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Abstract— We will discuss how stability and speed of normal 
zone propagation in YBCO-coated conductors is affected by 
interfacial resistance between the superconducting film and the 
stabilizer. Our numerical simulation has shown that the 
increased interfacial resistance substantially increases speed of 
normal zone propagation and decreases the stability margins. 
Optimization of the value of the resistance may lead to a better 
compromise between stability and quench protection 
requirements than what is found in currently manufactured 
coated conductors.  

 
Index Terms—Coated Conductors, Normal Zone, Stability.  

 

I. INTRODUCTION 
uperconducting wires in large scale applications have to 
satisfy two important criteria - they have to be stable 
during operation, but also allow integration of an 

effective quench protection scheme in the superconducting 
devices [1]. These two requirements compete with each other. 
Conventional low temperature superconductors operate at 
liquid helium temperatures, where their small heat capacity 
makes the current-carrying wires very unstable with respect to 
even a small amount of heat released in them. For that very 
reason, however, the speed of normal zone propagation (NZP) 
is high (several meters per second) which is beneficial for the 
rapid detection of the normal zone (NZ) and mitigation of the 
consequences of the quench. The situation is reversed in 
YBa2Cu3O7-x (YBCO) coated conductors [2]. Their main 
advantage over conventional superconductors is a high 
operating temperature (60-77 K) and the resultant high 
stability margins. The flip side is a low NZP speed which 
complicates quench protection [3-5]. 
  We present the results of a numerical analysis of a model 
of NZP specialized to the architecture of the state of the art 
coated conductors. The main conclusion of this analysis is that 
the NZP speed can be increased up to an order of magnitude 
by increasing the interfacial resistance between copper 
stabilizer and the superconducting film. The concomitant 
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reduction of the stability margin is substantial, but the wire 
retains an ability to recover on its own from a finite amount of 
 locally injected heat.  
    After some of our preliminary results were presented 
elsewhere [6,7], we were advised by colleagues that a large 
body of  work devoted to the effect of interfacial resistance on 
NZP in conventional superconductors had been done much 
earlier, with some of the publications predating the discovery 
of high temperature superconductivity [8-11]. This reminds us 
again of an ancient adage that ―each new thing is a well-
forgotten old one‖.   

II. MODEL 

YBCO coated conductors are thin metal tapes in which an 
about 1 m thick YBCO film is sandwiched between a metal 
substrate and the copper stabilizer [2,12]. The total thickness 
of the tape is about evenly divided between stabilizer and 
substrate and close to 100 m. The standard width of the 
currently manufactured tape is about 4 mm. There is a very 
thin layer of material between the YBCO and copper that 
accounts for the resistance to the current exchange [13]. 
Common wisdom is that the resistance of this interface has to 
be as low as possible to ensure effective current transfer. If 
necessary, however, it can be increased by a chemical 
treatment or by changing the architecture of the wire. Here we 
treat the interface as an infinitesimally thin boundary between 
YBCO and copper with a finite resistance R  [  cm2].   

Hereafter, we consider only the direct transport current 
condition. Three-dimensional (3D) equations of heat 
conduction in a thin tape-like composite wire, Fig. 1,  can be 
reduced to the 2D (planar) or 1D linear model if the variation 
of temperature along the thickness of the wire is small in 
comparison with its variation along the plane of the wire. One 
can show that this criterion is satisfied if 

)( 0TTKjd ciTi , where jT is the thermal flux lifted 
from the surface of conductor, and di and Ki, respectively, are 
the thickness and thermal conductivity of either the stabilizer 
or substrate material; Tc and T0 are the critical temperature and 
the operating temperature respectively (Tc -T0 20 K).  For 
copper stabilizer K1  4-5 W/cm K and d1  40 m. For a 
substrate metal like Hastelloy K2  7×10-2 W/cm K and 
typically d2  50-100 m [13].  As long as the heat flux from 
the surface is of the order of 1-10 W/cm2 or less, the planar 
approximation is justified. The 150-300 nm thick buffer 
between the YBCO and substrate and even thinner YBCO-Cu 
interface also can be considered thermally transparent.  

Stability and normal zone propagation speed in 
YBCO coated conductors with increased 

interfacial resistance. 
George A. Levin, Paul N. Barnes, Jose P. Rodriguez, Jake A. Connors, and John S. Bulmer 
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The 2D - {x,y} - heat conduction equation can be obtained 
by integrating the 3D equation along the thickness of the 
conductor (Fig. 1):  

)(2 00 TTKQTK
t
TC      (1) 

Here C=C1d1+C2d2 is the combined specific heat, 
K=K1d1+K2d2 is the effective thermal conductivity, and 
Q= q(z)dz is the areal density of the internal heat sources. K0 
is the heat transfer coefficient across the insulation on the 
surface and T0 is the ambient temperature which, in the 
absence of losses, is the operating temperature. We also 
neglect here for simplicity the temperature dependence of the 
material coefficients.  
    To obtain a closed system of equations for a simplified 
analysis we shall neglect the dissipation (Q = 0) in the sections 
of the wire that are subcritical, J < Jc(T). This is an 
approximation because a certain amount of current flows in 
the stabilizer even in the subcritical sections [12]. The limits 
of this approximation are discussed below. We shall employ 
the Bean model approximation to describe the internal heat 
sources in the sections of the wire that are still 
superconducting, but where the transport current density 
exceeds the local critical current density, J > Jc(T) [9]. 
Hereafter the symbols J denote the sheet current density 
[A/cm width]. There are three separate contributions 
originating from the stabilizer, the interface and the 
superconductor, respectively:   

)()()(1 2
12

1
1

zEJz
R
VVEq ss

s


.                 (2) 

Here 1E


 is the electric field in the stabilizer and 1 is its 
resistivity. V1 is the local potential of the stabilizer and Vs is 
the potential of the superconductor. The -functions account 
for the fact that two of the heat sources are concentrated in the 
volume much thinner than either the stabilizer or substrate. 
The heat dissipation in the substrate is negligible due to its 
large resistance [12] and the substrate contributes only to the 
thermal mass of the conductor (especially in light of the thin 
buffer layers).  
     Within the Bean model approximation the current through 
the superconducting film cannot exceed the critical current, so 
that )(TJn=J cs


, where n


 is a unit vector in the direction of 

current. The excess of transport current must flow into the 
stabilizer. The condition of charge 
conservation 0jzsJ


,  where R)/V-(j s1z V  is the 

density of current across the interface, takes form  
R)/V-( s1VJn c


                            (3) 

In the one-dimensional case that will be considered hereafter, 
Eq. (3) and its spatial derivative are given by 

R)/V-( s1
/ VJc ;            1

// E-R sc EJ .           (4) 
Here xJJ cc //  and 22// / xJJ cc

. The direction of the 
current flow is taken to be positive, Fig. 1. Therefore, Es must 
be either positive or zero.  
     The power sources in the right-hand side of Eq. (1) have a 
different form in the three temperature regions:  T<T1, 

T1≤T≤Tc , and T > Tc, respectively. The current sharing 
temperature T1 is defined by the condition Jc(T1)=J. For T<T1 
(sub-critical regime) we take Q=0. We want to emphasize that 
this is an approximation we have mentioned earlier. In fact 
when resistance of the interface is large, the current flows in 
the stabilizer even in the sufficiently ―cold‖ sections where 
Jc(T) > J. The critical temperature Tc is defined by the 
condition Jc(Tc)=0. At temperatures above Tc the transport 
current flows only in the stabilizer and Q= J2/d1. All three 
heat sources in Eq. (2) contribute in the intermediate range of 
temperature, T1≤T≤Tc: 

)()()()( //

1

12/

1

2
1

sc
c

cc
c EHJR

d
JJJJR

d
JJQ

. (5) 
A unit step function )( sEH ensures that the electric field in the 
superconductor is either positive or zero. The necessity to 
introduce the step function ―by hand‖ stems from the 
approximation mentioned above, when we neglected the 
precursor electric field propagating ahead of the normal zone 
[12] in the sections of wire where T<T1. The step function 
ensures that the numerical solution does not ―wander off‖ into 
unphysical territory where the heat source may become 
negative.  
     Rewriting Eq. (1) in dimensionless form will allow us to 
combine numerous material and experimental parameters into 
a smaller number of dimensionless quantities that determine 
different regimes of the NZP. A dimensionless temperature  
is defined as 

1

1

TT
TT

c

;        )1()( JJc .                 (6) 

Here we also assumed for simplicity a linear dependence of 
the critical current on temperature, well justified for coated 
conductors [13]. The distances shall be measured in units of 
the thermal diffusion length 2/1)/( TT Dl , where 

CKDT / , and time in units of , where the increment 

TCdJ 1
2

1 /  determines the characteristic time 
required to warm an element of the conductor by 1TTT c .  
     Equation (1) takes the following piece-wise form: 

)(1 02

2
;     1.             (7) 

);()())(1()( 0
////2/2

2

2

rHrr (8) 

10 . 

);( 02

2
    0 .                (9) 

Here t and Tlx / . The cooling conditions are 
determined by the constants 

2
110 /2 JTdK   and    0)/()( 1100 TTTT c .     (10)                  

The interface resistance enters into Eq. (8) as a combination 

;
0

2

2

R
R

l
r

T

 
2

1

1

2
1

0
)(

J
TTK

d
lR cT ; 

2/1

1

1dR .   (11) 

Here is the current transfer length [12] that determines the 
distance over which the current exchange between the 
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superconductor and stabilizer takes place. Although more 
complex, Eqs. (7-9) share common features with the standard 
Kardar-Parisi-Zhang (KPZ) equation [14]. In both cases the 
diffusion competes with the nonlinear growth term 2/ )( .  
The KPZ term corresponds to the heat released in the interface 
and its strength is proportional to the interface resistance.  
     The numerical solutions of Eqs. (7-9), subject to periodic 
boundary conditions, were obtained for an initial condition in 
the form of Gaussian temperature profile 

}2/exp{)|(|)0,( 22
00 a .             (12) 

All results presented here correspond to the same width of the 
initial profile The value of the dimensionless ambient 
temperature is directly related to the transport current by virtue 
of the relationship (6): 

J
Jc

)0(

0 1 ,                                (13) 

where JTJJ cc )( 0
)0(  is the critical current density at the 

operating temperature T0.  

 
Fig. 1.  Sketch of the conductor and two examples of the numerical solutions 
of Eqs. (7-9). Shown are the evolving temperature profiles x,t).  In both 
cases the initial condition (in the foreground) is the same, Eq. (12), with 

a and The cooling constant is also the same In (a) 
the interface resistance is negligible; In (b) .5.1/ 0RRr  

III. RESULTS AND DISCUSSION 

A. Speed of  Normal Zone Propagation 
Figure 1 shows two examples, in the form of 2D plots, of 

the solutions (x, t) of Eqs. (7-9), subject to periodic boundary 
conditions and the initial condition given by Eq. (12). The 
normal zone evolves from the initial Gaussian perturbation 
with a width of the order of the diffusion length ( and 
the peak temperature a = 1.1. This corresponds to the peak of 
the real temperature  

))(1( 1max TTaTT cc                        (14) 

 
 
Fig. 2.  The normal zone propagation speed as a function of interfacial 
resistance obtained from the solutions of Eqs. (7-9) similar to those shown in 
Fig. 1. The parameters of the initial condition are the same as in Fig. 1. The 
adiabatic case corresponds to =0. The value of 0= -1 is the same for all 
cases. 
 
The dimensionless ambient temperature 0 = -1, that 
corresponds to the transport current density equal to 50% of 
the maximum critical current: )0(5.0 cJJ . Under this condition 
the current sharing temperature T1, defined by the condition 

,)( 1 JTJ c
 lies half-way between the operating temperature T0 

and the critical temperature, )(5.0 01 TTTT cc . The 
maximum temperature of the normal zone is determined by 
the cooling constant,  

.1
0NZ                               (15) 

The    solutions  shown  in   Figs. 1(a,b)  correspond  to =0.1, 
so that:  

).(9 11 TTTT cNZ                        (16) 

The only difference between the solutions in Figs. 1(a,b)  is 
the value of the interfacial resistance. In Fig. 1(a) the 
resistance r=0.  In Fig. 1(b) the interfacial resistance

05.1 RR
 where R0 is given by Eq. (11). The propagation speed 

determined by the slope dx/dt at the level of T=Tc) 
increases drastically with increasing interfacial resistance.  
    In Fig. 2 the propagation speed determined from the 
solutions of Eqs. (7-9) is shown as a function of the interfacial 
resistance for three levels of cooling. The NZP speed is given 
by  

),,,( 0rSUV T                                   (17) 

where UT is a characteristic speed, 

,
)(

)(
2/1

11
2

2
12/1

dTTC
JKDlU

c
TTT                      (18)

 

and S is a dimensionless speed enhancement factor that 
depends on interface resistance, the current redundancy 0,  
Eq. (13), and cooling conditions. As Fig. 2 shows, the NZP 
speed, expressed in units of UT, increases substantially as the 
resistance of the interface increases above the threshold R0.      
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Fig. 3.  Stability boundaries as functions of interfacial resistance for three 
levels of cooling. When the peak temperature of the initial temperature profile 
Tmax  given by the parameter a in Eqs. (12,14) exceeds the limit shown by the 
curves, the normal zone starts to propagate.  

 
The material constants typical of coated conductors are as 

follows[13]: K1  4-5 W/cm K; C1  1.7 J/cm3 K; 1 0.2×10-6 
cm, and d1 = 40 m (copper stabilizer). K2  7×10-2 W/cm 

K, C2  1.4 J/cm3 K, and d2  50 m (Hastelloy substrate). Let 
us also take the critical temperature, defined by the condition 
Jc(Tc) =0, as Tc  90 K and the operating temperature T0=65 K.   
As an example, we take the critical current density Jc(T0) = 
200 A/cm, and the transport current density J =100 A/cm (the 
corresponding value of 0 = -1, as in Fig. 2). Then, the current 
sharing temperature T1  77 K. These parameters determine 
the increment  3.6 s-1 and the thermal diffusivity DT 1.4 
cm2/s, which gives the thermal diffusion length lT  6 mm. 
Correspondingly, the characteristic speed UT = lT   2.2 cm/s. 
Considering that for low interface resistance the NZP speed is 
approximately ( 0.5-0.7)UT, see Fig. 2, these estimates agree 
well with the results of the experiments[4,5] that found the 
NZP speed in coated conductors of the order of 1 cm/s.   

The characteristic interface resistance above which we can 
expect to see a substantial increase in propagation speed is 
R0= 1(lT)2/d1 18×10-6 cm2. The typical interfacial resistance 
of currently manufactured coated conductors is of the order of 
50 n cm2[15]. Therefore, the interface resistance has to be 
increased by at least two orders of magnitude in order to 
observe its effect on NZP speed (see Fig. 2).  

B. Stability 
Stability is defined as an ability of a current-carrying 

conductor to dissipate a certain amount of heat and return to 
normal operation on its own. The NZP speed and stability 
margins usually anti-correlate in superconducting wires. Our 
analysis shows that the effect of interfacial resistance is no 
exception from this rule. With increasing resistance the NZP 
speed increases, but the ability of the coated conductor to 
recover from a perturbation diminishes. We determined the 
margins of stability by solving Eqs. (7-9) with the initial 
condition (12) and finding a peak temperature, determined by 
the constant a in Eqs.(12, 14), at which the normal zone starts 

to propagate. The width of the perturbation was kept constant, 
the same as in the data in Figs. 1 and 2. If the peak 
temperature is below a respective curve in Fig. 3, the initial 
temperature profile dissipates and the normal zone does not 
propagate. For the peak temperatures above the curve, the 
normal zone expands.  

As long as the interfacial resistance R  is below the 
threshold R0 the initial temperature perturbation can dissipate 
without  triggering a NZP even if the peak temperature 
exceeds the current sharing temperature, so that a fraction of 
the transport current initially flows through the stabilizer. 
Even when the peak temperature exceeds the critical 
temperature the conductor remains stable if the cooling rate 
determined by the constant  is sufficiently large (the arrow in 
Fig. 3). With increasing resistance the ability of the conductor 
to recover strongly declines and for 0RR  a perturbation 
with a peak temperature even slightly in excess of T1 gives rise 
to a NZP. It is important to emphasize that at 0RR the 
conductor is still able to absorb a finite amount of heat and 
remain stable, but only as long as no current is diverted into 
the stabilizer (within our model it means Tmax< T1).   

IV. CONCLUSIONS 
By increasing the interfacial resistance by about two orders 

of magnitude over that in currently manufactured coated 
conductors we can expect to see a substantial increase in speed 
of the NZP. A side effect of this is a decrease in stability 
margins.  
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