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ABSTRACT

A time-dependent generalization of a Fourier-ray method is presented and tested for fast numerical
computation of high-resolution nonhydrostatic mountain-wave fields. The method is used to model moun-
tain waves from Jan Mayen on 25 January 2000, a period when wavelike cloud banding was observed long
distances downstream of the island by the Advanced Very High Resolution Radiometer Version 3
(AVHRR-3). Surface weather patterns show intensifying surface geostrophic winds over the island at 1200
UTC caused by rapid eastward passage of a compact low pressure system. The 1200 UTC wind profiles over
the island increase with height to a jet maximum of �60–70 m s�1, yielding Scorer parameters that indicate
vertical trapping of any short wavelength mountain waves. Separate Fourier-ray solutions were computed
using high-resolution Jan Mayen orography and 1200 UTC vertical profiles of winds and temperatures over
the island from a radiosonde sounding and an analysis system. The radiosonde-based simulations produce
a purely diverging trapped wave solution that reproduces the salient features in the AVHRR-3 imagery.
Differences in simulated wave patterns governed by the radiosonde and analysis profiles are explained in
terms of resonant modes and are corroborated by spatial ray-group trajectories computed for wavenumbers
along the resonant mode curves. Output from a nonlinear Lipps–Hemler orographic flow model also
compares well with the Fourier-ray solution horizontally. Differences in vertical cross sections are ascribed
to the Fourier-ray model’s current omission of tunneling of trapped wave energy through evanescent layers.

1. Introduction

When suitable environmental conditions exist, flow
over mountains generates quasi-stationary gravity
waves that can propagate obliquely away from the par-
ent orography. These waves can have important effects
on other atmospheric processes. Air parcels advected
through these waves experience rapidly oscillating adia-
batic cooling and heating that can have strong net in-
fluences on cloud physics and associated chemistry in
both the troposphere and stratosphere (e.g., Jensen et

al. 1998; Fueglistaler et al. 2003). These influences
sometimes take the form of spectacular wave-banded
cloud displays that are visible from space (e.g., Fritz
1965; Gjevik and Marthinsen 1978; Burroughs and Lar-
son 1979; Sharman and Wurtele 1983; Mitchell et al.
1990; Worthington 2001). Mountain waves grow in am-
plitude with altitude and can break, generating drag
forces that affect the synoptic-scale circulation and tur-
bulence that mixes chemical species (e.g., Kim et al.
2003).

In addition to these atmospheric effects, mountain
waves present hazards to aviation. Severe structural
damage and injuries to passengers and crew can occur
when aircraft fly through severe clear-air turbulence
(CAT) produced by mountain-wave breaking (e.g.,
Bacmeister et al. 1994; Ralph et al. 1997; de Villiers and
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van Heerden 2001). Furthermore, sudden changes in
flight altitude caused by mountain waves, either
through wave-induced CAT and/or short-wavelength
vertical wave displacements, are also an important issue
given recent enaction of reduced vertical separation
minima (RVSM) for commercial air traffic. The large-
amplitude mountain-wave event over Colorado docu-
mented by Lilly (1978) provides a vivid illustration of
both of these hazards, causing a commerical airliner to
drop �4000 ft in a little over 1 min while simulta-
neously undergoing severe airframe buffeting due to
wave-induced CAT.

Thus, mountain wave events are important to fore-
cast, yet the spatial scales of these waves and the sub-
wavelength instabilities that lead to breaking, drag, and
turbulence generation are generally too short for op-
erational numerical weather prediction (NWP) models
to resolve fully (e.g., Benoit et al. 2002; Smith 2004).
For example, subgrid-scale gravity wave drag must be
parameterized in NWP and climate models (e.g., Kim
et al. 2003). Until operational NWP model resolutions
improve, alternative forecasting algorithms for moun-
tain waves must be developed.

Ongoing efforts in this area have been undertaken at
the Naval Research Laboratory for over a decade in
developing the MountainWave Forecast Model
(MWFM; Eckermann et al. 2004, 2006). Instead of
simulating the fully nonlinear discretized Navier–
Stokes equations, as in a traditional NWP model, the
MWFM approach uses ray methods to simulate the
generation, propagation and breakdown of mountain
waves within the large-scale environment specified by
operational NWP model output. Since ray solutions are
easy to interpret, computationally fast, and valid within
a broad variety of atmospheric environments, they are
attractive as potential forecasting algorithms.

The first version of the MWFM (MWFM-1) tested
these ideas using a hydrostatic two-dimensional spatial-
ray formulation (Bacmeister et al. 1994). The MWFM-2
was extended to use three-dimensional spatial-ray
equations governed by a nonhydrostatic dispersion re-
lation including rotation (Eckermann and Preusse
1999). Both models employ an idealized ridge decom-
position of the earth’s topography to define the major
terrain features relevant for generation of waves near
the surface. MWFM forecasts have been used for over
a decade now to direct National Aeronautics and Space
Administration (NASA) research aircraft away from
hazardous mountain-wave-induced turbulence and into
regions where nonbreaking waves generate cloud, tasks
for which it has repeatedly shown skill (e.g., Bacmeister
et al. 1994; Eckermann et al. 2004, 2006). MWFM-2
hindcasts of stratospheric wave amplitudes have been

validated globally using new data from stratospheric
research satellites (Eckermann and Preusse 1999; Jiang
et al. 2002, 2004), as well as regionally using various
suborbital measurements (e.g., Hertzog et al. 2002;
Eckermann et al. 2006). MWFM forecasts of strato-
spheric mountain-wave turbulence were utilized exten-
sively by the U.S. Air Force during Operations Endur-
ing Freedom and Iraqi Freedom (Eckermann 2002),
and since 2004 MWFM-2 has been run operationally at
the Air Force Weather Agency. MWFM-2 hindcasts
have also been used in a variety of research applica-
tions, such as the role of mountain waves in accelerating
ozone loss chemistry in the Arctic winter stratosphere
(e.g., Carslaw et al. 1999; Pierce et al. 2003; Svendsen et
al. 2005; Mann et al. 2005).

Thus, ray methods are now an accepted approach to
forecasting mountain waves (Eckermann et al. 2004).
Yet the current MWFM ray algorithms still contain a
number of significant simplifications and shortcomings.
First, they use a one-dimensional height-dependent
form for the wave action equation that does not include
the effects of horizontal geometrical spreading of the
rays on the wave amplitude evolution (e.g., Shutts
1998). Second, they use a spatial formulation for the ray
solutions, which leads to caustic singularities that are
not practical to correct (e.g., Broutman et al. 2001,
2002, 2004). Third, they use idealized ridge databases
for their source functions that do not capture the full
spectrum of waves radiated by flow over realistic to-
pography.

To fully explore and exploit the capabilities of ray
methods for mountain-wave forecasting, over the past
several years we have progressively developed im-
proved ray algorithms that reduce or eliminate these
and other weaknesses in the current MWFM ray equa-
tions (Broutman et al. 2001, 2002, 2003, 2004, 2006).
This has led to a new ray algorithm that we refer to here
as the Fourier-ray method, because it involves Fourier-
synthesized (rather than spatially synthesized) ray so-
lutions. The method has recently been reviewed inter
alia by Broutman et al. (2004) and the version of it that
we use here is described in section 2a.

This method shows promise as a potential next-
generation dynamical ray core for the MWFM, since
the idealized solutions derived to date alleviate or
eliminate all of the aforementioned weaknesses of the
corresponding spatial ray solutions. Specifically, the al-
gorithm incorporates arbritrary topographic forcing at
the lower boundary, models both trapped and free-
propagating waves, includes horizontal geometric
spreading in its wave action solutions, and systemati-
cally corrects the caustic singularities found in spatial-
ray solutions. To date, however, we have applied these
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new algorithms only to idealized mountain-wave prob-
lems that use analytical functions for the obstacle shape
and background wind profile.

Here we take our next step in assessing the potential
of the Fourier-ray method for forecasting by extending
and applying these algorithms to a more realistic case
study. The major extensions here are incorporation of
realistic topography and real background wind and
temperature profiles from both radiosonde observa-
tions and a meteorological analysis issued by a data
assimilation system. We concentrate here on nondissi-
pative wave solutions, deferring developments in esti-
mating locations of wave-induced CAT to later studies.

Our modeling focuses on Jan Mayen (71°N, 8.4°W),
a small island in the North Atlantic whose topography
is dominated to the north by Mount Beerenberg, a
quasi-circular volcanic mountain of width �5–10 km
and a peak elevation of �2270 m (see Fig. 1). We seek
to “hindcast” wavelike patterns observed over the is-
land in satellite cloud imagery on 25 January 2000. Pre-
vious analysis and linear modeling of some earlier sat-
ellite cloud images over Jan Mayen (Gjevik and Mar-
thinsen 1978; Simard and Peltier 1982) associated cloud
banding here with three-dimensional trapped lee waves

forced by flow over Mount Beerenberg that radiated
into much larger atmospheric volumes downstream.
Such waves present an excellent test case for our new
algorithm’s vertical reflection and high-resolution fore-
casting capabilities, since Jan Mayen’s topography
would not be adequately resolved by current opera-
tional NWP systems. Our results here are used to
benchmark the initial performance of this new ray code
and to target areas for further development for future
forecasting applications.

2. Models

a. The Fourier-ray model

Our primary tool is a flexible numerical implemen-
tation of a Fourier-ray method. The name “Fourier
ray” refers to Fourier-synthesized ray solutions: that is,
the ray solutions are computed in a Fourier domain and
then superimposed by inverse Fourier transform to give
a spatial solution. The method is described in Brout-
man et al. (2002, 2003, 2006). During earlier stages of its
development, different names were used for the same
basic method (e.g., Maslov’s method, a simplified Fou-

FIG. 1. Three-dimensional shaded surface plot of topographic elevation for the island
of Jan Mayen from the GTOPO30 digital elevation database. All three length dimen-
sions (in km) as well as longitudes and latitudes are displayed.
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rier method). The reasons for the name changes are
discussed in Broutman et al. (2006).

The ray solution in the Fourier domain is expressed
as a function of k, l, z, t, where k and l are the horizontal
wavenumbers, z is height, and t is time. The advantage
of solving in the Fourier domain is that k and l are
constant along the ray in a horizontally uniform back-
ground, as assumed here. Along with a simple ray-
based treatment of the time dependence of the solu-
tions (Broutman et al. 2006), the problem is effectively
reduced to a one-dimensional calculation in z. This is a
major simplification for numerical ray tracing, espe-
cially for the wave amplitude calculations and the cor-
rection of caustics.

Broutman et al. (2002, 2003) derived steady-state
Fourier-ray solutions for hydrostatic and nonhydro-
static waves, respectively. Wave transience was incor-
porated into the Fourier-ray method by Broutman et al.
(2006). We use that transient formulation here to aid
direct comparisons with output from nonlinear numeri-
cal models at finite times. Besides being helpful for
estimating setup times for the wave field, the transient
formulation has two computational advantages. First,
there are no resonant singularities in the transient so-
lution for the trapped waves, as there are in the steady-
state solution. (The steady-state singularities can be re-
moved by adding a small imaginary component to the
wavenumber or frequency, but this artificially damps
wave amplitudes. The Fourier-ray solutions presented
here are nondissipative.) Second, the transient wave
field is more limited in spatial extent than the steady-
state solution, which is the longtime limit of the tran-
sient solution. The transient solution can thus be rep-
resented with fewer computational grid points.

We consider linear three-dimensional mountain
waves radiated from realistic topography into arbitrary
vertical profiles of winds and stability. The mountain
waves are stationary, with zero frequency (� � 0) rela-
tive to the ground. For a horizontal background wind
U � (U, V, 0), the intrinsic frequency is �̂ � � � k · U �
�kU � lV, where k � (k, l, m) is the wavenumber
vector. The background wind and buoyancy frequency
N are assumed to depend on height but not on hori-
zontal position or time.

The ray tracing performed here is based on a gravity
wave dispersion relation of the form

�̂ � khN��kh
2 � m2�1�2, �1�

where kh � (k2 � l2)1/2. We ignore the effects of the
earth’s rotation and compressibility in (1) for simplicity:
they are included in other versions of the code.

We define w̃(k, l, z, t) to be the ray solution in the

Fourier domain for the vertical velocity associated with
the mountain waves. The corresponding spatial solu-
tion w(x, y, z, t) is obtained by inverse Fourier trans-
form:

w�x, y, z, t� � �
��

� �
��

�

w̃�k, l, z, t�ei�kx�ly� dk dl.

�2�

The Fourier-ray solution for w̃(k, l, z, t) is given in the
appendix, based on derivations in Broutman et al.
(2006). We emphasize that w(x, y, z, t) is not the same
as the spatial-ray solution for the vertical velocity,
which is obtained from the stationary phase limit of the
inverse Fourier transform in (2). The distinction is im-
portant because the stationary phase approximation,
but not w, breaks down at caustics in the spatial domain
(see, e.g., Shutts 1998; Broutman et al. 2001).

This Fourier-ray code ingests arbitrary vertical pro-
files of wind and temperature, which are interpolated
onto a vertical grid sufficiently fine to evaluate the fol-
lowing phase integrals accurately:

�
0

z

m dz, �
z

zt

m dz, �
zt

z

|m | dz, �3�

where zt is the height of the turning point for a given (k,
l). The first integral is used for vertically propagating
waves, the second integral is used for vertically trapped
waves at heights below their turning point zt, and the
third integral is used for vertically trapped waves at
heights above their turning point (see the appendix).
An absolute value appears in the third integral because
m is imaginary above zt. These integrals are computed
here numerically by the trapezoidal rule, using a verti-
cal grid size �z � 0.25 km. Comparisons with solutions
using smaller �z showed that this grid size was ad-
equate.

The code uses a finite Fourier-series approximation
to the inverse Fourier transform (2). In the cases pre-
sented here, 512 wavenumber values were chosen for k
and l, corresponding to a spatial grid of 1024 by 1024 in
x and y, and a horizontal grid spacing of �x � �y �
1 km.

b. Nonlinear orographic flow model

To assess more rigorously the accuracy of the Fou-
rier-ray solutions to follow, we also performed some
companion simulations using a fully nonlinear numeri-
cal model. The model in question solves the incom-
pressible nonlinear Navier–Stokes equations over to-
pography using the Lipps–Hemler anelastic approxima-
tion (Lipps and Hemler 1982; Nance and Durran 1994).
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The model uses terrain-following coordinates (Gal-
Chen and Somerville 1975), a centered second-order
spatial discretization, and a modified leapfrog time-
stepping scheme (Rees 1988). It was run here on a stag-
gered Arakawa C grid of 256 points in each horizontal
direction and 32 points in the vertical, with a grid spac-
ing of 1 km in all directions and a time step of 4 s. A
free-slip (frictionless) lower boundary condition was
used. To absorb waves at heights �20 km, we imposed
Rayleigh damping with a rate coefficient that increased
linearly from zero at 20 km altitude to 4 10�3 s�1 at the
32-km upper boundary. To minimize reflections from
the lateral boundaries, a radiative scheme was used
(Miranda and James 1992) as well as some linearly in-
creasing viscous damping within a 10-km-wide region at
each side boundary. Away from these upper and side
boundaries, the only diabatic terms were a Richardson-
number-dependent first-order turbulent closure
scheme (Lilly 1962) and a small amount of fourth-order
diffusion to suppress grid-scale noise (hyperviscosity
coefficient of 107 m4 s�1).

c. Topography

Topographic elevations h(x, y) for Jan Mayen were
obtained from the United States Geological Survey
(USGS) GTOPO30 database. This global dataset of
digital terrain elevation has 30 arc s resolution, corre-
sponding roughly to 1-km spatial resolution, which we
interpolated linearly to our horizontal grid spacing of
1 	 1 km2 using Delaunay triangulation and full spheri-
cal to Cartesian transformations. This model topogra-
phy for Jan Mayen is plotted in Fig. 2a and can be used
in the 1 km 	 1 km Fourier-ray model runs.

For the 1 km 	 1 km Lipps–Hemler model runs,
however, this 1 km 	 1 km topography must be
smoothed to reduce the potential for unphysical four-
point gridpoint noise in the simulations (see, e.g.,
Davies and Brown 2001). We achieve this using a two-
dimensional five-point running average, and the results
are shown in Fig. 2b. In the Fourier-ray model runs
shown here we also use this smoothed topography to
facilitate more direct comparisons with the Lipps–
Hemler model output.

3. Observational data

a. Advanced Very High Resolution Radiometer
Version 3

The Advanced Very High Resolution Radiometer
Version 3 (AVHRR-3) is a cross-scanning passive ra-
diometer, first deployed on the National Oceanic and
Atmospheric Administration (NOAA-15) polar-orbit-

ing satellite. It has six channels: three thermal infrared
(IR) channels and three other channels in the visible
and near IR. The system acquires radiances with a
20.32-cm-diameter telescope that scans cross track us-
ing a continuously rotating mirror. The telescope’s in-
stantaneous field of view (IFOV) is 0.0745°, corre-
sponding to surface footprint diameters across track
and along track of 1.1 km 	 1.1 km at nadir and 6.2
km 	 2.3 km at the far off-nadir positions. For each
scan, 2048 samples are acquired at off-nadir angles be-
tween 
55.37° cross track of the subsatellite point, cor-
responding to a total horizontal swath distance at the
surface of �2900 km. For further technical details, see
section 4.1.1 of Kidder and Vonder Haar (1995) and
section 3.1 and appendix J.1 of Goodrum et al. (2000).

This intrinsic data resolution, known as local area

FIG. 2. Topographic elevation contours h(x, y) for Jan Mayen.
(a) The unsmoothed topography interpolated to 1 km 	 1 km
resolution (as in Fig. 1). (b) The topography after five-point
smoothing. The contour interval is 100 m, and the maximum
height of the smaller peak to the lower left in the plots is 567 m
(unsmoothed) and 359 m (smoothed).
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coverage (LAC), is too dense to be continuously stored
and telemetered to ground stations. Thus, LAC data
can only be received at certain scheduled times. Con-
tinuous monitoring at all other times is provided by
global area coverage (GAC) data, which are onboard
averages of a reduced subset of the raw LAC data as
described in section 10.2.1 of Kidder and Vonder Haar
(1995) and section 3.1.3.2 of Goodrum et al. (2000).
Surface footprint diameters for GAC data are �4 	 3.3
km2 at nadir.

Data from each channel are converted on board into
10-bit binary earth scene counts CE prior to being tele-
metered to ground stations. Earth scene radiances RE

are derived using the nonlinear radiance correction for-
mula,

RE � a0 � a1CE � a2CE
2 , �4�

where a0, a1, and a2 are regression coefficients derived
from prelaunch calibration data (Walton et al. 1998).

b. Radiosonde data

A meteorological station on Jan Mayen launches ra-
diosondes at 0000 and 1200 UTC each day: see Fig. 1 of
Gjevik and Marthinsen (1978) for its precise location
on the island. Here we use winds and temperatures
acquired from the 1200 UTC sounding on 25 January
2000 in our model simulations, which we reinterpolate
onto a high vertical resolution grid, vertically smooth
using a running average of 2-km width, then reinterpo-
late again onto the models’ vertical grids. While we
assume here that these data approximate the true ver-
tical profile over the island at this time, the actual bal-
loon trajectory is oblique: given a typical ascent velocity
of 5 m s�1 (e.g., Lane et al. 2000), passive advection
calculations based on radiosonde winds for this day
place the balloon �100 km downstream by the time it
reached 10-km altitude.

c. Meteorological analyses

To provide some cross validation for the model runs,
we also use profiles of winds and temperatures at the
closest grid point to Jan Mayen from the 12-hourly Met
Office (UKMO) 3.75° 	 2.5° analyses (Swinbank and
O’Neill 1994). To define surface weather patterns, we
use 6-hourly analyzed mean sea level pressures (MSLP)
from the National Centers for Environmental Predic-
tion–National Center for Atmospheric Research
(NCEP–NCAR) 2.5° 	 2.5° reanalyses (Kalnay et al.
1996).

4. Jan Mayen wave clouds of 25 January 2000

a. AVHRR-3 observations

Figure 3 plots a chronological sequence of selected
AVHRR-3 channel-5 (�11.5–12.5 �m) radiances on 25
January 2000. The data have been reinterpolated to
Cartesian coordinates (x being east–west), with the is-
land of Jan Mayen centered at x � y � 0 on each map
and its coastline plotted in each panel. We use only the
thermal IR data since Jan Mayen is in polar night at this
time of year.

At �1140 UTC, Fig. 3a shows that the island was
obscured by cloud decks. Around 3 h later at 1500 UTC
these clouds have been advected to the east to reveal
evidence of mountain-wave banding of lower-level
clouds: at this time we have both conventional GAC
data (Fig. 3b) and high-resolution LAC data (Fig. 3c).
The LAC image shows cloud banding superficially con-
sistent with a purely diverging three-dimensional ship
mountain-wave pattern (Sharman and Wurtele 1983)
emanating from Jan Mayen, though only one “arm” of
this V-shaped pattern is fully visible, the other still be-
ing partially obscured by overlying cloud decks.

Around 90 min later at 1630 UTC, GAC radiances in
Fig. 3d again show a diverging wavelike cloud pattern.
Though this is a lower-resolution image than the LAC
image in Fig. 3c, it provides our least-obscured image of
the full wave pattern. In fact this wave pattern extends
farther downstream in this image than might be sug-
gested by the limited domain plotted in Fig. 3d.

Figure 3e plots another AVHRR-3 GAC image ac-
quired roughly 2 h later at �1820 UTC. Upper-level
cloud decks have moved in and partially obscured the
wave pattern. Nonetheless, we still see evidence of the
lower (southward) arm of the diverging wave pattern in
the bottom half of the image.

Figure 3f and a sequence of later images (not shown)
do not show evidence of banded clouds downstream of
Jan Mayen. While some, like Fig. 3f, are heavily im-
pacted by obscuring cloud layers, the weight of evi-
dence from these images suggests that the banded wave
clouds have disappeared at these later times.

Thus, from the AVHRR-3 channel-5 IR imagery in
Fig. 3, we deduce an approximate 6-h duration of this
apparent Jan Mayen wave event, lasting from �1200 to
1800 UTC. The role of high-cloud decks in obscuring
the wave banding patterns also indicates that the
banded wave clouds occur in the lower or midtropo-
sphere.

b. Synoptic surface meteorology

Figure 4 plots 6-hourly NCEP–NCAR reanalyzed
MSLP in a broad region centered over Jan Mayen from
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FIG. 3. (a)–(f) Chronological time sequence of AVHRR-3 channel-5 earth scene radiance images on 25 Jan 2000 centered at x �
y � 0 over Jan Mayen, whose coastline is outlined in each panel. All images are GAC data, except for (c), which is LAC data.
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0600 UTC on 25 January to 0000 UTC on 26 January.
We see rapid eastward passage of a compact low pres-
sure cell across the domain. As the core of this low
passed to the north of Jan Mayen at �1200 UTC, Fig.
4b shows that it produced enhanced surface geostrophic
westerlies across Mount Beerenberg. These surface
westerlies persist over Jan Mayen at 1800 UTC, though
the isobars in Fig. 4c reveal that the core of the low has
now passed well to the east of the island, and that sur-
face westerly flow across Mount Beerenberg is about to

weaken and be replaced by weaker northerly flow as
the low moves farther eastward. This is confirmed by
the isobars at 0000 UTC in Fig. 4d.

Thus, the appearance of cloud banding from 1200
to 1800 UTC in the AVHRR-3 radiances in Fig. 3
correlates with a period of enhanced surface westerlies
across Mount Beerenberg (and hence enhanced po-
tential for mountain-wave forcing) accompanying the
eastward passage of a polar low to the north of Jan
Mayen.

FIG. 4. MSLP (in hPa) derived from NCEP–NCAR reanalysis fields at (a) 0600, (b) 1200, (c) 1800 UTC 25 Jan 2000, and (d) 0000
UTC 26 Jan 2000. Jan Mayen is plotted as the tiny island coastline near the center of each map at 71°N, 8°W.
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c. Meteorological profiles over Jan Mayen at
1200 UTC

Figure 5 plots the three-dimensional horizontal wind
profile over Jan Mayen from the routine 1200 UTC
radiosonde ascent on 25 January (solid curve), as well
as the nearest gridbox 1200 UTC profile from the
UKMO analysis. The radiosonde profiles verify the
presence of strong near-westerly surface-level winds in-
ferred from Fig. 4b, with speeds �30 m s�1. These wind
speeds increase with altitude to a jet maximum of �70
m s�1 near 10-km altitude. This maximum is nearer 55
m s�1 in the UKMO profile.

To produce mountain-wave activity so far down-
stream of Jan Mayen in Fig. 3, it is likely that these
waves were vertically trapped (e.g., Simard and Peltier
1982). Strongly sheared wind profiles like those in Fig.
5 are one way to produce the vertical wave reflection
required for trapping. To assess this, we compute pro-
files of the Scorer parameter. The standard Scorer pa-

rameter is a two-dimensional term in which the hori-
zontal wavenumber vectors and the wind vector are
coaligned. For three-dimensional problems, a range of
angles for the horizontal wavenumber vector exist and
the wind vector can rotate with altitude, and thus no
unique Scorer parameter exists. Some insights can be
gained, however, by studying a generalized form for
three-dimensional problems,

�2�z, �� �
N2�z�

Ũ2�z�
�

Ũzz

Ũ�z�
, �5�

where N(z) is the background buoyancy frequency pro-
file, Ũ(z) � Utot(z) cos[�(z) � 
] is the profile of the
component of the wind vector Utot(cos �, sin �) pro-
jected along a given horizontal wavenumber vector’s
direction 
 � arctan (l/k), Ũzz is the curvature in this
projected component wind profile, and Utot(z) �
[U2(z) � V2(z)]1/2. An equivalent expression is utilized

FIG. 5. Horizontal wind profile over Jan Mayen at 1200 UTC 25 Jan 2000 from a routine
radiosonde sounding from the island (black) and from the UKMO analyzed winds for this day
and time in its nearest 3.75° 	 2.5° grid box (gray). Solid lines show three-dimensional wind
profiles, dashed lines show various two-dimensional projections. Both profiles were smoothed
by first interpolating the raw profile data onto a higher-resolution regular height grid and then
smoothing using a 2-km sliding vertical average.
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by Vosper and Worthington (2002) and Eckermann et
al. (2006). From the profiles in Fig. 5, specifically the
hodographic projection at the surface, we see that the
horizontal wind vector is directed at an approximately
constant angle of � � 20° north of due east through
most of the troposphere.

Figures 6a,b plot component profiles of wind speed
and curvature, respectively, for both the radiosonde
and UKMO profiles on 25 January at 1200 UTC, using
a choice for the direction of the horizontal wavenumber
of 
 � � � 20° (i.e., wave vectors aligned parallel to the
wind vector). Figure 6c plots the buoyancy frequency
profiles. The thin black curve in Fig. 6a shows the raw

radiosonde wind profile, while the thick black curve
shows that same profile after high-resolution resam-
pling and then smoothing using a sliding 2-km vertical
averaging window to remove the small-scale structure.
This filter is applied to all the profiles (both radiosonde
and UKMO) that enter into the Scorer parameter cal-
culation (5), since even slight vertical structure in the
wind and temperature profiles gets greatly enhanced
during the numerical gradient and curvature calcula-
tions in (5), yielding large spurious oscillations in �2(z,

) (see, e.g., Danielsen and Bleck 1970; Shutts 1992;
Smith 2004).

The thick curves in Fig. 6d show Scorer parameters

FIG. 6. Profiles of (a) horizontal wind and (b) wind curvature projected along an axis directed � � 20° north of east. (c) Brunt–Väisälä
(buoyancy) frequencies. (d) Scorer parameter profiles �2(z, 
 ) for 
 � � � 20° with curvature omitted (thick solid) and curvature
retained (dotted curves). Dashed curves show �2(z, 
) � k2

h with curvature omitted for �h � 2�/kh � 30 km. In all cases, black curves
are from the Jan Mayen radiosonde ascent and gray curves are from UKMO analysis at 1200 UTC 25 Jan 2000. All profiles are
smoothed vertically by resampling at high vertical resolution and then smoothing using a 2-km running average, except for the thin
curve in (a), which plots the raw radiosonde winds.
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�2(z, 20°) calculated by ignoring the curvature term in
(5), since the first term N2(z)/Ũ2(z) is generally the
most significant. Furthermore, curvature terms are
omitted at present from our Fourier-ray model’s wave
equations, so this simplified term is roughly equivalent
to this model’s Scorer parameter. (The Scorer param-
eter and the present version of the Fourier-ray model
omit Coriolis terms, but their influence on these short-
wavelength trapped wave solutions is minimal.) The
corresponding dotted curves show �2(z, 20°) with the
curvature profiles in Fig. 6b retained in the calculations.
They produce fairly minimal modifications to the sim-
plified N 2(z)/Ũ2(z) profile. Tests that include addi-
tional wind shear and density-scale height terms in a
generalized Scorer parameter derived from fully com-
pressible wave equations (Nance 1997) also yielded
minimal changes to these simplified N2(z)/Ũ2(z) pro-
files.

Figure 6d shows that the wind and stability profiles
over Jan Mayen on 25 January at 1200 UTC yield a
deep minimum in �2(z, 
) at altitudes �5–10 km. Turn-
ing points zt for a given mountain wave of total hori-
zontal wavelength �h � 2�/kh occur where �2(z, 
) �
k2

h � 0. The dashed curves in Fig. 6d plot �2(z, 20°) � k2
h

for �h � 30 km. We see that the radiosonde-derived
Scorer parameter predicts reflection of this horizontal
wavelength at zt � 5 km, whereas the UKMO profile
predicts no reflection (due to its weaker peak winds),
though it comes very close to yielding reflection at �8
km. Since waves of comparable or shorter horizontal
wavelengths are likely to be generated by flow over the
horizontally narrow obstacle presented by Mount Beer-
enberg (see Fig. 1), we see that Jan Mayen mountain
waves probably reflected vertically in the midtropo-
sphere at 1200 UTC. Since we have a stable boundary
layer (Fig. 6c) containing fairly strong surface flow (Fig.
6a), these reflected waves will reflect again at the sur-
face, rather than being absorbed (Smith et al. 2002),
yielding a vertically trapped wave that can penetrate
long distances downstream within this waveguide, as
observed in Fig. 3.

The surface wind speed U0 is �30 m s�1 (Fig. 6a) and
surface buoyancy frequency N0 is �0.015 rad s�1 (Fig.
6c). Since the maximum height of the Jan Mayen to-
pography hm is �2 km (Fig. 2), this yields Fr�1 � 1,
where Fr � U0/N0hm is the surface Froude number.
This suggests a near-maximum amplitude for the forced
wave, with the surface flow passing over (rather than
around) the mountain and translating all of the moun-
tain pressure drag into a gravity wave response. Since
Fr�1 is close to unity, some weak gravity wave breaking
and/or associated lee-vortex nonlinearity may occur in
a thin layer near the surface.

5. Model results

a. Fourier-ray solutions

We begin by studying how horizontal cross sections
of our Fourier-ray model solutions compare with the
AVHRR-3 imagery in Fig. 3. Our best (least obscured)
AVHRR-3 image of the wavelike cloud banding in Fig.
3d is replotted in Fig. 7a as our observational reference.
Below it, we plot two Fourier-ray solutions for vertical
velocity at z � 3 km and t � 4 h, as calculated using the
Jan Mayen radiosonde profiles (Fig. 7b) and the
UKMO profiles (Fig. 7c).

Both simulations show similarities with the
AVHRR-3 image in Fig. 7a. The major response in
each case is a V-shaped trapped mountain-wave pattern
extending long distances downstream at angles to the
island similar to those observed in Fig. 7a. There are,
however, some noticeable differences between the two
solutions.

Sharman and Wurtele (1983) showed that analytical
solutions for trapped mountain waves from three-
dimensional symmetric obstacles have properties and
sensitivities that resemble classical Kelvin solutions for
ocean surface ship wakes (Reed and Milgram 2002).
Like ship wakes, trapped mountain waves can exhibit
both transverse waves, which appear downstream of
the obstacle as linear phase lines orthogonal to the flow
direction, and diverging waves, which appear as curved
phase lines in two V-shaped wedges of activity either
side of the downstream flow axis.

The Fourier-ray model simulation based on the
UKMO profiles in Fig. 7c contains both diverging and
transverse waves, but the solution based on the Jan
Mayen radiosonde profile in Fig. 7b contains only di-
verging waves. The AVHRR-3 images in Figs. 3 and 7a
show clear evidence of diverging waves but no evidence
of transverse waves in the cloud banding: see especially
the high-resolution LAC image in Fig. 3c. This indicates
that the (presumably) more accurate representation of
the meteorological profiles over Jan Mayen from the
radiosonde ascent is important for an accurate simula-
tion of the observed disturbance. We will have more to
say in section 6b about why the transverse waves are
present for the UKMO profile simulations but not for
the radiosonde profile simulations.

Other aspects of the radiosonde-based Fourier-ray
solution also agree better with the imagery than does
the UKMO-based solution. For example, the radio-
sonde-based solution shows greater “flaring” of the di-
verging waves into progressively wider wedge angles
with increasing distance downstream. By wedge angle,
we mean the angle relative to a line passing from the
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FIG. 7. (a) Wave train detected in AVHRR-3 image on 25 Jan 2000, enlarged from
Fig. 3d. (b) The Fourier-ray solution for vertical velocity at z � 3 km and t � 4 h using
the radiosonde wind and stability profiles in Fig. 6. Minimum value is �6.5 m s�1 and
maximum value is 5.9 m s�1. (c) Same as in (b), but using the UKMO wind and stability
profiles in Fig. 6. Minimum value is �7.6 m s�1 and maximum value is 7.9 m s�1. The
bars in (b) and (c) show vertical velocity values in m s�1.
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center of the topography through the approximate cen-
ter of the downstream wave field. There is also a clear
horizontal wavelength dependence to the diverging
waves, with the shortest wavelengths confined to the
smaller wedge angles and the longer wavelengths ex-
tending into larger wedge angles. A similar wavelength
dependence is seen in idealized numerical model solu-
tions (see, e.g., Fig. 9a of Sharman and Wurtele 2004).

Since the solutions based on the radiosonde profile
agree better with the AVHRR-3 observations, we focus
on them for further analysis.

b. Nonlinear numerical model simulation

To assess more rigorously the accuracy of the Fou-
rier-ray solutions in Fig. 7, we performed companion
runs using a nonlinear numerical model containing
identical topography, as described in sections 2b and 2c.
Figure 8 plots this model’s vertical velocity field at z �
3 km after 4 h using the radiosonde profiles. The line
sloping upward from left to right indicates the horizon-
tal coordinates of a vertical cross section that is shown
in Fig. 9b.

The similarities between the numerical model solu-
tion in Fig. 8 and the corresponding Fourier-ray solu-
tion in Fig. 7b are striking. Both solutions reproduce a
purely diverging trapped wave solution with similar

wavelengths and phase orientation. Both also include
very short wavelengths on the inside of the upper arm
of the V-shaped pattern, located just below the line
indicating the position of the vertical cross section, with
the phases nearly parallel to that line.

Figure 9 plots height-varying cross sections of the
vertical velocities along the line in Fig. 8 for the Fou-
rier-ray model (Fig. 9a) and the nonlinear numerical
model (Fig. 9b). Both show a disturbance trapped be-
tween the ground and �8 km altitude with similar hori-
zontal wavelength structure between 0 and 8 km. Dif-
ferences at higher altitudes and downwind are dis-
cussed below.

6. Discussion

Our Fourier-ray simulations of mountain waves
forced by observed flow over Jan Mayen on 25 January
2000 produced vertical velocity fields w(x, y, z, t) at z �
3 km and t � 4 h that reproduced the salient features of
high-resolution banded IR cloud imagery acquired
from space by AVHRR-3. For further validation, we
also compared those model results with output from
companion runs using a nonlinear numerical model,
again revealing good overall agreement.

On a 2.8-GHz single processor workstation, these

FIG. 8. Vertical velocity at z � 3 km and t � 4 h, computed from the nonlinear numerical
model using the radiosonde profiles in Fig. 6. The bar shows the range in m s�1. Minimum
value is �7.3 m s�1 and maximum value is 4.2 m s�1. The coordinate axes and the amplitude
scale are the same as for the corresponding Fourier-ray solution in Fig. 7b. The line that slopes
upward from left to right indicates the horizontal locus of the vertical cross section in Fig. 9b.
The line makes an angle of 36° with the x axis.
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Fourier-ray solutions took �5 min to compute in
FORTRAN 90 on a 1024 	 1024 horizontal grid at 40
levels from the ground to 20 km. The corresponding
nonlinear numerical model runs at 256 	 256 	 32 with
a 4-s time step on the same workstation took 38 h to
yield the t � 4 h solution. Since the Lipps–Hemler code
we use has not been aggressively optimized, we per-
formed identical runs on the same workstation using the
Weather Research and Forecasting (WRF) Advanced
Research (ARW) model (Skamarock et al. 2005).
These ARW runs took 21 h to yield the t � 4 h solution
using a 4-s time step, and 8.5 h using a 10-s time step.

Some differences among the various model solutions
were noted. We investigate them further here.

a. Vertical wave structure

The vertical cross sections of the Fourier-ray and nu-
merical model solutions in Fig. 9, while similar in some
respects, also show some differences. Trapped waves in
the nonlinear numerical model solution decay in am-
plitude more rapidly with downstream distance than
the Fourier-ray solution, while at stratospheric altitudes
the nonlinear numerical model solution contains more
energy in freely propagating (phase tilted) mountain
waves than the Fourier-ray solution.

Both differences seem to be related to the tunnelling
of trapped waves (Sutherland and Yewchuk 2004)
through an evanescent layer surrounding the wind jet at
heights �7–10 km, which then emerge into a free-
propagating region above �10 km (see Fig. 6d). This
“leakiness” of the tropospheric duct leads to greater
decay with downwind distance of the vertically trapped
tropospheric wave amplitudes in Fig. 9b. Similar tun-
nelling of trapped mountain waves into the strato-
sphere was noted by Eckermann et al. (2006) in a
Lipps–Hemler model forecast for this same date over
northern Scandinavia, a region �30° to the east of this
Jan Mayen wave event.

Our Fourier-ray model does not yet account for tun-
nelling, which requires a two turning-point analysis
(Bender and Orszag 1978). One turning point is at the
lower edge of the evanescent region, and the other is at
the upper edge. Our single turning-point Fourier-ray
solution breaks down near and above the upper turning
point. Here, as a temporary measure, we have set the
wave amplitude to zero whenever the waves approach
the second turning point. Specifically, we set the wave
amplitude to zero whenever z � ztp � 0.9�ztp, where
ztp is the height of the lower turning point and �ztp is
the height difference between the upper and lower
turning points. This was done only for waves that have
two turning points. The solutions for the vertically
propagating waves and for waves with a single turning
point were left unchanged.

To include the effects of tunnelling in the Fourier-ray
model, we would need either to match the ray solution
to separate Airy function solutions around each of the
two turning points, or to introduce a uniformly valid
two turning-point solution in terms of parabolic cylin-
der functions [sometimes called Weber functions: see
Kravtsov and Orlov (1999)]. We hope to test such so-
lutions in future work. We have, however, estimated
how much attenuation should occur through the eva-
nescent layer in the current problem by evaluating
exp(��b

a |m| dz) for each k, l value that results in two

FIG. 9. Vertical cross sections of vertical velocity in m s�1 (see
grayscale bars) at t � 4 h along the line indicated in Fig. 8. (a)
Fourier-ray solution. Minimum value is �7.8 m s�1 and maximum
value is 6.1 m s�1. (b) Nonlinear numerical model solution. Mini-
mum value is �8.7 m s�1 and maximum value is 5.8 m s�1.
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turning points. Here a, b are the heights of the lower
and upper turning points, respectively, and the expo-
nential is a measure of the wave attenuation in the
evanescent region between the turning points. We
found that important parts of the spectrum had attenu-
ation factors greater than 0.1, suggesting that their tun-
nelled wave amplitudes would be noticeable above the
wind jet maximum. For example, for the k, l value con-
sidered in calculating the Scorer parameter of Fig. 6d,
the value of the exponential is about 0.6.

b. Resonant modes

While the radiosonde profile produced a purely di-
verging trapped wave solution in Fig. 7b, the UKMO
profile produced a solution with both diverging and
transverse components (Fig. 7c).

To investigate this further, we calculated the reso-
nant modes for each of these solutions. These are the
singularities of the steady-state (t → �) trapped wave
solution (A11), which involve the Airy function Ai(r).
The Airy-function argument r, defined in (A8), is posi-
tive in the evanescent region above the turning point,
negative in the propagation region below the turning
point, and zero at the turning point. Resonances occur
whenever Ai(r0) � 0, with r0 � r(z � 0). This occurs
approximately at r0 � �2.34, �4.09, and �5.52, for
modes 1, 2, and 3, respectively.

Contours of r0 as a function of the horizontal wave-
numbers k, l are plotted in Fig. 10 for the radiosonde
profiles (Fig. 10a) and for the UMKO profiles (Fig.
10b). The bold curves indicate the resonant values
where Ai(r0) � 0. A gap in, or termination of, a par-
ticular r0 contour occurs where the local k, l values do
not correspond to a trapped wave. Generally, the k, l
values to the upper right of the plotted contours corre-
spond to propagating waves without turning points,
while the k, l values to the lower left of the plotted
contours correspond to evanescent waves whose intrin-
sic frequency is greater than N at the ground.

For the radiosonde profiles, there is a gap in the
mode-1 resonance curve, centered around k/k0 � �0.5.
For the UKMO case, the mode-1 curve is continuous.
This seems to be the reason why transverse waves occur
for the UKMO profile solution in Fig. 7c but not for the
radiosonde profile solution in Fig. 7b.

Spatial-ray tracing illustrates the point. Figure 11
plots horizontal group trajectories of some rays with (k,
l) values sampled from the corresponding mode-1 reso-
nance curves in Fig. 10. These trajectories were com-
puted by numerically integrating the spatial ray equa-
tions (Lighthill 1978)

dx�dt � cg , �6�

dm�dt � �kUz � lVz � �̂Nz �N, �7�

out to 4 h, the same time at which the corresponding
Fourier-ray solutions in Figs. 7b,c were evaluated. Here
x is the position vector of the ray and cg is its ground-
based group velocity vector.

Figure 11 shows that the presence (UKMO case) or
absence (radiosonde case) of mode-1 rays in the region
directly downwind of the mountain corresponds to the
presence or absence of transverse waves in the Fourier-
ray solutions in Fig. 7. For the radiosonde profile, there

FIG. 10. Contours of r0, the argument of the Airy function so-
lution in (A11), for (a) the radiosonde profile and (b) the UKMO
profile. The bold lines are the resonant values and are labeled by
their mode number, 1, 2, or 3, corresponding to r0 � �2.34, �4.09,
and �5.52, respectively. The other r0 contours are separated at
intervals of �1, starting with r0 � �1 (lowermost-left contour).
The horizontal wavenumbers k, l on the axes are normalized (ar-
bitrarily) by k0 � 2�/(20 km).
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are rays with wavenumbers (k, l) lying off of this
mode-1 curve that propagate downwind. However,
these rays are either vertically propagating (as opposed
to vertically trapped), and thus unable to produce a
transverse wave train at long downwind distances, or
they are vertically trapped but nonresonant. Resonance
is important because these are the waves that construc-
tively interfere in the solution (A3) to produce the larg-
est downstream amplitudes. We also checked the rays
for the mode-2 resonances in the radiosonde data, and
again we found an absence of rays in this same region.

Note that the spatial-ray tracing also provides other
consistency checks on our Fourier-ray solutions. For
example, Fig. 11 shows rays governed by the radio-
sonde profile “flaring” more in the diverging wings and
propagating farther downstream after 4 h than those

rays governed by the UKMO profile, consistent with
the Fourier-ray solutions in Fig. 7.

The physical interpretation of these results is as fol-
lows. Transverse waves are absent in the radiosonde-
based solution because its mode-1 resonant wavenum-
ber magnitudes kh in Fig. 10 are smaller than those of
the UKMO-based solution. The smaller radiosonde-
based mode-1 kh values do not satisfy the reflection
criterion �2(z, 
) � k2

h � 0 for the transverse wavenum-
ber alignments 
, and so these rays propagate freely in
the vertical, leaving a purely diverging trapped wave
pattern. Conversely, the larger kh values on the
UKMO-based resonant mode-1 curve satisfy �2(z, 
) �
k2

h � 0 for all wavenumber alignments, resulting in a
trapped wave solution with both diverging and trans-
verse components. The smaller kh (longer �h) resonant
values of the radiosonde-based solution compared to
the UKMO-based solution are evident in the wave pat-
terns in Figs. 7b,c.

7. Summary

We have used the Fourier-ray method to simulate
mountain waves that were observed by high-resolution
IR satellite cloud imagery and that extended long dis-
tances downwind of the island of Jan Mayen on 25
January 2000. This was a first step in applying the Fou-
rier-ray method to a real-world problem. The results
highlight some of the desirable features of the Fourier-
ray method, such as the ability to produce very high
resolution solutions quickly for realistic topography
and arbitrary wind and stability profiles.

Comparison with a companion simulation using a
nonlinear numerical model of flow over orography re-
vealed similar wave patterns but also indicated the pos-
sible importance (see Fig. 9) of wave tunnelling through
the wind jet centered at a height of about 10 km. Wave
tunnelling (i.e., the penetration of waves through a lo-
calized evanescent region) is a two turning-point effect,
which is not included in the present formulation of the
Fourier-ray model. The analysis of two turning-point
problems is standard (Bender and Orszag 1978), and
we hope to add this capability to the Fourier-ray model
in the future.

The speed and accuracy of this algorithm, coupled
with its use of arbitrary surface topography and vertical
meteorological profiles, make it promising as a moun-
tain-wave forecasting tool, particularly as a potential
next-generation dynamical core for the MWFM. Future
work will apply the method to more complex real-world
problems, such as extended topography and profiles
based on operational NWP fields (see Eckermann et al.
2004).

FIG. 11. The horizontal coordinates of ray paths corresponding
to points on the mode-1 resonance curves in Fig. 10. (a) For the
radiosonde profile, 66 ray paths are shown, with k/k0 values in the
range of �1.5 to �0.25. (b) For the UKMO profile, 50 ray paths
are shown, with k/k0 values in the range of �1.4 to �0.88.
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APPENDIX

The Transient Fourier-Ray Solution

We consider mountain waves that begin to emerge
from the mountain at t � 0 and are continuously gen-
erated thereafter. We assume that all rays have the full
wave amplitude of the longtime steady-state solution.
The resulting time-dependent ray solutions were used
to produce the results in the present study and are given
below. They were derived in Broutman et al. (2006),
who expressed them in terms of the vertical displace-
ment �̃(k, l, z, t). This is related to the vertical velocity
(used in the present study) by w̃ � �i�̂�̃, where �̂ is the
intrinsic frequency.

The ray solution is the sum of solutions for the ver-
tically propagating waves and the vertically trapped
waves:

�̃ � �̃pr � �̃tr. �A1�

For the vertically propagating waves

�̃pr � Fh̃�G0�G�1�2e i�. �A2�

For the vertically trapped waves

�̃ tr � 2ı�1�2h̃�G0�G�1�2��r�1�4Ai�r�ei�	���4�SM . �A3�

These are Eqs. (5) and (22), respectively, of Broutman
et al. (2006), with the latter equation assuming equal
numbers of upgoing and downgoing waves. The terms
in these equations are defined below.

The factor F accounts for the time dependence in the
vertically propagating waves and is defined by

F � H��
0

t

cg3�k, l, z, t
� dt
 � z�. �A4�

The Heaviside function H(�) is zero for � � 0 and unity
for � � 0. The integral in the argument of H is the
height at time t of the initial ray (for that k, l) generated
at the mountain at t � 0.

The topography h(x, y) has a Fourier transform h̃(k, l).
The factor G, defined such that G | �̃ |2 is the vertical
flux of wave action, is

G � �N2cg3��̂, �A5�

where � is the background density and cg3 is the vertical
group velocity. Here G0 is G at z � 0.

The wave phase is

� � ��
0

z

m�k, l, z
� dz
. �A6�

The sign convention here is m � 0, with a negative sign
inserted in (A6) to produce downward phase propaga-
tion and upward group propagation.

For the vertically trapped waves, Ai is the Airy func-
tion, and

	 �
1
2

��1 � �2�, �A7�

r � ��3
4

��1 � �2��2�3

. �A8�

The phases �1 and �2 are for a ray incident upon and
reflected from the caustic, respectively.

The time dependence of the trapped wave solution
(A3) comes in through SM, defined by

SM �
1 � e�iM


1 � e�i
 , �A9�

where


 � �2 �
0

zt

m�k, l, z
� dz
 � ��2. �A10�

The counting variable M indicates the number of pairs
of incident and reflected rays. Initially M � 0 with S0

defined to be zero. Each time the initial ray makes a
complete round trip from the ground to the turning
point and back to the ground, M increases by 1. We
compute M as a function of time using Eq. (33) of
Broutman et al. (2006).

For the vertically trapped waves, the longtime
steady-state solution is

�̃tr�k, l, z, t → �� � h̃�G0

G �1�2� r

r0
�1�4 Ai�r�

Ai�r0�
,

�A11�

where r0 is r at z � 0. This is Eq. (A9) of Broutman et
al. (2003). It is used here in section 6b for the calcula-
tion of resonant modes, which occur where Ai(r0) � 0.
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