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Derivation of Grad’s Thirteen Regularized Moment Equations Using a Hermite Polynomial

Representation of Velocity Distribution Function (Preprint)

L. Pekker', O. Pekker
ERC Inc. Edwards AFB, CA 93524, USA

V. Timchenko
University of New South Wales
School of Mechanical and Manufacturing Engineering, Sydney, Australia

ABSTRACT

This paper derives the transport equations for rarefied gases from the Bhatnagar-Gross-Krook (BGK) model
kinetic equation using Hermite polynomial representation of the velocity distribution function. We apply the
Champmen-Enskog method to Grad’s thirteen moment equations to derive a closure of Grad’s 13 moment
equations, extending them to third order of the Knudsen number. The velocity distribution function for the

resulting 13 regularized moment equations is presented.

I. INTRODUCTION

One of the hardest problems in computational fluid dynamics is the modeling of medium rarefied gases
with the Knudsen number in the range 0.005 — 1. In this case, the gas is rarefied to such a degree that using the
Navier-Stokes-Fourier equations is questionable, but it is not sufficiently rarefied that using Direct Simulation
Monte Carlo (DSMC) methods is effective. It should be stressed that in recent years computational fluid
dynamics for Knudsen numbers in this range has become more and more important for many practical
applications, ranging from the modeling of reentry of space vehicles into the atmosphere to the modeling of
microscale flows and heat transfer in microchannels. One of the ways to cover this range of Knudsen numbers
is to use thirteen (or more) moment equations instead of the Navier-Stokes-Fourier 5 equations. In 1949 Grad
derived 13 moment equations corresponding to the second order of the Knudsen number [1, 2]. It is worth
noting that the Navier-Stokes-Fourier equations are to first order of the Knudsen number. Unfortunately, Grad’s
moment equations sometimes produce unphysical solutions; for example, they fail to describe smooth shock

structures for Mach numbers above a critical value [3]. In 2004 Struchtrup [4] regularized Grad’s equations,
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extending them to third order of the Knudsen number. This was a very important step in rarefied gas dynamics.
This step’s significance can be compared to the extension of Euler’s gas dynamics equations to the Fourier-
Navier-Stokes gas dynamics equations. The author has developed a new closure method that is principally
different from the well-known Chapmen-Enskog method [5, 6] (that was used to derive a closure of Euler’s gas
dynamics equations), in which he has not used the Hermite polynomial representation of the velocity
distribution function. It should be noted that the Struchtrup closure method is very complicated, and this is
probably one of the reasons that his method and equations are difficult to comprehend.

In the present paper we suggest a new closure for Grad’s thirteen equations by using a Hermite polynomial
approximation for the monatomic gas velocity distribution function, and applying the Chapman-Enskog
regularization method to Grad’s velocity distribution function that corresponds to his 13 moment equation [5,
6]. In our paper, the collision term is assumed to be in the BGK form. The integral representation for the 13
moments of the Boltzmann equation and the Hermite polynomial approximation of the velocity distribution
function are obtained in Sections II and III respectively. Grad’s regularized 13 moment equations are derived in

Section IV, and conclusions are presented in Section V.

II. GENERAL EQUATION FOR 13 MOMENTS

The phase density of a monatomic ideal gas is described by the Boltzmann equation,

on-f) , om-f) .

T S, (1)
where
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v

Here n is the number density of gas molecules, / is the velocity distribution function, 7; =(V,.,V,,V;) is the

particle velocity, x; =(x,y,z) are the coordinates of a particle, |d 37 means the integration over the entire velocity
vV

space, and St(n- /) is the collision term that accounts for the change in the velocity distribution function due to

collisions. Here we assume elastic collisions.

Let us introduce p as the mass density of gas molecules,

p=m-n-£f-d317, 3)
V



u; = (uy,u,,u.) as the flow velocity of gas molecules,
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V; as the thermal velocity,
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q; = (qx,qy,qz) as the heat flux,
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were m 1is the mass of a particle. As one can see, the total number of moments of the particle distribution function

introduced here is 13. Let us obtain general equations for these 13 moments using the Boltzmann equation, Eq.

(1). First we consider equations for p, u,, u,, u,, and V7 . Since the number of colliding particles, their total

momentum, and their total energy are conserved in collisions, it follows that

n-[Su(f)-d’V =0, (8)

V

m-n-[V;-St(f)-d*V =0, )
V

—n [VZSH(f)-dV =0. (10)
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We obtain from Eq. (1) the following moment equations that correspond to mass, momentum and energy

conservation laws respectively,
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where 12 = sz +Vy2 +VZ2 , with indexes i,k =x,y,z. After tedious algebra Eq. (11) — (13) can be presented in the

following form [7]
P%+@W%%+£P%£}%%ﬂ, (15)

We derive the general moment equations for ¢; and o,, and o,, in Appendix A. They can be written as:
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where o =0, (7 —ii)* =(V, —u,)* +(V, —u,)* +(V, —u,)*, and
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Changing the order of indexes (x,y,z) to (x,z,y) in Eq. (18) we obtain an equation for o, ,
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and, proceeding similarly with (z,y,x) we obtain an equation for o,
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Changing the order of indexes (x,y,2) to (y,x,z) in Eq. (19) we obtain an equation for o,
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It is worth noting that there are no collision terms in the moment equations for p , u,, and V7, Eqgs. (14) —

(16), while the equations for heat flux and stress tensor, Egs. (17) - (19) and (21) — (23) do include collision terms.

Since collision terms can produce new moments, the set of these 13 moment equations in general is not self-

contained. However, in the case of Maxwell molecules and the BGK approximation of the collision term,

St(f) = @ ,

24)



where 7 is a collision time depending on time and coordinates and f}, is the Maxwellian velocity distribution

function,

3/2
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the collision terms do not produce any new moments. In other words, these approximations of the collision term
do not mix the moments. This is a key point for any theory of moment approximation of the Boltzmann equation.

In this paper we will use the BGK approximation of the collision term; the case of Maxwellian molecules can be

described in a similar way.

III. HERMITE POLYNOMIAL APPROXIMATION OF FUNCTION DISTRIBUTION

Following Grad [1, 2] we assume here a Hermite polynomial approximation of the velocity distribution

function where Hermite polynomials are described as follows:

Hy ()= -exply?) CZ(A]/V [exr)(— 7 )] : (26)
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The velocity distribution function can be described as a combination of three-dimensional Hermite polynomials

that correspond to x, y, z directions of the velocity. For our purposes we need only the following set of Hermite

polynomials:
Hy=1, Hy()=2 %, Hy(z) =447 -2, (28)
Hy(x)=8 7 —12-y;, Hy (1) =16z —48- 77 +12, (29)

where i =x,y,z and



zi=——". (30)

We represent the velocity distribution via the 29 Hermite polynomials
29 .
fH:fM'kzlAk'Hk(Zxaxya/,{z)a (31)

where f),is a Maxwellian function, Eq. (25), coefficients A depend on coordinates and time, and Hermite

polynomials H are

H =Hy=1, (32)
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It should be stressed that all /' polynomials are orthogonal, i.e.,
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Since the velocity distribution function f; has to satisfy the conditions given by Egs. (2), (4), and (5), we obtain

that

A1=1, A2:A3:A4:O and A5+A8+A]0:0. (49)



Thus, the particle distribution function »- f; has 29 variables, p, u,, Uy, Uy, VT2, As, Ag, A7, Ag, Ag, Aqp-
A, . Substituting the velocity distribution function £, Eq. (31), for / in Egs. (6) and (7), we obtain relationships

between ¢;, o and A:

2.0 4 Oy 4.0 2 Oy 4 o,
A5: X;, 6 = 7 A7: x§5 8 = 7 A9_ ;5
pVr pVr pVr pVr pVr
8-q, 8"1}’ 8-q, 0
A11:—3’ A12=—3’ A13: 3" (5 )
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It is worth noting that the truncated velocity distribution function /5 that consists of the first nine nonzero Hermite

polynomials has the form of the Champmen-Enskog and Grad’s velocity distribution functions [1, 2, 7]. In the next

sections it will be shown why we have selected this representation of velocity distribution function.

IV. A CLOSURE OF GRAD’S 13 MOMENT EQUATIONS.

Let us rewrite the equation for the heat flux, Eq. (17), and stress tensor, Egs. (18) — (19), (21) — (23) for the
case of the BGK collision term, Eq. (24):
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where indexes i,k = x,y,z . To complete this system of equations, a velocity distribution function has to be chosen.

Grad [1, 2] has suggested the following velocity distribution function:

- 8 Gmw) (= sy 2 (Fmw) (mw) 1
fGRAD(V)—fMI:1+qk PR R ( 72 z}r% V2 ( V2 5y 2]] (57)

and obtained his set of equations that later has been called “Grad’s 13 moment equations.” As one can see Grad’s

velocity distribution function can be rewritten in terms of Hermite polynomials as

A n 8 N N 2. N
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where we have taken into account that o;; =o; and used Eq. (20). Grad’s equations [1,2] for ¢, , o,,, and oy,

can be presented in the following form:
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Changing the order of indexes (x,y,z) to (y,x,z) and (z,y,x) in Eq. (59) we obtain the corresponding equations
for ¢, and g, ; likewise, using (y,x,z) in Eq. (60) we obtain an equation for o, ; and finally, using (x,z,y)
and(y,z,x) in Eq. (61) we obtain equations for o,, and o, respectively. Unfortunately, as it has been mentioned

in Introduction, Grad’s moment equations sometimes produce unphysical solutions and, therefore need to be

regularized.

Let us obtain a set of the 13 regularized Grad’s moment equations using the Hermite polynomial
approximation of the velocity distribution function and the Chapmen-Enskog closure method, while assuming that
the collision term is in BGK form, Eq. (24).

First let us represent the polynomials in Eq. (51) with index i=x and in Egs. (52), Eq. (55) in Hyrmite

forms:

H Hy, -H H,. -H 7-H H H H 5-H
2 ( 2, .2 2)_ 4x 2x 772y 2x 122 2x 2z 2y 2z 0
Ay + x5+ = + + + + + + + , 62
A AT 4 4 4 2 2 2 4 (62)
Hs, -H Hsy,-H H-H, H 7-Hy,-H
Xx Xy (Z)% +IJ2/ +Zzz): 3x16 = 3y16 o 116)) = ]; L > (63)
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Hy -H Hy, -H Hy,-Hy,-H 7-H,-H
Zx'lz'(Z;%Jr}{iJrlzz): 3x Mz 173z " x Iy 271z 2y+ 1x ]z’ (64)

R (65)
e (66)
i og =2 e (67)
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Tn Xy = széH"‘ +1'le , (69)
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(zi-%)xx By B (71)
(22-3) 2 -2, (72)

where variables y are given by Eq. (29). As one can see, the polynomials presented in: Egs. (62) — (68) are

included in ¢, ; Egs. (66), (68) and (69) in o,,; and Eq. (70) — (72) in o,,. The Hermite representations of

polynomials in Eq. 51 with index i = y,z, and in Egs. (53), (54), (56) for ¢,,, ¢., o, 0,.,and o, respectively

yzo
is obtained from Eqgs. (62) — (72) by the proper rotation of the indexes. Thus, the complete list of Hermite
polynomials that represents polynomials in Egs. (51) — (56) is

H4x! H4y! H4z9 (73)
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Hyy-Hy,, HyyHy., Hy, -H., (74)
Hs, -Hy,, Hs -Hy,, Hsy, -Hyy, Hs, -H, Hs, -Hy,, Hs, -Hy, , (75)
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H3y, Hsy, Hs,, (78)
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Hyy Hyy, Hy., (80)
H-Hy,, H -Hy, H,y, -H, (1)
Hy, Hy, H, (82)
Hy. (83)

Now, following the Chapman-Enskog method [5, 6], let us write the velocity distribution function as
f=ferap+T S fi - (84)

where f; has a Hermite polynomial form. Since the velocity distribution function z-f;,-f; does not have to

contribute into the previously obtained 13 moments p, u;, and VT2 , ¢q;,and oy, it follows that the Hermite

ijo
polynomials included in Grad’s velocity distribution function, Eq. (58), have to be excluded from £, . But as the
velocity distribution function - f;, - f; has to contribute into the integrals in Egs. (51) — (56), we obtain that f;,

as follows from Egs. (62) — (72), has to be a combination only of the Hermite polynomials presented in Egs. (73) —
(77). Subsequently, we obtain that

29 N
fi= X A-H;, (85)
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where functions H, are shown in Egs. (43) — (47). Thus, we have shown that the chosen set of Hermite

polynomials, Eq. (32) — (47) has good physical sense for representing the velocity distribution function.

Let us introduce the following set of M-moments:

M41=Vﬁ'P‘I£f'H4i'd3I7> i=(x,»,2), (86)
M2i2j:V;}'p‘éf'HZi‘HZj'd:%Va ij=(w,xz,yz) , (87)
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MliljZkZVTA}‘p'I.Lf'Hli'Hlj‘HZk'd3I7: ijk=(x0z, yzx,2xy) (39)
Mliljlk=VT3',0'I£f'H1i'Hlj'Hlk'd3I7: ijk=(xz), (90)

which correspond to Hermite polynomials in Egs. (73) — (77). Substituting them into Eq. (51) with index i =x and

into Egs. (52) and (55) we obtain the following equations for ¢, , o,,, and o,
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74‘@(1@{ O—xx) (Z'O'xx)' ox +(2'O'yx>'—+(2'cfzx)'g— — Oy |"—+
. 2-p-VT2 Ouy p-VT2 '%_ p-VT2 .6uz+8 oq, 4 04y 4 dq. oy
3 OX,. 3 oy 3 oz 15 ox 15 oy 15 oz T

92)
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oo 2 Ou . ou 0
LA 0 (uk axy) +0p, P VT au’c+crkx-—y+ PV 2%
ot Oxy X, 2 0 oxy, 2 ox 5 ox
(93)
294, 0 (l. j__"_xy
5 gy oz\lg bz z'

As one can see there is no contribution of new M-moments in the equation for o, . The equations for ¢,, ¢.,

o can be obtained by a proper rotations of indexes in Egs. (91) — (93). Thus, to obtain equations for

ayy 3 Xz ayZ

the heat flux (g,,q,.q.) and the stress tensor (o,,0,,,0,.,0,,,0,,) we have to derive equations for M-moments.

Let us obtain equations for M,;,.. Multiplying the Boltzmann Equation, Eq. (1), by

m'g'(Vx_ux)'(Vy _uy)'(Vz —le) (94)
we obtain

o(n-f G
me[ (V=) (Vy —u,)- (7, —uz)]~%+8‘m-[(Vx —u)- (Vy —u))- (V, —u,) |- Vi R ©5)

:8-m~[(Vx —ug) (Vy —uy)(V, —uz)]-St(n-f) .
Transferring the terms in front of the derivatives inside of the derivatives brackets in Eq. (95), we obtain

o u,
S (8P Vem) Oy =) (V=) f)+ (8- pe 0V =) (Ve =) f )=

0
+(8:p (Ve —uy)- (V; —u2)- f)- —+(8p(V w) (=) f) =

o N .
+a(8'/"(Vk —u)- (Vi =) (Vy —uy)- (V2 —uz)-f)+a(uk 8 p-(Vy —uy) (Vy =) (V, —1,)- f )+

0 o0
(89 (Ve —) V=) (V, —)- £ ): ”’“+(uk-8-p-<Vy—uy)-(Vz—uz)~f)-az—X+ 06)
k
0
+(8-p-(Vk—uk)~(Vx—ux)-(VZ u,)- f) (8 puy -V ux)-(VZ—uZ)~f)~ﬁ+

Oy O

= (8- ey (Vy —uy)- (V= y>f) =

+(8-p-(Vk—“k)'(Vx—”x)'(Vy uy)- f) Oy

=8 p(Vy—uy) (V) —uy)-(V, — z) Se(f) -

Substituting Egs. (24) and (84) into Eq. (96) and integrating the obtained equation over the entire velocity domain,

we obtain
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0 _ _| ou
5[8-/7%3-[xx'zywz-(fcmd +7- fu '.]rl)'d:;lj“'[g'p'VTz‘.[Zy'lz'(med +T'fM'f])‘d3ZJ'a—lx+
X X

_| Ou _| Ou
+(8'p'V]g'~[lx'lz'(fGrad+T'fM 'fl)'d3l]'a_ty+(8’p'VT2'J;Zx’ly'(fGrad"'T'fM 'fl)'d3ZJ'a_lZ+
x V4

P R )
+6_[8'p'V]A}'.[lk'lx'ly‘%z‘(med +7 i 'fl)'d3)(j+a_[”k'8'p'V]§'J;Zx‘ly‘lz'(med +7 fur -ﬁ)-d%}
X X

Xk Xk
Noou, | | ou 97
+ 8',0'V7§'Ilk'ly'Zz'(fGrad"_T'fM'fl)'d31 = uk'8'p'VT2'Ily'lz'(med_"T'fM'fl)'dsl =+ ( )
7 6xk L 7 i axk
3 3| 94y 2 35| Oy
H 8 Vi [ ak Xx Xe (Saraa +7- St - 1) @7 |-—=+| 8- pug Vi [ xx 2o (SGraa 7 Sas - /) d° 7 |-—+
7 6xk 7 Bxk
3 35| Ouy 2 3| Ouy
8o Vi [ 2k X Xy (SGraa +7 Fue - /) d° 7 e 8- pou Vi [ 2t 2y (fGraa +7 fue - /) d° 7 e
z k Z k

3 3.
=8 p Vi [ 2y 2o S 1A X
V4

Following the Chapman-Enskog recipe [5, 6], let us put 7 — 0 in Eq. (97); then substituting Eq. (58) for 7, In

the left-hand side of the obtained equation we obtain the following equation for M,,,;. (by integrating via

Mathematica):
M1z . ou ou du,
X
ou ou Ou 16\ (ou, ©Ou 16\ (Ou, Ou
+(8- . e . ._y+ 8. . Lz . _x+_y +( _j X+ 272 |+ (98
( Oy uk) o, (ze uk) %, ( Oxy uk) ox, [Clz 5}(8}» axJ qy 5 = | ox (98)
16 auy Ou, 0 2 0 2 0 2
"r(qx?J(E"r ay J+§(4VT .Gyz)+5(4'VT .GXZ)+§(4.VT 'O'yx) .

Substituting the expression for du; /ot , Eq. (15), into Eq. (98) we obtain the final expression for the M,

_Mlxlylz:4.p.V72. g Oy +£ Oxz +£ Oxy a 8'O—yz .60706_ 8~o‘xz 6o-ky B 8-0’xy .8akZ+
T ox\ p oy\ p oz\ p P Oxy, P Oxy, P Oxy,

99)
19/ 9]
NPT N T A NG T A
5 dy  Ox Y5 0z  Ox 5 0z Oy
Taking into account that

2 4

p-Vr-u tpVr
O oCT- and coc T —— T 100
i i q; 7 (100)
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we can drop terms that are of the order of 72 ; in the right-hand side Eq. (99). This yields

M
Mtz g2

.{_

0
ox

(6_

9
oy

yz

)
o

el

9y

O—.XZ

5

16
5

)
e

9
Oz

[ﬁ
P

Ou,,
ox

It
Mo 8%

e

E).

5 oy
au

Oz

Ou,,

+

Ou

_}

8u
oy

Y

ox (101)

)

All other M-moments, Eqgs. (86) — (89), are derived in Appendix B. After collecting all M-moments in Egs. (91)

and (93) together,
o(1 1 1 B Vi (14 ap 4 dp 4 op)
—_ —-M +—-—M +—-M =— |7 {—| — ._+_. L
8x(32 de g Ay g mzj 8x[ {p (5 o 5 g Ty,
oV v avE) 5, (14 8q, 4 04, 4 &g
5 qx _+ qy._ 3. Z._ _VT o — X —_— — . z p—
ox Oy Oz 5 ox 5 oy 5 oz (102)
2 |2 4 4 Ou 1 2 8uy
Vi {(3 T3 Oy -azzj-a—;— 3Ot Oy o | o
1 2 ou u u Ou
[g'o-xx"_:,’ O-yy+§'0'zzj' aZZ 4 Xy’ = +4 xy " +4-0,, 6zx +4- xza_xz:|}]
o(1 1 1 0 7 vE (7 v (7 ) %,
R — M — M = — . - L 4 —. L _V P
8)/(32 3xly T3y Mindy T3y “lﬂzj Gy[r {(10 qyj o (10 qx] v 10T ) o
7 2) 0q 74 'V7g op |7 ¢ VE 6,0 1 Ouy  ou ou
N J = 7T +VE- J =L+ == 2. 2= |+ (103)
10 v |10 p |ax (10 p oy 3 o ox oz
3 1 Ou, Ou 1 ou,  fu
(Fortorpo) (B on (B a—]E(a_a—HH
o1 1 1 b 7 v (1 VT2 7 K
— | —M +— M +—M - . PR L 4= R S _V Z+
82(32 3xlz T3y Mdz T 1"””} 8y[T {(10 qzj ox (10 J o= 10T ) T
V2 8u
n l.VT2 Oy |7 g: V7| 0p | T 4x VT Vi 9P, VR 214 (104)
10 0z 10 Ve o |10 el Oz oy

3

o2

4

3 1
'O'xx+Z'O'ZZ+Z'Uyy .

Oy
Oz

X

Oz

ox

4

1
J'_E.Gyz.

Ou,,
oy

ou

_}_

ox

Y

Guy

—Hﬂ

1 Ou,

xy.(_

2 oy Oz
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V2 c o
LN VAIN NI o s ﬂ(i}ﬁ[%}ﬁ(i} .
8 oz oz 2 ox{ p o\ p oz\ p

=5 T )\ e T )\ S e Ty )|

and substituting them into Egs. (91) and (93) we obtain the final equations for ¢, and o, . By changing the order

(105)

of indexes (x,y,2) to (y,x,z)in Egs. (91), (102) — (104) we obtain the equation for ¢,, and, similarly, by using
(z,»,x) the equation for g, ; by using (x,z,y)and (,z,x) in Egs. (92) and (105) we obtain the equations for o,
and o, respectively; and by using (y,x,2) in Eq. (92) fwe obtain the equation for o, . Thus, the resulting set of
13 equations, Egs. (14) — (16), (91) — (93), (102) — (105) with rotations of indexes as described above, represents a
complete set of the 13 regularized Grad’s moment equations for p,  (u,uy,u;), V;g s (449,592 s
(O-xxao-xyﬂo-xpo-yyﬂo'yz) .

Finally, the coefficients A4 - A9 in the velocity distribution function fy , Eq. (31), can be obtained from

Eq. (86) — (90) by substituting f for ¢ ; which yields:

M My M

A= As=———0, A=, (106)
384 p-V; 384 p-V; 384 p-V7
M M M

Al7ziy4, Apg=—222 szizw (107)
M3x1y M3 1 M3y1x M3y1 M3 1 M3 ly

Ayp=——"7, A1 = s Ap= 7> A3 = 24’A24: = Mas = - 7 - (108)
96 p-V; 96-p-V; 96 p- Vi 96-p- Vi 96 p-V; 96 p- Vi
M M M

A26 _ 1x1y2z4 : [\27 _ 1y122x4 , Azg _ lzly2x4 ) (109)
M1

Agy = — V1 (110)

V. CONCLUSIONS
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We have presented a new set of moment equations for rarefied gas dynamics. Our equations are a closure
for Grad’s 13 moment equations extended to the third order of the Knudsen number. We have assume a Hermite
polynomial approximation for the monatomic gas velocity distribution function, the BGK approximation of the
collision term in the Boltzmann kinetic equation and used the the well-known Chapman-Enskog regularization
method that has been previously used to derive a closure of the Euler’s gas dynamic equations. We have shown
that the selected 29-term Hermite polynomial representation of the velocity distribution function makes good
physical sense and obtained the coefficients for this polynomial. Our regularized Grad’s 13 moment equations
differ from a similar set of equations obtained by Struchtrup and Horrilhon [4], who have used a very different
and complicated method and have not assumed a Hermite polynomial representation of the velocity distribution
function. On the contrary, the closure method presented in this paper turns out to be quite straightforward and

comprehensible.

APPENDIX A

Let us obtain the general moment equation for ¢; . Multiplying the Boltzmann Equation, Eq. (1), by

|3

V=) | Vo= 4 0y =, P 40— | (A1)

we obtain

2= [ 0 4 0 =y 0, =) |
) [0, 0 ) 0 S A

=2 V)| V= + (=, P+ (=) |- St f)

Transferring the terms in front of the derivatives inside the derivative brackets in Eq. (A2), we obtain
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;(p V; —u;)- [V - x)z+(Vy—uy)2+(Vz—uz)2]-fj+(§'[(Vx_”x)2+(Vy_”y)2+(Vz_uz)2]'fj'%+

+(p-; —u)-(V —uk)-f)-aaip%(%(vi ) [ V) 4 7, —uy)2+(Vz—uz>2]-(Vk—uk>-fj+

+i[uk = u)[(Vx—uxf+(Vy—uy>2+<Vz—uz)2]-fj+

8xk . (A3)
V—u)- Ll —u)? —u)? —u? ] i
+[f V=) 2| =P+ (7 0, 4 0 ) ]] P
. ou ;
+uk-[f-g-[(Vx—uxf+<Vy—uy)2+(Vz—uZ>2]]-;i;+(p-(V,-—u»-(Vk—uk>-f-<V_j—u_,->)-£+
Ou ;
+uko(p~(Vl-—u,-)-f-<Vj—uj))~axﬁ=§-(Vi—u,-)[(Vx—ux)2+(Vy—uy)2+<VZ—uZ)2]-St(n'f>.
k
Integrating Eq. (A3) over the entire velocity domain, we obtain
[g [0~ u»-[(Vx—ux)z+<Vy—uy)2+(VZ—uz)2]-f-d3Vj+
[‘23 [V =) + (V=) +(V, —u,)*]- f-dﬂ-%{p-L(Vi—ui)-<Vk—uk>-.f-d3V]-%+
7 t 7 ot
0 B}
a—[g 105 =) 0% ux)2+<Vy—uy)2+(Vz—uz)z]<vk—uk)-f-d3V]+
0
+a{uk'§~y, u) [ =+ 0y =, + V=) |- o J
ul
+ gé(Vk ) [(V DAV —u,) + (V. —u) } fd Vj o
P 2 2 2 35 | Oy
+| Uy 5 é[(V x) +(Vy_uy) +(Vz_”z) :|fd Vja'i_ (A4)
35| 35| O
Hop JVi—w) Vi —w)-Vi—u;)- f-d°V | —+ “k'p'[(Vi_“i)'(V_j_u_j)'f'd Vi—=
8xk vV )Ck

W -u)- [(V —u )2+ (Vy —u,)? +(V, —u) ] S f)-d3V -
V

Expressing the third and ninth terms in the left-hand side of Eq. (A4) as

2 ou Vi | @ Vi ou
@pm—u»-(n—uk)-f-d3Vj~8—f=up~[<Vi—u,->-<Vk—uk)—@k~7T]-f~d3V]-§+(p7T}§,
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_) Ou; y2 _| Ou ou;
[uk'p-é(Vi—u,-»(Vj-uj>'f.d3vj-$:[uk~p-é[<n—u»-(Vj—u»—czyf}fdﬂ g{uk p —] s

and taking into account Eqs. (6) and (7) and the fact that o;; =o;, we obtain

oq; [5 p Vi \ow oy 0 ou; 5 V7 ouy Ou

6t 2 2 8t 8t 6k é‘k 2 2 6xk
i ey SV —u)-(V - 0V —u) f-dV P Vi—u) Vi —w) -V —uy)- f-dV |- —= = (A5)
Xk 2 vV vV an
=L W) 7 =) ST,
V
where
_ p-V2
O-ZZ:p'J;f'(Vz_uz)z’d?)V_TT:_o-yy_o-zz' (A6)
V

Here we have used the general expression for stress tensor o;; given by Eq. (7). Substituting du /ot from Eq.

(15) into Eq. (A6) and after some simple algebra, the equation for the heat flux ¢; turns into

2, 0 (g g RSV 22, % | ow [ 0 [p Vi |, Ok |,
o ax s TR o 12 2 ey | 2 a; | p oyl 2 ox;

_\ Ou;
+ai[£ [0 =up)- (7 =) - - u;»de] +(p-L(V,-—u,-)-wk—uk)-(V_,-—u,-)-f-d%j-ﬁ: (A7)
X 2 vV vV 8xk

=L —u) (P i) St(f) .
2y
Next, let us derive a general equation for o,, . Multiplying the Boltzmann Equation, Eq. (1) by
m(Vy —uy)- (V, ~ty) : (A8)
we obtain

m'<Vx—uy>'<Vx—uy>~6('g,f) Ve—u) -V —,) Vg - 6((;;%”) eV —u,) Ve —u,)-Stin- f) . (A9)
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Transferring the terms in front of the derivatives inside the derivative brackets in Eq. (A9), we obtain

0 aux ou
S (P V=) (=) )+ (- =) f)- 54 (pr (V=) f) -
0 0
t— (o Ok =) V=) (V=) )+ = (wp - pr (V=) (V=) f )+
X 6xk
Ou ou (A10)
+(p~(Vk—uk>~(Vy—uy)-f).E+(p~uk-(Vy—uy)~f)-axk+
u,, Ou,,
+(p (7 _uk)'(Vx_ux)'f)°a_+(uk'p'(Vx_ux)'f)'_:p'(Vx_ux)'(Vy_uy)'St(f)-
Xy Oxy,
Integrating Eq. (A10) over the entire velocity domain, we obtain
_ _ _) O
L P SR AR Oy S 18 P TR W A g et P AR WS g e
al” j 7 ot 7 ot
+i(p-I(Vk—uk)'<Vx—ux)-<Vy—uy)~f~d3ﬁj+i[uk-p-I(Vx—ux)-<Vy—uy)-f~d3V]+
ey Ox v
35 6ux 35 8ux
+[p-f_(Vk—uk)-(Vy—uy)~f~d Vj-@ +(uk-p-j_(Vy—uy)-f-d Vj~—+ (A11)
v Xk v Ox
37| Oy 35| Oy
+ p'I(Vk_uk)'(Vx_ux)'f'd Vi-——+ uk'p'.[(Vx_ux)'f'd Vii—=
v oxy, 7 oxy,
=p- [V —u)-(Vy —u))-SH(f)-d°V .
vV
Expressing the sixth and eighth terms in the left-hand side of Eq. (A11) as
2\ Ou; 2 ) ou. 2\ bu-
[Ip-(Vk—uk)~<Vz-—ui>f~d3Vj-ﬁ=[Jp~((V,-—u,->-(Vk—uk>—5l-k-V—T]'f~d3VJ~ﬁ+£p-V—T]-ﬁ,(A12)
% oxp |\ 2 Oxy, 2 ) ox

where indexes ij =(xy,yx), and taking into account Eq. (4) and the general expression for the stress tensor, Eq. (7)

we obtain
0 Ou NZEE, ou
g(axy)+0'ky~&+ka-—y+i(uk-axy)+—p ' Gy [T,
ot ka axk 6xk 2 ay ox

(A13)

+ai[p~ [V =)V —u)- (7, —uy>-f-d3ﬁj:p~ [V —uy)-(V, —u,)-St(f)-dV .
Xk v v

Now, let us derive a general equation for o,, . Multiplying the Boltzmann Equation, Eq. (1) by
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m-(Vx—ux)z—%-Vyg (Al4)

we obtain

Vi an- %4 a(f - Vi
m~[(VX —uy)2 —TT}mTf)er-((Vx—uy)Z__T].Vk .%:m.((r/x_uy)z_TTJ.St(n.f) ) (A15)

2 Xk

Transferring the terms in front of the derivatives inside the derivative brackets in Eq. (A15), we obtain

af{p[(VX uy) 2]]J+(2P(V u)f)

2 2
+6i[p'(Vk _uk)'[(Vx _ux)z _VTT]fJ"—ai[uk p[(Vx _ux)z _VTTJ/{J'F
K Tk (A16)

0 0
+(2'p'(Vk_uk)'(Vx_ux)'f)'ﬁzx +(p'uk'(Vx_”x)'f)'azx +
k k

2
+£p-(Vk—uk>,fj.6VT {”k'ﬂ.fj %y [(V —u)’ - jSt(f)

(p fj 0VT2+
2 ) o

2 6xk 2 ox Xk

Integrating Eq. (A16) over the entire velocity domain, we obtain

0 2 Vi ol ou, (p oVt
6t[ Ij;[ u,) 2]deJ+[2plj;(Vx x)dej Py ( jdej 6t+

2 2
i[p [V~ ) [(Vx—ux)z—V—Tj-f~d3ﬁ]+i[uk~p-f{(Vx—ux>2—V—TJ-f-d3V}+
8 2 8xk I} 2

[ +[p-uk'[<Vx—ux>~f-d3ﬁj'%+
Vv

ﬁxk
Using Eq. (A12) in the sixth term in the left-hand side of Eq. (A17), substituting 8V /é¢ from Eq. (16), and then

(A17)
P [ Ve —u)-(Vy —ux)-f-d317]-a”x
14 ox

N v (uy-
g [ _uk).f.d%/J._TJ{k_p
14

A R PPl I
. deja = f| Vemu? = | sitp- a7

)
14 Xk

taking into account Egs. (3) and (4) and the general expression for the stress tensor, Eq. (7), we obtain
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w1 L4
o 37T e 3ag 3% o ong
(A18)

APPENDIX B

Let us obtain an equation for M,,,,. Multiplying the Boltzmann Equation, Eq. (1), with the BGK

approximation substituted for the collision term, Eq. (24), by m - (4 (Ve —u)? =2V ) (4 -V, —u y)z -2 VTZ) we

obtain

m~(4-(Vx—ux)z—2-V%)-(4-(Vy—uy)2—2~Vzg)~%+
+m-Vk~(4-(Vx—ux)z—Z-VTg)-(4-(Vy—uy)2—2-VT2)-%:): (B1)

=m-(4~(Vx—“x)z_2'V7g)'(4'(Vy_uy)z_z'VYg)'n'M )

Transferring the terms in front of the derivatives inside the derivatives brackets in Eq. (B1), we obtain

%(4.p.(2.(Vx—ux)2—VTz)-(2~(Vy—uy)2—Vrz)'f)+(P'8'((Vx‘“x)2+(Vy_“y)2_VT2)'f)'aaLf+

+(g.p.(Vx—ux)-(2~(Vy—uy)z—Vrz)'f)'%J’(g'p'(Vy_”y)'(z'(Vx_”x)z—VTZ)'f)’aaL,M

+£(4-p‘(Vk—uk)'(z‘(Vx_”x)z_V%)'(z'(Vy_uy)z_VTz).f)jL

+%(4-p~uk -(2-(Vx—ux)2—VT2)~(2-(Vy—uy)2—VT2)~f)+

, aVT 2 2 2. .97 .
+8',0'(Vk_uk)'|:((Vx_ux) +(Vy—u ] +8-pruy - [((Vx—ux) +(Vy, —uy) —VT)-_f_.a+
+16'p'(Vk_uk)'[(Vx ) (2 v, - } [(V ux).(z.(Vy—uy)Z_VTz)f:ngZ+
+16~p-(Vk—uk)-[(Vy—uy)'(z'(Vx x) —VT ] o, +16- p-uy, - [(V uy).(z.(Vx—ux)z_VTz)f:~Z%+

=L (40w 207 ) (40—, P29 ) (S

24



Following the closure method described in Section IV for calculating moment M,y ., we substitute £g,,, for f

into the left-hand side of Eq. (B3) and f,,; +7- fis - /i into the right-hand side and then integrate the resulting

equation over the entire velocity domain using Mathematica. This yields

64 ou, (64 du,, Vi o (32 5 ) 0 (32 5 j ) ou
— | —- —+|(8-0,,+80,, | —+—| — V7 +—| V7 +(16-V7 -0, |- —=+
(5 q"j ot (5 qy) 5 F(Bowr8oy ) Zhe | T ayls T (16:77 -0, 2

ou b ou b up - Ou
+(16'VT2'Uxx)'_y+(32'VT2'O'xy)' ux+(32'VT2'ny)'_y+ 64 -y | Ouy e 64 Mk 4y R (B4)
oy 0 oo (5 v oy (51 ) oy
64 vE (64 ovE (32 jaVT WE My,
+|—-q, |\ —L+| —=q, || =L+ =q, || —L+(8up -0, +8u, -0, ) ——=——" .
( 5 qx) ox ( 5 T j oy 5 1z oz ( kT k2 ) Oxy, T

Substituting u,; /ot and oV7 /or from the momentum and energy conservation law equations, Egs. (15) and (16),

into Eq. (B4) we obtain

2 N2 o
|32 a0 V7 ) 2o |32 4T | 2p +(2.Vrzj.6qx (32 VTJ %y,
5 P Ox 5 P oy 5 Ox 5 oy

64 ov? (64 v (32 vz L1600 ou
+(_qxj_T+(_qyj_T+(_qzj “sr 2 VT .(Z.ny_gxx). X 4

5 Ox 5 oy 5 oz 3 ox
16 ou, 16 - ou ) ou, Ou, B5
+? VT (2'O'xx_o'yy)'g_?'VT'(O'xx+o'yy)'a_zz+(32'VT'O'xy)' a)jc-i-g — ( )

(32 0xe 32 ) Ogk ({64 i) OOk (64 4y | 9%k |_
3 p 3 p ) Ox 5 p) ox 5 p) Ox;
32 o, 320 ou; My

_E_.ﬂ+_. yy].o-i L ey

3 p 3 p

Taking into account Eq. (100) and dropping all terms of order z> in Eq. (B5) we obtain,

MEV_T( o, .a_p}(ﬁ.VTz).aq_x{zVTz).aq_u
X

r 5 P Ox iR Oy 5 Ox 5 Oy
32 ovi (64 ovi (64 ) aVT 16 du
4| =. . I i [ SRR i i St V — X (B6)
( 5 qzj oz ( 5 ‘Ixj ox 5 1y oy 3 r ( Ty JXX) ox
16 a”y 16 > u 2 ou auy
+? VT (2 O'xx—O'yy)'E—?'VT'(O' +O'yy)' Z+(32‘VT'O'xy)‘ 6‘;(-’—5

Changing the order of indexes (x,y,z) to (x,z,y) in Eq. (B6), we obtain an equation the M,,,. moment, and,

similarly, for the M,,,, moment.
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Let us obtain an equation for M,,. Multiplying the Boltzmann Equation, Eq. (1), with the BGK

approximation of the collision term, Eq. (24) by m-(16 WV —u ) =48 VE - (V, —u,)* +12 VT4) we obtain

m~(16-(Vx—ux)4—48-V72-(Vx—ux)2+12-VT4)-%+

X

+m-Vk-(16-(Vx—ux)4—48-V7?-(Vx—ux)2+12-V;‘)-

=m-(16~(VX—ux)“—48~VT2~(Vx—ux)2+12~V;‘)~n~M .
T

Transferring the terms in front of the derivatives inside the derivatives brackets in Eq. (B7), we obtain

2
Rl
t
Ou, 0

: +—(p.(Vk—uk)-(16~(Vx—ux)4—48~VT2~(Vx—ux)2+12-VT4)-f)+
81 axk

%(p-(l6-(Vx—ux)4—48-ng Vy—u,)>? +12-VT4)-f)+(p-(48-(Vx—ux)2—24-VT2)-f)
#(pe(64-0 —u) =967 -0V ~u))- £ )

0 o2
+§(p~uk (1607 —u)* 48V (07—, +12-VT4)-f)+p-(Vk —uk)-[(48-(Vx—ux)2 —24~V72)-f]ax—T+ (BS)
k k
2
Ou,

ey | (480 ) —24-V%)-f]-%:+p[(n —u) (64 (Ve = =96 VF (Ve £ | 2+

+p~uk-[(64'(Vx—”x)3_96'V7;'(Vx_”x))'f]zzz :p.(16-(Vx—ux)4_48.V73.(Vx—ux)2+12.VT4).fMT—f .

Following the same procedure as for the moment M,,,,, described in the paragraph following after Eq. (B2) we

obtain

M 0 V2 V2 o
_i:(ﬁ.qxl. Uy +(480-xx)a_T+(@qx+48uxO-xx]a_T-’_[gV]gj&-i_

T 5 ot Ot 5 Oox 5 Oox
2 384 j ou, (384 j ou, (384 j ou, (B9)
+196-0,., Vi+—-u, -q, | —+| —-u,-q, |- —+ | —-u,-q, |- +
[ w T 5 ° i ox 5 7 i oy 5 ¢ i Oz
96 vz (96 ov?
+(?qy+48uy0'xxj6—;+(?qz+48b{zO'xxj aZT .

Substituting ou,; /6t and aV7# /¢ from the momentum and energy conservation law equations, Eqs. (15) and (16),

into Eq. (B9) and then dropping all terms of the order r* in the resulting equation, we obtain
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M 288 vE (96 vE (96 v} 192 0
_i:(_.qxj._T+(_.qyj._T+(_.qzj. r (_ Vrj % _
T 5 Ox 5 oy 5 oz 5 Ox

5 (B10)
-q. - Ou
_[ 192 ac '6_p+(32'0'xx'VT2)' 2.%__Y_au2 )

5 P ox ox oz

Changing the order of indexes (x,y,2) to (y,x,z) in Eq. (B10), we obtain an equation the M,,, moment, similarly,

for the M,, moment.
Let us obtain an equation for Ms,,. Multiplying the Boltzmann Equation, Eq. (1) with the BGK

approximation of the collision term, Eq. (24) by m- 8~(2 WV, —u ) =3-VE-(V, —ux))-( —uy) we obtain

g-m-(z.(Vx—uxf—3-V73~(Vx—ux))'(Vy—“y)'%+
of-n)
+8,m,Vk.(2.(Vx_ux)3_3.VT2.(Vx—ux)).(Vy —uy)-akan: (B11)
:8-m~(2-(Vx—ux)3—3'V72‘(Vx_”x))‘(Vy_”y)'”‘fMT_f'
Transferring the terms in front of the derivatives inside the derivatives brackets in Eq. (B11), we obtain
5 oV
5(8./0_(2.%_%)3_3,%2.(Vx_ux)).(Vy—uy).f)+(24.p.(Vx—ux).(Vy—uy).f).a_tTJr
+(g.p.(2-(VX—ux)3—3-V;3~(Vx—ux))-if)'a;l—;+(24'p~(2'(Vx‘”x)z—V%)'(Vy_”y)'f)-ag;+
+%(8-p-(Vk—uk)'(z'(Vx—Mx)3—3'V7g'(Vx‘“x))'(Vy_“y)'f)+
+a%(8 Py (2‘(Vx =3 )+
. 2 (B12)
+24',0'|:(Vk _uk),(Vx_ux).(Vy_uy).f:I —+24 pPruy - |:( y)f:|£+
Ou

+(8'p'(Vk—uk)‘(2'(Vx O =3 VF V- ) ( 2 (Ve =)’ =3-V7 - (7 ux)) f)'éJr
+(24’p.(Vk —uk)(2o(Vx—ux)Z—Vzg)'(Vy_”y)'f)'ZZ: +(24',0‘uk .(2.(Vx—ux)Z_Vzg).(Vy—uy)-f).ZZ: =

:8-p~(2-(Vx—ux)3—3-VT2-(Vx—ux))-(V —uy)~fM_f .

Y T

Following the same procedure as for the moment M,,,,, described in the paragraph after Eq. (B2) we obtain
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vE (96 ou, (96 Ou,, £96 j ovi (96 j ovE (48 2j aq, (48 2j oq
240- —t | —. . x+ . — | —. . | — | — T P
(24-04) ot (5 qyj ot (5 qx] a s )T s ) g, s T ) (5T ) gy

o 2
+(ﬁ-VT2J-ﬂ+(ﬁ-VT2J-&I" (240 0 )6—T+(48-o-xy~VT2)-%+ (B13)
5 ox 5 oy Oxy, Ox
ou, (96 ou, 5\ Ouy, (96 j Ou,  Mjy,
(240, V) 24| Zog, oy | 24240 V) L+ Zg oy | —L =22
( Toor T) Oy (5 1y ukj Oxy, ( O T) ox 5 T ¥ Oxy, T

Substituting u,; /ot and aV7 /ot from the momentum and energy conservation law equations, Eqgs. (15) and (16),

into Eq. (B13) and then dropping all terms of order 72 in the resulting equation we obtain

ou

Maay _ (240’ VT) ay_

ou,, ou, ou, du

(160’ VT)E—(IGO' VT) = (32<r VT) = (24 O VT)—y
48007 | ap (48 g, V7 2, (87) (8, jaVT () (8, ).ﬁ
s 5 e |5 5 Ja s T ) 5 o s o

Changing the order of indexes (x,y,z) to (x,z,») in Eq. (B14), we obtain an equation the M3, moment; for

T

(B14)

(¥,x,z) we obtain an equation the M3, moment, and similarly for the M3,,., M5, , and Ms,;, moments.

Finally, let us obtain an equation for M,,,,.. Multiplying the Boltzmann Equation, Eq. (1) with the BGK

approximation of the collision term, Eq. (24) by m-8-(V, —u,) ~(Vy —u, )(2 -V, —u,)? - VTZ) we obtain

m.s-(Vx—ux)-(Vy—uy)-(z-(Vz—uZ)Z—VTz).¥+
+8-m-Vk-(Vx—ux)-(Vy—uy)-(z-(Vz—uz)z—VTz)-%]’c’“)z (B15)

zg'm'm'g'(Vx_ux)'(Vy_MY)'(Z'(VZ—”z)z—VTg)'n'er_f '
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g(S.p-(Vx —ux)-(Vy —uy).(2-(VZ _”Z)z—VTg)'f)Jr(g'p'(Vx—ux)'(Vy—uy)~f)~ﬁ+
+(8'p'(Vy_”y)'(z'(Vz—”z)z—VTZ)'f)'ag:

+(16'p'(Vx_ux)'(Vy_uy)'(Vz_uz)'f)'ath

+(8:p- Ve —up)- (20 —)? —V%)~f)%y+

+%(8.p-(Vk —up)-(V, _”x)'(Vy —My)'(Z-(VZ ) —Vyg)-f)+

+%(8-p-uk =) (Vy =, (20 = VR ) £ )¢

(800 —)- 0~ (Vy_uy).f).%+(g.p.uk.(Vx—ux).(Vy-uy).f).%+

N ),(Z,WZ_uz)z_VTz).f).gZZ+(8.p.uk.(Vy-uy).(z.(yz-uZ)Z—VTZ).f).ZZ]):

N ).(2.(VZ_uz)z_VTz).f).Zl‘_Z+(g.p.uk.(Vx_ux).(z.(vz—uz)z—VTz).f).Z%+

16+ p- Vi =) Ve =10)- (v =, ) (7 —12)- f) (16 prug V=) (V= ) 07 =) f) P
:8.p.<vx-ux)-(Vy—uy)(z-(VZ—u2>2—V%)-fM—T_f - e

Following the same procedure as for the moment M,,,,, described in the paragraph after Eq. (B2) we obtain

vt (32 j u [32 J ou, o (16 zj ) [16 ] (16 j v (16 j ovf
8.0 L= ._x+ . —_— | —. V- 4+ —] — V- — | — L
(Bon) 550 f 55 %) o s o s TS ) T TS ) Ty

6V2 2 u 2 ou 32 6u 2 Ou
+(8~0'xy-uk)~$+(8~azz-VT)-—x+(16~0'yz~VT)~ Bzx+ 5t 6x +(8 zz'VT)'a_;*' (B17)

ou 32 ou Ou ou ou M2

2\, {24 y . 2 z z 2 z _ xlyzz

+(16 o VT) ~ ( g ukj . +(16 oy V7 ) (160, VT) 5 (16 - VT) = ;

Substituting ou,; /6t and aV7# /¢ from the momentum and energy conservation law equations, Eqgs. (15) and (16),

into Eq. (B17) and then dropping all terms of the order 7 in the resulting equation we obtain

MlxlyZz 16 2) Ouy 16 2 a”y Y 2 U, 2 u,,
; —(? oy VT].a__(? . VTJ.EJF(S .. VT) +(16 o, VT) = +(8 .. VT) —Z+
2
o 02V 6o 12). 0 (16 2 P (32 0 ) O |16 9y VT | Op (B18)
+(16 o VT) . +(16 o, VT) p» +(16-0, VT) 5 +(3 R e e

72 a 2 2
5 P oy 5 Ox 5 oy 5 Ox 5 oy
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Changing the order of indexes (x,y,z) to (x,z,y) in Eq. (B18) we obtain an equation for the M,;.3, moment,

and using (z,y,x) we obtain an equation for the M, .3, moment.
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