, the mor-
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phological descriptors of the neighboring features could be reported or their crys-
tallographic relationship to the reference grain could be of more interest.  Addi-
tionally, the approach to describing the local neighborhood of grain is likely to 
vary with the type of microstructure and data being investigated.  A grain structure 
which has been segmented is likely to have a known connectivity of grains and 
contiguous neighbors can be characterized.  In the case of low volume fraction 
second-phase particles, the nearest neighbors may not be known and a two-point 
statistics approach (Gokhale , Kalidindi) may be better suited. 

 
For describing the morphology and connectivity of a grain’s neighborhood, 

there are multiple distributions that can be created.  First, the distribution of num-
ber of neighbors can be generated for all grains, as well as correlated to grain size 
by grouping grains of similar size.  In addition to number of neighbors, the size 
distribution of the neighboring grains can also be considered.  The size distribu-
tion of neighbors, when correlated to the size of the reference grain, offers insights 
into the tendency of grains of certain sizes to cluster together (i.e. Aboav-Wieve).  
The shapes of neighboring grains can be correlated to the reference grain’s shape 
to quantify the clustering of similar shaped grains, which may evolve during re-
crystallization or deformation. 

 
The crystallographic description of individual boundaries will be discussed in 

the next section, but there are other parameters that describe the crystallography of 
local grain aggregates to varying degrees.  The misorientation distribution func-
tion (MoDF) can be calculated for the entire structure, which gives some insight 
into the local textures present in the material.  However, the MoDF does not pro-
vide any knowledge of the spatial distribution of the misorientations in the MoDF.  
The known connectivity of the grains allows for the spatial description of the mi-
sorientations.  For example, one could calculate the fraction of a grain’s neighbors 
that have a critical misorientation value, be it high, low or special.  This approach 
could then be expanded to include secondary neighbors (i.e. neighbors of neigh-
bors) and would ultimately offer a more local estimate of the clustering of grains 
with similar orientation.  Two-point statistics can also be employed to describe 
distributions of orientations as well.  

3.4.3.4 Boundary Character(s) 

In order to generate a complete 3D microstructure, one must add grain (crystal 
lattice) orientations to the description.  The current state-of-the-art is that the grain 
geometry is created first and then a set of orientations is optimized with respect to 
texture and grain boundary misorientation (Saylor et al 2004, Groeber et al 2008).  
The procedure relies on simulated annealing and is computationally straightfor-
ward on modern personal computers.  This procedure has at least two significant 
limitations, however.  The first is that it assumes that size and shape are uncorre-
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lated with orientation.  However, this is not always the case; Bozzolo et al. (2005) 
have demonstrated that in titanium that has been deformed and then recrystallized 
there are texture components that are more dominant in the small grains and vice 
versa.  The second limitation is that it ignores the fact that grain boundary proper-
ties depend on the interface normal as well as the lattice misorientation across 
them.  The full description of grain boundary character requires, in fact, five ma-
croscopic parameters.  Fitting orientations to include both texture and misorienta-
tion and interface normal distributions needs to be developed.  Implementing such 
an algorithm in voxel-based representations requires some method to compute the 
local interface normal.  Alternatively, interface normals are straightforward to 
compute in a surface or volumetric mesh representation of a microstructure, which 
has been discussed previously. 

3.5 Inference of 3D Structure 

It is often the case that the true 3D structure of a material is not available to in-
clude directly in a computational model.  This can be attributed to the cost, availa-
bility and complexity of experimental tools.  As a result, it is still a reality for 
many to infer 3D structure from 2D observations.  As previously mentioned, if 3D 
statistical descriptors can be inferred from 2D observations, the synthetic structure 
builders discussed in the previous section can be used to generate 3D structures 
for simulation.  The following section will discuss some potential methods for in-
ferring 3D statistics from 2D observations. 

3.5.1 Link Between 2D and 3D Structure 

The statistical reconstruction method described here is based on limited cross-
sectional information from a given material; it is essential, however, that cross-
sections are made on more than one sectioning plane, and preferably on three or-
thogonal planes.  Statistical methods for reconstructing microstructures have been 
developed in a number of fields, especially for modeling geological materials 
(Fernandes 1996, Oren 2002, 2003, Sundararaghavan 2005, Talukdar 2002).  Say-
lor et al. proposed a method of constructing 3D models of polycrystalline mate-
rials based on the microstructural features observed in three orthogonal sections 
(Saylor 2004). In this report the microstructural features of interest include size 
and shape of grains, misorientation distribution, orientation distribution, and the 
relative placement of grains with respect to size.  The procedure outlined by Say-
lor, along with adaptations for elongated grain shape noted by Brahme (2006) is 
the basis for one of the procedures described here.  Groeber (2007) also offered a 
methodology for inferring 3D structure from 2D measurements.  In Groeber’s 
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study, the 2D sections were obtained by sectioning synthetically generated 3D 
structures, which provide a known set of 3D statistics to compare with the inferred 
statistics. 

 
There is a substantial literature on the general stereological problem of recon-

structing 3D microstructures based on limited section information.  When treating 
microstructures as collections of general particles whose size, shape and orienta-
tion are to be reconstructed (without regard to their packing), the problem is 
known to lack a solution (Cruz-Orive 1976).  However, for particles that are mo-
nodisperse (in size and shape), this problem is well known and has semi-analytical 
solutions for which the names Cahn and Saltykov are well known in the materials 
literature (Cahn 1956, Saltykov 1958). For a historical overview, see Underwood 
(1970).  In contrast to these more general cases, polycrystalline grain structures 
have an added constraint since grains are not independent particles (i.e. low vo-
lume fraction) because they fill space.  This constraint enhances the ability to ac-
curately reconstruct a 3D distribution from 2D observations (Przystupa 1997).  
This section will attempt to address the previously less investigated problem of 
space-filling particles (i.e. grains). 

3.5.2 Probable Set Generation 

3.5.2.1 Monte-Carlo Histogram Fitting 

In this section an example of generating a set of 3D (ellipsoidal) grains using 
statistical distributions calculated on three 2D, orthogonal, EBSD-based micro-
graphs is given.  The grain size distributions for the three orthogonal planes of a 
rolled aerospace aluminum alloy are shown in Figure 13.  Matching the statistics 
in the generated 3D structure to the measured 2D statistics is accomplished 
through a multi-step process that includes: (1) generating representative ellipsoids 
(in terms of size and shape distributions), (2) placing those ellipsoids into a vo-
lume, (3) allowing that volume to be filled with voxels that are grouped as grains, 
and (4) modifying the grain structure by use of a (isotropic) Monte Carlo grain 
growth (Rollett et al 2004).  The first step in this process is the focus of this sec-
tion, while the latter steps were previously discussed in the section on feature 
placement during synthetic structure generation. 

 
The transition from 2D to 3D is accomplished by assuming the grain shape is 

that of an ellipsoid and considering that the observations on 2D sections are only a 
portion of the true size and shape of the actual grain. The probability distribution 
functions (PDFs) of the ellipse dimensions obtained from the sliced ellipsoids are 
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given as )(),( bfaf ′′ , where a and b are the semi-axes of an ellipse, and the 

prime accent indicates that it is from a section. In this case the ellipse dimensions 
are assumed to be independent, and that a > b.  References to the cumulative dis-
tribution function, CDF, utilize the same notation but with a capital “F”.  The in-
put data is used directly to create a CDF (i.e. F(TD)) of grain size where the range 
of the CDF is 0 to 1 and the domain is scaled in micrometers.  The distribution for 
each direction is sampled and multiplied by a stereological constant to account for 
the fact that that the CDF is generated from a 2D section.  In this approach the to-
tal number of ellipsoids generated is specified as input to the program and it 
proceeds to optimize the list such that they are a good match to the input data. The 
optimization is accomplished iteratively and the first step is to create an initial list 
of ellipsoids and then slice each of them many times and extract the 2D CDFs of 
grain size on each section. The RMS error between list and the input data is com-
puted. The initial list is then modified by generating a new ellipsoid in the same 
manner as before and then randomly choosing an ellipsoid to replace from the list. 
The ellipsoid is replaced only if the new ellipsoid lowers the error of the system.  
The program completes when it has performed a number of user specified itera-
tions.  The result of this method can be observed directly by comparing the PDFs 
and CDFs of the data and the simulated ellipsoids directly as can also be seen in 
Figure 13.  The distributions in both the ND and TD directions are well matched 
to the input data.  The discrepancy on the RD direction in this case is due to im-
proper sampling of the grains in the RD direction (i.e. the majority of grains inter-
sected the scan boundary).  

 

 
Figure 13: The resulting (top) PDFs and (bottom) CDFs for the OIM input data 
and ellipsoids generated to represent the data for the ND, RD, and TD directions. 
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3.5.2.2 Domain Constraint 

The elemental assumption of this method is that the entire (and infinite) set of 
all possible ellipsoids can be bounded by observations of ellipses on experimental-
ly collected, orthogonal 2D sections to leave a “most probable” set of ellipsoids.  
Factors such as the distributions of size, shape and orientation of the ellipses on 
the 2D sections are used to assign probabilities to groups of ellipsoids.  This type 
of an approach is fundamentally different than the analytical developments made 
by Cruz-Orive (1976) and DeHoff (1962) in that an exact solution is not the goal, 
rather a probable set is desired.  An initial description of this technique is intro-
duced by Groeber (2007). 

 
In order to assign probabilities to groups of ellipsoids, the infinite domain of el-

lipsoids must be initially truncated and discretized.  A five dimensional space is 
created to define the ellipsoids.  Three dimensions correspond to the orientation of 
the principal axes of the ellipsoid and are inherently bounded by the finite dimen-
sions of Euler space, which describe the orientation of the ellipsoid (i.e. its prin-
cipal axes).  The other two dimensions correspond to the two aspect ratios of the 
ellipsoid. The aspect ratio dimensions are not inherently bounded, but can be trun-
cated by using the 2D observations to make assumptions about reasonable upper 
and lower bounds.  By definition, the upper limit of the two aspect ratio dimen-
sions is 1 (i.e. a sphere) and the lower limit can be set to be the smallest aspect ra-
tio observed in the 2D sections.  In practicality, the accuracy of the estimated low-
er limit will be directly related to the number of observations and thus, it may be 
prudent to reduce the minimum observed value by an additional 25-50%.  The vo-
lume of the ellipsoids is treated only as a distribution within each discrete bin in 
the 5D space, not as its own dimension.  This is because volume only scales the 
dimensions of an ellipsoid and any resultant elliptic section through it, which has 
no effect on the following process. 

 
Development of a probable set of ellipsoids is undertaken as an iterative 

process because of the inability to decouple the influences of ellipsoid shape (as-
pect ratios) and orientation on the resultant distribution of ellipses.  The iterative 
process initiates by calculating a probable orientation distribution for the ellipsoids 
with an assumed uniform shape distribution.  Then the shape distribution is up-
dated using the calculated orientation distribution.  Iteratively, each distribution is 
updated using the most recently calculated instance of the other distribution until a 
level of convergence is reached.  Some details of the calculations are offered here 
as well as the process of extrapolation of the individual ellipses.   

 
Calculation of a probable orientation distribution requires sectioning a large 

number of ellipsoids within each discrete orientation bin and observing their resul-
tant elliptic sections.  Each ellipsoid is assigned a set of aspect ratios in accor-
dance with the shape distribution, which is initially uniform.  A two-dimensional 
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histogram of resultant ellipse orientation and resultant ellipse aspect ratio is 
created for all ellipsoids in each of the orientation bins.  An example histogram, 
shown as contour plots, is shown in Figure 14.  The histograms for each orienta-
tion bin are then compared to the same histogram made from the actual observa-
tions on the experimental 2D sections.  The simulated histograms are fit to the ex-
perimental histogram by a least squares method to determine the probability of 
each orientation bin.   

 
Upon calculating the orientation probability distribution, the shape distribution 

can be updated by sectioning a large number of ellipsoids within each discrete 
shape bin, represented by a set of aspect ratios.  Each ellipsoid is assigned an 
orientation in accordance with the previously calculated orientation distribution.  
A two-dimensional histogram of resultant ellipse aspect ratio and resultant ellipse 
normalized size is constructed for all ellipsoids in each of the shape bins.  The 
normalized size is the area of the resultant ellipse divided by the average resultant 
ellipse area.  An example histogram is shown in Figure 14.  The histograms for 
each shape bin are then compared to the same histogram made from the actual ob-
servations on the experimental 2D sections.  The simulated histograms are fit to 
the experimental histogram by a least squares method to determine the probability 
of each shape bin. 

 

 
Figure 14: Plot of (left) density of ellipse principal axis orientation vs aspect ratio 
and (right) density of ellipse normalized size vs aspect ratio.  The top third of each 
plot shows ellipses on the plane normal to the z-direction, the middle third shows 
ellipses on the plane normal to the y-direction, and the bottom third shows ellipses 
on the plane normal to the x-direction.  In the left plot, the x-axis refers to the x-
component of a unit vector oriented along the major axis of the ellipse and the y-
axis is the aspect ratio (b/a) of the ellipse.  In the right plot, the x-axis is the ellipse 
area divided by the average ellipse area and the y-axis is the aspect ratio (b/a) of 
the ellipse. 

 
While sectioning the ellipsoids to determine a probable orientation and shape 

distribution, the distribution of fractional section size is constructed for each shape 
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bin.  The fractional section size is defined as the resultant ellipse area divided by 
the maximum possible resultant ellipse area for a given ellipsoid (i.e. when the el-
lipsoid is sectioned through the equatorial plane perpendicular to the minor axis).  
The fractional section size distribution is used to extrapolate the individual expe-
rimental ellipses.  The shape of each experimental ellipse’s parent ellipsoid is pre-
dicted by the probability of an ellipsoid of a given shape producing the experimen-
tal ellipse (i.e. its normalized size and aspect ratio).  Once the parent ellipsoid’s 
shape is assumed, the distribution of fractional section size for that shape can be 
used to convert the experimental section’s area to the maximum possible section 
area for the parent ellipsoid.  With an assumed shape and maximum possible sec-
tion size, everything necessary to fully define the parent ellipsoid is available.  
This process is carried out for each experimental ellipse, resulting in a set of 
‘probable’ ellipsoids whose statistics can be used to generate synthetic 3D vo-
lumes.  Figure 15 shows the results of the observation-based domain constraint 
process for a sample microstructure. 

 

 
Figure 15: Results of the Observation-Based Domain Constraint method.  The up-
per right image is the true 3D shape distribution (ellipsoid aspect ratios).  The up-
per left image is the ‘probable’ shape distribution calculated by the method.  The 
lower image is a comparison of the true 3D grain size distribution (equivalent 
sphere radius) and the calculated ‘probable’ size distribution. 
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3.5.3 Limitations and Possibilities 

Currently, there are a number of limitations that remain when inferring the true 
3D microstructure of materials.  First, the shape of the features being inferred has 
been limited to simple geometric shapes that can be easily described numerically, 
generally ellipsoids.  This limitation need not be persistent, provided numerical 
descriptions of more complex shapes are developed.  The moment invariant analy-
sis mentioned previously may provide a key tool in developing this area. 

 
Additionally, the linkage between neighborhoods of grains in 3D and grains in 

2D is not immediately clear to this author.  The number of neighbors, as well as 
their size, shape, etc, is likely to be a function of the packing of the grains, which 
may not be known from even several 2D sections.  In principle, it would be possi-
ble to section many different, yet known, microstructures and attempt to develop a 
“look-up” table that correlates parameters such as: number of 2D neighbors to 
number of 3D neighbors.   

3.6 Comments on Complex Microstructures 

The microstructures investigated in the works presented in this chapter are rela-
tively idealized.  The nickel-base superalloy used in the work of Groeber et al was 
chosen for its small feature size, propensity to yield high quality data and micro-
structural homogeneity.  The aluminum alloy used in the work by Saylor et al and 
the steel used in the work by Rowenhorst et al both are single phase materials with 
standard boundary structures and limited heterogeneities.  These properties 
enabled the investigation of microstructure with comparatively little difficulty.  
All three microstructures certainly have inherent difficulties as well.  The nickel-
base superalloy contains a second phase that is difficult to distinguish from the 
matrix as well as twin grains that are often too small to sample properly with the 
tools used.  The rolled aluminum alloy has a grain size too large for the desired 
experimental techniques (i.e. EBSD).  The steel required the precipitation of a 
second phase to identify boundaries easily, which was met with some difficulty.  
However, the complications encountered do not approach the level of some heavi-
ly engineered, more topologically complex microstructures, such as beta-
processed titanium with a basketweave structure.  Techniques are being expanded 
to treat such microstructures, but are currently in the developmental stages. 

 
It should not be a surprise that for the advancement of digital representation of 

grain-level microstructure to include more complex microstructures, there must be 
a coupled advancement in the ability to collect and quantify these microstructures.  
Additionally, clever techniques to homogenize or adaptively incorporate multiple 
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microstructural scales will be an imperative to simulate microstructures that have 
critical features that exist of varying length scales.  The utility of a microstructure 
representation can be limited greatly if the computational modeling community 
has no feasible method to simulate the structure.  Again, this calls for a representa-
tion-modeling effort that defines the degree to which microstructure needs to be 
incorporated, both in the context of its effects on the property and on its ability to 
be simulated.  For the example of beta-processed titanium, Ghosh et al. (2008) 
have developed a homogenized grain representation that homogenizes the lamel-
lar/lath structure of the titanium, which would be impossible to incorporate at the 
scale needed to include hundreds of prior beta grains.  Thus, for properties that 
this homogenization is proper, the experimental techniques and representation 
tools can be tailored to identify and represent only the prior beta grains (and alpha 
colonies/variants) and omit the underlying lath-rib structure in an effort to increase 
simulation efficiency.    

 
Lastly, the synthetic structure generation process should likely attempt to paral-

lel the natural process that produced the microstructure of interest.  That is, the 
application of an increasing number of generic constraints on the placement of 
features in the synthetic volume is likely to inhibit the generation process.  How-
ever, if the generation process follows the natural process, then many constraints 
may become obsolete and unnecessary.  Two examples of this idea are the inclu-
sion of twin grains in a polycrystal and the generation of a colony (or basket-
weave) structure in a titanium alloy.  In the case of twin grains, it is difficult (if 
not impossible) to treat the twin and its parent grain as independent features and 
ensure that they will be placed in proper relation in the synthetic structure.  Rather, 
it is potentially a better strategy to remove the twin grains, by merging them with 
their parent grains, and characterize the simplified structure.  Then, a synthetic 
structure without twins can be generated to match the simplified structure.  If the 
statistical description of the twin structure (i.e. fraction of grains with twins, twin 
plate thickness, number of twins per grain, etc.) is measured during the merging, 
then twins could be inserted into the simplified synthetic structure, which would 
simulate the natural process of twin nucleation in a parent grain.  In the case of the 
colony structure of a titanium alloy, if the colonies themselves are treated as the 
features to be placed, it is a complicated process to place colonies into neighbor-
hoods that have the proper orientation relationships (in accordance with the Burg-
ers’ relationship) and the correct topological structure (imposed by the prior beta 
grain boundaries).  One option to circumvent this complication is to generate a 
synthetic structure that consists only of prior beta grains, with the statistics to 
match the experimental beta grain structure.  The prior beta grains can be identi-
fied by grouping the colonies that came from the same beta grain, which is known 
through the Burgers’ relationship.  Then, the synthetic beta grains can be divided 
into colonies, where the orientations are already constrained by the beta orienta-
tion and the topology is already constrained by the beta grain boundaries.  Similar 
to the twin example, the statistics of the ‘secondary’ features (i.e. the twins or co-
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lonies) can be measured during grouping to locate the primary features (i.e. the 
parent grains or prior beta grains).  Dividing the beta grains into colonies simu-
lates the natural precipitation of the alpha phase in the prior beta grains.  Linking 
the synthetic generation process to the natural process may simplify the represen-
tation of complex structures and it is also likely to enhance the physical signific-
ance of the generated structure. 

3.7 Conclusions 

This chapter has attempted to discuss the key areas necessary for the develop-
ment of digital representations of materials microstructure at the grain level.  
Much of the detail in the various areas is presented elsewhere and as been noted 
wherever possible.  It was the goal of the author to highlight the current ‘state-of-
the-art’ techniques and discuss their strengths and weaknesses.  This field is still in 
a state of relative infancy and requires the cooperation of a number of other fields 
to properly evolve.  The experimental community has elevated the ability and pre-
cision with which it can investigate microstructure in the last decade.  It is impor-
tant for communication with this community to tailor experiments to the needs of 
given representation requirements.  After the generation of a microstructure repre-
sentation, mesh generation remains a barrier to the simulation of models (without 
artifacts).  The general meshing community has not been introduced to the needs 
of the materials modeling problem.  Quantification of mesh error relative to the 
digital representation is one key metric, as well as the quality of elements required 
for a given simulation.  Lastly and arguably the most critical, the development of a 
connection between simulation results and statistical descriptors is imperative.  
Such an association is a necessary part of the pathway to the determination of a 
representative volume element (RVE) for all materials properties.  The improve-
ment of constitutive relations requires knowledge of what descriptors influence 
properties and proper quantification of descriptors is key in defining their influ-
ence on properties.  Digital representation of materials microstructure is an 
integral part in the determination of microstructure-property relationships, but 
cannot be treated as an independent step in the process.  The full effect of devel-
opments presented here and those to come will only be realized when these colla-
borations have been cultivated. 
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