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Abstract

Computer vision applications that work with videos of-
ten require that the foreground, region of interest, be clearly
segmented from the un-interesting background. To address
this problem, we present a general framework for scene
modelling and robust foreground detection that works un-
der difficult conditions such as moving camera and dynamic
background. This is achieved by first representing the scene
as a union of pixel layers, and then propagating these layers
through the video by a maximum-likelihood (ML) assign-
ment of pixels to the different layers. The possibility of a
pixel not belonging to any of the layers in the scene is also
one of the hypotheses that are automatically tested during
the maximum-likelihood assignment.

The proposed approach has a number of salient virtues.
Firstly, the clustering and layering is automatic, while the
feature-space can be user defined to suit the application.
Secondly, the cluster propagation step implicitly performs
layer tracking along with foreground detection. Standard
pixel based scene modelling techniques become a particular
case of our general framework, when all pixels in the scene
are independent and distinct from each other and belong to
separate clusters. It is observed that pixels belonging to the
same clusters in the feature space usually map to spatially
connected layers in the image space, leading us to consider
that useful correlation exists between features of pixels in
the spatial vicinity. This permits to deal with camera motion
with none or nominal registration. We illustrate our ideas
with a number of interesting and difficult real-life examples.

1. Introduction And Previous Work

Robustly segmenting foreground is an important require-
ment for many computer vision algorithms including track-
ing, identification, and surveillance. Although there is often
no prior information available about the foreground object
to be segmented, in most situations the background scene
is available in all frames of the video, and hence can be
learned or modelled. This allows for segmenting the fore-
ground by “subtracting” the background from the scene, in-
stead of explicitly modelling the foreground.

Background subtraction by simple frame differences as
in [6] has not been very successful in most real-life situ-
ations. Natural scenes often consist of dynamic elements
like ripples in water, trees swaying with wind, escalators
at airports, and moving crowds, making background mod-
elling in video a very challenging problem. In [4], a sta-
tistical modelling of the background is performed using the
assumption that the imaging sensor (camera) is completely
stationary, to simplify the problem (although the problem
still remains challenging). Camera stationarity is a tight
constraint, and in many practical scenarios, the assumption
of a stationary sensor is violated, as for example in the case
of camera shake due to wind, support vibrations, hand in-
stability (in case of hand-held cameras), panning or tilting
(in case of a PTZ-camera), and general camera motion in-
duced by embedding cameras on flying drones. Wadaet
al. [15] have proposed a method for handling pan-tilt-zoom
camera motion by using an appearance sphere. Planar cam-
era motion can also be handled by precise registration of
the frames to create a background image which is then sub-
tracted from the scene to segment the foreground. Such
type of registration is very sensitive to noise and in most
natural cases is not very precise (and also time consuming).

1



Thus, scene-modelling must be robust enough to accommo-
date pixel position uncertainty, and minimize or completely
avoid pixel registration. In our proposed framework, the
spatio-temporal correlation between pixels is exploited to
provide priors on the set of pixel-clusters or layers that any
pixel can belong to. This, in turn, allows to handle camera
motion, without any explicit registration, while robustly de-
tecting the foreground as illustrated by our results in Section
4.

Background modelling techniques are categorized
mainly aspixel based andregionbased methods. The ma-
jority of background modelling methods in current litera-
ture are of the first type. The initial approaches in this regard
(most notably [16]) assumed that thepdf of a pixel at loca-
tion (x, y) can be modelled by a single3-D Gaussian distri-
butionN(µ(x, y),Σ(x, y)). The mean (µ) and variance (Σ)
are estimated at each pixel position over a set of images, and
then the likelihood of a pixel belonging to the background
can be computed, in order to assign it to the background or
foreground. Finding a single Gaussian unsuitable to model
a color pixel, in [5, 12], and more recently in [8], each pixel
is modelled as a mixture of a pre-determined number of
Gaussians. This helps to address the different “modes” in
the behavior of each pixel. The problem of dynamic back-
ground has been recently addressed by Mittal and Paragios
[7], where the authors propose an adaptive Kernel Density
Estimation technique that uses optical flow as well as color
to generate a5-D pdf for each pixel. This technique works
well with a stationary camera constraint, but is difficult to
generalize to a moving camera scenario. We provide a more
general framework which exploits spatial correlation among
pixels to handle camera motion. Critical thresholds in [7]
are automatically handled in our work using ana-contrario
model.

In region based methods, the background is modelled as
a group of regions. The authors in [13] describe a three level
algorithm where region-level and frame-level information is
used to make decisions at the pixel-level. In [19], Zhonget
al. have used a Kalman filter for modelling image regions
as an autoregressive moving average (ARMA) process. Re-
cently, Sheikh and Shah [10], have proposed exploiting spa-
tial correlation among pixels by using the position of a pixel
along with the color to generate a single5-D pdf that models
the entire image.

In this paper, we present a more generalized and si-
multaneously simpler method for image layering or pixel
cluster based background modelling. The background is
first segmented into “easy to model” clusters of pixels.
Subsequently, pixels of incoming frames are either as-
signed to one of the existing clusters (layers) based on
maximum-likelihood, or categorized as “outliers” via au-
tomatic threshold computation. This classification helps
to propagate clusters in downstream image frames while

achieving a finer and more correct definition of layers. The
following sections describe our framework in more detail.

1.1. Algorithm Overview

Offline Step

Training Step:

(LILO stack of first M frames)

Decompose Scene into Layers,

S = {Li} i = 1,�,N

Compute bandwidth Hi corresponding 

to pixels in Li

Compute threshold i for Li , such that 

�Number of False Alarms� < 1 

Online Step (repeated for all frames > M) 

Layer Propagation & Outlier Detection:

( Current frame is Ft , t > M)

Assign pixels x in Ft to one of  Li using 

maximum-likelihood (ML) 

L0 is layer of outliers

Update Step:

Update training frames (Ft is added at 

the end of the training stack ) 

Figure 1.Overview of the proposed modelling and foreground de-
tection framework

Figure 1 gives a brief overview of our algorithm.
The first few frames (sayM ) of a video sequence form
the “Last-In-Last-Out” (LILO) stack of training frames.
Frames in this stack are layered intoN layers,1 {Li}N

i=1,
using a Sampling-Expectation (SE) algorithm proposed in
[18]. We simultaneously and automatically compute the
bandwidths (Hi’s), and thresholds (τi’s) corresponding to
each layer (Li), that are required for the ML-based pixel
assignment (refer to Section3).

In the layer propagation step, each pixel is assigned to
one of the layers using maximum-likelihood. The possi-
ble layers that each pixel can belong to are short-listed by
observing the layer labels from the training stack in the
spatio-temporal vicinity of the pixel. The layerL0 (initially
empty) is the layer of outliers. Outliers are detected using
the thresholds (τi) automatically computed during the train-
ing step, see Section3.2. Once all the pixels are assigned
to a layer, the frame is added (“pushed”) at the end of the
LILO stack and the oldest frame in the stack is released
(“popped”).

1The words “layering” and “clustering” have been used interchange-
ably as it is often observed that clusters in the feature-space usually corre-
spond to connected layers in the image domain.



Section2 and Section3 describe in detail the main com-
ponents of the algorithm. We then proceed by presenting
some interesting and challenging results in Section4. Dis-
cussion of limitations of the proposed framework and future
work is given in Section5.

2. Automatic Layering

In our framework, the scene is modelled as a group of
pixel clusters or layers. This is done in order to exploit re-
dundancy in the features of pixels belonging to the same
cluster. Here, we have considered only the colors of a pixel
as the features, but the feature space can be completely user
defined (e.g., can include optical flow, leading to a5D vec-
tor, see discussion in Section5). This section describes the
method that we use to automatically cluster the pixels. It is
observed that such clusters in-fact correspond to connected
layers in the image domain.2 For a review of color image
layering techniques in the literature please refer to [2].

2.1. Initial Guess

We first compute the colorC corresponding to a local
maximum (hmax) of the histogram of the image. All pixels
with colors lying inside a particular radius (ρ) of C form our
candidate layer(LC). The histogram maximum and radius
are computed as in [3].

2.2. Refinement Step

Once an initial guess for a layer is obtained, it is im-
portant to add or remove pixels from the layer depending
on consistency of features, in order to improve the homo-
geneity and integrity of the layer. This is done by a re-
finement step that uses the Sampling-Expectation (SE) tech-
nique proposed in [18]. There are3 main steps in this refin-
ing process:

• It is assumed that the pixels in the candidate layer and
the rest of the image come from two separate pro-
cesses. To initialize these processes, start with an ini-
tial distributionPLc on the image pixels, with pixels
belonging toLC having high values and pixels not in
LC getting low values (with a gradual spatial decay,
for example a Gaussian distribution). This probabil-
ity PLc indicates our confidence about the chance that
the pixel belongs toLC . Pbg forms the complementary
background process.

• S-step: The image is uniformly sampled to get a set
of samplesS = {xi}m

i=1. Generally a sample size of
about10 to 20 percent of the pixels in the image has
been found to be satisfactory.

2Connectivity can be explicitly forced, e.g., by adding more dimensions
to the feature vector that indicates (say) the median color of the neighbor-
hood.

• E-step: Pixels are assigned-to or removed fromLC

based on maximum-likelihood, i.e., ifPLc > Pbg, the
pixel is assigned toLC , else is removed.

The S and E steps are iterated until the composition of
LC becomes stable. In the above algorithm, the likelihood
of a pixel belonging to one of the two processes is computed
using a weighted Kernel Density Estimation. For details
about the concept of Kernel Density Estimation the reader is
referred to [11]. Given a pixely belonging to the image, we
estimate the probabilitiesPLc(y) andPbg(y) by first com-
puting the following parameters (as in [18]):

WLc(y) =
m∑

i=1

PLc(xi)
d∏

j=1

K(
yj − xij

hj
) (1)

Wbg(y) =
m∑

i=1

Pbg(xi)
d∏

j=1

K(
yj − xij

hj
) (2)

(a) A candidate (bottom-left) layer is extracted from the original
image (top) and refined using iterative Sampling-Expectation to

get the final layer (bottom-right).

(b) Layers extracted from the original image in(a).
Figure 2. The automatic layering process.



where,K is the kernel or smoothing function (we use a
Gaussian kernel),d is the dimension of the feature-space
(3 in our case,5 if we incorporate optical flow) andhj ’s
are the kernel bandwidths, which we estimate usinghj ≈
1.06σ̂jm

1
5 [9], whereσ̂j is the standard deviation estimated

over the sampleS, in dimensionj. The pixel probabilities
are then computed as:

PLc(y) = WLc/(WLc + Wbg) (3)

Pbg(y) = Wbg/(WLc + Wbg) (4)

The “initial guess” (previously extracted layers are ex-
cluded for computinghmax), and “refinement” steps are
performed repetitively, generating layers in the image do-
main, until the initial guessLC has fewer than1% of pixels
in the entire image. It is also possible that some pixels are
classified as belonging to multiple layers (as the SE refine-
ment is carried out over the entire image). These pixels
along with the residual un-assigned pixels are assigned to
one of the layers using maximum-likelihood. This process
allows us to describe the sceneS asS =

⋃N
i=1 Li, where

Li are the extractedN layers. Note that both the layers and
their numberN are automatically computed.

Figure2(a) shows the initial guess and the refined final
layer. Observe that the refinement step ensures consistency
in the layer and more accurately defines its boundaries. All
layers extracted from the original frame are shown in Figure
2(b). These layers are very similar to how a human observer
would segregate the scene. Pixels in these layers belong to
the same cluster in the feature space and are also spatially
connected as seen in the image.

The initial training stack (T ) used for training the back-
ground model consists of the firstM frames in the se-
quence. The first frame is layered using the above tech-
nique and the remaining frames inT are layered using the
layer labels in the previous frame as a starting point for the
refinement step.

3. Layer Propagation

Once the initial training stackT is layered, the rest of
the background modelling process is to assign all incoming
pixels to one of the predetermined layers in the scene, or
identify it as an outlier/foreground (assign to layerL0).

3.1. Density Estimation

Similar to the work in [10], we believe that there exits
meaningful correlation between pixels in the spatial vicin-
ity. To imbibe this correlation into our framework, we use
a parameterw, which indicates theregistration uncertainty
or thespatial varianceof a pixel. This user-defined param-
eter gives us an idea of the size (w × w ×M , whereM is
the number of frames in the stackT ), of spatio-temporal-
neighborhood of pixels in the training stackT , that may be

correlated to the current pixel. All pixels (xi) from the stack
T , assigned to layerLi, which lie in the “w-vicinity” of the
current examined pixel (y), form the sample setSi. To com-
pute the probability of the pixely to belong to any layerLi,
we use a Non-Parametric Kernel Density Estimator with a
Gaussian kernel:

f̂Li(y) =
1
ni

ni∑

k=0

1
‖H(Li)‖1/2

K(H(Li)
−1/2(y−xi)) (5)

where ni is the number of samples (xi’s) belonging to
Li. The bandwidth matrixH is assumed to be diagonal,
H(Li) = h(Li)I, where the argumentLi is used to indi-
cate all samples belonging toLi, i.e., we use the same band-
width for samples from one layer, when computing the den-
sity estimate. For the results shown in this paper, we have
approximated the diagonal values (h(Li)’s) with the stan-
dard deviation of all the training samples (Si), as is done in
the layer refinement step (refer to Section2.2). The layer
of outliers (L0) also contributes samples to the likelihood-
computation, when there is a previously detected outlier in
the w-vicinity. Thus, there is a competitive classification
between outliers and background, at the same time, propa-
gating the background layers throughout the video.

3.2. Threshold Computation And Outlier Detection

Depending upon the homogeneity and integrity of the
pixels belonging to the layer, each layer will need to have
a different threshold to achieve the same “Number of False
Alarms” (NFA) rate. In order to avoid any arbitrariness in
automatically computing these thresholds (τi’s), we use the
a-contrario framework [1, 14]. Using samples (Si) from T
that belong to (say) layerLi, we compute the layer probabil-
ity (PLi(xi)) of all pixelsxi in T which are already labeled
as belonging toLi. This allows us to compute the proba-
bility that a pixely belongs to layerLi, such thatPLi(y) is
less than a certain threshold (say)µ:

P(Li, µ) := Pr
(
PLi(y) < µ | y ∈ Li) (6)

This allows us to say that a pixelz is anε-meaningful out-
lier from the layerLi, if P(Li, PLi(z)) < ε

ni
, whereni is

the number of queried pixels inT belonging toLi. The
a-contrario model assumes that the such outliers are uni-
formly distributed, hence settingε = 1, like we do, allows
us to ensure that the average number of false detections over
the layerLi is less than one (for more details refer to, e.g.,
[1, 14]). Thus all thresholds are computed as :

τi = min µ s.t. {P(Li, µ) <
1
ni
} (7)

Figure 3 illustrates the inverted winning maximum-
likelihood probabilities (top-right) for all the pixels. The
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Figure 3. Image on the top-right shows the inverted (i.e, sub-
tracted from1) maximum-likelihood probabilities, corresponding
to the original frame (top-left). When these probabilities are plot-
ted in a3D plot (bottom), the moving person (dark-brown), is eas-
ily distinguishable.

3D perspective view shows that the moving person (indi-
cated by dark-brown color in the bottom plot) can be easily
detected. The boundaries of the layers look slightly brighter
(have low ML probabilities) because of color-blending at
the edges. Further grouping of individual outliers as indi-
cated in [1] can lead to even more robust detections than
presented here.

The bandwidths and thresholds can be left unchanged
or updated every few frames. The color space that we
use (same as in [7]) is robust to illumination changes, and
thereby adaptation is not necessary if these are the only type
of changes expected.

4. Results

The videos described in this section (and available at
www.tc.umn.edu/˜patw0007/videolayers ) are
outdoor scenes of resolution160x120. The algorithm was
implemented using C++, on a machine with Intel-Pentium
IV 1.8GHz processor. We used a training stack of30
frames for all the results, achieving a running speed of1
frame/second (using a completely un-optimized experimen-
tal code). Figure4 illustrates the performance of our algo-
rithm in presence of moderately dynamic background along

with a lot of camera shake (please observe uploaded orig-
inal videos). The outliers detected are very robust to the
dynamics of the background and the camera motion. Figure
5, shows a very challenging situation, produced by highly
perturbed water in the background. Our technique performs
very well to distinguish the moving person (looks inverted
due to reflection) from the ripples. For the results in fig-
ures4 and5, we have used aw parameter value of3. Hence
the spatio-temporal training window for each pixel is of size
3 × 3 × 30. Our algorithm does not need very precise reg-
istration. If the uncertainty in the registration computation
is known, it can be figured into thew-parameter. As indi-
cated in Figure6, in spite of the significant camera panning
we have not used any registration, which is adjusted for by
using aw value of11, indicating the increased position un-
certainty. Figure6 also indicates how well the layers in the
scene are propagated through the video sequence in spite of
severe camera panning.

5. Discussion And Future Scope

In this work we have proposed a general framework
for scene modelling and foreground detection using pixel-
clusters (layers). Redundancy in the feature-space and spa-
tial correlation in the image-domain are exploited by clus-
tering pixels into finite number of layers and modelling the
scene as a union of these layers rather than individual pix-
els. The task at hand then is to assign any incoming pixel
to one of these layers or as an outlier by using a maximum-
likelihood assignment, which allows for competitive classi-
fication between the scene layers and the layer of outliers.
Thresholds are chosen in a non-arbitrary fashion to give ro-
bust outlier detections. The results presented show very sat-
isfactory performance in very difficult environments.

It should be noted that we have used only the color in-
formation of the pixels, and results can be further improved
by adding additional information like optical flow, though it
should be noted that in case of severe camera motion (most
result videos shown here), using optical flow may in-fact
misguide the background model and generate false alarms.
In circumstances where positional uncertainty is large, us-
ing very highw-values is not efficient and also degrades ac-
curacy. Approximate (rough) registration of frames within
a certain error bound can be utilized to optimize the perfor-
mance of our algorithm on videos with severe panning or
camera motion. The run-time can be improved to reach real-
time by optimization and using theImproved Fast Gauss
Transform(IFGT), as shown in [17], for fast density com-
putation. In some detection results a few noisy false alarms
are observed which can be further removed by a “meaning-
ful” grouping of outliers as proposed in [1]. In the future
we would also like to address the appearance of novel lay-
ers (not seen previously), or appearance of foreground that
remains static in the scene (e.g. a car arriving in a parking

www.tc.umn.edu/~patw0007/videolayers�


lot and parked for a long time). This can be achieved by
simply considering a “temporally persistent” group of out-
liers as a completely newdepth-orderedbackground layer.
Further work in this direction will be reported elsewhere.
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Figure 5. Large amount of water ripples present a challenging situation for foreground, reflection, detection (see uploaded video). Original
frames are shown on the top (#0, 47, 62, 89) along with outliers on the bottom.

Figure 6. Trees swaying with wind along with camera tilt and panning are very difficult scenarios for background modelling (see uploaded
video). Outliers are shown in the center row, while the propagation of various layers (indicated by different scales of gray) is shown in the
bottom row.


