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Preface 

PURPOSE 

This report presents the proceedings of the Fifth 
Computer Generated Forces (CGF) and Behavioral 
Representations (BR) Conference. The Conference 
is scheduled from 9 to 11 May in Orlando, Florida 
and is hosted by the Institute for Simulation and 
Training (1ST). 1ST is a component of the Division 
of Sponsored Research at the University of Central 
Florida. 

OBJECTIVES 

The objectives of this conference are to: 
• Provide a forum for information exchange on 

CGF and BR modeling research. 
• Identify gaps in CGF and BR research. 
• Present upcoming research programs and 

opportunities. 
• Determine the CGF and BR community interest 

in technology demonstrations. 

Attendees will have an opportunity to participate in 
discussions of Service User needs, CGF systems 
issues, and technical presentations on the components 
of a CGF. 

BACKGROUND 

Under the sponsorship of the U.S. Army, Simulation, 
Training & Instrumentation Command (STRICOM) 
and Defense Modeling and Simulation Office 
(DMSO), the Institute for Simulation and Training, 
of the University of Central Florida is conducting 
this Fifth Conference on CGF and BR. 

UCF/IST has hosted four previous CGF & BR 
symposia. An indication of the success of these 
interest group meetings is reflected in the steady 
increase in attendance, rising from 84 attendees in 
Oct. 1990 to 128 in May of 1991, to 310 in March of 
1993, to 323 in May of 1994. 

Following the topics outlined in the Second BR 
symposium, 1ST is tasked by STRICOM to host a 
continuing series of CGF and BR conferences. These 
conferences will provide a continuing ability to 
promote and focus research in this important area. 
Most attendees at previous conferences expressed an 
interest in continuing in a dialogue with training 
developers on future requirements in order to justify 
their own internal research and development 
participation and commitment to this emerging 
technology. 

Other conference topics which merit consideration 
for resolution by the community of military, industry, 
and academic researchers in BR include: 
• Interoperability Standards for Behavioral 

Representation in Defense Simulations: 
• Validation, Verification and Accreditation of 

Behavioral Representation models: 
• Functional Specification rationale for Behavioral 

Representation models in Design, Testing and 
Training Simulations; 

• Interoperability issues for classified modeling in 
Behavioral Representation; 

• Behavioral Representation in Virtual Reality. 

GENERAL 

This report is presented in one volume. Wherever 
possible, the papers are arranged in the order of 
presentation. 

A list of attendees will be distributed to all registered 
attendees at the conclusion of the conference. 



Conference Committee 

Conference Chair 

Daniel E. Mullally, Jr. 

Program Committee 

Douglas A. Reece 

Clark R. Kan- 

Robert W. Franceschini 

Production Assistance 

Doug Barrett 

Valerie Truhan 

Vicki McGurk 

Local Arrangements and 
Registration 

Vince Amico 

Linda Toth 

Karen Gauvin 

Deodith Mapas 

ii 



Table of Contents 

Preface   i 

Session 2a: Project Status Reports 
ModSAF Development Status   3   ^ 
Anthony J. Courtemanche, Andy Ceranowicz 
Loral ADS 
Cambridge, Massachusetts 

The Distributed Interactive C3I Effectiveness (DICE) Simulation Project: 
An Overview    15 
Mike Davies, Carsten Gabrisch 
Information Technology Division, DSTO 
Salisbury, S. Australia 

Integrated Eagle/BDS-D: A Status Report   21 
Robert W. Franceschini 
UCF/IST 
Orlando, Florida 

Simulated Intelligent Forces for Air: The SOAR/IFOR Project 1995   27 
John E. Laird, Randolph M. Jones, Frank Koss, Paul E. Nielsen, Michael van Lent, 
Robert E. Wray, in 
Artificial Intelligence Lab, University of Michigan 
Ann Arbor, Michigan 
W. Lewis Johnson, Paul S. Rosenbloom, Karl Schwamb, Milind Tambe 
Information Sciences Institute, USC 
Marina del Rey, California 
Jill F. Lehman, Robert Rubinoff, Julie Van Dyke 
Computer Science Department, Carnegie Mellon University 
Pittsburgh, Pennsylvania 

Session 2b: Reasoning I 
Building Intelligent Pilots for Simulated Rotary Wing Aircraft    39 
Milind Tambe, Karl Schwamb, Paul S. Rosenbloom 
ISI, USC 
Marina del Rey, California 

in 



A Multiple Agent Hybrid Control Architecture for Automated Forces: 
Design & Software Implementation    45 
Xiaolin Ge, John James, Anil Nerode 
Mathematical Sciences Institute, Cornell University 
Ithaca, New York 

^   Context-based Representation of Intelligent Behavior in Simulated 
Opponents   53 
Avelino J. Gonzalez 
Electrical & Computer Engineering Department, UCF 
Orlando, Florida 
Robert Ahlers 
Naval Air Warfare Center, Training Systems Division 
Orlando, Florida 

Automated Agents That Learn and Explain Their Own Actions: 
A Progress Report   63 
Sakir Kocabas, Ercan Oztemal, Mahmut Uldudag, Nazim Koc 
Marmara Research Center 
Gebze, Turkey 

Session 3a: Constructive + Virtual Simulation 
*fc   Integration of Constructive, Virtual, Live, and Engineering Simulations in 

theJPSDCLCGF   71 
Robert B. Calder, Jeffrey C. Peacock, Jr. 
SAIC 
Waltham, Massachusetts 
James Panagos 
TASC 
Reading, Massachusetts 
Thomas E. Johnson 
Raytheon Company 
Tewksbury, Massachusetts 

Implementation of a Dynamic Aggregation/Deaggregation Process in the 
JPSDCLCGF   83 
Robert B. Calder, Jeffrey C. Peacock, Ben P. Wise 
SAIC 
Waltham, Massachusetts 
Thomas Stanzione, Forrest Chamberlain, James Panagos 
TASC 
Reading, Massachusetts 

IV 



Survey of Constructive + Virtual Linkages    93 
Matthew K. Kraus, David R. Stober, William F. Foss, Robert W. Franceschini, Mikel D. Petty 
UCF/IST 
Orlando, Florida 

Disaggregation Overload and Spreading Disaggregation in Constructive 
+ Virtual Linkages    103 
Mikel D. Petty, Robert W. Franceschini 
UCF/IST 
Orlando, Florida 

Session 3b: Reasoning II 
(   )£- Natural Language Processing for IFORs: Comprehension and Generation 

in the Air Combat Domain    115 
Jill Fain Lehman, Julie Van Dyke, Robert Rubinoff 
Carnegie Mellon University 
Pittsburgh, Pennsylvania 

Agent Tracking in Complex Multi-Agent Environments: New Results  125 
Milind Tambe, Paul S. Rosenbloom 
ISI, use 
Marina del Rey, California 

$£ A Methodology and Tool for Constructing Adaptive Command Agents for 
Computer Generated Forces  135 
Michael R. Hieb, Gheorge Tecuci, J. Mark Pullen 
Department of Computer Science, George Mason University 
Fairfax, Virginia 
Andrew Ceranowicz 
Loral ADS 
Cambridge, Massachusetts 
David Hille 
ANSER 
Arlington, VA 

Session 4a: Command & Control Modeling I 
* An Automated CBS OPFOR   149 

Ian Page 
Defence Research Agency 
Kent, England 
Gary Kendall 
Logica UK Ltd. 
London, England 



Automated Mission Planning in ModSAF    159 
Clark R. Karr, Sumeet Rajput, Jaime E. Cisneros, Hai-Lin Nee 
UCF/IST 
Orlando, Florida 

Multi-Application Command Agents    169 
Helen Lankester 
Software Engineering Centre, Defence Research Agency 
Kent, England 

Session 4b: W&A 
Measuring Entity and Group Behaviors of Semi-Automated Forces    181 
Larry L. Meliza, Eric A. Vaden 
U.S. Army Research Institute, Simulator Systems Research Unit 
Orlando, Florida 

The Use of Automated Regression and VVA Testing in ModSAF    193 
James Perneski, Paul Monday 
Loral ADS 
Cambridge, Massachusetts 

Verification and Validation of Modular Semi-Automated Forces (ModSAF) 
in Support of A2ATD Experiment 1  197 
John G. Thomas 
U.S. Army Materiel Systems Analysis Activity 
Aberdeen Proving Ground, Maryland 

Session 5a: Command & Control Modeling II 
Command Entity Cognitive Behaviors for SAF and CGF    203 
Howard Mall, Kent Bimson, Jenifer McCormack, Dirk Ourston 
SAIC 
Orlando, Florida 

ifc Intelligent Computer Generated Forces for Command and Control  211 
Paul E. Nielsen 
Department of Electrical Engineering and Computer Science, University of Michigan 
Ann Arbor, Michigan 

Autonomous Agent Interactions in ModSAF    219 
David R. Pratt, Gary McAndrews, Robert McGhee 
Department of Computer Science - Naval Postgraduate School 
Monterey, California 

VI 



Session 5b: Route Planning I 
Route Planning in CCTT     233 
Chuck Campbell, Richard Hull, Eric Root, Lance Jackson 
SAIC 
Orlando, Florida 

Dynamic Obstacle Avoidance for Computer Generated Forces   245 
Clark R. Karr, Michael A. Craft, Jaime E. Cisneros 
UCF/IST 
Orlando, Florida 

Path Planning With Terrain Utilization in ModSAF  255 
Bruce Hoff, Michael D. Howard, David Y. Tseng 
Information Sciences Laboratory, Hughes Research Laboratories 
Malibu, California 

Session 6a: Implementation 
Representation of Missiles in ModSAF   267 
Anthony J. Courtemanche, Scott E. Hamilton, Paul Monday 
Loral ADS 
Cambridge, Massachusetts 

From CIS to Software   275 
Dirk Ourston, David Blanchard, Edward Chandler, Elsie Loh 
SAIC 
Orlando, Florida 

Implementation of a Tactical Order Generator for Computer Generated Forces    287 
David R. Pratt, Howard Mohn, Robert McGhee 
Department of Computer Science - Naval Postgraduate School 
Monterey, California 

Session 6b: Route Planning I 
Unit Route Planning 295 
Clark R. Karr, Sumeet Rajput 
UCF/IST 
Orlando, Florida 

Concealed Routes in ModSAF    305 
Michael J. Longtin, Dalila Megherbi 
Loral ADS 
Cambridge, Massachusetts 

vxx 



Terrain Avoidance for CGF Helicopters    315 
Stephen A. Schricker, Robert W. Franceschini, Mikel D. Petty, Tracy R. Tolley 
UCF/IST 
Orlando, Florida 

Session 7a: Non-Military Uses of CGF 
Bi-Directional Technology Transfer Between Government Applications of 
Computer Generated Agents and Commercial Entertainment     329 
Rich Warren, Mike Crowe, Don Shillcutt 
GreyStone Technology, Inc. 
San Diego, California 

^   CGF Opportunities in Plowshares    337 
Mikel Petty, Mary P. Slepow 
UCF/IST 
Orlando, Florida 
Paul D. West 
United States Military Academy 
West Point, New York 

Planning for Reactive Behaviors in Hide and Seek    345 
Michael B. Moore, Christopher Geib, Barry D. Reich 
Department of Computer and Information Science, University of Pennsylvania 
Philadelphia, Pennsylvania 

Session 7b: Terrain Modeling I 
Abstracting Terrain Data Through Semantic Terrain Transformations    355 
David Hille 
ANSER 
Arlington, Virginia 
Michael R. Hieb, Gheorge Tecuci, J. Mark Pullen 
Department of Computer Science, George Mason University 
Fairfax, Virginia 

Terrain Reasoning by Intelligent Player   367 
Gregory A. Schaper, Ashok Pandari 
Department of Computer Science, East Tennessee State University 
Johnson City, Tennessee 

Recent Developments in ModSAF Terrain Representation    375 
Joshua E. Smith 
Loral ADS 
Barre, Massachusetts 

V1X1 



Session 8a: Applications of CGF 
A Method to Quantify the Application Value of Intelligent Decision 
Support Systems   385 
Theodore Metzler, Joseph Kelly 
LB&M Associates Inc. 
Lawton, Oklahoma 

Supporting Materiel R&D Using Linked Engineering, Constructive, and 
Virtual Modeling and Simulation Tools   391 
John A. O'Keefe, IV 
U.S. Army, Natick RD&E Center 
Natick, Massachusetts 
Robert Mclntyre 
Simulation Technologies, Inc. 
Dayton, Ohio 

Session 8b: Terrain Modeling II 
Integrated Computer Generated Forces Terrain Database   399 
Thomas Stanzione, Forrest Chamberlain 
TASC 
Reading, Massachusetts 
Dr. Alan Evans, Cedric Buettner 
SAIC 
Waltham, Massachusetts 

Terrain Capabilities in CCTT   411 
Jon Watkins 
SAIC 
Orlando, Florida 

Evening Plenary Session 
ARPA CFOR Briefing 
Implementation of Command Forces (CFOR) Simulation    423 
Mamie R. Salisbury, Lashon B. Booker, David W. Seidel, Judith S. Dahmann 
The MITRE Corporation 
McLean, Virginia 

Session 9a: Experimental Results 
Experimental Conversion of the 1ST Computer Generated Forces 
Simulator from C to Ada   433 
Michael A. Craft, Mikel D. Petty 
UCF/IST 
Orlando, Florida 

IX 



Comparison of A* and Iterative Deepening A* in Graph Search     443 
Clark R. Karr, Sumeet Rajput, Larry J. Breneman 
UCF/IST 
Orlando, Florida 

Intervisibility Heuristics for Computer Generated Forces  451 
Sumeet Rajput, Clark R. Karr, Mikel D. Petty, Michael A. Craft 
UCF/IST 
Orlando, Florida 

Benchmarking and Optimization of the 1ST CGF Test bed   465 
Stephen A. Schricker, Tracy R. Tolley, Robert W. Franceschini 
UCF/IST 
Orlando, Florida 

Session 9b: Dismounted Infantry 
Individual Combatant Development in ModSAF   479 
Michael D. Howard, B. Hoff, D.Y. Tseng 
Hughes Research Laboratories 
Malibu, California 

Mobility Behavior in Dismounted Forces   487 
George R. Mastroianni 
U.S. Army Natick RDEC 
Natick, Massachusetts 
Reed W. Hoyt 
USARIEM 
Natick, Massachusetts 
Mark J. Buller 
GEO-CENTERS, Inc. 
Natick, Massachusetts 

A Behavioral Approach to Fidelity Requirements for Simulation of 
Dismounted Combatants    495 
Robert T. Mclntyre, III 
Simulation Technology Inc. 
Raleigh, North Carolina 
Victor E. Middleton 
Simulation Technologies, Inc. 
Dayton, Ohio 



^ Simulation of Suppression for the Dismounted Combatant    501 
Victor E. Middleton 
Simulation Technologies Inc. 
Dayton, Ohio 
W. M. Christenson 
Institute for Defense Analyses 
Alexandria, Virginia 
John D'Errico 
Dismounted Battlespace Battle Lab 
Ft. Benning, Georgia 

Session 10a: Architecture 
Representing Role-Based Agents Using Coloured Petri Nets    513 
Mike Davies, Fred D. J. Bowden, John M. Dunn 
Information Technology Division, DSTO 
Salisbury, S. Australia 

Realistic Doctrinal Behaviors in CGF Through Plurality  521 
Denis Gagne 
IntelAgent R&D 
Victoriaville, Quebec, Canada 

A Comparison Study of Behavioral Representation Alternatives  529 
Se-hung Kwak 
Loral ADS 
Cambridge, Massachusetts 

Session 10b: General Interest 
X The OPFOR Model in CCTT and Beyond: Applications in DIS   543 

Penny L. Mellies 
TRADOC DCSINT Threat Support Division 
Ft. Leavenworth, Kansas 

^   Report on the State of Computer Generated Forces 1994   549 
H. Kent Pickett 
TRADOC Analysis Center 
Ft. Leavenworth, Kansas 
Mikel D. Petty 
IST/UCF 
Orlando, Florida 

Asynchronous Rule-Based Systems in CGF  559 
Craig Williams, Paul F. Reynolds, Jr. 
Department of Computer Science, University of Virginia 
Charlottesville, Virginia 

Author's List    567 

XI 





Session 2a: Project Status Reports 

Courtemanche, Loral ADS 
Davies, Information Technology Division, DSTO 

Franceschini, UCF/IST 
Laird, University of Michigan 





ModSAF Development Status 

Anthony J. Courtemanche and Andy Ceranowicz 
Loral Advanced Distributed Simulation 

50 Moulton St., Cambridge, MA 02138 
ajc@camb-lads.loral.com 

aceran@camb-lads.loral.com 

1.   Abstract 

This paper provides an overview of capabilities 
recently added to the ModSAF system since version 
1.0, as well as the new software development process 
that has been successfully used to manage the addition 
of 300 thousand lines of source code to the ModSAF 
baseline. 

2.   ModSAF   Overview 

ModSAF, or Modular Semi-Automated Forces, is the 
successor to the SIMNET and ODIN Semi-Automated 
Forces systems. It provides a modular architecture 
that DIS and CGF researchers can build upon and 
extend. The development of the ModSAF architecture 
was started in the spring of 1992 under ARPA/ASTO 
sponsorship with documentation and fielding 
sponsored by STRICOM. This effort resulted in the 
release of ModSAF 1.0 in December 1993. 
Subsequent development of ModSAF was jointly 
funded by STRICOM and ARPA/ASTO, and releases 
of ModSAF, starting with ModSAF 1.2 in July 
1994, are continuing with a new release every 3 
months. The latest version, ModSAF 1.4, was 
released in January 1995, and it contains over one-half 
million lines of software written in C. 

ModSAF is intended for use as an application to 
support DIS studies, as a testbed to explore new CGF 
approaches, and as a source of components for other 
systems. Current ModSAF development is being 
driven by the requirements of the STRICOM and 
ARPA programs that ModSAF is supporting. Major 
programs driving ModSAF requirements include 
A2ATD (Anti-Armor Advanced Technology 
Demonstration) and STOW (Synthetic Theater Of 
War). A2ATD is intended to develop and demonstrate 
a verified, validated, and accredited (VV&A) DIS 
testbed capability to support combat and material 
development studies. This has resulted in the VV&A 
of ModSAF for A2ATD exercises. STOW has the 
objective of demonstrating the use of DIS for large 
scale exercises distributed over many sites. In this 
effort ModSAF is being linked to BBS, a program 
that models higher level command and control. 

3.   New   Capabilities 

There have been three releases since ModSAF 1.0 
(ModSAF 1.2, ModSAF 1.3, and ModSAF 1.4). 
ModSAF 1.5 is scheduled for release in April, 1995. 
The following sections describe many of new 
capabilities that have been added during this effort. 

3.1   Platoon  Behaviors 

ModSAF supports platoons of friendly and enemy 
Tank, Mechanized Infantry, Air Defense, and Combat 
Service Support units. The following sections list 
some of the new behaviors, implemented as task 
frames (Calder et. al. 1993) that are available to these 
platoons: 

3.1.1 Platoon Withdraw 
The Withdraw task frame moves a unit away from the 
enemy, and tells the unit to perform the Hasty 
Occupy-Position task until it receives another order. 
Armored vehicles withdraw in reverse if the enemy is 
seen; otherwise, they move in normal forward gear. 
If the enemy is no longer visible, an armored vehicle 
turns to complete the withdrawal in forward gear. 
Once it transitions from reverse to forward, it remains 
in forward even if the enemy reappears. Unarmored 
vehicles use forward gear to reach the withdraw point. 

3.1.2 Platoon Minefield Withdraw 
The Withdraw from Minefield task frame can be 
triggered automatically when a platoon discovers it 
has entered a minefield, as indicated by the detonation 
of mines. When executing this behavior, vehicles 
backtrack for a given distance and then the unit 
performs a normal withdraw. 

3.1.3 Platoon Delay 
The Delay task frame lets a platoon perform a delay 
maneuver. When assigning this task frame, the user 
enters at least one of four alternate battle positions. 
The Delay automatically ends when the unit reaches 
the last battle position. Delay divides the unit into 
two functional groups which perform Withdraws to 
the alternate battle positions in a non bounding 
fashion. For example, one functional group 
withdraws to the battle position while the second 
functional group stays to fire at the enemy. When 
the first group completes the withdraw, the second 



group begins to withdraw to the same battle position 
occupied by the first group. Once the second group is 
finished occupying the battle position, the first group 
withdraws to the next battle position, and so on. 

3.1.4 Platoon Breach 
The Breach task frame divides a unit into two 
functional groups: an occupy group and a travel 
group. The occupy group performs an occupy 
position while the travel group moves through the 
area. When the travel group stops, they occupy 
position. The previous occupy group then moves 
along the same route. Mines explode if encountered, 
but do no damage to the vehicles during the breach. 
When a vehicle breaches a minefield, it can drop 
objects behind itself (called breach lane markers) to 
mark its path. This lets other vehicles see the safe 
route. Under the direction of the US Army 
Engineering School, this simplified breaching 
behavior is being enhanced with improved models of 
minefield effectiveness and countermine effectiveness, 
including the modeling of the Full Width Mine Plow 
(FWMP). 

3.1.5 Platoon React To Indirect Fire and Air Attack 
The React To Indirect Fire and React To Air Attack 
task frames are reactions that can be triggered 
automatically when a platoon discovers it is under 
attack from indirect fire or aircraft. React To Indirect 
Fire lets a moving ground unit respond to an artillery 
burst in the immediate area by accelerating. After a 
period of no indirect fire, the unit slows to its 
original pace. The React-Air task monitors enemy 
aircraft activity and triggers reactive events when a 
unit detects enemy aircraft or receives fire from them. 
A ground unit scatters when it sees or receives an 
impact packet from aircraft unless it is in a defensive 
battle position. 

3.1.6 Platoon Attack Bv Fire 
The Attack by Fire task frame tells a unit to advance 
and shoot at the enemy using alternating fire. A call 
for indirect fire is reported by radio at the beginning 
of the attack. A spot report is sent when the attack is 
over. 

3.1.7 Platoon Overwatch Movement 
The Overwatch Movement task frame divides the 
platoon into two functional groups; only one group 
moves at a time. Whenever a group is traveling 
along the route, the other group (referred to as the 
support group) is executing an Hasty Occupy 
Position task, monitoring the traveling section and 
watching for enemy vehicles. This method of travel is 
useful during reconnaissance missions. The 
Traveling Overwatch task frame also divides the unit 
into two functional groups; a traveling group that 

moves out in front and a support group that follows 
behind. 

3.1.8 Platoon Assemble 
The Assemble task frame instructs a moving platoon 
to form a coil formation and then stop moving. 

3.1.9 Platoon Hastv Occupy Battle Position 
The Hasty Occupy Battle Position task frame is 
perhaps the most complex ground task frame. When 
the user assigns this frame to a platoon, he specifies a 
battle position and an engagement area, which may be 
a point, line or area. Based on the battle position and 
the number of subordinates, ModSAF calculates both 
the number of vehicles per segment (the battle 
position consists of one or more line segments) and 
the battle areas (areas where each vehicle searches for 
cover positions). ModSAF assigns the unit 
subordinates positions from one end of the battle 
position to the other in an order that prevents vehicle 
crossover when the vehicles travel to their positions. 
When the unit arrives at the battle area, ModSAF 
places the vehicles in covered (hull defilade) firing 
positions along the battle position line. ModSAF 
considers a vehicle's limits for angles of elevation and 
depression when selecting a good cover position. For 
example, a vehicle is not placed at a location where 
underlying terrain prevents the gun from being 
physically pointed at the enemy. If that location is 
behind a tree line or building and no cover location is 
found, the vehicle moves to a concealed (partially 
hidden) location behind the tree line or building. The 
vehicles also move to areas where they can maintain 
visibility to the engagement area. Target Reference 
Points (TRPs) can be supplied by the user or 
automatically computed. Enemy vehicles detected 
within the sector of fire determined by the left and 
right TRPs are considered first priority targets. 

Units executing this task frame may optionally 
execute movement to an alternating fire position. 
When a vehicle detects that it is receiving accurate 
enemy fire, it may move from its primary firing 
position to an alternate hull-defilade firing position. 
When it does this, it first backs up to a fully hidden 
position to mask the new location that it is about to 
take up. In addition, vehicles have enemy awareness 
during the execution of this task frame. As enemies 
move in and out of the engagement area, vehicles will 
recalculate the location of their covered primary and 
alternate firing positions. 

3.2  Company  Behaviors 

ModSAF supports companies of friendly and enemy 
Tank, and Mechanized Infantry units. The following 
sections list some of the behaviors of companies. 
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3.2.1 Company March and Roadmarch 
March in formation and Road March task frames can 
be assigned to companies. These behaviors 
decompose the company order into platoon march 
orders for the subordinate platoons. During 
movement, the extra vehicles (such as the company 
commander, XO, and others) are functionally 
organized into the platoons that stay in formation. 
At the end of the route, the extra vehicles (the leaders) 
revert to the task organization that the unit started 
with. 

3.2.2 Company Attack 
In the Company Attack task frame, the company 
advances in line formation to the objective with fire 
permission set to "free". When the company reaches 
the attack objective its vehicles occupy a battle 
position at that location facing the direction of the 
attack. The company can also stop before reaching 
the objective and occupy a position if the number of 
casualties is too high. This task frame is similar to 
the Assault task frame for ground platoons. 

3.2.3 Company Withdraw 
When assigning the Company Withdraw task frame 
to a ground company, the operator specifies to which 
point the company can withdraw. ModSAF uses this 
point to generate final withdraw points for each 
platoon. Vehicles in the company that are not part of 
a platoon are functionally organized to a platoon. 
The platoons withdraw one at a time. When the 
withdrawing platoon occupies position, the next 
platoon withdraws, and so on, until the platoons 
reach their final points. 

3.2.4 Company Assembly Area 
The Company Assembly Area task frame tells a 
company to advance to, and then occupy, an assembly 
area. When the operator assigns this task frame, he 
specifies a position that a unit can assemble around. 
The assembly area is a circle whose center is the 
point supplied. Its default radius is 700 meters. The 
company uses platoon battle positions which provide 
360 degree coverage. ModSAF creates TRPs along 
with the battle positions. 

3.2.5 Company Hasty Occupy Battle Position 
To use the Company Hasty Occupy Position task 
frame, the operator supplies a battle position and 
three TRPs: a left TRP, right TRP, and engagement 
area TRP. ModSAF divides the battle position 
among the platoons in the company. ModSAF then 
creates left and right TRPs for each platoon. The 
company commander and executive officer are 
functionally organized into one platoon each. Each 
platoon moves to its battle position and receives its 
calculated left and right TRP with the unmodified 
engagement area TRP. 

3.3 Situation Awareness and Reports 

All ModSAF units maintain situation awareness. 
Individual vehicles apply the NVL acquisition model 
(Courtemanche and Monday 1994) to detect enemy 
vehicles. The detections of individual vehicles in a 
unit are fused together by platoon and company 
behaviors. Platoon leaders or company commanders 
use this information to construct a situation 
awareness overlay which contains the locations of 
observed enemy fused into platoon- or company-sized 
clusters. The operator has access to this graphical 
overlay maintained by each unit under his control and 
can examine the situational awareness of that unit. 

The clusters of fused enemy observations drive the 
sending of reports to the operator. The types of 
reports supported include contact reports, spot reports, 
and shell reports. These reports are available in a 
message log at the operator's workstation. In 
addition, these reports can also be sent as digital Inter- 
Vehicular Information System (IVIS) messages which 
can be received by the occupants of manned 
simulators. 

3.4 Individual  Combatants 

ModSAF now supports teams of individual 
combatants. Two-man Stinger teams, which are 
represented as two separate DIS entities, can engage 
aircraft with the Stinger missile, while two-man 
Javelin and Dragon teams can engage tanks with anti- 
tank missiles. 

3.5 Fire  Support 

ModSAF supports batteries of enemy and friendly 
mortar, howitzer, and MLRS units which are capable 
of delivering indirect fire. Command and control 
between Fire Direction Centers (FDCs) and the fire 
support units are modeled via the exchange of ASCII 
encoded messages transmitted via DIS Signal PDUs. 
FASCAM delivered minefields are also supported. 
Counter Battery Radar can detect enemy artillery and 
generate fire orders to engage the inferred location of 
the enemy artillery units. 

3.6 Air  Defense 

In addition to the Stinger teams, platoon-sized units 
provide air defense in ModSAF. Threat vehicles such 
as ZSU 23/4, SA-9, and 2S6 are supported, as well a 
friendly Avenger unit which is based on HMMWV 
trucks equipped with Stinger missiles. A Ground 
Based Sensor (GBS) can provide early warning of 
threat aircraft to the Avenger unit. 



3.7 Combat Service Support 

Platoons of combat service support vehicles give 
ModSAF the ability to execute towing, resupply, and 
repair behaviors. Towing is accomplished via the 
experimental entity handover protocol proposed for 
DIS 2.1. Resupply and repair is accomplished via the 
DIS 2.0.3 resupply and repair PDUs. Both service- 
station and tailgate resupply is supported, as well as 
the cross leveling of supplies between vehicles. 

3.8 FWA 

ModSAF supports flights of A10, F16, and SU-25. 
ground attack aircraft. These aircraft can fly in 
formation using a contour flight mode and can 
execute attacks on ground targets with missiles, guns, 
and bombs. The ModSAF operator can specify 
various types of attack geometries, deliveries and 
entries. 

3.9 RWA 

ModSAF supports flights of enemy and friendly 
rotary wing aircraft, including AH-64D Apache and 
RAH-66 Commanche. Remote laser designation of 
targets for the Hellfire missile is supported. Laser 
designation makes use of the DIS Laser PDU. RWA 
units can follow a route or orbit using low level, 
contour, or nap of earth (NOE) movement techniques. 
RWA units can Assemble, as well as execute a Hasty 
Occupy Battle Position task frame. RWA units can 
perform attacks using hover fire and running fire 
techniques. 

3.10 Specialized   Systems 

Many specialized weapon systems are supported in 
ModSAF. The following sections describe some of 
these systems and their behaviors. 

3.10.1 LOSAT 
To ensure compatibility for the A2ATD exercises, the 
Line of Sight Anti-Tank (LOSAT) fire unit modeled 
in ModSAF is representative of the "AGS quick fix" 
LOSAT DIS Crew Station Simulator (DISCSS). 
This LOSAT fire unit consists of a hybrid chassis 
with Armored Gun System (AGS) dimensions with 
M2 mobility and vulnerability. AGS-LOSAT sensor 
configurations, AGS-LOSAT launcher/weapons 
configurations and AGS-LOSAT fire controls are 
supported. The sensors represented include the 
primary sensor (FLIR & TV), IR secondary 
observation sensor, and the driver and commander's 
vision blocks. The weapon's cage assembly consists 
of two turret mounted missile pods of six missiles 
each (modeled as one cage of 12) and a coaxial 
mounted 7.62mm machine-gun for local security 
purposes. AGS-LOSAT fire controls are capable of 

autotracking and engaging in groups of up to three 
targets. The missile is representative of the Kinetic 
Energy (KE) missile which is utilized in the AGS- 
LOSAT variant. 

The basic units provided are the section and platoon. 
Each section consists of two LOSATs. In addition to 
the basic units, a LOSAT augmented M2 company is 
provided for experimentation. This unit consists of a 
normal M2 reinforced company which has been 
augmented by an appropriate slice of "Echo 
Company" ("Echo Company" is the anti-armor 
company in a mechanized infantry battalion). In this 
case, two sections of LOSAT have been aggregated 
into the M2 company so that they will maneuver as a 
unit together. Movement and tactics are 
accomplished by the taskframes which were 
previously available to ground units in ModSAF. 

3.10.2 NLOS 
ModSAF supports an NLOS vehicle which consists 
of a HMMWV with a NLOS missile launcher. The 
NLOS vehicle can receive contact reports from ground 
forces or a UAV to engage non-line-of-sight targets. 

3.10-3 UAV 
ModSAF supports a simplified unmanned air vehicle 
(UAV) which can observe the battlefield and provide 
targets to systems such as NLOS. 

3.10.4 STAFF 
The Smart Target Activated Fire and Forget (STAFF) 
munition is a 120mm main gun round being 
developed for the Ml Al and M1A2 man battle tanks. 
STAFF is fired from the main gun at the intended 
target. At some distance before the round reaches the 
target, a radar in the front of the round begins 
scanning the forward area. When a target enters the 
radar field of view, the round tracks the target and fires 
a submunition which is the primary kill mechanism 
of the round. The seeker and submunition provide the 
capability for STAFF to hit the target when the body 
of the main round misses the target. ModSAF 
implements this munition via an Army Materiel 
Systems Analysis Activity (AMSAA) approved 
methodology. 

3.11  Manned  Simulator  Interoperability 

In order to participate in DIS exercises, it is critical 
that ModSAF interoperate with manned simulators. 
The following are examples of new behaviors 
developed to support manned simulator 
interoperability. 

3.11.1 Follow Simulator 
The Follow Simulator task frame allows a platoon to 
follow a simulator. The simulator and platoon are in 



formation together. If the simulator deactivates or is 
incapable of movement, the platoon will occupy a 
position. If the simulator reactivates, and if it is 
close enough to the platoon, the platoon will rejoin 
it, otherwise the platoon will continue to occupy a 
position. If the platoon is tasked away and then the 
Follow Simulator task frame is resumed, if the 
simulator is close enough to the platoon the platoon 
will rejoin it, otherwise the platoon will occupy a 
position. Cue fire allows vehicles that are 
performing a follow vehicle to fire when that vehicle 
fires. 

3.11.2 Digital Communications 
A number of efforts are underway to enhance 
ModSAF for use in experiments exploring 
digitization of the battlefield. As stated in section, 
3.3, ModSAF units can supply digital reports to 
manned simulators. In addition, messages are being 
defined to allow digital communications between 
manned AH-64D Apache Longbow simulators, RAH- 
66 Commanche simulators, and ModSAF RWA 
units. These messages include target coordination. 

3.12 Mine/Countermine 

The Improved Mine/Countermine Delivery Order is 
extending ModSAF with improved models of 
minefield effectiveness and counterobstacle 
effectiveness, including minefield breaching and 
bridge laying. This work has included the 
development of the Full Width Mine Plow (FWMP) 
and Armored Vehicle Launched Bridge (AVLB). The 
ability to generate dynamic ditches in the terrain is 
being explored, and the AVLB can be used to allow 
armored units to overcome these obstacles. 

3.13 Phenomenology 

The ARPA/TEC sponsored Project Phenomenology 
and the Dynamic Virtual Worlds projects have 
extended ModSAF with environmental effects such as 
battlefield smoke, temperature, illumination, and rain 
(Schaffer 1994). This work has included the addition 
of tactical behaviors such as launching smoke 
grenades during a platoon withdraw task frame. 
Additional work is proceeding on improving these 
environmental models and adding signal flares and 
vehicular dust. 

3.14 User Interface  &  Missions 

ModSAF has maintained a unified user interface for 
operator control (Ceranowicz et. al. 1994). Operators 
are able to construct and monitor missions via an 
execution matrix paradigm. Immediate commands 
can be rapidly issued via an Immediate Intervention 
interface. 

4.   Software   Development  Process 

The capabilities that have been added since ModSAF 
version 1.0 have required an unprecedented amount of 
development parallelism while maintaining system 
integrity and software quality. The following 
sections describe the software development process 
that has succeeded in managing this effort. 

4.1 Distributed  Development Team 

Figure 1 shows the locations of the development 
teams that have contributed to the ModSAF baseline 
since ModSAF version 1.0, the sites involved with 
VV&A (AMSAA and TRAC), as well as the 
sponsoring organizations (ARPA and STRICOM). 
The use of a number of subcontractors has been 
motivated by a desire to leverage existing ModSAF 
and/or subject matter expertise, as well as 
requirements to accelerate development schedule to 
meet experiment requirements. 

In addition to development that is directly integrated 
into the ModSAF baseline, many ModSAF users are 
extending ModSAF under independent efforts. 

4.2 Frozen Interfaces  & ECOs 

The management of such a highly distributed software 
development team requires a controlled software 
engineering process. With so many different teams 
that are developing and modifying software, there is a 
tremendous risk of software chaos. If one team were 
to modify software that another team depends on, 
there is no guarantee that the combined efforts of each 
team will be compatible. 

It was decided early on that the only approach to solve 
this problem would be to "freeze" all existing public 
ModSAF software interfaces. The ModSAF coding 
standards make clear distinction between which 
interfaces are public and which are private. The 
ModSAF software is divided into a large number of 
layered software libraries. Each library advertises its 
public interfaces via header files and on-line 
documentation. These interfaces include data 
structures, global variables, argument prototypes for 
public functions, and return values of public 
functions. These interfaces can be used by other 
libraries that are layered above this library. It is these 
public interfaces which are said to be frozen in 
ModSAF. They are unable to be changed without an 
orderly process, and each software development team 
can depend on these interfaces as they write new 
software capabilities. 
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Figure 1: ModSAF Development Sites 

Of course, the existing interfaces in ModSAF were far 
from being perfect when the freeze went into effect. 
For this reason, an Engineering Change Order (ECO) 
process was established to control the required 
changes to these interfaces. Each software developer 
that wishes to change a public software interface must 
publish the desired changes in advance via a 
formalized ECO request form. This form documents 
the nature of the change, a justification for making 
the change, what existing libraries might be effected 
by the change, and when the change is proposed to be 
integrated into the ModSAF baseline. The ModSAF 
Project Engineer is responsible for collecting, 
reviewing, and coordinating all ECOs between the 
software development teams. ECOs must be 
approved and distributed to all development teams 
prior to any modification of a public interface being 
integrated into the ModSAF baseline. 

It is typical for design discussions between interested 
parties to precede the request and approval of ECOs. 
Software designs are published by developers and 
distributed to all software development teams via 
electronic mail. This allows all developers to 
comment on designs prior to implementation. ECO 
requests are mailed electronically to the Project 
Engineer, and are mailed electronically to all 
developers once approved. 

A simple database of all ECOs is maintained by the 
Project Engineer, and the status of each ECO 
(pending approval, approved, integrated) is carefully 
tracked. A listing of all ECOs since the last release 
is published in the Version Description Document 
(VDD) that accompanies each software release. 



4.3  Formal  Integrations 

In order to manage the rapid development between 
multiple software development teams working in 
parallel, an integration facility has been set up to act 
as the developmental configuration management site. 
The integration facility is co-located with the 
majority of ModSAF software development personnel 
in the Loral ADS headquarters in Cambridge, MA. 
Over the course of the last year, the specific hardware 
makeup of the integration facility has varied, but it 
currently includes a GT100 based Stealth, 3 SGI 
workstations, 1 Sun Sparc workstation, and 1 Mips 
workstation connected via a private Ethernet. One 
SGI workstation acts as the primary configuration 
management host, and runs the Concurrent Versions 
System (CVS) configuration management tool. 

CVS provides the support for the rolling baseline 
approach that characterizes current ModSAF 
development. Multiple independent development 
teams work in parallel from different baselines to 
minimize the development schedule. Figure 2 shows 
the types of overlapping development and integration 
that are possible. 

Figure 2: Rolling Baseline, Developer Perspective 

This diagram shows three development teams, lettered 
as A, B, and C, with their activity represented as 
shaded bars. Each team originally starts off 
development using a common baseline release, in this 
case labeled 0. Team B is the first to integrate new 
capabilities into the baseline, at the integration 
labeled 1. Once that integration is complete, Team B 
continues to do development, however the new 
development is based on the newly integrated 
capabilities. Team C integrates next, and they merge 
new capabilities with the new baseline created at the 
previous integration. Once Team C completes their 
integration, they continues to do new development, 
this time based on the newly merged baseline. Team 
A finally integrates at the integration labeled 3, and 
they must merge new capabilities with the baseline 
established by Team C. At any given point in time, 
there are 3 active baselines under development. In 
one baseline development may be just starting, while 
in another, development may be ready to be integrated 
into the main line. 

To support the integration facility, a dedicated 
integration team manages all the integrations. The 
integration team is responsible for maintaining the 
main baseline and merging in new capabilities. From 
the perspective of the dedicated integration team, the 
baseline looks like Figure 3. 

Figure 3: Rolling Baseline, Integration Team 
Perspective 

The integration team sees the main baseline being 
constantly updated with new capabilities. The 
integration team uses the CVS tool to help automate 
the 3-way merge between the current baseline, the 
original baseline that the integrating team's software 
was based on, and the new updated baseline that the 
integrating team brings to the integration facility. 

Without proper testing, the rapid and constant 
introduction of new capabilities into the main 
baseline could jeopardize the quality of the ModSAF 
software. In order to maintain quality, two types of 
testing are done at each integration. First, 
capabilities testing is performed to guarantee that 
only robust completed capabilities are actually 
integrated into the system. The capabilities tests 
demonstrate that what is about to be integrated 
actually works. Capabilities tests will typically 
consist of interactive instructions for the integration 
team to follow to exercise a new capability. The 
capabilities tests are typically designed by the head of 
the software team developing the capability, and the 
tests are released as part of the ModSAF software 
distribution. 

The second type of testing that occurs at each 
integration is regression testing. Regression testing 
attempts to guarantee that no previously existing 
functionality has been damaged by the integration of 
the new capabilities. Regression testing consists of 
well defined scenarios with repeatable results, as well 
as portions of previously accepted capabilities tests. 
Because of the great breadth of capabilities present in 
ModSAF, it is impossible to perform a complete 
regression test in the short time allocated for an 
integration. Automated tests, as described in a 
companion paper (Monday and Perneski 1995), 
maximize the amount of testing done on the system. 



In addition to the tests performed at each integration, 
system benchmarking (Vrablik & Richardson, 1994) 
is done to measure any changes in system 
performance introduced by the new capabilities. 
Changes in performance are closely monitored, and 
any sudden decrease may force a reevaluation of the 
implementations chosen for the new capabilities. 

The serial nature of the integration facility makes it 
the critical resource for software development. The 
integration facility is generally always in use. Each 
integration typically lasts 2-3 days, and there are 
usually 2 integrations per week. 

4.4  Software  Releases 

ModSAF releases currently follow a 3 month cycle. 
Fortunately, due to the constant amount of testing 
going on in the integration facility, a software release 
is not as traumatic an experience as it once was. The 
software is completely compiled from scratch at each 
integration, so there is rarely any concern about the 
ability to "cold start" a software build. 

Two weeks prior to a release, the ModSAF software 
goes through an extensive period of testing. Teams 
are assigned to test each functional area, such as 
ground vehicle tasks, artillery, rotary wing, etc. 
During the course of testing, software defects are 
logged into the defect tracking system, and testing 
reports are generated. 

During the testing process, periodic reviews of the 
list of defects are performed to identify those defects 
which should and can be addressed prior to the release. 
Engineers fix the highest priority problems and 
integrate them in mini "bug-fix" integrations during 
the testing period. The last "bug-fix" integration slot 
is typically a few days prior to the final release. Any 
problems identified after this integration are noted in 
the VDD. 

In addition to the preparation of the software, 
documentation is prepared for each release. All the 
on-line documentation that comprises the 
Programmer's Reference Manual (PRM) is converted 
into PostScript format for placement on the release 
tape. Also, final versions of the VDD are assembled, 
including all the open and closed defects as well as all 
the ECOs. Two documents are under constant update 
through the development process. The first is the 
Users Manual, which describes how to run the 
ModSAF system. The second is the Functional 
Description which documents all the ModSAF 
capabilities. Final versions of these documents are 
prepared for the final release. 

During the release process, Quality Assurance (Q/A) 
representatives review the process for adherence to the 

established processes and test plans. The final release 
software, on-line documentation, and hardcopy 
documentation is delivered to Q/A for verification and 
duplication prior to distribution. 

4.5 Defect Tracking 

A defect tracking system called GNATS is used 
during the entire ModSAF development process. 
GNATS is distributed by the Free Software 
Foundation. It partially automates the tracking of 
problems by organizing problem reports into a 
database, notifying responsible parties of suspected 
bugs, allowing support personnel to edit, query, and 
report on accumulated bugs, and providing a reliable 
archive of problems and fixes in the system. The 
main component of GNATS are problem reports 
(PRs) that are generated by ModSAF users as well as 
ModSAF developers. PRs are organized in to 
categories, prioritized, and distributed to responsible 
engineers. 

The list of open and closed PRs is published as part 
of the VDD for every ModSAF release. 

4.6 Software     Distribution     and     User 
Support 

Once released, ModSAF software is distributed by the 
Tactical Warfare Simulation and Technology 
Information Analysis Center (TWSTIAC), which is 
affiliated with the University of Central Florida's 
Institute for Simulation and Training (1ST). The 
TWSTIAC has a general charter of providing 
scientific and technical information and support 
services to government, industrial, and academic 
communities in the area of modeling and simulation. 
As part of this function, the TWSTIAC distributes 
software of general interest to the DIS community. 
Individuals and organizations with official 
government sponsors can contact the TWSTIAC to 
request distributions of ModSAF software. 

In addition to supporting distribution via the 
TWSTIAC, 1ST maintains a ModSAF electronic-mail 
reflector which is used as a forum for ModSAF users 
to ask questions, share insights, and have access to 
the main body of ModSAF developers. Access to 
this mail reflector is available to anyone in the DIS 
community. Under the direction of STRICOM, Loral 
engineers and support personnel coordinate and 
answers questions posed on this reflector. 

4.7 Software   Statistics 

Figure 4 shows the ModSAF system software growth 
in lines of code and software libraries since ModSAF 
version 1.0. 
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Figure 4: ModSAF Software Statistics 

S.  VV&A  &  A2ATD 

As part of the A2ATD program and other Delivery 
Orders, ModSAF is continuing to undergo 
verification, validation, and accreditation (VV&A). A 
description of the types of V&V activity that has 
occurred in ModSAF in support of the A2ATD 
program can be found in Thomas (1995). 

Under the Improved Mine/Countermine Delivery 
Order, AMSAA, TRAC, and the US Army Engineer 
School, Ft. Leonard Wood, will be performing 
verification and validation of improved breaching 
behaviors, mine effectiveness, and countermine 
equipment being developed for ModSAF. 
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6. Conclusions and Future Work 

There is no immediate end in sight to the amount of 
additional future development in ModSAF. Work is 
continuing in a BBS-ModSAF linkage. Additional 
work in Combat Support/Combat Service Support 
(CS/CSS) is about to begin development. Additional 
work in Mine/Countermine development is 
proceeding. Linkages with other constructive 
simulations such as Eagle (Calder & Evans, 1994), 
and CBS are under development. Future efforts to 
model and incorporate additional Communication 
Command & Control (C3) are likely. 

Additional work under the sponsorship of ARPA is 
using ModSAF as a tool for the development of next 
generation networks, including multicasting, as well 
as next generation protocols. This is in support of 
ARPA's STOW efforts (Smith et. al. 1995; Calvin 
et. al 1995). 

As the ModSAF software has been distributed to a 
large portion of the DIS community, a number of 
researchers and experimenters have been using and 
extending ModSAF software. The management and 
maintenance of the many resulting efforts will prove 
to be a critical challenge in the future of ModSAF. 
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1.   Abstract 

The Defence Science and Technology 
Organisation (DSTO) is currently tasked by the 
Headquarters Australian Defence Force (HQADF) to 
develop tools, through modelling and simulation, for 
effectiveness studies of Command, Control, 
Communication and Intelligence (C3I) systems. 
Such tools must allow for the study of C3I systems at 
the strategic, operational and tactical levels 
including all services and joint forces. The primary 
tool being developed is the Distributed Interactive 
C3I Effectiveness (DICE) simulation in which 
human players are complemented by artificial 
agents. The DICE simulation environment will 
provide a means of interfacing to lower level 
battlefield simulations and war games which are 
used to represent the overall military mission, 
operation or battle. The impact of C3I aspects on the 
overall mission will be used to gauge C3I system 
effectiveness. This paper gives an overview of the 
DICE simulation project and associated activities. 

2.   Introduction 

As stressed in the Australian Defence White Paper of 
1994 (AGPS 1994), effective Command, Control, 
Communication and Intelligence (C3I) of Australia's 
forces is fundamental to the successful conduct of the 
Australian Defence Force (ADF), in any conflict or 
peacetime activity. Accordingly, there is a drive to 
identify and remedy the weaknesses of existing C3I 
systems and to specify and work towards goal 
architectures for the future. Having the ability to 
study the effectiveness of existing and future military 
C3I systems is essential to this process. The 
approach adopted to carry out such studies is 
dependent on a number of factors, including the level 
of conflict to be considered, the availability of 
technology and the cost of the implementation 
(Fogg 1993). Information Technology 
Division (ITD) of the Defence Science and 
Technology Organisation (DSTO) is sponsored to 

develop modelling and simulation tools to enable 
such studies to be conducted. 

A typical C3I system structure for the defence of 
Australia might involve elements of the three 
services and accommodate conflict at all levels. The 
strategic level embraces the higher echelons of the 
military and political organisations concerned and 
hence addressing this level requires addressing 
decision-making at lower (operational and tactical) 
levels also. The C3I architecture can be pictured as a 
complex network of nodes and links. The nodes are 
typically centres of decision making; information 
processing or filtering; information transfer, or 
combinations of these. The links are the inter-node 
communication channels that transmit information 
of many forms. In a time of conflict, the C3I system 
might be stimulated by intelligence concerning the 
detection of potentially hostile enemy activity. This 
would consequently cause the generation and 
passage of internal information that might result in 
changes in readiness and maybe, the deployment of 
reaction forces. To study the effectiveness of military 
C3I systems requires analysis of the impact of C3I 
procedures and technologies on the overall military 
mission concerned. The term mission is used here to 
describe, for example, an operation, battle or 
exercise. 

The requirement on ITD is not to develop tools 
specific to any particular military service or level of 
conflict, but rather to create a general purpose suite 
of tools, specific instantiations of which could be 
used to address any particular study at hand. It was 
decided that the main means of achieving this suite 
of tools and the associated expertise would be 
through the process of developing an interactive 
simulation with some capability for remote 
participation. This paper gives an overview of the 
aims and current status of the Distributed Interactive 
C3I Effectiveness (DICE) simulation and associated 
developments. 
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3.   General Requirements 

The nucleus of the software tools being developed 
under this task is an interactive simulation with 
some distributive capability that enables 
participation by a number of possibly remotely 
located human players. Players might represent 
individual, or groups of, commanders in a C3I 
system or an aggregated representation of some other 
C3I system entity. The interactive nature of the 
DICE simulation will allow the decision-making 
practices of real commanders to be injected and 
accommodated. Such human players will need, 
however, to be complemented by a number of 
artificial ones (artificial agents) in a manner whereby 
the two types can communicate. 

Battle simulations and possibly war games will be 
employed to address the tactical levels and will need 
to be interfaced with the main simulation in order for 
the represented C3I system to have impact on the 
military mission concerned and hence allow 
evaluation of the system's effectiveness. Matters that 
need to be addressed by such interfacing include the 
blending of spatial and temporal based battlefield 
models with the message or information flow based 
C3I simulation. 

For flexibility, the simulation needs to be capable of 
running in interactive and non-interactive modes and 
have variable execution rate allowing real-time and 
non real-time execution. A scenario generation 
capability is required such that specification of a 
scenario can be easily achieved by analyst-assisted 
military personnel. An extensive analysis capability 
is required to allow effectiveness evaluation to be 
conducted; this might include a replay facility and 
history and review capability. 

4.  Simulation Structure and Development 

A typical scenario to be represented by the DICE 
simulation can be regarded as centred about a 
complex set of nodes and links that represents the 
central C3I network. The real and artificial players 
in the DICE simulation generally form the nodes of 
this central network. In real C3I systems, 
communications between nodes can take many forms 
including both formatted and unformatted messages; 
tables of data; graphical displays; and video images. 
In the simulation, all forms of communication are 
represented by the passage of formatted  textual 

messages which cither bear a direct resemblance to a 
military message, or accompany or summarise 
information of a different form. Having a standard 
language, understandable to both humans and 
machines, for information exchange is also a major 
requirement in command and control systems of the 
ADF. The Australian Defence FORmatted Message 
System (ADFORMS) is the agreed standard for the 
ADF and this standard has been chosen as a 
foundation in the DICE project. 

The central network can be considered to be 
surrounded by an external environment or node that 
encompasses any aspects that are not explicitly 
represented in the central network but which, 
nevertheless, form important contributions to the 
scenario being addressed. What lies outside the 
central network and what lies within depends on the 
depth and breadth of the scenario being simulated. 
The conceptual external node embraces such aspects 
as enemy activity; battlefield information; and sensor 
information which might be represented by 
individual models, simulations or simple look-up 
tables. Communication between the central 
environment and the external node is again achieved 
through the use of messages with the external node 
injecting stimuli into the central network of the 
scenario. 

The overall structure, requirements and 
developments to date of the DICE simulation are best 
presented with reference to Figure 1 which is a 
breakdown of the functional areas of the DICE 
simulation environment. Indicated by the uppermost 
row of this figure are the players in the simulation, 
namely the simulation controller or analyst; artificial 
agents; and human commanders. Peripheral units in 
the DICE environment include any war games and 
battle simulations that may be employed plus the 
command support systems (CSS) that may be 
required by the human players. Players plus 
peripheral units are the nodes in the overall DICE 
simulation, ie the central network plus the external 
environment. The simulation is primarily being 
developed in the ANSI 'C programming language 
using Sun SPARCstations. The Ingres relational 
database management system and associated utilities 
also feature strongly, along with the declarative 
language Prolog. The functional diagram is 
addressed by the following sections. 
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Figure 1: Functional diagram for DICE simulation environment 

4.1   Simulation kernel 

The simulation kernel is the main event-stepping 
engine of the DICE simulation. The current 
simulation is designed around two main events: 
message submission, involving submission of a 
message by a node for transmission; and message 
reception, concerning the receipt of a message by a 
node (Davies 1993). The kernel controls time 
synchronisation and execution rate of the distributed 
processes and can be configured such that the 
simulation can run in real or non-real time. The 
simulation is capable of being paused, advanced and 
resumed as required by the simulation controller. 

The kernel is centred around an Ingres database and 
is capable of generic communication with all nodes 
in the simulation. The communication architecture 
associated with the simulation is illustrated in 
Figure 2. Each node has an associated mailbox 
through which it receives incoming messages; 
outgoing messages are placed directly on the 
simulation event queue for mailing to the intended 

recipient. The mailboxes are Ingres database tables 
which, through the use of database event features 
that Ingres provides, allow event-driven message 
reception and time-synchronisation. Interfacing 
between the main DICE simulation and the 
peripheral units is achieved through the use of 
Peripheral Unit Interfaces (PUI), one for each 
peripheral unit. 

It should be noted that the communication 
architecture outlined in this section is intended for 
the DICE simulation alone and limited to locally 
distributed processes. Remote participation by 
human players and the interfacing to peripheral units 
that are distributed geographically are expected to be 
achieved through observation of international 
Distributed Interactive Simulation (DIS) protocols. 

The simulation is typically initiated by pre-scheduled 
external stimuli and ends at a pre-set instant; when 
there are no further events in the event queue; or 
following a decision bv the simulation controller. 
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Figure 2: DICE simulation kernel and communication 

4.2   Simulation control 

The simulation control function refers to the ability 
to define and represent a scenario, simulate it and 
carry out analysis on that simulated scenario prior to, 
during and after execution. 

One feature of the scenario generator suite of tools 
that has been developed is a general-purpose 
graphics-based drawing environment ScenCenDraw 
which enables the definition of an organisational 
structure of network entities. The general-purpose 
nature of this tool is such that a defined network can 
be used for run-lime display and also as a front end 
to other layers of the scenario generator 
environment. ScenGenDraw can also be used for 
graphical construction of the rules describing 
artificial agent behaviour. Features of the scenario 
generator include the ability to specify the 
characteristics of nodes and links; allocate human 
commanders as players; specify and assign artificial 
agents; and establish the links with required 
peripheral units. 

The simulation controller or analysts can program 
messages to be received by nodes, at given times in 
the simulation, before the simulation is started. Such 
events are referred to as independent external stimuli 
since they are pre-scheduled and hence independent 
of activities that occur whilst the simulation is 
running (Davies 1993). Recent work allows the 
controller to communicate with all players (real or 
artificial) and to inject stimuli during run-time into 
the simulation. The controller can secretly pretend to 
be any one player and send messages to others if he 
wishes to influence the simulation execution in that 
way. The controller can pause, advance and resume 
the simulation as needed. 

Other developments include the ability to specify and 
inspect the standard messages that apply in a 
scenario. This is important to the simulation analyst 
that assists with setting up the scenario to be 
addressed. An analyst can inspect characteristics of 
ADF ADFORMS messages that might apply in a 
scenario but, more importantly, this facility gives the 
ability to define custom ADFORMS-like messages. 
This is important since there will be a need to 
emulate many forms of communication (including 
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telephone, fax etc) for which ADF ADFORMS 
messages might not exist. 

4.3 Human commanders 

The main function associated with the human 
commanders that form players in the simulation, is 
the ability to receive, create and submit messages 
such that communication with the remainder of the 
simulation is achieved. Preliminary Graphical User 
Interfaces (GUT) have been established such that a 
basic capability to create ADFORMS messages is 
enabled; however, the eventual intention is to utilise 
original or tailored versions of operational software 
that provide such a capability to real-world 
commanders. Hence, CSS will be used, as required, 
by human players in the DICE simulation. It is 
considered useful if human commanders have access 
to some form of analysis capability and an example 
of which is the ability to retrieve summary 
information on their performance and impact after 
simulation execution. Such a capability will be 
achieved through the run-time, pre- and post- 
simulation analysis facility. 

4.4 Artificial agents 

The main function associated with artificial agents in 
the DICE simulation is similar to that of the human 
players. The artificial agents need to be able to 
communicate with the human commanders in a 
common form, namely through a chosen textual 
formatted message system. The artificial agents need 
to be able to interrogate, recognise and react to such 
messages and need to be adequately realistic 
representations of the real-world agents that they 
portray. The underlying assumptions associated with 
such agents need to be easily conveyable to an 
analyst or a military domain expert who may be 
assessing the credibility of the artificial 
representation. 

Initial developments of artificial agents have 
concentrated on simple and rule-based 
representations but it is expected that they will 
become more sophisticated as the full capabilities of 
the artificial intelligence field are investigated. The 
form of the rules needs to be such that an artificial 
agent can be created from building blocks that 
describe basic functions or roles that are not peculiar 
to a given agent in a given scenario. Research has 
been carried out into the suitability and use of Petri 
nets in this area and this is the current technique that 
is being employed in representing artificial agents in 

the DICE simulation (Bowdcn ct. al. 1995). Each 
agent, then, is a data-driven Petri net simulation and 
development of a GUI environment for the 
description and implementation of such agents has 
commenced based on the SccnGcnDraw software. 
This environment will also allow access to an 
associated agent explanation and analysis capability 
that has been developed using the declarative 
programming language Prolog (Bowdcn et. al. 
1995). Seamless integration of artificial and real 
players, machine learning, and other areas of 
artificial intelligence are all of relevance here. 

4.5 Run-time, pre- and post-simulation analysis 

This facility will allow interrogation and retrieval of 
database information prior to, during and after 
execution of a given scenario. Such a capability will 
facilitate establishment of a scenario; run-time 
communication; and post-simulauon analysis and 
review. Post-simulation analysis includes inspection 
of C3I system characteristics such as bottlenecks; 
command and information flow parameters; and 
effectiveness measures. The history and review 
function must also provide the ability to select and 
replay aspects of the simulation including analysis of 
the impact of key commands or decisions made by 
artificial or human players. Configuration of the 
simulation kernel about an Ingres database will 
facilitate establishment of a recording and analysis 
system. 

4.6 Peripheral units (battle simulations, war 
games, CSS) 

Tactical-level (eg battlefield) simulations are used to 
represent activities that are external, or at a lower 
level, to the main C3I simulation and help portray 
the overall military mission concerned. Such 
representations allow the impact of C3I aspects to be 
gauged and hence their effectiveness determined. As 
mentioned earlier, interfacing of peripheral units to 
the main DICE simulation is achieved through PUI. 
A standard shell architecture has been developed for 
PUI which includes the concept of tassels which 
relates to the PUI having a number of arms 
emanating from it, the loose ends of which need to 
be tied down when that PUI (and hence the 
associated peripheral unit itself) is employed in 
building a scenario. The tassels signify the different 
categories of information that a peripheral unit can 
supply to other nodes in the simulation. Tying of the 
tassels specifies what entities in the simulation 
require what information from the peripheral unit. 
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Peripheral units can broadcast all information to all 
nodes if required, which may have particular benefits 
(Miller 1992). 

Although some CSS may be regarded as stand-alone 
or off-line, generally the interfacing problems that 
apply to battlefield simulations apply here also. CSS 
are generally driven by real-world data which, in the 
DICE environment, is simulated. 

Investigations have been made into the feasibility of 
interfacing selected tacucal-lcvel simulations and 
CSS, for scenarios of immediate interest, with the 
DICE simulation. An in-house developed air picture 
simulation has been interfaced to and used to 
demonstrate many of the concepts of the DICE 
project including MOE evaluation. Current efforts in 
this area include investigation of DIS procedures to 
enable interfacing with units that are geographically 
distributed. 

5.   Conclusions 

The DICE simulation environment will permit a 
thorough examination of current and proposed C3I- 
rclated procedures and technologies within the 
framework of simulated military missions. The aims 
and current status of the DICE program have been 
reported in this paper. Clearly, there are a number of 
aspects of the program which are yet to be finalised. 
However, an evolutionary approach has been adopted 
and at each stage a functioning facility will be 
available. The DICE activity includes future research 
into a number of areas related to military C3I. 
Appropriate measures of effectiveness will need to be 
defined and battlefield and other models will be used 
to assess these measures by reason of the impact of 
C3I aspects on overall military missions. 

A basic environment is currently established which 
relies heavily upon a tightly orchestrated scenario 
utilising a limited set of standard messages. Such 
orchestration will be progressively relaxed as the 
sophistication and capabilities of the artificial agents, 
for example, increases. One of the main current 
activities is to establish a library of peripheral units 
that can be called upon as required and used to 
address specific ADF requests. 
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1. Abstract 2.3 Constructive+Virtual Simulations 

Integrated Eagle/BDS-D was the first published 
constructive+virtual linkage. The project demonstrated 
the concept of linking the Eagle constructive simulation 
with DIS/SIMNET using the Institute for Simulation 
and Training's Computer Generated Forces Testbed 
(1ST CGF Testbed). Ongoing work on this project has 
continued to push into new territory by expanding the 
capabilities of the 1ST CGF Testbed to accommodate 
envisioned uses of this linkage and by studying and 
proposing DIS standards for linking constructive and 
virtual simulations. This paper reports the latest work 
on the Integrated Eagle/BDS-D project. 

2. Background 

2.1 Constructive Simulations 

Many constructive simulations, or wargames, represent 
aggregate units in combat scenarios using discrete time 
and space representations. Such simulations have 
historically been used for analysis of tactics or weapons 
effectiveness in large scale battles (for example, in 
corps or division level battles). Some examples of 
constructive simulations include BBS, CBS, and Eagle. 

There are many simulations that are called constructive 
simulations. Some are capable of representing 
individual vehicle platforms. For our purposes, we are 
specifically interested in constructive simulations 
which do not represent individual vehicles; the smallest 
representable units on such systems are typically 
battalions or companies. However, many of the same 
techniques used in dealing with these aggregate 
constructive simulations are applicable to vehicle level 
constructive simulations. 

2.2 Virtual Simulations 

Virtual simulations represent individual vehicle 
platforms, dismounted infantry fireteams, or individual 
human combatants as simulation entities using 
continuous time and space. Such simulations are 
traditionally used for small unit training in cooperative 
maneuvers and close combat. Some examples of 
virtual simulations include DIS and SIMNET. 

A constructive+virtual simulation links a constructive 
simulation with a virtual simulation. For a tutorial on 
constructive+virtual simulations, see Franceschini 
(1995b). 

Many technical problems must be overcome to 
successfully link constructive and virtual simulations. 
Time and space are handled differently in constructive 
and virtual simulations. Constructive simulations 
typically are time-stepped, and the amount of time 
required to process the actions during a time step is 
usually not related to the simulation time elapsed 
during the time step. However, virtual simulations are 
expected to be real-time, so that the amount of time 
required to process actions approximates the simulation 
time elapsed. Constructive simulations usually have an 
abstract terrain representation; they do not need a 
detailed polygonal or elevation post database since 
their smallest units are company-sized. However, since 
virtual simulations model individual entities, they 
require a much higher level of detail in their terrain 
representation. These two differences between 
constructive and virtual simulations are at the root of 
most of the difficulties in linking these types of 
simulations. 

We will distinguish between units and entities in this 
paper. A unit is an aggregate controlled by the 
constructive simulation. An entity is an individual 
vehicle platform, infantry fireteam, or individual 
combatant controlled by the virtual simulation. 

3. The Integrated Eagle/BDS-D Project 

3.1 History of Integrated Eagle/BDS-D 

The Integrated Eagle/BDS-D project began in 1992. 
During the first phase of the project, several 
interactions were implemented across the boundary 
between constructive and virtual simulations: 
disaggregation, aggregation, transfer of operations 
orders and CGF operator intent, and indirect fire (Karr 
1992) (Karr 1993). In addition, 1ST addressed the 
problem of instantiating entities during disaggregation 
so that both the formation template of the unit and the 
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terrain around the entities are considered (Franceschini 
1992). 

In the next phase, the Integrated Eagle/BDS-D project 
team generalized and extended the system (Karr 1994). 
The concept of disaggregation was generalized to 
include disaggregations for units of any size (Karr 
1994). The possible representations for units in the 
virtual simulation were extended (the project 
introduced the concept of pseudo-disaggregation) 
(Root 1994). Indirect fire support was extended to 
allow indirect fire from disaggregated artillery batteries 
at units in the constructive simulation (Karr 1994). 
Other results can be found in (Karr 1994). 

3.2 New Work 

Since the Fourth CGF Conference, several 
improvements have been made in the Integrated 
Eagle/BDS-D system. The focus of much of this work 
has been in preparing the Integrated Eagle/BDS-D 
system for use in the Aviation Testbed at Fort Rucker 
AL. Since aviation scenarios have different 
characteristics than ground scenarios, certain 
modifications were required to have a meaningful 
simulation. The underlying 1ST CGF Testbed's 
capacity has been increased, the system has been 
modified to allow its operation in DIS as well as 
SIMNET, and new helicopter behaviors have been 
developed. 

New systems based on the ideas pioneered in the 
Integrated Eagle/BDS-D project are being constructed; 
1ST has participated in the design of these systems by 
giving in-depth discussions of the details of the 
Integrated Eagle/BDS-D system and by commenting on 
strawman designs. The Integrated Eagle/BDS-D 
project team has also begun an effort to survey 
constructive+virtual systems and propose new DIS 
protocol standard PDUs intended for linking 
constructive simulations to DIS. 

4. System Enhancements 

4.1 Increasing the Capacity of the 1ST CGF 
Testbed 

One use for constructive+virtual simulations is to 
extend the virtual battlefield by allowing small scale 
virtual exercises to be played in the context of a large 
scale constructive exercise. However, the small scale 
exercise played in the virtual simulation must be large 
enough to have meaning in the overall scenario. For 
the air scenario to be used at Fort Rucker, 1ST 
determined  that the  1ST CGF Testbed  needed  to 

support many more disaggregated vehicles than its 
original implementation allowed. 

The 1ST CGF Testbed runs on IBM-compatible 
personal computers. Upon analysis of the 1ST CGF 
Testbed, it was determined that the factor limiting the 
number of vehicles supported by the system was the 
amount of random access memory (RAM) available to 
the program. Due to its implementation, the 1ST CGF 
Testbed was limited to 640 kilobytes of RAM. 1ST 
increased this limit by switching to a compiler that 
supports a 32-bit flat-memory model. This increased 
the number of vehicles the 1ST CGF Testbed could 
support by nearly 300%. At this point, we believe that 
the capacity of the 1ST CGF Testbed is now limited 
only by the computational power of the host 
computer's processor, not on memory limitations. 

More information on the increase in capacity of the 1ST 
CGF Testbed can be found in a companion paper 
(Schricker 1995a). This paper gives more details on 
the task and presents the results of performance 
analyses of the 1ST CGF Testbed. 

4.2 DIS Compliance 

A long term goal of the Integrated Eagle/BDS-D 
project has been to transition the system to DIS 
compliance. During the last year, the necessary 
modifications were made to the system to allow it to 
participate in exercises using the DIS 2.0.3 protocol 
standard. Because of the design of the system, the 
pieces affected were the 1ST CGF Testbed, including 
the Eagle CGF Manager, and the SIU (See (Karr 1994) 
for a discussion of the architecture of the Integrated 
Eagle/BDS-D system). 

Converting the 1ST CGF Testbed to the DIS protocol 
was a simple matter. The 1ST CGF Testbed's design 
allows different network protocols to be swapped easily 
(as a link-time option). Since a module containing the 
DIS protocol was already implemented at 1ST, the 
conversion process consisted of building the executable 
code and performing some small testing and debugging 
tasks (no new code was required). 

Converting the Eagle CGF Manager and the SIU to the 
DIS protocol was a bit more involved. The 
Interoperability Protocol used for communications 
between the Eagle CGF Manager and the SIU was 
switched from broadcast to point to point. Application 
specific point to point communications are allowed by 
the DIS protocol standard. 
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The most interesting DIS protocol issue that was 
handled in this conversion was the method of 
representing aggregate units in DIS. In SEMNET, 
Vehicle Appearance PDUs are capable of representing 
aggregate units (since echelon information is encoded 
in the PDUs). Therefore, the original SIMNET 
implementation of the system broadcast Vehicle 
Appearance PDUs on the network to represent the 
position and composition of aggregate units under 
Eagle's control. However, the Entity State PDU in DIS 
does not support echelon information. Further, the 
Aggregate Protocol in DIS was experimental at the 
time of this conversion, and was judged to be 
insufficient for the purposes of the Integrated 
Eagle/BDS-D system. To solve this problem, the 
Integrated Eagle/BDS-D system used an application 
specific message type to transmit aggregate unit 
information to the 1ST CGF Testbed components on 
the DIS network. As the DIS Aggregate Protocol 
evolves, we plan to use it for this purpose. 

4.3 Helicopter Behaviors 

The 1ST CGF Testbed was developed concentrating 
almost exclusively on land combat (Smith 1992). As a 
result, behaviors for helicopter platforms are less 
sophisticated than behaviors for land platforms. 
Examples of these limitations were quickly discovered 
when the Integrated Eagle/BDS-D system transitioned 
to an air scenario. In early interactions with US Army 
soldiers in manned Apache simulators, the CGF 
helicopters were unable to fly realistically close to the 
terrain at high speeds. The 1ST CGF Testbed was 
enhanced to allow the CGF helicopters to fly more 
realistically. More information about the algorithm 
developed and the results obtained from this work can 
be found in a companion paper (Schricker 1995b). 

5. Installations and Demonstrations of the System 

5.1 Fort Rucker's Aviation Testbed 

The Integrated Eagle/BDS-D system was installed for 
the first time at Fort Rucker's Aviation Testbed during 
July 1994. A first-cut scenario was demonstrated for 
MG Robinson of Fort Rucker. This scenario 
demonstrated the capabilities of the Integrated 
Eagle/BDS-D system, including the ability to include 
manned helicopter simulators as part of disaggregated 
units. Many of the system enhancements described in 
Section 4 came as a result of experiences with this first 
installation. 

The latest version of the Integrated Eagle/BDS-D 
system was installed at Fort Rucker during February 

1995. This version of the software included the 
capacity and helicopter behavior enhancements 
discussed in section 4 (the Aviation Testbed is a 
SIMNET facility, so the Integrated Eagle/BDS-D 
system that was installed used the SIMNET protocol). 
This new system was demonstrated for the Assistant 
Secretary of Defense and for MG Adams. 

5.2 I/TTSEC 

The Integrated Eagle/BDS-D system participated in the 
DIS Interoperability Demonstration at the 
Interservice/Industry Training Systems and Education 
Conference (I/TTSEC) in late 1994. The most 
significant technical results of this demonstration were 
that the DIS version of the Integrated Eagle/BDS-D 
system (described in Section 4.2) passed the rigorous 
DIS compliance testing required of all participants and 
that the capacity increase of the 1ST CGF Testbed 
(described in Section 4.1) allowed the system to handle 
a simulation load of approximately 30 disaggregated 
entities with a network load of approximately 100 total 
entities. 

6. Extensions of Integrated Eagle/BDS-D 

6.1 New Constructive+Virtual System 

A testament to the success of the Integrated 
Eagle/BDS-D project is that the general architecture 
developed on this project is the basis for another 
constructive+virtual     simulation: Corps    Level 
Computer Generated Forces. The Corps Level 
Computer Generated Forces project links Eagle with 
DIS using ModSAF as the CGF system; it is described 
in (Calder 1995a) and (Calder 1995b). 

6.2 Survey of Constructive+Virtual Simulations 

1ST has begun an effort to learn about and catalog 
existing constructive+virtual simulations. The goals of 
this work are to provide the simulation community with 
a survey of the work that has been done and to draw 
some generalizations that can be used to standardize 
the process of linking constructive and virtual 
simulations. The initial results of the survey are 
available in a companion paper (Kraus 1995); 1ST is 
still collecting information about other 
constructive+virtual linkages to be included in future 
versions of that paper. 

As part of this work, 1ST has begun examining the 
existing constructive+virtual simulations and the DIS 
protocol in an effort to determine whether new PDUs 
should be added to the DIS protocol to standardize the 

23 



integration of constructive simulations into DIS 
(Franceschini 1995a). 

6.4 Spreading Disaggregation 

Finally, the Integrated Eagle/BDS-D project team has 
considered one problem that is common in 
constructive+virtual linkages: the problem of spreading 
disaggregation. Disaggregation can be triggered in 
many different ways (see (Franceschini 1995b) for 
examples of disaggregation triggering mechanisms); 
ideally, the constructive+virtual simulation should 
trigger disaggregation automatically and dynamically 
during a scenario. However, currently proposed 
automatic and dynamic disaggregation triggers suffer 
from the fact that, in certain conditions, they can cause 
disaggregation of an undesirably large number of units; 
this is called spreading disaggregation. More 
information about spreading disaggregation can be 
found in a companion paper (Petty 1995). 

7. Conclusions 

After demonstrating the concept of linking constructive 
and virtual simulations, the Integrated Eagle/BDS-D 
project has pushed forward in two directions. First, the 
project is preparing for the use of constructive+virtual 
simulations in training and analysis activities. Second, 
the project seeks to standardize the methodologies 
developed for linking constructive and virtual 
simulations to make it easier for future systems to be 
developed. 

Constructive+virtual simulations are viewed as a 
solution to a current limitation of DIS exercises: the 
network of simulators is incapable of supporting very 
large scale exercises. They are also viewed as a new 
and powerful tool for conducting analytic studies, and 
as a way to bring legacy systems into the DIS 
environment. As     a     result,     many     new 
constructive+virtual simulations are being built. 
Integrated Eagle/BDS-D is building a path for 
designers of those systems to follow. 
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1     Abstract 

For the last three years, the Soar/IFOR 
group has been developing intelligent forces for 
distributed interactive simulation environments. 
Since early 1994, our efforts have been focused on 
developing computer generated forces for air mis- 
sions including both fixed wing and rotary wing 
aircraft. This paper reviews the current state of 
the Soar/IFOR project and discusses the results 
of a preliminary trial of our agents in STOW-E, 
a precursor to STOW-97. 

2    Introduction 

The goal of the Soar/IFOR project is to de- 
velop human-like synthetic agents for populating 
interactive distributed simulation environments. 
In contrast to the standard semi-automated forces 
(SAF) approach, where it is assumed that some 
higher-level authority, such as a human or a com- 
puterized command force (CFOR), will be re- 
sponsible for all decisions requiring judgement, 
our approach is to endow all entities with knowl- 
edge and decision making abilities similar to those 
found in humans performing similar tasks. Our 
hypothesis, confirmed in part by our participation 
in a large scale simulated exercise called STOW- 
E, is that building intelligent forces provides a 
payoff in terms of increasing the fidelity of the 
agents' behavior, while decreasing the complex- 
ity of commanding the agents. 

From 1992 through early 1994, our efforts were 
focussed on research and development for be- 

yond visual range air-to-air combat leading to 
the creation of TacAir-Soar [Jones et al., 1993; 
Rosenbloom et al., 1994; Tambe et al., 1995a]. 
In early 1994, we broadened our horizon signif- 
icantly, and we are now working on developing 
automated synthetic pilots for the majority of air 
missions flown in the U.S. military. The var- 
ious missions include air-to-air (defensive com- 
bat air patrols, sweeps), air-to-ground (close air 
support, interdiction, strategic attack), air-to- 
surface, rotary wing (anti-armor), as well as some 
support missions (refueling, resupply, etc.). We 
are also developing additional agents, such as air 
and ground controllers, that communicate with 
the agents flying in planes and helicopters during 
their missions. We will refer to all the agents 
being developed by the Soar/IFOR project as 
Air-IFOR agents, while TacAir-Soar refers to the 
agents that fly tactical fixed wing aircraft. 

During the last year, we have made progress 
on many of these missions, and in this paper we 
will review all aspects of the existing Soar/IFOR 
agents, including: the interaction between Air- 
IFOR agents and DIS, the design of Air-IFOR 
agents, their capabilities, the interactions be- 
tween multiple Air-IFOR agents, and the partic- 
ipation of Air-IFOR agents in STOW-E. 

3    Interaction with DIS 

Since the inception of the Soar/IFOR project, 
our goal has been to create an abstract interface 
layer between Air-IFOR agents and the underly- 
ing simulation (DIS) environment.  We call this 
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the "virtual cockpit" abstraction, meaning that 
Air-IFOR agents should have an interface that 
supports the types of interactions a pilot has in 
the cockpit of a plane or helicopter [Schwamb et 
al., 1994]. Thus, Air-IFOR agents are isolated 
from the details of the underlying simulation envi- 
ronment, network protocol, plane dynamics, sen- 
sor simulation, etc. Currently, we use ModSAF 
[Calder et al., 1993] as the underlying software 
which provides connectivity to the DIS environ- 
ment as well as simulations of the vehicle dynam- 
ics, sensors, weapons, and communication (radio) 
systems. To support the virtual cockpit, we have 
added C code, which defines a Soar/ModSAF In- 
terface (SMI) [Schwamb et al., 1994]. The SMI 
makes all of the appropriate calls to the underly- 
ing ModSAF functions so that Air-IFOR agents 
get access to the appropriate sensor and weapons 
systems. The SMI does not use ModSAF tasks 
or taskframes, but instead relies on lower level 
functions which gives Air-IFOR agents finer-grain 
control of their own behavior. 

Air-IFOR agents are built within the Soar ar- 
chitecture [Laird et al., 1987; Laird and Rosen- 
bloom, 1994; Rosenbloom et al., 1991; Rosen- 
bloom et al., 1993]. Soar, the SMI, and Mod- 
SAF are integrated (within the same Unix pro- 
cess) so that each Soar/IFOR agent gets "ticked" 
during the simulation cycle. Using this arrange- 
ment, we can run multiple, independent agents 
on a single Unix workstation, as well as having 
agents on many different machines — although a 
single agent is not distributed across multiple ma- 
chines. Air-IFOR agents do not share data except 
through explicit communication using simulated 
radios. 

As part of building the SMI, we have ex- 
tended the standard suite of ModSAF sensors and 
weapons, adding such devices as a CCIP (con- 
tinuously computed impact point) which displays 
where a bomb will hit if released, a waypoint com- 
puter which displays the appropriate heading to 
fly to the next waypoint in a flight plan, air-to- 
surface missiles (such as the Exocet), and a prim- 
itive form of precision-guided munitions. 

One result of our development has been the 
recognition that the closer we model the types 
of information available to humans, not at the 
level of visual perception, but instead at the level 
of symbolic data, the easier it is to model the 
behavior of the humans. For example, we discov- 
ered that creating a waypoint computer and the 
CCIP greatly reduced the reasoning required by 
the Soar agents because they no longer had to re- 
spond to every change in their position relative to 
a waypoint or target. Instead they could respond 
to the changes in the heading suggested by the 
waypoint computer or CCIP. 

A problem we foresee in the future is the man- 

agement of many Soar/IFOR agents during a pro- 
tracted exercise. The problem is not in terms of 
command and control (covered in the section on 
multiagent interactions), but is in terms of man- 
aging the creation, reuse, and destruction of Air- 
IFOR agents on many different workstations. To 
this end, as well as to support cleaner interfaces 
to Soar agents, we have integrated Soar with Tel 
[Ousterhout, 1994], a scripting language, that will 
help support agent management across many ma- 
chines. 

4    Agent Design 

The overall design of Air-IFOR agents has not 
changed significantly over the last year, although 
it has been refined and augmented with new tools. 
Nor have the basic requirements of Air-IFOR 
agents changed. They continue to be the follow- 
ing: 

1. Encode large bodies of knowledge about rel- 
evant aspects of the world, including tactics, 
doctrine, sensors, weapons, etc. 

2. React quickly to the environment, such as 
the behavior of enemy planes, communications 
from other friendly agents, and changes in ter- 
rain being traversed. 

3. Determine the tactically relevant features of a 
complex, dynamic environment. 

4. Coordinate behavior with other agents. 

5. Use minimal computational resources. 

6. Deliberately plan aspects of missions not spec- 
ified in orders. 

4.1 Method and Approach 
All of the Soar/IFOR agents are developed within 
the Soar architecture. Soar has its roots in early 
Al symbolic systems such as LT [Newell and Si- 
mon, 1956], and GPS [Ernst and Newell, 1969], as 
well as rule-based systems, such as OPS5 [Forgy, 
1982]. Soar supports the above requirements by 
providing two integrated levels of computation: 
deliberate, sequential operators within problem 
spaces, and automatic parallel rules. In terms 
of the tasks that have to be performed by Air- 
IFOR agents, it is easiest to think in terms of 
the first level, operators. We make the claim that 
sequences of deliberate operators are the most ap- 
propriate way to model the second to second be- 
havior of a pilot (or any human for that matter). 
Example operators include flying a mission, pick- 
ing a control point to fly to, intercepting a ban- 
dit, entering a waypoint into the plane's waypoint 
computer, deciding which missile to fire, physi- 
cally selecting that missile, pushing the fire but- 
ton, and so on. Some of these are purely mental 
operators, such as deciding which missile to se- 
lect, while others include physical actions. Many 
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of these operators cannot be performed directly as 
a single act, but instead must be decomposed into 
subgoals where finer-grain operators are selected 
and applied. For example, the act of intercepting 
a bandit is decomposed into many different op- 
erators, such as achieving proximity, employing 
weapons, and so forth. 

Thus, Soar organizes the doctrine and tactics of 
flying missions in planes and helicopters in terms 
of hierarchies of operators. For a given opera- 
tor that the agent is trying to pursue, such as 
an intercept, the operators used to achieve it are 
grouped in terms of problem spaces. They are 
called problem spaces because their constituent 
operators determine the space of problems that 
can be solved. Operators can be shared among 
more than one problem space. For example set- 
ting the waypoint computer is used in flying 
routes, as well as flying BARCAPs. Other, so- 
called, floating operators, are available in every 
active problem space. Floating operators such as 
operators that detect changes in a bogey's activ- 
ity, are very sensitive to changes to the environ- 
ment and usually need to be selected soon after 
they become relevant. More generally, the hierar- 
chical and floating operators can be seen as at op- 
posite ends of two dimensions: sensitivity to the 
agent's current goals, and sensitivity to the cur- 
rent situation. All operators must be sensitive to 
both concerns, but floating operators emphasize 
reacting to the current situation (within the con- 
text of the current goals), while hierarchical oper- 
ators emphasize responding to the current goals 
(within the context of the current situation). 

Within a subgoal, local situational information 
is held in the subgoal's state. Each subgoal has 
access to all of the state information in its super- 
goals, and the state of the top goal contains all 
the data used to fly a mission, including all sensor 
data, the agent's interpretation of the current sit- 
uation, a description of the current mission, data 
on other agents, etc. 

The hierarchical operator structure provides 
the necessary framework for encoding knowledge 
and organizing the behavior of Air-IFOR agents; 
however, it alone is insufficient to provide flexibil- 
ity and reactivity. What is needed is the ability 
to dynamically propose, select, and apply the op- 
erators that are appropriate for the current situa- 
tion. This is done in Soar through its underlying 
rule-base system, which directly implements the 
selection, application, and termination of opera- 
tors described above. Thus, there are rules which 
test the current situation and propose operators, 
rules which compare proposed operators and sug- 
gest preferences between operators, rules which 
test that tin operator has been selected and then 
performs some aspect of the operator, and rules 
that test that all aspect of an operator have been 

completed, and signal that the operator is fin- 
ished. The actual selection of operators is not 
done directly by individual rules, but by a deci- 
sion procedure, which selects an operator based 
on all relevant preferences. 

Most rule-based systems use a conflict- 
resolution scheme to select a single rule to fire 
on each cycle. However, rules from these systems 
map more directly onto Soar's operators, which 
are the locus of deliberate activity in Soar, and 
where selection is controlled by preferences and 
the decision procedure. Soar's rules are more like 
an associative memory, where the information in 
actions of rules is recalled whenever the condi- 
tions of the rules match. Thus to retrieve all infor- 
mation relevant to the current situation, the basic 
cycle is to fire all rules that match the current sit- 
uation, and continue firing until quiescence. Dur- 
ing this rule firing phase, rules to implement the 
current operator are firing, as well as rules propos- 
ing new operators. At quiescence, assuming the 
current operator is finished, a decision is made 
to select a new operator based on the available 
preferences, and the cycle begins again. If the 
current operator cannot be finished, possibly be- 
cause it requires problem solving in a subgoal, a 
subgoal will be created automatically, and then 
rules sensitive to the subgoal will fire to suggest 
appropriate operators. When a rule detects that 
the original operator is finally complete (or should 
be abandoned), it will fire and cause a new op- 
erator to be selected and the immediate subgoal 
(and any additional subgoals) will be automati- 
cally removed. Soar is integrated with ModSAF 
so that one decision is made for each agent during 
each clock tick of the simulation, and thus 2 to 15 
decisions are made in each Air-IFOR agent each 
second. 

4.2    Infrastructure 

In maintaining a rule-based system, the rules 
must be organized so that it is easy to find rules, 
not only by their name, but also by their role in 
producing behavior. For the Soar/IFOR agents, 
we have mapped the hierarchical structure of the 
operators onto the hierarchical structure of the 
Unix file system. Thus, each goal (or subgoal) 
has its own directory, and within that directory 
there are files for each of the operators, plus a 
file for loading in those operator files. For cases 
where rules are not shared across agents, we have 
a dynamic load facility that loads only the subset 
of the code that is relevant to the current agent's 
vehicle and mission. 

Our lowest-level documentation of the problem 
space, operators, and rules is also organized in the 
same hierarchical file structure with direct links 
from the documentation to the code [Koss and 
Lehman, 1994]. A higher level of documentation, 
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using the terminology and structure of our do- 
main experts, links into the problem space docu- 
mentation to currently support a limited form of 
validation. All of our documentation is in HTML 
and it can be accessed through viewers such as 
Mosaic and Netscape. 

To support the creation of the code and doc- 
umentation with our conventions, we have cre- 
ated the Soar Development Environment (SDE) 
[Hucka and Laird, 1995], which is an extension to 
Emacs. SDE has a template language that can 
be used to automatically generate all of the nec- 
essary directories, code, and documentation files 
when new operators are created. SDE also pro- 
vides many features to aid in debugging, such 
as automatic finding of files in which rules are 
stored, point and dick commands for common 
functions, and general search facilities for the 
rules. 

4.3    Current Status and Lessons Learned 

The current Air-IFOR agents have a combined 
total of approximately 320 operators, with a total 
of 3,100 rules. Individual agents have between 
1,130 and 2,550 rules depending on their missions. 
These counts do not include our natural language 
or debriefing systems, which by themselves have 
substantial numbers of rules. 

One of the challenges in building the agents has 
been to maintain the computational efficiency of 
the system as we add new capabilities. The prob- 
lem is not that Soar slows down as the sheer num- 
ber of rules increase (research indicates that Air- 
IFOR agents may be able to grow to even a mil- 
lion rules without this being an issue [Doorenbos. 
1994]), but instead the problem is that it is easy 
to write rules that fire every time some input data 
changes (such as when the current position of the 
plane changes). As a result, we closely monitor 
rule firings in order to identify costly rules, and 
then attempt to rewrite them in order to decrease 
their cost. In a few cases, we have discovered 
that by removing a computation from Soar that 
is done in the cockpit for a pilot, such as with the 
waypoint computer and the CCIP, we have been 
able to drastically reduce the computational over- 
head in Soar. 

During agent development, we are able to run 
6-10 agents on a single 150MHz 4400 SGI Indy. 
However, one of the lessons we learned from 
STOW-E is that we are limited to around 4 
agents when there are large numbers of entities 
on the network. This is because of overhead in 
both ModSAF and the Soar agents that results 
from the processing of large numbers of entities. 
In response, we expect to put more emphasis 
on focusing attention on only the most impor- 
tant entities at all levels of processing, as well 
as to continue research on efficient matching of 

rule-based systems [Acharya and Tambe, 1993; 
Kim and Rosenbloom, 1993]. 

5    Agent Capabilities 

Although Soar provides the basic architecture 
for building Air-IFOR agents, our agents are more 
than a large collection of rules that directly en- 
code doctrine and tactics. They must also have 
a many cognitive capabilities, some of which are 
directly related to military flying such as follow- 
ing a flight plan, situational awareness, planning 
attacks, employing weapons, and managing fuel, 
while others are more general cognitive capabil- 
ities, such as communicating with other agents, 
modeling the behavior of other agents, being able 
to explain the agent's behavior, and using general 
problem solving strategies. 

To date, we have discovered that although 
these general cognitive capabilities are impor- 
tant, we have been able to build viable agents 
by concentrating on those capabilities directly re- 
lated to performing our agents' missions. Thus, 
we have developed and incorporated capabilities 
for following flight plans, planning attacks, em- 
ploying weapons, situational awareness, manag- 
ing fuel, and so on. AU of these are the building 
blocks for various missions. There are also many 
capabilities dealing with coordinating behavior 
among multiple agents, which are discussed in 
the section on multiagent interactions. These ca- 
pabilities are all implemented as operators that 
have complex subgoals. For example, following 
a flight plan involves many operators including 
flying routes (of which there are different types 
depending on the aircraft), performing various ac- 
tivities at waypoints (such as communicating with 
control agents or deterrnining if a plane should de- 
lay at the point so that it arrives on target at the 
appropriate time), selecting the next route, and 
processing any changes the agent might receive 
to its mission. We expect these capabilities to be 
reused on future missions, possibly with modifi- 
cation as new variants are required. 

We expect that the more general cognitive ca- 
pabilities will become necessary as we try to cre- 
ate agents which are more autonomous, and thus 
able to handle novel situations on their own. To 
that end, we are pursuing research in the follow- 
ing areas: 

1. Natural language processing: Even with the 
advent of the Command and Control Simu- 
lation Interface Language (CCSIL) [Salisbury, 
1995], we will someday want Air-IFOR agents 
to directly interact with humans. Air-IFOR 
agents will need to understand and generate 
natural language, with one of the challenges 
being to integrate the processing of language 
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with all of the other agents' tasks [Lehman et 
al., 1995]. 

2. Behavior explanation: As the complexity of 
Air-IFOR agents grow, it is necessary for each 
of them to be able to explain its own behav- 
ior and internal reasoning. What action did it 
take, why did it take that action, why did it 
interpret the situation in the way it did, and 
what were other options? We have been ac- 
tively pursuing these issues in the Debrief sys- 
tem, which is a set of Soar rules that when 
included in an agent before a run, allows the 
agent to be debriefed after flying a mission 
[Johnson, 1994]. 

3. Agent modeling: In order to interpret the ac- 
tions of other agents, Air-IFOR agents must 
have some understanding of what the other 
agents are thinking. This is currently done 
in very specialized and context specific ways 
in Air-IFOR agents. However, as we start to 
explore complex behavior, it will be necessary 
for Air-IFOR agents to create general internal 
models of what other agents are thinking about 
the current situation. For example, deceptive 
maneuvers involve generating behaviors with 
the goal of leading an opponent to incorrectly 
guess what your intent and action really is. We 
can currently encode "deceptive" maneuvers in 
Air-IFOR agents; however, for the agent itself 
to derive an appropriate deceptive maneuver 
in novel situations requires the ability to inter- 
nally model some of the thought processes of 
other agents, a problem we are actively pursu- 
ing [Tambe and Rosenbloom, 1995]. 

4. General Problem Solving and Planning: Our 
current agents have all the necessary control 
knowledge for making the decisions we ex- 
pect them to encounter. However acquiring 
this knowledge is difficult and time-consuming, 
and this knowledge alone does not always 
lead to robust performance in novel situations. 
Over the last year, we have done research on 
more general problem solving and planning 
approaches that can use more "fundamental" 
knowledge of the domain and thus increase 
the ability of Air-IFOR agents to respond to 
novel situations. Using experimental versions 
of TacAir-Soar, we have demonstrated the fea- 
sibility of integrating both look-ahead plan- 
ning [van Lent, 1995] and means-ends analysis 
[Wray, 1995] into Air-IFOR agents. 

In addition to the more general capabilities 
listed above, Air-IFOR agent must have knowl- 
edge that includes the doctrine and tactics appro- 
priate to the missions they are to perform. Cur- 
rently, Air-IFOR agents fly the following fixed- 
wing missions: BARCAP, Close Air Support, 
Strategic Attack, and MiGSweep.    For rotary 

wing, Air-IFOR agents can fly a basic anti-armor 
mission [Tambe et al., 1995b]. In addition, we 
have developed the following agents that act as 
controllers during missions [Nielsen, 1995]. 

• Air Intercept Controller (AIC) and Ground 
Controlled Intercept (CGI) which give infor- 
mation and commands about enemy planes. 
The AIC is situated in a plane with a large 
radar, such as an E2C. 

• Forward Air Controller (FAC) which provides 
final directions for close-air support missions. 

• Direct Air Support Center (DASC) assigns air- 
craft to missions, can change the mission, and 
hands off control to the FAC. 

• Fire Support Coordination Center (FSCC) de- 
termines the type of support to utilize (close 
air support, artillery, or naval gunfire) and if 
close air support is determined it generates a 
tactical air request form then sends the request 
to the DASC. 

• Tactical Air Command Center (TACC) which 
provides air traffic control, intermediate rout- 
ing, and deconniction. 

• Tactical Air Direction (TAD) controller directs 
specific air operations within the area of oper- 
ations, prior to the establishment of a DASC. 

We have operational versions of all of these 
agents, although many are limited to producing 
behavior that is only relevant to close air support 
and air-to-air missions. 

6    Multiagent Interactions 

Although the individual agents are by them- 
selves important, it is the coordination of agents 
that leads to effective military forces. Our ap- 
proach is to model the methods and practices 
of military organizations. Air-IFOR agents co- 
ordinate their activities through a combination 
of common background knowledge (their knowl- 
edge of military methods, procedures, doctrine 
and tactics), common mission statements, and 
explicit communication (non-verbal and verbal) 
[Laird et al., 1995]. Because Air-IFOR agents 
know what they are supposed to do and when 
(because of their background knowledge and mis- 
sion statements), the need for explicit commu- 
nication is greatly reduced. Also, in contrast to 
SAF agents, Air-IFOR agents are "smart" enough 
to deal with the details of executing all aspects 
of the missions they have been assigned and do 
not require constant monitoring by a human or 
command agent. When explicit verbal commu- 
nication is used, we attempt to model both the 
content and form used by real pilots. Thus, 
Air-IFOR agents send simulated radio messages 
whose content closely mirrors the English words 
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and phrases used by real pilots. The generation 
and interpretation of these messages is currently 
done by a fixed set of templates and not a general- 
purpose natural language facility (although one is 
under development [Lehman et a/., 1995]). Air- 
IFOR agents currently can generate and interpret 
approximately 100 different types of messages. 

When flying as a unit, most of the coordination 
occurs by the wingman visually observing and re- 
sponding to the behavior of the lead of the unit. 
The wingman constantly adjusts its position to 
stay in the appropriate formation. The wingman 
also keeps track of the progress of the unit in its 
mission, observing the achievement of waypoints. 
Depending on the mission details, the wingman 
may change formation, break formation to fly an 
independent ground attack, rejoin the formation 
following an attack, or even take over as the lead. 

Currently, TacAir-Soar agents (Air-IFOR 
agents for tactical fixed wing aircraft) are able 
to fly as either sections (two planes) or divisions 
(four planes). They can fly a variety of forma- 
tions and they can dynamically break into smaller 
units, such as a division splitting into two sec- 
tions, and then later reform as a single unit. 
Within a section, the lead and wingman can coor- 
dinate their radars (covering different parts of the 
sky and communicating enemy contacts) as well 
as coordinating their weapons employment dur- 
ing air-to-air engagments. During air-to-ground 
attacks, a section can use a variety of coordinated 
tactics, which are planned by the lead at the be- 
ginning of the mission. Our work on coordina- 
tion with rotary wing units is also under devel- 
opment where currently the helicopters can fly in 
pairs, with the expected progression to platoons 
and then companies during the next year. 

A unit of TacAir-Soar agents, such as a sec- 
tion or division, will also coordinate its behavior 
with available controllers (AIC, CGI, FAC, TAD, 
TACC, FSCC, DASC) [Nielsen, 1995]. The con- 
trollers can give the unit flight information (such 
as the altitude to fly at, or the name of the next 
controller), permission to continue the mission 
(permission to enter an area, or permission to at- 
tack a target), information on other planes, or 
changes to missions. In the case of changing a 
mission, a controller can dynamically change al- 
most any aspect of a ground attack mission in- 
cluding the route, the time on target, and the 
final target. When a mission change is received, 
the members of the unit change their missions, 
sometimes replanning the final attack for air-to- 
ground missions. 

Our goal is to continue to build up the co- 
ordination of Air-IFOR agents into integrated 
missions. We are currently close to complet- 
ing close-air support which involves a variety of 
controllers plus planes doing individual missions. 

However, missions such as offensive strike and 
integrated interdiction can involve a variety of 
different planes flying many different individual 
missions (strategic attack, RECCE, MiGSweep, 
SEAD, etc.) that have to be closely orchestrated 
to pull off the complete mission. We plan on 
working on these missions and the required co- 
ordination over the next year. 

Our approach to date has been to support the 
coordination of activities within the set of agents 
under our direct control. We have been able to 
develop our own templates independent of other 
groups. However, in the future some Air-IFOR 
agents will need to communicate with other com- 
mand forces, and thus, we will soon be using 
CCSIL protocols for communication between our 
agents and their controllers. 

7    STOW-E 

During November 4-7, 1994, a large scale op- 
erational military exercise called STOW-E (Sim- 
ulated Theater Of War - Europe) was held across 
18 installations in United States and Europe. At 
its peak, over 1,800 entities were simulated on 
the Defense Simulation Internet (DSI). Although 
the vast majority of the entities were involved in 
ground actions, there were also a significant num- 
ber of air missions being flown using humans in 
simulators, ModSAF agents, Soar/IFOR agents, 
and in a few cases, real planes with instrumenta- 
tion that allowed them to be sensed within the 
DIS environment (although these planes could 
not sense the DIS entities). For the Soar/IFOR 
group, this was the first chance to participate 
in a realistic, large scale simulation environment 
where we did not have complete control over the 
scenarios. 

Over the four day period, the Soar/IFOR 
agents were scheduled to participate in 10 events. 
For each event we had specific missions assigned 
to Air-IFOR agents that had been given to us 
weeks in advance. These missions included defen- 
sive air missions (BARCAPs), offensive air mis- 
sions to disrupt BARCAPs, air to ground mis- 
sions, and air to surface missions. 

We successfully fielded agents for every event 
in which we were scheduled (10 events, approxi- 
mately 32 agents) and participated in many un- 
scheduled events (5-7 events, approximately 16 
agents). TacAir-Soar performed air-to-air mis- 
sions against ModSAF and humans (in simula- 
tors). TacAir-Soar attempted to engage planes 
from other sites, but because of problems with 
the network, the other agents did not see TacAir- 
Soar. We also participated in air-to-ground 
(bombing bridges, etc.) and air-to-surface (fir- 
ing missiles at ships) attacks in which we engaged 
ground and surface targets from other sites. 
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We did have a limited number of software fail- 
ures with the most significant being our inability 
to fly over the terrain database where the ground 
battle was raging when it was populated with 
hundreds of tanks. This was caused by a software 
bug in our C code for processing ground targets 
using radar. 

One of our goals was to provide viable oppo- 
nents for simulated and human pilots; however it 
was difficult to evaluate the "skill'' of our TacAir- 
Soar because of some problems with the under- 
lying simulation models. For example, during 
the first day, we were frustrated with the per- 
formance of TacAir-Soar in engagements. They 
were easily shot down by ModSAF F/A-18's. We 
later learned that in order to populate the simula- 
tion with different types of planes, the F/A-18's 
were created by copying F-14's. The F/A-18's 
were therefore carrying Phoenix missiles which 
are much longer range than any missile carried 
by an F/A-18. TacAir-Soar, basing its tactical 
behavior on the known properties of F/A-18's, 
was caught by surprise (as it should have been). 

In engagements with humans, our planes would 
often get into good tactical positions, only to see 
our missiles miss when they were shot. (TacAir- 
Soar did have some kills against humans in simu- 
lators, but in general, TacAir-Soar got "toasted".) 
We believe that the missile missed because of 
flaws in the ModSAF missile models. Thus, al- 
though TacAir-Soar got shot down, it was in gen- 
eral using appropriate tactical maneuvers. In- 
dependent of the specific outcome, this exercise 
proved the value of taking systems out of the lab- 
oratory and testing them in more realistic situa- 
tions. 

Possibly the best example of our capabilities 
was in the execution of an unscheduled event for 
the second day. In this mission, a section of F/A- 
18's were to perform a ground attack against a set 
of islands in the simulated battle area. Our planes 
were used in place of a virtual (manned) ground 
attack because of the failure of that simulator. 
Enroute to the target, the planes were unex- 
pectedly intercepted by ModSAF MiG-29's. The 
F/A-18's engaged the MiG-29's to defend them- 
selves and got off one or two shots (but no kills). 
The MiG-29's disappeared from the network, and 
our planes automatically returned to their air- 
to-ground attack mission. Further enroute, they 
were unexpectedly fired on from a surface-to-air 
site, killing the wingman (not only did the planes 
not expect it, we didn't realize there would be any 
surface-to-air systems in STOW-E — clearly an 
unscripted interaction). The lead continued on, 
successfully dropping bombs on the designated 
target and then egressing back to base. 

Although we considered our participation in 
this exercise a success, it did demonstrated some 

weaknesses that we must address in the future. 

• Number of vehicles: We discovered that for 
an exercise with a large number of vehicles, 
we were not able to run the number of vehi- 
cles/workstation that we had expected. Part 
of this is the overhead in the network process- 
ing code of ModSAF, but it also was a problem 
for our AIC/E2C agent which could see a large 
number of agents at once because of its radar. 
This has led us to use more deliberate focus- 
ing of attention in Air-IFOR agents so that 
they do not attempt to process the complete 
situation at once, but instead concentrate on 
subsets of the situation, preferably those that 
are relevant to the current tactical situation. 

• Mission set up: Before STOW-E, we had not 
developed any tools to help specify and man- 
age the missions of Air-IFOR agents. During 
STOW-E, it was time-consuming and error- 
prone for us to create or modify the missions. 
As a result, we are currently developing graph- 
ical interface tools that will make it possible 
to enter and modify missions directly, without 
editing intermediate data structures. Our goal 
is that our interface should give the user the 
same look and feel as the documents and tools 
used by pilots in their normal briefings. The 
integration of Tel and Soar is making this much 
easier because of its ability to manage windows 
and build formated graphical and textual in- 
terfaces. In the future we must also have the 
ability to accept missions from other software 
systems using CCSIL; however the details of 
the protocols have yet to be defined. 

• Runtime control: Once Air-IFOR agents re- 
ceived their missions, they would fly the mis- 
sions without any human management. Thus, 
we became observers and ran our exercises 
"hands-off". In contrast, the ModSAF planes 
required constant attention, with a human con- 
trolling their behavior on and off during the 
exercise. Although we wish to continue our 
approach, we also came to recognize that we 
needed the ability to dynamically change some 
aspects of the missions of Air-IFOR agents 
during the exercise, such as changing the way- 
point at which a section of planes is stationed. 
These are relatively minor changes to TacAir- 
Soar. 

This exercise has the additional significance of 
demonstrating that "hard core" AI technology 
can be successfully used in an operational exer- 
cise (although in STOW-E this was in a limited 
role). We believe that this is one of the first (if 
not the first) time that an AI system has been 
used in this way. 

8    Summary and Conclusions 
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In the beginning of the Soar/IFOR project, 
there were many questions as to whether it was 
practical to develop intelligent forces for synthetic 
environments. Although there is still much more 
work to do, three years of research and devel- 
opment have brought us to the point where we 
can state with some degree of certainty that in- 
telligent forces are practical and will play a sig- 
nificant role in STOW-97. It is difficult to iso- 
late specific parts of our methodology or under- 
lying technology as responsible for this success, 
although clearly we believe that the underlying 
Soar architecture is responsible to a significant 
degree. Its ability to combine fine-grain reactive 
reasoning of rules, with more deliberate and hier- 
archical decision making using operators within 
problem spaces, appears to be well matched to 
the demands of the interactive simulation and the 
cognitive processes of the humans we are attempt- 
ing to model. 

One surprise has been our ability to build com- 
plex and relatively general systems while not us- 
ing many of the more advanced techniques such as 
means-ends analysis, planning, learning, complex 
agent modeling, or natural language. However, 
we still believe that these are critical capabilities 
for building robust, general agents, and we are 
continuing to pursue research in these areas. 

In the immediate future, we will continue to 
expand the breadth of missions and capabilities 
of Air-IFOR agents. For fixed wing, a primary 
goal is to develop the appropriate agents to fly 
integrated interdiction and strategic attack mis- 
sions. The coordination of many different types 
of aircraft, with different missions promises to be 
challenging. In rotary wing, our goal is to field 
a complete company of attack helicopters. Our 
plan is for these developments to lead up to a 
successful participation of Soar/IFOR agents in 
STOW-97. 
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1. Abstract 
The Soar/IFOR project has been developing 

intelligent pilot agents (henceforth IPs) for 
participation in simulated battlefield environments. 
While previously the project was mainly focused on 
IPs for fixed-wing aircraft (FWA), more recently, the 
project has also started developing IPs for rotary- 
wing aircraft (RWA). This paper presents a 
preliminary report on the development of IPs for 
RWA. It focuses on two important issues that arise in 
this development. The first is a requirement for 
reasoning about the terrain — when compared to an 
FWA IP, an RWA IP needs to fly much closer to the 
terrain and in general take advantage of the terrain for 
cover and concealment. The second issue relates to 
code and concept sharing between the FWA and 
RWA IPs. While sharing promises to cut down the 
development time for RWA IPs by taking advantage 
of our previous work for the FWA, it is not 
straightforward. The paper discusses the two issues in 
some detail and presents our initial resolutions of 
these issues. 

2. Introduction 
The Soar/IFOR project has been developing 

intelligent pilot agents (IPs) for simulated battlefield 
environments (Laird et al., 1995, Rosenbloom, et al., 
1994, Tambe et al., 1995). Until Summer 1994, the 
project was focused on building IPs for simulated 
fixed-wing aircraft (FWA), including air-to-air 
fighters and ground-attack aircraft. Since July 1994, 
we have begun developing IPs for simulated rotary- 
wing aircraft (RWA), specifically, AH-64 Apache 
attack helicopters. 

While there are similarities in an RWA and an 
FWA pilot's missions — e.g., employing weapons on 
targets, flying mission-specified routes — there are 
also some important differences. One key difference 
is reasoning about the terrain. For example, an RWA 
pilot's mission can involve flying Nap-of-the-earth 
(NOE), where it needs to fly only about 25 feet above 
ground level, while avoiding obstacles. It may also 
involve flying through a valley, or around a forested 
region. The mission may also involve hiding 
(masking) behind a ridge, popping up to spot enemy 
targets, and remasking in a new hiding position. 
Figure 1 provides an illustration of this type of terrain 
reasoning. It presents a snapshot, taken from 
ModSAF's plan-view display (Calder et al., 1993), of 

a typical scenario involving Soar-based RWA IPs. 
There are two RWA in the scenario, just behind the 
ridge, indicated by the contour lines. The other 
vehicles in the figure are a convoy of "enemy" 
ground vehicles — tanks and anti-aircraft vehicles — 
controlled    by    ModSAF. The    RWA     are 
approximately 2.5 miles from the convoy. The IPs 
have hidden their helicopters behind the ridge (their 
approximate hiding area is specified to them in 
advance). They unmask these helicopters by popping 
out from behind the ridge to launch missiles at the 
enemy vehicles, and quickly remask (hide) by 
dipping behind the ridge to survive retaliatory 
attacks. They subsequently change their hiding 
position to avoid predictability when they pop out 
later. 
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Figure 1: A snapshot of ModSAF's simulation of an 
air-to-ground combat situation. 

Thus, the development of RWA IPs brings up the 
novel issue of terrain reasoning, not addressed in 
previous work on Soar/IFOR agents. There has been 
much work on terrain reasoning in ModSAF in their 
development  of  semi-automated   forces   or   SAFs 
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(Calder et al., 1993). That work has so far primarily 
focused on ground-based SAFs (e.g., (Longtin, 
1994)), although there is a recent effort focused on 
terrain reasoning for RWA (Tan, 1995). Outside the 
arena of automated forces, terrain reasoning in the 
form of route planning and execution has been 
addressed extensively in AI and Robotics. The focus 
of much of this work is on 2D routes (Denton and 
Froeberg, 1984, Khatib, 1986, Lozano-Perez and 
Wesley, 1979, Mitchell, 1990) — and this category 
includes some previous work within Soar (Stobie et 
al., 1992) — although some efforts have also 
attacked the 3D route planning problem (Bose et al., 
1987, Rao and Arkin, 1989). Other aspects of terrain 
reasoning such as tactical situation assessment 
(McDermott and Gelsey, 1987) and hiding (Stobie et 
al., 1992) have also received some attention, although 
not nearly as much as route planning. As discussed in 
Section 3, the pure route planning approaches from 
this literature are unlikely to address the terrain 
reasoning challenge facing the RWA IPs, which is to 
accomplish these tasks in real-time, given a realistic 
3D terrain database. A hybrid solution combining 
some abstract plans with reactivity is currently being 
investigated. 

Given the similarities between the FWA and RWA 
IPs, concept and code sharing between the two is a 
real possibility. Sharing would speed up 
development of RWA IPs by taking advantage of our 
previous work on FWA. However, the differences — 
such as the terrain reasoning capability above — 
imply that sharing is not straightforward. There have 
been some previous efforts aimed at facilitating reuse 
of code and concepts among Soar systems. These 
efforts have typically focused on reuse of individual 
capabilities, such as inductive learning (Rosenbloom 
and Aasman, 1990), or natural language (Lewis, 
1993, Rubinoff and Lehman, 1994) capabilities. The 
novel issue here is that a large fraction of the FWA IP 
structure is potentially reusable in developing RWA 
IPs and such reuse needs to be facilitated. 

The rest of this paper provides more details on 
these two issues. Section 3 focuses on terrain 
reasoning. Section 4 discusses the issue of code and 
concept sharing between Soar-based FWA and RWA 
IPs. We will assume some familiarity with the Soar 
architecture (Laird, Newell, and Rosenbloom, 1987, 
Rosenbloom, et al., 1991). 

3. Terrain Reasoning 
The overall terrain reasoning tasks for an RWA IP 

may be subdivided into two categories. The first is to 
fly from a given source to a destination, while 
abiding by mission specified constraints regarding 
the flight methods. A flight method primarily 
specifies maintenance of a certain air-speed and 
altitude above ground level. In particular, a 
high-level flight requires that the RWA fly more than 

200 feet above ground level with air-speed as high as 
145 knots. A low-level flight requires that the RWA 
fly 100-200 feet above ground level, while 
maintaining a maximum air-speed of 100 knots. A 
contour flight requires the RWA to fly between 
25-100 feet above ground level, but with a maximum 
air-speed of 70 knots. An NOE flight requires the 
RWA to fly within just 25 feet above ground level, 
with a maximum air-speed of 40 knots. Additionally, 
an NOE flight may require that an RWA fly through 
a valley along a hillside, or through a narrow clear 
corridor in a forested region. The second category of 
terrain reasoning tasks involves an RWA IP's 
activities once it successfully follows its route to its 
battle area, and possibly engages enemy vehicles. Its 
activities in this area involve selecting and occupying 
good hiding positions (behind a ridge or a forested 
region) and flying between hiding positions while 
remaining concealed from a possibly mobile enemy. 
It may also involve reasoning about possible enemy 
hiding positions. 

For both categories of tasks, one key issue for an 
RWA IP is to execute them in the context of a large- 
scale and realistic 3D terrain database, with features 
such as rivers, ridges, valleys, hills and forested 
regions. A second key issue is that given its 
complexity, the cost of sensing and processing large 
tracts of the terrain database is non-trivial. A third 
related issue is that an IP has to exhibit human-like 
behavior in performing these terrain reasoning tasks. 
Thus, it should not make use of information that a 
human pilot is unlikely to obtain. For example, as 
with a human pilot, an IP should plan routes using a 
map of the terrain database (which possibly may be 
inaccurate), rather than using the actual terrain 
database (which would always be 100% accurate). A 
final issue is that an IP has to perform its tasks in 
real-time. The following two subsections illustrate 
how these issues are addressed for each of the two 
types of tasks above. 

3.1. Route Flying 
For the task of route flying, one possible approach 

for addressing the above issues would be to use one 
of a variety of path-planning methods that provides a 
very detailed 3D point-to-point route, with little need 
or freedom to modify the given route (Stobie et al., 
1992, Bose et al., 1987, Rao and Arkin, 1989, Denton 
and Froeberg, 1984). One such approach, based on 
weighted-region path planning (Mitchell, 1990), is to 
conceptually divide a map of the terrain into 3D cells 
(cubes), assign an appropriate cost to each cell that 
reflects mission-specified constraints, and then search 
for a minimum cost path through the cells. One 
advantage of such an approach is that an RWA IP 
need not sense the terrain database in any detail, but 
rather just enough to follow its plan. In addition, the 
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low sensing overhead would facilitate real-time task 
performance. However, there are several problems 
with such an approach. First, given the complexity of 
the terrain, this approach would require a significant 
initial computational effort to create and then search 
the cells. Second, it could be wasteful given the 
realism of the RWA model and its flight controls — 
it will not be possible for a Soar-based IP to precisely 
control an RWA to follow such a detailed route, and 
it will end up having to reactively improvise the path 
or replan. The original planner could potentially take 
these realistic flight controls into account when 
developing a plan — so that no on-line replanning 
may be required — but that would further increase 
the complexity of planning. Third, if the map of the 
terrain is inaccurate or incomplete, the plan generated 
could be inaccurate as well. Even if the map were 
completely accurate (or if the IP were using the 
terrain database itself rather than a map), there could 
still be deviations from the planned route caused by 
an unexpected encounter with hostile or friendly 
vehicles. Thus, an IP may not be able to rely on just 
its original planned route; it may need to replan. 
Finally, human pilots typically do not rely on such 
detailed plans; and thus in forcing IPs to follow such 
plans, we are likely deviating from our goal of 
building human-like IPs. 

So instead, a Soar-based IP follows a hybrid 
strategy that combines a plan-based and reactive 
strategy. In particular, it relies on more abstract route 
plans, that provide it just two to three intermediate 
points.1 The IP then executes these route plans while 
reacting to sensory information that enables it to 
abide by the mission specified constraints. For ideal 
human-like IPs, this sensory information should be 
precisely what a human pilot would obtain visually 
by looking out the window. Unfortunately, for an IP, 
such visual processing is likely to be extremely 
complex and expensive. Therefore, special 
inexpensive sensors have been designed that 
approximate such visual processing. One such sensor 
is the look-ahead altitude sensor or LAS sensor. LAS 
is slaved to the parameters supplied by the IP. The IP 
sets parameters for LAS that specify a lookahead 
range and orientation, which in turn specifies a line 
segment of specific length and orientation originating 
from the IP's current location. Once these 
parameters are set, LAS scans the terrain database 
repeatedly (in fact, each time ModSAF schedules the 
agent for execution), and returns the highest altitude 
value along the specified line segment. For instance, 
to fly NOE, an IP sets LAS's parameters to a 
lookahead range of 50 meters, and orientation in the 

direction of its flight. The pilot reacts to LAS's 
response by modifying the altitude of its helicopter to 
be approximately 25 feet above the highest point.2 

The top half of Figure 2 shows a pilot agent 
making use of LAS to fly NOE. The shaded portion 
in the figure is a profile of the terrain, while the 
dashed line is a profile of the helicopter flying NOE. 
The straight lines indicate LAS's lookahead range 
while scanning the database. The bottom half of 
Figure 2 indicates a longer lookahead range, and 
change in the flight profile that that results. 

Figure 2: Illustrations of lookahead altitude sensor. LAS scans 
the terrain database each time the agent is scheduled 
for execution (illustrations not from an actual run). 

The precise value of the lookahead range is 
determined to a large extent by the speed of the 
RWA. In particular, for an NOE flight, an IP 
currently flies conservatively at a speed of 20 knots. 
With 50 meters lookahead, that gives it about 5 
seconds to change its altitude. The other flight 
methods, specifically contour, low-level and high- 
level flight, require that the RWA fly at a higher 
speed. This in turn requires that the IP set a longer 
lookahead range to give itself more time to react. 
Speed is however not the only factor determining the 
lookahead range. It is also dependent on the type of 
flight profile desired. For instance, at its speed of 80 
knots, an IP could potentially sustain the altitude 
required for its low-level flight with a lookahead of 
just 200-300 meters. However, the flight profile 
generated follows the terrain much too closely — it is 
not as smooth as the flight profile that results from a 
human pilot's low-level flight (at least as indicated 
by the experts). Therefore, the low-level flight uses a 
much longer lookahead range of 1500 meters. The 
high-level flight uses a lookahead range of 5000 
meters. 

Unfortunately, long lookahead ranges in LAS 
could potentially hinder an IP's real-time 
performance. Therefore, to lower its cost, LAS 
samples precisely 100 points along the specified line 

'At present, these abstract routes are provided by a human; 
although given that they are abstract, planning these routes is 
expected to be much less complex. 

2RWA agents in ModSAF appear to follow a similar technique 
(Tan, 1995). 
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segment irrespective of the lookahead range. Thus, 
despite the variation in the lookahead range in Figure 
2, LAS will scan precisely 100 points. This sampling 
resolution may appear to be very low, with the 
potential of missing high altitude cliffs. However, 
LAS's repeated scanning in effect improves its 
sampling resolution. In particular, since an RWA 
progresses towards its destination between two scans, 
successive scans sample slightly different points. In 
fact, each successive scan samples 99 points in the 
neighborhood of the points from its previous scan (on 
the same line segment), and one new point. This 
resolution could still be insufficient for some types 
terrain. For instance, if the terrain is an urban 
landscape with a sparse population of pin-shaped 
high-altitude structures,3 there is a small possibility 
that LAS may miss those in its scanning. In such 
cases, there may be a need to increase the sampling 
resolution. However, the 100 point scans have so far 
proved adequate over the terrain database used in our 
experiments (the RWA have not crashed). 

Figure 3 presents a flight profile from an actual run 
of a Soar-based RWA using the contour flight 
method. Figure 4 presents a flight profile from 
another run of a Soar-based RWA over 
approximately the same terrain, but using the NOE 
flight method. The shaded portion indicates the 
terrain, while the dashed line indicates the actual 
flight profile. IPs smoothen out the flight by using 
fuzz-boxes (McDermott and Davis, 1984) to avoid 
excessive altitude adjustments. 
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Figure 3: Illustration of a contour flight 
from an actual run. 

Similar low-cost, LAS-type sensors approximating 
a human pilot's visual input are currently being 
designed to enable the RWA pilots to fly through 
valleys. 
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Figure 4: Illustration of an NOE flight 
from an actual run. 

3.2. Hiding 
Once an RWA IP reaches its mission-specified 

battle area, it needs to engage in hiding-related tasks. 
In general, a battle area could be of an arbitrary 
(convex) shape, or specified in terms of landmarks, 
such as trees or rocks. The IP should be capable of 
locating good hiding positions within this area and 
move between hiding positions while remaining 
concealed from its enemy. This second terrain 
reasoning capability, at least at this level of 
generality, is very much an issue for future research. 
At present, we have restricted the battle area to be a 
rectangle. One side of this rectangular area, typically 
coinciding with a ridge or a tree line, is a mission 
specified line segment. This is in essence considered 
to be an imaginary wall, and any movement behind it 
is assumed to be hidden from the enemy. An RWA 
IP hides in a small rectangular area (defined with a 
width of 100 meters) behind this imaginary wall. 
When relocating to a new hiding position, it uses the 
NOE flight method to remain at a low altitude and 
thus hidden behind the wall. The approximations of a 
wall and a rectangular area for hiding are both based 
on our previous work in the groundworld domain. 
Groundworld involved a simulated terrain with 
random configurations of horizontal and vertical 
walls, where an intelligent agent had to hide behind a 
wall to escape from another agent pursuing it (Stobie 
et al., 1992, Tambe and Rosenbloom, 1993). 

4. Sharing and Reuse 
RWA pilots' missions have some requirements — 

such as, identifying enemy vehicles, firing missiles at 
target vehicles and flying in formation — in common 
with those of FWA pilots. These commonalities may 
be exploited to cut down development time by 
sharing or reusing both code and concepts from Soar- 
based FWA pilots in the development of RWA pilots. 
For instance, for an FWA IP, the code for firing a 
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missile involves three operators that orient its aircraft 
towards its target, then push a fire button to actually 
launch the missile, and then guide the missile (should 
the missile require guidance) via radar (or other) 
illumination of the target. These three operators can 
be reused in an RWA IP. At present, a Soar-based 
RWA EP has 44 operators, with 25 (that is about 
57%) reused in some form from the Soar-based FWA 
IPs. The 19 new operators are those involved with 
terrain reasoning tasks such as flying NOE, masking 
and unmasking. This sharing is accomplished simply 
by loading in appropriate operators from an FWA IP 
code in an RWA IP. 

Differences in concepts and terminology, however, 
make some of the sharing problematic. For example, 
for FWA pilots engaged in air-to-air missions, the 
concept of launch-acceptability-region or LAR of a 
missile combines both the range to a target and the 
target aspect (angle between the target's current 
heading and the straight line joining the target and the 
FWA pilot's current locations). Thus, if a target is 
heading towards the FWA pilot with a 0° target 
aspect, the missile may be fired from a long range; 
but the range is reduced substantially if the target has 
a 180° target aspect. In contrast, for an RWA pilot, 
the target aspect is irrelevant in calculating a 
missile's LAR — the missile may be fired at an 
equally long range irrespective of the target aspect. 
This creates a significant difference in the concept of 
a missile LAR for an FWA and an RWA IP, making 
the sharing of missile-LAR-related code difficult. 
There is an accompanying difference in the 
terminology as well — the RWA pilot refers to the 
missile LAR as a missile constraint. 

At least some of these apparent discrepancies in 
the two IP's concepts — and potentially their 
terminology — could be resolved if the agents reason 
about the concepts from first principles. For instance, 
agents could calculate a missile's LAR from first 
principles, based on the relative velocities (speed and 
direction) of the missile and the target. Since an 
FWA IP's target in air-to-air combat is a fighter jet, 
moving at a speed that may be only a half to a fifth its 
missile speed, its angle of movement (target aspect) 
becomes an important factor in calculating LAR. In 
particular, a target moving towards the FWA allows a 
missile to be fired from a much longer range; while a 
target that is moving away requires that the missile be 
fired from a much closer range, so that the missile 
may catch up with the target before expending all its 
fuel. In contrast, an RWA IP's target is moving two 
orders of magnitude slower than its missile — the 
angle of the target's movement has a negligible 
impact on the missile range. In other words, with the 
first principles calculations, the target aspect 
discrepancy automatically disappears. It will appear 
important in FWA IP's calculations, and negligible in 
an RWA IP's calculations. 

While such calculations from first principles would 
facilitate sharing, the calculations themselves may be 
prohibitively expensive, and hinder real-time 
performance. Soar's chunking (learning), could 
potentially compile such first principles calculations 
into new rules and alleviate this cost. However, that 
remains an issue for future work. We are currently 
relying on a lower cost alternative, where a 
problematic aspect of the agent code is rewritten 
when in reuse. 

5. Current Status and Future Work 
As of February 1995, the RWA agents are capable 

of performing a complete attrit mission, which 
involves flying to a battle area using one of the 
possible flight methods, followed by masking, 
unmasking, firing missiles at targets, and relocating 
to a different masking location between missile 
firings. We have run scenarios with up to four RWA 
IPs executing the attrit mission. 

At present the RWA IPs can fly in coordination, in 
pairs. Extending this work to enable coordinated 
mission execution involving a platoon or a company 
of RWA agents (with a platoon and a company 
commander), is at the top of our agenda for future 
work. Agents at higher echelons of command, such 
as a company commander, may also bring up issues 
of communication and mission planning, which we 
have currently not addressed. Other issues for future 
work, mentioned in previous sections, include 
improvement in terrain reasoning for hiding, and in 
code/concept sharing among Soar agents. 
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1. Abstract 

We introduce a multiple-agent hierarchical command 
system for automated forces based on distributed 
optimization of local cost functions. Issues of system 
design and software implementations are discussed 

2. Introduction 

We introduce a MAHCA or mutiple agent hybrid 
control architecture, for generation of computer- 
generated forces (CGF) and for use with semi- 
automated forces (SAF) \cite{mm94}. This architecture 
has already been applied to many other areas [13] [13] 
[17] [14], but each new application area presents new 
intellectual modelling challenges. Here we provide (1) 
an overview of ideas for apply existing MAHCA 
technology to overcoming technical barriers in CGF and 
SAF [24] and (2) a summary of results from a previous 
demonstration of use of MAHCA for generation of 
software which synchronizes logical behavior and 
continuum behavior of units involved in engaging 
multiple targets with multiple weapons platforms. 

As discussed in [23] and [22], activities in the area of 
doctrine-based software design are meant to ensure that 
the final SAF performance behaviors accurately reflect 
current Army doctrine. Achieving this goal is made 
more difficult by the fact that, even though doctrinal 
publications exist and are constantly updated, doctrine 
development is itself an ongoing, dynamic process. 
Additionally, even though the Army Materiel Systems 
Analysis Activity (AMSAA) has accurate models for 
many low-level, continuum activities, the integration of 
doctrinal constraints on CGF behaviors with continuum 
constraints on CGF behaviors remains an 
experimentation-based design process. The current 
approach for capture of battlefield activities in support 
of combat maneuvers is to use Army Training and 
Evaluation Program (ARTEP) documents to support 
creation of Combat Instruction Sets (CISs). A Combat 
Instruction Set (CIS) is defined as a computer-generated 
representation of tactical combat behavior at unit 

(Battalion, Company, Platoon, Squad, Section, and Fire 
Team) and platform (ground vehicle, air vehicle, or 
dismounted infantrv/engineer/scout entities at various 
levels of organization) level [22]. 

At a recent meeting on research challenges in DIS the 
increasingly difficult problem of achieving 
interoperability between heterogeneous visual systems 
such as Battlefield Distributed Simulation - 
Developmental (BDS-D) and Close Combat Tactical 
Trainer (CCTT) was discussed by a representative of the 
U. S. Army Simulation, Training and Instrumentation 
Command (STRICOM) [see [19] 9, p. 270]. At that 
same meeting Kohn, Nerode, and James discussed the 
application of MAHCA technology to advanced 
distributed simulation [21]. Here we augment that 
discussion with details concerning an initial experiment 
in building a multiple-agent simulation While not 
intended to capture the full complexity of the 
engagement process, the experiment did show the 
feasibility of using a declarative, formal approach for 
synchronization of logical and continuum models 
required for construction of a CIS. Also, since the 
MAHCA technology applies a formal extraction 
methodology, the experiments needed for the 
Verification, Validation and Accreditation (W&A) 
process for commissioning a CIS can be reduced. 
Finally, since MAHCA technology is declarative, the 
process of building the composite logical and continuum 
models is incremental, which supports rapid inclusion 
of doctrinal changes in CGF applications 

3. MAHCA Agents for Automated Forces 

The MAHCA Architecture assigns a software agent to 
each unit (Fire Team, Squad, Platoon,...) of a complex 
system which consists of a large number of interacting 
units. Each agent observes its unit, changes agent state 
as a function of the state of its unit and of messages 
passed from otheroptimization algorithm to extract a 
plan which comes close to minimizing the agent local 
cost function. Every agent's cost function is 
periodically updated by adding an adjustment term 
communicated from every other agent  This is one of 
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two forms of communication between the agents. The 
other is communication of constraints issued by agents 
higher in the hierarchy of agents. The agents otherwise 
compute autonomously. The plans the agent issues are 
advisory for its unit and, if followed, constrains the 
actions of that unit until its agent issues a new plan We 
use a simple form of optimization here. More 
complexoptimizations, based on chattering and the 
measure valued calculus of variation are the basis of 
general MAHCA, but are not employed in this paper. 

The agents have varying degrees of autonomy, but all 
have to obey the constraints of the system as expressed 
by doctrine, physical circumstances and laws, and also 
the constraints imposed by higher commands. We 
model a military command as a hierarchy of agents. 
Higher agents in the hierarchy can issue plans 
constaining the lower agent's behaviors. Starting 
bottom-up, each asset such as an airplane, tank, or scout 
vehicle is viewed as under the supervision of a 
corresponding agent Similarly with the human 
element A platoon has an agent for each Squad and a 
higher level agent for the Platoon Leader, each with its 
own cost function 

The system can be modelled by building agents bottom- 
up from the lowest military unit up to the highest level 
of command One new feature is that every agent has its 
own mathematical model of the local unit and its own 
local cost function, and is performing an optimization 
based on that model and cost function and terms from 
other agents and constraints from higher agents. A 
second new feature is that near-optimal plans are 
extracted by each agent and given to its unit A 
simulation based on this methodology is not limited to 
answering "what if statements after imposing 
strategies that arise from the outside, but can plan close 
to optimal strategies itself. A third advantage is that 
since a unit's cost function is what counts for 
determining unit interactions, aggregated units are fully 
compatible in the model with less aggregated units, 
provided only that the cost functions are properly 
adjusted. 

This is a fully scalable architecure for complex 
heterogeneous systems. Since we delegate as much 
computation as possible to local units to minimize 
interagent communications, this architecture is quite 
suitable for distributed simulation It can be 
implemented by putting one computer for MACHA at 
each simulator which can monitor and replace inputs 
and outputs of its simulator, and can communicate 
directly with other agents, plus with agents for the 
command hierarchy.     It is fully compatible with 

incorporating legacy simulators of all kinds, 
constructive, virtual, etc., because its fuhy integrated 
communications system between agents is there to take 
care of all impedance and phase mismatches between 
simulators to the extent this can be done at all. 

3.1 Agents 

What did our platoon level agent program incorporate? 

(1) Each tank squad has an agent of the same lowest 
hierarchy level. These are fellow agents. There is a 
platoon leader agent at the next higher level in the 
hierarchy. While it is feasible to create an agent for 
each squad member, we did not do so for our 
simulation experiment 

(2) The agent has a sensor system. 
(3) The agent contains a mathematical model of the 

system 

There are three sets of variables on the basis of which 
plans are made. 

(a) Variables correponding to readings of the agents 
sensor systems. These will be updated through 
online sensor readings. This group is updated as 
often as feasible. 

(b) Variables corresponding to information passed from 
other agents. These are not raw data, but assessed 
information which represent the other agent's 
judgements on the state of the system 

(c) Variables corresponding to orders passed down by 
the platoon leader agent 

There is no control exercised between fellow agents. 
Cooperation is achieved through information passing 
between agents which is about the global state of the 
platoon The Platoon Leader agent can enforce policy 
changes by adjusting the third set of parameters in the 
mathematical formula that is used to compute plans. 

(4) The platoon model has an information system and 
database. 

The platoon leader agent has the same design The plan 
of the platoon leader is given to the platoon agents. 
Similarly one can build extended hierarchies of agents 
corresponding to higher levels of command 

In the sections that follow we give a simple example of a 
multiple agent reactive decision system which we 
implemented at Picitinny Arsenal with the cooperation 
of Dr. Norman Coleman. 
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This was to demonstrate MAHCA multiple agent 
distributed control for a platoon of simulated tanks. 

4. Describing a Decision Problem 

The battlefield model was a p-kilometer x q-kilometer 
rectangle. For simplicity the terrain was assumed to be 
flat and open, so that no geometry of the battlefield was 
present to block the view of any sensor. 

On the foe side, there were m foe objects of different 
types, namely, foe tanks and foe scout vehicles. We will 
refer to scout vehicles simply as scouts. The scouts 
move around to gather information about friendly tanks, 
try to avoid being hit by friendly tanks, and at the same 
time try to destroy friendly tanks. The differences 
assumed between tanks and scouts were as follows. 

(1) A scout carries a missile launcher with a high hit 
probability if the scout is within 1km range of a target 
(2) A scout is more maneuverable than a tank. 

We assume that there are n stationary tanks on the 
friendly side. We could handle it if they maneuvered, 
but we considered only stationary friendly tanks 
(pillboxes) to simplify the implcmentatioa The sensor 
system of each friendly tank covers a fan-shaped sector. 
We require that the part of the battlefield beyond the 
300 meter line (from the bottom line) be fully covered 
by the three friendly tanks in normal situations. The 
friendly tanks are controlled by a multiagent control 
system intended to search for and to engage the foe 
objects. For the multiagent control system to make 
decisions, the friendly tanks send the information about 
the foe objects gathered by their sensors to the 
multiagent control system. 

5. The Decision Rules 

Each agent representing a platoon member has a set of 
rules made by a higher order commander. To make 
decisions based upon these rules, the agent is simulated 
as a nondeterministic automaton. The human operator 
plays an important role in making decisions in the 
following situations. 

(a) Several choices are available. 
(b) The system is in a fuzzy state. 
(c) There is no choice at all. 

Rule-based real time decision systems have been studied 
for twenty five years and have not been very successful 
in practice. One difficulty is the requirement of massive 
real time  rule processing.     Another difficulty  is 

distribution of inference tasks among agents. If the 
rules can't be decomposed into highly separate parts for 
different agents, the simultaneous inferences required 
can be very taxing. If a good decision could be made by 
passing five messages but there are only three messages 
that can be passed before making a decision, what do we 
do? A last difficulty is the inability to handle stability 
questions. 

In contrast, in our distributed cost based methodology, 
we replace rule based decision making by cost based 
decision making. This eliminates many difficulties 
associated with human operators, and, at the same time, 
real time performance is possible because distributing 
numerical parameters beats chaining through a 
distributed knowledge base. In this model, the messages 
which are passed between agents are mostly numerical 
values which update certain parameters of the cost 
functions of the agent, and take very little of the capacity 
of communication lines. 

We give samples from the rule base first We then 
describe some of the cost functions that we relied on in 
the next section. 

Sample rules for the friendlies: 

1. Engage with the closest foe object 

2 If the distance from two foe objects is 
approximately the same, engage the more dangerous 
foe object. 

3. Scouts are more dangerous than tanks. 

4. Among the three modes of the foe objects, the 
"engage mode" is the most dangerous. Traverse is 
less dangerous. Escape is the least dangerous. 

5. In general, don't let more than one friendly tank 
engage with a single foe object However, in some 
cases, such as when one foe object is much more 
dangerous than the rest, more than one friendly can 
engage the same foe object 

6. If a friendly tank is already assigned a particular foe 
object, then it has a higher priority of assignment to 
that same object in the next control command 
However, if there is an identified "emergency", it 
can be assigned to engage a new foe object even if it 
the current task is unfinished. 
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6. Designing Cost Functions 6.2 Prototype Cost Functions 

Recall that each agent has its own model of the system. 
There are three sets of parameters which contribute to 
decisions of agents. The first set consists of sensor 
readings. The second set consists of information passed 
by fellow agents to update the global state of the model. 
The third consists of higher order commander policies. 
which can change the decision making entirely. For our 
example we denote these parameters by r's's, X's and 
/w's. 

For a single agent in the platoon, a particular friendly 
tank, its action decision is based on numerical formulas 
Wii W2, Wy, WA and W% which represent the five foe 
objects. The three sets of parameters are as follows. In 
this description the subscript I corresponding IV, is 
omitted. 

1. Let r be the distance between the agent and the i-th 
foe object 

2. Let XA take values 0, 1, 2 corresponding to 
the number of other agents currently targeting the 
underlined foe object 

Let Kf represent the foe type, taking values 0,     1 
corresponding to being a scout or a tank. 

Let Knd represent the foe mode and take values 
0, 1, 2 corresponding to "Engage", "Traverse" and 
"Escape". 

Let X, represent the velocity. 

Let X,,, represent angular acceleratioa 

Let Xut represent the hit probability. 

3. m* nity, m^ m*, nta,, and m** are corresponding 
"weights" of the parameter X's. Furthermore, let m*be 
the "weight" which is assigned to the i-th cost function. 
By adjusting these weights, the higher agent has control 
of decision making for the platoon. 

6.1 Control Orders 

The agent computes a command every second. A 
control order is of the form of a tuple (/'a Te), where io is 
the index of the foe object which is to be engaged with 
Here Tcisa real number representing the time allowed 
to destroy the foe object 

All parameters in the following formula have subscript 

Wt = mwiT,{f)(X^nAr+At)mtyr+Amfnmr 

m 
+r + |Xv| mv r + \Xjpiaj-i+ —!3L-). 

•hit 

The foe object that is to be engaged is computed as: 

I0: Wn = min{Wx, W2, Wy, WM Ws). 

If a tie occurs, choose the one that will require the least 
gun barrel motioa 

Tfi) is a function used to stabilize the decision method. 

Let T,(f) = 1 if the 7 -th foe is not the target according to 
the last command of this agent If ;' is the target 
assigned last time, then T ,{t) is a function introduced to 
stablize the decision. It decreases linearly as time 
elapses. In this particular model, we took 7;. to be a 
fixed number when the target is new. If the decision is 
to target the same foe as was targeted in the last 
command, then Tc is to be the time left according to the 
last command, say Tc = Tc-\, since one second has 
passed since the issue of the last command. 

These are some examples of cost functions used. In a 
more detailed mode, one could include new terms 
representing facts such as the position of the gun barrel, 
network performance, etc. 

The choice of the target as that of least value is an 
optimization procedure. The weights chosen are crucial 
to the decision. By modifying these weights, the platoon 
leader has substantial control of the decision making. 
We omit discussion of the relation between local 
optimization and global optimization for lack of space. 

7. The Software Implementation 

Our hierarchical multiple agent command model for 
automated forces was designed to minimize 
communication costs and distribute computation as 
much as possible to individual agents. Each agent can 
be implementated on a work station, or as a group of 
processes, or on a PC. The agent network is 
implemented by networked computers. We chose the 
TCP/IP protocol to implement the communications 

48 



among agents. It may be better to build a 
communication kernel protocol directly. 

We describe the software implementation briefly. 

7.1 The Target Designation Module 

The agent target designation module assesses the 
environmental threat and designates targets for the tank 
associated with agent The multiagent controller is 
formulated as a distributed optimization problem with 
specially designed cost functions. 

In our simplified model, the parameters have 
deterministic values. The model is not event driven, 
that is, a command is computed every second based on 
the information available at the time. 

7.2 The Data Interpretation Module 

Because of the uncertainty of sensor data and possible 
time delay in message passing, one has to process raw 
data with some mathematical tools, i.e. probabilistic 
tools. The data interpretation module interprets the 
measurements and coordination messages, and resolves 
inconsistencies in data. The measurements and 
messages processed by the data interpretation module 
produce the parameters for foe mode, foe type and hit 
probability. Based on some task decomposition rules, 
each agent is responsible for the parameters of a subset 
of foes. The parameters then are passed to other agents. 

7.3 The Sensor Management Module 

The sensor management submodule schedules the area 
to be covered by the sensor system The sensor of each 
friendly tank covers only a sector of battle field 
However, the sectors are subject to change in order to 
guarantee optimal performace of the friendly sensor 
system. For example, if too many foe objects fall into 
the sector of one particular sensor, the system may want 
to change the covered sectors of the tanks. 

7.4 The Communication Module 

The communication module is responsible for sending 
coordination messages to fellow agents. For each agent, 
the only way to get access to global information is by 
message-passing. This is controlled by the 
communication module. For communication among a 
platoon group, we used star shaped network topology. 
That is, we implemented a virtual gateway to handle all 
messages. In this gateway, there were buffers for each 

agent containing dynamically sorted messages waiting 
to be transferred. The messages from the platoon leader 
agent also go through this gateway. As one can see 
from the last section, the weights of the corresponding 
parameter determine the relative importance of the 
parameter to the decision. Because we use a real time 
default scheme in computing decisions, an algorithm for 
dynamically sorting messages in the buffer according to 
importance was implemented. 

8. Conclusions 

We introduced a multiple-agent hierarchical command 
system for automated forces based on distibuted 
optimization of local cost functions. 

A sample cost-based decision system for a model of the 
problem of engaging multiple targets with multiple 
weapons platforms was implemented at Picitinny 
Arsenal with the cooperation of Norman Coleman and 
Wolf Kohn [14]. A software demonstration of the 
computer generated system controlled by cost based 
distributed controllers is available at Picatinny Arsenal 
and at OR A corporation. 

While the model which was implemented was not at the 
same level of detail as those being experimentally 
integrated to build CIS's, the demonstration did 
establish the feasibility of applying a declarative 
approch to integration of heterogeneous battlefield 
models. The high-level logic of assigning sectors of fire 
and performing target detection, identification and 
assignment was declarativery integrated with the low- 
level differential equation models of target motion and 
the engagement process. This approach supports easy 
change of the battle drill logic as well as the easy 
inclusion of more accurate nonlinear differential 
equation models of weapon system characteristics. 
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Abstract 

This article describes and evaluates a concise, yet 
rich representation paradigm that could effectively 
and efficiently be used to model the intelligent 
behavior of opponents in a simulation-based tactical 
training system. This feature would be quite useful 
in the training process for two reasons: 1) the trainee 
would face a realistic enemy who is knowledgeable 
about tactics in the domain of interest and, 2) the 
instructor would not be burdened with playing the 
part of the enemy in those training systems where 
this is commonly done. 

The representation paradigm proposed is based on 
the idea that applicable tactical knowledge is highly 
dependent upon the situation being faced by the 
decision maker (i.e., the context). A combination of 
script-like structures and pattern-matching rules in an 
object-oriented environment could serve to hold all 
knowledge pertinent to the context present at a 
specific time. This paradigm has been preliminarily 
tested in a prototype system that incorporates the 
knowledge of a submarine tactical officer on a patrol 
mission. Evaluation of the prototype shows that the 
context-based paradigm promises to meet the desired 
levels of conciseness and effectiveness required for 
the task. 

1. Introduction 

The use of autonomous and intelligent simulated 
adversaries in a training simulation can provide a 
more realistic experience to the trainees than would 
be presented otherwise. This would be especially 
true for tactical training simulators if an intelligent 
simulated adversary could be made to react and 
counter the trainee's tactics in a realistic fashion. 

Intelligent simulated adversaries will be henceforth 
referred to in this article as Autonomous Intelligent 
Platforms (or AIP's). They can be defined as 
instance representations of military platforms (i.e., 
submarine, destroyer, tank, helicopter, fighter 
aircraft) in a training simulation which behave as 
would a real platform in actual battle from a tactical 
standpoint. 

Tactical knowledge is required in order to endow 
AIP's with the ability to act, not only intelligently, 
but also realistically, in light of a trainee's actions. In 
general, tactical knowledge can be said to address 
time-stressed tasks which require 1) assessment of 
the situation at hand, 2) selection of a plan to most 
properly address the present situation, and 3) 
execution of that plan [Thorndike, 1984]. It is how 
this knowledge is represented and manipulated that is 
the focus of this research project. 

Most tactical tasks in the military consist of a pre- 
defined set of actions which are embarked upon after 
a certain situation has been recognized. The 
situation could be a mission, a set of orders, or 
merely a reflection of a specific set of battle 
conditions at the moment. The problem faced, 
therefore, is two-fold: 1) how to recognize the 
present situation (referred to as situational 
awareness), and 2) what to do when the situation is 
recognized (referred to as implementation of 
actionable information). 

The basis of our approach to the problem of 
concisely and effectively representing ATPs is based 
on the following hypotheses: 

1)   Tactical experts are proficient at their 
task by recognizing and treating only the 
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key features of the situation, and abstracting 
these for use as the premises for the general 
knowledge. Thus, they only use a small, but 
important portion of the available inputs. 
An example of this is the tactical exercise of 
driving an automobile. 

The driver of an automobile is generally 
bombarded with a multitude of inputs when 
driving: audio inputs such as engine noise, 
road noise, the radio, conversation with 
passengers, etc.; visual inputs such as the 
instruments, other automobiles, the 
surrounding scenery, pedestrians, etc.; 
tactile inputs such as vibrations of the car, 
the position of the steering wheel, the gear 
shifter, the clutch, etc.. These inputs are 
cognitively handled rather easily by the 
driver when they are all in the normal or 
expected range. However, if one of these 
should deviate from normal, such as the 
abnormal noise and vibrations resulting 
from a tire blowout, the driver will 
immediately focus on these inputs in order 
to recognize the present situation as a 
blowout, while ignoring all the other inputs 
being received. 

2) There is only a limited number of things 
that can realistically take place in any 
situation. Using the example above, it 
would not be expected that a tire blowout 
take place while waiting at a stop light. This 
can be used to advantage to prune the search 
space of the problem, since there is no need 
to consider a blowout while waiting at a 
stoplight. Getting rear-ended, on the other 
hand, is a much more likely proposition. 

3) The presence of a new situation will 
generally require alteration of the present 
course of action to some degree. For 
example, the recognition of a blowout at 
highway speeds will cause the driver to 
coast to a stop while maintaining a hard grip 
on the steering wheel, and directing the car 
towards the shoulder of the road. Thus, the 
context changed from one of normal driving, 
to one of blowout, with its attendant course 
of further action. This context remains in 
effect until the car comes to a complete stop, 
at which point another situation will be 
recognized and acted upon (i.e., get out of 
car, inspect tire, change tire etc.). 

The work described here is based on the idea that by 
associating the possible situations and corresponding 
actions to specific contexts, the identification of a 
situation is simplified because only a subset of all 
possible situations are applicable under the active 
context. The work also addresses what course of 
action to follow when a situation is correctly 
recognized. 

2. General Description Of Context-based 
Representation Paradigm 

Our approach to implementing the concepts 
described above lies in the use of Scripts. A script is 
a knowledge representation paradigm developed by 
Roger Schank at Yale University [Schank, 1977] 
which attempts to capture the actions, objects, 
persons, and concepts that may be related within a 
given context. For example, a restaurant script will 
be composed of all the actions which are typically 
part of going to a restaurant, such as reading the 
menu, ordering the meal, eating it, paying the bill, 
etc. A restaurant script also contains props, objects 
which are typical to a restaurant scene from the 
customer's standpoint, (e.g., tables, chairs, menus, 
food, eating utensils, napkins, salad bars, etc.) as well 
as actors (i.e., waiters, hostesses, chefs, busboys, 
etc.). The actions involved are only those typical of 
the restaurant experience. It would not be normally 
expected, therefore, that the customer wash her car at 
the restaurant. 

This concept can be easily extended to military 
tactics, where a script can be used to express the set 
of steps (at either a high or low level) that are 
necessary to carry out the action required by the 
present situation. Within the context of a mission, 
there is a limited number of things that are generally 
expected in terms of actions to carry out and the 
expectations in regards to the possible situations. It 
would be quite difficult to represent all this 
knowledge using rules alone. Thus, the basis for this 
research project is to use scripts (in addition to 
objects as well as a minimal number of rules) as the 
knowledge representation paradigm for a set of 
AIP's. For lack of a better name, this representation 
and reasoning paradigm will be referred to as 
Context-based Reasoning (CxBR). 

The approach proposed here is based on the 
following assumptions: 
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1) Life for an AIP is a continuous and 
dynamic decision making process. 
Decisions are heavily influenced by a never- 
ending sequence of contexts, each of which, 
when active, regulates the behavior of the 
AIP as well as provide an expectation for 
the future. Active contexts change not only 
in response to external events or 
circumstances, but also as a result of actions 
taken by the decision maker (the AIP itself). 
A context can be likened to a situation that 
has been recognized, and which has a 
prescribed set of procedures that must be 
carried out, either sequentially, 
methodically, or arbitrarily. One example of 
a context would be driving an automobile on 
an interstate highway at normal cruising 
speeds. The behavior of an AIP in that 
situation is controlled by the context that is 
active for it at the time. 

2) The active context may not be the same 
for all ATP's at the same time. This is 
reasonable to expect, since each may have a 
different mission, different sensor inputs, 
different capabilities, a different physical 
location, etc. 

3) At least one specific context or set of 
contexts is always active. More than one 
context can be valid, but only one may be 
active. Furthermore, all valid contexts must 
be compatible. Thus, one context must be 
the central focus of attention. For example, 
using the case of traveling in an automobile, 
the driver may be cruising on an interstate 
normally at the speed limit, a situation 
which may be characterized as normal- 
highway-driving. Moreover, he/she may 
also be hungry which can be as a situation 
labeled driver-hungry. If he/she is more 
anxious to arrive at the destination than 
willing to satisfy the hunger, then the first 
situation will dictate the action being 
undertaken. Thus, the active context would 
be normal-highway-driving. Otherwise, a 
driver-hungry context will be the active one 
and the action will shift towards finding a 
place to eat. 

4) Contexts are represented temporally as 
intervals of time rather than time points. 
Contexts can be considered to be transitions 

to reach a goal (look for a place to eat), or 
they can be a goal in themselves (eating). 

5) Goals can be time points, but only to 
serve as transitions to other contexts. For 
example, arrival at a destination can be 
defined as a goal of normal-highway- 
driving and it can be represented as a time 
point, but it is not a context in its own right, 
only a transition to another context (e.g., 
being-there). This process may go on until 
the mission ends. 

6) Only a limited number of things can take 
place in any single context A situation, 
therefore, by its very nature, will limit the 
number of other situations that can 
realistically follow. Using as an example 
the domain of submarine warfare, it would 
not be expected that the submarine would be 
attacked in its own home port. This can be 
used to advantage to prune the search space 
of the problem, since there is no need to 
watch out for a torpedo attack while waiting 
to be resupplied at port. If unexpected 
situations do take place, that introduces the 
element of surprise into the ATP's behavior, 
which is highly consistent with the real 
world. 

7) Certain cues exist which will indicate 
that a transition to another context is 
desirable. This makes use of the hypothesis 
that experts look for certain few specific 
cues which that will indicate a new situation 
(e.g., the vibration on the steering wheel 
upon a tire blowout.) 

8) The presence of a new context will alter 
the present course of action and/or the 
applicable expectations to some degree. For 
example, the recognition of a blowout at 
highway speeds will cause the driver to 
attempt to coast to a stop while maintaining 
a firm grip on the steering wheel, and 
directing the car towards the shoulder of the 
road. Thus, the context changed from 
normal-highway-driving, to one of tire- 
blowout, with its attendant requisite action. 
This context remains in effect until the car 
comes to a complete and safe stop (the 
goal), at which point another context will be 
recognized and acted upon (e.g., fix-tire). 

55 



By associating the potential contexts and 
corresponding actions to specific situations, the 
identification of a situation can be simplified because 
only a subset of all possible situations is applicable 
under the active context This context-based 
approach also easily addresses what course of acuon 
to take when a situation is recognized. 

This is in some ways similar to a system proposed by 
Thorndike [1984] called "Context Template-driven 
SAFOR". However, the latter appears to implement 
ATP's that are intelligent in a much higher level in 
that they can only respond to orders from higher 
command, or requests from subordinates. They do 
not appear to be able to perceive the environment 
independently. Moreover, the transition from one 
context to another appears to be significantly more 
rigid that what is being proposed here, which may 
lead to unintelligent decisions. Lastly, the system 
seems to not provide the capability to its AIP's to 
plan, a significant disadvantage. 

Czejdo and Eick [Czejdo, 1993] present an 
environment in which addresses the problem of 
large-scale knowledge management. Called the 
Tanguy Knowledge Base Management System, it 
integrates rules, objects and database features in 
order to take advantage of their respective features. 

Dreyfus and Dreyfus [Dreyfus, 1986] take exception 
to the idea of using contexts to simulate human 
intelligence in computers. They correctly point out 
that there can exist many contexts in the course of 
human life, and to attempt to account for all of them 
is a hopeless task. Nevertheless, their argument 
arises from the standpoint of refuting the claims that 
computers can be intelligent in the same way as 
humans, in all aspects of human intelligence. The 
objective of this work is less ambitious in scope, 
since the ATP's do not have to have the breadth of 
knowledge possessed by humans in order to appear 
intelligent in a training simulation. Rather, they 
only must appear to behave as a human enemy would 
in a very specific and narrow domain (i.e., submarine 
warfare, tank warfare). In fact, this may mean that 
they should not display optimal behavior, as that is 
not always typical under wartime stress. It is our 
belief that applying context-based reasoning as 
described below presents a highly effective and 
efficient methodology for imparting sufficient 
intelligence to ATP's so as to achieve their objective 
in a training simulator. 

2.1 Representation of Contexts 

In CxBR, contexts are the most important 
representational item. Much knowledge about how 
the ATP should behave, as well as to what other 
contexts it can transition is stored in the context 
objects themselves. There are three levels of 
contexts that can be represented, and they are ordered 
hierarchically. These are 1) the mission context, 2) 
the major contexts and 3) the sub-contexts. These 
will be described below. 

2.1.1 Mission Contexts 

A mission-context (simply referred to as a mission) is 
an overall definition of the objectives of the scenario. 
It defines the objectives as well as the constraints of 
the operation. The mission can also define the things 
to avoid during the mission. Examples of missions in 
the domain of submarine warfare are SEARCH- 
AND-DESTROY enemy submarines, MINING a 
harbor or choke point, GATE-KEEPING, BATTLE- 
GROUP-ESCORT, ANTI-SURFACE-OPERATION, 
SPECIAL-OPERATIONS, and others. A mission 
can define the types of lower level contexts which 
may be necessary during the execution of this 
mission. A mission context can also describe the 
political environment under which the mission is to 
be carried out For example, if a hot war is in effect, 
then the rules of engagement will surely be different 
than if a cold war is in effect No more than one 
mission will be active at any one time, and missions 
are mutually exclusive. So, a new mission would 
have to bump an existing mission from active status. 
In practice, however, there would be little need to 
change missions during the course of a training 
session. 

The mission defines the constraints as well as the 
Major-Contexts therein. It is a class definition in an 
object-oriented environment and contains the 
following attributes: 

Constraints: This attribute lists all the 
constraints that are imposed on the ATP 
during this mission. Some of these could 
be: withhold fire unless fired upon, any 
limitations placed upon the submarine's 
performance characteristics, etc. 

Avoid: This attribute describes anything 
that must be avoided at all times throughout 
the training scenario. One obvious one is 
destruction-of-self, but there may be others 
such as avoid counter-detection at all costs, 
etc. 
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Major-Contexts: This attribute lists the 
Major-Contexts present in the mission. For 
example, for a patrol mission (called 
SEARCH-AND-TRACK), the major actions 
for the AIP will be getting to its assigned 
sector, searching the sector in an appropriate 
fashion, tracking an enemy contact if one is 
found, and breaking contact to return home 
when certain parameters are fulfilled. 

2.1.2 Maior-Contexts 

Major-Contexts are the main focus of the Context- 
based reasoning and representational paradigm. 
They contain all the necessary information to operate 
the AIP, as well as to determine when the active 
context should be deactivated and another one put in 
its place. 

A major-context (or simply context for short) is a 
tactical operation undertaken as part of the mission in 
order to assist in achieving the goals set forth. One 
context is always in control of the AIP, and contexts 
are, also by definition, mutually exclusive of each 
other. Unlike the mission, however, contexts are 
normally activated and deactivated many times 
throughout the course of a training session. A 
context is activated by retracting from the fact base 
the fact that identifies the active status of the current 
context, and calling the initialization procedure of the 
newly activated context. The latter will assert into 
the fact base a new fact identifying the new context 
as the active one. This will allow the monitoring 
rule(s) that pertains to this context to become active 
and fire periodically. Furthermore, the initialization 
message will also modify any parameters that so 
require modification, such as possibly the AIP's 
heading, speed, depth, etc. In some missions, the 
sequence of some of the contexts will be known a- 
priori. Although some contexts may become invalid 
through the simple passage of time, this is not 
common. In most cases, the context will cease to be 
applicable due to either an action taking place or the 
completion of its task. Therefore, contexts are 
generally assumed to be active indefinitely, until 
bumped from active status by another context. 

Each context is defined as a class in an object 
oriented environment, and possess the following 
attributes: 

Initializer: References the name of the 
message-handler     which     is     executed 

whenever the context/sub-context is first 
activated to initialize all required variables. 

Objective: The objective slot puts a 
message as to what the objective of the 
context/sub-context is. The objective is in 
general terms and it references a frame that 
has some attributes that are the goal of this 
context/sub-context. 

Compatible-next-major-context: This 
attribute lists those contexts to which 
transition from the current context is 
acceptable. 

Compatible-sub-context: This attribute is 
a list of all sub-contexts which are 
compatible with the current context. For 
example, it would not be advisable to put an 
automobile in cruise-control when a blowout 
has taken place. Thus, the cruise-control 
context would not appear on that list. 

Additionally, some contexts will have slots that are 
specific only to them, and deal with universal 
variables that need to be known throughout the entire 
simulation. For example, the attack context will have 
a slot defining the target of the attack and another 
defining the number of weapons used. Likewise, the 
under-attack context will have a slot defining the 
aggressor (source of the weapons bearing down on 
the AIP). 

There may be other attributes added to the class 
definition for context/sub-contexts in the future. One 
particularly desirable would be a further refinement 
of the compatibility aspect by providing a numerical 
weight to each context to decide which one would be 
more desirable in the case where more than one 
would be acceptable given the current situation. This 
competing context concept is further described later 
in this article. 

2.1.3 Sub-Contexts 

Sub-contexts are lower level tactical procedures 
which are not critical in and of themselves to 
reaching the mission objectives. They are typically 
of temporally short duration. Sub-contexts are at this 
time mutually-exclusive with one another, but can be 
compatible, and thus co-exist, with the contexts. It is 
expected, however, that in the future, compatible sub- 
contexts may co-exist with one another on active 
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status as long as they control different variables. In 
cases of incompatibility, a sub-context will not be 
activated when an incompatible context is active. 
Likewise, when a new context is activated while an 
incompatible sub-context is active, the sub-context is 
immediately "short-circuited". In any case, however, 
the contexts always take precedence. It is not 
necessary for one sub-context to be active at all times 
as is the case with contexts. When no sub-context is 
active, the sub-context is said to be "none". 

The attributes of a sub-context objects are quite 
similar to those of a context, and thus will not be 
described further. 

2.2 Situation Assessment and Transitioning 
Between Contexts 

One of the foundations of the CxBR approach is that 
by knowing what the AIP is doing at any one time, it 
can know what to expect. This greatly facilitates the 
task of situational assessment. One example in the 
automobile driving domain is that when on an 
interstate highway, one does not have to be 
concerned with traffic crossing the roadway, as there 
are no intersections per se. When driving on city 
streets, however, one of the most dangerous 
situations is when the automobile approaches 
intersections, and thus, a driver has to be especially 
aware of them. The situational awareness function in 
the existing prototype is done by simply looking for 
parameter values that indicate that a change in 
context is warranted. This is a rather simple, yet 
quite effective means of doing situauonal assessment 
under CxBR. 

The basic recognition of the situation is done through 
pattern-matching rules. While this might not seem to 
be a concise way of carrying this out, the use of the 
active-context and/or active-sub-context pattern in 
the rule premise will significantly limit the solution 
space of the search as was described in the previous 
section. Rules will have a pattern in their premises 
that indicates the active context to which they are 
applicable. Only when there is a fact in the factbase 
indicating the active status of the appropriate context 
will these rules be "active" and capable of being 
executed. 

The transition among the various contexts is a critical 
issue in CxBR. This approach is based on the use of 
monitoring rules. Each major-context/sub-context 
will have at least one of these. These rules will fire 
continuously (every simulation cycle) as long as its 

parent context is active. In its right hand side, the 
rule will have a conditional statement(s) that will 
monitor the parameters which are relevant to the 
continuation of the context. Examples of these 
parameters are: whether the enemy contact has been 
detected, whether it is moving towards or away from 
the AD?, whether it is within firing range, etc. Once 
these parameters are satisfied and a change of 
context/sub-context is indicated, the rule will retract 
the fact that advertises the active context/sub-context. 
This will prohibit these monitoring rules from firing 
any longer. The rule will have the transition 
information embedded, so that it will call the 
initializing message for the new context/sub-context 
The initializer will set the revised parameters on the 
AD? as may be required, and post into the factbase 
the new facts that announce the newly-activated 
context/sub-context. This will allow the monitoring 
rule for that context to begin firing. 

In some cases, the transition to a new context/sub- 
context would be a result of an "external" message 
(e.g., a communication from fleet command). 
Examples of such would be a message to return 
home, or go to periscope depth to receive or transmit 
a more detailed communication. This external 
message is represented as a fact posted on the fact 
base which has a "prompt" indication (i.e., 
(communication prompt)). In such circumstances, an 
additional rule is required, which fires only once, to 
retract the current context/sub-context fact (as well as 
the prompt fact) and to invoke the initializing 
message that activates a new context/sub-context. 

Of course, there are also universal monitoring rules 
which are not tied into any one context/sub-context 
These rules search for situations which could occur 
under any context, such as being fired upon by an 
aggressor, or the detection of an enemy contact. 

A more thorough discussion of CxBR is included in 
[Gonzalez, 1993; 1994]. 

3. Implementation and Evaluation of the CXBR 
Approach 

In order to properly evaluate the ideas set forth in this 
article, two prototypes were developed and tested. 
Prototype #1 was developed in the submarine warfare 
domain, while prototype #2 was in automobile 
driving. Both of these will be discussed in this article, 
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but the first prototype is more comprehensive in 
nature and will thus be discussed more thoroughly. 

The two prototypes were implemented in CLIPS 5.1. 
This environment proved to be a good framework for 
the task, but certainly not ideal. Memory limitations 
of the DOS-based CLIPS version, its inability to 
match facts in the factbase with patterns anywhere 
but within rule premises, and its basic inadequacy as 
a simulation tool often made it cumbersome to use. 

3.1 Submarine Warfare Prototype 

While the implementation of submarine tactics was 
not per se an objective of the current investigation, it 
became clear that to design an appropriate 
architecture and develop a prototype that verified the 
use of that architecture, a limited set of submarine 
warfare tactics had to be defined. The first prototype 
was thus built to evaluate the behavior of the AIP in a 
SEARCH-AND-TRACK mission, in the presence of 
one enemy submarine (called ownsub). In order to 
make it self-contained, the prototype incorporated its 
own simulation of the submarine warfare 
environment, which took up considerable computing 
resources. 

All missions, major-contexts and sub-contexts were 
represented as classes in the CLIPS Object Oriented 
Language (COOL), as were the SUBMARINE 
classes and the weapon classes. Monitoring rules, of 
course, were implemented as CLIPS rules. 
Initialization messages were implemented as 
message-handlers in COOL. The central manager 
was composed of the main loop which contained all 
the procedures that were to be repeated every 
simulation cycle, and a number of other functions 
which carried out calculations such as distances, 
bearings, etc., when required. The output was in the 
form of a text report which, every five seconds, listed 
the x and y positions as well as the depth, of all 
submarines and weapons involved in the scenario. 

Interruptions could be made to the simulation to 
introduce control of the AIP by the instructor. 
Interactions permitted with the AIP through this 
interruption mechanism included orders to attack, 
communication prompts, baffle-clearing prompts, 
and return home orders. Interactions with other 
simulated submarines (called ownsub, and driven by 
the student being trained) included changing its 
heading, depth, speed, and firing its weapons. 

Upon satisfaction that the full Prototype #1 operated 
correctly, a version of it was built that could be 
interfaced with an external graphical simulation. 
This would allow the investigators to evaluate the 
feasibility of incorporating this technique within 
existing simulator training systems, a critical step in 
verifying its usefulness. The simulation employed 
for this purpose was the Intelligent Platform 
Modeling System (IPMS), a testbed being developed 
at the Naval Air Warfare Center, Training Systems 
Division in Orlando, FL. 

The externally-interfaced version of Prototype #1 
was developed by stripping off all the code from the 
full prototype which served to support its built-in 
simulation. A networked interface was used as the 
means of communication between the CLIPS-based 
ATP model and the DOS-based IPMS simulation. In 
order to resolve the memory limitations of the DOS- 
based CLIPS 5.1, a UNK-based version was 
employed, running on a Silicon Graphics 
workstation. 

The AIP (also called opsub) implemented in 
Prototype #1 was found to behave tactically correctly 
from a qualitative point of view when subjected to 
several different situations. The situations to which 
opsub was subjected included transiting to its 
designated sector using a sprint-and-drift tactic, 
searching the sector for enemy activity, maneuvering 
into position to track enemy contacts, tracking such 
contacts, clearing its baffles, getting into position to 
attack the enemy attacking the enemy when 
externally ordered, (in the spirit of a reconnaissance 
mission), and evading enemy attacks. Opsub was 
placed in these situations through the control of the 
location, bearing, speed, depth and weapons of 
ownsub. 

The externally-interfaced prototype was able to 
transit to the sector using a sprint-and-drift 
maneuver, and carry out a baffle-clearing tactic while 
doing a search of the sector. It was additionally 
capable of searching the sector, detecting the enemy 
(ownsub), maneuvering into position to track 
ownsub, and breaking contact to return home when 
told to do so. The prototype also performed an 
approach to fire its weapons. However, due to the 
inability of the IPMS to model weapons in the water, 
evaluation of attacking and evading attacks was not 
possible. 

The qualitative evaluations of the two versions of 
Prototype #1 described in this sections allows us to 
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conclude that: 1) the CxBR paradigm can be used to 
accurately represent the tactical behavior of an AIP 
from a qualitative standpoint, and 2) the paradigm 
has been shown to be compatible with a distributed 
simulation environment. 

Conclusion #1 is an essential one, since inability to 
be used to represent tactical behavior would 
invalidate the CxBR paradigm without the need for 
any further evaluation. Conclusion #2 is significant 
from a usefulness standpoint if AIP's are to be 
retrofitted to existing simulators. Moreover, it is also 
important in light of the U. S. Army's interest in 
distributed interactive simulations. 

3.2 Automobile Driving Prototype 

Qualitative success in the performance of the AIP 
prototype does not provide a complete picture of the 
viability of the CxBR technique. Furthermore, 
conciseness can only be unequivocally judged by 
comparing a CxBR prototype with an equivalent 
purely rule-based implementation of the knowledge 
and capabilities exhibited by a CxBR protolype. This 
was accomplished and the evaluation is described in 
the section that follows. 

The scope of the automobile driving prototype was 
more modest than that of Prototype #1. This 
prototype used an automobile simulator system 
[Klee, 1991] and implemented a short scenario where 
the AD? automobile (labelled student car) is cruising 
on a two-lane road and approaching a curve near an 
intersection where another car (labelled simulation 
car) is waiting to turn left into the road ahead of it. 
To complicate matters, a small truck (simulator van) 
is coming around the bend in the opposite direction. 
Figure 1 graphically depicts a bird's eye view of the 
scenario faced by the ATP. The AIP is tasked with 
avoiding a collision with both the car and the van, as 
the car attempts to cut in between the AIP and the 
approaching van. The scenario was varied by 
running various tests with different "release 
distances" for the car and the van. This meant that 
the distance available for the AIP to maneuver ranged 
from one where no real danger was present, to one 
where a collision was physically inevitable. The 
courses of action available to the AIP were to: 1) 
slow down (possibly through the application of 
brakes) in order to maintain a distance between itself 
and the simulation car; 2) brake and swerve to the left 
if there is sufficient distance to avoid hitting the 
oncoming van; and 3) swerve to the right (off the 
road) if there isn't sufficient distance. 

STUDENTS CAR 

Figure 1 - Bird's Eye View of 
Simulated Scenario 

Criteria of 
comparison 

CxBR Rules- 
only 

Execution 
time avg. 
(sec) 

CLIPS 
elements 

124.1 

53 

126.91 

43 

Table 1 - Summary of 
Quantitative Evaluation of CxBR 

The tactics used by the AD? to accomplish this were 
represented through contexts as described earlier in 
this article. At the same time, a rules-only 
representation was also implemented for the purpose 
of comparison.  Both implementations were done in 
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CLIPS 5.1 to make the comparison as straight- 
forward as possible. The parameters compared were 
1) the number of CLIPS elements used by each 
implementation and, 2) the time of execution 
required by each implementation. The results are 
shown in Table 1 above. A full description of the 
evaluation procedure is found in [Brown, 1994]. 

The execution times for the CxBR implementation 
were 2.26% better than those for the pure rule-based 
alternative. Although this difference is nearly 
insignificant, it does demonstrate that the CxBr is 
more efficient. This difference is expected to 
become more pronounced as the size and scope of the 
domain expands. 

In regards to the number of CLIPS elements, the rule- 
based alternative was actually more concise. Once 
again, the limited scope of the prototype skews the 
results, since the CxBR alternative requires a "fixed 
overhead" in CLIPS elements in order to adequately 
represent the tactical knowledge. This overhead is in 
the form of the classes for each context or sub- 
context defined for the tactic, and the message 
handlers involved with each class instance. As the 
situation becomes more complex, this overhead 
becomes a smaller part of the total knowledge, while 
the rules required for pure rule-based reasoning 
become more numerous to account for all the 
possibilities. 

4. Summary and Conclusions 

The use of contexts to represent and reason about 
tactical knowledge has the advantage of 
encapsulating all facets of such knowledge as it 
applies to a small slice of the entire domain 
knowledge. By modularizing the knowledge in such 
a way, and by explicitly expressing the relationships 
between the various contexts such that the number of 
possible transitions between contexts are inherently 
limited, efficiencies can be implemented. These 
efficiencies are in terms of economy of knowledge as 
well as in efficiency of execution of the system. 

This article describes the concept of Context-based 
Reasoning as well as two prototypic implementations 
of these concepts in order to evaluate its effectiveness 
in achieving the efficiencies expected. The 
prototypes were successful in achieving the 
objectives of the investigation. Nevertheless, areas 
of further work were discovered where the present 
system is deficient, namely in how to deal with time, 

either as historical information or as in planning the 
next move. Basically, the prototypes are reactionary 
in nature, as their planning capabilities are rather 
limited. Nevertheless, from a conceptual standpoint, 
planning is quite consistent with the general CxBR 
approach, and such a capability will be featured in 
future versions of the prototypes. 
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1.   Abstract 

Computer generated agents need to be able to learn 
meaningful actions in various tactical situations and 
explain the reasons behind such actions. Different 
inductive methods have been tried by a few research 
groups in teaching actions to such agents in tactical air 
simulations. There have also been some attempts to 
enable the intelligent agents explain reasons behind 
their own actions in the form of debriefing records. 
However, previous research has left the integration of 
learning and real time explanation as an open issue. The 
use of inductive methods in teaching tactically 
meaningful actions makes it rather difficult to integrate 
learning and explanation. In our research, we use 
explanation-based generalization in teaching meaningful 
actions and their real time explanations to an intelligent 
target. Our research aims integrating artificial 
intelligence in 1-v-l air combat scenario as part of an 
international EUCLID project for building a distributed 
intelligent simulation system. 

2. Introduction 

Recent research on computer generated agents focus on 
using artificial intelligence (AI) techniques in controlling 
such agents. Several research groups have studied the 
application of AI techniques in various aspects of air to 
air combat. These efforts include the application of 
neural networks for acquiring air combat decision- 
making skills (Crowe, 1990); automated agents for 
beyond visual range (BVR) tactical air simulation 
(Rosenbloom et al., 1994); knowledge based decision 
aiding for BVR combat with multiple targets (Halski et 
al., 1991); generating agent goals in an interactive 
environment (Jones etal., 1994); and agents that explain 
their own actions (Johnson, 1994). 

A large part of the current research relies on static 
knowledge based methods rather than machine learning 

techniques which enable the dynamic acquisition of the 
knowledge and skills of human behavior in tactical 
situations such as in air combat. 

In our research we attempt to implement explanation- 
based learning (EBL), a deductive machine learning 
technique, in teaching computer generated agents to 
perform intelligent behavior in BVR and close combat. 
This study is carried out as part of a joint EUCLID 
project RTP 11.3 which aims building a distributed 
simulation system capable of integrating C3I functions 
and AI techniques. The project uses ITEMS as the 
simulation environment. 

Explanation-based learning has been one of the 
extensively investigated machine learning methods in 
artificial intelligence (see, e.g., Mitchell et al., 1986). 
Different versions of EBL has been applied to a variety 
of tasks, such as learning concepts, control rules, planning 
and scheduling, but the majority of these applications 
are in small domains. 

3. The Task Domain 

The aim of our research is to develop techniques to 
create AI targets (AIT) capable of performing intelligent 
behavior in tactical air combat. The tactical behavior 
includes BVR and close combat, in a BARCAP (Barrier 
Combat Air Patrol) scenario for an F16 plane. The task 
is the intelligent control of the ATT from an AI station 
connected to the main simulation system via Ethernet 
(see, Figure 1.) 

The ITEMS simulation system is capable of representing 
a large number of independent agents called "scenario 
elements" or "targets" in a real-time 3-D environment 
including geographical, atmospheric and terrain data. 
In a scenario, the scenario elements can be controlled by 

'Also affiliated with: Department of Space Sciences and Technology, ITU, Maslak, 80626 Istanbul, Turkey 
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Figure 1. The hardware structure for the intelligent control of scenario elements. 

human operators or control programs. The ITEMS 
system itself has rule based facilities for developing 
control programs for creating automated agents. 

The acquisition of knowledge and skills for complex 
real-time behavior as in tactical air combat is a difficult 
task. Acquisition and handcoding of rules for such 
behavior is rather tedious, as it is difficult to foresee all 
possible interactions. Therefore, machine learning 
methods need to be used for the acquisition of such 
knowledge and skills. Some inductive methods have 
been used in acquiring the rules of intelligent behavior, 
e.g. from flight data obtained from exercises (see, e.g., 
Crowe, 1990;Sammutetal., 1992). However,inductive 
methods require a large number of training examples in 
order to support reasonably acceptable behavior. 

Additionally, it is difficult, by inductive methods, to 
integrate capabilities for the intelligent agent to explain 
its own behavior in every tactical situation. Behavioral 
explanations for intelligent agents have been studied by 
Johnson (1994) using SOAR, but the explanations 
provided by Johnson's Debrief system are post-flight 
explanations, rather than real time explanations. 

We have been developing an integrated system called 
RSIM, for controlling an F16 plane in the ITEMS 
simulation environment in an intelligent and human- 
like way. A prototype of RSIM has been tested on a 2- 
dimensional simulation medium for BARCAP mission 
in 1-v-l tactical situations. The RSIM prototype is 
capable of learning tactical behavior at training sessions, 
and producing and explaining its agent's behavior in 
real time during the execution of a mission. 

4. Control Structure 

In order to explain RSIM's operation, we will describe 
the program in terms of its problem space, its subsystems, 
and its inputs and outputs. As shown in Figure 2, the 
program consists of three subsystems: Situation- 
Assessment, Action-Management, and Learning 
operators. 

The simulation system which is controlled by RSIM, is 
a program which creates and moves simple objects (or 
targets) in a 2-d space in accordance with the inputs 
received from RSIM. The inputs indicate the positions 
and headings of the targets and the missile fires. The 
simulation system calculates the positions of targets by 
their intended headings, and moves targets to those 
positions. It receives inputs in cycles, and operates 
continuously. 

RSIM's Situation-Assessment operator enables the 
system to continuously assess tactical situations in the 
simulation environment. The problem space of RSIM 
consists of two targets, an AI target (AJT) and a man 
controlled target (MCT) moving in a 2-d space. Both 
targets have the same degree of freedom of movement. 
Each target can move at the constant speed of one pixel 
at 1/2 second. There are 12 state variables for the 
targets. The variables and their types are as follows: 

x,y, coordinates (AJT/MCT) (integer) 
Headings (AJT/MCT) (8 directions) 
Range (AIT-MCT) (real) 
Positional angle (AJT-MCT) (real) 
Time (real-time) 
Missile range (integer) 
Missile fired (integer) 
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Figure 2. Control structure of RSIM. 

The values of the state variables at each instant, 
determines the problem situation. As the targets change 
their positions every 1/2 second, the problem situation 
changes accordingly. At every cycle, RSIM has to 
make situation assessment, and has to decide which 
action to take. The Situation-Assessment operator 
reads the coordinates of the targets and calculates the 
distance and the positional angle between the targets. 
The state variables and their values are sent to a message 
list by the Situation-Assessment operator. This message 
list is read by the Action-Management operator. 

The Action-Management operator has three functions: 
Select-Maneuver, Missile-Control, and Explain- 
Behavior. The Select-Maneuver function decides the 
action to be taken by the ATT, by reading the message 
list and matching the operational variables in the message 
list with the action rule set. The rule that matches is 
selected as the action rule. 

Each action rule points to a simple maneuver, where 
each maneuver consists of a four pixel motion. As 
shown in Figure 3, there are five such simple maneuvers: 
go straight (gs), soft turn right (sr), hard turn right (hr), 
soft turn left (si), and hard turn left (hi). Each maneuver 
lasts two seconds. 

gs 

"•% 

All messages of the Action-Management operator, 
including the explanations, are sent to the simulation 
system. The maneuver messages are applied by the 
simulation system in single-step actions. For example, 
a command message that says "apply gs maneuver" (go 
straight), is performed by moving the target four pixels, 
one pixel at a time, maintaining the target heading. 

Figure 3. Five simple maneuevers for RSIM agents 

Although the selected maneuvers last two seconds, 
situation assessments continue to be made at every 
cycle of 1/2 seconds. In this way, when AIT enters in a 
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missile firing position during a simple maneuver, the 
Missile-Control function fires a missile if the latter is 
available. 

Conditions: Distance is D6, 
Angle is A5, 
Heading (AIT) is E. 

Action: Apply maneuver GS. 

Explanation: Target detected. Approach 
target. 

Figure 4. Example of a rule generated by RSIM. 

The Action-Management operator can explain the 
reasons for selecting a particular maneuver by sending 
a message to the simulator to be displayed in a screen 
window during the execution of that maneuver. In this 
way, the behavior of ATT is explained for every simple 
maneuver in a series of maneuvers. 

RSIM has a learning subsystems which learns action 
rules for the AIT by an explanation-based generalization 
(EBG) mechanism. This method relies on deductive 
inference based on the following: i) a goal concept, ii) 
a domain theory, iii) training examples, and iv) a 
description of the form in which the learned concept is 
to be expressed, i.e., the operationality criterion. Unlike 
inductive methods, EBG constrains the search by relying 
on knowledge of the task domain and of the concept 
under study. After analyzing a single training example, 
this method is able to generate a valid generalization of 
the example along with a deductive justification of the 
generalization in terms of this domain knowledge. 

RSIM's EBG operator generalizes problem states into 
general problem states which are predefined by using 
domain knowledge. In a training session, the program 
finds the generalization of each problem state, and 
associates the action taken by the instructor with the 
generalized problem state. Action rules and explanations 
are learned during training sessions in an incremental 
fashion. 

Action rules are if-then rules that match situations with 
simple maneuvers. At each problem state, operational 
variables in the message list which is periodically 

updated by the Situation-Assessment operator, define 
the current situation. If no rule exists to match the 
current situation, then the Learning operator asks the 
instructor which maneuver to select. The Learning 
operator then generalizes the current situation, and 
records it as the conjunctive conditional part of the rule 
whose action part is the selected maneuver. The 
generalization consists of generalizing the values of the 
operational situation variables form real values to a 
predetermined range. In this way, e.g., the distance and 
angle between the two targets are mapped into particular 
ranges of distance and angle. 
The instructor also gives an explanation as to why that 
particular maneuver was selected. This explanation is 
associated with the action rule generated for the current 
situation as the reason for the selection that rule. An 
example rule is shown in Figure 4. The rule in this figure 
says that when the distance between the targets is within 
D6, the positional angle is within A5, and the heading of 
the ATT is east, then continue to go straight. The reason 
for this particular maneuver is that the target has been 
detected and the intention is to approach the target. 

RSIM can apply the rules that it has generated as soon 
as the matching situations arise. In other words, the 
program generates and uses its rules in a dynamic way. 
Once the training session ends, learned rules can be 
stored in a rule file for future use. Figure 5 shows the 
behavior of RSIM against an automated target when the 
system had 85 rules in its rule base. 

5. Discussion 

RSIM's methods of learning are similar to that of LEX 
(Mitchell et al., 1986) in that it learns to associate 
problem states with operations or actions. However, 
unlike LEX which has been applied to static problems 
such as learning to solve linear equations and integrals, 
RSIM operates in a dynamic environment. Additionally, 
the number of RSIM's problem states (over 400) and 
associated action rules are much larger than that of LEX 
(about 25). 

On the other hand, RSIM controls objects in a 2-d space, 
and needs to be further developed for objects moving in 
a 3-d space. The system is being tested on the Flight 
Simulator for 1-v-l air combat, where the simple 
maneuvers are redefined, and explanations are associated 
with the rules after training sessions. Beside EBL 
techniques, algorithmic techniques are also being tested 
for BVR and close combat maneuvers. This seemed 
necessary for comparison for deciding where each 
technique is more efficient. 
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Figure 5. The behavior of the ATT (dark triangle) controlled by RSIM, against an automated target. 

As has been described, RSIM can explain its behavior 
during a scenario in a continuous way. Explanation of 
agent behavior in flight simulation has been the subject 
of a recent paper by Johnson (1994), but his explanations 
are post-flight explanations rather than real-time. 
Sammut et al. (1992) have used inductive methods for 
generating rules to control a fixed-wing aircraft in the 
Flight Simulator, but explanation-based methods have 
not been applied for such tasks. 

Crowe (1990) describes the use of neural nets for 
learning air combat rules in a prototype. The main 
advantage of EBL over inductive methods is its ability 
to use domain knowledge effectively in generating rules 
of action, and hence its reliance on a far fewer training 
examples than the latter. 

6. Conclusion 

In this paper we described a simple real-time intelligent 
system RSIM which learns how to control a computer 
generated agent against another one moving in a 2-d 
space. The system learns its control rules by explanation- 
based generalization. The learning consists of turning 
human performed actions in a particular situation into 
rules of action applicable in a generalized situation. In 
this way, the program generates a set of condition- 
action rules which enable an agent to perform intelligent 
behavior, and explain its own behavior in real-time in a 
2-d space. 

RSIM has been developed as a prototype for testing the 
applicability of deductive machine learning methods in 
3-d simulation environments. 
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1.   Abstract 

One of the major challenges which confronts DIS 
researchers today is that of integrating simulation 
systems which are rooted in vastly different domains. 
These simulations are designed with different 
architectures and developed for varied goals. 
Constructive models are developed for performing 
analytical combat analysis, typically in a standalone 
environment. Entity-level, DIS simulations are 
developed for training and testing in a distributed, 
networked environment. High-fidelity engineering 
models are developed for engineering analysis of new 
or prototype vehicle, weapon, or sensor systems in a 
standalone environment, or as embedded software. In 
addition, fielded military systems have their own 
unique origins, approaches, and goals. 

In order to successfully integrate systems such as 
these with varied origins, architectures, interfaces, and 
goals, many problems need to be solved. While 
many projects have attempted to integrate some of the 
above types of systems, few, if any, can claim 
successful integration and interoperation of all four. 
The JPSD CLCGF project has successfully 
demonstrated this achievement. 

In this paper, we present work which has been 
performed on the JPSD CLCGF project with an 
emphasis on the integration between constructive, 
virtual, live, and engineering simulations. 

2.   Introduction 

2.1  The JPSD  Program 

The Joint Precision Strike Demonstration (JPSD) 
program's goal is to introduce and implement new 
technologies into the defense arena that can address 
and correct precision strike deficiencies. To facilitate 
this goal, the JPSD program has created a simulation 
environment which is used to evaluate technologies, 
train users, and perform experiments necessary to 
reduce sensor-to-shooter timelines and to attack high- 
value, time-sensitive targets. As part of this 
environment, the JPSD program has sponsored the 
construction of the Corps Level Computer Generated 
Forces (CLCGF) system. 

The primary purpose of the CLCGF is to provide the 
corps level simulation environment for DIS exercises 
in which the above mentioned program goals can be 
carried out. The CLCGF is used during the JPSD 
exercises to simulate maneuver and artillery units 
contained in an Army corps. The simulated units 
provide stimulus for and interact with tactical 
hardware systems and their operators, and interact 
with high-fidelity, engineering simulations. The 
CLCGF has been created by integrating the Eagle 
constructive simulation with the ModSAF entity- 
level simulation. 

2.2  The  CLCGF  System 

Entity-level simulations represent each entity which 
exists on the virtual battlefield at the individual 
platform level. They typically represent entities from 
the individual platform level up to the company level. 
They use the DIS protocol to interact with other 
entity-level simulations, and simulate the physical 
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characteristics of each entity to determine battlefield 
outcomes. On the other hand, constructive 
simulations represent groups of entities as single, 
aggregate unit objects. They typically represent units 
at the company or battalion level up to the division 
or corps level. They are typically not designed to 
interact with other simulations, but instead simulate 
the entire battlefield internally, and use Monte-CarJo 
techniques to determine battlefield results. 

The DIS environment has traditionally included only 
entity-level simulations. It has provided a sound 
environment for small-scale, tactical troop training, 
as well as a potential testbed for evaluating new 
vehicle and weapon systems. However, simulating 
the effects of entity-level simulations in corps level 
operations has remained beyond the reach of the DIS 
environment, due to network bandwidth and computer 
resource constraints. Using current network and 
computer technology, a traditional DIS exercise is 
simply not capable of supporting a corps level 
operation. This was the primary motivation for 
creating a CLCGF which utilizes both constructive 
and entity-level simulations. Transmission of unit 
state data at the aggregate level is a key factor which 
decreases network load by significantly decreasing the 
number of PDUs transmitted in a large-scale exercise. 
If DIS is to support a 100,000 entity exercise, 
representation of some units on the battlefield as 
aggregates is likely. 

The simulation engine of the CLCGF has been built 
by integrating the constructive, aggregate-level 
simulation Eagle, with the virtual, entity-level 
simulation ModSAF. This simulation engine 
interacts with various live, tactical hardware systems, 
including: the All Source Analysis System (ASAS) 
Warrior and Ground Station Simulator (GSS) for 
presentation of the tactical battlefield situation to the 
operator and potential target nominations; and the 
Automated Deep Operations Coordination System 
(ADOCS) for the creation and assignment of fire 
missions. The simulation engine interacts with the 
STRIKE engineering-level simulation, which 
simulates the deployment and flyout of smart 
submunitions. It also interacts with the TAFSM 
simulation, which it utilizes to simulate the 
deployment and flyout of various smart 
submunitions.   In addition, the CLCGF interacts 

with various other DIS simulations, such as the 
Warbreaker SimCore simulation. 
In order to allow military training and analysis of 
scenarios of interest to JPSD, the CLCGF must 
generate a full corps-level exercise. To accomplish 
this goal, many technical challenges need to be 
addressed. These involve issues such as efficient 
incorporation of aggregate units into DIS, effective 
incorporation of DIS entity-level information into 
constructive simulations, development of a dynamic 
aggregation/deaggregation protocol, interaction 
between constructive and entity-level simulations, and 
interaction between a constructive/virtual simulation, 
live systems, and engineering-level simulations. The 
work performed on the CLCGF to date has focused on 
these fundamental goals. 

2.3 CLCGF Interaction with other JPSD 
Systems 

In order to create a test and evaluation environment in 
which to conduct JPSD experiments and studies, the 
requisite constructive, virtual, and engineering-level 
simulations must interoperate with one another, as 
well as with current and future fielded, tactical 
systems used in Army Corps operations. A block 
diagram of the CLCGF system and the non-DIS 
systems with which it interfaces is shown in Figure 
1. 

The CLCGF system consists of the linkage between 
Eagle, the SIU (Simulation Integration Unit - whose 
primary function is to link Eagle to the DIS 
network), and ModSAF. It is responsible for 
simulating the entities and aggregate units on the 
corps battlefield, presenting a plan view display of the 
map and all units and entities, interacting with other 
DIS simulations, and interfacing with the other non- 
DIS systems shown in the block diagram. The 
ASAS Warrior and GSS systems are used to present a 
picture of the tactical battlefield situation to an 
operator (via communication feed from a JSTARS 
radar), and to initiate precision strike target 
nominations. The ADOCS system is used to create, 
monitor, and assign fire missions to corps artillery 
assets. The STRIKE simulation is used to simulate 
the deployment, flyout, and impact of smart sub- 
munitions. These systems and their interactions will 
be described in the remainder of this paper. 
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Figure 1: CLCGF Interface Block Diagram 

3.   Integration   of  Constructive.   Virtual. 
Live,   and   Engineering   Simulations 

Many issues need to be addressed in integrating 
simulation systems with different origins, since they 
were designed and developed with different goals in 
mind. Some, such as constructive models, were 
developed for performing analytical combat analysis 
in a standalone environment. Others, such as DIS 
entity-level, virtual simulations, were developed for 
training is a distributed network environment. Still 
others, such as high-fidelity engineering models, were 
developed for engineering analysis of new or 
prototype vehicle, weapon, or sensor systems in a 
standalone environment, or as embedded software. 
The technical approach and level of fidelity of the 
resultant simulations varies greatly. In addition, 
fielded military systems have their own unique 
origins, approaches, and goals. 

In order to integrate these systems of varied origins, 
architectures, interfaces, and goals, problems such as 
communication, time synchronization, level of 
fidelity, and terrain and environment correlation need 
to be solved. 

Communication: Constructive models and 
engineering-level simulations are typically developed 
as standalone systems. DIS simulations are 
developed with the capability to communicate with 

one another via the DIS protocol. Tactical military 
systems are typically capable of communicating with 
other relevant tactical systems via some military 
standard protocol (e.g. TADIL, TACFIRE, etc.). 

Time Synchronization: Constructive models 
typically run faster-than real time in order to simulate 
outcomes of events which occur over the course of a 
large-scale battle in a relatively short period of time. 
Some constructive simulations are capable of running 
in real time. DIS simulations must run in real time, 
since DIS exercises typically include humans in the 
loop. Some DIS simulations are capable of running 
faster-than real time. High-fidelity, engineering-level 
simulations typically run slower-than real time, since 
they are modeling in software some processes and 
functionality which will be implemented in hardware 
in a real system, and since they need to allow for 
inspection into the system. Tactical military systems 
run at real time since they are operating in the real 
world and require a human operator. 

Level of Fidelity: Constructive models represent 
battlefield entities as aggregate units, usually at or 
above the company level. DIS simulations represent 
battlefield entities at the platform level, and the level 
of fidelity is typically low, but does vary from 
simulation to simulation. Some computer generated 
forces systems are capable of performing coordinated 
entity behaviors up to the company level, and varying 
the level of fidelity of the platforms which they 
simulate. Engineering-level simulations are high- 
fidelity models of an actual or prototype platform 
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system. Tactical military systems are high-fidelity 
systems which are built to the specifications which 
are needed for a given real world application. 

Terrain and Environment Correlation: Constructive 
models typically represent the terrain as large 
homogeneous areas of mobility and intervisibility 
characteristics, with aggregated features. DIS 
simulations represent the terrain at a higher level of 
fidelity, with sampled elevation data and small 
obstacle and feature information. Engineering-level 
simulations typically represent the environment in 
which they execute at a very high level of fidelity, 
since their purpose is to perform analysis of how a 
platform will perform in the real world. Tactical 
military systems operate in the real world, and 
therefore do not require any model of the 
environment. 

In addition, there are many other areas in these 
systems in which a common concept or feature is 
represented. But even these aspects, which seem to 
be non-issues on the surface, require some translation 
from one system to the other, since the various 
systems typically implement their solutions using 
different approaches. 

All of these issues serve to make the challenge of 
integrating constructive, virtual, live, and engineering 
systems a difficult one. 

4.   CLCGF   Simulation   Engine 

4.1       Constructive/Virtual 
Linkage 

Simulation 

Some of the issues involved in integrating 
constructive and virtual systems have been 
documented and addressed in implementations by DIS 
researchers (Calder et. al. 1994, Karr et. al. 1994, 
Karr et. al. 1993, Hardy et. al. 1993). Various 
approaches have been taken to solve these problems, 
and some achievements have been made. All 
successful constructive/virtual linkage projects have: 

- represented aggregate units in DIS by transmitting 
aggregate unit state information on the DIS network 

- represented virtual entities in the constructive model 
by forwarding entity state information from the DIS 
network to the constructive model 

- deaggregated constructive model aggregate units into 
virtual simulation DIS entities 

- re-aggregated virtual simulation DIS entities into 
constructive model aggregate units 

- communicated aggregate unit orders to DIS entities 
upon deaggregation 

- reported deaggregated unit status to the constructive 
model 

- provided indirect fire interaction between aggregate 
units in the constructive model and DIS entities in 
the virtual simulation. 

The implementation of these solutions has varied 
from point solutions to robust architectures. 

However, there still exists a second category of issues 
and problems which have not been solved, or even 
seriously addressed, to date. These include 
improvements in terrain correlation between 
constructive and virtual terrain databases, 
implementation of direct fire between virtual entities 
and constructive aggregate units, incorporation of 
constructive units as aggregate entities in the virtual 
simulation, time synchronization between 
constructive and virtual models, control of spreading 
deaggregation, and, in general, the elimination of 
combat results correlation error. 

The CLCGF project has implemented robust 
solutions to the first category of problems. We have 
also begun to address some of the problems in the 
second category, most notably in the incorporation of 
constructive units as entities in the virtual simulation 
and in the control of spreading deaggregation. These 
solutions will be discussed later in this paper. 

4.2  Eagle/ModSAF   Simulation   Linkage 

The simulation engine of the CLCGF has been built 
by integrating the constructive, aggregate-level 
simulation Eagle, with the virtual, entity-level 
simulation ModSAF. Use of these existing systems 
enabled the JPSD program to create a useful CLCGF 
quickly and with less risk. These two simulations are 
a good match since Eagle can simulate aggregate 
units down to the company level, while ModSAF can 
simulate entities in units up to the company level. 
In addition, work on integrating Eagle with another 
CGF system, the 1ST SAF, had already made a great 
deal of progress and provided a solid interface between 
Eagle and the virtual world. In addition, ModSAF is 
a fully distributed system and has a mechanism, the 
Persistent Object (PO) protocol, for implementing 
distributed command and control of CGF and for 
representing information about "persistent" objects 
(e.g. missions, graphics, overlays, etc.). 

In order to link Eagle with ModSAF, a mechanism 
was needed to allow the two simulations to 
communicate.    Previous work in the Integrated 
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Eagle/BDS-D project linked Eagle with the 1ST SAF 
(Karr et. al. 1994/1993). This project created an 
interface to Eagle which facilitated transmission and 
receipt of aggregate unit and deaggregated unit state 
information to and from Eagle, as well as other 
relevant information. This interface was called the 
Simulation Integration Unit (SIU). We decided to 
reuse the SIU interface mechanisms and message 
formats established by this project, in order to get 
maximum reuse of their efforts and to establish a 
working system as quickly as possible. In addition, 
reuse of this software allowed us to make significant 
progress without the need for changes to the Eagle 
software. 

Given the SIU interface mechanism along with the 
existing interface message formats, we needed to 
provide the linkage to ModSAF. The easiest way to 
do this was to use ModSAF itself as the cornerstone, 
since many of the features and functionality needed for 
an Eagle/ModSAF SIU were already present in 
ModSAF (e.g. DIS interface, PO protocol, GUI, 
etc.). Given this decision, we incorporated the 
Integrated Eagle/BDS-D SIU interface mechanisms 
and message formats into ModSAF. The resultant 
SIU for our project is a modified version of ModSAF. 

The SIU performs many functions including 
communication between Eagle and DIS, 
communication between Eagle and ModSAF, 
simulation of aggregate unit entities, approximation 
of aggregate unit position between Eagle time steps, 
display of aggregate units on the ModSAF PVD, 
dynamic aggregation and deaggregation of units via 
various mechanisms, and intelligent vehicle 
placement in the deaggregation process. 

Figure 2 shows the interaction of the components 
which comprise the CLCGF simulation engine. 
Eagle communicates via remote procedure calls 
(RPCs) with a process called the Eagle RPC Server. 
The information passed over this interface is described 
in section 4.3.1 below. The Eagle RPC server runs 
on the same host as the SIU, and communicates with 
the SIU via shared memory. The information passed 
over this interface is described in section 4.3.1 below. 
The SIU communicates with one or more ModSAF 
simulators via the Persistent Object (PO) protocol, 
and with other DIS simulations (including ModSAF) 
via the DIS protocol. 
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RPC 
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Figure 2: CLCGF Simulation Engine Components and Interfaces 
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In order to integrate Eagle and ModSAF into the 
CLCGF for JPSD, we needed to modify the 
application software of both simulations, and create a 
new, ModSAF-based SIU. The design and 
implementation of the resultant features are discussed 
in detail below. 

4.3  CLCGF  Features 

4.3.1 Eagle<->SIU Interface 
For Eagle to be capable of limited participation in a 
DIS exercise in the CLCGF, the SIU needs to serve 
as the link between Eagle and the DIS network, as 
well as the link between Eagle and ModSAF. This 
was accomplished by implementing an Eagle<->SIU 
communication interface in the ModSAF-based SIU. 
This required creating a new ModSAF library, 
"libsiu", which implements this interface. It sends 
and receives messages and data to the Eagle RPC 
Server via shared memory. The major 
communication functionality supported by "libsiu" 
includes: 

- Creation of Eagle aggregate units in the virtual 
world, to facilitate transmission of aggregate unit 
state information on the DIS network. 

- Update of Eagle aggregate unit state information, to 
facilitate transmission of accurate aggregate unit state 
information on the DIS network. 

- Reporting of deaggregated unit state information to 
Eagle to provide a mechanism for status information, 
such as that typically contained in situation and spot 
reports, to be transmitted to Eagle to keep Eagle 
informed of the state of deaggregated units in the 
virtual world. 

- Reporting of aggregation/deaggregation status to 
Eagle for all units, to keep Eagle informed of which 
units are under its control. 

- Aggregation/deaggregation of a unit upon Eagle 
request, to allow Eagle to initiate aggregation and 
deaggregation of units based upon certain criteria. 

- Deployment of indirect fire from Eagle's 
constructive world into the DIS virtual world, in order 
to effect DIS entities. The SIU transmits fire and 
detonation PDUs on behalf of Eagle for all Eagle fire 
missions. This allows constructive indirect fire to 
effect the virtual world. 

- Requesting that fire missions received from the 
virtual   world  (via  simulators  or  live,   tactical 

hardware) be passed to Eagle and performed as Eagle 
fire missions. 

4.3.2 Aggregate Unit Protocol 
A protocol for aggregate units and their 
aggregation/deaggregation has been defined and 
implemented. It specifies the format and the 
transmission, receipt, and processing requirements of 
DIS 2.0.3 experimental PDUs to facilitate aggregate 
units. Specifically, two new PDUs have been 
defined: the Aggregate State PDU (ASPDU) and the 
Deaggregation Request PDU (DRPDU). 

The ASPDU is similar in usage and purpose to the 
DIS Entity State PDU, but is used only for aggregate 
units. It allows Eagle aggregate units to be broadcast 
on the DIS network similar to the way entities are 
normally broadcast in traditional DIS exercises. The 
ASPDU for each aggregate unit is transmitted by the 
SIU every five seconds and contains the following 
fields: entity id, unit type, unit marking, aggregate 
state (i.e. aggregated or deaggregated), position, 
orientation, velocity, formation, extent, number of 
entities in the aggregate, and subordinate entity ID's 
(when the aggregate unit is deaggregated). 

Aggregation and deaggregation in the CLCGF is 
managed by the SIU. Aggregation and deaggregation 
can be initiated by the constructive simulation 
(Eagle), any virtual simulation on the DIS network 
(e.g. ModSAF), or the SIU (via event-driven 
mechanisms). Deaggregation is initiated by the 
transmission of a DRPDU. This DRPDU is 
transmitted periodically to maintain deaggregation of 
an aggregate unit. Re-aggregation of a deaggregated 
unit is initiated by ceasing transmission of DRPDUs 
for that unit. 

4.3.3 Aggregate Unit Incorporation in DIS 
Aggregate unit state information is broadcast on the 
DIS network using the aggregate unit protocol defined 
above. In order to generate the information contained 
in the ASPDU, however, it is necessary to maintain 
the Eagle aggregate unit state in the SIU. This is 
accomplished in the ModSAF SIU by handling 
aggregate units similar to the way in which ModSAF 
handles entities. 

At scenario start, Eagle sends the initial state of each 
aggregate unit to the SIU, and the SIU creates a local 
aggregate simulation unit. This local aggregate unit 
is comprised of simply an aggregate hull, and is 
entered into the SIU's vehicle table. It ticks similarly 
to the way ModSAF entities do, but does not execute 
any ModSAF tasks, since Eagle controls its behavior. 
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Eagle runs in real-time at one or two minute time 
steps in our scenarios, so the SIU receives aggregate 
unit state updates every one or two minutes. Since it 
is desirable to broadcast state information more 
frequently in DIS, the SIU performs a local entity 
approximation of an aggregate unit's position each 
time the aggregate unit ticks. Presently, this is 
simply a linear approximation of position along the 
last velocity vector reported. In the future, we plan to 
improve this approximation by considering the 
routes, phase lines, and orders which the aggregate 
unit is executing to compute its position between 
Eagle time steps. 

The periodic transmission of ASPDUs by the SIU 
enables ModSAF, as well as other DIS simulations, 
to consider aggregate units as remote entities. We 
have modified ModSAF to receive and process the 
ASPDUs and display aggregate units on the PVD. 
This allows the operator to see the entire battlefield of 
aggregates and entities, and to perform aggregate unit 
operations (e.g. aggregations and deaggregations) as 
described below. 

4.3.4 Dynamic Aggregation and Deaggregation 
This section will provide an overview of the dynamic 
aggregation and deaggregation capability of CLCGF. 
For more details, see (Calder et. al. 1995) in these 
proceedings, which is devoted entirely to this subject. 

Aggregation and deaggregation in the CLCGF is 
dynamic based upon events which occur during the 
exercise, or upon initiation by an SIU operator or 
ModSAF operator at a GUI. The system does not 
rely upon predetermined high-resolution areas or 
spheres of influence to enable deaggregation, but it 
does not preclude these mechanisms from being used 
(Karr et. al. 1993, Hardy et. al. 1993). The 
mechanisms currently implemented which trigger 
deaggregation include assignment of a fire mission to 
an MLRS unit (via live, tactical hardware or the 
ModSAF GUI), Eagle request, ModSAF operator 
request, and SIU operator request. 

When an Eagle aggregate unit is deaggregated into 
ModSAF entities, the ModSAF unit is automatically 
assigned a ModSAF mission based upon its mission 
in Eagle. Operations orders (OPORDs) are passed 
from Eagle to the SIU upon deaggregation. However, 
the SIU does not currently parse the entire OPORD to 
automatically construct the ModSAF unit mission. 
Instead, the SIU uses the current operational activity 
of the Eagle unit, maps it to a ModSAF taskframe, 
creates the taskframe (using other information from 
Eagle such as heading, speed, formation, etc.), and 
assigns the taskframe to the deaggregated ModSAF 
unit. The ModSAF unit immediately begins 
execution of the taskframe.  In the future, we plan to 

fully parse the OPORD to automatically construct 
and assign a consistent mission to the ModSAF unit. 

When an Eagle MLRS unit is deaggregated to 
perform a requested fire mission, execution of a new 
mission is implied for the deaggregated unit. For 
example, Eagle MLRS launcher units are 
deaggregated when the SIU receives a call for fire 
from a live ADOCS system. In this case, a new 
mission is implied for the deaggregated unit, which is 
to perform the requested fire mission. This mission 
is automatically constructed by the SIU as a ModSAF 
taskframe, assigned to the deaggregated unit, and 
executed by the deaggregated unit. 

When a deaggregation occurs, formation templates are 
accessed for the aggregate unit which is to be 
deaggregated. Once the template has been accessed, 
an intelligent entity placement algorithm is exercised 
to modify the positions of the entities to be more 
realistic. For example, if the unit was performing a 
roadmarch, then each of the entities is placed on the 
nearest road (if one exists) in a column formation. 
Another component of this intelligent entity 
placement is that vehicles will not be placed on the 
terrain at locations where they would not be expected 
to go, such as water, no-go terrain, etc. 

Re-aggregation occurs when the event which triggered 
the deaggregation is completed or upon operator 
request (if the deaggregation was operator initiated). 
In any case, it is the responsibility of the simulation 
which requested the deaggregation to initiate the re- 
aggregation, since it has the context of why the 
deaggregation was needed initially. 

Our dynamic, event-based aggregation and 
deaggregation scheme helps control spreading 
deaggregation, since only those units which intend to 
interact are deaggregated. 

4.3.5 Deaggregated MLRS Unit Capabilities 
In order to support JPSD studies, several new entities 
and models were needed in ModSAF. Much of this 
work centered around the M270 MLRS vehicle and its 
associated munitions. ModSAF already supported 
individual M270 MLRS vehicles, but they did not 
have the capability to launch ATACMS missiles. 
This model was therefore modified to be capable of 
launching ATACMS missiles. 

The ATACMS missile flies a ballistic trajectory, and 
the existing ModSAF missile model did not support 
ballistic missile dynamics. Therefore, software to 
simulate a ballistic missile capable of flying in 
excess of 100 km and releasing submunitions was 
added to the existing ModSAF missile model. This 
ballistic model provides the dynamics for the initial 
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powered boost phase, a roll phase during which the 
missile rolls to a specified angle to attain the desired 
trajectory, a ballistic phase where the missile motor 
has shutdown and the trajectory is computed through 
apogee, and subsequent re-entry down to either a 
detonation or impact phase. Throughout the course 
of the flight, the rotational effects of the earth are 
considered in computing the trajectory. 

The ballistic missile model provides two cases for 
termination of flight: detonation above the ground, 
where submunition deployment occurs; and 
detonation upon impact, where the missile collides 
with the terrain. In the case of the ATACMS 
missile, the missile was defined to detonate above the 
ground in order to simulate submunition dispense at a 
specified altitude above the target. In this case, the 
model computes an updated detonation point each tick 
after the missile has passed apogee, based on the 
specified target position and the specified impact 
offset and height of burst. When the position of the 
missile has been determined to have entered the 
detonation envelope, a Detonation PDU for the 
missile entity is transmitted on the network. This 
Detonation PDU acts as the trigger for a submunition 
simulation to begin dispense and flyout of 
submunitions. 

In addition to the specific M270 MLRS vehicle 
modifications, an MLRS battery was created in order 
to perform deaggregations of Eagle MLRS units, 
since Eagle only simulates down to the battery level. 
Individual M270 MLRS vehicles in this unit needed 
to be capable of performing fire missions independent 
of one another, as MLRS units do in the real world. 
However, the ModSAF behaviors for MLRS units did 
not support this individual firing capability. 
Therefore, the MLRS unit-level behaviors were 
modified to allow an M270 MLRS vehicle, which 
was part of a larger MLRS unit, to fire independently. 

5.   CLCGF  Interaction  with   other 
Simulations 

The CLCGF simulation engine described above 
interfaces to other systems in JPSD to provide the 
simulation environment necessary to fulfill JPSD 
program goals. The interfaces to these systems are 
described below, and are shown in Figure 1. 

5.1 CLCGF Interface to ASAS WARRIOR 
and GSS 

The ASAS Warrior and Ground Station Simulator 
(GSS) are both operator manned workstations whose 
function is to simulate actual ground station modules 
which monitor the tactical battlefield environment and 
nominate hostile targets for attack.    The ASAS 

Warrior and GSS both receive tactical situation data 
from an E-8A fixed-wing aircraft equipped with a 
Joint Surveillance and Target Attack Radar System (J- 
STARS). For CLCGF, an E-8A entity was created 
within ModSAF, based on the known characteristics 
of the actual E-8A aircraft. Parametric data consistent 
with that of the E-8A aircraft was used to represent 
the performance of the E-8A throughout its flight 
envelope. Flight dynamics for the E-8A model are 
provided by the fixed-wing dynamics of ModSAF. 
The E-8A was defined with a radar component to 
represent the J-STARS radar used for surveillance of 
the tactical battlefield. The E-8A was also defined 
with the capability to fly a combat air patrol mission 
to represent the flight path normally flown during 
tactical missions. 

The J-STARS radar model is a Pulse Doppler (PD) 
model within ModSAF. Parametric data consistent 
with the J-STARS PD radar was utilized in defining 
the model, thus providing a representative detection 
envelope and operating characteristics. The ModSAF 
radar model, upon which the J-STARS model is 
built, provides line-of-sight calculations for all 
entities in its field of view. Any entity which is 
determined to be out of range, masked by terrain, or 
not meeting the other specified parameters of the radar 
model is not reported as sensed by the J-STARS 
radar. 

In the processing of a sensed aggregate, a pseudo- 
deaggregation must be performed to decompose the 
contents of the aggregate into meaningful information 
for transmission to the ASAS Warrior and/or GSS. 
Each aggregate is defined by its DIS entity type, 
number of entities, and formation. From this 
information and the position of the aggregate, an 
expansion based on the DIS entity type, which 
defines the echelon type (e.g. U.S. armor company), 
and the formation is performed to template the 
aggregate into a pre-defined pattern, specified within 
ModSAF, for the number of entities contained in the 
aggregate. This template, combined with intelligent 
entity placement algorithms, is then used to compute 
the location of each pseudo-entity based on the 
position of the aggregate. In order to ensure 
correlation between the represented pseudo- 
deaggregated unit and the same aggregate unit when it 
is commanded to deaggregate, the same processing is 
performed for pseudo-deaggregation, with the 
exception of the creation of the individual entities. 

The process of expanding the echelon and formation 
for each aggregate is time-consuming, and can 
become a time sink in a large scenario. In ModSAF, 
the expansion of an echelon type/formation pair 
always results in the same templating information, 
i.e. the initial locations relative to the 0,0 point of 
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the terrain database, facing North. Therefore, by 
maintaining a copy of the results of the initial 
expansion for each echelon type/formation pair, it is 
only necessary to perform the expansion once. 
Subsequent aggregates which are defined with the 
same echelon type/formation pair utilize the initial 
templating information, and compute the correct 
entity locations based on the position, orientation, 
and size of the unit. 

The CLCGF method of pseudo-deaggregation takes a 
different approach than that of other 
constructive/virtual linkage projects. Previous 
pseudo-deaggregation implementations have 
transmitted Entity State PDUs on the DIS network 
when it was desirable for another simulation to obtain 
entity-level position data for an aggregate unit under 
control of the constructive simulation (Karr et. al. 
1994/1993). In the CLCGF, the responsibility for 
pseudo-deaggregation is placed on the virtual 
simulations which need to access the entity-level 
information for a given aggregate unit. Any 
simulation which needs entity-level data for an 
aggregate unit is required to receive and process 
Aggregate State PDUs, and be capable of 
decomposing an aggregate into its constituent 
entities, applying formation templates to place the 
entities on the terrain, and executing intelligent 
vehicle placement algorithms to further adjust the 
positions of the entities. A further requirement exists 
that all simulations in a given exercise which perform 
pseudo-deaggregation use the same decomposition 
data, formation templates, and intelligent placement 
algorithms to ensure consistent entity-level 
representations of the same aggregate unit across 
simulations. 

will compute it in a consistent manner (by requiring 
that they all use the same input data, formation 
templates, and vehicle placement algorithms). It does 
not sacrifice any information to achieve these 
benefits. 

Once the list of detected entities and pseudo-entities 
has been constructed, this information must be passed 
to the ASAS Warrior and/or GSS. In both cases, a 
flat file, called an MTI (Moving Target Indicator) file, 
is created which lists information about the entities 
detected. While the format of the files is different, the 
information required by both the ASAS Warrior and 
GSS is similar. Both systems require a 
latitude/longitude for each entity and additional 
information about the entity. For the GSS, the 
additional information consists of a field indicating 
whether the entity is Tracked or Wheeled. For the 
ASAS Warrior, the additional information is the 
complete DIS entity type, along with the entity's 
velocity and elevation. 

The J-STARS radar model initiates processing of the 
radar sensed list once every 60 seconds, replicating the 
update rate of the actual J-STARS radar. Processing 
of the J-STARS sensed list is spread evenly over the 
60 second scan period of the J-STARS, to avoid long 
ticks during large scenarios where many aggregate 
units populate the battlefield. The intermediate 
results of the processing are formatted and written to 
memory as the radar sensed list is processed 
incrementally over the scan period. At the end of the 
60 second period, the data is written out to the ASAS 
Warrior and/or GSS interface MTI flat file. 

5.2 CLCGF Interface to ADOCS 

For example, in many CLCGF scenarios there is a 
JSTARS radar model which is running on a ModSAF 
E-8A aircraft. The JSTARS is responsible for 
performing surveillance of the entire battlefield in a 
corps level exercise. Instead of transmitting entity 
state PDUs for each entity of each aggregate so that 
the radar model can run line-of-sight calculations on 
them, the JSTARS model receives the aggregate state 
PDUs, and internally pseudo-deaggregates them to the 
entity level to run the radar calculations. In this way, 
we do not flood the network with entity state PDUs 
which are not needed by the majority of the 
simulations in the exercise. 

We feel that this method of pseudo-deaggregation is 
superior to previously implemented methods. It 
allows us to keep network bandwidth utilization at a 
minimum, which is one of the primary issues in 
implementing a large-scale simulation. It allows 
only those sensors and systems which need entity 
state information to compute it, and ensures that they 

The Automated Deep Operations Coordination 
System (ADOCS) uses the TACFIRE message 
protocol to communicate with other military 
hardware. In the JPSD program, it is utilized to issue 
fire missions via the TACFIRE FMCFF (Full 
Mission Call For Fire) message. Target nominations 
are sent to the ADOCS from the ASAS Warrior or 
GSS operator via the TACFIRE ATICDR (Artillery 
Target Intelligence Coordinate Report) message. The 
ADOCS operator pairs nominated targets with 
available artillery assets to compose fire missions for 
artillery units to execute. All TACFIRE messages 
used by JPSD are transmitted on the DIS network in 
the "data" field of the DIS Signal PDU. 

The SIU monitors DIS PDUs to detect FMCFF 
messages. The FMCFF message contains many 
fields, including identification of the artillery battery 
for which the fire mission is designated. If a given 
fire mission is intended for a unit which the CLCGF 
is simulating, the SIU fully parses and processes the 
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message. It extracts the target location, shell type, 
number of rounds, etc. from the FMCFF. The SIU 
then makes a determination of the area around the 
target location which can be impacted by the 
munition being fired. If there are any aggregate units 
in the area, the SIU begins sending Deaggregation 
Request PDUs to initiate the deaggregation of these 
aggregates. In addition, if the unit which was 
requested to fire is an aggregate, the SIU initiates 
deaggregation of the unit by sending DRPDUs for it. 
The SIU then constructs a ModSAF MLRS fire 
mission for the entity-level MLRS unit, and assigns 
that fire mission to the MLRS unit. At this point, 
the ModSAF MLRS unit executes the fire mission. 

During initial JPSD demonstrations, the ADOCS 
TACFIRE database was populated by hand with the 
ID's of a subset of the US artillery assets that were 
available for a given scenario. In order to provide a 
more realistic view of the battlefield for the ADOCS 
operator, an interface has been added which 
automatically initializes the ADOCS TACFIRE 
database with the ID's and locations of all US artillery 
assets in the scenario. This is accomplished by the 
SIU sending the TACFIRE AFU (Ammunition Fire 
Unit) UPDATE message to the ADOCS for all US 
artillery assets being simulated by the CLCGF in 
either Eagle or ModSAF. The AFU UPDATE is a 
standard TACFIRE message used to update the 
TACFIRE database with fire unit status information. 

5.3 CLCGF Interface to STRIKE 

The STRIKE simulation is a high-fidelity, 
engineering-level simulation of a proposed weapon 
system, which was modified to be capable of running 
in real-time for use in DIS. It simulates the dispense, 
flyout, and detonation of Brilliant Anti-Tank (BAT) 
smart submunitions. The BAT is a submunition 
which is dispensed from an ATACMS missile, and 
uses acoustic and infrared sensors to track and attack 
tanks and other armored vehicles. In order to interact 
with STRIKE, a protocol for submunition dispense 
and simulation handoff needed to be defined and 
implemented in ModSAF. This was accomplished 
via transmission of four types of PDUs: the 
Application Action Request PDU, Application 
Action Response PDU, Entity State PDU, and 
Detonation PDU. 

During ModSAF initialization, the DIS 
site/application address of the STRIKE simulation 
computer is initialized via command line input. At 
initiation of the launch of the ATACMS missile, the 
missile model transmits an Application Action 
Request PDU to the STRIKE simulation, passing the 
entity id of the missile, estimated time of flight, 
estimated detonation coordinates, and various target 

specific parameters. This PDU is re-transmitted every 
5 seconds for up to 30 seconds, or until receipt of an 
Application Action Response PDU from the STRIKE 
simulator with the same site/host address as specified 
at initialization. Receipt of the Application Action 
Response PDU notifies ModSAF that the STRIKE 
simulation received the Application Action Request 
PDU and is ready to dispense submunitions from the 
specified ATACMS missile entity. 

While the ATACMS missile is in flight, the 
STRIKE model monitors the ATACMS missile's 
Entity State PDUs. When it is time for the 
ATACMS missile to dispense submunitions, it sends 
a Detonation PDU (as described in Section 4.3.5). 
Receipt of the Detonation PDU by the STRIKE 
model triggers it to perform a simulated dispense of 
the BAT submunitions. The STRIKE model utilizes 
recent ATACMS missile Entity State PDUs to 
initialize the BATs with the correct initial attitude and 
velocity, and begins simulation of the BAT 
submunitions. The BATs fly to and attack any 
detected targets in the area. 

To account for the potential damage inflicted by the 
submunition detonations, the ModSAF direct fire 
damage tables were updated to handle the BAT 
submunition type. Upon receipt of a BAT 
Detonation PDU, a table lookup is performed and 
direct fire damage is calculated for the target entity 
based on the table. 

6. Future Work 

Future work will include expanding upon the current 
Eagle to SIU interface through new interface 
commands and enhanced functionality. Other 
potential enhancements include: 

- integration with other fielded or prototyped tactical 
equipment. 
- creation of a more realistic JSTARS downlink to a 
Ground Station Module (GSM) using Emission 
PDUs. 
- integration of an intelligence model into CLCGF. 
- summarizing and reporting DIS indirect fire to Eagle 
so constructive model units can be attritted by DIS 
indirect fire 
- full parsing of Eagle OPORDs and mapping into 
missions for deaggregated units 
- investigating solutions to the terrain correlation 
issues between Eagle and ModSAF 
- developing the standards necessary to distribute the 
"pseudo-deaggregation" capability to sensor models 
which are under the control of simulations other than 
ModSAF 
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- implementing a generic resolution management 
capability which will allow deaggregation requests to 
be registered and controlled by a single module. 

The CLCGF's current role is to function as the 
central simulation engine executing a Korean scenario 
in the September, 1995, JPSD demonstration. Our 
future development will be guided by the needs of the 
JPSD program and other CLCGF users. 

7.    Conclusions 

We have accomplished the work described in this 
paper in a relatively short period of time: CLCGF 
software design began in June, 1994; software 
development of the SIU, and various ModSAF 
modifications began in August, 1994; integration 
with Eagle began in November, 1994; and 
Eagle/SIU/ModSAF interoperation was first 
successfully demonstrated in the CLCGF system in 
January, 1995. Since the first demonstration, we 
have been improving the architecture and expanding 
the functionality of the CLCGF to support the long- 
term needs of various sites involved in the JPSD 
program. 

We have created a CLCGF which can be used by the 
JPSD program to aid in the study, analysis, and 
testing of precision strike scenarios, and by the Depth 
and Simultaneous Attack Battle Lab at Ft. Sill for 
artillery system operator training and the study of new 
artillery weapons, systems, missions, and concepts at 
the Army Corps level. This has been accomplished 
by integrating constructive, virtual, live, and 
engineering simulations together into a usable, useful 
environment. 
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1.  Abstract 

The integration of constructive and virtual simulation 
systems is a simulation research topic which has 
received much attention in recent years. The goal of 
this integration is to develop a virtual battlefield in 
which aggregate units and entities coexist, interacting 
with one another at a single level. This has typically 
been handled by requiring aggregate units to 
deaggregate to the entity-level when a detailed 
interaction is to occur. Even the most successful 
integrations to date, however, have only achieved 
limited success in minimizing the number of 
aggregations/deaggregations performed, and efficiently 
and accurately implementing the aggregation/ 
deaggregation process. 

In this paper, we present work which has been 
performed on the JPSD CLCGF project with an 
emphasis on the implementation of a dynamic 
aggregation/deaggregation process which is efficient, 
accurate, and minimizes the number of 
aggregations/deaggregations performed. 

2.   Introduction 

2.1  The JPSD Program 

The Joint Precision Strike Demonstration (JPSD) 
program's goal is to introduce and implement new 
technologies into the defense arena that can address 
and correct precision strike deficiencies. To facilitate 
this goal, the JPSD program has created a simulation 
environment which is used to evaluate technologies, 
train users, and perform experiments necessary to 
reduce sensor-to-shooter timelines and to attack high- 
value, time-sensitive targets. As part of this 
environment, the JPSD program has sponsored the 
construction of the Corps Level Computer Generated 
Forces (CLCGF) system. 

The primary purpose of the CLCGF is to provide the 
corps level simulation environment for DIS exercises 
in which the above mentioned program goals can be 
carried out. The CLCGF is used during the JPSD 
exercises to simulate maneuver and artillery units 
contained in an Army corps. The simulated units 
provide stimulus for and interact with tactical 
hardware systems and their operators, and interact 
with high-fidelity, engineering simulations. The 
CLCGF has been created by integrating the Eagle 
constructive simulation with the ModSAF entity- 
level simulation. 

2.2 The  CLCGF System 

Entity-level simulations represent each entity which 
exists on the virtual battlefield at the individual 
platform level. They typically represent entities from 
the individual platform level up to the company level. 
They use the DIS protocol to interact with other 
entity-level simulations, and simulate the physical 
characteristics of each entity to determine battlefield 
outcomes. On the other hand, constructive 
simulations represent groups of entities as single, 
aggregate unit objects. They typically represent units 
at the company or battalion level up to the division 
or corps level. They are typically not designed to 
interact with other simulations, but instead simulate 
the entire battlefield internally, and use Monte-Carlo 
techniques to determine battlefield results. 

The DIS environment has traditionally included only 
entity-level simulations. It has provided a sound 
environment for small-scale, tactical troop training, 
as well as a potential testbed for evaluating new 
vehicle and weapon systems. However, simulating 
the effects of entity-level simulations in corps level 
operations has remained beyond the reach of the DIS 
environment, due to network bandwidth and computer 
resource constraints.    Using current network and 
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computer technology, a traditional DIS exercise is 
simply not capable of supporting a corps level 
operation. This was the primary motivation for 
creating a CLCGF which utilizes both constructive 
and entity-level simulations. Transmission of unit 
state data at the aggregate level is a key factor which 
decreases network load by significantly decreasing the 
number of PDUs transmitted in a large-scale exercise. 
If DIS is to support a 100,000 entity exercise, 
representation of some units on the battlefield as 
aggregates is likely. 

The simulation engine of the CLCGF has been built 
by integrating the constructive, aggregate-level 
simulation Eagle, with the virtual, entity-level 
simulation ModSAF. This simulation engine 
interacts with various live, tactical hardware systems, 
including: the All Source Analysis System (ASAS) 
Warrior and Ground Station Simulator (GSS) for 
presentation of the tactical battlefield situation to the 
operator and potential target nominations; and the 
Automated Deep Operations Coordination System 
(ADOCS) for the creation and assignment of fire 
missions. The simulation engine interacts with the 
STRIKE engineering-level simulation, which 
simulates the deployment and flyout of smart 
submunitions. It also interacts with the TAFSM 
simulation, which it utilizes to simulate the 
deployment and flyout of various smart 
submunitions. In addition, the CLCGF interacts 
with various other DIS simulations, such as the 
Warbreaker SimCore simulation. 

In order to allow military training and analysis of 
scenarios of interest to JPSD, the CLCGF must 
generate a full corps-level exercise. To accomplish 
this goal, many technical challenges need to be 
addressed. These involve issues such as efficient 
incorporation of aggregate units into DIS, effective 
incorporation of DIS entity-level information into 
constructive simulations, development of a dynamic 
aggregation/deaggregation protocol, interaction 
between constructive and entity-level simulations, and 
interaction between a constructive/virtual simulation, 
live systems, and engineering-level simulations. The 
work performed on the CLCGF to date has focused on 
these fundamental goals. 

2.3      Constructive/Virtual 
Linkage 

Simulation 

Bringing together constructive and virtual simulations 
on the synthetic battlefield creates difficult technical 
challenges. These difficulties lie in many areas, 
including management of hardware and network 
capacity across simulations, ensuring correlation of 
data and behaviors across simulations, resolving 
timing issues, ensuring terrain and environment 

correlation, and implementing an efficient, effective 
set of communication protocols between simulations. 
The JPSD CLCGF project has implemented 
solutions which begin to address many of these 
problems. The remainder of this paper will focus on 
modifications made in two key areas which are critical 
to implementing an accurate and efficient 
aggregation/deaggregation process: 

Managing Capacity: All constructive/virtual linkage 
projects to date require that aggregate to entity 
interaction be performed at the entity level. However, 
it is not practical in terms of hardware and network 
capacity to decompose all aggregate units into virtual 
world entities whenever the two come within 
potential interaction range or enter a pre-defined area 
on the virtual battlefield, as this will lead to idle 
echelons occupying valuable computer resources and 
manpower, and spreading deaggregation. A dynamic 
aggregation/deaggregation process is needed, in which 
aggregate units deaggregate when a virtual world 
entity intends to interact with them, or they intend to 
interact with an entity. Using this philosophy, 
aggregations/deaggregations will only occur when 
absolutely necessary. 

Managing Correlation: A key factor in successfully 
linking constructive and virtual simulations is 
ensuring data and behavior correlation between 
simulations. Anomalous results will be obtained 
from a linkage between systems which are poorly 
correlated. In order to eliminate these anomalies, a 
detailed mapping between the abstract and 
approximate definition of a constructive unit and the 
precise representation of entities in a virtual world 
unit is needed. 

The CLCGF system addresses these issues within the 
context of the JPSD program. The CLCGF is 
composed of the Eagle aggregate-level, constructive 
simulation and the ModSAF entity-level, virtual 
simulation. The major development effort on the 
CLCGF project has been the implementation of the 
Simulation Integration Unit (SIU), whose purpose is 
to bring together the constructive world of Eagle and 
the virtual world of ModSAF. 

The CLCGF architecture is described in more detail in 
these proceedings (Calder et. al. 1995) and will not be 
revisited here. The purpose of this paper is to present 
the innovative technologies devised in the CLCGF to 
deal with the issues of managing both capacity and 
correlation in a constructive/virtual simulation 
linkage. The following sections focus on each of 
these aspects separately. 

3.   Managing   Capacity 
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3.1   Changing   Simulation   Resolution 

When an aggregate unit deaggregates into its 
component entities, a handoff of simulation is made 
from the constructive to the virtual simulation. 
Similarly, when an entity-level simulation unit is re- 
aggregated into an aggregate unit from its component 
entities, a handoff of simulation is made from the 
virtual to the constructive simulation. We define the 
process of performing this handoff without significant 
loss of state as a resolution change. Other changes in 
fidelity during the course of a simulation, such as 
swapping vehicle dynamics models, constitute 
resolution changes, but are not modeled in the 
CLCGF. The term "resolution change" used 
throughout the remainder of this paper refers to 
aggregations and deaggregations only. 

Current approaches to resolution change have defined 
static criteria to trigger aggregation and deaggregation, 
that is, criteria that do not change as the simulation 
evolves. The Integrated Eagle/BDS-D project (Karr 
et. al. 1993) defined one or more "high-resolution 
areas" in which constructive units are required to 
deaggregate into virtual entities. The BBS/DIS 
project (Hardy et. al. 1993) defined a "sphere of 
influence" for virtual entities, within which 
constructive units are required to deaggregate into 
virtual entities. In either case, constructive 
simulations relinquish control entirely to virtual 
simulations within these areas. 

A problem resulting from the "high-resolution area" 
approach to resolution change is that often times 
needless deaggregations will occur for aggregate units 
which pass into the high resolution area, but do not 
interact with any entities over the course of the 
simulation. This wastes precious network bandwidth 
in large-scale simulation exercises. This needless 
deaggregation can be controlled by scripting the 
simulation scenario carefully to avoid needless 
deaggregation, but this questions the validity of the 
scenario. 

A problem resulting from the "sphere of influence" 
approach to resolution change is that spreading 
deaggregation can easily result. Spreading 
deaggregation occurs in the following situation: an 
entity comes within interaction range of an aggregate 
unit, which causes the aggregate unit to deaggregate; 
when the aggregate unit deaggregates, one or more of 
its entities is within interaction range of another 
aggregate unit, which causes that aggregate unit to 
deaggregate; and this process continues on. Spreading 
deaggregation wastes both network bandwidth and 
computer resources, since there is no reason for any 
aggregate units other than the one within interaction 
range of the entity to deaggregate. It can easily spiral 
out of control and cause the entire battlefield to 

change resolution to the entity-level, thereby 
defeating the purpose of using the constructive model 
in the first place. This spreading deaggregation can 
be controlled by scripting the simulation scenario 
carefully to prevent it from occurring, but this clearly 
introduces an undesirable bias into the scenario. 

In contrast, resolution changes in the CLCGF are 
dynamic, based upon events which occur during the 
exercise or upon initiation by a human operator at a 
GUI. The CLCGF does not rely upon predetermined 
high-resolution areas or spheres of influence to 
initiate resolution changes, but it does not preclude 
these mechanisms from being used. Instead, it places 
the responsibility for initiating resolution changes on 
the simulation which intends to interact with an 
entity or unit simulated in the other world. This 
requires that the entity-level simulations in an 
exercise be capable of receiving and processing 
aggregate unit state information to decide whether 
interaction with an aggregate unit is desired. This 
alleviates the problems of needless deaggregation and 
spreading deaggregation since only those units which 
intend to interact are deaggregated. Additionally, this 
facilitates scenario construction which is untainted by 
the mechanisms implemented in the underlying 
constructive and virtual simulations. 

Re-aggregation in the CLCGF is initiated when the 
event which triggered the deaggregation is complete, 
or upon operator request (if the deaggregation was 
operator initiated). In any case, it is the 
responsibility of the simulation which requested the 
deaggregation to initiate the re-aggregation, since it 
has the context of why the deaggregation was needed 
initially. If another simulation requires that the 
deaggregation be maintained, then it assumes 
responsibility for maintenance of deaggregation until 
it is no longer required. 

3.2   Resolution   Change   Protocol 

A protocol for aggregate units and the initiation of 
resolution changes has been defined and implemented 
in the CLCGF. It specifies the format and the 
transmission, receipt, and processing requirements of 
DIS 2.0.3 experimental PDUs to facilitate aggregate 
units. Specifically, two new PDUs have been 
defined: the Aggregate State PDU (ASPDU) and the 
Deaggregation Request PDU (DRPDU). 

The ASPDU is similar in usage and purpose to the 
DIS Entity State PDU, but is used only for aggregate 
units. It allows Eagle aggregate units to be broadcast 
on the DIS network similar to the way entities are 
normally broadcast in traditional DIS exercises. The 
ASPDU for each aggregate unit is transmitted by the 
SIU every five seconds and contains the following 
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fields: entity id, unit type, unit marking, aggregate 
state (i.e. aggregated or deaggregated), position, 
orientation, velocity, formation, extent, number of 
entities in the aggregate, and subordinate entity ID's 
(when the aggregate unit is in the deaggregated state). 

All resolution changes in the CLCGF are managed by 
the SIU, since it is the link to the constructive 
simulation. Resolution changes can be initiated by 
the constructive simulation (Eagle), any virtual 
simulation on the DIS network (e.g. ModSAF), or 
the SIU (via event-driven mechanisms). Regardless 
of the source of the resolution change request, the 
same protocol is used to initiate, maintain, and 
terminate the resolution change. 

To initiate the deaggregation of an aggregate unit, a 
simulation issues a DRPDU with the ID of the unit 
to be deaggregated. To maintain deaggregation of the 
unit, this DRPDU is retransmitted periodically (e.g. 
every five seconds). Re-aggregation of a deaggregated 
unit is initiated by ceasing transmission of DRPDUs 
for that unit. Re-aggregation will occur when no 
DRPDUs are received for a given unit for a period of 
2.4 times the retransmission rate (e.g. 12 seconds). 
This timeout mechanism allows another simulation 
to take over responsibility for maintaining 
deaggregation (i.e. transmitting DRPDUs) if the 
originally responsible simulation terminates its 
interest (i.e. ceases sending DRPDUs). 

3.3 Sources of Resolution Change in 
CLCGF 

As described above, the CLCGF uses dynamic criteria 
for resolution change. Resolution changes are 
initiated and terminated based on the current tactical 
situation. The state of the resolution of all units in 
the simulation at a given time, therefore, is based 
solely on the sequence of events leading up to that 
time. The mechanisms currently implemented which 
trigger resolution changes include assignment of a fire 
mission to an MLRS unit (from live, tactical 
hardware or the ModSAF GUI), ModSAF operator 
request, SIU operator request, and Eagle request. 

In a typical JPSD exercise, a hostile target 
nomination is received by the Automated Deep 
Operations Coordination System (ADOCS) operator. 
The operator creates a fire mission for that target, and 
a Full Mission Call For Fire (FMCFF) message, 
enclosed in a DIS Signal PDU, is dispatched to the 
SIU. Upon receipt, mission parameters are used to 
approximate the vehicles to be deaggregated (i.e. the 
fire support battery and any potential enemy targets in 
the target area. Receipt of the FMCFF message 
serves as the trigger mechanism for dynamic 
resolution changing in the CLCGF.    Initiated by 

events derived from the exercise itself, it is the first 
example of an event-based resolution change used to 
date. 

The SIU operator, as the controller of the exercise, is 
able to initiate a resolution change from the SIU's 
Graphical User Interface. For example, the SIU 
operator may decide that a certain engagement need be 
resolved at the entity level. This may be done by 
deaggregating the interacting units, which will 
transfer their control and modeling to ModSAF. 

By use of a similar GUI, the ModSAF operator may 
change the resolution of any unit. This allows 
operators with a non-exercise-wide view to control the 
fidelity of the simulation, and change resolution based 
on a local decision criteria. 

Eagle may specifically request a resolution change for 
any unit. This supports the "high resolution" 
interaction area approach of conducting virtual to 
constructive interactions. It is supported but, to date, 
has not been used in CLCGF. 

3.4 CLCGF Architectural Support for 
Dynamic   Resolution   Change 

The CLCGF's ability to efficiently and accurately 
perform dynamic resolution changes is made possible 
by three key design decisions: to tightly couple the 
SIU to ModSAF, to represent all of Eagle's 
constructive units in ModSAF's virtual world as 
aggregates, and to require that Eagle units be 
simulated at the company (or battery) level. 

3.4.1 Tight Coupling of SIU to ModSAF 
The SIU is tightly coupled to ModSAF. Like 
ModSAF, it utilizes the Persistent Object (PO) 
protocol to maintain the state of units, graphics, and 
behaviors. This allows the SIU the same full range 
of functions over an aggregate unit as if it were a 
ModSAF unit itself. 

For example, creation of aggregate units in the SIU is 
initiated upon receipt of a Unit Create message from 
Eagle. The SIU translates the aggregate unit 
parameters into PO unit parameters for the given unit 
type, and then broadcasts a unit creation PO message. 
The SIU then begins simulation of the unit as a 
ModSAF unit, as though it had been created from the 
ModSAF GUI. The unit remains in the ModSAF PO 
database and is updated at the appropriate times. 

Similarly, upon deaggregation of an aggregate unit, 
the SIU translates the unit's current state into PO unit 
parameters for each entity in the unit organization. It 
also creates a PO taskframe for the deaggregated unit 
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based on the aggregate unit's mission. The SIU then 
broadcasts unit creation and taskframe PO messages. 
A CLCGF ModSAF simulator which is on the same 
PO database ID as the SIU begins simulation of the 
entities in the unit, and execution of the taskframe, 
within ModSAF. 

3.4.2 Representation of Eagle Units in the SIU and 
ModSAF 
Aggregate unit state information is broadcast on the 
DIS network using the ASPDU defined above. In 
order to generate the information contained in the 
ASPDU, however, it is necessary to maintain Eagle 
aggregate unit state in the SIU. This is accomplished 
in the ModSAF SIU by handling aggregate units 
similar to the way in which ModSAF handles 
entities. 

At scenario start, Eagle sends the initial state of each 
aggregate unit to the SIU, and the SIU creates a local 
aggregate simulation unit. This local aggregate unit 
is comprised of simply an aggregate hull, and is 
entered into the SIU's vehicle table. It ticks similarly 
to the way ModSAF entities do, but does not execute 
any ModSAF tasks, since Eagle controls its 
movement. This enables the SIU to simulate local 
aggregate units in the same manner as ModSAF 
simulates local entities. 

The periodic transmission of ASPDUs by the SIU 
enables ModSAF, as well as other DIS simulations, 
to consider aggregate units as remote entities. We 
have modified ModSAF to receive and process the 
ASPDUs, and to incorporate remote aggregate units 
in the same manner that remote entities are 
incorporated. This enables the display of aggregate 
units on the ModSAF PVD, which allows the 
operator to see the entire battlefield of aggregates and 
entities, and to perform aggregate unit operations 
(e.g. aggregations and deaggregations) as described 
above. Processing of ASPDUs also enables 
aggregate units to be processed by ModSAF sensor 
models. 

3.4.3 Eagle Unit Simulation at Company Level 
ModSAF organizes entities in units up to the 
company level and supports company-level behavjors. 
Similarly, Eagle is capable of explicitly simulating 
units down to the company level and supports 
company-level behaviors. The mapping of data 
across the two systems can thus be made without 
significantly changing the content of the data. Had 
the two systems not met at a common echelon level, 
a new set of problems would have been introduced 
with respect to handling this gap. 

To decompose an Eagle company into its constituent 
members in the virtual world, the SIU utilizes a user 

defined, run-time parameter file to map Eagle 
company compositions into ModSAF compositions. 
The unit type defines the formations it can assume, 
its mix of vehicles, and other significant tactical 
behaviors. Appropriate ModSAF units are chosen 
from a pre-defined list. The ModSAF unit types are 
not currently composed dynamically, but solutions 
are being explored. 

Requiring that Eagle units be simulated at the 
company or battery level facilitates translation from 
Eagle missions to ModSAF missions when a change 
in resolution occurs. It also allows for ease in 
reporting state information of ModSAF deaggregated 
units to Eagle. 

When an Eagle aggregate unit is deaggregated into 
ModSAF entities, the ModSAF unit is automatically 
assigned a ModSAF mission based upon its mission 
in Eagle. Operations orders (OPORDs) are passed 
from Eagle to the SIU upon deaggregation. However, 
the SIU does not currently parse the entire OPORD to 
automatically construct the ModSAF unit mission. 
Instead, the SIU uses the current operational activity 
of the Eagle unit, maps it to a ModSAF taskframe, 
creates the taskframe (using other information from 
Eagle such as heading, speed, formation, etc.), and 
assigns the taskframe to the deaggregated ModSAF 
unit. The ModSAF unit immediately begins 
execution of the taskframe. In the future, we plan to 
fully parse the OPORD to automatically construct 
and assign a consistent mission to the ModSAF unit. 

3.5 A Generalized Resolution Management 
Solution 

The CLCGF uses a variety of mechanisms to 
implement resolution change. Yet, in CLCGF as in 
other implementations, individual simulations or 
operators are burdened to initiate, monitor, and 
terminate resolution changes. A more general 
approach is desirable, where resolution control is 
analyzed and executed from a centralized module. 
This module will centralize resolution management 
requirements in one location (thereby avoiding code 
duplication) and reduce the overhead of 
communications. Resolution change requirements 
can be defined over the course of the exercise. 
Resolution changes themselves can occur at any time 
via a reliable resolution management protocol. 

The generalized resolution module would control 
changes based on the following categories of criteria: 

- ingress/egress of a high-resolution area. When a 
unit enters or exits a specified area, a resolution 
change occurs. 
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- ingress/egress of a sphere of influence. When a unit 
comes within a specified range of another unit, a 
resolution change occurs. 

- time-based resolution changes. When a unit enters 
a window of time, defined in either absolute or 
relative terms, a resolution change occurs. 

- event-based resolution changes. When a specific 
scenario event occurs, a resolution change occurs. 

Using this approach, simulations which desire 
resolution changes based on the above criteria register 
their specifications with the resolution management 
module over the course of the simulation. These 
specifications consist of the categories listed above, 
and their logical combinations. The resolution 
management module monitors the simulation with 
respect to all registered resolution change 
specifications. When resolution change conditions 
are met, it initiates a resolution change, and 
maintains the resolution change until termination 
conditions are met. 

4.   Managing   Correlation 

4.1 Physical   Characteristics 

When linking constructive and virtual simulations, a 
correlation must be made between representations 
which are rooted in vastly different domains. Units in 
a constructive simulation do not maintain detailed 
information regarding their constituent entities. 
Therefore, when deaggregating an aggregate unit, an 
entity-level simulation must utilize the known 
physical characteristics of the unit. By utilizing this 
information, an accurate representation of the unit in 
the virtual world can be derived. 

It is critical that the physical characteristics of an 
aggregate unit, such as unit composition, strength, 
location, heading, and formation, can be accurately 
reconstructed in the deaggregated unit's entities. In 
the CLCGF, some physical characteristics, such as 
unit composition, are specified in data files which are 
correlated between the SIU and Eagle. Others are 
transferred from Eagle to the SIU as state information 
during the course of the scenario. This ensures that 
these physical characteristics will be accurately 
mapped from the constructive to virtual, and vice 
versa, when a resolution change occurs. 

4.2 Intelligent   Entity   Placement 

When deaggregating a constructive unit, an entity 
level simulation must utilize the characteristics of the 
virtual environment and the mission which the unit is 
executing.  By utilizing this information an accurate 

representation of the constructive unit in the virtual 
world can be derived, in which vehicles are placed at 
reasonable locations and headings. 

We have developed software which makes use of the 
available mission information in the Eagle 
constructive simulation, as well as knowledge of the 
virtual environment's terrain, to generate vehicle 
placements in the virtual world in real-time. This 
software is utilized for both real and pseudo- 
deaggregation of Eagle units, which ensures 
correlation between entity placements of a pseudo- 
deaggregated unit and the same aggregate unit when it 
is actually deaggregated. 

The intelligent placement of entities on the virtual 
battlefield is based on satisfying constraints which 
can be subdivided into two classes: mission 
independent constraints and mission dependent 
constraints. 

4.2.1 Mission Independent Constraints 
Mission independent constraints are applied during all 
deaggregations regardless of the constructive unit's 
mission (e.g. road march, occupy battle position, 
etc.) These constraints include the constructive unit's 
physical characteristics (e.g. unit composition, 
location, heading, and formation), as well as the 
characteristics of the virtual environment (e.g. 
obstacles, road networks, etc.). The physical 
characteristics of the constructive unit are used to 
template the individual entities which make up the 
unit. This templating process is accomplished using 
the inherent capabilities of ModSAF by defining new 
entries in the echelon database. These new entries 
coupled with location, formation, and heading 
information provide enough data to establish an 
initial lay down of the entities. The next step is to 
take into account the mission dependent constraints, 
which are discussed in the next section. Once the 
mission dependent data has been factored into the 
vehicle placement, the attributes of the underlying 
terrain must be taken into account. Adjustments are 
made to the vehicle position so that vehicles do not 
overlap each other or obstacles found on the terrain. 

Checking individual vehicles for overlap with 
obstacles is necessary since constructive and entity 
level simulations have different representations of the 
underlying terrain. The Eagle terrain database is 
intended to support terrain reasoning by echelons at 
the company level and higher. During Eagle's terrain 
generation process the terrain features are aggregated 
to form go and no-go areas. These go and no-go areas 
are then used to define mobility corridors for the 
aggregate units. In addition, large obstacles, general 
area mobility, and intervisibility characteristics are 
computed for these areas.    In contrast, ModSAF 
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utilizes a more detailed terrain database which is 
intended for use by individual vehicles. The 
information stored in ModSAF's terrain database 
includes road and river networks, small obstacles, and 
sampled elevation data. Thus, it is often the case that 
a clear region of terrain in Eagle actually contains 
obstacles that may impede the movement of 
individual entities in ModSAF. For example, a 
given location that is within a mobility corridor on 
one database may be in a densely forested area on the 
other. We must therefore check each individual entity 
for overlap with obstacles when deaggregating a 
constructive unit. 

4.2.2 Mission Dependent Constraints 
Incorporating mission dependent constraints during 
the deaggregation process forms the majority of the 
intelligent entity placement code added in support of 
the CLCGF program. These constraints are related to 
the specific mission which the unit is performing. 
Missions that have been identified as needing separate 
constraint sets include road march, attack, and defend. 

A unit performing a road march mission attempts to 
travel from an initial location to a destination 
utilizing local road networks, while maintaining a 
column formation. In our current implementation, 
ModSAF is not given the destination. As a result we 
have implemented code that uses the initial vehicle 
placements, as described in Section 4.2.1, and the 
desired heading to perform intelligent entity 
placement on the road network. The process involves 
looking for a suitable road segment in the vicinity of 

the constructive unit's current position. The center of 
mass of the unit is then placed on the closest point of 
the selected segment and the unit is expanded outward 
from the center. Subsequent road segments are 
chosen for vehicles as they are created, using the 
direction of the initial segment as a filter criteria. 
Placement of a portion of the vehicles on roads and 
the remainder off the road is supported when the local 
road network is insufficient. 

Figure 1 illustrates the deaggregation of a unit which 
is heading Southeast and executing a road march. The 
center of mass is first placed on the nearest point of 
segment C. The first half of the unit formation is 
then expanded forward along segment C and onto 
segment E. The second half of the unit is then 
expanded backward along segment C onto segment A. 
Since the road network ends with segment A, any 
remaining vehicles will be placed on the terrain as if 
segment A continued further to the Northwest. 

The vehicle placement functionality is designed to 
work for both the simple case of vehicles in a column 
formation, and the more difficult case of vehicles in 
an arbitrary formation. For column formations, each 
vehicle is placed directly on the road and the desired 
inter-vehicle spacing is maintained. For non-column 
formations the width of the formation is maintained, 
the center of the formation follows the road, and inter- 
vehicle spacing is scaled based on the geometry of the 
turns in the road. The road following code is 
essentially independent of the underlying road 

vehicles 

road segments 

Figure 1: Intelligent Entity Placement for Roadmarch 
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representation. Thus, it can be used with other terrain 
database formats, and can also be used to generate 
vehicle placements that follow linear terrain features 
other than roads. For example, this could be used to 
place vehicles such that they follow a path between 
two points which maximizes cover. Implementation 
of placements for attack and defend missions have not 
been addressed to date. We anticipate that each will 
involve a mixture of cover, concealment, mobility, 
and line-of-sight constraints. 

System response time to deaggregation requests is 
critical. Due to the frequency with which 
deaggregation is performed and the need for a smooth, 
rapid transition between constructive and entity-level 
simulations, it is critical that intellignet entity 
placement solutions emphasize performance while 
achieving realistic vehicle placement. We are 
therefore developing methods which rapidly 
approximate complex constraints. For example, a 
first-order attempt at maximizing cover might involve 
finding local terrain elevation minima. 

5. Future Work 

Future work will include expanding upon the current 
set of events which trigger dynamic aggregation/ 
deaggregation as well as improvements to the 
intelligent vehicle placement algorithms. Possible 
improvements in these areas include: 

- Implementation of a generic resolution management 
library which will allow deaggregation requests to be 
registered and controlled by a single module. This 
will involve the definition of new criteria which are 
used to trigger the aggregation/deaggregation process, 
as well as an interface for specifying this criteria. 

- Implementation of man-made obstacle avoidance 
algorithms in the entity placement process, to 
improve realism. 

- Investigation of solutions to the terrain correlation 
issues between Eagle and ModSAF. 

6. Conclusions 

The development of new networking and computer 
technologies will certainly help increase the number 
of DIS entities which can participate in a large-scale 
exercise, but as technology increases so will the 
fidelity of the simulations. As fidelity increases, 
more resources are consumed and the net performance 
gain becomes insignificant. Dynamic aggregation/ 
deaggregation is one of the keys to supporting large- 
scale DIS exercises. Use of this scheme allows 
deaggregation to occur only when necessary, based on 
battlefield events or operator interaction.  Computer 

and network resources are thereby conserved, as they 
are utilized by tactically significant units and not 
spent on tactically insignificant units. 

The CLCGF system has successfully demonstrated 
dynamic aggregation/deaggregation, intelligent 
vehicle placement, and road network utilization in 
several demonstrations at the Integration and 
Evaluation Center (IEC) at the Topographic 
Engineering Center (TEC) located at Ft. Belvoir, VA. 
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1.   Abstract 

This paper presents a survey of three projects at the 
frontier of constructive + virtual (C+V) linkages. 
C+V simulations solve problems that neither 
constructive nor virtual simulations solve well 
alone. Constructive simulation is frequently 
thought of as war gaming, simulating battle on high 
levels such as corps or division. Conversely, 
virtual simulation is at the vehicle level. Users 
battle in groups, using manned simulators or 
computer generated forces as friend and foe. The 
C+V linkage allows the commander to zoom in 
during a constructive battle to see action occurring 
at the vehicle level. C+V also allows players in a 
virtual training exercise to realistically participate 
in large scale scenarios. C+V supports execution 
of larger simulations than are possible on even the 
newest virtual simulations. 

This paper will define C+V simulation integration 
and describe its importance in battlefield 
simulation. We will examine the following three 
C+V linkages: Integrated Eagle/BDS-D (the first 
project to integrate constructive and virtual 
simulations), Corps Level CGF (CLCGF), and 
BBS/SIMNET. This paper answers the following 
questions: How well do these integrations allow 
interaction across the C+V interface? How are 
aggregation and disaggregation handled? How are 
direct and indirect fire supported? What are some 
of the unsolved problems? 

2.   Introduction 

2.1   Mission Statement 

Simulation technology has seen steady growth for 
more than 10 years in both the areas of constructive 
and virtual simulation. More recently these 
technologies have been joined to solve new 
problems. This paper surveys how constructive 
and virtual simulations have been combined and 
what new problems they are solving. In the pages 
that follow we will discuss the state-of-the-art in 
constructive + virtual simulation. 

2.2  Scope of the Survey 

Many projects have researched and/or implemented 
integrations of constructive and virtual simulations. 
In this survey, we focus on systems in which 
aggregation and disaggregation are performed 
across the constructive and virtual boundary; such 
systems are termed "constructive + virtual 
linkages", or C+V linkages. Each project shown in 
Table 1 meets this requirement. 

Project Constructive Virtual CGF 
Eagle/BDS-D Eagle DIS/SMNET 1ST CGF 

Testbed 
CLCGF Eagle DIS ModSAF 
BBS/SIMNET BBS DIS/SMNET SMNET/SAF 

Table 1: C+V Projects 

We will examine each of these C+V projects and 
evaluate them against a set of problem areas. For 
an introduction and tutorial on C+V linkages see 
(Franceschini 1995). 

2.3  Report Organization 

This paper has three key sections. Section 3 
defines what constitutes a C+V linkage and its 
importance. Section 4 presents a review of current 
C+V linkages. Section 5 describes common 
problems found in building a C+V linkage and 
introduces some interesting C+V ideas. 

3.  A Characterization of C+V Linkages 

3.1   Constructive Simulation 

For the purposes of this discussion, we will use the 
following characterization of constructive 
simulations. 

Constructive simulations represent military units 
(e.g., a tank company) as an aggregate without 
simulating each individual entity (e.g., tank) within 
the unit. The position, movement speed and 
direction, status, and composition of an aggregate 
unit are maintained for the unit as a whole, and are 
often computed as the result of statistical analysis 
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of the unit's actions. BBS, CBS, and Eagle are 
examples of constructive simulations. 

3.2 Virtual Simulation 

Virtual simulations represent each vehicle or 
fireteam as a distinct simulation entity. All 
necessary state information for each entity is 
maintained for that entity. Each entity is capable of 
independent action, and combat results are resolved 
at the entity level. The position, movement speed 
and direction, status, and composition of a military 
unit in a virtual simulation, if needed, must be 
inferred from the individual vehicles that compose 
that unit. SIMNET, BDS-D, and CCTT are 
examples of virtual simulations. A virtual 
simulation's entities may be controlled by either 
crewed simulators or computer generated forces 
(CGF). 

3.3 Differences Between Constructive and 
Virtual Simulations 

To summarize, constructive simulations represent 
aggregate military units while virtual simulations 
represent individual vehicles or soldiers as entities. 

In general, constructive and virtual simulations 
differ in their treatment of time and space. In the 
case of time, virtual simulations usually intend that 
the apparent passage of time within the virtual 
environment of the simulation match that of the 
real-world that is being modeled; hence they are 
described as real-time. In contrast, constructive 
simulations are often time-stepped, with the 
simulation time advancing a fixed amount of time 
for each computational cycle of the simulation 
model. The size of the simulated time step 
ordinarily has nothing to do with the time required 
to compute the events of that time-step, so such 
simulations are not real-time. 

As for space, virtual simulations often specify the 
terrain of the virtual environment in great detail, 
with individual roads, buildings, trees, and bushes 
represented. The possible locations a virtual entity 
may occupy are essentially continuous over the 
terrain. This detail is appropriate for entity level 
modeling. Constructive simulations generally use 
terrain that has been partitioned in a regular grid of 
squares or hexagons, with the terrain of each grid 
element abstracted into one or more terrain 
attributes that apply to the entire element (e.g., 
forest). 

Finally, the traditional users of each class differ. 
Although there is considerable overlap, 
constructive simulations have historically been 
developed and used primarily by the analytic 
community to perform system and force 
development studies, whereas virtual simulations 
have been developed and used by the training 
community as training tools. Each community is 
learning to appreciate the advantages of the other 
class of simulation, and each is becoming more 
interested in using the best features of both classes. 

Note that the term "unit" is used when referring to 
aggregates in a constructive simulation and the 
term "entity" is used when referring to vehicles or 
infantry in a virtual simulation. 

3.4  Constructive+Virtual (C+V) Simulation 

A constructive+virtual simulation is a system that 
links a constructive simulation with a virtual 
simulation. The goal of a C+V simulation is to 
have events in one simulation influence or effect 
events in the other simulation. Units or entities that 
are present in a constructive or virtual simulation 
are usually represented in some fashion in the other 
simulation. 

4.   C+V Integration Review 

The following presents a review of Integrated 
Eagle/BDS-D, Corps Level Computer Generated 
Forces (CLCGF), and BBS/SIMNET. For each 
project, the following are described: 

• The goal of each project 
• Conceptual C+V configuration 
• Description of the constructive system 
• Description of the virtual system 
• The interface between constructive and virtual 

simulations 
• Interoperability    between    constructive    and 

virtual worlds 

Information about each project was gathered from 
the referenced papers as well as surveys sent to 
authors of the papers. 

4.1   Integrated Eagle/BDS-D 

The primary goal of the Integrated Eagle/BDS-D 
project is to integrate the Eagle constructive 
simulation (developed by the US Army TRADOC 
Analysis Center) with a DIS/SIMNET virtual 
environment using the Institute for Simulation and 
Training's Computer Generated Forces Testbed 
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(1ST CGF Testbed). The project's objective is to 
prove by demonstration the concept of 
interoperability of constructive and virtual 
simulations. 

4.1.1 Conceptual C+V Confi guration 
Figure 1 shows the conceptual system 
configuration. The Eagle simulator (see Section 
4.1.2) and the SIU (see Section 4.1.4) communicate 
using Remote Procedure Calls (RPCs). 
Communication between the SIU and the 1ST CGF 
Testbed is done with an interoperability protocol 
(IOP). Some currently active IOP PDUs describe 
the composition of a unit, a change in a unit's 
status, a unit's Operations Order, and indirect fire 
between the constructive and virtual simulations. 

Eagle 

RPC 

SIU 

IOP Network 
(D1S/S1MNET) 

1ST CGF 
Testbed 

Manned 
Simulator 

LEGEND: 
Nodes Definition 
Eagle TRAC Eagle Constructive Simulator 
SIU Simulator Interface Unit 
Manned Simulator Manned Simulator 
1ST CGF Testbed Virtual CGF System 

Figure 1: Eagle/BDS-D Conceptual C+V 
Configuration (Karr 1994) 

4.1.2  The Eagle Simulator 
The Eagle simulator is a Corps and Division level 
combat model. The smallest units simulated are at 
the company and battalion levels. The Eagle 
simulator is used to analyze combat development 
studies, the effects of weapon systems, command 
and control, military doctrine, and organization on 
force effectiveness (Powell 1993). It was 
developed to provide an enhanced representation of 
command and control to and reduce the turn- 
around time of scenario development. The 
following functions are performed by Eagle in the 
Eagle/BDS-D system (Karr 1994). 

• Simulate all aggregate units. 
• Optionally send disaggregation/aggregation 

requests when units move inside/outside a 
"high-resolution area". 

• Switch to real-time execution when any unit is 
disaggregated. 

• After disaggregating a unit, send an Operations 
Order to the disaggregated unit. 

• While a unit is disaggregated, update the unit's 
status and position by processing information 
received from the 1ST CGF Testbed. 

• Respond to requests for indirect fire. 

4.1.3 The 1ST CGF Testbed 
The 1ST CGF Testbed connects to a SIMNET or 
DIS network and provides a mechanism for testing 
CGF control algorithms. The 1ST CGF Testbed 
runs on IBM PC-compatible computers. The 1ST 
CGF Testbed consists of an Eagle Manager, one or 
more Operator Interface (01) computers (used as a 
console for the human operator), and one or more 
simulators (which control the behaviors of the 
simulated vehicles). The 1ST CGF Testbed has the 
following responsibilities (Karr 1994): 

• When a disaggregation request for a unit is 
received, break the unit down to single entities. 

• Upon disaggregation, use a vehicle placement 
algorithm to place vehicles around obstacles in 
the virtual terrain. 

• Simulate the individual entities. 
• Respond to a CGF operator's commands. 
• Send Eagle Operations Orders to the 01 

controlling the disaggregated unit. 
• When an aggregation request is received, 

remove proper entities from the virtual 
simulation. 

4.1.4 The Simulation Interface Unit (SIU) 
Developed by the Los Alamos National Laboratory 
(LANL), the SIU coordinates the communication 
between the Eagle simulator and the 1ST CGF 
Testbed. The SIU is SIMNET and DIS 
compatible. The SIU has the following 
responsibilities (Karr 1994): 

• Synchronize Eagle's time-stepped simulation 
with the virtual real-time simulation. 

• Update Eagle with events that have occurred in 
the virtual simulation. 

• Perform terrain coordinate conversions 
between Eagle and DIS/SIMNET. 

• Determine each disaggregated unit's "center of 
mass". 

• Update the status of Eagle's disaggregated 
units by listening to appearance PDUs from 
DIS/SIMNET. 
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•     Send aggregate unit information to the virtual 
world. 

4.1.5 Appearance of Units in the Virtual World 
At regular intervals, Eagle sends descriptions of 
aggregate units in Unit Detail PDUs (UDPDU). 
Each UDPDU contains a field for the status of the 
unit. The status may be disaggregated, aggregated 
(shown as an icon), pseudo-disaggregated, or 
invisible. The CGF Operator chooses how 
constructive units should appear. 

A disaggregated unit is controlled in the virtual 
world. Individual entities are either controlled by 
the 1ST CGF Testbed or manned simulators. 

Icon unit status is the lowest level of detail for an 
aggregate unit. An internal protocol aggregate 
PDU is sent for each unit in icon status. This status 
allows nodes on the network to display an icon for 
the aggregated unit. This minimizes network traffic 
while allowing nodes in the virtual world to be 
aware of units being simulated by Eagle (Karr 
1994). 

Pseudo-disaggregation is a more detailed level of 
unit appearance. An appearance PDU is produced 
for each vehicle within the unit at regular intervals 
every five to ten seconds. Locations of the pseudo- 
vehicles in the unit are based on the formation of 
the unit. This allows nodes on the network to see a 
formation of vehicles moving across the terrain. 
Since the unit is controlled by Eagle, pseudo- 
vehicles are not simulated as entities in the virtual 
world. Thus, pseudo-vehicles may not fire their 
weapons, sight other entities, or receive fire. This 
permits many entities to be placed in the virtual 
world, creating a realistic picture for sensor 
systems (Karr 1994). 

Invisible unit status is used when an operator 
chooses to hide the aggregated unit from the virtual 
world. This is usually done when the virtual world 
is cluttered with aggregate units. 

4.1.6 Interactions Across C+V Boundary 
Test scenarios have been used to demonstrate the 
interoperability of the Eagle/BDS-D project. 
Typical scenarios have had operators initiate 
disaggregation of a unit. Aggregate units on Eagle 
disaggregate to CGF or manned entities in 
DIS/SIMNET. Eagle executes in real-time while 
any unit is disaggregated and processes 
DIS/SIMNET events. Aggregate units on Eagle 
may attack virtual vehicles in DIS with indirect 

fire. Combat occurs between the constructive and 
virtual worlds in the following ways: 

• When a Call for Fire is made from the 1ST 
CGF Testbed, the Eagle system responds with 
indirect fire. Indirect fire appears in the virtual 
world and damages virtual vehicles 

• A disaggregated artillery battery with a Battery 
Fire Mission may send indirect fire at a 
constructive unit on orders from Eagle 

• Operations Orders (unit missions) and 
Operator Intent (commands from a CGF 
operator) messages are transferred between 
Eagle and the CGF Operator 

4.2  Corps Level CGF 

The Joint Precision Strike Demonstration (JPSD) 
has a requirement to simulate a large number of 
entities on the DIS network. To satisfy this 
requirement, Corps Level Computer Generated 
Forces (CLCGF) was initiated to examine theater 
level simulations in DIS (Calder 1994). CLCGF 
integrates the Eagle constructive simulator with a 
DIS virtual simulation (using ModSAF). CLCGF 
links the constructive and virtual worlds by using a 
Simulation Interface Unit. This information about 
CLCGF was collected from (Calder 1995) (Calder 
1994). 

4.2.1 Conceptual C+V Configuration 
Figure 2 illustrates the conceptual arrangement of 
the CLCGF system. For simplicity, only the 
constructive + virtual link is shown. The Eagle 
simulator and the SIU communicate using Remote 
Procedure Calls (RPCs). Communication between 
the SIU and ModSAF is done using Persistent 
Object Protocol (POP) (developed for ModSAF). 
The SIU also listens to DIS from the virtual 
simulation. Previous sections discussed the Eagle 
Simulator. 
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Eagle 

RPC 

SIU 

ASPDU 

T     T 

ModSAF 
CGF System 

DIS 
POP 

DIS 

Stealth 

DIS POP 

DIS 

Logger 

LEGEND: 
Protocol Definition 
POP ModSAF Persistent Object Protocol 
RPC Remote Procedure Calls 
ASPDU Aggregate State PDU 
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Figure 2: CLCGF Conceptual C+V Configuration 
(after Calder 1995) 

4.2.2 ModSAF 
ModSAF is a well-known CGF system. For a 
description of ModSAF see "ModSAF User 
Manual Version 1.3" (Loral Advanced Distributed 
Simulation 1994). 

4.2.3 The Simulation Interface Unit 
CLCGF's SIU has the same responsibilities as the 
Eagle/BDS-D's SIU as listed in Section 4.1.4. To 
send aggregate unit information to the virtual 
world, CLCGF's SIU uses a modified version of 
the experimental DIS Aggregate Protocol, called 
the Aggregate State PDU (ASPDU). Aggregate 
State PDUs are similar to Entity State PDUs, but 
adapted for aggregate units. 

4.2.4 Interoperabilities 
Disaggregation is performed when a Disaggregate 
Request PDU (DRPDU) is sent to the SIU. A 
DRPDU must be resent periodically to keep the 
unit disaggregated. When the SIU initially receives 
a DRPDU, the SIU sends a POP message to 
ModSAF to disaggregate the unit. If a DRPDU is 
not received over a specific time period, the SIU 
will send a POP message to ModSAF to aggregate 
the disaggregated unit. Cease in transmission of 
DRPDU may be done by a ModSAF operator or by 
a timer. 

SIU broadcasts Detonation PDUs to DIS. 
entities may be affected by the indirect fire. 

DIS 

As the final step in disaggregating a unit, Eagle 
sends an Operations Order to the SIU. The SIU is 
able to interpret a small portion of an Operations 
Order. For example, the SIU may interpret from an 
Operations Order a change in unit formation. The 
SIU sends commands in POP messages to ModSAF 
for execution of the Operations Order. 

As stated above, the SIU broadcasts ASPDUs to 
the virtual world. Thus, all nodes in the virtual 
world have access to information about each 
aggregate unit. If a particular virtual node requires 
entity level information from an aggregate unit, the 
virtual node may internally pseudo-disaggregate the 
unit. This technique of pseudo-disaggregation 
places no Entity State PDUs on the network. For 
example, a ModSAF aircraft may contain a 
JSTARS system simulation. The JSTARS 
simulation internally pseudo-disaggregates the units 
that are within range of the radar. A vehicle 
placement algorithm is used to place the pseudo- 
disaggregated vehicles around obstructions on the 
virtual terrain. 

4.3  BBS Linkage 

The primary goal of the BBS linkage is to integrate 
a constructive simulation with a DIS network. The 
developers chose the Brigade/Battalion Battle 
Simulation (BBS) as the constructive simulation, 
because it can recognize and display individual 
vehicles on its graphics terminals. This 
information about the BBS linkage was collected 
from (Hardy 1994). 

4.3.1 Conceptual C+V Configuration 
As seen in Figure 3, the main linkage between BBS 
and the virtual world is the Advanced Interface 
Unit (AIU). The AIU communicates with both DIS 
and SIMNET networks. It also communicates with 
the BBS system through the Simulator Control 
(SIMCON). The SAF engines (see section 4.3.4) 
are part of the AIU. Since DIS CGF simulators 
were not available at the time the BBS project was 
started, SIMNET simulators are used to create 
virtual entities to interact with the constructive 
units. 

CLCGF implemented indirect fire from the 
constructive world to the virtual world. When 
Eagle sends an indirect fire message to the SIU, the 
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Figure 3: BBS Conceptual C+V Configuration 

4.3.2 The Simulator Control (SIMCON) 
SIMCON is a node on the BBS network that allows 
the AIU to access and control the internal workings 
of BBS. When the AIU's SAF engine is modeling 
the entities of a disaggregated unit at the virtual 
level, SIMCON stops BBS from modeling that 
unit. When the unit is reaggregated, SIMCON tells 
BBS to resume modeling the unit. 

4.3.3 The Advanced Interface Unit (AIU) 
The AIU has several components to complete the 
integration. The AIU includes several SAF engines 
to model the individual entities of disaggregated 
units. It also includes a DIS/SIMNET translator. 
This allows the AIU to recognize both DIS and 
SIMNET protocol and translate them so both 
worlds can recognize and interact with each other. 

4.3.4 The SAF Engine 
The SAF engine is a part of the AIU that models 
disaggregated units at the entity level in the 
SIMNET world. It recognizes a number of control 
functions received from the AIU. Some functions 
of the SAF engine are creating objects, deleting 
objects, and moving objects. 

4.3.5 Interoperabilities 
The AIU aggregates DIS entities into BBS objects, 
and periodically updates them so that the BBS 
simulator can see the virtual entities and interact 
with them. The AIU disaggregates BBS objects 
into SIMNET entities controlled by the SAF 
engine. The AIU also sends status reports back to 
the BBS simulator. For example, formation and 
damage assessments on a disaggregated unit would 
be transferred to the BBS simulator. 

5.  Findings and Observations 

Concepts such as aggregation, disaggregation, and 
pseudo-disaggregation will be discussed in this 
section as well as the complications involved in 
these tasks. Also, some other problems and 
concepts of C+V simulation will be addressed. 

5.1  Concepts 

5.1.1   Disaggregation 
Disaggregation is the mechanism by which control 
of a unit is transferred from the constructive 
simulation to the virtual simulation. When the unit 
is transferred to the virtual simulation it must be 
split into its individual entities. The virtual 
simulator that controls these entities is often a CGF 
system. Disaggregation is thus a one-to-many 
transformation. 

Disaggregation involves the following steps: 

1. 
2. 

3. 

4. 

5. 

6. 

Disaggregation is triggered. 
Virtual   simulator   receives   aggregate   unit 
information. 
Virtual   simulator   separates   the   unit   into 
individual entities. 
Virtual simulator creates each entity in the 
virtual  world.     Since  more  information  is 
needed than is available, the virtual simulator 
must provide it. 
Constructive simulation receives 
acknowledgment of disaggregation. 
Constructive simulation releases control of the 
unit. 

5.1.2   Aggregation 
Aggregation is the mechanism by which control of 
a unit is transferred from the virtual simulation to 
the constructive simulation. When the unit is 
transferred to the constructive simulation, its 
vehicles are replaced by a single aggregate unit. 
Aggregation is thus a many-to-one transformation. 

Aggregation involves the following steps: 

1. 
2. 

3. 

4. 

Aggregation is triggered. 
Constructive simulator receives aggregate unit 
information.      Since   more   information   is 
available than is needed, some information is 
discarded. 
Virtual simulator removes the entities in the 
unit from the virtual world. 
Constructive simulation resumes control of the 
unit. 
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5.1.3 Pseudo-Disaggregation 
Pseudo-disaggregation allows a virtual simulation 
to display aggregate units as individual entities, but 
control remains with the constructive simulation. 
Pseudo-disaggregation is very similar to 
disaggregation, except that the individual entities of 
the unit are not modeled at the virtual level. Since 
the pseudo-disaggregated units are modeled at the 
constructive level, they will not respond to any 
interactions in the virtual world. 

In Integrated Eagle/BDS-D, the Eagle Manager 
pseudo-disaggregates a unit, and sends Entity State 
PDUs for each vehicle in a unit. This allows each 
vehicle to be visible in DIS, while computation 
overhead is at a minimum (Karr 1994). In CLCGF, 
each node on the virtual network is responsible for 
internally pseudo-disaggregating units about which 
it wants entity level information. This minimizes 
network traffic (Calder 1995). 

5.2  Problems 

In each of the problems that follow, the designer is 
faced with temporal, spatial, or control problems. 
Additionally, the C+V integration must work with 
and sometimes extend rules of both the constructive 
and virtual worlds. 

5.2.1 C+V Equal and Level Playing Field 
Entities and units must have an equal and level 
playing field in which to simulate battle. The 
outcome of a battle between two constructive units 
should be similar to the outcome of that same battle 
held in the virtual world. Since aggregation is an 
information loss process and disaggregation is an 
information gain process, enough information 
should be retained in the 
aggregation/disaggregation cycle to insure similar 
outcomes. Since it is not feasible to keep all the 
information, we determine what information is 
most pertinent. Some questions that might help 
determine important information are: 

• Can units and entities at less than full strength 
have multiple representations? A constructive 
unit of 6 helicopters at 50% strength may also 
be equivalent to 3 virtual helicopters at 100% 
strength. 

• Should damaged entities appear undamaged 
after an aggregation/disaggregation cycle? 

• Should entities low on fuel or payload be 
automatically refueled and reloaded after an 
aggregation/disaggregation cycle? 

5.2.2 Spreading Disaggregation 
One goal of C+V simulation is to keep network 
traffic and computation load to a minimum. 
Spreading disaggregation is a situation where a 
single disaggregation triggers a chain reaction of 
disaggregations that may include hundreds or 
thousands of DIS entities (Petty 1995) (Trinker 
1994). For example: Four red heavy armor units 
and four blue heavy armor units form two lines 
across a front, in a constructive battle. 

Figure 4: Spreading Disaggregation 

A blue helicopter on a scouting mission passes 
within sensor range of a red armor unit. If the 
automatic disaggregation method used is close 
proximity, the red unit disaggregates. Next, a blue 
armor unit is disaggregated because it is in close 
proximity of a red virtual entity. The chain 
reaction continues until all eight constructive units 
have disaggregated. The passing helicopter may 
not have intended to interact with any of these 
units, yet all eight units have been dragged into the 
virtual world. 

Now consider a blue missile (the arrow in Figure 4) 
launched from one corner of the battlefield to the 
opposite corner of the battlefield, in close 
proximity to red forces. Should all red forces along 
the path disaggregate? If red units can interact with 
the missile, should they disaggregate and engage? 
If the missile is traveling at supersonic speeds, the 
window of engagement is very short; how quickly 
should units disaggregate? 

5.2.3 Unit Formation on Disaggregation 
Disaggregation requires a transfer of control from a 
constructive unit into multiple entities in the virtual 
world. With this transfer of control, the virtual 
simulation has a location and orientation for each 
entity in a constructive unit. Typically these 
entities are ordered in a formation dependent on the 
Operations Order. For example, when the 
Operations Order is Road March, the entities will 
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be placed into a column formation. The 
disaggregation process involves solving several 
problems (Clark 1994), (Franceschini 1992): 

• Entities must be placed intelligently onto the 
terrain. Most constructive simulations will not 
have the resolution for intelligent vehicle 
placement in the virtual terrain. For example, 
locations of trees, lakes, and rivers can impede 
realistic vehicle placement. Certain formations 
have strict line of sight requirements that are 
unavailable at the constructive level. 

• If the command vehicle of a company is 
destroyed, a new vehicle must move into that 
position (physically and operationally) and 
assume those responsibilities. 

• A formation of vehicles en route must perform 
dynamic obstacle avoidance. They cannot run 
into each other or fixed objects. 

5.2.4 Direct and Indirect Fire 
Direct fire across the C+V boundary is difficult to 
support, due to immense problems with both timing 
and database correlation (Trinker 1994). 
Constructive level simulations typically shift to 
real-time by leaping ahead in large time steps and 
then waiting for the virtual world to catch up. One 
direct fire exchange in the constructive world might 
be statistically calculated and executed in a fraction 
of a second. In the virtual world in order to be 
visually realistic, each phase of the direct fire must 
follow the rules and timing of physics. The 
constructive database can also be in an entirely 
different coordinate system and is normally at a 
much lower resolution. 

Indirect fire across the C+V boundary is a difficult 
but solvable problem. Indirect fire from the 
constructive to virtual world works as follows: An 
Indirect Fire Volley is initiated against a ghost unit 
in the constructive world by selecting a munitions 
type and location. This is translated into a series of 
Detonation PDUs in the virtual world. Information 
on damaged or destroyed entities is then captured 
and relayed back to the constructive simulation 
(Franceschini 1995). Indirect fire from virtual to 
constructive is done when a disaggregated artillery 
unit chooses to attack an aggregated unit. 
Information about the attack (such as the locations 
of the fire detonations) is passed to the constructive 
simulation. The constructive simulation calculates 
statistical damage of the aggregate units near the 
fire detonations (Franceschini 1995). 

6.  Projects Outside the Scope of this Survey 

This survey focused on projects that aggregate and 
disaggregate units across the C+V boundary. Some 
projects that researched C+V simulations 
implemented aggregation and disaggregation inside 
the constructive simulation. These projects 
employed a constructive simulation that supports 
both aggregate units and single entities. Some 
examples of these projects are IRIS, Janus, and 
SOFNET-JCM. 

IRIS (Internetted Range Interactive Simulation) 
links constructive, virtual, and live simulators in a 
DIS environment. A primary goal of this project 
was to minimize the modifications to each 
simulator (Kazarian 1994). 

Janus is a self-contained constructive simulation 
with an interface to DIS. Interfacing to DIS is 
managed through a Cell Interface Unit (CIU) called 
the World Modeler (Pratt 1995) (Pratt 1994). 

SOFNET-JCM project generates interactions 
between the constructive Joint Conflict Model 
(JCM) Simulation and the SOF Inter-Simulator 
Network (SOFNET) aircraft simulator (Babcock 
1994). 

7.   Conclusion 

The evaluated C+V integrations have shown 
impressive results in this early stage of 
development. A long term goal is to provide a 
seamless interconnection supporting aggregation, 
disaggregation, and full interaction between the 
constructive and virtual simulation worlds. Current 
unsolved problems such as spreading 
disaggregation and the unequal and unlevel playing 
fields prohibit a fully automated solution. The 
current DIS standard 2.0.4 does not fully define an 
"Aggregate PDU" that will satisfy needs of the 
evaluated C+V integrations. However, C+V has 
proven to be an effective solution for large 
simulations. 
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1. Abstract 

A number of projects have successfully linked 
constructive and virtual simulations. In these linked 
systems the representation of a military unit can 
transition from an aggregate unit in the constructive 
simulation to a set of virtual entities in the virtual 
simulation. That representational transition, which 
typically occurs in response to scenario events, is 
referred to as disaggregation. 

Too many disaggregations can overload the linked 
system with an unsupportable number of virtual 
simulation entities. One possible cause of such 
disaggregation overload is spreading disaggregation. 
Spreading disaggregation occurs when one 
disaggregation triggers another in a forced sequence. 

Spreading disaggregation can be avoided by 
imposing scenario limits; these may reduce the 
usefulness of the linked system. It can also be 
prevented by allowing interaction between the 
constructive and virtual systems. The latter solution 
is fraught with implementation challenges and 
fidelity concerns. 

2. Introduction 

This introductory section defines the basic terms and 
concepts of constructive and virtual simulations and 
constructive+virtual linkages. See (Franceschini, 
1995) for a in-depth tutorial on these topics. 

2.1 Constructive and virtual simulations 

Constructive simulations represent military units 
(such as companies or battalions) as aggregates; the 
individual entities (such as tanks or infantrymen) 
within the units are not explicitly simulated. The 
location, direction and speed of movement, status, 
size, and composition of an aggregate unit are 
maintained in a constructive simulation for the unit as 
a whole, and are often computed as the result of 
statistical analysis of the unit's actions. For example, 

a combat encounter between two opposing battalions 
may be resolved with a mathematical model of 
combat that considers the overall combat power of 
the units rather than representing the individual 
vehicles and direct fire events than might constitute 
such an engagement. The military simulations CBS, 
BBS, and Eagle are examples of constructive 
simulations. 

Virtual simulations represent each individual combat 
entity as a distinct simulation entity. State 
information is maintained as needed by the 
simulation for each simulation entity, each entity is 
capable of independent action, and combat is 
resolved at the entity level. SIMNET and DIS are 
examples of virtual simulation. A virtual simulation's 
entities may be controlled by either crewed 
simulators or computer generated forces (CGF). 

Table 1 summarizes three important ways in which 
constructive and virtual simulations differ, though 
there are exceptions to each entry. Those differences 
are explained in more detail in (Franceschini, 1995). 

2.2 Constructive+virtual linkages 

A constructive+virtual system (or linkage) is a 
simulation system that includes both a constructive 
simulation and a virtual system linked together. The 
systems are linked in such a way that events in one 
simulation influence or effect events in the other. 
Furthermore, units and entities may be represented in 
some fashion in either simulation. 

In a typical constructive+virtual scenario, aggregate 
units are represented in the constructive simulation, 
where they move and engage in combat. They are 
located on a terrain database within the constructive 
simulation. Linked to the constructive simulation is a 
virtual simulation. It has a terrain database 
corresponding to all or part of the constructive terrain 
database. 
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Characteristic Constructive Virtual 
Time Time-stepped 

Simulation events organized into 
uniform time increments, computed as 
quickly as possible. 

Real-Time 
Simulation events transpire continuously, at 
a rate that ostensibly matches their real- 
world counterparts. 

Terrain 
representation 

Abstracted 
regular grid of squares or hexagons, 
assigned abstract terrain types. 

Detailed 
Polygonal or elevation-post based terrain 
skin with individual features. 

Traditional uses Analysis 
Simulation results used to evaluate 
weapons or doctrine. 

Training 
Simulation participation used to train 
participants. 

Table 1 Differences between constructive and virtual simulation. 

At some point one or more aggregate units move into 
the terrain area that has a corresponding 
representation in the virtual simulation. That fact, 
and possibly other criteria to be discussed below, 
trigger the disaggregation of the constructive unit. 
Control of the constructive unit is transferred from 
the constructive simulation to the virtual simulation, 
and the unit is instantiated as individual entities in the 
virtual simulation. Those individual entities move, 
engage in combat, and perform other activities that 
are possible there. Eventually the entities leave the 
virtual terrain area, or some other criteria is met, and 
the unit is aggregated. The individual entities are 
removed from the virtual simulation and the 
constructive simulation retakes control of the 
aggregate unit, whose composition is appropriately 
modified to reflect the virtual events. 

Implementing such a linkage is a complex matter. 
See (Franceschini,1995) for a tutorial on 
constructive+virtual linkages. 

2.3 Benefits of constructive+virtual linkages 

Constructive and virtual systems are linked for the 
following reasons: 

1. Simulation analysts can obtain detailed entity 
level performance and event information for use in 
constructive simulations. (Franceschini,1994) 

2. Trainers can conduct small unit training exercises 
in virtual battles that are set in the context of larger 
battles executing in constructive simulation, thereby 
adding realism and motivation to the training. 
(Franceschini,1994) 

3. The role of constructive simulations in training 

higher level commanders and the staffs can be 
enriched by supplementing constructive simulation's 
aggregate statistical interactions with virtual 
simulation's detailed entity interactions. 
(Franceschini, 1994) (Downes-Martin, 1991) 

4. Large numbers of geographically distributed 
virtual entities whose locations and actions are 
derived from an overall constructive simulation can 
provide realistic input to virtual entities that are 
moving quickly or possess long-range sensors (e.g. a 
JSTARS platform). (Calder, 1994) (Root, 1994) 

2.4 Some existing constructive+virtual linkages 

Several constructive+virtual linkages have been 
implemented. Table 2 provides a partial list of those 
systems and references for additional information on 
them A survey of constructive+virtual linkages can 
be found in (Kraus, 1995). 

3. Disaggregation 

This paper is concerned with the disaggregation 
process, the conditions that might trigger it, and 
problems that might arise. In this section we shall 
examine disaggregation in more detail. 

3.1 Disaggregation process and triggers 

As the constructive units move, they may move into 
the virtual terrain area. Constructive units in the 
virtual terrain area may be eligible for 
disaggregation, i.e. instantiation as virtual entities. 
Their location may be enough to trigger 
disaggregation or additional conditions may also be 
used. Explained below are four disaggregation 
criteria. 
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Project Name Constructive 
Simulation 

Virtual 
Simulation 

Research Agencies References 

Integrated 
Eagle/BDS-D 

Eagle BDS-D 
DIS 

TRADOC Analysis Command 
Institute for Simulation and Training 
U.S. Army STRICOM 

(Franceschini, 
1992) 
(Franceschini, 
1994a) 
(Franceschini, 
1995b) 
(Karr, 1992) 
(Karr, 1993) 
(Karr, 1994a) 
(Karr, 1994b) 
(Powell, 1993) 
(Root, 1994) 

Corps Level 
CGF 

Eagle ModSAF U.S. Army Topographic Engineering 
Center 
Science Applications International 
Corporation 
Raytheon Systems Development 
Company 
U.S. Army STRICOM 

(Calder, 1994) 
(Raytheon, 1994a) 
(Raytheon, 1994b) 
(Raytheon, 1994c) 

BBS/SIMNET BBS SIMNET Advanced Research Projects Agency 
Naval Research and Development 
ETA Technologies 

(Hardy, 1994) 

Table 2. Existing constructive+virtual systems 

1. Location in the virtual terrain area. The 
aggregate unit is located within a portion of the 
virtual terrain area designated in advance as a 
disaggregation area (perhaps centered on militarily 
important terrain feature). In general, there may be 
multiple disaggregation areas specified within the 
virtual simulation area. When the center of mass of 
the disaggregated unit (as determined from the 
entities in the unit) moves out of the disaggregation 
area, the unit is aggregated. In order to prevent 
anomalies, one can define the aggregation area to be 
slightly larger than the disaggregation area; this will 
prevent a unit on the border of a disaggregation area 
from being disaggregated and then aggregated 
repeatedly as it moves along the boundary. 

2. Range to enemy. The aggregate unit is within a 
critical range of a disaggregated enemy unit 
(equivalently, within range of an enemy virtual 
vehicle). The range may be the maximum detection 
range of any of the unit's entities' sensor systems. 

3. Intent to interact. The aggregate unit intends to 
interact (e.g., employ sensors or conduct direct fire) 
with some other disaggregated unit (virtual vehicles). 
The intent would be recognized as a consequence of 

an action the unit is taking in the constructive 
simulation. 

4. Operator selection. A human operator may 
trigger aggregation or disaggregation using a 
command interface. This approach allows human 
intelligence to decide when control transfer is 
appropriate, so anomalous behavior should not result. 
This approach is useful as a starting point for 
building constructive+virtual systems and to permit 
explicit operator control in order to meet specific 
exercise objectives. However, automatic 
disaggregation triggers are often desirable. 

5. Commander's view. A commander may wish to 
view different parts of the battlefield at different 
levels of granularity. As the commander's view shifts 
around the battlefield, units may be disaggregated or 
aggregated (Downes-Martin, 1991). 

Note that the first three criteria are automatic, in that 
they can be recognized and responded to by the 
simulation system, whereas the last two are manual, 
in that they are triggered by human intervention. 
Note also that the second criteria, Range to Enemy, 
can be seen as a special case of the third, Intent to 
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System Component Capacity limit based on Relationship to entity count 
Network Bandwidth, maximum PDU traffic Each entity produces a required number of PDSs 

(e.g., Entity State) to be carried on the network. 
CGF Simulator Processor speed and memory Each entity creates a processing burden on the 

CGF Simulator, e.g., Remote Entity 
Approximation, intervisibility, and behavioral 
control (for internal entities). 

CGF Operator Human span of control Each entity can potentially be reacted to or 
controlled by the operator. 

Crewed Simulator Processor speed and memory Each entity creates a processing burden on the 
Crewed Simulator, e.g., Remote Entity 
Approximation and image generation. 

Table 3. Relationship of virtual simulation component capacity limits and entity count 

Interact, if the reason that range is important is that 
certain interactions are possible below a given range. 

When the disaggregation criteria in effect in the 
scenario are met, the constructive unit is 
disaggregated into its component entities. The 
constructive simulation communicates the location, 
composition, movement speed and direction, and 
operational activity to the node of the virtual 
simulation charged with controlling disaggregated 
entities; that node is usually a CGF system. The 
component entities are instantiated by the CGF 
system as entities in the virtual simulation under its 
control and the constructive simulation relinquishes 
control of the unit. The virtual entities are placed in 
locations that are consistent with the operational 
activity of the aggregate unit (e.g., if the unit is 
conducting an assault, the entities will be in an attack 
formation) and in locations that do not violate 
realism (i.e., they shouldn't be placed in the middle of 
a lake). The constructive simulation may maintain a 
"shadow" or "ghost" unit for the disaggregated unit, 
which is used to store information about changes in 
the unit's status as it interacts in the virtual world. 
((Franceschini,1992) and (Clark, 1994) address issues 
specific to placement of virtual entities during 
disaggregation.) 

The disaggregated entities conduct direct fire combat 
(and other interactions) in the virtual simulation 
under the control of the CGF system. The virtual 
entities they engage may be disaggregated from other 
constructive units; in some constructive+virtual 
systems they may also interact with manned 
simulators or virtual entities that do not belong to any 
constructive unit. 

Interactions between the constructive and virtual 
simulations must be mediated by the linkage. An 
important example of such a connection is indirect 
fire. In some systems, indirect fire may be conducted 
between the virtual and constructive simulations, 
with constructive batteries firing into the virtual 
world and vice versa. 

3.2 Disaggregation overload 

Virtual networked simulation systems such as DIS 
have capacity limits. The different components of 
the system each have a capacity limit based on some 
performance characteristic of that component. 
Though the performance characteristics which 
impose the limits can vary for different component 
types, it is often the case that the capacity limit for a 
system component can be expressed in terms of 
simulation entity count (the number of entities 
present in the simulation). Table 3 lists primary 
components of a DIS simulation system, what their 
capacity limits are based upon, and how that limit 
relates to entity count. 

Note that the CGF components in Table 3 (CGF 
Simulator and CGF Operator) are especially 
important, in that CGF systems are generally used to 
control the virtual entities that result from a 
disaggregation. 

If the simulation system is limited in the number of 
simulation entities it can support, then exceeding that 
limit will lead to problems, including unrealistic 
results    and    system    failure. In    a    linked 
constructive+virtual system, one way to create a 
situation where the entity capacity of the virtual 
system is exceeded is to disaggregate too many units 
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from the constructive simulation. We refer to such a 
situation as disaggregation overload. 

Disaggregation overload can be produced by any of 
the disaggregation criteria listed previously. Manual 
disaggregation criteria can produce disaggregation 
overload if the operator selects too many units for 
disaggregation or if the commander wants to see too 
much of the forces in too much detail. However, the 
automatic disaggregation criteria, where 
disaggregations are triggered by the system 
automatically in response to simulation events, create 
a more worrisome risk of disaggregation overload if 
those events occur too often or without intervening 
aggregations. In particular, the remainder of this 
paper will examine one type of disaggregation 
overload that can result from automatic 
disaggregations in response to the Range to Enemy 
and Intent to Interact criteria; that type is spreading 
disaggregation. 

3.3 Spreading disaggregation 

We will define spreading disaggregation by example. 
Suppose a constructive+virtual system is executing a 
scenario. We will refer to the constructive simulation 
as C, the virtual simulation as V, and the linked 
system as C+V. For this example, C+V is using a set 
of disaggregation trigger criteria that include one 
based on Range to Enemy; specifically, C+V will 
disaggregate a constructive unit that is within direct 
fire range of a virtual entity. This criteria is used 
because in C+V, direct fire combat is possible within 
constructive simulation C between constructive units 
and within virtual simulation V between virtual 
entities, but no direct fire is possible between units in 
C and entities in V. 

Figure 1 shows the example scenario. It includes 
Blue companies Blue-1 and Blue-2 and Red company 
Red-3; all three units are within the virtual terrain 
area (i.e., the portion of the terrain area for which 
both constructive and virtual representations exist). 
In Figure la, Blue-2 and Red-3 are constructive 
units; they are engaging in direct fire within the 
constructive simulation C. However, Blue-1 has 
already been disaggregated; hence it is a set of virtual 
entities in V corresponding to a company sized unit. 
The entities of Blue-1 are moving towards Red-3. As 
Blue-1 moves toward Red-3 it comes within the 
disaggregation trigger range of Red-3. The 
constructive unit Red-3 is now within range of a 
disaggregated unit and must disaggregate (Figure 
lb). Once Red-3 has been disaggregated, it becomes 

a disaggregated unit within the disaggregation 
triggering range of Blue-2. That event triggers Blue- 
2's disaggregation (Figure lc). 

In this way a chain of disaggregations can spread 
across the battlefield; the phenomenon is called 
spreading disaggregation. Spreading disaggregation 
could easily and unpredictably result in 
constructive+virtual exercises where large numbers 
of units are in short order disaggregated into their 
component vehicles, leading to disaggregation 
overload. 

The Intent to Interact disaggregation criterion can 
also initiate spreading disaggregation, and might do 
so at greater ranges than direct fire, depending of the 
type of interaction. Remote sensing by a surveillance 
aircraft, jamming by an electronic warfare unit, and 
indirect fire all occur at longer ranges than direct fire 
and are interactions that could trigger disaggregation 
if one of the interacting units is disaggregated. The 
greater range of these interactions increases the 
chance of a chain of spreading disaggregations. 

4. Some solutions to spreading disaggregation 

This section will discuss some solutions to the 
problem of spreading disaggregation. 

4.1 Avoidance 

The problem of spreading disaggregation in 
particular (and disaggregation overload in general) 
can be "solved" by rendering it impossible or 
unlikely through scenario design. The simplest way 
to do so is to design scenarios with few enough 
constructive units that even if all of the units were 
disaggregated the total number of resulting virtual 
entities would not exceed the entity count capacity of 
the virtual system. This method, while inarguably a 
solution to the spreading disaggregation problem, 
eliminates the possibility of executing scenarios 
larger than the capacity of the virtual system alone, 
which is one of the main objectives of linking 
constructive and virtual simulation. 

A more subtle form of avoidance is to design 
scenarios wherein the aggregate units that are likely 
to be disaggregated are sufficiently dispersed 
geographically so as to make spreading 
disaggregation extremely unlikely. This method, a 
marginal improvement over the simpler form of 
avoidance, has been used extensively in early 
demonstrations of constructive+virtual systems. 
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Figure 1 - Spreading Disaggregation 
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As an illustration of this idea, consider the scenario 
used by the Integrated Eagle/BDS-D system at the 
DIS Interoperability Demonstration during the 16th 
Interservice/Industry Training Systems and 
Education Conference. (The Integrated Eagle/BDS-D 
system uses the Location in the virtual terrain area 
disaggregation criterion for        automatic 
disaggregations and also allows operator initiated 
disaggregations; therefore, it is not as susceptible to 
spreading disaggregation as systems which use the 
other automatic disaggregation triggering 
mechanisms. However, the scenario used by the 
system provides a good example of the care that must 
be taken in developing scenarios for systems that are 
more susceptible to spreading disaggregation. Such 
care was taken in constructing the I/ITSEC scenario 
so that the basic concepts of a constructive+virtual 
linkage could be demonstrated without complicating 
the battlefield.) This scenario was constructed so that 
it was known in advance which units would be 
disaggregated, which units would engage each other, 
etc. Units which were not selected for disaggregation 
were, in general, not close enough to the 
disaggregated units to cause a need for interactions 
between constructive units and virtual entities (with 
the exception of indirect fire volleys from the 
constructive simulation to the virtual simulation). 

4.2 Interaction between simulations 

Spreading disaggregation can occur because the 
presence of one disaggregated unit triggers the 
disaggregation of the next one. The successive 
disaggregations are forced because the interactions 
that may occur between the units can be resolved 
only constructive<-»constructive or virtuak-»virtual. 
It is possible to eliminate the forcing of 
disaggregations by permitting interactions between 
the constructive and virtual simulations, i.e., 
constructive<->virtual. Given such a capability, the 
constructive+virtual system could choose not to 
disaggregate if spreading disaggregation (or some 
other type of disaggregation overload) would result. 
This solution was first suggested in (Trinker,1994). 

In the example given of spreading disaggregation, a 
Range to Enemy disaggregation criterion leads to a 
chain of disaggregations because satisfying the 
criterion signals the possibility of direct fire. In 
existing constructive+virtual systems, direct fire may 
only be performed within the constructive and virtual 
components. Providing    the     capability     of 
constructive<->virtual direct fire would halt spreading 
disaggregation     because     the    presence     of    a 

disaggregated unit within direct fire range is no 
longer an automatic trigger for disaggregation. 
Spreading disaggregation would have been prevented 
in the example by constructive<-»virtual direct fire 
between Blue-1 and Red-3 or between Red-3 and 
Blue-2. 

However, experiences with allowing indirect fire 
between the constructive and virtual components of a 
C+V simulation have shown the difficulties that can 
be encountered in implementing cross-simulation 
interaction. In the Integrated Eagle/BDS-D system, 
indirect fire can be conducted in both directions 
between aggregate units in Eagle (the constructive 
simulation) and virtual entities in DIS (the virtual 
simulation). Some of the problems encountered in 
implementing that interaction include timing of the 
indirect fire rounds and positioning of their 
detonations. For example, when indirect fire is sent 
from Eagle into DIS, an volley representing the total 
number of rounds fired during Eagle's current five 
minute timestep is shipped to DIS in one instant. The 
constructive to virtual interface is responsible for 
parceling out the fire over the correct amount of real 
time in the virtual simulation. As another example, 
indirect fire rounds fired from DIS into Eagle must 
be gathered and "aggregated" (in both time and 
space) into one volley in order for Eagle to correctly 
assess damage to its units. More information about 
the implementation of indirect fire across the 
constructive and virtual boundary in the Integrated 
Eagle/BDS-D system can be found in (Karr, 1993) 
and(Karr, 1994a). 

Direct fire would be even more problematic. One 
obvious reason is the importance of intervisibility in 
conducting direct fire. How can intervisibility be 
determined between virtual entities, which have 
specific locations in the virtual terrain database, and 
aggregate units consisting of a number of abstract 
entities with no specific location? How can direct 
fire be realistically conducted without intervisibility? 
Difficult enough if the virtual entities are controlled 
by a CGF system, these questions become vastly 
more troublesome when the virtual entities involved 
include crewed simulators. How can the crews shoot 
at the entities of aggregate units when those entities 
cannot be seen? How can they take cover from those 
units' return fire? 

There are additional problems to consider in 
implementing constructive+-»virtual direct fire. 
Several are identified and considered in 
(Trinker,1994). 
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We list here the problems identified by (Trinker, 
1994); readers interested in proposed solutions to 
these problems should refer to that paper. Normally, 
direct fire is partitioned into two separate events: hit 
assessment and damage assessment; each of these 
events raises implementation concerns for 
constructive+virtual direct fire. For hit assessment, 
how are specific entities or units identified as being 
hit? How many entities are hit? When are the 
entities hit? How is damage assessed, and which 
simulation assesses it? 

Generalizing from direct fire to a wider range of 
interactions (and from Range to Enemy to Intent to 
Interact disaggregation criteria), the 
constructive+virtual interaction solution becomes 
more challenging. If automatic disaggregations 
forced by Intent to Interact are to be avoided, then 
constructive+virtual interaction must be possible for 
each of the types of interactions considered by the 
Intent to Interact criterion. If Intent to Interact 
considers sensing, then constructive+virtual sensing 
must be implemented; if Intent to Interact considers 
electronic warfare, then constructive+virtual 
electronic warfare must be possible, and so on. 

5. Conclusions 

Spreading disaggregation (and disaggregation 
overload) is a difficult problem that limits the utility 
of constructive+virtual linkages. The best solution 
currently known to the problem of spreading 
disaggregation is implementing constructive+virtual 
interactions. Unfortunately, implementing those 
interactions would entail significant effort and would 
face serious realism concerns. 

6. Acknowledgments 

This research is sponsored by the U. S. Army 
Simulation, Training, and Instrumentation Command 
(STRICOM) as part of the Signal 
Intelligence/Electronic Warfare project (contract 
N61339-93-C-0091). IST's ongoing work in 
constructive+virtual simulation is sponsored by 
STRICOM and the U. S. Army TRADOC Analysis 
Center (TRAC) as part of the Integrated Eagle/BDS- 
D project (contract N61339-92-K-0002). That 
support is gratefully acknowledged. 

7. References 

Calder, R. B. and Evans, A. B. (1994). "Construction 
of a Corps Level CGF", Proceedings of the 

Fourth Conference on Computer Generated 
Forces and Behavioral Representation, 
Institute for Simulation and Training, May 
4-6 1994, Orlando FL, pp. 487-496. 

Clark, K. J. and Brewer, D. (1994). "Bridging the 
Gap Between Aggregate Level and Object 
Level Exercises", Proceedings of the Fourth 
Conference on Computer Generated Forces 
and Behavioral Representation, Institute for 
Simulation and Training, May 4-6 1994, 
Orlando FL, pp. 437-442. 

Downes-Martin, S. (1991). "Vehicle Level 
Wargaming for Senior Commanders: 
Integrating Wargames with Vehicle Level 
Simulations", Unpublished, February 1991, 
33 pages. 

Franceschini, R. W. (1992). "Intelligent Placement 
of Disaggregated Entities", Proceedings of 
the Southeastern Simulation Conference 
1992, The Society for Computer Simulation, 
Pensacola FL, October 22-23 1992, pp. 20- 
27. 

Franceschini, R. W. and Karr, C. R. (1994). 
"Integrated Eagle/BDS-D: Results and 
Current Work", Proceedings of the Eleventh 
Workshop on the Standards for the 
Interoperability of Defense Simulations, 
September 26-30 1994, Orlando FL. 

Franceschini, R. W. and Petty, M. D. (1995a). 
"Linking constructive and virtual 
simulations in DIS", Proceedings of the 
SPIE International Symposium on 
Aerospace/Defense Sensing & Control and 
Dual-Use Photonics, Orlando FL, April 17- 
21 1995. 

Franceschini,    R.    W.    (1995b). "Integrated 
Eagle/BDS-D: A     Status     Report", 
Proceedings of the Fifth Conference on 
Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and 
Training, May 9-11 1995, Orlando, FL. 

Hardy, D., Healy, M. (1994). "Constructive and 
Virtual Interoperation: A Technical 
Challenge". Proceedings of the Fourth 
Conference on Computer Generated Forces 
and Behavioral Representation, Institute for 
Simulation and Training, May 4-6 1994, 
Orlando FL, pp. 503-507. 

Karr, C. R., Franceschini, R. W., Perumalla, K. R. S., 
and Petty, M. D. (1992). "Integrating 
Battlefield Simulations of Different 
Granularity", Proceedings of the 
Southeastern Simulation Conference 1992, 
October 22-23, Pensacola FL, pp. 48-55. 

110 



Karr, C. R, Franceschini, R. W., Perumalla, K. R. S., 
and Petty, M. D. (1993). "Integrating 
Aggregate and Vehicle Level Simulations", 
Proceedings of the Third Conference on 
Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and 
Training, March 17-19 1993, Orlando FL, 
pp. 231-239. 

Karr, C. R. and Root, E. D. (1994a). "Integrating 
Aggregate and Vehicle Level Simulations", 
Proceedings of the Fourth Conference on 
Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and 
Training, May 4-6 1994, Orlando FL, pp. 
425-435. 

Karr, C. R. and Franceschini, R. W. (1994b). "Status 
Report on the Integrated Eagle/BDS-D 
Project", Proceedings of the 1994 Winter 
Simulation Conference, Society for 
Computer Simulation, Orlando FL, 
December 11-14 1994, pp. 762-769. 

Kraus, M. K., Stober, D. R., Foss, W. F., 
Franceschini, R. W., and Petty, M. D. 
(1995). "Survey OF Constructive+Virtual 
Linkages", Proceedings of the Fifth 
Conference on Computer Generated Forces 
and Behavioral Representation, Institute for 
Simulation and Training, May 9-11, 
Orlando, FL. 

Powell, D. R. and Hutchinson, J. L. (1993). "Eagle 
II: A Prototype for Mult-Resolution 
Combat Modeling", Proceedings of the 
Third Conference on Computer Generated 
Forces and Behavioral Representation, 
Institute for Simulation and Training, March 
17-19 1993, Orlando FL, pp. 221-230. 

Raytheon (1994a). "System Specification for the 
Corps Level Computer Generated Forces", 
Contract No. DACA76-93-D-0007 CDRL 
Sequence No. A0010, Raytheon System 
Development Company, July 22 1994. 

Raytheon (1994b). "Draft System Segment Design 
Document for the Corps Level Computer 
Generated Forces", Contract No. DACA76- 
93-D-0007  CDRL  Sequence  No.   A0011, 

Raytheon System Development Company, 
August 8 1994. 

Raytheon (1994c). "Implementation Plan for the 
Corps Level Computer Generated Forces", 
Contract No. DACA76-93-D-0007 CDRL 
Sequence No. A0012, Raytheon System 
Development Company, August 8 1994. 

Root, E. D. and Karr, C. R. (1994). "Displaying 
Aggregate Units in a Virtual Environment", 
Proceedings of the Fourth Conference on 
Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and 
Training, May 4-6 1994, Orlando FL, pp. 
497-502. 

Trinker, A. (1994). "General Architecture for 
Interfacing Virtual and Constructive 
Simulations in DIS Environment", 
Technical Report IST-TR-94-28, Institute for 
Simulation and Training, September 14 
1994. 

8. Authors' Biographies 

Mikel D. Petty is a Program Manager at the Institute 
for Simulation and Training. He is currently 
managing Plowshares, an emergency management 
simulation project. Previously he led ISPs Computer 
Generated Forces research projects. Mr. Petty 
received a M.S. in Computer Science from the 
University of Central Florida and a B.S. in Computer 
Science from California State University, 
Sacramento. He is a Ph.D. student in Computer 
Science at UCF. His research interests are in 
simulation and artificial intelligence. 

Robert W. Franceschini is a Principal Investigator 
at the Institute for Simulation and Training. He leads 
the Integrated Eagle/BDS-D project, which was the 
first research effort to successfully link a constructive 
simulation with a virtual simulation. Mr. 
Franceschini earned a B.S. in Computer Science from 
the University of Central Florida; he is currently 
pursuing an M.S. in Computer Science at UCF. His 
research interests are in simulation, graph theory, and 
computational geometry. 

Ill 





Session 3b: Reasoning II 

Lehman, Carnegie Mellon University 
Tambe, ISI, USC 

Hieb, George Mason University 





Natural Language Processing for IFORs: Comprehension and Generation in 
the Air Combat Domain 

Jill Fain Lehman, Julie Van Dyke, and Robert Rubinoff 

Carnegie Mellon University 

Pittsburgh, PA 15213 
jefQcs.cmu.edu 

Abstract 

In support of the Soar/IFOR project's 
goal of providing intelligent forces for dis- 
tributed interactive simulation environ- 
ments [Laird et al, 1995], the NL-Soar 
project works toward the implementation 
of a full natural language capability for 
Air-IFOR agents. In this paper we dis- 
cuss the design of that language capa- 
bility (NL-Soar) and its integration into 
TacAir-Soar agents. In particular, we 
demonstrate how NL-Soar's linear com- 
plexity, interruptibility, and atomaticity 
of language processing provide language 
comprehension and generation processes 
that do not compromise agent reactivity. 

1    Introduction 

Autonomous intelligent forces (IFORs) play an 
increasingly critical role in both large-scale dis- 
tributed simulations and small-scale, focused 
training exercises. An IFOR is a complex agent 
that requires diverse capabilities to perform at a 
useful level of functionality. Since an IFOR's role 
will often be to replace one or more individuals in 
an engagement, the ability to communicate in nat- 
ural language can be a key capability contributing 
to its overall performance. An agent that is rigid 
in its communicative ability may introduce a brit- 
tleness into the simulation (i.e. a tendency to fail 
in unexpected ways) that has nothing to do with 
imperfections in strategic or tactical knowledge. 
Thus, in building TacAir-Soar agents to partici- 
pate in beyond-visual-range combat [Laird et al, 
1995], an NL capability is needed to ensure reac- 
tive, human-like performance in basic interactions 
among pilot, wing, and air intercept control (AIC). 

In [Rubinoff and Lehman, 1994a] we identi- 
fied three main characteristics of communication 
during air combat that present challenging ar- 
eas of research: (1) it occurs in real-time, (2) it 
must seamlessly integrate with the agent's non- 
linguistic capabilities, e.g. perception, planning, 
reasoning about the task, and (3) its content must 
be  comprehended  and generated  in  accordance 

with performance data, i.e. with all of the idiosyn- 
cratic constructions, ungrammaticalities, and self- 
corrections found in real language. Within the 
context of these research issues, we introduced 
NL-Soar, a language comprehension and gener- 
ation capability designed to provide integrated, 
real-time natural language processing for systems 
built within the Soar architecture [Lewis, 1993; 
Nelson et al, 1994a; Nelson et al, 1994b; Rubi- 
noff and Lehman, 1994b]. In this paper we concen- 
trate on issues (1) and (2), exploring our progress 
toward their solution using NL-Soar in Soar-based 
Air-IFOR agents. 

2     Demands of reactivity 

The naive approach to communication between 
agents, and the one available using off-the-shelf 
technology, treats language as front-end and back- 
end interfaces. Messages are comprehended by 
a front-end module, which creates a system- 
dependent representation of the message that can 
be used by the other modules responsible for the 
agent's behavior. Similarly, when an agent needs 
to send a message, that same representation is 
passed to a back-end module that generates an 
output message to be directed to other agents.1 

This makes language an all-or-nothing en- 
deavor, the implications of which can be seen in 
Figure 1. In this typical tactical air scenario, blue 
is flying an intercept (1) and is actively pursu- 
ing the goal of achieving its launch acceptability 
region (LAR) when an incoming message arrives 
(2). The message is buffered until the current goal 
is achieved and blue has fired a missile (3). Next, 
processing of the input begins (4); it ends some- 
time after red has returned fire (5) and (6). Only 
after the communiation has been understood can 
blue begin its evasive maneuver (7). 

It is clear that reactivity is compromised if un- 
derstanding must be postponed until the current 

2The approach being described here does not de- 
pend in any way on the content of the message or 
the style of language accepted and generated. Thus 
it would apply equally whether the language passed is 
natural language or a formal communication protocol 
(such as CCSIL [Salisbury, 1995]). 
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Figure 2: Reactive communication: interleaving comm and non-comm subtasks 

goal has been accomplished, and then is pursued 
to the exclusion of all else. In particular, two cases 
are cause for concern. Consider first what hap- 
pens at (2) if the content of the message is rele- 
vant to the situation at the time it is received. In 
this case, buffering the message leads, at best, to 
wasted processing in the future (when the message 
has become obsolete). At worst buffering compro- 
mises the decision making of the agent by preclud- 
ing access to timely, necessary information. To re- 
move this possibility, we could modify the control 
of the agent to always attend to communication 
needs first. But this would simply put us in the 
second problematic situation more often. 

In this second case (4), if the content of the mes- 
sage is not critical, devoting processing to it rather 
than other things can compromise the agent's re- 
activity as well. In short, shutting out either com- 
munication processes or non-communication pro- 
cesses can be equally dangerous. The point, of 
course, is that you can't tell which situation you 
will be in until you process the message, at which 
time it is too late to change your mind.~ 

2 Dedicating a separate, parallel process to commu- 
nication might ameliorate the problem but won't nec- 
essarily solve it. A separate process will be able to 
comprehend or generate the message while the agent 

Figure 2 gives a more desirable version of the 
same task events. Again, the pilot is flying an in- 
tercept (1), trying to achieve firing position when 
a message arrives (2). The message is attended to 
immediately, its processing interleaved with the 
ongoing effort to achieve LAR (3). In this exam- 
ple, the message is completely processed by the 
time the pilot is in a position to fire (4), and eva- 
sive maneuvers can be started immediately, well 
before red returns fire. 

The model in Figure 2 overcomes the problems 
in the simpler model of Figure 1 by intertwining 
the different strands of agent behavior at the sub- 

is performing other tasks, but will have to work in 
isolation, i.e. cut off from the changing situation and 
goals of the agent. To the extent that there is relevant 
information that is unavailable during communication 
processing, the agent may formulate interpretations or 
communications that are inappropriate or out of sync. 
To the extent that the relevant information is commu- 
nicated to the language process, parallelism is lost. In 
the tactical air domain information is updated quickly, 
and so an increasing proportion of CPU cycles will be 
necessary to keep the two processes in sync. Thus, 
to maximize reactivity, we conjecture that a separate 
process for communication would be more costly and 
no more effective than the method outlined in the fol- 
lowing section. 
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task level rather than at the full task level. In 
other words, we can view the all-or-nothing model 
as a degenerate case of Figure 2, one in which the 
granularity of the interleavable components is sis 
large as possible. As we have seen, the disadvan- 
tage of choosing the maximal grain size is that the 
components are too large for the agent to behave 
in a timelv fashion. 

3    Achieving Interleavable Commu- 
nication 

For NL-Soar to provide a reactive, interleavable 
language capability for IFOR agents, the system 
as a whole must have three properties: linear com- 
plexity, interruptability. and atomaticity. The first 
property, linear complexity, means that processing 
to understand or generate a message must take 
time that is roughly linear in the size of the mes- 
sage. This is necessary to keep pace with human 
rates of language use. The second property, inter- 
ruptability, ensures that time-critical task behav- 
iors cannot be shut out by language processing 
(and vice versa). The third property, atomaticity, 
ensures that if language processing is interrupted, 
partially constructed representations are left in a 
consistent and resumable state. 

To understand how NL-Soar provides the de- 
sired communication model, we must first briefly 
review the components out of which Soar systems 

are organized. Figure 3 is a graphical representa- 
tion of a hypothetical Soar system that uses NL- 
Soar for comprehension and generation. Linguistic 
processes, like all processes in Soar, are cast as se- 
quences of operators (small arrows) that transform 
states (boxes) until a goal state is achieved. The 
triangles in the picture represent problem spaces 
which are collections of operators and states.3 The 
comprehension problem spaces contain operators 
that use input from the perceptual system to build 
syntactic and semantic structures on the state; the 
generation problem spaces contain operators that 
use semantic structures to produce syntactic struc- 
tures and motor output. Note that the problem 
space labelled Top is the only space connected to 
the perceptual and motor systems and it is this 
space that is designated by the Soar architecture; 
all other problem spaces are provided by the sys- 
tem designer. 

The dotted lines in the figure represent Soar im- 
passes which arise automatically when there is a 
lack of knowledge available in the current problem 
space. When an impasse arises, processing contin- 
ues in a subspace until the goal state in the sub- 
space is reached. Note that impasses are a general 
recursive structure (a subspace can impasse into 
another subspace) that gives rise to a goal/subgoal 
hierarchy, or goal stack.  The thick banded arrow 

For more details on how Soar uses problem spaces, 
states and operators to organize its processing see 
[Laird et al, 1987; Laird et al., 1995]. 
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that overlays the impasse represents the resolu- 
tion of the impasse, and the new knowledge (called 
chunks) that results from Soar's learning mecha- 
nism. Chunks capture the work done in the sub- 
space, making it available in the superspace with- 
out impasse during future processing. This means 
that when a system structured as in Figure 3 is 
fully chunked all of its behavior will be produced 
by operators in the Top space. 

We now have all the pieces to build an inter- 
leavable language capability. In the following sec- 
tions, we address how to achieve linearity, inter- 
ruptability, and atomaticity using these compo- 
nents. For the time being we will consider com- 
munication only in systems where the desired be- 
havior shown in Figure 2 would occur completely 
within the Top problem space when fully chunked. 
We call a system organized in this way, a Top-state 
control model.4 

3.1     Achieving Linear Complexity 
Communication in an IFOR must occur in real- 
time to keep pace with the flow of human events. 
This is not a statement about how fast the sys- 
tem must run, per se. Rather, it is a theoreti- 
cal statement about how processing must occur 
within the system. Although there is some vari- 
ability (some words do reliably take longer to pro- 
cess than other words), in general, the amount 
of time taken by people is linear in the num- 
ber of words in the utterance. A number of de- 
sign constraints follow from this simple regular- 
ity [Lehman ei ai, 1996], e.g. construction of the 
meaning of the sentence must proceed incremen- 
tally, and different knowledge sources (syntax, se- 
mantics, pragmatics) must be applied in an inte- 
grated rather than pipe-lined or multi-pass fash- 
ion. NL-Soar provides these properties [Lehman et 
a/., 1991a; Lewis, 1993]. Briefly, the system relies 
on Soar's notion of impasse to control the search 
through its linguistic knowledge sources, and then 
on Soar's learning mechanism to compile the dis- 
parate pieces of knowledge into an integrated form 
that can be applied directly (i.e. in approximately 
constant time/word) in the future. 

Figure 4 depicts the process graphically for one 
type of language operator, expanding the left por- 
tion of Figure 3. Consider the arrival of a new 
word into the Top state and assume that the 
system has not encountered the word in a simi- 
lar context in the past (i.e. the system has no 
pre-chunked knowledge about how to process this 
word). Once the word has been attended to, the 
learn-comprehension operator will be selected, af- 
ter which an impasse will arise.  Problem solving 

TOP 
attend 
learn-comprehension 
u-constructorl 
u-constructor2... 

Create-operator 
new-u-constructor 
return-operator 

U-construct 
link 
snip 

Generate 
try-link 
try-snip 

Constraint-check 
check-agreement 
check-number... 

4 As we will see in Section 4, this is not the only 
structure permitted by Soar, but it is a valid organi- 
zation and the simplest place to begin. 

Figure 4: Achieving linearity through learning 

will continue in the Create-operator space which 
will generate a symbol for a new u-constructor. 
A u-constructor is a language operator that fits 
the new word into the current syntactic structure 
for the message. The u-constructor is composed 
piecemeal in the U-construct space which per- 
forms links and snips on syntactic trees based on 
knowledge provided by Generate and Constraint- 
check. As the goal of each subspace is achieved, 
each impasse is resolved, creating chunks. Only 
two kinds of chunks concern us here. The imple- 
mentation of the u-constructor is contained in the 
chunks created when the impasse between Create- 
operator and U-construct is resolved. This means 
that the syntactic tree that resulted from the se- 
quential links and snips that were done in the 
lower spaces will now be produced immediately 
whenever this u-constructor executes. The u- 
constructor itself is returned from Create-operator 
to the Top space, resulting in a chunk that tells 
when this u-constructor can apply in the future. 
Note that the next time this word is seen in a 
similar contect, this chunk will propose the new 
u-constructor directly in the Top state. In other 
words, once we have learned the top-level opera- 
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tor, no impasse will occur. Instead, the (possibly 
lengthy) problem solving that took place in the 
subspaces has been compiled into a single Top- 
space operator that executes directly to build the 
relevant syntactic structure on the Top state. 

Figure 4 shows how the application of gen- 
eral knowledge about syntax is contextualized and 
made efficient. A similar story can be told about s- 
constructors, the Top-space operators that fit the 
new word into the semantic and discourse struc- 
tures maintained on the Top state. Thus, once 
behavior is fully chunked, the arrival of a message 
results in only a small number of Top operators per 
word, the linear complexity we were after. Equally 
important, the language process itself is now rep- 
resented in the Top space in terms of more finely- 
grained operators (u- and s-constructors) that cre- 
ate the opportunity for interleavability. On the 
generation side, of course, there is a different task 
decomposition producing a different set of Top- 
space operators, but the principle is the same. 

3.2    Achieving Interruptability 
In Soar, agent behavior is produced by the appli- 
cation of operators to a state. Moreover, the ar- 
chitecture defines the application of an operator as 
a non-interruptable unit of work. In other words, 
once an operator has been selected for application, 
all the state changes associated with that operator 
are guaranteed to be made before any other opera- 
tor is selected. What does this mean for NL-Soar? 
In short, it means that the Top-level language op- 
erators dictate the granularity of the interleavable 
components. To anchor the point in the context of 
Figure 4, once a u-constructor exists, we cannot in- 
terleave changes to the syntax tree with other non- 
linguistic tasks. Put more strongly, once the u- 
constructor is selected, all other subtasks are shut 
out for the duration of its application. In addition, 
if the Top state changes during the application of 
the u-constructor (via perception), those changes 
are effectively invisible until the u-constructor's 
state changes have been made.5 

How is this situation different from the one in 
Figure 1, where lack of interruptibility meant re- 
activity was diminished to the point of inviting 
wasted work, if not disaster? The difference here 
is that the granularity of NL-Soar's operators is 
small enough to allow interruptibility below the 
full task level. The current scheme separates the 
work of attention from work done to the syntac- 

5This is an overstatement. In fact, it is possible to 
encode knowledge in Soar in such a way that it is tied 
only to the state, not to any particular operator. Such 
knowledge will lead to state changes regardless of what 
operator is being applied. Since most task knowledge 
is tied to task operators, however, the discussion above 
is still a useful way to think about what's going on. 

tic tree (u-constructors) from work done to the 
semantic and discourse models (s-constructors). 
Thus, the current comprehension capability al- 
lows for interruption between each set of state 
changes. Note, however, that we could have made 
this choice differently. We could, for example, 
build both syntactic and semantic structures in 
the impasse under the learn-comprehension op- 
erator. The resulting Top-space comprehension 
operator would effectively bundle all of compre- 
hension into a single operator.6 Alternatively, we 
could make link and snip the Top operators, giv- 
ing an even finer grain. Although it is clear that 
the architecture permits a wide range of choices, 
choosing the right granularity is not a wholey un- 
principled exercise. In general, the more work en- 
compassed by a Top operator, the more specific 
will be the conditions under which it can apply. 
The more specific the conditions the less transfer 
of the knowledge to new situations and the more 
learning events will be required to get fully chun- 
ked language behavior. On the other side, the less 
work encompassed by a Top operator, the more 
operators per word there will be, until, eventually, 
the number will reflect some non-linear quantity 
(e.g. the size of the parse tree). In Section 4, be- 
low, we demonstrate how the operator granularity 
we have chosen allows both transfer and interleav- 
ing while maintaining linearity. 

Now that we have language operators of a size 
that allows interruptibility, the next question that 
needs to be addressed is: how do you decide which 
type of operator, linguistic or non-linguistic, to 
select next? Many control schemes are possible, 
ranging from random selection to a complete par- 
tial ordering over all the operators in the system, 
to always attending to communication first (or 
last). In integrating NL-Soar with TacAir-Soar we 
will use random selection for its simplicity. What 
is important to remember, however, is that under 
Top-state control the selection decision is made on 
an operator by operator basis, not task by task. 

3.3     Achieving Atomaticity 

Recall that atomaticity ensures that if language 
processing is interrupted, partially constructed 
representations are left in a consistent and re- 
sumable state. Given our discussion above, 
it would seem that the architecturally enforced 
non-interruptability of operators would guarantee 
atomaticity as well. This is certainly true if all of 
the language behavior is impasse-free. Suppose, 
however, that the system is in the middle of learn- 
ing a new u-constructor or s-constructor, as in Fig- 
ure 4, when state changes create a preference for 
a non-linguistic Top-space operator. In this case, 

6An early version of NL-Soar did, in fact, use this 
scheme [Lehman et al., 1991b]. 
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Figure 5: The lead TacAir agent composes a message while tracking a threat and flying 

once the operator currently being applied in the 
lowest subspace is finished, the task operator will 
be selected in the Top space and the language goal 
stack will collapse. Can we be sure that we have 
been left in a consistent state so that language 
processing can be smoothly resumed? 

The answer is yes because the design of NL-soar 
ensures that no changes are actually made to the 
language data structures on the Top state until the 
u-constructor is returned. Look again at Figure 
4. The only operator that can result in changes to 
the Top state is Create-operator's return-operator. 
But if it is being applied when a preference is cre- 
ated for a Top-space task operator, then we know 
it will complete, the results will be returned, and 
the u-constructor proposal chunk will be built. If 
the subspace operator is not the return-operator, 
no results will be returned from the top-most im- 
passe and no proposal chunk will be built for the 
u-constructor. Observe, however, that the con- 
ditions that led to the learn-comprehension oper- 
ator in the Top space may well still obtain. So 
once the task operator has been applied, language 
may be resumed. Since no u-constructor was built, 
the system will have to rebuild the goal stack 
to continue. In practice, the situation is not as 
bad as it sounds because chunks may have been 
built in the subspaces during the previous learn- 
comprehension processing that were not specific 
to the particular u-constructor. These chunks will 
transfer to the current situation and the impasses 
that created them will be avoided. 

4    Bringing it all together in TacAir- 
Soar 

In Section 2 we argued that a communication ca- 
pability for IFORs had to have three properties: 
linear complexity, interruptability, and atomatic- 
ity. In the previous section we introduced the 
Top-state control model in which whole tasks are 
interleaved on an operator-by-operator basis and 
communication is just another task.   One of the 

interesting characteristics of systems organized as 
in Figure 3 is that the goal stack is never shared 
across linguistic and non-linguistic tasks; the need 
to understand or produce a message pulls the sys- 
tem out of a task goal stack. As a result, Top-state 
task operators, like the Top-state language oper- 
ators, tend to represent subtasks of fairly short 
duration. 

In contrast, systems like TacAir-Soar are com- 
posed of a Top task operator of very long dura- 
tion, and a goal stack that reflects many levels 
of abstraction of that task. Each level stays ac- 
tive as long as it is being carried out. In partic- 
ular, TacAir uses Soar's Top state to keep track 
of the "execute-mission" task, which stays active 
for the entire simulation. Under this will be a 
stack of sub-tasks, such as "mig-sweep", "inter- 
cept", "employ-weapons", and so on, each repre- 
senting a more detailed view of what the agent is 
currently trying to do. Much of TacAir's knowl- 
edge of its current situation and goals is stored in 
sub-states associated with these subtasks, not on 
the Top state.7 Thus, if TacAir switched to lan- 
guage in its Top state, it would lose much of this 
knowledge. Clearly, TacAir-Soar is incompatible 
with the Top-state control model outlined above. 
To understand how to modify Top-state control 
without sacrificing linearity, interruptibility and 
atomaticity, we must answer the question: what 
role, exactly, does the Top state play in maintain- 
ing each property? 

For linear complexity, the role played by the 
Top state is simply a place to apply the so-called 
Top-state operators. In reality, what is critical 
for linear complexity is that there is an effective 
procedure for building the top-level language op- 
erators, and that only a small number of them are 
necessary for each word in the message. For in- 
terruptability and atomaticity, the Top state does 
play a more central role. Specifically, it must be 
the place where Top-level language operators leave 

' A fuller description of TacAir-Soar can be found 
in [Laird et ai, 1995]. 
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Figure 6: Figure 5 continued: Pilot continues to talk as wing begins to listen 

their results because it is the only state that is 
guaranteed to still be in the goal stack when lan- 
guage processing resumes. Thus, where top-level 
language operators are applied is immaterial as 

long as they leave their results on the Top state 
where they can be found whenever, and wherever, 
language processing resumes. 

Separating the question of where top-level lan- 

guage operators are applied from the question of 
where they leave their results allows us to define a 
variety of virtual Top-state control schemes. The 

simplest one, and the one we use when integrating 
NL-Soar with TacAir agents, is to interleave lan- 
guage operators with whatever task operators are 
available in the lowest problem space in the goal 
stack. Because the goal stack grows and shrinks 
over time, the interleaving of communication will 
take place more or less throughout the range of 
non-linguistic subtasks. The simplicity of the in- 

tegration is extended by allowing the architecture 
to decide randomly between language and non- 
language operators whenever both types are ap- 
plicable in the current situation. 

Figures 5 through 7 capture a portion of the 
behavior of two TacAir-Soar agents running with 
a fully-chunked NL-Soar under virtual Top-state 

control.8   In the scenario depicted, two pilots fly 

'Requiring NL-Soar to "learn while doing" would 
be equivalent to expecting the pilot to learn the do- 
main language while flying the plane in battle. Con- 
sequently, we use off-line training to allow NL-Soar to 
learn from experience in a non-real-time setting. This 
gives the system the time it needs to integrate its dis- 

F14s as a section with a single red plane flying 
against them. ParrotlOl is the lead and Parrotl02 
is the wing. The timelines in the figures show 
the operators that each agent executed in a par- 

ticular engagement, together with those events in 
the external world that affect or depend on their 
behavior. Language operators are indicated via 

bold-face. For simplicity, the representation does 
not try to preserve the goal-subgoal relationship 
of the task operators. 

In the time prior to the first event shown in 

Figure 5, the two planes have begun to fly in a 
racetrack configuration. The portion of behavior 
we are interested in begins when the lead notices 
the bogey (1), and must communicate the relevant 
information to its wing. The report-contact oper- 
ator (2) posts a communicative goal on the Top 
state indicating that the agent wants to say some- 
thing. Interleaving begins (somewhat unevenly 
due to the random control scheme) at (3). First, 
three task operators are executed in which the 
agent determines that the bogey is in fact a ban- 
dit, decides to check whether the commit criteria 

have been satisfied (they have not), and notices 
that the bandit is within missile range. Then, at 
(4), language operators begin to compose the mes- 

sage according to communication doctrine. The 
first step in any lead-wing communication is the 

parate knowledge sources into the top-level operators 
discussed in Section 3.1. It is this highly compiled 
form of language knowledge that models an experi- 
enced pilot and provides real-time language behavior 
on-line. 
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Figure 7: Figure 6 continued: completion of summons generation 

exchange of callsigns, here, the sentence Parrotl02 
this is ParrotlOl. This is a domain-dependent in- 
stance of the more general class of utterances we 
call summons (for example the telephone exchange 
John? It's Jill.) The summons is constructed 
piece by piece using top-level generation operators 
(in boldface). Figure 5 shows this linguistic pro- 
cess interleaved with operators that contribute to 
situation awareness (5) and operators that fly the 
plane (6), (7), and (8). 

Figure 6 continues the timeline for ParrotlOl 
and introduces Parrotl02 at the point just be- 
fore the first word of the summons arrives into the 
agent's input buffer. The timelines are aligned by 
the linguistic output of ParrotlOl and the linguis- 
tic input of Parrotl02. 

To this point in the scenario, the wing has sim- 
ply been flying a racetrack with the lead. At (9) 
ParrotlOl outputs the wing's callsign in the upper 
timeline. Note that this is done even though the 
construction of the remainder of the summons is 
still being interleaved with non-linguistic subtasks 
(10) through (12); both generation and compre- 
hension are incremental. Meanwhile, shortly af- 
ter Parrotl02 has begun to turn (13), the call- 
sign is heard (14). The lower timeline continues 
with comprehension of the first few words of the 
summons ((16) and (18)) interleaved with oper- 
ators that keep the wing in formation ((15) and 
(17)). Note that the s- and u-constructors for the 
word this (18) fire after the word is has already 
been heard. This is partly because the lead's mes- 
sage is coming out quickly, and partly because the 
wing's attention has been focused on flying the 
plane. The input buffer that holds unattended 
speech has a decay rate; as in people, if speech 

goes unattended long enough (as it may if the pi- 
lot is in a stressful situation), it simply disappears 
from the buffer. 

Figure 7 continues the interchange to the point 
that ParrotlOl outputs the final word of the sum- 
mons (19). There is no interleaving in this por- 
tion of the trace because both pilots are simply 
flying the long leg of the racetrack where no task 
operators are proposed. Notice that by the time 
the lead has begun the second portion of the sum- 
mons, the wing has caught up on the comprehen- 
sion side (19). The rapidity with which / have 
a contact emerges, however, once again results in 
buffered input for Parrotl02 (21). Thus, linguis- 
tic processing continues in the wing agent after 
the lead has already begun to wait for a reply (not 
shown). As a final observation, note that the same 
u-constructor that processes ParrotlOl in Figure 6 
also processes I'm Figure 7 (u-constructor2). This 
is an example of where the granularity of the top- 
level operators affords some transfer of syntactic 
processing despite the difference in semantics (s- 
constructor6 vs. s-construct26). 

5     Conclusions 

The ability to communicate in natural language 
can be a key capability contributing to an IFOR's 
performance in both simulation and training exer- 
cises. In this paper we have discussed how the de- 
sign of NL-Soar uses linear complexity, interrupt- 
ibility, and atomaticity of language processing to 
provide a language capability that does not com- 
promise reactivity. What we have not discussed, 
however, is the third area of interest identified in 

122 



[Rubinoffand Lehman, 1994a]: performance in ac- 
cordance with empirical data from pilots in real- 
life simulations. Our continued work, therefore, 
will focus on making the NL-Soar integration more 
robust, including handling linguistic constructions 
specific to the domain and allowing for the inter- 
ruptions and self-corrections that necessarily come 
with real language use. 
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1. Abstract 
Agent tracking is an important capability that an 

intelligent agent requires for interacting with other 
agents. It involves monitoring the observable actions 
of other agents as well as inferring their unobserved 
actions or high-level plans, goals and behaviors. The 
dynamic, real-time, multi-agent environment of air- 
combat simulation presents several novel challenges 
for agent tracking. In particular, an intelligent pilot 
agent needs to track the highly flexible mix of goal- 
driven and reactive behaviors of other pilots, track in 
real-time with sufficient accuracy despite 
ambiguities, track the activities of groups of pilots, 
and recursively track its own activities and possibly 
those of other pilots. 

In our previous report at this conference (Tambe 
and Rosenbloom, 1994), we presented an approach 
that enabled a pilot agent to track flexible and 
reactive behaviors. This paper presents new results 
that address some of the remaining challenges via 
intra-model and inter-model optimization techniques. 
We have developed a system based on these 
techniques, and present some experimental results 
from it. 

2. Introduction 
The Soar/IFOR project (Laird et al., 1995, 

Rosenbloom, et al., 1994, Tambe et al., 1995) has 
been developing intelligent pilot agents (henceforth 
IPs) for participation in simulated battlefield 
exercises intended for training as well as for testing 
of new doctrine, tactics and weapon system concepts 
(Loper et al., 1994). These IPs have already 
participated in simulated combat exercises with 
expert human pilots, including the STOW-E exercise 
in November, 1994, a precursor to the much larger 
scale STOW-97 exercise. Agent tracking is one key 
capability that the IPs require for effective 
participation in these exercises. It involves 
monitoring the observable actions of other agents as 
well as inferring their unobserved actions, high-level 
goals, plans and behaviors. This capability is 
particularly useful in simulated air-combat to track 
the activities of other hostile or friendly pilots. 

The example air-combat simulation scenario in 

Figure 1, based on (Tambe and Rosenbloom, 1994), 
illustrates the importance of agent tracking. It shows 
two combatting IPs: L in the light-shaded aircraft 
and D in the dark-shaded one. Initially, L and D's 
aircraft are 50 miles apart, so they can only see each 
other's actions on radar. For effective performance, 
they have to continually track these actions. Indeed, 
D is able to survive a missile attack by L in this 
scenario due to such tracking, despite the missile 
being invisible to D's radar. 

(a) 

L D 

(b) 

-    # 

(c) 

- # 

(d) (el 

Figure 1: A simulated air-combat scenario from 
(Tambe and Rosenbloom, 1994). An arc on an 

aircraft's nose shows its rum direction. 

In Figure 1-a, D observes L turning its aircraft to a 
collision-course heading (i.e., at this heading, L will 
collide with D at the point shown by x). Since this 
heading is often used to reach one's missile firing 
range, D infers the possibility that L is trying to reach 
this range to fire a missile. In Figure 1-b, D turns its 
aircraft 15° right. L reacts by turning 15° left, to 
maintain collision course. In Figure 1-c, L reaches its 
missile range, points its aircraft at D's aircraft and 
fires a radar-guided missile. While D cannot see the 
missile on its radar, it observes L's turn, and infers it 
to be part of L's missile firing behavior. 
Subsequently, D observes L executing a 35° turn 
away from its aircraft (Figure 1-d). D infers this to 
be an fpole turn, typically executed after firing a 
missile to provide radar guidance to the missile, 
while slowing the closure between the two aircraft. 
While D still cannot observe the missile, it is now 
sufficiently convinced to attempt to evade the missile 
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by turning 90° relative to the direction of L's aircraft 
(Figure 1-e). This beam turn causes D's aircraft to 
become invisible to L's (doppler) radar. Deprived of 
radar guidance, L's missile is rendered harmless. 
Meanwhile, L tracks D's beam turn in Figure 1-e, 
and prepares counter-measures in anticipation of the 
likely loss of both its missile and radar contact. 

Thus, IPs need to continually track their 
opponents' actions, such as turns, and infer 
unobserved actions, high-level goals and behaviors, 
such as the fpole, beam or missile firing behaviors. 
This agent tracking capability is related to plan 
recognition (Kautz and Allen, 1986, Azarewicz, et 
al., 1986, Song and Cohen, 1991, Carberry, 1990), 
which involves recognizing agents' plans based on 
observations of their actions. Indeed, as with plan 
recognition, one key problem in agent tracking is 
resolving ambiguities. For instance, when L turns in 
Figure 1-c, from D's perspective, it could be a turn to 
fire a missile, but it could also be the beginning of a 
180° turn to run away, or a tum to re-establish 
contact given a problem in L's radar. To accurately 
track L's maneuvers D has to resolve such 
ambiguities. Despite such similarities, as we reported 
in the proceedings of this conference last year 
(Tambe and Rosenbloom, 1994) (also see (Tambe 
and Rosenbloom, 1995a)), agent tracking in the air- 
combat simulation environment brings up a novel 
combination of challenges. In particular, previous 
plan recognition work has primary focused on static, 
single-agent environments where agents tend to 
adhere to rigid plans. In stark contrast, the air-combat 
simulation environment is a real-time, dynamic, 
multi-agent environment. It is also a real-world 
environment, with realistic sensors,1 and complex 
agent behaviors. The key issues that arise as a result 
are: 
1. IPs must track other pilots' highly flexible mix 

of goal-driven and reactive behaviors, rather 
than purely plan-based behaviors (as with the 
previous work on plan recognition). 

2. IPs must track opponents' maneuvers in real- 
time with sufficient accuracy, despite 
ambiguities. 

3. The interactions among IPs create a need for 
recursive agent tracking — an IP needs to 
recursively track its opponent's tracking of its 
own maneuvers so as to understand their impact 
on the opponent. 

4. IPs   need   to  track   maneuvers  of groups  of 

opponents. 

In (Tambe and Rosenbloom, 1994), we presented 
an approach to agent tracking that addresses the first 
issue above of tracking flexible and reactive 
behaviors. The approach was based on the model 
tracing technique used in intelligent tutoring systems 
(ITS) for tracking student actions (Anderson, et al., 
1990, Ward, 1991). Thus, to track the activities of its 
opponent, an IP executes a model of that opponent to 
generate predictions matching actual observations of 
that opponent's actions. However, as with plan 
recognition, previous ITS work has primarily focused 
on static environments.2 This work applies model 
tracing to the dynamic, multi-agent environment of 
air-combat simulation, where agents exhibit a 
complex mix of goal-driven and reactive behaviors. 
Section 3 presents an overview of this work. 

In this paper, we present new results pertaining to 
the three issues above that were left unaddressed in 
our previous report.3 The first unaddressed issue 
concerns real-time tracking with accurate resolution 
of ambiguities. Previous model tracing and plan 
recognition systems have certainly dealt with the 
problem of ambiguity resolution; however, their 
solutions have turned out to be inappropriate, because 
of the real-time nature of this domain. In Section 4, 
we present a new approach called RESC (for 
REal-time Situated Commitments), that builds upon 
our previous work, and enables ambiguity resolution 
within real-time constraints. RESC's situatedness is 
based on its ability to continuously track an 
opponent's actions in the current world state. Despite 
the ambiguities it faces, RESC quickly commits to a 
single interpretation of the opponent's on-going 
actions — there is no exhaustive examination of 
alternatives. With additional information becoming 
available later, these commitments may turn out to be 
inappropriate, and the interpretations may need to be 
revised. These revisions occur on-line, in the context 
of the current state via a process called single-state 
backtracking. RESC's real-time character derives 
from its situatedness, its quick commitments, and its 
single-state backtracking. 

Section 5 applies the RESC approach to address 
the remaining two issues from the list: recursive 
agent tracking and agent-group tracking. Recursive 

'While the simulated radar, which is the primary sensor of concern 
here provides numbers as input instead of radar images, it does 
realistically model a radar's limitations. 

2While there are some recent ITS applications that have ventured 
into dynamic environments, e.g., REACT (Hill and Johnson, 1994), 
they still primarily rely upon a plan-driven tracking strategy, dealing 
with the dynamic aspects as exceptions. 

3This is an overview of results presented elsewhere in (Tambe and 
Rosenbloom, 1995a), (Tambe and Rosenbloom, 1995b) and (Tambe, 
1995). 
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agent tracking requires that an IP execute its model of 
its opponent's model of itself. For example, to 
engage in recursive agent tracking, D would execute 
its model of L's model of D. Tracking agent-groups 
requires that an IP execute its models of the different 
opponents. Unfortunately, the recursive tracking of a 
large opponent group can involve the execution of a 
large number of models. Given N opponents, and r 
levels of nested models, an IP may need to track an 
exponential number (0(Nr)) of models. Since this 
computational cost is unacceptable in this real-time 
environment, the IP uses heuristic optimizations of 
model selectivity and model sharing to reduce the 
number of models it has to execute. In contrast with 
RESC, which is an intra-model approach to real-time 
tracking, model selectivity and model sharing are 
essential inter-model optimizations in service of real- 
time tracking. These inter-model optimizations are 
independent of the underlying intra-model 
mechanisms. 

All of the descriptions in this paper are provided in 
concrete terms, using an implementation of the IPs in 
TacAir-SoarRESC, which is an experimental variant 
of the TacAir-Soar system created as part of the 
Soar/IFOR project (Tambe et al., 1995, Rosenbloom, 
et    al.,     1994,    Laird    et    al.,     1995). The 
TacAir-Soar1^50 implementation will also be used in 
Section 6 to present an empirical evaluation of the 
effectiveness of the RESC approach, and the inter- 
model optimizations. TacAir-SoarRESC contains 
about 1050 rules, which is about half the number of 
rules in TacAir-Soar. The main motivation behind 
TacAir-SoarRESC is to understand the principles 
underlying agent tracking. To that end, it 
aggressively engages in agent tracking, using 
experimental methods such as RESC, while TacAir- 
Soar takes a more conservative approach. There are 
thus some differences between the two systems with 
respect to agent tracking, although TacAir-Soar's 
agent tracking capabilities are a strict subset of the 
agent tracking capabilities of TacAir-Soar1^^ 
Proven agent-tracking techniques uncovered in 
TacAir-SoarRESC are to be (and some already have 
been) transferred back into TacAir-Soar. 

As with TacAir-Soar, TacAir-SoarRESC is built 
using the Soar architecture (Laird, Newell, and 
Rosenbloom, 1987, Rosenbloom, et al., 1991). In our 
descriptions, we will assume some familiarity with 
Soar's problem-solving model, which involves 
applying operators to states to reach a desired state. 

3. Tracking Flexible Behaviors 
The basic approach for tracking an opponent's 

actions is to execute a model of that opponent, while 
matching    the    model's    predictions    against   the 

opponent's actual actions. Thus, to track its opponent 
L's actions, D executes a model of L, matching 
predictions against actions. The key observation here, 
that enables D to meet the challenge of tracking 
flexible and reactive behaviors is the following: D 
and L, and in general other IPs involved in air- 
combat, exhibit a similar flexible mix of goal-driven 
and reactive behavior. Thus, while executing L's 
model, D reuses the mechanisms that it uses in 
generating its own flexible and reactive behaviors. 

To understand this in more detail, consider D's 
internal state and operator hierarchy as depicted in 
Figure 2-a. D's internal state maintains information 
regarding mission specifications, and receives input 
from its radar or visual sensor. Based on the state, D 
makes appropriate operator selections so as to 
generate the desired behavior in its external 
environment. In this case, it has selected 
execute-mission as the top-most operator. Since the 
termination condition of this operator — completion 
of D's mission — is not yet achieved, a subgoal is 
generated. The intercept operator is selected in that 
subgoal. In the following subgoal, the employ-missile 
operator is selected. The subgoal after that applies 
get-firing-position to get to a missile firing position. 
Skipping down to the final subgoal, 
maintain-heading enables D to maintain heading, as 
seen in Figure 1-c. The operators in Figure 2-a used 
for generating D's own actions will henceforth be 
denoted with the subscript D, e.g., intercept^. 
OperatorD will denote an arbitrary operator of D. 
StateD will denote the state. Together, stateD and the 
operatorD hierarchy may be considered as D's model 
of its present self, referred to as modelD. 

Modelp supports D's flexible/reactive behavior 
given the mechanisms for operator selection and 
termination in the Soar architecture. These 
mechanisms include Soar's preference-based 
decision procedure for operator selection, and 
termination conditions for operators (Laird and 
Rosenbloom, 1990). To illustrate the reuse of these 
mechanisms for tracking, we assume for now that D 
and L possess an identical set of maneuvers.4 Thus, 
D uses a hierarchy such as the one in Figure 2-b to 
track L's behaviors. Here, the hierarchy represents 
D's model of L's current operators in the situation of 
Figure 1-c. These operators are denoted with the 
subscript DL. The operatorDL hierarchy, along with 
the stateDL that goes with it, constitute D's model of 
L or modelDL. ModelDL obviously cannot and does 
not directly influence L's actual behavior, it only 
tracks L's  behavior.     For instance,  in  the final 

•"This is not a necessary condition.  The main requirement is for an 
accurate model of the possible maneuvers. 
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in the same flexible manner. For instance, as stateDL 

changes, an operatorDL terminates if its conditions 
are satisfied, and new operatorsDL get selected. This 
enables D to track L's on-going flexible and reactive 
behaviors. 

To engage in its own actions while simultaneously 
tracking its opponent's actions, D needs to execute 
both modelD and modelDL simultaneously. It 
currently achieves this by cycling through the process 
of selecting an operator randomly from the heap of 
applicable operatorsD and operatorsDL, and executing 
that. As discussed later, if there are more models, the 
heap of available operators can grow quite large, and 
the random selection strategy can prove inadequate. 
A better operator selection strategy is an issue for 
future work. 

Operator     Hierarchy 
DL 

EXECUTE-MISSION 

' 
INTERCEPT 

FOLLOW-FLGT-PLAN 
RUN-AWAY 
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""""- 
POINT-AT-TARGET 
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Figure 2: (a) ModelD, and (b) ModelDL. 
Solid lines indicate the actual operator hierarchy; 

dashed lines indicate unselected alternatives, 
(e.g., run-away is an alternative to intercept.) 

subgoal D has applied the start-S.-maintain-turn^ 
operator to stateDL. This operator cannot cause L to 
turn. It predicts L's turn and matches the prediction 
against L's actual action. Thus, if L starts turning to 
point at D's aircraft, then there is a match with 
modelDL's predictions. Given this match, D now 
believes L is turning to point at its target, (i.e., D), to 
fire a missile, as indicated by other higher-level 
operators in the hierarchy. D tracks L's behaviors in 
this manner by continuously executing the 
operatorDL hierarchy, and matching it with L's 
actions. 

Thus, D uses a uniform apparatus for the 
generation of its own flexible/reactive behaviors and 
tracking other agents' behaviors. In particular, 
operatorD and operator• are selected and terminated 

4. Addressing Ambiguity in Real-time 
There are two types of ambiguities in the agent 

tracking process introduced in the previous section. 
The first type is the alternative tracking operators, as 
shown in the dashed boxes in Figure 2-b. Given this 
ambiguity, it is possible for D to make an inaccurate 
selection of an operatorDL. An inaccurate selection 
typically results in a match failure, i.e., a difference 
in the anticipated and actual observed action. For 
example, the operators in Figure 2-b predict L will 
turn to point at D's aircraft. If L were to turn away 
from D, there would be a match failure. The second 
type of ambiguity is seen in stateDL. D needs to 
model on statep^ ambiguous static information, such 
as L's radar and missile capabilities, and equally 
ambiguous dynamic information, such as whether L 
has detected D on radar. Inaccuracies in state^ may 
result in an incorrect operatorDL being selected, and 
thus may also result in match failures. This paper 
will mostly focus on the first type of ambiguity; see 
(Tambe and Rosenbloom, 1995a) for more details on 
resolving the second type of ambiguity. 

Ambiguity resolution has been the focus of much 
previous work in plan recognition and model tracing. 
The challenge here, not addressed in previous work, 
is that an IP has to resolve ambiguity in real-time. If 
an IP lags behind in tracking, it risks being ignorant 
of an opponent's important maneuvers that may 
either jeopardize its own survival, or otherwise 
deprive it of gaining an advantage over its opponent. 
Ambiguity resolution techniques that have been 
previously suggested in the literature, such as an 
exhaustive search of alternatives (Ward, 1991), or 
automated deduction (Kautz and Allen, 1986), fail to 
meet this real-time challenge. An IP also cannot 
avoid the ambiguity resolution problem by relying on 
an abstract characterization of the opponent's actions. 
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For instance, D's recognition that L is engaged in an 
intercept may be accurate and unambiguous, but it is 
not sufficiently specific to enable D to counter-act 
L's maneuvers by, say, evading a missile fired at it. 

To meet the challenge of real-time ambiguity 
resolution, we propose a new approach called RESC 
(REal-time Situated Commitments). RESC relies on 
three sub-components to meet this real-time 
challenge: (i) situatedness, (ii) quick commitments, 
and (iii) single-state backtracking. 

RESC's situatedness arises from its continuous 
tracking of L's on-going actions and behaviors in the 
context of the current stateDL. Thus, as stateDL 

changes, it can cause an operatorDL to terminate by 
satisfying its termination conditions, and cause new 
operatorDL to be selected. 

RESC's commitment is to a single modelDL, with 
a single stateDL that records the on-going world 
situation in real-time, and a single operatorDL 

hierarchy, that provides an on-going interpretation of 
an opponent's actions. Given the intense real-time 
pressure, RESC does not spend time trying to match 
alternatives. Instead, it applies three inexpensive 
filters to weed out unsuitable alternatives. The first 
fuzz box filter filters out small changes in L's 
heading, since these are typically small errors in an 
IP's actions, and tracking such detailed errors is 
unuseful. The second bottom up filter uses 
observations of an opponent's actions to avoid 
generating alternatives that are guaranteed to lead to 
match failures. For instance, if L is turning right, any 
alternative operatorDL that models L's left turn is 
guaranteed to cause match failure, and need not be 
generated. A third worst case filter, applied after the 
first two, selects the worst of the remaining 
alternatives — since this is a hostile environment, an 
opponent is likely to engage in the most harmful 
maneuver. For instance, if there is ambiguity between 
run-awayDL or intercept^, D will select the more 
harmful interceptDL. If more than one alternative still 
remain active, D will pick one at random and commit 
to that. 

When faced with ambiguity, it is possible that 
RESC commits to an inaccurate operatorDL and 
stateDL, leading to a match failure. RESC recovers 
from such failures by relying on single-state 
backtracking to undo some of its commitments, 
resulting in the generation of new operatorDL 

hierarchies, in real-time. As its name suggests, 
backtracking takes place within the context of a 
single current stateDL. Starting from the bottom of 
the operatorDL hierarchy, operators are terminated 
one by one in an attempt to get alternatives to take 

their place. Only those alternatives that are relevant 
to the current state get installed in the hierarchy. 
Some of these alternatives may lead to match failures 
(possibly after changing stateDL). These are also 
replaced, until some alternative leads to an 
operatorDL hierarchy that leads to match success. The 
key to the real-time character of this process is that it 
occurs in the now, i.e., within the context of the 
single updated current state. There is no re- 
examination of past states as would be done in 
normal backtrack search. Backtracking also does not 
remain wedded to the state where the failure 
occurred. Instead, it marches forward with the current 
continuously changing state. 

To understand why such backtracking may 
actually work, let us consider the following example. 
Suppose at time TQ D has committed to the modelDL 

in Figure 2-b. At time TQ, point-at-target^ has 
match success in that, as predicted, L indeed starts 
turning towards D. This match success continues for 
some time after T0, and stateDL is continuously 
updated with new aircraft positions during all this 
time. However, L really has decided to run away; so 
it continues turning 180° without stopping when 
pointing at D. This causes a match failure in the 
operatorDL hierarchy. Single-state backtracking now 
ensues, terminating operators beginning from the 
bottom of the hierarchy. Finally, at time T0 + 8, 
interceptDL is terminated and replaced by 
run-awayDL. This predicts L to be turning towards its 
home-base, which successfully matches L's actions. 

In a normal backtrack search, in order to apply 
run-away^ D would need to mentally recreate 
stateDL at time T0 — after all, that is the state in 
which L initiated the run-away maneuver. However, 
with single state backtracking, D applies run-awayD^ 
to stateDL as it exists at time TQ + 8. Thus, the 
conditions and actions of run-away^ have to be 
such that they are independent of the passage of time 
8. This is achieved here, since run-awayD^ requires 
that an agent turn towards its home-base, which does 
not change position in 8. In fact, conditions and 
actions of operatorsDL typically refer to aspects of 
the world that change at a rate slower than the 
possible time delay caused in noticing a match failure 
and backtracking, and thus can be successfully 
applied in single-state backtracking. 

Overall, RESC trades off completeness in service 
of real-time tracking. That is, RESC could potentially 
lead to errors in tracking, which a more exhaustive 
tracker could possibly avoid. Fortunately, RESC's 
worst-case filter attempts to ensure that its tracking 
errors will at least not be fatal. In any event, as 
illustrated in Section 6, RESC has so far not suffered 
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along the completeness dimension. 

5. Recursive Agent and 
Agent-Group Tracking 

The RESC approach can be applied in a 
straightforward manner for both recursive agent 
tracking and agent-group tracking. Let us first focus 
on recursive tracking. If D believes L to be aware of 
D's presence, D can recursively track its own actions 
from L's perspective, by executing modelDLD or D's 
model of L's model of D. ModelDLD consists of a 
stateDLD and an operatorDLD hierarchy. D tracks 
modelDLD by matching operatorDLD predictions with 
its own actions. Thus, if D were to engage in an 
fpoleD after a missile firing, it would be D's recursive 
tracking of fpoleDLD which would indicate a missile 
firing to modelDL, eventually leading to the selection 
of evade-missileDL to track L's missile evasion. On 
the contrary, if D believes L to be unaware of itself, 
then it would not create a modelDLD. In this case, 
modelDL will not be informed of D's missile firing, 
and thus, D would not expect L to engage in 
evade-missileDL. Further nesting of recursive models 
could lead to the creation of modelDLDL, 
modelDLDLD, etc. 

To track groups of opponents, D can again execute 
its models of different individual opponents. For 
instance, suppose a second opponent, J joins L in 
attacking D. D can track J's actions just as it tracked 
L's actions, by executing new models, such as 
modelpj and modelDJD. In addition, it may also 
execute   others   such   as   model 
modelpLjL   and   so  on. 

DJL' model DLJ' 
These  models  may  be 

important to track J's interactions with L. 

Unfortunately, this scheme points to an 
exponential growth in the number of models that an 
IP needs to execute. In general, for N opponents, and 
r levels of nesting (measured with r=l for modelD, 
r=2 for modelDL, and so on), L may need to execute 

> •_nN
l  =-n—r different models. Given its limited 

•^^(=11 A'—1 

computational resources, D would be unable to 
execute relevant operators from all these models in 
real-time, jeopardizing its combat effectiveness and 
survival. 

Two inter-model optimizations, model selectivity 
and model sharing, can help alleviate this problem. 
Model selectivity suggests selective construction of 
only those models as are relevant to the given 
situation. Such selectivity may be exercised based on 
the current or anticipated level of interaction between 
two agents, and abstraction. For instance, suppose D 
determines the two opponents attacking it, L and J to 

be independent of each other. It can then avoid the 
construction of models such as modelDI, and 
modelDJL since those were originally intended to 
model their interactions. For further selectivity, D 
may also abstract away from differences in recursive 
models across levels, at least at deep levels of 
nesting. Currently, based on our interviews with 
domain experts (pilots), we have set the level of 
nesting to r<3. Thus, D avoids creating models at 
r>4 such as modelDLDL — it abstracts away from 
differences in models such as modelDL and 
modelDLDL. 

The overall result of model selectivity is to reduce 
the  total   number  of models  for  N   independent 

opponents from -jn-y to 2N+1.   Model sharing now 

helps in further reduction by suggesting direct 
sharing of states and operators among different 
models, to reduce the number of models being 
executed. For an illustration of this optimization, 
consider modelD and modelDLD. The operatorD 

hierarchy can be shared with the operatorDLD 

hierarchy since the two are often identical. 
Furthermore, information in stateD, such as radar 
input, is shared with stateDLD. If there may be some 
unsharable secret aspects of stateD, e.g., if D's 
missile range is a secret, then it will be maintained on 
statep, but it will not be shared with stateDLD. With 
the sharing of such recursive models, the total 
number of models being executed goes down to 
N+l. There is a further opportunity for model 
sharing, if the opponents are seen to be attacking in a 
closely coordinated fashion, as often occurs in air-to- 
air combat. For instance, if L and J are closely 
coordinated, D may share modelDL with modelDj, 
and modelDLD with modelDJD. Thus, if all N 
opponents are coordinated, D may need to execute 
only two models instead of N+1. 

Unfortunately, in some cases, shared models need 
to be un-shared (that is one of the key reason why the 
models are shared rather than being eliminated via 
selectivity). For instance, L and J may initially 
engage in identical maneuvers, but then launch a 
pincer tactical attack on D from two sides. Tracking 
this requires that there be some unsharing of models, 
since L may be turning left as part of the pincer while 
J turns right. The penalty for such unsharing is in 
terms of copying information from what was 
previously one model into a second one. Thus, an IP 
has to trade off the benefits of sharing with the cost 
of possible unsharing. In general, if it greedily shares 
two models whenever they appear identical, it could 
face a very heavy unsharing overhead. At present, 
this sharing question is resolved based on the 
following heuristics: 
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• If two agents are engaged in a tightly 
coordinated attack, then their models are shared. 
If they engage in a tactic, such as a pincer, that 
requires model unsharing, then the models are 
not re-shared. The motivation being that if the 
models are unshared once, they are likely to face 
unsharing repeatedly, and thus, re-sharing would 
not be beneficial. 

• An agent's model and its recursive agent model 
(e.g., modelD and modelDLD) are shared. When 
an agent engages in a deceptive tactic, the 
models are partially unshared. They are then re- 
shared upon completion of the deceptive tactic. 

6. Evaluating TacAir-Soar1^80 

As mentioned in Section 2, we have developed a 
system called TacAir-SoarRESC that brings together 
the ideas presented in this paper. There are two 
aspects to the evaluation of TacAir-SoarRESC. The 
first aspect is whether the current approach enables 
D, the TacAir-SoarRESC pilot agent, to track its 
opponents' actions accurately in real-time. We 
conducted two sets of experiments to address this 
issue. The first set involved running Soar-vs-Soar air- 
combat simulation scenarios, as outlined by the 
human experts, with the number of opponents 
varying from one to four.5 The following presents 
some observations about these experiments, 
presented in terms of the TacAir-SoarRESC based IP 
D's ability to track its opponent's maneuvers: 
1. The amount of effort involved in agent tracking, 

as measured by the percentage of overall 
operators involved in agent tracking varied from 
8% to 63%. The actual effort depended on both 
the number of opponents and the complexity of 
the opponents' maneuvers. 

2. In some scenarios up to 20% of the agent 
tracking operators resulted in match failures. 
However, the IP still recovered from these 
failures, and settled on a matching operator in 
real-time. 

3. The model-sharing and selectivity optimizations 
do help in alleviating resource contentions. In 
the case of four coordinated opponents, the 
model-sharing optimization reduces the number 
of models from (2N+1 =) 9 to just 2. In terms of 
actual operators, it is projected to provide up to 
a 4 fold improvement in operator executions. 

4. In the case of four independent opponents, 
however,   D   still   does   face   some   resource 

5In these experiments, the opponents did not perform coordinated 
tactics such as pincer or double-pincer—that is left for future work. 

contention, and it is seen to be unable to track 
the actions of all of the agents in time. Further 
improvements in model-sharing and model- 
selectivity optimizations may be required to 
address this issue. 

Our second set of experiments involved Soar-vs- 
ModSAF simulated air-combat scenarios. ModSAF- 
based (Calder et al., 1993) pilot agents are controlled 
by finite state machines combined with arbitrary 
pieces of code, and do not exhibit high behavioral 
flexibility. While D was in general successful in 
agent tracking in these experiments — it did 
recognize the maneuvers in real-time and respond to 
them — one interesting issue did come up. In 
particular, in one of the scenarios here, there was a 
substantial mismatch in D's worst assumptions 
regarding its opponent's missile capabilities and the 
actual capabilities — D assumed the range to be 30 
miles, even though the actual range was about 15 
miles. This led to tracking failures. Dealing with 
model mismatch is also an issue for future work. 

The second aspect to understanding the 
effectiveness of TacAir-SoarRESC is an estimate of 
the impact of agent tracking on improving D's 
overall performance. In general, this is a difficult 
issue to address. A quantitative estimate is difficult, 
since it is difficult to quantify an improvement or 
degradation in D's overall performance. 
Nonetheless, we can at least list some of the types of 
benefits that D accrues from this capability. First, 
agent tracking is crucial for D's survival. Indeed, it is 
based on agent tracking that D can recognize an 
opponent's missile firing behavior and evade it. 
Second, agent tracking improves D's overall 
understanding of a situation, so it can act/react more 
intelligently. For instance, if an opponent is 
understood to be running away, D can chase it down, 
which would be inappropriate if the opponent is not 
really running away. Similarly, if D is about to fire a 
missile, and it recognizes that the opponent is also 
about to do the same, then it can be more tolerant of 
small errors in its own missile firing position so that 
it can fire first. Finally, agent tracking helps D in 
providing a better explanation of its behaviors to 
human experts. (Such an explanation capability is 
currently being developed (Johnson, 1994)). If 
human experts see D as performing its task with an 
inaccurate understanding of opponents' actions, they 
may not have sufficient confidence to actually use it 
in training. 

7. Conclusion 
The real-time, dynamic, multi-agent environment 

of air-combat simulation, poses novel challenges for 
agent  tracking.   This  paper  presented   some   new 
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results in agent tracking that built upon our previous 
work reported at this conference (Tambe and 
Rosenbloom, 1994). Specific contributions include: 
(i) an approach called RESC (Real-time Situated 
Commitments) that enabled tracking of flexible and 
reactive behaviors with real-time ambiguity 
resolution: (ii) extension of RESC to recursive agent 
and agent-group tracking; and (iii) model selectivity 
and model sharing optimizations to alleviate some of 
the overheads of a large number of models. The 
paper presented results from a system called 
TacAir-SoarRESC that was built based on the ideas 
presented in the paper. 

An important issue for future work is tracking a 
coordinated tactic such as a pincer. This requires that 
we address, among other things, the issues of model 
sharing and unsharing. As noted in Section 6, 
addressing model mismatch is another important 
issue for future work. We hope that resolution of 
these issues will lead towards an improved 
understanding of agent tracking, and its possible 
application in other domains, such as education and 
entertainment. 
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1. Abstract 

The ability to build intelligent command agents for 
Computer Generated Forces (CGF) is significantly 
constrained by the knowledge acquisition effort 
required. Many iterations by Subject Matter Experts 
(SME), programmers and knowledge engineers are 
required to develop acceptable behavior even for a 
narrow range of situations. Moreover, once built the 
agents cannot adapt themselves to changes. This 
paper presents an automated knowledge acquisition 
system, called Captain, which allows the SME to 
"teach" a CGF command agent in much the same 
way the SME would teach a human student. Captain 
is built upon Disciple, a multistrategy apprenticeship 
learning system that combines machine learning and 
knowledge acquisition methods. With Captain, an 
SME gives the CGF command agent specific 
examples of problems and solutions, explanations of 
these solutions, or supervises the agent as it solves 
new problems. During such interactions, the agent 
learns how to behave in similar situations. This 
approach produces verified behavior and addresses 
the problem of validating existing behaviors when 
new behaviors are added. In this paper we describe 
the teaching modes of Captain and illustrate it with an 
extended example from a specific CGF system, 
Modular Semi-Automated Forces (ModSAF), where 
an SME teaches a CGF entity a desired behavior, 
using the ModSAF and Captain interfaces. 

2. Introduction 

We are currently developing a methodology and tool, 
called Captain (Tecuci, et al. 1994; Hille, et. al 1994) 
to construct virtual command agents for Computer 
Generated Forces. This general approach has the 
potential to significantly advance the state of the art 
of constructing intelligent agents. Captain is built 
upon the Disciple multistrategy machine learning 
technology we have been developing for several 
years (Tecuci 1988, Tecuci & Kodratoff 1990, Tecuci 
1992). This methodology is based on a synergistic 
combination of a wide range of machine learning 
strategies (explanation-based learning, learning by 
analogy, empirical inductive learning from examples, 
abductive learning, etc.) which significantly increases 
the capabilities of a machine learning system. 

An extensive and error-prone knowledge acquisition 
effort is currently required to develop validated 
acceptable behavior of CGF entities. Moreover, 
because CGF agents cannot adapt themselves to 
changes, these efforts must resume whenever tactics 
and weapon systems are changed, or the simulated 
environments become more sophisticated. New 
methods are needed to cope with the challenge of 
building virtual commanders, which can command 
large numbers of entity level CGF. Captain is an 
initial approach to this problem that enables an SME 
(e.g., an Armored Company Commander) to build an 
adaptive command agent for a CGF system, (e.g., 
ModSAF (Ceranowicz, 1994)), following a tutoring 
approach rather than a traditional knowledge 
engineering approach. 

With Captain, an SME can teach an agent in many of 
the same ways the SME would teach a human 
student. The SME will give the agent specific 
examples of problems and solutions, will give 
explanations of these solutions, and will supervise the 
agent as it solves new problems. During such 
interactions, the agent learns general rules and 
concepts, continuously extending and improving its 
knowledge base. This approach produces verified 
knowledge-based command agents, because it is 
based on an SME interacting with, verifying and 
correcting the way the agent solves problems. 
Moreover, the command agent could continue to 
learn from its own experiences, during its normal use 
in simulations, by using the same learning strategies 
it employed to learn from the SME. We expect that 
this type of technology will be a key driver in shifting 
the job of agent construction from programmers and 
knowledge engineers to SMEs. 

This paper gives an overview of the Captain 
methodology and tool, and illustrates them with an 
example of teaching an automated company 
commander how to place its units for a defensive 
mission, as in the situation in Figure 1. 

The rest of the paper is organized as follows. Section 
3 presents the general methodology of the Captain 
approach. Section 4 describes the knowledge 
representation of Captain. Section 5 presents the 
learning methods. Section 6 presents an extended 
example   of  agent  training.   Finally,   section   7 
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Figure 1: Placement of platoons by a Captain 
agent for a defensive mission 

concludes the paper with a discussion of our agent- 
building approach. 

3. Captain Methodology 

CGF, such as ModSAF, provide a system for 
collective training of military forces that uses no fuel, 
causes no training injuries (except perhaps to the 
ego), and avoids much of the cost associated with 
travel to far-away training grounds. While virtual 
simulation will not completely replace field training, 
it will significantly reduce the total cost of training. 

One of the applications of the Captain methodology 
is to build command agents at different echelons. 
Such command agents will generate orders for their 
subordinates and will represent the behavior of forces 
containing hundreds of vehicles, expanding the 
effective scope of Distributed Interactive Simulation 
applications to much larger forces. 

In the Captain methodology, we define three phases 
in the creation of an agent. 

In the first phase, Knowledge Elicitation, the SME 
works with a knowledge engineer to define an initial 
knowledge base (KB) which will contain whatever 
knowledge could be easily expressed by the expert. 
This KB is expected to be incomplete and partially 
incorrect at this point. 

In the second phase, Apprenticeship Learning, the 
Command Agent will interactively learn from the 
expert by employing apprenticeship multistrategy 
learning. During this phase, the agent's KB is 
extended and corrected until it becomes complete and 
correct enough to meet required specifications. There 
are three Interactive Learning Modes involving an 
SME that are available during this phase as shown in 
Figure 2: Teaching, Cooperating and Critiquing. 

In the Teaching Mode, the SME will show the agent 
examples of typical situations and correct orders to 
give to subordinate units to achieve the goals of a 
certain mission. This will take the form of detailing a 
specific scenario in ModSAF and then giving the 
agent a mission and specifying how it is to respond. 
From each such scenario, the agent will learn a rule 
that will allow it to respond adequately to situations 
similar to the one indicated by the SME. The Captain 
Agent will attempt to understand the example given, 
by asking the SME questions and asking for 
explanations when necessary. The Captain Agent 
may also elicit new concepts or relations from the 
SME, when it does not have the required knowledge 
available. An extended example of the Teaching 
Mode is given in Section 6. 

In the Cooperating Mode, the Captain agent will 
work through a ModSAF scenario with the help of 
the SME. The Captain Agent will issue orders for a 
given mission and the SME will either verify that 
they are correct, or propose specific changes that the 

TEACHING the Agent through 
examples of typical scenarios 

COOPERATING with the Agent to 
generate orders during a scenario 

CRITIQUING the Agent's performance 
by identifying failures 

AUTONOMOUS PERFORMANCE by the Agent 
(learning from its own experience ) 

Figure 2: Different modes of learning in Captain 
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Captain Agent can learn from. The aim of the 
Cooperating Mode is to improve the rules that have 
already been learned. This interaction is easier for the 
SME than the previous mode, because the agent is 
generating the orders. The system will require less 
explanation and will not need to elicit as much new 
information. 

In the Critiquing Mode, the agent will perform 
unassisted in a ModSAF scenario. A logger will then 
be used by the SME to play back the ModSAF 
scenario, who will select particular orders that were 
not generated properly, and suggest better orders. 
This mode could be thought of as "debugging" the 
learned knowledge. The aim is to verify that the 
learned knowledge is correct, and to improve it when 
necessary. 

When the Captain command agent has been trained 
with examples of the typical ModSAF scenarios it 
should be able to solve, it enters a third phase, 
Autonomous Learning, where it is used in simulations 
without the assistance of the SME. However, the 
agent will continue to learn from its own experiences 
by employing the same multistrategy techniques it 
used when learning from an SME. 

It is important to stress that both the apprenticeship 
learning and autonomous learning take place off-line. 
Therefore they are not constrained by the limited time 
or limited computational resources available during 
real-time simulations. The only constraint imposed 
during the actual simulation is to keep a record of the 
agent's decision process. 

The Captain agent in ModSAF acts as an automated 
commander that receives missions and generates 
appropriate orders for its subordinate units. For 
instance, the agent may represent a company 
commander, and receive the mission of defending its 
area of responsibility (shown in Figure 1) against an 
enemy attack. The agent will then issue orders to its 
subordinate platoons to move to the positions 
indicated in Figure 1, to protect themselves and to 
prevent the enemy from passing through their area. 
Solving this placement problem requires a very 
complex reasoning process about terrain, weapon 
systems capabilities, and tactics. In the next sections 
we will describe the knowledge representation and 
reasoning of Captain agents, and how they are taught 
to solve the class of problems illustrated in Figure 1. 

4. Knowledge Representation 
Captain agents use a hybrid knowledge representation 
integrating semantic networks and rules. Semantic 
networks represent information from a terrain 
database at a conceptual level, as well as generic and 
specific knowledge about weapon systems and forces. 
Rules are used to represent the behavior and decision 

making of the agent as it generates orders for 
accomplishing missions. 

In order to facilitate learning, the objects and the 
rules both use the following representation unit: 

(concept-i concept-k     (FEATURE-1 value-1) 

(FEATURE-n value-n)) 

This expression defines 'concept-k' as being a 
subclass of 'concept-i' (from which it inherits 
features) with additional features. The value of a 
feature may be a constant or another concept. 

Captain agents in ModSAF must reason about the 
placement and movement of their forces. Humans 
subconsciously transform terrain they see on a map 
(see Figure 1) or from their personal observation into 
an abstract model that they then use when reasoning. 
Automated commanders need to do a similar kind of 
transformation, since the data readily available to 
them in a terrain database has too much detail to rea- 
son about terrain efficiently. Captain uses semantic 
terrain transformations (transforming the terrain data 
to relevant symbolic concepts), described in (Hille, et 
al. 1995). After the terrain transformations are per- 
formed, the map is represented in a symbolic form 
expressing concepts and relationships in a semantic 
network. For instance, a portion of information from 
the map in Figure 1 is represented in the Captain 
knowledge base as shown in Figure 3. 

The rules in the agent's knowledge base are if-then 
rules represented as plausible version spaces (Tecuci, 
1992). A concrete example of such a rule is shown in 
Figure 4. It is a rule for placing the platoons of a 
company   to   defend   a   company's   area   of 

(hill hill-911 
(orientation "right") 
(size 5) 
(in company-a-area-of-responsibility)) 

(hill-sector   hill-sector-911-1 
(quadrant 1) 
(visible mobility-corridor-a) 
(visible engagement-area-a) 
(has-exit "yes") 
(in company-a-area-of-responsibility) 
(distance-to-engagement-area "close") 
(part-of hill-911)) 

(hill-sector   hill-sector-911-2 
(quadrant 2) 
(visible mobility-corridor-a) 
(visible engagement-area-a) 
(has-exit "yes") 
(in company-a-area-of-responsibility) 
(distance-to-engagement-area "close") 
(part-of hill-911)) 

Figure 3: Terrain knowledge 
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IF 
plausible upper bound 
(SOMETHING AR20) 
(SOMETHING AV21 (PART-OF AR20)) 
(ENGAGEMENT-AREA E22 (PART-OFAV21)) 
(HILL-SECTOR HS-TP1 (IN AR20) (VISIBLE E22)) 
(HILL-SECTOR HS-TP2 (IN AR20) (VISIBLE E22)) 
(HILL-SECTOR HS-I (IN AR20) (VISIBLE E22) (DISTANCE-TO-ENGAGEMENT-AREA "close")) 
(SOMETHING P1) 
(SOMETHING P2) 
(SOMETHING P3 (WEAPONS-CLASSIFICATION "light")) 
(SOMETHING C19 (NUMBER-OF-PLATOONS 3) (COMMANDS P3) (COMMANDS P2) (COMMANDS P1)) 
(DEFEND-AREA-MISSION M23 (WITHC19)(INAR20)) 

plausible lower bound 
(AREA-OF-RESPONSIB1LITY     AR20) 
(AVENUE-OF-APPROACH AV21 (PART-OF AR20)) 
(ENGAGEMENT-AREA E22 (PART-OF AV21)) 
(HILL-SECTOR HS-TP1    (IN AR20) (VISIBLE E22)) 
(HILL-SECTOR HS-TP2    (IN AR20) (VISIBLE E22)) 
(HILL-SECTOR HS-I (IN AR20) (VISIBLE E22) (DISTANCE-TO-ENGAGEMENT-AREA "close")) 
(ARMORED-PLATOON P1) 
(ARMORED-PLATOON P2) 
(INFANTRY-PLATOON P3 (WEAPONS-CLASSIFICATION "light")) 
(COMPANY C19 (NUMBER-OF-PLATOONS 3) (COMMANDS P3) (COMMANDS P2) (COMMANDS P1)) 
(DEFEND-AREA-MISSION M23 (WITHC19)(INAR20)) 

THEN 
the problem 

PLACE-COMPANY      C19 IN AR20        TO-DESTROY-ENEMY-IN E22           FOR M23 

has the following solution 
PLACE-INFANTRY-PLATOON       P3 IN     HS-I 
PLACE-TANK-PLATOON P1 IN     HS-TP1 
PLACE-TANK-PLATOON P2 IN     HS-TP2 

Figure 4: A rule for company defensive placement 

responsibility while protecting itself. The plausible 
lower bound is a conjunctive expression that is 
approximately less general than the hypothetical 
exact condition of the rule. The plausible upper 
bound is a conjunctive expression that is 
approximately more general than the hypothetical 
exact condition. This type of rule allows the agent to 
respond to a wide variety of situations. 

If the plausible lower bound of the rule in Figure 4 
matches the current situation, then the placement 
indicated by the rule is most likely a correct one. If 
the plausible lower bound does not match the current 
situation, but the plausible upper bound does, then the 
placement indicated by the rule is considered only 
plausibly correct. Finally, if the plausible upper 
bound does not match the current situation, the rule is 
not considered applicable. The placement indicated in 
Figure 1 was generated by applying the plausible 
lower bound of the rule in Figure 4, which gives this 
solution a high degree of confidence. 

While Captain uses a plausible version space to learn 
rules that have plausible bounds, these plausible 
version space rules may then be translated to single 
condition rules, or other formats required by specific 
CGF systems. 

It is important to stress that there are many correct 
placements, corresponding to different ways of 
matching the plausible lower bound and the situation 
represented in Figure 1. For instance, the 1st armored 
platoon could also be placed in sector 1 of hill 911. 
During a simulation, the agent may randomly pick 
one placement covered by the lower bound. This is a 
very important aspect of our rule representation that 
accounts for the unpredictability of an agent's 
behavior, a feature which is characteristic of human 
agents but very rare among automated agents. The 
rules from the agent's knowledge base are learned by 
the agent during training sessions with a human 
expert, as illustrated in Section 6. The generalization 
language for the rules is provided by the semantic 
network of object concepts. This language is 
incomplete and partially incorrect, and will also 
evolve during the training sessions. Therefore, the 
learning goal of the agent is not to learn a consistent 
and complete rule, but a rule that has as few 
inconsistencies as possible and is as complete as 
possible. 
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5. Learning in Captain 

The rule learning process is summarized in Table 1 
and partially illustrated in the next section which 
presents a training session with Captain and ModSAF 
in which Captain interacts directly with an SME to 
learn how to place platoons of a ModSAF company 
commander to defend the company's area of 
responsibility. An example of such a scenario is 
shown in Figure 1. 

Given a company and its area of responsibility, the 
SME is asked to place the company's platoons using 
the ModSAF graphical interface. The SME is then 
asked to select relevant explanations from a menu of 
plausible explanations generated by Captain. Captain 
generates these explanations by using heuristics to 
look for various types of correlations in its 
knowledge of the situation. 

Given knowledge of the current situation, the correct 
placement for the defensive mission and the 
explanations of why the placement is good, Captain 
generates an initial plausible version space rule for 
placing platoons. However the rule is not completely 
learned and is still in a very general form that allows 
a great many possible placements, some of which 
may not be correct. The system uses this intermediate 
form of the rule to generate a concrete placement for 
the company and shows this to the SME on the 
ModSAF graphical display. The SME is asked if this 
is a good placement. If the SME agrees, then the 
system generalizes from the two placements utilized 
and learns a better rule. If the SME disagrees then the 
system elicits an explanation as to why the placement 
is not correct (e.g., one of the platoons cannot see the 
area of engagement or the infantry is too far away) 
and corrects the rule to eliminate the generation of 
such placements. The learning process continues in 
this manner. After Captain has learned a rule, the 
SME is allowed to validate the rule by examining 
other placements which Captain generates. When the 
SME is satisfied that the rule represents acceptable 
behavior the rule is placed into the Captain 
knowledge base. As noted previously, the rule(s) 
learned may then be translated into forms required by 
specific CGF systems. 

During learning, both the plausible lower bound and 
the plausible upper bound are adjusted to better ap- 
proximate the hypothetical exact condition of the 
rule. This is achieved by successive generalizations 
and specializations of each of the bounds. However, 
in spite of these incremental adjustments, the plausi- 
ble bounds may not become identical because of the 
incompleteness of the representation language or be- 
cause there are not enough examples to learn from. 

The SME may express whatever knowledge is 
necessary at any time in the process. If an explanation 
is not given when the initial rule is formed, it may be 

INPUT: an example of problem and its correct solution 
indicated by the expert 

• Find an explanation of the validity of the training 
example 

• Define an initial plausible version space for the rule 
to be learned, in which the plausible lower bound 
corresponds to the explanation of the training 
example, and the plausible upper bound 
corresponds to an over-generalization of the 
explanation 

• Use the plausible upper bound to generate 
examples analogous with the input and ask the 
expert to characterize each of them as correct 
(positive example) or incorrect (negative example). 
Additional examples may also be indicated by the 
expert. 

• Use these analogous examples to elicit additional 
explanations from the expert and to modify the 
plausible bounds of the rule's condition to better 
approximate the hypothetical exact condition. 

OUTPUT: one or more rules for solving the problems 
illustrated by the initial example, as well as an 
improved semantic network representing more 
complete and correct descriptions of the 
application domain objects. 

Table 1: Overview of the learning method 

given at a later time. In this way, the rule for unit 
placement is incrementally improved during the 
teaching mode. The rule is available for modification 
at any time, even by another SME. The teaching 
mode stops when the SME is satisfied with the 
behavior, or the system has considered all possible 
solutions to the problem presented. After the initial 
rule is learned in the Teaching Mode, it may be 
further refined and verified in the subsequent two 
modes, Cooperating and Critiquing. In these modes 
the placement rule would be used by the agent in the 
performance of an actual mission. 

6 An Illustration of Teaching a Captain Agent 

In this section we will illustrate how an SME will 
teach a Captain agent to behave as an automated 
company commander. We will show how the SME 
will teach the Captain agent how to place its units in 
order to defend an area from an enemy attack. The 
SME initiates the teaching session by showing the 
agent a specific example of a correct placement. The 
SME places the three platoons of Company D on the 
ModSAF map, to defend the company's area of re- 
sponsibility, as indicated in the left hand side of 
Figure 5. The SME uses the ModSAF simulation in- 
terface as the SME normally would when orienting 
units. The right hand side of Figure 5 shows the 
textual representation of the example   mission and 

139 



Initial Problem: 
Place-company company-D 

in company-D-area-of-responsibility 
to-destroy-enemy-in engagement-area-D 
for defend-area-mission 

Initial Solution: 
place-infantry-platoon platoon-D3 

in hill-sector-868-1 
position-tank-platoon platoon-D1 

in hill-sector-863-2 
position-tank-platoon platoon-D2 

in hill-sector-875-2 

Figure 5: Initial Placement for Company D 

also the solution. The system maintains a correspon- 
dence between each concept in the textual represen- 
tation (e.g., hill-sector-868-1) and the corresponding 
object (region) on the map. 

The Captain agent will attempt to understand why the 
indicated solution is correct. It will use several 
heuristics to propose partial plausible explanations 
from which the SME has to choose the relevant ones, 
as indicated in Figure 6. The partial explanations 
proposed by the system are relationships between the 
objects from the problem and its solution, or 
properties of these objects that are represented in the 

agent's knowledge base. For instance, in the case of 
the example considered, they are relationships 
between the platoons and the terrain features. 

There are several general explanation patterns in 
Captain, which are matched against the knowledge 
base to generate specific plausible explanations. The 
SME first selects the relevant ones, then may request 
additional explanations, or the SME may give 
additional relevant explanations (which were not 
generated by the system). As indicated in Figure 6, 
the system generated 35 explanations from which the 
SME   chose   13   as   relevant,   and   has   given   an 

CHOOSE THE EXPLANATIONS 

1>   defend-area-mission-D IN company-D-area-of-responsibility 
2>   defend-area-mission-D WITH company-D 
3>  engagement-area-d PART-OF avenue-of-approach-D 
4>   hill-sector-875-2 VISIBLE engagement-area-D 
5>  hill-sector-863-2 VISIBLE engagement-area-D 
6>   hill-sector-868-1 VISIBLE engagement-area-D 
7>   avenue-of-approach-D PART-OF company-D-area-of-responsibility 
8>   hill-sector-863-2 VISIBLE mobility-corridor-D PART-OF avenue-of-approach-D 
9>   hill-sector-868-1 VISIBLE mobility-corridor-D PART-OF avenue-of-approach-D 
10> hill-sector-875-2 IN company-D-area-of-responsibility 
11> hill-sector-863-2 IN company-D-area-of-responsibility 
12> hill-sector-868-1 IN company-D-area-of-responsibility 
13> company-D COMMANDS platoon-D2 
14> company-D COMMANDS platoon-D1 
15> company-D COMMANDS platoon-D3 
16> hill-sector-875-2 QUADRANT 2 AND hill-sector-863-2 QUADRANT 2 
18> platoon-D2 EFFECTIVE-RANGE "far" AND platoon-D1 EFFECTIVE-RANGE "far" 

35> hill-sector-863-2 VISIBLE mobility-corridor-D and hill-sector-868-1 VISIBLE mobility-corridor-D 

Enter Selection List:  (1 2  3 4 5 6 7 10 11 12 13  14 15) 

Give some other explanations [explanation/?/c]: 
platoon-D3 WEAPONS-CLASSIFICATION "light" 

Figure 6: Explanations given for Initial Problem/Solution 
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plausible upper bound 
(SOMETHING AR20) 
(SOMETHING AV21 (PART-OF AR20)) 
(SOMETHING E22 (PART-OF AV21)) 
(SOMETHING HS-I (IN AR20) (VISIBLE E22)) 
(SOMETHING HS-TP1(IN AR20) (VISIBLE E22)) 
(SOMETHING HS-TP2 (IN AR20) (VISIBLE E22)) 
(SOMETHING C19 (COMMANDS P3)(COMMANDS P2)(COMMANDS P1)) 
(SOMETHING P1) 
(SOMETHING P2) 
(SOMETHING P3 (WEAPONS-CLASSIFICATION "light")) 
(SOMETHING M23 (WITH C19) (IN AR20)) 

plausible lower bound 
(COMPANY-D-AREA-OF-RESPONSIBILITYAR20) 
(COMPANY-D-AVENUE-OF-APPROACH AV21 (PART-OF AR20)) 
(ENGAGEMENT-AREA-D E22 (PART-OF AR20)) 
(HILL-SECTOR-868-1 HS-I (IN AR20)(VISIBLE E22)) 
(HILL-SECTOR-863-2 HS-TP1     (IN AR20) (VISIBLE E22)) 
(HILL-SECTOR-875-2 HS-TP2      (IN AR20) (VISIBLE E22)) 
(COMPANY-D C19 (COMMANDS P3)(COMMANDS P2)(COMMANDS P1)) 
(PLATOON-D1 P1) 
(PLATOON-D2 P2) 
(PLATOON-D3 P3 (WEAPONS-CLASSIFICATION "light")) 
(DEFEND-AREA-MISSION-D M23   (WITH C19) (IN AR20)) 

THEN 
the problem 

PLACE-COMPANY C19 
IN AR20 
TO-DESTROY-ENEMY-IN E22 
FOR M23 

has the following solution 
PLACE-INFANTRY-PLATOON P3 IN HS-I 
PLACE-TANK-PLATOON P1   IN HS-TP1 
PLACE-TANK-PLATOON P2 IN HS-TP2 

Figure 7: Initial PVS rule 

additional explanation. The chosen 
explanations indicate that it is important 
that this is a defend area mission for 
Company D, that the platoons to be placed 
belong to Company D, and that these 
platoons are placed in Company D's area 
of responsibility, in positions where they 
can see the engagement area. In the 
experiments conducted we have found that 
it is very useful to let the SME control the 
explanation generation process, so that the 
SME can balance the effort of choosing 
explanations from a (possibly long) 
generated list, with the effort of directly 
giving explanations. 

We stress, however, that while it is impor- 
tant to have some explanations of the ini- 
tial example, there is no requirement that a 
complete set of explanations must be 
specified. Indeed, the assumption made by 
the agent is that this initial explanation set 
is incomplete (and possibly even incorrect) 
and will be completed during experimenta- 
tion. Consequently, a window with the ini- 
tial example from Figure 5 will be kept on 
the screen for the entire duration of the 
learning session so that the agent can ask 
additional questions about this example. 

The relevant explanations identified by the 
SME are used by the agent to generate an 
initial plausible version space for a general 
placement rule to be learned. This version 
space is indicated in Figure 7 and will not 

Generated Problem: 
Place-company company-D 

in company-D-area-of-responsibility 
to-destroy-enemy-in engagement-area-D 
for defend-area-mission 

Proposed Solution: 
place-infantry-platoon platoon-D3 

in hi!l-sector-878-2 
position-tank-platoon platoon-D1 

in hill-sector-863-1 
position-tank-platoon platoon-D2 

in hill-sector-878-1 

Could you provide an explanation of the failure? 
hill-sector-878-2 DISTANCE-TO-ENGAGEMENT-AREA "far" 

Could you now provide an explanation of why the initial episode is correct? 
hill-sector-868-l DISTANCE-TO-ENGAGEMENT-AREA "close" 

Figure 8: User rejects Company D Placement 
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Generated Problem: 
Place-company company-D 

in company-D-area-of-responsibility 
to-destroy-enemy-in engagement-area-D 
for defend-area-mission 

Proposed Solution: 
place-infantry-platoon platoon-D3 

in hill-sector-863-1 
position-tank-platoon platoon-D2 

in hill-sector-878-2 
position-tank-platoon platoon-D1 

in hill-sector-863-2 

Figure 9: User accepts Company D Placement 

be shown to the SME who communicates with the 
system only through concrete examples and 
explanations. The conclusion of the rule in Figure 7 is 
obtained by turning the objects from the initial 
example (see right hand side of Figure 5) into 
variables. The plausible lower bound is the 
conjunction of the selected explanations, reexpressed 
in terms of the variables from the rule's conclusion. 
In other words, the plausible lower bound covers only 
the initial example from Figure 5. The plausible 
upper bound is an over-generalization of the plausible 
lower bound, in which individual objects are turned 
into the most general object "something" and the 
relationships between the objects are preserved. 

The agent will use the plausible version space in 
Figure 7 to generate other placements for defensive 
missions, and will show these to the SME, who will 
accept or reject them. The SME can control this 
experimentation process by fixing some of the 
parameters of the defensive mission. For instance, it 
is useful to ask the agent to initially generate only 
placements of Company-D in its area of 
responsibility. This limits the search space the agent 
must deal with. 

The Captain agent generates a new placement of 
Company-D by simply matching the plausible upper 
bound of the rule in Figure 7 with the map region in 
Figure 5. It then proposes the placement to the SME 
on the ModSAF screen, as shown in the left hand side 
of Figure 8. The SME rejects this placement and 
explains that the infantry unit is too far away from the 
area of engagement. 

As a result of these explanations, the property value 
pair (distance-to-engagement-area "close") is added 
to the clause for the variable HS-I in both the upper 
and lower bound: 

new plausible upper bound 
(SOMETHING HS-I (IN AR20) (VISIBLE E22) 

(DISTANCE-TO-ENGAGEMENT-AREA "close") 

new plausible lower bound 
(HILL-SECTOR HS-I (IN AR20) (VISIBLE E22) 

(DISTANCE-TO-ENGAGEMENT-AREA "close") 

Then the agent generates the placement in Figure 9 
that is accepted by the user. Consequently, the system 
makes the following generalizations in the lower 
bound that correspond to the generalization of the 
positive examples from Figure 5 and Figure 9: 

HILL-SECTOR-868-1 HILL-SECTOR-863-1 
-» HILL-SECTOR 

PLATOON-D1  PLATOON-D2 -> ARMORED-PLATOON 

HILL-SECTOR-863-2 HILL-SECTOR-878-2 
-> HILL-SECTOR 

HILL-SECTOR-875-2 HILL-SECTOR-863-2 
-» HILL-SECTOR 

At this point, all the placement examples for 
Company-D that the system might generate are 
already covered by the plausible lower bound of the 
version space. Therefore the SME requires the agent 
to experiment with placing other companies for 
defending their areas of responsibility. The system 
then generates a new example for the SME to 
validate, as shown in Figure 10. This example comes 
from a different area on the map, which is in the area 
of responsibility for Company E. 

Because the SME accepted the placement generated 
by the agent for Company E, the system is able to 
make a significant reduction in the plausible version 
space by generalizing the following concepts from 
the plausible lower bound: 
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Generated Problem: 
Place-company company-E 

in company-E-area-of-responsibility 
to-destroy-enemy-in engagement-area-E 
for defend-area-mission 

Proposed Solution: 
place-infantry-platoon platoon-E3 

in hill-sector-893-1 
position-tank-platoon platoon-E2 

in hill-sector-893-2 
position-tank-platoon platoon-E1 

in hill-sector-875-1 

Figure 10: Company E Placement generated by Captain 

COMPANY-D COMPANY-E -> COMPANY 

AVENUE-OF-APPROACH-DAVENUE-OF-APPROACH-E 
-> AVENUE-OF-APPROACH 

ENGAGEMENT-AREA-D ENGAGEMENT-AREA-E 
—> ENGAGEMENT-AREA 

DEFEND-AREA-MISSION-DDEFEND-AREA-MISSION-E 
-» DEFEND-AREA-MISSION 

PLATOON-D3 PLATOON-E3  -» INFANTRY-PLATOON 

COMPANY-D-AREA-OF-RESPONSIBILITY 
COMPANY-E-AREA-OF-RESPONSIBILITY 

-» AREA-OF-RESPONSIBILITY 

After considering one more area of responsibility (for 
Company F), the agent now learns the rule shown in 
Figure 4. It is important to stress that while this rule 
has been learned from five examples, the agent 
internally examined approximately 5,000 different 
placements that are covered by the upper bound of 
the rule in Figure 4. These placements are for the 
three areas considered so far - for Companies D, E 
and F. The learning process stopped because the rule 
was refined to where all the placements that could be 
generated were covered by the lower bound of the 
rule being learned (there was no other placement both 
covered by the plausible upper bound and not 
covered by the plausible lower bound). It is obviously 
impractical for a human expert to consider this many 
solutions individually. However, the SME may, if the 
SME wishes, continue to verify the learned rule, by 
examining placements covered by the plausible lower 
bound. 

This illustration gives only a very general outline of 
the learning method. There are many other kinds of 
interactions between the SME and the aaent. For 

instance, the SME may explain why a company 
placement is wrong by pointing to one or more 
platoons that are not correctly positioned, instead of 
giving a textual explanation (e.g., in Figure 8 the 
SME may point to the position of platoon D-3 when 
asked why the solution was not acceptable). The 
SME may also choose to give the agent additional 
examples of good placements. These may cause the 
generalization of the plausible lower bound or of both 
the lower and the upper bounds. 

During learning, the agent may also accumulate 
negative or positive exceptions of the rule. These are 
bad placements that are covered by the plausible 
lower bound, or good placements which are not 
covered by the plausible upper bound. In such cases, 
the agent will attempt to elicit new knowledge (e.g., 
new features of platoons or their positions that are not 
defined in the knowledge base) from the SME. These 
knowledge items will allow the agent to modify the 
plausible version space of the rule such that the nega- 
tive and the positive exceptions become negative ex- 
amples and positive examples, respectively. Some of 
these knowledge elicitation techniques are described 
in (Tecuci and Hieb, 1994). Another way of dealing 
with a rule's exceptions is to split the plausible 
version space into several plausible version spaces 
that do not have exceptions. This will, of course, lead 
to learning more rules for the particular problem. 

The general idea of this approach is to allow the SME 
to teach the agent in a variety of ways, as the SME 
would train an assistant and to intervene whenever 
the SME wishes in the teaching process. On the other 
hand, the agent learner has a very proactive strategy 
of soliciting explanations in a variety of ways so as to 
remedy its failures. 
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Because this approach is based on an expert interact- 
ing with, checking and correcting the way the agents 
solve problems, it produces verified knowledge-based 
agents. 

When the agent has been trained with examples of the 
typical situations it should be able to cope with, it 
enters a further phase, Autonomous Learning, where 
it is used in simulations without the assistance of the 
SME. The training received during the 
Apprenticeship Learning Phase will allow the agent 
to solve most of the planning problems through 
deductive reasoning. However, it will also be able to 
solve unanticipated problems through plausible 
reasoning, and to learn from these experiences, in the 
same way it learned from the SME. The main 
difference is that the agent must assign credit or 
blame to the actions by itself. For instance, if the 
agent generated appropriate orders by using the 
plausible upper bound condition, it could then 
generalize the plausible lower bound condition, to 
cover the respective situation. If, on the other hand, 
the agent generated incorrect orders, it could need to 
specialize the rule's conditions. Therefore, the agents 
developed using this approach will also have the ca- 
pability of continuously improving themselves during 
their normal use. 

7. Conclusions 

In this paper we have presented the Captain tool for 
building intelligent adaptive agents capable of 
complex terrain reasoning, which act as automated 
commanders within the ModSAF distributed 
interactive simulation environment. In the 
experiments described, Captain learned placement 
rules for ModSAF armored company commanders in 
hilly terrain by generating four to eight examples of 
company deployments (to show to the SME on the 
ModSAF graphical interface). The rules were learned 
from consideration of over 5000 different placements 
in three different areas of responsibility. Below, we 
describe some of the benefits obtained from using the 
Captain approach, describe a few of the future 
research areas and conclude with a discussion of 
using Captain to construct agents. 

The efficiency of our agent building methodology is 
achieved through the use of simple plausible version 
spaces and a human guided heuristic search of these 
spaces. Plausible version spaces have been inspired 
by the classical version space concept introduced by 
Mitchell (1978), developing it along the following 
directions: 

• the ability to learn from only a few examples 
since the expert's explanations identify the 
relevant features of the examples. In our 
experiments we have found that, during a 
learning session, the system usually needs to 

generate less than 10 examples, in order to learn 
a rule that may have several thousands of 
instances in the knowledge base. 

• the ability to learn partially inconsistent rules, 
when the representation language is incomplete, 
as well as to guide the elicitation of additional 
knowledge from the expert, to reduce this 
incompleteness. 
the use of a heuristic search by limiting the upper 
and lower bounds to only one conjunctive 
expression. This avoids a combinatorial 
explosion of the version space bounds. This 
might lead to a rule that is not as general as it 
could be. However, it will always lead to a useful 
rule that is a generalization of the initial training 
example provided by the expert. 

A characteristic feature of our agent building 
approach is that an SME trains the agent using a 
variety of techniques, many of which are similar to 
how an SME would instruct a human apprentice. This 
is achieved with the help of ModSAF's graphical user 
interface that allows the SME to communicate with 
the agent by placing and moving units on a map. 
Also, both the SME and the agent actively 
communicate, with the agent asking questions, and 
the SME providing answers and training examples. 
Agent's questions are, in general, easy to answer. 
Many of them ask for a "yes" or "no" answer (e.g., 
asking if an example generated by the agent is 
positive or negative; if some expression is or is not an 
explanation of some failure; if an object has or does 
not have a certain feature; if an abduced fact is true or 
not; etc.). More difficult questions are those asking 
the SME to provide an explanation of some failure 
(when the system was not able to propose any) or to 
indicate the name of a concept covering specific 
instances (Tecuci & Hieb, 1994). However, in our 
experiments, we have found that even these questions 
are not very difficult to answer. 

Further research is necessary in four broad areas: 
improving the basic learning methods that constitute 
our approach; developing more flexible methods of 
instruction; developing semantic terrain transforma- 
tions; and improving the Captain interface to 
ModSAF. 

While the system is able to perform adequately, more 
work remains to be done on improving efficiency in 
learning through better search algorithms. We are 
currently working on simultaneously learning several 
rules when the incompleteness of the representation 
language prevents learning one consistent rule. We 
are also working on elicitation methods for 
eliminating exceptions as they occur in the learning 
process. 

We are currently working on developing even more 
flexible methods of instruction that allow the expert 
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to express whatever instruction is desired at any point 
in the learning process, as advocated by Huffman 
(1994) in his work on Instructo-Soar. We are also 
working on developing additional methods of 
consistency driven knowledge elicitation, in order to 
reduce the burden of explanation on the expert. 

The terrain reasoning capabilities of Captain are 
based on semantic terrain transformations, a model 
transformation process that transforms a digital 
terrain database into a conceptual semantic network 
(Hille, et al., 1995). Further work is required to 
develop and automate this process. In particular, 
methods for the manipulation and generalization of 
numbers must be improved, since the current 
implementation is based on a translation between 
numeric parameters and symbolic concepts. 

We are continuing to enhance Captain's interface to 
ModSAF. Captain is advancing to the battalion level, 
where it is learning to establish company area-of- 
responsibilities and company placements. 

The agent building approach illustrated by Captain is 
based on the Disciple theory and methodology that 
integrates multistrategy machine learning (Michalski 
and Tecuci, 1994) and knowledge acquisition (Tecuci 
& Kodratoff, 1995), within the framework of 
apprenticeship learning (Mitchell et al., 1985; Tecuci, 
1988; Wilkins, 1990). It synergistically combines 
explanation-based learning, learning by analogy, 
empirical inductive learning from examples, 
conceptual clustering, and learning by instruction. 

Building on the work on intelligent agents (Laird and 
Rosenbloom 1990; Gordon and Subramanian 1993; 
Van de Velde 1993; Maes, 1994; Mitchell et al., 
1994), we are also working on integrating experience- 
based learning with the available learning strategies, 
to be used when the agent is acting autonomously. 

Captain's learning approach offers several benefits to 
CGF developers. It produces verified knowledge 
bases for command agents and, when new knowledge 
is added or new behaviors learned, the system will 
verify that the existing behaviors are still correct. 
When a behavior needs to be modified, the same 
rules can be easily adjusted through the 
"apprenticeship" process, rather than thrown away 
and rewritten. These capabilities make Captain 
appropriate for use in large exercises, where many 
units need to be quickly modified to a new doctrine. 
Most importantly, in Captain the role of the 
knowledge engineer is significantly reduced and the 
learning process is interactive - producing better 
deliberative behavior with less time than is needed 
using traditional knowledge acquisition methods. 
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1. Abstract 

Training is vital to sustain a combat ready state. As the 
availability of real terrain areas to train on decreases, the 
importance of simulation increases. 

Simulations for Command and Staff Training usually 
require a large number of controllers to operate them. 
One of the controllers' tasks is to make command 
decisions for units not under player control. It is a 
research aim of the UK Ministry of Defence to 
investigate the role of intelligent Computer Generated 
Forces to support controllers with this task. 

This paper examines the issues involved with increased 
controller automation using the Corps Battle Simulation 
(CBS). Specifically it describes a proof of principle 
demonstrator showing the complete automation of 
controller functions for both OPFOR and Blue forces. 
This is achieved using rule based command agents 
within the existing GEKNOFLEXE model of battlefield 
decision making. 

The demonstrator controls approximately 200 units over 
the course of a fifteen hour battle, with over 5,000 
orders submitted to CBS. A task that would require 
approximately ten controllers. 

Current research is concentrating on the UK Army's 
recently installed Higher Formation Trainer - ABACUS. 

2. Introduction 

2.1 Requirement 

Maintaining an acceptable level of combat readiness for 
the armed forces is extremely important, and 
increasingly difficult, with today's rapidly changing 
world political scene. Key to sustaining this readiness is 
training. Unfortunately, due to a combination of 
environmental pressures, decreasing defence budgets 
and increasing weapon capabilities, the availability of 
training areas is diminishing. 

Military commanders are therefore looking to simulation 
technology to help address this shortfall. Within the area 
of Command and Staff Training (CAST), there is a 
requirement for simulations to run Command Post 
Exercises (CPXs). During a CPX, particular 
headquarters are tested. To increase realism, many 
superior, subordinate and flanking forces, and their 
headquarters, are also required and have therefore to be 
simulated. 

To play these roles, human controllers are normally 
required to make the command decisions for those units 
in the simulation which have no corresponding real 
world players. This includes all of the opposition forces 
(OPFOR). For a large exercise, the total number of 
controllers can be in the hundreds. These people are 
expensive, difficult to obtain and receive little, or no, 
training benefit from the exercise. 

What current operational simulation technology is not 
yet able to offer is the automated decision making 
capability typical of such command headquarters. 
Research is therefore being conducted to investigate the 
role of so-called intelligent Computer Generated Force 
(iCGF) technologies to increase automation of the 
decision making process. 

2.2 Aims 

The main aims of the research presented here were to 
investigate the feasibility of connecting the 
GEKNOFLEXE studies tool, which includes an iCGF 
system (Lankester & Robinson, 1994), to a CAST 
simulation, namely the Corps Battle Simulation (CBS). 
The purpose of this was to gain a better understanding 
of the issues involved in automating CAST controller 
functions. 

CBS (JPL, 1991) is a constructive, aggregate level 
battlefield simulation designed to run Corps and 
Divisional exercises. CBS takes in orders from the 
players, via human controllers. The effects of these are 
modelled in CBS and the results fed back to the players, 
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again via the controllers. 

GEKNOFLEXE is a fully automated, two-sided model of 
battlefield C'l (Command, Control, Communications 
and Intelligence). It models the decision making process 
of command headquarters using knowledge based 
software constructs known as 'command agents'. The 
GEKNOFLEXE command agents form a distinct group of 
objects separate from the GEKNOFLEXE battlefield 
simulation which handles events like sighting, 
movement and attrition. Command agents make the 
same decisions which CAST simulations presently 
require human controllers to make. By connecting 
GEKNOFLEXE command agents to CBS, automation of 
controller functions should be possible. 

Feasibility, design, implementation and validation stages 
for this connection were to be completed during a 
twelve month period. The initial stages of which have 
already been presented (Cox, Gibb & Page, 1994). This 
paper describes the results from this work. 

A number of issues need to be resolved to produce a 
satisfactory level of controller automation with 
command agents. These are discussed by Cox, et al. 
(1994), but generally cover the need for realistic 
behaviours over a wide range of settings, a sufficient 
representation of unit types, manual override facilities 
and mechanisms for validation. It was important, 
therefore, to scope the research down to the immediate 
problem of connecting the GEKNOFLEXE iCGF to the 
CBS CAST system. To achieve this, it was intended to 
simplify the approach wherever possible. 

Consequently, the feasibility study recommended that 
the CBS OPFOR be fully automated by GEKNOFLEXE. 

This has several advantages. 

Fully automating the OPFOR removes the immediate 
need to address the complex issue of interactions 
between players, controllers and the iCGF. For example, 
for players to communicate directly with the iCGF 
would require speech generation and synthesis well 
outside the scope of this research. Allowing the iCGF to 
function entirely under its own control also avoids the 
need for controller iCGF supervisory faculties. 

CBS has a simpler OPFOR representation of logistic, 
maintenance and medical functions than for own forces. 
Since GEKNOFLEXE had no model of these anyway, it 
was more sensible to let GEKNOFLEXE control CBS 
OPFOR units. 

Thus it was the intention to produce a working 
demonstrator by the end of this research which would 

show full automation of the OPFOR units within CBS. 
This would then meet the main aim of investigating the 
feasibility of the GEKNOFLEXE iCGF acting as an 
automated CBS controller. By doing this, a more 
comprehensive understanding of controller automation 
in general would be attained. 

3. Design and Implementation 

3.1 Ideal System Architecture 

The first stage of the design was to plan an ideal system 
architecture for automating the CBS OPFOR which has 
already been discussed by Cox, et al. (1994). From this 
ideal architecture a more practical design could be 
derived, if necessary. 

Figure 1 shows a typical CBS configuration for a 
headquarters under exercise. The trainee staff 
communicate with their controllers as normal. Other 
controllers play the roles of superior, subordinate and 
flanking forces present within the setting, for whom 
there are no player counterparts. 

The controllers therefore input orders into their CBS 
workstations, and report back events occurring on the 
battlefield to the trainees. The trainees should not be 
aware of the underlying computer system controlling 
battlefield events. To all intents and purposes, the 
trainees are in a real battle situation, communicating 
with other real forces. In reality these are all modelled 
within CBS under controller command. 

A senior controller monitors the exercise, and makes 
adjustments to the simulation as and when necessary, to 
maintain the exercise objectives. 

OPFOR units have no OPFOR trainees. The OPFOR is 
therefore fully commanded by the OPFOR controllers. 

Figure 1 shows GEKNOFLEXE OPFOR command agents 
in place of human controllers. Whereas human 
controllers input orders manually into their CBS 
workstation, and receive reports from CBS on their 
workstation, GEKNOFLEXE command agents are 
electronically connected to CBS via its generic interface 
(GI). CBS has a GI to allow the majority of controller 
functions to be electronically input, and CBS reports to 
be output, from and to other software. 

3.2 Proposed System Architecture 

Based on this ideal design, a proposed system 
architecture was constructed (see figure 2). The main 
constraints preventing the implementation of the ideal 

150 



normal communications 

Senior 
Controller H 

OPFOR CBSi 
Workstation, 

CBS Simulation 

5*£" 
OPFOR CBS 
Workstation 

OPFOR CBS 
Workstation 

GEKNOFLEXE 
CBS-GI Link 

jSupervisorV 
Operator/ 

GEKNOFLEXE 
Comms Link 

GEKNOFLEXE 
Command Agent GEKNOFLEXE 

Inter-Agent 
Comms Link 

GEKNOFLEXE 
Command Agent 

Figure 1: Ideal system architecture 

Trainee 

Controller 

Blue CBS 
^Workstation! 

CBS Simulation 

Replicated 
as required 

Internal CBS 
Communications 

Link 

OPFOR 
Workstation 
CBS Generic 

Interface VMS/Unix 
Communications 

Link 

Modified 
GEKNOFLEXE 

System     J 

Figure 2: Proposed system architecture 

151 



design, and influencing the proposed architecture are 
described below. 

The initial research programme was only to last for a 
twelve month period, for financial reasons. The UK 
Army was also installing its own Higher Formation 
Trainer (HFT) - ABACUS (All Arms Battlefield 
Computer Simulation). After twelve months would be a 
suitable breakpoint in the long term research programme 
to review how the work was progressing. This would 
allow the lessons leamt to date to be assessed and the 
research focus to switch to ABACUS, reflecting the 
CAST needs of the UK Army. 

It was also desirable to make as few, if any, changes to 
the still developing GEKNOFLEXE system and CBS, as 
an operational trainer, could not be modified at all. It 
was essential, therefore, to make any link between these 
two systems as independent as possible from the actual 
systems themselves. 

Figure 2 shows the proposed design and figure 3 the 
processes involved in automating the OPFOR Although 
the Blue situation remains unchanged from the ideal 
design, the OPFOR is subtly different, as explained 
below. 

Instead of separating out the GEKNOFLEXE command 
agents from the GEKNOFLEXE simulation, it was 
decided to modify the GEKNOFLEXE simulation so that 
it would emulate CBS. This GEKNOFLEXE 'simulation 
emulation' would receive battlefield event updates from 
CBS, via the GI, and reflect these changes in the 
GEKNOFLEXE simulation. In effect, control of the 
GEKNOFLEXE simulation would be handed over to 
CBS. In this way, GEKNOFLEXE would not need to be 
altered as much as if the command agents were isolated 
from the GEKNOFLEXE simulation. 

The GEKNOFLEXE simulation does not totally emulate 
CBS. In the case of its sightings model GEKNOFLEXE 

has this integrated into the simulation and includes 
facilities for modelling RPVs (Remotely Piloted 
Vehicles). This capability was not directly available 
from the version of CBS used. So sightings reports 
received by the command agents are taken from the 
GEKNOFLEXE simulation, rather than CBS. 

Limiting the OPFOR representation is the battlefield 
functionality of GEKNOFLEXE. The version of 
GEKNOFLEXE used was only able to reason about 
armoured, armoured infantry, artillery, mortar, recce and 
command headquarter units.  Division,  Brigade and 
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Battalion level battlefield decision making is modelled, 
with Company units simply obeying orders. 

This version uses a post-CFE (Conventional Forces in 
Europe) setting, which has an OPFOR tank Division 
attacking from the east, over the former East Germany, 
against a Blue force based on the ACE (Allied 
Command Europe) Rapid Reaction Corps fighting a 
covering battle. It was also necessary to configure the 
CBS scenario to match this GEKNOFLEXE setting. 

As already stated, GEKNOFLEXE is a developing system 
and its latest version is already much enhanced over the 
version taken for this work. This new version 
considerably increases the military functionality and 
terrain resolution modelled, and uses an intervention- 
based scenario. 

Figure 3 depicts the processes created to achieve 
OPFOR controller automation. The event monitor 
process runs on the Micro VAX hosting the CBS GI. 
This process monitors CBS for any update notifications, 
e.g. a change to a unit's location, and forwards this 
information to the repeater process on the Sun 
SPARCstation which hosts GEKNOFLEXE. The other 
function of the event monitor process is to transmit 
orders originating from GEKNOFLEXE to CBS using the 
GI. 

The client repeater process performs no processing 
itself, but rather acts as a buffer between the modified 
GEKNOFLEXE process and the event monitor process. 
The client repeater process is necessary because it is 
difficult for the other two processes to communicate 
directly. The client repeater talks to the event monitor 
via the DECnet communications protocol and the client 
repeater communicates with the modified GEKNOFLEXE 

process through a Unix pipe. 

The modified GEKNOFLEXE process is hosted on a Sun 
SPARCstation and listens for information coming from 
the client repeater process, as well as passing 
GEKNOFLEXE command agent orders to the client 
repeater process. When a report from CBS arrives, a 
layer of software within the GEKNOFLEXE Lisp process 
updates the GEKNOFLEXE simulation, thus keeping both 
the GEKNOFLEXE and CBS simulations synchronised. 
This same software also routes GEKNOFLEXE orders to 
CBS, via the various processes. 

In this way, GEKNOFLEXE command agent decisions, in 
the form of orders, are passed to CBS. Similarly, event 
updates are routed from CBS to the GEKNOFLEXE 

simulation for the GEKNOFLEXE command agents to act 
upon. 

A final consequence of producing a fully automated 
OPFOR and ignoring the provision of supervisory 
facilities for controllers, is that the role of the senior 
controller is dramatically reduced. This is because the 
GEKNOFLEXE command agents are not able to cope 
with the non-real world activities, e.g. magic moves and 
over-ruling of decisions, often associated with the senior 
controller function. 

3.3 Implementation of the Proposed System 

The implementation largely followed the design 
specified by the proposed system architecture. The 
majority of the effort concentrated on building the link 
to the GEKNOFLEXE simulation. The implemented CBS 
simulation emulation allowed the iCGF components of 
GEKNOFLEXE to retain their existing software harness. 
Though not an elegant solution as it requires two 
simulations (GEKNOFLEXE and CBS) to be kept 
synchronised, it allowed a proof of principle 
demonstration of the automation of controller functions 
to be produced in a remarkably short time. It took 
approximately twelve man months of effort over a six 
month period. 

This resulted in a demonstration system showing the 
complete automation of both OPFOR and Blue CBS 
forces. Control of the Blue forces can also be handed 
over to human controllers, thus allowing players to fight 
an automated enemy. Further details of the 
demonstration system are given in §4.2. A description of 
the problems faced while implementing the 
demonstrator system are presented below. 

3.4 Problems 

3.4.1 Restrictions 
As mentioned earlier, GEKNOFLEXE has a limited 
battlefield representation compared to the functionality 
offered by CBS, and this introduced a number of 
restrictions to the demonstration scenario. 

Foremost of these is the ORBAT. It was necessary to 
configure the CBS ORBAT to match that of 
GEKNOFLEXE. This emphasised resolution problems 
arising from the different levels at which each system 
was designed to operate. For instance, CBS typically 
represents recce platoons, whereas GEKNOFLEXE 

models recce sections. 

GEKNOFLEXE allows opposing forces to occupy the 
same terrain cell, however, the version of CBS used 
does not. In the GEKNOFLEXE simulation, units have a 
probabilistic chance of seeing each other. It is not 
uncommon for opposing recce sections to occupy the 
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same 3km terrain cell as the chances of them spotting 
each other are relatively low. Hence, such small units 
often pass by one another unsighted. This cannot 
happen in CBS, which was not designed to represent 
units in such detail. 

It was therefore necessary to implement a mechanism to 
halt a unit before it entered an enemy occupied terrain 
cell. If the unit is not engaged, then after an appropriate 
delay it is 'magic moved' to where it would have been 
had it passed conventionally through the enemy cell. 

Similarly, a small unit like a recce section can hold up a 
significantly larger enemy force for longer than would 
be expected, again, because opposing forces are not 
allowed in the same terrain cell. The effects of this can 
be reduced by forcing such small units to operate under 
the CBS 'avoid combat' mode. This reduces the chances 
of such units engaging. 

These problems arise purely due to our use of CBS at 
levels for which CBS was not designed. 

Since GEKNOFLEXE had no representation of logistics, 
it was necessary to give all units infinite supplies. This 
is justifiable as the GEKNOFLEXE command agents, in 
this post-CFE scenario, have been validated for only a 
fifteen hour battle period and do not abuse their limitless 
supplies. 

3.4.2 GEKNOFLEXE Command Agent Dependencies 
Because the GEKNOFLEXE command agents have been 
developed with their own simulation, a couple of 
command agent dependencies on it were uncovered. 

GEKNOFLEXE has a fairly simple congestion model, and 
only three units, moving in column formation, are 
allowed in any one terrain cell. When facing an enemy 
or obstacle, the GEKNOFLEXE congestion model halts 
the leading three units and consequently all the 
following units also halt. However, CBS does allow 
more than three units into the same terrain cell. This 
means that when units halt, units following the leading 
three will not necessarily stop. To solve this, a basic 
congestion model was implemented to cause enough 
extra congestion to make CBS halt any following units. 
In the latest version of GEKNOFLEXE, command agents 
control all aspects of unit movement. 

When replanning routes, instead of GEKNOFLEXE 

command agents sending reroute orders to units, the low 
level route within the GEKNOFLEXE simulation is 
changed. As routes are much simpler in CBS, a change 
to the appropriate GEKNOFLEXE knowledge base was 
implemented to make the command agents also send 

new movement orders down to affected units. 

3.4.3 Command Agent Flexibility 
One of the initial fears was that the command agents 
would not appear realistic when operating within the 
CBS environment, since they were not designed to work 
outside of the GEKNOFLEXE simulation. However, the 
command agents were found to be remarkably robust 
and, with the exception of the few cases described 
below, act in a reasonably believable manner. 

When replanning routes, sometimes a route is chosen 
which, for example, crosses a river instead of using a 
suitable nearby bridge. This is due to the reroute 
algorithms working under the constraints of avoiding 
enemy occupied terrain cells, where these cells are 3km 
across. Nearby bridges are ignored if they are in an 
enemy occupied cell, even though in reality the bridge 
may be only a few hundred metres from the unit and 
over 2km from the enemy unit. 

When a column formation is disrupted, the command 
agents are not always able to reform the column in the 
correct order. 

Command agents frequently send fire support orders to 
artillery units for targets outside their range. These 
orders have to be filtered out before being sent to CBS. 

3.4.4 Implementation Problems 
During implementation, a number of unexpected 
problems arose. Chief among these related to the 
communications link between the GEKNOFLEXE Lisp 
process and the CBS GI. These mainly concerned 
limitations in the development environments used and 
are of little relevance to the research conducted. 

Another problem concerned the apparent failure of CBS 
to report all unit updates to the GI. This is particularly 
the case when a number of changes to a unit occur in 
quick succession. For example, if an artillery unit fires 
only a few rounds, the following update to say the unit 
has ceased firing may not be sent. This leaves the 
GEKNOFLEXE command agents thinking the unit is still 
firing and so will not task that unit with other fire orders. 
The problem only affects a small number of the units 
and so has a limited effect on the simulation. 

3.4.5 Simulation Differences 
In addition to the already mentioned problem of 
differing levels of resolution between the CBS and 
GEKNOFLEXE simulations, a number of other 
differences were observed. 

When converting between the GEKNOFLEXE simulation 
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and CBS coordinates, only a 200-300 metre accuracy 
level could be achieved. This led to particular problems 
when a route along a road is given. This can translate to 
CBS as a series of points near a road, and consequently 
a lot of unnecessary off-road movements could be 
observed. 

Only twenty points could be specified in a CBS 
movement order. Command agents were not so 
restricted. So a low level monitoring process had to be 
implemented in the GEKNOFLEXE simulation emulation 
to issue new movement orders to CBS as and when 
required. 

4. Achievements 

4.1 Lessons Learnt 

The main aims of this research were to gain a better 
understanding of the issues involved in automating 
CAST controller functions. This was achieved by 
designing and implementing a proof of principle 
research prototype demonstrating the automation of 
OPFOR controller functions in CBS. A number of 
lessons were learnt during this process. 

4.1.1 Design 
The importance of conducting a thorough feasibility 
study and using this to produce a well thought out 
design cannot be emphasised enough. These initial 
stages, while not a guarantee to success, help to 
drastically reduce the problems encountered during the 
implementation stage. 

4.1.2 Software & Documentation 
The extensive documentation set and the reliability of 
the CBS software meant that relatively few problems 
were encountered with CBS. Similarly, few problems 
with GEKNOFLEXE were observed, again due to the 
robustness of the software. The lesson to be learnt here 
is that well documented and reliable software 
significantly eases the connection process of distinct 
systems. 

4.1.3 Command Agent Assumptions 
In relation to congestion (see §3.4.2), a more realistic 
method of halting a column needs to be implemented. 
Merely halting the leading three units causes problems 
outside the GEKNOFLEXE simulation and this has been 
addressed in the latest version of GEKNOFLEXE. 

Regarding movement, the GEKNOFLEXE simulation 
determines if a moving unit has reached its destination 
by testing whether the current location matches the end 
route location. Although CBS end movement reports 

match those in the movement order, this may not be the 
case with other simulations. This is an example of the 
risk of using two synchronised simulations. 

4.1.4 Simulation Synchronisation 
The adopted approach of having a GEKNOFLEXE 

simulation emulation leads to obvious problems in 
keeping both the GEKNOFLEXE and CBS simulations in 
step with each other. The reason for this double 
simulation approach was to allow a proof of principle 
demonstrator to be quickly implemented. This should 
not be viewed as a long term solution to the problem of 
controller automation. The overheads of having two 
simulations in a real training exercise would soon 
become prohibitive. 

4.1.5 Simulation Resolution 
CBS and GEKNOFLEXE are different systems designed 
to do different tasks. What is acceptable at a coarse 
resolution in CBS is not necessarily adequate in 
GEKNOFLEXE, e.g. opposing units not being allowed in 
the same terrain cell. What has been learnt here is that 
solutions can generally be found, which although by no 
means optimal, do work. These problems would be 
reduced if both systems were designed to function at the 
same resolution, as is more the case with GEKNOFLEXE 

command agents and ABACUS. 

4.1.6 Command Agent Capabilities 
One of the aims of this piece of research was to 
determine whether or not the GEKNOFLEXE command 
agents were capable of providing an OPFOR in a 
training environment. The command agents were 
realistically able to run the full fifteen hour scenario 
whilst connected to CBS without any changes to the 
existing knowledge base rules. When fighting against a 
totally free play, human controlled Blue force for eight 
hours (see §4.2), the Blue players acknowledged that 
they had fought a realistic opposition, given the 
constraints of the scenario. This success indicates the 
immense potential of command agents for controller 
automation. 

4.1.7 Command Agent Inabilities 
GEKNOFLEXE command agents need to be able to 
control engineering functions, reason more realistically 
about reforming a disrupted column, and check the 
range of artillery targets before issuing impossible 
artillery orders. These are specific problems which are 
already being addressed as part of new GEKNOFLEXE 

releases. 

What needs greater understanding is the production of 
a wider variety of command agents which can work in 
a   large   number   of   different   scenarios.   Current 
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expectations are that these are feasible, but very costly 
to develop. 

Command agents are also unable to make realistic 
decisions based on real world information alone. Taking 
the example of data fusion, software techniques are 
unable to replicate the human information fusion 
process. So GEKNOFLEXE command agents 'cheat', and 
are provided with sufficient ground truth information 
via so-called 'back door' mechanisms to the simulation, 
to allow realistic decisions to be made. Such techniques 
are valid, however, so long as they do not detract from 
training effectiveness. 

4.1.8 Validation 
GEKNOFLEXE itself has been validated by independent 
military experts to confirm that it provides a credible 
military engagement between two opposing forces, 
within the context of the scenario and forces modelled. 
Validation of the CBS automated force behaviour 
remains somewhat subjective, since validation is context 
dependent. What is valid in one simulation environment, 
e.g. the GEKNOFLEXE simulation, is not necessarily 
valid in another, for instance CBS. Differences in the 
CBS battlefield simulation, and variation caused by 
human controlled Blue forces, cause the OPFOR 
command agents to react in different ways. As a result, 
new combinations of decisions are produced which have 
not been previously validated in GEKNOFLEXE. 

Nevertheless, in a limited trial exercise (see §4.2), the 
GEKNOFLEXE command agents proved to be robust and 
provided a reasonable OPFOR 

4.1.9 Coordinate Systems 
Whereas using a lat/long coordinate system is more 
accurate for large areas, army users prefer to see UTM 
(Universal Transverse Mercator) locations. A translation 
process was required to convert from GEKNOFLEXE 

coordinates to the UTM coordinates used by CBS. 
Though it was only necessary to implement conversions 
for one UTM zone. 

4.2 Demonstration System 

The demonstration system is the culmination of this 
research work. It illustrates the capability for the 
practical automation of controller functions. Although 
the original aim was to concentrate on purely an 
automated OPFOR, the system actually provides for 
automation of both an aggressive OPFOR behaviour 
and a fighting withdrawal behaviour by Blue forces. The 
system is able to operate in one of three modes: 

•    both Blue and OPFOR fully automated by the 
GEKNOFLEXE command agents. This is useful when 

demonstrating   or   debugging   the   system, 
controllers are not required. 

as 

• as above, but with a once-only handover of Blue 
force control to human controllers, thus disabling the 
Blue GEKNOFLEXE command agents from further 
play. This allows the scenario to be automatically 
advanced to an appropriate point in the battle. 

• GEKNOFLEXE command agents playing the OPFOR 
human controllers supervising the Blue forces. 

While playing the scenario, GEKNOFLEXE is in control 
of approximately 140 OPFOR units and about 60 Blue 
units. During the course of a fifteen hour scenario, a 
total of around 5,000 orders are submitted to CBS from 
the GEKNOFLEXE command agents. If we assume a 
human controller takes about two minutes to issue a 
particular order, then it would require over ten 
controllers issuing orders non-stop for fifteen hours real 
time to issue 5,000 orders. 

A 'mini-exercise' to test out the demonstration system 
was conducted. This consisted of two military personnel 
(a serving Major and a retired Colonel) controlling the 
Blue forces and fighting a fully automated opposition 
over a period of eight hours. Given the constraints of the 
scenario, they reported that they had met a credible 
force. 

5. Future Research 

The research has now reached a natural breakpoint. A 
proof of principle system, showing the automation of 
CBS controller functions by GEKNOFLEXE command 
agents, has been successfully demonstrated. During this 
time, the UK Army's HFT ABACUS has been installed 
and partially accepted. This now forms the natural focus 
for further research into the automation of controller 
functions. 

The wide applicability of the GEKNOFLEXE command 
agents to areas outside their originally intended use, i.e. 
C3I studies, has been largely acknowledged and the 
Command Agents Research (CARE) programme 
instigated (Lankester, 1995). The main aims of this 
involve the separation of the GEKNOFLEXE decision 
making components (command agents) from the 
GEKNOFLEXE simulation, and the production of further 
command agents. These will be available for use by the 
research programmes funding CARE. 

For the next stage of controller automation research, it 
seems sensible to consider the implications of 
connecting   ABACUS   with   the   command   agents 
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emanating from the CARE programme. A number of 
issues need to be tackled, and these are briefly outlined 
below. 

A connection mechanism to ABACUS needs to be 
developed. ABACUS does not have a GI like CBS, and 
so a library of routines need to be developed to provide 
a sufficient level of functionality for command agents to 
control ABACUS units. 

Communications between players, controllers and 
command agents need improving. Facilities are required 
for exercise controllers to monitor, understand and alter 
command agent activities. This requires a Graphical 
User Interface (GUI) to readily present the information 
needed by controllers to allow them to comprehend the 
what and why of command agent decision making. The 
capability to then modify command agent states is 
necessary should a decision need to be overruled or the 
state of the exercise changed. 

Actual verbal communication between players and 
command agents would require well developed speech 
recognition and generation software, beyond the current 
levels of such technology. 

Command agent to command agent communications 
needs to be examined if command agents are to work 
within a distributed framework such as the Distributed 
Interactive Simulation (DIS) network. This requires an 
open, modular architecture. The ARPA (Advanced 
Research Projects Agency) led Command and Control 
Simulation Interface Language (CCSIL) may well prove 
useful for such communications, and further 
investigation is warranted. There are concerns, however, 
with CCSIL's philosophy of only providing real world 
information. It is currently believed that command 
agents need more than just real world information to 
model command decision making. 

Training exercises can now take place in a wide range of 
locations, under various concepts of operation, and with 
diverse ORBATs. Command agents need to be flexible 
enough to cope. This requires significant effort to 
optimise the process by which knowledge is captured 
and encapsulated in command agent form. 

The validity of command agent behaviours within a 
CAST environment needs to be further assessed. It is 
vital that units controlled by command agents, both 
OPFOR and friendly, act in a realistic manner so that the 
trainees are presented with a credible setting. There is 
much uncertainty within the community as to how to 
best validate force behaviours, particularly in new 
scenarios. 

6. Conclusions 

This research has shown that the automation of 
controller functions is viable. The demonstrator system 
has shown itself to be an excellent means of both 
understanding the issues involved with the automation 
of CAST controller functions and illustrating the 
research objectives. 

The practical lessons leamt will provide a sound basis 
for future research into automating ABACUS controller 
functions. The main lessons learnt relate to the provision 
of a well defined interface between simulations and 
iCGFs, the increased functionality of command agents, 
and the need to avoid having more than one simulation 
in the system. 

There are a number of risks associated with the plans for 
future research Dependencies on ABACUS and CARE 
are high. ABACUS is a new system about which very 
little is known or understood by the research team. 
However, the ABACUS Higher Formation Trainer 
(HFT) best reflects the UK Army's requirements from a 
CAST. CARE is itself a research programme and 
consequently comes with a certain element of risk. But 
no other software appears to offer the advanced decision 
making capability provided by GEKNOFLEXE command 
agents. 

The cost benefits from reducing the numbers of 
controllers required to run a CAST system are obvious. 
GEKNOFLEXE command agents show the potential to 
achieve this. Benefits beyond financial savings include 
the increased usage of CAST systems since they will 
become more affordable to run. Controllers, already in 
limited supply, will be able to focus on the important 
aspects of an exercise, thus improving the training 
benefits to the players. Increasing the automation could 
ultimately provide a facility for individual commander 
training. Outside of training, an automated HFT could 
be used for mission rehearsal, studies and as an 
operational 'what if tool. 
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1. Abstract 

The ongoing success in realistically representing 
individual vehicles within Computer Generated 
Forces (CGF) systems has allowed attention to be 
shifted to the behavior of groups of vehicles (units) in 
the battlefield. For the behavior of CGF units to 
appear realistic, the entities within the units must 
follow realistic plans. This paper describes a 
Simulation Based Planning capability developed 
within the ModSAF CGF system. Simulation Based 
Planning integrates simulations of candidate plans 
into the Planning process mirroring the "wargaming" 
simulation process in human military planning. 

2. Introduction 

Over the last decade, Computer Generated Force 
systems have evolved in complexity and detail. The 
process began with the simulation of simple vehicle 
dynamics/behaviors and continued through the 
addition of single entity and small unit (Platoon) 
behaviors. Now the problem of simulating the 
Command and Control (C2) process is attracting 
attention and effort. One facet of the C2 process is 
mission planning; that is, building a coherent set of 
actions for subunits and individual entities to 
accomplish a military goal. The general task of 
planning has been a topic of research in Artificial 
Intelligence for many years. Applying the 
generalized AI Planning techniques within the CGF 
domain has had some successes and has revealed 
some problems. Among these problems are the large 
computational resources required, the difficulty in 
completely describing the knowledge required, and 
the lengthy time required for planning. 

Lee and Fishwick (1994) propose a Simulation Based 
Planner (SBP) wherein planning occurs through a two 
stage process of plan generation and plan evaluation. 
The evaluation of candidate plans is done through 
simulation of the plans rather than traditional AI 
reasoning approaches (e.g. the Multiagent 
Adversarial Planner (Elsaesser 1991)). The Mission 
Planner (MP) described here adds a Simulation Based 
Planning capability to ModSAF. The MP features a 
Course  of Action  (COA)  Generator  that creates 

multiple COAs (i.e. Plans) and a COA Simulator that 
simulates each candidate plan. Both the COA 
Generator and Simulator interact with a Terrain 
Analyzer for terrain information. "Good" plans 
emerge as successful simulations while "poor" plans 
are unsuccessful. The "best" plan is converted to an 
execution matrix within ModSAF for execution of the 
plan. 

3. Mission Planner architecture 

Order 

ModSAF 

Command Entity 

Mission Planner 

World 
DataBase 

Skeletal 
Plans 

Terrain 
Analyzer 

Plan in Execution Matrix 

Plan Follower 

Figure 1: Mission Planner Architecture 

Figure 1 shows the architecture of the Mission 
Planner (MP). The MP is embedded inside a 
ModSAF Command entity. The input to the MP is 
given through pull-down menus and is a simple order 
consisting of: 

•     the mission, e.g., ASSAULT an objective 
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• the objective and 
• enemy data sets; each set details: 

• an enemy's location 
• the enemy's type (e.g., ARMOR) and 
• the      enemy's      echelon      level      (e.g., 

COMPANY) 

3.1 The World DataBase 

The World DataBase (WDB) contains information 
about the battlefield known or believed to be true by 
the planning entity. This is not a complete spatial 
representation but a simplified database. It contains: 

• location, type, and echelon of enemy units taken 
from the Order and 

• terrain information such as tactical positions and 
routes, developed during the planning process. 

3.2 The Course Of Action Generator 

The COA Generator is the module that generates 
candidate plans from Skeletal Plans (SP) and terrain 
information from the WDB. The output of the COA 
Generator is a series of candidate plans which are 
sent to the COA Simulator for evaluation. The COA 
Generator is discussed in more detail in Section 6. 

3.3 The Course Of Action Simulator 

The COA Simulator simulates each candidate plan 
and outputs a score indicating the relative 
effectiveness of the candidate plan in completing the 
mission. The COA Simulator relies on the WDB for 
the locations of enemy and friendly units. The COA 
Simulator is discussed in more detail in Section 7. 

3.4 The Terrain Analyzer 

The Terrain Analyzer (TA) supplies tactical positions 
(e.g., Assault and Support-By-Fire Positions), routes, 
and area visibility information. The Terrain Analyzer 
is discussed in more detail in Section 4. 

4. The Terrain Analyzer 

The Terrain Analyzer (TA) is a collection of services 
that provide the Mission Planner with terrain 
information. The available services are: Area Line of 
Sight, Route Planning, and Tactical Positions. 

4.1 Area Line of Sight (ALOS) 

The ALOS module calculates a percentage of 
visibility between two circular areas. It is given two 
ordered triples consisting of a point, a radius, and a 
number of sample points; for example, (pu n, nj) and 
(P2. r2, n2). 

Then, ni locations are randomly selected within rj 
distance of pi. Similarly, n2 locations are randomly 
selected within r2 distance of p2. Finally, n^ n2 

point-to-point line-of-sight (LOS) checks are done 
and the percentage of unblocked LOSs is returned. 
Each LOS check is done three meters above ground 
level. 

4.2 Route Planning 

The Route planning component is built on ModSAFs 
route planning facilities. Given a start location and 
destination a single route is returned. 

4.3 Tactical Positions 

Three types of tactical positions are supported: 
Assault, Support-By-Fire, and Defense. Figure 2 
shows two Assault Positions and one Support-By-Fire 
Position. 

Figure 2: Tactical Positions Example 

In Figure 2 the objective lies on a hill. The Support- 
By-Fire Position is also on a hill and has unblocked 
LOS to the objective. The Assault Positions are 
behind treelines and are concealed from the objective. 

A grid based approach is used to analyze the terrain. 
Using the objective as the center, a square 4000m2 is 
determined and divided into square grid cells. The 
unit boundaries are determined by computing a 
bounding box encompassing the unit, the objective, 
and suspected enemy locations. Certain grid cells are 
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marked as unavailable: cells outside the unit 
boundaries, cells within grid cell distance of the 
objective, cells occupied by enemy units, and 
unreachable cells (e.g., canopies, unfordable water, 
etc.) 

The equation for evaluating grid cells for Assault 
Positions is: 

Wap =  0.6 • rt_ ratio + 0.2 • slope - 0.5 • (los_ obj + los_ en) 

where 
Wap       is the Assault Position weight of a grid 

cell 
rt_ratio  is the ratio of the length of a straight 

line to the route length from the grid cell 
to the objective 

slope     is the slope of the terrain from the grid 
cell to the objective and 

los_obj  is the ALOS to the objective 
los_en    is the cumulative ALOS to the enemies 

This equation evaluates most positively the cells that 
have straight line routes to the objective, are "uphill" 
from the objective, and are concealed from the 
objective and enemies. 

The equation for evaluating grid cells for Support- 
By-Fire Positions is: 

Wsbfp =  0.6 *los_ obj - 0.2 • los_en +0.2* slope 

where 
W^p    is the Support-By-Fire Position weight of 

a grid cell and 
los_obj, los_en, slope are defined earlier 

This equation evaluates most positively the cells that 
have unblocked LOS to the objective, are concealed 
from enemies, and are "uphill" from the objective. 

The equation for evaluating grid cells for Defensive 
positions is: 

This equation evaluates most positively the cells that 
have unblocked LOS to the objective and nearby 
terrain, are "uphill" from the objective, and are 
difficult to reach (have obstacles nearby). 

To avoid clustering of resulting tactical positions, 
when a grid cell has the highest weight among its 
eight neighbors, the eight neighbors are marked as 
non-candidates. 

The requested number of tactical positions are picked 
from the highest weighted grid cells in descending 
order. In the case of equal weights, they are 
randomly selected. 

5. Mission Planner implementation 

The MP is implemented as a finite-state machine 
(FSM) inside a ModSAF task. The user assigns the 
task to the planning unit from the ModSAF 
SAFStation. Currently, Assault plans are generated 
for Company sized units comprised of three or four 
platoons. 

A simplified state diagram of the FSM follows: 

START 

Wdp =  0.5 • los_obj +  0.6 • los_nearby + 0.2 • slope + 

0.2 • obstacle 

where 
W, dp is the defensive position weight of a 

grid cell 
los_nearby is the average ALOS to nearby grid 

cells 
obstacle      is the ratio of the number of nearby 

grid cells with obstacles to the total 
number of nearby grid cells and 

los_obj and slope are defined earlier 

Figure 3: Mission Planning FSM 

In state "Read SPs", the Skeletal Plans (SP) for the 
mission are read from a file and "empty" Internal 
Skeletal Plans (ISP) are created. 

In state "Get Tactical Positions And Routes", tactical 
positions as specified in the SP and routes are 
obtained from the TA and stored for later use. 
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In state "Complete ISPs", the stored tactical positions 
and routes are added to the empty ISPs to create a list 
of ISPs. The list of ISPs contain the information to 
generate the candidate plans. 

In state "Generate Plan", a candidate plan is 
generated. The candidate plan is a "fleshed out" SP 
with specific locations and routes. 

In state "Simulate Plan", a time-stepped aggregate 
simulation simulates the candidate plan. 

In state "Record Best Plan", the best plan for the unit 
is assigned to the unit's Execution Matrix (Loral 
1994a) for execution. 

6. Course Of Action Generator 

This section describes how candidate plans are 
generated. 

6.1 Reading Skeletal Plans 

Skeletal Plans (SPs) are stored in user-defined files. 
The MP reads from these files the SPs for the task 
contained in the order. For example, for an Assault 
task: 

(ASSAULT 
(ASSAULT_POSmON 4) 
(SUPPORT^BY_HRE_POSITION 2) 
(SP 

( 
; subunit 1 
((MOVEJTO ASSAULT_POSrTION)   ; phase 1 
(ASSAULT OBJECTIVE) ; phase 2 
(CONSOLIDATE_AFTER_ASSAULT ; phase 3 
OBJECTIVE)) 

; subunit 2 
((MOVEJTO ASSAULT_POSITION) 
(ASSAULT OBJECTIVE) 
(CONSOLIDATE_AFTER_ASSAULT OBJECTIVE)) 

; subunit 3 
((MOVEJTO SUPPORT_BY_FIRE_POSITION) 
(SUPPORT_BY_FIRE OBJECTIVE) 
(CONSOLIDATE_AFTER_SUPPORT_BY_FIRE 
OBJECTIVE)) 

) 
... Other SPs listed here ... 

Figure 4: Example Skeletal Plan 

Figure 4 shows a portion of the ASSAULT SP file 
and details the first SP. The second and third lines 
indicate the number of Assault and Support-By-Fire 
Positions to obtain from the TA.    Typically more 

tactical positions (of a variety) than necessary are 
requested so that plans using different tactical 
positions can be evaluated. For example, although a 
SP may need only one Support-By-Fire (SBF) 
Position, two or more SBF Positions will be obtained 
from the TA and individually incorporated into 
different plans. 

Each SP contains a general description of the actions 
of each of its subunits. The description consists of a 
list of (task, location variable) pairs, e.g., 
(MOVEJTO ASSAULT_POSmON). The location 
variable will be unified with the locations supplied by 
the Terrain Analyzer during the process of candidate 
plan generation. Each (task, location variable) pair is 
treated as a "phase" in the SP. 

After the SPs have been read, two data structures are 
created: 

• a mission-specific data structure (for example 
ASSAULT_DATA for the Assault mission) and 

• a list of empty Internal Skeletal Plans. 

Initially, the data structures contain basic information 
such as unit location and location of the objective. 

The Internal Skeletal Plans possess the same structure 
as the Skeletal Plans from which they have been 
created. They contain lists of phases but these phases 
do not yet contain any data to create candidate plans. 

6.2 Getting tactical positions and routes 

The TA is queried for tactical positions and routes. 

The number of tactical positions specified in the 
Skeletal Plan (see Section 6.1) are requested. The 
generated tactical positions are stored in lists. 

Routes are requested between the start location and 
each tactical position and between each tactical 
position and the objective. The generated routes are 
also arranged in lists inside the list containing the 
tactical positions. 

6.3 Completing ISPs 

Completing ISPs consists of: 

• placing combinatorial information in the phases 
and 

• creating links from the phases in the ISP to the 
tactical position and route lists. 
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The combinatorial information determines whether 
information in each phase changes in the generation 
of the next candidate plan. 

A large amount of memory would be required to put 
complete terrain data in each phase of the ISP 
because some information is repeated in multiple 
phases. To save memory, the data in the phases is 
linked to tactical positions and route lists inside the 
mission-specific data structure (Section 6.1). For 
example, for the SP in Section 6.1 the linkage is 
shown in Figure 5 . 

ASSAULT_DATA 

Assault 
Positions 

SBF 
Positions 

a Aslt. Psn. 1 
a 

route list 

a 
SBF Psn. 1 

ISP 

a 

route list 

Aslt. Psn. 2 

1 
route list 

SBF Psn. 2 

i 
r 

route list 

sub-unit 1 

PHASE 1      PHASE 2      PHASE 3 

Move 

a 

Assault Consolidate 

'a 

sub-unit 2 Move 

a 

Assault 

a 

Consolidate 

sub-unit 3 Move 

a 

Support- 
Bv-Fire 

a 

Consolidate 

a 

Figure 5: Linkage between ISPs and 
ASSAULT.DATA 

In Figure 5,'«' is a generic link from a phase to a list 
(of tactical positions or routes) in the mission-specific 
data structure. Each tactical position points to the 
routes available to reach the position. 

6.4 Generating candidate plans 

At this stage, the MP has a list of ISPs with each task 
(phase) of the plans linked to lists of tactical positions 
and    routes. For    example,    a    MOVE_TO 
ASSAULT_POSrnON task might be linked to three 
Assault Positions and the routes to use. Generating 
all the candidate plans involves generating all the 

combinations specified in the ISPs. The 
combinations are generated by advancing the links to 
tactical positions and routes in an orderly fashion. 
Each distinct pattern of links to tactical positions and 
routes represents a new candidate plan. 

6.4.1 Adjusting data in subsequent phases 
When a phase link pointing to a list of tactical 
positions is updated the routes to use in subsequent 
phases becomes invalid and needs to be adjusted. 

Suppose, that Phase 1 is a (MOVE_TO 
ASSAULTJPOSITION) phase and the next phase is 
an (ASSAULT OBJECTIVE). The data link in Phase 
1 points to Assault Position A. With this setting, the 
subunit will move from the start location to Assault 
Position A in Phase 1 and then assault the objective 
from A in Phase 2. When the data link in Phase 1 is 
updated to point to, say, Assault Position B Phase 2 
must be corrected to Assault along a route from B. 
Thus, whenever the data link pointing to a tactical 
position is updated, data links to routes in the same 
and subsequent phases are also updated to make sure 
that the routes start from the position being moved to 
in the previous phase(s). 

7. Course Of Action Simulator 

The COA simulator simulates and evaluates each 
candidate plan, using a simple, time-stepped, 
aggregate simulation (constructive). A constructive 
simulation is used, instead of a continuous time 
vehicle level simulation, to reduce the time and 
resources to simulate each candidate plan. 

Each time step consists of three stages: Move, Look, 
and Shoot. That is, all units are moved, all visibility 
determinations are made, and finally, all combat is 
executed. 

All the phases in a plan are synchronized, and a plan 
is simulated by executing one phase at a time. When 
a unit finishes its task ahead of other units, the unit 
changes to a hasty defense until all the other units 
have finished their tasks. When all tasks in a phase 
are complete, the COA Simulator transitions to the 
next phase. 

7.1 Move stage 

Vehicle type, maximum vehicle speed and the 
Operational Activity (OA) of a unit determine how 
fast a unit moves. The maximum unit speed is taken 
to be the maximum speed of the slowest vehicle in the 
unit.   The unit speed is adjusted by the operational 
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activity in which the unit is currently involved. For 
example, a unit performing a Bounding Overwatch 
will move slower than the unit performing a Hasty 
Attack. 

Information about enemy units comes in the order and 
is stored in the WDB rather than being obtained from 
the simulation ground truth. This mirrors the "real 
world" where planning must use intelligence 
information rather than ground truth. The unit speed 
for enemy units is determined from table 1, based on 
the unit's echelon type. 

Echelon type Speed (mimin.) 
Infantry 90 
Mechanized infantry 480 
Armor 480 
Artillery 480 
Supply 480 

Table 1: Echelon speeds 

Table 2 is used to modify the speed of a unit: 

Operational Activity Speed Adjuster 
Move 0.5 
Assault 0.8 
Attack By Fire 0.8 
Hasty Defense 0.0 
Road March 0.6 
Travel Overwatch 0.5 
Bounding Overwatch 0.2 
Overwatch 0.2 
Hasty Attack 0.8 
Deliberate Attack 0.8 
Support-By-Fire 0.0 

Table 2: Modifying a unit's speed 

Once the unit speed is calculated, the simulation time 
step is used to determine how far the unit will 
advance along its route. If in a time step the unit can 
go past one of its route points, the unit will "corner" 
the route point, and end up on a new leg of its route. 

7.2 Look stage 

The look stage determines visibility between units at 
their new locations. Due to the aggregate nature of 
the simulation, only the center of mass of each unit is 
maintained. Thus, Line-Of-Sight (LOS) between 
units' centers of mass could be unrealistic. Instead, a 
percentage  of LOS  from circles centered  at the 

centers of mass is determined, 
radii by echelon level: 

Table 3 shows the 

Echelon level Radius in meters 
Battalion 1000 
Company 300 
Platoon 125 
Vehicle 20 

Table 3: Area LOS circle radii for echelons 

The percentage of LOS values are used in computing 
how much damage units take. 

7.3 Shoot stage 

In contrast to using a realistic damage model, we have 
chosen a simple combat model. In contrast to 
Lanchester equations (Taylor 1983), this combat 
model does not reduce the strength of the combatant 
units. Rather, "damage" accumulates throughout the 
simulation run and the total damage is used to 
evaluate the plan. This approach eliminates some of 
the artifacts introduced by using a time-stepped, 
aggregate simulation at small unit sizes. 

The damage is calculated with these equations: 

S*E* FP. * %LOS_, 
D,= 

E, * FP*Enemy_units_seetis 

where 
D, 
Ss 

is the damage this time step, 
is the strength (number of vehicles) of 
the shooting unit. 
is the effectiveness of the shooting unit 
based on its OA (Table 4). 
is the target unit's firepower (Table 5). 
is the percentage of area line-of- sight 
from the shooting unit to the target unit 
is the effectiveness of the target unit 
based on its OA. 
is the shooting unit's firepower. 

Enemy_units_seen is the number of enemy units 
seen by the shooting unit. 

FP, 
%LOS 

FP 

and 
length of simulation 

D.= ID, 

where 
D, is the accumulated "damage" for the target 

unit. 
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These    equations    show    the    factors    that are 
incorporated  into  the  damage  calculation. The 
"strength" of the shooting unit is adjusted by five 
factors: 

1. The visibility to the target ( %LOSs.>t). 
2. The effect of the unit's current OA (Es). 
3. The firepower of the unit (Fps). 
4. The effectiveness and firepower of the target. 
5. The firepower spread among visible targets. 

A unit's effectiveness is determined by its OA (U.S. 
Army, 1986): 

Operational Activity Effectiveness 
Move 0.2 
Assault 1.0 
Attack By Fire 1.0 
Hasty Defense 1.0 
Road March 0.1 
Travel Overwatch 0.4 
Bounding Overwatch 0.5 
Overwatch 0.6 
Hasty Attack 1.0 
Deliberate Attack 1.0 
Support-By-Fire 1.0 

Table 4: Operational Activity effectiveness 

A unit's firepower is determined by its echelon type. 

Echelon type Fire power 
Infantry 0.2 
Mechanized Infantry 0.7 
Armor 1.0 
Artillery 0.9 
Supply 0.05 

Table 5: Fire power of echelons 

As mentioned before, information about enemy units 
comes from the order, so unit strength is determined 
by the unit's echelon level: 

Echelon level Strength 
Battalion 40 
Company 12 
Platoon 4 
Vehicle 1 

The final score of the plan is the difference between 
the damage done to enemy units and the damage 
taken from enemy units: 

EP =   ID, -  XZ)« 
where 

Ep    is the score for the plan. 
5X>, is the damage to all enemy units and. 
ZDU is the damage received by unit u. 

8. The Plan Follower 

The best plan is given to the Plan Follower (PF) for 
execution. The PF is ModSAFs Execution Matrix 
controlled mission constructing facility (Loral 
1994b). 

The best plan appears in the unit's Execution Matrix 
and is "on order" for execution. Upon receipt of the 
"on order" signal from the user the first phases for all 
the subunits are executed. Phases are synchronized 
so that subunits do not start executing a subsequent 
phase until all the subunits complete the tasks in their 
current phase. 

ModSAF causes the subunits to take reactive 
behavior if they are threatened such as by an enemy 
presence. The reactive behavior may consist of 
"scrambling" for cover when an enemy is sighted. 
Options allow the user to override the reaction 
causing the subunits to resume execution of the plan. 

9. Experience with ModSAF 

ModSAF 1.3 was used as the platform for 
development. The CTDB (Compact Terrain Data 
Base) was used for terrain reasoning purposes. 
ModSAF library functions were used whenever 
possible. The capability of generating candidate 
plans with alternative routes between locations was 
not exercised because the ModSAF route planner 
returns only one route between positions. 

Display time during COA simulation can be 
significant and may slow down execution causing 
non-real time execution of the system. 

Table 6: Enemy unit strength 
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Planning Unit SBF Position routes friendly platoon being attacked by Ul 

enemy 
platoon 
Ul 

Assault 
Objective 

enemy 
platoon 
U2 

friendly 
platoon on 
Aslt. Psn. 

Figure 6: Candidate Plan Simulation in ModSAF 

We experienced this problem when we attempted to 
display all the tactical positions and routes that were 
part of a candidate plan in a single state of the MP 
FSM. Modifications had to be made to the MP FSM 
to spread the display across states to alleviate the 
problem. 

10. Results 

Skeletal Plans (SPs) for the Assault mission have 
been implemented (see Figure 4). For the SP shown 
in that figure, the COA Generator and Simulator 
generate and simulate 32 candidate plans. 

Figure 6 is a screen dump that shows a candidate plan 
being simulated for an Armor Company. The 
Company is positioned to the left of a lake and is 
planning an Assault mission on the hill shown on the 
right side of the picture (Assault Objective). The 
plan being simulated in Figure 6 involves a Company 
of three platoons. One platoon provides supporting 
fire. The other two platoons assault the objective 
from different Assault Positions. Figure 6 shows one 
platoon at the Support-By-Fire (SBF) position, 
another at an Assault Position, and a third being hit 

by enemy fire (represented by a circle) while on its 
way to the second Assault Position. The routes being 
used by the Platoons are visible in the background. 

The editor below the tactical map display shows the 
current score of the plan and the score for the best 
plan so far. The greater the score, the better the 
candidate plan. The score for the current plan (- 
6967) is greater than the score for the best plan so far 
(-10275). If the final score for this plan is greater 
than the "best plan so far", it will become the new 
best plan; otherwise it is discarded. 

11. Conclusions and future work 

CGF systems are becoming increasingly complex and 
greater attention is being paid to representing the 
behavior of units. Mission Planning is an essential 
component of the Command and Control process. 
The Simulation Based Planning approach described 
here mirrors the human decision making process 
wherein different courses of action are evaluated and 
the "best" one is chosen. This approach provides an 
alternative or adjunct planning mechanism to the 
traditional AI knowledge intensive approaches.   The 
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Mission Planner (MP) has been implemented in 
ModSAF and tested for a Company Assault mission. 

There are several opportunities for future work with 
this system. The MP consists of three primary 
modules: the Terrain Analyzer (TA), COA Generator, 
and COA Simulator. Each component can be 
improved and extended; some ideas are discussed 
below. 

The TA currently returns a single route between 
locations. Thus, candidate plans with alternative 
routes between locations cannot be generated. Karr 
et. al. (1995) describes a Unit Route Planner that has 
the ability to generate multiple routes between 
locations. Implementing this route planning 
capability in ModSAF (as part of the Terrain 
Analyzer) would increase the variety of candidate 
plans. 

The TA's grid based analysis of tactical positions can 
be improved by a more thorough analysis based on 
computational geometry. 

The COA Generator creates candidate plans by 
systematically generating all the combinations 
specified in the Skeletal Plans. Applying AI planning 
techniques during this process to detect and eliminate 
from consideration impossible plans could 
significantly decrease the computational expense of 
simulating "bad" plans. 
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The COA Simulator could simulate plans more 
realistically by applying a more sophisticated combat 
model (e.g., one using Lanchester equations 
described in (U.S. Army 1986)). Additional criteria 
can also be incorporated into plan evaluation. For 
example, considering the time of completion of a 
plan. In real military planning, the time of 
completion of a plan is important 

This project has shown that realistic plans can be 
created and evaluated with a Simulation Based 
Planning approach. It seems reasonable that this 
approach could be applied within knowledge 
intensive planning approaches to reduce the 
complexity and breadth of knowledge required. That 
is, a COA Generator/Simulator module could identify 
(through simulation) better plans without encoding 
specific knowledge to make fine distinctions among 
plans. 
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1.   Abstract 

The UK Defence Research Agency has set up a 
collaborative research programme, called CARE, 
aimed at developing a command decision-making 
function for use by a number of different applications. 
This work will build from the command agents 
developed for the GEKNOFLEXE project, making 
them accessible to other simulation systems, 
extending their use and enhancing the tools provided 
for users and developers. 

Proof of principle demonstrators have been produced; 
these link the existing GEKNOFLEXE simulation to a 
Higher Formation Trainer and a divisional level war 
game used for operational analysis. This has allowed 
command agents to successfully control units within 
these simulations. A more open and modular 
approach is required which provides for a better 
interface between command agents and simulations. 

An outline architecture for the common command 
agent software has been designed. This consists of a 
command agent shell and an environment in which 
multiple shells can operate and interact with entities 
within simulations. The CARE programme will 
develop more generic knowledge bases for the 
command agents so that they can operate in a wider 
range of scenarios and simulation systems. 

2.   Introduction 

A number of research projects within the UK Defence 
Research Agency (DRA) have recognised the need for 
an explicit representation of command and control, in 
order to meet their differing requirements. Four of 
these programmes have joined together to share the 
effort and cost of this by developing a common 
software model of command decision-making. This 
collaborative programme is called the DRA 
Command Agent Research (CARE) initiative. 

This paper describes the current use of command 
agents within the projects contributing to CARE and 
discusses their requirements for the common software 
model. The issues associated with implementing such 
a model and an architecture to provide the required 
facilities are outlined. 

2.1 Command   Agents 

Work under the CARE programme is based on the 
command agent function developed as part of the 
GEKNOFLEXE system. This was presented at the 
Fourth Computer Generated Forces and Behavioral 
Representation conference (Lankester and Robinson, 
1994). Command agents are used to represent the 
decision-making nodes within the command 
hierarchy. Each command agent typically represents a 
command post which is able to make decisions and 
interact with other command agents and entities 
within a simulation thus controlling battlefield 
operations. 

Command agents are entities within the battlefield 
simulation and so are subject to battlefield effects. 
The decision-making capability of a command agent 
is represented using a set of rules describing the 
tactics which that command agent needs to use to 
perform its role in the battle and an object structure in 
which it stores its perception of the battlefield. 

Each type or class of command agent has its own set 
of rules and domain knowledge structures which 
define its behaviour. Instances of command agents are 
created which have their own perceptions of the 
battlefield which they maintain as the simulation 
progresses. 

2.2 Terminology 

Command Agent - software which represents the 
command and control decision-making of a command 
post. 

GEKNOFLEXE (GEneric KNOwledge-based FLEXible 
Enemy) is a project which has produced a tool set for 
modelling command and control as a set of 
communicating command agents. 

CARE (Command Agents REsearch) is a DRA 
initiative to develop a generic command agent 
software function and associated facilities. It is based 
on GEKNOFLEXE. 

3.   Applications  of Command   Agents 

Large numbers of human players and controllers are 
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required to operate many war games and simulations 
to represent command and control. Providing them is 
costly and it is becoming increasingly difficult to find 
suitable military personnel to staff such systems. 
This has led several different projects to investigate 
the use of command agents within their simulations. 

3.1 Current use of GEKNOFLEXE Command 
Agents 

The GEKNOFLEXE project has been using and 
developing command agents for three years to 
characterise command and control so that its 
effectiveness in different situations can be studied. 
Two major scenarios have been developed and a 
number of studies have been undertaken using them. 

Two simulations which require a command and 
control model have also used the GeKnoFlexE system 
to provide a proof of principle demonstrator to show 
how they could use command agents. These 
demonstrators are described below. 

3.1.1 Command Agents for a Higher Formation 
Trainer 
One of the demonstration systems links the existing 
GEKNOFLEXE software to the Corps Battle 
Simulation (CBS) and is described in more detail in 
Kendall and Page (1995). This demonstrator has 
successfully used the CBS generic interface to enable 
the GeKnoFlexE command agents to control the 
opposition forces within CBS thus reducing the 
number of controllers required. Current research in 
this area is focused on reducing the controller 
workload in the UK Army's new Higher Formation 
Trainer, ABACUS. 

3.1.2 Command Agents for Operational Analysis 
The GEKNOFLEXE software has also been connected 
to a divisional level war game used for operational 
analysis. The GEKNOFLEXE system acts as a virtual 
player on the simulation's network so that command 
agents are able to control recce units. Recce units 
were automated because they are used extensively 
early in the simulation, when the external players 
controlling the game are not very familiar with its 
operation. Future work is aimed at reducing player 
workload and ultimately the number of players by 
automating parts of other sub-functions, e.g. 
manoeuvre and engineers, thus helping to solve the 
problem of finding sufficient military players for the 
game. 

3.2 Common  Command  Agent Software 

The GEKNOFLEXE system has its own battlefield 
simulation in which the command agents operate. 

The simplest way to adapt the GEKNOFLEXE system 
to get its command agent to control units in another 
simulation is to make the GEKNOFLEXE battlefield 
simulation emulate the target simulation. In this way 
the command agents can continue to work within the 
simulation designed for them but have their orders 
forwarded to the new one. This approach has been 
used to produce both of the demonstration systems 
described above. 

The current approach to using GEKNOFLEXE 
command agents in other simulations is restricting 
further development and running two battlefield 
simulations is an unnecessary overhead. A more open 
and modular approach is required to command agents, 
one which allows a better interface between command 
agents and simulations. Approaching the development 
of command agents in this way will enable central 
development of a command agent software function 
which can be used by a number of different 
applications. 

The projects described above are contributing to the 
CARE programme as they all require a similar model 
of command decision-making. It is clear from the use 
of the existing system by other projects that 
GEKNOFLEXE command agents are applicable to 
other areas and therefore the cost of developing them 
could be shared. A collaborative program based around 
one simulation system with a command decision- 
making model would be ideal, however most of the 
prospective users of such a system each have their 
own simulation system specifically designed for their 
purposes. The element which these simulations are 
lacking is a representation of command decision 
making which GEKNOFLEXE command agents offer. 

The aim of the CARE project is therefore to extract 
the GEKNOFLEXE command agents from their current 
simulation, make them accessible to the other 
simulation systems as well as extending their use and 
enhancing the tools provided for the user and 
developer. 

3.3   Other   Applications 

The approach taken by CARE does not restrict the 
use of command agents to the current application 
areas which are supporting the project. CARE's 
command agents could be used in other training or 
operational analysis systems as well as in doctrine 
development and perhaps in the longer term used 
within a decision support tool. Any simulation which 
requires a reasonably complex command decision- 
making capability could make use of the command 
agent approach. 
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4.   Requirements 

The requirements of the different applications are 
surprisingly similar given their different ultimate 
aims. They all require a representation of command 
decision making and the facilities to interact with the 
command agents during operation. 

4.1 Command  and  Control Representation 

Some of the requirements are already met by the 
existing GEKNOFLEXE command agents which 
provide the ability to represent different levels and 
sub-functions of command. The modularity provided 
by the GEKNOFLEXE command agent enables the 
complexity of the C2 model to be represented 
appropriately. 

With increasingly sophisticated command agents the 
need for processing power quickly increases and the 
architecture must take this into account. One solution 
to this problem is to allow distributed and parallel use 
of command agents. Command agents are particularly 
suited to parallel operation as this is exactly how real 
world command posts operate. The performance of 
command agents is important as they must operate in 
synchronisation with the simulation and not affect the 
overall performance of the system. 

A framework is required in which different command 
and control models can be represented. This is 
essentially what the GeKnoFlexE tool set already 
provides with its ability to represent different types of 
command agent 

Some applications require the command agent's 
decision-making to be deterministic, for example an 
operational analysis study comparing different weapon 
types. On other occasions it may be appropriate to 
vary the decision-making to represent different 
commanders so that trainees do not become too 
familiar with the behaviour of command agents. 

4.2 User  Interfaces 

A major part of CARE is devoted to developing the 
facilities and graphical interfaces to develop and use 
command agents. There are three main types of user: 
the command agent developer, the military validator 
and military users who act as controllers or players. 
The user interface must allow users to understand the 
command agent's behaviour. This is important for 
verification and validation as well as for run time 
users, who can then decide if and when they need to 
alter or take over control from a command agent. 

The faculties required by validators and run time users 
are similar since they must both be able to monitor 
what command agents are doing. A trace and 

explanation of the command agent's decision-making 
process goes some way to achieving this and can also 
be used for After Action Review. The huge quantity 
of this sort of trace information in a reasonably 
complex command agent system can quickly become 
unmanageable so user definable filters are needed. 

4.3 Human Command Agent Interaction 

A user of the CARE system must be able to override 
the decisions made by command agents. This may be 
to make them act in a non-doctrinally correct manner 
in order to meet a particular training objective or to 
ensure that a new weapon type is used in an 
operational analysis study run. Another reason for 
wanting to override decisions is to cover areas of 
knowledge where the command agent is deficient. 

A step on from overriding command agents is 
handing control over to a human controller 
completely i.e. a 'man in the loop'. The human 
controller may need to work with command agents as 
his superior or subordinates. This facility could be 
used for similar purposes to overriding. 

The controller may want to hand back control to the 
command agent. Whilst a command agent is 
operating it maintains its own perception of the 
battlefield and what it is doing on which to base its 
decisions. The command agent will have to maintain 
a perception of what is happening whilst the human 
is in control if it is to be able to take control back. 

A controller could also control a command agent's 
behaviour by acting as its superior and giving it 
appropriate orders. This introduces the issue of voice 
communication with command agents. 

4.4 Interaction   with   Simulations 

The command agents need to be able to interact with 
a number of different simulations. Command agents 
have to give orders to and receive reports from other 
entities within the simulation. They will also need to 
be able to move the command vehicles which are 
their physical representation in the simulation and 
gain access to information from the simulation, e.g. 
time and the terrain database. 

4.4.1 Magic Moves 
Simulations requiring a C2 model often have a 'magic 
move' facility which is used to correct human errors, 
for example, players often forget about bridging units 
until they need to use them. This sort of mistake 
should not hold up the whole game so corrections are 
made by 'magically' transporting the relevant units 
into position. Magic moves are also used to meet 
specific objectives but in a more dramatic way than 
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overriding decisions. A magic move may require the 
perceptions of some of the command agents to be 
changed, just as a human controller's perception 
would need to be changed. 

Changing the perception of command agents when a 
bridging unit has been magic moved will be fairly 
easy and have few side effects. If a whole brigade had 
been magic moved into a new location the effect on 
the command agents would be more severe. Their 
perceptions need to be changed so that they have a 
realistic picture of the battlefield and do not 
undermine the intention behind the magic move. 

4.4.2 Re-execution. Rewind and Fast Forwarding 
Other simulation functions which the command 
agents will need to handle include re-execution, 
rewinding and fast forwarding. Re-execution and 
rewinding require sufficient data to be stored for the 
command agents to recall their perceptions from a 
point earlier in the simulation and be able to start 
again from this point. This kind of data is also 
required for After Action Review. Fast-forwarding the 
command agents' actions has further performance 
implications, making the ability to use command 
agents in parallel more important. 

The scenarios which are used in simulations often 
start when the forces have, or are about to, come into 
contact. A controller of the simulation will have to 
give each of the players an idea of their situation. The 
same is true for command agents. The fast forward 
facility could be used to allow the simulation to be 
started slightly before the forces have come into 
contact so that the command agents build up their 
own detailed perception of the batdefield. Being able 
to fast forward the command agents will also aid 
development and validation. 

4.4.3 Use of Simulation Models 
Command agents currently use models within the 
GEKNOFLEXE simulation, for example to send 
messages or plan routes. The command agents will 
continue to need to exploit models within the target 
simulation directly, for example the communications 
and terrain models. The effects of various simulation 
models, such as attrition will also have to be 
considered. The limitations of the simulation will 
need to be handled by the system, for example, the 
simulation's congestion model may prevent command 
agent from deploying their units as they would wish. 

4.5  Generic  Knowledge  Bases 

So far command agent knowledge base development 
has been centred around specific scenarios to constrain 
the required functionality. The knowledge bases 
required by command agents are very costly to 

produce, as considerable effort is required to write and 
validate them, and they are currently limited to 
specific types of scenario. The CARE programme has 
been tasked with designing knowledge bases which 
are as reusable as possible. Command agents need 
knowledge bases which allow their operation in a 
range of scenarios as well as with a number of 
different simulations. 

4.6 Standards 

Appropriate standards need to be adopted so that the 
CARE system can be used as widely as possible and 
interact with other computer generated forces, e.g. 
ModSAF. In this context adoption of the ARPA's 
(Advanced Research Projects Agency, US) emerging 
Command and Control Simulation Interface Language 
(CCSIL) will be considered. 

5. Command  Agent Architecture 

An architecture and approach to developing the 
common command agent software has been designed 
in outline. It consists of a command agent shell and 
an environment in which multiple shells can operate. 
The command agent software will interact with each 
simulation via a mediating process which provides an 
interface between the simulation and the command 
agents. 

5.1   Command  Agent  Shell 

The command agent shell is a command agent 
without a knowledge base. It provides the facilities 
for developing and using a command agent. This part 
of the CARE work will reuse the inference engine, 
knowledge representation and knowledge base tool 
used in the GEKNOFLEXE project. 

5.1.1 Support Functions 
The GEKNOFLEXE command agent knowledge bases 
currently use a number of support functions to aid 
decision-making. Some of these functions access the 
simulation directly to effect actions such as establish 
the current time and use the terrain database. Some 
support functions may even access ground truth 
directly to simplify a process, for example data 
fusion. Whilst this is clearly allowing the command 
agent to have access to non-real world information, it 
significantly reduces the complexity of the command 
agent, allowing a wider representation of the 
battlefield for a given amount of resources. It is also 
thought that command agents will continue to need 
more than real world information to model command 
decision-making effectively. 

5.1.2 Message Interpreter 
As well as facilities for building and executing 
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knowledge bases the command agent shell will need 
to include a message interpreter which takes in 
messages from other command agents and entities and 
sends out messages from the command agent. The 
message interpreter will forward messages to the 
appropriate part of the command agent and queue 
messages if it is busy. 

5.1.3 User Interfaces 
The developer's interface is largely present in the form 
of the knowledge base tool already in use by the 
GeKnoFlexE project. This tool allows the user to 

develop rules and objects in a menu driven system. 
The same tool provides facilities for tracing through 
rule executions and domain knowledge structures. 

The knowledge base tool is a good starting point for 
the development of facilities to allow users to 
understand the behaviour of command agents. The 
interface needs to be able to convey to the user the 
information he wants as quickly as possible so that 
he is able to follow what the command agent is 
doing. Figure 1 shows what this interface might look 
like. 
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Figure 1: Window Based User Interface 
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A multi-window system allows different types of 
information to be displayed simultaneously, for 
example a map display of the perception of a 
command agent and a trace of the decisions being 
made using that perception. 

It is important that information is displayed to the 
user in a consistent and familiar format. The 
command agent cells window in figure 1 represents 
the command agent in a similar way to that used to 
represent command posts in officer's handbooks. 

The quantity of information available to the user is so 
large that the interface must provide facilities to 
enable him to manage it easily. This can be achieved 
using user definable filters, which only show the user 
the information he has requested, and also by using 
the multi-window approach to provide top level 
information, which can be selected and focused in on 
as necessary. An example of this might be for the 
user to monitor a high level action and message log. 
When he sees something happening of particular 
interest, he could then select it and look at the 
decision-making trace and perhaps even the rules 
themselves. This approach could also be used for 
displaying the domain knowledge; a map display 
showing the command agent's perception of the 
battlefield could be displayed and units on the map 
selected for more detailed information. 

5.2  Command  Agent Environment 

The command agent environment will contain a 
configuration facility which sets up the command 
agents to be used in a particular simulation run and 
defines their relationship to each other and the 
processes in which they are located. This 
configuration information will need to be maintained 
persistently within a database. 

The command agent environment controller will be 
responsible for passing messages between command 
agents and routing messages to and from the 
simulation. Messages from the simulation may be 
from entities modelled by the simulation or the 
results of support function queries. Orders and reports 
will have to be sent using the simulation's 
communications model (if it has one). This will 
allow messages to be delayed or lost as the 
communication model dictates. 

The environment controller will have to ensure that 
the command agents' decision-making is keeping up 
with the simulation. This is particularly necessary 

when command agents are making decisions over a 
period of simulation time. The controller also needs 
to be able to take account of the effects of attrition on 
command agents. 

5.3 Simulation   Interface 

The interface between the system developed by the 
CARE initiative and the simulation is referred to as 
the mediating process. This process is made up of 
two parts; a generic part common to all simulations 
and a simulation specific part. It is hoped that this 
will ultimately be compliant with emerging standards 
like CCSIL. However, CCSIL provides only real 
world messages which may not be sufficient for 
current command agents. 

This mediating process is responsible for translating 
message formats from the simulation to the command 
agents and vice versa. The mediating process needs to 
monitor the simulation so that it can provide 
command agents with realistic battlefield reports 
where these are not provided by the simulation. It 
also extracts information from the simulation required 
by the support functions and by the command agent 
environment controller. This will include simulation 
time and details of magic moves and rewinds. 

In order for the GEKNOFLEXE system to use the new 
command agent facilities a simulation specific part of 
the mediating process must be produced. This is seen 
as relatively simple, since the simulation has been 
designed to interact with command agents. Building 
an interface to other simulations is likely to be more 
complex. Most training and operational analysis 
simulations have been designed to work with people 
so a command agent should be able to interface in a 
similar way to the human. However, there are 
problems associated with their different abilities to 
reason with information, for example a human 
controller can interpret a raster map where as a 
command agent would have difficulty! 

5.4 Physical   Layout 

Provision has been made to encompass distributed and 
parallel processing techniques in order to achieve the 
required levels of command agent performance. Figure 
2 shows the physical layout of the command agent 
architecture. There will be a command agent 
environment controller and command agent shell on 
each process running command agents. Each 
command agent shell will run a number of command 
agent instances. 
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6.   Knowledge  Bases 

The command agent shell outlined in section 5.1 
describes the software which is used to develop and 
run command agents. Each type of command agent 
requires the development of a knowledge base to 
provide it with the appropriate decision-making 
capability. 

The knowledge bases developed for the scenarios used 
in the GEKNOFLEXE project will be used initially 
whilst the CARE architecture is developed. These 

knowledge bases have been developed for specific 
concept of operations and force structures. This means 
that the command agents can only be applied in a 
limited range of scenarios. As figure 3 shows this 
representation is better than the more conventional 
scripted models of command and control but not 
nearly as flexible as a human would be. If the 
command agents are to be reused to a greater extent 
they will need to be more flexible so they can cope 
with a wider range of scenarios. 

inflexible 

scenario 
and situation dependent 

flexible 

scenario 
independent 

"1  
scripted C2 
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 1  
existing 

GeKnoFlexE 
knowledge bases 

human 
commanders 

Figure 3: C2 Modelling Flexibility Scale 
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The CARE knowledge base development work will 
build on the experience of the GEKNOFLEXE project 
to expand the applicability of the command agents. 
Figure 4 shows the types and levels of military 
decision-making currently represented in 
GEKNOFLEXE. The more reactive types of decision- 
making have been covered in more detail. Command 
posts at the lower levels have to make decisions over 
smaller time periods than the higher ones. This tends 
to be easier to represent and needs to come into play 
earlier on in a simulation run. 

The less reactive types of decision-making need to be 
represented. This includes the kind of knowledge 
required to develop the concept of operations. This 
will enable the higher levels of command,, for 
example at divisional level, to be represented in more 
detail and therefore provide longer running, more 
varied scenarios than have currently been achieved. 

As well as operating in a wider range of scenarios, 
command agents must cope with differences in the 
behaviour of distinct simulations. Only then will it 
be possible for them to be used more generally by 
different applications. 

7. Work Programme 

A feasibility and scoping study for the collaborative 
command agents research work was completed in 
October 1994 (Heard et. al. 1994). This study showed 
that the establishment of a collaborative project to 
develop a generic command agent software function 
was both feasible and likely to provide significant 
savings in comparison to each project pursuing 
independent programmes. As a result of the study a 
project has been set up and initial design and 
development work started. 

A spiral development approach has been taken to the 
development of the command agent software. The 
first spiral consists of developing a prototype system 
which will be used to further identify die requirements 
of the applications and research possible solutions. 
Early work will remove the command agents from the 
GEKNOFLEXE system and produce a mediating 
process to link them back to the simulation. It is 
hoped that the CARE prototype system will be 
demonstrated linked to ABACUS by the end of 1995. 
This first phase will not develop any further 
knowledge bases but will use the existing ones 
developed for the GEKNOFLEXE project. 
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The second spiral will develop the full command 
agent system including a comprehensive set of tools 
and interfaces for users. It will also provide a wider 
and more applicable set of knowledge bases which 
each of the programmes can use. 

8.    Conclusions 

GEKNOFLEXE command agents have successfully 
controlled units within three different simulations, 
reducing controller/player workload. These 
simulations are used for different applications ranging 
from training to operational analysis, and yet they all 
require a similar command decision-making model and 
associated facilities for users. The command agent 
capability provided by GEKNOFLEXE has been shown 
to be a suitable basis from which a common 
command agent software function and facilities can be 
developed for use by different applications. 

The CARE programme was set up to develop the 
common command agent software, making the use of 
GEKNOFLEXE command agents more accessible. The 
command agents will be extracted from their current 
simulation and improved facilities for users and 
developers provided. Command agents will also be 
made more reusable by extending their knowledge 
bases to cover a wider range of scenarios, battlefield 
functions and use within different simulation 
systems. 
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1.  Abstract 

The Unit Performance Assessment System (UPAS) 
was developed to measure the behavior of manned 
units in distributed interactive simulation (DIS) 
exercises, but measures of performance used to 
assess manned units can also be applied in 
measuring the behavior of computer generated 
forces (CGF). This paper describes the use of the 
UPAS as part of an effort to compare the behavior 
of Semi-Automated Force (SAFOR) Version 4.3.3 
with Modular SAFOR (ModSAF) Version 1.2. 
UPAS data displays were used to assess how well 
the actions of individual entities were controlled by 
mission, enemy, time, and terrain variables. These 
displays were also used to assess how well entities 
worked together as part of armor or mechanized 
infantry platoon-level organizations in performing 
collective tasks described in the Mission Training 
Plan (MTP) document appropriate to each type of 
unit. Behavioral assessments in the individual 
entity mode included examinations of the effects of 
terrain on vehicle speed, rate of fires when 
confronted with target arrays, land navigation, and 
scanning behavior. Group behaviors assessed at 
platoon level included quality of formations, 
smoothness of transitions among formations, 
observation (scanning) within assigned sectors, 
reaction to contact, and the conduct of an assault. 
The two CGF systems differed from one another in 
terms of various measures of performance. 
Overall, both types of CGF displayed inadequate 
sensitivity to the mission, enemy, time, terrain, and 
troop (METT-T) variables that should be 
controlling CGF behavior. 

2. Introduction 

The Unit Performance Assessment System (UPAS) 
was developed to measure the behavior of manned 
units in distributed interactive simulation (DIS) 

exercises (Meliza, Bessemer, and Tan, 1994), but 
measures of performance used to assess manned 
units can also be applied in measuring the behavior 
of CGF. The UPAS has previously been used to 
compare the behavior of manned units with that of 
one version of CGF (Vaden, Meliza, and Johnson, 
1994; Mengel, 1994) in an effort known as 
Summer Exercise I (SUMMEX I). This paper 
describes the use of the UPAS as part of an effort 
to compare the behavior of two CGF systems 
Semi-Automated Force (SAFOR) Version 4.3.3 
and Modular SAFOR (ModSAF) Version 1.2. 

A week of exercises were conducted in July of 
1994 to compare the behaviors of ModSAF Version 
1.2 and SAFOR Version 4.3.3 to determine which 
system was most appropriate for Synthetic Theater 
of War-Europe (STOW-E). Many of the tactical 
scenarios used in comparing the behavior of the 
CGF were taken from Summer Exercise I 
(SUMMEX I) in which the behavior of ModSAF 
Version C was compared with that of manned 
platoons (Mengel, 1994). These platoon and 
company level scenarios were supplemented by 
mini-scenarios in which the focus of observation 
was a single entity. 

Many of the behavioral performance criteria could 
be applied by the members of the assessment group 
viewing the action through an out-the-window view 
from a stealth station (Loral GT-101). In other 
cases, UPAS data displays were used either as the 
initial assessment tool or to quantify a differences 
in performance we believed we were seeing as we 
observed the out-the-window view. In certain 
cases the UPAS displays were used to document 
critical behaviors in a manner that could be readily 
incorporated into reports. Because ModSAF 
operated under DIS 2.03 protocols rather than 
SIMNET protocols during portions of the test, the 

181 



UPAS collected network data from the SIMNET 
side of a protocol translator. 

The UPAS data displays included "Snapshots" 
showing overhead views of the exercise, traces of 
entity or unit movement over time, data summary 
tables, and graphs. Graphs and tables were 
produced using data loaded into two relational 
database tables, the Pairing Event Table (PET) and 
the Ground Player Location Table (GPLT). The 
PET is based on information taken from the 
SIMNET Fire, Impact, and Status Change Protocol 
Data Units (PDUs). For each firing event, the 
PET shows the time, location of firing entity, 
location of the round or bomb impact, ID of the 
firer, ID of the target, ID of the type of weapon 
system, ID of the type of ammunition, the number 
of rounds fired, the result of the firing event, the 
range from firer to impact, and the firing event 
number. The GPLT contains information taken 
from the Vehicle Appearance and Vehicle Status 
PDUs. This table identifies the time of the status 
update, the ID of the entity, the location of the 
entity in terms of X, Y, and Z coordinates, entity 
speed, direction of movement, orientation of gun 
tube, elevation of the gun tube, odometer readings, 
fuel levels, and ammunition levels. 

UPAS data displays were used to assess how well 
the actions of individual entities were controlled by 
mission, enemy, time, terrain, and troop variables. 
These displays were also used to assess how well 
entities worked together as part of armor or 
mechanized infantry platoon-level organizations in 
performing collective tasks described in the 
Mission Training Plan (MTP) document appropriate 
to each type of unit. Behavioral assessments in the 
individual entity mode included examinations of the 
effects of terrain on vehicle speed, rate of fires 
when confronted with target arrays, land 
navigation, and scanning behavior. Group 
behaviors assessed at platoon level included quality 
of formations, smoothness of transitions among 
formations, observation (scanning) within assigned 
sectors, reaction to contact, and the conduct of an 
assault. 

This paper reviews selected types of measures of 
performance (MOPs) for which the UPAS is well 
suited. For a comprehensive report of the results 
of the comparison study, see the ModSAF 1.2/SAF 

4.3.3 Comparison Study Summary Report (Loral, 
1994). 

3. Results 

3.1 River Crossing 

One of the first variables assessed at the entity 
level was the ability of an entity to locate and cross 
fordable water. Both ModSAF and SAFOR 
vehicles had difficulty with this task. For ModSAF 
vehicles in particular, the availability of a bridge or 
fordable area appeared to be little help. Figure 1, 
a UPAS Battle Flow display, shows the movement 
of a ModSAF vehicle during its approach to a 
river. Confusion and backtracking behavior are 
evident even in the presence of a bridge. Although 
SAFOR vehicles crossed bridges without much 
difficulty, the behavior of both SAFOR and 
ModSAF vehicles resembled that of the vehicle 
shown in Figure 1 when bridges were absent. 

3.2 Terrain Slope and Speed Variation 

The UPAS data tables proved effective in assessing 
speed adjustments associated with changes in the 
slope of terrain.   For example, Table 1, from the 

Speed % of Time Speed % of Time 
(Km/Hr) Moving at (Km/Hr) Moving at 

This Speed This Speed 

1 1% 26 1% 
3 1% 27 1% 
8 1% 28 1% 
9 1% 29 1% 

10 1% 30 1% 
12 1% 32 1% 
13 \% 33 1% 
14 2% 35 2% 
15 \% 36 54% 
16 6% 37 2% 
17 2% 38 \% 
18 1% 39 1% 
19 \% 50 \% 
20 \% 62 1% 
22 1% 73 \% 
24 \% 76 1% 
25 2% 

Table 1.     % of Time ModSAF Tanks Spent 
Traveling at Various Speeds. 
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UPAS GPLT table, shows the percentage of time 
a ModSAF entity spent traveling at various speeds. 
For the exercise segment captured in this table, the 
vehicle encountered inclines and declines of as 
much as 40 percent. The fact that slightly more 
than half of the terrain was approximately level is 
reflected byt he fact that 54 percent of the travel 
time was spent at 36 Km/Hr. In contrast, a 
SAFOR vehicle traveling over the same path spent 
98 percent of the time at a speed of 29 Km/Hr 
demonstrating minimal responsiveness to terrain 
variation. 

3.3 Firing Variables 

During the comparison study, a "turkey shoot" 
scenario was employed to systematically compare 
firing accuracies across multiple ranges. All 
targets were stationary and non-firing. During the 
first set of turkey shoot scenarios, there was only 
one firing Ml tank, and it was given unlimited 
ammunition. This firing entity was given a 
"reasonable" amount of time to fire on the target 
entities. The original intent of the exercise was to 
allow the firing entity to continue firing until all of 
the target entities were destroyed.   While, in 

Vehicle Showing Confusion and Backtracking as 
Approached. 

theory, this would have provided a more robust 
comparison, it turned out to be impractical 
because, in several situations, the ModSAF firing 
entities required far more rounds than expected to 
inflict catastrophic kills on the targets. In these 
cases, the exercises were halted when the rate of 
fire slowed or when it appeared that the 
effectiveness of continued firing had decreased to 
near zero. 

For the first of these scenarios, a company of 10 
T-72 vehicles was placed at a range of 750 meters, 
and the firing competence was set to 1.00. After 
the firing was complete, a new target company was 
placed at 1500 meters and then at 2500 meters. 
These three firing scenarios were conducted with 
both ModSAF and SAFOR as the firing entity. 
The data for the turkey shoot scenarios are 
presented in Table 2. 

From the data presented in Table 2, two 
conclusions are clear. First, the rate of fire for 
SAFOR entities was considerably faster than that of 
the ModSAF entities. In interpreting the SAFOR 
rate of fire data however, it should be noted that 
the SAFOR entities showed some peculiar firing 

183 



Range       CGF        Hits   Misses      Mean Time 
Between Rounds 

Range CGF       Ammunition     Hits        MJSSS 

750 ModSAF 19 1 11 

SAFOR 15 0 6 

1500 ModSAF 17 5 10 

SAFOR 12 

2500      ModSAF      22 

SAFOR 18 

18 

1 

10 

Table 2.    Number of Hits and Misses and Mean 
Time Between Rounds for MODSAF and 

SAFOR Tanks Firing at Stationary Targets at 
Three Ranges. 

behavior. While they were firing, there was very 
little deviation from the mean time between rounds 
of six seconds. However, they tended to stop 
firing while targets were still available. These 
breaks in firing were relatively long (as much as 
two minutes) and were subsequently removed from 
the rate of fire data. On several occasions, 
SAFOR entities that had stopped firing had to be 
"prompted" to evoke more firing. Usually, this 
prompting was done by setting the target entities in 
motion. 

The second conclusion to be drawn from the data 
in Table 2, is that fire coming from SAFOR 
entities was unrealistically effective. If they fired, 
they almost always hit the target. This was evident 
throughout the exercises and will be shown in most 
of the firing data presented in this paper. 

Bradley vehicles were also tested in the turkey 
shoot design. ModSAF and SAFOR fires appeared 
to be highly accurate across all ranges for both 
TOW and 25mm fires. Table 3 presents the 
accuracy data for TOW and 25mm fires by range 
and CGF type. 

750 ModSAF TOW 33 4 
25 MM 174 4 

SAFOR TOW 24 0 
25 MM 27 0 

1500 ModSAF TOW 11 0 
25MM 170 26 

SAFOR TOW 24 0 
25 MM 188 0 

2500 ModSAF TOW 21 1 
25 MM 48 48 

SAF TOW 60 2 
25 MM 90 1 

Table 3. ModSAF and SAFOR Bradley Hits and 
Misses as a Function of Ammunition and Range. 

It is of special interest to note that 25mm fires 
from both ModSAF and SAFOR Bradleys 
inappropriately resulted in catastrophic kills of 
tanks. Although the probability of kills appeared to 
drop with increased range, catastrophic kills 
resulted from 25mm fire even at 2500 meters. 
Problems with the effectiveness of 25mm fire were 
further demonstrated when a ModSAF Bradley 
platoon was later placed in a defensive position. 
Both 25mm and USSR 30mm rounds were found to 
hit and kill targets at impossible ranges. Hits were 
recorded at ranges as great as 3,452 meters for 
25mm fire and 3,390 meters for 30mm fire. The 
longest catastrophic kill occurred at 3,350 meters 
with 25mm fire. Overall, weapons effects for 
25mm rounds were unrealistic. 

TOW fires, on the other hand, appeared to be less 
effective than expected. For example, in the 
turkey shoot scenario, a SAFOR Bradley fired 60 
TOW missiles to achieve 10 catastrophic kills on 
tanks at 2500 meters (see Table 3). 

Bradley firing effectiveness was also assessed while 
firing vehicles were on the move. A stationary, 
non-firing, T-72 platoon provided targets. The 
overall effectiveness of fire for both TOW and 
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25mm rounds appeared more realistic under these 
conditions. Table 4 shows the combined results of 
firing from four individually tested SAFOR 
Bradleys. 

AMMO   RESULT       NUMBER 

TOW 

25 MM 

HIT 
KILL 
MISS 

HIT 
KILL 
MISS 

9 
6 
1 

70 
0 
1 

Table 4.   TOW and 25 MM Engagements for 
SAFOR Bradley Platoon. 

Only one ModSAF Bradley was observed in the 
same situation.   The results are presented in Table 

suggest that there were either problems associated 
with the vulnerability of the blue ModSAF Mis or 
with the firing effectiveness of the red ModSAF 
entities. When red SAFOR entities fired on blue 
SAFOR Mis in the same format, only 12 rounds 
were required to inflict catastrophic kills on the 
entire blue platoon. 

A turkey shoot scenario was then conducted to 
assess damage sustained. Both ModSAF and 
SAFOR entities were fired upon by a single blue 
SAFOR vehicle. In these scenarios, the most hits 
received by any entity before becoming a 
catastrophic kill was seven. This was a ModSAF 
entity at 750 meters. The number of rounds 
required to inflict catastrophic kills are presented in 
Table 6 by range and SAFOR type. 

Rounds Required to Kill Target 
5. 

1 2 3 4 or more 

ModSAF 

750 
1500 
2500 

SAFOR 

750 
1500 
2500 

7 
2 
5 

6 
8 
5 

1 
2 
1 

2 
2 
2 

1 
1 
0 

1 
0 
1 

AMMO RESULT NUMBER 

TOW 

25 MM 

HIT 
KILL 
MISS 

HIT 
KILL 
MISS 

3 
6 
1 

70 
0 
1 

1 
1 
2 

0 
0 

Table 5. TOW and 25 MM E neagements for 
V 

ModSAF Bradley Platoon. 

3.4 Damage Sustained 

The damage sustained while under fire was 
assessed for both ModSAF and SAFOR entities. In 
the first exercise to assess damage sustained, a 
platoon of red ModSAF tanks fired on a platoon of 
non-firing blue ModSAF tanks at a range of 1500 
meters. The red tanks fired 120 HEAT and 
SABOT rounds and recorded only one catastrophic 
kill. All of the blue tanks received fire power and 
mobility kills very early in the exercise but later 
rounds appeared to have little effect. The one 
entity that became a catastrophic kill did so only 
after being hit by 18 rounds.      These findings 

Table 6.  Number of Hits by SAFOR Tank 
Rounds Before Targets Became Catastrophic Kills 

as a Function of Range and CGF Target Type. 

Overall, there were no major differences between 
the ModSAF and SAFOR target entities during the 
turkey shoot scenarios. These findings suggest that 
the reduced vulnerability of ModSAF entities noted 
above was due to a problem in the firing 
effectiveness of ModSAF. 
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3.5 Movement in Formation 

The UPAS provides a wide variety of position and 
movement related displays which can be used to 
assess the quality of formations. Several, but not 
all, of these displays are presented along with brief 
descriptions of the specific ways they were used in 
the ModSAF/SAFOR comparison study. A more 
robust analysis of ModSAF and SAFOR movement 
data is presented in the ModSAF 1.2/SAFOR 4.3.3 
Comparison Study Summary Report (Loral, 1994). 

On numerous occasions, formations were judged on 
the level of "perfectness" exhibited during 
movement. The "goal" of the CGF was to execute 
formations in a manner that was not too perfect 
(e.g. perfect an invariable spacing among entities) 
and yet not involving fixed, uncontrollable errors. 
In the majority of cases, variation within 
formations appeared to be fairly realistic with 
distances between entities varying over time. That 
is, they were not too "perfect." During a road 
march, for instance, the accordion behavior typical 

of manned units was observed. The UPAS Battle 
Snapshots in Figures 2 and 3 show a ModSAF 
platoon in exactly this situation. 

A plot of the distance of each of three vehicles 
from a fourth over time can also be generated with 
the UPAS. This plot was used to identify points in 
time when major changes occurred in distances 
among entities. An example of this graph is shown 
in Figure 4. Notice that the time represented in 
Figure 4 includes the times at which the Battle 
Snapshots in Figures 2 and 3 were taken. 

The corresponding displays for SAFOR platoon 
movement during the same road march showed 
similar variability. On several occasions, SAFOR 
vehicles had unique difficulties in maintaining an 
orderly line formation. For example, The UPAS 
Battle Snapshot in Figure 5 shows SAFOR vehicles 
passing one another during the road march. This 
is an example of one of the fixed uncontrollable 
errors we want to identify for removal. 

BATTLE SNAPSHOT 
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Figure 2.   Bunching up of ModSAF Tanks During Movement. 
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Figure 3.   Gap in ModSAF Platoon Formation During Movement. 
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Figure 4.   Graph Showing Distance Over Time Between Each of Three ModSAF Tanks and 
the Fourth Tank in a Platoon During a Tactical Road March. 

3.6 Changing Formation 

Both ModSAF and SAFOR demonstrated similar 
problems when changing from one formation to 

another. The most common problem was the 
exposing of vehicle flanks to the enemy during 
transitions. This occurred because the adjustments 
from one formation to the next were made by 
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Figure 5.   SAFOR Entities Passing One Another During Tactical Road March. 

taking abrupt, sharp turns without regard for 
terrain or enemy position. The UPAS Battle 
Snapshots in Figures 6 and 7 show this problem 
clearly. Figure 6 shows a ModSAF platoon in a 
wedge formation. Figure 7 shows the same 
platoon approximately 20 seconds later in the 
middle of the transition from the wedge to a line 
formation. 

3.7 Cross Country 

Numerous problems resulted from encounters with 
natural obstacles for both ModSAF and SAFOR 
platoons during cross country marches. Canopied 
areas and tree lines proved difficult for both CGF 
systems to navigate. For example, tree lines 
invariably interrupted CGF platoon formations. 

The UPAS Battle Snapshots shown in Figures 8 
and 9 depict a SAFOR platoon approaching and 
then navigating a tree line. In this case, and many 
others, the integrity of the platoon was reduced 
when the two sections lost line-of-sight (LOS). In 
some cases, a single tank split from the others to 
avoid the tree line. There was no clear logic 
behind which entities were able to pass through the 
tree lines and which entities had to circumvent 
them as impenetrable obstacles. 

3.8 Scanning Behavior 

Numerous observations of inadequate scanning 
behavior were made throughout the exercises. One 
goal was to assess whether the entities provided 
good security by collectively covering all of the 
critical sectors. These sectors differed as a 
function of the formations used and other aspects of 
the tactical situation. The UPAS Battle Snapshot 
display captures turret orientation, and an example 
of inadequate scanning behavior can be seen in the 
Battle Snapshot in Figure 10. 

The UPAS data tables can also be used to calculate 
slue rates and ranges. For example, scanning 
behavior for single ModSAF and SAFOR Bradley 
vehicles was assessed during a cross country march 
to a halt. In this situation, each entity should be 
providing 360 security. Data from the UPAS 
indicated that the ModSAF Bradley scanned a full 
360 degrees in a time of one minute and thirty-five 
seconds or at a rate of 67 mils per second. The 
SAFOR Bradley scanned a small sector to the left 
front that covered just 589 mils. The rate of 
scanning for the SAFOR entity was not calculated 
as the turret azimuth often remained constant for 
many seconds. Unfortunately, the pattern remained 
the same when ModSAF and SAFOR entities move 
as part of a platoon. That is, formation variables 
had little effect on scanning. 
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3.9 Reaction to Contact 

ModSAF and SAFOR entities (Mi's, M2's, and 
Bradleys) were assessed for reactions to contact 
during road and cross country marches on 
numerous occasions. In general, entities reacted to 
contact by firing only. That is, they did not 
change speed or formation, and never tried to use 
cover and concealment or deploy against the threat. 

SAFOR entities exhibited the same unrealistic 
firing accuracy indicated earlier. On one occasion, 
a SAFOR tank platoon on a road march fired three 
rounds and destroyed three T-72s, that were set up 
for an ambush, at a range of 1500 meters. The 
SAFOR entities never slowed down and there was 
no adjustment in their gun tube orientation. 

ModSAF entities were less accurate in their firing 
but their overall reaction to contact was similar to 
that of the SAFOR entities. ModSAF tank platoons 
varied their speed only because of changes in 
terrain elevation and their direction of travel never 
varied. If approaching the enemy head on upon 
contact, the approach was not altered. Most 
entities participated in the firing and there appeared 
to  be  some  coordinated  firing  within  platoon 

sections. This conclusion was based on the 
correlation of fire times for entities within sections. 
There did not appear to be any coordinated fire 
between platoon sections. Further, in several 
company level exercises, there was no evidence of 
coordination (firing or otherwise) between platoons 
except that they all moved in the same general 
direction 

3.10 Conduct of Assault 

Behaviors associated with the conduct of assaults 
were generally the same as those observed during 
reaction to contact. That is, both SAFOR and 
ModSAF entities maintained constant speeds 
(except that ModSAF adjusted speed for changes in 
terrain elevation), did not change formation, and 
failed to use cover and concealment. SAFOR fire 
was extremely lethal as usual. During one assault, 
a SAFOR tank platoon, travelling at a constant 
speed of 40Km/Hr, opened fire on an enemy 
platoon at a range of 2350 meters. Each entity 
fired at least once, however, only five total rounds 
were fired. All five rounds resulted in hits, and 
the enemy platoon was destroyed in seven seconds. 
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4. Conclusion 

Overall, both types of CGF displayed inadequate 
sensitivity to the mission, enemy, time, terrain, and 
troop (METT-T) variables that should be 
controlling CGF behavior. On certain measures, 
differences were observed between the CGF. 

Illustrative examples of the results are as follows: 

o one type of CGF was superior to the other in 
terms of the ability to adjust individual or group 
behavior to fit the terrain situation, but the 
behavior of both types of CGF could be disrupted 
by certain types of terrain 
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o both versions make hard, abrupt turns when 
changing formations causing flanks to be exposed 
to enemy positions 

o one version demonstrated little or no movement 
of gun tubes (scanning) during movement while the 
other version tended to scan aggressively, but the 
coverage of sectors by the platoon for the second 
version failed to meet MTP standards 

o both versions used inappropriate assault 
techniques, and vehicle speeds were not properly 
adjusted during an assault 

o rate and effectiveness of fire was much higher 
for one version than the other 

o many cases were observed where firing 
effectiveness or vulnerability of entities to fires 
were at unrealistic levels 

o effectiveness of fires varied across weapon 
systems within a version of CGF as well as 
differing between CGF versions 
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1.    Abstract 

This paper discusses the reasons for and the 
implementation of automated testing techniques in 
the ModSAF program. There are, in general, two 
major areas to be tested in ModSAF. The first is the 
overall correctness of simulated behavior; since this 
area is tested whenever code changes are submitted, 
this type of testing is called Regression testing. The 
second area of testing is that of adherence to specific 
model criteria, which is called VVA. Each of these 
areas requires different testing and evaluation 
techniques and will be discussed separately. The tools 
used in the implementation will be briefly described, 
and the benefits in terms of manpower and time will 
be discussed. In addition, ongoing and future 
development will be discussed. 

2.  The  ModSAF System 

The ModSAF software architecture is an extensible 
set of reusable software modules which allows rapid 
development and testing of new agents in the DIS 
simulated environment. The ModSAF application 
program uses the ModSAF architecture to construct a 
Semi-Automated Forces (SAF) system which is 
currently used for a variety of different applications 
including a DIS test bed used by researchers 
implementing intelligent control algorithms, a SAF 
system supporting training exercise for the National 
Guard using manned simulators, an architectural 
prototype for SAF design for the CCTT program and 
as the SAF system to be used to support combat 
development experiments for the BDS-D program, 
including the Anti-Armor Advanced Technology 
Demonstration (A2ATD) and Line of Sight Anti- 
Tank Program (LOSAT). 

ModSAF supports DIS 1.0, 2.0.3 and SIMNET 
protocols ; it can be run in a variety of 
configurations using one or multiple workstations. It 
is supported on SGI, Mips, SUN Sparc, and IBM 
Rise platforms. 

It is a large program, consisting of over 500,000 
lines of executable C code distributed over 300 
libraries 

3. Need  for Automatic Testing 

Since ModSAF is used for rapid prototyping and 
development, there are a large number of contributors 
of code to the program, including contract 
contributors outside of the Loral staff. At any time 
in the ModSAF release cycle, there are several 
projects underway, which are being developed 
independently, and therefore must be integrated. 

Code integrations are performed at least on a weekly 
basis during the development cycle to accommodate 
these large and rapid contributions. However each 
contribution must be validated before a new 
contribution is added to the program. To accomplish 
this validation, a suite of tests must be performed to 
insure that the basic functionality of the program 
existing before the integration is still intact. Before 
each release, a more extensive period of testing takes 
place in order to validate if the behavior of the 
modeling, such as Direct Fire Damage Assessment 
continues to perform as originally specified. This pre- 
release testing also exercises the entire program to 
insure that it is properly working. 

The basic method used in most of the testing 
described above is to reload and run "Scenario" files 
created in previous releases and integrations, and to 
observe if they continue to perform as before. A 
Scenario is a file that captures all of the information 
concerning the entities, their positions, their assigned 
tasks and the terrain on which they are located. A 
Scenario therefore captures a moment in time and 
space from which the exercise can continue. A tester 
then observes the subsequent behavior. This method 
is expensive in both time and manpower; the time it 
takes to run the scenario and the person necessary to 
observe the test and determine if it passed. 

Improvements to the testing procedures take place by 
automating the execution of the scenarios and 
recording the results in such a way that deviations 
from expected behavior are highlighted. VVA testing, 
as explained later, is able to be more objective 
because many of its procedures involve gathering 
data, such as hits upon a target, for subsequent data 
analysis. 
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4.   Regression   Testing 

As discussed above, a suite of tests are performed after 
each integration of new code into the ModSAF 
program, and a larger suite of tests are performed 
before each release. The tests consist of reloading, 
running, and observing a standard set of scenarios. A 
large part of these tests have been automated as 
described below. 

4.1.   Present   Implementation 

A procedure has been developed to cycle through a 
directory of scenario files. For each to the scenarios, 
the procedure will start a debugger program, and from 
within the debugger, the ModSAF program itself will 
be started. The scenario is then loaded, and 
executed.While executing, some information is 
recorded, most notable information concerning 
successful loading and the code location of program 
crashes, if they occur. If a crash does occur, the 
procedure records where in the code the crash occurred, 
exits the debugging program and repeats the 
procedure for the next scenario in the directory. On 
the other hand, if the scenario has executed for a time, 
determined as an argument to the procedure, the 
ModSAF program is terminated, the debugging 
program is terminated, and the procedure is repeated 
for the next scenario in the directory. 

This procedure is written as a shell script and a few 
points are worth discussing. The scenarios used are 
designed to create and simulate all the entities and 
units of entities which ModSAF can create. As new 
entities are added, new scenarios are added, increasing 
the amount of testing. The successful loading of the 
scenarios demonstrates that conversion files, which 
are generated to update the data structures of entities, 
work properly. Since there are many scenarios to be 
tested, a time limit for each must be imposed. New 
scenarios built for automated testing must execute the 
questioned behavior with a time limit. A debugging 
program is used not only to prevent time consuming 
core dumps, but to aid the responsible programmer 
with his analysis. 

Using the above procedure, typically 170 scenarios 
are loaded and executed, and the procedure will run 
continually for over 10 hours. Before an integration is 
finally accepted, this procedure is run overnight and 
the recording file scanned for any anomalies. 

4.2    Ongoing and Future Work 

There are two primary directions of extending the 
above procedure in order to make it more widely 
applicable. Both of these extensions, described below, 

are presently undergoing development and 
implementation. 

4.2.1 Multiple Machine Implementation 
The above procedure is designed to be executed on one 
workstation running ModSAF as a pocket system, 
that is the work station acts as both the user interface 
to ModSAF and also simulates all entities. However, 
the "natural" environment for simulation exercises is 
spread over several work stations, some of which act 
as user interfaces to the exercise and others do the 
work of simulating the entities and events. Of course 
they are all communicating over a network. 

The testing of scenarios should also be done 
automatically in the distributed environment. For 
example, it is important that, if one of the simulators 
goes down during an exercise, the entities being 
simulated there are taken over by other simulators. 

In order to test scenarios automatically over a 
network, a client- server model is being developed. 
This will establish another level of communication 
between the workstations above the communications 
that ModSAF needs. One machine will act as the 
server, which will command the registered clients to 
start the debugging program and to load ModSAF 
using the appropriate terrain necessary for the scenario 
to be loaded. The server will execute the scenario, 
and each client will record data locally during the 
execution of the scenario. The server can instruct one 
or more simulators to stop running to determine it 
the simulated entities are passed to the remaining 
simulators. Finally, the server can instruct the clients 
to stop ModSAF and the debugging program in order 
to repeat the cycle for the next scenario. 

4.2.2 Seeking Significant Events 
Another direction of extension being pursued is the 
recording the occurrence, or non occurrence of specific 
events during the execution of a scenario. All the 
events, such as collisions between vehicles and or 
between vehicles and the environment are sent as 
network packets. Presently these packets can be 
recorded for analysis by any of several data logging 
programs. However using a logger in this way, more 
data than necessary is recorded, and must be analyzed 
at later time. 

Code will be developed to allow the procedures above 
to look for events that indicate if expected behavior 
was executed. For example, the procedure could be 
set to look for and record collisions and positions 
while executing a scenario of a unit of vehicles 
crossing a bridge. If collisions are recorded, the test 
fails. This will provide a pass-fail criterion with out 
any further analysis. 
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5. Verification and Validation Testing 

Since ModSAF is becoming an accepted model for 
combat developments activities, the Validation and 
Verification (V&V) of important models in ModSAF 
has become an essential part of the software 
development process. V&V tests should be 
performed when these models are developed and when 
they are changed. In addition, mini-V&V check tests 
should be performed on each ModSAF release to 
ensure that none of the important models was 
inadvertently changed. 

Several models have been evaluated for V&V by the 
Army Material Systems Analysis Activity 
(AMSAA), including target acquisition (LibVisual), 
direct fire delivery accuracy (LibBalGun), direct fire 
rate-of-fire (LibBalGun), direct fire vdamage 
assessment (LibDfDam), and indirect fire damage 
assessment (LiblfDam). Specific tests and data 
requirements were specified by AMSAA for each 
model. A data structure that can be transmitted via a 
DIS Event Report PDU was developed for each model 
that contains all of the detailed, internal parameters 
necessary for the evaluation. 

5.1  Target Acquisition 

The V&V test for target acquisition is intended to 
examine table lookups of parameters like target 
contrast, calculation of values like critical dimension, 
and evaluation of output parameters including 
pjnfinity. Data contained in the VVA data structure 
includes: 

target entity id 
sensor type (optical, infra-red) 
exposure (full, hull-defilade) 
magnification 
critical dimension 
intervisibility 
range 
apparent contrast 
cycles on target 
acquisition time 
p_infinities for four acquisition levels 
random numbers used 

A V&V check test can be performed by running a pre- 
defined scenario, and recording the resulting PDUs. 
VVA data from the appropriate Event Report PDUs is 
extracted and analyzed. Parameters like range and 
intervisibility are independently calculated by the 
ADST Data Collection and Analysis (DCA) system 
for comparison. The table lookups and calculations 
for the other parameters are duplicated in the DCA 
system. Any deviations are reported. 

5.2 DF Delivery  Accuracy 

The V&V test for direct fire delivery accuracy is 
intended to examine table lookups of parameters like 
the  biases and dispersions,  the  calculation of 
parameters   like   the   miss   distance,   and   the 
determination of hit or miss. 

Data contained in the VVA data structure includes: 

shot's event id 
firer location 
target location 
aimpoint location 
firer and target movement (SS, SM, MS, MM) 
exposure (full, hull-defilade) 
inputs biases/dispersions 
output biases 
horizontal and vertical miss distance 
horizontal and vertical hit assessment 

A V&V check test can be performed by configuring a 
ModSAF firer with a large amount of ammunition 
and with very small reload times. By presenting the 
firer with many targets in a variety of ranges, 
exposures, and aspects, a dataset containing several 
thousand shots can be acquired quickly. 

VVA data from the appropriate Event Report PDUs is 
extracted and analyzed. Parameters like locations and 
firer/target movement conditions are independently 
calculated by the DCA system for comparison. The 
table lookups and calculations for the other 
parameters are duplicated in the DCA system. The 
random draws are statistically analyzed for 
reasonableness. Finally, the a statistical evaluation 
of the hit assessment algorithm is performed. 

5.3 DF Damage Assessment 

The V&V test for direct fire damage assessment is 
intended to examine calculation of lookup parameters 
like dispersion, table lookups of the Pks, 
transformation of the Pks, and damage assessment. 
Data contained in the WA data structure includes: 

shot's event id 
target's location 
impact location 
exposure (full, hull-defilade) 
range 
dispersion (from center-of-mass) 
aspect angle 
elevation angle 
looked-up Pks 
only-type Pks 
thermometer Pks 
random number 
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indicated damage 
before and after status 

A V&V check test can be performed using a pre- 
recorded dataset that contains many direct fire impacts 
(Detonate PDUs), but has had the target of these 
impacts removed. Then, if a ModSAF vehicle is 
generated, and the pre-recorded dataset is played back, 
the new ModSAF vehicle receives the prerecorded 
impacts and performs damage assessment. In this 
manner, a test with several hundred impacts can be 
run in a couple of minutes. 

As before, VVA data from the appropriate Event 
Report PDUs is extracted and analyzed. Parameters 
like range and dispersion are independently calculated 
by the DCA system for comparison. The table 
lookups, Pk conversions, and damage assessment are 
duplicated in the DCA system. 

5.4  IF  Damage  Assessment 

The V&V test for indirect fire damage assessment is 
intended to examine calculation of lookup parameters, 
table lookups of the lethal areas, calculation and 
transformation of the Pks, and damage assessment. 
Data contained in the WA data structure includes: 

shot's event id 
target's location 
impact location 
impact-to-target range 
cutoff range 
damage function (cookie, carleton) 
DO (carleton) 
angle of fall (carleton) 
range/deflection miss distance (carleton) 
firer-to-impact range (cookie) 
slope, intercept (cookie) 
pattern radius (cookie) 
lethal areas 
computed Pks 
only-type Pks 
thermometer Pks 
random number 
indicated damage 
before and after status 

A V&V check test can be performed similarly to the 
direct fire damage assessment test, except with an 
indirect fire munition. When a ModSAF vehicle is 
generated and the pre-recorded dataset is played back, 
the new ModSAF vehicle receives the prerecorded 
impacts and performs damage assessment. In this 
manner, a test with several hundred impacts can be 
run in a couple of minutes. 

As before, VVA data from the appropriate Event 
Report PDUs is extracted and analyzed. Parameters 
like range are independently calculated by the DCA 
system for comparison. The calculation of the Pks 
by either method, Pk conversions, and damage 
assessment are duplicated in the DCA system. 

6.  Summary 

It is necessary to perform a large number of tests to 
insure the quality of the ModSAF program as it is 
being developed. In this paper two types of testing 
where discussed, Automated regression testing and 
VVA testing. 

The automated regression testing allows many tests 
to be preformed, and recorded, in such a manner that 
pass or failure is easily and quickly determined. The 
methods presently in place have been very successful, 
because they allow more scenarios to be executed and 
evaluated while using less time and requiring less 
supervision. These methods are being developed 
further. 

VVA testing insures the quality of the ModSAF 
program by demonstrating conformance of a model to 
specifications. Methods have been developed here for 
the production and collection of data, and its analysis. 
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1. Abstract 

In support of the Anti-Armor Advanced Technology 
Demonstration (A2 ATD) program, the US Army 
Materiel Systems Analysis Activity (AMSAA) is 
responsible for the verification and validation of the 
physical models incorporated within the ModSAF 
model. The ModSAF verification, validation and 
accreditation effort is a joint effort between AMSAA 
and the US Army Training and Analysis Command 
(TRAC) - White Sands Missile Range (WSMR) with 
TRAC having the overall lead. TRAC is responsible 
for the verification and validation of the ModSAF 
combat behaviors. 

ModSAF is a set of software modules and application 
programs that permits a single operator to control large 
numbers of vehicles on the virtual battlefield. 
ModSAF is being developed under the sponsorship of 
the U.S. Army Simulation, Training, and 
Instrumentation Command (STRICOM) and the 
Advanced Research Projects Agency (ARPA). The 
objective of ModSAF is threefold: 1) replace the 
current Simulation Network (SIMNET) Semi- 
Automated Forces (SAF) systems at the Battlefield 
Distributive Simulation-Developmental (BDS-D) sites, 
2) support BDS-D experiments (A2 ATD, Horizontal 
Technology Integration, etc.), and 3) support ARPA 
programs (Synthetic Theater of War, etc.). 

ModSAF was verified, validated, and accredited for A2 
ATD experiment 1. The purpose of the first A2 ATD 
experiment was to validate virtual simulation (BDS-D) 
with live simulation (M1A2 Initial Operational Test 
and Evaluation) and to validate constructive simulation 
(ModSAF and CASTFOREM (Combined Arms 
Support and Task Force Evaluation Model)) with live 
and virtual simulation. 

In support of ModSAF V&V, AMSAA conducted a 
series of ModSAF verification and validation check 
tests. In particular, for experiment 1, AMSAA 
conducted ModSAF check tests which focused on the 
following physical models and related data: Direct-Fire 

Vulnerability, Target Acquisition, Direct-Fire Delivery 
Accuracy, Direct-Fire Rate-of-Fire, Indirect-Fire 
Vulnerability, and Mobility. Similarly, TRAC-WSMR 
examined the behavioral algorithms for ModSAF. 
Since experiment 1 was strictly armor, the behaviors 
reviewed were all armored tactics. 

Moreover, ModSAF performance was benchmarked in 
experiment 1 against CASTFOREM. Also, the 
employment of CASTFOREM to pre-experiment 
analysis provided the capability for refinement of 
input performance and scenario data prior to initiation 
of the experiment. CASTFOREM is a TRADOC (US 
Army Training and Doctrine Command) accredited, 
stochastic, constructive force-on-force combat 
simulation which has been employed in Army 
acquisition COEAs (Cost Operational Effectiveness 
Analysis) for years. 

2. Introduction 

The focus of this paper is to provide an overview of the 
ModSAF Verification and Validation (V&V) efforts in 
support of the A2 ATD program. ModSAF is the SAF 
(semi-automated forces) model currently used in A2 
ATD. A2ATD is ajoint Department of the Army and 
Department of Defense program initiated with the goal 
of maturing Distributed Interactive Simulation (DIS) as 
a credible evaluation tool to support acquisition 
decisions. The purpose of the A2 ATD is to develop 
and demonstrate a verified, validated, accredited DIS 
capability to support anti-armor weapon system virtual 
prototyping, concept formulation, requirements 
definition, effectiveness evaluation, and mission area 
analysis on a combined arms battlefield at the Battalion 
Task Force or Brigade level. 

The A2 ATD technical objectives are: 

• Demonstrate DIS as an evaluation tool and 
verify, validate, and accredit simulators used in 
A2 ATD experiments, semi-automated forces, 
and the BDS-D simulation. 
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• Develop, demonstrate, and document 
techniques/analytical tools to analyze simulation 
results to include Verification and Validation of 
ModSAF. 

• Demonstrate the linkage of constructive models 
(JANUS) to DIS. 

• Demonstrate upgraded virtual prototypes 
(M1A2, M2A3/M3A3, NLOS, LOSAT) and 
virtual prototypes to be developed (AGS, 
JAVELIN, Comanche, EFOGM, Hunter). 

3. ModSAF Model 

ModSAF is a set of software modules and application 
programs that permits a single operator to control many 
vehicles on the virtual battlefield. The U.S. Army 
Simulation, Training, and Instrumentation Command 
(STRICOM) and the Advanced Research Projects 
Agency (ARPA) are sponsoring the development of 
ModSAF. The objective of ModSAF is threefold: 1) 
replace the current Simulation Network (SIMNET) 
Semi-Automated Forces (SAF) systems at the 
Battlefield Distributive Simulation-Developmental 
(BDS-D) sites, 2) support BDS-D experiments (A2 
ATD, Horizontal Technology Integration, etc.), and 3) 
support ARPA programs (Synthetic Theater of War, 
etc.). 

4. ModSAF V&V 

In support of the A2 ATD program, the US Army 
Materiel Systems Analysis Activity (AMSAA) is 
responsible for the verification and validation of the 
physical models incorporated within the ModSAF 
model. The ModSAF verification, validation and 
accreditation effort is a joint effort between AMSAA 
and the US Army TRADOC Analysis Center (TRAC) - 
White Sands Missile Range (WSMR) with TRAC 
having the overall lead. TRAC is responsible for the 
verification and validation of the ModSAF combat 
behaviors. 

Simulator and semi-automated forces VV&A and 
development of analytical tools to support the 
evaluation of causes of simulation outcomes were 
initiated in FY93 to provide the foundation for a series 
of six experiments. The first experiment, completed 
September 14, 1994, replicated two M1A2 Initial 
Operational Test and Evaluation (IOT&E) battles 
conducted at Ft. Hood during the autumn of 93. 

ModSAF was verified, validated, and accredited for A2 
ATD Experiment 1. The purpose of the first A2 ATD 

experiment was to validate virtual simulation(BDS-D) 
with live simulation (M1A2 Initial Operational Test 
and Evaluation) and to validate constructive simulation 
(ModSAF and CASTFOREM (Combined Arms 
Support and Task Force Evaluation Model)) with live 
and virtual simulation. 

4.1 Physical Models 

In support of ModSAF V&V, AMSAA conducted a 
series of ModSAF verification and validation check 
tests. In particular, for Experiment 1, AMSAA 
conducted ModSAF check tests that focused on the 
following physical models and related data: Direct-Fire 
Vulnerability, Target Acquisition, Direct-Fire Delivery 
Accuracy, Direct-Fire Rate-of -Fire, Indirect-Fire 
Vulnerability, and Mobility [Ref 3]. 

As one of the A2 ATD technical objectives, a set of 
DISATs (DIS Analytical Tools) to analyze simulation 
results to include V&V of ModSAF were developed. 
Moreover, the DISATs were used to support the 
analysis effort of A2 ATD experiment 1 to include V & 
V of the physical models employed by ModSAF. 

ModSAF V&V exercises sometimes referred to as 
check tests, utilize the VV&A portion of the DISAT. 
At the time of execution of a ModSAF V&V exercise 
the ModSAF W&A flags are set and the DISAT data 
logger is activated. 

These flags activate the VV&A protocol data units 
(PDU's). These flags include the following [Ref 2]: 

• Status Change VV&A Data 
• Target Acquisition VV&A Data 
• Direct-Fire Delivery Accuracy VV&A Data 
• Direct-Fire Damage Assessment VV&A Data 
• Indirect-Fire Damage Assessment VV&A Data 

After the exercise is completed, the DISAT software 
used in conjunction with the logged file generates a 
series of computer files containing VV&A data tables. 
Figure 1 provides an overview of the ModSAF 
VV&A/DISAT operation. 

For each VV&A flag set, multiple files are created 
except in the case of the status change flag. These files 
consist of target status change, direct-fire vulnerability, 
direct-fire delivery accuracy, target acquisition, and 
indirect-fire vulnerability VV&A data tables. 
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ModSAF WAA ANALYSIS 

Figure 1. Overview of ModSAF VV&A Analysis 
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Figure 3. Behavioral Work Arounds 

A summary of AMSAA's ModSAF VV&A efforts 
prior to A2 ATD Experiment 1 is provided in Figure 2. 
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Figure 2. Check Tests V&V Summary 

4.2 Combat Behaviors 

Similarly, TRAC-WSMR examined the behavioral 
algorithms for ModSAF. Since experiment 1 was 
strictly armor, the behaviors reviewed were all armored 
tactics. Moreover, TRAC-WSMR identified behavioral 
algorithm deficiencies within ModSAF that will be 
addressed in future releases of ModSAF. Figure 3 
shows 'work arounds' for these deficiencies [Ref 1]. 
For Experiment 1, manned intervention compensated 
for the behavioral deficiencies such that armor tactics 
and   doctrine   could   be   adequately   represented. 

5. A2 ATD Experiment Overview 

The purpose of the first experiment was to validate 
virtual simulation (BDS-D) with live simulation 
(IOT&E) and to validate constructive simulation 
(ModSAF and CASTFOREM) with live and virtual 
simulation. Experiment 1 satisfied the following 
technical objectives for A2 ATD: the demonstration of 
DIS as an evaluation tool; VV&A of the M1A2 
simulator, ModSAF, and BDS-D; demonstration of 
analytical tools supporting VV&A and evaluation of 
simulation outcomes; and demonstration of the Ml A2 
virtual prototype. 

Two battles from the M1A2 IOT&E were replicated, a 
hasty attack and hasty defense. In each battle a blue 
platoon of four MlA2s was represented by manned 
simulators and the remaining ten tanks in the company 
(two platoons, CO and XO) were implemented by 
ModSAF entities. Fourteen Ml A2s comprised all blue 
force entities in each battle. In the hasty attack, 
ModSAF portrayed four T80s and three BMP systems. 
For the hasty defense, ModSAF portrayed twenty-six 
T80s and 1 BMP system. Red forces fired anti-armor 
missiles and sabot rounds while blue forces fired only 
sabot rounds. 

The first experiment was conducted on a DIS local area 
network at the Mounted Warfare Test Bed at Ft. Knox, 
Ky. Intercommunication was through ethernet. 
Components of the network included the four manned 
simulators, a stealth display, simulation manager, 
ModSAF Red and Blue commanders' workstations, 
and data loggers that logged protocol data units traffic 
during experiment trials and forwarded the logs to the 
DIS analytical tools. 
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Before the experiment, detailed evaluation and test 
plans were prepared and troops were trained. Pilot tests 
were run to insure that the experiment could be 
executed and data could be collected and analyzed 
using DIS analytical tools. The TRADOC accredited 
stochastic constructive force-on-force combat 
simulation, CASTFOREM was run prior to Experiment 
1 to perform several data checks and comparisons with 
ModSAF. The employment of CASTFOREM to pre- 
experiment analysis provided the capability to refine 
performance and scenario input data. It also provided 
a means to benchmark the performance of ModSAF 
throughout the experiment. 

The first A2 ATD experiment was credible because the 
entrance criteria were satisfied. Forty-eight trials were 
run over a 12-day period. Twenty-four trials were run 
for each battle. (12 trials with manned simulators and 
12 trials with ModSAF only). The platoon locations 
were randomized to minimize the effects of learning 
the scenario during the experiment. 

6. A2 ATD Experiment Analysis Cvcle 

The analysis cycle for Experiment 1 is presented in 
figure 4. The scenario vignette and performance data 
were fed into both BDS-D and CASTFOREM. 

algorithms will be changed as appropriate for 
subsequent experiments. BDS-D simulation outcomes 
were compared with CASTFOREM outcomes to 
determine the nature of and reasons for differences. 
CASTFOREM algorithm changes and runs were made 
to bring the outcomes into better agreement with BDS- 
D simulation outcomes that were previously VV&A'd 
to base simulations. 
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Figure 4. Experiment 1 Analysis Cycle 

The BDS-D simulations were run with verified, 
validated, and accredited ModSAF and simulators 
(level 2 CIGs) in a level 2 environment with level 2 
DIS standards (necessary conditions for conducting 
experiments). BDS-D simulation runs were made with 
and without simulators to provide the basis for 
comparing SAFOR and simulator behaviors and 
simulation outcomes. For Experiment 1, these 
outcomes were compared to the outcomes of the Ml A2 
IOT&E for the replicated battles. ModSAF behavior 
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Abstract 

This paper discusses the development of a computer- 
generated Command Entity (CE) capable of operating 
autonomously on a simulated battlefield. The SAF 
operator's workload would be reduced by extending the 
reasoning ability of Computer Generated Forces. The 
construction of a general architecture that allows the 
integration of heterogeneous AI technologies is 
described. The system starts with a Knowledge Base 
(KB) that interconnects both a symbolic (semantic net) 
and spatial (tactical map) representation of the CE's 
perception of the battlefield. The KB is maintained and 
monitored by Intelligent Agents that act within then- 
own designated areas of expertise as staff officers to the 
CE. The interoperation of the CE's components are 
explained through an example scenario. This work has 
impact in the areas of mission replanning, command- 
decision support, and after action review. 

1 Introduction 

Battlefield commanders analyze Mission, Enemy, 
Terrain, Troops, and Time (METT-T) in order to do 
situation assessment. The operation of SAF are divided 
into event-driven and judgmental behaviors (Bimson, 
Marsden, McKenzie, Paz 1994). This paper describes 
the construction of a computer-generated Command 
Entity (CE) that can produce the judgmental behaviors 
needed to increase SAF autonomy. Specifically, the 
decision-making behaviors of a generic US Army 
company commander in the mechanized warfare 
domain is being examined. At this level of command 
hierarchy the tactical coordination of troops and tanks 
requires judgment and provides an excellent starting 
point for this project 

1.1 Judgmental METT-T 

METT-T reasoning is the situation assessment process 
laid out in Army doctrinal literature for their 
commanders. The basic flow of the commander's 
decision making process can be seen in Figure 1. Each 
oval represents a complex set of subprocesses of which 
METT-T analysis is part.   This flowchart represents 

both pre-exercise planning and the response to discrete 
events on the battlefield. 
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Figure 1. Flowchart of Commander Decision Making Process 

These two types of behavior require different cognitive 
skills. The commanders response to attack by an 
enemy force is clearly defined and results in an 
immediate response. There is very little high-level 
judgment required. The commander considers only his 
local situation and not the "big picture". Higher-level 
examination of events requires significantly more 
sophisticated cognitive skills in order to generate 
judgmental decision-making. 

1.2 Current METT-T Capabilities on CCTT 

Current CCTT SAF capabilities fall into one of two 
categories: (1) executing tasks assigned by the SAF 
operator and (2) responding to discrete battlefield 
events. In other words, SAF CE behaviors are invoked 
in one of three ways within a simulation exercise: 

1. Execution of the operations order, 
2. SAF operator inputs, 
3. Response to situational interrupts. 

The SAF operator is in charge of constructing the 
operations order of the military units and providing new 
commands to generate realistic human-like behaviors in 
the simulation. The third operation has been automated 
with simple "reactive" behaviors in CCTT. 

The project began with the event-driven SAF behaviors 
developed for CCTT and sought to augment them with 
judgmental METT-T. It was found that in order to 
develop judgmental capabilities a new architecture that 
could be integrated into the existing simulation 
environments would be needed. The CE concept was 
designed to act as a SAF operator augmentation or 
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Terrain Object 
Attributes: 
Terrainjd: Hammer 
Location: 2,2 2,3 3,2 

Domain Relations: 
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Attributes: 
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Domain Relations: 
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Attributes: 
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Domain Relations: 
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Figure 2. Semantic Network 

surrogate. The inherent flexibility and generality of the 
architecture will allow CE's to be developed with a 
variety of capabilities and applications to many 
different simulation systems. 

2 Representation 

Much as the human brain has two functionally different 
sides so does the CE's Knowledge Base (KB). It is 
composed of two structures that represent perceptions 
of the battlefield: (1) a Semantic Network and (2) a 
Tactical Map. These structures reconstruct the 
battlefield based on information the CE has received 
from reports, orders, and sensor data. The semantic 
network forms relationships among battlefield objects 
through the use of symbolic links. The CE's map 
captures spatial relationships using a two-dimensional 
array of pointers to objects within the semantic 
network. This approach effectively aggregates complex 
information by allowing conduits between the spatial 
and symbolic relationships among objects. 

2.1 Semantic Network 

The CE's Semantic Network builds connections 
between objects in the battlefield environment. Figure 

2 is an example of some battlefield objects and how 
they interrelate. The objects have attributes to store 
important data. The Terrain object in Fig. 2 has 
terrainjd and location attributes for identification and 
spatial orientation, respectively. 

Attributes also facilitate domain relationships between 
objects in the CE's semantic net. For example, a 
company is composed of three platoons. The 
Has_subordinates attribute in the Company object lists 
three instances of the Platoon class to indicate this 
hierarchical relationship. 

The semantic network stores declarative knowledge 
meaningfully, allowing it to be quickly accessed 
through the domain relations. The flexible structure of 
the semantic network helps to easily express the 
dynamic nature of the battlefield. As relationships 
between objects change and new objects are introduced 
the semantic network expands to encompass more 
information, improving the CE's knowledge of the 
battlefield. 

2.2 Tactical Map 

To   complete   the  CE's   view   of  the   world,  a 
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representation of its spatial environment is needed. 
Semantic nets represent conceptual relationships well, 
but they are inadequate in capturing geographical 
information. 

The Tactical Map coalesces information from 
terrain assessments and military reports and represents 
these results in a two-dimensional grid. The cells of 
this grid contain pointers to objects within the semantic 
network (see Figure 3). From the Tactical Map, a CE 
can determine its position on the terrain grid and its 
position relative to terrain features, enemy positions, 
friendly forces, objects, etc. Symbolic relationships are 
traced through the Map's links to the semantic network. 

identified five areas that their own battlefield 
commanders should consider in situation assessment: 
Mission, Enemy, Terrain, Troops, and Time (METT-T). 
Commanders plan and replan missions, extrapolate 
enemy intentions, assess terrain, and manage troops, all 
within the constraints of time. To produce realistic 
behaviors within the battlefield domain, the CE must be 
capable of these cognitive activities. These behaviors 
require a significant amount of specialized knowledge 
and analyses which cannot be easily accomplished by 
any one AI technique. The following architecture 
provides a facility for applying heterogeneous AI 
technologies in a cooperative manner. 

The CE's Map is also a repository of tactical influence 
factors. The impact of specific objects are numerically 
determined for Trafficability, Cover and Concealment, 
and Threat Each grid square has a 3-tuple to store 
these factors. The extent of an object's impact is 
reflected in the grid squares over which it has influence. 

Platoon Objact 

UMt  kJ:  Sovl 
Ech»lon: Op_t«nk_plt 

CcmpanyTean Ob>ct 

UnHJd: Alpha 
Ectolon: Blu»_COJ»am 
Occupies: Blackjorast 
Hat oblactlw: Himmn 

Figure 3. The CE's Tactical Map 

Tactical influence factors allow new routes to be 
quickly generated and selected. The A* algorithm has 
been used with success (Ourston et al. 1995). Because 
the three factors are differentiated, they can be assigned 
different weights for generating routes. Using this 
technique, routes are generated based on one of the 
factors or any combination of factors. The factors also 
act to differentiate candidate routes as a basis for 
selection among them. For example, speed may be 
more important than being observed by the enemy; 
therefore the numerical value for Trafficability carries 
greater weight that that for Cover and Concealment. 
The CE would search for and select the most trafficable 
route versus the one providing more concealment. 

3 Reasoning 

For tactical situation assessment the US Army has 

The CE reasoning is accomplished through Intelligent 
Agents (IA's) that independendy monitor and maintain 
the common KB. Figure 4 shows how information 
flows to the CE from the battlefield domain through 
reports, orders, and sensors (direct observation). The 
CE communicates with other elements in the battlefield 
domain through these same channels. As a model of 
human command judgment this approach approximates 
the way it is believed actual commanders obtain and 
process information. Commanders update their 
complete perception of the battlefield, then they analyze 
this information from different viewpoints using a 
variety of cognitive skills. The specialized activities of 
the IA's blend to generate complex behaviors. 

Figure 4. The Command Entity Reasoning Concept 

3.1 Intelligent Agents 

Specialist Intelligent Agents (IA's) were developed to 
classify domain knowledge and compartmentalize their 
reasoning processes. The IA's act independently to 
build, modify, observe, and analyze the CE's KB. 
Having the KB common to all of the IA's allows their 
independent actions to be distributed to other IA's. 
This communication occurs when one IA modifies a 
part of the semantic network which another IA 
monitors. The IA's are also capable of direct dialog in 
which one IA requests a specialized service from 
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another. 

Figure S is the model used to construct an IA. This 
architecture creates a mechanism for heterogeneous 
reasoning processes to be executed and integrated. The 
IA has a defined expertise, a reasoning mechanism, a 
representation of specialized domain knowledge, a 
facility for inter-agent communication, and links to the 
KB. 

Figure 5. The Intelligent Agent Model 

The following discussion will describe the construction 
of the Mission IA, the Terrain IA, and the Alternative 
Generator IA as examples of this architecture. These 
three examples all use different techniques for 
reasoning about the battlefield situation, employing 
technology from planning, expert systems, and Case 
Based Reasoning (CBR). They are currently very 
simple, yet they cooperatively generate complex 
behaviors. 

3.1.1 The Mission IA 

Figure 6 shows the Mission IA based on the intelligent 
agent model. The Mission IA monitors the battlefield 
environment to assure that the military units can 
achieve their goals. A mission is simply a plan. For 
this reason the Mission IA has a unique viewpoint on 
the battlefield which differs from that of other IA's. 
The domain knowledge of the Mission IA expresses its 
different viewpoint. 

The Mission IA's domain knowledge is stored in a 
conjunctive goal network (Jones, Laird, Tanbe, 
Rosenbloom 1994 and Wilkins 1988). Each node 
represents a goal that must be accomplished. The 
horizontal arcs represent temporal relationships, as in 

Figure 6 where goal A comes before goal B. The 
vertical arcs indicate hierarchical dependencies. For 
instance, goal B will be accomplished when goals C 
and D are accomplished. This is similar to a PERT 
chart in project management 

The arcs from goal C to the KB "link" in Figure 5 
indicate the dependencies of C on attributes within the 
KB. For example, goal C's feasibility may depend on 
the size attribute of an enemy object within the CE's 
semantic network. A link would be established 
between this attribute and goal C. If the size of the 
expected enemy is too large, then there is a problem 
with the mission. The problem is characterized as a 
force mismatch originating in goal C. 

Figure 6. The Mission Intelligent Agent 

The reasoning engine of the Mission IA consists of 
simple rules and procedures that manage the operation 
of the goal network. The services of the current 
Mission IA are to compute delays and to return mission 
critical goals. By developing more sophisticated rules 
and procedures and expanding the services it provides, 
the Mission IA can grow without an effect on the other 
IA's. To increase its capability the Mission IA will use 
other IA's as a knowledge resource. 

3.1.2 The Terrain IA 

The Terrain IA is responsible for monitoring and 
updating information about the terrain elements on the 
battlefield, such as rivers, hills, forests and cultural 
features like bridges. Figure 7 shows how the Terrain 
IA is constructed to carry out its duties. It expresses its 
domain knowledge with inductive rules that pattern 
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match on objects within the CE's KB. Its reasoning 
mechanism is conducted by a forward-chaining 
inference engine. Using this technique, the Terrain IA 
provides the services of identifying trafficable areas, 
obstacles, and the status of dynamic terrain. 

The Terrain IA examines reports about the terrain and 
updates the semantic net, instantiating new terrain 
objects when necessary. The Terrain IA also updates 
the CE's map by recalculating any changed influences. 
For example, the Terrain IA receives a report that a 
road has been destroyed. The Terrain IA would update 
its existing road object in the semantic network. The 
grid squares through which that road passes now have 
lower trafficability. The Terrain IA calculates the new 
trafficability score for those grid squares and updates 
the CE's map accordingly. 

Figure 7. The Alternative Generator 

The Terrain IA's analyses are communicated to other 
IA's through the KB link. Other IA's need only be 
aware of those changes to terrain that impact their 
particular specialties. 

3.1.3 The Alternative Generator 

The Alternative Generator finds appropriate courses of 
action to given problem situations (Wall 1987). These 
problem situations are identified by other IA's, as the 
Mission IA is doing in Figure 8. The domain 
knowledge of the Alternative generator is expressed 
using Case Based Reasoning (CBR). The Alternative 
Generator contains a case library of possible solutions 
to problems. Its reasoning mechanism matches a given 
problem situation to one or more appropriate 
alternatives in its case library. 
The problem situation is characterized by its class, its 
type, and its origin. Alternatives that match the class of 
the problem situation are general solutions to the 
problem, while those that match both class and type are 

more specific. For instance, a problem situation of 
class obstacle would have general solutions, such as 
reroute or break-through. A problem situation of type 
bridge-out, however, is an obstacle with more specific 
solutions such as find-river-crossing or build- 
temporary-bridge. Alternatives are further 
discriminated by the origin of the problem situation. A 
problem that occurs at a battalion level of command has 
different options from those at the platoon level. This 
allows the same case-base to be used by different CE's 
within a hierarchical command structure. It also allows 
problems that cannot be solved at lower levels to be 
referred to higher levels where solutions exist. 

Figure 8. The Alternative Generator 

The alternatives produced by this IA identify a number 
of resources for judging a solutions feasibility. These 
resources include materiel, personnel, and time. These 
resources are examined for their availability and if 
found lacking the solution is judged infeasible. Once 
feasibility has been determined, then the more specific 
alternatives have precedence over the general. If no 
solutions prove feasible, then the problem situation is 
referred to higher levels of command. 

4. Example Scenario 

The following example illustrates the interoperation of 
the CE's components. The CE's objective is to move 
from point A to point B through battlefield terrain as 
quickly as possible while avoiding enemy contact. The 
battlefield contains a forest, a river, and a bridge. 

No enemy is currently known to be in the area so a 
route seeking to maximize Trafficability is generated by 
the Terrain IA. However, before the mission is begun a 
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report is received indicating enemy was spotted in the 
area. The Enemy IA uses the information from the 
report to instantiate an enemy unit in the Semantic 
Network and place it on the Tactical Map. The Terrain 
IA updates the influence factors for Threat. One of the 
objectives of the mission is to avoid the enemy. The 
Mission IA, therefore, monitors the Threat influences 
along the current route. The Threat is now high, so the 
Mission IA indicates this problem to the Alternative 
Generator. 

The Alternative Generator returns feasible solutions 
from its case library. The Mission IA determines the 
delays of any of these alternatives and selects to 
reroute. The Terrain IA generates a new route which 
has lower Trafficability but also lower Threat. The CE 
now executes its mission and begins to send orders to 
move its troops and vehicles. 

The route crosses the river at a bridge. As the mission 
progresses the CE receives a report indicating the 
bridge has been destroyed. The Terrain IA updates the 
bridge object. The Mission IA has been monitoring its 
new route and queries the Terrain IA to define the 
problem. The Terrain IA recognizes the problem 
situation of bridge-out, which is sent to the Alternative 
Generator. The Alternative Generator returns possible 
solutions from its case library. The Mission IA chooses 
to find-river-crossing. One is found, the CE's forces 
cross to point B, and the Mission IA indicates the 
successful completion of the mission. 

In this scenario, the CE looked at trade-offs between its 
objectives in order to plan routes through the terrain. It 
evaluated changes in its situation for their impact on the 
mission. The CE replanned its mission by analyzing 
alternatives and making a final decision. In spite of the 
simple inner workings of each individual IA, their 
intcroperation produces sophisticated behaviors. 

5. Conclusion 

The architecture presented herein has application in 
mission reassessment, command-decision support, and 
After Action Review (AAR). This concept provides a 
model of CE cognitive behavior. Its use not only 
generates complex autonomous behaviors to reduce 
SAF operator workload, but it can be used to explain 
and understand the cognitive process used in command 
decision making. 

The robust representation of battlefield knowledge 
found in the CE's KB aggregates a significant amount 

of data. Through the Mission IA many variables are 
monitored and evaluated to determine their impact on 
the mission. This approach determines when the 
mission becomes infeasible. This is useful not only for 
automated mission replanning but in supporting the 
SAF operator or an actual battlefield commander in 
compiling a vast array of knowledge sources into a 
simple viewpoint. 
Command-decision support can be applied in allowing 
the CE to operate as an advisor. The CE can generate 
alternatives suggested by the battiefield situation for an 
actual commander to consider. The CE could also 
examine a commander's decisions for viability when 
stress or fatigue may impair human judgment 

AAR support is currently being examined. The CE is 
being extended to act as a knowledgeable, automated 
observer of events on a simulated battlefield. The 
assessments of the CE can be compared with those of a 
human participant to provide a view of the human's 
cognitive process. This could facilitate knowledge 
acquisition by the CE to improve its capabilities. The 
architecture developed facilitates easy extension of the 
CE's capacities. 
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The clever combatant looks to the effect 
of combined energy, and does not require too much 
from individuals. 

SunTzu The Art of War 

1. Abstract 

The effectiveness of intelligent computer generated 
forces is limited by their ability to closely coordinate 
their actions within the overall battlefield situation We 
have developed intelligent command and control agents 
which monitor large sections of the battlefield and 
deploy other forces for increased effectiveness. These 
agents have been demonstrated in the air to air, close air 
support, and air strike domains. 

2. Introduction 

Our goal is the development of intelligent forces 
(IFOR's), computer agents which are functionally 
indistinguishable from human agents in their ability to 
interact with the synthetic environment The 
Soar/IFOR consortium, involving the University of 
Michigan, Information Sciences Institute of the 
University of Southern California, and Carnegie Melon 
University, is developing IFORs for all military air 
missions: air to air, air to ground, air supply, anti-armor 
attack, etc. IFORs must have many capabilities to be 
successful including: extensive knowledge, real-time 
reactivity, goal-directed problem solving, and planning. 
Additionally, they must coordinate their activities with 
other friendly forces (Laird et al., 1995a). 

To fulfy support very large scale battle field simulations, 
such as those envisioned for STOW-97, intelligent 
computer generated forces cannot act independently, but 
rather, they must coordinate their efforts for increased 
effect just as humans do. This requires a means and a 
method for coordination, the ability to convey 
coordination information, and the ability for large scale 
situation assessment In military parlance this is 
commonly referred to as command, control, 
communications, and intelligence (C3!). 

This paper discusses our current state of development of 
intelligent, realistic CT agents for simulation in the air 
domain. These agents have been implemented using 
ModSAF (Calder et al., 1993) and the Soar/ModSAF 
interface (Schwamb et al., 1994). 

The remainder of this introductory section provides an 
overview of the CT domain and some motivation for 
this work. Section 3 has a description of the C31 agents 
implemented by this project to date. Section 4 discusses 
the general responsibilities of each agent and goes on to 
show how our agents demonstrate each of the CT 
functions. Section 5 provides an extended example of 
the interaction between multiple CT agents and a 
section of planes flying close air support Section 6 
discusses research and open problems. Finally, section 7 
provides general discussion and conclusions. 

2.1. Domain Overview 

Previous work in computer generated forces has either 
focused on individual agents working in relative 
isolation or groups of agents which may be treated as a 
whole (Rao et al., 1994). A notable exception is (Ballas 
etal., in press). These approaches avoid the problems of 
Cl by allowing human guidance, but when the agents 
number in the tens of thousands, finding enough people 
to control them is infeasible. 

In 1994, the Soar/IFOR project was tasked to provide 
automated pilots for all air vehicles and missions in 
support of STOW-97. (See (Laird et al., 1995b) for an 
overview of the current state of this project) In order to 
accomplish this task we needed to extend the scope of 
the project to include those interactions necessary 
between pilots and controllers, even if they are not 
airborne. For example, orange agents are at a severe 
disadvantage if they cannot rely on ground based radar 
control (GO) to track threats outside the limited scope 
of their own radar. 

The most intensive C31 missions we have implemented 
to date are air to air combat and close air support 
(CAS). In the air to air domain, the controller may be 
responsible for mamtaining a defensive perimeter 
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around the carrier battle group, locating potential 
threats, confirming that an unknown aircraft is a threat, 
providing timely updates until friendly planes have 
radar contact, then issuing additional information in 
response to queries. 

While air to air combat has a single (or small number 
of) controllers, in contrast, the close air support domain 
demonstrates a wide variety of controllers. In the CAS 
domain, the attack planes must have detailed integration 
with multiple agents because of close proximity between 
targets 
and friendly forces. These controllers communicate with 
the planes (locating targets and deconfheting) as well as 
amongst themselves (requesting missions and allocating 
forces.) 

2.2. Motivation 

The primary motivation for doing this work is to 
develop realistic CT agents. The IFOR CT agents 
should be indistinguishable from human agents 
performing similar functions. This involves believable 
interacts with the simulator as well as interactions with 
other agents and humans at a natural level. By basing 
IFOR agents on Soar, a theory of cognition (Laird & 
Rosenbloom, 1994; Laird et al., 1987; Newell, 1987), 
and modeling not only the externally observable 
behavior, but plausible thought processes which are 
necessary to produce realistic behavior, we intend to 
overcome both dumb, canned responses and 
implausible, superhuman responses. 

The second motivation for doing this work is 
effectiveness. Without C3I agents our automated pilots 
have only limited ability to sense and interact with their 
environment. Enemy agents can sneak up behind them 
or fry around them. In addition the automated pilots 
have only limited ability to change their mission 
Without the large scale perspective provided by the 
controller, they dont even realize that there might be a 
need to change their mission 

Adding CT can increase the level and types of 
applications for military simulation As battlefield 
simulators become more realistic, we want to make 
them available for more advanced purposes. The major 
use of air simulators to date is in pilot training. By 
providing intermediate level controllers, we expect to 
make simulation usable not only in pilot training, but 
also in training human controllers to interact with and 
control these controllers. 

Finally, we wish to study human cognition and the 
ability to model it in Soar. C3! provides a new domain 
for this research which suggests more knowledge and 
exhibits different types of knowledge than that used by 
aircraft pilots. 

3. C3! Agents 

In order to increase realism and promote playability at 
various levels, we base C3! on existing techniques 
currently in use by military organizations and embody 
them in specialized agents corresponding to military 
controllers. Thus there is a direct one to one mapping 
between our agents and humans. 

Currently, we have operational versions of the following 
CT agents: 

• Air Intercept Controller (AIC) which assigns 
planes to stations, spots threats, and provides 
information about enemy planes. The AIC is 
airborne, situated in a plane with a large radar, 
such as an E-2C. 

• Ground Controlled Intercept (GCI) performs the 
same sort of mission as an AIC but is ground based 
and immovable. 

• Forward Air Controller (FAC) which locates 
targets and provides final directions for close air 
support Forward air controllers may be either 
ground based or airborne (FAC(A)). 

• Direct Air Support Center (DASC) which assigns 
aircraft to missions, potentially alters the missions, 
and hands off attack missions to the FAC. The 
DASC is ship based, usually on the aircraft carrier. 

• Tactical Air Direction Controller (TAD) directs air 
operations within the Amphibious Operations Area 
(AOA) prior to the establishment of a DASC. The 
TAD is also ship based and may be co-located with 
the DASC. 

• Fire Support (Ordination Center (FSCC) 
determines the type of support to utilize (CAS, 
artillery, naval gunfire). If CAS is determined it 
generates a Joint Tactical Airstrike Request and 
coordinates CAS requests with the DASC. The 
FSCC is ground based within the AOA 

• Tactical Air Command Center (TACC) which 
provides air traffic control, routing, and 
deconfliction within the AOA  The TACC is 
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ground based and usually co-located with the 
FSCC. 

In the following section we explore how agents 
demonstrate the capabilities necessary for coordinating 
the behaviors of multiple agents. 

4. Responsibilities 

In addition to the specific responsibilities of each agent 
given above there are several general responsibilities 
associated with C3! agents. These responsibilities are 
broken out into separate topics, but it must be realized 
that to work effectively all of these activities must be 
going on simultaneously. 

4.1. Command 

CT agents are responsible for mission initiation as well 
as tracking and modifying the mission as it develops. 
Typically the planes will have a prebriefed mission, but 
often this mission will need to be changed or replaced 
entirely as the battlefield situation developed. Our 
command agents can change almost every aspect of a 
mission including assignment of individual CAP1 

stations, routes, target times, and the final targets. 

In order to effectively carry out their command function, 
CT agents need to have a command organization. 
WeVe observed two different command organizations 
for CT agents. 

In the air to air domain command is centralized. Either 
the AIC or the GO are responsible for all air traffic. 
These agents provide continuous control and 
information for many sections of planes. Though there 
may be multiple controllers acting at the same time they 
have clearly separated duties, and there is very little 
interactioa 

In contrast, in the CAS domain command is 
decentralized. As the planes fly through different 
regions they are directed by multiple controllers, all of 
which are responsible for the ultimate success of the 
missioa Though there is still a chain of command, 
because of limited numbers of radios and limited 
broadcast range the planes may not be in continuous 
contact with any single controller. 

The controllers in CAS need to coordinate not only the 
planes, but also themselves. The TACC, DASC, FSCC, 
and FAC have to form a distributed control network in 

Combat Air Palrol 

which mission requests and assignments are propagated 
through the network. 

4.2. Control 

The mission of a controller is to continually assess the 
situation then allocate, or re-allocate, forces for 
maximum effect The combined knowledge of overall 
mission objectives and threat detection makes 
controllers uniquely capable of resource allocation. They 
need to assess the resources available and when future 
resources might become available, balanced against 
current and potential threats. They must synchronize 
their own forces, and their efforts with respect to other 
controllers. Higher level controllers have to trade off 
the utility of multiple potential assignments for maximal 
effectiveness, while low level controllers can only shout 
louder hoping to increase the priority of their request for 
resource allocation. 

Poorly coordinated attacks can be weak and ineffective. 
One way CT agents coordinate is by synchronizing 
attacks through timing constraints. For example, in the 
CAS domain, when bombing in tight proximity to 
friendly troops, timings must be accurate to plus or 
minus ten seconds to avoid interference with friendly 
troops. 

To accomplish this CT agents must be capable of real- 
time reactive planning. Both threats, friendly forces, and 
messages from other controllers may arrive at any time. 
The overall battle plan must be incrementally 
supplemented with new information so that we seize 
opportunities and knowingly avoid or confront risks. 

Soar provides several capabilities which help manage 
these real-time asynchronous inputs. First, the decision 
of what to do next is handled through production rules. 
During each decision cycle all relevant rules are tested 
and allowed to fire in parallel. Thus the sequence of 
execution is not fixed. 

The real-time is requirement handled by making the 
speed of operator execution comparable to experimental 
results in humans (Newell, 1990). Since this can only 
guarantee soft real-time, our agents will react quickly, 
but may fail to react quickly enough when faced with 
overly complex situations, just as people do. Limiting 
the number of available choices increases the speed of 
decision making. Soar uses operator subgoaling to 
provide a context for focusing decisions on information 
relevant to the current situation. For example, when 
under attack and bugging out an E-2 might not be 
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overly concerned with planning the course to its CAP 
station. 

Another way to increase military effectiveness is to 
decrease the interference from one's own forces. In 
actual combat (as opposed to simulation) this will have 
serious morale consequences. The deconfliction duties 
we've implemented range from air traffic control to 
route planning to explicitly informing the plane of the 
location friendly forces. 

4.3. Communication 

The nature of communication is that commands must be 
brief, and commands must be clear. CT agents must 
communicate relevant information in a timely and 
effective manner. Communication can range from 
simple (e.g., "proceed as briefed" or "negative") to very 
complex, such as a nine line brief shown in figure 1. 

The domain of military' communication is well 
researched, and the military jargon provides a form of 
communication which is brief yet maximizes the 
communication of necessary knowledge without undue 
overhead. We attempt to model CT using standardized 
forms, realistic dialog from actual communications of 
former pilots, and examples from training manuals 
whenever possible. We believe that by making 
communication explicit and based on human 
communication we can offer an approach to better 
human interaction and easier evaluation of the results of 
a simulation. 

The approach used by the military, and the approach 
we've adopted, is to use a shared format for all 
communication. Complex commands use a standard 
template to reduce transmission time and ensure all 
relevant information has been communicated. 

To compensate for lost messages and electronic 
interference we repeat messages until confirmation is 
forthcoming. The receipt of commands must be 
confirmed through "roger," or if some action is 
necessary, by the recipient either "wilco" (will comply) 
or "negative" (will not comply). 

While we have yet to incorporate a general natural 
language understanding system with TacAirSoar, the 
commands used are based on the actual English 
communications used between controllers and pilots in 
similar situations. This makes it easier to understand the 
behavior of the IFOR commanders, and allows human 
communication with the IFOR commanders. In order to 

communicate with other CGFs we will be adopting 
CCSIL protocols (Salisbury, 1995). 

4.4. Intelligence 

The most important responsibility of an air controller is 
to locate, identify, and track threats. "Timely 
interception is totally dependent of two factors: early 
detection and positive identification" (Gunston & Spick, 
1983). The need to track the threat arises because enemy 
agents are eminently uncooperative. Some early failures 
of our fighter agents acting alone arose because human 
pilots would feign an attack from one direction, then 
beam or drop and attack from a different direction. The 
more powerful radar capabilities of the AIC and GO 
makes our agents less vulnerable to these tactics. 

Each agent has limited capability. Controllers are 
limited by weapons,2 [Though, at least one E-2 pilot 
considers every friendly plane in the sky his weapoa] 
maneuverability, and speed when compared with the 
targets they must defend against To compensate for this 
lack of ability they provide greater situational awareness 
either through proximity (e.g., a FAC) or superior 
equipment (such as an E-2's radar). They must use this 
awareness to perform continuous intelligence gathering. 
Without this information even a veteran pilot may be 
defeated by a poorly equipped pilot of lesser training. 

5. Example scenario 

Figures 2 through 8 illustrate some of the interaction 
between command agents and combat aircraft during a 
close-air support mission. All of this dialog is taken 
from a simulation run of a close air support mission. 

Our agents include a section of F-14d fighters (lead by 
Falconl4), a TACC (Icepack), an FSCC (Bronco), a 
DASC (Mustang) and a FAC (Rattler). Each utterance 
is preceded by the name of the speaker and the radio 
frequency used for this communication. The frequencies 
are color coded to match the encryption scheme used in 
the communication. 

Falconl4 (white) : Icepack this-is Falconl4 
Icepack (white): go-ahead 
Falconl4 (white) : Falconl4 
Falconl4 (white) : mission-number 20-059 
Falconl4 (white) : proceeding-to Elmer 
Falconl4 (white) : angels 32 
Falconl4 (white) : time-on-station 1+30 
Falconl4 (white) : checking-in-as fragged 
Icepack (white) : roger 

^Though, at least one E-2 pilot considers every friendly plane in the sky his 
weapoa 
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Icepack (white):  Falconl4 
Icepack (white): radar-contact 
Icepack (white): cleared-to-enter-aoa 
Icepack (white): proceed-as-briefed 
Icepack (white): maintain angels 32 
Icepack (white): check-in-with Mustang 
Icepack (white): on orange 
Icepack (white): at Tiger 
Falconl4 (white): wilco 

Figure 1: Mission checks in to AOA 

In figure 2 the two planes check into the amphibious 
operations area (AOA) with Icepack. The exact form of 
the plane's initial check-in message is specified in the 
SPINs (SPecial INstructions) and may vary across 
scenarios, but will convey the essential information 1) 
who I am, 2) where I am, and 3) what am I doing here. 

The JTAR includes target type, location, time, and 
desired results. Note that Rattler has elected to be the 
forward air controller for the mission and direct the 
final bombing run. The FSCC supplements this 
information with coordination and mission data. 

In figure 4 Bronco (the FSCC) has determined that 
close air support is the logical response, and transmits 
the necessary information from the JTAR to Mustang 
(the DASC). If this were more realistic, the request 
would be transmitted in hard copy form rather than over 
the radio, but we are constrained with the information 
exchanges allowable through ModSAF. 

Icepack recognizes this message and realizes that they 
are both friendly and supposed to be there. Icepack 
locates their corresponding blip on radar, gives them 
permission to enter the AOA, and does not change their 
mission 

Our TACC is capable of some low level air traffic 
control. In this case it consists of assigning unique, even 
altitudes to inbound flights, while outbound flights are 
expected to maintain odd altitudes. 

Finally, Icepack hands off control to the next agent, 
Mustang, at a pre-briefed radio setting. 

Rattler (silver): Bronco this-is Rattler 
Rattler (silver): immediate-mission 
Rattler (silver): target-is tank 
Rattler (silver): target-location-is 
Rattler (silver): x 127000 
Rattler (silver): y 27500 
Rattler (silver): target-time ASAP 
Rattler (silver): desired-results destroy 
Rattler (silver): final-control FAC Rattler 
Rattler (silver): on green 
Bronco (silver): roger Rattler 

Figure 2: FAC sends tactical air request to FSCC 

In figure 3 Rattler finds itself in the line of unfriendly 
fire and radios back to the FSCC that it needs support 
immediately. In addition it provides information 
sufficient for the FSCC to initiate a Joint Tactical 
Airstrike Request (JTAR).3 

We've elected not to include an example of a Joint Tactical Airstrike 
Request because of its detailed nature. The nine/twelve line brief of figure 

1 accounts for less than one sixth of its content by size. 

Bronco (orange): Mustang this-is Bronco 
Bronco (orange): reguest-number 28-59 
Bronco (orange): immediate-mission 
Bronco (orange): target-is tank 
Bronco (orange): target-location-is 
Bronco (orange): x 127000 
Bronco (orange): y 27500 
Bronco (orange): target-time ASAP 
Bronco (orange): desired-results destroy 
Bronco (orange): final-control FAC Rattler 
Bronco (orange): on green 
Mustang (orange) : roger 

Figure 3: FSCC radios DASC 

Falconl4 (orange) this-is Falconl4 
Mustang (orange): go-ahead 
Falconl4 (orange) Falconl4 
Falconl4 (orange) mission-number 20-059 
Falconl4 (orange) proceeding-to Tiger 
Falconl4 (orange) angels 32 
Falconl4 (orange) time-on-station 1+30 
Falconl4 (orange) checking-in-as fragged 
Mustang (orange): Falconl4 this-is Mustang 
Mustang (orange): proceed-as-briefed 
Mustang (orange): check-in-with Rattler 
Mustang (orange): on green at Chevy 
Falconl4 (orange) wilco 

Figure 4: Mission checks in with DASC 

In figure 5 the lead plane is approaching a holding point 
and checks in with Mustang. The plane's check in 
sequence has the same form as seen in figure 2. 

At this stage Mustang alters the mission from its pre- 
specified course. Even though the planes have a pre- 
briefed mission, Mustang determines that the new 
mission is more important and redirects the flight to a 
new contact point (Chevy) and a new controller 
(Rattler) for further details. 

Figure 6 shows Mustang iirforming Rattler that help is 
on the way, who they are, and where to expect them 
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Rattler has no radar and will assume a plane 
approaching from that direction is the expected mission 

In figure 7 the planes finally arrive at the contact point 
for Rattler and check in according to the format seen in 
figure 2. 

Mustang (green): Rattler this-is Mustang 
Rattler (green): go-ahead 
Mustang (green): expect-cas-mission 20-059 
Mustang (green): call-sign Falconl4 
Mustang (green): at Chevy 
Rattler (green): roger 

Figure 5: DASC contacts FAC 

Falconl4 (green) : Rattler this-is Falconl4 
Rattler (green): go-ahead 
Falconl4 (green): : Falconl4 
Falconl4 (green): : mission-number 20-059 
Falconl4 (green): : 2 F-14d 
Falconl4 (green): : holding-at Chevy 
Falconl4 (green) : angels 32 
Falconl4 (green) : 10 MK82 
Falconl4 (green) : time-on-station 1+30 
Falconl4 (green): : no-laser-capability 
Rattler (green): roger 
Rattler (green): Falconl4 

Figure 6: Mission check in with FAC 

Figure 8 shows Rattler delivering a nine line brief 
similar to that shown in figure 1. This is an information 
intensive message which relies on the controller and 
pilot sharing a common communication model. All and 
only the necessary values are given sequentially without 
reference to meaning or line numbers. 

What's being expressed here is that the initial point will 
be Joyce. The heading in magnetic degrees, from the 
initial point to the target is 052. The distance from the 
initial point to the target is 18.6 nautical miles. The 
target's elevation is 0 above mean sea level. The target's 
description is a "tank". The target's coordinates are 
127000 by 27500 in the X/Y coordinate system of 
ModSAF. The target will be marked with white 
phosphor.4 There are friendlies in the area which are 
8000 meters to the south-west After the attack the plane 
should egress through Ford And the attack should 
commence as soon as possible. 

FalconU signals that he copies all of that information 
and agrees to it by repeating the time. 

*The capability for marking a target does not yet exist 

Rattler (green): standing-by 
Rattler (green): with-9-line-brief 
FalconU (green) : ready-to-copy 
Rattler (green): Joyce 
Rattler (green): 052 
Rattler (green): 18.6 
Rattler (green): 0 
Rattler (green): tank 
Rattler (green): x 127000 y 27500 
Rattler (green): wp 
Rattler (green): sw 8000 meters 
Rattler (green): Ford 
Rattler (green): tot ASAP 
Falconl4 (green) : ASAP 

Figure 7: FAC gives 9 line brief 

Following this, there are brief exchanges when the 
planes are spotted, cleared to drop, and for damage 
assessment 

6. Research Issues in C3! 

The development of C3! agents presents several 
interesting research issues. 

From a broader artificial intelligence perspective, CT 
presents interesting problems in reactive planning and 
managing dynamically changing goals in the face of 
uncertainty. The battle field environment is constantly 
changing. This requires a fast and efficient architecture 
to keep up with the speed requirements of the situation 
as well as a flexible architecture for incremental 
reasoning and reactive planning. 

Most of the planning currently done by our system is 
reactive planning. In some situations the C3! agents may 
have some time for decision making and should use this 
time for more deliberate planning Recent research 
explores the possibility of incorporating planning and 
means-ends analysis mechanisms with our agents (van 
Lent, 1995; Wray, 1995). 

This work is very closely related to distributed artificial 
intelligence. Since we are basing our work on an 
existing model which seems to work reasonably well, 
we can avoid many of the problems of distributed 
artificial intelligence systems. For example, our agents 
need not carry out protracted negotiations. 

WeVe demonstrated that a template driven approach to 
language understanding provides a sufficiently flexible 
command language for many aspects of 
communication, but it's not clear how far this approach 
can be extended. More work needs to be done on natural 
language understand both for agent flexibility and ease 
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of use in human computer interaction See (Lehman et 
al., 1995) for recent work. 9. References 

Though these agents were prepared to take part in the 
STOW-E demonstration, during rehearsal they were 
unable to handle the large number of other agents they 
saw in the world and crashed. This turned out to be a 
buffer overflow problem, but suggested several methods 
for reorganizing the way IFOR agents handle large 
numbers of inputs. Currently, these IFOR agents will 
slow down and their performance will degrade as the 
number of other agents they have to consider increases. 

In the immediate future we will address more mundane, 
but no less critical tasks of tracking fuel states and 
allocating fuel assets. 

7. Discussion 

We have described the current state of development of 
CT agents used by Soar/IFOR We have shown how the 
agents currently implemented demonstrate the specific 
aspects of the CT domain Finally, we worked through 
an example which showed multiple control agents 
interacting with planes on a close air support mission 

We have demonstrated an ability to cope with 
incomplete knowledge and incrementally supplement 
information as it becomes available. This requires 
continuous situation assessment: commands, threats, 
and resources may arrive at any time. 

We believe that automation must be pushed up the 
command hierarchy. As the number of simulated agents 
grows, people will have to supervise larger numbers of 
agents. We believe that the best way to do this is to 
emulate the present military command hierarchy. This 
has the advantage of ease of use (nothing new to learn), 
effectiveness (it has been proven through centuries of 
warfare), and ease of understanding. 
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1. Abstract 

The major problem addressed by this research is the 
design and implementation of a command and control 
architecture to add realistic company-level missions to 
an existing real-time combat-simulation system. The 
US Army is using the Modular Semi-Autonomous 
Forces (ModSAF) simulator to conduct research in 
simulation training (Loral 1993a) (Loral 1993b). 
While ModSAF is probably the most capable of the 
Semi-Autonomous Force (SAF) systems in existence, 
it has the inherit limitation of all such systems. It is pri- 
mary a reactive system. The missions, or goals, must 
be set by a higher order controller. This controller can 
be a computer, Command Forces (CFOR), or a human. 
However, in the current implementation of ModSAF 
(1.x), there is no provision for the generation of goals, 
and hence very little in the way of command and con- 
trol. 

2. Introduction 

Since ModSAF is a large system and the range of ar- 
mored tactics is larger still, we had to focus our efforts 
into a single company team level task. For this task we 
chose the "Occupy an Assembly Area" task. At a high 
level this task can be broken down in subtasks as fol- 
lows: 

The goal of this thesis is to show by proof-of-concept 
that we can simulate company level tasks utilizing 
ModSAF's asynchronous augmented finite state ma- 
chine architecture. The premise is that a finite state 
machine abstracted to the company commander level 
can spawn and control existing platoon and vehicle 
tasks in ModSAF. 

The Computer Generated Forces in ModSAF are 
termed "Semi-Automated" not autonomous. ModSAF 
behaviors at the vehicle and platoon level exhibit fairly 
realistic behaviors. However, it is still the responsibil- 
ity of the operator to provide the realistic interactions 
between platoons when portraying a higher level unit, 
like a company or a battalion. One of the design goals 
was to show that the finite state machine architecture 

could additionally provide mission planning at the 
company level, issuing platoon and vehicle instruc- 
tions to accomplish a mission. Not only will this ap- 
proach provide more realistic behaviors at the compa- 
ny level, it will reduce the parametric input responsi- 
bilities of the operator, allowing him to control a 
greater number of forces. 

The addition of a limited degree of terrain reasoning at 
the company level, and the ability for units to identify 
and create their own road routes are features that Mod- 
SAF currently does not offer. 

3. Task Organization 

The task organization for the company assembly area 
mission includes fourteen Ml tanks, and a utility truck 
for the First Sergeant. The First Sergeant is given the 
responsibilities of the quartering party. The purpose of 
adding the First Sergeant's vehicle was to provide a 
non-combat type vehicle that performs the reconnais- 
sance and route selections for the company assembly 
area mission. The Ml tanks of the company continue 
their current missions while the First Sergeant per- 
forms the initial stages of the assembly area mission. 

4. Assembly Area Mission Stages 

The first step in the design process was identifying a 
sequence of operations describing the assembly area 
mission. The sequence of operations used to represent 
the company assembly area mission are listed in Fig- 
ure 1. 

The first step is identifying the search area for the as- 
sembly area. The operator provides this information 
when the assembly area mission is first assigned. The 
First Sergeant (1SG) performs the next stages of the 
mission; planning a route to get to the location, and a 
terrain reconnaissance of the area. The final stages are 
performed by the company; movement to the assembly 
area and occupation of their positions. Each of these 
actions is discussed in greater detail in the following 
paragraphs. 
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Assembly Area (AA) Stages: 

•Identification of Assembly Area (AA) Search Location, (opera- 
tor) 
•Planning the Route to the AA Search Location, (1SG) 
•Moving to AA Search Location, (ISO 
•Reconnaissance of Search Area, (1SG) 
•Designating Unit AA Locations, (1SG) 
•Route Planning for Company, (1SG) 
•Company Moves to AA, (Company) 

Figure 1: Steps for Company Assembly Area 

4.1 Identification of Assembly Area Search 

Location 

One of the design goals requires the unit to conduct the 
mission planning for the assembly area task. The para- 
metric data supplied by the operator for most ModSAF 
tasks specifies an end goal for a unit. The assembly ar- 
ea mission is somewhat different in its parametric in- 
put. Instead of having the operator provide a point lo- 
cation to establish an assembly area, we want a point 
location that will determine the center of mass of a 

search area. The unit will determine where to establish 
the assembly area given the bounding search region. 
The size of the search area was selected to be a three 
kilometer by three kilometer square area surrounding 
the operator's selected center of mass (Figure 2). 

4.2 Planning the Route to the Search Location 

Many of the ModSAF unit and vehicle tasks ~ like 
move, travel, and assault — require the operator to in- 
put either a point, a line, or some text that provides the 
parametric input for the task. The unit then performs 
its task, and often the goal of the task is to move to the 
point or line designated by the user. There are current- 
ly three alternative route inputs; a point location, a line 
route, and a line route that uses road networks. Regard- 
less of which object the operator utilizes to designate 
the unit route, it is the operator that supplies the route 
for the unit. 

As part of the design strategy, the assembly area mis- 
sion attempts to utilize road networks to conduct unit 
movements. Since it was a design goal to reduce the 
burden on the operator for providing parametric in- 
puts, like providing the routes for a unit, the unit itself 

Figure 2: Assembly Area Search Space 
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should plan its own route. Without modification, how- 
ever, ModSAF does not provide the functional ability 
for a unit to determine its own road route. It is a design 
strategy and goal to provide this capability to Mod- 
SAF. The utilization of the road networks is discussed 
more in Route Planning for the Company. 

4.3 Moving to Assembly Area Search Location 

Once the First Sergeant identifies a route to the search 
area, he conducts a ModSAF Vehicle Move Task to 
get to that location. Where the operator normally pro- 
vides the parametric inputs for the Vehicle Move task, 
assembly area routines select the route and pass this in- 
formation to the Vehicle Move task. The company 
(minus the 1SG) continues its assigned mission. Once 
the 1SG arrives at the search area location, he performs 
a reconnaissance of the area. 

4.4 Reconnaissance of the Search Area 

After the 1SG arrives in the search area, he begins a re- 
connaissance. He is looking for areas that provide suf- 
ficient space and ideally, both cover and concealment. 
For the purposes of this mission, we narrowed the 
search criteria to include only tree canopies large 
enough to support a company assembly area. The re- 
sult of this reconnaissance is either the identification 
of a tree canopy large enough to support a company 
sized assembly area within the confines of the search 
area box, or the center of mass location provided by 
the user. 

4.5 Designating Unit Assembly Area Locations 

In a company assembly area, each platoon is given a 
"piece of ground" to occupy within the boundaries of 
the assembly area. The platoon positions within the as- 
sembly area must provide 360 degree security for the 
company. The amount of space allocated to each pla- 
toon depends on the overall size of the assembly area. 
We can vary the size of our assembly area based on 
terrain constraints. The minimum radius for our as- 
sembly area was chosen to be thirty meters. The max- 
imum, and default assembly area radius, is 250 meters. 
By distributing the three platoons (twelve company 
vehicles) in thirty degree increments around a 360 de- 
gree assembly area, the platoon locations provide all 
around security for the company. The platoon occupa- 
tion positions are sized in accordance with the mini- 
mum radius of the selected assembly area. An example 
diagram of an assembly area is shown below in Figure 
3. The headquarters vehicles - 7, the First Sergeant, 
66, the Company Commander and 65, the Executive 
Officer ~ orient their positions facing the enemy direc- 

tion. The platoon positions on the perimeter of the as- 
sembly area are not changed with respect to the ene- 
my's direction. 

2nd Pit 

IstPlf 

Direction 
to Enemy 

3rd Pit 

Figure 3: Occupation Positions for Assembly Area 

4.6 Route Planning for the Company 

After the 1SG completes his reconnaissance, he has ei- 
ther found a suitable tree canopy location for the com- 
pany, or establishes the assembly area at the center of 
mass location provided by the operator. He then iden- 
tifies and selects a road route for the company. The 
route will include a start point (SP), a release point 
(RP), and the route itself, the three basic control mea- 
sures utilized for a military move operation. 

When the operator desires to designate a route for a 
unit, he uses ModSAF's line editor. A line editor op- 
tion is to generate a road route from the operator's in- 
put. The operator selects a start point and end point for 
the route. ModSAF utilizes an A-star search to identify 
a road route that connects the start point and end point, 
if one exists. The result of this function is a road route 
that gets stored as an object in the PO Database, or a 
system error message stating a road route could not be 
found. It was proposed that instead of having the oper- 
ator use the line editor to specify a unit's route, that the 
unit have access to the road route building functions 
and build their own road routes. 

4.7 Company Movement to the Assembly Area 

The company road march is conducted as individual 
platoon road marches. The platoon closest to the as- 
sembly area moves first, and reports when it has ar- 
rived at the start point (SP). The commander, the sec- 
ond to move, then begins his movement. The com- 
mander in turn reports the SP and the next closest 
platoon begins its move. The company road march 
continues as determined by the company order of 
march. By breaking the company movement into pla- 
toon and vehicle moves, the assembly area mission can 
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utilize the existing ModSAF Unit Travel Task ~ a pla- 
toon level task. 

4.8 Occupation of the Assembly Area 

The assembly area mission uses the ModSAF "Occupy 
Position" task. Each platoon and headquarters tank is 
given a position to occupy within the assembly area. 
The assembly area support functions pass the required 
parameters to the occupy position task, which includes 
a line object representing the position to occupy, and 
three target reference points (TRPs), a left TRP, a right 
TRP, and an Engagement Area TRP. These TRPs are 
used to designate sectors of responsibility for each pla- 
toon. 

5. Modsaf Vehicle. Unit. And Reactionary 

Tasks 

In addition to the ModSAF Vehicle Move Task used 
by the First Sergeant, and the Unit Travel and Occupy 
Position Tasks used by the platoons, several vehicle 
level tasks including collision avoidance, path plan- 
ning, sensor, turret, gun control, and the unit reaction- 
ary task, "Actions on Contact", are used by all of the 
vehicles when performing the assembly area mission. 

6. Finite State Machine Architecture 

The development of a finite state machine that repre- 
sents the company mission assembly area was derived 
from Figure 1, Assembly Area Stages. The resulting 
finite state machine used for this mission is shown in 
Figure 4. The reverse path from "Moving_To Recon" 

Figure 4: Assembly Area Finite State Machine 

back to "Plan_Route_To_Recon" was a design strate- 
gy that allows the First Sergeant to plan multiple 
routes during his reconnaissance mission. He first 
plans a route to get to the assembly search area. He 
then plans a route from that location to the closest tree 

canopy that fulfills the requirements for the assembly 
area location. 

7. Assembly Area Library Module 

The result of the design for the company assembly area 
mission will be an independent ModSAF library mod- 
ule, "Uassembly". The design plan was to currently 
limit its execution to the specific task organization of 
fourteen Ml tanks and a First Sergeant's vehicle. The 
assembly area library module uses the same architec- 
ture and design as the other unit level tasks currently 
implemented in ModSAF. 

8. Communication Between Autonomous 

Agents 

The assembly area mission attempts to capture the bat- 
tlefield communication between the platoons, the 
Company Commander and the First Sergeant. The 
ability to display the intercommunication between 
units exists in ModSAF and was used within the as- 
sembly area mission. 

9. Task Organization 

ModSAF offers an Ml tank company as one of its unit 
types. The assembly area mission requires adding a 
new unit type, "Ml Company w/lSG", which includes 
fourteen Ml tanks and a First Sergeant's truck. Adding 
this new unit organization requires modifying "eche- 
lon.rdr" in the ModSAF Library Module "Libeche- 
londb". The "echelon.rdr" file is a ModSAF "reader 
file". A reader file is a text based file that allows easy 
modification by the developer when changing the pa- 
rameters for ModSAF. The Libechelondb library pro- 
vides standard military echelon unit organizations, 
from section to battalion and higher. A unit organiza- 
tion is developed by adding vehicle leaf nodes or other 
unit tree nodes to the organization. A tree node is an- 
other unit organization previously defined in "eche- 
lon.rdr" and is recursively expanded when the unit is 
created. The echelondb format for an Ml Armor Pla- 
toon is: 

(unit_US_Ml_Platoon ( 
(leaf vehicle_US_Ml "??1") 
(leaf vehicle_US_Ml "??2") 
(leaf vehicle_US_Ml »??3*) 
(leaf vehicle_US_Ml "??4"))). 

Using the echelondb format, creating a new unit entry 
for "Ml Company w/lSG" is: 

(unit_US_Ml_Company   ( 
(leaf vehicle USHUMMV l?7" 
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(leaf vehicle_US_Ml "?66*) 
(leaf vehicle_US_Ml *?65") 
(tree unit_US_Ml_Platoon »?1 *) 
(tree unit_US_Ml_Platoon ~?2 ") 
(tree unit_US_Ml_Platoon "?3 "))). 

The characteristics for a specific vehicle type are con- 
tained in parametric reader files. These files are locat- 
ed in the "entities" subdirectory. An example model 
parameter file for the US Ml Abrams Tank is con- 
tained in Appendix A. Since these files are reader files 
they can be tailored by the operator for a specific ap- 
plication. The model parameter file for the US HUM- 
MWV, the First Sergeant's vehicle, was not included 
in version 1.0 of ModSAF, and was therefore added to 
the existing set of vehicle model parameter files. 

10. Development Of The Finite State Machine 

Code 

The first step in creating the Unit Assembly Area Mis- 
sion was to create the library module directory for the 
task. This library was named "libuassembly" and was 
included in "/modsaf/common/libsrc". The finite state 
machine file for the unit assembly area mission was 
named "uassembly_task.fsm" and the task named 
"uassembly". After designing the finite state diagram, 
we considered which existing ModSAF tasks the as- 
sembly area finite state machine would utilize to con- 
duct its mission. These ModSAF tasks become sub- 
tasks for the uassembly task. 

10.1 Vehicle Tasks 

The First Sergeant moves on his own to the assembly 
area search site. This being a single vehicle move, the 
existing ModSAF task Vehicle Move was selected for 
inclusion as a subtask. Additionally, the reactive tasks 
for "Actions on Contact" were included as a subtask in 
the "taskframes.rdr" file for the uassembly task. By in- 
cluding the reactive task in the "taskframes.rdr" file, 
all entities within the uassembly task have these reac- 
tive tasks running concurrently with the assembly area 
tasks. 

10.2Platoon Level Tasks 

Two of the existing ModSAF unit tasks were selected 
as subtasks for the assembly area mission. The first 
was the Unit Travel task. Each platoon, and both of the 
headquarters tanks, use a Unit Travel task to perform 
the company roadmarch phase of the mission. When 
the units arrive at the assembly area location, they oc- 
cupy their respective positions within the assembly ar- 
ea. The ModSAF task "Occupy Position" performs 

this task sequence. Chapter V describes the occupation 
task for the assembly area mission. 

lOJModSAF Finite State Machine Protocol 

Language 

The Assembly Area finite state machine is written in 
accordance with the specifications described in the 
LibTask Programmer's Guide. 1993. The Program- 
mer's Guide sets forth a finite state machine protocol 
language which allows the use of the ModSAF Asyn- 
chronous Augmented Finite State Machine (AAFSM) 
Code Generator. The code generator converts a finite 
state machine source file into C code. Thus, a simple 
finite state machine protocol language is utilized to de- 
scribe the structure of the task. The supporting rou- 
tines, written in C, are added by the developer to sup- 
port the behaviors of his task. 

11. Finite State Machine Support Routines 

The finite state machine support routines for a Mod- 
SAF task are created by the developer to perform the 
desired actions while in a particular state. In the fol- 
lowing paragraphs we discuss the support routines 
needed to perform the actions for each state of the fi- 
nite state machine. 

11.1 Plan Route to Recon 

The assembly area mission begins in the state 
"Plan__Route_To_Recon". The purpose of this state is 
to: 

• Establish the search space for the assembly 
area, 

• Create a graphic entry in the unit's overlay, 

• Establish a route for the First Sergeant to get to 
this location, 

• Create the route graphic for the First 
Sergeant's overlay, and 

• Spawn a ModSAF Vehicle Move Task for the 
First Sergeant. 

The support functions for this state include: 

• "compute_recon_route", 

• "create_new_ route_to_objective_com", and 

• "create_aa_bound_box". 

We transition to the next state, "Moving_To_Recon" 
after spawning the First Sergeant's Vehicle Move 
(VMOVE) task. 
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One of the fundamentals of developing a ModSAF 
task is the ability to relate graphic control measures de- 
picted on the terrain map display with a particular unit 
or entity. ModSAF maintains a unit overlay for each 
entity it simulates. When the operator selects a unit, 
the overlay for that unit is displayed on the terrain 
map. We wish to add a bounding box graphic in the 
company overlay for the assembly area mission. When 
the operator selects the assembly area mission, he is 
asked to designate a center of mass location for the 
search area. This location is stored in a private variable 
"private->objective_com" associated with the unit. 
The center of mass (COM) for the search space is used 
by the function "create_aa_bound_box" to create a 
graphical box entry in the company overlay. 

Once the data for the line object has been entered, we 
must save the line object into the PO Database — the 
database ModSAF utilizes to store the necessary infor- 
mation about the entities it is simulating. We want to 
check to find if their already exists an assembly area 
bounding box. If there exists a box, we update its po- 
sition. If it does not exist, we create a new object and 
store it in the PO Database. We save this line object as 
a state variable for the company as "state->assy_area". 

That way if we change the location for the assembly 
area, we have a state variable we can lookup and mod- 
ify. 

11.2Moving to the Reconnaissance Site 

The purpose of the state "Moving_to_Recon" is to 
monitor the progress of the Vehicle Move task 
spawned by "PIan_Route_To_Recon". The support 
function for this state includes "send_arrival_report". 
We transition to the next state, "Conduct_Recon" af- 
ter the First Sergeant's Vehicle Move (VMOVE) task 
transitions to an "arrived" state. 

The Vehicle Move task is an existing ModSAF unit 
task and includes several states of its own as shown in 
Figure 6. The previous state, 
"Plan_Route_To_Recon" spawns the Vehicle Move 
task and then switches the state of the assembly area fi- 
nite state machine to "Moving_To_Recon". When the 
First Sergeant arrives at the search area, the Vehicle 
Move task transitions to the "arrived" state. 
"Moving_To_Recon" sends an arrival report to the 
commander,   and   transitions   to   the   next   state, 

Figure 5: Moving to the Reconnaissance Area 
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"ConductJRecon". Figure 5shows the company as- 
sembly mission's "Moving_To_Recon" state 

Figure 5: State Plan Route to Recon 

11.3Conducting the Reconnaissance 

The purpose of the state "Conduct_Recon" is to iden- 
tify the best location to establish an assembly area 
within the confines of the assembly area bounding 
box. The support function for this state is 
"search_for_tree_canopies". If a tree canopy is found 
within the bounding box that is large enough to sup- 
port the assembly area, we transition back to 
"Moving_To_Recon" and move to the tree canopy. 
Otherwise, we did not find a tree canopy and we estab- 
lish the assembly area location at the center of mass of 
the search area, and transition to the next state 
"Establish _AA". 

One of the design goals of the assembly area mission 
was to add a degree of company level mission plan- 
ning. There are currently only a few terrain analysis 
functions available in ModSAF. We incorporated a 
search of the QUAD Tree database for tree canopy lo- 
cations and a very simplistic algorithm that estimates 
the center of mass location for the tree canopy. The 
goal here was not to perfect the terrain analysis algo- 
rithm, but to use it as the means to demonstrate the 
ability of a unit to conduct some level of autonomous 
mission planning. 

Tree canopies are features contained in the Quad Tree 
Database of the ModSAF "terrain" library. A tree can- 
opy is composed of a set of points that establishes the 
perimeter of the canopy. Very simply, we average 
these point locations to estimate a center of mass loca- 
tion for the canopy. This does not work for concave 
canopies. When a canopy extends beyond the bound- 
aries of our assembly area bounding box, we do not 
consider those points in the center of mass calculation. 
The result is a very unsophisticated algorithm that es- 

timates the center of mass of tree canopies, providing 
a limited terrain analysis ability for tree canopies that 
currently does not exist in ModSAF. 

11.4Establishing the Assembly Area 

The purpose of the state "Establish_AA" is to create 
the graphic entries for all of the unit's "Occupy Posi- 
tion" tasks. The support function for this state is 
"build_assembly_area". Once the positions are creat- 
ed, we transition to the next state, 
"Plan_Roadmarch". 

The function "build_assembly_area" establishes the 
occupation positions and target reference points for 
each of the platoons and headquarters tanks, and stores 
these graphic entries in the respective unit overlay. 
These graphics are required for the ModSAF Occupy 
Position tasks. 

11.5 Planning the Roadmarch to the Assembly Area 

The purpose of the state "Plan_Roadmarch" is to es- 
tablish a route for the company to get to the AA, and 
create the route graphic for the company overlay. The 
support function for this state is "build_roadmarch". 
After building the route for the company, we transition 
to the next state, "Conduct_Roadmarch". 

First we discuss adding the functionality to ModSAF 
that will allow a unit to develop its own road route. 
Then we discuss how we utilize this new functionality 
to establish the road routes for the First Sergeant and 
for the company. 

First, we needed to determine what ModSAF used to 
allow the operator to implement a road route. We ana- 
lyzed the C code of "edtjine.c" in the "Libeditor" di- 
rectory of the ModSAF source library. Building a road 
route consists of reading in the operator's mouse loca- 
tion as he designates the start point and updating the 
road route as the mouse is moved towards the end 
point. The parametric inputs are the X and Y locations 
of the mouse as the operator is making the route, and 
are passed to a function 
"rt_allocate_road_route_from_networks" contained in 
"rt_roads.c" of the "Libroute" directory. This function 
searches the Quad Tree Database and selects the clos- 
est road segment for the starting road point, and using 
an A-star search, attempts to make a road route that 
connects the start point to the current position of the 
mouse cursor. The 
"rt_allocate_road_route_from_networks" function 
takes as input arguments the Quad Tree Database be- 
ing used, the segment number of the closest road seg- 
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menCfhe start location, the segment number of the 
ending road segment, and the ending location. It then 
attempts to create a road route that starts at the start 
point, gets on the road at the near segment, travels on 
the road to the far segment, and moves to the end point. 
The function returns a "ROUTE_LIST" which de- 
scribes the road route in terms of the road segments, 
the individual points of the road segments used for the 
route, and an ordering of these points. 

The parameters that we did not currently have to make 
a direct call to 
"rt_allocate_road_route_from_networks" were the 
segment numbers of the near and far road segments. 
We found a function "find_nearest_segment" in 
"road_routes.c" of the "Libquad" directory. This func- 
tion, however, was an internal private function. We 
needed the ability to determine the segment numbers 
of the nearest road to a given location which this func- 
tion provides. We therefore added 
"find_nearest_segment" to the header file for 
"libquad.h" making it a publicly accessible function. 
With these modifications, we could utilize 
"rt_allocate_road_route_from_networks" directly. By 
providing the unit's current location as the start point, 
the desired ending location for the end point, and the 
return road segment numbers from calls to 
"find_nearest_segment" for both of these points, Mod- 
SAF will build a road route for our unit. 

In the design strategy, we decided that the road route 
should include a start point (SP), a release point (RP), 
and the road route itself. The RP was selected to be the 
last road point of the road route. The route object was 
the "ROUTE LIST' returned by the call to 
"rt_allocate_road_route_from_networks". The start 
point had to be "massaged" to prevent a problem en- 
countered when using ModSAF's Unit Travel task. 
When a unit is assigned a route and performs the Unit 
Travel task, it first determines the "optimal" starting 
point to get on to the route. This "optimization" could 
lead a unit to skip the start point, which is not allowed 
in a standard military road march. Travelling to the 
start point when conducting a military road march is 
not an option. 

11.6Moving to Assembly Area 

The purpose of the state "Conduct_Roadmarch" is to 
conduct the company's roadmarch to the assembly ar- 
ea and act as an abstracted command finite state ma- 
chine. The supporting functions for this state include: 
"check_for_SP", "send_sp_report", and 
"send_rp_report". We transition to the next state, 
"OccupyingJPositions" when all of the units have 
completed their Unit Travel tasks. 

The assembly area state "Conduct_Roadmarch" not 
only controls the movement of the company to the as- 
sembly area, but also monitors and assigns the appro- 
priate task to each platoon depending on their situa- 
tions. It is this part of the assembly area finite state ma- 

Figure 1: Allocating a Route From Roads 
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chine that makes it unique from moSt'ModSAF unit 
tasks. In a typical ModSAF unit task, we only change 
states when the unit performing the task meets the 
transition requirements of the task. For instance, if a 
unit is given a mission to move to a point and then oc- 
cupy a position, that unit must complete its movement 
before it can transition into occupying the position. If 
we applied this rigidity to the assembly area mission, 
the company road march must be completed by the en- 
tire company before the first platoon begins its occu- 
pation of the assembly area. We could end up with a 
company of tanks in a column formation sitting on the 
road waiting for the last platoon to finish its road- 
march. In an actual roadmarch, the platoons do not 
stop at the release point, but begin occupation of the 
assembly area as soon as they arrive at the release 
point. This is in compliance with (ARMY FM 71-1 
1988) which states: "Move vehicles from Release 
Point (RP) into assembly area without stopping." 
Therefore the "Conduct_Roadmarch" state of the as- 
sembly area finite state machine acts as a sequencer for 
the subordinate unit's tasks, and abstracts the com- 
mand and control of the company — like the control 
provided by the Company Commander. It is this com- 
mand and control element that we wished to capture in 
the assembly area mission. 

The roadmarch is actually five separate Unit Travel 
tasks ~ one for each platoon, and one for each head- 
quarters tank. The order of march for the company is 
determined according to the proximity of the platoons 
to the assembly area location. The closest platoon be- 
comes the lead platoon. The Commander (66 tank) fol- 
lows the lead platoon. The next closest platoon is next 
in the order of march and is followed by the Executive 
Officer (65 tank). The platoon farthest from the assem- 
bly area is last in the order of march. 

The movement of the individual units is monitored and 
controlled by the "Conduct_Roadmarch" state of the 
assembly area finite state machine. When the lead pla- 
toon arrives at the SP location, it sends a report to the 
commander ("send_sp_report") and then the Com- 
mander begins his movement. Likewise, when the 
Commander reaches the SP, he communicates this to 
the company and the next closest platoon begins its 
movement. In this way, we maintain adequate spacing 
between the units and control their movement along 
the company route. 

The command level abstraction of the assembly area 
mission is most prominently displayed in the transition 
between the company beginning its roadmarch and 
then occupying the assembly area. The purpose is to 

allow the platoons to independently change states 
while the company commander monitors their states. 
This was a design implementation that we felt provid- 
ed an abstracted command and control finite state ma- 
chine. In fact, there typically is a time during the as- 
sembly area mission when the lead platoon is occupy- 
ing the assembly area task, the next platoon is 
conducting its roadmarch, and the last platoon is wait- 
ing to begin its roadmarch. 

11.7Occupying the Assembly Area 

The purpose of the state "OccupyingJPositions" is to 
monitor the status of the unit Occupy Position tasks 
spawned in the previous state, 
"Conduct_Roadmarch". The supporting function for 
this state is "clean_march_points". We transition to 
the next state, "Occupied" when all of the units have 
finished their Occupy Position tasks. The 
"clean_march_points" function is a utility that re- 
moves the graphic entries used to conduct the compa- 
ny roadmarch to the assembly area. 

11.8Unit Occupied Assembly Area 

The purpose of the state "Occupied" is to maintain the 
assembly area location until the operator terminates 
the mission. This state required no supporting func- 
tions and transitions to the "End State" when the op- 
erator terminates the mission or selects a different mis- 
sion for the unit. 

11.9Ending the Assembly Area Mission 

The purpose of the state "End" is to remove from the 
Persistent Object Database the graphic entries intro- 
duced for the occupy position tasks. The support func- 
tions for this state are "clean_occupy_pts" and 
"delete_graphic_com". The assembly area finite state 
machine exits after completing this state. 

12. Tasks And Task Frame Management 

A company level task cannot be generalized to being 
simply a collection of three identical platoon level 
tasks running concurrently. As discussed earlier, in the 
assembly area mission, the company first conducts a 
road march to the assembly area location and then oc- 
cupies the location. We do not, however, want the en- 
tire company to complete the roadmarch before begin- 
ning the occupation of the assembly area. The platoons 
are conducting different individual missions that en- 
compass the overall company level mission. We need 
a mechanism to decide the particular unit task an indi- 
vidual platoon should execute. The problem with at- 
tempting to generalize a company level mission from 
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a like platoon level mission can best be explained us- 
ing a company attack. A platoon on its own conducting 
an attack may maneuver and fire towards the enemy. 
A company attack, however, is not simply three pla- 
toons conducting concurrent attacks on the same ene- 
my location. The company commander must analyze 
the enemy situation as soon as the lead platoon makes 
contact. He may then decide to establish an attack by 
fire position for the lead platoon and maneuver the re- 
maining two platoons to capitalize on the enemy's 
weak side. It is proposed that the command finite state 
machine as used by the assembly area mission could 
interpret the changing environment (identify an enemy 
weakness) and initiate the necessary platoon level ac- 
tions to capitalize on this weakness. 

13. Assessment Of Assembly Area Mission 

13.1 Route Planning 

The ability for a unit to determine its own road route 
given a starting location and and ending location was 
added to ModSAF. We attempted to portray a standard 
military road march which includes some basic control 
measures. This included (as a minimum) a start point, 
a route, and a release point. We discussed having to 
work around some of the "features" that ModSAF pro- 
vides in its Unit Travel task, like the optimization of 
the entrance point to a route that conflicts with having 
to cross the start point before using the route. Future 
developments in ModSAF may allow the designation 
of an absolute starting point for the route, which would 
more closely replicate a standard military road move- 
ment. 

13.2 Abstracted Command Finite State Machine 

Architecture 

We used a finite state machine architecture that ab- 
stracted the command and control of a company level 
mission by controlling the independent platoon tasks 
which make up this mission. Our implementation of 
the finite state machine architecture is different from 
most existing ModSAF tasks. Adding real-time mis- 
sion planning to a company level mission more closely 
resembles the Company Commander's real-time deci- 
sion making process occuring on the battlefield. With 
more research, the use of a command-level finite state 
machine may be shown to be instrumental in control- 
ling company level tasks as a collection of indepen- 
dent platoon level tasks. The trade off of real-time mis- 
sion planning is the potential time delays introduced 
into a real time simulation system. However, without a 
greater degree of autonomy, the goal of alleviating the 

operator "from providing the necessary realism be- 
tween platoons and companies will prevent him from 
replicating a force much larger than a battalion. 

14. Conclusions 

The primary purpose of this research was to establish 
a proof-of-concept that higher level tasks, specifically 
company level tasks and missions, could be developed 
and incorporated into ModSAF. The result is a proto- 
type company level mission ~ Occupy an Assembly 
Area ~ using the finite state machine architecture of 
ModSAF 1.0. This mission provides realistic timing 
constraints, communication amongst the autonomous 
agents, and an abstracted commanding finite state ma- 
chine that provides the building blocks for the more 
complex company-level missions Attack and Defend. 
The limited complexity of the Assembly Area mission 
permitted rapid development and testing while utiliz- 
ing the finite state machine architecture. The individu- 
al behaviors of the autonomous agents could be indi- 
vidually analyzed and selectively modified. 

In our developed Company Assembly Area mission, 
the First Sergeant, operating independendy of the 
company, conducted a reconnaissance type mission 
with specific parameters — identifying a suitable as- 
sembly area location. The Company Commander, 
communicating with the First Sergeant, developed a 
company road march plan, integrating the individual 
platoons' road marches into a company level road 
march. The ability to control multiple platoons per- 
forming different unit level tasks is demonstrated in 
the Assembly Area state "Conduct_Roadmarch". The 
ability to control platoon level tasks at an abstracted 
company commander level utilizing ModSAF 1.0's 
current finite state machine architecture is both possi- 
ble and promising. 

The analysis of the existing ModSAF architecture, the 
development of a new company level mission, and the 
testing and evaluation of this mission leads us to draw 
the following conclusions: 

• ModSAF entities require additional terrain 
reasoning algorithms. 

• ModSAF entities should perform some degree 
of mission planning. 

• Company level missions should be designed as 
a collection of independent platoon level tasks. 

• The current AAFSM architecture of ModSAF 
can be utilized to develop realistic company- 
level missions. 

• An abstracted command-level finite state 
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machine controlling the platoon level finite 
state machines is one approach to higher-level 
command and control. 
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1. Abstract 

One aspect of Computer Generated Forces 
(CGF) terrain reasoning is the ability to get 
simulated entities from one location to another. 
The first step in this task usually involves some 
level of planning to generate a path between 
locations for the entity to follow. In the Close 
Combat Tactical Trainer (CCTT) CGF system, 
this planning is accomplished through three 
major terrain reasoning areas: routing, obsta- 
cle avoidance, and dynamic entity avoidance. 
Routing provides a high-level path, or route, 
around large terrain features such as rivers, 
forests, and urban areas as well as routes which 
follow road networks that criss-cross the terrain 
database. Obstacle avoidance, on the other 
hand, provides a low-level path through the 
database, avoiding all features considered as 
obstacles, including individual trees and build- 
ings. Dynamic entity avoidance predicts poten- 
tial collisions between entities and takes appro- 
priate actions to avoid contact. This paper fo- 
cuses on the implementation of obstacle avoid- 
ance and road route planning for the CCTT 
CGF. 

2. Introduction 

The CCTT system is the first trainer in the 
Combined Arms Tactical Trainer (CATT) fam- 
ily of training systems. CCTT is a real- 
time networked simulation environment de- 
signed to provide training of specific military 
skills at a fraction of the cost of an equiv- 
alent field exercise.     CCTT is composed of 

several different types of systems including 
Manned Modules, Workstations, and Semi- 
Automated Forces (SAF). Manned Modules 
consist of crew cabin simulators, including 
MlAls, M2A2s, HMMWVs, and dismounted 
infantry (DI). Workstations provide simulation 
capabilities for the battalion support staff, Af- 
ter Action Review, and simulation support. 
SAF provides additional friendly (BLUFOR) 
and enemy (OPFOR) entities by emulation of 
vehicle dynamics and crew behaviors. Each 
of these systems communicates using the Dis- 
tributed Interactive Simulation (DIS) network 
protocol. A comprehensive discussion of ter- 
rain reasoning within CCTT can be found in 
(Watkins 1995). 

This paper describes the work that has been 
done in CCTT to support road routing and low 
level obstacle avoidance. Discussion of cross- 
country route planning will not be presented 
here. Section 3 discusses what is involved in 
road routing and how it is used by the user. 
Section 4 describes the iterative-deepening A* 
algorithm used to find optimal road routes. 
Preliminary results for the road route planner 
are given in Section 5. Section 6 discusses ob- 
stacle and dynamic entity avoidance. Section 
7 describes relocatable objects that affect ob- 
stacle avoidance and road routing. Section 8 
presents related work. Section 9 gives the au- 
thors' plans for future work. 

3. Routing Across Networks 

A  functional   requirement   of CCTT   is   the 
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ability to route vehicles over road networks 
that criss-cross the simulation database. This 
presents several challenges to the terrain rea- 
soning system due to the complexity of the 
problem of finding optimal routes within a 
database with the size and feature density of 
the CCTT databases. An additional consid- 
eration is dynamic features, such as destruc- 
tible bridges and log cribs, which can change 
the road network at run-time. CCTT's ap- 
proach combines specialized representations of 
the road network with an efficient algorithm 
that manipulates them. These representations 
are computed in an a priori compilation phase, 
which is performed off-line thereby reducing the 
level of computational effort required during 
the simulation. Moreover, road routing is im- 
plemented as a separate process which allows 
the caller to perform other computations while 
the route is being generated. 

3.1 Usage 

The road routing functionality provided in 
CCTT is relatively simple to use. The user sup- 
plies a proposed route that consists of a series of 
points that the user wants fully expanded into 
a road route, and a road snapping threshold. 
The road snapping threshold is used to deter- 
mine how far from an actual road the point can 
be before it is considered to be non-road point. 
The user simply sends a request to the routing 
process and then periodically checks to see if 
the plan has finished. Using a separate process 
allows the user to continue with other tasks and 
allows the routing process to take as much time 
as necessary to completely expand the route. 
Once the routing process has finished expand- 
ing the route, it returns the completed route 
to the user with any error conditions set. Cur- 
rently several things can go wrong when gener- 
ating a road route: 

• A point specified by the user is off the 
database. 

• Point(s) marked as road points with no 
corresponding road in the database within 
the road snapping threshold. 

• During the route expansion a point the 
user specified may be unreachable. That 
is, the road network may be unconnected 
or obstacles may prevent reaching the goal. 

When an error occurs during route expansion 
the partially completed route is returned to the 
user along with the bad point. The user may 
then fix the problem and resubmit the route for 
further expansion. 

4. IDA* 

The algorithm used to search the road network, 
and which produces optimal road routes is a 
variation of the A* (Hart et al. 1968) algo- 
rithm known as iterative-deepening A* (IDA*) 
(Korf 1985). A* is a popular search algorithm 
that improves upon branch-and-bound tech- 
niques by incorporating dynamic programming 
and an admissible estimator of the remaining 
distance to the goal location called a heuris- 
tic estimate. A heuristic estimate is considered 
admissible if it is guaranteed to always under- 
estimate the remaining distance. Straight-line 
distance is commonly used as such a heuristic, 
because no route can ever be shorter than the 
straight-line distance. One disadvantage of the 
A* algorithm is its need to save all partial paths 
to the goal for "possible" expansion. These par- 
tial paths are usually stored in a sorted queue, 
whose size can become extremely large. This 
may severely impact run-time memory require- 
ments resulting in memory allocation failures. 

IDA* is a variation of A* that resolves much of 
the run-time memory problem by eliminating 
the need to maintain the sorted queue of partial 
paths. Instead, this algorithm searches a tree 
or graph by repeatedly performing depth-first 
searches to greater and greater depths, hence 
the name "iterative-deepening". This might 
seem to contradict one's intuition in that the 
algorithm examines most of the same nodes 
over and over again. However, it is has been 
proven that as the branching factor of the tree 
increases, the performance of IDA* becomes 
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asymptotically close to the performance of A* 
(Korf 1985). Therefore, the performance of 
IDA* is not as bad as it may appear to be. 

4.1 Space vs. Time Tradeoff 

Given that IDA* is never faster than A*, when 
should it be used? The answer to this question 
depends on whether the critical aspect one is 
interested in is space or time. In this particular 
application, where the planning of road routes 
is primarily performed pre-exercise, the time 
factor is not as important as run-time mem- 
ory requirements. If on the other hand, time 
is crucial and memory is not a concern, then 
A* should be used. An interesting comparison 
of the space vs. time tradeoff between A* and 
IDA* for cross country route planning can be 
found in (Karr et al. 1995). 

4.2 Trees and Graphs 

The topology of the search space is another is- 
sue that one must be prepared to face. Road 
networks represent a graph topology and must 
be handled differently from tree topologies. For 
example, during a depth-first search the al- 
gorithm should not visit a given intersection 
more than once, i.e., care must be taken to 
prevent cycles. This is accomplished by main- 
taining a "visited" boolean for each intersec- 
tion which is made true when the intersection 
is expanded, and is reset to false after the re- 
cursive call has terminated. Additionally, when 
using IDA* on graphs it is very important to 
remember the cost of the least cost path from 
the source to each intersection that has been 
visited. This dynamic programming principle 
saves a tremendous amount of time because 
many paths of the depth-first search can be 
pruned. 

4.3 Algorithm 

CCTT's implementation of IDA* for road rout- 
ing is embodied in an ADA procedure called 

Find-Route. Find-Route takes two intersec- 
tions, the source and the goal, and returns a 
list of road segments defining the route if one 
exists. The algorithm is shown in Figure 1. 

The depth-first search routine recursively tra- 
verses the graph by expanding all paths from 
the source until the cost of that particular path 
is greater than the current threshold cost. If 
the goal is reached along a particular path, the 
cost of the path is compared against that of 
any other solutions that might have been found 
and if the cost of the newly found path is less 
than the best so far, we save the new path 
and discard the previous best. The procedure 
Depth-First is shown in Figure 2. 

5. Road Routing Observations 

Preliminary investigations have shown that the 
iterative-deepening A* algorithm is working 
well during pre-exercise road route planning. 
The road routing process generates distance- 
optimal routes in an "acceptable " amount of 
time. Because integration activities are under 
way, however, we cannot conduct system level 
timing tests of the road routing capability at 
this time. 

Figure 3 shows a sample of the road networks 
found in a preliminary release of the CCTT 
"Primaryl" terrain database. The area shown 
represents approximately 2 square kilometers. 
The dark lines are the linear features which rep- 
resent the road network. 

Figure 4 shows an example of a route across 
the network. Although the route appears to be 
sub-optimal, it is the shortest route which visits 
all of the route points selected by the user. 

6. Obstacle Avoidance 

CCTT CGF obstacle avoidance performs short 
term routing around individual terrain fea- 
tures such as trees and buildings. It uses the 
long term route information, to be provided by 
CCTT SAF's cross country routing, as a guide. 
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Find_Route (source, goal) 

1. Initialize Threshold_Cost to the straight-line distance from source to goal. 

2. Initialize final path array. 

3. While not Goal_Found and Threshold_Cost does not equal Infinite_Value loop 

3.1 SetNextJThreshold to Infinite_Value 

3.2 Set the initial cost to 0. 

3.3 Perform depth-first search from source until the cost of all paths exceed 

Threshold_Cost. 

3.4 If not Goal_Found then Threshold_Cost = Next_Threshold. 

end loop 

4.0 If ThresholdjCost = Infinite_Value then Success = False, 
else Return the list of segments defining the route. 

Figure 1: Find jtoute Algorithm 

Figure 3: Primaryl Road Network Figure 4: An Example Road Route 

The long term route is divided into smaller seg- 
ments along which obstacle avoidance is per- 
formed. Obstacle avoidance provides a list of 
path points which define a clear path through 
the obstacles along the short term route. 

CCTT CGF short term route planning is ac- 

complished through a combination of static and 
dynamic obstacle avoidance. The separation 
of static and dynamic obstacle avoidance for 
CCTT CGF was influenced by several factors: 

• A clear path through static obstacles can 
be accurately computed. This path will 
not need to be altered unless a dynamic 
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Depth_First (root, goal, threshold cost, actual cost) 

1. Calculate the heuristic cost of the root intersection as the sum of the actual cost from 

the source to the root and the heurstic estimate of the cost from the root to the goal. 

2. If the heuristic cost is greater than the threshold cost then 

2.1 If the heuristic cost is less than the next threshold then save the heuristic cost 

of the root as the new next threshold 

Else 

2.2 Add the root intersection to the current path. 

2.3 If the root = the goal then 

2.3.1 If the cost of this path is the cheapest so far then save it 

Else 

2.3.2 For each intersection connected to root loop: 
2.3.2.1 If the segment connecting intersection(i) to root is trafficable, and 

intersection(i) has not been visited, and the cost from the source 

to the root is the least we've encountered, then 
2.3.2.1.1 Calculate the actual cost for intersection(i) 
2.3.2.1.2 Mark intersection^) as visited. 
2.3.2.1.3 Recursively call Depth_First(intersection(i) , goal, threshold cost, actual cost) 

2.3.2.1.4 Mark intersection® as unvisited. 

Figure 2: DepthJFirst Algorithm 

entity or relocatable object forces a replan. 
It is assumed that most potential con- 
flicts with dynamic entities can be avoided 
through speed changes. 

It is assumed that CCTT database feature 
densities will often render extrapolations 
of entity positions useless after some tens 
of meters, due to frequent heading modifi- 
cations. 

Any attempt at short term route following 
must continue to make frequent checks for 
dynamic entities in the area, since the be- 
havior of a dynamic entity over time can- 
not be accurately determined. 

Road following will only need static obsta- 
cle avoidance when an entity must leave 
the road to avoid a collision, which is as- 
sumed to be infrequent, while dynamic en- 
tity avoidance is constantly queried. 

As with most terrain reasoning functions, ob- 
stacle avoidance is a computationally expensive 
operation. The approach taken by CCTT CGF 
is based upon ModSAF's libmovemap routines. 

6.1 Static Obstacle Avoidance 

The static obstacle avoidance algorithm used 
in CCTT CGF is heavily based upon the 
method in ModSAF for generating spatial 
curves (Smith 1994). This approach generates 
Catmull-Rom splines (Foley et al. 1990) to pro- 
duce a smooth course through the database. 
The control points for the splines are taken 
from the vehicle's location and heading, the 
long term route points generated by cross coun- 
try routing, and from skirt points generated to 
avoid static obstacles. A linear approximation 
to the splines is computed to derive the points 
which make up the obstacle avoidance path. 
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Figure 6: Example short term route path gen- 
erated around trees, steep slope areas, and 
rivers 

Figure 5: Example short term route path gen- 
erated around buildings 

Preliminary results are shown in Figures 5 and 
6. 

The CCTT obstacle avoidance algorithm con- 
sists of two main units. The first unit exam- 
ines the overall route supplied by the long term 
cross country router and determines the por- 
tion of the route to be currently considered by 
obstacle avoidance. Using the moving entity's 
position and the route corridor, the relevant 
obstacles in the area around the route are ex- 
tracted into an obstacle map. The obstacles 
in the map are expanded by the width of the 
routing entity so that a simple line intersection 
can be used to detect collisions. 

The second unit creates the initial path from 
the entity's location and heading and the long 
term route points within the short term plan- 
ning horizon. If the end of the route is not 
reached before the short term horizon, an addi- 
tional point is added at the edge of the obstacle 
map to ensure the entity proceeds correctly to 
the next set of route points. 

Once the initial path is determined, a recursive 
procedure checks the current path against the 

obstacles in the obstacle map. If an intersec- 
tion with an obstacle is found, the routine at- 
tempts to go around the obstacle on both sides 
by generating skirt points in between the cur- 
rent path points. If the obstacle can be skirted, 
the routine recursively checks the new path, at- 
tempting to skirt the obstacle in the direction 
with the shortest skirt path first. If no skirt 
paths can be found around an obstacle, a fail- 
ure flag is set and the recursive algorithm backs 
up and attempts a different path. 

Once a path with no obstacle intersections is 
found, it is optimized by removing all skirt 
points which are no longer important. Skirt 
points required to get around an early obsta- 
cle are often no longer needed once a later ob- 
stacle is skirted. The resulting successful path 
is evaluated for complexity, with greater num- 
bers of control points and longer paths consid- 
ered more complex, and the least complex path 
found so far is stored. After a predetermined 
number of successful paths are found, the re- 
cursion is stopped and the best path found is 
returned. 

A detailed discussion of the methods used to 
expand the obstacles in the map, to compute 
the spline coefficients, and to generate the skirt 
points around obstacles can be found in (Smith 
1994). 
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6.2 Dynamic Entity Avoidance 

The dynamic entity avoidance in CCTT CGF 
also uses ideas implemented in ModSAF. Dy- 
namic entity avoidance must be checked fre- 
quently, since the headings and velocities of en- 
tities are constantly changing. 

The algorithm projects an entity along its 
static obstacle path at small time intervals to 
some event horizon. Concurrently, the pro- 
jected positions of other entities in the area are 
calculated, using their velocities and the time 
interval. An entity does not consider other en- 
tities currently behind him; it is assumed that 
the trailing entity will avoid the leading entity. 

The bounding boxes of all entities are projected 
into the xy plane and are checked for over- 
lap with the detecting entity Figure 7. Non- 
overlaps are thrown out, and overlaps are fur- 
ther investigated using a more rigorous check 
to determine if the entities will in fact collide. 
When a probable collision is detected, the avail- 
able information (the time until collision, entity 
relative velocities, etc.) is used to determine 
the appropriate action to take. 

An interesting problem arises when the courses 
of two entities converge but do not cross, or 
when entities that are following similar paths 
have different speeds. In these situations, col- 
lisions can be difficult to anticipate. Entities 
traveling in formation are particularly suscep- 
tible to these problems; swerving to avoid a tree 
or slowing to avoid an entity can result in a col- 
lision with another entity in one's own platoon. 

Since CCTT requires large numbers of enti- 
ties to travel in formation, an efficient solu- 
tion had to be found for these situations. Once 
the bounding box check described above has 
indicated an overlap, then a check is made 
to determine if the two entities actually come 
close enough to each other to cause a collision. 

Figure 7: Detecting possible collisions between 
entities by projecting the areas entities cover 
during discrete time steps 

By describing the motion of both entities with 
parametric equations, the time when the enti- 
ties come within a given distance of each other 
can be determined. 

Given two entities with velocities Vi and V2 and 
locations L\ and £2, the two dimensional dis- 
tance d between them at any given time t is 
shown in Figure 8. 

By setting the distance to the collision distance 
threshold desired, and by scaling the velocity 
vectors over the required time frame, a proba- 
ble collision can be accurately detected. 

7. Relocatable Objects 

Relocatable objects are terrain features which 
can be dynamically placed into the terrain 
database during a simulation. In CCTT, Com- 
bat Engineering entities place relocatable ob- 
jects to provide mobility, countermobility, and 
survivability. 

Relocatable objects may be surface obstacles, 
changes to terrain geometry, or other traffica- 
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d = y/(Vut - Llt - V2J - i2xy + (Vlyt - Lly - V2yt - L2yy 

Squaring both sides and simplifying: 

d2 = [<Yu ~ V2x)
2 + (Vly - V2y)

2]t2 + 2[(Vlx - V2x){Lu - L2x) + (Vly - V2y)(Lly - L2y)]t + (Llx 

L2l? + (Lly - L2yy 

Denning the relative velocity and relative location vectors as: 

VTel =V,-V2 

Lrel — L\ — L2 

We have: 
d2 = (Vrei • Vrel)t

2 + 2{Vrel • Lrel)t + (Lrel • Lrel) 

Subtracting d2 from both sides and using the quadratic formula: 

t = _ -Vr,rLrti±y/(Vr.rLTel^-(Vr.rVrcl)(LrcrLrcl)+(VrCrVrCi)di 

Vrel-Vret 

Since ||Ke; X Ire,||2 = ||Fre;||
2||Ire/||2 - \\Vrel • Lrei\\2 : 

t = 
_   -Vr,l-I>rd±Vf'P(Vr«fV,r«l)-l|Vr«|XLr„|P 

Vr«.-Vre, 

Figure 8:  Derivation of equations to determine the time two when two vehicles come within a 
certain distance of each other. 

bility factors. The list of relocatable objects 
used for CCTT includes log crib, abatis, tank 
ditch, concertina wire, minefield, armored ve- 
hicle launched bridge (AVLB), ribbon bridge, 
and vehicle and DI prepared fighting positions. 
Each of the relocatable objects can be dam- 
aged, destroyed, or breached. 

For the most part, relocatable objects can be 
treated as any other terrain obstacles to be 
avoided. The interesting behavior for obstacle 
avoidance is associated with the bridges, mine- 
fields, and prepared fighting positions. 

cle avoidance must recognize these features as 
trafficable and make use of them where appro- 
priate. 

Minefields present several interesting cases. An 
opposing force may not know about an existing 
minefield, in which case the minefield is not an 
obstacle until its presence is known. When the 
presence of a minefield is known, it becomes an 
obstacle, unless it is breached. Route planning, 
both at the high and low levels, must be aware 
of and take advantage of breached lanes in the 
minefield when planning trafficable paths. 

Most terrain features are either treated as ob- 
stacles to be avoided (e.g. buildings) or are 
ignored (e.g. roads) with respect to obsta- 
cle avoidance. Relocatable bridges, however, 
present a special case, in that they are features 
to be approached, rather than avoided. Obsta- 

Prepared fighting positions, such as hull de- 
filades, are generally considered obstacles for 
short term routing. However, obstacle avoid- 
ance must be able to plan paths into prepared 
positions for entities wishing to take cover in 
them. 
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Relocatable objects also affect road route plan- 
ning. The approach we are currently investigat- 
ing is to change the road network at run-time 
when relocatables are placed. For example, if a 
log crib or abatis were placed across a road seg- 
ment, the road network would be modified to 
reflect the obstacles affect on trafficability. The 
original road segment is split into smaller seg- 
ments by creating two intersections that mark 
the extents of the obstacle. The road segment 
defined by these two intersections is not trafR- 
cable, and its associated trafficability flag is set 
accordingly. The trafficability of the new road 
segments leading up to and away from the ob- 
stacle are not affected. This allows vehicles to 
be routed right up to the obstacle if necessary. 
Moreover, the changes to the road network are 
localized and can be made quickly. 

8. Related Work 

While research in route planning for CGF pur- 
poses is relatively new, a great deal of work 
has been done in the field of robotics regard- 
ing motion planning (Arkin 1989, Brooks 1986, 
Chattergy 1985, Thorpe 1984). An excellent 
compendium of route planning techniques and 
their associated complexities can be found in 
(Mitchell 1988). A detailed discussion of "least- 
risk" watchman routes, which is extremely rel- 
evant to CGF researchers interested in develop- 
ing systems capable of generating covered and 
concealed routes can be found in (Gewali et 
al. 1989). The artificial intelligence commu- 
nity has also given attention to this problem 
(Kuipers and Levitt 1988, Levitt and Lawton 
1990, McDermott and Davis 1984). A recent, 
knowledge-based approach to the problem of 
finding "reasonable" road routes is discussed in 
(Goel et al. 1991). Our approach to planning 
road routes and performing obstacle avoidance 
was directly influenced by the techniques in- 
cluded in ModSAF (Smith 1993). However, 
there are several noticeable differences. IDA* 
was used instead of A* for planning road routes 
and route planning is implemented as a sepa- 
rate process. 

9. Future Work 

This paper describes the status of the CCTT 
routing capability as of March 1995. Future 
work will focus on the implementation of cross 
country routing and enhancing current routing 
capability. 

For cross country routing, two approaches are 
currently being investigated. One is the al- 
gorithm used by ModSAF. The other is an 
abstraction of the obstacle avoidance routines 
which will operate on larger features such as 
forests and urban areas, ignoring individual 
trees and buildings. 

Several enhancements to existing routing func- 
tionality are being considered. CCTT rout- 
ing is currently performed using only short- 
est distance as a heuristic. More sophisti- 
cated heuristics for choosing routes are being 
explored, such as modifying segment weights by 
factoring in terrain slope and soil type (includ- 
ing "wet" soils). Obstacle avoidance and route 
planning enhancements may include a more so- 
phisticated path optimizing (smoothing) algo- 
rithm, reuse of obstacle maps for multiple en- 
tities within a platoon, and support for multi- 
level terrain and relocatable objects. 
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1.   ABSTRACT 

Techniques to allow simulated entities to avoid static 
terrain, such as trees, buildings, rivers, etc., have been 
in use in Distributed Interactive Simulation (DIS) 
environments for many years. Avoidance of objects 
in motion, "dynamic obstacles", is a complicated 
issue. Although simple dynamic obstacle collision 
avoidance has been implemented, the resulting 
behavior is usually less than realistic. While complex 
algorithms for dynamic obstacle collision avoidance 
are computationally expensive. The paper presents a 
novel approach that allows simulated DIS entities to 
make reasonably intelligent and realistic maneuvers 
to avoid dynamic (and static) objects without 
excessive computational cost. This Dynamic Obstacle 
Avoidance (DOA) Model combines two disparate 
motion planning approaches: potential fields and grid 
based route planning. 

2.  INTRODUCTION 

2.1   General Path Planning Approaches 

Motion planning with particular emphasis on robot 
path planning and robot manipulator path planning 
has seen considerable work (Hwang et. al. 1992). 
There are four broad categories of path planning 
approaches: free/blocked space analysis, vertex 
graphs analysis, potential fields, and grid (regular 
tesselation) based algorithms (Thorpe 1984). Each 
approach has strengths and weaknesses. 

2.1.1 Free/Blocked Space Analysis 
In a free space approach, only the space not blocked 
or occupied by obstacles is represented and planning 
occurs within this space. For example, using Voronoi 
diagrams (Roos and Noltemeier 1984) to represent 
the center of movement corridors is an efficient free 
space approach. However. Voronoi diagrams and 
other free space approaches have some deficiencies. 
First, they tend to generate unrealistic paths. Paths 
derived from Voronoi diagrams follow the center of 
corridors while paths derived from visibility graphs 
(Mitchell 1988) clip the edges of obstacles. Second, 
the width and trafficability of corridors are typically 

ignored. Third, distance is generally the only factor 
considered in choosing the optimal path. 

In contrast, near-term maneuver control in ModSAF 
is a blocked space analysis using analytic geometry 
and AI search (Smith, 1994). Obstacles are projected 
in time and routes are found outside the obstacles by 
curve fitting through spline control point adjustment. 
The route finding algorithm is reapplied throughout 
movement to recalculate and refine the current route 
segment. The speed, acceleration, and turn rates are 
determined for the entire route segment. Although 
the computational expense of this approach is 
controlled by scheduling planning events as 
infrequently as possible, this approach is 
computationally wasteful in that carefully crafted 
routes are discarded and recalculated in exactly those 
situations where dynamic obstacle avoidance is 
needed most. 

2.1.2 Vertex Graph Analysis 
In the vertex graph approach, only the endpoints 
(vertices) of possible path segments are represented 
(Mitchell 1988). This approach has three difficulties. 
First, i is suitable only for spaces that have a 
sufficient density of obstacles; determining the 
vertices in "open" terrain is difficult. Representing 
only path vertices creates two other difficulties. 
Second, trafficability over the path segments is not 
represented; routes segments between arbitrary 
vertices are typically "open" or "blocked". Third, 
factors other than distance can not be included in 
evaluating possible routes. In the military simulation 
domain, concealment and cover are important factors 
in route planning. 

2.1.3 Potential Fields 
In the potential field approach, the goal (destination) 
is represented as an "attractor", obstacles are 
represented by "repellors", and the vehicle is pulled 
toward the goal while being repelled from the 
obstacles (NASA 1991). There are two difficulties 
with the potential field approach. First, the vehicles 
can be attracted into box canyons from which they 
can not escape (NASA 1991). Second, some 
elements of the terrain may simultaneously attract and 
repel.    For example, an obstacle to movement, a 

245 



repellor, may create an area of concealment. A 
vehicle should be attracted to the obstacle for 
concealment while being repelled from the obstacle 
creating the "visibility shadow". 

2.1.4  Regular Grids 
In the regular grid approach, a grid overlays the 
terrain, terrain features are abstracted into the grid, 
and the grid rather than the terrain is analyzed. Each 
grid cell is typically marked as "open" or "blocked". 
Quadtrees are an example of the regular grid 
approach (Mitchell 1988). This approach simplifies 
the analysis but has two disadvantages. First, 
"jagged" paths are produced because movement out 
of a grid cell is restricted its "n" neighbors (typically 
four or eight for square grids and six for hexagonal 
grids). Second, the grid granularity (size of the grid 
cells) determines the smallest "opening" between 
obstacles that can be identified. When the granularity 
is too large, small openings in obstacles (e.g. bridges 
over rivers) are lost. Increasing the grid granularity 
to capture the small openings increases the 
computational expense of the analysis. 

3.  THE DOA MODEL 

The DOA Model combines the potential field and 
regular grid approaches into a single mechanism for 
avoiding moving and static obstacles during 
movement along a predetermined route. The Neural 
Net paradigm (Glasius et. al. 1994 and Hertz et. al. 
1992), was the genesis for this work, although the 
traditional Al hill climbing is another excellent 
metaphor (Charniak and McDermott 1987). 

A "small" rectangular grid overlays the vehicle and 
the area to its front and sides. The cells in the grid 
fall into several classes: 

1. barrier: a static obstacle the vehicle cannot 
cross and which does not change position, 
such as a river, 

2. target: represents the position the vehicle 
wants to reach (potentially interpolated from 
the next route point), 

3. vehicle: represents the position of the 
vehicle doing the routing, 

4. obstacle: represents the positions and 
projected positions of moving objects, and 

5. open: all other cells. 
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Figure 1 : DOA Grid. 

In this example, the vehicle has no barriers (B) 
between it and its target, but a moving obstacle (O) is, 
at least temporarily, blocking a line from the vehicle 
(V) to the target (T). 

3.1 Application of the DOA Grids 

This work was performed in the Institute for 
Simulation (1ST) Computer Generated Forces (CGF) 
Testbed (Smith 199?). When a CGF vehicle is to 
route to a destination, a long term planner selects a 
collection of intermediate points (route points) to be 
used in traveling to the destination. The long term 
planner analyses only static terrain features. To avoid 
moving objects, the DOA logic is applied periodically 
during route transversal. The frequency of DOA 
analysis is determined from the vehicle's speed such 
that the vehicle will move approximately 1 cell before 
the next DOA analysis The grid is laid out so that the 
vehicle is on an edge and the target, or an interpolated 
target, falls on the opposite edge (see Figure 4). 

3.2 Interpretations of the DOA Grid 

The grid can be viewed as a network of cell 
connections. For example, consider a subset of the 
full graph showing a path from the vehicle in Figure 1 
to its target destination: 
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Figure 2 : Path as Tree Transversal. 

It is the directed graph view that triggered the 1ST 
notion of looking for parallels between this problem 
and the neural net and potential field approaches. 
Traditionally, such a graph would be used to reduce 
the problem to that of a search avoiding "danger 
areas" (Cortes-Rello and Golshani 1990). However, 
the search metaphor inevitably leads one to treat grid 
cells as open (passable) or closed (blocked) (Mitchell 
1988); something more subtle is needed. While cell 
4D is not blocked, its proximity to a moving obstacle 
should make 4D less attractive than 3D (hence the 
choice of 3D rather than 4D in Figure 1). It is not 
obvious how to take such things into account when 
viewing this as a simple search problem. 

3.2.1   The Neural Net Model 

If we view the cells as elements in a Hopfield neural 
net (Hertz 1992), the cells (particularly 3D and 4D in 
the example at hand) should be influenced by their 
adjoining cells. In neural net theory, the "energy" of 
a cell is calculated in two steps. First, the 
contributions of neighboring cells are summed: 

hj = V Wijhi 

Where hj represents the energy of a cell j, Wij 
represents the "connection weight" from cell i to cell 
j, and h, represents the energy of cell i. The second 
step involves "clamping" h; within a 0/1 or ±1 range 
with an "activation" function, g(h). Neural net theory 
provides two frequently used activation functions: a 
sigmoid function and a hyperbolic function. However, 
Glasius (1994) suggests that a linear activation 
function, g(x) = Kx, is adequate for propagating the 
obstacle values within the net (where K is a constant 
in the range [0, 1.25)). In this research, the linear 
activation function was used and the range expanded 

to [0,10,000). Understandably, large K values tended 
to magnify the effects of obstacles. 

The DOA Grid can be viewed as a neural net with 
connection weights held at 1. Thus, only cell values 
are manipulated. 

3.2.2  The Potential Field Model 

In the DOA Model, the grid and its obstacles are 
manipulated via the potential field metaphor. The 
DOA algorithm assigns the target cell a negative 
(attractive) potential, the barrier cells potentials of 0, 
and the obstacles cells positive (repulsive) potentials. 
Neural Net mechanics propagate the potentials 
throughout the grid. Thus, a cell's value represents 
the combined attractive and the repulsive potentials 
of the target, barriers, and obstacles. For simplicity, 
one can view these values as either elevations or 
temperatures. If viewed as elevations, the vehicle is 
seeking the lowest point not unlike a marble rolling 
downhill. If viewed as temperatures on a uniform 
sheet (the grid), the vehicle is trying to negotiate the 
sheet to reach the coolest point. 

As stated, the problem still appears to be a simple 
search: some points are forbidden, there is a start and 
a finish location. However, if we view the sheet as 
heat conducting, and the obstacles as points where 
heat is being applied (perhaps with a soldering gun) 
and the target as a point being cooled, it becomes 
clear how one cell can influence those around it. The 
key now is to let time pass so the effects of the 
heating and cooling can spread. After some time we 
might have a new situation such as: 
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Figure 3 : Heated DOA Grid. 
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The shaded squares indicate an elevated temperature 
because the obstacles have heated the cells next to 
them. Eventually, those cells could warm those next 
to them, and so on. Some cells (such as 5C) are 
adjacent to 2 obstacle cells and so are heated from 
two sources, others, such as 4E are heated on one side 
and cooled on the other. Rather than attempt to apply 
any realistic temperature model, discrete time steps 
are taken and at each step a cell's new temperature is 
a weighted average of its own temperature and the 
temperature of the surrounding (or, if viewed as a 
graph, the connected) cells' temperatures. At each 
iteration, a new set of cells are affected by obstacle 
cells and cells which had already been adjusted are 
re-adjusted. 

If we view the DOA Grid through the elevation 
metaphor, the initial grid is flat but for some plateaus 
(obstacles) and a pit (the target). The smoothing 
process causes the ground (cells) around the poles 
and pits to erupt or sink. Continued iterations cause 
the grid to approach terrain sloping smoothly from 
the vehicle toward the goal and around the "hills" 
surrounding the obstacles and barriers. The path to 
be taken avoids high spots and runs down to the low 
areas. 

The resulting grid captures a great deal of information 
and is the basis for the algorithms developed. A cell 
containing an obstacle effects surrounding cells and 
the resulting gradient is an imprecise measure of the 
probability the vehicle will move there. A gradient 
based search would now select 3D rather than 4D. It 
is quite easy now for people to express opinions with 
a glance at the grid. The path already described does 
not go too much out of the way but avoids 1 "hot" 
square. A path starting out due South East could stay 
on cool squares for the entire trip, albeit by taking a 
longer trip. 

A central premise of this work is that a grid can be 
constructed, smoothed (which means carrying out 
several iterations to allow the potentials to spread), 
and an algorithm to select velocity applied very 
rapidly. 

The grid approach is prone to all of the classic hill 
climbing problems. Our view is "upside down", we 
can get trapped in local minimum rather than a local 
maximum; in any case, local extremes are a problem 
(Charniak and McDermott, 1987). To some extent, 
these problems are mitigated by the fact that there is 
only one low point at the outset; if a cell is depressed, 
there must be a clear path from that cell to the target 
because it was influenced by the target. In general, a 

lower point is either further from obstacles or closer 
to the target. 

3.3  Long Range, Short Range, and Immediate 
Planning 

Planning a complete route is a long range process. 
What direction to travel for the next few seconds is 
dependent on the long term goal and the local 
conditions. Given arbitrary computation time, long 
term planning can be used for DOA problems by 
treating the moving obstacles as fixed for the purpose 
of computation, and re-computing frequently with 
updated obstacle positions. Unfortunately, long term 
planning probably requires more effort than can be 
expended for rapid speed and course adjustments. In 
contrast, considering only the immediate vicinity 
(immmediate planning) can avoid collisions by 
making "snap decisions" on what to do next without 
full analysis of the situation (in particular, without 
guaranteeing that the destination can be reached from 
the new position). 

3.3.1 Short Range Planning 
The A* search algorithm (Winston 1992), is a 
efficient long range search algorithm. In the DOA 
Model, A* treats the DOA grid as a terrain map 
where, essentially, the distance traveled is minimized 
(taking the elevated areas into account by charging 
extra distance for crossing elevated areas). Because 
the DOA grid is small and provides only local 
information, the route found by A* is not a long 
range route to a destination or intermediate route 
point. Rather it is a short range route around and 
through the local obstacles. 

3.3.2 Immediate (Next Step) Planning Algorithms 
The other algorithms tested are of the immediate 
planning type (Karr, 1995). Only the cells adjacent to 
the vehicle are considered in making course and 
speed adjustments. The danger to such an approach, 
of course, is that the vehicle could become trapped or 
cycle. These concerns are greatly mitigated by the 
way the method is applied. First, each cell's value 
reflects the combined potentials within the entire 
DOA grid. Second, a clear path is known to exist (at 
least the first time a grid is built). Third, obstacles 
will eventually move out of the way (or be passed). 
Fourth, the target position is re-computed (by 
interpolation) each time a grid is built. 

The immediate planning algorithms first select a 
target cell and then select a speed as a function of the 
target cell's value. If the value is negative a clear 
path to the target is presumed to exist and so the full 
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specified speed is used by the vehicle. If the cell has 
a positive value, the vehicle's speed is reduced. 

3.4 Avoiding Collisions 

To avoid colliding with a moving object, two options 
exist: change speed or direction. In real life a speed 
change could involve an increase in speed, but for our 
work we use only deceleration from the vehicle's 
desired speed. 

The DOA algorithms look at cells' values both for 
direction (smaller values generally indicate more 
desirable paths) and speed (smaller values indicate 
higher speeds can safely be used). After the direction 
is selected, the relative elevation of the cell being 
entered is used to select a speed. If the cell's value is 
less than zero, a clear path to the target is at hand and 
the vehicle moves at full speed. A relatively large 
elevation indicates the cell is near obstacles and lower 
speeds are selected. 

3.5 The DOA Testbed 

In order to better understand the DOA Model prior to 
implementing it within the 1ST CGF Testbed, a stand 
alone DOA Testbed was created. The DOA Testbed 
allows experimentation with DOA approaches 
without the complexities of terrain navigation and 
vehicle dynamics within a DIS environment. 
Although the DOA analysis was moved to the 1ST 
CGF Testbed so simulated vehicle behavior could be 
directly examined, the fundamental work and 
algorithm selection was done in this stand alone DOA 
Testbed. 

4.1 The ManeuverToPoint FSM 

Within the CGF Testbed, routes are piecewise linear 
curves represented by a list of points. These routes 
are generated by a vehicle level route planner which 
plans route around static obstacles. Route following 
causes entities to maneuver towards the first route 
point on its route point list. As each route point is 
reached, it is removed from the route point list, 
causing the vehicle to move towards the next point on 
the route. 

Route following is implemented in the 
ManeuverToPoint FSM. The states within the 
ManeuverToPoint FSM set requested values (such as, 
requested speed, requested turn) which are used by 
the entity's dynamics process. The ManeuverToPoint 
FSM maneuvers the entity so that it passes near each 
route point and comes to a stop near the last route 
point on the route point list. 

4.2 Maneuver control with the DOA Model 

The DOA FSM is started for a vehicle when the 
vehicle is beginning to move along a route and 
terminated when the vehicle reaches its destination. 

The DOA FSM performs a "snapshot" analysis of the 
local situation, makes recommendations for speed and 
heading, and schedules itself to be repeated in the 
near future. The scheduled time is proportional to the 
speed of the vehicle so that the vehicle moves less 
than the width of a grid cell between DOA analyses. 

4.3 DOA Algorithm 

4.   IMPLEMENTING THE DOA MODEL IN 
THE 1ST CGF TESTBED 

Behavior control within the CGF Testbed is 
implemented through a code structuring technique 
based on Finite State Machines (FSMs)(Smith, 1992). 
An FSM manages task resources and scheduling in a 
manner similar to that of a process in a multitasking 
operating system. It isolates and protects its state 
information much as an object does in an object 
oriented programming environment. 

An FSM encoding the DOA Model (the DOA FSM) 
was added to the CGF Testbed. This FSM schedules 
itself based on the speed of the vehicle and awakens 
the ManueverToPoint FSM (see below) to make 
suggested changes in vehicle speed and direction. 

The DOA algorithm is: 

1. Fill the DOA grid. Grid cells are marked with 
obstacles (moving vehicles), barriers (stationary 
vehicles, static objects), the interpolated target 
location, the vehicle's location, and information 
about the terrain surrounding the vehicle. 

2. Propagate cell values within the grid, as 
described in Section 3.2.1. 

3. Apply the algorithm 
configuration file. A 
heading are produced. 

4. Change the vehicle's speed and heading 

specified     in 
suggested   speed 

the 
and 
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Figure 4: DOA Grid 

a. If the nearest vehicle is less than 20 meters 
away, slow to a stop (i.e. halt). 

b. If the nearest vehicle is between 20 and 30 
meters away and to the right, slow to a stop. 

c. If the vehicle has been halted and should 
remain halted, backup. 

d. If the vehicle has been halted and doesn't need 
to remain halted, resume movement. 

e. If the suggested speed is less than a threshold, 
maneuver along the suggested heading with the 
suggested speed. 

f. Otherwise, use the suggested speed heading 
directly at the target. 

Steps 1-3 are straight forward. Step 4 makes the final 
maneuvering decisions. Steps 4a-d encode rules for 
resolving imminent collision situations: 

a) Rule 4a causes the vehicle to begin abrupt 
braking if a collision seems imminent. 

b) Rule 4b encodes a "yield to the right" rule of 
the road. 

c) Rule 4c allows the vehicle to backup out of 
deadlock situations. 

d) Rule  4d  permits  the  vehicle  to  resume 
movement after halting and backing up. 

Rules 4e and 4f accept the DOA Model suggestions. 
4e causes the vehicle to follow the speed and heading 
suggestions   while   4f   accepts   only   the   speed 

In summary, the DOA algorithm causes vehicles to 
avoid collisions by: 

a)    Slowing first (rule 4f), 

b) Then   slowing   and   steering   away   from 
obstacles (rule 4e), 

c) Then stopping (rules 4a and 4b), and finally 
d) Backing up (rule 4c). 

Of course only the maneuvering that is necessary to 
avoid collisions is performed; e.g. if slowing resolves 
the problem then steering, halting, and backing up are 
not utilized. 

4.4  The DOA grid 

Figure 4 depicts three Mis showing only Vehicle l's 
DOA grid. The DOA grid is 100m by 200m with 
10m by 10m grid cells. This allows Vehicle 1 to do 
perform localized DOA 100 meters to its front. 
Vehicle 1 is using DOA to maneuver around 
obstacles (Vehicle 2 and Vehicle 3) and a barrier (a 
river). 

Notice that Vehicle 3's projected position creates 
obstacles in front of Vehicle 1. The DOA Model has 
suggested a target location for Vehicle 1 to the right 
so as to avoid Vehicle 3. Vehicle 2 is behind and to 
the right of Vehicle 1 and does not influence Vehicle 
l's DOA grid. 

The DOA grid is a rectangular array of cells, each 
contains: 

1. Contents of a cell: 
• EMPTY: If it contains only open terrain, 
• DOAJVEHICLE: If it contains the vehicle 

for which the DOA analysis is being 
performed, 
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Figure 5: Competition for the Bridge 

• TARGET: If it contains the target location to 
which the DOAJVEHICLE is trying to 
reach, 

• OBSTACLE: If it contains a moving vehicle 
or a moving vehicle's projected position, or 

• BARRIER: If it contains a stationary object 
or barrier; e.g. a river. 

2. Value of the cell: 
• The propagation of cell values within the 

grid if it is an EMPTY cell, or 
• The fixed value used for DOAJVEHICLE, 

TARGET, OBSTACLE or BARRIER. 

The DOA grid is placed in front of the vehicle 
oriented along the vehicle's heading. The vehicle is 
located at the "rear" center of the DOA grid. This 
arrangement allows the vehicle to detect and avoid 
obstacles and barriers on its forward path. Passed 
obstacles and barriers drop off the vehicle's DOA 
grid, and stop influencing its maneuvering. 

5.  DOA MODEL RESULTS IN THE 1ST CGF 
TESTBED 

Experiments with the DOA Testbed revealed that 
analyzing the DOA grid with the A* algorithm (step 3 
in Section 4.3) gave the most stable and realistic 
results. Five different scenarios using A* based DOA 
analysis were developed to test the DOA Model: 

1. X-scenario (two vehicles moving in a 315 and 
225 degree collision course), 

2. Head On Collision scenario (two vehicles 
moving in a head on collision course), 

3. Right Angle Collision scenario (two vehicles 
moving in a 0 and 270 degree collision 
course), 

4. Competition for the Bridge scenario (three 
vehicles competing to cross a bridge), and 

5. Head On Collision On the Bridge scenario 
(two vehicles moving in a head on collision 
course on a bridge). 

The DOA Model produced realistic driving behavior 
in all five scenarios. Space limitations allow only one 
scenario (4. Competition for the Bridge) to be 
discussed in detail. 

5.1   Scenario 4: Competition for the Bridge. 

In contrast to the other scenarios, this scenario 
involves three vehicles moving in the same direction. 
The complication is that they must all cross a narrow 
bridge. The scenario is arranged so that the vehicles 
would arrive at the bridge simultaneously without 
DOA 
locations and their routes 
the bridge 

Figure 5 shows the vehicles in their starting 
The routes converge on 

Figure 6 shows the vehicles at their destinations. For 
clarity, the vehicles and their "trails" are shown in the 
Figures; the DOA grids are not shown. The density 
of trail marks indicates the vehicle's speed; the denser 
the trail the slower the vehicle was moving. 

In this scenario, the three vehicles were ordered to 
proceed at normal speed with DOA active. All 
maneuvering and speed changes were the results of 
the DOA Model. 
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Figure 6: Competition for the Bridge 

The maneuvers made by each vehicle in this 
scenario were: 

Vehicle 1: 
1. Started to move slowly towards its first route 

point. 
2. Broke loose from the other vehicles influence 

and accelerated. 
3. Crossed the bridge at normal speed. 
4. Reached its destination. 

Vehicle 2: 
1. Started to move slowly towards its first route 

point. 
2. Continued to move slowly to avoid Vehicles 1 

and 3. 
3. Moved a little bit ahead of vehicle 3. 
4. Crossed the bridge at normal speed. 
5. Approached destination. 
6. Reached its destination. 

Vehicle 3: 
1. Started to move slowly towards its first route 

point. 
2. Continued to move slowly to avoid Vehicles 2 

and 3. 
3. Decelerated to avoid Vehicle 2. 
4. Steered to its right to avoid Vehicle 2. 
5. Crossed the bridge at normal speed. 
6. Decelerated after crossing bridge to avoid 

Vehicle 2. 
7. Accelerated after Vehicle 2 stopped. 

In summary, the vehicles, through a combination of 
deceleration and minimal steering, passed over the 
bridge without collision. This scenario demonstrates 
that the DOA Model resolves conflicts at chokepoints 
without a complex set of "rules of right-of-way". 

6.   CONCLUSIONS AND FUTURE WORK 

1ST has developed a novel approach to attack the DIS 
dynamic obstacle avoidance (DOA) problem by 
combining two disparate motion planning 
approaches: potential field and regular grid analysis. 
This approach is rooted in neural net fundamentals 
and the underlying design allows various techniques 
to be brought to bear on the avoidance problem. To 
allow focused study of the DOA problem, 1ST 
developed a stand alone DOA Testbed. On this 
foundation, 1ST has implemented and evaluated many 
techniques which would seem inapplicable using 
other approaches (from a simple "best guess" method 
to spline fits). To test the validity and applicability of 
these results, 1ST implemented the more successful 
DOA algorithms within its CGF Testbed and studied 
their results within a DIS environment. In particular, 
the A* based DOA Model shows excellent moving 
obstacle avoidance while maintaining reasonably 
close adherence to previously created piecewise 
linear routes. 

There are several opportunities for further work in the 
area of Dynamic Obstacle Avoidance. Among them 
are the real time coordination of route following, 
station keeping within formation, and dynamic 
obstacle avoidance. This work has focused on 
dynamic obstacle avoidance within the context of 
following lengthy routes generated by route planners 
that ignore dynamic (moving) obstacles. The 
coordination of dynamic obstacle avoidance and 
station keeping within a formation is an interesting 
area for further research. 
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1.    Abstract 

The development of infantry operations in Marine 
Corps SAF requires the use of small scale terrain 
features for cover and concealment. A useful method 
of incorporating such features in path planning 
involves the assignment of cost factors to each 
feature; e.g. low costs assigned to highly protected 
terrain, and high costs to exposed areas. The 
appropriate representation of the terrain plays an 
important role in selecting the best path from a start 
point to a destination and in maximizing 
computational efficiency. We compare the suitability 
of grid-base (GB) and weighted-region (WR) based 
terrain representations for planning. 

We have applied the weighted-regions approach to the 
path planning needs of Marine Corps SAF in 
ModSAF [presented in a companion paper by 
Howard, et al.]. Because terrain features in ModSAF 
are represented as disjoint polygons superimposed on 
a uniform background, while the weighted-regions 
representation requires a "tiling" of the plane made up 
of weighted contiguous polygons, an interface was 
required to bridge these two representations. We will 
describe this interface and discuss the application of 
the resulting system for the path planning needs of 
infantry movements. Finally, future research issues 
relating to geometrical terrain analysis and path 
planning are discussed. 

2.     Introduction 

The development of military simulations has focused 
on Semi-Automated Forces (SAF). This reflects the 
need for entities which, while not having complete 
autonomy, exhibit enough intelligence to fill in the 
behavioral details when assigned a task by a human 
operator. While much of the Computer Generated 
Forces (CGF) effort has focused on armored vehicles 
and aircraft, Marine Corps SAF requirements include, 
as a major part, the need for SAF entities which are 
simulated infantry, or "Individual Combatants" (ICs). 
Actual infantry units, when moving under threat of 

JTo whom correspondence should be addressed. 
Internet: hoff@isl.hrl.hac.com 

enemy fire, move both quickly and with maximum 
use of cover and concealment. Therefore, an IC-S AF 
unit ought to be capable of making a judicious choice 
of route, when tasked to move to a specific battlefield 
destination, thus freeing the workstation operator 
from having to study the terrain and make the route 
choice. 

For both the Marine Corps LeatherNet project and the 
IC-SAF portion of STOW97, we were given the 
mission of building IC capabilities into the latest 
version of ModSAF (version 1.2, when we began in 
mid-1994). One of the basic "behaviors" to be 
developed was the ability to move using the cover and 
concealment afforded by the surrounding terrain. 
ModSAF operates in the context of a terrain database, 
which includes an elevation map and terrain features 
such as obstacles. ModSAF obstacles include 
buildings, lakes, rivers, and tree canopies (the latter 
being more of an obstacle to armored vehicles than to 
ICs). These features are internally represented as 
planar polygons, stored by their vertices, and 
annotated with other descriptive information (Loral 
1994). 

ModSAF has the capability of generating obstacle 
free paths: Given a destination for a vehicle situated 
in the terrain, ModSAF will generate a path for the 
vehicle which skirts the intervening obstacles. In the 
"spirit of SAF", an operator can issue a Move task to 
a vehicle, which will then find its way to its goal, 
avoiding obstacles in a natural way (Loral 1994). 
However, ModSAF lacked the representation of 
"desirable" terrain regions, i.e. regions, such as 
covered-or-concealed corridors, which are somehow 
advantageous to a vehicle. It therefore also lacked the 
ability to plan paths which use such desirable 
regions. (Version 1.4 of ModSAF begins to provide 
such a capability.) We needed to model the ability of 
human ICs to choose paths that take advantage of 
cover and concealment, when moving to a 
destination. 

The remainder of this paper describes the modeling of 
path choice, by turning to a family of terrain feature 
representations and their associated path-planning 
algorithms. We explain our specific representation 
and algorithm selections and the interface between the 
chosen path-planning algorithm and the ModSAF 
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system. We show the results of the enhanced system, 
and discuss prospects for future research. 

3.    The  "Shortest-Path"  Paradigm 

The problem of choosing a path through the terrain 
which maximizes the use of cover and concealment 
can be couched in terms of a "shortest-path" problem 
(Mitchell 1988). In the "shortest-path" paradigm, 
sections of terrain are weighted with non-negative 
costs. The cost for a path is computed by summing 
the costs incurred in each section. By assigning low 
costs to highly concealed or covered sections of 
terrain, and high costs for exposed sections, we 
convert the problem of finding the most covered-and- 
concealed path to the problem of finding the path that 
has the lowest cost (also called the "shortest path" 
from the analogy of cost to length). The cost values 
may be computed based on a number of algorithms, 
including line-of-sight from a known enemy location. 
Speed of movement through the terrain may be 
factored in, so that exposure in a "slow-go" region is 
more costly that exposure in a "go" region. 
Impassable regions (obstacles) are assigned very high, 
or even infinite, weights so that there is no choice of 
start and end points for which the shortest path passes 
through such a region. Clearly there is a need for a 
wide spectrum of cost values, so that graded levels of 
region desirability may be defined. 

There is a choice in the representation of the weighted 
terrain. In a grid-based (GB) representation, the plane 
is divided into small, regular regions, e.g. equal sized 
squares. The center of each region is connected to 
that of its neighbors with weighted edges. The 
allowed paths travel along these connecting edges, 
through the regions, and are assigned costs which are 
the sum of the weights of the edges traversed. The 
path choices are discrete, bound to the shape of the 
grid. (This constraint is called digitization bias by 
Mitchell, 1988.) There are a finite number of simple 
(non-self-intersecting) paths between any two points. 

In a weighted regions (WR) representation the plane 
is "tessellated" by polygonal subdivisions, each 
weighted with a non-negative cost-per-unit-length. 
The cost for a path within each section is the distance 
the path takes through each section times the weight 
assigned to that section. The total cost for the path is 
the sum of the costs through each section. The space 
of paths is continuous: Any locus of points 
contained in the plane, connecting a start and end 
point, is valid in this representation, and there are an 
infinite number of simple paths connecting any two 
points. Intuitively, the WR representation is more 
natural yet less computationally tractable than the GB 
representation. 

An advantage of the GB representation is that it 
affords well understood solutions to the problem of 
finding the shortest-path, e.g. Dijkstra's algorithm 
(Dijkstra 1959) which has worst case running time of 
0(n log n) where n is the number of vertices in the 
graph. The solution to the WR problem is less well 
known, but a polynomial time algorithm for finding 
near optimal paths has been developed (Mitchell and 
Papadimitriou 1991) and will be discussed in Section 
4. 

A strong influence on our choice of representation for 
IC-SAF is the problem the GB approach has with 
capturing small terrain features: The grid spacing 
must be as small as the smallest feature to be 
captured. A representative terrain database (discussed 
in Section 6) has size of about 1.5 km x 1.5 km. 
Assume that terrain features important to IC path 
planning are on the order of the size of ICs. In 
ModSAFs physdb.rdr file, the width of an IC is 
specified as 0.5 m. The number of graph vertices 
necessary to allow the representation of features of 
that magnitude in a uniform rectangular grid is then 
(1.5 km / 0.5 m)2, or about 10^ vertices. In 
contrast, the WR approach allows us to specify 
polygonal regions of any size, so that arbitrarily 
small features may be represented by small polygons 
at the same time that a few large polygons describe 
featureless sections of terrain. The total number of 
WR graph vertices is based only on the number of 
vertices in the polygonal features, and is independent 
of the dimensions of the terrain database. In the 
application described in Section 6, the planning 
graph, which is based on manually entered terrain 
features, has less than 30 vertices. In a planned 
extension to the algorithm (discussed in Section 7) 
which would generate the features automatically from 
ModSAFs microterrain, the graph would still only be 
about 4x10^ vertices (and about 10* edges), several 
orders of magnitude smaller than the corresponding 
grid. 

Because of the polygonal feature representation 
existing in ModSAF, the lack of digitization bias and 
relatively small graph size in WR, and the 
availability of a WR-based path planner (presented 
below), we chose to adopt the Weighted Regions 
approach for IC-SAF path planning. (We note that as 
of this writing, the latest version of ModSAF has 
gained a grid-based cover-and-concealment route 
planner, and acknowledge that such a choice of 
representation may be suitable for armored vehicles, 
concerned with larger scale terrain features.) 
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4.     The  Weighted  Regions Algorithm 

The weighted regions algorithm is quite complex, and 
is described in detail by Mitchell and Papadimitriou 
(1991). Here we give the flavor of the algorithm, by 
describing the "Continuous Dijkstra" approach which 
it employs, the local optimality properties of shortest 
paths, and the ray tracing algorithm used to produce 
paths. 

In a grid based representation, the shortest path can be 
readily solved by a straightforward technique by 
Dijkstra (1959): From the start point, propagate 
through the grid step-by-step such that at any step a 
collection of grid points is maintained all of which 
are the same distance from the start, when connected 
to the start by their shortest path. This collection of 
grid nodes can be thought of as a "wave-front" of 
constant cost. When this front meets the end point, 
the search is complete. In the Continuous Dijkstra 
paradigm, a continuous analog of this wavefront is 
computed. The WR algorithm generates this 
wavefront along a discrete set of rays, projected 
outward from the start point in all directions. Each 
ray obeys local optimality criteria, and so provides a 
candidate shortest-path. The idea is to trap the goal 
point within a two-dimensional "cone" whose 
boundaries are two projected rays. 

The local optimality criteria obeyed by the projected 
rays, are that 1) rays travel in straight lines through 
regions of constant weight (as the regions in the WR 
representation), 2) rays refract across boundaries 
between regions of different weights according Snell's 
Law (which is a commonly known property of 
optics), and 3) rays don't strike boundaries at angles 
greater than the critical angle defined by Snell's Law. 
Local criteria for projecting paths break down when 
the path either 1) strikes a region vertex, or 2) strikes 
a region edge at a critical angle, refracting along the 
edge, and traveling on that edge for a distance 
unpredictable from local information. These 
breakdowns in the determination of the optimal path 
from local criteria cause the algorithm to revert to an 
exploration of alternative paths. However, this search 
is reduced by the important theoretical finding by 
Mitchell and Papadimitriou (1991) that "between any 
critical point of exit and the next critical point of 
entry, there must be a vertex." This property places a 
tight rein on the otherwise arbitrary length of the 
critical reflection section of an optimal path. 

The algorithm is e-optimal, meaning that the derived 
path is no longer than (1+e) times the optimal path 
length, for some small, preset e. This tolerance, e, 
is related to the closeness of neighboring rays 
between which the goal point is trapped:  The more 

rays utilized, the closer the rays come to the goal 
point, and the closer the path is to being optimal. 
The use of an e-optimal algorithm, rather than an 
optimal algorithm, results in an algorithm which has 
polynomial time complexity, rather than exponential 
time complexity. The complexity of the algorithm is 
0(ES) where E is a number of "critical events" in the 
algorithm (occasions when a ray strikes an edge or 
vertex), and is at most O(n^) (where n is the number 
of vertices). S is the complexity of the processing 
done for each event, and is at worst O(n^) also. Thus 
the entire algorithm then has worst case complexity 
0(n°), but Mitchell and Papadimitriou have found 
that E and S may be much smaller in practice, and 
thus the algorithm may often run much faster than 
this worst case complexity. 

The following section discusses the interface of 
ModSAF's feature representation to the WR path 
planner, after which we present simulation results for 
the integrated system. 

L Path Planner to ModSAF Interface 

In adding terrain utilization to ModSAF's path 
planning, the programming task was to interface 
ModSAFs feature representation to the path planner's 
weighted region representation. ModSAF represents 
obstacles (lakes, buildings, etc.) as non-overlapping 
polygons lying on a background plane. To be 
consistent, we represent desirable terrain regions in 
the same way. The concept is illustrated in the first 
panel of Figure 1, where the light and dark polygons 
are features, lying on a background plane of uniform 
cost. The existing obstacle polygons represented in 
ModSAF are copied into a data structure called a 
"movemap" which is created for each vehicle. We add 
to this data structure a list of cover-and-concealment 
features, which are read in from a file. 

The WR path planner places several requirements on 
the format of its data. The map must be composed of 
polygons, each assigned a positive numerical weight. 
Further, each polygonal region must be convex, 
meaning that no interior angle may exceed 180°. 
Lastly, the polygons must fit together like a puzzle, 
creating a contiguous tiling of the plane. We use 
three weight values for the regions: a "medium" one 
for the background plane, a "high" one for obstacles, 
and a "low" one for desirable features, as shown in the 
first panel of Figure 1. This diagram shows two 
violations of these WR requirements: First the light 
region on the left is not convex, having an interior 
angle greater than 180°. Second, the two polygonal 
features alone don't create a contiguous tiling of the 
plane. We can solve this second problem by viewing 
the background as a weighted region.   Now we do 
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Figure 1: Top left: In the ModSAF style of terrain feature representation, 
disjoint polygons lie in a background plane. We can assign a "cost" to each 
polygon, and to the background, to represent the penalty for planning a path 
through that region. By giving the region on the left a cost less than that of the 
background, we specify that movement through that region is more desirable 
than movement through open space. We give obstacles weights much higher 
than the background, so that low cost paths avoid them. Top right: Since the 
Weighted Regions algorithm requires a contiguous tiling of the plane by simple, 
convex regions, we subdivide non-convex regions (e.g. the region on the left) 
and the background plane, by adding an edge whenever we find an angle greater 
than 180° at a polygon vertex. Bottom: A minimum-cost path from "Start" to 
"End" is shown. Note the deviation through the low cost region and the locally 
optimal "Snell's Law" refraction when crossing the boundary between the 
background and the low-cost region. 
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have the requisite contiguous tiling, but have 
introduced another illegal polygon, since this 
background plane has many concave angles. The 
second panel of Figure 1 shows the solution to the 
concavity problem: For each angle greater than 180°, 
there is another vertex in the graph such that an edge 
can be added from that vertex to the vertex possessing 
the concave angle, splitting the concave angle in two, 
and splitting some weighted region in two also. The 
two new regions are each weighted as was their parent 
region. Edges can always be added, until no concave 
angles remain. (The extreme case would be to keep 
dividing regions until all the regions were triangles, 
which are necessarily convex.) The result is the 
required tessellation of the plane with convex 
polygons. 

The complete translation algorithm can be 
summarized as follows: 

1) From the input polygon list, build a list 
of vertices. 

2) Add the vertices of a bounding box (or 
of any convex polygon surrounding the 
given regions). 

3) Build a visibility map for each vertex (a 
list of vertices reachable from that 
vertex without crossing an existing 
edge), and note whether a connecting 
edge to a visible vertex exists already. 

4) For each concave angle (except the 
exterior angles of the bounding box), 
add edges from the vertex of the angle to 
another vertex which is in its visibility 
list and which is "inside" the concave 
angle. More than one edge per concave 
angle may be added. 

5) Pass the resulting convex, weighted 
tiling to the WR planner. 

To apply path planning to IC movement, we 
intercept the IC unit's planned route, in the 
appropriate ModSAF move task: VMove, 
UTraveling, or UCMarch. We take each waypoint in 
the planned route as an unchangeable constraint, and 
optimize the sub-paths in between the waypoints: 
We pass to the WR path planner each route point and 
the one which follows it. The path planner returns 
the minimum-cost path connecting the two points. 
The third panel of Figure 1 illustrates the result of 
optimizing a path: The two point route from "Start" 
to "End" is transformed by the planner into an 
optimized route containing five points. After 
repeating this optimization for all route segments, we 
assemble the returned paths into the unit's complete 
route, and return it to ModSAF. 

The following section describes sample results of the 
integrated ModSAF/WR system. 

6.    Application to the  "LeatherNet"  Project 

A goal of the Marine Corps LeatherNet project is the 
creation of a training and simulation environment for 
Marine exercises. One of the training "ranges", 
Range 400, has been digitized at the one meter level, 
for the purpose of computer simulation. A ModSAF 
"CTDB" format database with imbedded microterrain 
based on this data has been created. The exercise 
carried out on Range 400 is a company-size deliberate 
attack. When the Marines move up the range toward 
their objectives, they choose concealed routes. While 
no tree canopies or buildings exist on this range, 
there are a number of deep wadis (dry stream beds) 
that provide concealment during the advance. 
Accurate simulation of Range 400 exercises therefore 
requires representation and usage of these wadis in 
route planning. 

The top of Figure 2 shows a plan view of Range 400, 
as displayed by ModSAF. The terrain database 
provides the topography and roads. The borders of 
concealed regions, provided by wadis, were manually 
extracted from an elevation map, and listed in a file in 
terms of the vertices of the resulting polygons. 
These polygons were automatically added to the 
movemap data structures of the ICs. The polygons 
are shown as shaded regions in Figure 2. Also shown 
in this Figure are a Marine fire team, situated at the 
southern end of the range, and a goal position at the 
northern end. 

When the first movement command is issued to the 
unit in ModSAF, the polygonal features are processed 
as described in Section 5. They are subdivided into 
convex regions and assigned the appropriate weight. 
(The process is illustrated in Figure 1.) The uniform 
background is also subdivided into convex regions. 
The resulting map is then passed to the WR path 
planner. The path generated by the planner is shown 
at the bottom of Figure 2. The length of the path 
outside the wadis has been minimized, thus 
maximizing the use of cover and concealment. 

Figure 3 shows a situation where the minimum-cost 
path doesn't use the wadis at all. The algorithm has 
discovered that deviation of the straight-line path 
(connecting the unit to its goal) to use the available 
concealment would add more exposure (for the 
sections of the route that carry the unit to and from 
the concealed regions) then it would remove by 
utilizing those regions. Figure 4 gives an example 
(in a different terrain database) of the algorithm 
simultaneously making use of desirable regions and 
deviating around obstacles. The unit detours around a 
lake to reach its destination, and also uses two of 
three available low-cost regions in its minimal path. 
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Figure 2: Top: Plan view of sample terrain database. Shown are topographical 
lines, roads, concealed regions (shaded polygons), a unit icon (box near bottom), 
and the unit's assigned goal (near top). The path planning algorithm considers 
only the concealed regions, obstacles, and the start and goal points for the unit. 
Bottom: Results of planning the "shortest" (i.e. minimum-cost) path from 
unit's position to its goal. The shown path is the shortest in terms of the 
amount of exposed terrain (outside concealed regions) used. 
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7.    Future Work 

In the application discussed in Section 6 the low-cost 
terrain regions were added manually. The primary 
extension to this work is to derive the low-cost 
regions from the terrain database. ModSAF 
represents small scale terrain elevation by patches of 
microterrain in the form of contiguous, non-coplanar 
triangles, called triangulated irregular networks 
(TTNs). The main 1.5 km x 1.5 km section of the 
ModSAF Range-400 database, for example, contains 
a TIN which has about 4xlfP vertices (triangle 
corners). Visibility from a given enemy position 
could be calculated for each vertex (using ModSAFs 
point-to-point visibility algorithm), and the triangles 
would be weighted appropriately. The weighted 
triangles would then provide the weighted regions for 
the WR path planner. Returning to the discussion in 
Section 3 on the choice between WR and GB 
representations, we see that for such a vertex- 
visibility approach, the WR representation would 
have far fewer vertices than the 10' vertices of the 
alternative grid. 

In using the TIN triangles as weighted regions, one 
approach is to project the triangles into the horizontal 
plane, creating the familiar planar tiling. An 
alternative is to plan on the non-planar TEN map 
itself. Mitchell (1988) has examined a form of this 
problem called the Discrete Geodesic Problem, in 
which the regions have uniform weight. A related 
issue is directionality of region weight. For instance, 
we might want to assign a high cost to a region of 
steep terrain, but only if the path ascends that region. 
A high cost should not be assigned if the path merely 
traverses the region at constant elevation. This 
problem has been examined by Rowe and Ross 
(1990). 

In the applications discussed above, only three region 
weights were used (to differentiate desirable regions, 
nominal regions, and obstacles). In general, however, 
the WR approach allows an entire spectrum of 
weights. Applications of this capability include 
representation of graded levels of visibility, 
combinations of visibility with other factors (e.g. 
maximum speed for each region), and more complex 
models of danger to the traveler. Other factors can 
also be entered by using a bi-criteria planning 
paradigm, in which we minimize the path cost, 
subject to some constraint. An example is 
movement with maximum cover and concealment 
(the cost) subject to the constraint of arriving within 
a certain time limit. 

The path planning approach of this paper is based on 
a   complete   map,   giving   unrealistic   terrain 

omniscience to the traveling unit. A more realistic 
approach would incorporate a "visibility horizon", 
which would only provide terrain knowledge for a 
certain radius around the moving unit. This problem 
has been studied by others (e.g. Brock et al., 1992). 

We have only discussed polygonal features, but we 
might also add such linear features as roads and rivers, 
which could be handled by the WR path planner much 
as it handles edges of polygons. 

We have assumed a static planning map, but in real 
life movement takes place within a constantly 
changing environment. A complex problem is that 
of planning routes that anticipate enemy movements, 
represented as changing levels of exposure for regions 
over time. (A hidden region may become exposed to 
the enemy as he moves toward it.) 

Alternatively, we may remain within the static map 
paradigm, replanning when changes to the map occur. 
The issue is then how to take advantage of the 
computation already completed, so that the revision is 
done faster than if the plan were computed from 
scratch. 
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Figure 3: Results of planning "shortest-path" from unit's position to its goal, 
for a case in which the resulting path does not use the concealed regions: The 
algorithm has discovered that deviation of the straight-line path to use the 
available concealment would add more exposure (for the sections of the route that 
carry the unit to and from the concealed regions) then it would remove by 
utilizing those regions. 

Desirable 
Regions 

Figure 4: A path which both utilizes desirable regions and avoids obstacles. 
The unit must detour around a lake to reach its destination. It uses two of three 
low-cost regions in its minimal path. While this example utilizes only three 
different numerical region weights (as shown in Figure 1), the weighted regions 
approach allows the assignment of a whole spectrum of weights, to specify 
graded levels of desirability for the terrain regions. 
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1.   Abstract 

The DIS standards allow for missiles to be represented 
as visible entities in the synthetic battlefield. One 
approach to modeling missiles in DIS is to treat them 
as full dynamic entities, with explicit simulation of 
the propulsion, guidance, and fuzing of the missile 
prior to its detonation. A model such as this will 
typically require a great deal of fidelity and processing 
power to accurately characterize the missile. A 
second approach is to use a statistical method, as is 
frequently done for direct fire weapons. 

This paper describes two possible implementation 
approaches to modeling missiles in DIS, and how 
ModSAF has provided a working testbed to 
implement both types of models. The fundamental 
advantages and disadvantages of each approach are 
discussed, and the implementation details in ModSAF 
are described. 

2.  Use  of Missiles  In  ModSAF 

The DIS standards allow for missiles to be represented 
as visible entities in the synthetic battlefield. These 
missiles are similar to other simulation entities in 
that they generate Entity State PDUs and can move 
and interact with other entities in the environment. 
There are subtle differences, however, between missile 
entities and other types of entities. One difference is 
that missiles are usually launched from DIS vehicles. 
As such, the missile is dormant until the time of 
launch, at which point the missile appears near its 
launcher and subsequently flies toward its destination. 
Once it has arrived at its destination, the missile 
detonates and is removed from the DIS exercise. A 
second difference between missiles and other entities 
is that missiles typically move at much greater 
velocities than other entities in the DIS simulation. 
A third difference is that relatively minor errors in the 
modeling of vehicle dynamics can have a large effect 
on the battlefield, since they can cause large errors in 
the effective probability of hit of the missiles. 

There are several reasons why it is useful to represent 
missiles as visible entities in a DIS environment. 
First, the observation of visible missile flyout can 
provide clues about the location of the enemy vehicle 
that is shooting the missile.   Second, targets can 

attempt to defeat incoming missiles via evasion and 
countermeasures. These can only be attempted if the 
target can detect the incoming missile in some way. 
Third, visually displaying dynamic missile entities 
allows weapon system developers and simulation 
modelers to visualize and understand missile guidance 
and dynamics models. 

The ModSAF, Computer Generated Forces (CGF) 
system (Ceranowicz 1994), supports a number of 
different types of missiles. There are anti-tank (AT) 
missiles which are both ground and air launched. 
There are also anti-aircraft (AA) missiles which are 
both ground and air launched. Each of these missiles 
could be implemented in ModSAF using a dynamic 
or probabilistic simulation. 

Missile Type Delivery Dynamic / 
Probabilistic 

Alamo AA Air D 
Archer AA Air D 
Dragon AT Ground D 
Gaskin AA Ground D 
Gauntlet AA Ground D 
German HOT AT Ground P 
USSR HOT AT Air D 
Hellfire AT Air P 
Javelin AT Ground P 
LOSAT AT Ground P 
Maverick AT Air D 
Milan AT Ground P/D 
NLOSTV AT Ground P* 
Phoenix AA Air D 
SA-16 AA Ground D 
SA-19 AA Ground D 
Sagger AT Ground P 
Sidewinder AA Air D 
Songster AT Air/Ground P/D 
Spandrel AT Ground P 
Sparrow AA Air D 
Spigot AT Ground D 
Spiral AT Air D 
Stinger AA Air/Ground D 
TOW AT Ground P/D 

Table 1: ModSAF Missile Types 

Table 1 contains the missiles which are currently 
implemented in ModSAF, what type of missile each 
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is (Anti-Tank or Anti-Aircraft), and from where the 
missiles are delivered. The fourth column shows how 
the missiles are currently being implemented, where 
D indicates a dynamic missile simulation, P indicates 
a probabilistic simulation, and P/D indicates that 
both dynamic and probabilistic simulations are 
implemented. 

A vehicle parameter file currently exists in ModSAF 
for each of these missiles, so all of them could be 
implemented as dynamic missile simulations as 
explained in section 3. Also, as will be described in 
section 4.2, there are default flyout equations that 
could be used to support a probabilistic simulation, 
so all of these missiles could also easily be 
implemented as probabilistic missile simulations. 

The one exception is the NLOS TV missile which is 
implemented via another library which relies on the 
ballistic gun model to provide the probabilistic 
missile simulation (hence the P* in table 1). A 
vehicle parameter file does not currently exist for this 
missile. 

The Dynamic and Ph (probabilistic) Missile 
Simulations will be explained in more detail in the 
following sections. 

3.   Dynamic   Missile   Simulation 

Since ModSAF Version 1.0, released December 1993, 
ModSAF has had a dynamic missile simulation. 
This simulation was originally developed for the 
weapons of threat and friendly aircraft in support of 
the WISSARD project (Rosenbloom et. al. 1994). 
The simulation contains a motion model of the boost 
and coast phases of the missile, as well as a collision 
model and detonation model. Some of these missiles, 
such as the Phoenix missile launched from the F14D 
aircraft, are sequenced by complex state machines 
which control the interaction between the sensors on 
the firing aircraft and the missile itself. For example, 
the Phoenix missile can be controlled by the host 
aircraft for the majority of its flight. As the aircraft 
continues to track the target with its on-board radar 
system, the aircraft will issue steering commands to 
the missile to have it fly toward the target. During 
the last phases of the engagement, the missile can be 
commanded to go into an active mode, where an on- 
board radar system on the missile can track the target 
itself, without any commands from the host aircraft. 

In order to use Dynamic Missile Simulation in 
ModSAF, the launching vehicle must contain a 
missile launcher model which shoots the missile. A 
vehicle parameter file must exist for the missile 
munition which describes its flight dynamics. 

3.1 Equations of Motion 

The dynamic missiles in ModSAF are controlled by 
the following equations of motion, where P is the 
position of the missile, v is the velocity of the 
missile, r is the time between the last tick and the 
current tick, D is the desired missile direction 
clamped by a maximum rate of turn, S is the current 
speed of the missile, clamped by a maximum speed, 
and A is the acceleration of the missile during its 
boost phase: 

*New = *Old + VOld ' T 

vNew = S-D 

S = A-T 

There is no effect of gravity, unless the missile has 
lost power, in which case it falls along a parabolic 
trajectory. 

3.2 Collision  And  Detonation  Modeling 

As a dynamic missile moves through space, there are 
two types of events which may affect it. First, the 
missile can collide with another object or the terrain. 
The ModSAF library LibCollision provides a 3D 
physical model of collision detection. It can detect 
collisions with other network entities such as 
vehicles, other missiles, or even dynamic structures, 
as well as terrain objects such as treelines, buildings, 
and the ground. This library is also responsible for 
generating and processing Collision PDUs. In the 
case of colliding with other entities, collision 
detection for the missile is based on the intersection 
of the bounding boxes of the missile and the object 
being collided with. 

A second event that may affect a missile during its 
flight is detonation near a target. The ModSAF 
library LibDetonation provides a model of proximity 
detonation. It can detect detonations due to proximity 
with other network entities This library determines 
that a detonation should occur if the distance to the 
target, as measured from the secant between positions 
of the missile during consecutive ticks, achieves a 
local minimum and is less than the detonation radius 
parameter specified for the missile. In performing this 
calculation, the position of the target is projected 
forward or backward in time to find the point on its 
trajectory closest to the point where the local 
minimum occurred. 

If either a collision with an entity or a proximate 
detonation with an entity is detected, a DIS 
Detonation PDU will be sent specifying the target 
entity.    In the case of a detonation, the DIS 
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Detonation result type will be "PROXIMATE 
DETONATION". In all other cases, the result type 
will be "IMPACT". 

3.3.   Missile   Guidance 

The modeling of the seeker and guidance of the 
missile can vary from missile to missile. For 
example, the Phoenix missile can be steered by the 
radar sensor on the host aircraft, or by its on board 
radar sensor. The TOW missile is wire guided and 
could also be modeled as being guided by a visual 
sensor on the host platform, in this case the Bradley 
Fighting Vehicle. A fire-and-forget missile such as 
the Stinger missile can be guided exclusively by its 
on-board IR sensor. 

Lead-pursuit and pure-pursuit guidance is supported, 
and all guidance information simply generates the 
desired direction, D, for the missile. 

3.4 Advantages 

The advantage of this implementation is that it is an 
interactive simulation. As the target changes 
location, the missile can adapt dynamically. This 
allows for the possibility of simple counter-measures, 
such as target jinking, to attempt to defeat the 
missile. 

3.5 Limitations 

There are two major types of limitations to the 
dynamic missile approach in ModSAF. First is the 
rather simplistic modeling of the missile, as 
represented by the equations of motion. The various 
forces, such as thrust, gravity, and drag are not 
modeled. The treatment of turn rate is very 
simplistic. Maximum turn rate should depend on 
speed and altitude. Related to the simplicity of the 
model is the inability to predictably control missile 
performance. The only real performance inputs to the 
dynamic missile model are maximum speeds, burn 
times, and turn rates. This is an insufficient amount 
of control to distinguish different types of missile 
performance. Especially lacking is the type of 
guidance control that would allow a dynamic 
ModSAF missile to approximate the trajectory of an 
actual missile (Bencke et. al. 1994). Also, it is 
impossible to correlate this simple missile model 
with available field testing data, such as probability 
of hit. This makes it difficult to use these types of 
missiles in a combat developments experiment. 

The second type of limitation to this missile 
approach in ModSAF is the tick rate constraint that 
ModSAF must obey. Available computational 
resources are always a limiting factor in the number 
of entities that a ModSAF workstation can support. 

ModSAF is a variable frame rate simulation. Ground 
vehicles in ModSAF have been tested to behave 
acceptably under a 2 Hz frame rate. This frame rate 
characterizes the minimum acceptable simulation 
performance (Vrablik & Richardson 1994). 
Obviously, a varying frame rate that can be as low as 
2 Hz is quite limiting for the modeling of a high 
speed missile. ModSAF does support high priority 
scheduling which could be used to guarantee a faster 
frame rate for missiles, however it would be difficult 
to accept the resulting loss of performance in the rest 
of the system. 

4.   Ph   Missile   Simulation 

The dynamic missile model has proven to be 
unsatisfactory for combat developments experiments 
such as the Anti-Armor Advanced Technology 
Demonstration (A2ATD). When DIS is used for 
combat developments, there are many issues that 
must be resolved when running experiments 
involving missiles and other weapons fire. For 
example, the algorithms used to model the accuracy 
of a given weapon system against a particular target 
must be verified and validated before useful 
experimental results can be gathered. As the dynamic 
missile model fails to generate accurate flight 
trajectories and cannot be controlled to give specific 
performance results, it cannot be used for this type of 
experiment. A different approach, which is based on 
a statistical model of accuracy, is required. 

4.1    Direct   Fire    Biases    &    Dispersions 
Delivery Accuracy  Model 

For non-guided direct fire weapons, Army Materiel 
Systems Analysis Activity (AMSAA) has prescribed 
a statistical model based on biases and dispersions to 
characterize the accuracy of direct fire weapons. This 
model generates a horizontal and vertical miss 
distance for each round at the target's location, 
referenced to an assumed aim point (Courtemanche & 
Monday, 1994). 

The ModSAF library LibBalGun provides a model of 
a ballistic gun's operations with the delivery accuracy 
portion based on biases and dispersions. It includes 
modeling of the time from gunner initiation of the 
engagement to firing (track time), gun firing and 
loading, application of biases and dispersions to 
generate an impact point, and determination of hit or 
miss. 

A vehicle level task identifies the most urgent target 
and makes recommendations of which weapons to use 
against the target. A vehicle level task collects the 
recommendations and performs targeting actions 
against the target. Part of these targeting actions is 
to give the target to a gun so it will fire at it.  It is 
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possible for the gun to determine that it will actually 
hit another target or location based on the lack of 
intervisibility to the original target. The gun may 
also be given a location to fire at instead of a target. 
This functionality can be used to launch smoke 
grenades or to shoot at a laser designation. 

Range indexed track time tables are used to define 
how long the target will be tracked before the gun is 
fired. The track time is generated from these tables 
using a value from a lognormal distribution which is 
adjusted for firer competency and firer and/or target 
motion. 

The gun determines whether the target was hit or 
missed using the biases and dispersions generated 
from hit tables. These tables are indexed by range and 
contain biases, error, and firer and target 
stationary/motion dispersion values. The hit tables 
are derived directly from AMSAA weapon delivery 
accuracy data (Topper, 1993). The biases and 
dispersions define the impact's offset from the aim 
point. The aim point's actual location is calculated 
from the target's location when the munition arrives 
at the target. This approach effectively removes 
target behavior from the outcome and ensures that the 
desired delivery accuracy statistics are honored. If the 
target was hit the gun sends a Detonation PDU on the 
target, otherwise it sends a Detonation PDU on a 
miss location at impact time. 

Ph missile simulations are initiated or shot from 
these same direct fire ballistic gun models in 
ModSAF. These simulations do not use missile 
dynamics for determining whether or not the missile 
will arrive at the target. Instead the probability of hit 
is determined from the biases and dispersions. In 
order to use the Ph missile simulation, the launching 
vehicle must contain a ballistic gun model which 
shoots the missile as a munition. 

This method of missile delivery was first used in 
A2ATD experiment 1 replication of the M1A2 IOTE 
in order to achieve the desired hit probabilities for the 
Sagger missile launched from the T-80 tank and the 
Spandrel missile launched from the BMP2. Before 
this, the missiles were delivered as Dynamic Missile 
Simulation shot from missile launcher models. 
Delivering the two missiles via a Ph Missile 
Simulation entailed adding hit tables for the Sagger 
and Spandrel delivery accuracy model and using 
ballistic gun models to shoot the munitions. There 
were no visual flyouts of the missiles via the Ph 
Missile Simulation since, at the time, ballistic guns 
only sent out Fire and Detonation PDUs. 

4.2  Extensions  to  support  missiles 

In order to address the lack of a visual missile flyout 
when the munition was shot from a ballistic gun as a 
Ph Missile Simulation, extensions were made to 
ModSAF. 

The ballistic gun model has been enhanced to shoot 
munitions with or without visual flyout. Visual 
flyouts are accomplished via the addition of a 
computationally lightweight missile entity. The 
ballistic gun model is responsible for ticking the 
lightweight missile entities. The tick processing 
causes Entity State PDUs to be sent out for the 
missile entities. These PDUs provide for the visual 
flyout. This capability can be used for any munition, 
although It is most appropriate for slow-moving 
missiles. 

The actual positions of the missiles during the flyout 
are provided by flight path or flyout equation 
functions. The ballistic gun provides a service which 
allows flyout equation functions to be registered with 
the gun. As part of the tick of the lightweight 
missile entities, the gun calls the registered flyout 
equation function to update the missile position and 
provide other information such as whether or not the 
missile has reached the target. Each munition can 
have a separate flyout equation registered, or the same 
flyout equation can be used for multiple munitions. 

As described previously, the ballistic gun is 
responsible for determining whether or not the 
missile actually hits the target based on the statistical 
outcome of the biases and dispersions. If the target is 
not hit, the flyout equation function is also 
responsible for calculating and flying out to a miss 
location. The ballistic gun model also makes sure 
that the missile position provided by the flyout 
equation avoids the terrain until the missile has 
reached the point at which it should impact, as shown 
in Figure 1. 

Figure 1: Javelin Missile Engagement 

Besides providing updated positions, the flyout 
equation can also change from flying at a target to 
flying to a location or vice versa. The first capability 
can be used to model breaking missile lock on a 
target due lack of intervisibility, as is performed in 
the CASTFOREM model (Mackey et. al., 1994). 
The second capability can be used to model a non- 
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line-of-sight missile flying to a location prior to 
acquiring a target 

4.3 Advantages 

There are a number of advantages to the Ph Missile 
Simulation in comparison to the Dynamic Missile 
Simulation. The probability of target hit is 
controlled which is crucial for the validation of 
models. These probabilities are generated from 
easily-available and understood data. Another major 
advantage is that realistic flight-paths can now be 
easily incorporated via the flyout equation function 
registration. The inherent flexibility of the flyout 
equations and registration service for modeling new 
systems has already been demonstrated, as will be 
described in section 5.3. 

4.4 Limitations 

There are some limitations to the Ph Missile 
Simulation. These limitations are due to the 
statistical nature of the simulation as well as the fact 
that the Ph model will typically guarantee delivery of 
the missile to target. 

The Ph Missile Simulation is inherently non- 
interactive. This is an unavoidable consequence of 
honoring a statistical delivery accuracy model. If 
evasive battlefield behaviors like jinking are expected, 
the delivery accuracy statistics can be adjusted 
accordingly. But since this adjustment will be for the 
typical case, it will not match each specific case. So 
the target that makes a better-then-expected jink will 
not necessarily be rewarded. 

Because of the requirement to honor delivery accuracy 
statistics and because the evaluation of these statistics 
is performed when the missile reaches the target, 
some visual anomalies are sometimes apparent. For 
example, missiles never impact the ground 
significantly short of the target. In fact, missiles are 
prevented from hitting the ground even if their flyout 
would otherwise cause that event. Otherwise, the 
delivery accuracy statistics would be unduly distorted. 
Similarly, even if missiles appear to fly through such 
obstacles as buildings, trees, or other vehicles, they 
do not detonate but instead continue on to their 
original target. 

There is no current ability to deal with counter 
measures. The lightweight missile entities do not 
contain all the models that would be required and 
neither the ballistic gun models nor the flyout 
equations are equipped to handle these situations. 
However, the effects of counter-measures could be 
added in the future when required. 

5.   Remotely   Designated   Missiles 

The use of the Ph methodology to represent missiles 
has proven to be very useful for specialized missiles 
such as SAL (Semi-Active Laser) Hellfire. The SAL 
Hellfire missile can be launched from an attack 
helicopter such as an AH-64 Apache. The SAL 
Hellfire missile seeks the reflection of a laser 
designation spot on a target. Either the firing Apache 
can designate the target, or the target can be 
designated by a remote vehicle such as a OH-58D 
Kiowa scout helicopter. The remote designation case 
is the most complex, as described below. 

5.1  Remote Laser Designation  Process 

Figure 2 shows a typical scenario for remote 
designation with the Hellfire. Here, a scout aircraft 
has line of sight to the target and designates it by 
shining the laser on it. The attack aircraft can fire 
from a concealed position, and the Hellfire will track 
toward the laser spot once the missile acquires the 
spot with an on board sensor. The advantages to this 
technique are that the scout can lase from one 
azimuth, with potentially only its mast laser device 
exposed, while the attack helicopter is completely 
concealed along a different azimuth. Since the 
missile firing is from a concealed position, very little 
visual cueing is provided to the target. Both the 
scout and the attack helicopter may have increased 
survivability when remote laser designation is used. 

Figure 2: Remote Laser Designation 

5.2  LDWSS  Model 

The Laser Designator Weapons System Simulation 
(LDWSS) system is used by AMSAA to relate laser 
designator performance to weapon system 
performance (Alongi et. al. 1984). The output of 
LDWSS simulations are performance tables which 
relate round center of impact and dispersions to target 
range for a given combination of designation (scout 
lasing or attack helicopter firing and lasing), tracking 
sensor (TV, FLIR, DVO), and tracking mode 
(manual, automatic). For A2ATD experiments 
involving Hellfire missiles, it is desirable that 
ModSAF be able to use LDWSS data as part of its 
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Hellfire simulation. Under close supervision by 
AMSAA, the following methodology has been 
developed to support remote laser designation by both 
ModSAF and the manned Longbow and Commanche 
simulators that are participating in the exercise. This 
methodology is a natural extension to the existing Pn 

missile methodology. 

5.3  ModSAF  Implementation 

The methodology chosen for implementation of SAL 
Hellfire in ModSAF decouples the components of the 
designator and firer as much as possible. Under this 
methodology, the designator determines laser spot 
position on the target by drawing from a random 
number generator based on test data. This data is 
indexed by tracking sensor and tracking mode, but 
this is all internal to the designator, whether the 
designator is a manned simulator or a ModSAF 
vehicle. This data is not summary output LDWSS 
performance data, but will be available from AMSAA 
as test data or data that can be computed from the 
SPOTGEN (Spot Jitter Generator Model) 
subcomponent of the LDWSS simulation. The 
output of this random draw will be a spot location, 
relative to the target. The randomization that is done 
is very similar to the biases and dispersions 
calculation done for direct fire, however the input 
tables may be in a slightly different format. 

The spot location is broadcast via DIS Laser PDUs. 
As the spot location is broadcast in DIS, all exercise 
participants can react to the presence of the spot, if 
they can detect it with the appropriate sensor. Actual 
laser designation spots have encoded information in 
them to allow unique designation of multiple targets 
in the same area. In DIS, the designator will specify 
a laser code for the laser spot using the laser code field 
in the Laser PDU, and the SAL Hellfire missile will 
have to be seeking that same laser code for it to 
engage and track that particular laser spot. 

The spot location incorporates the error of the spot 
with respect to the aim point on the target. The firer 
of the Hellfire missile, who may be the same entity 
as the designator, or may be a different entity, will 
use "perfect aim" LDWSS data to deliver the round to 
the spot location. This perfect aim LDWSS data has 
no component of spot location error in it. This 
perfect aim data simply describes the accuracy of the 
missile in hitting the spot. This perfect aim data is 
completely independent of the sensor device or 
tracking mode used by the designator to generate the 
spot. The firer draws from a random number 
generator based on the perfect aim LDWSS data to 
determine the error of the missile in hitting the spot. 
This randomization is also very similar to the biases 
and dispersions calculation done for direct fire, with a 

slightly different input table format as generated by 
the LDWSS model. At the time of the arrival of the 
missile to spot location, the firer will add the two 
errors together to determine the actual location of the 
missile with respect to the target, and therefore 
determine a hit or a miss, as shown in Figure 3. 

Missile 
Error 

Missile 
Impact 

Location 

Presented Area 
Spot 

Location 

Intended 
Aimpoint 

Spot Error 

Figure 3: SAL Hellfire Delivery Accuracy 

In this diagram, we see that the error of the missile 
impact with respect to the spot, which was drawn by 
the firer, is added to the error of the spot with respect 
to the aim point on the target, which was drawn by 
the designator and broadcast as part of the information 
in the Laser PDU. The sum of the two errors is used 
in geometric calculations to determine whether the 
missile actually intersected the target. If an 
intersection is determined, a Detonation PDU which 
contains a relative impact location with respect to the 
target will be issued. 

This methodology allows for the laser designation 
spot to move or disappear from the battlefield while 
a missile is in flight. This can occur if some 
situation forces the designator to alter what it is 
designating. During flight, the missile tests for line 
of sight with any of the laser spots that are encoded 
with the proper laser code. If line of sight is 
established, the missile will adjust its flight path to 
seek toward that laser spot. During the time of 
flight, the Hellfire missile issues Entity State PDUs 
according to a registered flyout equation as specified 
in section 4.2. This equation allows the missile to 
trace a path that is representative of an actual Hellfire 
missile. 

This methodology allows the designator and the firer 
to be different entities, or the same entity. If the firer 
and designator are different entities, this methodology 
also allows any combination of manned and ModSAF 
vehicles to take on the roles of firing vehicle and 
designating vehicle. 

Since, in the case of remote designation, the firing 
vehicle is not required to have line of sight to the 
target before engaging, some sort of command and 
control is required to coordinate the scout lasing with 
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the attack helicopter firing. In an initial 
implementation, this is accomplished in ModSAF via 
the transmission of an ASCII encoded radio message 
from the scout to the attack helicopter. This message 
contains information about the location of the target 
and that the target is ready to be engaged. Future 
implementations may make use of specialized digital 
messages defined by the Air Warfighting Cell (AWC) 
for transmission of targeting information between 
scout RAH-66 Commanche helicopters manned 
simulators and attack AH-64D Apache Longbow 
manned simulators. 

6. Futwre Work 

6.1 V&V  by AMSAA 

The Ph missile model will be evaluated for Validation 
and Verification (V&V) by AMSAA as part of the 
A2ATD program. AMSAA has already evaluated the 
delivery accuracy model LibBalGun for direct fire 
weapons. This work was performed by causing 
ModSAF vehicles to fire at targets many times and 
recording a variety of internal model parameters for 
each firing using the Direct Fire Delivery Accuracy 
VVA Data structure encapsulated in a DIS Event 
Report PDU. This data was analyzed to verify such 
processes as table lookups, handling of biases and 
dispersions, determination of aim point, calculation 
of miss distance, and hit assessment. 

Since the Ph missile model is mainly an extension of 
LibBalGun, the V&V evaluations can be performed in 
a similar manner. 

6.2 Alternate Ph   Mechanisms 

ModSAF currently supports the standard direct fire 
bias and dispersion tables or the LDWSS accuracy 
tables to compute hit or miss based on a geometric 
model of the target and a randomly calculated error 
from the desired aim point. As such, the calculation 
of hit or miss is derived primarily from a geometric 
calculation, and an explicit probability of hit (Ph) is 
not actually represented in the model. Other 
statistical methods might also be desired. For 
example, AMSAA and TRAC studies involving the 
Javelin missile have traditionally used test data that 
provide a simple Ph based on target range, target 
type, and target aspect angle. Although not currently 
in place, it would be straightforward to extend the 
existing ModSAF methodology to use one of a 
number of different statistical or geometrical 
calculations to determine hit or miss, while still 
supporting flyout equations to generate the missile 
flight paths. Based on current direction from 
AMSAA, all ModSAF missile flyouts for A2ATD 

experiments will be based on the statistical biases and 
dispersions methodology. 

6.3 Engagements  of NLOS  Missile 

Analysis of upcoming A2ATD scenarios shows that 
additional behaviors involving missiles may be 
required. For example, vulnerability data will be 
provided for the NLOS missile to be potentially shot 
down by the 2S6 air defense vehicle. This will 
require a number of changes. For instance, the 2S6 
firing behaviors will have to be enhanced to target and 
engage missiles as well as aircraft. More 
importantly, the NLOS missile simulation will have 
to be able to accept received DIS Detonation PDUs 
and calculate damage based on the information in 
those PDUs. This should be a straightforward 
enhancement. Just as every regular vehicle in 
ModSAF has damage processing mixed in to the 
vehicle via the including of the LibDFDam (Direct 
Fire Damage) vehicle subclass as part of the vehicle 
definition, the lightweight entity used to represent the 
NLOS missile will need to include this subclass as 
well. 

6.4 Missing   Missile   Behaviors 

As a side-effect of moving the launching of missiles 
from missile launchers into ballistic guns when using 
the Ph Missile Simulation, certain launcher model 
capabilities do not occur during the simulation. For 
example, using the Dynamic Missile Simulation to 
shoot a TOW missile from an M2 in ModSAF causes 
the M2 to include an appearance bit in its Entity 
State PDU which will show the TOW launcher as 
being in a raised position. This capability was not 
implemented in the ballistic gun model because guns 
did not have corresponding launcher up/down 
positions. This deficiency will be corrected in future 
ModSAF versions. 

6.5 Generalization 

While implementing the Ph extensions to ModSAF, 
efforts were made to reuse common models and 
provide for future reuse. The biases and dispersions 
model was abstracted out of LibBalGun and put in a 
combat models library for reuse by laser designation 
or other models. The ballistic gun model is heavily 
used in ModSAF and historically has been modified 
repeatedly as new munitions and systems have been 
added. This model needs to remain fairly stable for 
verification and validation purposes. By providing 
the flyout equation registration service, new flyout 
equation functions can be added as opposed to 
modifying LibBalGun as new munitions and systems 
are added. It is likely that future development in 
ModSAF  will  turn  up  other opportunities  to 
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generalize existing simulation software for the 
purpose of reuse. 

7.   Conclusions 

Two implementation approaches to modeling 
missiles currently exist in ModSAF, Dynamic 
Missile Simulation and Ph Missile Simulation. 
Each approach has its advantages and disadvantages, 
however the Ph Missile Simulation approach is 
needed for combat developments experiments because 
of the ability to control the outcome. In addition the 
Ph method is easily extended and adapted for new 
munitions and systems, further adding to its 
usefulness for experimentation and system validation. 
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1.    Abstract 

This paper presents the approach used on CCTT SAF 
to transform tactical behaviors into delivered soft- 
ware. The process starts with the development of a 
Combat Instruction Set (CIS), generated by Subject 
Matter Experts (SMEs). This natural language de- 
scription of the tactical behavior is then transformed 
into detailed software requirements through a process 
that was developed on the CCTT SAF program. The 
detailed software requirements are then implemented 
as Ada software using the DOD-STD-2167A method- 
ology. 

2.    Introduction 

One of the challenges facing the builders of the Close 
Combat Tactical Trainer (CCTT) Semi—Automated 
Forces (SAF) simulation is that of generating SAF be- 
haviors that can be efficiently implemented in soft- 
ware, and yet accurately reflect tactical doctrine. To 
accomplish this, a new type of behavior description 
has been created, a Combat Instruction Set (CIS) [4]. 
Through a series of well-defined processes the CIS is 

translated into simulation software. The completed 
CISs serve as both a tactical data base for any future 
tactical simulations requiring combat behaviors, and 
the source of the behavior specifications for the CCTT 
SAF. This paper describes the process by which a CIS 
is developed and transformed into implemented soft- 
ware. 

3.    The CIS-To-Software Process 

Figure 1 shows the process used for implementing 
software derived from CISs. The figure divides the 
software development process into five phases, CIS 
development, CIS software analysis, preliminary de- 
sign, detailed design, and code and development test. 
Figure lalso shows the "interface" documents for the 
software development process, that is, those docu- 
ments that serve to connect one phase with the next. 
The phases "CIS Development" and "CIS Software 
Analysis" correspond to the software requirements 
analysis phase in traditional software development. 
Because these phases are unique to the CIS software 
development activity, they are the focus of this paper. 

CIS 
Development 

CIS Software 
Analysis 

Preliminary 
Design 

Detailed 
Design 

Code and Develop- 
ment Test 

Translate 
"standards" 
Into Natural 

Language CIS 

Translate CIS 
into Software 
Requirements 

Identify Ob- 
jects and Be- 

haviors 

Complete Data 
Specifications 
and Algorithms 

Complete Cod- 
ing, CSC In- 

tegration 

Figure 1:  Top Level CIS Software Development Process 
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Figure 2 presents more detail concerning the products 
generated during the software development process. 
As can be seen from the figures, the CIS development 
activity starts with reference doctrinal literature and 
results in a Natural Language CIS. The natural lan- 

guage CIS provides a structured description of and due 
to space limitations are not covered in more detail 
here. The interested reader is referred to reference 2.a 
combat behavior The details of the CIS development 
activity are presented in Section 4. 

Software 
Preliminary Design 

Software 
Detailed Design 

Code and 
Development Test 

Test 
Proce- 

s 

Software Design 
Document 

(SDD) 

Requirements 
Traceability 
Matrix to CISs 

Preliminary Design 
Requirements 
Traceability Matrix 
to CSC Level 
External InterfacesrS 

Detailed Design 
Requirements 
Traceability Ma- 
trix to CSU Level 
Internal Interfaces r^ 
Source Listings     V 

^ 
^ IPR-R IPR-H IPR-L Hand Over Review 

Figure 2:  CIS Analysis and Implementation 

The natural language description is then used as the 
starting point for the CIS software analysis activity, 
described in Section 5. The CIS software analysis ac- 
tivity results in a Software Requirements specification 
that is then used as the basis for the remainder of the 
software design and development activity. For CCTT 
SAF, these software design and development activities 
follow the DOD-2167A standard as interpreted for the 
CCTT program ([1], [2]), and reported on in [5]. The 
standard requires that the developer maintain Soft- 
ware Development Folders (SDFs), which contain de- 
velopment and test information relating to the various 
software components. The information in the folders 
are used to build the various documents required. 
Many of the CIS process products generated reside in 
the SDFs. An automated requirements tracking tool, 
Requirements Traceability Matrix (RTM) Tool is be- 
ing used to track traceability from ARTEP to code. 
Due to space limitations, for a detailed implementa- 
tion of the DOD-2167A standard, refer to reference 2. 

4.   CIS Development Description 

This section provides further detail on the process used 
to develop the CIS, and the products that result. 

4.1 CIS Development Process 

The natural language Combat Instruction Set (CIS) is 
obtained through the conversion of current training 
and doctrinal literature into a structured, formatted de- 
scription of how a training task is to be performed. The 
natural language CIS therefore forms the description 
of interactions between platforms and units that soft- 
ware (S/W) engineers will implement in code. A CIS 
describes tactical combat behavior at the unit and plat- 
form level. After translation into software, CISs may 
be utilized by SAF Operators to emulate specific unit 
and platform behaviors in support of the execution of 
CCTT operational plans. 

For BLUFOR units, the CISs are based on current doc- 
trine and tactics found in U. S. Army Training and 
Evaluation Program (ARTEP) Mission Training Plans 
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(MTPs). For OPFOR units, the CISs are based on for- 
eign military publications and the U. S. Army Training 
and Doctrine Command (TRADOC) OPFOR Heavy 
Guide. In addition, doctrinal references are consulted 
for OPFOR behaviors, since training standards do not 
exist for OPFOR units. In developing CISs, behaviors 
are organized according to four major primitives 
(move, shoot, search/observe, and communicate) and 
include initial conditions, termination conditions, and 
situational conditions (interrupts) that may trigger the 
execution of other CISs. All developed CISs require 
formal approval. This is provided by responsible 
Army schools for BLUFOR doctrine, and TRADOC's 
Threat Support Division for OPFOR doctrine. 

The process for developing doctrinally correct CISs 
was created jointly over several months between the 
U.S. Army (TRADOC System Manager, CATT and 
PM, CATT) and contractor Subject Matter Experts 
(SMEs). This effort resulted in the current CIS format 
and development process. As a result, CIS develop- 
ment is an approved process that provides a doctrinally 
correct combat behavior base for the S/W engineers to 
code. These CISs will also form the basis for mainte- 
nance activity on the delivered software. The CIS de- 
velopment process consists of the following steps. 

Analyze the ARTEP task. The process of developing 
a BLUFOR1 CIS begins with an analysis of a specific 
ARTEP task, e.g., 17-237-10-MTP, Tank Platoon, 
Collective Task: React to Indirect Fires. First a review 
of all doctrinal and training references pertaining to 
this task is made. This includes information in the AR- 
TEP, pertinent tables of organization and equipment 
(TOE), Field Manuals, Training Circulars, Service 
School Training Texts, and other doctrinal literature. 
Prior to researching information for a specific CIS, in- 
formation is generated for the unit type associated with 
the CIS, e.g., Tank Platoon in the case of the React to 
Indirect Fire CIS. This information is put into an ap- 
pendix that is then attached to all CISs associated with 
the given unit type. The appendix provides common 
parameters for the unit, including capabilities and li- 
mitations, organization, platforms and weapons sys- 
tems, employment techniques, and MOVE/SHOOT/ 
COMMUNICATE/SEARCH/OBSERVE parameters, 
and success/failure criteria defaults. 

Develop the general description statement Next, 
the CIS developer describes in a brief paragraph the 

purpose of the task and how it is to be executed. This 
paragraph is informational for the software engineers 
so that they can get the "big picture" with respect to the 
CIS. 

Specify initial conditions. The CIS developer then 
determines initial conditions and input data. Initial 
conditions describe the conditions, state, or posture of 
the unit at the commencement of the CIS, e.g., moving 
in a formation, stationary, etc. 

Input data includes specific data from external sources 
that transform the generic CIS into an exercise—specif- 
ic one. These data also must be known at the com- 
mencement of the CIS, and include the unit's direc- 
tion, speed of movement, movement technique, center 
of mass, terrain limitations, known direction of threat, 
etc. 

Describe subtasks and standards. The CIS developer 
then follows the ARTEPs subtasks and standards in ex- 
act sequence order and addresses each subtask/stan- 
dard with doctrinal descriptions of how it is to be per- 
formed. Each performance "how to do" is described 
in terms of move, shoot, search/observe and communi- 
cate functions, as follows: 

MOVE: Describe the sequence of steps that must oc- 
cur to move the platforms or unit as associated with 
this particular subtask/standard. Describe movement 
directions, platform positioning and orientation, etc. 
Include parameters for speed, interval, etc. 

SHOOT: Describe target priorities, fire control and 
distribution and engagement/termination conditions, 
as appropriate. Include effective fire and ammunition 
parameters, etc. 

SEARCH/OBSERVE: Describe weapons orientation, 
search/observe sectors, and search techniques, as ap- 
propriate. Use degrees or clock method (the latter is 
preferred). Include search ranges for various types of 
targets, sector of observation, etc. 

COMMUNICATE: Describe instructions to be dis- 
seminated or messages to be sent based upon control 
measures or other conditions/situation. 

Describe situational interrupts. The developer then 
determines conditions or events that apply to the CISs 
that may cause immediate reaction by the unit or plat- 
forms to engagements by the enemy. These are called 
situational interrupts (Sis) and describe the conditions 
that cause the SAF unit to respond to enemy activities 

OPFOR CISs are developed in generally the same manner. The difference is that OPFOR CISs are not developed from ARTEPs (OPFOR 

Heavy doctrine does not have ARTEPs). They are instead developed by describing OPFOR Heavy collective tasks actions and behaviors in the 

order in which they occur. Additionally, the OPFOR CISs are not formatted into the MOVE/SHOOT/COMMUNICATE/SEARCH/OBSERVE 
parameters but rather are written in sequential order as behaviors take place over time. The parameters are included in the sequential 
description or are included in a separate appendix. This process provides the training unit with a doctrinally structured opposing force that can 
be analyzed and studied to determine its strengths and weaknesses. 
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or to selected terrain features. There may be as many 
as five such conditions: Contact with an enemy with/ 
without lethal weapons system; air attack; indirect 
fire; and certain terrain conditions (e.g., defiles, close 
terrain, obstacles that affect movement). 

Describe termination conditions. Conditions are 
then described that cause the CIS to be terminated and 
the next event in the overall sequence of tactical activi- 
ties to begin. Typically there are three such conditions: 
enemy contact is broken or a new more dangerous en- 
emy contact is present, arrival at a control measure re- 
quiring change of formation, and a directed change of 
mission. 

Describe battlefield operation systems (BOS). Fi- 
nally, coordination requirements needed to satisfy 
each BOS area, if appropriate, are addressed. These 
are essential considerations needed to cause coordina- 
tion and synchronization on the combined arms battle- 
field. 

4.2 CIS Description 

This section presents the sections contained in a typi- 
cal CIS (sections shown in bold face type), and short 
descriptions of each section, where the title of the sec- 
tion is not self-explanatory (shown in italics). These 
sections are graphically depicted in Figure 3, Figure 4, 
Figure 5, Figure 6, and Figure 7. 

43        CIS Excerpts 

Figure 8 contains short excerpts from selected sec- 
tions of an actual CIS — React to Indirect fire, as an il- 
lustration of the types of material contained in the CIS. 

Note that the individual sections are not complete, but 
only contain enough material to illustrate the type of 
material contained in each section. 

5.   CIS Software Analysis Description 

The CIS software analysis process is responsible for 
translating the behavior descriptions contained in the 
English language CISs into detailed software require- 
ments. 

5.1 CIS Software Analysis Process 

The CIS Software Analysis process provides a mecha- 
nism for insuring that the detailed software require- 
ments are faithful to the intent of the natural language 
CISs. The input to the CIS software analysis activity 
is the completed and approved natural language CIS 
from the CIS development phase. The CIS software 
analysis activity consists of the following steps. 

Create state transition diagrams and activity 
charts. State Transition Diagrams represent states, 
events, and activities. Conditions/guards are used 
when the event corresponds to checking a variable that 
is already available. An example would be an order 
that includes a variable that designates whether the 
platoon is working as part of a company or indepen- 
dently. Conditions are not used when the condition 
would involve a complex calculation. In this case, an 
activity is created that evaluates to the possible out- 
comes of the decision making process. This activity 
then produces a series of events such that each event 
represents one of the conditions in the State Transition 
Diagram. 

COMBAT  INSTRUCTION  SET    (CIS) 
CCTT  SEMI-AUTOMATED  FORCES   (SAF) 

SECTION A.      IDENTIFYING AND ADMINISTRATIVE  DATA 
1. CIS ID #: The sequential identifying number of the CIS, using 

the letter B for BLUFOR and the letters HVY for OPFOR, followed by a 
four digit number. Blocks of CIS numbers are assigned to specific BLUFOR 
and OPFOR units. 

2. DATE PREPARED OR UPDATED: 
3. CIS TITLE: The name of the collective task or tactical behavior 

to be represented. 
4. TYPE UNIT: The  type and level  of  the unit,   e.g..   Tank Platoon. 
5. RELEVANT ENTITIES/PLATFORMS: The entities that predominantly 

characterize the type and level of the unit. For example, for a BLUFOR 
tank platoon,   this  would be  the M1A1/M1A2 MBT. 

6. NAME OF PREPARER:   PHONE NO.: 
7. APPROVING GOVERNMENT AGENCY: The designation of the Government 

agency validating the CIS, e.g., TSM-CATT, Fort Knox KY, or Threat Sup- 
port  Division,   Fort  Leavenworth,   KS.. 

8. DATE APPROVED: 
9. NAME OF APPROVING OFFICIAL: 

Figure 3:  CIS Section A - Identifying and Administrative Data 
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SECTION B.  DOCTRINAL FRAMEWORK FOR CIS 

1. REFERENCES: Lists all doctrinal and training references from which 
information  is  extracted in developing  the CIS. 

2. ARTEP TASK AND NUMBER: .Repeats the title of the collective task 
exactly as it appears in the ARTEP. For OPFOR that does not have ARTEPs, 
this paragraph identifies  the source from which  the task is drawn. 

3. GENERAL DESCRIPTION OF TASK: Describes the purpose of the task and 
how it  is   to be executed. 

4. ARTEP SUBTASKS AND STANDARDS: Lists in narrative form (BLUFOR only) 
an abbreviated version of the subtasks and standards of the collective 
task as they appear in the ARTEP. Subtasks and standards are not included 
for OPFOR, however, identification of other sources as appropriate, will 
be made. 

5. INITIAL CONDITIONS: Includes the condition, state, or posture of 
the unit at the commencement of the CIS, e.g. , moving in line formation, 
expectation  of enemy contact,   etc. 

6. INPUT DATA: Includes specific data from external sources that 
transfer the generic CIS into an exercise-specific one. These are the data 
that must be known at the commencement of the CIS, such as the unit's 
direction,   speed of movement,   movement  technique,   etc. 

7. NOTES: Any explanatory notes that need to be included for clarity, 
such as reference  to schematics,   doctrinal  definitions,   etc. 

Figure 4:  CIS Section B — Doctrinal Framework for CIS 

SECTION C.  ACTIONS TO BE TAKEN 
1. SEQUENCE OF ACTIONS: Describes the precise sequential actions 

that must occur in order to properly execute this tactical behavior. As 
a means of traceability, actions are described in the order in which 
the subtask and standard are delineated in the ARTEP. OPFOR actions are 
described as   they  typically occur. 

2. TIME-DEPENDENT ACTIONS/RESULTS: Includes such things as time 
factors which may not be immediately apparent when "taking a snapshot" 
on the battlefield but which can have a cumulative impact over time. 
For example, "after 6 hours the battle position will have hasty mine- 
fields in place." 

Figure 5:  CIS Section - Actions To Be Taken 

SECTION D.  CHANGES IN CIS STATUS 
1. SITUATIONAL INTERRUPTS: Indicates those selected conditions or 

events that cause immediate reaction by the unit to engagement by the 
enemy. 

2. TERMINATING CONDITIONS: Describes the conditions that cause the 
CIS to be terminated and the next event in the overall sequence of 
tactical  activities   to begin. 

Figure 6:  CIS Section - Changes in CIS Status 

SECTION E.  BATTLEFIELD OPERATING SYSTEMS (BOS) COORDINATION 
BOS Coordination allows specific behaviors to be identified for BLUFOR 
units to reflect autonomous coordination. BOS is a BLUFOR term, for 
OPFOR this section is labeled COORDINATION. The BOSs are Maneuver, Fire 
Support, Air Defense, Command and Control, Intelligence, Mobility/Coun- 
termobility/Survivability,   and Combat Service Support. 

Figure 7:  CIS Section - Battlefield Operating Systems (BOS) Coordination 
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3. GENERAL DESCRIPTION OF TASK: 
The indirect fire drill is used to minimize the effects of artil- 

lery, mortar, or chemical attack. If the platoon is on the move when 
attacked by indirect fire, all vehicles maintain speed and direction 
while moving out of the impact area. If the platoon is stationary, tanks 
move to covered, turret-down positions and continue the mission, or move 
out of the impact area. If the mission requires the platoon to remain 
stationary, permission must be obtained from the company commander before 
moving. The PL initially sends a SPOTREP to the company commander, fol- 
lowed by, situation permitting, a more detailed SHELREP. (FM 17-15, p. 
3-21; STP 17-19EK4-SM, p. 2-133) 

6.  INPUT DATA: 
a. Specify the platoon's mobility condition (moving or station- 

ary) . 
b. If moving, specify the platoon's formation, movement tech- 

nique, direction of movement, and speed (use overlay, OPORD, FRAGO, ter- 
rain reasoning). 

c. If stationary, specify the platoon's center of mass. 
SECTION C.  ACTIONS TO BE TAKEN 

1.  SEQUENCE OF ACTIONS: 
1. Platoon is on the move and must react to indirect fires 

[Condition #11: 
a. Immediately executes evasive action to avoid the impact 

area (V) 
MOVE: All vehicles execute evasive action without stop- 

ping or changing general direction (i.e., increase to dash speed and 
execute sharp left and right oblique turns). (ARTEP 17-237-10-MTP, p. 
A-15; FM 17-12-1, p. 12-101; IDT judgment) 

Figure 8: 

Generalize activities that span multiple echelon 
levels. Any activity that is used by more than one eche- 
lon level of the force structure is an excellent candidate 
for the common activities table (see below). 

Add short descriptions for States, Information- 
flows, Events, Activities, and Controlling Activities 
that are not self explanatory. The short descriptions 
provide a high level description of the associated chart 
element. Short descriptions are contained in the data 
dictionary forms for the charts. 

Complete the Mapping to CIS portion of the long de- 
scriptions. Long descriptions contain CIS Mapping 
statements, rationale (if any), and any notes or general 
comments that are too long to fit in the short descrip- 
tion field for the chart element. 

Submit the CIS State Transition Diagrams, CIS Ac- 
tivity Charts, CIS mapping in the long descriptions, 
and short descriptions for approval by the Subject 
Matter Experts (SMEs). This step forces both sides 
of the CIS analysis process to meet and reach agree- 
ment regarding the translation of the natural language 
CIS description into software requirements. 

Review the individual activities in the CIS Activity 
Charts that are not already defined in the common 
activities table. The common activities table contains 
activities that apply across more than one CIS. Each of 
the "new" activities that are not in the list are reviewed 

CIS Excerpts 

to determine if the activity could possibly be used in 
another CIS. If it appears to be common, the level of 
commonality is determined. (For example, is it com- 
mon to both OPFOR and BLUFOR platoons or just 
OPFOR platoons.) The potential common activities 
are denoted on the CIS Activity Charts and may later 
be added to the common activities table. 

Review the CIS State Transition Diagrams and CIS 
Activity Charts with the software lead engineer. At 
this point the commonality level and names of the pro- 
posed common activities are approved for inclusion in 
the common activities table, if acceptable. 

Complete long descriptions for the activities that 
are not currently denoted as common to more than 
one CIS. Long descriptions are required for activities 
and their associated events. The activities requiring 
long descriptions at this point include those which are 
unique to the given CIS, as well as those that were pro- 
posed for inclusion in the common activities table, but 
have not yet been included. In this step the long de- 
scriptions are also updated to reflect any assumptions 
or agreements that were reached in the reviews by the 
SME and the software lead engineer. 

For all common activities (both newly designated as 
common and preexisting common activities), com- 
plete the fields Is activity and Implemented by Mod- 
ule. These fields point to the location of the module 
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which contains the definition of the activity along with 
the activity's long description. 

Update the common activity list to include the new 
common activities. Once the new common activities 
have been determined, the responsible software lead 
engineer adds them to the common activities table. 

For each newly defined common or unique activity, 
write one or more SRS requirements The software 
requirements for an activity are directly derivable 
from the long description for the activity. 

Enter the long definition for each information-flow 
in the CIS Activity Charts that has not already been 
defined in the main model. For information-flows, 
the components of the flow, if there are any, are also 
entered. In this case, each of the components are de- 
fined as information-flows, including long descrip- 
tions, if they do not already exist. For any informa- 
tion-flow which has a range of values the values are 
specified in the long description. For example, an in- 
formation-flow which corresponds to the role of the 
vehicle within a BLUFOR platoon can have the range 
of values from role one to role four. 

5.2        CIS Software Analysis Products 

This section provides examples of the products that are 
developed during the CIS Software Analysis activity. 
These products have all been generated using the Sta- 
temate CASE tool. These include state diagrams and 
associated   activity   charts,   the   data   dictionary 

associated with the state and activity charts, the com- 
mon activities table, a cross reference table that links 
the CIS standards to their associated activities, and the 
SRS as a final product. The examples are all derived 
from the CIS software analysis activity associated 
with the React to Indirect Fire CIS. 

5.2.1 State Diagrams and Activity Charts 
Figure 9 shows the state diagram for the BOO 13 pla- 
toon control operations. Each of the boxes in the dia- 
gram correspond to states that the platoon can be in 
while accomplishing the React to Indirect Fire CIS. 
The arcs in the figure represent transitions between 
states. The identifiers in capital letters (e.g. RE- 
QUEST_APPROVED) are labels for the transition, in- 
dicating the reason that the transition occurred. The 
conditions in square brackets ([ ]) represent guard 
conditions (i.e. conditions that must be met for the 
state transformation to take place). The format /st! fol- 
lowed by an activity name in parentheses (e.g. 
/st!(PLT_GENERATE_REQUEST_TO_CDR)) indi- 
cates that the named activity is to commence at the 
specified point. The referenced activities are then 
shown with their associated data flows in the unit ac- 
tivity chart, Figure 10, which shows platoon activities 
to be accomplished while simulating the React to Indi- 
rect Fire CIS. The boxes in dotted lines represent ex- 
ternal components that have communications inter- 
faces with the activity. 

Chart: B0013_PLT_CONTROI, Date: 10-OCT-1994  16:28:18 

B0013_PLT_CONTROL 

CREATING_MOVE_OUT 
^AREA_ORDERS 3 

CREATED_QK_ORDERS 
/stIIPLltCHBCK  POSITION) 

INDING_COVERED_ 
CONCEALED_POS> 

CFINDING_COVERED_   1 
CONCEALED_POS> 

CREATED_CR ORDERS 
/st!(PLTJ ISTRIBUTE ORDERS) 

EXECUTING_30013 
CREW ORDERS> 

AWAIT:NG_ORDERS 

Figure 9:   BOO 13 Platoon Control State Chart 
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Chart: B0013_PLT_AC7IVITY     Date: 10-OCT-1994  16:30:18 

B0013 PLT. ORDER 

COMMAND 
_AND_ 
CONTROL 

VEHICLE_PROCRESS_REPORTS 

STATIONARY 

 b ENTITY_ L 
SIMULATION     | 

:OVER_CONCEAL_PC 

r B0013_CR_ORDER 

I I 

B0013   PLT  ACTIVITY 

»B0013_PLT_CONTROL                                                J 
1 

PUT, 

, 

IDENTIFY_COVER 
_CONCEAL_POS 

IN_POSITION 

f£\                     COVER_CCNCEAL_POS 

PLT_ CHECK_POSITION 

CRETTED_CR 
.ORDERS 

CREATE_B 0013_CR_ORDER 

PLT_GENERATE_REQUEST_ 
TO_CDR 

PLT_DISTRIBUTE_ORDERS 

Figure 10: B0013 Platoon Activity Chart 

As an example of the correspondence between the var- 
ious charts, consider the reference to 
CREATE_B0013_CR_ORDERinFigure9. This ref- 
erence occurs in the transition to CREAT- 
ING_B0013_CREW_ORDERS. This transition can 
come from several previous states, dependent on 
whether the unit was moving or stationary, or whether 
the unit was able to find a covered and concealed posi- 
tion. The actions specified by the 
CREATE_B0013_CR_ORDER activity are to be ac- 
complished while the unit is in the state CREAT- 
ING_B0013_CREW_ORDERS. The 
CREATE_B0013_CR_ORDER activity is then speci- 
fied on the BOO 13 platoon activity chart, Figure lOIn 
this chart, CREATE_B0013_CR_ORDER is shown 
providing a data output to the PLT_DIS- 
TRIBUTEjORDERS activity, namely the BOO 13 
crew order. It has a data input from the IDENTI- 
FY_COVER_CONCEAL_POS activity, the covered 
and concealed location. It provides a logical output to 
the      BOO 13      platoon      control      chart,      the 

CREATED_CR_ORDERS flag, indicating that the 
crew orders have been completed. All of the activity 
descriptions for this activity are given in the data dic- 
tionary entry associated with the activity (see Section 
5.2.2). The software requirements associated with the 
CREATE_B0013_CR_ORDER activity are then 
derived from the combination of its reference in the 
BOO 13 state transition diagram, its relationship with 
the other entries in the BOO 13 activity chart, and its de- 
scription in the data dictionary. 

5.2.2 The Data Dictionary 
The data dictionary entries provide backup informa- 
tion pertaining to the state and activity charts pres- 
ented in the previous section. In particular, the notes 
section documents any interpretation of the CIS that 
may have been required during the CIS Software Anal- 
ysis activity. An example of a data dictionary entry 
from the React to Indirect Fires state and activity 
charts is given in Figure 11. 
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Activity CREATE_B0013_CR_ORDER 
Defined in chart: B0013_PLT_ACTIVITY 
Type: BASIC 
Long description: 
CISSTMT.C.1.1 &2 
DESCRIPTION: Crew Order to Perform BLUFOR Tank Platoon React to Indirect Fire is created us- 
ing the inputs listed below. 
INPUTS: 
Mobility condition<HR> 
Formation <HR> 
Movement technique <HR> 
Direction   <HR> 
Speed <HR> 
Route <HR> 
Center of mass 
OUTPUTS: 
CREATE_B0013_CR_ORDER 
RATIONALE: None. 
NOTES: 
#2- If platoon is stationary (input) and movement request is denied platoon stays in position (turret 
down positions). Any tanks not in turret down positions move to nearest turret down positions. For 
tanks staying in position the position given will its current position. Possible CISs using this condition: 
B0034 .Execute Platoon Defensive Mission. 
#3- If platoon is stationary (input) and movement request is approved platoon moves 600m out of 
impact area and then moves into covered and concealed positions, taking evasive action and main- 
taining wingman orientation. Platoon then goes into awaiting orders. Possible CISs using this condi- 
tion: B0008 .Execute Herringbone Formation. 
#1 - If platoon is on the move platoon moves out of impact area without changing direction using 
evasive action (at dash speed and execute sharp left and right oblique turns). Platoon moves at least 
500m from initial point of impact. 

Figure 11: Example from Data Dictionary 

5.2.3      CIS-to-Activity Cross Reference Table derived during the CIS software analysis process. 
The CIS-to-Activity Cross Reference Table provides Figure 12 shows an example of a cross reference table 
the link between the CIS standards and the activities created for the React to Indirect Fire CIS. 

B0013 

  

CIS Statement Cross—Reference Report 

Statement Activity /Rationale 

C.1.1 CREATE_B0013_CR_ORDER 
C.1.2 CRE ATE_B0013_CR_ORDER 
C.1.2.C.1 PLT_GENERATE_REQUESTTO_CDR 
C.1.2.C.1 SHELREPs are not implemented in SAF. But the information will be 

included in Spot reports which are implemented as a general background 
routine and not shown in the charts. 

C.1.2.C.2 PLT_GENERATE_REQUEST_TO_CDR 
C.1.2.C.2 PL specifies a new formation, reassembles the platoon, and continues 

mission. These actions are represented by the state awaiting orders. 
C.1.2.C.3 IDENTIFY C C POS 
C.1.2.C.3 PLT_GENERATE_REQUEST_TO_CDR 

Figure 12: Example of Cross Reference Table 
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5.2.4      Common Activities Table 
This section contains an excerpt from the Common 
Activities Table that pertains to the execution of the 
React to Indirect Fires CIS. Common activities are ac- 

tivities that are performed across units, echelons, or 
forces which are alike in their use and functionality. 
The Common Activities Table sample is shown in 
Figure 13. 

Activity Name Description 

IDENTIFY_COVER_CONCEAL_POS This activity finds a set of covered and concealed positions for an 
entity. The covered and concealed position will offer cover from 
entities that are approaching from a given direction. In addition, 
the position will be within a specified area and be able to conceal 
the entity. 
Inputs: 

Bounding Area (Rectangle) 
Enemy Location 
Entity Physical Characteristics 

Outputs: 
Covered and Concealed Position 

Figure 13: Excerpt from Common Activities Table 

The following list provides examples of various primi- 
tive state activities which have been developed out of 
the analysis: 

Adjust Spacing 

Cease Fire 

Determine Assembly Area Positions 

Determine Sectors of Fire 

Estimate Enemy Size 

Follow Route 

• Generate Resource Report to Head- 
quarters 

• Move to Position 

• Orient Weapon 

• Scan Sector 

• Vehicle Tether to Platoon 

5.2.5      SRS Products 
Figure 14 presents an excerpt from the SRS document 
directly related to the React to Indirect Fire CIS. 

RCG93010:  The Combat Unit Tactics capability shall request covered and concealed positions from the 
Environment capability when any of the following occur: 
a. BLUFOR Tank Platoon executes a React To Indirect Fire Order 
b. BLUFOR Tank Platoon executes an Occupy a Platoon Battle Position Order 
c. BLUFOR Tank Platoon executes a Perform Platoon Fire and Movement Order 
d. BLUFOR Mechanized Infantry Platoon executes a React to Indirect Fire Order 
e. BLUFOR Mechanized Infantry Platoon executes a Hasty Dismount Order 
f. BLUFOR Mechanized Infantry Platoon executes a Mount a Platform Order 
g. BLUFOR Mechanized Infantry Platoon executes a React to Contact (Mounted) Order 
h. OPFOR Motorized Rifle Platoon executes a Remount Platform Order 
i. OPFOR Motorized Rifle Platoon executes an Occupy a Defensive Strong Point Order 
j. OPFOR Motorized Rifle Platoon executes a Fire Engagement Order 
k. OPFOR Motorized Rifle Platoon executes a Withdraw/Disengage Order 
1. OPFOR Motorized Rifle Platoon executes an Occupy a Temporary Defensive Position Order 
m. OPFOR ATGM Squad executes an Occupy a Defensive Position Order 
n. OPFOR Motorized Rifle Company executes a Fire Engagement Order 
o. OPFOR Motorized Rifle Company executes an Assault an Enemy Position Order.System Component: 
SAF 
Analysis Activity: Identify_Cover_Conceal_Pos 

Figure 14: Excerpt from SRS Document 
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6. Conclusions 

The techniques described in this paper have been suc- 
cessfully used to describe and implement combat be- 
haviors for the CCTT SAF program. The CIS descrip- 
tion of behaviors has proven to be useful not only on 
the CCTT SAF program, but should also be of benefit 
to any DIS simulation program that requires a descrip- 
tion of appropriate tactical behaviors. Using formal 
CIS software analysis techniques helped to bridge the 
gap between Subject Matter Experts, who know a 
great deal about tactical doctrine but very little about 
software development, and software engineers, for 
whom just the reverse is true. 
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1. Abstract 

The Modular Semi-Automated Forces (ModSAF)1 

system has shown itself to be a valuable tool to gener- 
ate forces in the synthetic battlefield (Calder et. al. 
1993) (Loral 1993). Major projects, such as the Syn- 
thetic Theater of War (STOW) call for it use to simu- 
late a significant number of entities. While it has prov- 
en quite capable of this, its modeling of the order gen- 
eration process is some what lacking. Focusing 
exclusively on the third paragraph, Execution, of the 
Army's five paragraph order. The purpose of this work 
is to develop an interface that would more closely 
model the generation of the five paragraph order. A 
key component of this was the generation of both a 
ModSAF scenario and a printed five paragraph order. 

2. Introduction 

The creation of the scenarios form a five paragraph or- 
der required modifications to the current mission plan- 
ning and task assignment process. Primarily, this in- 
volved the use of the Rational Behavior Model (RBM) 
to generate the task frames (Byrnes et. al. 1993). RBM 
was developed primarily as a means of mission plan- 
ning and control for autonomous robots. Extending 
this concept to address the problems of mission plan- 
ning for computer generated forces allows the human 
greater flexibility and capability in controlling large 
numbers of computer generated forces in a large-scale 
virtual environment.       * 

A prototype mission planner was added as a library. 
Using the US Army's five paragraph operations order 
as the basis, modifications and enhancements were 
made to the standard Modsaf GUI editors to allow the 
user to generate the five paragraph orders. The editors 
provide information to the framework about which ar- 

1. This paper assumes a basic knowledge of 
and familiarly with ModSAF. If the reader is 
unfamiliar with the system, please refer to the 
ModSAF User's Guide for an overview. 

tificial intelligence modules operate on the data input 
from the order, generating ModSAF tasks that are sub- 
sequently executed by the company. Currently, the in- 
put is parsed directly into a series of company-level 
ModSAF mission tasks. 

3. The Five Paragraph Order 

The US Army's five-paragraph operations order 
(OPORD) is a standardized document that enables a 
trained reader to rapidly develop an understanding of 
the overall situation, mission, commander's intent for 
the operation, and tasks of subordinate units. This for- 
mat is universally understood throughout the US Ar- 
my, and thus is an intuitive way for a military user to 
assign orders to subordinate units. The five paragraphs 
are Situation, Mission, Execution, Service Support, 
and Command and Signal. Figure 1 contains a sample 
OPORD generated by the Tactical Order Generator 
(Army FM 10105-1) (ARMY FM 71-1). 

Map overlays containing maneuver graphics are es- 
sential accessories to the basic text order. Overlays 
serve to graphically illustrate the contents of the order. 
In most cases, the OPORD text will refer the reader to 
these overlays, especially within the Situation and Ex- 
ecution paragraphs. 

4. Initial Attempt: Distributed Design Strategy 

The initial effort was focused on the development of a 
stand-alone application that would allow the use of a 
truly object-oriented language, such as C++. This lan- 
guage, unlike K&R C, supports stronger type-check- 
ing, polymorphism, and object inheritance. This was 
initially selected to make the application development 
easier, as C++ supports stronger type checking, and 
the use of objects for mission selection would closely 
follow the object-oriented paradigms in the Common 
Lisp Object System (CLOS) and CLIPS (Giarratano 
1993) (Steele 1990) (Stroustrup 91). 

A number of lessons were learned in pursuing this ap- 
proach. The selection of a particular language depends 
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Operations Order for A 
PO Database Number 1/1/359 

Paragraph 1: Situation 
a. Enemy forces. 
Total Number of Enemy Combat Systems in Area of In- 

terest: 83 

b. Friendly Forces. 
Total number of Friendly Combat Systems in Area of In- 

terest: 60 
Number of Tanks: 14 
Number of IFV's: 4 
Number of Other Vehicles: 2 

c. Area of Interest (Company Level). 
Southwest Comer Location: UTM Grid: 10SFQ546773 
Southeast Comer Point: UTM Grid: 10SFQ595771 
Northwest Comer Point: UTM Grid: 10SFQ542795 
Northeast Comer Point: UTM Grid: 10SFQ593795 

Paragraph 2: Mission 
TF 6-40 AR/Berlin Bde attacks 45 minutes from now, 

from point UTM Grid: 10SFQ562784 to point UTM 
Grid: 10SFQ545788 

Paragraph 3: Execution 
a. Concept of the Operation 
This Mission will be executed in 4 phases. 
b. Detailed Instructions - A Company: 
Phase 1: 

Attack along axis UTM Grid: 10SFQ551782 
Assault from attack position, location UTM Grid: 
10SFQ547785 to seize objective, UTM Grid: 
10SFQ545788 

Phase 2: 
Transition from phase 1 to phase 2: on order. 
Defend battle position UTM Grid: 10SFQ545788 
Oriented on the TRP located UTM Grid: 
10SFQ538792 
Left Limit: UTM Grid: 10SFQ533789 
Right Limit: UTM Grid: 10SFQ542795 

Phase 3: 
Transition from phase 2 to phase 3: on order. 
Conduct a road march, Start Point UTM Grid: 
10SFQ562784 
End at Release Point UTM Grid: 10SFQ573805 

Phase 4: 
Transition from phase 3 to phase 4: continue. 
Occupy Assembly Area at location UTM Grid: 
10SFQ584805 

Paragraph 4: Service Support 
a. Supply 

Supplies on hand: 
Ammunition basic load: 100.00. 
Fuel basic load: 100.00. 
Resupply Points: 

Ammunition Resupply Point Location: UTM Grid: 
10SFQ582780 
Fuel Resupply Point Location: UTM Grid: 
10SFQ580784 

b. Services 
Battalion Aid Station Location: UTM Grid: 
10SFQ584784 
Admin Log Operations Center Location: UTM Grid: 
10SFQ580778 

Paragraph 5: Command & Signal 
a. Signal. 

Current CEOI in Effect. 
b. Command. 

Chain of Command is 
Commander 
Third Platoon Leader 
First Platoon Leader 
Second Platoon Leader 

Figure 1. Sample Five Paragraph Operations 
Order Generated by the OPORD System 

significantly on the language of the preexisting code. 
Unless one is willing to do a complete rewrite of the 
program, the programming language should be the 
same as the majority of the code that will be reused in 
the new application. A minimalist approach to code 
modification and extensibility should be pursued 
whenever possible. In attempting to use the large body 
of preexisting ModSAF code, changes were made that 
were inconsistent with good programming practices. 
The integration of the new code with the old code was 
not well-defined, and thus allowed inconsistencies in 
the application's execution. 

5. Second Attempt: Integrated Design Strategy 

The second attempt was much more successful, and in- 
volved the building of a separate library and incorpo- 
rating it into the existing ModSAF code. This new li- 
brary — "LibOpord" — was created and integrated in 
the same manner as the other subordinate ModSAF li- 
braries. Analysis of the code structure for both ver- 
sions of ModSAF revealed that the unit operations ed- 
itor was the best choice for the insertion of the code to 
initialize and call LibOpord. This is a base editor de- 
fined in the LibUnits library that allows the user to en- 
ter a set of tasks for the selected unit, its subordinate 
units (if any), and individual vehicles. It links these 
tasks together through operator defined phase transi- 
tions, called enabling tasks. The unit operations editor 
was chosen as it is the one that appears when a unit or 
a vehicle is selected from the Plan View Display. As a 
result, a minimal change to one existing ModSAF li- 
brary was required, in addition to the inclusion of the 
header file in the main.c preprocessor directives. 

5.1 Integration of the Mission Planner Into 

ModSAF 

The integration of LibOpord into the ModSAF library 
set was done in accordance with (Loral 1993). The li- 
brary requires the following modifications to LibUnits 
to become available to the user: 

• Modification of the data structure within 
LibUnits to include a Motif pushbutton widget 
that will call the LibOpord editor, add a pointer 
to the LibOpord data structure, and define 
LibOpord as an additional sub-editor. 

• Inclusion of the initialization function within 
the LibUnits initialization routine 
("units_create_editor(...)) that will allocate 
memory for the data structures and build the 
Motif GUI widget tree. 

• Addition of a callback 
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(units_operations_order(...)) within LibUnits 
that handles the pushbutton mouse event. 

Initialization of LibOpord is done as part of the Li- 
bUnits initialization steps; no other library requires 
modification. This form of library initialization and 
utilization is identical to the way other ModSAF edi- 
tors are created and called. 

5.2 Graphical User Interface Development 

The base operations order editor was intended to be 
built using the LibEditor functions, but this proved un- 
feasible due to the irregular nature and complexity of 
the editor. Instead, the editor was created using a Motif 
widget tree that allows the programmer to build a cus- 
tomized GUI (Figure 2). The root of the widget tree is 
attached to the ModSAF base GUI, forming a branch 
that is displayed when called. 

The subordinate editors were developed using the 
LibEditor library. The LibEditor create function is 
called in the LibOpord initialization function for each 
subordinate editor. Currently, there are nine subordi- 
nate editors that are initialized in this manner. Every 
subordinate editor has two corresponding functions 
that are called during run-time when the editor is dis- 
played. The first function hides the base editor and 
calls a LibEditor function to display the selected edi- 
tor. The second function collects the user input data 
when the editor is exited and control returns to the base 
editor. 

5.3 Implementation Limitations 

The OPORD editors constrain the user to a limited set 
of choices, which is significantly different than a free- 
text OPORD. There are several obvious reasons for 
this: 

a. Natural Language Processing 

Limitations 

The limitations inherent in natural language process- 
ing do not allow for rapid integration of the data input 
to the other modules in the mission planner. This prob- 
lem is a subject of ongoing research; such a data entry 
system would be too complex and cumbersome to im- 
plement here. 

b. Mission Simplification 

One of the goals of the mission planner is to simplify 
mission determination and selection by the human. An 
extremely rich OPORD editor would only serve to 
complicate the generation of company level missions. 
Instead, a robust expert system should be able to com- 
pensate for the simplicity of input by reasoning about 
the circumstances of the input data and making deci- 
sions in the context of the assigned mission. 

5.4 Data Formatter 

The purpose of the Data Formatter is to ensure the ar- 
tificial intelligence submodules of the Mission Selec- 
tor/Evaluator receive the user input data in a usable 

ModSAF GUI 

OpordBas e (Box) 

SystemFrame (Frame) 

SystemRC (Row-Column) 

— Operations Order (Label) 
- Assign (Pushbutton) 
 Cancel (Pushbutton) 
'— Print (Pushbutton) 

org_frame (frame) 

Organization 
Display 
Widget Set 

SubEditors (Frame) 

I 
SubEditorRowCol 
(Row-Column) 

Emat (Row-Column) 

Situation 
(Pushbutton) 

Service Support 
n) (Pushbutton) 

Mission 
(Pushbutton) 

Command & Signal 
(Pushbutton) 

MissionBox (Box) 

Phase %i (Label)" 

Separator Phases (Box) 

Transition %\ (Label)— 

RadioMission (Radio Box) 

Attack Move 
(Radio Button) (Radio Button) 

Defend Halt 
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Continue 
(Radio Button) 

RadioPhase (Radio Box) 

On Order 
(Radio Button) 

Control Measure 
(Radio Button) 

Msn Complete 
(Radio Button 

Figure 2. OPORD Widget Tree 
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form. The Data Formatter is a set of data structures and 
the code that converts the data from one structure to 
the other. Its current implementation is as a structure 
of structures. There is currently no modification being 
done as the artificial intelligence submodules are not 
developed. The user interface through LibEditor re- 
quires that the data displayed and entered must be 
placed in a separate structure for later processing. To 
simplify this procedure, a base structure is defined that 
contains the five paragraphs in separate structures 
(Figure 3). This compartmentalization of data allows 
one portion of the structure to be modified based on the 
user's selection. 

)PORD_MISSION_DAT7 

SITUATION 

MISSION 

SUPPLY_SVCS 

EXECUTION 

f C OMMAND.SIGNA . 

Phase 

sition | p Transition Phase_Missioi 

Figure 3. Compartmentalized Data Structure 

The OPORD_MISSION_DATA structure aggregates 
the information from all editors into one structure. 
This approach provides the capability to easily change 
the data parameters in one centralized structure. This 
area is ripe for additional enhancements; the main dan- 
ger here is overwhelming the user with data. The focus 
here is to request the essential data (keep it simple) and 
let the AI reason about the context and situation, and 
modify those parameters as required. Currently, the 
maximum number of phases for a given operations or- 
der is four. This limitation was a design choice. Most 
battalion-level operations orders never exceed four or 
five phases; this number can be changed through ad- 
justing the value of the array variable through the con- 
stant MAX_OPORD_PHASES. 

5.5 Mission Selector/Evaluator 

This module was not implemented due to the time con- 
straints involved. The shell about which the Mission 
Selector/Evaluator operates was successfully complet- 
ed, but the initial attempts to develop a distributed mis- 
sion planner consumed the available time. This sub- 
module could be the subject of future work. 

5.6 ModSAF Orders Generator 

The ModSAF Orders Generator is also a prototype 
module. It makes extensive use of the new 
LibTaskUtil library, which is designed to allow direct 
creation of specified task frames without calling the 
task's associated editor. This allows libraries like Li- 
bOpord to generate a set of task frames and assign 
them to a unit, without human intervention. The li- 
brary was modified by J. E. Smith to allow multiple 
task frames to be linked by enabling tasks. These mod- 
ifications will become generally available in the next 
version update of ModSAF (Version 1.3). A single 
reader file was modified to include company-level 
tasks; the associated editors and libraries were passed 
to the taskutil_init function during initiation of the op- 
erations order structures and editors. 

6. Summary 

The distributed design strategy was more involved, but 
was probably due to faulty methodology than the strat- 
egy itself. The integrated design strategy resulted in 
the rapid development of a proof-of-concept proto- 
type. While this strategy is the simpler of the two, it 
may be rendered unusable due to the potential resource 
requirements of the artificial intelligence modules. 
The prototype terrain reasoner, written in CLIPS, re- 
quires sixty seconds to determine a single route using 
A* search on a three kilometer by three kilometer ter- 
rain. Expanding this to cover an "average" battalion 
area of interest of five by five kilometers could easily 
triple the time required. Additionally, this would re- 
quire heavy use of system resources, which may not be 
available due to the demands of ModSAF. Combining 
this submodule with other expert system submodules 
may make the integrated design strategy unfeasible, 
however, its advantages are the ability to rapidly de- 
velop and test a module within the framework of Mod- 
SAF. 

The initial results from the prototype resulted in a sig- 
nificant simplification of task generation for the user. 
One operations order phase generated on the average 
two and a half ModSAF phases, with no requirements 
for additional parameter changes. Further research is 
needed, however, to fully determine the resource im- 
plications of including AI modules in an already com- 
plex system. The use of the operations order as a 
means to generate a company-level mission simplifies 
mission generation, but a robust expert system is need- 
ed to effectively convert the operations order input da- 
ta to a set of ModSAF tasks. 
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1.   Abstract 

This paper presents a new Unit Route Planning 
Algorithm (RPA) based on a novel abstraction 
called the Obstacle Segment Abstraction (OSA). 
The OSA is a space efficient representation of 
obstacles within a terrain database The Unit Route 
Planning Algorithm combines the OSA with two 
route planning approaches, regular grid and vertex 
graph. An efficient search algorithm, A*, is 
applied to the grid to determine the optimal route. 
Factors in addition to distance are incorporated into 
the route cost determination to introduce 
trafficability and cover and concealment in the 
evaluation of the potential routes. The RPA has 
several strengths. It is scalable. It considers 
distance, trafficability, and cover and concealment. 
It generates multiple routes and identifies 
chokepoints. Finally, it can be used to find and 
progressively refine lengthly, precise routes. 

2.   Route Planning 

Route planning occurs at multiple levels within 
CGF systems. At the lowest level, routes for 
individual vehicles are prepared that allow vehicles 
to move from one point to another. Vehicle routes 
typically consist of a series of line/curve segments. 
These piecewise routes are represented as a list of 
points (called "route points") and the vehicle is 
expected to travel along a line/curve between route 
points. A companion paper (Karr 1995) describes 
a mechanism for avoiding moving obstacles while 
traversing a route. 

At levels above the vehicle, routes are prepared for 
groups of vehicles, i.e. units (platoons, companies, 
battalions). As the hierarchy of units is ascended, 
the unit's size and therefore the width of the route 
increases. Unit routes occur within "movement 
corridors" reflecting the fact that, formations and 
tactics aside, the vehicles' routes are only 
constrained to be within the corridor. A corridor 
has sufficient width for a unit to move through it. 
Planning routes for units of differing sizes may 
seem a simple matter of generating a route for a 
single vehicle and treating that route as the center 

of a corridor. While feasible, this approach retains 
the complexities of creating precise vehicle routes 
which increases the computational expense/time 
above that required for unit route planning. 

This paper details research into route planning for 
military units. A novel approach based on the 
combination of two disparate route planning 
approaches is presented that: 

1. is scaleable, suitable for battalion through 
vehicle route planning, 

2. computationally fast, 
3. considers distance, cover and concealment, 

and trafficability, 
4. generates     multiple     acceptable     routes 

between points within unit boundaries, and 
5. finds and reports chokepoints within the 

routes. 

This research has been done in conjunction with the 
development of a Computer Generated Forces 
(CGF) Automated Mission Planner capability. To 
generate and evaluate multiple courses of action to 
fulfill a mission, the Mission Planner requires 
multiple, tactically sound unit routes and the 
identification of chokepoints along the routes (Lee 
1994). 

2.1   General Path Planning Approaches 

Motion planning with particular emphasis on robot 
path planning and robot manipulator path planning 
has seen considerable work, see Hwang et. al. 
(1992) for a survey. There are four broad 
categories of path planning approaches: 
free/blocked space analysis, vertex graphs analysis, 
potential fields, and grid (regular tessellation) 
based algorithms (Thorpe 1984). Each approach 
has strengths and weaknesses. See companion 
paper (Karr 1995) for a discussion of free/blocked 
space analysis and potential fields. The discussion 
of the vertex graph and regular grid approaches is 
repeated here. 

In the vertex graph approach, the endpoints, 
vertices, of possible path segments are represented 
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(Mitchell 1988). This approach is suitable for 
spaces that have sufficient obstacles to determine 
the endpoints; determining the vertices in "open" 
terrain is difficult. In addition, representing only 
path vertices creates three other difficulties. First, 
trafficability over the path segments is not 
represented; route segments between arbitrary 
vertices are typically "open" or "blocked". Second, 
factors other than distance can not be included in 
evaluating possible routes. In the military 
simulation domain, concealment and cover are 
important factors in route planning. Third, because 
the width of route segments is not represented one 
of two problems occurs. Chokepoints (narrow 
sections of routes) are marked "blocked" or 
"open". If "blocked", acceptable routes are 
discarded. If "open", unacceptably long, narrow 
routes are accepted. Thus, the vertex graph 
approach has difficulty representing route width. 

In the regular grid approach, a grid overlays the 
terrain, terrain features are abstracted into the grid, 
and the grid rather than the terrain is analyzed. 
Each grid cell is typically marked as "open" or 
"blocked". Quadtrees are an example of the 
regular grid approach (Mitchell 1988). Grid routes 
are converted into terrain routes typically by adding 
the z-coordinate to the xy-coordinates in the grid 
route. This approach simplifies the analysis but has 
two disadvantages. First, "jagged" paths are 
produced because movement out of a grid cell is 
restricted to four (or eight) directions 
corresponding to the four neighboring cells (eight 
to allow diagonal moves). Second, the granularity 
(size of the grid cells) determines the smallest 
"opening" that can be identified. If the granularity 
is too large, small openings in obstacles (e.g. 
bridges over rivers) are lost. A small granularity is 
required to capture small openings which increases 
the computational expense of the analysis. 

3.   Unit Route Planning 

The Route Planning Algorithm (RPA) presented 
here combines a unique obstacle abstraction with 
two route planning approaches, regular grid and 
vertex graph. A regular grid overlays the terrain. 
The size and location of the grid is determined by 
the unit boundaries of the unit planning the route. 
The scale of the grid is determined by the unit size; 
grid scales less than the typical "frontage" of the 
unit give good results. For example, grid scales 
from 75 to 125 meters are suitable for platoons. 
250 to 500 meters for companies, and 750 to 1000 
meters for battalions.   Obstacles on the terrain are 

encoded in the grid using a novel abstraction called 
the Obstacle Segment Abstraction (OSA). The A* 
search algorithm is applied to the grid to determine 
the optimal route. Cost factors for distance, 
trafficability, and cover and concealment are 
included in the evaluation of the potential routes. 

This work was performed in the 1ST CGF Testbed, 
an environment for testing CGF behavioral control 
algorithms developed under the sponsorship of 
ARPA and STRICOM (Danisas et. al. 1990, 
Gonzalez et. al. 1990, Petty 1992, Smith et. al. 
1992a, and Smith et. al. 1992b). 

3.1  Terrain Grid 

CGF systems operating within DIS type 
environments rely on a representation of terrain 
termed a Terrain Database (TDB). This research 
was performed using the SIMNET TDB which 
encodes terrain and terrain features as polygons; 
these are encoded in turn in edge and vertex lists. 
This TDB contains features such as treelines, 
canopies, rivers, and lakes. These features are the 
physical obstacles. The RPA is applicable to any 
polygonal TDB format (e.g., ModSAF's CTDB 
(Smith 1994)) and to TDB formats that represents 
obstacles as distinct features. 

When a route is requested, a regular grid is laid 
over a portion of the terrain. The location and size 
of the grid are determined by the unit boundaries 
and the orientation of the grid is determined by the 
orientation of the destination to the starting 
location. The granularity of the grid (the size of 
each grid cell) is determined by the unit size. Each 
grid cell has eight neighboring grid cells. The cells 
to the north (N), south (S), east (E), west (W) are 
the orthogonal cells and the cells to the northeast 
(NE). northwest (NW), southeast (SE). and 
southwest (SW) are the diagonal cells. 

NW 0 NE 

W 0 
SW a SE 

Figure 1  Neighboring cells 
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3.2   Obstacle Segment Abstraction 

The terrain underlying the grid is analyzed and 
each obstacle in encoded in the grid. The encoding 
uses a small set of linear segments called the 
Obstacle Segments (OSs). The different types of 
OSs are: horizontal and vertical, diagonal, and 
tunnel as shown in Figure 2. 

example, Figure 3 shows some notional area of 
terrain and Figure 4 shows the resulting OSA grid. 

*     i      *  

Horizontal and Vertical OS 

Diagonal OS 

Tunnel OS 

Figure 2 Obstacle Segments 

Each OS is identified with an Obstacle 
Identification    Number    (OIN). The    OSs 
representing a single terrain feature are assigned 
the same OIN. Thus, each OSA represents a single 
terrain feature and is the set of OSs with the same 
OIN. 

Treating physical obstacles as OS abstractions is 
the basis for OSA route planning. The precise 
polygonal details of the obstacle are be dispensed 
with and an encoded representation is used in its 
place. As will be seen, the grid granularity 
determines the "correlation" error between the 
feature and its abstraction. So long as the 
granularity reflects the unit size, the correlation 
error is not a significant issue. 

3.2.1 Creating Obstacle Segments 
The intersections of terrain obstacles and the edges 
of the grid cells are determined and converted to 
OSs. An OS is created between the sides of the 
two entry points of an obstacle into a grid cell. An 
obstacle that does not exit a cell does not impose a 
barrier to travel within the cell; a vehicle can 
simply move around it. 

Obstacles with width (e.g., rivers and lakes) will 
sometimes be represented by more than one OS in a 
grid cell. This occurs when the edges of the 
obstacle cross different grid cell boundaries.   For 

/ 

c~ r 
~>— k y 

canopy 

Figure 3 Notional Terrain 

The OSs representing each obstacle are assigned 
unique OINs. In this example, the river's OSs are 
assigned the id "1" and the canopy's OSs are 
assigned the id "2". The river crossing the corner 
of a grid cell causes the river's OSA representation 
to include two cells with multiple OSs. 
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Figure 4 Obstacle Segment Abstraction Grid 

3.3   Creating Routes 

Route planning within the OSA grid is a matter of 
searching the grid for optimal routes. The search 
through the grid utilizes the vertex graph approach 
to route planning. Within each grid cell, "sample" 
points (see Section 4.3.2) are isolated. Beginning 
at   the   start   location,   a   partial   route   to   each 
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neighboring cells' sample points is created 
provided that the partial route does not cross an 
Obstacle Segment. In turn, each partial route is 
extended. This is a graph search problem. An 
efficient algorithm for performing graph searches is 
A*, Winston (1992). 

The Unit Route Planner calculates route cost from 
distance, trafficability, and cover and concealment. 
As the length of a route increases, its cost also 
increases. Route segments that are not concealed 
from enemy positions increase total route cost 
reflecting increased "danger" along those route 
segments. Poor trafficability similarly increases the 
cost of route segments. For this work, terrain slope 
and soil type governed trafficability. Flat terrain 
was the least costly. Soil types were given costs in 
relation to the ease of travel over them. 

3.4  Advantages of the OSA Approach 

The OSA approach combines the strengths of the 
vertex graph and the regular grid approaches and 
solves or alleviates their problems. Consider the 
shortcomings of the regular grid approach. First, 
the OSA encoding of obstacles within the grid is 
more sophisticated than the typical "open" or 
"blocked" approach. This encoding allows the 
interiors of cells containing obstacles to be 
considered for route segments. This removes the 
restriction that grid granularity is dictated by the 
smallest opening in the terrain. Second, within 
each grid cell, candidate route vertices called 
"sample points" are identified. The introduction of 
sample vertices into the regular grid solves the 
"jagged" path problem of regular grids. Consider 
the shortcomings of the vertex graphs approach. 
First, determining vertices in open terrain is not a 
problem because the grid overlays open terrain and 
vertices, sample points, are found within all grid 
cells. Second, trafficability and cover and 
concealment are encoded in the grid cell and are 
included in the evaluation of candidate routes. 

4.   The Unit Route Planning Algorithm 

This section discusses the Unit Route Planning 
Algorithm that was implemented in the 1ST CGF 
Testbed. Specifically, Section 4.1 presents the 
PlanRoute algorithm. Section 4.2 discusses how the 
grid granularity can be set to the optimum value. 
Finally. Section 4.3 presents details of the 
algorithm implementation. 

4.1    Algorithm PlanRoute 

Algorithm PlanRoute plans a route between two 
points. 

Algorithm PlanRoute 

Input: 
The  grid  to  route  on,   the  start,   and 

destination points. 

Output: 
A list of points defining the route. 

Variables: 
routejist:   A   list  of routes,   sorted   in 

ascending order of estimated total route 
cost.  The  first route  on   this   list  is 
referred to as routejist;. 

route_to_be_extended;   The   least  costly 
(and   hence   the  first)  route   on   the 
route_list. It is the same as route_list1. 

reachable_points: A list of points that are 
reachable   from   the   last   point   on 
route_to_be_extended. 

1. [Create the grid] 
2. [Fill the grid] 
3. [Initialize routejist] 

routejiist = empty 
4. [Are we there?] 

If the first route on the route_list terminates 
at the destination then 

4.1 Return route_list] 
else 

4.2 [Extend least costly partial route] 
4.2.1 route JoJ>e_extended = 

routejiist i. 
4.2.2 Determine the points 

reachable from the last point on 
route _toJbe_extended 
(described in Section 4.3.6). 
reachablejpoints = {r/,r2,...,rn}. 

4.2.3 Expand route_to_be_ 
extended to each of the points in 
reachable joints if another, less 
expensive route to those points 
does not exist. 

4.2.4 Add these new routes to 
routejist in ascending order of 
route cost and underestimate. 

4.2.5 Go to step 4. 

Steps 1 and 2 in the algorithm create the grid and 
populate it with abstract obstacles (see Section 
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4.3.1 for details on converting polygonal features to 
OSs). Step 3 initializes the routejist to empty. 
Step 4 finds the route. 

In step 4, a check is made to determine if 
route jo _be_extended has reached the destination. 
If so, the result is sent to the caller; otherwise, 
route jo_be_extended is extended. 

Step 4.2 extends the least costly partial route. The 
first route on the route_list, route_listh is removed 
and assigned to routejo_be_extended. All the 
points that are reachable from the end of this route 
are determined and stored in the list 
reachable jpoints (see Section 4.3.6 to see how 
reachable points are determined.) The route is 
extended to each reachable point only if another, 
less costly route does not exist. These "extended" 
routes are added to the route_list in sorted order 
and step 4 is repeated. 

4.2 Grid granularity auto-detection 

It is easy to see that at certain grid sizes the density 
of obstacles on portions of terrain can exceed the 
capacity of the OSA grid to represent them. When 
the granularity of the grid is too coarse for the 
density of obstacles, the Unit Route Planner 
attempts to create too many identical OSs. The 
Unit Route Planner detects when this occurs and 
prevents analysis from continuing at the same 
granularity. There are at least two solutions to the 
problem of a too coarse grid granularity. First, the 
algorithm can simply stop and replan the entire 
route at a finer granularity. This is the simplest 
solution conceptually. The algorithm simply 
"halves" the grid width and starts over. The second 
solution is similar to the quadtree representation. 
In this approach only the granularity of the grid cell 
that is too coarse is increased. This approach 
avoids the computational expense of repeated 
replanning but is more complex. For this work, the 
first approach was chosen. 

4.3 Algorithm details 

Sections 4.3.1 through 4.3.7 describe aspects of the 
PlanRoute in greater detail. 

4.3.1 Marking Obstacle Segment Abstractions in 
Grid Cells 
Physical obstacles (treelines, canopies, rivers, and 
lakes) that cross a cell's boundaries are marked as 
Obstacle Segments for each grid cell. In the 
polyonal    SIMNET   TDB,   obstacle   edge   and 

polygon lists within terrain patches were searched 
and converted to OSAs. 

4.3.2   Sample points 
In the typical regular grid approach to route 
planning, the center of the grid cell is the single 
available route point. The Unit Route Planner has 
instead a set of 12 available route points called 
sample points. The sample points are the vertices 
used by A* in searching the OSA grid for routes. 
Figure 5 shows the sample points in relation to the 
diagonal OSs, a horizontal OS, and a vertical 
tunnel OS. They are arranged so there is at least 
one sample point on each side of each OS. 
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7 10 8 

Figure 5 Sample Points 

All grid cells have at least the first eight sample 
points. If the grid cell contains a tunnel, four 
additional points (9.. 12) are added. 

Regular grids typically show a "digitization bias", 
Mitchell (1988), in which only 4 (8 if diagonal 
moves are allowed) angles out of each cell are 
available; these angles correspond to moves to the 
orthogonal and diagonal cells. This digitization 
bias causes the "jagged" appearance of routes. 
Sample points greatly reduce digitization bias. 
Each cell has between 512 angles and 1152 angles. 
Each partial route can be extended to between 64 
and 96 available sample points. 

4.3.3 Adjusting start and destination points 
Because of the correlation error between an 
obstacle and its OSs, the start and destination 
points can not be translated to the OSA grid 
directly from their locations on the terrain. Simply 
put, the start or destination points must remain on 
the correct "side" of the Obstacle Segments. 
Figure 6 illustrates the problem. The start point in 
the OSA grid must be to the southwest of the 
river's OS. 
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Figure 6 Start point adjustment 

An algorithm was devised to move the start and 
destination points so that their positions relative to 
the abstract obstacles matched their positions 
relative to the physical obstacles. Specifically, the 
start or destination point is moved to a sample point 
(see Section 4.3.2) inside the grid cell. The 
algorithm is based on the floodfilling approach as 
described in Foley et.al. (1991). The edges that are 
"colored" by the floodfill are analyzed to determine 
which sample point to use as the terminal location. 

4.3.4 Movement between grid cells 
OSAs are approximations of the underlying terrain 
obstacles. OSAs in a cell and in orthogonal cells 
may "touch" on the edge between the cells even 
though the obstacles do not touch. This creates an 
artificial barrier to routing. To solve this problem 
the concepts of the "shared point" and "Obstacle 
Segment Displacement" were introduced. 

4.3.4.1 Shared points 
The point of contact of two OSs is called a shared 
point. Shared points are the midpoints of the edge 
separating two cells. Figure 9 illustrates a shared 
point. 

4.3.4.2 Obstacle Segment Displacement 
Obstacle Segment Abstractions may be aligned so 
as to block movement that would otherwise be 
possible if routes were being generated with respect 
to the underlying terrain features only. Consider, 
for example, the movement from cell A to cell B in 
Figure 7. 

Figure 7 Access to region between physical 
obstacles in two cells 

It is clear that a route may be extended from point x 
to the accessible area in cell B. 

The OSAs for these two grid cells restrict access to 
the accessible area. Without adjustment, the only 
move from x is to the NW of the treeline: 

point X 

" treeline OS A 

.• s—         —•>*   inacc 
"—    "   —' area 

cell A 
s -*— river OSA 

cellB    Vv 

Figure 8 The corresponding obstacle abstractions 

To prevent "touching" OSAs from unrealistically 
eliminating route segments, OSAs are "displaced" 
away from shared points. This is reasonable; the 
terrain features do not touch (they would be 
represented as the same OSA if they did), so the 
OSAs should not touch. 

point x treeline OSA (displaced) 

 _£-a accessible 

cellB 

river OSA 
(displaced) 

Figure 9 Displaced obstacle segments 

In Figure 9, the OSA representing the river is 
displaced to the South and the treeline OSA is 
displaced to the North.   The displacement opens 
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the gap between different OSAs making movement 
between them possible. 

4.3.5 Extended Obstacle Segments 
The PlanRoute algorithm (Section 4.1) considers 
only two grid cells at a time when extending partial 
routes. In Figure 10, a move is being considered 
from "current position" in cell A to y in cell C. 
The move appears to be valid when only cells A 
and C are considered; knowledge of OSs in cell B 
is not used. However, such moves should be 
disallowed because the OSA in cell C will extend 
into cell B. 

To disallow such moves, "Extended OSs" 
consisting of three components, the Obstacle 
Segment and two extensions (one from each 
endpoint), are created. Each extension is a line 
segment at a right angle to its edge of the grid cell. 
When determining if a sample point can be 
reached, Extended OSs are checked. 

i 

i extension 2 

blocked 
move 

sy/ 
extension 1 .' - Obstacle 

Segment 

cell B cellC 

current 
position 

cell A 

Figure 10 Extended Obstacle Segment 

4.3.6    Determining Reachable Points 
Routes   are  extended   to   "reachable"   points   in 
neighboring grid cells. A sample point is reachable 
if a line segment to the point does not intersect an 
OS. 

If two adjacent grid cells do not contain a shared 
point (Section 4.3.4.1), line segments are drawn 
from the end of the route to each of the sample 
points in the destination grid cell. If a line segment 
intersects an OS, the sample point is unreachable 
and discarded. 

However, if two adjacent grid cells contain a 
shared   point,  the  shared  point  is  checked   for 

reachability. If so, the sample points are checked 
for reachability from the shared point. Thus, a 
sample point is reachable if it is reachable from a 
reachable shared point. 

Reachable points are partitioned into mutually 
reachable sets (MRS) which have the property that 
all points in a MRS are mutually reachable. 
Reachable points partitioning controls the 
combinatorial explosion of partial routes 
introduced by the multiple sample points. If any 
point in a MRS is involved in a route, all sample 
points in the MRS are considered to be part of the 
route and are not considered when extending 
additional partial routes. Thus, a MRS defines a 
reachable area and the least costly sample point 
within a MRS is used for routes into that area. 

For example: 

unreachable, 
points 

MRS1- 

Current 
Location- 

•    • -• • 

-+* 

-MRS2 

Figure 11 Mutually Reachable Sets 

In Figure 11, sample points 1 and 3 in the North 
grid cell are unreachable from "Current Location". 
The reachable sample points have been partitioned 
into two MRSs corresponding to two possible 
destination areas in the North cell from "current 
location". Two partial routes will be created from 
Current Location into the North cell. The partial 
route into MRS1 will be to the least costly of 
MRSl's two sample points. The partial route into 
MRS2 will be to the least costly of MRS2's four 
sample points. Hence, two, rather than six, partial 
routes are created for further analysis by A*. 

4.3.7    Computation of route cost 
The A* algorithm evaluates partial routes on their 
"cost". The cost of a route, partial or whole, is the 
sum of the costs of its route segments and an 
underestimate   of   the   remaining   cost    to   the 
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destination. Three factors are considered in 
determining the segment cost: distance, 
trafficability, and concealment. Segment cost is the 
cost of moving between sample points in adjacent 
grid cells and is made up of three components: 

• The distance between points. 
• The trafficability which is calculated 

from: 
a. the base cost of the terrain in the 

destination grid cell and, 
b. the slope of the terrain around the 

destination sample point. 
• The percentage of intervisibility from an 

area around the destination sample point 
to the areas around enemy locations. 

The cost of a segment increases with length. Two 
factors governed trafficability: slope and type of 
terrain. Flat terrain had minimal cost with cost 
increasing with slope. The base cost is an average 
determined from the types of terrain in the grid cell. 
The average is calculated from 25 points taken 
from a regular 5x5 grid within the grid cell. For 
example, the base cost for a grid cell mostly on 
sand is greater than for a grid cell mostly on dirt. 

There are other approaches to calculating the base 
cost. A simple approach would use only the terrain 
under the sample point. This approach ignores the 
terrain along the route. Another approach is to 
sample the terrain along the route segment. This 
approach considers each route to have zero width. 
Zero width routes have a major defect. Because 
unit routes have width (i.e. units travel along 
corridors), the terrain under the corridor is not 
introduced into the cost calculation. For example, 
narrow corridors are weighted the same as wide 
corridors. Although the approach taken in the RPA 
may consider too much terrain, it has the advantage 
that the terrain under a corridor is considered. 
Recall that grid granularity is determined by the 
size of the unit; so, the expectation is that most of 
the area under a grid cell will be traversed by the 
vehicles in the unit. Calculating an average over a 
grid cell appropriately increases the cost of grid 
cells with slow-go or no-go terrain. 

Concealment is considered by calculating a 
percentage of intervisibility from a circular area 
around the destination sample point to the areas 
around enemy positions known by the routing unit. 

Parameters into the algorithm control how much 
weight is given to trafficability and concealment. 
Thus, concealment can be weighted more to obtain 
routes that maximize concealment over 
trafficability. See Rajput (1994) for a thorough 
discussion of the cost calculation. 

4.3.8 Multiple "Optimal" Routes and Chokepoints 
This research was done in conjunction with the 
development of a CGF Automated Mission 
Planning capability. The Mission Planner requires 
multiple, tactically sound unit routes between 
points and the identification of chokepoints along 
the route. 

The Unit Route Planner generates multiple 
"optimal" routes between two points. As each 
route is generated the terrain covered by the route 
is made "less desirable" for subsequent routes by 
increasing the base cost of grid cells under the 
route. Hence, the base cost of "used" grid cells 
increases and subsequent routes tend to avoid 
repeating the previous routes. Each route is 
"optimal" considering that previously generated 
routes should be avoided. 

Keeping track of previous routes allows 
chokepoints to be identified. When multiple routes 
between points are requested, route segments 
corresponding to narrow corridors and chokepoints 
must be reused. The Unit Route Planner identifies 
multiple used route segments as chokepoints. 

5.    Conclusions and Future Work 

The Unit Route Planner is flexible and efficient. Its 
flexibility comes from its scalability. The 
granularity (i.e. size) of the underlying grid varies 
based on the size of the routing unit. The finer the 
granularity, the closer the Obstacle Segment 
Abstractions correspond to the physical obstacles. 
Fine granularity routing is suitable for finding 
precise vehicle routes while coarser granularity 
routing is suitable for finding unit routes. The 
smaller the unit, the finer the required granularity. 
The Unit Route Planner algorithm can be applied to 
other polygonal TDBs. 

The efficiency of the Unit Route Planner derives 
from three factors. First, the Obstacle Segment 
Abstraction approach allows obstacles to be 
represented with sufficient precision for routing but 
not so precise as to waste computational power. 
Second, the scaleable grid approach allows the 
representation of the terrain to correspond to the 
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requirements dictated by the size of the unit. These 
two factors together prevent unnecessarily precise 
(i.e. computationally expensive) routes from being 
generated. Third,    the    Obstacle    Segment 
Abstraction in combination with the vertex graph 
approach allows the application of an efficient 
search technique, A*, to the problem of 
determining routes. 

The Unit Route Planner has additional strengths. 
First, three routing factors, distance, trafficability, 
and concealment, are considered in finding optimal 
routes. The relative contribution of each routing 
factor is controlled by parameters to the algorithm. 
Hence, optimal routes of different characteristics 
can be determined. For example, concealment can 
be weighted more heavily than distance to produce 
predominately concealed but lengthy routes. 
Second, the Unit Route Planner generates multiple 
"optimal" routes between two points. As each 
route is generated the terrain covered by the route 
is considered less desirable. Subsequent routes 
tend to avoid the previous routes. Hence, each 
route is "optimal" considering that previously 
generated routes should be avoided. Third, 
chokepoints are identified. When multiple routes 
between points are requested, route segments 
corresponding to narrow corridors and chokepoints 
must be reused. The Unit Route Planner identifies 
those route segments as chokepoints. Fourth, 
narrow corridors between "close" obstacles are 
found. That is, corridors narrower than the 
granularity of the grid are represented. Fifth, the 
Unit Route Planner can be used to find and refine 
lengthy, precise routes through a process of 
successive refinement of routes. That is, a coarse 
route generated with a coarse grid granularity can 
be refined by applying the Route Planning process 
to sections of the coarse route at successively finer 
granularities. This approach would provide an 
efficient mechanism for planning detailed, lengthy 
routes. Sixth, although the goal of this research 
was a scalable, unit route planner, the Unit Route 
Planner is also an efficient vehicle route planner. It 
requires only the addition of a route smoothing 
algorithm to plan realistic vehicle routes. 

In the current work, only terrain obstacles that are 
uncrossable (canopies, rivers, and treelines) are 
abstracted into OSAs. There are other features in 
the terrain which may prevent or hinder a unit's 
movement across them. These features are 
considered "no-go" and "slow-go" areas. For 
example, extremely steep terrain is a no-go area for 
many   units.       No-go   areas   could   easily   be 

represented as OSAs which would further decrease 
the combinatorial explosion of partial routes within 
the Unit Route Planner. Sandy and swampy terrain 
are slow-go areas because vehicles cannot move 
quickly over such terrain. An interesting area for 
future research would be to extend the OSA 
concept to representing slow-go obstacles. 

One mechanism for representing slow-go obstacles 
is to add a "cost" for crossing each obstacle. In the 
current implementation, obstacles are considered to 
have infinite cost; this prevents movement across 
them. Slow-go areas could be represented with 
OSAs that have finite costs for crossing them. 

Finally, it seems possible to extend the OSA 
approach from regular tesselation (the OSA grid) to 
irregular tesselation. Polygonal TDBs typically 
represent the ground surface with an irregular 
tesselation; e.g., as a set of triangles. It seems 
likely that the OSA approach could be implemented 
directly on these polygonal representations with 
minor modifications. 

6.   Acknowledgement 

This research was sponsored by the US Army 
Simulation, Training, and Instrumentation 
Command as part of the Intelligent Simulated 
Forces project, contract N61339-92-C-0045. That 
support is gratefully acknowledged. 

7.   References 

Danisas, K., Smith, S. H., and Wood, D. D. (1990). 
"Sequencer/Executive   for   Modular   Simulator 
Design", Technical Report IST-TR-90-1, Institute 
for   Simulation   and   Training,   University   of 
Central Florida, 16 pages. 

Foley, J. D., van Dam, Andries, Feiner, S. K., 
Hughes,   J.   F.   (1991).      "Compute   Graphics 
Principles And Practice". 2nd edition, Addison- 
Wesley Publishing Company, Inc. 

Gonzalez,  G.,  Mullally,   D.   E.,   Smith,   S.   H., 
Vanzant-Hodge, A. F.. Watkins, J. E., and Wood, 
D. D. (1990).   "A Testbed for Automated Entity 
Generation in Distributed Interactive Simulation", 
Technical   Report   IST-TR-90-15.   Institute   for 
Simulation and Training, University of Central 
Florida, 37 pages. 

Hwang,  Y.   K.   and   Ahuja,  N.   (1992).   "Gross 
Motion Planning—A Survey", ACM Computing 
Surveys, Vol. 24, No. 3, pp.219-291. 

Karr, C. R., Craft, M. A., and Cisneros, J. E. 
(1995).     "Dynamic     Obstacle     Avoidance", 

303 



Proceeding of the 5th Conference of Computer 
Generated Forces and Behavorial 
Representation, Orlando, FL, May 9-11, 1995, to 
be published. 

Lee, J. J. and Fishwick, P. A. (1994), "Simulation- 
Based Planning for Computer Generated 
Forces", Proceeding of the 4th Conference of 
Computer Generated Forces and Behavorial 
Representation, Orlando, FL, May 4-6, 1994, pp. 
451-459. 

Mitchell, J. S. B. (1988). "An Algorithmic 
Approach to Some Problems in Terrain 
Navigation", Artificial Intelligence, Vol. 37, pp. 
171-201. 

Petty, M. D. (1992). "Computer Generated Forces 
in Battlefield Simulation", Proceedings of the 
Southeastern Simulation Conference 1992, The 
Society for Computer Simulation, Pensacola FL, 
October 22-23 1992, pp. 56-71. 

Rajput, S. and Karr, C. R. (1994). "Unit Route 
Planning" Technical Report IST-TR-94-42, 
Institute for Simulation and Training, University 
of Central Florida. 

Smith, J. E. (1994), ModSAF Programer's Guide: 
LibCTDB, Loral Advanced Distributed 
Simulation, Cambridge, Massachusetts. 

Smith, S. H., Karr, C. R., Petty, M. D., 
Franceschini R. W., and Watkins, J. E. (1992a). 
"The 1ST Computer Generated Forces Testbed", 
Technical Report 1ST-TR-92-7, Institute for 
Simulation and Training, University of Central 
Florida. 

Smith, S. H., and Petty, M. D. (1992b). 
"Controlling Autonomous Behavior in Real-Time 
Simulation", Proceedings of the Southeastern 
Simulation Conference 1992, The Society for 
Computer Simulation, Pensacola FL, October 22- 
23 1992, pp. 27-40. 

Thorpe, C. E. (1984). "Path Relaxation: Path 
Planning for a Mobile Robot", CMU-RI-TR-84- 
5, Carnegie-Mellon University The Robotics 
Institute Technical Report, April 1984. 

Winston, Henry Patrick (1992). Artificial 
Intelligence. Third Edition, Addision-Wesley, 
1992. 

8.   Authors' Biographies 

Clark R. Karr is the Computer Generated Forces 
Program Manager and the Principal Investigator of 
the Intelligent Simulated Forces project at the 
Institute for Simulation and Training. Mr. Karr has 
a Master of Science degree in Computer Science. 
His research interests are in the areas of Artificial 
Intelligence and Computer Generated Forces. 

Sumeet Rajput is an Associate Engineer in the 
Intelligent Simulated Forces project at the Institute 
for Simulation and Training. Mr. Rajput has a 
Master of Science degree in Computer Science. 
His research interests are in the areas of 
Computational Geometry, Physical Modeling, and 
Computer Generated Forces. 

304 



Concealed Routes in ModSAF 

Michael J. Longtin 
Dalila Megherbi 

Loral Advanced Distributed Simulation 
50 Moulton Street, Cambridge, MA 02138 

1. Abstract 

The ModSAF CGF system currently has the capa- 
bility of attempting to find routes that are concealed 
as much as possible from the enemy. Two fundamen- 
tal problems must be overcome in order to do this. 
Firstly, given information about the enemy, the sys- 
tem must compute the areas that are concealed or 
may be concealed from the enemy. This involves an- 
alyzing terrain features and performing intervisibility 
calculations. Secondly, given a list of concealed re- 
gions, a route from a specified starting point to a 
specified goal point which is the most favorable in 
terms of concealment must be found. This paper ex- 
plores both problems, gives an overview of how they 
are currently implemented in ModSAF, and suggests 
enhancements that might be made in order to im- 
prove the current algorithm. 

2. Introduction 

The need to find concealed routes with respect to en- 
emy locations arises frequently in CGF systems, since 
there are many real-life tactics which require this abil- 
ity, such as bounding overwatch maneuvers or recon- 
naissance missions. A concealed-route algorithm is 
a vital component of CGF systems since it is a ma- 
jor contributor toward the realism of the generated 
forces. Such is the case with the ModSAF (Modular 
Semi-Automated Forces) CGF system sponsored by 
ARPA and STRICOM. A new concealed-route algo- 
rithm has recently been developed and incorporated 
into ModSAF. This algorithm consists of two inde- 
pendent components: the concealment-map genera- 
tor and the concealed-route planner. A fundamen- 
tal element of the concealed routes solution approach 
presented in this paper is the utilization and the ex- 
ploitation of graph representation and search tech- 
niques. 

The concealment-map generator uses terrain reason- 
ing to compute concealed areas. It takes information 

about the enemy as an input and produces a series of 
concealed-area polygons, referred to as the "conceal- 
ment map", as an output. The enemy information is 
specified is a list of "enemy descriptors". An enemy 
descriptor can be a direction (when it is known that 
the enemy is in a certain direction), an area (when it 
is known that the enemies are located or are maneu- 
vering in a particular area), or a location (when the 
actual location of an enemy is known). The contri- 
bution of each enemy descriptor to the concealment 
map is computed separately, and the final conceal- 
ment map is computed by taking the intersection of 
these. 

The concealed-route planner takes a concealment 
map, a source point, and a goal point as inputs and 
produces a series of route points as an output. In 
particular, a graph is constructed where each con- 
cealed region produced by the concealment-map gen- 
erator is treated as a node. A generalized tech- 
nique is developed to automatically and efficiently 
determine which pairs of nodes (concealed regions) 
need to be linked together. In particular, to im- 
prove the problem-solving performance, the gener- 
alized technique uses some additional information 
about the problem at hand to decide which node suc- 
cessor should be expanded next (instead of blindly 
expanding all possible node successors) and which 
nodes should be disregarded (pruned from the search 
graph), while still heading and progressing toward the 
goal point. Finally, a concealed route from the source 
point to the goal point is found by applying one of 
the graph search techniques. The planner uses the 
A* search technique to find an optimal path through 
the concealment-map space. In this context, an opti- 
mal path is one which has the smallest total exposed 
distance. 

The concealed-route algorithm uses the CTDB (com- 
pact terrain database) representation of terrain to ob- 
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tain terrain elevation and feature information. The 
compact representation is favorable because more ter- 
rain can be stored in physical RAM, thus decreas- 
ing the access time for terrain data. The algorithm 
also uses a non-preemptive asynchronous ring-based 
scheduler to allow searches to be distributed over time 
while giving the rest of the simulation a chance to run. 

This paper describes the approach, implementa- 
tion details, and future enhancements for the 
concealment-map generator and the concealed-route 
planner. 

3. General Approach 

The problem of finding concealed routes is not a triv- 
ial one. The algorithm must be flexible enough to ac- 
commodate information about the enemy with vary- 
ing degrees of specificity; in a real-life battle situa- 
tion, information about the enemy may be available 
in many different forms. An actual enemy location 
may be known, it could be known that several enemy 
vehicles are moving about in a given area, or as little 
as the general direction of the enemy could be known. 

The algorithm must also have a keen sense of ter- 
rain awareness, including information about terrain 
features and the terrain skin. The ability to perform 
intervisibility calculations must also be available. 

Thirdly, a concealed-route algorithm must be able to 
integrate information about the enemy and terrain 
into a route which is concealed from the enemy as 
much as possible. 

The approach used in the concealed-route algorithm 
currently employed by ModSAF divides the problem 
into two independent sub-problems. The first is that 
of finding areas of the terrain which are concealed 
from the enemy, and the second is that of finding a 
route which best utilizes these concealed regions. 

The first sub-problem is handled by the concealment- 
map generator, which accepts information about the 
enemy and performs an analysis of the terrain to com- 
pute which areas are concealed. The second is han- 
dled by the concealed-route planner, which accepts 
a series of concealed regions and produces the route 
with the best concealment. The concealment-map 
generator and the concealed-route planner will now 
be described in detail. 

4. The Concealment-Map Generator 

The purpose of the concealment-map generator is to 
accept information about the enemy and transform 

it into a series of areas which are likely to be hidden 
from the enemy. The concealed areas are described 
by a series of polygons which collectively comprise a 
significant portion of what is known as the conceal- 
ment map. The concealment map contains informa- 
tion about the search area, the enemy, and the con- 
cealed areas. 

4.1 Approach 

There are two major areas of difficulty that need to 
be addressed in order to successfully implement the 
concealment-map generator, the first of those being 
information representation and the second being in- 
formation processing. 

The two types of information that must be repre- 
sented are the terrain information and the enemy 
information. Fortunately, the former is handled by 
ModSAF's libctdb (Compact Terrain DataBase), 
which provides an interface for terrain feature ex- 
traction and the capability to perform intervisibility 
calculations. The latter problem is solved by enemy 
descriptors, which will be described later. 

Once the terrain and enemy information is stored and 
available for processing, the concealed regions must 
be computed. This is explained next. 

4.2 The Algorithm 

The user of the concealment-map generator may spec- 
ify an arbitrary number of enemy descriptors. An 
enemy descriptor is a piece of information about the 
enemy situation and can be one of the following: a 
direction, a location, or an area. The contribution 
of each enemy descriptor to the concealment map is 
computed separately, and the final concealment map 
is the intersection of these. 

The processing of an enemy descriptor starts with 
the production of a grid of values. Each value in the 
grid corresponds to a location in the area that is be- 
ing searched for concealed regions. This area is called 
the search area or concealment-map space. If a grid 
location has a value of one, then that location is con- 
cealed from the enemy described by that particular 
descriptor. If it has a value of zero, it is exposed. 

The grid portion of the concealment map due to the 
first enemy descriptor is computed and copied verba- 
tim to a cumulative concealment map. Next, the grid 
portion of the concealment map due to the second en- 
emy descriptor is computed, and the intersection of 
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that concealment map and the cumulative conceal- 
ment map is computed. The result of the intersection 
is copied into the cumulative map. The intersection 
of two concealment maps is simply the logical ANDs 
of the corresponding grid locations. The contribu- 
tions of each of the enemy descriptors are "merged" 
with the cumulative concealment map until all of the 
enemy descriptors have been processed. 

One beneficial effect that results from the cumula- 
tive concealment map is that the information per- 
taining to all of the enemy descriptors is contained 
in the concealment map, and any enemy descriptor 
can be added to the concealment map without losing 
the information from the previously-specified enemy 
descriptors. For example, consider that information 
about enemies A, B, and C are known at time to, and 
a concealment map is computed for these enemies. 
Later, at time ti, a new enemy, D, is spotted. The 
concealment-map generator can be invoked, specify- 
ing only the enemy descriptor for enemy D, and the 
resulting concealment map will contain areas that are 
concealed from enemies A through D. 

After the last enemy descriptor has been processed, 
the grid portion of the cumulative concealment map 

is polygonalized, that is, polygons which enclose the 
clusters of ones in the grid are computed. The polygo- 
nalization must be performed because the route plan- 
ner needs a list of polygons as an input. 

4.3 Enemy Descriptors 

This section describes how the concealment map con- 
tributions of each type of enemy descriptor is com- 
puted. 

4.3.1 Enemy Direction 
An enemy direction is usually specified only if neither 
the area that the enemy is occupying nor the exact 
location(s) of the enemy is known. This descriptor 
contains the least amount of information among the 
three types of descriptors. It is represented by a two- 
dimensional vector. 

The contribution of an enemy direction to the con- 
cealment map is computed by applying a heuristic- 
based (non-exact) technique and includes areas be- 
hind treelines, buildings, and tree canopies. No ele- 
vation data is taken into consideration since the ele- 
vation of the enemy is not known. The heuristic used 
is that areas behind objects with respect to the en- 
emy direction are suitable for concealment. Note that 
trees and buildings are assumed to be tall enough to 
provide concealment. 

The concealed areas are found by first performing 
a search for terrain features such as treelines, tree 
canopies, and buildings. The challenge lies in com- 
puting areas behind these features with respect to the 
enemy direction. For linear features (i.e. treelines), 
this is relatively easy. The "front" of the polygon is 
just a copy of the vertices of the linear feature. The 
"back" of the polygon is found by adding a vector to 
each of the vertices of the linear feature. This vector 
has a direction which is the negative of that specified 
in the enemy descriptor. The magnitude of the vector 
is simply the depth of the concealed region, or how 
far back the region extends from the linear feature. 
See Figure 1 for an example of a concealed region be- 
hind a linear feature. 

Finding areas behind polygonal features like buildings 
and tree canopies is slightly more difficult. The chal- 
lenge lies in determining the front of the concealed 
region, which is actually the back of the polygonal 
feature. In order to find this, the extreme tangents 
of the polygonal feature in the direction of the en- 
emy vector must be found. This is done by first con- 
verting the vertices of the feature into a coordinate 
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system whose y-axis is aligned with the enemy direc- 
tion vector. Then, the vertices with the minimum 
and maximum x-values are found. These vertices are 
the first and last points of the back of the feature, as 
well as those of the front of the feature. Once these 
points are found, the back has to be distinguished 
from the front. This is done by first choosing one of 
the tangent-point vertices and taking the dot product 
of two vectors: the vector from the tangent vertex to 
an adjacent vertex, and the enemy direction vector. 
If the dot product is negative, then the adjacent ver- 
tex is part of the back of the feature. See Figure 1 for 
an example of a concealed region behind a polygonal 
feature. 

4.3.2 Enemy Location 
An enemy location may be specified when the exact 
location of an enemy is known. Since more exact in- 
formation about the enemy is known in this case, an 
exact (non-heuristic-based) method is used to gener- 
ate the concealment map contribution of an enemy 
location. 

The grid portion of the concealment map is gener- 
ated simply by using libctdb's intervisibility engine. 
The intervisibility from the enemy location to each 
grid location is computed. If intervisibility to a given 
grid location passes, a "zero" is assigned to its corre- 
sponding entry in the concealment map. Otherwise, 
a "one" is assigned, meaning that the point is con- 
cealed. 

4.3.3 Enemy Area 
An enemy area may be specified when it is known 
that the enemy are moving about in a certain area. It 
may also be specified if the exact location of a given 
enemy is not known, but the general area in which 
an enemy exists is known or assumed. The conceal- 
ment map contribution of an enemy area is computed 
by using a combination of exact- and heuristic-based 
techniques. 

The difficulty with finding concealment from an area 
stems from the fact that there is an infinite number of 
locations within an area. Since all of these locations 
cannot be processed, a reasonably small number of 
them must be selected. This is where the heuristics 
come into play. A number of observation posts from 
within the specified area are selected. Observation 
posts are locations within the enemy area from which 
the highest level of visibility to the concealment- 
map area is available. Each observation post is then 
treated as an enemy location. The contribution of 
each observation post is integrated into the conceal- 

observation posts 

principal axis enemy area- 

Figure 2: Observation Posts Within an Enemy Area 

ment map. This provides a near-worst-case scenario 
for enemy visibility (i.e. the case where the enemy 
has the best possible visibility). 

The algorithm which computes the locations of 
the observation posts is reasonably straightforward. 
First, the principal axis of the search area is com- 
puted. Next, a series of line segments which are per- 
pendicular to this axis are computed. The distance 
between these lines depends on the grid spacing of the 
concealment map, and the line segments are bounded 
by the enemy area (i.e. their endpoints lie on the edge 
of the enemy-area polygon). The point along each line 
segment with the highest elevation is chosen as an ob- 
servation post. Refer to Figure 2 for an illustration. 

5. The Concealed-Route Planner 

The purpose of the concealed-route planner is to gen- 
erate a route which passes through concealed areas 
as much as possible while progressing toward a goal. 
The planner is given a start point, a goal point, and 
a list of concealed regions. 

The route planner goes through three main phases 
during the course of a plan: a graph is constructed, 
the graph is searched for the most optimal route, and 
some post processing is performed on the route to 
doctor it. Each of these phases will be described in 
detail. 

5.1 Constructing the Graph 

The first phase of the concealed-route-planning algo- 
rithm is the graph construction. The graph consists of 
a series of nodes, and segments which interconnect the 
nodes. The nodes in this case are line segments that 
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Figure 3: An Example of a Graph 

are calculated directly from the concealed regions; 
each concealed-region polygon has a corresponding 
node in the graph. The line segments which repre- 
sent the nodes will be referred to as node segments. 
The segments which interconnect the nodes will be 
referred to as graph segments. Note that the actual 
number of nodes exceeds the number of concealed- 
region polygons by two. These extra nodes are lo- 
cated at the start and goal points. 

5.1.1 Calculating Node Segments 
In order to calculate a node segment from a 
concealed-region polygon, the vertices of the polygon 
are first converted into a coordinate system whose x- 
axis is aligned with the goal vector (the vector from 
the start point to the goal point). See Figure 3. The 
vertex with the minimum x-coordinate and that with 
the maximum x-coordinate are found. These two 
points are the endpoints of the node segment for that 
concealed-region polygon. In effect, each concealed- 
region polygon is simplified down to a node segment. 
This greatly speeds up the search, since not all ver- 
tices of the polygons need to be processed during the 
search.   Note that the node segments are not neces- 

sarily parallel to the goal vector. The direction of the 
node segment depends on the locations of the vertices 
of the concealed-region polygons. 

5.1.2 Calculating Graph Segments 
Two heuristic rules are applied in the construction of 
the graph segments. Firstly, no graph segment can go 
backwards, that is, the component of a graph segment 
in the direction of the goal vector must be positive. 
This ensures that the route never turns away from 
the goal. This rule is applied in order to eliminate 
excessively long routes. 

The second heuristic rule concerns the selection of 
successor nodes. The maximum number of succes- 
sors of a given node cannot exceed three, that is, the 
end of a node segment can be connected to at most 
three nodes. If there are more than three possible 
next nodes, the three closest are chosen. This rule 
came about with the assumption that a "next node" 
which is farther away than three other "next nodes" 
has a low probability of being chosen over the other 
nodes. Considering only the three closest nodes has 
the effect of eliminating lots of unnecessary search- 
ing, which improves the computational efficiency of 
the search. 

Refer to Figure 3 for an example of a fully-constructed 
graph. Note that no graph segment points away from 
the goal and there are at most three successor nodes 
for any given node. 

5.2 Searching the Graph 

Once the graph has been constructed, it is searched 
for an optimal path. The A* search algorithm is 
used to perform the search (Tanimoto 1987). In 
essence, the search algorithm considers all possible 
paths along the graph segments from the start point 
to the goal point and assigns a weight to each path. 
The path with the minimum weight is chosen as the 
optimal path. The mapping from a path to a weight is 
done by an optimization function. The choice of opti- 
mization function is extremely important, and greatly 
impacts which route is chosen. 

The definition of an "optimal route" is derived from 
a set of criteria which is determined before the search 
begins. The optimization function is derived directly 
from this set of criteria. In this case, the optimal 
route is the one with the lowest total exposed dis- 
tance. The total length of the route which does not 
traverse concealed areas (i.e. the length of the graph 
segments along the path) should be minimized and is 
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used as the optimization function. 

During the search, paths with weights greater than 
the euclidean distance from the start point to the 
goal point are eliminated from the search, since these 
paths can not possibly be the most optimal. This 
speed-enhancing technique is known as pruning (Barr 
et. al. 1981). 

The search algorithm produces a list of nodes through 
which the optimal route passes. The actual route is 
then constructed from the endpoints of the node seg- 
ments. The most optimal route for the example in 
Figure 3 is probably the one which traverses nodes 
two and four. 

5.3 Route Post-Processing 

It is possible for a node segment to leave and re-enter 
a concealed region, since concealed-region polygons 
are not guaranteed to be convex. An example of this 
can be found in Figure 3. In this case, node segment 
number three leaves and re-enters its concealed re- 
gion. Such segments are modified in a post-processing 
phase after the search has been completed. 

This post processing involves replacing node segments 
which are not completely contained within concealed 

regions to route segments that are. This is done by 
first constructing a series of evenly-spaced line seg- 
ments which are perpendicular to the node segment. 
For each line segment, the intersections that it makes 
with the concealed-region polygon are found, and the 
average of these points is assigned as a route point. 
The result is a route which follows the middle of the 
polygon. See Figure 4. 

Note that it is possible, although highly unlikely, for 
there to be more than two intersections between one 
of the line segments and the concealed-region poly- 
gon. In this case, the polygon is not processed, and 
the original node segment is used. 

6. Usage 

The concealed-route functionality is contained in a 
library of terrain-reasoning routines in the ModSAF 
system (Longtin 1994). Its interface consists of the 
following four public functions: 

tr_create_concealment_map() 
tr_destroy_concealment_map() 
tr_generate_concealment_map() 
tr_plan_concealed_route() 

The first of the above functions allocates memory for 
a concealment map and initializes it. The user sup- 
plies the actual search area and the spacing of the 
grid points. The search area and grid spacing infor- 
mation is kept in the concealment map structure. 

The second function simply frees the memory asso- 
ciated with a concealment map. 

The third function actually begins the concealment- 
map generation. The user specifies the concealment 
map for which to compute concealed regions, an array 
of enemy descriptors, and a search state. The search 
state is a structure which keeps track of information 
pertaining to the search in progress. This is needed 
because the search is distributed across multiple 
simulation ticks. tr_generate_concealment_map 
schedules a function which actually performs the 
search to be called periodically. When the search has 
finished, a ready flag in the search state is set. The 
application must therefore poll this flag after calling 
tr_generate_concealment_map and wait for it to be 
set before calling tr_plan_concealed_route. 

Finally, the fourth of the above functions actu- 
ally attempts to find an optimal route through the 
concealment-map space. The user specifies a con- 
cealment map, a start point, and a goal point.   A 
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list of route points representing the concealed route 
is returned. 

7. Future Enhancements 

The current implementation of concealed routes in 
ModSAF is a first-cut attempt at producing a flex- 
ible concealed-route planner. This section describes 
future work that may be done to enhance the plan- 
ner. 

7.1 Node-Segment Generation 

There are several problems with simplifying each con- 
cealed region down to a line segment. Firstly, as 
stated earlier, a node segment may leave the con- 
cealed region with which it is associated. This ne- 
cessitates the inclusion of the post-processing phase 
of the route planner. 

Secondly, the current design of node segments may 
lead to routes that are unnecessarily long. This may 
happen in cases where concealed regions are relatively 
large. Consider Figure 5. Obviously the current route 
planner will find a route which traverses the single 
node, passing through points la and lb. The route 
goes through the middle of the concealed region, while 

a shorter route along the edge, passing through points 
2a and 2b, would be more optimal because such a 
route is not only shorter, but the exposed segments 
of the route are shorter. 

A third problem with the current method of node 
segment generation has to do with exposed segments. 
Currently, all graph segments are considered to be 
completely exposed, when in actuality, they may not 
be. This can lead to inaccuracies in computing the 
weights of the prospective routes. See Figure 3 for an 
example of this. Note, for example, that the graph 
segment starting at 2b and going toward node three 
is not fully exposed. 

The solutions to these problems may lie in finding a 
better way to represent the concealed regions in the 
graph. 

7.2 Obstacle Avoidance 

The current concealed-route planner assumes that 
all prospective paths are unobstructed. In actuality, 
it is very possible for a generated path to traverse 
obstacles such as rivers or steep slopes. Planning 
around obstacles and planning through concealed ar- 
eas are currently done independently. The concealed 
route is modified to avoid obstacles after it has been 
planned. This can lead to sub-optimal routes because 
the concealed-route planner does not take the extra 
exposed distances imposed by obstacle avoidance into 
consideration. Ideally, one planner should be able to 
accommodate obstacles to avoid as well as attractive 
regions to traverse. 

7.3 Considering Width 

Currently, the concealed-route planner assumes that 
the vehicle or unit that travels along the route is 
infinitely thin. A vehicle located on the edge of a 
concealed region will actually be half-exposed. This 
problem can be solved by shrinking the concealed- 
region polygons by the half-width of the units follow- 
ing the routes. 

8. Conclusions 

One of the primary considerations in designing an 
algorithm in a CGF system is determining how 
well it fits in with the simulation. Specifically, 
does the algorithm cause long ticks? Overcoming 
the long-tick problem is especially challenging when 
computationally-expensive tasks, such as those which 
involve searching the terrain, need to be performed. 
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Concealment-map generation may take several sec- 
onds, depending on the size of the search area, and 
grid spacing, and the number of enemy descriptors. 
This problem is solved by using ModSAF's scheduler 
to distribute the search across multiple ticks, so that 
the rest of the simulation can run while the search is 
in progress. The route planner runs fast enough to 
be done in a single tick. 

The concealed-route functionality has been tested 
both in the ModSAF system and by using a specially- 
designed test program, with promising results. A 
screen dump from the test program is shown in Fig- 
ure 6. In this example, one enemy descriptor, an 
enemy direction, has been specified. This is denoted 
by the arrow. Each plus sign represents a "one" in 
the concealment-map grid, representing concealed re- 
gions. Note how the route (the black line) takes ad- 
vantage of the available concealed regions. 

The algorithms described in this paper are included 
in the terrain-reasoning library within the ModSAF 
system, and is comprised of roughly 2800 lines of C 
code. 

The current version of ModSAF uses the concealed- 
route functionality in its bounding overwatch move- 
ment behavior and in rotary-wing aircraft nap-of- 
earth flight. Other behaviors currently implemented 
in ModSAF may be enhanced to take advantage of 
this functionality. 
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1. Abstract 

The flight characteristics of a helicopter allow it to fly 
very close to the ground at relatively high speeds. 
Thus, the helicopter pilot, flying his or her aircraft at 
low altitude, must constantly adjust the helicopter's 
dynamics in order to prevent a disastrous and most 
likely lethal collision with the terrain. Simulating this 
process of terrain avoidance on a Computer Generated 
Forces system presents its own special challenges for 
the CGF programmer. This paper presents an 
algorithm for above-ground-level flight for helicopters; 
discusses its implementation in the 1ST CGF Testbed; 
discusses its use at the Aviation Testbed at Fort 
Rucker, emphasizing the interaction between CGF 
helicopters and U. S. Army soldiers flying manned 
helicopter simulators; and presents an analysis of the 
efficiency of the algorithm. 

2. Background 

Like many Computer Generated Forces systems, the 
focus in the development of the 1ST CGF Testbed was 
on ground combat (Smith 1992). The dynamics, 
combat, and behavioral models are quite detailed for 
tanks, infantry fighting vehicles, and dismounted 
infantry. Though the 1ST CGF Testbed initially 
contained some rudimentary algorithms for air 
vehicles, they were not as sophisticated as the 
algorithms for ground vehicles. 

During 1994, the Integrated Eagle/BDS-D project 
(Franceschini 1995), which uses the 1ST CGF Testbed 
as a component, began using an armed reconnaissance 
scenario involving helicopters. A long-range goal was 
to use this scenario for training and analysis activities at 
Fort Rucker's Airnet site (a SIMNET facility). 

1ST installed a preliminary version of the Integrated 
Eagle/BDS-D system at Fort Rucker in July, 1994. 
During this installation, the Eagle project team 
observed the interactions between CGF-controlled 
helicopters and U.S. Army soldiers flying a manned 
helicopter simulator. It became clear that the CGF 
helicopters were not able to fly at low altitude as well 
as the U.  S.  Army pilots.     The CGF helicopters 

frequently crashed when flying at low altitudes over 
mountainous terrain. This was due to the inadequacy 
of the simple above-ground-level flight algorithm in the 
1ST CGF Testbed. 

Late in 1994, the Eagle team presented the Integrated 
Eagle/BDS-D system in the Distributed Interactive 
Simulation (DIS) Interoperability Demonstration at the 
Interservice/Industry Training Systems and Education 
Conference (I/ITSEC). For the purposes of this 
demonstration, the CGF helicopters flew in an above- 
sea-level (ASL) mode which ignored the terrain under 
the vehicles and kept the helicopters at a constant 
height above sea-level. The heights of the helicopters 
were scripted prior to the demonstration rather than 
being calculated in real-time during the scenario. 
Although in this case the helicopters did not crash, the 
scripting of aircraft heights is clearly an undesirable 
strategem when dealing with supposedly autonomous 
entities. 

To increase the realism of the virtual simulation, 
therefore, 1ST examined the problem of above-ground- 
level flight for CGF helicopters. 

3. Above-Ground-Level Flight 

A competent above-ground-level flight algorithm will 
allow helicopters to fly as fast and as close to the 
terrain as possible without crashing into the ground. 
One likely and easily implemented method (call it 
Algorithm S) would be to simply determine the height 
of the ground immediately underneath the helicopter 
and adjust the helicopter's altitude to maintain a 
predetermined above-ground-level height. Simple 
though Algorithm S may be, it is woefully inadequate. 
Since all helicopters have a limited rate at which they 
can climb-or descend, for that matter-the use of this 
method alone will produce disastrous results. There is 
no guarantee that the terrain will comply with the 
helicopter's physical limitations. For example, Figure 
1 shows a helicopter moving forward at 30 m/s and 
climbing at its maximum rate of 12 m/s. Basic 
trigonometry defines the tangent of an angle to be equal 
to the magnitude of the y-component of the angle 
divided by the magnitude of the x-component of the 
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angle. Under these conditions, the helicopter will only 
be able to successfully traverse a grade of, at most, 
about 22 degrees. Any steeper grade will result in a 
collision with the terrain. 

A variation on Algorithm S (say, Algorithm SL) might 
be to look ahead on the terrain some predetermined 
distance. This would give the helicopter a little extra 
time to account for steep terrain. Though the use of 
Algorithm SL could still yield results similar to 
Algorithm S, another not-so-evident shortcoming 
becomes apparent when the helicopter encounters a 
peak in the terrain. 
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Since the helicopter is following the terrain 
from the look-ahead point, it will start 
descending too soon and will crash into the 
ground before it can clear the peak. 
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Figure 3 

As Figure 2 shows, the slope on the far side of the peak 
could be steep enough to cause the helicopter to 
descend too early and too quickly, causing the 
helicopter to crash before it has cleared the peak. 

Another major pitfall of both Algorithm S and 
Algorithm SL is that they tend to produce "bouncing" 
helicopters. By varying the helicopter's above-ground- 
level height with respect to a single point on the terrain, 
the helicopter's movement becomes sensitive to small 
variations in the contour of the terrain. In other words, 
with the helicopter adjusting its height according to 
every bump in the terrain along its path, as in Figure 3, 
it will "bounce" along as it flies. 

4. A Mission Statement 

To determine exactly what it is that an above-ground- 
level flight algorithm should and should not do, it is 
important to explicitly state the goals of such an 
endeavor. Of course, the ultimate goal is to produce 
realistic above-ground-level flight in helicopters; that 
is, to allow helicopters to fly as close to the terrain and 
as fast as possible, limited by the vehicle's dynamics 
and the algorithm's competence, while maintaining 
authentic flight characteristics. We can define the 
objectives that we need to satisfy in order to reach this 
final goal. First of all, the helicopters need to judge, in 
an empirical manner, the general trend of the terrain. 
Secondly, the helicopters need to determine whether 
they can adhere to the general trend of the terrain given 
their own design limitations. Finally, the method used 
to compel the helicopters into such behavior needs to 
be efficient and effective in order to maintain the 
integrity of the simulation. 

5. IST's Above-Ground-Level Flight Algorithm 

The phrase "general trend," repeated twice in the 
mission statement, suggests the application of statistical 
regression   analysis   to   produce   above-ground-level 
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flight in helicopters. Regression, in a statistical sense, 
concerns the prediction of the average value of one 
variable in terms of the known values of other variables 
(Freund 1979). In essence, regression is the process of 
"fitting" a curve to a set of points such that the curve 
describes, to a measurable degree of accuracy, the 
general trend of the set of points. In terms of above- 
ground-level flight for helicopters, regression analysis 
may be used to describe the general slope of the terrain 
along the helicopter's flight path. 

5.1 Linear Regression Analysis 

Linear regression is an analysis tool that attempts to fit 
a straight line to a set of sample points. Though there 
are more complex and accurate regression models that 
fit curved lines to a set of sample points, linear 
regression is computationally inexpensive, yet it is also 
sufficiendy robust to accurately represent the small 
sample of terrain points that CGF helicopters need to 
establish above-ground-level flight. The time required 
to calculate the best-fitting line for the terrain sample is 
an order of magnitude proportional to n (O(n)), where 
n is the number of points in the sample. We will later 
show, however, that this calculation can be reduced to 
0(1) on average. In addition, most terrain samples, 
regardless of the rate at which they slope, show a 
discernible linear trend when the bounds of the sample 
are relatively small, as is the case for IST's above- 
ground-level flight algorithm, presented below. This is 
especially true for a polygonal terrain database. 

IST's above-ground-level flight algorithm for 
helicopters uses simple linear regression to determine 
the general slope of the terrain in front of the 
helicopter. It accomplishes this by sampling the 
upcoming terrain along the helicopter's current flight 
path. It then uses linear regression analysis to 
determine the general slope of the terrain given the set 
of terrain points that it has sampled. By determining 
this general slope, the algorithm can adjust the 
helicopter's dynamics values to reflect changes in the 
terrain in front of the helicopter. In essence, regression 
analysis produces a generalized "picture" of the terrain 
in front of the helicopter, giving equal weight to every 
point sampled along the terrain, thus diminishing the 
effect of minor terrain contour variations on the 
helicopter's flight. This produces smooth flight 
characteristics while allowing the helicopter to 
simultaneously conform to the terrain and account for 
its own physical limitations. 

The algorithm utilizes the method of least squares to 
determine the best-fitting straight line in which to 
model  the  terrain.     The  method  of least  squares 

computes a straight line such that the sum of the 
squares of the vertical deviations of the sample points 
from that line is a minimum (Freund 1979). 

5.2 The Least-Squares-Determined Line 

The equation for a straight line represented in the 
Cartesian coordinate system, shown in the top part of 
Figure 4, takes the form y=a + bx, where a is the y- 
intercept and b is the slope of the line. Given two 
points on the line, the line's slope is determined by 
dividing the difference in the y-values of the two points 
by the difference in the x-values of the two points. 
Now, given just one (x, y) coordinate pair and the slope 
of the line, it is possible to compute the y-intercept of 
the line. 

Equation for a line: y = a + bx    (1) 
a equals the value for y when x=0. 
b equals the magnitude of the slope. 

Equation for the slope of the line from (x1t y,) 
to (x2, y2): 

b = (y2 - yi) / (x2 - x,) 

Equation for the y-intercept of a line (from 
Equation (1) above): 

a = y - bx 

Equation for the average slope of a curve 
using the least-squares method: 

b = 
n(Ixy)-(IxXZy) 

n(lx2)-Q»2 

Equation for the y-intercept of a curve using 
the least-squares method: 

a = 
(Iy)(Xx2)-(5;xXXxy) 

n(Sx2)-(Ix)2 

n is the number of sample points 
£x is the sum of all x values. 
Xy is the sum of all y values. 
Exy is the sum of all x values multiplied by 
their respective y values. 
Ex2 is the sum of the squares of all x values. 

Figure 4 

Computing the slope and y-intercept values for a least 
squares line is not so straightforward, however, as the 
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Time Index 

Figure 5 

PerformAnalysis();      /* Perform regression analysis. */ 
predicted_height = InterpolateGroundHeight; 

/* Perform altitude adjustment. */ 
if (predicted_height > sample_max) 

/* Change height relative to predicted height. */ 
else 

/* Change height relative to sample_max.      */ 

/* Perform speed adjustment. */ 
grade_factor = 1 - (current_speed / max_speed); 

if (terrain_slope != 0.0 && 
(terrain_slope > (grade_factor * MAX_HEIGHT_CHANGE_RATE))) 

C 
speed_adj_ratio = (grade_factor * MAX_HEIGHT_CHANGE_RATE) / 

terrain_slope; 
current_speed = current_speed * speed_adj_ratio; 

} 
else if (heli_altitude > sample_max) 

current_speed = initial_requested_speed; 

Figure 6 

bottom part of Figure 4 shows. For a more complete 
discussion on the determination of the least squares 
line, see (Freund 1979). 

Figure 5 shows the least squares line determined for 
two successive samplings of the terrain. Notice how 
the magnitude of the slope of the line changes gradually 
from one sample to the next.   The application of this 

principle not only produces smoother, more realistic 
flight, but it also allows the helicopter to make other 
adjustments, based on the magnitude of the slope, to 
account for the helicopter's design limitations. 
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5.3 How Does the Algorithm Work? 

The above-ground-level flight algorithm, shown in 
Figure 6, performs its terrain analysis every time the 
helicopter's dynamics are updated. 
PerformAnalysis () performs the actual linear 
regression analysis, computing the intercept (a) and the 
slope (b) of the least-squares line for the current terrain 
sample. Given the values for a and b, 
InterpolateGroundHeight () predicts the 
height of the terrain along the helicopter's path at a pre- 
determined point in time. The algorithm then performs 
simultaneous adjustments to both the helicopter's 
altitude and its speed. The altitude adjustment requires 
little explanation since the goal of this algorithm is to 
compel the helicopter over the terrain-thus, the need 
for the altitude adjustment. The speed adjustment, 
however, is what takes into account the physical 
limitations of the helicopter and its ability to change its 
altitude. 

>=S 
Given: 

z(m/s) 

x (m/s) 

1) x>0;z>0 
2) 0°<a<90° 

tan(a) = z/x 

Suppose that x varies while z is constant. As 
x->0, Z/X-VH» (since z>0 and x>0). Thus, 
tan(oc)- 

Since 0° < a < 90°, we know that, as 
tan(a)-»+«>, a—»90°, because on the interval 
0° < a < 90°, a increases as tan(a) increases. 

Therefore, the maximum climbing angle 
increases as the forward speed of the 
helicopter (and hence, x) decreases. 

Figure 7 

It is important to  note here the relation between 
forward speed and climbing rate.  Using trigonometry, 

it is possible to determine the maximum slope that a 
helicopter can traverse given its forward speed and its 
maximum climbing rate. In addition, as Figure 7 
shows, when the helicopter's speed decreases, the 
maximum slope that the helicopter can traverse 
increases. In Figure 7, x represents the helicopter's 
forward speed, z represents the helicopter's climbing 
rate, and a represents the angle formed by those two 
components of the helicopter's motion. In this 
example, the following conditions exist: the helicopter 
is moving forward at some positive rate (x > 0), it is 
climbing at some positive rate (z > 0), and therefore, 
the angle formed by the two components of the 
helicopter's motion (a) is between 0° and 90°. The 
tangent of a is equal to zlx. Now, suppose that z 
remains constant while x changes (which corresponds 
to decreasing the helicopter's forward speed while 
allowing its climbing rate to remain constant). As x 
decreases, a increases and finally approaches 90°. 
Therefore, the helicopter's maximum climbing angle 
increases as its forward speed (and hence, x) decreases, 
which means that slowing down the helicopter makes it 
better able to avoid steep terrain. 

The helicopter performs its terrain analysis based on its 
sample of terrain heights at various points along the 
helicopter's flight path, and the time at which the 
helicopter recorded each sample point. Using the least 
squares method for linear regression analysis, the 
helicopter determines the average slope, in meters per 
second, of the terrain in front of it. This average slope 
shows how quickly the helicopter must climb in order 
to remain at a relatively uniform height above the 
terrain. Based on the computed average slope of the 
terrain, the helicopter predicts a height for the terrain at 
a pre-determined point along its flight path. The 
helicopter adjusts its altitude to reflect a given desired 
height above the ground relative to the height of the 
terrain. 

5.4 Why Adjust the Helicopter's Speed, as Well? 

There are two valid reasons behind the speed 
adjustment. First, we have already shown that a speed 
adjustment is necessary to account for the physical 
limitations of the helicopter. Secondly, although 
changes in the helicopter's dynamics settings as a result 
of the algorithm do occur instantaneously, the 
behaviors that reflect such changes are not 
instantaneous. In addition to accommodating the 
physical limitations of the helicopter, the speed 
adjustment provides a buffer to take into account the 
time that it takes for the helicopter to reflect in its 
behavior any changes in its dynamics. 
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<=5 
Suppose: 

MAX 
MAX 

75 m/s 

SPEED = 120 m/s 
DELTA Z = 12.0 m/s 

CURRENT_SPEED 

MAX.SPEED 

75 m/s 

speed_ ratio = 

speed, ratio = • 
120 m/s 

speed_ ratio = 0.625 

grade_factor 
= 1 - speed_ratio 
= 1 - 0.625 
= 0.325 

Slope threshold 
= 0.325 * MAX_DELTA_Z 
= 0.325* 12.0 m/s 
= 3.9 m/s 

Therefore, in this example, if the terrain slope 
is greater than 3.9 m/s, the algorithm will 
decrease the speed of the helicopter 
proportional to the ratio of the slope threshold 
to the terrain slope. 

Figure 8 

From the pseudo-code in Figure 6, the altitude 
adjustment is rather simple. The helicopter merely 
adjusts its altitude to reflect changes in the height of the 
terrain. The speed adjustment is a little more complex, 
however. From Figure 8, the helicopter first computes 
its speed ratio-the ratio of its current speed to its 
maximum attainable speed. The helicopter uses the 
speed ratio to compute the grade factor. The grade 
factor gives the helicopter the buffer that it needs to 
account for the time that it takes to reflect in its 
behavior any changes in its dynamics. Thus, the grade 
factor is inversely proportional to the speed of the 
helicopter relative to its maximum speed (computed by 
subtracting the helicopter's speed ratio from 1). The 
slope threshold is then computed from the grade factor 
and the maximum rate at which the helicopter can 
climb. Therefore, the point at which the helicopter 
begins adjusting its speed is inversely proportional to 
the relative speed of the helicopter. In other words, the 

faster the helicopter is moving, the earlier it will begin 
adjusting its speed. This process of sampling and 
dynamics adjustment is continuous. 

6. Implementation in the 1ST CGF Testbed 

The 1ST CGF Testbed is designed such that, under all 
but the very worst conditions, the dynamics model of 
any entity is updated roughly five times per second. 
This greatly simplifies the sample-gathering process. 
Rather than gathering an entire sample during each 
iteration of the dynamics update, the helicopter merely 
disposes of the oldest sample point and all traces of it 
and replaces it with a new one. However, before 
destroying the oldest sample point, its components are 
subtracted from Ex, £y, Exy, and Zx2, and the values 
for the new sample point are then added to what 
remains. The helicopter must gather an entirely new 
set of sample points only when it changes its angular 
velocity. Thus, the gathering of the sampling data and 
the performance of the regression analysis is 0(1), on 
average. 

1ST determined that a five-second look ahead would be 
sufficient to accurately model the terrain for the 
purpose of establishing above-ground-level flight. This 
determination was made based on an interpretation of 
when a real helicopter pilot would begin adjusting his 
or her aircraft to avoid the terrain. Given this five- 
second look-ahead, and the fact that the helicopter's 
dynamics model is updated about five times per 
second, the above-ground-level algorithm uses a 
sample size of twenty-five points with which it 
performs its regression analysis. The projection of the 
helicopter's position five seconds into the future is a 
simple calculation given the helicopter's velocity and 
its current speed. 

In order to keep track of all of the data required to 
establish above-ground-level flight, it was necessary to 
add some new data structures, shown in Figure 9, to the 
entity control structure for helicopters. 

GROUND_HEIGHT_DATA is the structure which holds 
the data for the computation of the least squares line for 
the terrain sample, and consists of the following: 

sample is an array which holds the ground- 
height/time-index sampling pairs. 

head points to the oldest sample in the array. 
The sample data is implemented as a circular 
list, which makes it easy to determine which 
sample point to discard when collecting a new 
sample point. 
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typedef struct 
{ 

double ground_height; 
double time_index; 

} GROUND_SAMPLE; 

/* Helicopter Ground Sample */ 

/* Ground height of sample */ 
/* Time index of sample   */ 

typedef struct 
{ 

/* Helicopter Ground Sampling Data */ 

GROUND_SAMPLE 
sample[TERRAIN_SAMPLE_SIZE]; 

int head; 
double gh_mean_slope; 
double gh_intercept; 
double gh_max; 
doub1e sigma_x; 
double sigma_y; 
doub1e sigma_xy; 
double sigma_x_squared; 
TIME latest; 

GROUND_HEIGHT_DATA; 

/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

Terrain Sample */ 
Head of sample list */ 
Least-squares determined slope */ 
Least-squares determined int. */ 
Max. height value in sample */ 
Sum of x (time_index) */ 
Sum of y (ground_height) */ 
Sum of x*y */ 
Sum of x^2 */ 
Most recent time index */ 

Figure 9 

gh_mean_slope and gh_intercept 
describe the least squares line. The equation 
for the line is of the form y=a + bx, where 
a is the y-intercept, which corresponds to 
gh_intercept, and b is the slope of the 
line, which corresponds to 
gh_mean_s1ope. 

gh_max stores the maximum terrain height 
value in the sample. By comparing the 
predicted height of the terrain with the 
maximum height in the sample, the helicopter 
has a buffer to prevent collisions with the tops 
of terrain peaks. 

sigma_x, siqma y. sigma_xy, and 
sigma_x_squared are used in the 
computation of gh_mean_slope and 
gh_intercept. These      variables 
correspond to Ex, Ey, Zxy, and Ex2, 
respectively, in the regression analysis. They 
are stored in the helicopter's control structure 
to optimize the computation of the least 
squares line. 

latest records the time at which the latest 
sample point was recorded. 

6.1 Minor Algorithm Modifications 

In the real world, flying a helicopter-or any aircraft, for 
that matter-just above the treetops and at maximum 

speed is a risky venture, to put it mildly. The 
probability of the flight ending in a fatal collision with 
the ground is very real. The cost of such a crash in the 
virtual world may not be as high, but the goal of the 
simulation is to make the consequences just as real. 
Therefore, any CGF helicopter that crashes into the 
ground due to the inadequacies of its above-ground- 
level flight algorithm is unacceptable. The algorithm 
must be perfect in the sense that it does not allow any 
helicopter to crash as a result of the characteristics of 
the terrain. 

It is for this reason that the above-ground-level flight 
algorithm presented here implements certain measures 
that cause the helicopters to behave more 
conservatively with respect to their flight 
characteristics. Regression analysis is able to base its 
conclusions only on the sample on which it has to 
operate. With these conclusions comes a measurable 
degree of accuracy, which means that they are not 
always the correct conclusions. Any analysis 
performed on the terrain with the intent to produce 
above-ground-level flight in helicopters must always 
arrive at the correct conclusion, however. Thus, in 
addition to the terrain height sample, the helicopter also 
stores the maximum value of the terrain height in the 
sample. In adjusting its altitude, the helicopter 
proceeds to its given height above the ground plus the 
greater of either the predicted terrain height or the 
maximum terrain height in the sample. 

The use of the grade factor in the adjustment of the 
helicopter's speed performs an analogous function. 
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Future Position 

Velocity 

Current Position 

Figure 10 

Current 
Velocity 

Future Position 

Turn Rate 

Current Position 

Figure 11 

6.2 Curved Flight-Path Projection 

When the helicopter is flying in a straight line, as in 
Figure 10, the projection of its path along that line is a 
simple calculation given the helicopter's current 
position, its velocity (remember from physics, a body's 
velocity consists of its speed and direction), and the 
time displacement of the projection-the length, in time, 
of the look-ahead. It would be unrealistic and would 
most likely yield unacceptable results to project a 
straight-line position when the helicopter is actually 
following a curved, or more precisely, circular path, as 
in Figure  11.    It becomes necessary, therefore, to 

Knowns: velocity (v), turn rate (co), time (t), 
helicopter's current position (x,, y^. 

Remember: 
speed (s) & heading comprise velocity 

a-> heading 
p=at 

s=cor -> r=oys 

x^rcosoc 

Xi = Xo + Xi 
XQ = Xi - Xi 

X = a + p 

x2' = r cos% 

X2 = XQ + X2 

yi = r sina 

yi=yo + yi' 
y0 = yi - yi' 

y2 = r sinx 

y2 = y0 + V2 

Figure 12 

project the helicopter's position along a circular path, 
given a constant angular velocity, in order for it to 
gather a valid terrain sample along that path. 

In projecting the helicopter's position along a straight- 
line path, it is necessary to know the helicopter's 
current position, its velocity, and the length of the look- 
ahead time. In projecting the helicopter's position 
along a circular path, it is also necessary to know the 
rate at which the helicopter is turning. Given these 
known values, Figure 12 shows the method by which 
the helicopter projects its position along a circular path. 

From Figure 12, the helicopter knows its current 
position (xi, yO, its speed (s) and its heading 
(determined directly from its velocity [v]), its turn rate 
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(co), and the time displacement for the projection (f). 
The projection of the helicopter's position along its 
circular path through f requires two steps. First, the 
helicopter must determine its center of motion (xo, yo)- 
Given (xo, yo), it can then proceed to project its future 
position (x2, y2). 

To compute (xo, yo), the helicopter must first 
"normalize" its heading relative to (xo, yo). (xo, yo) will 
be different depending on whether the helicopter is 
moving in a clockwise fashion or a counter-clockwise 
fashion, determined by the sign of co. A positive co 
depicts clockwise motion. Figure 12 shows the 
helicopter moving in a clockwise fashion. The 
normalized heading (a) is determined directly from the 
helicopter's actual heading and the value of co. 

Given co and s, the helicopter can compute the radius 
(r) of the circle defined by its motion. Now, after 
computing a and r, the helicopter can determine 
(Xo, yo) given (x,, y,). 

To perform the actual projection of the helicopter's 
position along its current circular flight path, the 
helicopter first calculates, directly from co and t, the 
magnitude of the angle (p) through which it passes 
during /. x> the normalized value for p, is determined 
simply by adding a and p. Finally, after computing %, 
the helicopter can now determine its future position, 
(x2, yi), given (x^ y,). 

7. Fort Rucker's Aviation Testbed 

The original scenario installed at Fort Rucker in July, 
1994, was criticized for its lack of tactical realism. The 
main reason for this was that the CGF helicopters were 
unable to fly close to the ground without crashing. In 
order to make it through the scenario without colliding 
with the terrain, however, the helicopters needed to be 
placed at very high altitudes-an unrealistic and 
tactically unsound enterprise. 

In early 1995, 1ST installed an updated version of the 
Integrated Eagle/BDS-D system at Fort Rucker. 
Among the revisions was a new training and analysis 
scenario and an improved CGF Testbed which 
included the above-ground-level flight algorithm for 
helicopters. 

In the revamped scenario, the above-ground-level 
algorithm allows the use of CGF helicopters in a more 
tactically feasible manner. 

8. CGF/Manned Simulator Interaction 

The Integrated Eagle/BDS-D system has the capability 
to instantiate manned simulators in the virtual 
environment, allowing the interaction between CGF 
entities and U.S. Army soldiers operating manned 
simulators. In the original installation of the Integrated 
Eagle/BDS-D system at Fort Rucker, the scenario 
normally proceeded with a manned helicopter 
simulator flying extremely low to the ground at a 
relatively high speed while the CGF helicopters in the 
scenario followed at very high altitude. The soldiers 
operating the manned helicopter simulator, and 
observers alike, readily noticed this unrealistic 
formation and criticized the CGF helicopters' behavior. 
With the new above-ground-level flight algorithm, 
however, the CGF helicopters were able to fly as low 
as the pilots without crashing, though not quite as fast. 

9. Algorithm Efficiency 

This algorithm has a distinct advantage over similar 
algorithms due to its size and efficiency. By storing the 
Z-values as part of the helicopter's control structure, 
complete recomputation of these values is not 
necessary. Only when the helicopter changes its 
angular velocity and, therefore, gathers a new sample, 
does it need to perform an entire recomputation of the 
2-values. Therefore, on average, the regression 
analysis has an order of magnitude of one (0(7)). 

The determination of the maximum terrain height value 
in the sample is also O(l) on average. Recall that when 
a new sample point (p„ew) is gathered, the oldest point 
in the sample (poW) is removed from the sample. To 
determine the maximum height in the sample, Pnew's 
terrain height is compared with the stored maximum 
height of the sample (if Pnew's height is larger than the 
maximum, then Pn^'s height becomes the new 
maximum). This operation requires 0(1) steps. 
However, if p0id's terrain height is the maximum height 
of the sample, then the algorithm must recompute the 
maximum height of the sample by examining each 
point in the sample. Although this operation takes O(n) 
steps, it is performed infrequently as compared to the 
0(1) calculation above; therefore, the height 
determination for the sample takes 0(1) steps on 
average. 

10. Limitations and Future Work 

The above-ground-level flight algorithm presented here 
does have its weaknesses, however. The Assault 
Support Helicopter Tactical Manual (Department of 
the Navy 1984) describes three types of flight that a 
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helicopter might be required to perform: low-level, 
contour, and nap-of-the-earth. Low-level flight places 
the helicopter just above the terrain as a whole, 
allowing it to fly at its absolute maximum speed 
without regard to the terrain. Contour flight places the 
helicopter much closer to the terrain, making it 
necessary for the helicopter to take into account the 
terrain in order to avoid crashing. The above-ground- 
level flight algorithm presented here most closely 
mimics contour flight. Nap-of-the-earth flight involves 
flying "as close to the Earth's surface as vegetation and 
obstacles permit while generally following the contours 
of the Earth's surface" (Department of the Navy 1984). 
Nap-of-the-earth flight techniques are usually limited to 
missions in which the threat and tactical situation 
preclude the safe use of low level or contour flight 
techniques. This technique greatly sacrifices speed, but 
it takes advantage of the cover and concealment 
afforded by terrain, vegetation, and manmade features. 

The Integrated Eagle/BDS-D system utilizes contour 
flight for its CGF helicopters simply because the 
system's demonstration scenario calls for that particular 
flight mode. To produce a more realistic simulation 
environment, however, the system should implement 
both low-level and nap-of-the-earth flight, as well. The 
human operator could specify the desired flight mode 
of a CGF helicopter upon its instantiation. Each mode 
might define a minimum height at which it would allow 
helicopters to fly. In addition, the operator could 
switch flight modes for specific helicopters during the 
simulation. Ideally, however, a CGF helicopter would 
vary its flight mode automatically and intelligently, 
depending on its environment or on orders from higher 
headquarters. 

10.1 Operational Activities in Eagle/BDS-D 

The Integrated Eagle/BDS-D Project has successfully 
linked a constructive, aggregate-level simulation with a 
virtual, entity-level simulation using both manned 
simulators and computer generated forces 
(Franceschini 1995). When units from the constructive 
simulation are disaggregated as computer generated 
forces into their respective vehicles in the virtual 
simulation, they are given operational activities upon 
which they are to act in an intelligent manner. Among 
the operational activities for helicopters are "FLY- 
NOE" and "FLY-CONTOUR", telling the CGF 
helicopters the mode in which they will be flying. In 
such a system, those helicopters should be placed at 
altitudes corresponding to their operational activities: 
perhaps 100 to 150 meters for low-level flight; 20 to 30 
meters for contour flight; 5 to 10 meters for nap-of-the- 
earth flight. 

10.2 Intelligent Route Planning 

Thus far, the subject of this paper has focused solely on 
the adjustment of the helicopter's height (and its speed; 
but only for the purposes of allowing the helicopter to 
climb at a steeper rate). A more autonomous CGF 
helicopter would adjust its route as well in response to 
its environment. For example, it is more tactically 
sound for a helicopter to fly through a canyon than to 
fly outside of one. Therefore, a CGF helicopter should 
analyze the terrain with regards to the mode in which it 
is flying to take full tactical advantage of the 
surrounding environment. Such analysis is beyond the 
scope of the above-ground-level flight algorithm 
presented here, and would require an intelligent route 
planning algorithm not unlike that which is in place for 
ground vehicles in the 1ST CGF Testbed (Smith 1992). 
Route planning occurs before the helicopter even starts 
moving, while the above-ground-level flight algorithm 
presented here adjusts the helicopter en route. Hence, 
the two algorithms would be able to work 
independently, but for the same higher goal: realistic 
and tactically sound helicopter flight. 

At this time, however, the scope of the Integrated 
Eagle/BDS-D Project does not encompass these types 
of intelligent flight controls for CGF helicopters. 

10.3 Future Work 

Future work in the area of above-ground-level flight for 
CGF helicopters should include the implementation of 
low-level and nap-of-the-earth flight modes; intelligent 
interpretation of operational activities, especially for 
constructive+virtual linkages, and intelligent route- 
planning that accompanies both contour and nap-of- 
the-earth flight. 

11. Acknowledgment 

This research was sponsored by the U.S. Army 
Simulation, Training, and Instrumentation Command 
and by the U.S. Army TRADOC Analysis Center as 
part of the Integrated Eagle/BDS-D Project, contract 
number N61339-92-K-0002. That support is gratefully 
acknowledged. 

Special acknowledgment goes to Robert C. Schricker, 
who provided invaluable assistance in the 
determination of the curved-flight-projection routine. 

12. References 

Department of the Navy (1984).    Assault Support 
Helicopter Tactical Manual NWP 55-9-ASH, 

324 



Volume I (Rev. B) NAVAIR 01-1ASH-1T, 
Office of the Chief of Naval Operations. 

Franceschini, Robert W. (1995). "Integrated 
Eagle/BDS-D: A     Status     Report", 
Proceedings of the Fifth Conference on 
Computer Generated Forces and Behavioral 
Representation, Orlando, Florida, May 9-11, 
1995. 

Freund, John E. (1979). Modern Elementary Statistics. 
Fifth Edition, Prentice-Hall. 

Smith, Scott H., Karr, Clark R., Petty, Mikel D., 
Franceschini, Robert W., Wood, Douglas D., 
Watkins, Jon E., and Campbell, Charles E. 
(1992). "The 1ST Semi-Automated Forces 
Testbed", Technical Report IST-TR-92-7, 
Institute for Simulation and Training, 
University of Central Florida. 

13. Biographies 

Stephen A. Schricker is a Software Engineer on the 
Integrated Eagle/BDS-D Project at the Institute for 
Simulation and Training. He has earned a B. S. in 
Computer Science from the University of Central 
Florida. His research interests are in the area of 
simulation. 

Robert W, Franceschini is a Principal Investigator at 
the Institute for Simulation and Training. He currendy 
leads the Integrated Eagle/BDS-D project at 1ST. Mr. 
Franceschini has earned a B. S. in Computer Science 
from the University of Central Florida; he is currently 
pursuing an M. S. in Computer Science from UCF. His 
research interests are in the areas of simulation, graph 
theory, and computational geometry. 

Mikel D. Petty is a Program Manager at the Institute 
for Simulation and Training. He is currently managing 
Plowshares, an emergency-management simulation 
project. Previously, he led IST's Computer Generated 
Forces research projects. Mr. Petty has earned a B. S. 
in Computer Science from California State University 
at Sacramento, and an M. S. in Computer Science from 
the University of Central Florida. He is currently a Ph. 
D. student in Computer Science at UCF. His research 
interests are in the areas of simulation and artificial 
intelligence. 

Tracy R. Tolley is a Graduate Research Assistant on 
the Integrated Eagle/BDS-D project at the Institute for 
Simulation and Training. She has earned a B. S. in 
Mathematics from the University of Central Florida, 
and is currendy pursuing an M. S. in Computer Science 
at UCF. Her research interests are in the area of 
simulation. 

325 





Session 7a: Non-Military Uses of CGF 

Warren, GreyStone Technology, Inc. 
Petty, UCF/IST 

Moore, University of Pennsylvania 





Bi-Directional Technology Transfer Between Government Applications 
of Computer Generated Agents and Commercial Entertainment 

Rich Warren 
Mike Crowe 

Don Shillcutt 
GreyStone Technology, Inc. 

10766 Goldentop Road 
San Diego CA 92127 
rwarren@gstone.com 

1. Abstract 

The transfer of Computer Generated Forces 
(CGF) technology between government 
simulation and commercial entertainment 
communities, facilitates the development of 
more evolved and cost effective Autonomous 
Intelligent Adversaries (AIA). As commercial 
AIA requirements begin to also meet government 
CGF requirements, breakthroughs in intelligent 
adversary technology are incorporated into 
Commercial Off The Shelf (COTS) and Value 
Added software. The commercial reusable 
software tools are in turn made available to 
government CGF managers who realize 
immediate reductions in development costs and 
program maintainability. 

This paper will describe early application of 
CGF technology to both government simulation 
and commercial gaming environments. More 
recent applications of the technology will also be 
discussed to show that the fidelity requirements 
of AIA in simulation and gaming are, by today's 
standards, nearly identical. Motivation to reduce 
the development, acquisition and operations cost 
of CGF and AIA software tools that increase the 
fidelity, performance and portability of behavior 
models is also offered. 

2. Common Vision 

The Distributed Interactive Simulation (DIS) 
glossary defines CGF and Semi-automated 
Forces (SAFOR) as the "Simulation of friendly, 
enemy and neutral entities on the virtual 
battlefield in which the individual platforms are 
operated by computer simulation of the crew and 
command hierarchy." The Virtual or Electronic 
Battlefield is likewise defined as the "Illusion 
resulting from simulating the actual battlefield 
(1ST, 1994)." 

The application of CGF technology in 
government military Test, Training and Analysis 
exercises satisfies the government's need to 
reduce cost and logistics support while 
maintaining the density, depth and diversity of 
forces required to accomplish the exercise 
objectives. Though the human or live forces in 
the exercise remain the focal point, the use of 
CGF provides an economic solution that 
stimulates interactions between "players" on the 
virtual battlefield. 

The commercial entertainment industry, like the 
military, has similar needs for an economic 
solution that stimulates live (i.e., cash paying) 
customers. The profit for commercial 
entertainment is derived from enticing the 
customer to participate in and repeatedly return 
to the gaming environments and location based 
experiences . Commercial Virtual Reality 
opportunities are growing through the 
application of technology that offers a solution. 

The DIS glossary defines VR as the "effect 
created by generating an environment that does 
not exist in the real world. Usually, a 
stereoscopic display and computer-generated 
three-dimensional environment giving the 
immersion effect. The environment is 
interactive, allowing the participant to look and 
navigate about the environment, enhancing the 
immersion effect. Virtual environment and 
virtual world are synonyms for virtual reality 
(1ST, 1994)." 

Notice that a "virtual battlefield" is one 
representation or application of "virtual reality." 
GreyStone Technology's commercial virtual 
reality entertainment systems combine multi- 
sensory human-computer interfaces with real- 
time simulations and dynamic models that 
display intelligent and interactive behaviors 
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(Crowe, M., 1994). GreyStone's VR 
entertainment systems represent commercial 
CGF applications that are strikingly similar 
those required by the military. 

As outlined above, government simulation and 
commercial entertainment managers now share a 
common goal to reduce the cost of development, 
acquisition and operation of CGF technology. In 
the sections that follow, early applications of 
CGF technology to both government simulation 
and commercial gaming environments will be 
presented to show that CGF requirements across 
the two environments were at one time distinct. 
More recent applications of CGF technology, 
however, will also be discussed to show that the 
fidelity requirements of Intelligent Adversaries in 
simulation and gaming are by today's standards 
nearly identical. Closing sections of this paper 
will offer motivation to reduce the development, 
acquisition and operations cost of CGF and AIA 
software tools that increase the fidelity, 
performance and portability of behavior models. 

3. Early Applications of CGF Technology 

Until recently, user requirements across 
government simulation and commercial gaming 
environments have placed differing emphasis on 
the fidelity of the CGF and AIA. While the 
government simulation environments required 
high fidelity CGF , the commercial gaming 
environments required high fidelity presentation 
systems. In the sections that follow, several 
exemplar applications of early work from both 
government simulation and commercial gaming 
will be presented to show that computational 
resources were not sufficient to simultaneously 
host both CGF and display technology. 

3.1  Early Government Simulation 

The government has shown an interest in 
modeling adversarial forces since WWII. Much 
of modem CGF technology can in fact be traced 
back to the work of John Von Neumann and his 
theories of game play (Von Neumann, 1944). 
This section will trace early work in game theory 
and Operations Research to motivate the 
discussion of applications that show 
government's early emphasis on CGF. 

Adversarial Agent Modeling and Computer 
Generated Vehicle Commanders are applications 
that are described to show an early government 
emphasis on CGF technology rather than on 
presentation technology. Following, GreyStone 
Technology's Advanced Maneuvering Logic - 90 

(AML-90) (GreyStone, 1994) will be presented 
to illustrate a government interest in CGF 
technology hosted in a computational 
environment sufficient enough to also provide 
two dimensional bitmapped graphics. 

3.1.1 Operations Research 
Operations Research is an activity with a long 
history that dates back to World War II. 
Methods of Operations Research, including 
statistical analysis, theory of probability and 
gaming theory, have been applied to tactical 
analysis and operational experiments with 
equipment and procedure for over half a century. 
(Morse and Kimball, 1951). 

Tactical analysis became necessary as the onset 
of WWII introduced many new tactics and 
equipment types for which effective measure- 
counter measures were needed. A counter 
measure to minimize the threat of the Japanese 
Kamikaze, for example, was found through 
statistical solutions that considered damage due 
to suicide planes, the effects of maneuvering and 
the effect of angle of approach. The results of 
the Kamikaze study produced a number of 
suggested tactics which resemble, in content, the 
consequent of modern day expert system rules. 
Below is a summary table of some of the tactics 
learned through the statistical analysis of suicide 
planes. 

Rule No Tactic Learned 
1 All ships should attempt to present 

their beams to high-diving planes. 
2 All ships should attempt to turn 

their beams away from low-diving 
planes. 

3 Battleships, cruisers, and carriers 
should employ radical changes of 
course 

4 Destroyers and smaller fleet units 
should turn slowly to present the 
proper aspect to the diving plane. 

5 Destroyers and smaller fleet units 
should not turn rapidly enough to 
affect the accuracy of their AA. 

Table 1: Tactics Learned 

In addition to statistical analysis, search and 
game theories were developed to provide more 
analytical solutions to tactical analysis. Search 
theories, for example, can state the probability 
of making contact with a target placed at 
random within some given area. The probability 
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of hit (Pk) is likewise computed using 
statistical theory. 

Game theories were also developed as problem 
solving methodologies to tactical analysis. 
Specifically, the analysis of countermeasure 
action is accomplished using principals 
established by Von Neumann. These principals 
are particularly effective under situations where 
battlefield intelligence is complete and the 
opposing forces are reasonably familiar with 
measures and countermeasures that apply to the 
tactical situation. The driving principal under 
such situations, know as the minmax principal, 
works to maximize gain while minimizing loss. 

3.1.2 Enemv Platforms 
Much of the Operations Research described 
above was conducted at the very dawn of the 
computer revolution. Since then, a number of 
research efforts have contributed towards the 
development of computerized tactical decision 
aids which incorporate many of the principals 
and strategies developed through Operations 
Research. 

The Naval Air Development Center, for example, 
has sponsored research efforts to model plan 
recognition agents that operate within adversarial 
domains. For program development, verification 
and validation purposes, Computer Adversarial 
Agents that model enemy platforms (e.g. aircraft 
and ships) are generated. These computer 
adversaries pose a threat to Naval aircraft carrier 
Task Forces and are capable of interaction in a 
dynamically changing world. 

The intelligently guided operators of 
Azarewicz's plan recognition systems project 
plan hypothesis forward in time much like 
implementations of the minmax game principal. 
Due to the dynamics of the battlefield, however, 
Azarewicz's models use differential gaming 
principals that better model domains where joint 
moves by both opposing forces might 
simultaneously occur (Azarewicz, 1987). 

3.1.3 Combat Commanders 
The preceding section introduced the application 
of game theory to computer generated 
autonomous adversaries. This section will 
introduce the use of expert system technology as 
it is applied to model a combat vehicle 
commander. 

Gibson describes an expert system used to model 
a combat vehicle commander's thought or 
combat  decision-making process  (  Gibson, 

1989). Additionally, Gibsons system applies 
MYCIN certainty factor methodology to model 
uncertainty common to many battlefield 
situations. 

3.1.4 Adaptive Maneuvering Logic - 90 
While the previous section introduced an expert 
system based vehicle commander, this section 
will describe a fully autonomous rule based air 
combat adversary that GreyStone Technology has 
commercialized. 

Adaptive Maneuvering Logic - 90 (AML-90) is 
an advanced, synthetic adversary control model 
that allows for real-time, interactive air combat 
with a six degree-of-freedom air combat 
simulation for one-versus-one and two-versus- 
one engagements (GreyStone, 1994). The 
decision-making process is implemented using a 
rule-based system that contains a set of air 
combat rules and associated target behavior 
modes that consider multiple phases of a fighter 
combat mission including: Beyond Visual 
Range (BVR), Intercept, Close-in-Combat 
(CIC), and Bugout. The adversaries execute in 
real-time to provide realistic air target simulation 
for air engagements. 

The GreyStone Adaptive Maneuvering Logic - 
90 (AML-90) software provides several user 
selectable aerodynamic models of fighter aircraft 
platform and allows for 4 computer generated 
pairs (ownship and wingman), 8 aircraft total, to 
be simulated simultaneously during a session. 
The AML-90 pairs can be controlled as 
adversarial forces within a simulation exercise 
and may be directed by the user to engage other 
aircraft entities in either a 1-v-l or a 2-v-l 
engagement. 

The Relative Reference Display (RRD) allows 
the user to control and monitor the AML-90 
simulation environment. The RRD provides a 
two dimensional gods-eye-view of both the 
simulated arena and the CGF. A Graphical User 
Interface (GUI) is provided by the RRD which 
allows the user to set-up the initial positions of 
AML-90 entities and to establish routes of 
flight. The GUI also allows the user to 
specifically control the targets that the AML 
aircraft will intercept or engage. 

3.2  Early Entertainment Environments 

The previous section (3.1) offers examples of 
early applications of CGF technology to 
government simulation and decision aiding 
environments. The early government applications 
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clearly demonstrate that limited computer 
processing power forced a development emphasis 
on high fidelity Intelligent Adversaries. At the 
same time, however, commercial gaming 
applications were developed with an emphasis on 
high fidelity presentation because the limited 
computer processing power allowed for only 
rudimentary or brute force computer adversaries 
in the gaming environments. 

The following sections offer examples of early 
applications of CGF technology to commercial 
gaming environments. GreyStone's Purple Heart 
Corner is exemplar of the presentation fidelity 
common to high end adversarial gaming 
environments. GreyStone's Pteranodon 
Experience is also an early example of the high 
fidelity presentation system common to many 
commercial gaming environments. 

3.2.1 Purple Heart Corner 
Purple Heart Corner is a commercially available 
entertainment game that combines state-of-the-art 
in virtual reality computer graphics with a 
detailed mock-up of a WWII bomber gun station. 
The shell of the gaming simulator closely 
represents the interior of the B-17 bomber at the 
waist gunner position, complete with stringers 
and bulkhead rings. An accurately-sized window 
opening in the fuselage side holds a copy of the 
50 caliber Browning machine gun, and is flanked 
by a standard issue ammunition box (GreyStone, 
1992). 

The replica 50-caI Browning machine gun 
faithfully reproduces the heft and feel of the 
original gun, while a built-in pneumatic actuator 
recreates the hammering recoil of the big 
weapon. The sights are also accurately replicated, 
allowing the user to glimpse the skill required 
to aim the Browning accurately in the heat of the 
battle. 

A description of the action of air combat 
experience shows that a heavier emphasis is 
placed on presentation rather than on the 
intelligence of the computer adversaries. 

Mel09's and FW190's, silhouetted 
against the sky, drop in from the south 
west, ahead of the formation. The 
relentless drone of the engines is 
interrupted, first by the top turret 
gunner, as he sends orange-red tracers 
out to greet the incoming fighters. 
Wave after wave of fighters dive 
through the formation. Tracers arc 
across the smoky sky. The 50-caliber 

Browning clatters on its mount as the 
fighters loom in the sights, with 
muzzles flashing. A hit! White flames 
claw the fighter to pieces as it spins 
downward, raining embers and trailing 
smoke. No time to exult; you turn to 
face the next attacker. 

The above excerpt illustrates that a heavier 
emphasis is placed on graphics and sound 
technology. Though the experience provides 
computer generated targets as well as adversaries, 
they are controlled using scripted programming 
techniques. 

3.2.2 Pteranodon 
The Pteranodon experience, first developed as a 
showcase for Silicon Graphics' powerful Onyx 
image generator, represents the state of the art in 
premium virtual reality. The Pteranodon 
experience offers 180 degree visibility afforded 
by three large screens, and thousands of fully- 
textured, anti-aliased polygons refreshing the 
screens at thirty times a second. The detailed, 
colorful textures and realistic movement of 
objects in the simulation are complemented by 
the rich, booming, natural sounds of the 
environment (Crowe, B.,  1994). 

Although the Pteranodon is programmed to 
follow the commands of a rider, an intelligent 
obstacle avoidance system will execute a course 
deviation when necessary to avoid a collision 
with obstacles. The Pteranodon is also 
programmed to search for and follow other 
creatures with its gaze. 

A description of the action of the Pteranodon 
experience shows that a heavier emphasis is 
placed on display and presentation. 

Echoes of a primal screech rumble 
through the canyon, announcing the 
arrival of the raptor. Wings sweep the 
sky, mocking the winds. A rider guides 
the beast around cascades of water 
which plummet from dizzy heights to 
the river below ... vampire bats flutter 
above the next bend and monstrous 
wasps dive and swoop over a whirlpool 
that devours the river. 

As the master of the Pteranodon, you 
guide it with the reins and by leaning 
in the saddle. It obeys your every 
command, but as you cruise through 
the canyons of this fantasy world, it 
skillfully avoids obstacles on its own. 
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The above excerpt should illustrate that a heavier 
emphasis is placed on graphics and sound and 
other presentation technology. 

4.  Recent Simulation and Gaming 

The previous section (3.0) discussed early 
applications of CGF Technology and showed 
that limited computational resources forced 
government and commercial CGF applications to 
place differing emphasis on the fidelity of the 
Intelligent Adversary. This section will 
demonstrate that increased processing power has 
made it possible to incorporate both high fidelity 
CGF and high fidelity virtual reality in today's 
simulation and gaming environments. 

4.1 Recent Government Simulation 

A review of more recent application of CGF 
technology to government simulation 
environments will show a continued emphasis 
on high fidelity Intelligent Adversary technology 
but will also show a move towards the coupling 
of the technology with a high fidelity real-time 
virtual reality graphics environment. 

The government simulation community has 
realized the full potential of today's computer 
technology and has coupled Computer Generated 
Forces technology with high fidelity real-time 
Virtual Reality. The Naval Postgraduate 
School's continued development of NPSNET, 
internationally known for its networked virtual 
environments technology, has incorporated 
Autonomous Players into their virtual 
battlefield. GreyStone Technology's AML-D 
RAGE , like NPSNET, is a networked 
application that combines the latest in real-time 
VR technology with high fidelity Computer 
Generated Forces technology. Both the NPSNET 
and AML-D RAGE applications will be 
discussed in more detail. 

4.1.1 NPSNET Autonomous Players 
The Navel Postgraduate School has included 
Autonomous Players in the NPSNET simulation 
environment to "provide interactive players when 
live players are not available or affordable (Zyda 
1994)". The NPS Intelligent behaviors are 
modeled using expert system rule based 
technology capable of commanding unmanned 
vehicles in the simulation environment. 

Among the autonomous NPS players are the 
autonomous tank forces players that provide 
intelligent behavior models which have the 

capability to work cooperatively. If numerous 
entities, for example, approach the autonomous 
tank force from several directions, then the NPS 
autonomous computer generated force can 
distribute their fire such that some tanks fire one 
direction and others in another direction. Should 
the autonomous player become outnumbered, it 
has the additional capability to call for 
reinforcements. 

The NPSNET autonomous players are also using 
elevation data to reason about terrain. If, for 
example, a forward observation vehicle has Line 
of Site (LOS) with an enemy vehicle, the 
Autonomous Player can relay the coordinates to 
one of several howitzers. The threat is fired upon 
if it is in range of the howitzer. 

Additionally, the autonomous players are 
equipped with intelligence reports that provide 
them with knowledge of the battlefield. Given 
whether a vehicle is friendly or not, the 
autonomous players can prioritize targets so that 
those targets with a higher priority are fired upon 
before lower priority vehicles. 

4.1.2 RAGE AML-D 
GreyStone's  Real-time  Advanced  Graphics 
Environment (RAGE) coupled with AML-D is a 
showcase of both high fidelity graphics and 
intelligent  adversaries  running   seemlessly 
together. 

RAGE• is a 3D visualization product designed 
for US and foreign government agencies and 
military services, and any members of the US or 
international defense industries who simulate 
operational scenarios, avionics and weapons 
systems, airframes, and mission 
planning/preview/rehearsal/training systems or 
conduct range operations for test or training, or 
manage C4I systems. It is particularly designed 
for organizations that have a need for advanced 
visualization but do not have the time, resources, 
or expertise to buy and build their own 
visualization products. 

RAGE• provides a 3D visualization component 
for avionics, weapons and aircraft system 
simulations, constructive and virtual mission 
simulations, mission preview, rehearsal and 
training systems/simulators, live training 
missions and actual combat missions. It can 
receive object (entity) state and event data from 
multiple intelligence and instrumentation sources 
and present a near real-time representation of live 
or simulated events at a 30Hz refresh rate. In 
addition to three standard viewpoint options: 
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Stealth, Out-the-Window, and Tethered, 
RAGE• features two simultaneous viewpoints 
(i.e., Stealth on one monitor, out-the-window on 
another), sensor-related control functions 
including scan, slave, and zoom, and 3D 
visualization of non-visible phenomena such as 
weapons envelopes, platform signatures, EW 
signals, sensor beams and scan volumes, and 
operational area boundaries. RAGE• can 
interface with large multi-screen displays, single 
screen systems, standard system monitors, 
helmet mounted displays and mini-domes 
(Shillicutt, 1994). 

Depending on user requirements, RAGE• can 
be integrated with multiple simulations, various 
user input/output interfaces, and display 
alternatives. Specific models and environment 
renderings can be produced. Non-visible 
phenomena functionality can be made dynamic 
such that they respond to the physical criteria 
which influence their behavior. Examples 
include dynamic SAM envelopes based on target 
altitude, and velocity vector and radar detection 
volumes based on pulse repetition interval or 
radar cross section. 

Distributed Interactive Simulation provides a 
specialized method for integrating simulations 
into your visualization environment. RAGE• 
is certified to receive DIS entity state and event 
PDUs. If a user needs to add a 3D visualization 
product to any entity state source (constructive 
or virtual simulation, live range data or live 
combat data), entity state source can be translated 
into DIS protocols. 

AML-D is a (DIS) compliant version of the 
Adaptive Maneuvering Logic - 90 software 
(detailed in section 3.1.4 and GreyStone '93) 
that translates entity state data to DIS PDU 
which are forwarded to the RAGE application. 
This combination of high fidelity VR and CGF 
technology allows for interaction between 
dynamic AML-90 aircraft and large multi-player 
exercises (GreyStone, 1994). 

4.2 Commercial Entertainment 

The following sections will show that 
commercial entertainment has realized the full 
potential of today's computer technology and has 
incorporated intelligent adversary technology and 
high fidelity real-time virtual reality technology 
in a single synthetic environment. 

The ThunderBolt commercial gaming 
environment, developed at GreyStone for a state- 

of-the art amusement park ride, is a synthetic 
environment that satisfies many requirements 
also common to government simulation. 
Thunderbolt has successfully combined high 
fidelity adversary technology with state of art 
presentation technology. 

4.2.1 The Thunderbolt Experience 
The computer generated forces developed for the 
ThunderBolt application are designed to provide 
a constant level of action for the human players 
who participate in the gaming environment. The 
underlying goal is to keep a continuous flow of 
adversary aircraft (both target and threat) in the 
field of view of each of the human players. 

The technologies used to develop the 
ThunderBolt intelligent adversary fundamental 
behaviors are based on the modeling techniques 
utilized within the AML-90 adversary software. 
Although the number of actual CGF players 
required for the experience is significant, the 
constraints of the ThunderBolt compute 
environment allowed a CGF design based on a 
derivative of AML-90 behavioral model. 

Like AML-90 adversaries, the ThunderBolt CGF 
derive relative threat geometry and apply a set of 
logic in order to assess an appropriate action. 
The logic is both phase and goal-based in that 
geometrical parameters such as range and target 
aspect are determined. The four CGF phases are 
Intercept, Engage, CIC, and Bugout. The phase 
is used to determine the set of tactical logic to 
apply to the situation and ultimately determines 
the CGF's flight behavior and actions. While the 
AML-90 CGF includes a robust set of tactical 
logic, including cooperative logic with a 
wingman, the ThunderBolt CGF operate 
independently of one another. 

5. Conclusion 

GreyStone Technology believes that many of the 
needs of both government simulation and 
commercial entertainment communities can be 
satisfied through Virtual Environments 
technology. Furthermore, these virtual 
environments are combinations of Multi-Sensory 
Human-Computer interfaces with real-time 
simulations that are populated by dynamic, 
intelligent and interactive behavioral models 
(CGF). In the final solution, the distinction 
between government CGF and commercial 
Intelligent Adversaries, is defined by the user's 
needs and the personality or behavior of the 
application. The underlying software structures 
and  technologies  should  be  common  and 
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reusable. As the user determines the fidelity of 
both the adversaries and the interfaces needed, a 
compromise must be made on the requirements 
of costs and operational logistics. 

REAL WORLD APPLICATIONS REQUIRE A BALANCE OF 
CONVENTIONAL AND VR TECHNIQUES 

VIRTUAL REALITY SHOULD ENHANCE, NOT HINDER 
THE HUMAN-COMPUTER INTERFACE 

THE AMOUNT AND TYPE OF VR 
IS DEPENDENT ON THE APPLICATION 

HOW MUCH VR? 

FUNCTIONAL 
UTILITY 

SUSPENSION 
OF DISBELIEF 

Figure 1: VR Application Axioms 

As a single solution for all applications will 
unlikely satisfy all users, we propose that a 
common foundation class of object oriented 
CGF libraries can be cost effectively shared 
across both commercial entertainment and 
government simulation applications. With the 
axioms shown in figure 1 above, the end user 
can determine the optimal operations point and 
the developer can determine which of the 
libraries are needed to ensure the requirements of 
a specific exercise or experience are met with 
optimal efficiency. 

6. References 

Azarewicz, J., et. al. (1987) "Multi-Agent Plan 
Recognition in an Adversarial Domain", 
Third Annual Expert Systems in Government 
Proceedings, pages 188-193, Washington, 
DC, October, 1987. 

Crowe, B., "Pteranodon Sighting at SIGGRAPH 
'93", Virtual Reality World, November 1994 

Crowe, M., "Virtual Environments at 
GreyStone", technical presentation, 
GreyStone Technology 

Gibson, T. J., "Modelling a Combat Vehicle 
Commander with an Expert System", D77C, 
AD-A208 533, 1989. 

GreyStone (1994), "AML-D User's Manual" , 
GSD-AMLD-UM110, GreyStone Technology. 

GreyStone (1992), "Purple Heart Corner", Tech 
Memo, GreyStone Technology. 

GreyStone (1993), "ThunderBolt", Tech Memo, 
GreyStone Technology 

1ST, "A Glossary of Modeling and Simulation 
Terms for Distributed Interactive Simulation" 
11th DIS Workshop on Standards for the 
Interoperability of Distributed Simulation, 
Vol. 1, 1994 

Morse, P.M., Kimball, G. E. (19511 Methods of 
Operations Research. First Edition, 
Peninsula Publishing. 

Shillicutt, D., "On the Cover ...", Simulation, 
Vol. 63, No. 5, 1994 

Von Neumann, J. and Morgenstem, O. (1944) 
Theory of Games and Economic Behavior. 
Princeton University Press. 

Zyda et. al., "The Software Required for the 
Computer Generation of Virtual 
Environments", Presence, Vol. 2, No. 2. 

7. Authors' Biographies 

Rich Warren is Staff Engineer and Intelligent 
Systems Technology Group Leader at 
GreyStone. Mr. Warren holds a Bachelors 
degree in Computer/Cognitive Science. His 
research interest is in Artificial Intelligence and 
Autonomous Intelligent Adversary's. 

Mike Crowe is the Director of Technology at 
GreyStone. Mr. Crowe holds a Bachelors degree 
in Cognitive Science/Artificial Intelligence. His 
technical focus is on the research and 
development of advanced, automated control, 
and decision-making methodologies to provide 
intelligent computer-generated players within 
virtual environments. 

Don Shillcutt is Principal Systems Engineer at 
GreyStone Technology. Mr. Shillcutt holds 
Masters degrees in Electrical Engineering and 
Management. His principal area of interest is in 
Information Technology. 

335 





CGF Opportunities in Plowshares 

Mikel D. Petty and Mary P. Slepow 
Institute for Simulation and Training 

3280 Progress Drive 
Orlando FL 32826-0544 

mpetty@ist.ucf.edu cslepow@ist.ucf.edu 

Paul D. West 
Unites States Military Academy 

West Point, NY 10996 
fp8049@trotter.usma.edu 

1. Abstract 

Plowshares is a military sponsored project to apply 
military constructive simulation technology to 
training and analysis for emergency management. In 
the first phase of the Plowshares project, the U. S. 
Army's Janus simulation model is being modified and 
extended to support certain types of emergency 
management scenarios (hurricanes and chemical 
spills. In order to be useful, emergency management 
simulation will require CGF capabilities. The 
capabilities will be similar, but not identical, to the 
CGF capabilities already developed for battlefield 
simulation. 

2. Plowshares 

2.1 Project Overview 

The Plowshares project is a military sponsored effort 
to apply military constructive simulation technology 
to training and analysis for emergency management. 

In the first phase of the project the project team 
members are collaborating on an effort which will 
culminate in a "Proof of Principle Demonstration" 
scheduled for August 1995. For that demonstration, 
the project team will be modifying and enhancing the 
U. S. Army's Janus simulation model (described 
below) to permit it to support two types of 
emergency management scenarios: a hurricane and a 
chemical spill. Both of those scenarios will be 
located in Orange County Florida. 

2.2 Project Organization 

The Plowshares project team is composed of four 
organizations; each has specific project functions to 
perform They are: 

1. U.S.      Army     Simulation,      Training, 
Instrumentation Command (STRICOM) 
Project management 
Janus software modifications 

and 

2. United States Military Academy at West Point 
(USMA) 

• Terrain generation 
• Scenario generation 
• Janus software modifications 

Training      and       Simulation 
Consortium (TSTC) 
Requirements analysis 
Commercialization and marketing 

Technology 

4. Institute for Simulation and Training (1ST) 
• System integration and testing 
• Model survey 
• Documentation 

In addition to the four organizations listed above, 
Orange County Florida is also playing a key role in 
the project. County personnel are providing 
considerable time and information in support of the 
requirements analysis process. Furthermore, it is 
planned that county personnel will operate the 
Plowshares simulation during the Proof of Principle 
demonstration; that topic will be discussed below. 

2.3 Project Goals 

The primary goal of the project is to implement a 
computer simulation that can simulate natural and 
man-made disasters and the actions taken in response 
to them. The simulation is intended to serve the 
purpose of training local authorities. 
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Implicit tasks associated with that goal are to: 

1. Convert a military training simulation to a civil 
emergency management application. 

2. Conduct a Proof of Principle Demonstration of 
that simulation. 

3. Show  reuse  capability to the  sponsor  (U.S. 
Army). 

4. Serve as a technology transfer initiative. 

chemical weapons. Janus uses a digitized terrain 
database format developed by the Defense Mapping 
Agency that can represent contours, roads, rivers, 
vegetation, and urban areas. Terrain affects 
movement and visibility in a realistic manner. Janus 
typically runs on workstations and supports scenarios 
of up to battalion size. 

3. Plowshares Test Demonstration 

2.4 Using the Simulation 

Once delivered, the Plowshares simulation will be 
used to train local authorities at the emergency 
management decision maker level. The simulation 
will be used in a manner known as a "command post 
exercise" in military training practice. While being 
trained, persons in charge of fire and rescue 
departments, police departments, public works 
departments, and so on will receive information, 
make decisions, and give orders in their usual 
manner, operating from their normal emergency 
operations center. However, the source of the 
information they receive will not be an actual 
emergency; rather, it will be the Plowshares 
simulation software running the training scenario. 
Similarly, their orders will not go to actual fire 
fighters, police officers, and medical personnel for 
execution; instead they will be input into the 
simulation, which will determine the results of the 
decisions. The persons actually operating the 
simulation will be emergency management personnel 
who have been trained to use the software so that the 
orders given by the decision makers can be properly 
interpreted by subject matter experts. 

2.5 Introduction to Janus 

Janus is an "interactive, two-sided, closed, stochastic, 
ground combat simulation" (Titan, 1993). It is used 
by military analysts, who control the actions of 
simulated combat entities during execution, for 
analytical purposes including evaluating new 
weapons systems, tactics, and force structures. The 
primary focus of the Janus simulation is on ground 
combat maneuver and artillery units. Janus typically 
simulates individual vehicles and infantrymen, 
tracking their movement across the terrain and 
resolving combat at the level of the individual entity; 
groups of entities can also be represented. Combat, 
such as direct fire, is resolved stochastically. 

Janus models weather and its effects, day and night 
visibility, engineer support, minefields, aircraft, and 

3.1 Test Demonstration Overview 

Prior to the full-scale implementation of Plowshares, 
a preliminary test of the adaptability of the Janus 
simulation to emergency management simulation was 
performed. In this Plowshares test demonstration, 
STRICOM and USMA personnel made a moderate 
set of modifications to the Janus "databases", or 
configuration files, to adapt it to a simple hurricane 
scenario. 

The test demonstration scenario proceeds as follows. 
A hurricane under the control of the simulation 
moves through "Tuskawilla", an actual residential 
subdivision in Seminole County Florida, which was 
recreated in the Janus terrain database format. The 
hurricane has various effects on the area, including 
creating rubble, starting fires, knocking out power 
stations, and triggering a small chemical spill. 

Once the hurricane itself has cleared the simulation 
area, the scenario continues. Citizens flee the 
hurricane under the control of the computer 
simulation software. Police, fire, and public works 
vehicles and personnel respond to the storms effects. 

For the test demonstration, Janus' existing 
capabilities were used as much as possible. Those 
existing capabilities are combat oriented. Therefore 
the hurricane was modeled as a formation of slow 
moving helicopters and its effects on the buildings 
were modeled as weapons firing. Similarly, the fire 
trucks move as if they were military vehicles and put 
out fires with a different form of weapons firing. 

3.2 Terrain and Systems Modeling 

In Janus, the term "system" refers to a single 
simulated entity, such as a vehicle or person. This 
section and the following one will adhere to that 
usage. 
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Modeled Emergency 
Management System 

Original Janus 
Military System 

Comments 

Hurricane* Mi-24 Hind helicopter 8 Hinds in fixed formation 
Police car High-Moblity Multipurpose 

Wheeled Vehicle (HMMWV) 
Higher maximum road speed 

Police officer Infantryman 
Bulldozer* D-7 military bulldozer Equipped with M-16, used to 

clear rubble 
Dump truck 2 1/2 ton truck 
Fire truck M-106 self-propelled mortar 

carrier 
Medical evacuation helicopter UH-60 Blackhawk helicopter 
Ambulance HMMWV ambulance 

Table I. System mappings in the Plowshares test demonstration 

The basic Janus terrain database was overlaid with 
three terrain zoning categories. Their characteristics 
affected movement and lines of sight. These 
categories were: 
1. Single-story basic residential 
2. Two-story commercial. 
3. Open areas (e.g. parks and clear spaces); these 

were used as areas in which to locate schools, 
etc. 

Significant individual buildings and building types 
were modeled as Janus systems using existing 
characteristics from the Janus database. Systems (i.e. 
vehicles) were used because Janus does not represent 
individual buildings. This was done by finding the 
best match between an existing Janus system and the 
desired building type. The Janus database entries 
then were modified to represent the building type as 
well as possible. The result of this process was that 
various armored vehicles were transformed into 
buildings. This required deleting their weapons and 
ability to move and increasing their size and 
personnel-carrying capacity. 

In Janus, "enemy" systems only appear on "friendly" 
screens when there is a direct line of sight with a 
friendly system. In the Tuskawilla hurricane 
scenario, this means that for the hurricane, fires, 
smoke, and so on (enemy systems) to be visible on 
the screen, one of the police cars, fire trucks, and so 
on (friendly systems) had to have a line of sight to 
them. Because we wanted the hurricane and its 
effects to be continuously visible for the 
demonstration, the buildings were given the ability to 
"see" for short distances. Additionally, invisible 
systems with no screen display icon were positioned 
to ensure that the storm and its effects would be seen. 

Representing emergency management vehicles and 
personnel (the friendly systems) was easier; existing 
Janus systems were modified (in the database) to 
match their characteristics. Table 1 summarizes 
those changes. In all these cases, new screen display 
icons were drawn to represent the demilitarized 
system. 

3.3 Events Modeling 

The hurricane's movement was scripted so that 
representative effects would occur time synchronized 
with its passage. These effects took five forms: 

1. Off-screen artillery fired smoke rounds onto 
burning buildings to provide signatures. 

2. Off-screen artillery fired high explosive rounds 
to indicate rubbling. 

3. Hidden fire icons moved onto burning buildings 
to enhance visual representation. These appeared 
on-screen when they were "seen" by the 
buildings. 

4. Hidden rubble icons moved into scripted 
positions and appeared when seen. 

5. A hidden spill icon began moving toward the 
river. Its speed was set so that a prompt response 
would stop it before it reached the river. It if 
reached the river the spill would spread 
downstream. 

There were two interactions between emergency 
crews and storm effects: 

1. The bulldozer cleared the rubble blocking a road 
by killing it with its M-16. This was the only 
direct fire event. 
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Event How modeled Comments 
Storm moves through* Grouped helicopters fly preplanned 

route 
8 Hinds in fixed 
formation 

Storm is continually 
observed* 

Invisible spotters watch storm path 

Rubbling appears* (1) Indirect fire (HE) from off-screen 
artillery 
(2) Hidden rubble icons move into 
position and are seen 

Fires appear at multiple sites* Hidden fire icons move into position 
and are seen 

Smoke appears from fires Indirect fire (smoke) from off-screen 
artillery 

Emergency crews respond Preplanned routes for modified 
military vehicles 

Crews wait for rubble to 
clear* 

Timed stop nodes on preplanned 
routes 

Dozer clears rubble blocking 
road 

Rubble killed by direct fire, 
disappears from screen 

Failure to clear possible 
(hit probability) 

Spill approaches waterway Timed, preplanned route for vehicle 
simulating spill 

Police cars dismount officers Infantrymen dismount from vehicle 
Fire trucks put out fires Indirect fire weapons kill fire Fire truck and fire are 

both Janus systems 

Table 2. Events in the Plowshares test demonstration 

2. Fire trucks fired a combination of smoke and 
high explosive rounds (indirect fire) onto the 
burning buildings. This accomplished two 
things: the smoke continued to give the fire 
signature, and the high explosive rounds with a 
modified (low) probability of kill enabled the 
fire trucks to eventually kill the fire. 

The events of the test demonstration scenario and 
how they were modeled are summarized in Table 2. 

3.4 Comments 

The implementation of the test demonstration has 
proven to be a valuable exercise. It served to reveal 
in Janus both its flexibility and its limitations when 
applied without code modification to emergency 
management simulation. The system and event 
mappings shown in the tables that seem most forced, 
as indicated by an asterisk (*), suggest areas where 
special attention is needed. 

For the test demonstration, emergency crew reactions 
(i.e. movement paths, destinations, and actions) were 
also scripted. They were scripted for the test 
demonstration only so that the demonstration could 
run without intervention. Normally, the emergency 
crew reactions would be under the control (direct or 
indirect) of the simulation user or trainee, who would 
be learning how best to react, in terms of resource 
allocation and response timing, to an emergency and 
its immediate aftereffects. 

4. Future Project Plans 

4.1 Proof of Principle Demonstration 

Janus was used essentially unchanged for the test 
demonstration; the scenario was implemented 
entirely within the Janus databases. The scenario 
scope and realism goals for the Proof of Principle 
Demonstration will require that much more 
significant changes be made to Janus. That work will 
be a major focus of the project team's efforts over the 
next eight months. Janus developers at USMA will 
be working to modify Janus with new capabilities 
needed for emergency management.   These include 
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more realistic hurricane models and damage 
assessment procedures. 

In August 1995 a Proof of Principle Demonstration 
of the enhanced Janus simulation (i.e. the Plowshares 
simulation) will be conducted at the Orange County 
Florida Emergency Operations Center. Two 
scenarios, a hurricane and a chemical spill, will be 
run on the Plowshares simulation. Orange County 
personnel will interact with the simulation and report 
the status of the emergency to high-level emergency 
response managers. Those managers will make 
decisions and give orders intended to save lives and 
property. Those orders will be interpreted and input 
into the simulation by their subordinates, where their 
effects will be determined by the simulation. Both 
exercises will be recorded and evaluated to determine 
the success of the development effort. 

4.2 Model Survey 

Janus was chosen as the base software for the Proof 
of Principle Demonstration because of its availability 
and seeming applicability. However, no final 
decision has been made that Janus is the best choice 
for long-term development of emergency 
management simulation. While Janus is being 
enhanced for the Proof of Principle Demonstration, a 
parallel task will be conducted by 1ST to survey the 
available set of military simulation models. Janus 
and a number of other models will be examined 
carefully and one selected for further development. 
Even if the initial selection of Janus proves to be the 
correct choice, surveying the other models will 
doubtlessly supply a wealth of ideas for 
enhancements and functionality for future emergency 
management simulation. 

4.3 DIS Compatibility 

In the first phase, Plowshares will run as a stand- 
alone constructive model. As might be expected 
given the project's military sponsorship, we will be 
examining the possibility of interconnecting 
Plowshares with virtual simulation, i.e. Distributed 
Interactive Simulation (DIS). Such a connection 
would allow low-level participation by trainees in 
virtual simulators (e.g. medical evacuation 
helicopters) in the same emergency response action 
that is being overseen by high-level response 
managers. The applicability of DIS, in both its 
current and future versions, to emergency 
management simulation in general is discussed in a 
companion paper (Loper,1995).   Janus has already 

been linked experimentally to DIS (Pratt, 1994), and 
some of that technology will be useful to bringing 
Plowshares into DIS. 

S. Computer Generated Forces 

5.1 Overview 

The goal of the first phase of the Plowshares project 
is to show that Emergency Management is a valid 
application of constructive (and later, virtual) 
simulation technology. Emergency Management 
(EM) simulation will need computer controlled 
autonomous entities, i.e. Computer Generated Forces 
(CGF), for reasons and in roles analogous to those of 
CGF in battlefield simulation. This section will list 
some of those reasons and roles, identify some 
specific CGF-type capabilities needed in EM 
simulation, and compare and contrast those EM CGF 
requirements with what has been developed for 
battlefield simulation. We will move freely between 
CGF capabilities that relate to EM simulation in 
general and those that relate to Plowshares in 
particular. 

5.2 CGF roles in EM simulation 

There are two roles for CGF entities in EM 
simulation: low-level entity control and high-level 
replacement players. Each will be discussed in turn. 

5.2.1 Low-level entity control 

As described previously, the goal of the Plowshares 
simulation is to train EM managers. Those 
individuals typically make resource allocation 
decisions at a high-level and rarely exercise control 
over the emergency response units at a detail level 
(such as planning a route for a fire truck). However, 
in the current Plowshares simulation many of the 
low-level behaviors must be controlled by a human 
operator; for example, detailed routes must be 
planned by the operator for vehicles. Many other 
low-level behaviors are also under operator control. 
This characteristic is inherited from the Janus 
software base. 

The result is that human operators, who are part of 
the simulation rather than trainees, are required to use 
the Plowshares software in a training exercise. These 
operators must interpret the command decisions of 
the trainees and give detailed low-level behavioral 
commands to the simulation entities. Obviously, this 
raises the expense of an exercise and reduces the 
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flexibility of the software. CGF capabilities are 
needed to provide low-level EM behavior control for 
the entities. The degree to which low-level EM 
behaviors resemble battlefield behaviors varies by 
behavior. 

5.2.2 High-level replacement players 

EM simulation will also need CGF replacement 
players for high-level decision makers. In the 
context of a Plowshares-style county-wide scenario, 
such decision makers might be the chiefs of the 
typical EM response departments: 
1. Fire and Rescue 
2. Public Utilities 
3. Public Works 
4. Health Services 

In a battlefield simulation, these decision makers 
might be analogous to battalion or brigade 
commanders. For the most part, CGF systems for 
battlefield simulation have to date not provided 
decision makers at that level (although the ongoing 
ARPA Command Forces project is intending to do 
so). Their omission has not been a severe limitation 
for two reasons. First, useful training can be 
conducted with lower-level scenarios, such as 
company-sized actions. Second, human controllers 
have been available to provide higher-level decision 
making where needed. 

Unfortunately, these two reasons are less applicable 
to EM simulation. First, virtually all interesting EM 
training will require more than one of the response 
departments. For example, there are not many 
"police only" emergencies; even something like a riot 
will involve medical services to evacuate and treat 
casualties and fire and rescue services to fight fires 
that may start. The same comment applies to the 
other branches. Second, it will be more difficult to 
provide human operators to fill in for decision 
makers not available for the exercise because of the 
wide differences in required expertise and inter- 
departmental separation. Consequently, EM 
simulation will need CGF replacements for these 
decision makers early in its development to provide 
training flexibility, e.g. so that the Police department 
can have a meaningful exercise even if the Fire 
department is not available to participate. 

5.3 CGF capabilities in EM simulation 

How applicable are CGF capabilities already 
developed    for    battlefield    simulation    to    EM 

simulation? This section will examine a few 
common CGF functions and compare and contrast 
them in the CGF and EM contexts. 

5.3.1 Route planning 

The basic CGF capability is route planning. In its 
simplest form, a CGF entity is able to move from its 
current location to an assigned destination after 
autonomously planning a route between the two 
points. In battlefield CGF systems, the CGF system's 
route planner might consider factors such as distance, 
terrain trafficability, unit boundaries, and cover and 
concealment from enemy fire. In EM simulation, 
there are three interesting aspects of route planning. 

First, the terrain, and thus the terrain database (TDB), 
is likely to be very different in "feel" from a typical 
battlefield TDB. In particular, EM TDBs will often 
be primarily or entirely urban. That means that they 
will be dense with features, such as buildings, walls, 
bridges, and roads of significantly different types. 
There will also likely be "zones", or regions of the 
TDB defined to have specific characteristics (e.g. 
residential or light industrial) that will also influence 
route planning. 

Second, factors other than the TDB itself will affect 
EM route planning to a degree greater than battlefield 
route planing. One such factor is road blockage. 
Often the emergency itself (hurricane, earthquake, or 
flood) will block roads or other movement corridors; 
this might be a form of dynamic terrain. A route 
planning algorithm should consider blockages only if 
the fact of the blockage would be known to the entity 
for which a route is being planned. A fire truck that 
could not be aware that a building has collapsed onto 
an important access road should not route around that 
point; instead, it should plan a route through that 
point, and when the blockage is encountered, the 
route should be replanned (and the blockage 
reported). Roads may also be blocked by masses of 
citizens fleeing a disaster; however it may be valid to 
allow for that type of blockage prior to discovery 
under the assumption that the EM entities would 
expect it. 

Finally, there is to some degree an assumption of 
optimality implicit in route planning by EM entities. 
The reason for this is that, unlike combat entities, EM 
entities are crewed by personnel who are typically 
very familiar with the terrain in which they are 
operating; the driver of a police vehicle normally 
knows his or her precinct very well.    Therefore, 
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within the limits of available information, an EM 
route planning algorithm should normally find 
minimum time routes. That level of performance 
may not be demanded from battlefield CGF systems. 

5.3.2 Cooperative behaviors 

The repertoire of behaviors expected from EM 
entities include many that are cooperative at a low- 
level, possible more than in battlefield simulation. A 
few examples should suggest the set: 
1. A bulldozer and a dump truck cooperate to clear 
rubble 
2. Multiple police officers dismount from a vehicle 
and disperse to separate intersections to direct traffic 
3. A fire truck waits for a bulldozer to clear rubble, 
rather than rerouting around it, based on travel time 
estimates 

To be useful, emergency management simulation will 
require CGF capabilities that are similar but not 
identical to those developed for battlefield 
simulation. The extent to which battlefield CGF 
software and algorithms can be transferred to the EM 
domain remains to be determined. 
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1     Abstract 

We describe the ZAROFF system, a plan-based 
controller for the players in a game of hide and 
seek. The system features visually realistic hu- 
man figure animation including realistic human 
locomotion. We discuss the planner's interaction 
with a changing environment to which it has only 
limited perceptual access. A hierarchical planner 
translates the game's goals of finding hiding play- 
ers into locomotion goals, assisted by a special- 
purpose search planner. We describe a system of 
parallel finite state machines for controlling the 
player's locomotion. Neither path-planning nor 
explicit instructions are used to drive locomotion; 
agent control and apparent complexity are the re- 
sult of the interaction of a few relatively simple 
behaviors with a complex (and changing) environ- 
ment. 

2    Introduction 

The game of hide and seek challenges the ability 
of players to plan for acquiring information and to 
react quickly to what they see. The player who 
is "it" (the seeker) must explore his environment 
attempting to locate other players (hiders). Those 
players must select hiding places which are difficult 
to discover while providing access for them to run 
safely to home base when the way is clear. The 
goal of this work is to develop simulated agents 
that can play hide and seek (or more dangerous 

*This research is partially supported by ARO DAAL03- 
89-C-0031 including U.S. Army Research Laboratory; 
ARPA AASERT DAAH04-94-G-0362; DMSO DAAH04- 
94-G-0402; ARPA DAMD17-94-J-4486; U.S. Air Force 
DEPTH through Hughes Missile Systems F33615-91-C- 
0001; DMSO through the University of Iowa; and NSF 
CISE CDA88-22719. 

games) (Moore, Geib, & Reich 1995). 

We describe a planning system for a player (which 
can change roles between hider and seeker during 
the game) and its vertical integration into a system 
called ZAROFF that selects reactive behaviors to 
execute in an animated simulation. Operation of 
the planner is interleaved with execution of the 
reactive behaviors so that the agent may adapt to 
a dynamic environment. 

The software chosen for this work is 
Jack® (Badler, Phillips, k Webber 1993) running 
on Silicon Graphics workstations. Jack is a hu- 
man modeling and simulation program developed 
at the Center for Human Modeling and Simula- 
tion at the University of Pennsylvania, that fea- 
tures visually realistic human locomotion based on 
both kinematic and dynamic techniques (Ko 1994; 
Ko et al. 1994). Jack's LISP application pro- 
gramming interface (Becket 1994) was used to im- 
plement ZAROFF. This interface supports access 
to the environment (a database) and its behavioral 
simulation system. 

3    Generating Behaviors 

Human locomotion is performed by the Behav- 
ioral Simulation System (BSS) (Badler, Phillips, 
& Webber 1993; Becket & Badler 1993). ZAROFF 
controls this locomotion indirectly by binding 
behaviors to human figures in the environment 
database. BSS, which constantly monitors the 
environment, immediately initiates locomotion 
based on the agent's bound behaviors. 

A player utilizes a set of behaviors in interacting 
with its environment. ZAROFF includes the follow- 
ing behaviors: attraction, avoidance, field-of-view 
(to avoid areas visible to the seeker), path follow- 
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ing (to draw an agent to a path) and chasing. 

4    Action Execution 

The Action Execution module is responsible for 
the control of all actions occurring in ZAROFF. 

Most actions such as opening and closing doors are 
performed directly by this module. (As noted ear- 
lier, human locomotion is performed by the Behav- 
ioral Simulation System (BSS) (Badler, Phillips, 
& Webber 1993; Becket & Badler 1993), so is con- 
trolled only indirectly by Action Execution.) 

Non-locomotion actions are performed directly by 
Action Execution manipulating the environment. 
For example, a door is opened by rotating it about 
its hinges. This rotation is done incrementally, a 
small amount each frame of animation. 

Locomotion is performed indirectly by Action Ex- 
ecution binding behaviors to human figures in the 
environment database, which means neither path- 
planning nor explicit instructions are used to drive 
locomotion: rather, agent control and apparent 
complexity are the result of the interaction of a few 
relatively simple behaviors with a complex (and 
changing) environment. An agent is made aware 
of its environment through the use of a network 
of sensors. Based on the information gathered by 
these sensors the path through the terrain is in- 
crementally computed. This allows the agent to 
react to unexpected events such as moving obsta- 
cles, changing terrain, or a moving goal (Reich et 
al. 1994). 

of attraction moves appropriately. The out- 
put (stress value) of an attraction behavior is 
high when the agent is far from the goal and 
decreases as the agent nears the goal. 

Avoidance: An avoidance behavior is used to 
avoid collisions between the agent and objects 
or other agents. The sensor component of an 
avoidance behavior has a sector-shaped region 
of sensitivity. If there are no objects in this 
region, the output of the avoidance behavior 
is zero. Otherwise the output is proportional 
to the distance and size of the detected ob- 
jects. 

Field-of-View: A field-of-view behavior uses a 
sensor to determine whether or not the agent 
is visible to any other agents. The output is 
proportional to the number of agents' fields- 
of-view it is in and inversely proportional to 
the distances to these agents. This behavior is 
primarily used to support hiders in ZAROFF. 

4.2    The Behavioral Simulation System 

BSS provides general locomotion of objects in Jack 
(Becket k Badler 1993), and is used in ZAROFF 

to generate human locomotion. The central con- 
trol mechanism of BSS is a perception control, and 
action loop. During the perception phase the be- 
havior outputs are determined, during the control 
phase the next foot position is selected, and during 
the action phase the step is taken. 

4.1     Sensors and Behaviors 4.3    Behavior Scheduling 

A sensor senses an object or location in the envi- 
ronment. It is a function which returns the dis- 
tance and angle to that object or location relative 
to the agent's position and orientation (his state). 
A control behavior, such as attract or avoid, is a 
function that maps distance and angle to a stress 
value, where lower values represent more desirable 
states. The combination of a sensor and a control 
behavior results is referred to as a behavior. The 
agent utilizes a set of behaviors in interacting with 
its environment. The following three classes of be- 
haviors are currently in use. 

Attraction: An attraction behavior draws an 
agent toward a goal - either an object or a 
location.   If a goal object moves, the point 

For control of the agents' behaviors we use a set of 
finite state machines which run in parallel with 
the simulation. These machines are responsible 
for behavior scheduling and act as a high level 
interface to the behaviors. They may instanti- 
ate other machines and either run in parallel with 
them or wait for them to exit. Communication 
among state machines is also possible. We make 
use of this communication among machines to im- 
plement interaction between players (Section 5). 

When the planner commits to an action it invokes 
the Action Execution module. The Action Exe- 
cution module instantiates and runs the machines 
necessary to carry out that action. Each machine 
is responsible for the scheduling and control of the 
appropriate behaviors. 
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4.3.1    Attraction 

An attract machine consists of two states (Fig- 
ure 1). In state 1 the agent turns to face the 
object or point of attraction. In state 2 an attrac- 
tion behavior is bound to the agent. The agent 
walks to the goal object or location. When the 
agent arrives, this behavior is unbound and the 
machine exits. 

An attract machine optionally includes a moni- 
toring process which checks, in parallel, for an ar- 
bitrary condition (a LISP expression passed as an 
argument when the machine is created) to be true. 
If this condition evaluates to true at any time, the 
attraction behavior is unbound and the machine 
exits. The value returned by the machine when it 
exits indicates the cause of the exit. 

We use the monitoring process primarily to con- 
trol the behavior of the seeker. As the seeker ex- 
plores the environment, moving from one location 
to another through the binding and unbinding of 
attraction behaviors, its progress is interrupted if 
at any time a hider becomes visible. This allows 
the seeker to stop and formulate a new plan, tak- 
ing advantage of the opportunity. 

4.3.2    Avoidance 

An avoid machine consists of only one state (Fig- 
ure 2). It binds an avoidance behavior to the 
agent for each avoidable object in the environ- 
ment, and then exits. Unlike attraction, avoid- 
ance is maintained throughout the entire simula- 
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Figure 3: The Chase Machine 

tion. In ZAROFF the objects to avoid are doors, 
walls, and other agents. An avoid machine is used 
during the initialization of the simulation, once 
for each agent. This prevents the agents from col- 
liding with each other, walls, and doors, and can 
easily be extended to any other objects that might 
be added to the system. 

4.3.3    Chasing 

The internal structure of a chase machine is a loop 
consisting of three states (Figure 3). If the target, 
the agent being chased, is not immediately visi- 
ble, the machine exits unsuccessfully. Success is 
indicated by the exit value. 

When the target is visible to the agent, the ma- 
chine starts in state 1. The agent turns to face 
the target and the transition to state 2 is made. 
An attraction to the target is bound. The agent 
walks toward the target until one of two things 
happen. Either the agent arrives at the target in 
which case the machine exits successfully, or the 
target ceases to be visible to the agent. The target 
may have walked around a corner. In the latter 
case the transition to state 3 is made. An at- 
traction to the last known location of the target 
is bound to the agent. The agent walks toward 
this location until it arrives or the target becomes 
visible again. In the former case the machine exits 
unsuccessfully. In the latter case the transition to 
state 1 is made. 

A potential improvement to this machine would 
be to add an Extrapolation State. If the machine 
is in state 3 and the agent arrives at the last 
known location of the target without seeing the 
target, instead of exiting unsuccessfully the agent 
would walk in the direction the target was walking 
before disappearing. This would require maintain- 
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ing two pieces of information about the target: its 
last known location and its vector velocity. 

4.3.4    Turning 

A turn machine is used to rotate an object or 
human to face an object or location. The ro- 
tation may be either clockwise or counterclock- 
wise, whichever is smaller, or may be specified. 
A turn machine consists of four states (Figure 4). 
In state 1 the angle and direction of rotation are 
calculated. If the object is not a human, it is spun 
about its center of mass and the turn machine ex- 
its. 

Humans are a special case. The human agent ro- 
tates the first foot to the right for clockwise, or to 
the left for counterclockwise. The leg and body 
follow, maintaining the agent's balance. The ro- 
tation angle for the first foot is the minimum of 
the goal angle and ninety degrees. The agent then 
follows the first foot with its other foot. If the 
goal angle is greater than ninety degrees, this cy- 
cle repeats until the goal has been reached. An 
optional argument can specify that the agent not 
follow with the other foot in the final cycle. When 
locomotion is to follow turning, it looks more nat- 
ural when the final cycle is not completed. 

4.3.5    Path Following 

The idea behind a path following machine is to 
generate a path from the agent's current location 
to a goal location somewhere in the world and have 
the agent follow the path to the goal. A path fol- 
lowing machine consists of two states (Figure 5). 
In state 1 the path is calculated as a series of 
connected segments. The path has three impor- 
tant properties: it connects the agent to the goal, 
it avoids obstacles by a clearance specified by the 
user, and it is a path of minimal length given the 
first two constraints. In state 2 the agent is at- 
tracted to successive vertices along the path. As 
the agent approaches a vertex, the attraction to 
that vertex is unbound and a new attraction to 
the next vertex along the path is bound. When 
the agent arrives at the goal, the path following 
machine exits. 

Our path following differs from path planning be- 
cause the agent is not constrained to the path. 
Instead, an attraction to the path is bound to 
the agent. This behavior competes with any other 
bound behavior for control of the agent. If a mov- 
ing object crossed the path, the path-following 
agent would avoid it, and if a hider came into view 
the seeker would pursue it. 

5    Planning 

A player's goals change during the course of a 
game of hide and seek. The seeker must first lo- 
cate a hider and then tag it before it reaches home 
base. Hiders first attempt to locate a hiding place. 
When one have successfully hidden, it stays there 
until it is necessary to move. When flushed from 
their hiding place by the seeker, they attempt to 
move back to home base. If they successfully ar- 
rive home, they wait until the start of the next 
game when their behavior resets. If one is caught, 
the first one caught adopts the behavior of the 
seeker. 

These high-level goals are quickly translated into 
situationally appropriate reactive behaviors by IT- 

PLANS (Geib 1992), a hierarchical planner. IT- 

PLANS interleaves hierarchical expansion with ac- 
tion execution. It does this by using an incremen- 
tal left to right expansion of the frontier of the 
plan structure to successively lower levels of ab- 
straction. Thus planning only takes place to the 
degree necessary to determine the next action to 
be carried out. This is important for this domain 
since the seeker does not have complete knowl- 
edge of the domain and its knowledge is constantly 
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changing. 

A finite state machine is used to change a player's 
goals over the course of the game (Figure 6) and 
thus indirectly, what actions the player takes at 
different times during the game to achieve its 
goals. 

The left side of Figure 6 corresponds to the hider 
role and the right side corresponds to the seeker 
role. There are two entry points to this network 
depending on which role the player will take ini- 
tially; hiders start in state 1 and seekers start in 
state 4. The hider starts hiding when the seeker 
begins to count. This is represented in the di- 
agram by the dashed line. The transition in to 
state 2 is in response to communication trans- 
mitted by the seeker's goal machine. Similarly, 
the transition from hider role to seeker role is in 
response to an external signal from the seeker's 
machine, being tagged. 

When a player locates a hiding place (state 2), it 
remains there until seen by the seeker. Once dis- 
covered, the player attempts to evade the seeker 
and return safely to home base. Evading (state 3) 
is accomplished by combining avoidance of the 
seeker and attraction to base. 

The seeker begins by going to home base (state 4) 
and synchronizing the start of the game by forc- 
ing the other players to transition from state 1 
to state 2. The seeker delays the start of its 
search by counting state 5 to permit the hiders 
time to reach their hiding places. Then the seeker 

hider 

/N: doorO 

seeker 

Figure 8: Plan view of example environment 

begins to explore the environment to find a hider 
(state 6). When a hider is discovered, it becomes 
the target for a chase (state 7). The outcome 
of the chase determines whether the player will 
be a hider next game (when a hider is tagged be- 
fore reaching base) or a seeker again (when all the 
hiders safely evade the seeker). If a single hider 
successfully evades the seeker, the seeker continues 
to search for other hiders until they are all safe. 
This may result in different hiders being chased at 
different times. 

A consequence of limited perception is the occa- 
sional need to find objects. Our approach is to 
isolate this reasoning in a specialized module, a 
search planner that translates information acqui- 
sition goals to high-level physical goals to explore 
parts of the environment. Our approach to search 
planning requires that each player maintain infor- 
mation about the state of a heuristic search on an 
internal map. The heuristic search has finding a 
desired object as its goal. 

6    Example 

Having given an overview of the system's compo- 
nents, we now illustrate ZAROFF with an example 
drawn from a two-player game of hide and seek. 
To illustrate the conduct of a search, we will use 
an example environment with two buildings, one of 
which has two internal rooms separated by a door 
(Figure 8). Our example begins in the middle of 
a game, after the hider has hidden and the seeker 
has finished counting. The hider is in state 2, 
waiting to be seen. The seeker changes to state 
6 of its goal machine and begins to seek. The 
goal machine state specifies a "seek" goal to the 
planner as goto(X) with the added constraint that 
type(X)  = HUMAN. 

The ITPLANS planner considers the action 
goto(X) to be primitive but underspecified since 
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Figure 7: Evolution of the plan graph 

Figure 9: Initial map Figure 10: Final map 

the variable X is not bound to a particular object 
of type HUMAN. In order to bind the variable, the 
search planner must be called to generate a plan 
for locating a HUMAN. To this end, ITPLANS adds 
to the plan afind node and calls the search planner 
to instantiate a search plan (Figure 7a). 

The search planner reasons from this knowledge 
acquisition goal of locating a HUMAN, to the goal of 
exploring regions where a HUMAN might be. Satisfy- 
ing this goal requires physically searching through 
possible regions. 

IT PLAN S asks the search planner to expand the 
find node. Each time a find node is expanded, 
the search planner first examines the Jack environ- 
ment to determine if an object of the specified type 
is visible to the agent. If not, the search planner 
selects a region to explore next, generates a goal to 
explore that region, and adds it to the plan (Fig- 
ure 7b). The initial map (Figure 9) of regions con- 
tains all the regions in the environment except the 
interior room of the building on the right. Regions 
that are completely visible are marked as having 

been explored; partially visible regions are marked 
for future exploration. The closest available unex- 
plored region is the first room in the building on 
the right; it is recommended for exploration. This 
goal is then further expanded by ITPLANS to go 
to doorl and open it (Figure 7c). Since all of the 
arguments in the first action are bound to specific 
objects, it can be carried out. Action Execution 
performs this action indirectly by binding an at- 
traction sensor to the seeker. When the seeker 
arrives, doorl is opened directly by Action Exe- 
cution. 

After doorl is opened, ITPLANS uses the search 
planner to evaluate the progress of the search by 
examining the world for objects having the prop- 
erty HUMAN. If one is located, the search is consid- 
ered successful. If not, the search planner selects a 
new region for exploration and the searching pro- 
cess repeats until there are no more regions to ex- 
plore. 

In this case, opening doorl does not reveal a 
HUMAN, but does permit the agent to see another 
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region that is automatically added to the search 
planner's internal map. As this new region is the 
closest unexplored space, on the next iteration the 
planner will plan to explore it. Opening door2 
does not reveal the HUMAN, so the search proceeds 
to the next closest unexplored region, the right 
side of this building. 

Here we see the advantage of maintaining a map. 
Immediately after opening door2, the agent is in- 
side one building and decides to go to a non- 
neighboring region. Since this destination region 
is known (from having seen it previously), we 
could simply go there. This would result in the 
agent walking directly toward the destination un- 
til stopped by the wall. To avoid getting caught in 
this local minimum, the search planner uses its in- 
ternal map (Figure 10) to plan a path to the next 
region. 

The only known path there is to exit the cur- 
rent building through doori. The search planner 
returns this sequence of intentions to ITPLANS, 

which then invokes Action Execution to gener- 
ate locomotion along this path. Eventually, after 
opening doorO, the seeker finally sees a HUMAN and 
can go to it. 

7     Conclusion 

We have implemented a plan-based controller for a 
player in the game of hide and seek. The complete 
seeker is implemented, we are extending our archi- 
tecture to implement the hider. Our agent dynam- 
ically reacts to changes in the environment, from 
avoiding collisions with obstacles and other players 
to exploiting changes in information about where 
the other players may be hiding. The implemen- 
tation combines general purpose planning, special 
purpose reasoning about conducting a search, and 
reactive control of human behaviors. 

ZAROFF is an effective system for animating hu- 
mans carrying out tasks that require locomotion. 
Limiting the human agent's awareness of its en- 
vironment by simulated perception increases the 
realism of the behavior generated. 

8    Acknowledgements 

We wish to thank our advisors Norm Badler and 
Bonnie Webber for their support of this work. 
Thanks also to them, Welton Becket.  Jonathan 

Crabtree, Brett Douville, and Jeff Nimeroff for 
commenting on drafts of this paper. 

9    References 

Badler, Phillips, & Webber 1993 Badler, N.; 
Phillips, C; and Webber, B. 1993. Simulat- 
ing Humans: Computer Graphics, Animation 
and Control. Oxford University Press. 

Becket & Badler 1993 Becket, 
W., and Badler, N. I. 1993. Integrated be- 
havioral agent architecture. In Proceedings of 
the Third Conference on Computer Generated 
Forces and Behavior Representation, 57-68. 

Becket 1994 Becket, W. M. 1994. The Jack 
LISP API. Technical Report MS-CIS-94-01, 
University of Pennsylvania, Philadelphia, PA. 

Geib 1992 Geib, C. 1992. Intentions in means- 
end planning. Technical Report MS-CIS-92- 
73, Department of Computer and Information 
Science, University of Pennsylvania. 

Ko et al. 1994 Ko, H.; Reich, B. D.; Becket, W.; 
and Badler, N. I. 1994. Terrain navigation 
skills and reasoning. In Proceedings of the 
Fourth Conference on Computer Generated 
Forces and Behavioral Representations. 

Ko 1994 Ko, H. 1994. Kinematic and Dynamic 
Techniques for Analyzing, Predicting, and 
Animating Human Locomotion. Ph.D. Dis- 
sertation, University of Pennsylvania. 

Moore, Geib, & Reich 1995 Moore, M. B.; 
Geib, C; and Reich, B. D. 1995. Planning 
and terrain reasoning. In AAAI Spring Sym- 
posium on Integrated Planning Applications. 
(also University of Pennsylvania CIS depart- 
ment Technical Report MS-CIS-94-63/LINC 
LAB 280). 

Reich et al. 1994 Reich, B. D.; Ko, H.; Becket, 
W.; and Badler, N. I. 1994. Terrain reason- 
ing for human locomotion. In Proceedings of 
Computer Animation '94, 996-1005. Geneva, 
Switzerland: IEEE Computer Society Press. 

10     Biographies 

Michael B. Moore is a Ph.D. candidate in Com- 
puter and Information Science at the University of 

351 



Pennsylvania. His current research in Artificial In- 
telligence is planning for information acquisition. 
He received his A.B. degree in Philosophy in 1986 
from the University of Maryland and his M.S.E. 
degree in Computer and Information Science in 
1990 from the University of Pennsylvania. 

Christopher Geib is a post-doctoral research fel- 
low at the University of British Columbia. His cur- 
rent research in Artificial Intelligence is planning. 
He received his Ph.D. degree in Computer and In- 
formation Science from the University of Pennsyl- 
vania in 1995. 

Barry D. Reich is a Ph.D. candidate in Com- 
puter and Information Science at the University of 
Pennsylvania. His current research includes pro- 
viding high-level behavioral control over the an- 
imation of human locomotion. He received his 
B.S. degree in Mathematics and Computer Sci- 
ence in 1989 from the University of Maryland and 
his M.S.E. degree in Computer and Information 
Science in 1991 from the University of Pennsylva- 
nia. 

352 



Session 7b: Terrain Modeling I 

Hille, ANSER 
Schaper, East Tennessee State University 

Smith, Loral ADS 





Abstracting Terrain Data Through Semantic Terrain Transformations 

David Hille 
ANSER 

1215 Jefferson Davis Hwy 
Arlington, VA   22202 

hilled@anser.org 

Michael R. Hieb     Gheorghe Tecuci      J. Mark Pullen 
Department of Computer Science 

George Mason University, 
Fairfax, VA  22030 

hieb@cs.gmu.edu     tecuci@cs.gmu.edu   mpullen@cs.gmu.edu 

1. Abstract 

Human commanders transform terrain from a map or 
from their personal observation into an abstract 
model used for reasoning. Automated commanders of 
CGF need to do a similar kind of transformation, 
since the data in a terrain database is too detailed. 
This paper describes Semantic Terrain 
Transformations developed during our work on the 
Captain project to transform data from a terrain 
database into concepts relevant to the mission given 
to the automated commander. Captain is an 
automated knowledge acquisition system that allows 
a subject matter expert to easily teach a command 
agent required behavior. Semantic Terrain 
Transformations first transform the digital data from 
the terrain database into an abstract geometric model 
(at the appropriate level of detail for the commander) 
and then translate the geometric model into symbolic 
concepts appropriate for reasoning. The concepts 
created are then used by an automated agent in 
performing its mission. We illustrate the 
methodology with detailed examples at both the 
battalion and company level. Captain has successfully 
learned rules for automated company commanders 
based on concepts generated by applying this 
methodology. 

2. Introduction 

We are currently developing a methodology and 
implementing a system, called Captain (Hille et al., 
1994; Tecuci et al., 1994; Hieb et al., 1995) to 
construct command agents for Computer Generated 
Forces . This general approach offers advantages over 
the knowledge acquisition methods currently used for 
CGF behavior. Recent experiments with the Captain 
and ModSAF (Ceranowicz, 1994) systems led to the 
development of improved terrain representations 
more appropriate to command CGF than entity CGF. 
In order to derive these concepts from the CGF 
terrain database, we developed a method and set of 
transformations called Semantic Terrain 
Transformations. In this paper, we describe these 
transformations and illustrate them with two 
examples, from two different command levels. 

The terrain database of a Distributed Interactive 
Simulation (Pullen, 1994) is typically in a form 
intended to satisfy several simulation goals. A terrain 
database represents a set of features such as soil, 

trees, roads, rivers, and buildings. It contains the 
elevations and relief of the terrain. The terrain 
database should be compact enough so that it does 
not occupy too much memory, allow for rapid access 
during a simulation, represent those features relevant 
to the real world events, and provide sufficient detail 
so that the world it represents seems realistic. It 
should simultaneously facilitate various processes 
such as observation, fields of fire, cover, 
concealment, and movement. No matter how well a 
terrain database satisfies all these goals, it is difficult 
to represent all the concepts an automated 
commander at any echelon might require in one 
database, without any transformation. 

While general terrain reasoning methods have been 
described (Stanzione, 1993), most of the terrain 
reasoning methods in the literature are concerned 
with near-term movement (Cunningham, 1993, 1994; 
Smith, 1994), route-planning (Van Brackle, 1993) or 
cover and concealment (Longtin, 1994). Because of 
the size of typical CGF terrain databases and the need 
to process the data efficiently, solutions to these 
problems are generally algorithmic and focus on the 
entity level. However, an automated commander 
must be able to perform a wide range of missions 
adequately. This requires both a broad terrain 
reasoning capability and an ability to create more 
general and abstract concepts. Our approach is to 
build upon the work already done (e.g., use the 
techniques that calculate cover or avenues of 
approaches) and create a hierarchy of more abstract 
models that can be used by different echelons of 
command. 

Human commanders must reason about the 
placement and movement of their forces. They 
subconsciously transform terrain they see on a map 
(as in Figure 1) or from their personal observation of 
a battlefield into an abstract model that they then use 
for reasoning as they make tactical decisions. 
Automated commanders need to do a similar kind of 
transformation, since the data in a terrain database 
may be too detailed for them to reason about it 
efficiently, and may not directly represent concepts 
pertinent to their decisions. When an agent (human or 
computer) makes decisions about terrain, the agent 
does not view terrain in terms of just elevations and 
relief. Instead, the agent reasons using abstract 
concepts such as hills (with ridges, forward slopes, 
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Figure 1: Terrain Map of Portion of Fort Knox, Kentucky 

rear slopes, etc.), valleys, draws, wadis, spurs, 
saddles, depressions, cuts, fills, and cliffs. 

In two extended examples, we illustrate our method 
by performing semantic terrain transformations' on a 
terrain database in the context of an automated 
commander given a defensive mission. First, we 
transform detailed geometric data from a terrain 
database of Fort Knox, Kentucky into a geometric 
model at an appropriate level of abstraction, given the 
level of the commander (e.g., company, battalion, 
etc.). In a second step we form relevant concepts 
from the abstract geometric model. The result of our 
semantic terrain transformation process is a semantic 
network containing information an automated agent 
needs for efficient planning and learning. See 
(Tecuci, 1992) for an explanation of semantic 
networks. 

The first example is at the battalion level. Terrain 
concepts are created to enable the automated battalion 
commander to form company sector boundaries in a 
sector defense. The second example uses the 
transformations to support an automated company 
commander as it places the tank and mechanized 
infantry platoons of a U.S. Army company to defend 
a company sector against an expected attack by an 
opposing force, given sector boundaries and an 

avenue of approach, from the automated 
battalion commander. A more detailed 
description of the second example is 
given in (Hieb et al., 1995), which 
concentrates on learning a placement 
rule after the Semantic Terrain 
Transformations have been performed. 

The rest of this paper is organized as 
follows. Section 3 presents the general 
methodology of the Captain approach. 
Section 4 describes the Semantic Terrain 
Transformation process. Section 5 
presents an extended example at the 
company level. Finally, Section 6 
concludes the paper with a discussion of 
our terrain reasoning approach. 

3. Captain Methodology 

Captain is a methodology for building 
adaptive command agents for CGF. The 
Captain implementation includes an 
apprenticeship learning system, which 
combines machine learning and 
knowledge acquisition methods (Tecuci 
1988; Tecuci 1992). Captain creates 
adaptive command agents in an 
integrated framework that facilitates 
both 1) building agents through 
knowledge elicitation and interactive 
apprenticeship learning from subject 

matter experts, and 2) making these agents adapt and 
improve during their normal use through autonomous 
learning. 

In the Captain methodology (Tecuci et al., 1994), we 
define three phases in the creation of an agent (see 
Figure 2). 

In the first phase, Knowledge Elicitation, the subject 
matter expert (SME) works with a knowledge 
engineer to define an initial knowledge base (KB) 
which will contain relevant background concepts and 
relationships. This KB is expected to be incomplete 
and partially incorrect at this point. Semantic Terrain 
Transformations are an essential part of building this 
initial knowledge base, to develop the terrain 
concepts and transformation rules required for a type 
of mission. 

In the second phase, Apprenticeship Learning, the 
Command Agent will interactively learn from the 
SME by employing apprenticeship learning 
techniques (Hieb et al., 1995). This consists of 
showing the SME instances of a type of mission (e.g., 
defend in sector for a company command agent), and 
learning how to produce the orders to accomplish the 
mission. The result of this process is a set of rules 
that can be used to generate orders for similar types 
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a Captain Agent 

of missions. These rules can be translated into a more 
efficient form for use during problem solving. 
Semantic Terrain Transformations will be utilized 
repeatedly, to process the terrain considered for each 
specific mission. 

When the Captain command agent has been trained 
with examples of the typical ModSAF problems it 
should be able to solve, it enters a third phase, 
Autonomous Learning, where it is used in simulations 
without the assistance of the SME. However, the 
agent will continue to learn from its own experiences 
by employing the same multistrategy learning 
techniques it used when learning from an SME. 

Semantic terrain transformations are an integral part 
of both building the initial knowledge representation, 
and in the learning process used by Captain in phases 
2 and 3. 

4. Semantic Terrain Transformations 

Captain agents use a hybrid knowledge representation 
integrating semantic networks and rules. Semantic 
networks represent the information from a terrain 
database at a conceptual level, as well as generic and 
specific knowledge about weapon systems and forces. 
Rules are used to represent the behavior and decision 

making of the agent as it generates orders for 
accomplishing missions. 

The detailed geometric representation is the source of 
the data to be transformed (e.g., ctdb database). The 
transformation process is based on background 
knowledge, a decision context, and a set of relevance 
criteria. The background knowledge defines the 
concepts pertinent to the transformation process. The 
decision context is the set of circumstances at the 
time a transformation takes place. This context is 
based on the mission the automated agent has been 
assigned and the current situation of the agent. A 
variety of abstract models may be generated from a 
given terrain database, depending on context. The 
relevance criteria identify which features and which 
levels of detail need to be reflected in the target 
model. A critical component of the semantic terrain 
transformation process is the categorization of each 
component of the more detailed geometric model as 
important or unimportant, based on the context of the 
decision. The relevance criteria provide metrics for 
identifying what features may be deleted or 
simplified. The abstract geometric representation 
reflects the set of concepts to be used in the decision 
process, where each concept is represented at a level 
of detail appropriate for satisfying decision goals. 

Transformations are accomplished by the successive 
application of operators. These operators are four 
kinds of elementary knowledge transformations: 
abstraction, generalization, aggregation, and 
simplification. 

The abstraction process involves selectively 
removing "unimportant" features from a model. 
Features are unimportant if they have little impact on 
the quality of decisions made in a given context, 
when using the resulting model (i.e., the relevance 
criteria considers them unimportant). For example, 
individual trees may be removed when transforming a 
detailed terrain database into a representation 
appropriate for use by a company commander, since 
the location of individual trees is usually not relevant 
to the decisions of the company commander. 

The generalization process replaces the representation 
of individual features with the representation of 
classes of features. For example, instead of 
representing the unique effect of each piece of road 
on the movement of a unit, road segments may be 
categorized and an effect associated with each 
category of segment. 

Aggregation involves summing up detailed data and 
representing it in aggregated form. For example, a 
line of hills is composed of different parts: a ridge 
crest running along the tops of the hills, the front 
slope of the line of hills (relative to the observer), the 
rear slope, and side slopes. The ridge crest, in turn, is 
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Figure 3: Situation at Start of 3rd Battalion Mission 

composed of the high areas of the line of hills, spurs 
jutting out from the sides of the ridge, and saddles 
(dips in the ridge crest). The aggregation of indivdual 
features produces composite features or superfeatures 
(Stanzione, 1994). 

Simplification is similar to abstraction in that it 
eliminates some details, but it also may include some 
distortion of unimportant details, in the process of 
producing a more compact knowledge representation. 
For example, the complex shapes of contour lines 
may be replaced with simpler shapes. 

In the examples in this paper, we identified those 
features that could be abstracted out of the model and 
used simplification to reduce the shapes of the 
regions to simple geometric objects, including line 
segments and rectangles. The resulting geometric 
model contains only physical features and does not 
include individual elevations or trees, for instance. 

4.1. Transformation Phases 
Semantic terrain transformations constitute the 
process of converting terrain information from a 
terrain database into a semantic network for use by an 
automated command agent and consists of two 
phases. 

In the first phase, the geometric representation from a 
terrain database is iteratively transformed into one or 
more increasingly abstract geometric models. These 
models are more compact and contain higher level 
concepts needed for reasoning efficiently. 

In the second phase, the geometric model at the 
appropriate level of abstraction is translated into a 
textual representation in the form of a semantic 
network. The semantic network describes the 
geometric information as a set of concepts and the 
relationships among the concepts. The textual 
representation in the semantic network may then be 
used by an automated agent in making decisions. 

4.2. Generation of the Abstract Geometric Model 
In this phase, we transform detailed geometric data 
from a CGF terrain database of Fort Knox, Kentucky 
into a geometric model at an appropriate level of 
abstraction, given the decision-making context. The 
situation confronting an automated commander (of 
the 3rd Battalion) is represented in Figure 3. In this 
figure, changes in elevation in intervals of 10 meters 
are depicted by contour lines. 

There are three separate problems the automated 
battalion commander must solve using the semantic 
network. First, the agent must choose the appropriate 
form of defense. Its options include company sector 
defense, company battle position defense, or 
company strong point defense. Second, the agent 
must establish company areas of responsibility. 
Finally, given its choice of defense, the agent must 
establish decide which particular company will 
occupy which area of responsibility. 

In choosing the appropriate form of defense, the 
automated battalion commander uses rules that 
require a company sector defense if it cannot 
concentrate fires (as when there are multiple avenues 
of approach such as in our example). There are three 
avenues of approach leading into the 3rd battalion's 
area of responsibility. The battalion commander 
accordingly chooses a sector defense with one 
company sector per avenue of approach and one of 
the two tank companies in reserve to the rear of the 
company areas. During a battle, the reserve company 
may be used in local counterattacks or may be moved 
to bolster the defense of a company being attacked. 

In this situation, an automated battalion commander 
has decided to use a sector defense. Defense of a 
sector is the most common defense mission for a 
battalion in contemporary combat missions. The 
sector is an area designated by boundaries that form 
an area of responsibility. Sectors are generally deeper 
than they are wide to permit the defending unit to 
fight the battle in depth. In the current situation, the 
enemy forces are expected to approach from the 
Southwest of the battalion's area of responsibility. 
The automated battalion commander must then 
perform a set of semantic terrain transformations to 
determine the company sector boundaries within it's 
area of responsibility. 
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The process of transforming a detailed terrain model 
into an abstract terrain model consists of four steps: 

Step!:   Identify decision context. 
Step 2:   Identify relevance criteria. 
Step 3:   Establish new concepts to be represented in 

the target terrain model and generalization 
hierarchies for terrain regions. 

Step 4:   Apply   transformation  operators  to  the 
current terrain model to produce the target 
terrain model. 

Step 1 involves making explicit the parameters and 
types of operations affecting the transformation 
process. These influence the application of the 
relevance criteria. In our example, we identify the 
decision context as the placement of the companies of 
a battalion. The context includes the primary decision 
factors: mission, enemy, troops, terrain (and 
weather), and time available (METT-T). In this 
situation, the mission of the battalion commander is 
to defend a battalion sector against an expected attack 
by an opposing force expected to consist of two or 
more tank or motorized infantry battalions. The 
battalion sector boundaries have been identified and 
are reflected in Figure 3. The troops available to the 
3rd Battalion commander are two tank and two 
mechanized infantry companies of a battalion task 
force. 

Step 2 determines the relevance criteria that are used 
to determine the forms of concepts to be included in 
the target terrain model. The resulting relevance 
criteria determine the set of transformation operators 
that are needed to perform the transformations and 
their sequence. The relevance criteria may be 
expressed in a set of rules. These rules may be 
learned by command agents using the Captain 
methodology as explained in (Hieb et al., 1995). An 
example of a rule defining a relevance criteria might 
be: "If a terrain feature cannot significantly affect 
mobility of subordinate units and the terrain feature 
cannot significantly affect vision of subordinate units 
and the terrain feature cannot significantly affect 
concealment of subordinate units then the terrain 
feature is irrelevant." If this rule is applied in a 
situation where the terrain feature is an individual 
tree and subordinate units are companies, since an 
individual tree affects neither the mobility, nor the 
vision, nor the concealment of a company as a whole 
to a significant degree, any individual tree would be 
considered irrelevant and excluded from an abstract 
terrain model at that level. On the other hand, if the 
subordinate unit is an individual entity, a tree would 
be relevant since it may offer concealment to the 
entity and may affect its field of view. 

Granularity refers to the level of detail of 
representation for the objects in the target terrain 

model. There is a trade-off between the higher quality 
of decisions that accompany fine granularity and the 
greater speed of decision-making that accompanies 
coarser granularity. For reasoning about the 
placement of companies in the battalion we chose the 
level as about l/1000th the area of the model. The 
area the model represents is about 7 kilometers by 8 
kilometers, or about 56 square kilometers. Dividing 
this by 1000, a size of about 1/16 of a square 
kilometer is established as the model granularity. 
That is, shapes are simplified into the nearest 1/16th 
square kilometer (1 /4th kilometer by l/4th kilometer). 

Step 3 requires establishing generalization hierarchies 
for terrain regions. A terrain region may be classified 
as a physical region or an organizational region. 
Physical regions are classified according to the 
physical properties of the terrain that affect the 
accomplishment of goals. Organizational regions 
correspond to regions established in map overlays. In 
past military operations, an overlay was a transparent 
medium on which information was plotted on top of a 
map, photograph, or other graphic. In operations 
supported by map automation, the overlay 
information is plotted on top of information from the 
terrain database. It reflects unit boundaries, routes, 
areas of responsibility, engagement areas, etc. 

We identify three physical and three organizational 
subclasses of regions: 1) the physical relief regions in 
which terrain is classified as being in hills or 
relatively flat areas; 2) the physical cover regions in 
which terrain is aggregated into regions based on the 
presence of natural or man-made forms of cover and 
concealment; 3) the physical mobility regions in 
which terrain is aggregated into regions based on the 
presence of natural or man-made obstacles or features 
such as roads that enhance mobility; 4) the 
organizational avenues of approach, each of which 
consists of a mobility corridor and an engagement 
area; 5) the organizational regions that define the area 
of responsibility for the command agent; and 6) the 
organizational regions defining boundaries of 
subordinate units. Within each region subclass, each 
region is discrete; there is no overlap. 

Figure 4 shows the abstract model resulting from 
Phase 1 of the transformations. It displays four of the 
six primary regions in one diagram. The physical 
mobility regions were omitted since they correspond 
closely to the avenues of approach displayed. Also, 
organizational regions defining boundaries of 
subordinate units were omitted since these boundaries 
are not determined until after phase 2 of the semantic 
terrain transformations has been completed and the 
battalion commander has decided the sector 
boundaries of its companies. 
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Figure 4: Abstract Model. 

Hills and various other terrain features such as 
valleys, ridges, and depressions are concepts that may 
not be explicitly represented as such in a terrain 
database. They may be determined by examining 
contour lines. For the purpose of terrain 
transformations, we defined a hill more precisely as 
an area where there are at least three concentric rings 
of contour lines (total elevation change of 30 meters) 
enclosing an area less that one square kilometer 
whose average slope is greater than 12° . 

Step 4 maps from the source terrain model to the 
target terrain model. The process uses operators to 
accomplish a homomorphic mapping from the 
features in the source terrain model to the features in 
the target terrain model. 

Figure 4 is an abstract model of parts of the terrain 
database for use in making decisions by a battalion 
commander. Each square in the grid represents one 
kilometer. The light gray rectangles are hills, dark 
gray rectangles with slanted lines are tree canopies, 
lines with double hash marks denote the battalion 
area of responsibility, and x's inside circles denote the 
forward edge of battle area (FEBA). 

The avenues of approach are identified using existing 
terrain analysis programs. 

At this point in the example, the abstract geometric 
terrain model contains information at a level of 
abstraction appropriate for making decisions. For an 
automated agent to reason about the information, it 

needs to be translated into objects and 
relationships in a semantic network. This is done 
in the second phase of the semantic terrain 
transformation process. 

4.3. Concept Identification 
In the second phase of the transformation process 
we transform information from the abstract 
geometric model into concepts and relationships 
among concepts in a semantic network. This 
process requires identifying appropriate types of 
concepts and relationships and the application of 
further knowledge transformations. 

This process consists of four steps: 

Step 1: Assign a name to each separate object in 
the geometric terrain database. 

Step 2: Establish the set of relationships to be 
used to represent relationships among 
objects in the terrain model. 

Step 3: Establish relevance criteria for choosing 
which ordered pairs of objects named in 
Step 1 will be associated with each kind 
of relationship described in Step 2. 

Step 4: Create the semantic network for the 
command agent. 

Step 1 assigns names to objects. Some of the names 
assigned are shown in Figure 5. 

In Step 2, the set of relationships among objects is 
identified and defined based on the decision context. 
The relative location of opposing forces to the 
friendly unit is used to orient objects in terms of 
"LEFT," "RIGHT," "IN-FRONT-OF," and 
"BEHIND." Relationships such as "NEXT-TO," 
"NEAR," and "FAR" are defined based on number 
generalization, which maps distances between objects 
to general concepts. 

In Step 3, the relevance criteria are established based 
on mission and level of the unit. They may be 
expressed as a set of rules that may be learned by the 
agent (Hieb et al., 1995). 

In our example, the concept of "area-of- 
responsibility" had already been defined in the in the 
agent's knowledge base, as well as a rule for 
"WITHIN," which determined whether an arbitrary 
object was contained in the battalion area of 
responsibility. One relevance criterion holds that only 
terrain objects (physical regions) contained within the 
area of responsibility of the battalion may be related 
to other objects in the semantic network. Other 
relevance criteria pertain to distance. 

In Step 4, the relevant information, representing 
interrelation-ships among objects from the geometric 
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Figure 5: Selected Object Names 

terrain model, is entered into the semantic network. A 
small part of the resulting semantic network is shown 
in Figure 6. The gray unlabeled arrows in the diagram 
indicate instance-of relationships. 

The semantic network in the agent's knowledge base 
represents concepts that are used by the agent during 
learning. In the case of the 3rd Battalion commander 
given the defensive mission, Captain will work with 

the SME to learn a rule that establishes company 
sector defense boundaries. 

In positioning company sector boundaries, the 
SME may teach the automated battalion com- 
mander to orient the boundaries on the avenues 
of approach to provide dominating terrain for 
each company. The result of this learning pro- 
cess would be a rule that establishes company 
sector defense boundaries as in Figure 7. 

5. Company Terrain Transformations 

In the previous section, the automated battalion 
commander used Semantic Terrain Trans- 
formations to establish company sector 
boundaries for the four companies under its 
command. The automated battalion commander 
then would issue orders to automated company 
commanders to establish defensive positions in 
the sectors assigned. 

To carry out the order from the battalion 
commander, each company commander must 
reason about the area of terrain for which it is 
responsible. The company commander uses a set 
of Semantic Terrain Transformations to put the 
terrain information into a useful form. The 
terrain model used by the battalion commander 

does   not  reflect  all   the  concepts  a  company 
commander needs to consider nor are the concepts in 
the battalion's model in sufficient detail. In this 
section we will describe how Semantic Terrain 
Transformations  may  be  done  by   a  company 
commander who has received a defend sector mission 
from its battalion commander. 

The   area   of   responsibility   of   the   company 

3rd-bn-FEBA 

INTE 

INTERSECTS 

3rd-bn-area-of-responsibility 

IN ?T^ 3rd-bn-rear-boundary 

avenue-of-approach-3 

aven ue-oPapproach-1 

avenue-of-approach 

Figure 6: Portion of Battalion Semantic Network 
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Figure 7: Company Sector Boundaries 

commander is shown in Figure 8a. It is the Southern 
area of responsiblity shown in Figure 7. To change 
the data from the terrain database into a form that can 
be effectively used by the company commander, the 
commander employs Semantic Terrain 
Transformations using the same algorithm discussed 
in the previous section but applied in a much different 
context. The company command agent applies the 
four steps of phase 1 in generating an abstract 
geometric model. 

In Step 1 the decision context is the mission of the 
company commander to defend a company sector 
against an expected attack by an opposing force 
consisting of one or two tank or motorized infantry 
battalions. The troops available to the commander are 
two tank and one mechanized infantry platoons. 

In Step 2 of the algorithm, the commander determines 
what must be included in the target terrain model. 
The existing features considered relevant for the 
current decisions are avenues of approaches, 
engagement areas, and hills. 

In Step 3, the agent generates needed concepts such 
as the concepts of hills and various types of hill 
features. A hill from the perspective of a company 
commander has the same basic definition as that used 
by the battalion commander. However, a hill is 
represented differently for the company commander 
than for the battalion commander. The main 
difference in the representation of hills between the 

two is that the company commander needs a finer 
granularity of the representation and must also 
represent hill parts such as front slope (relative to 
the avenue of approach), rear slope, and crest. 

A hill is represented in the abstract terrain model 
of a company commander as a circle. Long hills 
are represented as a series of connected circles, as 
in Figure 8b. To reflect the locations of front and 
rear slopes and the crest of the hill, each hill is 
twice bisected to form four quadrants. The first 
two quadrants face the avenue of approach while 
the last two quadrants face away from it. Each hill 
quadrant has a special set of features relevant to 
the company commander's decisions and is thus 
considered a separate object in the agent's 
knowledge base. 

The avenue of approach is obtained from the 
automated battalion commander, while the 
engagement area will be calculated using existing 
terrain analysis programs. 

Various other concepts were generated at this 
point such as the visibility of one region to an- 
other region, using line of sight algorithms com- 
monly implemented in CGF systems. Distances 
from one region to another were defined as close, 

near, far, or remote based on the weapons systems of 
the type of unit and other factors. 

In Step 4 of the first phase, the agent applies 
transformation operators to generate the terrain model 
shown in Figure 8c. 

In the second phase of the transformation process the 
map is transformed into a symbolic form expressing 
concepts and relationships in a semantic network. 
This process included labeling objects, identifying 
relevant relationships and entering the concepts into 
the semantic network as shown in Figure 9. Several 
of the representation units in the knowledge base are 
shown in Figure 8d. 

The representation units have the notation: 

(concept-i concept-k    (FEATURE-1 value-1) 

(FEATURE-n value-n)) 
This expression defines "concept-k" as being a 
subclass of "concept-i" (from which it inherits 
features) with additional features. The value of a 
feature may be a constant or another concept. 

Based on the concepts in the semantic network 
resulting from the Semantic Terrain Transformations, 
the automated company commander is able to make 
effective decisions. Our method of teaching such 
decision rules to automated command agents is 
described in (Hieb et al., 1995). 
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Figure 8: Company Semantic Terrain Transformations 
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Figure 9: Portion of Company Semantic Network 

6. Conclusions 

In this paper we have presented a methodology for 
transforming a terrain database into a semantic 
network which is used by automated command agents 
to perform terrain reasoning. We have applied this 
methodology to generate the semantic network 
representation of the terrain necessary for teaching 
ModSAJF company commanders defensive missions, 
as described in (Hieb et al., 1995). We are currently 
refining the methodology of semantic terrain 
transformations and automating this process as part of 
the development of the overall Captain methodology. 
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1.  Abstract 

Intelligent Player (IP) is a computer generated 
fighting helicopter that uses a game tree for deter- 
mining combat maneuver decisions. It has been 
demonstrated that IP is a viable real-time simula- 
tion entity that is capable of formulating plans in 
real time. Planning gives IP the capability of se- 
lecting a maneuver to implement that might result 
in a temporary tactical disadvantage while achiev- 
ing a superior tactical advantage in the future. 
Previous implementations of IP have focused on 
investigating the feasibility of computing a plan in 
real time. In this paper we expand previous imple- 
mentations by incorporating terrain into the plan- 
ning computation of IP. Experiments show that 
even when IP performs terrain avoidance it is still 
capable of formulating a plan in real time. 

2. Introduction 

Intelligent Player (IP) is a computer generated 
fighting helicopter used in the simulation of air- 
to-air combat. IP computes combat maneuvers in 
real time using a game tree [5] lookahead computa- 
tion. IPs main utility is the computation of high 
fidelity maneuvers during close quarters, one-on- 
one, air combat. In a simulation environment with 
many entities, a workstation running IP code can 
be used for controlling helicopter entities involved 
in air-to-air combat. Other automated simulation 
techniques can be used for other portions of com- 
bat nussion simulation. 

Katz first defined IP in [2] [3] [4] and later provide 
an improved version of IP based upon differential 
game theory [1]. This improved version of IP has 
the significance of separating the issues of air com- 
bat, such as vehicle control, from those involved 
in the lookahead computation. Schaper, Pandari 
and Singh [9] implemented this improved version 
of IP with specific interest in determining the max- 
imum amount, of lookahead that could be com- 
puted in real time on current PC and workstation 

platforms. Their investigation revealed IP to be a 
viable real-time simulation entity. Specifically, it 
was shown that IP is a tenacious and aggressive 
opponent with the capability of formulating plans 
during lookahead computation. A plan is the abil- 
ity to select a maneuver to carry out which will re- 
sult in a temporary tactical disadvantage but will 
ultimately result in a tactical advantage. 

In this paper we expand the current IP implemen- 
tation to include terrain avoidance. In previous IP 
implementations, IP simulations were carried out 
in a three-dimensional void. We investigate the 
behavior and lookahead performance of IP when 
terrain avoidance is performed. Results of experi- 
ments based upon this implementation show that 
IP continues to behave in an aggressive and tena- 
cious fashion. We also show execution timing re- 
sults on RS6000 workstation which show that even 
when terrain avoidance is performed, IP is still ca- 
pable of planning in real time. 

Section 3 discusses terrain modeling techniques 
used in our IP implementation. Section 4 details 
specific modifications to existing IP implementa- 
tion required to perform terrain avoidance. Sec- 
tion 5 presents measurements of IP's behavior and 
performance. Section 6 contains concluding re- 
marks. 

3. Terrain Modeling 

Several techniques for modeling terrain have been 
used in combat simulation. Polygon Terrain Rep- 
resentation [8] and Digital Terrain Model [6] are 
two common techniques. When considering the 
use of a terrain modeling technique there are sev- 
eral key attributes that must be addressed. These 
attributes include the amount of memory used to 
represent the terrain, the fidelity of the representa- 
tion, and the computation time required to look up 
terrain features during simulation exercises. One 
major limiting factor in the IP implementation de- 
scribed in this paper is the amount of available 
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memory on the RS6000 workstations. This forced 
a choice of terrain modeling technique that was 
memory efficient in representing terrain with rea- 
sonable fidelity and modest look up speeds. Poly- 
gon Terrain Representation and Digital Terrain 
Model require large memory for terrain represen- 
tation. For this reason we choose to use quadtrees. 

3.1 Quadtrees 

A quadtrees is a data structure that makes effi- 
cient use of storage in representing cartographic 
databases that involve large amounts of data. 
Quadtrees are a special type of tree data struc- 
ture in which each node, except the leaf nodes, 
have an outdegree of four. 

At level one of a quadtree there is one node, 
called the root, of the quadtree. This node rep- 
resents an extent of square terrain. This square 
extent is subdivided into four equal sized subquad- 
rants, namely, northeast (NE), northwest (NW), 
southeast (SE) , southwest (SW). Each of these 
subquadrants are represented by a child node of 
the root and holds relevant information about its 
subquadrant. This decomposition continues re- 
cursively until all points in the subquadrant fall 
within a single plane. A least square error com- 
putation is used to determine if all points of the 
quadrant can be represented by a single plane. 

Each node of the quadtree stores the coordinates 
of the lower left corner and the upper right corner 
of the quadrant it represents. Each node also con- 
tains pointers to each of its four child nodes and 
a pointer to its parent node. During construc- 
tion of the quadtree, each node requires access to 
all terrain points which fall within the associated 
quadrant. This access is provided by a pointer 
to a list containing all points which belong to the 
quadrant. 

Each node of the quadtree is processed to deter- 
mine if all points of the subquadrant. form a plane. 
If all points do form a plane then this node is a 
leaf. Otherwise, the node's quadrant will be re- 
cursively subdivided. 

A plane is represented by an equation of the form 

= Ax + By + C. (1) 

The .4, B, and C coefficients of this equation are 
stored in the associated node. If all data points 
have the same z value then A and B are assigned 
0. If the data points do not have the same z values 
then a least square error computation is used to 

determine if the points in this quadrant lie along 
a single plane. 

3.2 Least Square Error Computation 

To determine if a quadtree node is a leaf node, it 
must be determined if the coordinates in the as- 
sociated quadrant can be represented by a single 
plane. First, a plane equation of form specified in 
(1) is determined by using partial differential equa- 
tions. The J4, B, and C coefficients of the plane 
equation are computed by taking partial deriva- 
tives of the least square error equation 

E2 = 
_ EIU--. - (AXJ + BVi + C))2 

(2) 

Coefficient A is computed by taking the partial 
derivative of E2 with respect to A and equating 
the result to 0. Similarly, the coefficient B is com- 
puted by taking the partial derivative of E2 with 
respect to B and equating the result to 0. After A 
and B are known then C can be easily determined. 

Once the best-fit plane equation has been found, 
the least square error, E2 is computed. E2 is com- 
pared to a predefined tolerance value. If E2 is less 
than the tolerance then the plane is created using 
A, B, and C as it's coefficients. Otherwise the 
quadrant is recursively subdivided. 

In IP simulation we used a mix of artificially cre- 
ated terrain and real terrain taken from a Geo- 
graphical Information System [6]. In both cases 
the input terrain forms a grid of points at regular 
50 meter intervals in both x and y coordinates. 
The overall size of the terrain is 100 by 100 grid 
points. 

3.3 Terrain Elevation Evaluation 

After the quadtree is constructed, terrain eleva- 
tions can be determined for any (x,y) coordi- 
nate point by searching the quadtree. Function 
Get-Elevation performs this lookup. It takes an 
(x,y) coordinate as input and returns the eleva- 
tion (z value) at this location. This function must 
traverse the quadtree from the root to the appro- 
priate leaf node which represents the area of ter- 
rain being examined. The x and y coordinates are 
substituted into the plane equation formed by the 
A, B, and C coefficients, stored in the leaf node, 
to determine the associated z value. For a square 
area of terrain consisting of n2 points, function 
Get.Elevation has a worst case computation time 
of 0(log4n

2). 
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4. Terrain Avoidance 

This section details the specific modifications to 
existing IP implementation required for IP to per- 
form terrain avoidance. Specific references will be 
made to concepts, terminology, and algorithms de- 
fined in [1] and [9]. 

Consider a one-on-one air combat scenario with 
two players, RED and BLUE. Without loss of 
generality the BLUE player is IP. A lookahead 
computation for the BLUE player has two distinct, 
phases. First trajectory trees are constructed for 
each of the two players. Secondly, the game tree 
used to select the next maneuver for the BLUE 
player is computed. Function Lookahead performs 
this computation. 

Lookahead(BLUE,RED:sUte); 

const T = 1.0; 
r = 0.1; 
max-ply = 3; 

var BJraj.RJraj:trajectory-tree; 
sco7'e:float; 
m.maneuver; 

begin 
Compute.BLU E-Trajectories(BLU £\1.5, 

BJraj); 
Compute-RE D.Trajcctories(RED,l.b, 

RJraj); 
Select-Mancuv(r(B-iraj, R-traj, 

maxjply, 0, 
score,m); 

return(m) 
end; 

During construction of the trajectory tree for each 
player, each new trajectory is compared with the 
underlying terrain to determine if the player has 
crashed. If a crash is detected then boolean vari- 
able crash is set to true in the corresponding tra- 
jectory tree node. This node of the trajectory tree 
becomes a leaf. In order keep the computation of 
trajectories isolated from the rest of the lookahead 
computation, the modifications to the code were 
isolated in the Compute-Red-Trajectory-Tree 
and Compute-Trajectory procedures. This choice 
allows the Maneuver-Interprct function to re- 
main as an independent functional module from 
the rest of the IP implementation. The follow- 
ing modified Compute-Trajectory procedure il- 
lustrates the specific changes required to deter- 

mine crashes.   A similar modification was made 
to the Compute-Red-Trajectory-Tree procedure. 

Compute-Trajectory(s:state; dept/i:integer; 
var traj:trajectory-tree); 

var m:maneuver; 
begin 

if depth = 0.5 then 
Maneuver-Interpret(s,m,T,j,traj)\ 
traj.crash = Check-Crash(traj ,j); 

else 
if depth ^ 0 then 

Maneuver.Interpret(s,m,r,T,traj); 
traj.crash = Check-Crash(traj ,T); 
if not traj.crash then 

for m = SF to DL do 
Compute.Trajectory(lraj[j], 

depth — 1, 
Next-Trajectory(traj,m)); 

end for; 
end if; 

end if; 
end if; 

end; 

Function Check-Crash takes a trajectory tree 
node as input along with the information as to 
which half of the trajectory is being evaluated. It 
returns a boolean which is true if the player has 
crashed into the terrain and false otherwise. 

Check-Crash(vas traj:trajectoryJ.ree 
T : float); 

var iiinteger; 
elevation: float; 
crash.boolean; 

begin 
crash = false; 
»=1; 
while (not crash) and (i ^ T) do 

elevation — Get-Elevation(traj[i].x, 
traj[i].y); 

if traj[i].z < elevation then 
crash = true; 

end if; 
»' = »'+l; 

end while; 
return(cras/i); 

end; 

The Select-Maneuver procedure drives the con- 
struction of the lookahead game tree. The selected 
maneuver is determined by a score that is prop- 
agated from the leaves to the root and takes the 
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probability of kill computed along the path from 
leaf to root during the lookahead computation into 
consideration. The scoring function is a reflection 
of the possible tactical situations. A score of —1 
indicates that the RED player has the best pos- 
sible tactical position. A score of +1 indicates 
that the BLUE player is in the best possible tac- 
tical position. If a crash occurs then the associated 
game tree node becomes a leaf and the appropri- 
ate node score is assigned to it. Since a crash for 
the BLUE player reflects the worst possible tac- 
tical situation, the lookahead computation is be 
forced (by the scoring function) to choose a ma- 
neuver that does not lead to a crash (if one exists) 
in the foreseeable future (the period of time that 
lookahead is performed). 

Selfct.Maneuvrr(BJraj, RJtraj.trajectory; 
max-ply, pi y Ante ger; 
var score:float; 
var m.maneuver); 

var man,best-m:maneuver; 
childscore ,SS,be st score rfloat; 
Kh,Kr,P2,Pr,Pb:h'oa.t; 

begin 
if ply = 0 then 

P2= 1; 
P* = 0; 
Pr=0; 

else 
if odd(p/y) then 

B.traj = Next-Trajectory(BJraj,m); 
else 

RJraj — Ncxt.Trajectory(RJraj,m); 
end if; 
if not(B-traj.crash or R-traj.crash) then 

Probability-of -K ill( BJ. raj, R~t raj, 
ply, Kb, A'r); 

Compute-Game State s{ K j,,A'r,P2 
Pr,Pb); 

end if; 
end if; 
if B-Iraj.crash and not RJraj.crash then 

score = —1 
else if RJ.ruj.crash and not BJraj.crash then 

score = 1; 
else if BJraj.crash and RJraj.crash then 

score — — 1; 
else if ply = max-ply then 

if odd(p/y) then 
SS = Static-Score(BJraj[^],RJraj{^]); 

else 

SS = Static-Score{BJraj[^],RJraj[-^)); 
end if; 
score = Pb-Pr + P7SS; 

else 
for man = SF to DL do 

best-score = — 1; 
Select-Maneuver(BJraj, RJraj, 

max-ply, ply + 1, 
child-score ,man); 

if childscore > best-score then 
bestscore = childscore; 
best-m — man; 

end if; 
end for; 
score = Pi — Pr + P2bestscore; 
m = best-m; 

end if; 
end 

The remaining module that requires modification 
to accommodate terrain is the Check-Kill proce- 
dure. This procedure determines if either player is 
in the gun envelope of the other. The gun envelope 
defines a lethal area in which an opponent may be 
fired upon. However, if terrain blocks the line of 
sight between the two players then firing is disal- 
lowed. Thus, Check-Kill must determine if the 
terrain blocks the line of sight between the play- 
ers. The function LOS-Blocked returns a boolean 
value of true if the line of sight between the two 
players is blocked by terrain and false otherwise. 

Check-Kill(Bstate, Rstate: state; 
var BJcill,R-kill:boo\eain); 

var R-mgntd,B-mgntd,los-mgntd:Roa.t; 
LOS.vector; 
cos_Q,cos./?:float; 
blocked.boolean; 

begin 
B.kill = FALSE; 
R-kill = FALSE; 
LOS =line of site vector; 
LOS-mgntd =magnitude los vector; 
blocked = LOSJ3locked(Bstate, Rstate, 

LOS); 
if not blocked then 

R-mgntd =magnitude RED velocity vector; 
B-mgntd =magnitude BLUE velocity vector; 
cos-ot — (R-vel • LOS)/R.mgntdLOS-mgntd; 
cos-0 = (B-vel • LOS)/ B-mgntd LOS-mgntd; 
if los-mgntd < gun-range then 

if cos-Q > cos(gunjangle) then 
R-kill = TRUE 

end if; 
if cos-0 > cos(gun-angle) then 
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Figure 1: IP terrain avoidance example 1. Figure 2: IP terrain avoidance example 2. 

B.kill = TRUE 
end if; 

end if: 
end if 

end; 

The LOS-Dlocked function takes as input the 
states of both players and the line of sight vec- 
tor. The function traces the line of sight vector 
through the quad tree to determine which quad- 
rants the line of sight vector crosses. The function 
then determines if the line of sight vector inter- 
sects any of the involved quadrants by using their 
plane equations. At present this function is imple- 
mented using a rather brute force technique that 
is not particularly efficient and will not be further 
described. 

5. Results 

5.1 IP Behavior 

Figures 1 and 2 show IP simulations involving ter- 
rain. Figure 1 illustrates an artificially constructed 
terrain region with a large obstruction. The RED 
player is placed in a stationary position to the east 
of the obstacle and facing east. The BLUE player 
is placed on the west side of the obstacle facing 
east. As the figure illustrates, the BLUE player 
is able to avoid the obstacle and assume a favor- 
able tactical position on the RED player. 

Figure 2 is a combat scenario that uses real ter- 
rain generated from the Geographical Information 

System. As the simulation verifies, both players 
are able to avoid the terrain while also exhibiting 
aggressive and tenacious behavior. 

5.2 Execution Speed 

Timing experiments on IP lookahead are designed 
to measure the elapsed execution time of IP for a 
specified number of plies. For each of the measure- 
ments reported lookahead was executed for the 
given conditions 100 times. The elapsed time of 
the total run was divided by 100 to get the average 
elapsed time for a single lookahead. 

There are two cases to consider when measuring 
elapsed time of IP lookahead computation. If the 
players are in each others gun envelope, then the 
Check-Kill computation must be performed for 
each combination of players states. This adds con- 
siderable expense to the lookahead computation. 
Table 1 shows the elapsed execution times of IP 
lookahead when players are out of range of one an- 
other. Table 2 shows the elapsed execution times 
of lookahead when the players are in range of each 
other. 

6. Conclusions 

All simulation experiments of IP using terrain 
avoidance have demonstrated that IP is a tena- 
cious and aggressive simulation entity. Execution 
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Number of 
Maneuvers 

Plies 5 7 11 
1 0.002 0.003 0.010 
2 0.006 0.010 0.019 
3 0.020 0.053 0.166 
4 0.092 0.307 1.620 
5 0.411 1.970 
6 1.800 

Table 1:   IP execution time in seconds on IBM 
RS6000 when players are out of range. 

timing results demonstrate that IP is capable of 3- 
ply lookahead in under one second on IBM RS6000 
workstation. Thus, IP is still capable of planning 
even when terrain avoidance is performed. 

It is important to note that these execution speeds 
for IP should be considered worst case since 
quadtrees do not provide a particularly efficient 
lookup function. We expect that a 486 class PC 
or IBM RS6000 class workstation with sufficient 
memory to support the use of polygon terrain rep- 
resentation or digital terrain models would signifi- 
cantly improve execution speeds of lookahead com- 
putation. 

A more efficient compu- 
tation for the LOS-Blocked function should also 
improve execution speeds. Future efforts should 
investigate improving this computation by using 
a method akin to Bresenham's line drawing algo- 
rithm [10] to trace through the quadtree along the 
line of sight vector. This should significantly re- 
duce the total number of quadrants which must be 
searched during this computation. 

Number of 
Maneuvers 

Plies 5 7 11 
1 0.003 0.006 0.010 
2 0.008 0.022 0.030 
3 0.026 0.183 0.310 
4 0.133 1.620 3.137 
5 0.456 
6 1.950 

Table 2:   IP execution time in seconds on IBM 
RS6000 when the players are in range. 
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Abstract 2.   Terrain  Representation  Legacy 

After five years of stability in representation, the 
growing demands of terrain complexity and terrain 
reasoning within the DIS environment have forced a 
re-engineering of terrain representation within 
ModSAF. The representations inherited from the 
SIMNET and Odin legacy have been changed 
significantly to support current and future terrain 
requirements. This paper will discuss the most 
significant changes, and will detail the implications 
of these developments for the rest of the CGF 
community. 

The terrain representation currently used in ModSAF 
is derived from a legacy of prior representations, as 
shown in Figure 1. 

2.1   LibTDB 

The terrain representation used in SIMNET SAF was 
a format called libTDB. This was a completely 
polygonal format. For example, the only 
representation of roads in this format was as a 
sequence of triangles and rectangles which composed 
the surface of the road. This representation was 
completely interoperable with SIMNET simulators, 

SIMNET 
libQUAD 

• Network topology 
• Abstract features 

Future 
Versions 

ModSAF 1.4 
CTDB (3)    I 

• Integrated network topology 
• Integrated abstract features 
• Terrain search API 
• Formal compiler methodology 
• S1000 API-based compiler 

• Little-endian support 
• ITD-style terrain attributes 
• E&S and Multigen compilers 
• MRTDB interoperability 
• Contrast model for trees 
• Multi-level terrain (visibility) 
• 800km x 800km database 

AGPG Mardei 
CTDB (2) 

• Alternate grid diagonalization 
• Multi-level terrain (elevation only) 

A 
SIMNET 
libTDB 

Odin 
CTDB(l)  J 

• More accurate representation of features 
• Fractional visibility 
• Improved performance 
• Reduced storage 
• 360km x 290km database 

• Interoperability through common source (S1000) 
• Polygon-based terrain visibility calculations 
• Support for microterrain 
• 75km x 50km databases 

1988 1990 1992 1994 

Figure 1: ModSAF Terrain Legacy 
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because it was based on the same source data. 

2.2 LibQuad 

In addition to this format, another terrain 
representation called libQuad was also used in 
SIMNET. This representation was designed to 
support map display and planning. It included a 
network topology which could be used to plan road 
routes, breach river obstacles, etc. This format also 
included "abstract" terrain features, such as lake and 
forest footprints. 

2.3 CTDB Format 1 

The libTDB format worked well with SIMNET-size 
databases which were typically less than 100 km on a 
side, but proved problematic for very large databases, 
such as the 290 km by 360 km' "SAKI" (Saudi 
Arabia, Kuwait, and Iraq) database. To support this 
database, and to improve performance on smaller 
databases, a new format called CTDB, for Compact 
Terrain DataBase, was developed. 

The CTDB format took advantage of the gridded 
nature of SIMNET terrain databases to significantly 
reduce storage requirements. It also used various real 
time compression mechanisms (such as fixed point 
numeric representations) to reduce storage demands. 
Reducing size improves performance in two ways. 
First, more of the terrain area can be brought into 
active memory, reducing the need for disk access. 
Second, by squeezing more geography into fewer 
bytes, data cache coherency is improved, which can 
lead to performance gains on RISC processors. 

In addition to these improvements, new algorithms 
were developed for performing visibility calculations, 
determining ground elevations, placing entities on the 
terrain, and other operations. These algorithms both 
improved performance, and in many cases increased 
fidelity. For example, the time to complete a 
visibility calculations was reducedby 75%, while the 
results were changed from a discrete (visible, partially 
visible, invisible) to an analog result (visible area). 

It was around the same time that ModSAF 
development was started in support of the DARPA 
WISSARD program, under the direction of CDR 
Dennis McBride. The ModSAF system used the 
CTDB and libQuad terrain representations without 
modification. 

2.4 CTDB Format 2 

In 1992, the ModSAF program was adopted for use as 
the Computer Generated Force simulation in the 
German   AGPG   program   (a   platoon   level   troop 

training system for the Marder Infantry Fighting 
Vehicle). The most significant additions made under 
this program were the introduction of an alternate 
diagonalization of the terrain grid, and "multi-level" 
terrain. 

2.4.1 Alternate Diagonalization 

The SIMNET databases all used a northwest to 
southeast diagonalization for the regular grid of 
elevations. For interoperability with its image 
generator, the AGPG program required that the 
diagonalization instead be northeast to southwest. 
The CTDB database format was modified to support 
either diagonalization, and the various terrain analysis 
algorithms were modified to support both 
diagonalization options. The specification of 
diagonal direction was made on a per-database basis. 

2.4.2 "Multi-Level" Terrain 

One of the ways the performance of terrain analysis 
algorithms can be improved is by introducing 
"implicit" information in the representation. For 
example, if one can assume that it is impossible to 
see under a terrain polygon, then a visibility 
calculation can be performed which only checks 
polygon edges - if line of sight passes under a 
polygon edge, then visibility is necessarily blocked. 

However, if one introduces multiple levels of terrain 
(tunnels, bridges, etc.), then this implicit information 
is not correct. Thus, the algorithms for visibility 
calculation need to be generalized to remove this 
assumption. Of course, this would have a detrimental 
impact on performance. The compromise struck in 
the CTDB representation is to divide terrain into 
classes. In addition to the regular grid, which 
provides general coverage of the terrain area, portions 
of the terrain surface can be represented by: 

• Base Terrain: A Triangular Irregular Network 
(TIN) which abides by the implicit assumption 
that visibility under the triangles is impossible. 

• Multi-Level Terrain: A TIN which does not 
abide by this assumption. 

• Default Terrain: A TIN which should be used 
only if no other terrain triangles are found at a 
location. 

The last type was introduced to allow compact storage 
of areas where the regular grid was replaced only 
partially by a TINned region (such as a river bed). 
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Physical Topological 

D Patch: Feature 
Edge Composition 

1 1:7-, 3:5+ 
2 3:7+ 
3 3:2+, 4:1+, 2:1- 

Nodes 
1 to 2 
2 to 3 
2 to 4 

O Node:Edge 
Node Connections 

1 2:1 
2 1:1,3:2,4:3 
3 2:2 
4 2:3 

Figure 2: Integrated Network Topology 

The implementation of multi-level terrain for AGPG 
was only preliminary. A mechanism was added to 
the file format to represent this information, and the 
terrain elevation lookup algorithms were modified to 
support fetching elevations using a reference elevation 
which is used to determine what level of terrain 
should be used. For visibility calculations, the 
multi-level terrain polygons are simply ignored (as if 
all bridges are made of glass). 

3.   CTDB Format 3 

Although the libQuad database had served the needs 
of ModSAF well through version 1.3, it had some 
drawbacks which needed to be remedied. The primary 
problem was the terrain compiler, which was rather 
fragile and only worked on an outdated computer 
platform. In addition, the format and software were 
developed before the ModSAF software quality and 
documentation standards had been adopted. As such, 
it was quite difficult to maintain. 

Another nagging problem with the libQuad format 
was its memory consumption. The entire database 
had to be read into memory (no caching was 
supported), and much of the information was 
redundant with data stored in the CTDB format. 
Finally, the libQuad software did not provide much 
of an Application Programming Interface. To 
traverse features in the libQuad database, an 
application would have to traverse the actual data 

structures used internally by libQuad . (Note that 
CTDB also suffered from the same problem.) 

To alleviate these problems, LEADS' funded the 
development of CTDB format 3 

3.1   Integrated Network Topology 

CTDB now supports a complete integrated network 
topology, as shown in Figure 2. 

The physical representation of each linear feature (road 
or river) is stored with other physical information in 
the CTDB "Patch" data structure. The topology- 
makes reference to this information, without 
duplication. For example, in the figure, edge 1 
consists of two linear features: linear feature 1 of 
patch 1 traversed last-to-first (1:7-); and linear feature 
3 of patch 3 traversed first-to-last (3:5+). 

' Software development was funded by LEADS 
(Loral Experimental and Developmental Simulation 
System), a Loral corporate chartered project to 
promote the effective use of DIS throughout Loral. 
However, this software is being provided to the 
government with exactly the same rights as other 
ModSAF software so that it can be freely used 
throughout the DIS community. 
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The physical representations of the linear features in 
turn reference the topologic edge. For example, 
feature 1 of patch 1 and feature 3 of patch 3 both 
reference edge 1. This is important, because the 
physical representation is stored using spatial 
indexing, which means that given a location, a feature 
can be found quickly. Then, given the physical 
feature at a point, a planning algorithm can go 
directly to the topology of the area without search. 

3.2   Integrated "Abstract" Features 

As explained earlier, the libQuad database included 
"abstract" features. With the elimination of 
libQuad, CTDB is required to pick up these 
features. The spatial indexing used for physical 
features (a grid of small patches) is not particularly 
good for representing these terrain abstractions 
because forested areas and lakes tend to cover large 
areas. The natural data structure to use for these is a 
dynamic quad tree, as shown in Figure 3. 

The file format allows nodes of the quad tree to be 
expanded using any criteria In the example above, 
the distribution of features warrants smaller quad 
nodes in some places, and larger nodes in others. 
Features are stored in both interior and leaf nodes of 
the quadtree, to achieve fairly even distribution. 

These features abstractions are not actively used by 
the terrain analysis algorithms within the CTDB 
software (visibility calculations, elevation lookup, 
etc.). CTDB acts only as a repository for this 
information. This means that the format can be quite 
flexible about what sorts of abstractions are stored. 
Currently, CTDB has enumerations and instance data 
defined for many abstract features, as shown in Figure 
4. Of course, each feature also has a series of 
locations which define its position, extents, or 
content. This list can be easily extended to support 
additional abstract feature classes. 

Feature 
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Label 

Tactical 
Sign 

Off-read 
Segment 

Description Instance 
Data 

Indicates that this is an interior 
quad node, and that the 
children of this node are 
represented elsewhere in the 
list of abstract features. 

Tree canopy footprint. 

Bounding footprint of an area 
with a uniform soil type, such 
as a lake or a marsh. 

Bounding footprint of an area 
with steep slope. 

Railroad lines. 

Pipeline lines. 

Political boundaries, such as 
country borders, or city limits 

Map labels, such as town 
names. 

Areas identified as tactically 
dangerous. 

Precomputed traffic networks 
indicating desired routes which 
do not follow physical linear 
features. 

Child node 
storage 
locations 

Penetrability 

Soil type 
Layer number 

Slope 

Text 

Topological 
edge 

Figure 4: Abstract Feature Enumerations 

3.3   Terrain Search API 

With the centralization of all terrain information 
within a single software module, it became clear that 
a uniform application programming interface (API) 
was needed to support access to this data. The 
interface paradigm chosen is one quite common in 
this    domain:    iterative    fetching. Pseudocode 
demonstrating this paradigm is shown in Figure 5. 

Global  Search 
Create a Search Space (Geographic Extents, Iteration Options) 
Repeat for Each Type of Feature: 

Repeat until No Features of a Type Remain in the Space: 
Get the Next Feature of a Type (Search Space) 
Process the Feature 

Destroy the Search Space (Search Space)  

Local Search 
Create a Search Space (Geographic Extents, Iteration Options) 
Repeat until No "Patches" Remain in the Space: 

Get the Next Patch (Search Space) 
Repeat for Each Type of Feature 

Repeat until No Features of a Type Remain in the Patch: 
Get the Next Feature of a Type (Patch) 
Process the Feature 

Destroy the Search Space (Search Space) 

Figure 5: Iterative Fetching Paradigm 

Figure 3: Quad tree of features 
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To access terrain features, an application creates a 
search space which is defined to contain all the 
features in a geographic area. The application can 
then retrieve these one at a time from the space. As 
the figure demonstrates, two search methods are 
supported: global search and local search. Global 
search is simpler to use, but fails to exploit the 
spatial indexing of the system. In a local search, the 
application is given all the features from the search 
area, but they are returned in an order which is more 
natural for the internal representation of the data. 
Thus, an application which uses the local search 
approach will typically execute faster than one which 
uses the global approach. 

4.   Terrain  Compilers 

With ModSAF version 1.4 the mechanisms used to 
"compile" CTDB databases from source formats have 
been, solidified and documented. The ModSAF 
distribution now includes the source code to build two 
terrain compilers: an S1000 to CTDB compiler, and a 
CTDB to CTDB recompiler (for converting between 
CTDB formats, and correcting errors in existing 
CTDB databases). Also included in the distribution 
are software and documentation which can be used to 
construct new terrain compilers for other source 
formats. 

The compiler is divided into two components: the 
back end which builds the CTDB data structures and 
the from end which assembles the required data 

4.1   Compiler Back End 

The compiler back end provides functions to assist in 
the encoding of terrain data, so that it can be stored in 
a CTDB format terrain database file. The compiler 
back end does not change the content of the data given 
to it - only the format. The back end does perform 
the following data scrubbing, which does not change 
the nature of the physical representation, but will 
reduce storage space: 

• Clipping of buildings, tree lines, and linear 
features at patch boundaries. 

• Elimination of vertical terrain or tree canopy 
triangles. 

• Elimination of intermediate 3D collinear vertices 
in tree lines, and 2D collinear vertices in linear 
features. 

• Elimination of repeated vertices in features. 
• "Defragmentation" of connected linear features 

(identifying that two adjacent linear features have 
identical attributes, and thus can be represented as 
a single linear feature). 

• "Fragmentation" of intersecting linear features 
(except when  the   intersection   occurs   in   the 

bounds of a multi -level terrain polygon, where 
linear   features   may   actually   cross   without 
intersecting). 

•     Elimination of duplicate linear segments. 

The back end of the compiler also has functions 
which can generate the network topology from the 
physical and abstract linear features. This is required 
because few source formats have a complete integrated 
topology already computed. Note that this is an 
error-prone process, however, and should be 
considered a stop-gap measure as we wait for source 
formats to provide the complete picture of the terrain. 

4.2   Compiler Front Ends 

The compiler front end is responsible for retrieving 
terrain information from a source format, and 
providing it to the back end for encoding. The front 
end is responsible for execution flow (it is the 
"main" program), and file I/O operations. The front 
end performs the steps shown in Figure 6. 

1. Open a file for output. 
2. Fill in the file header. 
3. Unpack the header into a CTDB structure (the 

CTDB software archive provides a utility 
function to do this). 

4. Generate a list of physical features in memory. 
This is done by making repeated calls to a feature 
encoding function. Put the feature count into the 
header. 

5. Ask the compiler back end to derive a caching 
scheme so that terrain can be efficiently accessed 
at run time.  Put the result into the header. 

6. Generate the quad tree of abstract features. 
Again, this is done by making repeated calls to a 
set of feature encoding functions. Put the count 
into the header. 

7. Generate the lists of nodes and edges (the network 
topology) in memory. This can be done by 
calling a function in the back end which 
regenerates topology. Put the sizes and counts 
into the header. 

8. Write the header to the output file. 
9. Write the physical features to the output file. 
10. Write the grid of elevations and feature-presence 

flags to the output file. 
11. Write the nodes and edges to the output file. 
12. Write the abstract feature quad tree to the output 

file. 
13. Close the output file. 

Figure 6: Steps Performed by the Front End 

To simplify the task of writing front ends, the 
ModSAF 1.4 software distribution includes a CTDB 
to CTDB "recompiler". This program uses CTDB as 

379 



its input format, and follows all the steps of a 
standard terrain compiler. Since all the data is already 
formatted exactly as needed for encoding, the compiler 
is very simple. It can be used as a template for 
developing new compilers. 

The CTDB format will likely be changed to use the 
model reference approach for trees. In place of the 
radius of each tree (which is currently stored as a 16 
bit fixed point number), an index into a tree table will 
be stored. Each entrv in the tree table will have: 

5.   Future   Directions 

CTDB is not a "dead" format. It continues to be 
adapted as the complexity, size, and nature of the 
environmental representation within DIS evolves. 
The following sections describe some of the changes 
which will likely be added to CTDB in the very near 
future. 

5.1   MRTDB Interoperability 

The CGF component of the CCTT program will be 
using a new terrain format called MRTDB. This 
format is much like CTDB in functionality, but is 
using new approaches in spatial indexing, model 
storage, and surface representation. In order to 
interoperate with CCTT CGFs and simulators, the 
CTDB format will need to be upgraded to include 
some of the more significant features of MRTDB. 

5.1.1 Variable Diagonalization 

The MRTDB format will support varying grid 
diagonalization on a per-grid-cell basis, instead of just 
per-database. This allows the terrain representation to 
more closely match reality, with significantly less 
overhead than using arbitrary triangles (often referred 
to as "microterrain"). While CTDB could interoperate 
with this terrain by using a TIN, performance will be 
enhanced if CTDB is instead modified to also support 
varying diagonalizations. 

This will most likely be implemented by taking one 
bit of the elevation data currently stored for each grid 
cell, and instead using that bit to indicate which 

diagonalization is being used (S or \Zl). This will 
result the loss of either a bit of resolution or a bit of 
representable range in elevations. 

5.1.2 Tree Model References 

Another innovation in the MRTDB format is the use 
of model references. The idea is that rather than 
storing all the information about an object at a 
location, a reference to an object is stored. Each 
unique object is placed in a library, and substitutions 
of objects for references are made on the fly. While 
this is not helpful for buildings in CTDB (which are 
each uniquely placed on the terrain), the idea is quite 
handy for trees, which have the potential for a lot of 
commonality between instances. 

Foliage radius 
Trunk radius 
Foliage   opacity 
sensors, etc. 

for  visual   sensors,   thermal 

5.2 Tree Contrast Model 

When CTDB was originally defined, the "right" way 
to use trees in visibility calculations was unknown. 
A guess was made that it was reasonable to use tree 
transmittance to effectively decrease the size of an 
object being viewed. It turns out that this is not the 
best way to model loss of visibility due to trees. 
Instead, the cumulative opacity of all trees intersected 
should be returned separately from the apparent size of 
the object, so that they may be used to determine loss 
of visual contrast, a parameter of the Night Vision 
Laboratory target detection model used in ModSAF 
(Courtemanche et. al. 1994). 

Also, the responsibility for knowing what tree 
opacity values are will be transitioned from the 
application to the terrain representation. The 
application will merely specify a sensor type, and this 
will be used to select a tree opacity for each tree 
encountered. This will allow more variation in the 
types of trees represented within CTDB. 

5.3 Mobility  Information 

The representation used for mobility in CTDB is a 
holdover from the SIMNET databases. Each polygon 
is assigned a numeric "soil type" value which can be 
used by an application to control platform mobility. 
This approach is insufficient to represent the wide 
variety of mobility types desired on modern databases. 
Furthermore, there are no validated kinematics or 
dynamics models available which can use this 
generalized information. 

Thus, CTDB is likely to be changed to support tables 
of mobility characteristics similar to the information 
available in DMA ITD data sets. The individual 
polygons of the database will hold indices into these 
tables. For backward compatibility to existing 
simulations which use CTDB, one of the entries in 
the mobility table should be a mapping to the 
SIMNET constant most appropriate for the area. 
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5.4 Visibility   on Multi-Level  Terrain 

As mentioned earlier, multi-level terrain can be 
represented in CTDB, but not all the algorithms have 
been updated to use this terrain correctly. 
Specifically, the visibility calculations do not account 
for blockage due to multi-level terrain (a platform 
cannot hide under a bridge, for example). These 
algorithms will be updated to support multi-level 
terrain fully. 

5.5 Larger Databases 

The largest CTDB database compiled to date is 416 
km by 416 km. Without modification, CTDB can 
conceivably handle databases as large as 800 km on a 
side. Beyond that size, local coordinates are 
insufficient (UTM projection becomes invalid over 
larger ranges, and the loss of accuracy in local tangent 
coordinates makes them insufficient as well). Thus, 
for larger areas, a tiling approach will be needed. The 
terrain surface will be represented by tiles which each 
have their own local coordinate system, and a 
translation mechanism will convert between that and 
a system of global coordinates. 

5.6 Little-Endian Support 

The current CTDB format and software assume 
execution on a "big-endian" byte order platform (SGI, 
Sun, Motorola, etc.). Some modification to the 
software will be necessary to support "little-endian" 
CPUs (DEC Alpha, Intel), but we anticipate making 
these extensions in the near future. In preparation for 
this change, the naming convention used for CTDB 
databases has been changed, as shown in Figure 7. 

Extension Byte Order 

ctb        Compact Terrain Big-Endian 

ctl Compact Terrain Little-Endian 

Figure 7: File Naming Convention 

5.7   New Source Formats 

Currently, CTDB compilers are available to convert 
from S1000 (the format used for the large SIMNET 
repository of databases), and from CTDB. A 
compiler was also written to convert from the 
interchange format used on the AGPG training 
svstem mentioned earlier. 

interoperability with manned simulators is not 
required, it may be possible to convert directly from 
DMA products such as DTED and ITD. We hope and 
expect that ModSAF users will undertake conversion 
efforts using the compilation tools provided with the 
ModSAF software tools, and will share these with the 
community at large. 
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1. Abstract 

Published methodologies for evaluating 
Intelligent Decision Support Systems (IDSSs) 
have tended to neglect the important need to 
quantify their organizational impacts—i.e., their 
applied value. We present the outline of an 
approach that directly addresses this need, 
recommending use of the Distributed Interactive 
Simulation (DIS) infrastructure, exploitation of 
existing software resources that support 
"intelligent objects" and application of a simple 
Value Calculus for data analysis. 

2. Introduction 

Intelligent Decision Support Systems (IDSSs) 
offer assistance to decision makers on a range of 
application areas that includes business 
management, medicine, and military operations. 
The advanced technologies typically 
incorporated in these systems (such as neural 
networks, expert systems, Dempster-Shafer 
evidential reasoning, fuzzy logic and the like) 
tend to introduce substantial development costs. 
Moreover, performance of the systems can have 
important practical consequences. With business 
applications, for example, significant sums of 
money may be at stake. Medical applications, as 
Wyatt and Spiegelhalter have observed (Wyatt 
1990), present the IDSS also with ethical 
responsibilities—a condition obviously shared by 
military applications, in which the lives of our 
soldiers may be the cost of deficient 
performance. Hence, it is reasonable to take 
seriously—even during early stages of research 
and development—the task of quantifying the 
value of introducing IDSSs to given 
applications. 

Unfortunately, progress with this task in the 
Artificial Intelligence (AI) community has 
generally left much to be desired. As Cohen and 

Howe candidly acknowledge in AI Magazine, 
"... we rarely publish performance evaluations 
and, still less, evaluations of other research 
stages" (Cohen 1988). Again, Wyatt and 
Spiegelhalter point out that although "many 
believe that medical expert systems have great 
potential to improve health care, ... few of these 
systems have been rigorously evaluated 
..."(Wyatt 1990). Similarly, the authors of the 
present paper recognize military leaders are still 
waiting to see the presumed value of IDSSs 
clearly quantified for battlefield applications. 

This need for methodological advancement of 
evaluation appears also to be more urgent in 
some stages of the IDSS lifecycle than in others. 
Laboratory testing of expert systems, for 
example, has received relatively more attention, 
producing a number of useful techniques such as 
black-box / white-box testing; checks for the 
consistency, completeness and redundancy of 
rules; and measures for the accuracy and 
robustness of their conclusions (Wyatt 1990, 
Kirani 1992). Undoubtedly, these techniques 
contribute to determining the overall worth of an 
IDSS, for it certainly matters whether advice 
produced by the system is timely, accurate, 
reliable and so forth. 

On the other hand, a conspicuously less 
advanced stage of evaluation methodology is 
noted in the following comment by Heathfield 
and Wyatt (Heathfield 1993) regarding medical 
IDSSs: "Many evaluation methodologies have 
addressed specific aspects of system structure 
and function, but have not addressed evaluation 
of the impact of the system on users or patients." 
Indeed, one may properly ask, "Given that this 
system produces medical advice that is timely, 
accurate and reliable, how much does its use in a 
hospital setting actually improve health 
services?" Again, the business executive may 
wonder,  "Given that this  IDSS  is  technically 
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sound, how much will my corporation benefit 
from its everyday employment in my 
operations!" In a similar fashion, it is 
reasonable for the military commander to 
enquire, "Given that this IDSS on my howitzers 
can produce advice that is timely, accurate, 
reliable, etc., how much will its introduction to 
my artillery battalion actually improve our 
performance of particular missions!" In each 
case, the most fully-developed evaluation 
methods now available tend to fall silent when 
this type of question is asked. If a name is 
required for the missing piece of methodology, 
perhaps we should say a general method is 
needed to quantify the application value of 
IDSSs. 

A method to meet this need is described in this 
paper. Although our proposed solution is 
sufficiently generic to serve any of the kinds of 
application areas previously mentioned, we shall 
use the context of a specific U.S. Army Field 
Artillery program to illustrate its details. 

3. Problem Statement 

The U.S. Army requires a new generation of 
artillery vehicles, comprised of an improved 
howitzer and its companion resupply vehicle 
(collectively designated the Crusader system). 
The initial operational concept (Preliminary 
1994) specifies this system must "enhance the 
capability of the Field Artillery to provide 
supporting fires" for maneuver forces equipped 
with modern armored vehicles. Provision of this 
enhanced capability will require a Crusader 
battalion to demonstrate a "significant increase" 
in the ability to accomplish assigned missions 
(such as deliver fires, communicate, move, 
survive, resupply and maintain). One of the 
difficult problems presented by this requirement 
is that of determining whether—and, 
quantitatively, to what degree-certain IDSS 
capabilities on Crusader vehicles will improve 
system performance. For example, Army 
planners need to know—at early stages of 
research and development-just how much better 
the Crusader howitzer and the howitzer platoons 
may be expected to accomplish "move" missions 
if they are furnished with an automated route- 
planning IDSS component. Questions of this 
kind are particularly challenging at the present 
time, since neither vehicle is available yet for 
testing (a type of problem not uncommon in 

other application areas as well). Accordingly, 
our solutions (at least, in the near-term) must 
often involve the use of simulation-and, in the 
given case, appropriate simulation should 
represent complete Crusader units in realistic 
operational scenarios. 

4. Solution - Part 1: Simulation Environment 

Fortunately, many of the resources for solving 
the problem we have described can be found in 
the infrastructure of Distributed Interactive 
Simulation (DIS). Evolving DIS architecture 
and protocol standards are envisioned as 
ultimately supporting a "wide spectrum of 
applications" (The DIS Vision 1994), 
recommending them as a potentially generic 
environment to serve the needs of such areas as 
business and medicine. Currently, they already 
furnish a framework for exercises representing 
the military operations of existing armor and 
artillery units. With the provision of additional 
crewstation simulators for Crusader vehicles— 
and the provision of selected prototype IDSSs- 
so-called "virtual" DIS exercises should be 
possible in the future to support evaluation at the 
level of individual soldier or section 
performance. In the near-term, however, other 
capabilities of the DIS infrastructure are likely to 
be more cost-effective. A particularly attractive 
option would be to exploit the existing 
technology of Computer Generated Forces 
(CGF) by adapting it to serve the problem we are 
addressing. 

5. Solution - Part 2: Intellieent Objects 

Generically, the CGF entities generated for a 
military DIS exercise (e.g., tanks, helicopters, 
etc.) may be characterized as (artificially) 
"intelligent objects." For example, a simulated 
tank created with ModSAF, the modular CGF 
software system developed by Loral 
(Ceranowicz 1993), can automatically perform a 
number of tasks (such as route planning or road 
following) that would normally be performed by 
a human operator. Moreover, the intelligent 
behavior of this object can be changed to 
simulate the effect of an IDSS upon task 
execution. One of the methods for implementing 
such changes in ModSAF is to alter the system 
parameters in appropriate task models (Mohn 
1994). The ModSAF software package also 
permits human operators to direct the behavior 
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of CGF entities, selectively, offering an 
alternative mechanism for simulating IDSS 
effects upon vehicle behavior. That is to say, it 
is technically feasible to modify and extend 
existing ModSAF entities in ways that allow 
them to simulate the battlefield behavior of 
Crusader vehicles—with or without particular 
types of IDSS equipment. Moreover, the 
ModSAF environment includes extensive 
automated logging of data concerning behavior 
of CGF entities in a simulation exercise. 

All of the basic resources, then, are available in 
DIS and environments such as ModSAF to 
support data collection for solution of the given 
problem. A representative experiment, using 
this approach, would involve comparative 
analysis of data collected from two simulation 
exercises (in the DIS environment and with 
Crusader CGF units generated by suitably 
adapted ModSAF components). Both exercises 
would employ a common battlefield scenario and 
Crusader units, but only one of them would 
simulate performance of the units equipped with 
a chosen IDSS component or system. The other 
exercise would yield "baseline" data for 
comparisons. A similar experimental procedure 
(albeit, without use of CGF entities) has been 
employed successfully in a simulation testbed to 
validate knowledge-based sensor control 
(Harrison 1994). Both DIS and the ModSAF 
technology happen currently to be focused upon 
military applications; however, the DIS protocol 
standards, as well as the modular "intelligent 
objects" of ModSAF, are clearly suitable 
resources for extension to other domains, such as 
business and medicine. 

It may be objected that the proposed procedure is 
"circular"; i.e., provision in the CGF entities of 
simulated effects of IDSS equipment may appear 
to "beg the question." The objection, however, 
overlooks two important points. First, the 
proposed procedure must be understood as part 
of a larger, comprehensive evaluation process. 
Initial estimates of IDSS effects upon individual 
task performance for individual vehicles can 
later be refined by more complete (and more 
expensive) man-in-the-loop crewstation 
simulations. Second,    even    when    such 
refinements become available, the proposed 
experiments will still be needed to determine the 
organizational impact of the (now more precise) 
quantifications of task or vehicle-level effects. 

As previously noted, the form of the question we 
are addressing concerns the application value of 
an IDSS. Given certain assumptions about the 
accuracy, speed, etc., with which a particular 
IDSS component on individual vehicles allows 
specific tasks to be performed, we wish to 
explore systematically the consequences of these 
assumptions for units of such vehicles (e.g., 
Crusader platoons) executing higher-level 
operations (e.g., "move" missions) under the 
conditions of realistic battlefield scenarios. 
Knowing the rule base in a given IDSS is 
consistent may, indeed, be an important piece of 
evaluative information, but it does not, ipso 
facto, tell a Brigade or Division commander 
what the applied value of the IDSS will be for 
his Field Artillery battalion on the battlefield. 
To determine the value quantitatively, data must 
be collected in a realistic simulation of 
battlefield operations, and then subjected to 
analysis-a solution step we shall now address. 
The "Value Calculus" we propose for this step is 
based upon a simple utility model that has been 
applied successfully to prior evaluation tasks by 
one of the authors of this paper (McGee 1991). 

6. Solution - Part 3: Value Calculus 

Techniques for data analysis can be made 
arbitrarily complex, but no amount of 
mathematical labor can transform bad data into 
useful     information. Accordingly,     we 
acknowledge at once the importance of some 
preparatory work that is assumed in all 
applications of our Value Calculus. 

First, it is necessary to identify primitive units 
and operations for which appropriate measures 
of performance can be defined. In the military 
problem we have selected, individual vehicles 
(e.g., Crusader howitzers or resupply vehicles) 
would illustrate elementary units, and their 
assigned tasks (e.g., plan route, follow route, 
etc.) would illustrate elementary operations. An 
example of appropriate measures of 
performance, in this context, might concern the 
merits of a route-planning task execution on an 
individual Crusader vehicle, and be comprised of 
specific measures such as the following: 

=>   speed  with  which  the   route   is   planned 
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=>   degree to which the planned route avoids 
exposure to enemy detection 

=>   overall   length   (i.e.,   directness)   of  the 
planned route 

We shall designate such measures "merit 
factors," and note that their specification serves 
to define certain data elements that must be 
collected in each simulation exercise. 
Knowledge of these required data elements, will, 
in turn, play a role in construction of the 
battlefield scenario to be used in the simulation 
exercises; minimally, for example, the scenario 
for the case we are considering will need to task 
at least one Crusader vehicle with route 
planning. Only when preparatory work of this 
kind has been well performed can we expect the 
Value Calculus--or any other analytical 
technique, for that matter—to produce sound 
quantification of IDSS application value. 

For each merit factor associated with a particular 
task and vehicle type, the Value Calculus maps 
raw data (often, averages of collected data 
elements) onto the real-valued interval [0,1] by 
means of a specific satisfaction function, 
producing a merit value for the given merit 
factor. For example, the average time in which 
an individual Crusader vehicle completes the 
route planning task in the course of an exercise 
may happen to be 3 minutes; in this case, an 
appropriate satisfaction function takes 3 as its 
argument and returns some value such as 0.75. 
In the next step, the Value Calculus determines a 
primitive Figure of Merit (FOM) for the given 
vehicle and task by computing a weighted sum, 
as shown in the following equation: 

(1)    FOM (V(vO, T(tj)) = I wn fn(x) 
where « 

V(Vj) =   vehicle Vj (in this case, a specific 
Crusader vehicle), 
T(tj) = task tj (in this case, the route planning 
task), 
n  = the number of merit factors associated 
with execution of task tj by vehicle Vj, 
fn = the appropriate satisfaction function for 
merit  factor n  (and task tj on Crusader 
vehicles), 
x = the raw data (for example, average time 
in which Crusader vehicle Vj executed task 

tj). 
and 

wn = a weight assigned by the experimenter 
to merit factor n, subject to the following 

constraint:  Sw„=l. 
n 

The weights, wn, provide the experimenter with a 
useful capability to tailor the FOM for a given 
task and vehicle type to reflect the relative 
importance of its composite merit factors. For 
example, military domain experts may judge the 
speed with which a Crusader howitzer plans its 
routes to be generally a more significant 
consideration, in evaluating its execution of the 
task, than the "directness" of the routes that it 
plans. 

Although computation of a set of FOMs (for 
Crusader vehicles in an exercise, executing a 
number of different tasks) is an important first 
step, the principal utility of the Value Calculus is 
realized when it combines these results to answer 
questions such as the following: 

For "move" missions, in the uniform 
battlefield scenario, is the applied value of 
adding an IDSS with route-planning capability 
greater for platoons of Crusader howitzers than 
for platoons of Crusader resupply vehicles? 

To deliver quantitative answers for such 
questions, the Value Calculus must support 
computations over units composed of multiple 
vehicles, and operations comprised of multiple 
tasks. For this purpose, the following general 
equation is applied, producing real-valued 
measures of applied value, V, on the range [0,1]: 

(2)  V (UNIT, OPERATION) =   l/(m+n) Z Z 
w^ FOM (VtvJ/IXO) -    n 
where 

m = number of tasks, tm that comprise 
OPERATION, 
n = number of vehicles, vn, that comprise 
UNIT, 
FOM (V(vB),T(tm)) is the primitive real- 
valued Figure of Merit, on the range [0,1], 
previously computed according to equation 
(1) for vehicle vn executing task tm 

and 
Wm+n = weights assigned by the experimenter 
to reflect relative impact of particular unit 
operations upon outcome of the simulated 
battle, subject to the following constraint: 
Zwn 
m+n 

= 1. 
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It is worthy of notice that equation (2), in 
application to the suggested experimental 
question, would determine an average Figure of 
Merit for all Crusader howitzers or resupply 
vehicles in a platoon and for all tasks required to 
execute the "move" mission. This allows the 
applied value, V, to capture possible secondary 
effects that may result-in a realistic battlefield 
context—from the IDSS assistance with route 
planning. For example, it is conceivable that 
more efficiently planned routes may enhance 
performance of the route following task that is 
also a part of the "move" mission. Recognizing 
that interdependencies of this sort are by no 
means uncommon in the real operations of 
complex organizations (including hospitals and 
business corporations), we propose an evaluative 
methodology that does not "throw away" 
pertinent information about secondary effects. 

Our provision of weights for the terms in 
equations (1) and (2) also permits use of 
information about certain causal relations that 
affect assessment of applied value. In the case of 
simulated military exercises, for example, After 
Action Review (AAR) typically reveals critical 
operations by units (or even key tasks performed 
by individual vehicles) that trigger chains of 
cause and effect with important consequences for 
the outcome of the battle. Relatively more 
weight must be assigned to such "key" events if 
we expect to assess accurately the applied value 
of proposed IDSSs. Used in conjunction with 
appropriate software resources for capturing data 
about such events from the simulation network, 
our Value Calculus provides a simple 
mechanism for including them in computation of 
applied value. This provision, moreover, should 
be equally useful for analyzing data from 
business or medical simulations. Indeed, the 
operation of nearly any complex system can be 
expected to involve "critical" events in which 
even relatively small advantages from IDSSs 
may play an important causal role in determining 
overall success or failure of the system. 

7. Conclusion 

Published methodologies for evaluating IDSS 
technology have tended to neglect the important 
need to measure its organizational impacts—i.e., 
to quantify its applied'value. We have presented 
the outline of an approach that directly addresses 

this need. The three major components of our 
solution recommend use of the DIS simulation 
infrastructure, exploitation of existing software 
resources that support "intelligent objects" and 
application of a simple Value Calculus for data 
analysis. 

8. References 

Ceranowicz, Andy; Ladd, Carol; Smith, Joshua; 
and Vrablik, Robert. ModSAF 
SOFTWARE ARCHITECTURE DESIGN 
AND OVERVIEW DOCUMENT. Orlando, 
FL: Loral Systems Company, 1993. 

Cohen, Paul R, and Howe, Adele E. "How 
Evaluation Guides AI Research." AI 
Magazine 9 (Winter 1988): 35-42. 

Harrison, Patrick R. and Harrison, Ann P. 
"Validating an Embedded Intelligent Sensor 
Control System." IEEE Expert (June 1994): 
49-53. 

Heatbiield, H. A., and Wyatt, J. "Philosophies 
for the Design and Development of Clinical 
Decision-Support Systems." Methods of 
Information in Medicine 32 ('1993'): 1-8. 

Kirani, Shekhar; Zualkernan, I. A.; and Tsai, W. 
T. "Comparative Evaluation of Expert 
System Testing Methods." Technical 
Report, University of Minnesota, Computer 
Science Department, April 28, 1992. 

McGee, J.; Metzler, T.; and Paesano, S. Pre- 
planned Product Improvement Study: 
Advanced Command & Control Evaluation. 
Groton, CT: General Dynamics - Electric 
Boat Division, June 28, 1991. 

Mohn, Howard Lee. "Implementation of a 
Tactical Mission Planner for Command and 
Control of Computer Generated Forces in 
ModSAF." Monterey, CA: Naval 
Postgraduate School, Master's Thesis, 
September 1994. 

Preliminary Operational Concept for Advanced 
Field Artillery System (AFAS) and Future 
Armored Resupply Vehicle (FARV). United 
States Army Field Artillery School, 
(DRAFT) 3 March, 1994. 

The DIS Vision: A Map to the Future of 
Distributed Simulation. Version 1. Prepared 
by DIS Steering Committee. Orlando, FL: 
Institute for Simulation & Training, May, 
1994. 

389 



Wyatt, J., and Spiegelhalter, D. "Evaluating 
medical expert systems: what to test and 
how?" Medical Informatics 15 (1990): 205- 
217. 

9. Authors' Biographies 

Theodore Metzler is a Systems Engineer at 
LB&M Associates, Inc. Mr. Metzler has an 
M.S. degree in Computer and Communication 
Sciences and a Ph.D. in Philosophy. His 
research interests are in the areas of Hybrid 
Artificial Intelligence and Artificial Neural 
Networks. 

Joseph Kelly is a Systems Analyst at LB&M 
Associates, Inc. His educational background is 
in General Business, Computer Systems 
Analysis and Material Acquisition Management. 
His research interests are in the areas of 
Logistics, Human Factors, Graphical User 
Interfaces, Artificial Intelligence/Expert 
Systems. 

390 



Supporting Materiel R&D Using Linked Engineering, 
Constructive, and Virtual Modeling and Simulation 

Tools 

John A. O'Keefe IV 
US Army Natick Research, Development and Engineering Center 

Natick, MA 01760-5015 
jokeefe@natick-emh2.army.mil 

Robert Mclntyre 
Simulation Technologies, Inc. 
111 W. First Street, Suite 748 

Dayton, OH 45402 
rmcintyr@natick-emh2.army.mil 

1. Abstract 

In a world of ever decreasing funding and accelerated 
development programs designers of protective 
equipment can no longer depend solely on the 
traditional methods of trial and error. Recently, 
developers of individual ballistic protective clothing 
have been required to reexamine such issues as non- 
homogeneous construction, increased body coverage, 
new materials, and rapidly evolving threats. 

Traditional engineering models used in the design 
and evaluation of individual ballistic protective 
clothing compare the maximum possible serious and 
lethal wounds that would be expected for a given 
design worn by a standing man exposed to a 
fragmentation munition. The models are useful in 
making system comparisons for potential injuries. 
They do not provide a result that can be easily 
translated or related to an operational setting. 

Wargames such as Janus and CASTFOREM provide 
a means to model such operationally relevant issues 
as loss exchange ratios and time to engagement in a 
controlled operational environment. They do not, 
however, provide a means to examine human factors 
issues such as fatigue, heat stress, the effects of 
environment on human movement speed, or a means 
to develop probability of detection, probability of hit, 
probability of kill from engineering descriptions of 
proposed clothing and equipment. 

Virtual simulations such as SIMNET, SAFDI, CCTT, 
and MODSAF provide an opportunity to insert the 
human into the loop minimizing much of the 
traditional administrative overhead associated with 
traditional wargames. They also provide extremely 
vivid visualization tools in the form of computer 
image generators (CIGs) and Stealth Workstations 
that, if properly used, allow decision makers to view 

proposed equipment operating in a realistic tactical 
setting before it is even prototyped. 

During the last year, the 21st Century Land Warrior 
Integrated Technology Program (21CLW ITP) and 
the Generation II Soldier Advanced Technology 
Demonstration (GEN II ATD) have been examining 
concepts for inclusion in their technology 
demonstrations. One of the issues that both 21CLW 
ITP and GEN II ATD are seeking to illustrate is how 
to use technology to make dismounted individuals 
more effective while increasing their survivability. 
In preparation for the concept development phase of 
GEN II a large number of material combination and 
area of coverages had to be rapidly examined to 
identify three ballistic fragmentation protective 
ensembles that weighted 13, 14, and 15 lbs. while 
minimizing the expected levels of casualties, heat 
stress and fatigue. The required analysis was 
accomplished using a linkage of engineering casualty 
assessment models, linear programming tools, 
performance models, and DIS simulations. 

The analysis identified the three proposed systems, 
studied their impacts on heat stress fatigue and 
survival and provided visualization of the effects of 
the three systems plus two existing baseline systems 
over a period of six weeks. The resulting systems 
have become the basis for an Body Armor Advanced 
Warfighting Experiment (AWE). The analysis has 
been extended to include the effects of individual 
small arms. 

The analysis has won the FY94 Army Materiel 
Command Group Systems Analysis Award and the 
performance model, the Integrated Unit Simulation 
System (IUSS), used in the analysis was used during 
the 16th Interservice/Industry Training Systems and 
Education Conference (I/ITSEC) to provide 
individual computer generated dismounted infantry. 
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2. Introduction 

US Army research and development programs are 
being required to use a full spectrum of modeling and 
simulation (M&S) tools to support design and 
investment decisions. These M&S tools include 
engineering models, casualty assessment models, 
performance simulations, wargame simulations and 
Distributed Interactive Simulations (DIS). While 
many of these M&S tools have existed for quite some 
time, they have not been previously linked in 
coherent support of a materiel development program. 
Recent US Army guidance from the Assistant of the 
Army for Research Development and Acquisition 
requires that all Army Advanced Technology 
Demonstrations (ATDs) must address the use of DIS 
in published Simulation Support Plans (SSPs). The 
use of DIS to support materiel development decisions 
is still very much in its infancy. A prototype analysis 
using a full spectrum of M&S tools including DIS 
was accomplished for the 21st Century Land Warrior 
Integrated Technology Program (21CLWITP) during 
March-April 1994. This prototype analysis examined 
the potential of using M&S tools to optimize 
individual ballistic fragmentation protective 
ensembles. The M&S paradigm developed for this 
analysis has become the cornerstone of the 21CLW 
ITP SSP and the SSP for a number of other ATDs. 

3. Background 

Basic and applied Department of Army and 
Department of Defense research and development 
programs are today required to shorten the time to 
develop solutions to battlefield deficiencies. At the 
same time these programs have significantly reduced 
budgets and constantly increasing program oversight 
and review requirements. Modeling and simulation 
have the potential to aid these materiel development 
programs meet the requirement to shorten the 
research and development schedule while providing 
the data necessary to answer the requirements of the 
many program review and oversight requirements. 

Recently the US Army Soldier Systems Command - 
Natick Research, Development and Engineering 
Center (Natick) used a suite of modeling and 
simulation tools to address the needs of Soldier 
System materiel developers. Over a period of six 
weeks, modeling and simulation tools were used to 
examine over 75 different body armor configurations 

to identify an optimal system that could be 
constructed for user testing. The optimal system 
needed to minimize the serious and lethal wounds 
from bursting munitions, minimize the effect on heat 
stress and fatigue, and not adversely affect the ability 
of the individual and small unit to accomplish a 
military mission across a wide range of 
environmental conditions. In addition, data was 
required to support the defense of the contribution of 
the proposed optimal armor system to individual 
survivability and mission accomplishment. 

4. Approach 

The required analysis was accomplished by linking 
widely accepted engineering level ballistic casualty 
assessment models with a human and small unit 
performance analytic simulation. The human and 
small unit performance model was operated in a 
Distributed Interactive Simulation (DIS) synthetic 
environment to provide visualization and a larger 
force than normally possible in a single model. The 
human and small unit performance analytic 
simulation generated aggregate data inputs for use in 
constructive wargame simulations. Each set of 
variables were executed repeatedly until sufficient 
data had been produced to support the statistical 
definition of the distribution of the results. 

The approach used during this analysis was to: 

• Model body armor alternatives (by body zone 
and by material) 

• Select the four most promising alternatives 
based upon the modeling 

• Model the four selected alternatives to 
produce lethal areas 

• Calculate the system weights for each of the 
selected alternatives 

• Simulate the tactical mission using the 
Integrated Unit Simulation System (IUSS) 

• Develop inputs for Janus from the results of 
the IUSS simulations 

The models and simulations that were used in this 
analysis were: the ballistic casualty reduction model 
CASRED and the Integrated Unit Simulation System 
(IUSS) Version 1.0. In addition, a linear program 
was developed to select a manageable number of 
proposed armor configurations from the large number 
modeled in CASRED for simulation in IUSS. Figure 
1 illustrates the analytic flow used in this study. 
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Figure 1. Analytical Flow 

5. Discussion 

Development of individual body armor has 
traditionally required extensive testing of materials 
followed by the building and testing of prototype 
systems. The testing of potential materials for use in 
proposed systems has required detailed testing using 
small panels of the material which are impacted with 
a representative set of ballistic fragment simulation 
projectiles. This testing generally costs between 
$25,000 and $75,000 for each proposed material and 
can require up to six months to accomplish. The 
exact cost and time of the testing is related to the 
availability of material, Government test facilities 
and the required levels of detail for the 
characterization of the ballistic protective properties 
of the material. 

Following the ballistic panel testing, promising 
materials are fabricated into protective ensembles 

that undergo human use testing and further ballistic 
testing. Each of these prototype armor ensembles can 
cost as much as $5,000 and require six weeks to 
build. Engineering modeling using the CASRED, 
HELMETRAN, and ARMORTRAN ballistic 
casualty assessment models must be performed to 
provid a basis for comparison to existing protective 
equipment prior to type classification of a proposed 
body armor item.1 This evaluation -prototype - 
evaluation & modeling cycle can be very time 
consuming and expensive, resulting in long periods 
between type classification of new protective 
ensembles for the soldier in the field. 

The evolving worldwide political environment and 
US foreign policy, plus the need to rapidly insert new 
technologies into the field necessitates a reevaluation 
of how Soldier System equipment is developed and 
fielded. The Land Warrior (LW), 21 st Century Land 
Warrior (21 CLW), and Generation II Soldier (GEN 
II) programs have further emphasized the need to 
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Figure 2 Operational Scenario Vignette 

shorten the traditional Soldier System research and 
development cycle. Therefore, during March and 
April 1994, a consortium lead by the Modeling and 
Simulation Branch, Advanced System Concepts 
Directorate, Natick undertook the task of developing 
a new paradigm to shorten the time required to design 
Soldier System equipment using linked engineering, 
performance, DIS, and constructive models. This 
effort2 used as input to the CASRED model the 
following information: 

• Three armor materials, 
• Five possible percentages of coverage for 

five zones of the body 
• Two helmet collar combinations 
• Seven threat munitions 

CASRED is designed to calculate the serious and 
lethal wounds for each body region that statistically 
would occur for a given munition/protective system 
combination. These body region results are then 
summed for the entire body. The results for both the 
individual zones and the total body are calculated by 
the model. During the Analysis of Ballistic 
Protection Concepts Quantifying Operational 
Impacts and Design Criteria, the individual body 
zone results for each possible armor 
material/munition combination and the associated 
material weights were input to a linear program. This 
linear program identified the armor system 
configuration for any given system weight which 
provided the lowest possible expected lethal wounds 
while minimizing  the  expect  serious  wounds. 

Optimized ballistic protective systems were 
developed for system weights between 6 and 25 
pounds. In addition, a set of design criteria based 
upon the results of the casualty reduction modeling 
and the linear program optimization were developed. 

Based upon user input, three optimal systems were 
selected for simulation in an operational setting using 
IUSS and Distributed Interactive Simulation (DIS) 
tools. These systems were a 13 lbs., 14 lbs. and 15 
lbs. armor system. In addition, the current Personal 
Armor System Ground Troops (PASGT) vest and 
helmet, plus systems composed of 100% coverage of 
all five body regions with each of the three armor 
materials were simulated in the same operational 
setting. Figure 2. graphically depicts the operational 
scenario. 

For each pairing of alternative system, threat bursting 
munition, munition circular error probability (CEP), 
temperature and humidity, 250 iterations of the IUSS 
simulation were executed. During the IUSS 
simulations environmental conditions ranging 
between 10°C to 30°C, 25% to 95% humidity, and 
either night or clear day sky were examined. The 
results of these iterations were then statistically 
analyzed to determine the mean, median, and mode 
for heat stress casualties, serious wounds, lethal 
wounds, mission completion time, and movement 
speeds. The simulation results were also subjected to 
T test and Student T analysis. 
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DIS tools were used to provide visualization and data 
logging of the simulation exercises. The virtual 
reality visualization was used to perform rapid sanity 
checking of the tactics, techniques and procedures 
(TTP) used for the simulated dismounted infantry in 
IUSS. The data logs were used to provide replay of 
the simulation exercises. These replays allowed 
operational users and analysts to visually review all 
aspects of the simulation exercises and rapidly 
identify those event which warranted further detailed 
investigation. 

6. Limitations 

The casualty assessment models used to develop the 
expected casualty data for IUSS, Janus, and 
CASTFOREM contain a number of limitations. 
These include that the soldiers are assumed to remain 
in a standing position during the entire artillery attack 
and they simplify their representation of the human 
body by dividing it in to six cylindrical parts to which 
was assigned a uniform statistical probability of 
serious or lethal wounds based upon a residual 
kinetic energy for the various presented fragments. 
The available computational capabilities necessitated 
these model simplifications when the casualty model 
was originally developed. Newer techniques are now 
available to support more detailed calculation of 
ballistic casualty for a dynamic array of body 
postures during a ballistic attack. 

7. Study Results 

The results of 250 IUSS simulation runs for each 
body armor alternative (PASGT Helmet, PASGT 
Vest plus Helmet, 13 lb. Optimized System, 14 lb. 
Optimized System, and 15 lb. Optimized System) 
showed that ballistic protection and soldier 
dispersion/tactical employment must be balanced. 

While the CASRED results show the maximum 
possible lethal and serious wounds if soldiers were 
located at every possible location around the 
detonation of the munition, IUSS illustrates that less 
dynamic casualty results will be observed when 
soldiers are dispersed and maintain a minimum of 35 
meters spacing. 

The simulation results are influenced by the 
capabilities of the CASRED model. Currently, only 
casualties for standing soldiers are calculated. In a 
battlefield setting, soldiers will tend to initially go to 
ground while they identify where the attack is 
coming from. This would require the casualty 
calculations, first, to be calculated for standing and 
then prone soldiers. 

The Distributed Interactive Simulation (DIS) version 
of IUSS was used in conjunction with a Photo 
Realistic DIS Stealth to illustrate the findings of the 
analysis. These tools allow the rapid visualization of 
the effects on movement and survivability that each 
of the simulated alternatives produced. 

The following observations were made during the 
analysis: 

• A 25% increase in protective equipment 
system weight is a 5% increase in the total 
combat load 

• 5% increase does not create an operationally 
significant increase in the impact of total load 
on marching speed or mission completion 
times 

• However, this increase may produce a 
significant increase in ballistic survivability 

8. Future Plans 

Since the initial analysis was completed additional 
analyses have been conducted to examine the effects 
of current and proposed body armor on expected 
small arms casualties. The technique has been 
expanded to simulate larger units of dismounted 
infantry using IUSS simulations linked using a DIS 
network and DIS communication protocols. 

The operational mission has also been expanded to 
include a larger friendly force engaging an opposing 
infantry force. This scenario will be progressively 
expanded to include more and more of the total 
combined arms team. 

Simulation of additional operational missions are 
planned. These planned missions include Military 
Operations in Built-up Areas (MOBA) and 
Operations Other Than War (OOTW). 

9. Potential Uses 

While conducting the Analysis of Ballistic Protection 
Concepts Quantifying Operational Impacts and 
Design Criteria the potential power of DIS 
visualization tools to help decision makers rapidly 
review the application of hypothetical equipment was 
demonstrated. This was accomplished by describing 
the proposed equipment's characteristics in IUSS and 
transmitting the individual activities of each soldier 
across a DIS network using Entity State Protocol 
Data Units (PDUs). These Entity State PDUs were 
then used to animate a "Photo Realistic" Stealth 
Workstation that displayed the activities of the 
soldiers.   This linkage of extremely high fidelity 
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computer simulation of soldier performance and 
survivability with the stealth workstation provided a 
rapid visualization of proposed equipment, 
procedures and tactics helping to debug and 
understand the outcomes of the simulation exercises. 
The remainder of the synthetic environment could be 
populated using Modular Semi-Automated Forces 
(MODSAF), other computer generated forces and/or 
manned simulators. 

Another area with rich potential is the use of data 
logger tapes from previous training and mission 
rehearsal simulation exercises to establish a scenario 
setting into which proposed technologies can be 
inserted. This would free the technologist from the 
potential pitfalls associated with the population of a 
realistic synthetic environment with systems and 
forces that are unfamiliar to them. Instead, the 
technologist would be free to concentrate on the 
simulation of their proposed technology, depending 
on the previously capture synthetic environment to 
describe the other forces and systems operating in the 
synthetic environment. 

10. Conclusions 

This analysis has shown how engineering and 
integrated performance models and simulations can 
be used to develop inputs usable for Combat Models 
such as Janus and CASTFOREM. It provides a 
methodology for optimization of material 
configurations which resulted in significant increases 
in protection over current equipment. The 15 lb. 
optimum system provides the maximum reduction of 
serious and lethal wounds across the fragmentation 
munitions with the least negative impact on mobility, 
heat stress, and mission accomplishment. The 
usefulness of DIS tools to support analytic efforts 
was demonstrated during this analysis. 

The analysis also highlighted the need to improve 
engineering and CASRED methodologies to address 
the effects of: different soldier positions; vital organ 
protective strategies; small arms and flechettes. It 
also showed that the expected ballistic fragmentation 
casualties could be reduced by more than 30% when 
a structured system approach was used. 
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1. Abstract 

The Integrated Computer Generated Forces Terrain 
Database (ICTDB) project, being developed jointly by 
TASC and SAIC, is part of the ARPA/TEC 
Advanced Distributed Simulation Synthetic 
Environments program. The main goal of this project 
is to develop an integrated terrain representation that 
will satisfy the Computer Generated Forces (CGF) 
environmental reasoning requirements for ARPA's 
Synthetic Theater of War (STOW) program. This 
representation will address many of the shortcomings 
of current CGF terrain databases, as well as include a 
richer set of terrain features and attributes for advanced 
terrain reasoning. As with previous CGF terrain 
databases, this database will contain terrain features as 
spatially organized objects. However, irregular terrain 
grids, multiple elevation features such as tunnels and 
bridges, and feature aggregation for higher echelon 
terrain reasoning will all be supported. This 
representation will allow for real time updates in order 
to handle dynamic terrain and weather effects. The 
representation will provide CGF terrain support for 
the other Synthetic Environment programs. A few 
terrain databases will be generated in this 
representation and demonstrated using ModSAF. 

2. Requirements   Analysis 

The first phase of this project, which was completed 
in March, consisted of a requirements analysis, data 
source investigation, and preliminary design. In the 
second phase, an incremental development is 
underway to provide the components of the 
representation to support the more critical STOW 
requirements. A series of engineering demonstrations 
is scheduled at TEC through the summer and fall of 
1995 to   test  these changes  within   the  ModSAF 

environment. This paper focuses on the results of the 
work performed in the first phase of this program. 

The requirements analysis task started with a literature 
review of current and some future computer generated 
forces, command forces, and constructive simulations 
in order to determine the terrain content, 
representation, analysis, and reasoning requirements 
of a wide variety of these systems. From this review, 
we developed a Requirements Survey Form that was 
used as a basis for our program interviews. We chose 
a number of specific programs to interview as part of 
this requirements analysis in order represent a broad 
spectrum of CGF terrain users and programs: 

ModSAF 
CCTT 
CFOR 
STOW 
War Breaker/JPSD 
Eagle 

The STOW program requirements analysis was a very 
important part of this task. There are many terrain 
implications in the STOW requirements that this 
project needs to address. STOW will be a Joint 
Services training program, which implies that a 
variable resolution terrain representation is needed to 
accommodate individual combatants, ground entities, 
and high flying aircraft. This also implies that an 
ocean and littoral region representation is needed. 
STOW requires the integration of virtual, live, and 
constructive simulations, which implies that the 
terrain databases used in the simulations need to be 
correlated to the real world as well as each other. 
STOW terrain databases will be much larger than 
previous near-ground databases, on the order of 
hundreds of a kilometer on a side, so a global 
coordinate system that allows for compact terrain 
representations is necessary. STOW will also require 
the simulation of tens of thousands of entities, so all 
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terrain services must be efficient. STOW requires that 
the simulation environment must be dynamic, which 
requires that terrain databases must be able to be 
updated in real-time for battle damage, combat 
engineering effects, and weather effects. 

We also performed a review of terrain analysis 
procedures in order to insure the terrain representation 
will provide the appropriate terrain data. These 
analyses included mobility and trafficability models, 
cover and concealment determinations, and 
identification of landing zones. A draft Requirements 
Analysis document (Stanzione & Evans 1994) and 
draft Application Programmer's Interface document 
(Evans et. al. 1994) were generated and distributed to 
a number of organizations for review: 

•     ARPA (PM Synthetic Environments, PM 
Synthetic Forces) 
TEC 
STRICOM 
Loral 
Mitre 
MIT Lincoln Labs 
NPS 
SRS 
TRAC, Ft. Leavenworth 

From the results of these analyses and reviews, a 
common set of requirements for the ICTDB 
representation was determined and is shown in Table 
1. The requirements were grouped into two categories 
in order to distinguish those requirements that are 
already provided by current CGF terrain databases and 
required to maintain current functionality, and those 
requirements that are currently not supported to the 
level necessary for STOW. 

A data source definition task was also performed in 
phase one of this project. It focused on populating the 
ICTDB representation from integrated terrain datasets 
consisting of Triangulated Irregular Networks (TINs) 
for elevation data and feature data from operational 
data sources, such as Interim Terrain Data (ITD). The 
combined capabilities of ARC/INFO and the SI000 
toolkit were examined as the primary terrain database 
generation tools, with particular focus given to the 
SI000 Application Programmer's Interface. A Data 
Source Definition document (Buettner, et. al. 1995) 
was generated as part of this task. 

Table 1: 
Requirements for ICTDB 

Basic Requirements Advanced Features 

ANSI C (with ADA interface) Global coordinates w/ local cartesian 

Vehicle placement Storage of integrated TINed surfaces 

Elevation lookup Multiple LOD elevation data 
Soil type and slope queries Dynamic updates 

Negative elevation values Non-homogenous aggregate features 

Multiple elevations at location Expandable features and attributes 
Line-of-sight and area intervisibility USCS soil types and other mobility attributes 
Spatially organized Mobility corridor networks 
Road and river networks Building interiors 
General feature type queries Precipitation and temperature effects 
Contour line generation Sea state and sea floor representation 

Expandability of database during generation 

Partial database loading 
Check pointing terrain 

Multiple terrain views 
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3. Representation   Design 

The ICTDB representation design task consisted of 
developing an overall design for the integrated terrain 
information, as well as designs for the individual 
components. The ICTDB representation consists of 
three integrated components: a local terrain 
component for elevation and trafficability 
information, a global terrain component for terrain 
reasoning information, and a feature component for 
specific feature and attribute information. A global 
coordinate system designed to support near-ground 
exercises on any scale was also defined. Figure 1 
shows an overview of this design. 

3.1   Coordinate   System 

As part of the ICTDB design phase, a white paper on 
the use of coordinate systems by CGF simulations 
has been written (Evans & Stanzione, 1995). This 
paper spells out the reasons for using a global 
coordinate system which differs somewhat from what 
is currently in use in most CGF applications. 

Simulations participating in a DIS exercise are 
constrained to use a common public representation of 
coordinates in the virtual world, as specified by the 

DIS protocol. This public representation is, of 
course, Geocentric Cartesian Coordinates (GCC) with 
coordinate values represented using 64-bit double 
precision vectors. A good summary of the rationale 
behind using GCC for DIS can be found in the BBN 
white paper (Burchfiel & Smyth, 1990). GCC is 
based on a right-handed Cartesian system with its 
origin at the Earth's center, the X-axis passing 
through the Equator at the Prime Meridian, the Y-axis 
passing through the Equator at 90 degrees east, and 
the Z-axis passing through the North Pole. This 
representation has obvious advantages. GCC is a real- 
world system. Put simply, straight lines in GCC 
represent straight lines in the real world, unlike 
systems which involve coordinate projections. 
Furthermore, GCC is inherently extensible to 
exercise regions of arbitrary size. The GCC 
representation is however, very unwieldy for internal 
use by a simulation application, since the magnitude 
of the numbers required to represent vectors near the 
surface of the Earth is quite large. Furthermore, the 
interpretation of GCC coordinates at points on or near 
the Earth's surface is not intuitive, since GCC is not 
a local frame of reference. This is clearly an obstacle 
to the developers of code implementing behaviors, 
platform kinematics, sensors, weapons systems, and 
so on within a CGF application. 

/    \ 
Page / Patch 

Figure 1: ICTDB Overall Design 
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Current CGF systems which simulate ground entities 
usually use some form of local Cartesian coordinate 
system with position specified as an offset vector 
from a fixed origin, typically the southwest corner of 
the database. The terrain data are derived from a 
representation that is a planar projection of some 
form, most often a UTM representation. Indeed, prior 
to the adoption of DIS as an IEEE standard, the 
SIMNET protocol specified a public representation on 
the network of coordinates as X and Y offsets in 
meters from an origin at the southwest corner of the 
database in a suitable UTM grid zone. 

There are two fundamental problems with coordinate 
systems based on UTM representations. First is the 
difficulty of scaling to large exercise areas. In order to 
participate in an exercise spanning multiple UTM 
grid zones, a CGF application would be forced to 
manage transformations from one local (projected) 
frame of reference to another. These transformations 
would need to take place quickly and be transparent to 
the behavioral and platform models. A second 
problem is encountered in the inherent simulation 
anomalies that result from the fact that "straight" 
lines parameterized in such systems actually represent 
curves in the real world, owing to the transformations 
employed in planar projection. In past exercises 
spanning UTM grid zones, database coordinates have 
simply been extended beyond grid zones specifically 
to avoid transformation difficulties. This leads to even 
greater projection anomalies. Of course, DIS requires 
that coordinates be represented in GCC when being 
transmitted on the network. Therefore, efficiency 
concerns suggest that future CGF systems will 
represent locations in the virtual world using an 
internal representation easily converted to GCC. 
Because developers tend naturally to write code which 
is based on linear parametric equations, a Cartesian 
coordinate representation is also suggested to avoid 
the anomalies due to projection. 

The following are the fundamental simulation 
requirements which affect the choice of coordinate 
representation in a CGF system: 

• Scaleability - As simulations grow larger in 
scale, it is crucial that an internal 
representation support arbitrarily large 
exercise areas, perhaps even the entire surface 
of the Earth. 

• Compactness - Storage must make efficient 
use of space. This requirement is, of course, 

closely     related     to      the      scaleability 
requirement. 

• Faithfulness - The coordinate representation 
should be free of anomalies such as curvature 
effects. 

• Ease of translation to and from GCC - For 
efficiency reasons, an internal coordinate 
representation should support fast conversion 
both to and from GCC, since this translation 
must occur for every location vector which 
is read from or written to the DIS network. 

• Naturality - The coordinates values returned 
to code simulating platforms and command 
elements must be natural in the sense that 
they must have an intuitive relationship to 
the real world for the benefit of developers of 
this code. 

The ICTDB project has chosen a coordinate 
representation which addresses all of the requirements 
listed above. Based on our survey of CGF systems, 
we believe that ICTDB is building the first 
simulation subsystem for storing and accessing 
digital topographic data that, in fact, meets all five 
requirements identified above: scaleability, 
compactness, faithfulness, ease of translation to and 
from GCC, and naturality. 

In elaborating a design for ICTDB, we have chosen a 
hierarchical database organization, which in principle 
can be scaled to accommodate exercises of arbitrary 
size. At the highest level, the surface of the Earth is 
subdivided into cells, one degree in latitude by one 
degree in longitude. A cell is thus approximately 100 
kilometers by 100 kilometers square. This 
terminology is borrowed from the War Breaker World 
Reference Model (Brockway & Weiblen, 1994). 
Within a cell, ICTDB data are further organized into 
pages, which are in turn subdivided into patches. 
Patch size can vary from database to database, 
depending on feature density. The page is really a 
logical unit used to fetch and store data. The patch is 
the fundamental unit of organization for both features 
and TIN data. While storage limitations will certainly 
be a factor in building large databases, ICTDB has 
met the scaleability requirement by providing the 
ability to support large databases that can span 
multiple cells. 

Within each cell, a local Cartesian frame of reference 
is defined. The origin is at the center of the cell, with 
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the X axis pointing east, the Y axis pointing north, 
so the X-Y plane is tangent to the Earth's surface at 
the origin of the local frame of reference, and the Z 
axis is an outward normal vector to the Earth's 
surface. The requirement of naturality is met by using 
Cartesian frames locally. It must be noted however, 
that the ICTDB cell coordinates do not furnish a Z 
vector which is normal to the Earth's surface, except 
at the origin of each cell frame. There is a deflection 
from the vertical which increases toward the edge of 
each cell, up to a maximum value of about 0.7 
degrees. While not significant for ground vehicles, it 
will be necessary for the ICTDB API to provide an 
inward normal, if requested, at a given point (X,Y) in 
each cell frame. This will be especially important for 
long range ballistics calculations. 

In order to convert GCC coordinates to the ICTDB 
representation, the cell number is first calculated by a 
geodetic transformation. This yields an pair of indices 
which reference the cell data. Each cell has an 
associated offset vector and 3D rotation matrix. 
Vectors in the cartesian coordinate frame in the cell 
are simply GCC vectors, with the offset vector 
subtracted, that are then multiplied by the cell 
rotation matrix. This means that the transformation 
from GCC to cell coordinates is linear. Of course, the 
inverse transformation from cell coordinates to GCC 
is also linear. This meets the fourth requirement that 
coordinates be easily transformed to and from GCC. 
Furthermore, since the transformations are linear, the 
ICTDB global coordinate system meets the 
faithfulness requirement, unlike projected coordinate 
systems. 

We note that a similar local Cartesian coordinate 
system has been in use for some time in some 
airborne radar systems. An analysis of some of the 
tolerances involved in the paper (Gadeken, 1976) 
suggests a larger cell size, say five degrees by five 
degrees, may be appropriate. The smaller cell size in 
ICTDB is actually tied to the compactness 
requirement. We have elected to store elevation values 
for TIN data in a compact fixed point format similar 
to the ModSAF CTDB implementation (Smith, 
1994). Use of the larger cells would require floating 
point elevation data, hence would use more storage. 
In addition, we estimate that the overall storage 
requirements for such larger cells would be on the 
order of magnitude of a hundred megabytes instead of 
four or five megabytes, which is unacceptable for 
system performance. These storage considerations, 
together with the much larger gravitational deflection 

in large cells, led to our choice of a relatively small 
cell size. 

Most calls to the ICTDB API will require that a 
complete set of coordinates in this global reference 
system be passed. That means that the cell, or a 
pointer to the cell, along with the X and Y in the cell 
cartesian coordinate frame are needed to specify a 
location. We considered defining a current cell with 
all calls referencing the current cell by default. While 
this would make porting ICTDB into existing 
applications a little easier, it would blur the interface 
and introduce ambiguity. 

Since the ICTDB API defines coordinates as a type 
which includes not just the X,Y and Z in the cell 
frame, but also a reference to the cell itself, ICTDB 
will need to support operations on these coordinates, 
that is a vector algebra for cell coordinates. For 
example, an application often needs to calculate an 
offset vector from a platform location A to another 
entity location B, for an intervisibility calculation, 
say. If A and B are in different cells, the application 
cannot simply subtract vectors. The ICTDB library 
will have to provide these vector operators, to assist 
in cell transitions. 

3.2   Local   Representation 

The ICTDB local representation has been designed to 
contain all elevation data and physical feature data. 
The physical feature data are divided into two parts: 
geometric data and attribute data. Geometric feature 
data are maintained within the local representation, 
while the attribute data, not required for time critical 
functions, is accessed by referencing the feature 
component of the representation. The rational for 
maintaining geometric data locally is to minimize 
data access time, thereby minimizing the terrain 
representations effect on time critical routines (i.e., 
elevation lookup and intervisibility). 

The fundamental assumptions behind ICTDB's local 
representation is that terrain surfaces will be primarily 
integrated TINs. The representation will maintain the 
minimum set of data required for terrain services, so 
data access is efficient for time critical routines 
(elevation lookup and intervisibility). Although we 
expect most future databases to be generated from 
integrated TINs, our design will not preclude the use 
of gridded terrain. We are addressing the merits of two 
approaches. If the database cell is completely gridded, 
then we may use  the  ModSAF representation  to 
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handle the cell. If the database is partially TTNned, 
then the non-TINned grid posts could be converted 
into two triangles and accessed using the point 
location algorithm mentioned below. By changing 
grids into TINs, there would be a slight increase in 
database size (duplication of stored vertices) and a 
small performance penalty (extra level of indirection). 
For the TINed portion of a database, the elevation data 
will be stored as terrain elements in the local 
representation. A terrain element is either a triangle (3 
vertices) or a polygon (4 vertices). Each terrain 
element will contain all vertices, edges (implicit or 
explicit), soil information, and adjacency/topological 
information (neighbor to my edge). The 
representation also includes new data structures called 
virtual grids. These virtual grids enable a direct 
mapping from a point on the database to the most 
probable terrain element. By adding adjacency 
information, in addition to the virtual grid, 
neighboring terrain elements may be interrogated if 
the most probable terrain element does not contain 
the database point. Also, the intervisibility engine 
traverses through terrain elements, only looking at 
those elements that have a direct effect on 
intervisibility. In order to convert TINs to our 
prototype representation we used ModSAFs 
algorithms that produce the terrain element edges and 
vertices in patch relative coordinates. The data were 
augmented with adjacency information and then stored 
into the final format. The new representation requires 
some extra storage, but the storage cost is offset by 
the recycling of most of the grid post data. However, 
we do plan to keep the features present mask 
capability of the grid posts. Our current data show an 
increase in database size by 25-30 percent, but efforts 
are being made to decrease the size without impacting 
performance. 

Currently the design and profiling effort has focused 
on improving the performance of two terrain services 
routines (intervisibility and elevation lookup) in a 
TTNned database. To improve performance 
substantially, we need direct access to the terrain 
element which corresponds to a given position on the 
database. The point location algorithm we 
implemented was derived from an algorithm developed 
for use during the TINing process (Scarlatos, 1993). 
The approach overlays a TTNned region (i.e., patch) 
with a grid, which we call a virtual grid. The number 
of rows and columns in the virtual grid is based on 
the square root of the density of the terrain elements 
(triangle) rounded to the nearest integer. For example 
(see Figure 2.), if there were 10 terrain elements in a 
region then the virtual grid would be a 3x3 virtual 

grid. Next, one terrain element is mapped to a virtual 
grid, if the area of intersection between the terrain 
element and the virtual grid is a maximum of all 
terrain element intersections (see shaded areas within 
Figure 2.). This ensures that the point location 
algorithm will first interrogate the most probable 
terrain element associated with a virtual grid. If the 
point is not within the mapped terrain element, the 
adjacent terrain elements are interrogated using the 
topological information about neighbors 
accompanying each terrain element. If the point is not 
within the neighboring terrain elements, then their 
neighbors are interrogated. If the point is not within 
these neighbors, then all remaining terrain elements 
will be interrogated. A mask containing the index of 
all terrain elements interrogated will be maintained to 
prevent duplicate interrogation of a terrain element. 
We are investigating additional optimizations on this 
approach. 
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Figure 2: Virtual Grids 

Current CGF terrain representations are highly 
optimized, and since our goal is to improve 
performance when using TINs, we needed to 
prototype and profile our local representation designs 
to get a feel for the potential storage and performance 
costs. We used ModSAF 1.3 libctdb as the timing 
and storage baseline. To facilitate the profiling effort 
the following steps were taken. 

1.    Reformatted a TTNned CTDB   database   (local 
representation) into a prototype ICTDB format. 
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2. Generated a new terrain service algorithm that 
exploited the new representation. 

3. Generated a profiling routine that incrementally 
stepped over a database, determined the average 
terrain element density over the interrogated 
region, interrogated a set of random points, and 
then returned the average time required to 
interrogate each point. 

4. Ran profiling tests on the same machine (SGI 
Indy R4400 with 96 MBytes RAM) and collected 
data using either the ICTDB or CTDB terrain 
representation and the applicable terrain service 
routine. 

We expect the time required for elevation lookup to 
be "approximately" constant for the average case, 
since we have a direct mapping from a position to a 
virtual grid which in turn maps to the most probable 
terrain element. The "approximately" arises if the 
point does not map directly to the terrain element, 
requiring that the adjacent triangles be interrogated. 
Further prototyping will address effects of variable 
and decoupled (feature and terrain) patch size, 
summary data (i.e., maximum or minimum elevation 
data), terrain compactness, and conversion of grids to 
terrain elements in partially TTNned cells. 

3.3   Global   Representation 

The ICTDB global representation stores references to 
every feature in the database. References are organized 
to support queries at varying levels of detail 
requesting lists of features found in a specified area. 
Levels of detail are designed to meet the needs of 
units of varying echelon. 

Past terrain representations for computer generated 
forces, such as the ModSAF Quadtree database, have 
organized features by location to support rapid 
retrieval of features found in an area. However, these 
representations generally retrieve a list consisting of 
every feature in the given area, presenting more detail 
than is required by higher-order echelons. The goal of 
the ICTDB global representation is to provide the 
capability to filter these lists to generate only features 
of potential interest to echelons of varying size. 

The primary distinguishing characteristic determining 
whether a given feature is of interest to a unit of a 
given echelon level is its size: larger units are less 
likely to be concerned about smaller features. In 
addition, real-world commanders of larger units are 
likely to mentally group many smaller features, such 

as individual buildings, into a few larger features, 
such as city blocks or towns. Thus, it is important to 
support multiple level of detail queries via two 
mechanisms: selecting features based on their size, 
and grouping features together to form new features. 
To support this second mechanism, we define an 
aggregate feature to be an abstraction representing a 
group of two or more features, which may themselves 
be aggregate features. We believe that the basic query 
supported by the global representation should be of 
the form: 

Return all features in area A larger than size S. If 
possible, do not return multiple references to any 
feature at multiple levels of aggregation. 

Building on past work in the field, we chose a 
quadtree as the basic data structure for the global 
representation. This provides the desired spatial 
organization. As stated above, the novelty of our 
approach stems from our treatment of multiple levels 
of detail queries. In the ICTDB global representation, 
each level of the quadtree implements a distinct level 
of detail. Any given node should be able to rapidly 
generate a list of all features that overlap it and are at 
least as large as the node itself. If both a feature and 
an aggregate containing that feature meet these 
criteria, the aggregate should be removed from the 
list, since it can be accessed through its association 
with the feature. This could easily be accomplished 
by storing a list of all such features at each node. 
However, doing so would result in extensive 
replication of references to large features. 

To avoid undue repetition of references, a scheme was 
developed whereby two classes of reference are 
distinguished: explicit references and implicit 
references. Explicit references are pointers to features 
contained in a node. Implicit references are a means 
for a node to include features explicitly referenced at 
another node, thus limiting replication. Ideally, 
references should be made according to the following 
two rules: 

1. Each feature is explicitly referenced at the 
level of the quadtree whose nodes are closest 
to it in side dimension. At that level, each 
node overlapping the feature contains a 
pointer to the feature. 

2. Each feature is implicitly referenced at each 
node, N, descended from those nodes at which 
the feature is explicitly referenced after 
meeting the following criteria: 
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a. N overlaps the feature. 
b. If the feature is an aggregate feature, N 

does not overlap any component of the 
feature at or above N's level in the 
quadtree. 

Figure 3 shows an example of this referencing 
scheme. In this example, the large square represents 
level 0 of the quadtree, its four sub-squares are at level 
1, and the four smallest squares in the upper-right 
corner are at level 2. The dotted line is the outline of 
an aggregate feature whose components are the black 
circles. Due to their respective sizes, the aggregate 
feature will be explicitly referenced at level 0, and the 
components will be explicitly referenced at level 2. 
Because the components are not referenced until level 
2, all four level 1 nodes will implicitly reference the 
aggregate feature. Finally, at level 2 those nodes that 
overlap one or more components will explicitly 
reference those components and not reference the 
aggregate at all, while those that do not overlap any 
components will implicitly reference the aggregate 
feature. 

With this scheme, there remains some duplication of 
explicit feature references. However, since features are 
of roughly the same size as nodes, each feature is 
unlikely to be explicitly referenced more than four 
times. Note that a combination of rule 1 and rule 2a 

would be adequate if there were no aggregate features; 
rule 2b ensures that each feature is accessed at only 
one level of aggregation. 

While implementing rule 1 is straightforward, exactly 
implementing rule 2 would require some form of flag 
for each implicit reference, again causing waste of 
storage. We have chosen instead to approximate rule 
2 through two mechanisms with very modest storage 
requirements. First, each node of the quadtree 
maintains a bitmask specifying at which of its 
ancestors it implicitly references at least one feature. 
And second, the list of features explicitly referenced at 
each node is sorted based on the maximum depth in 
the quadtree at which they should be implicitly 
referenced below the node. Using these structures, 
each node generates, at run time, the list of features it 
should reference in the following manner: 

• Reference all features explicitly pointed to at 
the node itself. 

• For each ancestor, if the bit mask specifies 
that at least one feature should be implicitly 
referenced, iterate through all features that 
can be implicitly referenced down to at least 
the level of the node. Any such features that 
overlap the node should be added to the list. 

Aggregate Feature: 

Aggregate explicitly referenced 
at level 0 

Components explicitly referenced 
at level 2 

Aggregate is implicitly referenced 
at level 1 

Aggregate implicitly referenced 
at this node 

Aggregate not referenced at this 
node 

Figure 3: Aggregate Feature 
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This technique ensures that every node references 
every feature it should according to rules 1 and 2 
above. In addition, nodes may reference some features 
at more than one level of aggregation. This is deemed 
an acceptable cost for the savings in space since it 
involves only the generation of redundant 
information. 

Code implementing this representation has been 
written and tested. Performance analysis is still under 
way, but execution time is expected to be comparable 
to existing systems for simple queries, and superior 
for higher-echelon queries. 

3.4   Other   Design   Considerations 

Other factors were considered in the design process of 
the ICTDB representation. These include memory 
management, extensibility, topology, dynamic 
effects, and terrain views. Each of these topics is 
addressed in this section. 

It is essential to limit the quantity of terrain data read 
by a CGF application to avoid consuming too much 
of the system's memory resources. This is balanced 
against the need to have all the data within an area of 
interest resident in memory to avoid slow disk 
accesses. In a simulation environment that supports 
dynamic terrain, this problem is compounded, since 
an application cannot be expected to predict with 
certainty which areas of a database will need to be 
modified as an exercise unfolds. Clearly, it is not 
possible to read an entire terrain database, since future 
databases may be many hundreds of kilometers on a 
side. 

ICTDB has elected to allow the application to put a 
hard limit on the area of interest for terrain data. The 
API will provide a function ictdb_set_aoi() that 
specifies the database extents for an exercise. Outside 
this area of interest, updates to the database will be 
ignored. Initially, the area of interest will be specified 
using an application parameter file, or from the 
application's command interface, or both. Eventually, 
it would be desirable to build a GUI, perhaps with 
cartographic raster images, to provide the human user 
a convenient way to specify the area of interest. 

Inside the geographic area of interest of an exercise, 
ICTDB will provide an additional function, say 
ictdb_set_extents(), that specifies the extents within 
which terrain data will actually be read when the 
exercise is started. All of the cell data necessary to 

cover the extents will be read at initialization time, 
with new cells (within the limits of the area of 
interest) read as required at run time. These additional 
reads will not require explicit application calls. 
ICTDB will maintain a list of cells within the area of 
interest which have been read, and a read of a new cell 
will be implicitly triggered by database references 
outside the extents. 

ICTDB supports a rich set of feature types and 
attributes. In order to make the implementation 
flexible enough to support adding feature types and 
attributes at run time without a dramatic impact on 
performance, feature types and attributes have been 
divided into two categories. First, there are the core 
feature types and core attributes for an ICTDB 
database. Core feature types and attributes are defined 
via a compiler data file when an ICTDB database is 
built. Each core feature type has an associated set of 
attributes taken from the global set of defined core 
attributes. The core attributes of a core feature type 
can be inferred from the feature type name. Similarly, 
the data type of a core attribute can be inferred from 
the attribute name. In addition to core feature types 
and attributes, ICTDB supports extended feature types 
and attributes. The attributes of an extended feature 
type and the data types of extended attributes are 
explicitly tagged. Extended feature types and attributes 
may be defined at run time, but access is slower and 
storage is less efficient. 

ICTDB stores topological information about the 
terrain in several ways. 2-1/2D information about 
network features such as roads and rivers is 
topological. The internal representation is an abstract 
graph to allow non-planar networks of roads. ICTDB 
stores a level three, or full planar topology for TIN 
data. This means that complete edge adjacency 
information is stored, although each edge is shared by 
only two triangles. This mean of course, that three 
dimensional features which are not simply-connected, 
such as a tunnel, are not supported in the local 
representation. (In topology, a surface is said to be 
simply-connected if closed curves drawn on a surface 
can be shrunk to a point on the surface. A sphere is 
simply-connected; a torus is not.) In order to support 
a full 3D topology, features can be placed in ICTDB 
which have arbitrarily complex geometry, fully 
supporting multiple elevations with route planning 
implications. Such features are expected to be rare. 

Because full topology is only supported in feature 
data, all changes to the topology of an ICTDB 
database must be made by adding or deleting features, 

407 



or by modifying existing features. Feature addition 
requires update to all three database components: 
local, global and feature data. When a feature is added, 
all terrain elements in the TIN data which intersect 
the footprint of the feature are marked. This is 
necessary since a feature's geometry overrides the 
geometry of the terrain element(s) on which it is 
planted. This is required since changes to the 
underlying TIN are not supported at run time, and 
features can be added to the database that negate the 
validity of terrain elements (holes, trenches, etc.) 
Feature modification means changing the attributes of 
an existing feature. One frequent case of this will be 
modifications to the geometry of a feature. If model 
references or feature references are in use, then a new 
model or attribute set will need to be generated in the 
model/attribute library. Feature deletion must be 
supported to implement retraction in a view (see 
below). However, deletion from the default ground 
truth view is not supported. 

In ICTDB, no history of updates in maintained. The 
database represents ground truth as a simulation 
unfolds. We have not yet addressed the issue of 
coherence in the presence of multiple assertions and 
retractions. Since ICTDB does not support retractions 
in the ground truth view, as explained below, this is 
not expected to be a problem. 

ICTDB does not provide derived data, or features, such 
as mobility corridors. The issue of assertions with 
side effects on derived features is being addressed in 
the CFOR Environmental Utilities (MITRE, 1995). 
Our eventual goal is to fully integrate ICTDB with 
the CFOR infrastructure and reuse the software 
components which support assertions (Layer 1) and 
mobility corridor analysis (Layer 2B). 

One of the more challenging desiderata emerging from 
the ICTDB requirements phase was the realization 
that a CGF terrain subsystem ought to support 
multiple database views. Views are a standard 
software layer in commercial database management 
products. Furthermore, in a CGF application, it is 
natural to want planning or situational awareness code 
to be able to make assertions about the terrain 
environment which are notional or temporary, or 
which have been derived from intelligence 
information. As an example, it should be possible to 
reason about "What would be the tactical significance 
of a bridge placed at location P?" or "How would 
route planning change if a road segment was added 
between points A and B?" Since ICTDB supports 
dynamic terrain, assertions can be made via the same 

interface function which adds dynamic features to the 
database. A retraction, that is undoing an assertion, 
can than be implemented as feature deletion. This is 
the only case we could see in fact, where actual 
feature deletion would occur. 

The default view in ICTDB is ground truth. No 
attempt is made to save the static view of the database 
at exercise initialization. A small number of 
additional views can be created by user request. Each 
feature has a bitmask specifying view membership on 
a per-feature basis. In addition, a table mapping 
feature types to view masks will support the 
membership of feature types in a view. Thus, all 
features of a given type can be added to, or deleted 
from, a user-defined view of the database. 

4. Conclusion 

We have completed the requirements analysis and 
design phases of this project, and are in the process of 
implementing key components and integrating them 
into ModSAF. We have started with the local 
representation and global coordinate system. We plan 
to demonstrate these enhancements to ModSAF in the 
summer of 1995. The global component and dynamic 
aspects of the ICTDB representation will be added 
later in 1995. 
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1. Abstract 

The Close Combat Tactical Trainer is a complex train- 
ing system composed of manned modules, user 
workstations, CGF simulators, and a number of sup- 
port stations for system initialization and after action 
review. Each of these components has different re- 
quirements for terrain representation and use, includ- 
ing visualization of the simulated environment for 
trainee immersion, viewing of the terrain on a two di- 
mensional display, basic terrain query routines, and 
terrain reasoning. In CCTT, these terrain functions are 
supported by three representations referred to as the 
visual, plan view, and terrain reasoning databases. 

This paper focuses on the Environment CSC, which 
provides terrain query and terrain reasoning function- 
ality by operating on the terrain reasoning database. 
Areas of interest include design issues, use by different 
CCTT components, database representation, and data- 
base correlation. 

2. Overview 

2.1 CCTT Project Summary 

The Close Combat Tactical Trainer (CCTT) is the first 
system in the Combined Arms Tactical Trainer 
(CATT) family of training systems. CCTT will utilize 
the Distributed Interactive Simulation (DIS) network 
protocol to provide a virtual environment for training 
of armor and mechanized infantry personnel. CCTT 
is composed of a variety of manned modules, an Op- 
erations Center (OC), Semi-Automated Forces (SAF), 
and several support workstations. The manned mod- 
ules are cabin simulations with virtual out-the-win- 
dow views for training on vehicles such as the Ml A2, 
M2A2, and M113. SAF and OC provide emulated ve- 
hicles to populate the battlefield; they share a common 
architecture referred to as Computer Generated Forces 
(CGF). SAF provides a wide range of both BLUFOR 
(friendly) and OPFOR (enemy) entities. OC provides 
BLUFOR entities to support battalion staff training 
and to add depth to the battlefield with entities which 
provide resupply, maintenance, combat engineering, 
and fire support capabilities. Both SAF and OC are 
controlled via user interfaces provided on the SAF 

Workstations and OC Workstations, respectively. The 
actual simulation of the SAF and OC entities is pro- 
vided by separate CGF processors dedicated to entity 
simulation. 

There are three correlated databases used throughout 
the CCTT system. The visual database is used for all 
out—the—window visual displays. The plan view dis- 
play (PVD) database is heavily optimized to meet re- 
sponse time and display requirements for a two dimen- 
sional display on user interfaces in a format similar to 
standard maps. The "Model Reference" terrain data- 
base (or MRTDB) is used for all other terrain opera- 
tions. The Environment CSC operates on MRTDB 
(among other objects) to provide terrain query and ter- 
rain reasoning capabilities. While the Environment 
CSC was originally designed to support terrain reason- 
ing operations on CGF systems, other CCTT compo- 
nents use it as well. 

2.2 Scope of Paper 

CCTT is utilizing spiral development to mitigate risk 
and provide incremental drops before contract 
completion. Simple terrain operations were provided 
in two of the early system spirals in which SAF partici- 
pated (Builds 2 and 4). As this paper is written, Build 
5 integration efforts are underway. Because there are 
two more builds following Build 5, and because the re- 
quirements analysis efforts for these last two builds 
have yet to begin, the issues and resolutions described 
in this paper may be subject to change. The intent of 
this paper is merely to inform the community of cur- 
rent work, thereby providing insight into one aspect of 
a large and potentially influential system in the simula- 
tion and training community. There will continue to 
be changes and improvements to the terrain capabili- 
ties, terrain representation, and requirements as sys- 
tem level issues are resolved and spiral development 
moves forward. Thus, while the final CCTT terrain 
implementation may or may not include all ideas pres- 
ented herein, the discussions still serve to provide 
practical examples of how CCTT's ambitious require- 
ments are encouraging new approaches to terrain func- 
tionality and representations. 
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23 Paper Topics 

Section 3 will provide a brief description of the Envi- 
ronment CSC from a functional standpoint. The vary- 
ing needs of the Environment CSC's disparate users 
are discussed in Section 4. The following sections then 
focus on MRTDB, including how the database is gen- 
erated, representation issues, and a brief overview of 
the database design. 

3. Environment CSC Capabilities 

The Environment CSC is the software component re- 
sponsible for providing terrain querying (e.g. height of 
terrain) and terrain reasoning (e.g. obstacle avoidance) 
functionality. One design objective for the Environ- 
ment CSC is to provide both "sight" and basic "inter- 
pretation" of what is seen. This is analogous to the 
man-in-the-4oop looking out the manned modules' 
vision blocks and observing an undulation in the ter- 
rain skin which he determines is a good cover location 
(without determining, for example, when to go to the 
cover position). The Environment CSC, then, encap- 
sulates basic environment data (such as the terrain da- 
tabase representation) by providing "value added" 
routines to callers. 

Functionality developed through Build 5 includes 
height of/above terrain, collision detection, munition 
impact detection, line of sight, road routing, static ob- 
stacle avoidance, area intervisibility, and covered 
positions based upon terrain skin. Additional func- 
tionality to be provided in Builds 6 & 7 includes cross 
country routing, refinements to obstacle avoidance, 
cover and concealment based upon features, and 
weather. These and other future capabilities are dis- 
cussed from the perspective of a "snapshot" of the lat- 
est available requirements and preliminary design. 

While many of these capabilities will sound familiar 
to those who have examined other CGF systems, a 
number of new twists have been provided by CCTT's 
databases and requirements. As a result, significant 
new functionality is provided as discussed throughout 
this paper. A few sample cases are briefly discussed 
here. 

3.1 Sample Issue: Dynamic Terrain 

Some terrain features (referred to as prepositioned ob- 
jects), will change their geometry at run time. This re- 
quires a mechanism for uniquely identifying features 
and a means to efficiently alter their geometries. In 
addition, Combat Engineering emplacements (re- 
ferred to as relocatable objects) may be created before 
and during the exercise for survivability, counter-mo- 
bility, and mobility operations.   Relocatable objects 

may supplement the geometry of terrain skin, as well 
as create new obstacles where none existed before. 
Dynamic terrain issues for CGF and DIS representa- 
tion are discussed in (Campbell 1994) and (Crowley 
1994). 

One interesting issue presently being addressed in 
CCTT is how to handle "omniscience" relative to ter- 
rain state. If a bridge is destroyed by an OPFOR entity, 
BLUFOR entities should not automatically alter their 
long distance road routes if there was no mechanism 
by which they could have known that the bridge was 
destroyed. However, other OPFOR entities that could 
have communicated with the entities who destroyed 
the bridge should respond appropriately. Finally, 
when BLUFOR entities first "sight" the destroyed 
bridge, they should be able to inform other friendly en- 
tities of the bridge's destruction. 

Design discussions on this issue are underway, but the 
Environment CSC presently will provide routines 
which will allow a caller to create and modify a private 
data type representing an "awareness state". Because 
it is up to the Environment CSC's consumers to create 
and retain these structures, support is provided for 
variable levels of "awareness" resolution. CCTT will 
probably use a simple "force" case wherein each side 
is a collective conscience such that what any OPFOR 
entity knows about the terrain state is known by all oth- 
er OPFOR entities. If future needs require a unique 
awareness for each company, platoon, or even entity, 
this is already supported by the Environment CSC, 
since any number of awareness state data structures 
may be created and operated on. 

Observe that only a subset of Environment CSC capa- 
bilities are impacted by the awareness issue. Query 
operations are inherently based on reality rather than 
perception (e.g. line of sight is blocked by a log crib 
regardless of who is aware of the log crib's presence). 
Long distance routing is the main piece of functional- 
ity which must accept a terrain "state" from the caller 
in order to determine what is known. Obstacle avoid- 
ance is impacted, but only for minefields because oth- 
er obstacles such as log cribs and destroyed bridges can 
be seen when an entity gets close enough to plan a local 
path. Thus, obstacle avoidance can accept the caller's 
perceived state and avoid only those minefields which 
the CGF entity is aware of, while correctly blundering 
into the others. 

3.2 Sample Issue: Overpasses and Bridges 

Bi-level terrain will be supported in CCTT for over- 
passes and bridges. Support will extend beyond recog- 
nition of multiple valid Z values at a given x,y loca- 
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tion. Bridge supports running vertically from the 
ground to the suspended span are recognized by colli- 
sion detection, munition impact detection, line of 
sight, obstacle avoidance, etc. Suspended spans will 
be recognized by these same algorithms as well as by 
cover and concealment, providing overhead cover for 
entities. For destructible bridges, munition impact 
detection will uniquely identify the bridge so the deto- 
nation PDU can name the bridge explicitly. Destroyed 
bridges will result in the entire suspended span being 
removed. System design decisions require us to con- 
sider the suspended roadway "sides" to be a collision 
volume so that entities cannot maneuver off the sus- 
pended parts of a bridge or overpass. 

3.3 Sample Issue: Penetrable Forests 

Original system specifications required tree densities 
of approximately 150 trees per square kilometer as a 
representation of forested areas. Customer desires and 
innovative applications of image generator (IG) re- 
sources permitted much higher fidelity representa- 
tions of forests than the aforementioned density of 
trees or SEMNET's familiar "canopies". Evans & Su- 
therland was able to provide incredible tree densities 
by using "fading" boundaries (on forest sides and 
tops) that provided the illusion of many trees while ac- 
tually only displaying relatively few at a time. Unfor- 
tunately, the tree density was so high as to overwhelm 
any practical CGF representation. In addition, repre- 
sentation of the fading boundaries would have tied the 
Environment CSC's capabilities to a specific IG tech- 
nique for load management, something we have 
sought to avoid. 

A number of system tradeoffs were discussed, includ- 
ing use of an abstract "fog" to represent the interior 
sections of forests in CGF, serious reductions in tree 
densities, and "bands" of variable density. More back- 
ground on options pursued is provided by (Braudaway 
1995). The final solution agreed upon provides a rela- 
tively high tree density (peaking at a density of about 
2200 trees per square kilometer), that will nonetheless 
be fully correlated in MRTDB. The IG will dynami- 
cally introduce forest boundaries at 1 km in support of 
load management, but demonstrations indicated that 
there is no need for CGF to represent these artificial 
boundaries because the tree densities at forest edges 
are so high that the transition from trees to boundary 
is difficult to perceive at a range of 1 km. Thus CGF 
represents forests "correctly" (i.e. as many individual 
trees), without dealing with IG techniques such as 
boundaries or canopies. This provides extensibility 
because as IG capabilities improve over time, the 

boundary range or tree densities may increase, but this 
will not require changes to CGF's representation. 

As part of the give and take of system design, the pene- 
trable forest does include some "stretch" for MRTDB 
and Environment CSC algorithms. The tree densities 
are sufficiently high so as to threaten available caching 
space due to potential spikes in storage requirements 
in certain regions, and would also sharply increase the 
total size of the database. Even with a tightly space- 
optimized representation, storage of the 10 million in- 
dependent tree instances that are expected to appear in 
CCTT's forested Primary #1 database could consume 
160 megabytes. 

One possible approach to resolving this issue is the use 
of "aggregate models", wherein groups of trees whose 
2D configuration is used repeatedly throughout the 
visual database are stored once and referenced many 
times with different offsets. We have investigated 
ideas that will maintain the low cost 2D filtering that 
is at the heart of efficient feature accesses for terrain 
operations. However, 2D placement of each tree sur- 
viving these initial filters will require 2 integer addi- 
tions, and Z placement will require several floating 
point multiplications and additions. This cost may be 
acceptable for the forest interiors where expensive line 
of sight operations (which will require full 3D place- 
ment of trees) will typically be truncated at very short 
ranges due to the high tree densities Other algorithms 
either don't need a full 3D representation (e.g. obstacle 
avoidance) or can use 2D filtering to limit full tree 
placement (e.g. collision detection). We plan to ex- 
periment with aggregate models in Build 6. 

4. Non-CGF Requirements 

Originally, MRTDB and the Environment CSC were 
designed for use on CGF simulators (which use most 
CSC capabilities) and SAF workstations (area intervi- 
sibility, routing support, etc.). Later, though, it be- 
came apparent that other CCTT components could 
make use of these CGF-oriented capabilities. For ex- 
ample, the after action review stations use the Envi- 
ronment CSC to keep the "stealth" eyepoint within the 
database dimensions and above the terrain skin. Also, 
scenario analysis and reporting information can be ex- 
tended beyond what is available directly from DIS 
traffic, such as determining line of sight between vari- 
ous entities. Also, the OC workstation (run by a train- 
ee) has slightly different needs than the SAF worksta- 
tion (run by a dedicated operator) which can also be 
met by the Environment CSC (e.g. different levels of 
support for automated routing can be achieved with 
the same software). 
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The aforementioned CCTT components have been 
able to reduce development efforts by making use of 
software originally developed for CGF; however, the 
greatest benefit has been derived from manned mod- 
ules' (MM) reuse of the Environment CSC. 

4.1 MM vs CGF: Correlation Issues 

While the DIS standard has gone a long way toward 
providing interoperability between fundamentally dif- 
ferent simulation components in a networked environ- 
ment, there are a number of other interoperability is- 
sues that must be dealt with. Database correlation is 
an oft-cited example of such an issue. Another layer 
on top of this problem is the possibility of different ap- 
plications having a different perception of the world 
not because of correlation errors in the databases 
themselves, but rather in the algorithms which are 
accessing and operating on the databases. 

The issue of correlation between the visual and CGF 
databases has been addressed aggressively in CCTT, 
and appears well in hand despite a number of pitfalls 
encountered along the way. Significant work remains 
before us in this area. However, CCTT has managed 
to shift the related problem of algorithms operating on 
the different databases up a layer in the conceptual 
"protocol stack" of terrain correlation, by having 
CCTT manned modules use a subset of the same Envi- 
ronment CSC used by CGF. The subset of Environ- 
ment CSC capabilities needed by manned modules are 
height of terrain at a location, mobility indication (i.e. 
surface characterization) at a location, collision detec- 
tion, munition impact detection, and a number of sim- 
ple query routines (e.g. indication of whether an area 
is "forested", "urban", or "open" in support of dam- 
age assessment from proximate impacts). This idea 
represents a departure from the original CCTT design 
which called for use of the IGs for basic terrain opera- 
tions needed by manned modules. The correlation 
problem is thus reduced to just data correlation with- 
out the additional concern of access algorithm correla- 
tion. If a manned module queries the height of terrain 
at a given x,y location it will get the same z result as 
a CGF entity at the same location. 

While the Environment CSC provides a self-consis- 
tent baseline for CGF and manned modules, these two 
systems have somewhat different requirements and 
needs which drive them to use the supplied informa- 
tion in different ways. At times, we have been able to 
meet all needs with a single (more generic) interface, 
but sometimes specialized access routines were re- 
quired at the external interface level. 

4.2 MM vs CGF: Vehicle Placement 

Vehicle placement requirements represent an example 
where our interface was impacted by the different 
needs of our consumers. Based upon legacy systems, 
an interface for vehicle placement (returning, for ex- 
ample, a rotation matrix) may have been provided. 
Our object oriented design pushed us away from this 
concept (i.e. a rotation matrix is an attribute of an enti- 
ty, which has a heading, not of the terrain), and this no- 
tion was reinforced when it was discovered that 
manned modules needs up to 14 contact points, each 
with a unit normal to the terrain skin and a mobility in- 
dicator. In contrast, CGF's simpler entity placement 
requires only four contact points. While the Environ- 
ment CSC uses the same primitive routines for deter- 
mining elevation and mobility indicators, a special- 
ized external interface was added for manned modules 
so the unit normal could be returned to them without 
complicating CGF's interfaces. 

43 MM vs CGF: Collision Detection 

For collision detection, CGF uses a single, fully ori- 
ented bounding volume to describe the location of the 
querying entity. However, manned modules requires 
separate bounding volumes for the hull, turret, and 
gun. In this case, the Environment CSC interface sim- 
ply became more generic by providing the caller the 
opportunity to specify the bounding volume to be op- 
erated against. In this manner, the caller can select the 
fidelity of representation to be used without changes 
to the collision detection code itself. 

4.4 MM vs CGF: Caching Approaches 

Manned modules' caching needs have a clear bound 
since a region need only be maintained around the 
own-vehicle in order to prevent cache misses. A sim- 
ple look-ahead caching scheme can maintain the 
cached area around the own—vehicle at sufficient dis- 
tance to handle worst-case munition flyout ranges. 
However, manned modules' extremely stringent tim- 
ing requirements (based upon a required 15 Hz update 
of the IG) leave no leeway for cache misses or even 
disk I/O needed for look-ahead cache priming. 

At the opposite end of the spectrum, CGF must deal 
with many vehicles, potentially spread out over large 
areas. While this complicates efforts to predictively 
read in sufficient terrain data to avoid a cache miss dur- 
ing a terrain query, CGF is nonetheless more tolerant 
of a missed update for a given entity (or component of 
an entity) as long as other entities can still be updated. 

Use of a separate AIX process for disk I/O when acces- 
sing MRTDB goes a long way toward meeting these 
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different needs. While disk I/O is blocking the caching 
process, the main process can continue on. This may 
resolve the problem of manned module's strict update 
times since the 15 Hz appointment can be met even 
while disk I/O for predictive caching is underway. The 
separate process simultaneously meets CGF's needs 
because a cache miss for critical data can cause an enti- 
ty component to "yield" its tick. This allows other en- 
tities to continue on unaffected, while the terrain data 
should be available for the next tick of the skipped 
component. This works well for some terrain requests 
(line of sight, path planning), but may cause anomalies 
for other capabilities (vehicle dynamics, collision 
detection). These are the same anomalies that would 
be encountered on a global scale as any CGF system's 
performance degrades under peak load. The alterna- 
tive would be to hold the entire CGF process during 
disk I/O, thus imposing the worst-case performance 
on all entities on the affected CGF processor. These 
issues will be explored in more detail during Builds 6 
& 7, including decisions as to whether it is practical to 
implement the concept of "yielding" a tick. 

4.5 MM vs CGF: SIMNET Interoperability 

The final requirement levied on the Environment CSC 
in support of manned modules was correlation of and 
operation on the Grafenfels database, which is needed 
for SIMNET interoperability. While CCTT manned 
modules (and other components) are required to inter- 
operate with SIMNET (via a protocol translator), the 
CCTT CGF system is not required to do so. Thus, un- 
der the original system design of using the IG .for 
manned module terrain needs, there would have been 
no need to generate a terrain reasoning version of the 
SIMNET interop database. CCTT databases represent 
a superset of SIMNET databases with the exception of 
canopies and treelines (as discussed elsewhere in this 
paper), so these were the main problem areas. Fortu- 
nately, SIMNET treelines and canopies do not effect 
any of the functional areas needed by manned modules 
(e.g. these features don't cause collisions in SIMNET). 
As a result, only minimal effort was required to sup- 
port SIMNET databases for manned modules. One 
simple example is the fact that tree trunks also do not 
cause collisions in SIMNET, so we must provide a 
mechanism for ignoring tree trunks while determining 
collisions in SIMNET interoperability mode. 

5. Terrain Database Generation 

The process for deriving the terrain reasoning and 
PVD databases from the visual database source data is 
illustrated in Figure 1. The visual database is built 
from a number of sources to meet the needs of the cus- 

tomer while simultaneously conforming to polygon 
budgets for the target IG. The resultant database is 
then exported to a data file (which is in a modified SIF 
format, aka "SIF++"). The details of the data source 
format are hidden by an API, which is linked in by any 
application which needs to build a correlated database. 
This API provides data in a consumer-oriented format 
(in contrast to a format reminiscent of the data source), 
with some value added to simplify the consumer ap- 
plication and reduce duplication (e.g. regional access 
and clipping). 

This approach can be extended for support of other 
data sources by simply replacing the CCTT API with 
a version that accesses the new data source. The new 
data source could be the S1000 API, CTDB, or any 
other terrain representation. By the same token, other 
target database formats could be generated by creating 
a new terrain compiler that links in the CCTT API. 

6. Terrain Representation Issues 

In addition to the functional issues described in Sec- 
tion 3, a number of design concerns arise directly from 
the nature of the terrain database being generated in 
support of visual requirements. 

6.1 Terrain database density and size 

The density of terrain features and resolution of terrain 
skin are being driven by the substantial capabilities of 
the ESIG HD, which is the CCTT visual system (Evans 
& Sutherland 1994). The terrain skin will be repre- 
sented with minimum base ground polygon sizes of 
30m for CCTT's desert database ("Primary #2"), and 
of 60m for the forested database ("Primary #1"). Mi- 
croterrain (also known as "cut and fill") will be used 
extensively to fracture or build up the base terrain 
polygons to ensure that all roads are trafficable and 
that rivers don't appear to flow uphill. 

Visual database development is still underway and a 
number of fundamental design issues are still out- 
standing; however, initial estimates indicate that over 
30,000 man-made structures (10,000 of which will be 
destructible) and over 10 million individual trees will 
be present in the first full-size CCTT database. These 
overwhelming feature densities in databases of 100 
km x 150 km have forced us to design around the idea 
that only small subsets of the database will be accessi- 
ble in memory at one time and that it will not be practi- 
cal to read in all of the terrain needed for long range 
operations such as radio degradation and fixed-wing 
aircraft terrain following. Some examples of our ap- 
proach to these issues are provided in 3.3 and 7.4. 
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Point features (trees, buildings, bridges) will be much 
more dense than in SIMNET databases. Indeed, fea- 
ture densities will be sufficient to provide detailed rep- 
resentations of urban areas and forests. Since tree den- 
sities can be greater than 2200 trees per square 
kilometer, two familiar SIMNET features types, cano- 
pies (hollow, tent-like structures representing forests) 
and treelines (paper thin green "walls" representing 
stands of trees), are no longer needed. 

6.2 Detailed Representations 

A number of CCTT requirements are driving us to con- 
sider more complex or detailed feature representations 
than would otherwise be used. For example, CCTT 
entities are required to detect collisions with tree 
trunks as opposed to foliage, while foliage affects line 
of sight, thus requiring us to store a radius for the trunk 
and a radius for the foliage. 

There will be approximately 16 to 30 unique mobility 
indicators in the terrain reasoning database. These 
mobility indicators will be determined via a mapping 
from those visual database "material codes" which 
may be driven on. The "drive on" material codes are 
essentially permutations of ITD thematic layer values. 
We must also support a mapping from a "dry state" 
material indicator and its corresponding "wet state" 
indicator in order to provide different mobility effects 
in rainy conditions. The material code boundaries will 

be conveyed as complex, dense areal features which 
need not conform to post boundaries. The number of 
points expected for these feature types will defy full 
representation given the timing and storage require- 
ments for manned modules and CGF, so we are investi- 
gating approximations that provide a balance between 
these performance concerns, the customer's desire to 
have a reasonable range of unique mobility effects, 
and our ability to provide sufficient correlation with 
the visual database. 

As alluded to earlier, accuracy requirements for colli- 
sion detection and munition flyout capabilities have 
driven us to consider use of bounding volumes for enti- 
ties instead of potentially faster representations such 
as "leading edge" or "sample point" calculations for 
collisions. Use of more expensive routines for high fi- 
delity calculations encourage the introduction of addi- 
tional layers providing filtering in order to reduce the 
number of high fidelity calculations required, espe- 
cially in light of the unusually high feature densities in 
CCTT databases. This filtering is beyond the fast spa- 
tial filtering provided by the primitive terrain database 
access routines and supported by the database repre- 
sentation. For example, collision detection can use a 
rectangle orthogonal to the coordinate system axes de- 
fined by the two-dimensional minimum and maxi- 
mum points of the fully oriented bounding volume as 
a very fast filter mechanism, which should reduce or 
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eliminate complex checks against excessive numbers 
of nearby features. These types of algorithmic filters 
are made more important by the sharp peaks in feature 
densities exemplified by penetrable forests. 

63 New feature types 

Hedgerows, walls, dams, suspended bridges, and over- 
passes are all presently planned for the visual database. 
Representation of tunnels is still under discussion. 
The visual database's representation of forests has al- 
lowed incredible tree densities to be represented (de- 
sign issues with penetrable forests are expanded on in 
3.3). Urban areas are represented with high densities 
of buildings complete with urban clutter, driveways, 
and residential streets. 

6.4 Storage and Correlation 

The Environment CSC uses a number of approxima- 
tions and simplifications in both algorithms and terrain 
representation in an attempt to balance fidelity, perfor- 
mance, and correlation concerns. We are investigating 
low-cost solutions to the correlation errors derived 
from some of the simplified feature storage mecha- 
nisms we have reused from other database formats. 

One example is the truncation effect caused by storage 
of features in square patches with local coordinate sys- 
tems bounded to the patch's dimensions. Trees sitting 
at the boundary of a patch would appear to accessing 
routines to be truncated at the patch edge. Other fea- 
ture types, including roads and rivers would suffer the 
same problems. In some cases, one can store pieces of 
the feature in each patch. This would complicate ab- 
stract recognition of features. For example, a building 
sitting at the intersection of four patches would appear 
as 4 buildings, thus confusing reasoning on the feature 
while also complicating operations on uniquely identi- 
fied destructible buildings. In other cases, storage of 
multiple clipped features would require special case 
code, such as storing most of a river in one patch, and 
the remainder in another. This case would confuse 
code which assesses a river feature to see if an AVLB 
can span it; perhaps each of the truncated features can 
be spanned, while the actual full-size river cannot. 

If linear features are stored as a series of line segments 
and widths, then correlation is sacrificed at each 
"bend" on the linear. The error becomes more signifi- 
cant for wider features and sharper turns. The gaps 
which appear in linears may be marginally acceptable 
for roads, but significant errors in river linears may re- 
sult in unacceptably anomalous behavior. 

Figure 2 illustrates these concerns. The four boxes 
represent patches. Feature 1 is a linear (i.e. road or riv- 

er) which has small "truncation" errors at the top and 
bottom. Feature 2 is a building which crosses 4 
patches. Feature 3 is a tree which cannot be accurately 
represented by duplicate feature types (i.e. a point and 
radius in the upper patch would not match the needed 
geometry). Feature 4 is a linear which would suffer 
truncation on the vertical segment and also demon- 
strates some representation errors on extreme turns. 

Figure 2: Feature Truncation & Linear Storage 

7. MRTDB Design 

This section provides a brief overview of some of the 
design principles being used or experimented with in 
MRTDB's design. These ideas are a snapshot of the 
Build 5 representation, along with some speculative 
information on future capabilities such as dynamic ter- 
rain. A much more extensive treatment of these con- 
cepts as applied to the Build 4 MRTDB version is pro- 
vided by (Watkins 1994). 

7.1 Object Oriented Design 

We used an object-oriented approach in designing and 
implementing the Environment CSC and MRTDB; see 
(Rumbaugh 1991) for the OOD methodology used 
within CCTT. We designed our database using Rum- 
baugh's object-oriented design methods and imple- 
mented it in the Ada language. Figure 2 is the terrain 
database Object Model using Rumbaugh's Object 
Model notation. 

7.2 Separate Files 

As discussed in Section 4, different consumers with 
different needs use the Environment CSC. One early 
concern with this reuse was the fact that all CCTT 
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components using the Environment CSC might need 
to store the massive database file used for CGF terrain 
reasoning. While estimates of final database size are 
difficult at this point, the larger of CCTT's two data- 
base (Primary #1) may be between 150M and 350M. 
To minimize the storage impact on the Environment 
CSC's users, the terrain database is composed of a 
number of files. Thus, OC workstation, which only 
needs routing support, does not need to read in (or even 
store on its hard drive) the 100's of megabytes of high 
fidelity terrain data. The space savings for applica- 
tions which need the high fidelity representation but 
not routing (e.g. manned modules) is less, but it is still 
useful considering how important sufficient cache 
space is. 

A potential benefit of storing a database as multiple 
files is incremental database development and/or se- 

lective replacement of portions of the database. For 
example, if something changes in the header file, the 
much larger feature file need not change (and thus fea- 
ture offset values need not change, etc.). Replacement 
of the model file is discussed in the following subsec- 
tion. 

13 Feature Model Library 

The Feature Model Library is a set of feature models, 
where each model has a unique model ID. Each model 
maintains information about a feature that is common 
across many features. For instance, a tree model main- 
tains the opacity, height, and radius of the foliage, as 
well as the trunk radius for a particular kind of tree. 
Each tree in the database that shares the same attrib- 
utes can then reference the same tree model (via the 
model ID) to complete its definition. Since the model 
is stored only once, an enormous space savings can be 
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realized. In the case of trees, there may be 10's of mod- 
els in the forested database, but there may be as many 
as 10 million tree instances. 

The Feature Model Library facilitates the imple- 
mentation of prepositioned objects since to "damage" 
a building we can simply modify the building model 
ID from the "normal model" ID to the "damaged mod- 
el" ID. This is also much faster than performing com- 
putations to alter the geometry. Also, use of the library 
allows for a database modeler to supply the exact mod- 
el of a damaged building, instead of describing the al- 
terations that would need to be performed on a normal 
building to damage it. In addition, different buildings 
may be altered in different ways based on their dam- 
aged models, with no additional special case imple- 
mentation. 

Finally, since the Feature Model Library is stored in its 
own file, it may be swapped out for another library 
with the same feature models where some number of 
the feature models contain different information. For 
example, if we want all the trees to drop their leaves, 
we can read in a different Feature Model Library 
where all tree foliage opacities have been diminished. 
Furthermore, we can increase the fidelity of feature 
representations with little impact on storage require- 
ments and with disregard for feature densities, since 
we only need increase the size of the models, not the 
size of each feature instance. 

7.4 Header Data 

The Environment CSC relies upon information stored 
for each patch in the terrain database (where a patch is 
a square region of terrain which may be scaled depend- 
ing upon the database). These patch headers are then 
maintained in memory at all times to provide abstract 
or low fidelity information for the patch's region of ter- 
rain. For example, the off—line database generation 
tools can apply parametric criteria to these square re- 
gions to determine if they are generally urban or for- 
ested. A rough characterization of the terrain is pro- 
vided by storing the maximum elevation in the region. 
This can then support rough communications degrada- 
tion or terrain following for fast moving aircraft with- 
out requiring reference to the much larger high fidelity 
representation. We thus avoid the need to cache in 
huge amounts of data for a long distance communica- 
tions check. 

MRTDB patch headers also contain direct indices into 
their feature array. In order to determine if a given x,y 
point is on a road, one need only calculate which patch 

the point is in, then directly access the road linear fea- 
tures. 

8. Conclusions 

The Environment CSC, operating on MRTDB, pro- 
vides a number of key capabilities to CCTT compo- 
nents with dissimilar needs and objectives. Thus, the 
Environment CSC not only meets CCTT's stringent 
requirements as implemented to date, but also exem- 
plifies reuse of complex software components in large 
systems. This reduces development costs and im- 
proves correlation. Although many complex issues re- 
main ahead, work to date indicates that each will be re- 
solved in a manner which simultaneously advances the 
state of the art in distributed simulation and meets the 
needs of CCTT as a production system. It is hoped that 
this success will continue not only through the comple- 
tion of CCTT, but throughout the development and 
fielding of future CATT systems. 
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1. Abstract 

The command forces (CFOR) program will imple- 
ment a new aspect of warfare simulation: explicit 
modeling of command and control. The program pre- 
sents several aspects: (1) a concept of operations 
where command and control nodes occupy the bat- 
tlespace in the same manner as weapons systems; (2) 
an architecture where software simulation of com- 
mand and control interacts with the battlefield 
through a set of common services; (3) a software de- 
sign for the services that forms an infrastructure that 
integrates with the underlying ModSAF wargame; (4) 
a mechanism that facilitates automated integration of 
real world C2 systems with simulations; and (5) an 
implementation plan that integrates the efforts of 
multiple developers to produce a functioning multi- 
service command forces simulation. 

The CFOR program has passed through the concept 
and planning phases and is now beginning implemen- 
tation. Lessons learned from progress to date are pre- 
sented along with a plan for multi-vendor implemen- 
tation. 

2. Background 

The Command Forces (CFOR) project is a part of the 
Synthetic Theater of War (STOW) program, an 
Advanced Concept Technical Demonstration 
(ACTD) that is jointly sponsored by the United States 
Atlantic Command (USACOM) and the Advanced 
Research Projects Agency (ARPA). The STOW pro- 
gram is scheduled to support a USACOM exercise in 
1997. In the exercise, objects from each US armed 
service will interact with each other and with credible 
opposing force objects in the virtual simulation envi- 
ronment using the Distributed Interactive Simulation 
(DIS) protocol. 

The STOW ACTD requires the ability to represent 
larger-scale and more diversified military operations 
in virtual simulation. A key element in achieving this 
goal is the ability to represent both fighting forces 
and their commanders in software. Current computer 
generated forces (CGF) implementations allow the 

virtual battlefield to be populated with a useful col- 
lection of combat entities at the individual platform 
and small unit levels. CFOR extends the basic DIS 
architecture to incorporate explicit, virtual represen- 
tation of command nodes, C^ information exchange, 
and command decision making. 

3. CFOR Concent 

Extension of DIS to incorporate command and con- 
trol is based on four fundamental tenets. 

(1) Command and control can be represented in 
terms of the interactions and behaviors of com- 
mand entities. 

(2) The C2 process is an information flow process 
among command entities. As a part of the 
CFOR concept, the Command and Control 
Simulation Interface Language (CCSIL) repre- 
sents the information exchanges between com- 
manders. 

(3) C2 information flow must be restricted by a 
faithful representation of real world communi- 
cations. Information flow must be routed 
through command nodes compatible with the 
real world and subjected to battlefield effects. 
As with real commanders, virtual command 
decision makers will have access to information 
about the world through their sensors, informa- 
tion reported by subordinates through CCSIL 
messages, and CCSIL intelligence messages 
from superiors. 

(4) The C2 decision process is represented in the 
individual command entities—the originators 
and recipients of information exchanges. 

Under the CFOR architecture, a command entity may 
be represented in one of three ways: 

• a complex software application (the original goal 
of the Command Forces program), 

• a traditional computer generated forces application 
(e.g., an abstraction of the platoon leader is embed- 
ded in the ModSAF application), 

• a human working at his/her real world command 
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and control workstation. 

ARPA's CFOR program is working to build and inte- 
grate several examples of all three representations of 
command entities to create a robust and intelligent 
synthetic force for the STOW ACTD. 

4. CFOR Architecture 

The DIS protocols define a common interface for 
each entity that attempts to ensure interoperability 
and consistent physical interactions on the virtual bat- 
tlefield. Analogous requirements exist for the C2 in- 
teractions among entities. Accordingly, the CFOR 
framework includes an architecture for command en- 
tities that extends beyond the DIS network interface 
to provide a well-defined, common interface for all 
command decision activities. Command entities are 
under no implementation constraints beyond those 
imposed by the interface specified by the architec- 
ture. In this way, the CFOR framework extends the 
basic tenets of the DIS paradigm into a new mode of 
entity interactions. 

The CFOR architecture comprises two primary ele- 
ments: a technical reference model for command en- 
tity development and the Command and Control 
Simulation Interface Language (CCSIL) for insuring 
interoperability among 

4.1   Command Entity Technical Reference Model 

A technical reference model (see Figure 1) was de- 
fined that describes the command entity architecture. 
This architecture promotes interoperability and co- 
herent C2 activity by providing a shared infrastruc- 
ture, a common set of information and computing 
services, accessible through a well-defined applica- 
tions interface. The architecture is composed of three 
layers: Application Layer, Information Services and 
Utilities Layer, and Baseline Infrastructure Layer. A 
layered approach was selected for three specific ben- 
efits: 1) it provides a means of centralizing control 
over the baseline of doctrinal knowledge needed by 
the command entity applications; 2) it reduces com- 
mand entity developers' efforts by providing common 
reusable software; and 3) it shelters the command en- 
tity developers from technology and functional en- 
hancements in the baseline applications (e.g., 
ModSAF) and allows them to focus on command 
decision behavior. 
• The Command Entity Application layer is where 

the command decision-making processes reside. 
Command Entity Applications may be fully auto- 
mated software or C2 workstations operated by live 
command entities. All details about the actual im- 
plementation of a full automated software com- 
mand entity are under the purview of the simula- 
tion developer organizations; they are free to im- 
plement their own approach to malting command 

decisions. Likewise, the adaptation of C2 worksta- 
tions to the CFOR architecture is dependent only 
on the interface specification to selected modules 
with the Information Services layer. Workstation 
developers have free rein to decide how to display, 
massage, or augment the simulation data available 
via the Information Services layer. 

The Information Services layer contains the ser- 
vices and utilities that provide the information 
needed to support command decisions. These ser- 
vices impose few restrictions on how to model the 
decision process. They avoid making any infer- 
ences or judgments that are the proper purview of 
command entities. 

Access to the services and utilities is implemented 
using an object-oriented, implementation-language 
independent interface between command entity 
applications and the information services. To ac- 
complish this, the Interface Definition Language 
(IDL) specification of the Common Object Request 
Broker Architecture (CORBA) was selected to de- 
fine the interface and specify all interface parame- 
ters. 
Services available include the following: 

• Platform Behaviors provide a generic interface 
to a command entity's physical representation on 
the battlefield. Services provided mimic the 
commander's ability to sense from his vehicle, 
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Figure 1. Command Forces Technical Reference Model 
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move his vehicle around the battlefield, and em- 
ploy his weapons. 

• Communications offer an application interface 
to CCSIL message utilities. 

• Command and Control Utilities represent the 
background knowledge and rote reasoning capa- 
bility of the commander. They include 

Environmental Utilities include the ability to 
compute mobility corridors, control measures, 
reverse slopes, routes, travel time and speed. 
(Environment includes terrain, ocean, and atmo- 
sphere.) 

Unit Info provides access to static data about 
units (own and enemy) and the ability to make 
basic inferences (e.g., combat power) from the 
raw data. 

Missions and Tasks which provides doctrinal 
decision templates to help interpret an ordered 
mission and to devise a plan. 

Tactics, Techniques, Procedures which provides 
templates to help fill out orders and implement a 
plan. 

• The Baseline Infrastructure Layer contains the ba- 
sic platform representation and general DIS inter- 
face utilities. These capabilities are accessed by 
command entity applications indirectly through the 
Information Services layer. 

4.2   CCSIL 

The Command and Control Simulation Interface 
Language (CCSIL) is a special language for commu- 
nicating between and among command entities and 
small units of virtual platforms generated by comput- 
ers for the DIS environment. CCSIL includes 
a set of messages and a vocabulary of 
military terms to fill out those messages. 
CCSIL    was    developed   to   facilitate 
interoperability     between     various 
implementations of command entities (i.e., ^^ 
decision makers) and platform entities (e.g., 
vehicles, weapons, sensors) in the DIS 
environment. 

ware command entities can exchange messages with 
each other. 

Without a common language and communications 
services, every new element added to a DIS exercise 
would need to be iteratively retrofitted to interoperate 
with every other existing element of the virtual simu- 
lation environment. CCSIL serves as a unifying 
thread among diverse implementations of command 
entities, computer generated forces, and command 
and control workstations. 

5. Integration With Real World 
Command and Control Systems 

"Simulations should be driven by military personnel 
using their go-to-war C2 systems." Simulation de- 
velopers, especially in the training simulation world, 
have heard this requirement expressed routinely by 
the military user community. Until recently it has 
been very difficult to meet this requirement. In lim- 
ited cases, special automated links have been devel- 
oped to link a particular C2 system with a particular 
simulation. Unfortunately, these point solutions are 
not generalizable to other C2 systems or other 
simulations. 

The ability to interface C2 systems with simulations 
is premised on several characteristics of computer 
simulations: 

1) There needs to be a way for users at real world 
systems to communicate with simulated counterparts. 
This means that simulations must represent informa- 
tion exchanges internally in a way functionally com- 
patible with the real world and the simulations must 
include representation of command functions for the 
real world users (e.g., commanders and staffs) to 
communicate with.  Most combat simulations have 

• • 

Figure 2 shows a view of the CFOR architec- 
ture from the CCSIL perspective. 

A common language designed for interpreta- 
tion by software (e.g., simulations or cogni- 
tive processing systems) is needed to allow 
all three implementation approaches to work 
together in one environment. By using the 
highly structured format of CCSIL messages, 
humans at real world command and control 
workstations can send orders and directives 
to software command entities and expect 
them to react appropriately. Likewise, soft- 
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Figure 2. A View of the Command Forces (CFOR) Architecture 
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not included representations of either C2 information 
exchange or command entities carrying out the com- 
mand and control process to produce behavior in the 
unit. Often combat units are manipulated in the 
simulation environment as conglomerates using a set 
of very abstract "orders" that have no real world 
analog. 

2) Unfortunately there is an inherent incompatibility 
between the way people exchange information and 
the way computer simulations can accept and inter- 
pret information. Humans use natural language 
which is rich, but fuzzy. Computer simulations re- 
quire precise terminology organized in highly struc- 
tured forms. 

The CFOR concept and CCSIL bring a new approach 
to the construction of simulations that address this 
problem. 

First, by providing an explicit representation of 
command entities and information exchanges, the 
CFOR concept provides a more appropriate 
simulated entity for a human operator to 
communicate with. A CFOR command entity is busy 
collecting and reasoning on simulation information 
that is in a form appropriate for the human operator. 
The CFOR command entity can reply to requests for 
tactical state information, as well as, administrative 
and logistics information. 

Second, CCSIL was designed to be both interpretable 
by software and to be a valid abstraction of the in- 
formation exchanged by battlefield command 
entities. The current set of CCSIL messages focuses 
on providing highly structured, yet flexible formats 
for the types of information normally conveyed using 
natural language. The vocabulary of CCSIL 
messages was selected to coincide with the 
vocabulary of military personnel. The definitions 
and semantics for CCSIL vocabulary was originally 
gleaned from field manuals and is continuously 
refined to reflect common military usage. Although 
it is not natural language English, it is much more 
robust than highly abstract simulation instructions 
like "Move-Unit" or "Attack". 

One piece of ARPA's CFOR program is to use 
CCSIL and the CFOR infrastructure services soft- 
ware to adapt existing real world command and con- 
trol systems to interoperate with the simulation com- 
ponents: the CFOR software command entities and 
the computer generated force representation. This 
task is described in more detail in the following sec- 
tion. 

6. CFOR Software Design 

The CFOR architecture is supported by a set of soft- 
ware. The software developed to date has been to 
support the command entity application developers 

brought onboard by ARPA to build Army Company 
Team commanders and other Army commanders in 
the next 12-18 months. Eventually software will be 
developed to support command entity development 
for the other military Services. This work lags 6-12 
months behind the Army CFOR work due to the 
shortfalls in simulations of platforms and small units 
for the other Services. This paper describes the work 
done to date. 

The CFOR software comprises three components: 
the adapted C2 workstation application, the infras- 
tructure services software, and the adapted computer 
generated force application. This section describes 
the current status of these software components. 

6.1 Adapted C2 Workstation 

Work is underway to adapt the Army's B2C2 work- 
station prototype to be compatible with the CFOR 
simulation environment. Using this Adapted B2C2 
Workstation, a commander or staff officer can send 
and receive CCSIL messages to and from his subor- 
dinate units. The Adapted B2C2 Workstation will 
capitalize on several elements of the Information 
Services layer of the CFOR architecture. 

The intent for the STOW-97 ACTD is to deploy a 
group of these workstations at Battalion command 
post mock-ups. Experienced Army personnel or ex- 
ercise support personnel at these command posts 
would use these workstations to direct and monitor 
the activities of the virtual Companies in the virtual 
simulation environment. They would use these and 
other real world C2 workstations or communications 
devices to communicate and exchange data with 
members of the training audience at brigade, division, 
other command posts. 

As ARPA's Synthetic Forces program continues to 
extend the type of forces achievable in virtual simula- 
tion, new C2 workstations will be added to the family 
of CFOR applications. For example, in the Navy 
arena we are looking at the JMCIS workstation as a 
likely candidate. 

6.2 CFOR Infrastructure Services Software 

The CFOR infrastructure services software comprises 
several modules as outlined in the CFOR architecture 
that provide commonly used functions to the CFOR 
command entities. This infrastructure consists of 
layers of software organized into libraries, following 
the programming practices of ModSAF. 

6.2.1   Platform Behaviors Module 

Platform Behaviors Services provide a generic inter- 
face to a command entity's physical representation on 
the battlefield. A command entity can be associated 
with a vehicle or a set of vehicles (e.g., a command 
post). For example, an Army Company commander 
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may ride in a tank, a Bradley Fighting Vehicle, a he- 
licopter, or a HMMWV. The Platform Behaviors 
Services were built to use the basic behaviors imple- 
mented in the computer generated force application 
in the Baseline Infrastructure Layer (e.g., ModSAF in 
the current application). There are three groups of 
functions in the Platform Behaviors Services. 

Within the Move group, the services allow the com- 
mand entity to drive his vehicle to a specific location, 
drive in a specified direction, follow another entity, 
change the speed his vehicle is traveling, and change 
the orientation of his vehicle. Within the Sense 
group, the services allow the command entity to use 
the full range of sensors on his vehicle to sense other 
entities around him or to sense distinguishable terrain 
features around him. Within the Shoot group, the ser- 
vices allow the command entity to fire at a target, to 
fire at a location, to fire in sector, and to cease firing. 

6.2.2  Communications Module 

The Communications Module helps a command en- 
tity application send and receive CCSIL messages. It 
offers an application interface to the following 
CCSIL message utilities: 

• Message dispatcher that maintains a queue of in- 
coming messages waiting to be processed. 

• Notification mechanism that responds to polling by 
command entity for new messages. 

• Message queue accessor that allows command enti- 
ties to retrieve incoming messages from the queue. 

One new feature that the Communications Module 
brings to the DIS environment is a capability that in- 
sures delivery of the DIS Signal PDU from the send- 
ing unit's machine (i.e., CPU) to the receiving units' 
machines. The capability uses an acknowledgment 
and retransmission (up to three times) scheme to in- 
sure delivery of the Signal PDUs containing CCSIL 
messages. As the DIS protocol evolves and TCP-IP 
multicasting services become available, we will re- 
move this feature from the CFOR Communications 
Module. 

Note that this feature of insuring delivery of the 
Signal PDU is not the same as insuring delivery of 
the message between two command entities in the 
simulation. Realistic modeling of real world commu- 
nications devices is a multi-faceted problem. The 
Communications Module software provides one 
piece of the large problem of simulating 
communications devices. It compares the radio 
identifier and frequency on incoming messages with 
the radio identifiers and frequencies to which they are 
tuned for the units being simulated. If any of the units 
simulated have radios tuned to that frequency, then 
the message is passed along to the unit. Otherwise the 
message is discarded. In this way, simulated units 
listening to the wrong communications net (i.e., 

tuned to the wrong frequency) will miss messages 
broadcast on the net that they were supposed to be 
listening to. 

The remaining aspects of communications effects 
modeling (e.g., propagation loss due to jamming, ge- 
ography, and weather) are not provided by the CFOR 
infrastructure services software. Rather, the 
Communications Module hands the CCSIL messages 
over to the radio models in the simulation applica- 
tions being used. In the current version, ModSAF 1.3 
has no simulation of the communications devices 
(e.g., radios). Solving this aspect of the communica- 
tions modeling problem is not part of the CFOR pro- 
gram. 

6.2.3   Command and Control Utilities Module 

Command and Control Utilities are included in the 
CFOR infrastructure to give command entities access 
to "routine" knowledge, shared by every human 
commander, that does not depend on subjective 
judgments. This is important for several reasons: 

• To prevent redundant and potentially inconsistent 
knowledge acquisition and engineering efforts by 
the command entity developers. 

• To help focus the activities of the command entity 
developers on addressing the difficult issues in 
modeling subjective, context-sensitive judgments 
and decisions. 

• To localize, as much as possible, the encoding of 
doctrinal information within the CFOR family of 
application software for two reasons: 1) to facili- 
tate CFOR testing and evaluation; and 2) to mini- 
mize the effort needed for future enhancements or 
modifications for particular exercises or scenarios. 

This capability is implemented using a collection of 
software modules that have an input parameter list 
and return one or more data structures of information. 
The information is generated using basic data re- 
trieval operations and simple assessment functions. 
These services have been designed to avoid making 
any inferences or judgments that should be made by 
the command entities themselves. 

The Command and Control Services are organized 
into four subject areas: Environment Utilities; Unit 
Information; Tactics, Techniques, and Procedures; 
and, Missions and Tasks. The current release of the 
infrastructure software includes an interface specifi- 
cation for the Environment Utilities along with the 
software modules implementing that functionality. 
Complete interface specifications and software im- 
plementations for the other C2 services are scheduled 
for the April 1995 release of the CFOR infrastructure 
software. 
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6.2.4 Environmental Utilities 

The goal of the Environmental Utilities (EU) is to 
provide an interface to SI000 terrain data that sup- 
ports automated decision making. The utilities focus 
primarily on factors affecting movement of vehicles, 
cover, and delivery of fires for lower-echelon units. 

The SI000 data format, used for SIMNET and 
ModSAF simulations, is efficient for real-time graph- 
ical display of terrain, but does not directly support 
automated command entity reasoning. The EU inter- 
face to this data is presented in a series of layers, as 
follows. 

• LAYER 0 provides implementation-independent 
access to the basic terrain data: elevation, slope, 
soil type, feature type and location, platform capa- 
bilities, time of day, etc. Provided analyses at this 
layer include trafficability, line of sight, and coor- 
dinate conversion. Most data is floating point. 

• LAYER 1 accepts dynamic, user-defined no-go 
overlays. These specify areas of operation, av- 
enues of approach, area obstacles, and other muta- 
ble restrictions to movement. Subsequent analyses 
(at higher layers) will respect any active overlays. 

• LAYER 2a provides a fully connected topology of 
vertices, edges, and faces atop Layer 0. Faces are 
guaranteed to be planar and of uniform soil type. 
Linear edges guarantee constant trafficability for a 
point platform. Full connectivity allows consistent 
and convenient movement-oriented terrain reason- 
ing. Analysis at this level includes a general-pur- 
pose route finder, weapons fan, and cover determi- 
nation. Data is integer where suitable. 

• LAYER 2b provides a graph topology representing 
precomputed mobility corridors. These are used to 
reason about trafficability of aggregate entities that 
require a doctrinal frontage. A corridor segment 
guarantees uniform width and trafficability. 
Analysis at this layer includes identifying the mo- 
bility corridor nearest to a query point, and corri- 
dor-based routing. Data is integer where suitable. 

During an exercise, layers 0, 2a, and 2b are static for 
a given playbox (for example, the ModSAF 1.2 Fort 
Knox terrain database). 

The EU package is structured to be independent of 
the underlying terrain representation where possible 
and to anticipate near-term developments (such as 
dynamic terrain) by including place holders for these 
concepts in the design. In this way, the infrastructure 
can help command entity developers anticipate and 
design to future needs using existing software. 

6.2.5 Unit Information 

The purpose of the Unit Information utilities is to as- 
sist in providing command entities with part of the 

minimal body of information expected of all com- 
manders, no matter what their branch, experience, or 
expertise. These functions fall generally into two cat- 
egories: 

• Static information found in the battle books, field 
manuals, and technical manuals that commanders 
have access to during combat and training situa- 
tions. This includes such details as unit sizes and 
compositions, weapon and vehicle data, and esti- 
mated times to complete certain tasks. For exam- 
ple, a commander may look up the composition of 
a motorized rifle regiment to determine their com- 
position, then lookup the ranges of the weapons in 
an Motorized Rifle Regiment to determine their 
maximum range and effects. 

• Unit assessment functions, which aggregate raw 
data into commonly used terms. For example, 
when a commander wishes to report the location of 
his unit, he can obtain his unit location by calling a 
function with the location of each subunit in his 
command. 

6.2.6 Missions and Tasks 

The Missions and Tasks services provide a command 
entity with a skeletal decomposition of standard 
Company Team operations into tactically meaningful 
components, along with guidelines for implementing 
the tasks and subtasks associated with each compo- 
nent. The rationale for providing such a declarative 
representation of doctrine is that a command entity 
competent in executing all the basic components can 
execute any mission defined in terms of those com- 
ponents. The components for Company teams build 
on the ARTEP collective tasks. The target repertoire 
of mission decompositions includes those missions 
corresponding to the set of virtual training exercises 
(Attack, Defend, Delay, Movement to Contact, 
Reconnaissance in Force, Raid, Exploitation, and 
Pursuit). 

Initial implementations will only consider a service 
that relates missions to tasks. It may be useful to offer 
other classes of these services that relate tasks to sub- 
tasks, or Company tasks to Platoon missions and 
tasks. 

6.2.7 Tactics. Techniques, and Procedures 

The Tactics, Techniques and Procedures (TCP) ser- 
vices will provide a command entity with doctrinally 
acceptable decision options for conducting an opera- 
tion. These services are designed to present tactical 
considerations and techniques, standard operating 
procedures, and "tricks of the trade" in a manner that 
facilitates the "how to" aspects of a commander's job. 
The decision options offered typically represent 
"textbook" solutions that every human commander 
would recognize from his military education. The 
motivating rationale for TTP services is to help 
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command entities in those areas where human com- 
manders can routinely generate an acceptable solu- 
tion, regardless of their level of competence. 

6.3   Adapted ModSAF 

Adapted ModSAF is the current CFOR implementa- 
tion of the Baseline Infrastructure Layer of the archi- 
tecture. At the time of this paper we are using 
ModSAF version 1.3. Five libraries have been added 
to make it CCSIL-compatible. That is, to enhance 
ModSAF so that ModSAF units receive and react to 
CCSIL messages from command entities, as well as 
generate and send CCSIL messages to command enti- 
ties. 

The Communications Module of the infrastructure 
software can accurately send and receive all CCSIL 
message types. Unfortunately the adapted ModSAF 
component cannot respond appropriately to all 
CCSIL message types. The current release can re- 
spond to and react to the following subset of CCSIL 
messages: 

• Operation Order 

• Fragmentary Order 

• Execute Directive (a subset of the complete family 
of messages) 

• Report-Request 

Using these messages, an Armor Company command 
entity (portrayed by a human in lab tests) can com- 
mand and control his company through a military 
scenario that we call a virtual training exercise. A vir- 
tual training exercise is a military operation that logi- 
cally combines a sequence of Army Training and 
Evaluation Program (ARTEP) tasks in order to test 
the unit on its ability to execute those tasks. 

A CFOR Armor Company (commanded by a human 
or software command entity), comprising three tank 
platoons plus the Commander's tank and the 
Executive Officer's tank, can carry out a subset of the 
doctrinally prescribed tasks for Tank Platoons 
(ARTEP 17-237-10-MTP) and Armored/Mechanized 
Companies (ARTEP 71-1-MTP).1 ModSAF's tank 
platoons and armored/mechanized companies can 
perform the fundamental fire and movement tasks. 
Tasks (or behaviors) that are more abstract, less visu- 
ally observable, are not supported as well. For exam- 
ple, "assist passage of lines." Other tasks that are not 
supported involve interactions with the terrain that 
are either vaguely supported or not supported at all in 
the DIS environment. For example, "construct a hasty 
obstacle" and "execute a prepared obstacle" require 

1 Tank platoons in ModSAF version 1.3 can perform 22 of 
36 prescribed ARTEP tasks. Armored/mechanized 
companies in ModSAF version 1.3 can perform 8 of 30 
prescribed ARTEP tasks. 

the capability to move earth or environmental fea- 
tures (e.g., fell trees) and effect a semi-permanent 
change to the terrain. As the DIS community finds 
solutions to these problems, ModSAF units can 
evolve to perform more doctrinally prescribed tasks. 
In turn, CFOR command entities can grow to take 
advantage of fully-capable subordinate units. 

The tank platoons in adapted ModSAF have been 
modified to generate and send the following CCSIL 
messages: 

• Unit Situation Report 

• Unit Status Report 

This adaptation is transferable to all unit organiza- 
tions in ModSAF. As ModSAFs capability to repre- 
sent platforms and units expands over the next fiscal 
year, the CFOR program's adaptations will expand as 
well. 

7. CFOR Implementation Plan 

The program plan for CFOR calls for multiple, con- 
current activities: 

• Knowledge Acquisition. Experts in each field and 
for each military Service will gather information 
about the command process. Particular emphasis 
will be placed on planning, decision-making, moni- 
toring, and revising plans. 

• Infrastructure Implementation. As described ear- 
lier, the CFOR infrastructure will provide services 
to the command entity simulation and the real 
world C2 systems used in a simulation exercise. An 
initial delivery of this software was made in 
January 1995; new versions will be issued every 
three to six months. 

• Command Entity Simulation Implementation. The 
CFOR program plan calls for multiple contractors, 
each developing a software implementation of a 
command entity. After a suitable period of devel- 
opment, the implementations will be evaluated. 
Subsequently, the developers will deliver new and 
improved command entities every six months until 
the 1997 demonstration. It is expected that initial 
experience will be gained in implementing Army 
command entities and that experience will be ap- 
plied to implementing those of the other military 
services. 

• ModSAF Enhancement. ModSAF will be enhanced 
to model new entities (vehicles and small units), to 
model new behaviors for entities and small units, 
and to properly carry out CCSIL orders and re- 
quests and to generate CCSIL reports. 

• C2 Workstation Adaptation Beginning with the 
Brigade and Battalion Command and Control sys- 
tem (B2C2), selected examples of real world C2 
systems will be adapted to work in a virtual simula- 
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tion exercise. The C2 systems will be modified to 
use the CFOR infrastructure services software to 
send and receive CCSIL messages and to control 
the physical portrayal of the commander in the 
virtual simulation environment (e.g., to move the 
command post from one location to another). 
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1.  Executive Summary 

This project developed an Ada equivalent of an 
existing C Simulator, the latter also developed by 
1ST. The C Simulator, a Computer Generated 
Forces system with a SIMNET interface, is complex 
enough to assure a worthwhile experiment The 
resulting Ada Simulator is equivalent in every 
meaningful way to the C version. 

The original project time estimate was missed by a 
wide margin (20 versus 54 person-months) but the 
experiment was of a much better caliber than 
originally outlined. Whereas a "conversion" was 
envisioned, it became clear early in the project that a 
redesign was essential to take advantage of Ada's 
capabilities. In particular, the Ada Simulator makes 
heavy use of Ada tasking, whereas the C version 
used its own executive: this leaves the Ada version 
at the mercy of the run time support but gives a 
much better and more portable environment 

A peculiarity of the PC architecture (real versus 
protected mode) forced compromises in the 
networking support A great deal of effort was 
devoted to solving this problem and the solution is 
not completely satisfactory (it may be a time 
bottleneck). 

Compilation time became a real problem as the 
project matured. A C Simulator can be built in about 
5 minutes; the Ada version takes over 2 hours on 
equivalent machines. Even worse, minor changes 
often force 20 minute compiles. 

The Ada Simulator's performance was uniformly 
inferior to the C version's. Depending on how the 
data is examined, one could argue the Ada version is 
anywhere from 3 to 5 times as slow.   The reason for 

this is not well understood, although the network 
support is suspect (as is the overhead incurred by our 
heavy use of tasking). 

It is commonly believed that Ada projects are "much 
larger" than their C equivalents but we did not find 
this to be so. The Ada Simulator is larger, but only 
by about 11%. 

All the senior members of the team had worked on 
the C Simulator and knew it well. Nonetheless, all 
agreed the Ada product was superior in a software 
engineering sense. Objective measures of 
complexity bear this out 

2.  Introduction 

Considerable controversy has surrounded the 
question of what programming language should be 
used for developing computer software for 
simulation systems. The Ada and C (or C++) 
languages each have their proponents. Many of the 
language selection discussions are based on 
comparisons of language features or reports of 
development projects in one language or the other. 
A direct comparison of two implementations, one in 
C and one in Ada, of a simulation software system of 
significant size has rarely been undertaken because 
of cost considerations. 

1ST had previously developed a CGF Simulator as an 
environment in which to perform CGF research. 
That research software system is written in ANSI C. 
In the experiment described herein, a version of that 
CGF Simulator was re-implemented in Ada so as to 
provide a direct comparison of C and Ada, at least 
for the specific purpose of implementing CGF 
systems. 
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To perform the experiment, a stable version of the 
CGF Simulator was frozen for the purposes of the 
conversion experiment. The team assigned to the 
experiment then redesigned and re-implemented a 
functionally equivalent CGF Simulator in Ada (and 
only Ada, there is no assembly or C in the Ada 
Simulator). There are two important points to keep 
in mind about the conversion. First, great care and 
effort was expended to produce an Ada Simulator 
that was functionally equivalent to the C Simulator 
to the extent achievable, so as to make the 
comparison as direct as possible. Second, the Ada 
Simulator was a redesign of the Simulator, based on 
full use of Ada language constructs. 

At the conclusion of the conversion, the two CGF 
Simulators were tested for functional equivalence 
and run-time performance. 

From the experiment we expected to learn which 
language was better suited for the specific problem of 
implementing Computer Generated Forces systems 
for real-time virtual battlefield simulations. We also 
hoped to gain insight into the larger question of what 
language to use for general simulation systems. 
Finally, we wanted to be able to confirm or deny the 
often heard opinion that "C should be used for 
research systems and Ada for production systems." 
The full technical report on this experiment is [Craft, 
1994]. 

3.  Project Overview 

The Ada project was undertaken by a group of 
people (the "Ada Team") who were, in most cases, 
intimately familiar with the C Simulator, a lack of 
knowledge of the C Simulator was never a critical 
issue. 

The Ada Simulator was to be equivalent in every 
meaningful way to the C version; it was even hoped 
the Ada Simulator would pass a sort of Turing Test - 
- a user of a Simulator would be unable to tell 
whether the C or Ada version was in use. 

The new Simulator was to be evaluated using the C 
version as a baseline. 

It makes sense to base an Ada conversion project of 
this kind on ISTs Simulator. The 1ST Simulator is 
sufficiently complex (offering semi-automated 
behavior for scores of vehicles with interconnection 

through the SIMNET protocol) and yet sufficiently 
tractable (it is completely self-contained, right down 
to its own executive, and yet has less than 60,000 
lines of code) to make it an excellent target 

The Ada Team took a "can do" approach to 
producing an Ada equivalent The assumption was, 
contrary anecdotes not withstanding, that an Ada 
equivalent could be built that was not "too much" 
larger and, at worst "slightly" slower than the C 
version. Further, the Ada Team expected to produce 
a better overall product 

3.1 The Baseline Simulator 

This work was performed in the 1ST CGF Testbed, 
an environment for testing CGF behavioral control 
algorithms developed under the sponsorship of 
ARPA and STRICOM (Danisas et al. 1990, 
Gonzalez et. al. 1990, Petty 1992, Smith et. al. 
1992a, and Smith et al. 1992b). 

ISTs 6.4 Simulator, which is the basis of this 
project is the 4th release of the Simulator's 6th 
major revision; it is a mature product. The C 
Simulator had been subjected, many times, to 
rigorous evaluations leading to large scale 
refinements both in performance and reliability 

3.1.1  Key Capabilities 
The Simulator supports semi-automated forces, 
including infantry, suitable for use as opponents in 
training scenarios intended for human participants. 

Action is displayed through a graphic "bird's eye 
view" called the Plan View Display (PVD). The user 
can control the scale of the display and what area of 
the terrain is shown. The display shows terrain 
features as well as vehicles and infantry. 

A user can create as many as 12 entities on a 
Simulator, selected from over 20 entity types. These 
can be made to carry out a variety of activities 
including planning routes, following routes (planned 
or supplied), and opening fire (selecting and firing 
appropriate weapons chosen from scores of munition 
types). 

Remote entities are recognized and shown on the 
PVD. The Simulator interacts with remote vehicles 
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(e.g., local infantry can get on board (mount) remote 
vehicles). 

The entities created have sensible approximations of 
correct behavior: they accelerate and travel at 
feasible rates, they compute line of sight (LOS) and 
"understand" what they see (a key point in target 
selection), and the entities use appropriate weapons. 
There are many other such considerations carried out 
by the Simulator. 

The Simulator is driven by 2 external sources, the 
keyboard and the network, each representing at least 
2 types of control. 

Human beings enter Simulator commands through 
the keyboard. The keyboard is logically extended by 
the use of script files, which give keyboard 
commands through a file, rather than actually 
striking keys. 

At least two types of network traffic are handled. 
The obvious traffic is of the SIMNET protocol type, 
which allows the Simulator to "see" remote vehicles 
(and to tell the world about its own vehicles). The 
other type of traffic follows the 1ST CGF Testbed's 
"message" protocol. This protocol allows one 
Simulator to control another Simulator and, more 
importantly, allows a user-friendly Operator 
Interface (01) to control several Simulators. 

4.  Personnel 

It is unfortunate that the personnel roster was 
somewhat unstable, but this is not atypical of such a 
project, especially when student assistants are 
employed. The staff instability cannot be ignored as 
a factor in the project's duration, so a chart 
indicating the staff status is supplied here. The 
initials on the vertical axis identify specific 
individuals. Split blocks indicate part time 
employees. 

JAN FE8 KM APA HAY JUN JUL AUG SEP OCT NOV DEC 

Total p«r*on-v*«k»: 

Tabl* 1:  F*r*oniMl Rostar 

The total time expanded was approximately 54 
person months (170% more than was originally 
estimated. 

4.1  Original Project Estimates 

The project, including evaluations and technical 
report production, was expected to take less than 6 
calendar months (the project was first estimated at 
20 person-months [Petty, 1991]). 

The original estimate discussed things which, in 
retrospect, were ridiculous considerations, such as 
how to translate comments and constants. To be 
fair, when that was written the translation was 
anticipated to be much closer to the C Simulator 
than was to prove to be the case. 

The estimate explicitly stated the project was to yield 
a "language conversion, not a software redesign." A 
particularly telling statement in the estimate 
indicated Ada tasking would not play a role in the 
new Simulator. 

Time and again the Ada Team members agreed that 
the decision to use Ada tasking was correct; some 
felt it is Ada tasking that, more than any other 
feature, showed Ada to be the right choice for 
Simulator development. Having such a capability in 
the language greatly simplifies the designer's work 
and greatly increases portability. 

While it is true the original estimate was missed by a 
wide margin (running over 170%), the experiment 
was of a much higher caliber than the original goal 
outlined. The deviation from what was intended is 
largely because of the seductive nature of the Ada 
language. 
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S.  Technical Problems S.2 Ada Compiler Limitations 

A project as complex as this severely tests the 
development tools used (hardware and software). 
Difficult technical problems must be expected. The 
major problems for this project were in the areas of 
the PC's Real and Protected modes and compiler 
limitations. 

S.1 Real-mode Versus Protected Mode 

In brief, the IBM PC and compatibles can operate in 
two modes, "protected" and "real." DOS runs in real 
mode, which has its roots in the earliest PC 
architectures (the 8086 family). 

The Alsys compiler produces protected mode code, 
whereas the C Simulator is a real mode program. 
However, the packet driver, which both Simulators 
use to send and receive network packets, is a real 
mode program, and so a protected/real mode 
interface must stand between the Ada Simulator and 
the packet driver GST did not have access to, and it 
was impractical to build, a protected mode packet 
driver). For packets being transmitted this is 
straightforward, but handling incoming packets is 
problematic. 

Software to support these interactions is defined by 
the DOS Protected Mode Interface (DPMI) [INTEL, 
1993]. Since the DPMI specifies what the Ada 
Team thought was needed, no particular difficulty 
was anticipated once the problem was understood. 

Unfortunately, the interfaces available to 1ST did not 
implement a feature of the DPMI which was needed 
(handling "call backs"). 

1ST avoided the problem by writing another real 
mode program to field the packet interrupts and 
queue incoming traffic. This new program is in the 
form of a Terminate and Stay Resident (TSR) 
program, and so remains active and accessible once 
loaded. The Ada Simulator gets packets by polling 
this new program. 

Polling (in general) is not desirable, but no 
alternative was found. The Ada Simulator only polls 
when no other activity is scheduled which tends to 
make the Ada Simulator show stress through lost 
packets before entity behavior breaks down. 

On the whole, the Ada Team was satisfied with the 
Alsys Ada Compiler. Most of the other Alsys 
supplied tools (in particular, AdaMake) appeared to 
have problems and were abandoned quite early in the 
project 

5.2.1  Compilation Time 
The Ada project was scheduled to be done on 33 
MHz. 386 PCs with 4 megabytes of memory. As 
soon as the compilers arrived it was clear the project 
could not continue without more memory. Within 3 
months it was necessary to switch to 486 based PCs 
to continue. In spite of this, a system build took 
about an hour 4 months into the project (for 20,000 
lines of code). 

After 6 months system compilation time was over 1 
hour 35 minutes and it was obvious the Ada Team 
would have to eventually reduce disk caches to the 
point where compilation would be impractical. 
Additional memory was installed bringing every 
machine up to at least 16 megabytes. This allowed 
disk caches to be expanded and was a great help. 
Nonetheless, a great deal of our development work 
involved "simple" changes which yielded a specific 
chain of compilations which take about 20 minutes. 

At each stage of the project, system reorganizations 
were made to reduce file dependencies and so 
compilation times 

Experienced Ada professionals have shown no 
surprise at the length of the compilations. The Ada 
Team, however, which was accustomed to Borland 
C++ compilers building the C Simulator in about 5 
minutes, found the long compilations a constant and 
serious irritant. 

The long compilation time affected the less 
experienced programmers the most. Some of the 
part time student programmers never seemed able to 
understand how to get the most out of a compilation 
and their productivity suffered as a consequence. 

At the project close a complete system build required 
a minimum of 2 hours 16 minutes. 
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5.2.2   Compiler Bugs 
There were serious problems with the Alsys compiler 
support tools. AdaMake, for example, which was 
supposed to help Ada programmers compile only 
what was necessary never worked properly. 
Borland's "make" utility was used in conjunction 
with an 1ST developed dependency generator 
(creating it was a non-trivial task). 

The compiler itself showed some intermittent bugs 
and one serious, consistent, bug. 

The intermittent bugs were manifested as compiler 
crashes during compilations. In the history of the 
project (which probably generated at least 100,000 
compilations) there were only about a dozen of these 
unexplained crashes. These crashes appeared to be 
caused by, or to cause, library corruption and so 
often set work back several hours. 

A serious bug appeared when a certain generic was 
instantiated. The compiler would abort with an 
internal error while compiling the file that contained 
the instantiation. The problem was eventually 
avoided by introducing dummy packages. 

6.  Results 

reduced tool set It should be noted, however, that 
the Ada protocol code is, as a consequence of the 
different techniques used, much more 
straightforward. Further, the Ada code, because of 
Ada's exception handling capability, is much more 
robust than the C version. 

6.1.1  Performance Testing Methodology 
Two   questions   must  be   answered   to   evaluate 
performance: what objective conditions will be used 
to  indicate  a  lack   of performance   and  what 
parameters will be adjusted to illicit a breakdown in 
performance? 

To recognize stress (lack of performance) 
objectively, a vehicle was told to route in such a way 
as to cause it to collide with another vehicle (which 
is driving in a straight line). Under sufficient stress, 
the System Under Test (SUT) breaks down in such a 
way that the vehicles do not collide, or, if network 
traffic is sufficient it will discard packets. If the 
vehicles do not collide as expected or if more than 
1% of packets are discarded, the stress threshold is 
considered to be passed (i.e., the SUT fails the test). 

There are two fundamental types of stress which bear 
on the Simulator: internal stress and external stress. 

From the outset it was expected the Ada version 
would be better in terms of software engineering 
(human) issues but the C version would exhibit 
better performance. The experiment confirms these 
expectations. 

6.1  Run-time Performance 

Nobody on the Ada project expected the Ada 
Simulator to out perform the C version. C is a 
system implementation language; it allows virtually 
any desired optimization. Further, the C Simulator 
has undergone many revisions over the years 
intended to improve performance. 

The protocol code was written by the same person 
(Craft) for both the C and Ada versions. Some of the 
techniques used in the C rendition were deemed 
inappropriate in an Ada design and were not carried 
forward. Since the protocol author had optimized 
the C version as best as he was able, it was unlikely 
he would be able to get as good performance in the 
Ada version since the work was done in Ada with a 

6.1.1.1 External Stress 
External stress comes about from attempts to interact 
with the world outside of the Simulator's code and 
internal data. This includes interaction with files 
(reading a terrain database), interaction with a 
human user (through the keyboard), and interaction 
with remote Simulators through the network. Only 
the third item was studied; it is universally 
recognized that network traffic can cause Simulator 
problems and tests for network stress are 
manageable. 

To avoid logistics problems in designing and 
executing repeatable tests to be applied to the C and 
Ada Simulators, a tool was developed to generate 
traffic from many vehicles at a controllable rate. All 
the network stress tests were done using this tool. 

6.1.1.2 Internal Stress 
Internal stress comes about as the Simulator is 
required to carry out more work to maintain its 
vehicles' representations and behaviors. 
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Both Simulators can support 12 vehicles without 
stress (with their usual configurations). All tests 
were done with 12 vehicles. 

An important and expensive computation done for 
each local vehicle is a LOS computation (used to 
answer the question "can I see you?"). Being 
computationally expensive and easily controlled (the 
delay between updates is read from a configuration 
file) it is a natural parameter for stress experiments. 

6.1.2 Performance Analysis 
Figure 1 captures the essence of the performance 
results. 

On the horizontal axis the Line of Sight rate is 
shown, on the vertical axis the network load is 
shown. Points indicate the boundary between 
acceptable behavior and manifestations of stress. 

0 0.5 1 1.5 2 

Figure 1:    Performance Threeholda lor the Ada and C 

6.1.2.1   Optimizations 
Because of the relatively poor performance of the 
Ada Simulator relative to the C Simulator, methods 
to improve the Ada Simulator's performance were 
studied. 

The Ada Team tried several methods: some of the 
various checks generated by the compiler were 
suppressed; direct rendezvous replaced some 
instances of daisy chained message passing; and the 
executive's priority was adjusted. The latter idea was 
recognized as dangerous and unlikely to help. 

None of these, individually or in combination, had 
any effect out of the bounds of experimental error 
except when there was no network traffic. 

The effect of Ada constraint checks may often be 
overstated, as (for example) they need only be done 
when a type change is taking place. Nonetheless, the 

checks do have some impact, so it was surprising to 
see no improvement. The checks were shut off in 
what were believed to be the most important areas. 

Shutting off the checks in protocol code is not 
practical as constraint errors are the basis for 
filtering suspect packets. Even with this extreme 
approach, no significant improvement was noted. 

6.2  Software Quality 

As is pointed out by [Sommerville, 1992], the state 
of software science is such that we cannot directly 
measure software quality. Rather, we develop 
objective measurements for things we believe to be 
related to the quality such as the program's size or 
the number of conditions in the program. These 
sections describe what was measured, how the 
measurements were done, and the results of the 
measurements. 

6.2.1  Relative Sizes 
The C sources consist of 58,185 lines; 32,373 of 
those lines are neither blank nor comments. The 
Ada sources consist of 64,233 lines, 45,288 lines of 
which are neither blank nor comments. It may be 
worth noting that the Ada version consists of about 
30% comments and blank lines, while the C version 
consists of about 44% blanks and comments. This 
may simply indicate the C version is better 
documented (it is, after all, a much more mature 
product) or it may be a sign that the C version 
requires more documentation to be understandable; it 
is probably a combination of these and other factors. 

Based on these figures, the complete Ada sources are 
11% larger than the C sources, and the non-blank, 
non-comment Ada sources are 40% larger than their 
C counterparts. 

The nature of Ada is such that people have come to 
expect larger sources than when C is used (C is very 
compact, using combinations of ++, ?:, loops whose 
exit conditions contain more than tests, and the like, 
whereas Ada is verbose, requiring end-if and end- 
loop, null, etc.). Further, the Ada design 
incorporates specific data types for almost every 
contingency and this leads to larger source files. 

The Ada Simulator sources contain 314 globally 
visible functions and procedures, whereas the C 
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Simulator contains 432 functions and procedures 
(this does not count macros). 

The Ada sources consist of 249 files, the C Simulator 
sources are made up of 138 "cpp" files and 78 
"include" files, for a total of 216 files. 

The Ada sources are divided among 4 directories, 
with 176 package specifications. The C sources are 
divided among 32 directories. 

To give a graphical comparison of the two 
Simulator's sources, figure 2 shows the relative 
concentration of (all) lines, lines of code, functions 
and procedures, and files between the two programs. 
For example, 52% of the lines making up both 
Simulators is found in the Ada version. 
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Figure 2:  kalativ* Program Siz*s 

6.2.2 Complexity 
To measure software complexity a software tool was 
developed to count the number of decisions made. 
This metric has been in use for years [McCabe, 
1976] and experience has shown it to be a reasonable 
indication of the human perception of a program's 
complexity. 

Consider two programs of equal length, one with no 
conditions (and so no indentation, just statement 
after statement is executed, always in sequence) 
while the other program has several tests, possibly 
imbedded. Even if the programs are of equal length, 
most people agree the latter is more "complex." 

As a plausibility check on the tool developed, and 
the method in general, it was used to select the "most 
complex" of the Ada files and the "most complex" of 
the C files. Before knowing the results of the test, a 
subjective selection for the most complex file was 
made by a senior team member. 

Although the top Ada selection was a surprise, after 
examining it was agreed that it was, indeed, very 

complex. The tool's second choice matched the team 
member's choice for first place. The top choice for 
the C Simulator is complex but a pathological case, 
the second choice matched the team's selection. 

6.2.2.1   Complexity Results 
It is disappointing to find the Ada tests are denser 
than the C tests, this was not anticipated. 

The C version contains 3,075 tests in 32,373 lines of 
code (blanks and comments ignored). This means 
there are 9.5 tests per 100 lines of C. The Ada 
version contains 4,690 tests in 45,288 lines of code 
(again, blanks and comments are ignored). This 
means there are 10.4 tests per 100 lines of Ada. 

The C version uses extensive headers (essentially test 
free), many supplied by outside agencies containing 
hundreds of lines which are little more than filler for 
the purposes of this measurement To see if this 
plays an important part, the calculations were re- 
done excluding the C headers and excluding the Ada 
files which contain nothing but package 
specifications. 

With these adjustments, the C version has 3,052 tests 
out of 23,341 lines, or 13.1 tests out of 100 lines. 
The corresponding Ada version has 4,625 tests in 
36,574 lines, or 12.7 tests per 100 lines. Further 
analysis along these lines (removing any remaining 
specifications, removing "#define" from the C 
sources) would be difficult and questionable. 

It appears the C and Ada Simulator sources are of 
about the same complexity using the described 
metric. 

6.2.3  Human Factors 
The Ada Team members are familiar with, and have 
worked on, both Simulators. All the remaining 
members of the Team, and most of those who left 
before the project end, have expressed the opinion 
that the Ada Simulator is easier to understand. One 
member, who left the project and later returned, 
expressed the belief that the Ada Simulator was 
easier to follow. 

6.3  Reliability 

There is no way to objectively determine reliability 
for a product as complex as the Ada Simulator.  At 
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best metrics are selected which should indicate the 
overall health of the target software. 

6.3.1 Reliability Metrics 
A common hypothesis [Sommerville, 1992] is that 
the number of "bugs" in software is related (possibly 
proportional) to the number found in testing if the 
testing is done well. 

The Ada Team attempted to find the relative 
frequency of errors in the two Simulators by 
applying a set of identical tests to each. 

6.3.2 Method Used to Locate Problems 
Tests were designed and applied to each Simulator 
and the results recorded. Most team members 
contributed experiments to be run, usually in the 
form of scripts to be processed. 

6.3.3 Verification Results 
Of 58 tests the C Simulator failed 19 tests and the 
Ada Simulator failed 24 tests (failures are common 
because these scripts were designed to make the 
Simulators fail). In 4 tests the Ada failures were 
minor, the problems are understood and could be 
solved with just a little effort. One C failure was so 
severe that it caused the C Simulator to crash and 
required the PC to be re-booted. 

Based on these raw statistics, it appears the Ada 
Simulator is about 27% more error prone than the C 
version. As already noted, however, 4 of the Ada 
failures are of a minor nature and would have been 
fixed had the Ada version undergone any serious 
testing before this. Excluding these we get rough 
parity between the Simulators. 

The C Simulator is quite mature and has undergone 
years of debugging. In contrast, the Ada Simulator 
was brand new with no history of error removal. The 
small difference in error frequency between the C 
and Ada Simulators suggests that a similarly mature 
Ada Simulator would have an advantage. The Ada 
project spent no time seeking bugs; those uncovered 
and repaired were found by happenstance during 
development With some effort the Ada Team 
believes the Ada Simulator would improve a great 
deal and easily surpass the C Simulator's reliability. 

7.  Conclusions 

Ada versions of programs do not have to be very 
large by comparison with their C counterparts. 1ST 
has produced an Ada equivalent of a complex and 
sophisticated software product that is only 11% 
larger than its C equivalent (40% larger if blank 
lines and comments are ignored). 

Another important realization is that it is difficult to 
objectively determine whether one software approach 
is superior to another. Not a single point of 
evaluation was as clear cut as was hoped. It is 
disappointing to have to continue to say that the Ada 
Team, as a whole, believes the Ada Simulator is the 
"better" product, but a clear demonstration of this 
eludes us. 

The complexity measure favors the Ada version but 
only after excluding "include files" from the C 
version and their (rough) equivalent, package 
specifications, from the Ada version. This exclusion 
does seem reasonable. 

The Ada performance is uniformly inferior to the C 
Simulator's performance. It is important to realize 
the reason for this is not understood: various 
attempts to improve performance were ineffective. 
The network interface is considered a likely source 
of problems but there is no solid objective evidence 
of this. 

People familiar with both systems (i.e., the Ada 
Team members) think the Ada Simulator is a better 
product 

7.1  Key Questions 

Now that 1ST has built a Simulator in Ada based 
directly on a well understood and sufficiently 
complex C Simulator, it is possible to take a stand on 
some of the most common questions regarding Ada 
projects. 

• Is the resulting code too large? 

No. The Ada equivalent is only about 10% 
larger than the C version (40% if blanks 
and comments are excluded). This hardly 
seems unreasonable if the gains in 
maintainability and understandability are 
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granted. If an Ada project "balloons" there 
may be a design flaw. 

• Is the resulting code too slow? 

Possibly. There is no escaping the fact that 
the Ada Simulator cannot handle nearly as 
much traffic as its C equivalent. Because of 
the protected mode/real mode dilemma it is 
quite possible that the Ada Simulator is 
being unfairly penalized To determine this 
Ada drivers for the protocol board need to 
be written. In the meantime, this remains 
an open question. The quality of the 
compiler is also an important issue here. 
However, contrary to popular belief Ada's 
constraint checking does not appear to be a 
major factor. 

• Is the development process too cumbersome? 

Possibly. The target Simulator is a 
relatively small project and yet we found 
ourselves suffering with, what seemed to us, 
very long compilations. Eventually some 
compromises were made to speed up 
compilations. Nonetheless, it does not 
appear there will be a "compilation 
explosion," once we passed a certain size we 
were able to keep the compilation times 
under control and, in some cases, reduced 
compilation time. Better tools may reduce 
development problems. 

•   Is the lack of pointers to functions a major 
handicap? 

No. At the time a function pointer is 
declared the profile (signature) of the 
function is specified. Since the profiles are 
consistent it is an easy matter to replace the 
function pointer with an enumeration 
variable to be used in conjunction with a 
call dispatcher. Instead of calling the 
function directly, the dispatcher is called 
with the same parameters as the target 
function except that it also takes an 
enumeration value to select the desired 
function. There are reasonable answers to 
the objections sometimes made to this 
approach. 
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1. Abstract 

A* is a time-efficient search algorithm but shows 
exponential growth in memory usage. Iterative 
Deepening A* (IDA*) has been shown to be space- 
efficient in searching trees. This paper compares the 
two algorithms in terms of run time and memory 
usage in graph search within a route planning 
algorithm. This research shows IDA* to be space- 
efficient in searching graphs as well, but the run 
times are very high. To reduce run times, we propose 
optimizations to the algorithm that allow IDA* to 
approach A*'s run times, while using less memory. 

2. Introduction 

A* is a time-efficient search algorithm and has been 
used for route planning in Computer Generated 
Forces (CGF) systems (Karr 1995) (Loral 1994). 
Because A* shows exponential growth in memory 
usage, Campbell (1995) use a variant of A*, Iterative 
Deepening A* (Korf 1985), that has linear growth in 
memory usage. 

Korf (1985) shows Iterative Deepening A* (IDA*) to 
be space efficient in searching trees. It is unclear 
how IDA* would perform in a graph search. The 
motivation for this study was to determine the time 
and space efficiency trade offs for graph search 
within the CGF route planning domain. 

In the Route Planner (RP) described in Karr (1995), a 
two-dimensional grid is overlaid over the terrain. 
The grid is divided into a number of grid cells and is 
populated with obstacles (canopies, treelines, rivers, 
and lakes). The grid cells contain Sample Points 
which can be reached from other grid cells. These 
Sample Points are treated as nodes in a graph and a 
search of the graph finds routes. The RP uses the A* 
algorithm (Winston 1992) as the search algorithm. 
For this study, a version of the RP was built that used 
the IDA* algorithm in place of A*. The two 
algorithms could then be directly compared. 

3. Algorithm descriptions 

The following sections present brief descriptions of 
the A* and IDA* algorithms. 

3.1 A* search algorithm 

The A* algorithm is a branch-and-bound search, with 
an estimate of the remaining cost, combined with the 
dynamic-programming principle, (Winston 1992). 
When the estimate of the remaining cost is a lower- 
bound on the actual cost, A* produces optimal 
solutions. This estimate of the remaining cost is 
called the "underestimate". Route cost is the sum of 
the cost of the partial route and the underestimate to 
complete the route. A natural underestimate in route 
planning is the "cheapest" cost of a linear route from 
the last point on a partial route to the destination. 
The dynamic programming principle improves search 
efficiency by retaining only the best partial solution to 
each point for further analysis. 

The following pseudo-code describes the A* 
procedure (Winston 1992). 

Algorithm A* 

1. Form a one-element queue consisting of a zero- 
length route that contains only the root node. 

2. Until the first route in the queue terminates at the 
goal node or the queue is empty, 

2.1 Remove the first route from the queue; 
create new routes by extending this route to 
the neighbors of the terminal node. 

2.2 Reject all new routes with loops. 
2.3 If two routes reach a common node, retain 

only the route with the minimum cost. 
2.4 Insert each new route into the queue in 

ascending cost order. 

3. If the goal node is found, announce success; 
otherwise, announce failure. 
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3.2 Iterative Deepening A* (IDA*) 

IDA* works by doing a depth-first search (DFS) from 
the initial state until the total cost of the current 
branch being expanded exceeds a given threshold. If 
the goal is not reached, the threshold is increased and 
the DFS is repeated with the new threshold. The 
threshold starts at the underestimate from the start 
and the destination. After each iteration the new 
threshold is set to the minimum cost of all the values 
that exceeded the previous threshold. 

IDA* uses less memory because at any given point in 
the DFS, only the stack of states corresponding to the 
current search path is stored. The pseudo-code 
description of the IDA*, as it was used in the RP, is: 

Algorithm IDA* 

The Main Loop 
1. Initialize  threshold   to  the   linear  distance 

between the start and the destination. 

2. Until a route is found, 
2.1 Do IDA* (call Procedure IDA*) search 

from the start. 
2.2 Update the threshold for the next iteration. 

Procedure IDA* 
1. If the route being expanded reaches the goal 

node announce success; otherwise, 

2. Determine the locations that are reachable from 
the terminal node. 
2.1 Expand the route to the next unvisited 

reachable location. When all are visited, 
exit. 

2.2 If the cost of the expanded route is greater 
than the threshold, reject this route; 
otherwise, 

2.3 Call IDA* recursively. 
2.4 Go to 2.1. 

We start by initializing the threshold to the linear 
distance between the start and the destination (the 
underestimate). Then, until a route is found, the 
threshold is advanced and IDA* is called starting at 
the start. As the threshold increases between 
iterations, the algorithm can be seen progressing in 
"waves". 

The IDA* procedure is recursive. The route is 
expanded to each of the reachable locations from the 
last route point. If the cost of expanding the route is 
below the threshold, we continue the DFS from the 

end of the route. If the cost of the expanded route 
exceeds the threshold, the route is rejected and IDA* 
backs up. Whenever the threshold is exceeded, the 
cost of the route is a candidate for the next iteration's 
threshold. The minimum route cost that exceeds the 
threshold becomes the next iteration's threshold. The 
expansion of all nodes up to the current threshold 
constitutes an iteration. 

The number of reachable neighbors from a location is 
the Branching Factor (BF). 
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Figure 1: A location with a Branching Factor of eight 

For example, in Figure 1, location A's BF is eight 
because eight locations in neighboring grid cells are 
reachable. Korf (1985) gives an equation that states 
the relationship of average BF (i.e., the average of the 
BFs of all nodes that were expanded in the search) to 
the run time of the algorithm. The equation reveals 
that DDA* performance relative to A* improves as the 
BF increases. Because the maximum BF in the RP is 
24, this result provided an additional motivation to 
compare A* and IDA*. 

4. Experimental setup 

In the RP, route planning involves searching a grid 
based terrain abstraction for an optimal route (Karr 
1995). 

Two factors can affect the performance of the search 
algorithms. 

• Abstract Obstacle Density in the grid and 
• Grid cell size. 

4.1 Abstract Obstacle Density 

Abstract Obstacle Density (AOD) is a measure of the 
number of abstract obstacles present inside the grid. 
The terrain is characterized as: Open, Mixed, or 
Closed. Closed terrain has the highest AOD. Open 
terrain contains no or very few obstacles and its AOD 
is nearly zero. Mixed terrain lies between Closed and 
Open. The AOD was determined subjectively. 
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4.2 Grid cell size 

In Section 5.2.2, we discuss the affects of increasing 
the threshold between iterations by a fraction of the 
grid cell size. 

4.3 Classification of scenarios 

Eight scenarios (A through H) were designed for 
testing the algorithms' performance. Depending on 
the AOD of the grid and the grid cell size the eight 
scenarios were developed: 

Terrain type 
Grid cell size (meters) 

5        85    300   530    550 
Open A 

Mixed F G B C 
Closed D E H 

Table 1: Classification of scenarios 

Each scenario represents conditions for routing in a 
specific type of terrain using a specific grid cell size. 
For example, scenario B utilizes a grid lying on 
Mixed terrain with the grid cell size being 300 
meters. 

5. Results 

For each algorithm, we compute the time to find a 
route and the total memory utilized. All the 
experimental runs were done once; no run to run 
variability was expected. 

5.1 Comparison of A* and IDA* 

The run times of the two algorithms are shown in 
Figure 2. 

Figure 2: Run times (seconds) of A* and IDA* 

For all scenarios, IDA* takes substantially more time 
than A* in determining the route. For some cases, 
e.g., scenario F, the difference is very large. Table 2 
summarizes the run times of A* and IDA*. 

Algorithm Best Worst Average 
A* 1.10 9.62 4.58 

IDA* 22.09 424.78 161.55 

Table 2: Run times (seconds) of A* and IDA* 

On average, A* is 35.27 times faster than IDA*. 

The memory usage of the two algorithms is shown in 
Figure 3. Note that the bars showing A*'s and JDA*'s 
memory usage have been flipped with respect to the 
bars in Figure 2. 

Figure 3: Memory usage (Kb) of A* and IDA* 
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For all scenarios, A* uses substantially more memory 
than EDA* in determining the route. For some cases, 
e.g., scenario C, the difference is very large. Table 3 
summarizes the memory usage of A* and IDA*. 

Algorithm Best Worst Average 
A* 10.77 24.34 16.92 

IDA* 2.59 5.11 3.25 

Table 3: Memory usage (Kb) of A* and IDA* 

On average, A* consumes 5.21 times as much 
memory as IDA*. 

These two results show that even though IDA* is 
more space efficient, it is less time efficient than A*. 
The space-time tradeoff, mentioned in Computer 
Science, is seen here. 

5.2 Optimizing IDA* 

By using additional memory, IDA* can be optimized 
to yield run times that approach A*'s. The following 
sections discuss the optimizations that were done to 
speed up IDA*. 

5.2.1 Storing reachable locations in the grid cell 
In a graph, determining a node's neighbors is an O(n) 
time operation. When neighbors are needed, an 
Adjacency Matrix (Even 1979) type structure is 
usually consulted. In the RP, the neighbors of each 
cell are stored but the reachable locations within 
neighboring cells are computed during the search. A* 
determines a node's neighbors once as a consequence 
of the dynamic programming principle (Winston 
1992). Because IDA* makes several iterations over 
parts of the grid, recomputing reachable locations 
during the search penalizes IDA*. 

In order to establish a fair comparison with A*, the 
IDA* procedure was modified so that when a node is 
expanded its reachable locations are stored as part of 
the grid cell structure. In subsequent iterations, this 
information is available and the time to recompute the 
reachable locations is saved. 

The run times and memory usage of A* and the 
optimized IDA* version 
locations in the grid cell, 
shown in Figures 4 and 5. 

that   stores   reachable 
designated IDA*p, are 

Figure 4: Run times (seconds) of A* and IDA*p 

The results reveal a substantial drop in the run times 
of IDA*. Table 4 summarizes the run times of A* 
and IDA*p. 

Algorithm Best Worst Average 
A* 1.10 9.62 4.58 

IDA*p 4.51 53.08 18.55 

Table 4: Run times (seconds) of A* and IDA*p 

On average, A* is 4.05 times faster than IDA*p. 
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Figure 5: Memory usage (Kb) of A* and IDA*p 

As expected, the memory consumption of IDA* has 
increased because reachable locations are stored as 
part of the grid cell. However, for most of the 
scenarios the memory usage is still below that of A*'s. 
Table 5 summarizes the memory usage of A* and 
IDA*p. 
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Algorithm Best Worst Average 
A* 10.77 24.34 16.92 

IDA*p 6.58 19.96 10.94 

Table 5: Memory usage (Kb) of A* and IDA*p 

On average, A* consumes 1.55 times as much 
memory as IDA*p. 

It is not possible to predict the additional memory 
consumption caused by using IDA*p for any 
scenario. In the worst case, the entire grid would be 
searched and the memory for reachable locations for 
all cells would be an upper bound. However, this is 
likely to be considerably less than A*'s worst case 
memory requirements. 

5.2.2 Using larger thresholds 
After each IDA* iteration, the threshold is set to a 
new threshold (Section 3.2). Normally, the new 
threshold is the minimum value of the route costs that 
exceeded the previous threshold. The threshold 
increment was observed to generally be small (1-2 
meters). To test whether a larger increment improved 
performance, IDA* was modified to use a user 
defined advancement_increment. 

If the difference between the previous and new 
thresholds is less than the advancementjncrement, 
the new threshold is set to the sum of the previous 
threshold and the advancementjncrement. 

Figure 6 shows the run times of IDA* using different 
advancement increments. The p in the notation 
lDA*p, t=X means that IDA* stores reachability 
information to neighbors in the grid cell (Section 
5.2.1). The t=X means that advancementjncrement 
is set to X times the grid cell size. 

The shape of the run time curves indicate that as soon 
as user-defined threshold increments are introduced, 
run times decrease, and then increase with the 
increments; i.e., the curves "dip" initially and then 
rise. The best run times are seen at the "dip". This 
may seem counter-intuitive as one would expect the 
algorithm to compute a route faster when larger 
advancementincrements are used. 
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Figure 6: Run times (seconds) of IDA* with different 
thresholds 

IDA*p, t=l/32 shows the fastest run times among 
different EDA*p, t=X versions for four scenarios (A, 
B, C, and E). IDA*p, t=l/4 had the fastest run times 
on two scenarios (D and G). The fastest run time for 
scenario F occurred at t = 2 apparently due to the 
small (5 meter) grid size. IDA*p, t=l/32 showed the 
fastest run time over all scenarios. Figure 7 shows 
the run times of A* and IDA*p, t=l/32. 

Figure 7: Run times (seconds) of A* and IDA*p, 
t=l/32 

Table 6 summarizes the run times of A* and IDA*p, 
t=l/32. 
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Algorithm Best Worst Average 
A* 1.10 9.62 4.58 

IDA*p, t=l/32 4.01 52.80 14.76 

Table 6: Run times (seconds) of A* and IDA*p, 
t=l/32 

On average A* is 3.22 times faster than IDA*p, 
t=l/32. 

Figure 8 shows the memory usage of IDA* using 
different advancement increments. 
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Figure 8: Memory usage (Kb) of IDA* with different 
thresholds 

Memory usage is lowest for the plain IDA*, but 
increases across the other versions because 
reachability information to the neighbors is kept in 
the grid cells. 

In contrast to run times, IDA*p, t=l/32 shows the 
least increase in memory usage on all but one 
scenario (D) whose t = 1/16 had slightly less memory 
usage. Figure 9 shows the memory usage of A* and 
IDA*p, t=l/32. 

Figure 9: Memory usage (Kb) of A* and IDA*p, 
t=l/32 

Table 7 summarizes the memory usage of A* and 
IDA*p, t=l/32. 

Algorithm Best Worst Average 
A* 10.77 24.34 16.92 

IDA*p, t=l/32 8.15 19.92 12.13 

Table 7: Memory usage (Kb) of A* and IDA*p, 
t=l/32 

On average, A* consumes 1.39 times as much 
memory as IDA*p, t=l/32. 

6. Conclusions 

This study compared the performance of A* and 
IDA* on graph search in a grid based terrain 
abstraction for route planning. The experiment 
showed A* to have faster run times but greater 
memory usage than IDA*'s. 

Some techniques for optimizing EDA*'s run time 
performance were examined. These techniques yield 
run times that approach those of A*'s while increasing 
memory usage. 

In Table 8, the algorithms are shown ranked  in 
increasing order of run times. 
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Algorithm Best Worst Average 
A* 1.10 9.62 4.58 

IDA*p, t=l/32 4.01 52.80 14.76 
IDA*p 4.51 53.08 18.55 
IDA* 22.09 424.78 161.55 

Table 8: Summary of run times (seconds) 

In Table 9, the algorithms are shown ranked in 
decreasing order of memory usage. 

Algorithm Best Worst Average 
A* 10.77 24.34 16.92 

IDA*p,t=l/32 8.15 19.92 12.13 
E)A*p 6.58 19.96 10.94 
IDA* 2.59 5.11 3.25 

Table 9: Summary of memory usage (Kb) 

Table 8 and 9 show the expected inverse relation 
between time and space efficiency. 

Which algorithm is "better"? For graph searches, 
where memory usage is not a constraint (i.e., the 
search space is "small" or adequate memory is 
available), A* appears the better choice. When 
memory is a constraint, IDA* provides a memory 
efficient alternative. Because A*'s memory usage 
grows exponentially, IDA*'s linear growth rate is 
attractive. To obtain the best run time performance, 
two optimizations are available for IDA*. First, the 
neighbors (i.e., reachable locations) of each node 
should be stored in the search space rather than 
recomputed during search. Second, a small 
advancement_increment can be employed. 
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1.   Abstract 

Intervisibility between entities in a Distributed 
Interactive Simulation (DIS) environment is a 
mandatory, computationally expensive process. 
Computer Generated Forces (CGF) systems must 
frequently determine the intervisibility status between 
each of its controlled entities and each of the other 
entities in the simulation. Previous work has focused 
on developing algorithms to perform intervisibility 
determinations as quickly as possible. In this work, 
the problem was approached differently. Instead of 
speeding each intervisibility determination, heuristics 
were developed for reducing the number of 
determinations. The heuristics reduced intervisibility 
determinations with the savings ranging from 10% to 
50%. The computational savings had negligible 
negative effect on the CGF entities' behavior with an 
average delay in sightings of 0.3 to 0.5. These results 
are independent of terrain representation and thereby 
applicable to any CGF system. 

2.   Intervisibility concepts 

This section describes some of the basic concepts for 
intervisibility. 

2.1   Definitions 

Before the question "Does an entity see another 
entity?" is answered within a CGF system, the 
question "Is it possible for the entity to see the other 
entity?"   must   be   answered? Typically,   CGF 
systems' "sighting models" determine if entities "see" 
one another and incorporate the effects of attention, 
angle of view, weather, obscurants, time of day, and 
the details of sensor systems. However, sighting 
models are active only after "intervisibility" between 
two entities has been established. An intervisibility 
determination establishes or denies the existence of 
an unblocked Line of Sight (LOS) between two 
entities. 

Establishing intervisibility between two entities 
involves checking to see whether terrain features 
(such as hills) or other objects (such as other 
vehicles) prevent a ray of light from traveling from 

one entity to the other. If a ray of light travels 
unhindered between two entities, the LOS is 
"unblocked". For the remainder of this discussion, 
the term "see" refers only to an unblocked LOS and 
does not imply that a sighting model has determined 
that an entity has sighted another. The notation A i-» 
B will be used to mean A "can see" B. Note that 
intervisibility, as used in this discussion, is 
symmetric; if A can see B then B can also see A. 

The phrase "intervisibility update" (IU) is used when 
an entity determines which of its opponents it can see. 
If there are n opponents in a scenario, A will do n 
individual (i.e., A-to-B) intervisibility determinations 
as part of an IU. The periodicity of IUs is determined 
by the "intervisibility update rate" (IUR). 

Whenever the intervisibility status changes (from 
blocked to unblocked or vice-versa) an intervisibility 
"transition" is said to occur. 

2.2 Computational methods and cost 

Since extensive terrain checks are required to 
determine intervisibility status (blocked or 
unblocked) and the checks themselves are 
complicated, it comes as no surprise that the 
intervisibility computation taxes a system's resources. 
Very high intervisibility update rates can load a CGF 
system so much that the generated vehicle behavior 
degrades. Thus, it is important that the time spent in 
performing intervisibility determinations be reduced 
without sacrificing the tactical behavior of vehicles. 

2.3 Statement of the problem 

The goal of the research described in this report is to 
reduce the total computational load of intervisibility 
determinations on a CGF system. The reduction is to 
be achieved in a manner that has a minimum impact 
on the realism of the CGF entities' behaviors 
generated by the system. 

IST's previous intervisibility research focused on 
efficiently performing each intervisibility 
determination within a polygonal terrain database 
(Petty et. al. 1992b). For the current work, an attempt 
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was made to reduce the number of intervisibility 
determinations made by a CGF system. The 
approach taken was to design, implement, and 
evaluate heuristics which would decide which 
intervisibility determinations could be skipped or 
delayed without affecting the CGF entities' behavior. 
See (Rajput et. al. 1994) for a complete description of 
this project. Because this heuristic approach is 
independent of terrain database format, the heuristics 
described and evaluated herein can be used in any 
CGF system. 

3.  Intervisibility in the 1ST CGF Testbed 

Under the sponsorship of ARPA and STRICOM, 1ST 
has been conducting research in the area of CGF 
systems, seeking to increase the realism and 
autonomy of CGF behavior. A key product of that 
sponsorship is the 1ST CGF Testbed. The 1ST CGF 
Testbed is a CGF system that provides an 
environment for testing CGF behavioral control 
algorithms (Danisas et. al. 1990, Gonzalez et. al. 
1990, Petty 1992a, Smith et. al. 1992a, and Smith et. 
al. 1992b). This section discusses the way 
intervisibility is done in the 1ST CGF Testbed and the 
data structures used to track entity intervisibility 
status, i.e., who has intervisibility to whom. 

3.1   Intervisibility determination algorithm 

Algorithm F (Petty et. al. 1992b), the Grid edge 
traversal method algorithm, is used in the 1ST CGF 
Testbed for computing intervisibility between entities. 
The CGF Testbed's internal terrain database format is 
a polygonal database. The surface of the terrain is 
represented in the database by contiguous non- 
overlapped polygons; the 3D vertices of each polygon 
are used to compute the height of any point within the 
polygon. The polygons are represented as edge lists 
and vertex lists within 125 meter2 grids. 

To determine intervisibility all edges of the polygons 
in the grids containing the LOS are checked for 
intersection with the LOS in two dimensions. If an 
edge/LOS intersection is found, the algorithm 
calculates whether the intersection lies above or 
below the LOS. If above, the LOS is blocked by the 
polygon edge; otherwise is unblocked by that edge. 
The number and complexity of calculations produce a 
time consuming computation. 

3.2  Sightings list and intervisibility update 
duration 

Each entity maintains a sightings list, which is a 
doubly linked list containing SIGHTTNGS_ENTRY 
records. Each     SIGHTINGS.ENTRY    record 
describes the entity on whom sighting is being done, 
and intervisibility status (ERROR, INVISIBLE, 
DETECTED, RECOGNIZED and IDENTIFIED.). 

During an IU, an entity does point-to-point 
intervisibility determinations to all target entities 
within visual range. Depending on the result of the 
point-to-point intervisibility determination (can the 
target entity be seen?) the status of the target entity is 
updated. New entities (those not already on the 
sightings list) are added to the list. Target entities 
which have remained invisible for a time greater than 
the "sighting persistence" limit are removed from the 
sightings list. 

Receipt of an IU message triggers an entity to do its 
intervisibility update. When the intervisibility update 
is completed, the entity sends itself another IU 
message. Table 1 describes the terms used in 
connection with intervisibility updates. 

Term Description 

IUD Intervisibility Update Duration. This is 
the time between successive intervisibility 
updates and can vary as the simulation 
proceeds. In the 1ST CGF Testbed this is 
measured in one hundredths of a second. 
For example, an IUD of 25 means that 
intervisibility updates would be done 
every 0.25 seconds. 

IUR Intervisibility Update Rate. This is the 
frequency of the intervisibility updates 
and is the inverse of IUD. Thus, an IUD 
of 25 yields an IUR of 4 (i.e., 4 updates 
per second). 

BUD Base Update Duration. The IUD is 
initially set to this value which is read 
from a configuration file (sim.lod). The 
BUD is a constant for the simulation and 
is also measured in one hundredths of a 
second. 

BUR Base Update Rate. This is the initial 
frequency of the intervisibility updates 
and is the inverse of the BUD 

Table 1: Intervisibility update durations and rates 
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Ideally, an IUD of 25 would cause an entity to do 4 
intervisibility updates per second (an IUR of 4), while 
an IUD of 400 would, ideally, cause the entity to do 1 
update every 4 seconds (an IUR of 0.25). If we are 
using an IUD of 100, we expect updates to be done at 
t+1 seconds, t+2 seconds, etc. The "ideal" IUR is 
always a maximum because of the systems clock 
granularity and various kinds of system overhead. 

Although at lower IURs (i.e., high IUDs) delays due 
to system overhead are insignificant, one type of 
heuristic, Continuous Intervisibility Determination 
Avoidance (CIDA), Section 4.1.5, requires precise 
message delays because of the high message rates 
involved. In order to achieve the message rate for 
these heuristics, the software makes an adjustment to 
the message delay. 

4.   Intervisibility heuristics 

4.1.2 Symmetry heuristic 
As already noted, intervisibility is symmetric and, 
equally important, lack of intervisibility is also 
symmetric. An obvious heuristic is to inform B when 
A determines that AHB. B keeps this result in a 
scratch area (an area in memory containing historical 
and heuristic specific information). When B does an 
intervisibility determination, it first consults the 
scratch area for an AHB result. If the interval 
between A H* B and "now" is "small", the result 
supplied by AHB is accepted. Otherwise, it is 
assumed that A or B has moved enough to invalidate 
the determination and B l-» A is determined. 

4.1.3 History heuristic 
It is often the case that when the outcome of an 
experiment or observation is consistent over time, 
people begin to assume the next outcome or 
observation will be the same. 

This section discusses the types of heuristics that 
were implemented and their implementation details. 

4.1   Types of heuristics 

Generally, intervisibility heuristics are of two types: 
physical and behavioral. Physical heuristics attempt 
to reduce the number of intervisibility determinations 
by using some physical characteristic of intervisibility 
whereas behavioral heuristics exploit vehicle 
behavior. 

A good example of a physical heuristic is the 
symmetry heuristic (Section 4.1.2). It is based on the 
physical nature of light that if A can see B then B can 
see A. Thus, the physical nature of light is the basis 
behind this heuristic. 

Behavioral heuristics attempt to reduce the 
intervisibility determinations by using some behavior 
being done by an entity. The coarse-grain and fine- 
grain heuristics are all behavioral heuristics. 

4.1.1   Varying the base update rate 
The frequency of intervisibility updates is controlled 
by the intervisibility update duration (IUD). The IUD 
is initially set to the base update duration (BUD). 

For the problem at hand, it is reasonable to assume 
that if A H* B for a "long" time, then it is likely that 
A H» B the next intervisibility update. Similarly, if A 
doesn't see B for a "long" time, then it is likely the A 
will not see B the next intervisibility update. 

The history heuristic is based on this idea. The 
heuristic tracks the number of consecutive 
intervisibility determinations that have returned the 
same intervisibility value. When a threshold value is 
passed, intervisibility determinations are skipped. 
When a transition is made, determinations are not 
skipped until a sufficient history accumulates. 

4.1.4   Discrete intervisibility determination 
avoidance (DIDA) heuristics 
The idea is to reduce intervisibility computation by 
skipping some of the intervisibility determinations for 
an entity. The role of the heuristic is to decide when 
to skip. DIDA heuristics are also known as coarse- 
grain heuristics. 

For DIDA heuristics, the IUR, which had been 
initially set to the BUR, is not modified. Instead, 
intervisibility rate reduction is accomplished by 
skipping selected A-to-B intervisibility 
determinations. 

In battles fought in obstructed or hilly terrain, a low 
IUR may have a deleterious effect on the scenario. 
Sightings that could have been possible during 
periods of brief intervisibility may be missed. Hence, 
entities that could have been destroyed may survive to 
change the coarse of the battle. 

Boolean heuristics are desired for discrete 
intervisibility determinations. The only choice is 
either to skip or not to skip the A-to-B intervisibility 
determination under consideration. 
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The main fault with this technique is its granularity. 
If the BUR is set as low (i.e., as infrequent) as is 
practical for realistic behavior, any skip (unless 
cunningly selected) is apt to cause behavior 
deterioration due to missed sightings. A natural 
tendency is to increase the BUR when discrete 
avoidance techniques are employed. 

4.1.5   Continuous intervisibility determination 
avoidance (CIDA) heuristics 
With CIDA heuristics, the interval between 
intervisibility determinations (IUD) is not necessarily 
an integer multiple of the BUD. The heuristics guess 
how long it is safe to wait until the next intervisibility 
determination based on the behavior of the entities in 
the simulation. CIDA heuristics are also known as 
fine-grain heuristics. 

An optimal continuous avoidance algorithm would 
require separate IU messages for each A-to-B 
intervisibility determination being considered. This 
approach was not considered for this project because 
of the considerable programming and run time 
overhead involved. 

Another approach is to adjust the interval between IU 
messages but this has the disadvantage of delaying a 
complete intervisibility update by an entity in order to 
delay a specific A-to-B intervisibility determination. 

One practical technique is to approximate continuous 
delays for individual intervisibility determinations by 
using a relatively high IUR (in comparison to the 
BUR) in combination with the discrete techniques. 
This "fine-grain" approach is supported in these 
experiments. With suitable parameter adjustments 
(no algorithmic changes), the fine-grain technique 
will delay most intervisibility determinations most of 
the time and "intelligently" select which A-to-B 
intervisibility determinations should be applied for a 
given IU message. With a high IUR, a reasonable 
approximation of arbitrarily selected delays between 
A-to-B intervisibility determinations is feasible. 

CIDA heuristics should yield a continuum of values. 
For convenience, all such functions are constrained to 
yield a range from zero to one. Zero indicates a 
minimum delay should be used (another intervisibility 
determination is needed soon), whereas one indicates 
the next intervisibility determination may be delayed 
by the maximum allowed interval (see Section 4.2). 

The IUR should be high enough to approximate 
continuous delays substantially better than the BUR. 

But care should be taken that a high IUR does not 
overload the system with IU messages. In these 
experiments the IUR is obtained by multiplying the 
BUR by a RATE factor. This value indicates the 
number of times intervisibility checks are actually 
requested by the system as a multiplier of the BUR. 

4.1.6  Composite heuristics 
The composite heuristics are composed of sub- 
heuristics which vote whether to do an intervisibility 
determination. Each sub-heuristic computes a metric 
(M) value based on certain characteristics of the 
current simulation state. The computed metrics for 
the various sub-heuristics are used to determine a 
weighted average. If the weighted average exceeds a 
threshold, an intervisibility determination is skipped. 

Sighter and target-based heuristics (Table 2) lend 
themselves to being composite heuristics. Composite 
heuristics can be either discrete (coarse-grain) or 
continuous (fine-grain). The three letter abbreviation 
for each heuristic appears in Table 2. 

Characteristic 

Heuristic Composite Discrete 

(coarse- 

grain) 

Continuous 

(fine-grain) 

Varying the BUR No 

Symmetry No Sym 

History No His Fgh 

Sighter-based Yes Sgt Fgs 

Target-based Yes Trg Fgt 

Table 2: Implemented heuristics and their 
characteristics 

4.2   Update rate limits for heuristics 

Although DIDA and CIDA heuristics could make 
recommendations for arbitrarily long delays between 
updates, none of the heuristics designed could be 
expected to correctly predict long transition free 
periods. Thus, all the heuristics use a minimum 
sighting rate of half the user's requested rate (BUR). 
Given a BUR of 4.0, this ensures that after a sighting 
at tQ another sighting will occur no later than (tQ+0.5) 
seconds. 

4.2.1   DIDA heuristics 
The coarse-grain heuristics receive IU messages at 
the user specified BUR. These heuristics ensure that 
only one intervisibility determination is skipped for 
any two consecutive messages.   Thus, for a BUR of 
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1.0, if an intervisibility determination is done at tg, 
the next determination will occur at either (tQ+1.0) or 
(trj+2.0). 

4.2.2   CIDA heuristics 
This section discusses the minimum, maximum, and 
possible IURs for CIDA heuristics. 

4.2.2.1 The minimum update rate for CIDA 
heuristics 
The intervisibility scratch area keeps the last time an 
intervisibility determination was accomplished. 
When an IU message arrives, this area is checked 
and, if necessary to avoid too great a gap between 
updates, an intervisibility determination is forced. 
When this happens in a fine-grain heuristic, the 
heuristic is invoked to determine a new interval 
before the next determination. 

4.2.2.2 The maximum update rate for CIDA 
heuristics 
Although it is reasonable to hope heuristics could 
predict times when an accelerated rate would be 
beneficial, that is not a goal of this project. To this 
end, heuristic's recommendations are always bounded 
above by the user requested rate (BUR). 

4.2.2.3 Possible update intervals for CIDA heuristics 
For all the experiments completed, the fine-grain 
heuristics received IU messages at four times the 
BUR. So, for a BUR of 1.0 messages per second IU 
messages were received (approximately) every 0.25 
seconds. 

4.3   Heuristics and message overhead 

The fine-grain technique increases the message 
handling overhead by increasing the number of IU 
messages sent. The finer the granularity, the greater 
the overhead. 

4.4   Implemented heuristics 

The heuristics implemented are: 

• Varying the intervisibility BUR, 
• The symmetry heuristic, 
• The history heuristic (coarse and fine-grain), and 
• The composite heuristics (coarse and fine-grain) 

4.4.1 Varying the intervisibility base update rate 
This is implemented as discussed in Section 5.1.1 

4.4.2 Symmetry heuristic 
The symmetry heuristic is implemented as discussed 
in Section 5.1.2. 

4.4.3 History heuristic 
For a discussion of the history heuristic see Section 
5.1.3. This section discusses the mechanism that 
recommends whether to skip or not. 

Both the coarse-grain and the fine-grain version of 
the history heuristic track the number of consecutive 
intervisibility determinations which have returned the 
same intervisibility result. In the coarse-grain 
version, the history of identical intervisibility values 
are compared to a threshold value. When the 
threshold value is exceeded, intervisibility 
determinations are skipped effectively reducing the 
update rate. When a sighting transition occurs, skips 
are inhibited until a sufficient history accumulates. 

The fine-grain version calculates a skip value after a 
sufficient sighting history accumulates; this value 
refers to the number of intervisibility determinations 
that can be safely skipped between the sighter and a 
target. 

The formula used to calculate the skip value in the 
fine-grain version is: 

Only the addition of local vehicles, vehicles created 
on this Simulator, adds to the message load. The 
number of messages per unit time is easily computed 
as the message rate per vehicle times the number of 
vehicles. 

Skip = RATE -  1  + (MAX_ SKIP - 

Matches 
RATE + 1) • 

Interval 

The fine-grain heuristics are designed to increase the 
message   rate   above   the   BUR   according   to   a where: 
multiplier.   When this parameter is 1 no additional Skip 
messages are generated.  When it is R, the requested 
rate will approximate R times the user requested rate. 
For these experiments. R was set to 4 (see Section RATE 
4.2.2.3). 

is    the    number    of    fine-grain 
intervisibility determinations to be 
skipped for this sighter/target pair 
is the fine-grain multiplier (IUR = 
RATE  BUR) 
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MAX_SKIP is the maximum number of skips to 
preserve the minimum update rate 
(MAX_SKIP = 2- RATE-I) 

Matches is the number of consecutive 
intervisibility determinations 
yielding the same result 

Interval is the "full confidence interval". 
Once Matches equals Interval the 
minimum update rate is used. 

When there have been no matches, Skip will be RATE 
- 1, which yields an IUR equal to the BUR. If the 
number of matches is as great as the interval, a 
heuristic parameter, the maximum number of skips 
will be done. 

4.4.4   Composite, sighter-based, and target-based 
heuristics 
Each component of a composite heuristic always 
computes a metric value (M) based on certain 
characteristics of the current simulation state. The 
metric computed by each sub-heuristic lies in the 
interval [0,1]. Composite heuristics occur in both the 
coarse-grain and the fine-grain versions. 

4.4.4.1 Sighter-based heuristics 
Sighter-based heuristics attempt to reduce the number 
of intervisibility determinations done by an entity by 
taking its behavior into account. The behavior may 
be some physical action of the entity, such as being 
stationary, or it may be some abstract behavior, such 
as having permission to fire. 

Four sighter entity behaviors (sub-heuristics) were 
characterized for this study: 

1. The movement of the sighter, 
2. The sighter's permission to fire, 
3. The sighter's ability to fire, and 
4. The proximity of the sighter to enemy entities 

The four sub-heuristics are assigned weights to 
increase or decrease their effects in deciding whether 
an intervisibility determination is required. A 
weighted average is computed to decide whether to 
do an intervisibility determination. In all cases, 0.0 
indicates to do an intervisibility determination and 1.0 
indicates NOT to do an intervisibility determination. 

Any weight can be assigned to a sub-heuristic. The 
heuristic computes a metric for each behavior which 
is then multiplied by the weight assigned to it. For 
some behaviors this metric may be a boolean metric 
(0 or 1). For example, does an entity have permission 

to fire? For other behaviors this metric may be a 
floating point value; for example, the metric 
associated with the distance of a sighter to an enemy 
entity may be large (small) if the sighter is near (far) 
from the enemy entity. 

The weighted average of    the metrics for all the 
behaviors is guaranteed to be in the interval [0,1]. 
The weighted average of the metrics is given by the 
following equation. 

4 
X wi * Mi 

Weighted_ average  =     ~   ,  

X wi 
i=l 

where: 
wi   is the weight assigned to a sub-heuristic i 
Mi   is the metric computed by sub-heuristic i (Mi 

is in the interval [0,1]) 

For the coarse-grain heuristics, judging whether or 
not to skip an intervisibility determination requires 
that a split point (threshold) be determined within this 
range. If the weighted average is greater than the 
split point, an intervisibility determination should be 
skipped, whereas a value less than the split value 
requires an intervisibility determination. 

The fine-grain sighter heuristics are precise analogs to 
their coarse-grain versions. The key difference is that 
the composite vote of the heuristic elements no longer 
needs to be binary (no split point is needed) because 
the intervisibility determination is delayed by 
skipping intermediate fine-grain intervisibility 
determinations. In this case the number of fine-grain 
intervisibility determinations skipped is given by: 

Skip = RATE - 1 + (MAX_ SKIP - RATE +  1) 

•  Weighted _ average 

where: 
Skip, RATE, and MAX_SKIP are the same as in 

Section 5.4.3 and 
Weighted_average is the weighted average of 

the   metrics   of   each   sub- 
heuristic 

A weighted average of 0.0 will yield the maximum 
check rate (RATE-l) while a value of 1.0 will yield 
the minimum rate (MAXJSKIP). 

A A A. 1.1   Moving and stationary 
This   sub-heuristic   is   based   on   the   premise   that 
moving entities need to check intervisibility more 
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often than stationary entities. This sub-heuristic 
requests the minimum rate for a stationary vehicle 
and the maximum rate for a vehicle moving at its 
"normal speed". 

normal    — current 
Mi -    ;  

normal 
where: 

normal   is the normal speed of a vehicle 
current  is the current speed of the vehicle 

When a vehicle is stationary, its "current speed" is 0 
and the value of the metric. Mi, is equal to 1. This 
means that the sub-heuristic requires an intervisibility 
determination to be skipped. When the "current 
speed" equals the "normal speed", Mt is 0 signifying 
that the sub-heuristic does not require any 
intervisibility determination to be skipped. 

4.4.4.1.2 Permission to fire 
Entities that have permission to fire should conduct 
more intervisibility determinations than entities that 
do not. This sub-heuristic falls into the category of 
boolean sub-heuristics. 

M2 = 1.0 if entity has permission to fire, 0.0 otherwise 

4.4.4.1.3 Able to fire 
The ability to fire may be lost by an entity after it has 
been hit by enemy fire. This sub-heuristic also falls 
in the category of boolean behaviors. 

M} = 1.0 if able to fire, 0.0 otherwise 

4.4.4.1.4 Proximity to target 
It seems natural that an entity would do more 
intervisibility determinations when it is in the vicinity 
of enemy entities than when it is far away from them. 
An entity is considered "in the vicinity" of an enemy 
entity when it is lies within the maximum weapon 
range of the target entity. 

As the entity or sighter gets closer to the enemy or 
target entity more intervisibility determinations are 
done. 

d 
A/4 =   - 

r 

where: 
d is the distance to the target entity 
r is the sighter's maximum weapon range. 

4.4.4.2   Tarset-based heuristics 
Target-based    heuristics    reduce   the    number   of 
intervisibility determinations done by a sighter to a 

particular target by taking into account the type, 
appearance and behavior of that target. 

The implementation of the target based heuristics is 
very similar to the sighter-based heuristics except 
characteristics of the target are examined. Four target 
entity behaviors were characterized for this study: 

1. The relative movement of the sighter and target 
2. The estimated threat of the target 
3. Target damage status and 
4. The proximity of the sighter to a target 

4.4.4.2.1 Relative movement of sighter and target 
The movement dimension to this heuristic uses the 
sighter's and target's velocities to determine the speed 
at which they are closing/separating.   The rational is 
sighters need to more carefully watch approaching 
targets. 

R 
Ms = 0.5 +    

2»C 
where: 

R  is the rate the sighter and target are closing 
(in m/sec), expected range [-C, C] 

C  is the closing rate for the maximum update 
rate (12 m/sec. in these experiments) 

If vehicles are separating rapidly R < - C, A/5 = 0. 
If they are closing rapidly, R > C, M5= 1. 

4.4.4.2.2 Estimated threat of target 
Sighters do more intervisibility determinations to 
targets that are considered more threatening than to 
targets that are less threatening. A target's threat is 
determined by the priority the target has been given 
as a target for the weapons the sighter carries. 

M6 =  1.0 if target is NOT first, second or third 
priority; 0.0 otherwise 

4.4.4.2.3 Target damage status 
Damaged targets are given less attention than healthy 
targets. 

M7 = 1.0 if target has firepower kill or is destroyed; 
0.5 if it has mobility kill; 0.0 otherwise 

5.4.4.2.4 Proximity to target 
Entities check more often when an enemy entity is 
relatively close. Close is computed in terms of the 
target's firing range, and the amount of attention paid 
is proportional to its distance. 
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d 
M8=- 

r 
where: 

d is the distance to the target entity 
r is   the   maximum   range   of   any 

possessed by the target entity 
weapon 

This behavior is similar to the case in the sighter- 
based heuristics where a sighter varied its IUR to a 
target depending on their relative distance. However, 
in one case the sighter's maximum weapons' range is 
used to determine its IUR while in the other, the 
target's maximum weapons' range is used. 

In Figure 1 the circles represent the maximum range 
of weapons of entities A and B. Consider the sighter- 
based sub-heuristic with A being the sighter entity 
and B the target entity. A's IUR should not increase 
because B is beyond its (the sighter's) maximum 
range of weapons. However, if B is the sighter entity, 
B's IUR should increase. 

Figure 1: Sighter, target maximum weapons ranges 

In contrast, consider the target-based sub-heuristic. 
When B is the target entity, A's IUR should increase. 
When A is the target entity, B's IUR should not 
increase. 

5.   Evaluation of the intervisibilitv heuristics 

Evaluation of the heuristics requires: 

• Establishing the performance metrics, 
• Data collection, and 
• Heuristic ranking based on effectiveness. 

This section addresses these points in detail. 

5.1   Evaluation experiment 

The performance of the intervisibility heuristics was 
evaluated in the context of a set of three standard 
military scenarios (Rajput et. al. 1994). 

The performance of the CGF Testbed Simulator in 
the area of intervisibility was measured and compared 
for heuristic and "base" versions in each scenario. 
The "base" versions were "no-heuristic" versions. 
Intervisibility performance was based on number of 
intervisibility determinations, sighting event times, 
and computational overhead. 

A "sighting event" or "sighting" refers to the first 
detection of an unblocked line of sight between two 
entities for which there was no such line of sight just 
prior to the event. The "sighting event time" is the 
simulation time of such an event. 

5.1.1   Performance metrics 
The following data was gathered: 

• The total number of sighting events, 
• The sighting event time, the sighter and target 

IDs, and their locations, and 
• The time, in clock ticks, at various stages of the 

intervisibility updating process. 

For a scenario, the set of sighting events and sighting 
event times found by the no-heuristic version is taken 
to be the "true" or "correct" set. When a heuristic is 
compared to the no-heuristic version the following 
cases arise: 

• Sighting events may be missed by a heuristic 
• There   may   be  extra  sighting   events   in   the 

heuristic output 
• Sighting events may be delayed 
• Sighting events may occur earlier 

Some sightings will be missed or be extra because of 
sampling error. Using coarse BUDs (1/2 second or 
more) makes it inevitable that some transitions will be 
missed, both by the heuristic version (labeled 
"missed") and by the no-heuristic version (labeled 
"extra"). The real question is how many sightings are 
missed because of delayed checking. Extra sightings 
are always from sampling error since the heuristics 
never do more frequent checks than the no-heuristic 
version of the system. It seems likely (and 
experiments support this) that the greater the average 
sighting delay for the System Under Test (SUT) the 
more misses will be recorded. 
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It is possible that the computational cost of 
computing some heuristic may exceed the cost of 
doing a real intervisibility determination. Both the 
sighter and target-based heuristics are quite complex, 
particularly when all their components are active. It 
is, therefore, not enough to simply count the number 
of intervisibility determinations done. Instead, a 
comprehensive evaluation is needed that takes the 
computational cost of the heuristics in account. 

Because the fine-grain heuristics produce a large 
number of internal messages, heuristics of this type 
must consider the message delivery overhead. 
Experiments revealed that message delivery time was 
a minor issue. Measurements yield delivery time on 
the order of 1/4 to 1/2 milliseconds (4000-2000 
deliveries/sec). On the other hand, overhead for 
heuristics is proportional to the number of targets. If 
/ is the number of local vehicles and m is the number 
of remote vehicles, the heuristic overhead is 
proportional to their product Urn, but message 
delivery is proportional to / only. 

With this in mind, the sighting delays and the 
computational overhead of a heuristic are used in 
measuring the "cost" of the heuristic. 

5.1.1.1   Savings calculation 
Naively, it may seem that the effectiveness of using a 
heuristic is the difference between the number of 
point-to-point intervisibility determinations expected 
by a user for the scenario with a particular setting of 
the BUD and the number of point-to-point 
intervisibility determinations actually done by a 
scenario. This is not true because the savings 
obtained may be optimistic as the heuristic overhead 
has not been taken into account. The overhead of the 
heuristic offsets the savings from a reduction in the 
number of intervisibility determinations. The net 
savings must be used to evaluate the quality of a 
heuristic. 

The effectiveness of a heuristic is represented as the 
ratio of its savings to the cost the system has to incur 
to use it. Thus, we have: 

j~, Sli, s 
Eh,s =  —- 

Ch,s 
where: 

Etui is   the   effectiveness   of   heuristic   h   for 
scenario s 

Sh.s is the savings achieved by heuristic h for 
scenario s 

Ck..s is the cost of using heuristic h for scenario s. 

Table 3 shows the Overhead Multiplier (OM) for 
each heuristic. The OM for a heuristic is a measure 
of the overhead associated with using that heuristic. 
It is defined as the ratio of the total time spent 
processing point-to-point intervisibility 
determinations between vehicles with the heuristic to 
the total time spent in doing these determinations 
without a heuristic. 

Heur OM 

Sym 1.06 
His 1.01 
Sgt 1.03 
Trg 1.05 
Fgh 1.02 
Fgs 1.005 
Fgt 1.03 

Table 3: Computing the overhead multiplier 

where: 
Heur Name of the heuristic (refer to Section 5) 
Raw Number   of   point-to-point   intervisibility 

determinations done 
Tics Total time spent by the SUT exercising 

intervisibility code 
Time that would be taken if no heuristic 
was being used to do the checks (t,-aw = 
Raw/53.9) 
Overhead multiplier (OM = Tics / traw) 

'raw 

OM 

After the overhead multiplier has been determined, 
the savings Sh.s can be determined. 

Sh.s =  (1 - (T|*0/,)) * 100.0 

where T| is the number of sightings that heuristic h 
does in scenario s and Oh is the OM for heuristic h. 

Example: 
Assume a heuristic does 75% of the intervisibility 
determinations done by the no-heuristic version in the 
same scenario (an apparent saving of 25%). 
However, if it has an overhead multiplier of 1.05 the 
real saving is: 

Sh,s= 1 -(0.75x1.05) = 0.2125 or 21.25% 

5.1.1.2   Missed and extra sightings calculation 
It may seem that a heuristic should be penalized for 
"missed"   sighting   events.      A   sighting   event   is 
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considered "missed" by a heuristic if it failed to 
produce a sighting event found by the no-heuristic 
version. It may be argued that a heuristic must be 
"bad" if it misses many sighting events (and "good" if 
it does not). However, the situation is more 
complicated than that. 

When a scenario is repeated results from the second 
run are not generally the same as in the first run. 
Small system perturbations from various non- 
deterministic events, such as network packet delivery 
times, have cumulative effects resulting in different 
intervisibility determination sampling (although the 
frequency is the same). It was found that a no- 
heuristic simulator run against the test scenarios 
showed approximately 5% variability from run to run 
in terms of missed and extra sightings. 

It would be difficult to directly reflect the missed 
events in the computation of the heuristic's cost. One 
real difficulty to overcome was how to allow for the 
misses generated by heuristics which intentionally 
"missed" many sightings. Misses, other than those 
caused through sampling variation, are closely tied to 
the mean and standard deviation for the sighting 
delays. Heuristics that delayed sightings greatly are 
prone to miss sightings. 

Analysis of the results of the combat scenarios (see 
Section 5.1.2), excluding the sighter and target data, 
revealed a positive correlation between the raw metric 
used for evaluation and the number of misses seen for 
the heuristic/scenario trial. The correlation was not 
very high (correlation coefficient was 0.374). The 
low correlation, the variability from run to run, and 
the difficulty of accounting for the misses led us to 
ignore this factor in evaluation. 

5.1.1.3 Sighting delay calculation 
The "sighting delay" is the difference in the 
simulation times of the same sighting event in the 
heuristic and no-heuristic version. The sighting 
delays must be a factor in determining a heuristic's 
cost (and hence its effectiveness). A heuristic should 
be penalized for delays; a heuristic that "sees" events 
earlier is preferable to another that "sees" them later. 
The absolute mean of the delays is used as one of the 
measures of the cost of using a heuristic. 

One may argue that the mean of the signed delays 
should have been used instead of the absolute value. 
However, the heuristics are not designed to sight 
earlier. There may be some negative delays in 
sightings (i.e., sightings were done earlier) but these 

are generally due to sampling variations. A heuristic 
should not be given credit for sampling variations and 
so a signed value should not be used. 

Another parameter used in the cost equation is the 
standard deviation of the absolute delays. If two 
heuristics have the same sightings delays, the 
heuristic having a smaller standard deviation is 
preferred over the other. 

Although the cost of a heuristic should rise with the 
standard deviation, the standard deviation is deemed 
less important than the mean. To reduce the impact 
of the standard deviation its square root is used. 

5.1.1.4   Heuristic cost calculation 
Combining   the   cost   parameters   we   obtain   the 
following equation for the raw measure of the cost of 
using a heuristic h for scenario 5. 

Rh,s = \x * Vo 
where: 

Rh,s is the raw measure of the cost of using 
heuristic h for scenario 5 

u.    is the absolute mean of the sighting delays 
induced by heuristic h for scenario s 

o~    is the absolute standard deviation of the 
sighting delays 

Table 4 displays the data used to compute the run to 
run variance, an important factor in calculating a 
heuristic's cost. The lu.1 and the lal values are 
obtained by running the no-heuristic version twice 
and comparing the data. 

Scenario ¥ lol K0,s   .   ||l|   .  M 
Meeting 0.21 0.34 0.122 
Delay 0.31 0.32 0.175 
Assault 0.26 0.39 0.162 
Meeting (C) 0.30 0.26 0.153 
Delay   (C) 0.31 0.34 0.181 
Assault (C) 0.29 0.31 0.161 

Table 4: Computing run to run variance 

The Ro.s column indicates the run to run variance for 
each scenario. To compute the cost, Ch,s, for each 
heuristic/scenario pair, the raw measure of the cost 
Rh,s of that heuristic/scenario pair is divided by the 
Ro.s value for the scenario s. 

Rk,s 
UJ =    

Ro.s 
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where: 
Ch.s is the cost of using heuristic h for scenario s 
Rh.s is the raw measure of the cost of using 

heuristic h for scenario 5 and 
Ro.s is the nominal cost (variation) from run to 

run 

After the cost of using a heuristic Ch.s is determined, 
the effectiveness Eh,s is computed by dividing the 
savings Sh.s by the heuristic cost. 

Sh,s 
Eh. a   =      

Ch,s 

5.1.2   Experimental design 
Three types of engagements were used to test the 
heuristics: 

• Meeting 
• Delay 
• Assault 

Six scenarios were developed; a movement-only and a 
combat version for each type of engagement. The 
experiment consisted of running an unmodified and 
heuristically modified versions of the Simulator with 
these scenarios and collecting data for analysis. 

5.1.3   Data collection 
A project of this complexity requires the analysis of 
large amounts of data. The scenarios that were 
developed for the evaluation of heuristics ran from 6 
to 10 minutes. For each scenario, data was collected 
for 7 heuristics. Two runs were made without 
heuristics; one became the reference data, and the 
other a "base version" used to evaluate run to run 
variability. 

Initially, data was collected by creating a point-to- 
point network (to reduce network processing) 
between two Simulators; each running its part of the 
scenario. This approach did not prove viable. 
Because of the ill conditioned nature of the 
experiment (Rajput et. al. 1994), a second run of a 
scenario would usually diverge from the first. By the 
end of a run of more than a few minutes the sighting 
event histories would be very different. 

The problem of scenario divergence was solved by 
logging each scenario's network traffic. For the 
evaluation of a system, the logged data was replayed; 
the scenarios were recreated exactly in terms of the 
network activity. The logging process was automated 
to remove errors in synchronizing the start and end of 

the scenarios. Two personal computers ran the 
Simulators, while a third logged the network traffic. 
The experiment was isolated on a LAN. 

To conduct an experiment, a scenario log was played 
back to generate test data for heuristic evaluation 
using a two PC point-to-point arrangement. One PC 
played the logged scenarios repeatedly, while the 
second PC ran a modified Simulator that did 
intervisibility tests between entities that were on 
remote machines. 

5.2  Experimental results 

AH the components of the sighter and target-based 
heuristics, both the fine and coarse-grain versions, 
were given equal weights so all of the components 
could be exercised (refer to Section 4.4.4.1 and 
Section 4.4.4.2). 

5.2.1 Overall heuristic performance 
A heuristic's overall performance can be seen by 
comparing the range of its Eh,s values. A good 
heuristic has high Eh.s values and low variability. 
Heuristic A is said to be more stable than B if its 
effectiveness is independent of the scenario. 

Figure 2 shows the range of Eh.s values for the 
implemented heuristics, and Eh,s values for 
intervisibility BURs of 0.67 (a check every 1.5 
seconds) and 0.5 (a check every 2 seconds). This 
figure shows the history heuristic to be the most 
stable heuristic. Sighter and target-based heuristics 
have very large spreads, with the extreme left points 
showing negative efficiency. The fine-grain sighter 
and target-based heuristics are marginally more stable 
and effective then their coarse-grain versions. The 
symmetry heuristic showed the greatest effectiveness 
with stability second to the history heuristic. 
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Figure 2: Heuristic performance spread 
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Interestingly, all heuristics performed well in 
vigorous situations. The combat scenarios appeared 
predominantly on the right of each line and the non- 
combat on the left. 

To determine the overall effectiveness Eh of a 
heuristic a weighted average is used. Since heuristics 
have more to offer in the combat scenarios, more 
weight (3 times) is given to such scenarios than to 
non-combat scenarios. Eh is computed as: 

_(£M+£M+B.*3)+3(B.'4+^5+£M) 

where: 
Eh   is the overall effectiveness heuristic h 
£/i,.tis   the   effectiveness   of   heuristic   h   for 

scenario x 
sJ   is the Meeting scenario 
s2   is the Delay scenario 
s3   is the Assault scenario 
s4   is the Meeting (Combat) scenario 
s5   is the Delay (Combat) scenario 
s6   is the Assault (Combat) scenario 

Using this metric the heuristics are "ranked" in Table 
5. The table also shows the overall savings, Sh, and 
the overall cost, Ch. 

Heuristic Eh Sh Ch 

Symmetry (Sym) 37.0 46.4 1.3 
Fine-grain target (Fgt) 23.2 29.7 1.30 
Fine-grain history (Fgh) 22.0 35.1 1.7 
Fine-grain sighter (Fgs) 21.3 25.5 1.2 
Sighter (Sgt) 19.4 16.7 0.9 
History (His) 18.9 45.8 2.5 
BUR 0.67 18.3 33.3 1.8 
BUR 0.5 17.6 50.0 2.8 
Target (Trg) 12.4 16.2 1.2 
BUR 0.33 10.9 66.6 6.2 
BUR 0.25 7.2 75.0 10.5 
BUR 0.2 5.1 80.0 15.8 
BUR 2.0 -85.0 -100.0 1.2 

Table 5: Heuristic rankings 

Data was gathered by running the Simulator with 
different BUR settings (2.0, 0.67, 0.5, 0.33, 0.25, and 
0.2) to see the effects of the IUR on the sightings. 
Table 5 shows that except for BUR 0.67 and BUR 

0.5, the BUR-based heuristics performed poorly and 
are at the bottom of the rankings. 

BUR 0.67 and BUR 0.5 seem to perform better than 
the target-based heuristic; but this is partly an 
illusion. In contrast to fixed BURs, the target-based 
heuristic (as well as all other heuristics) save 
"intelligently." Intervisibility determinations are 
delayed only when they are deemed acceptable, for 
example, when a scenario is calm. However, no 
delays are allowed when the scenario becomes more 
active, for example, when combat starts. 

5.3  Evaluation comments 

Even the least effective heuristic studied (coarse- 
grain target) saves almost 40% of the intervisibility 
determinations for some scenarios; for example, 
Delay with Combat. It does this with high 
effectiveness. It can be argued that combat situations 
are where the heuristics are most needed because this 
is the most typical use of CGF systems. 

The sighter and target-based heuristics seem 
reasonable; for example, destroyed vehicles should 
not be sighted or attempt to sight. The other 
components of these composite heuristics are 
similarly reasonable, but time did not permit 
experimental validation of each component 
individually. The components taken together 
performed well. 

Symmetry is shown to save on the order of 50% for 
all scenarios. This is a very intuitive result; because 
of the way symmetry works, one would expect it to 
eliminate half of the intervisibility determinations. 
The fact that this result was found in the experiment 
adds credibility to the experimental method used. Of 
course, the symmetry heuristic was tested only for 
entities that were generated by the same Simulator. 
Applying the symmetry heuristic across multiple 
Simulators (i.e., multiple network nodes) would 
require network traffic to communicate the symmetry 
results. It is not clear whether the reduction in 
intervisibility processing produced by the symmetry 
heuristic is worth the additional network processing. 

6.   Future work 

Perhaps the biggest unanswered question, and, 
thereby, an opportunity for future work, is what might 
happen if the different heuristics were combined? 
Time constraints did not permit the examination of 
this issue in the project.   Symmetry especially seems 
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to be a likely candidate for combination with other 
heuristics , as its basic idea is very different from the 
other heuristics. 

7.   Conclusions 

Computer generated forces are becoming increasingly 
complex as additional functionality is being added 
and more realistic behaviors are expected. It makes 
sense that some of the computational load be 
removed so that the CGF system can give more time 
to processing additional functions. 

For this project, a number of intervisibility heuristics 
were designed, implemented, and experimentally 
evaluated within a CGF system. The overall goal of 
the heuristics was to reduce the overall computational 
expense of intervisibility determination in CGF 
systems without materially affecting the realism of the 
autonomous behavior produced by those systems. The 
results show that the implemented intervisibility 
heuristics save substantial portions of the processing 
devoted to intervisibility checks, ranging from 10% to 
50%. 

Moreover, these savings were achieved at little cost in 
terms of CGF behavior realism. The behavior 
generated by the CGF system would be expected to 
suffer if an intervisibility heuristic significantly 
delayed the times at which hostile entities were 
sighted. That did not occur; the average sighting 
delay imposed by the various heuristics fell in the 
range of 0.3 to 0.5 seconds. Such a delay is 
negligible, especially in light of the tremendous 
savings in processing. 

These results can be of great importance to CGF 
systems. By using one of these heuristics, the 
computational load of intervisibility determination 
can be greatly reduced, thereby freeing computational 
capacity that can be applied to generating more 
sophisticated behavior, performing more realistic 
physical modeling, or simply controlling more entities 
on a given system. Because these heuristics are 
independent of the terrain database format, they can 
be applied to any CGF system. Therefore, one or 
more intervisibility heuristics should be seriously 
considered for inclusion in any real-time CGF system. 
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1. Abstract 

This paper discusses the establishment of a 
performance benchmark and the current capacity of the 
1ST CGF Testbed (henceforth called the Testbed). It 
also describes the manner in which the Testbed 
manages and subsequently measures its simulation 
load, and relates a particular means of load 
measurement to that which has been standardized for 
ModSAF. It then introduces additional methods for 
benchmarking those features that are unique to the 
Integrated Eagle/BDS-D project, which uses the 
Testbed as a component. In addition, this paper 
presents some benchmarking results of scenarios for 
which a corresponding benchmark of ModSAF is not 
currently available. 

2. Background 

The Integrated Eagle/BDS-D project (Franceschini 
1995) (Karr 1994) links a constructive, aggregate-level 
simulation (Eagle) with a virtual, entity-level 
simulation (DIS/SEMNET). The linkage uses the 
Testbed to control those vehicle platforms that are 
instantiated in the virtual simulation as the components 
of aggregate units in the constructive simulation. 

Network bandwidth and computer processing power 
severely limit the number of vehicle platforms (or 
entities) that can participate in existing DIS/SIMNET 
exercises. Therefore, one of the major goals of a 
constructive+virtual linkage (Franceschini 1995) is to 
manage this limitation. The constructive simulation 
provides the context of a large-scale battle (say, at the 
Corps or Division level) while the virtual simulation 
plays out the smaller engagements. Such smaller 
engagements, however, need to be large enough for the 
battle to have any intrinsic meaning. Consider, for 
example, a scenario involving helicopters on a 
reconnaissance mission. In order for the small 
engagement occurring in the virtual simulation to 
include the helicopters, the virtual environment must 
also contain many other disaggregated units from the 
constructive environment, as a helicopter's sensor 
systems typically allow it to detect and engage vehicles 
from over four kilometers away. To ensure the realism 

and usefulness of the constructive+virtual linkage, the 
CGF component of the virtual simulation must 
therefore have a large entity capacity. 

1ST developed its CGF Testbed as an inexpensive, 
experimental simulation engine that could run on IBM- 
compatible personal computers operating under DOS. 
As such, and written entirely in C, it was developed 
under the Borland C environment, version 3.1. The 
Testbed developers ultimately discovered, however, 
that as a DOS application, the Testbed was constrained 
to the first 640 kilobytes of internal RAM on a personal 
computer that DOS considers conventional memory. 
This effectively limited to twelve the maximum number 
of entities that could be simulated on a single personal 
computer. The ever-increasing power of personal 
computer processors, however, suggested that the 
Testbed might support many more entities. 

In an effort to increase the capacity of the Testbed, 
IST's Integrated Eagle/BDS-D project team converted 
the Testbed to the WATCOM development 
environment, version 10.0, which in conjunction with 
Rational Systems' DOS/4GW DOS extender, gives 
DOS applications access to as much as four gigabytes 
of RAM in a flat address space (WATCOM 1994). 

2.1 Why Benchmark the Testbed Now? 

It has now become evident that by giving the Testbed 
potential access to every bit of free memory on the 
computer, the limiting factor in the performance of the 
Testbed may be the processor itself. Thus it seems an 
opportune time to benchmark and standardize the 
performance of the Testbed to determine whether this 
is actually the case. As an added benefit, the methods 
for benchmarking the Testbed will not only show just 
how large an entity load it can handle, but also provide 
an objective means of gauging the system's 
performance under aiy conditions. 

In an effort to produce valid, standard results, the 
methods used to benchmark the Testbed were similar to 
those described in (Vrablik 1994) in the benchmarking 
of ModSAF. 
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3. How Do ModSAF and the Testbed Differ? 

Both ModSAF and the Testbed perform basically the 
same function, but minor differences in the methods 
they use become more apparent under closer analysis. 

3.1 Simulation Hosts and Operator Interfaces 

One important difference between ModSAF and the 
Testbed is that ModSAF consists of a single executable 
application, though it can take on different forms 
through the use of the available command-line options. 
In this manner, ModSAF can run as either a ModSAF 
Station (SAFStation) or a ModSAF Simulator 
(SAFSim). A SAFStation can run as an operator 
interface, a simulation host, or a "pocket" system: an 
integrated operator interface/simulation host. A 
SAFSim can run only as a simulation host It is 
possible to network several SAFSims and SAFStations 
in order to increase the entity capacity of an exercise 
(ModSAF 1994). 

The Testbed, on the other hand, is composed of 
separate executable applications: the simulation host, 
which performs the virtual-level simulation of entities; 
and the operator interface, which provides a graphical 
interface for the user. Though the simulation host does 
have a rudimentary operator interface, the Integrated 
Eagle/BDS-D system utilizes the dedicated operator 
interface exclusively as its user interface. 

In any case, there is a distinct advantage to running the 
simulation host and operator interface separately. 
Though it is possible to develop a single integrated 
application which is able to perform all of these 
functions (as the SAFStation can), under a heavy load, 
such an application spends most of the time processing 
its own overhead (Vrablik 1994). Running the 
simulation host and the operator interface separately 
maximizes the amount of processor resources devoted 
to performing each task. Of course, this type of system 
requires more hardware, but since the Integrated 
Eagle/BDS-D system uses IBM-compatible personal 
computers, the cost of gathering the requisite hardware 
(for Eagle/BDS-D, at least) is relatively small. 

3.2 How Does ModSAF Simulate its Entities? 

As with most virtual-level simulation hosts, ModSAF 
and the Testbed are both sequential in nature. In other 
words, they can process only one thing at a time. This 
presents a special challenge when developing an 
application that simulates the behaviors of numerous 
entities. The developer must ensure that the execution 

of any one task does not overtly compromise the 
integrity of the simulation. 

To this extent, ModSAF utilizes a task scheduler, 
which keeps a list of the jobs it needs to do, including 
running each vehicle it is simulating (Vrablik 1994). 
The scheduler uses, as its basic data structure, a heap- 
based priority queue. The ModSAF scheduler is non- 
preemptive-it allows each task to finish before moving 
on to the next. For more information on ModSAF's 
task scheduler, refer to the LibSched documentation in 
the ModSAF Programmer's Reference Manual 
(ModSAF 1994) 

The tasks that ModSAF must perform in updating a 
vehicle are based on what that vehicle is doing at that 
particular time. It may be a single, simple task, such as 
broadcasting the vehicle's position over the network; or 
there may be multiple, complex tasks, such as 
performing complicated movements, performing 
intervisibility and detection calculations on other 
potential targets, tracking a target, and firing a weapon 
(Vrablik 1994). Thus, the amount of processor time 
devoted to a single update of a single vehicle may be 
either quite small or relatively large, depending on 
what that vehicle is doing. 

3.3 How Does the Testbed Work? 

Likewise, the Testbed's simulation host uses a message 
scheduler to oversee its tasks. Like ModSAF's task 
scheduler, the Testbed's message scheduler is 
implemented as a priority queue. Also, like ModSAF, 
the Testbed's message scheduler is non-preemptive. 
The most significant difference between the 
implementations of ModSAF's task scheduler and the 
Testbed's message scheduler, however, lies in what 
happens during the processing of a single task. 

Essentially, a task in ModSAF's task queue and its 
analog, a message in the Testbed's message queue, is a 
request for access to the processor to perform the 
specified task. When a vehicle in ModSAF requests 
access to the processor to perform an update, it updates 
all of its systems at once-from its position, heading, 
and orientation, to tracking and firing at a target, to 
whatever else it may need to update at the time. Thus, 
there may be a large difference in the amount of 
processor time devoted to the updating of two different 
vehicles, depending on what those vehicles are doing. 

Messages in the Testbed, however, are much more 
specific. For example, a vehicle in the Testbed may 
request access to the processor to update its position, 
heading,   and   orientation.      To   update   its   target 
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acquisition list or to fire a weapon, for example, the 
vehicle would place a different request onto the 
message queue corresponding to the respective activity. 
In essence, whereas a single task in ModSAF might be 
"update vehicle number 100," the analog in the Testbed 
would be "update the position of vehicle number 100," 
or "update the damage incurred on vehicle number 
100," and so forth. Thus, even though there is still a 
difference in the amount of processor time devoted to 
the performance of different tasks, the amount of 
processor time devoted to the performance of any 
single task is much smaller. 

Each of these methods of updating vehicles has its own 
advantages and disadvantages, though this is not the 
subject of this paper. 

4. Metrics for Measuring CGF Performance 

The process in ModSAF of going through the 
scheduler's list of vehicles and tasks once is called a 
"tick," and the process of handling a particular 
vehicle's requirements during a single pass through the 
local vehicle list is called "ticking" that vehicle 
(Vrablik 1994). One interpretation of this definition 
might be that a tick consists of a single access to the 
processor for any particular vehicle. This seems a most 
likely application of the definition when attempting to 
benchmark the Testbed due to the system's underlying 
architecture. This application, however, will yield very 
different results when gauging the system's 
performance. 

4.2 The Underlying Problem 

(Vrablik 1994) describes a method of benchmarking 
ModSAF by measuring the average interval between 
ticks for individual vehicles. As the number of 
simulated vehicles increases, the load on the system 
also increases. Hence, the frequency with which the 
system ticks a particular vehicle decreases. There 
exists a point where the time between individual 
vehicle ticks becomes large enough that it begins to 
affect the behaviors and movements of the simulated 
vehicles. Historically, this threshold tends to occur at 
tick lengths of about half a second (Vrablik 1994). The 
ModSAF standard specifies that the system is running 
within established limits if 90 percent of the individual 
vehicle ticks are occurring in less than half a second 
(Vrablik 1994). 

However, if a tick is defined as the act of passing 
control of the processor to a particular entity to perform 
an update (as is the case for ModSAF), then a problem 
arises when attempting to directly compare vehicle 
ticks from the two systems, since a tick in ModSAF is 
not the same as a tick in the Testbed. Therefore, it is 
impossible to directly compare-or even establish, for 
that matter-standardized benchmarking results across 
the two systems (at least by using vehicle ticks as the 
standard metric). Likewise, it would be exceedingly 
difficult to establish a sound conversion between a tick 
in ModSAF and a tick (or ticks) in the Testbed. 

4.3 What, Then, Will Be Our Metric? 

4.1 Not All Ticks Are Created Equal 

When ModSAF ticks a vehicle, everything about that 
vehicle is updated at once. Therefore, depending upon 
what a vehicle is doing, there may be quite a large 
difference in the amount of processor time devoted to 
updating two distinct vehicles. However, during the 
course of a simulation, ModSAF will tick each vehicle 
the same number of times. 

A single update of any particular vehicle in the Testbed 
consists strictly of updating only one system on' that 
vehicle, such as the vehicle's movement, target 
acquisition, tracking of targets, or weapons firing. If 
we determine that each of these actions comprises a 
single tick, it becomes apparent that there will be a 
smaller difference, compared to ModSAF, in the 
amount of processor time devoted to a single update for 
two different vehicles. This implies that the Testbed 
will tick more frequently those vehicles that are more 
active. 

This is not to say, however, that vehicle ticks are not an 
adequate measure of the performance of the Testbed; 
quite the contrary. It merely means that the Testbed 
has a different performance threshold than does 
ModSAF in terms of the average vehicle tick interval. 
In other words, if we are to use vehicle ticks to measure 
performance, system degradation will become apparent 
at different tick rates for the two systems. 

4.3.1 How Do We Measure System Degradation? 
The most obvious manner in which we can measure 
system degradation is by observing the movements of 
the simulated vehicles. In the Testbed, a vehicle's 
route is broken down into smaller sub-routes, called 
waypoints (Smith 1992), which allow the vehicle to 
avoid the obstacles along its path. While the vehicle is 
moving toward its waypoint, it places update-position 
messages in the message queue at regular intervals. As 
the vehicle nears its waypoint it places a new message 
on the queue at such an interval that under optimum 
conditions, the message will be dispatched at exactly 
the time in which the  vehicle hits  the  waypoint. 
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Figure 1 

However, if the message is dispatched late, due to an 
overload on the system, the vehicle will have passed its 
waypoint by the time the new update occurs. This 
causes the vehicle to compensate by turning back-it 
needs to reach its waypoint before it can continue. If 
the system is loaded sufficiently, the vehicle will again 
miss its waypoint in the same manner. This 
degradation is marked by the vehicle endlessly circling 
in a futile attempt to reach its waypoint. If this 
"spinning" happens to any vehicle during the 
simulation, then the simulation has sufficiently 
degraded, causing unacceptable behavior (Franceschini 
1993). 

4.3.2 Establishment of the Performance Benchmark 
With the system running under optimum conditions, 
tick lengths should differ only as a result of the 
different tasks performed during a single tick. In 
benchmarking ModSAF, (Vrablik 1994) states that the 
system is running under ideal conditions if ninety 
percent of the vehicle ticks occur in less than 0.5 
seconds. There is statistical evidence to support a 
similar claim for the Testbed. 

By gathering data for the average tick interval for 
individual vehicles, it is possible to compute a tick 
interval under which the system can operate that will 
maximize the entity load while minimizing system 
degradation.    Figure 1  is a histogram showing the 

frequency distribution of vehicle tick intervals. The 
distribution assumes a distinctly normal quality, though 
it does seem a bit skewed (Freund 1979). However, we 
may attribute this skewness to the fact that the majority 
of tasks requires little processing time to complete. For 
instance, those tasks involving entity updates, by 
nature, require less time than those tasks involving line- 
of-sight calculations, but are also much more abundant. 
Therefore, if we assume that individual tick intervals 
generally take on a normal probability distribution, we 
can compute a mean and standard deviation for the 
average tick interval to determine the system's 
performance threshold (Freund 1979). 

4.4 An Alternate Metric 

Along with measuring the average vehicle tick interval, 
the Testbed tracks many other performance statistics. 
Among these is a measure of the amount of time that 
the system spends performing its tasks (as opposed to 
sitting idle). The Testbed reflects the executive busy 
time as a percentage of the total execution time. Figure 
2 shows a graph of the executive busy percentage 
versus the number of vehicles in the simulation. The 
graph shows that the load on the system increases 
steadily as the number of vehicles increases. It reaches 
a point, however, where the curve changes concavity 
and begins to flatten. It is at this point that the integrity 
of the system begins to degrade.   In other words, we 
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Executive Busy Percentage vs. Number of Vehicles (M1/T72) 
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Figure 2 

have reached the performance threshold. This 
resembles the characteristic phenomenon of network 
throughput times in operating system task queuing 
theory. 

According to (Kleinrock 1976), the delay encountered 
by networks in sending packets remains essentially 
constant as network throughput increases. It reaches a 
threshold, however, at which point the delay grows in 
an unbounded fashion. In our system, this delay 
correlates with the average tick interval. The average 
vehicle tick interval remains relatively constant as the 
number of vehicles in the simulation increases so long 
as the system load has not exceeded the performance 
threshold. As Figure 3 shows, the total number of 
vehicle ticks increases steadily with the number of 
vehicles in the simulation-corresponding to a linear 
increase in the system load-but eventually reaches the 
threshold where the system's efficiency drops 
drastically. From Figure 2, we can see that the system 
never reaches 100 percent capacity. This merely 
reflects the minimum operating system overhead. 

(Kleinrock 1976) shows that network delay beyond the 
critical threshold increases exponentially. In the 
Testbed, however, the placement of new messages into 
the message queue is entirely dependent upon the 
processing of messages at the front of the queue. That 
is, most messages trigger new messages to be placed 

into the queue. This dependence causes the average 
interval between messages (and, thus, the average tick 
interval) to increase in a roughly linear fashion once the 
system exceeds its performance threshold (see Figure 
4). 

5. The Benchmarking Procedure 

The procedure for benchmarking the Testbed consists 
of six parts; the first three of which are described in 
(Vrablik 1994). 

5.1 Part I-Two Rows of Opposing-Force Tanks 

The first part of the procedure involves a scenario in 
which a row of blue-force tanks (Mis) engages a row 
of red-force tanks (T72s). All vehicles have modified 
damage tables that make them invincible, so they 
continue to move and fire throughout the entire test. 
The scenario begins with the two rows facing, but out 
of sight of one another. All of the vehicles are given 
permission to fire and are then told to route toward the 
opposing row of tanks. The benchmark lasts for five 
minutes, and begins after the vehicles have been 
moving for approximately a minute. This test is run on 
a completely isolated network. 
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Total Vehicle Ticks vs. Number of Vehicles (M1/T72) 
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5.2 Part II-Remote Network Traffic I 

Part II of the procedure uses the same scenario 
described in Part I, but with a remote network load of 
800 entities created by a packet "blaster" (Vrablik 
1994). The blaster is merely a utility that floods the 
network with Vehicle Appearance PDUs (or Entity 
State PDUs). For this test, the remote vehicles are 
generated on the same exercise ID as the local 
simulator allowing the interaction between local and 
remote entities. This test simulates the effect that a 
very large exercise would have on the Testbed. 

5.3 Part 111-Remote Network Traffic II 

Part III is identical to Part II except that the remote 
vehicles are on a different exercise ID from the test 
scenario. This simulates the effect that numerous 
smaller exercises running on the same physical network 
would have on the Testbed. 

5.4 Part rV-Air/Ground Interaction 

Part IV is identical to Part I, except that the row of 
blue-force tanks has been replaced by a row of blue- 
force helicopters (AH64s). (Vrablik 1994) was unable 
to benchmark a scenario of this nature because, at the 
time, units of air vehicles had not yet been created for 
ModSAF. 

5.5 Part V-Integrated Eagle/BDS-D 

The Integrated Eagle/BDS-D system links a 
constructive simulation with a virtual simulation 
(Franceschini 1995). This linkage establishes three 
classifications for the units that it simulates: 
aggregated, disaggregated, and pseudo-disaggregated. 
Aggregated units are those units that are modeled and 
represented in the constructive simulation. 
Disaggregated units are those units whose individual 
entities are modeled and represented in the virtual 
simulation. Pseudo-disaggregated units are those units 
whose behaviors are modeled in the constructive 
simulation, but whose individual entities are 
represented in the virtual simulation. In the Integrated 
Eagle/BDS-D system, the Eagle Manager provides a 
key segment in the link between the constructive and 
virtual simulations. Essentially, it directs the flow of 
information between the two worlds. Thus, in order to 
produce a complete benchmark of the Integrated 
Eagle/BDS-D system, a benchmark of the Eagle 
Manager is necessary. 

The experiment involves a demonstration scenario that 
the developers of the Integrated Eagle/BDS-D system 
have created and consists of three trials. The scenario 
starts with a large number of aggregated units 
represented in the constructive simulation. All of the 
aggregated units are pseudo-disaggregated, placing as 
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much a load as possible onto the Eagle Manager. Each 
trial then consists of fully disaggregating an increasing 
number of units into the virtual environment. 

The Eagle Manager's job here is threefold: it shows in 
icon form the locations in the virtual world of the 
aggregated units being modeled in the constructive 
environment; it places the individual vehicles into the 
virtual world that compose the pseudo-disaggregated 
units being modeled in the constructive environment; 
and it reflects the status in the constructive world of the 
disaggregated units being modeled in the virtual 
environment. 

5.6 Part VI-SEVINET versus DIS 

All of the previous procedures involved testing the 
system in SIMNET. The Testbed (and, hence, the 
Integrated Eagle/BDS-D system), however, is 
compliant under both SIMNET and DIS. Since the 
underlying simulation process is identical between the 
SIMNET system and the DIS system (in other words, 
only the protocols differ), it is possible to directly 
compare the efficiency of the two protocols. Part VI, 
therefore, is identical to Part I, except that the system is 
running under DIS rather than SIMNET. 

5.7 The Testing Environment 

The Testbed was designed to run on IBM-compatible 
personal computers. The Integrated Eagle/BDS-D 
system uses Eagle as its constructive simulation, which 
runs on a SparcStation2. All tests involving only the 
Testbed were conducted on identical Dell Pentium 
personal computers with clock speeds of 60 MHz, and 
16MB of RAM. To provide maximum performance, 
graphics output was turned off. 

6. Experimental Results 

6.1 Parti 

Figure 4 shows a graph of the average interval between 
vehicle ticks in the Testbed. Notice that the interval 
remains constant (at about 0.08 seconds) for scenarios 
consisting of fewer than forty vehicles. Therefore, we 
can conclude that the system is running most efficiently 
when the average interval between vehicle ticks is 
about 0.08 seconds. This does not mean, however, that 
if the average tick interval is greater than 0.08 seconds, 
the system is running beyond its capacity. Thus we 
need to determine the point at which the system begins 
to function so inefficiently that degradation of the 
simulation occurs. 

6.1.1 When Does System Degradation Begin? 
We have already stated that one method of measuring 
system performance is by monitoring the behavior of 
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the simulated entities. We have observed, however, 
that degradation of the system begins before a 
noticeable decay in the behaviors of individual 
vehicles. As Figure 4 shows, the system is running 
most efficiently when the average interval between 
vehicle ticks is about 0.08 seconds. At higher tick 
intervals (say, 0.10 seconds), the Testbed may still 
appear to perform reasonably well, but system 
degradation has already begun. The question remains, 
then, "At what point does sufficient degradation occur 
in the system as to affect the behaviors of individual 
vehicles?" The graph of the total vehicle ticks shown 
in Figure 2 increases steadily until it takes a dramatic 
nose-dive after forty vehicles. This shows that under 
the conditions created by the test scenario, the system 
runs without degradation with a load of up to forty 
vehicles. After forty vehicles, degradation begins. We 
can now use the forty-vehicle scenario to determine the 
Testbed's performance threshold by establishing a 
range for the average tick interval based on those 
individual intervals measured for the forty-vehicle 
scenario. 

Given the normal distribution of vehicle tick intervals, 
we can calculate the mean and standard deviation for 
the average tick interval using the forty-vehicle 
scenario as the standard. It is in this manner that we 
have determined that the Testbed is running with no 
system degradation  when the  average vehicle tick 

interval is 0.0922 seconds. More precisely, we can say 
with ninety percent confidence that the Testbed is 
running with no system degradation when the average 
vehicle tick interval is between 0.0840 and 0.1004 
seconds (Freund 1979). 

6.2 Parts II, m, and IV 

Figure 5 shows the average tick interval for vehicles in 
the scenario where the system is under a network load 
of 800 remote entities on the same exercise ID. It is 
clear that the remote network load places an extra 
burden on the system, since at the 0.0922-second tick 
interval threshold, the system is at capacity with a local 
load of only eight vehicles. 

Figure 6 shows the average tick interval for vehicles in 
the scenario where the system is under the same 
network load, but with the entities on a different 
exercise ID. The threshold in this case appears to be at 
about thirty-six vehicles. Therefore, the presence of a 
large number of exercises running on the same physical 
network should not critically affect the performance of 
each exercise. 

Figure 7 shows the average tick interval for vehicles in 
the scenario involving air/ground interaction. Notice 
that the Testbed reaches its capacity with fewer 
vehicles.   The primary weapon that helicopters use in 
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engaging tanks is the guided missile, which, unlike 
other forms of fire, is itself represented as an individual 
entity in the virtual environment. Therefore, we can 
attribute the smaller capacity to the additional overhead 
that the missile flyouts generate. 

6.3 PartV 

The Eagle Manager's operating characteristics are very 
different from those of the simulation host. In the 
linkage between the constructive and virtual 
simulations, the Eagle Manager acts primarily as a 
packet blaster, placing Vehicle Appearance PDUs (or 
Entity State PDUs, depending on the protocol) on the 
network to represent pseudo-disaggregated vehicles in 
the virtual environment. Otherwise, the Eagle Manager 
remains mosdy idle, waiting to route the occasional 
message from one side to the other. When it does 
receive a message, such as a request for disaggregation, 
the Eagle Manager operates at or near capacity through 
the completion of the task at hand. It then returns to its 
somewhat idle state. However, due to the non- 
preemptive nature of the Eagle Manager, each task 
finishes before the next one starts. Therefore, the only 
way to overload the Eagle Manager is to attempt to 
pseudo-disaggregate so many vehicles that it simply 
can not place Vehicle Appearance PDUs on the 
network fast enough. To this extent, the Eagle 
Manager is limited by the capacity of its network 

interface hardware. We were therefore unable to 
determine a limit on the capacity of the Eagle Manager. 

6.4 Part VI 

Figure 8 shows the average vehicle tick interval for the 
tank scenario under the DIS protocol. From these 
results, it appears that there is very little difference (if 
any) between the two protocols. DIS, however, does 
support a much wider variety of PDUs than does 
SIMNET. Therefore, these results may be skewed 
since the test scenario did not require the utilization of 
those PDUs that are specific to DIS. 

7. Conclusions 

7.1 The Test Conditions-A Caveat 

It is important to note that the test scenarios were 
conducted with altered damage tables for those entities 
in the simulation. By making the vehicles invincible, 
the test procedure produces a worse-than-worst-case 
scenario in which all of the vehicles are continuously 
routing, targeting, and firing-yet never dying. 

7.2 Impact of Terrain on the Benchmark 

It is also important to note the limitations that the 
terrain imposes on such a test (Vrablik 1994). If the 
terrain were completely flat and contained no obstacles, 
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every vehicle would be able to see every other vehicle, 
thus creating a distorted view of the capacity of the 
system. Likewise, if the terrain were extremely rough, 
a similar distorted view might result. Therefore, the 
vehicle tick interval seems a trustworthy measure of the 
system load because it removes all of these factors 
from the equation. The bottom line becomes: The 
system is running within its limits if the average 
interval between vehicle ticks is within the determined 
range. 

7.3 Limitations of the Executive Busy Percentage 

The use of the executive busy percentage as a measure 
of performance can also be disputed. The executive 
busy percentage measures the amount of time that the 
executive spends processing its tasks. It does this by 
determining the difference between the time at which 
the task was dispatched and the time at which the task 
was finished. However, given the granularity of the 
timer, a task might finish before any measurable 
amount of time has passed. 

Obviously, the purpose of benchmarking such a system 
is not merely to determine how many entities it can 
support. Its primary goal is to provide a standard by 
which we can measure future performance. 

7.4 Future Work 

1ST has not yet integrated the measurement of the 
vehicle ticks into the Testbed, mainly because of the 
abundance of performance data that it already gathers. 
With the possible exception of the executive busy 
percentage, however, the average vehicle tick interval 
seems to be the most accurate measure of the system's 
performance. Therefore, the future developers of the 
Testbed may decide to implement the vehicle tick 
measurement into the system. 

When the benchmarking option is specified from the 
command line in ModSAF, not only does the system 
tally vehicle ticks, but it also halts the simulation as 
soon as it determines that it is running beyond its 
capacity. In any case, it would be very helpful for the 
system to at least warn of possible spurious behaviors 
resulting from an impending system overload. 

The accuracy of the executive busy percentage as a 
measure of system performance is questionable due to 
the granularity of the timer involved in measuring the 
executive busy percentage. It is apparent, though, that 
a finer timing mechanism would produce more accurate 
results. 

Lastly, more work is needed in developing a 
benchmark for a constructive+virtual linkage, because 
of the complex nature of this type of system. 
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1. Abstract 

Individual Combatant (IC) capabilities have been 
developed in ModSAF as part of the Marine Corps 
Semi-Automated Forces requirements for the 
LeatherNet project and STOW '97. The initial 
development effort has been focused on modifying 
and enhancing ModSAF to enable the inclusion of the 
Marine Corps IC at the lowest echelon levels: Fire 
Teams and Rifle Squads. Additionally, three special 
teams (60mm Mortar team, Machine Gun team, and 
Assault team) have been created. Early development 
concentrated on basic functions and basic movements 
of the ICs, which are building blocks for more 
complex tactics and maneuvers. These results have 
been incorporated into Build One of the Marine Corps 
LeatherNet project. 

The modification to, and enhancement of, ModSAF to 
create the appropriate Marine IC functionality will be 
described. This was not a trivial undertaking because 
of ModSAF's orientation toward Army armor. Also, 
the integration of IC formations and movements with 
planning techniques which utilize terrain features for 
cover and concealment [presented in more detail in a 
companion paper by Hoff, et al] will be discussed. 

2. Introduction 

2.1 Previous SAFOR work 

Hughes Research Labs (HRL) first applied 
autonomous vehicle navigation ideas (Mitchell, et. al, 
1987) to the problem of tank platoon and company 
movement with formation maintenance in the 
SIMNET Semi-Automated FORces (SAFOR) project 
in 1990. A concurrent-control scheme for driving 
SAFOR tanks balanced the competing goals of 
avoiding obstacles, maintaining a formation, and 
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following an assigned route. This control scheme 
showed a measured improvement over the finite state 
machine approach used in SAFOR (Harmon et al, 
1990). We also applied concurrent-control to the 
gunner and company commander. In particular, our 
concurrent control commander (Harmon, et al, 1994) 
was able to balance competing objectives to make 
decisions about breaking formation to respond to 
incoming enemy fire and sending orders to 
subordinate commanders by means of PDUs. In 
phase two of this project we applied case-based 
reasoning and concurrent control to the air vehicles in 
the WISSARD IFOR program (Keirsey et al, 1994), 
which was built on top of ModSAF A. 

2.2 The Need for USMC SAF 

The goal of HRL's work in the current LeatherNet 
project is to develop the Individual Combatant (IC) 
capabilities for the Marine Corps component of 
STOW97. Early versions (A and B) of ModSAF 
included models of air vehicles for the WISSARD 
IFOR program, and the IX versions have 
concentrated on Army armor units. IC capabilities 
required for Marine Corps simulation have not been 
sufficiently developed in ModSAF. A ModSAF 
Dismounted Infantry (DI) is basically a slow, 
vulnerable tank with a rifle, that can mount and 
dismount Infantry Fighting Vehicles (IFVs). This is 
not an unreasonable way to simulate an IC given 
ModSAF's existing code library and the need to 
conserve CPU cycles. For instance, the hull model in 
ModSAF simulates variations in speed with soil type 
and the turret / loader / gunner model simulates 
ammunition supplies, loading time, targeting/tracking 
and shooting. These models can be applied to ICs 
with appropriate parameter changes. 

Some existing tasks such as VMove, which controls 
vehicle movement, can be reparameterized to get a 
quick start of the behavior, but ultimately some 
deeper aspects of the behavior need to be addressed. 
For example, a tank considers a tree canopy to be a 
penetrable obstacle; that is, it will detour around the 
canopy unless specifically tasked to go inside. An IC 
is probably attracted to a tree canopy as it affords 
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concealment without significantly slowing forward 
progress. Attraction to an area of concealment is not 
well developed in ModSAF; section 3.4 discusses our 
approach. Furthermore, there are tactical 
considerations that might make an IC stay out of a 
tree canopy, including the need to stay in visual 
contact for hand signals not used by the tanks. Some 
of these higher level behaviors may eventually require 
the more sophisticated blending of lower behaviors 
called concurrent control. 

There is no model of "suppression" (direct or indirect 
fires brought to bear on an enemy to prevent effective 
fire on friendly forces) in ModSAF, or of a response 
to suppression. We will need to model the way that 
suppressive incoming fire affects a soldier's firing 
rate and targeting accuracy. The ability to signal 
other units by means of smoke and flares is not 
present in ModSAF as of version 1.4. Finally, Marine 
Corps echelons, formations, techniques of movement 
and tactics are not represented in ModSAF. 

In the next section, our enhancements to ModSAF for 
the LeatherNet Build One demonstration (six months 
into the program) is described in some detail. To date 
we have addressed a subset of needs mentioned 
above. Our successful Build One demo is described 
in section 4, "Results". 

3. ModSAF Enhancements 

3.1 Integration Choices 

The following discussion will be more understandable 
if we define two terms to describe how a developer's 
code is integrated with ModSAF: loose and tight. A 
loose integration implies that the developer's code is a 
separate code module, with few links into ModSAF. 
An extreme example of this might be a module that 
runs in a different process, using a low bandwidth 
socket or shared memory interface. A more moderate 
example is the way SOAR was integrated, running in 
the same process but bypassing ModSAF's movemap 
for vehicle control and providing its own user 
interface (Schwamb etal, 1994). The advantages of a 
loose integration with ModSAF include easier porting 
to new versions of ModSAF and avoidance of much 
of the ModSAF learning curve. The drawback for the 
developer is the likelihood that certain ModSAF code 
will need to be duplicated. As a result, ModSAF's 
already complex code can become duplicative and 
disorganized. 

A tight integration uses standard ModSAF 
mechanisms as much as possible. In this method, the 
developer's code adds functionality to ModSAF by 
making changes as subtly as possible. Developers 
desiring to embed their control mechanisms in 
ModSAF in this way face a steep learning curve 
because a deep understanding of ModSAF is required. 
It is riskier and more expensive, at least in the short 
term, to do this. 

At the beginning of HRL's involvement in the 
LeatherNet program, the 1.0 version of ModSAF 
which was then available did not simulate two- 
echelon-deep units like an Army company. We were 
aware that company level capabilities were being 
developed and would soon be available, but our 
schedule was too tight to wait. In order to show an 
early capability in the LeatherNet program, we chose 
to use some basic movement, formation, and echelon 
logic we had developed for another program, and to 
loosely integrate it with ModSAF. In other words, a 
Marine Corps entity would run our concurrent control 
code for route planning, obstacle avoidance, and 
formation keeping, instead of running the ModSAF 
movemap planning code. 

When ModSAF 1.2 was delivered and contained 
company level capabilities, some of our code became 
redundant. We opted to use the new ModSAF 
echelon and formation code and to use ModSAF's 
movemap for movement, thereby shifting to a tight 
integration. The next section describes our resulting 
tight integration with ModSAF 1.2 in some detail. 

3.2 Creation of Marine Corps Entities 

3.2.1 Marine Corps Rifle Squad 
Our first job was to create, in ModSAF, a Marine 
Corps rifle squad. In ModSAF, a tank is an atomic 
entity which can move, shoot, and communicate. 
ModSAF models two echelons for Army armor: a 
platoon composed of tanks, and a company composed 
of platoons. For simulation purposes, a Marine Corps 
squad has a similar two echelon structure: a fireteam 
composed of Individual Combatants (ICs), and a rifle 
squad composed of fireteams. This is important 
because the echelon organization determines how a 
behavior task is structured in ModSAF, and we were 
able to obtain early results in Marine Corps modeling 
by re-coding some ModSAF company tasks for the 
Marine squad. 

For example, a ModSAF company task such as 
"UCMarch" is a meta-task that spawns and controls 
platoon tasks such as "UTraveling", which in turn 
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spawns individual vehicle tasks such as "VMove". 
But ModSAF's company unit tasks could only be run 
by units that were called "Company." It was 
necessary to extend them so they could also be used, 
with some revisions, on Marine rifle squads. This 
involved not only changes in parameters such as 
formation spacings and speeds, but also changes in 
some of the finite state machine logic used to 
implement these behaviors, written with Army 
doctrine in mind. Some examples of this are 
discussed below in section 3.3, "Formations and 
Basic Movement." 

Figure 1. A machine gun team (upper left) is 
sitting at its base of fire on a ridge. A mortar 
team (lower right) and a machine gun team are 
shown traveling nearby. Each team is portrayed 
by a single icon, which represents the team's 
weapon (The grid shown is 100 meters). 

3,2,2 Special Weapons Teams 
Three special weapons teams were needed in the 
Build One context: an assault team armed with a 
Mkl53 SMAW, a M224 60mm mortar team, and a 
machine gun team armed with a M240G machine gun 
For Build One, it was only necessary to simulate the 
functionality of each of these teams. In this case we 
used a simple entity that could move to a location, 
simulate setup time, and then orient itself on a target. 
Setting up the weapon was simulated by having the 
team icon wait for a specified after arriving near the 
base of fire before moving into position. 

3.2.4 Marine Corps Iconic Display 
The standard ModSAF icon view shows at a glance 
which entities are ModSAF Dismounted Infantry (DI) 
and which are vehicles. But in order to debug the 
[simulated] Marine formations and enable [real] 
Marines to W&A our work, we had to display more 
information for each entity in the rifle squad. 
Military symbols for Marine Individual Combatants 
(ICs) denote such information; they graphically 
differentiate each squad member (squad leader, 
fireteam leader, rifleman, etc.) by portraying its role 
in the squad. ModSAF does have a concept of role: 
the job of unit leader can be passed from one entity to 
another in a defined order, if the entity currently 
performing that job is killed. However, icons 
displayed on ModSAF's plan view represent only 
entity type. Using the "View As..." menu item, the 
user can choose to see either a "picture" or an "icon" 
of the entities. But the information presented in 
either case is basically the same. 

The only method ModSAF provides to override the 
default and attach a particular icon to an entity is to 
list the entity and its icon individually in a reader file. 
To use this method, it was necessary to create five 
Marine Corps entities (squad leader, fireteam leader, 
machine gunner, machine gunner's assistant and 
rifleman), one for each role in the squad. The 
appropriate military icon was attached to each 
individual in the squad. Role icons can now be 
displayed by selecting "Vehicle Icons" from the 
"View As..." menu in the ModSAF plan view display. 
An example of this view is shown in figure 2. 

Though the roles of the squad members are now 
visible, the mechanism we used has two drawbacks 
for the long term which will have to be addressed in 
the future. First, though several members of a 
fireteam carry the same weapon, it was necessary to 
make them different entity types just for the purpose 
of displaying an icon. This is undesirable not just 
because it is unnecessarily duplicative, but because 
ModSAF hard-codes the maximum number of entities 
in a unit to be four and makes several program loops 
and arrays dependent on that number (there are five 
roles in a squad). Most importantly, in the Marine 
rifle squad, it is not just the leader's role that can 
migrate. For example, if the Automatic Rifleman 
(who carries an M249 Squad Automatic Weapon or 
SAW) is killed, his assistant picks up the SAW and 
becomes the Automatic Rifleman. ModSAF only 
allows us to attach an icon to an entity in a reader file, 
at startup time, so we cannot change the role icon to 
simulate this migration of roles until this software 
design is enhanced. 
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3.3 Formations and Basic Movement 

3.3.1 Squad and Team formations 
Our extension to basic ModSAF formations for the 
Marine Corps consists of two parts: a mechanism for 
specifying a leader's position within the squad, and a 
mechanism for creating different team formations 
within a squad formation. 

®sb   J < 

Squad Leader 

2S© 
Asst. Auto 

L   Rifleman         *"»       \   J» Rifleman 

V          Ml 
^^^   Auto        / 

^^Rifleman—' 

_ Fireteam 
Leader 

Figure 2. A squad in vee formation. Note that 
some fireteam formations are mirror images of 
each other. The individual combatants (ICs) are 
displayed on the ModSAF plan view display 
using military icons that identify their roles. 
The text labels in the figure were added to the 
figure for explanation. (Squad is shown on 
100m grid). 

3-3.1.1 Leader's Position within Squad 
In ModSAF, formation specifications for a company 
only apply to subordinate units (the platoons). 
Leaders (XO and CO) are, by convention, situated 
behind the formation. In fact, ModSAF was designed 
so that leaders of a company cannot be put anywhere 
else when the company is created. This is another 
case in which ModSAF's basic design was not 
general enough to easily accommodate a different 
military service. Because the leader of a Marine 
Corps squad is usually closer to the center of the 
squad for better control, we added to ModSAF the 
capability to flexibly specify the position of a leader 
within the squad or company formation 

Our solution works within ModSAF's formation 
specification mechanism, so the squad leader's 
position is specified using the standard formation 
syntax. One possible future need that we have not yet 
addressed is to allow a squad leader to move around 
to different positions within the squad dynamically, 

depending on tactical situation as well as formation. 
We hope to accomplish this within the ModSAF 
framework as well. 

3 3 12 Mixing Subformations 
Using the new formation specification capability, a 
set of new formations was generated. The following 
table lists the Marine Corps formations for fireteams 
and rifle squads that have been implemented for Build 
One. The designation "(R/L)" indicates that the 
formation can be oriented differently (right or left) 
depending on circumstance or position within a larger 
formation 

RIFLE SQUAD FIRETEAM 
Tactical Column Tactical Column 
Online Online 
Wedge Wedge (R/L) 
Vee Vee (R/L) 
Echelon (R/L) Echelon (R/L) 
Rear Point (nominal) 

Skirmisher's (R/L) 
Table 1. Marine Corps formations simulated for 
Build One demo. 

Several Marine squad formations are composed of 
mixed team formations. For example, a rifle squad 
rear point formation, shown in figure 3 below, 
consists of fireteams in echelon right, echelon left, 
and wedge subformations (indicated by "nominal" 
designation in the table above). A squad vee (figure 
2) has each fireteam in a vee, but each wedge is 
oriented differently. Standard ModSAF did not 
allow mixed subformations. It allows the user to 
specify only a single subformation type for each 
formation. Our extension to ModSAF allows the user 
to choose the formation and have the correct 
subformations automatically filled in. But the 
standard ModSAF functionality is still available: if 
the user specifies a certain subformation, that 
subformation is used for all sub-units. 

3.3.2 Basic Movement 
In standard ModSAF, though a leader is located 
behind its company when created, it functionally joins 
one of the platoons when the company is tasked to 
move. Each movement task recreates the company 
(or squad) formation when specifying the 
subordinates' routes. The task uses its own rules, 
including spacing parameters. 

With the close formation spacing required for Marines 
(on the order of 10-20m between ICs vs. 50-100m 
between tanks), excessive collisions occur between 
members of the squad traveling along the same route 
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{e.g., when in a column formation). This is because 
ModSAF gives each member of the team a private 
route, and plans its speed in advance based on the 
maximum speed an entity can travel on the terrain. 
However, the entity constantly adjusts its speed as it 
travels, and it can get behind its planned position. If 
the entity behind is following closely and doesn't 
anticipate the speed change, a collision can occur. 
Then both do a collision recovery, which involves 
recoiling, and that causes more bumping and more 
delay. This low frequency predictive approach to 
collision avoidance is a reasonable compromise with 
the need to save cpu cycles. But in complex 
microterrain, team members are constantly changing 
their speed and the problem is magnified. We will 
have to add some stronger station-keeping and 
collision avoidance to ModSAF especially to deal 
with column formations on the 5 to 10 meter spacings 
needed for ICs. We have addressed this problem in 
earlier work (Harmon et al, 1990), using our 
concurrent control mechanisms. We are still studying 
the problem in ModSAF, and may use concurrent 
control in a future build. 

3.4 Advanced Movement Using Terrain for Cover 
and Concealment 

ModSAF has a primitive capability to find covered 
and concealed (C&C) positions for stopping, but it 
had no way to use cover while moving until the grid- 
based C&C route planner in version 1.4. We have 
added an ability to intelligently plan routes so they 
take advantage of nearby cover and concealment. A 
unit's route is passed into a path planning module, 
where it is altered to use nearby regions of cover. 
This "weighted-regions" path uses an optimal path- 
planning algorithm based on a polygonal 
representation of terrain features, developed at SUNY 
Stonybrook. Because the weighted regions approach 
can deal directly with the Triangulated Irregular 
Network (TINs) of the microterrain, this approach is 
potentially faster than grid based approaches such as 
that used in ModSAF 1.4, and the result is not prone 
to "digitization bias". A companion paper (Hoff et al, 
1995) in this conference presents the weighted regions 
path planning approach. 

4. Results and Future Work 

The Build One demo 

The Build One scenario developed for us by our 
Marine SMEs involved an assault on an enemy 
occupying two trenches in Range 400.   Figure 4 

Figure 3. Trailing end of a platoon column 
moving north (toward the top of the page), 
showing 2 squads on a 100m grid. The squad in 
front is in a tactical column, and the rear squad is 
in rear point formation. 

shows the ModSAF plan view display set up for the 
Build One scenario, which is as follows: 

The enemy has established a base of fire at a Security 
Position near the center of the range, and his main 
force is dug into a long trench at the north end of the 
range, Objective A (figure 5). The terrain is a desert 
valley surrounded on North, East and West by 
mountains. Friendly forces, located at Assembly Area 
AA in the south end of the range, consist of a squad 
with attachments. The three attached special weapons 
teams are an assault team armed with a SMAW, a 
machine gun team with Mk 153 machine guns, and a 
mortar team with a 60mm mortar. The plan, 
developed and input by a human platoon commander, 
is to send the mortar team NE to CP3, where it can 
destroy the Security Position.  Meanwhile the squad 
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Figure 4. Build One Scenario. Squad and special teams begin at assembly area AA at bottom of map, south of 
the area of operations. Bases of fire are set up just north of minefield to West and at CP3 to East. Security 
Position target is in center, and final Objective A trench is North. Image depicts mortar team set up at CP3, 
oriented on Security Position, while rifle squad is just emerging from breach through minefield, with machine 
gun team and assault team in trace. 
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Figure 5. Squad is just arriving at final assault 
position CP5 at Objective A trench. (Grid is 
100m.) 

moves NW, breaches the Minefield, and moves North 
toward the Objective A trench. The other two special 
teams trace the squad. 

After breaching the minefield, the machine gun team 
breaks off to establish a base of fire on a hill (marked 
"Base of Fire), and suppresses Objective A. The 
squad, with assault team still in trace, maneuvers 
through a series of WADIs (desert washes that 
provide cover and concealment), until it reaches the 
final assault position CP5 on the right flank of the 
enemy in Objective A. At this point, the machine gun 
team to reorients its base of fire to the eastern end of 
Objective A, and the squad and assault team assault 
the objective from the western end. 

The overall goal of our work is to develop the Marine 
Corps component of the STOW97 exercise. Various 
builds in the program are working incrementally 
toward that goal. Our Build One demo was 
successfully completed in December 1994, and we 
have begun to work on the Build Two demo. For 
Build Two, planned for late August 1995, more 
complex behaviors will be implemented for the ICs, 
and engagements between OPFOR and BLUFOR will 
take place. The precise scenario for Build Two is still 
under consideration. 
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1. Abstract 

We have been working to enhance the 
representation of dismounted soldier mobility 
behavior in the Integrated Unit Simulation 
System (IUSS). This paper reports the results of 
our analysis of the mobility behavior of twelve 
US Marines who walked 112 kilometers in 
Yosemite National Park over seven days in 
September 1994. Using GPS monitoring, we 
recorded the position of the Marines, the time, 
and their verbal description of the terrain as they 
completed this hike. Using the GPS records, 
trail logs, and topographic maps, we constructed 
a comprehensive description of the march rate 
and rest patterns of the Marines and of the trail 
grade, footing, and conditions. We analyzed the 
available data and established functional 
relationships among terrain conditions and the 
march rate and rest patterns of the Marines. We 
concluded that grade was an important 
determinant of march rate. 

2. Introduction 

The Integrated Unit Simulation System (IUSS) 
is a comprehensive small-unit simulation 
environment being developed by Natick 
Research, Development and Engineering Center 
and Simulation Technologies, Inc. (O'Keefe, 
1994) IUSS includes sophisticated modeling of 
the physiological state of dismounted soldiers. 
Environmental conditions, mission demands, 
and terrain interact dynamically to alter the heat 
stress and energy requirements of dismounted 
soldiers in IUSS. The system tracks a variety' of 
individual physiological parameters, such as 
core temperature, skin temperature,and heart 
rate, and computes appropriate changes in these 
parameters during simulation runs. This 
information is continuously available during the 
simulation and is used to alter the performance 
capabilities of simulated individuals. 

2.1 Mobility Control in IUSS 

Using the terrain databases provided to the 
system, IUSS computes the grade of route 
segments along which dismounted soldiers 
travel. (The segmentation of the route is 
determined by the magnitude of the grade 
change - the threshold for defining new 
segments is controllable). As simulated 
individuals travel the route the system uses the 
environmental conditions, terrain 
characteristics, and load to compute energy 
expenditure and heat production. 

The system also uses the thermal transfer 
properties of clothing and equipment worn by 
the simulated soldier to calculate heat strain on 
the individual (Pandolf et al, 1986). When 
predetermined thresholds for core temperature 
are exceeded, the individuals performance is 
degraded. 

2.2 Mobility Behavior of Soldiers 

The existing computational approach to mobility 
control is adequate for making relative 
comparisons or trade-off analyses, but may not 
accurately represent the behavior of soldiers 
under operationally realistic conditions. The 
availability of more sophisticated information 
about how soldiers move across terrain would 
enhance both the analytic value of IUSS (or 
other simulation systems) and the realism of 
computer generated dismounted forces. 

2.2.1 March Rate Control 

Most studies of soldier locomotion have been 
conducted in laboratories using treadmills. 
March rate is typically controlled by the 
experimenter, leaving little opportunity for 
assessment of march rate under ecologically 
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valid conditions. The limited field data available 
suggest that soldiers may tend to maintain a 
more or less constant level of effort rather than a 
constant speed (Myles et al, 1979). In any case, 
it is apparent that march rate control is a 
complex and dynamic process affected by 
environmental conditions, individual 
physiological and psychological variables, 
mission requirements, and terrain 
characteristics. We used a field study to try to 
improve our understanding of this complex 
process. 

2.3 Field Study 

The study described below was designed to 
provide field data to further validate and refine 
the energy expenditure and heat production 
algorithms developed at USARIEM (US Army 
Research Institute of Environmental Medicine) 
that are used by IUSS. An additional effort was 
made to collect data on soldier mobility behavior 
during the study to begin the process of 
developing more complex soldier march rate 
control modules for IUSS. 

3. Study Plan 

The field study was conducted at Yosemite 
National Park in the fall of 1994. Twellve 
Marines traversed a pre-planned route covering 
approximately 110 kilometers while bearing 
loads of approximately fifty pounds. The groups 
were permitted to move at their own pace, but 
were required to arrive at checkpoints on 
particular days to accomplish resupply and data 
downloading tasks. 

3.1 Data Collection 

The main purpose of the effort was to study 
energy expenditure of soldiers and Marines 
engaged in a lengthy, rigorous hike at moderate 
altitude. Extensive measures of individual 
physiological fitness, including aerobic capacity 
and body composition, were made on each 
participant before the hike. Participants also 
ingested doubly-labelled water and provided 
periodic body fluid samples during the study to 
permit accurate measurement of energy 
expenditure. Dietary intake and heart rate were 
also monitored throughout the study. 

Global Positioning System (GPS) fixes were 
recorded by the group frequently during the 
hike; an audio tape recorder was used to record 
trail descriptions and annotate rest break timing. 
The primary intent of gathering these data was 
to obtain high-resolution information to aid in 
the refining of our predictions of energy 
expenditure. 

3.2 Analytic Approach 

Since our sub-goal was to relate terrain 
characteristics to march rate, we had first to 
adopt a data processing strategy that would 
extract as much information from the available 
data as feasible. Since we had time-tagged GPS 
fixes, we used these fixes to develop our route 
profile. This route profile was the basis for most 
of our subsequent analysis. 

3.2.1 Route Profile Construction 

We began by plotting the route taken by the 
Marines on a topographic map. We then 
segmented the route into discrete pieces. The 
segments were chosen such that the time, 
elevation, and location of the beginning and end 
of the segment were known, and the segment 
contained terrain that was consistent in type and 
grade. Insofar as was possible with the data 
available, segments were chosen so that the 
average grade across the segment represented 
well most of the terrain in the segment. The 
topographic maps and the trail logs from the 
tape recorder provided the basis for these 
segmenting decisions. Because the terrain was 
quite variable, segments varied in length from a 
few hundred meters to several kilometers; the 
average segment length was just under one 
kilometer. Rest breaks also ended and began 
segments, even if they occurred in terrain that 
would not ordinarily have triggered a new 
segment. Figure 1 shows a frequency 
distribution of the segments we used in the 
analysis. This distribution illustrates that even 
though the terrain was very mountainous, most 
of the walking was done at low to moderate 
grades (0 - 10%). 

3.2.2 Route Profile Analysis 

Using the topographic maps, the trail distance 
from the beginning to the end of each segment 
was measured. The topographic maps were also 
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used to validate the elevation estimates provided 
with the GPS fixes. (The contour interval of the 
maps was 40 feet.) When there was an elevation 
change over a segment, the distance used was 
the "slant distance" taking into account the 
elevation change. Velocities for each segment 
were then computed by dividing the distance 
traversed over a segment by the time taken to 
move from the beginning to the end of the 
segment. Grade was computed by dividing the 
elevation change from beginning to end of the 
segment by the total length of the segment. 

4. Study Results 

Our analysis has thus far focussed on two issues: 
the relationship between grade and velocity and 
the timing of rest breaks. 

4.1 Grade and Velocity 

How fast an individual walks is, as we 
mentioned above, determined by a complex 
constellation of variables. Because grade is 
closely related to the work output required, 
which is in turn closely related to heat 
production and fatigue, grade is likely to 
account for a fair amount of the variation 
observed in velocity. Moreover, grade can be 
quantified relatively easily, unlike the less 
tangible variables such as motivation or 
perceived mission demands. 

4.1.1 Steepness and Velocity 

Figure 2 shows a scatter plot of all the segments 
defined along the route. This plot contains 
segments from seven different days. The 
intensity of effort varied dramatically across 
these different days of the hike; some days were 
characterized by a relatively leisurely pace and 
other days (such as the day the group lost the 
trail and struggled to reach a camp before 
nightfall) were characterized by exhausting 
effort. Median velocity for the uphill segments 
was 0.93 m/s; for downhill segments, the 
median was 1.15 m/s. The vertical scatter of the 
points on Figure 2 for a particular grade shows 
that while grade clearly accounts for some of the 
variability in velocity, there are also other 
factors at work. 

Figure 3 shows a plot of average velocity as a 
function of grade using bins of 2% . (Due to the 

low density of data at grades higher than 12%, 
individual points are plotted beyond these 
values). This plot shows nicely the effect of 
increasing uphill grade on velocity. The 
decrease in velocity with increasing grade is less 
pronounced for downhill grades, probably 
reflecting the more variable effects of footing 
and stability on velocity when moving downhill, 
instead of the work output limitation on velocity 
on uphill segments. 

4.2 Rest Break Patterns 

In laboratory studies of locomotion on 
treadmills, a work-rest cycle of 50 minutes 
walking and 10 minutes rest is often assumed. . 
Our Marines took thirty-seven breaks over the 
seven days of hiking. These breaks included 
brief pauses to adjust equipment, lunch breaks, 
and rest breaks. Distances traversed before 
taking a break ranged from a few hundred 
meters to more than six kilometers; times 
ranged from a few minutes to nearly ninety 
minutes. Figure 4 is a scatter plot of the breaks 
taken by our Marines. 

As with the relationship between grade and 
velocity, the factors that determine when a 
group of soldiers will pause for a break are 
apparendy quite complex. There is a tendency 
for higher grades to be associated with a shorter 
time between breaks and a shorter distance 
covered between breaks. Figure 5 shows the 
average time and distance since last break for 
intervals with average grades above 5%, less 
than -5%, or between -5% and 5%. Uphill 
grades are associated with a decline in 
performance relative to flatter terrain, and 
downhill grades show a similar but smaller 
change. This effect is greater for the distance 
covered than for the time taken before a break, 
suggesting that the group sacrificed some 
velocity before taking a break under stressful 
conditions. 

5. Discussion 

The results of this study have shown us that it is 
possible to acquire useful and interesting 
information about dismounted soldier mobility 
behavior in the field using relatively unobtrusive 
and inexpensive methods. The continuing 
improvement in the quality and availability of 
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GPS equipment should make studies like this 
one even easier in the future. 

5.1 Study Limitations 

The generalizability of the results of this study is 
limited in several respects. The Marines who 
took part in the study were young, fit, well- 
trained and led by experienced mountaineering 
instructors from the USMC Mountain Warfare 
Training Center. The mission scenario did not 
include a tactical context; the guidance given 
the mission planners was to attempt to plan a 
schedule that would ensure a variety of work 
intensities over the course of the hike. The loads 
carried by the Marines were moderate but 
significant. The information extracted from this 
study clearly cannot be considered to be typical 
of movement rates under very different 
conditions in the absence of further empirical 
investigation. 

Future studies undertaken to extend the findings 
of this study should include variations in the 
tactical context of the study, the group size and 
group composition, and mission duration. The 
tactical context is critical because it introduces 
many more constraints on movement rate than 
existed in this exercise. Our Marines were not 
attempting to move stealthily, nor were they 
attempting to scan the terrain for obstacles or 
enemy. Tactical operations also demand pauses 
for communication with other units, as well as a 
variety of non-locomotion tasks that may sap 
strength and alter movement rates relative to our 
sample. 

The group size and composition clearly affect 
performance on a long hike. Group composition 
is important insofar as age, fitness, and 
experience determine the physical resources 
available to the group. The leader of the group 
sets the pace but does so with due consideration 
of the capabilities of the members of the group 
and the potential for sustaining the pace long 
enough to complete the mission. 

The duration of the mission is a critical factor in 
determining movement rate. Wise leaders 
husband resources effectively to ensure the 
mission can be accomplished. Both pace and 
break timing would have been very different if 
the mission had been much longer or shorter 
than   seven  days.   Taking   into   account   the 

cumulative effect of stress and exertion when 
modeling soldier mobility performance is an 
important area for further work. 

5.2 Future Plans 

We intend to continue our analysis of the data 
described here by systematically attempting to 
explain some of the variation in movement rate 
not explainable by grade. Footing or soil 
composition and the cumulative effects of 
fatigue over the course of the seven days are 
possible avenues of investigation. 

We plan to integrate the extensive physiological 
data collected during the study into our mobility 
analysis. Heart rate recording, for example, 
provides us with a way to relate effort to pace 
and break timing in a much more rigorous way 
than is possible using only the terrain 
characteristics. 

We also plan to extend our analysis to the group 
of 12 Army Special Forces soldiers that 
negotiated the route independently. This will 
afford us a unique opportunity to compare the 
performance of two different and independent 
groups on exactly the same terrain, under the 
same environmental conditions. An assessment 
of the magnitude of the differences in mobility 
performance between the two groups will 
provide an initial check on the generalizability 
of our findings. 
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1.0 Abstract 

The introduction of the individual dismounted 
combatant into distributed simulation has 
generated considerable controversy with respect 
to questions of simulation fidelity and 
resolution. Model resolution is a function of 
several factors, among them technology 
constraints driven by hardware and software 
capabilities, the availability of data to support 
specific simulations, and the compatibility 
requirements of different simulation modules. 

While these factors are important, an often 
overlooked concern is the ability of simulated 
entities, such as dismounted combatants, to 
provide the necessary behavioral cues to other 
participants in a distributed simulation. This 
paper examines an approach to building 
simulation scenarios based on decision trees that 
represent entity options in reaction to the 
observed behaviors of others. These decision 
trees are associated with specific battlefield 
operation systems tasks of the Army Training 
and Evaluation Program. The level of detail of 
entity action required to trigger these decision 
trees provides one measure of the resolution 
required for associated simulations. 

2.0  Introduction 

The growth of Distributed Interactive Simulation 
(DIS) has injected new fervor in an old debate: 
how do we define the adequacy of model fidelity 
and resolution. As little as 10 years ago, many 
were content to answer this question by saying: 
Whatever I can get! We were driven more by 
software and hardware constraints than by 
questions of relevancy ~ what was possible as 
opposed to what was needed to get the job done. 
While hardware and software constraints haven't 
gone away, current and near-term capabilities 
have pushed the realm of the possible 
enormously. While in some ways this makes 
our job easier, it does present more choices. 
When the menu had only a couple of items on it, 
picking one wasn't hard. 

Victor E. Middleton 
Simulation Technologies, Inc. 
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Dayton, Ohio 45402-1106 
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Today we are faced with the need to make 
multiple, informed choices concerning the degree 
of resolution we employ. What is the basis for 
these choices? The DIS world has been accused 
of opting for show, picking that level of 
resolution that grabs the attention of the 
observer. This is justified if a distributed 
simulation exercise is successful only if it can 
capture the participants, interjecting them into 
the simulated world. A primary goal of DIS is 
the seamless transfer of behaviors from the 
simulated battlefield to the actual. The difficulty 
is that we can get caught up in the race to make 
our exercises and demonstrations increasingly 
spectacular, and find our efforts driven by the 
ever-more impressive capabilities of display 
technologies as opposed to the substance of our 
underlying simulations. 

The thesis of this paper is that, ultimately, 
issues of resolution and fidelity must be decided 
concerning the level of detail needed to simulate 
the behavior, and therefore the performance, of the 
simulation entities. The network architecture 
that allows these entities to interact must 
incorporate representations of the battlefield 
environment to whatever level of detail is 
sufficient to determine the dynamic response of 
each entity to that environment, and, to each 
other. 

3.0  Background 

It is important to say that the authors of this 
paper take a rather parochial view of their subject 
matter. We are concerned with modeling and 
simulation (M&S) of the individual dismounted 
combatant, and in particular, the application of 
M&S tools to solve the problems of the Soldier 
as a System. This alone provides a first, gross 
filter concerning questions of model resolution: 
to whit, models that don't represent the 
individual versus those that do. The former are 
outside the scope of this paper, which is directed 
to addressing issues involved in simulating the 
Soldier System, and specifically the individual 
dismounted combatant. The authors have been 
heavily involved  in  the development  of the 
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Integrated Unit Simulation System (IUSS) for 
the US Army Natick Research, Development and 
Engineering Center (Natick). The IUSS 
provides an architecture for the integration of 
individual models simulating different aspects of 
battlefield environment, and thus represents in 
microcosm the problems DIS has in the 
coordination of large-scale distributed operation 
of multiple simulations. The IUSS also 
provides a context for this paper's discussion of 
resolution issues, if only because development of 
the IUSS has forced the authors to confront these 
issues head-on. 

3.1  The Soldier System 

Historically, equipment for the soldier has been 
developed through separate, distinct initiatives. 
M&S tools to support such development and to 
represent the result in distributed simulations, 
have traditionally followed this division, with 
separate models for ballistic weapons, individual 
protection, etc. While the single piece or 
"eaches" development may have been carefully 
planned and implemented concerning their 
individual goals, the result was still an 
overwhelming collection of disparate items, 
contributing to a grossly overloaded soldier. 
The current recognition of the need to treat the 
soldier as a "Soldier as a System" comes from 
the realization that the soldier, his weapons, 
protective gear, and other supplemental 
equipment must function together as a integrated 
system, and hence must be designed, evaluated, 
and maintained as a system. This systems 
approach to the soldier, and a corresponding 
obligation to look comprehensively at the entire 
battlefield environment, drive a need for 
consistent resolution across multiple facets of 
battlefield operations. 

Estimation of any single aspect of the battlefield 
environment (e.g., combat systems, personnel 
attrition, performance degradation, thermal stress) 
does not provide a comprehensive understanding 
of a unit's (or an individual's) ability to perform 
its mission. For this reason, an integrated 
approach to simulation of the battlefield 
environment is required, combining the effects 
from a variety of factors, while permitting 
assessment of the contribution from each. Such 
an approach should facilitate the incremental 
inclusion of additional factors, allowing the 
construction of increasingly more complex 
scenarios (i.e., scenarios with a higher degree of 
resolution). These factors can be represented by 
integrating features of classical models, each of 
which emphasis a single specific aspect of the 

battlefield (e.g., combat systems, performance 
degradation, thermal stress), into a cohesive 
architecture to provide a comprehensive 
understanding of an individual's ability to 
perform combat mission tasks. 

This approach conforms to DIS philosophy, 
permitting disparate models or simulations to 
interact with each other. This approach must, 
however, also ensure that such disparate players 
share some level of common assumptions. 
Furthermore, if these models do not operate at 
common levels of fidelity or resolution, some 
mechanism must be provided to aggregate or de- 
aggregate their output to a common interface. 

3.2 The Integrated Unit Simulation System 

Natick, supported by Simulation Technologies, 
Inc. (and, in particular, the authors of this paper), 
has developed the Integrated Unit Simulation 
System (IUSS), to provide a comprehensive 
analysis environment for the evaluation of 
Soldier System's survivability and effectiveness. 
The IUSS design has paralleled the evolution of 
the Soldier System concept, combining 
historically disparate models of different aspects 
of the soldier and the soldier's combat systems 
into an integrated representation of the battlefield. 
The IUSS provides an open, extensible 
architecture for the unified representation of all 
aspects of the modern battlefield: threats, 
personnel, equipment, and environmental factors. 
The IUSS is designed to accommodate bundled 
access to current and evolving methodologies, 
providing a flexible simulation package. In 
particular, this design facilitates the integration of 
disparate models and has had to contend with 
reconciling disparate levels of model resolution, 
either by filtering or averaging fine resolution 
data to fit more coarse input requirements, or 
augmenting and extrapolating coarse data to fill 
up fine grid requirements. 

The common basis for all IUSS effects is the 
psycho-physiological state of the individual 
soldier, and how that state relates to the soldier's 
task and mission performance. Unit performance 
depends on the performance of the unit's 
components (the individual combatants), just as 
mission success depends on the successful 
completion of mission components (the mission 
tasks). The IUSS represents missions as task 
networks, with the tasks following the form of 
the Battlefield Operating Systems/Tasks (BOS- 
T) of the Army Training and Evaluation 
Program (ARTEP) manuals. The ARTEPs 
describe practically any task a soldier may be 
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called upon to perform, subject to the dictates of 
mission, enemy, terrain, troops, and time 
available (METT-T). Using the BOS- 
T/METT-T paradigm allows the IUSS to 
dynamically adjust task performance as 
appropriate based on the behaviors of the 
individuals performing specific tasks throughout 
the execution of a simulation scenario. 
Developing the mechanisms to control this 
dynamic adjustment has led the authors to 
conclude that the detail needed to represent the 
behaviors of individuals, and the environmental 
cues that drive those behaviors, is the most 
important consideration in determining 
appropriate model resolution. 

3.3 Vocabulary 

Fidelity and resolution have different definitions 
to different individuals and therefore are 
ambiguous terms. To avoid being side-tracked 
by a debate that is not particularly germane to 
our purpose, we propose to avoid defining them 
explicitly. Instead, we focus on making a 
differentiation between two distinct types of 
resolution (or fidelity). The first of these types is 
resolution of kind, and the second is resolution 
of degree. Resolution of kind refers to the kinds 
of things we are modeling, the types of detail we 
wish to include. Perhaps the best known 
example of resolution of kind is classification of 
models by echelons of combat represented. 
Under this scheme, theater or global campaign 
models represent the lowest degree of resolution, 
while models of squad or individual operations 
the highest. Resolution of degree refers to 
quantitative measurement accuracy: spatial 
measurements in terms of millimeters represent 
higher resolution than measurements in terms of 
furlongs (or kilometers), temporal measurements 
in picoseconds higher resolution than those in 
years. 

4.0   Quantification Issues 

Clearly, there is a loose correlation between the 
two types of resolution described above. When 
modeling theater echelons of combat, we seldom 
concern ourselves with terrain at the millimeter 
level or time at the pico-second level. We tend 
to measure macro-level phenomena with coarse 
measures and micro-level phenomena with finer 
ones. Still, we occasionally fall prey to the 
desire to have a really impressive display, and 
show the fine level of detail where it may not be 
required, or worse, where it may not be 
consistent with other linked models ~ the 
process sometimes characterized as:     measure 

with a micrometer, mark with a crayon, cut with 
a chain saw. This leads us to a first principle in 
choosing an appropriate resolution: consistency. 
One should not attempt to suggest a spurious 
accuracy or validity for simulation outcomes by 
providing an output format or display which is 
not consistent with the resolution of the 
underlying processes — chain saw cuts require 
drawing your output display with a thick, blunt 
crayon. 

4.1  Simulation Without the Man-in-the- 
Loop: Decision Trees 

As mentioned above, much of the concern over 
model resolution in the DIS world has to do 
with the question of the show, the visualization 
of the simulated environment that is presented to 
the DIS participant, and as noted, this can be 
important to the success of a DIS exercise. It is 
not, however, important to the discussion in this 
paper. The IUSS, unlike many of the 
components of the DIS environment, does not 
provide for a man in the loop during actual 
simulation execution. This restricts the scope 
for issues of model resolution and fidelity to the 
requirements of the simulation, as opposed to the 
perceptual needs of a human observer. This is 
not to say that the IUSS does not consider 
human sensory capabilities. Rather, the IUSS 
restricts the consideration of these capabilities to 
the level of detail specific object procedures 
require. For example, to determine if a 
simulated soldier sees an enemy target, a number 
of different algorithms can be called into to play. 
The simplest determines if a line of sight exists 
between the soldier and the target, while there are 
also complex calculations that consider the 
contrast sensitivity between the target and its 
background, the possible confounding presence of 
obscurants, and the ability to augment human 
capability with a variety of optical sensors. 
Ultimately, whatever algorithms are used, the 
simulated process of seeing will come down to a 
yes or no decision concerning any particular 
target. 

In fact, all the behaviors of the simulated soldiers 
ultimately reduce to a set of such decisions: 
describe environmental features and/or entities by 
classification by deciding the status of specific 
state variables (e.g., — is target present, does line 
of sight exist to target, is there sufficient ambient 
light to observe target, is the target obscured by 
smoke or foliage, is target signature sufficient) 
and deciding what the appropriate entity response 
is to that classification. Such decision processes 
can be arranged in a hierarchy or decision tree, 
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analogous to increasingly finer filters to sift out 
behavioral choices. These decision trees provide 
a natural classification scheme for levels cf 
resolution, corresponding to the levels of the 
decision tree itself. Furthermore, this supports 
the concept of variable resolution requirements, 
since a simulation need provide only enough 
information to support whatever levels cf 
decisions are deemed appropriate to a specific 
application. The level of decision depends on the 
types of behavior being simulated, and there is 
no need to assume that behavior must always be 
studied concerning individuals — unit behavior 
may be quite adequate for many applications. 

4.1   An Example:   Resolution in Kind 

The IUSS provides the ability to model multiple 
echelons of combat, but as stated above, the 
focus of the authors and the primary design 
consideration of the IUSS is explicit 
representation of the individual, operating in the 
context of platoon or squad sized mission tasks. 
These tasks take place in a battlefield 
environment, specifying the factors to be played 
(resolution in kind), calling for selecting aspects 
of the battlefield and the soldier's interaction with 
it, including the environment (terrain, weather, 
time of day), the threat, the mission, and the 
composition of the forces assigned that mission. 
To over-simplify, those factors that describe the 
environment are cues to the soldier's behaviors, 
the behaviors themselves are specified by the 
mission task structure, and within that structure, 
further refinement of individual procedures or 
options. 

IUSS input scenario mission descriptions need 
to provide detail down to the level of individual 
tasking, accompanied by the first level decision 
trees that specify individual behaviors: the rules 
of engagement and the specific tactics to be 
employed for each mission task or phase. Since 
the IUSS is a two-sided simulation this level of 
detail needs to be given for both Blue and Red 
forces to the extent to which either or both are to 
be played. There is, of course, no requirement 
to include the same level of forces if there is no 
need to play explicit force-on-force interaction, 
i.e., Blue forces can be played without any Red 
opposition, or opposed only by indirect fire, or 
opposed by Red Forces represented at the same 
level as the Blue, according to the objectives of 
any given scenario. 

The underlying basis of the IUSS is the psycho- 
physiological state of the individual. Following 
the   object  oriented  paradigm,  this   state   is 

represented by a number of different attributes 
belonging to the soldier object. These attributes 
include such things as a thermal regulation, 
ballistic injury mechanisms and chemical 
intoxication accumulation. Each of these 
attributes can be ignored or turned off to speed 
model execution times as appropriate to specific 
simulation objectives. The factors above may 
each be broken down into sub-factors; the choice 
of which factors and sub-factors to include in 
scenario inputs is driven by the needs of the 
attribute update processes. 

4.3 An Example: Resolution in Degree 

One of the surest ways to provoke spirited debate 
among players in the DIS world is to raise the 
topic of terrain resolution. How fine a terrain 
grid is needed for a valid battlefield for the 
individual dismounted combatant? A soldier in 
combat can and will make use of very meager 
cover if that is what's available. To represent 
that soldier faithfully, do we have to include any 
rock or tree that he might hide behind? Or the 
height of the individual blades of grass through 
which he might crawl? There is no doubt that a 
soldier being shot at may become very familiar 
with his terrain on a very micro-level. 

To make the debate even more spirited, 
introduce the question of the simulation 
application. One contention holds that if the 
application is training, we need to very faithfully, 
and in great detail (lm.<), replicate the terrain to 
present a valid virtual environment for soldier 
training. This theory may be true, but 
experience suggests otherwise, at least as a 
blanket assumption. The function of training is 
to induce transfer of behaviors from the training 
environment to the actual environment; the cues 
that are presented to the trainee need only be 
adequate to facilitate that transference. As an 
example, the use of silhouette targets appears 
adequate to train riflemen, the advantages of 
being able to present them a more detailed 
articulated body picture have not been 
demonstrated for that purpose. On the other 
hand such an articulated body picture may be 
required to support training in another arena, for 
example, the use of hand signals. Is fidelity 
enhanced by using digitized terrain from actual 
locations? And if so, how fine a grid must be 
used. Experimentation with such data is 
extremely useful with respect to trying to verify 
the correctness of many of our models that use 
terrain data, does its use increase the predictive 
validity of those models? To what extent can 
we get by with the use of geo-typical terrain, or 
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random draws from statistical distributions of 
terrain features? If we use statistical 
distributions, how many sampling points should 
we use for our grid? It is hard, if not impossible 
to answer such questions in the abstract. 

However, for a specific simulation experiment we 
can fall back on the concept of behavioral 
requirements. If (as the author's are currently 
trying to do) we are investigating the self-pacing 
behavior of marching soldiers as a function of 
their load, the ambient weather, terrain grade and 
surface type, we can determine from actual field 
trials the resolution required. We can observe 
the changes in these terrain factors that are 
sufficient to cause the soldiers to alter their 
behavior, either by changing their rate of speed, 
the frequency with which they take breaks, or 
their choice of route. 
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A fundamental question we need to ask regarding 
increasing resolution of terrain, and any other 
factor, is: if more detail is provided in the 
simulation, do I know how the individual will 
alter his or her behavior in response to that 
increased detail? We can populate the forest 
with trees and rocks to incredible levels of detail 
- do we know which ones the soldier will pick 
for protection? Or for how long? 

5.0 Summary 

The admittedly hard questions as to what is 
adequate resolution in our models and 
simulations are at least approachable if we 
consider them from a behavioral perspective. 
Simulation is, after all, a process for attempting 
to assess how entities interact with their 
environment. This interaction, in the case of the 
dismounted combatant, is equivalent to soldier 
behaviors. Assessment of model resolution 
requirements should be driven by what is 
required to trigger or alter those behaviors. It is 
enormously easier to include high resolution 
terrain data bases in our models than it is to 
include high resolution behavioral data bases. 
What is the benefit of the one without the other? 
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1.   Abstract 

Recent advances in the sophistication of 
distributed interactive simulation (DIS), coupled 
with the development of the concept of the 
Soldier as a System, have produced a 
requirement for greater fidelity in soldier 
simulation. Historically, the individual 
dismounted combatant has not been a key player 
in distributed simulations or analytical studies. 
When individuals were represented in such 
simulations, they were generally treated simply 
as smaller, slower, less lethal versions of other 
simulation entities, e.g., an unarmored tank. 
Such a representation does not allow the 
examination of the dynamics of small unit 
conflict required for training, or for research and 
development in support of the individual soldier. 

To maintain even face validity, simulations of 
individual combatants must characterize the 
individuals' interaction with the environment 
and with other individuals. This requires explicit 
representation of the soldier's dynamic response 
to the battlefield, and the effect of the soldier's 
behaviors on the outcome of the conflict. In 
particular the role of suppression is a significant 
component of this interaction, but one which as 
yet we have been to capture effectively in M&S. 
The authors' approach to simulation of 
suppression begins with a definition the problem, 
identifies critical factors, and suggests priorities 
determined by current analysis. 

2.   Introduction 

The current emphasis on the role of the 
dismounted combatant in distributed interactive 
simulation (DIS) is part of a revolutionary view 
of the individual soldier: the concept of the 
soldier as an integrated weapon system. This 
revolution is itself outside the scope of this 
paper, (interested readers are directed for 
example to: Haley et. al., 1992, or US Army 
Materiel Command, 1992), but its consequences 

have forced the modeling and simulation (M&S) 
community to deal with the individual soldier in 
far greater detail than we ever have before. 

To maintain even face validity, simulations of 
individual combatants must clearly characterize 
the individuals' interaction with the environment 
and with other individuals. Suppression is a 
significant component of this interaction, and 
one which as yet we have been either unable or 
unwilling to capture effectively in M&S. While 
the authors are not so bold as to suggest that we 
have a solution to this problem, we would like to 
suggest an approach to simulation of suppression 
with respect to the dismounted combatant. We 
will begin with a definition the problem, identify 
critical factors, and present a plan of attack with 
priorities determined by current analysis 
initiatives. 

2.1   The Authors' Perspective 

Our perspective on the problem is, of course, 
biased by our background. The authors have all 
been heavily involved in the development of the 
concept of the Soldier System and the 
application of that concept to the Soldier 
Integrated Protective Ensemble (SIPE) 
Advanced Technology Demonstration (ATD) 
and the Twenty First Century Land Warrior (21 
CLW) Integrated Technology Program. The 
need for analytical support for Soldier System 
initiatives has motivated a good deal of model 
development; of special interest to the authors 
are the US Army Natick Research, Development, 
and Engineering Center's Integrated Unit 
Simulation System (IUSS) (as described in: 
Middleton, 1992; Middleton and O'Keefe, 1993) 
and other high resolution combat simulations 
used in support of the US Army Infantry 
School's Dismounted Battle Space Battle Lab at 
Ft. Benning Georgia. 

Our approach develops a simulation of 
suppression within the specific context of the 
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IUSS, although the methodology proposed is not 
unique to that context. 

2.2  The Paper's Purpose 

The purpose of this paper is to initiate a dialogue 
within the M&S community by explaining our 
approach and soliciting the opinions of others. 
Interested readers are encouraged to contact the 
authors with comments, opinions, additions, 
deletions, sources of data and/or methodology, 
and suggestions as to possible alternatives to that 
approach. After developing a framework for the 
representation of suppression, we hope to 
achieve general consensus with the community 
on that framework, develop and submit 
strawman values as appropriate to the 
methodologies decided upon, and iterate a 
process of analytical application and review of 
the results to evolve the sophistication of our 
representation while continuing the community's 
consensus. 

3.   Statement of the Problem 

The concept of suppression is an integral part of 
combat at the level of the individual dismounted 
soldier. The ability to interrupt, impede, or 
suspend enemy operations may satisfy mission 
objectives as well (or better than) the destruction 
of enemy forces. Certainly in past wars 
suppressive fire played a role that was at least as 
significant as that of accurate aimed fire. 
However, small arms R&D studies and analyses 
have not reflected this fact. The vast majority of 
such studies have been directed towards the 
improvement of weapon accuracy, with 
relatively short shrift given to the investigation 
of suppression. 

Why is this so? First, improving the accuracy of 
weapons fire is an undeniable benefit (or at least 
an unassailable goal). Secondly, modeling and 
simulation of weapons accuracy is something we 
(the M&S community) know how to do. Our 
models are based on well understood concepts of 
physics and the behavior of projectiles; we are 
comfortable in the acceptance of the accuracy of 
our results. 

By contrast, we cannot (or at least haven't yet) 
even agree on a suitable definition of what 
suppression is, much less arrive at acceptable 

models of how it is achieved and how to 
represent it in simulations of combat. 

3.1 The Challenge 

We can no longer afford the luxury of ignoring 
these issues. We are faced with an urgent 
requirement for high fidelity simulation of the 
individual soldier, and that requirement cannot 
be met without explicit consideration of the role 
of suppression in determining the outcome of 
conflict. This requirement is driven by the 
downsizing of our military and the evolving 
nature of military mission, e.g., the need to 
examine smaller scale conflicts and operations 
other than war. The urgency is fueled by a need 
for more efficient application of resources for 
R&D, training, and operational support. 
Fortunately, this urgency is accompanied by 
enabling technologies: recent advances in the 
sophistication of distributed interactive 
simulation (DIS) and other hardware/software 
tools 

The challenge we face now is how to best apply 
these technologies in the present era of shrinking 
budgets and expanding expectations. We need 
to achieve cost-effective improvements in our 
ability to simulate the individual dismounted 
combatant and, by extension, the representation 
of that combatant in DIS. The lack of unlimited 
resources means that we cannot achieve the 
additional fidelity we require by simply adding 
detail to our simulations. We must choose 
carefully what we add, and just as carefully what 
we leave out. Clearly, the authors (having 
undertaken this task and not being terribly 
enamored of unnecessary work) believe that 
suppression is one of the things we must add. 
That being the case, it now becomes our duty to 
explain exactly what we mean by simulation of 
suppression, to describe our rationale and 
objectives, and to provide our approach for 
achieving those objectives. 

3.2 Simulation Rationale and Objectives 

First, why are we tackling this problem? As 
stated above, suppression and the role of 
suppressive fire are important parts of small unit 
engagement, but two specific M&S initiatives, 
both involving application of the IUSS, are 
behind our current efforts. 
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The first of these is development of a computer 
generated force (CGF) module for the individual 
combatant. CGF forces who don't react 
"realistically" when being fired upon by other 
DIS entities, won't pass the initial test of surface 
believability. Our first goal in modeling 
suppression, therefore, is to ensure that CGF 
dismounted combatants provide "realistic" 
behavioral cues for other DIS entities. At a 
minimum we want them to react to immediate 
threats by appropriate avoidance behaviors, e.g., 
to duck, to move more cautiously and with 
effective use of cover. 

The second M&S initiative of immediate 
concern is analytical support to the 21st Century 
Land Warrior (21 CLW) Integrated Technology 
Program. The 21 CLW program, and the 
associated Generation II Soldier Advanced 
Technology Demonstration (GEN II ATD) are 
the current instantiation of the Soldier System 
concept. These programs seek to examine the 
benefits in over-all soldier capability achievable 
by integrated application of technologies 
available now and in the near-term. This 
includes development and implementation of 
new weapon systems, sensors, communications, 
individual protection, and associated training and 
doctrine. 

These programs acknowledge that Soldier 
System lethality, survivability, mobility, 
command and control, and sustainability are all 
intertwined, and that integrated improvement of 
these capabilities will produce synergistic 
benefits; the whole is greater than the sum of its 
parts. As an example, making the soldier more 
lethal can increase the ability to suppress enemy 
fire, making the soldier more survivable, which 
could lead to decreased weight required for 
individual protection, which could increase 
soldier mobility, which could allow faster 
closure with the enemy, leading to the ability to 
concentrate more fire on the enemy while 
reducing exposure to the soldier, which in turn 
increases lethality and survivability, etc. 

Analysis in support of 21 CLW provides us with 
another set of objectives (albeit ones which 
overlap with CGF requirements) for simulation 
of suppression. To establish the benefits from 
proposed improvements in the Soldier System, 
we must measure the performance of these 
improvements   and   compare   them   to   some 

baseline, i.e., determine deltas between the 
current (95 soldier) and the 21st Century Land 
Warrior capabilities. This requires determining 
the relationships between Soldier System MOE's 
(e.g., mission completion times, percent mission 
tasks completed, casualties, ammunition 
expenditure rates, soldier physiological state 
variables) and soldier behaviors as constrained 
by battlefield factors and as affected by the 
soldier's ability to employ technology. 

This paper examines a set of key battlefield 
factors which contribute to combat stress or 
other measures of combat intensity, and suggests 
that these factors and their effects be loosely 
defined as suppression. In this context, our goal 
in outlining a framework for representation of 
suppression is accomplished by defining that set 
of factors, estimating their effects on soldier 
behaviors, and thus their effects on the analytical 
MOE's associated with those behaviors. Within 
this framework we then have the ability to 
examine how 21 CLW technologies can mitigate 
suppression as it affects friendly forces, and 
induce or exacerbate it with respect to enemy 
forces. 

4.   Approach 

We begin by discussing what we mean by the 
term "suppression", at least within the confines 
of this paper. We define "degrees" of 
suppression in terms of the effects of such 
suppression on Soldier System performance and 
combat outcomes. We establish a set of 
battlefield factors or combat stressors which may 
induce suppression, and conclude by suggesting 
how our simulation methodology can represent 
the translation from the causes of suppression to 
observable and quantifiable effects. 

4.1   What Is Suppression? 

Our original discussions with combat veterans 
began with a very narrow definition of 
suppression: it is that instinctive reaction to an 
environmental cue, such as a nearby bullet 
impact, which causes the soldier to immediately 
seek the lowest possible profile, stop all 
movement, and in general try to disappear into 
the ground. Although this behavior basically 
implies complete disruption of combat 
operations while it lasts, this period is generally 
of very short duration. A more difficult question 
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is whether the residual effects of the original cue 
linger as some degree of combat stress, based at 
least in part on the intensity of conflict and the 
presence or absence of other combat stressors. 

If we were to adhere to a narrow definition of 
suppression, concerned only with that initial 
brief reaction, our job would be relatively easy, 
modeling suppression as a brief cessation of 
activity when a "near" miss occurs. This narrow 
definition still leaves room for argument: exactly 
what is a "near" miss (i.e., which environmental 
cues will trigger the reaction), exactly how long 
"brief is (i.e., how long do suppressive effects 
last). Even if we include the issue of how to best 
ensure that simulation, especially distributed 
simulation, contains enough detail to accurately 
represent these cues, these questions can be 
addressed by means of parametric analysis or 
similar techniques. Our intention in this paper is 
to provoke a more spirited debate, so we shall let 
our ambition reach farther. 

In order to do this, and in keeping with the 
objectives stated above, we will broaden the 
definition of what we wish to consider as 
suppression. The US Army (FM-101-S-1, 
Operational Terms and Symbols pi-68) defines 
suppression as "direct and indirect fires ... 
brought to bear on enemy personnel, weapons or 
equipment to prevent effective fire on friendly 
forces." This, of course, raise the question of 
what is meant by "effective" fire, past studies 
(e.g., Torre, 1963) suggest that soldiers under 
fire become less accurate in their own fire, firing 
more rounds to less effect. This suggests that, by 
extension to other tasks, we consider suppression 
as degradation of performance (i.e., changes in 
the accuracy and rate of task accomplishment). 

We will take suppression to include: 

potential degradation in performance which 
may be a result of the lingering effect of a 
single threat-associated environmental cue 
(especially small arms fire), 

potential degradation in performance which 
may be a result of the accumulated effect 
of many of such combat stressors. 

the alteration of current/planned actions as a 
result of these stressors. 

To summarize: suppression is a disruptive 
response  to  an  intrusive  manifestation  of a 

combat threat. In other words (as if any other 
words were needed!), the soldier perceives a 
threat which demands a reaction. If that reaction 
is in some way deleterious to the soldier's 
mission, then we describe this 
perception/reaction process as suppression. 

4.2   Suppression: Perceptions/Reactions 

Being ambitious, but not, however, entirely 
bereft of sense, we propose to limit 
consideration (at least at this time) to a small 
number of threat cues and associated reactions. 
In this paper we consider only stressors 
associated with kinetic energy weapons: small 
arms fire or indirect fire kinetic energy 
munitions. For the moment we will ignore 
natural environmental threats or other enemy 
weapons: e.g., nuclear, biological, chemical, 
directed energy. This is simply to keep our 
current analysis tractable; we anticipate that the 
methodology we are proposing could be adapted 
to handle such threats and indeed, in many cases 
they may manifest themselves in the same 
environmental cues (as listed below) provided by 
the threats we ARE considering. 

4.2.1   Types of behavioral cues 

Aural 
- bullet/fragment impact/fly by 
- small  arms  detonation/weapon  muzzle 

sounds 
- explosive detonation 

Visual 
- muzzle flash 
- explosion 
- obvious injury to a companion 

These  cues  can  be  further  characterized 
according to: 

Intensity 
duration - how long did it last? 
number - how many cues might be lumped 

into one group, e.g. a burst of fire? 
magnitude - how loud, how bright, how 

intrusive? 
Frequency -what is the rate of arrival, or 

"inter-cue" time? 
Proximity - how close was the cue event to 

the soldier being suppressed? 
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Immediacy    -    does    the    cue    demand 
immediate,     delayed,     or     cumulative 
reaction? 

Ambiguity - does the cue indicate what the 
source  of the  threat is  and  where  it's 
located? 

Predictability - do the cues come from one 
area and/or in a discernible pattern 

4.2.2   Types of soldier reaction 

1) immediate, or total, suppression - the 
instinctive reaction to a threat as discussed 
above, manifested through one or more of: 

freezing    (complete    cessation    of 
movement), 

- assumption   of   extreme   protective 
posture 

- panic 
2) partial suppression - degradation in 

performance as a result of having 
experienced the threat or anticipation of the 
threat, manifested through: 

- increased time to detect, acquire, and 
engage targets 

- decreased accuracy in weapons fire, 
accompanied  by  increased  volume 
(more shots/less hits) 

- decreased movement rates, 
3) defensive avoidance - behaviors designed 

to reduce exposure to the threat, such as: 
- change of posture (e.g., standing to 

prone or kneeling) 
- increased use of cover, 
- alteration of routes of march, changed 

formations 
- panic and/or flight 

Furthermore, while offensive actions may not be 
classically associated as a reaction to 
suppression, we would like to include them here 
because they represent a reaction to the threat 
which may delay or obviate original mission 
objectives; adding: 

4) offensive avoidance - behaviors designed 
to reduce the threat, such as: 

- call for fire 
initiation     (or     continuation)     of 

suppressive fire against the threat. 

Clearly, the above types are somewhat arbitrary 
and in fact overlap.   This imposes consistency 

requirements on inter-related behaviors, e.g., 
prone soldiers must crawl, they can't run, so if 
we change posture from standing to prone we 
must degrade the soldier's rate of movement. At 
the same time we would probably also alter that 
soldier's movement mode to facilitate maximum 
use of cover, and change the soldier's mode of 
small arms fire as appropriate, with associated 
revisions in accuracy and rate of fire as well. 

4.3   Translation from Cause to Effect 

The suppression simulation paradigm as outlined 
so far is something like: 

1) present the soldier with a behavioral cue 
(e.g., sound of bullet impact) 

2) determine the appropriate response(s) to 
the cue (e.g., soldier changes from walking 
upright to crawling prone) 

3) determine duration of response (e.g., 
soldier will resume an upright posture if 
one of the following happens: 
a) source of the bullet is eliminated 
b) soldier manages to move to a position 

shielded from source of bullet 
c) upon assurance of command authority 

that source of bullet is neutralized 
. d) x minutes with no further indication of 

enemy activity occurs) 
3) update soldier status and activity 

parameters as appropriate to that response 
(e.g., decrease soldier's speed and 
presented area) 

4) calculate the soldier's task performance 
metrics subject to the updated parameters 
(e.g., increase time required for soldier to 
achieve next position objective, determine 
response of rest of soldier's squad) 

5) As required, schedule new updates of 
soldier status. 

There are a number of non-trivial details 
associated with this paradigm: how do we 
generate the behavioral cues, how do we handle 
the logistics of multiple simultaneous or near- 
simultaneous cues, how do we handle the 
interactions between multiple soldiers, and a 
myriad of other details of simulation event 
management. These details, while important, are 
not the central focus of this paper. The 
paramount questions for us are 
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1) how do we determine the appropriate 
soldier response to a specific cue (or in the 
more general case, to a complex sequence 
of such cues), and 

2) how do we quantify the effects of that 
response on simulation parameters such as 
soldier movement rates and error budgets. 

Possible approaches include: 

1) table look-up: cues are matched to 
specific behaviors, with those behaviors 
specified in discrete increments to 
enumerate levels of response. 

2) aggregate measure: integrate cues into a 
single measure of conflict, called ,for 
example, combat intensity, and make 
behavior parameters a dynamic function of 
this measure, for example applying a 
suppression percentage as a function of 
combat intensity. 

3) expert system hybrid - expand the table 
of 1) into a set of situationally dependent 
rules to determine the appropriate kind of 
response, and use an aggregate measure as 
in 2) to determine the intensity of the 
response. This approach is similar to that 
described in the methodology for the US 
Army TRADOC Analysis Center's 
CASTFOREM model (Mackey et. al. 
1994) 

Approach 3) fits in neatly with the design 
philosophy of the IUSS. The IUSS simulates 
small unit and individual soldier performance as 
a networked series of tasks. These tasks follow 
the form of the Battlefield Operating 
Systems/Tasks (BOS-T) of the Army Training 
and Evaluation Program (ARTEP) manuals (US 
Army 1988). The ARTEPs describe literally any 
task a soldier may be called upon to perform, 
subject to the dictates of mission, enemy, terrain, 
troops, and time available (METT-T). Using the 
BOS-T/METT-T paradigm allows the IUSS to 
dynamically adjust task performance as 
appropriate to current conditions throughout the 
execution of a simulation scenario. 

The IUSS already tracks many of the individual's 
psycho-physiological indicators and calculates 
response to battlefield stressors; we propose to 
devise an appropriate aggregate measure of 
combat intensity based on these indicators as 

adjusted to reflect additional response to 
suppression cues. 

4.4 Features of Combat Intensity/Response 
Functions 

Functions which measure combat intensity and 
associated responses should: 

1) exhibit decay of effects over time, i.e., the 
longer the time since the observation of the 
cue, the less intense the effect (e.g., a 
decaying exponential) 

2) allow for predominance of most intense 
effect, i.e., for multiple cues at the same 
time, the strongest one dominates 

3) support re-enforcement by multiple effects 
over time, while allowing for some 
decrease in intensity due to familiarity 

4) represent variable response to specific 
cues, i.e., to have a stochastic component. 
This component is essential for 
representing the tremendous variability in 
response from one individual to another, 
and indeed, the variability in response 
which could be exhibited by a single 
individual observed at different times. 

Ideally these functions would support definition 
of a level of effects varying from a modest 
increase in an individual's caution, all the way to 
the ultimate suppression: complete deterioration 
of the will to fight and capitulation or 
abandonment of the battlefield to the aggressor 
force. As one side in the conflict begins to 
achieve success at suppression, the combat 
intensity function should represent the 
preponderance of fire by that side, and the 
associated increasing level of suppression of the 
opposing force. 

5.   Implementation and Application 

Our initial implementation of a suppression 
simulation is intended to address the most 
obvious aspects of suppression. Briefly, we 
want individuals to duck when they're shot at, to 
proceed very cautiously if they're under fire, and 
to proceed with some degree of care if there is a 
possibility of enemy contact. 

We propose a paradigm whereby environmental 
cues, such as small arms fire, will eventually be 
translated   into   quantitative   effects   on   the 
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parameters which dictate the outcome of 
individual task processes. The IUSS, or any 
task/process model of behavior, must translate 
the effects of stressors such as suppressive fire 
into two fundamental measures of task 
performance: rate and the accuracy. The 
paradigm to achieve this translation is: 

Given an activity 
Given a cue 

Given   a   context   (cue   and   behavior 
history) 

Determine the probability distribution 
of   suppressive   effects   of   given 
intensities and durations 

Make a Monte Carlo draw against this 
distribution and apply the effects to 
the  parameters  which  specify  the 
accuracy and/or rate of the given 
activity. 

To achieve our goals, while limiting our first cut 
implementation to a tractable level, we will limit 
consideration of suppressed behaviors to: 1) 
movement and 2) small arms fire. We will 
consider as suppression cues: 1) friendly force 
casualties, 2) enemy fire, and 3) friendly fire. 
The immediate response of the individual will be 
described in terms of changes of posture and use 
of cover, which will in turn affect rate of 
movement and accuracy of fire. Depending on 
the situational context and results of a Monte 
Carlo draw, the individual may increase or 
decrease rate of fire, may alter choice of targets 
and/or type of fire (single shot vs. burst, aimed 
fire vs. pointed or area fire), and may also 
advance, retreat, or freeze in position. Another 
Monte Carlo draw will determine the maximum 
duration of these responses to the suppression 
cues, i.e. the time at which behavior will return 
to pre-cue levels, assuming no additional cues or 
changes in task status. 

We will develop a SIMPLE context-dependent 
expert system to determine the soldier's response 
to these behaviors and cues. Context will be 
established by examining cue history in terms of 
rate, intensity, and proximity. An additional 
important context consideration is the extent to 
which the individual can take effective action 
against the threat which produces the cues, i.e., if 
the individual can determine the source of the 

threat and has a course of action against that 
source. 

At present we are developing the exact nature of 
the expert system rule set: the variables and their 
values which will define Monte Carlo draw 
parameters, and the appropriate levels of cue 
rate, proximity, and intensity to trigger 
suppression behaviors (e.g., how close does a 
bullet have to come to induce full defilade, how 
many casualties in how short a time will produce 
what probability of retreat, etc.?). As stated up 
front, one objective of this paper is to solicit the 
support of the community in this development 
process; the reader is invited to contact any and 
all of the authors for this purpose. 

6.   Future Directions 

It is our intention to implement into the IUSS the 
simple expert system approach discussed above. 
By the end of FY95, we plan on using the IUSS 
and this simulation of suppression to explore 
issues relating to the lethality and survivability 
of the Twenty First Century Land Warrior. As 
discussed above, however, to assess the full 
potential of the 21 CLW will require 
examination of the synergistic effects of other 
capabilities, most notably command and control. 
We believe that the expert system approach we 
have outlined will lend itself to simulation of 
these capabilities and their contributions to 
mitigating the effects of enemy's attempts at 
suppression, through situational awareness, 
ability of units to respond for quickly and more 
appropriately to their leaders' decisions, and the 
ability of those leaders to integrate battlefield 
data to support their own decision processes. 
Furthermore, the context-sensitive nature of the 
expert system approach will permit consideration 
of the so-called "soft" factors: morale, training, 
leadership, national will, and others. These 
factors are important not only for estimating 
WHAT the effects of suppression might be, but 
also for determining HOW soldiers can most 
effectively adjust their actions to maximize 
suppression of the enemy and minimize 
suppression of their own forces. 

7.   Summary 

We believe we have developed a framework 
adequate for beginning the discussion of first 
how to define suppression, and second how to 
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represent it in our models and simulations. We 
are currently working on the rule sets to describe 
the variable context-dependent reactions of the 
individual dismounted warrior to a limited set of 
perceived battlefield stressors. To the extent that 
those reactions are in some way deleterious to 
the soldier's mission, then we describe this 
perception/reaction process as suppression. We 
have begun the process of implementing this rule 
set paradigm into the Integrated Unit Simulation 
System, and are embarking on an iterative 
process of explaining our concepts, soliciting 
community and user feedback, and incorporating 
that feedback into the development. 
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1.   Abstract 

To assist in effectiveness studies of Command, 
Control, Communication and Intelligence (C3I) 
systems in the Australian Defence Force the Defence 
Science and Technology Organisation is currently 
developing the Distributed Interactive C3I 
Effectiveness simulation. A key part of this 
simulation is the use of computer generated forces. 
This paper describes one of the two types of 
computer generated forces which the simulation 
uses: artificial agents. These artificial agents are 
defined by a role-based structure, based on extended 
Petri nets, allowing for sequential and concurrent 
processes as well as top down and bottom up design 
techniques. 

2.   Introduction 

The use of effective command, control, 
communication and intelligence (C3I) is very 
important in a military environment. To assist the 
Australian Defence Organisation, Information 
Technology Division of the Defence Science and 
Technology Organisation is developing computer 
software to enable the study of military C3I systems 
effectiveness. The nucleus of the software being 
produced, known as the Distributed Interactive C3I 
Effectiveness (DICE) simulation, will enable the 
study of C3I systems through distributed interactive 
simulation (Davies, Gabrisch 1995). 

The DICE simulation environment is considered to 
be comprised of a number of interacting nodes. Each 
node represents a different entity in the central C3I 
system being modelled and the external environment 
about that system (Davies, Gabrisch 1995). All the 
nodes interact with each other by sending formatted 
textual messages along communication links. The 
message content depends on the nodes which are 
communicating. There are two different types of 
nodes in the DICE simulation: interactive players 
and computer generated forces (CGF). 

Interactive players in the DICE simulation will 
generally be used to represent decision makers or 
commanders in the C3I system being studied. 
Interfaces are under development to allow the 
players to interact with the other nodes in the DICE 
simulation regardless of whether they are interactive 
players or CGF. 

CGF in the DICE simulation are used to represent a 
variety of nodes, or cells within nodes, of the C3I 
system being studied and also entities external to the 
C3I system. C3I system entities can include single 
or groups of decision makers, centres of information 
filtering and processing, or combinations of these. 
External entities might include sensors, weapon 
systems, forces and also representation of the overall 
tactical-level battle or operation. Each CGF will 
have a unique structure that must be represented in 
the simulation. There are two types of CGF: 
peripheral units and agents. 

In some cases there may be existing models and 
simulations that represent a given aspect of the 
system being studied, for example a battle simulation 
such as JANUS may be used to represent low level 
conflict between two forces. When models and 
simulations are incorporated into a given DICE 
scenario they are referred to as peripheral units. In 
general, peripheral units do not model C3I aspects of 
the system but are used to assist in measuring the 
effectiveness of the C3I system by helping form a 
representation of the overall military mission 
(Davies, Gabrisch 1995). 

As is frequently the case with interactive 
simulations, there is often a need to use some form of 
CGF to represent different aspects of the system. In 
DICE each time a node cannot be represented by a 
peripheral unit or does not have a human player 
representing it, an artificial agent is designed to 
perform its task. The artificial agents in DICE are 
extended   Petri   net   (PN)   simulations   and   are 
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considered to be made up of a number of roles which 
are brought together to form the overall artificial 
agent structure. Each role may also be constructed 
from a number of roles, thus forming a hierarchical 
structure where the detail increases with depth. This 
document considers how these role-based artificial 
agents are designed and incorporated into the DICE 
simulation. 

It should be noted that there will be times when 
studies will be carried out using a non-interactive 
simulation. In these cases the DICE simulation will 
be used and all the nodes will be either represented 
by peripheral units or artificial agents. 

3.   Requirements of Artificial Agents in the DICE 
Simulation 

In considering the requirements of artificial agents it 
must be remembered that DICE is an interactive 
simulation and so involves both real and artificial 
players. The inclusion of interactive players in the 
DICE simulation adds to the requirements of the 
artificial agents. 

In the DICE simulation the two types of agents, real 
and artificial, must interact in a way which will 
make interactive players unable to determine 
whether they are communicating with a real or 
artificial decision maker. The need for seamless 
integration is internationally recognised (Lewis 
1994; Cox et. al 1994) and is very important to 
maintain a realistic simulation of the real 
environment. Interactive players cannot be allowed 
to determine between which nodes are CGF and 
which are interactive players as this knowledge may 
prejudice how they treat the other nodes. To help 
address this problem a standard language based on 
formatted textual messages has been chosen for 
communication between nodes[l]. Agents need to be 
able to comprehend and communicate in this 
language. Interface environments need to be 
developed for both human and artificial players that 
enable communications in the chosen language. 

The requirements on the design of artificial agents in 
the DICE simulation are not unique to this project, 
other researchers have also seen some of them as 
important requirements of the CGF they are 
designing (Lewis 1994; Lankester et. al. 1994; Laird 
et. al. 1994; Cox et. al. 1994). It should be noted 
that research into the functions and interactions of 
real commanders is required in the development of 
artificial agents and the interfaces used by real 

players and peripheral units. This document 
concentrates on the design requirements of artificial 
agents. 

3.1  Basic Artificial Agent Structure 

Initially, the artificial agents to be designed are 
essentially rule-based; more sophisticated 
representations may be adopted as the field of 
artificial intelligence is researched and practical 
benefits determined. It has been expressed that 
current machine learning techniques are not 
sophisticated enough to deal with a problem this 
complicated (Cox et al. 1994). 

The fact that the artificial agents are rule-based, 
leads to there being a natural break down of their 
processes into smaller components. These 
components will be loosely termed "roles". A role is 
not necessarily the base element of the agent (as in 
the work by Levis 1993) it is more a function, which 
may in turn have many roles within it. This 
structure leads to a hierarchical design technique. 
By taking a hierarchical approach (Aronson 1994) 
the complexity at the level the designer is working at 
is reduced to a level which is relevant for the work 
being carried out. This method also supports the 
natural break down of complex systems into simpler 
ones. This means the artificial agent roles can be 
designed initially and then brought together to form 
the overall artificial agent, leading to a bottom up 
design approach. Alternatively the designer can 
initially sketch out the basic functions of the 
artificial agent and then add detail by enhancing its 
roles independently, leading to a top down modelling 
approach. The artificial agent being modelled and 
the information about the artificial agent will 
determine which method is most appropriate for the 
task at hand, making it necessary to allow either 
approach. This method also makes changes to the 
artificial agent easier as they will only involve 
change to a limited number of roles, keeping the rest 
of the agent unchanged. 

C3I networks involve many different systems 
working both concurrently and consecutively towards 
the same main objective. This is also true for each of 
the nodes in the system. Thus, an artificial agent 
may involve events which occur either in series or in 
parallel. This is an important feature of any decision 
making process and so must be reflected in the 
artificial agent design. To some extent this is dealt 
with by taking the role approach, where roles are 
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arranged according to the way their related functions 
occur in the real system. 

3.2  Explanation and Analysis Capability 

Adequate credibility and realism in artificial agents 
is essential; judgement of such qualities can 
generally be best made by military domain experts. 
The underlying assumptions and characteristics of 
artificial agents need to be conveyable in a form 
easily understandable to a military expert. Such an 
expert should be able to interrogate features of the 
agents and to form some judgement on the realism of 
that artificial agent compared with the real-world 
system that the artificial agent represents. Having 
military endorsement of the assumptions used in 
such representations is a vital prerequisite to any C3I 
system study. The ability to have artificial agents, for 
example, explain their actions in an easily 
understandable form, is recognised as a very 
important requirement in the CGF arena (Cox et. al. 
1994; Lewis 1994). 

4.  The DICE Simulation Artificial Agent 
Representation 

Having defined the requirements of the artificial 
agent design in the DICE simulation it was then 
necessary to find an efficient method of modelling 
artificial agents with these features. Many different 
methods were considered, some of which are 
described below, before the decision on the use of 
extended Petri nets (PN) was made. The use of CGF 
in computer simulations is wide spread, however, 
this discussion is restricted to those methods taken 
by researchers who are designing CGF with similar 
structures to that of the artificial agents in the DICE 
simulation. 

4.1 Finite State Machines and State Transition 
Diagrams 

The main problem with using FSM is that they do 
not efficiently model concurrence and their 
representations can become very complex for large 
systems. The problem of complexity is partially 
overcome by using hierarchical FSM as in Cox et. al. 
(1994). However, the modelling of concurrence is 
very important in the artificial agents of DICE and 
this can not be represented easily by FSM. Other 
problems with the FSM approach are outlined in 
Harmon et. al. (1994). 

4.2 Boolean and Fuzzy Logic 

In Lankester et. al. (1994) the rules governing the 
actions of the agents are defined using boolean logic. 
As with the DICE agents the logic is set up in a 
hierarchical structure to try and keep the design 
controlled. This approach can be easily applied to 
the small system but becomes very cumbersome 
when it is used on more complex systems with large 
state spaces. This problem can be reduced by the use 
of fuzzy logic instead of boolean logic, as expressed 
by Parsons (1994), as this reduces the state space in 
most cases. However, regardless of whether boolean 
logic or fuzzy logic are used, artificial agents 
represented by either method are hard to change, and 
the implications of any changes are often very hard 
to determine. 

4.3 Petri Nets 

Petri nets (PN) have been used in the study of C3I 
systems by many researchers and even applied to the 
modelling of decision makers (Levis 19??). As such 
they have not been applied to the design of artificial 
agents in a DIS environment in the way required in 
DICE. However, PN have all the required features to 
model the operation of the DICE agents. 

PN have a graphical modular representation that 
allows the artificial agent designer to represent the 
role logic in an easy and simple manner. Each role 
can be thought of as a PN which is then joined to 
other PN via common places and transitions, this 
allows each of the roles to be designed individually 
and then brought together. Alternatively a PN can 
be constructed outlining the artificial agent structure 
and then refined adding detail. Thus artificial 
agents can be designed in the same fashion as is 
described in section 2.1. 

Due to the PN representation, PN are easy to modify 
and the effect of changes can be easily seen. An 
inherent feature of the PN structure is that it allows 
for the modelling of features such as 
synchronisation, concurrence and resource sharing, 
which are features the artificial agents in DICE will 
have. As with FSM, PN get very complicated and 
confusing when the complexity of the system 
increases. However, PN have been extended by 
adding elements such as coloured tokens and 
hierarchies which reduces the complexity of the 
graphical representation when representing large 
and/or complex systems. 
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In considering which method is best to model the 
DICE artificial agents it should be noted that a FSM 
is PN in which each transition has only one input arc 
and only one output arc. The fact that FSM are a 
subset of PN illustrates the advantage of using 
extended PN over FSM. Extended PN can also 
represent both boolean or fuzzy logic (Levis 19??). 
However, the main advantage that boolean or fuzzy 
logic have over the use of extended PN, in particular 
the boolean logic approach, is that it is easy for the 
layman to model and change the agents using this 
method. The problem with the logic approach is that 
once the system being represented gets large it is 
hard to make modifications and find errors, the 
graphical approach of extended PN does not have 
this problem. 

In representing an agent the aim is to model a 
system that comprises discrete events occurring 
under defined conditions. It is this that makes 
extended PN the ideal tool for modelling such 
systems since this is what PN were designed for. It 
should be noted that the methods described above do 
not cover all the possible ways of modelling 
conditional event systems. However many of the 
other methods can be shown to be either equivalent 
to or subclasses of PN (Peterson 1977). 

5.  Simple Example of Role-Based Agent 

The following sections introduce a simple example 
of a role-based agent and refer to this example to 
illustrate many of the concepts associated with the 
role-based methodology and other features. Artificial 
agent design and implementation will be achieved 
through use of the Petri net ANalysis Environment 
(PANE) that is currently being developed, which will 
automate many of the procedures that are discussed 
below. It should be noted that the example given 
here is purely being used as a way of demonstrating 
the role-based architecture described above and the 
reader should not be concerned about the mechanics 
ofthePN. 

5.1   Designing Roles 

The role-based architecture of the DICE artificial 
agents is illustrated in the example given in 
Figure 1. The notation used for the PN in this 
example is that defined by Jensen (1990). 

Consider the situation where a pilot requests 
permission from an air traffic control tower to taxi to 
a runway so that he/she can begin preparation for 

take off. If permission is given then the pilot will 
proceed along the taxiway, otherwise he waits for a 
period of time before submitting the request again. 
If a plane is taxying, then the taxiway is considered 
unavailable to other aircraft. On receiving a request 
the control tower must check the current weather 
conditions and then the availability of the taxiway 
before deciding if the pilot is cleared to taxi. 

Figure 1 shows the role-based model representation 
of this system. In Figure 1 (a) the higher level model 
defining the roles as seen at the pilot level is shown. 
First he submits his request, which is represented in 
the PN by the firing of transition tl and the creation 
of an r token in place p2. Next the control tower 
responds, either approving or disapproving the 
request, ie transition Tl fires. If the pilot is given 
permission to taxi then a p token is created in p3, 
otherwise an r token is created in pi. If the request is 
approved the pilot proceeds to taxi, transition i2 fires 
on completion of the taxying placing an/token in p4 
to indicate the pilot has completed his taxi and a t 
token in p5 signifying the availability of the taxiway. 

In Figure 1 (b) the details of the control tower are 
modelled. The extended PN shown here is a 
substitution transition to transition Tl in the PN of 
Figure 1 (a). This model involves two different 
roles; the checking of the weather conditions 
(transitions fa) and taxiway (transitions tb). Also 
given in Figure 1 is a description of the physical 
meaning associated with the tokens of these nets. To 
make the associations between the two nets easily 
seen, like places and tokens have been given the 
same names. 

The above example shows a top down approach to 
modelling. Initially the basic top level structure of 
the pilot net was defined and then the control tower 
role was modelled in more detail. An alternative 
bottom up design can be illustrated by considering 
the design of the control tower. 

Figure 2 shows the two roles that exist in the control 
tower. Figure 2 (a) shows a general "checking of 
conditions" role and Figure 2 (b) shows a general 
"checking the availability of a resource" role. 
Having designed these two roles we can then bring 
them together to form the control tower modelled in 
Figure 1 (b). The two roles in Figure 2 could be 
regarded as existing in a library of roles from which 
they are selected and employed in constructing the 
control tower role. It is important to note that the 
lower level roles are originally general but become 
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(a) Pilot Net 

Token Description 
r Signifies the submission of a request 

to taxi. 
P Signifies the control tower giving 

permission to taxi. 
f This token in place p4 indicates the 

pilot has completed taxying. 
t This token in place p5 implies that the 

taxiway is available. 
y This token in place pa implies the 

weather condition is satisfactory. 
n This token in pa implies the weather 

condition is unsatisfactory. 

(b) Control Tower Net 

Figure 1: Aircraft Ground Control Example of Role-Based Agent 

instantiated with a particular purpose when 
employed in the control tower role. The conditions 
to be checked become the weather and the resource 
being checked for availability becomes the taxiway. 
The PANE will allow for any combination of the 
above role-based design approaches as well as giving 
the designed systems the analysis and explanation 
capability required of them in the DICE project 

It should be noted that the control tower net 
represented here only makes up a very small part of 
what would be a complete control tower model. The 
portion shown is that activated by the particular 
problem being considered. This illustrates another 
nice feature of the PN role approach to agent design, 
only the relevant part of the PN model is activated 
when called upon. 

5.2   Explanation and Analysis Capability 

A PN explanation and analysis capability has been 
established using the declarative language Prolog. 
Prolog is a particularly suitable language for 
describing PN, where the basic connectivity 
characteristics can be regarded as a set of facts or 
clauses plus logical conditions. Perhaps the most 
powerful feature of Prolog, with regard to 
establishing an explanation and analysis capability is 
its search and multiple solution identification 
abilities. The analysis component interrogates a 
given Petri net according to user-specified goals or 
queries whilst the explanation capability abstracts 
and translates the query results such that they are 
presented  in  a  form  more  easily  understood  to 
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(a) Check Conditions Role (b) Check Resource Availability 

Token Description 

q Represents the submission of a query on a condition or the availability of a resource. 
f Indicates conditions are not satisfactory or the resource is not available. 
s Indicates conditions are satisfactory or the resource is available. 
y Corresponds to satisfactory conditions. 
n Corresponds to unsatisfactory conditions. 
r Represents the resource, its presence in p2 indicates that the taxiway is available. 

Figure 2: Control Tower Roles 

someone less versed in Petri net notation. The 
explanation capability is achieved through the use of 
declarative tags on the PN that give descriptions of 
the significance of a particular token residing at a 
particular place in the net; the firing of a particular 
transition mode; and summary information for an 
instantiated role. 

A number of important queries were determined and 
are discussed below. The Prolog software 
automatically identifies any multiple, ie alternative, 
solutions to any query. The presence of roles allows 
explanations to be presented at a level appropriate to 
a user's query. A graphical user interface 
environment associated with this capability has been 
developed. 

and it is in this form that a user can specify a 
situation. Consider specifying this situation and 
indicating that the level of abstraction required (the 
target net) is at the Pilot net. A query for the reaction 
to this situation would return an outcome of: 

['Control Tower determined that permission should 
not be granted for taxi'] 

The mode that has actually fired in response to this 
goal is one associated with the Check Conditions net 
which checked the conditions (the weather) and 
returned in the negative. However, abstraction was 
used through the Control Tower net to the Pilot net 
resulting in the summary information above. 

5.2.1   Reaction to a given situation 

In a PN, a situation is described by a certain marking 
which, in raw Prolog form, might be 
[[p2,r,l],[pa,n,l]]. The PN explanation capability 
allows this situation to be expressed in the form: 

5.2.2 Sequence of Actions Resulting From a Given 
Situation 

This clause generates an outcome consisting of a 
sequence of actions that occurs in response to a 
stated initial situation and resulting in some fully or 
partially defined final situation. 

[Permission to taxi requested', 
'ct: Weather not suitable for taxi'] 

For example, with a target net of Pilot, if the initial 
situation were: 
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[' Permission to taxi requested', 
'ct: Weather suitable for taxi', 

'ct: Taxiway available'] 

and the final situation were any situation which 
contains the state: 

['At runway'] 

then  the  response  to  this  query  would  be  the 
outcome: 

[['Control Tower determined that permission should 
be granted for taxi'], 
[Taxied to runway']]. 

Changing the target net to the Control Tower level 
would result in the outcome: 

[['ct Determined that weather is OK for taxi'], 
['ct: Determined that taxiway is available for taxi']] 

which indicates the same outcome but in  terms 
relevant to the Ground Control net. 

5.2.3  Explanation of Actions 
This query gives the ability to select a particular 
action (or group of actions) and ask the question 
"Why did/would this action occur?". In the case of a 
role-based PN, actions will either be associated with 
the firing of regular transition modes or effective 
firings of substitution transitions. An explanation of 
why an action occurred or would occur is given, 
then, by the input requirements of the associated 
mode or a description of the mode summarised by a 
substitution transitions. 

5.2.4 Sensitivity of Actions That Could Arise From 
a Given Situation 
This query refers to taking a specified situation and 
requesting an illustration of the sensitivity of any 
actions (ie mode firings) to this situation. Processing 
of this query involves determining which firings are 
dependent on part or all of the given situation and 
ascertaining to what extent that situation would need 
to change in order for that firins» to occur. 

5.2.5 Actions That Could Result in a Given 
Situation 

This query determines what groups of modes can fire 
such that their combined firings result exactly in a 
given situation. It is important to note that firing 
time considerations are not made here; the clause 
will return modes whose outputs upon firing cause a 
given situation, the modes do not necessarily fire 
simultaneously. 

5.2.6 Actions That Could Contribute to a Given 
Situation 

This query determines what actions could contribute 
to a given situation, ie what firings have output that 
is sensitive to the situation concerned. The result of 
any firings might not be exactly the required 
situation but could contribute to it. This approach is 
particularly important when multiple or repeated 
firings of a mode are required in order to produce a 
given situation. 

6. Conclusions 

This paper has outlined a role-based methodology for 
designing agents. This methodology allows for both 
top down and bottom up design, and uses extended 
PN to describe the roles. An explanation and 
analysis capability has been developed to accompany 
the PN technique. However, the explanation 
capability is only as good as the quality of the 
declarative tags attached to the PN and this will be 
the subject of further research as is addressing the 
transient and stochastic features that an agent can 
possess. Research is also being carried out to 
develop a PN extension designed exclusively to deal 
with the problems associated with role-based agent 
modelling. 
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1.  Abstract 

Realistic doctrinal behavior in computer generated 
forces is a hard requirement to fulfill. We discuss the 
inherent diversity that exists in the assessment of 
realism of these forces and point out that building the 
right computer generated force for the task should be 
the goal aimed for. We argue that doctrinal realism 
can better be achieved via simulation entities 
consisting of multiple micro-agents and that the 
behavior requirements of the task should guide the 
level of abstraction selected. We present a system 
layer capable of supporting the ontology and an 
exploratory model of a simulation entity for an anti- 
submarine aircraft applying these concepts. 

2.  Introduction 

Simulation training environments have always been 
predominant in the military training system. 
Advanced synthetic devices are now available to 
reproduce with high fidelity the characteristics of 
most existing weapon systems, providing ideal 
mediums for the transfer of procedural and technical 
skills. As simulation training technology evolved, the 
capability of interconnecting several manned 
simulators into a single simulation scenario was 
achieved. Today, network simulation environments, 
such as SIMNET and DIS, are central to the research 
and development efforts surrounding simulation 
training. 

Network simulation environments have heightened 
the expectations about the resulting product of the 
training system. Increasingly complex readiness 
requirements are being specified which are aimed at 
attaining broader sets of tactical and judgment skills. 
Network simulation environments are now being 
proposed for a spectrum of combined arms operations 
ranging from mission training, mission preview, to 
mission rehearsal, as well as to analyze and evaluate 
strategies, tactics, doctrines and new weapon systems. 
Atop the requirement for realistic depiction of 
operational environments comes the requirement for 
the participation of plausible and believable opponent 
and supporting forces.   Computer Generated Forces 

(CGFs) represent a cost effective solution to populate 
with varying numbers of simulation entities the 
operational environments of network simulations. 

Scenarios to be engaged by CGFs vary greatly in 
complexity. In all cases, it is desired (if not required) 
that the CGF act/react in time conforming to the 
entity being emulated, and that the CGF behave 
rationally given the present operational situation and 
in accordance with the doctrine governing the force 
being simulated. Such requirements command the 
design of complex real time rational systems able to 
carry out a wide spectrum of tasks. 

In this article, we describe current and ongoing 
research in the development of a general framework 
that can be applied to the design and implementation 
of CGFs. A discussion on doctrinal behaviors and 
abstraction levels points to a multi-agent ontology 
applicable to CGFs. We also describe an 
implementation of a system layer supporting that 
ontology. We conclude with an overview of an 
experimental model of a simulation entity based on 
the proposed ontology. 

3.  The Diversity of Realism 

Realistic doctrinal behavior is desired of CGFs. This 
expectation generally applies to all types of CGFs, be 
they own, friendly or opposing forces. However, 
realism of a behavior is by nature qualitative which 
makes it an elusive goal to strive for [Har91]. There 
are at least two factors contributing to the elusive 
nature of this problem; the observer of the behavior 
and the definition of what constitutes realistic 
doctrinal behavior. 

Realism of a behavior is in the eye of the observer 
and further depending on his standpoint and 
apprehension. Some observers are more critical or 
perceptive than others and will quickly recognize 
even the smallest unusual behavior in a participating 
simulation entity. An external unengaged observer 
focused on perceiving its environment will be more 
prompt to categorize an entity that deviates from 
familiar behavior, where as an engaged observer (or 
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active participant) only devoting peripheral attention 
to situation awareness will be more lenient toward 
delinquent behaviors (maybe not noticing). Probably 
the most influential factor is the observer's 
apprehension; if there is anticipation of participating 
CGFs in the scenario, the observer will subjectively 
be more critical of all behaviors. 

Realistic doctrinal behavior is not all that "typical". 
Strategist and tacticians do not generally have 
unanimous agreement about the "right thing" to do in 
a given operational situation. Partly because 
individuals differ in their subjective appreciation of 
the present operational situation and because of the 
way each prioritize the tradeoff between conservative 
and aggressive course of actions. This in part is due 
to the fact that each rely on different partial 
information about the situation and each have their 
own set of values and beliefs with respect to what is 
best for the mission. 

Conditions vary greatly across operational situations 
dictating different accomplishment strategies. Further, 
accomplishment of tactics occur under several 
adverse situational conditions, sometime leading to 
pointwise behaviors that are not in accordance with 
the doctrine. But it is the global behavior that is of 
interest. Not all combatants are expert tacticians or 
strategist, but theirs, the weapon systems they control, 
and the units they belong to, are the behaviors we 
want to capture. Further and most significant, 
flawless tactics and behavior bring about a sense of 
dealing with "super" entities which diminish the sense 
of suspended disbelief sought after. 

Proponents of the "situated" behavior [Agr90, Bro91] 
make the argument that interaction and adaptation to 
the dynamic external demands of an environment is 
what makes a behavior realistic. For CGFs this is not 
enough, doctrinal behavior is also a key factor. What 
makes a behavior realistic in the context of CGFs is 
that the actions/reactions to the operational 
environment also generally follow a set of standard 
operating procedures that embodies the doctrine 
governing the force being simulated. 

Realistic doctrinal behavior within the context of 
Computer Generated Forces can better be achieved 
via simulation entities consisting of a pandemonium 
of micro-agents [Hew73, Min85, Ten88]. Each 
micro-agent specializes in different and narrow 
aspects of operations. As they go about their tasks, 
these micro-agents confer with each other and form 
coalitions, producing collated, revised enhanced 
views of the raw data they take in. The process goes 
on ceaselessly. The information is under continuous 
revision so that at any point in time there are multiple 

views of information fragments at various stages of 
revision in various coalitions. These coalitions and 
their mechanism implement various cognitive 
processes and the desired doctrine. 

Simulation entities can be individual micro-agents, 
several micro-agents, or even several other simulation 
entities aggregated. The recursive definition of the 
functional entity allows global control mechanisms to 
be applied at all levels of abstraction, from specific 
tasks to higher organizational levels. The higher 
levels of abstraction consist of coalitions of 
heterogeneous micro-agents. Through this plurality 
and heterogeneity, one can capture in a single 
simulation entity various conflicting priorities and 
globally incoherent knowledge, all of which are 
competing to suggest the next appropriate action for 
the given situation. Such simulation entities are more 
representative of real world situations where most 
complex military weapon systems are controlled by 
teams of crew members with diverse interpretations 
and intentions with respect to a given situation. 

4.   Selecting the Appropriate Abstraction 

It is futile to try to design CGF entities that always do 
the "right thing" per se, instead we should 
concentrate on designing the right system for the task 
[Rus91]. Whether the CGF is needed for training, 
weapon system evaluation or developing doctrinal 
concepts, or whether the simulation entity is of the 
individual, team or aggregate level should determine 
the behavior requirements and direct the abstraction 
level to aim for. 

A particular choice must be made for the number of 
micro-agents used to implement a particular 
abstraction. This choice can have a profound effect 
on the cognitive abilities and doctrinal correctness of 
the simulation entity as a whole, not withstanding the 
processing cost to maintain real time reaction. The 
ontology proposed favors knowledge distribution and 
functional autonomy which makes it ideal for 
distributed computing architectures, from transputer 
based machines to networks of computers. 

Depending on the simulation being performed, the 
abstraction can be carried out at various levels. In a 
distributed type simulation, the micro-agents could 
emulate selected operational functionalities of crew 
members of the participating vehicles or vessels, 
where as in aggregate level wargaming, the micro- 
agents may be abstracted to key commander functions 
of a battalion or any other relevant military unit. 
Note that the recursive nature in the definition of a 
participating entity allows one to abstract to any 
desired level. The decision of the appropriate level to 
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model is guided by the amount of detailed behavior 
desired and the processing power available to 
maintain real time. 

Analyzing and defining the appropriate abstraction 
for CGF entity is akin to the analysis and definition 
phases of the engineering lifecycle. It consists in 
identifying the required functionalities and behavior 
of the simulation entity and attributing them to a 
series of micro-agents. It is a tedious process for 
which not many tools are available. We are presently 
working at defining a toolset based on visual 
programming to alleviate this task. 

We have been doing some work in defining a general 
agent theory to be applied to the team or crew level 
simulation. It is important to note here that within the 
context of this work, we are interested in the 
operational functionality of the team and crew 
members and not their personalities and/or higher 
cognitive abilities. Central to our agent theory and 
architecture is our belief that the main desirable 
property of the agent lies toward the reactive end of 
the cognitive abilities spectrum. We thus advocate a 
centrally situated and reactive philosophy [Agr90, 
Bro91] augmented with goal directed behavior. 

We identified the following generic functionalities as 
required of the individual agents participating in a 
team or crew simulation entity: a reactive layer, a 
deliberative layer, a self model, models of his 
acquaintances, and a communication layer. These are 
depicted in figure 1. 

f                                  > 

Reactive 
V                                     J 

( 

Communications 

/ 
JT 

f                         *\ 

Deliberative 

r                   \ 

Self and 
• Acquaintances 

models 

V •„••••„• i 

Figure 1: Agent's Generic Functionality Layers 

Although depicted as modules in the figure, these 
only represent functional grouping and may actually 
be implemented quite differently. The reactive layer 
embodies the pre-compiled plans (behaviors) of the 
agent. It contains specialized micro-agents to address 
specific functions of the global agent {e.g. the routine 
operation of different sensors available to the crew 

member). The reactive layer provides the potential 
for real time performance. Rather than having to 
reason about which action should be taken next, the 
micro-agents of the reactive layer merely have to 
recognize their specific stimulus in a situation and 
carry out the associated action sequence. 

The deliberative layer is where most reflective 
processing of the agent takes place. If an exception 
occurs, it is the task of the deliberative layer to reason 
about it and find a way out. The deliberative layer 
may also influence the reactive layer in its selection 
of the appropriate behavior. A degree of generality is 
achieved in the deliberative layer by using micro- 
agents with expertise in generic tasks. These generic 
tasks, which are meaningful in many different 
situations, when taken in context capture the domain 
specific information. 

The self and acquaintance models consist of a 
collection of models capturing the agent's knowledge 
and beliefs of the present situation, and his beliefs 
and knowledge about other entities. We have 
reported on an ontology to capture such knowledge 
[Gag94b, Gag94d]. These models are a pre-requisite 
for any coordination of activities among the different 
participating members such as requesting 
information. 

Agents require a communication facility in order to 
interact with others. This layer actually provides 
more services than just communication. The micro- 
agents of this layer actually carry out the transfer of 
information to the interested crew members as 
determined by the deliberative layer. Identification 
and composition of the appropriate request is the 
responsibility of the communication layer. Requests 
from others are similarly treated. Actual monitoring 
of the agent self status takes place within this layer. 

Our present research focuses on perfecting and 
realizing this agent theory and architecture. Similar 
agent architecture have been proven quite effective in 
dealing with real-time environment [Wit92]. 

5.   A Uniform System Layer 

To support the above ontology for CGFs and agent 
theory and architecture, we generated a system layer 
called CLAP (C++ Library for Actor Programming.) 
CLAP is a uniform system layer implementing a 
variant of the ACTOR computational model [Agh86, 
Hew73]. The Actor model is a natural extension of 
the object-oriented paradigm, where each actor is an 
active, independent computational entity, 
communicating freely with other actors. CLAP 
implements the following concepts of the Actor 
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model: the notion of actor, behaviors, mailbox and 
parallelism at the actor level. Further, CLAP offers 
the extension of intra-actor parallelism to the model. 

CLAP applications generally consist of many 
programs distributed over available processors, each 
executing as a task under the control of the CLAP run 
time environment. In CLAP, each actor is a member 
of a given task. The aforementioned actors are 
actually processes executing in parallel that may vary 
greatly in nature and size, from small simple 
processes to substantial software programs such as 
complete knowledge based systems. It is up to the 
programmer to determine how many actors are 
attributed to a given task (although, a large number of 
actors in a single task could mean the lost of potential 
parallelism in the application.) A scheduler controls 
the execution of processes inside the tasks. Each task 
possesses a message server that handles message 
reception for the actors in the task. Inter-processor 
message transmissions are handled via Remote 
Procedure Call (RPC) servers. External Data 
Representation (XDR) filters and type information 
are utilized for the encoding and decoding of these 
messages. 

The present version of CLAP executes on a 
distributed heterogeneous environment consisting of 
SPARC workstations and Alex Informatique AVX 
machines which are transputer based distributed 
memory machines [Des93]. A port to HP and SGI 
workstations is in progress. An appreciable gain in 
power is achieved by distributing the actors over the 
network of processors making efficient use of the 
available processing power. With its exceptional 
modularity and grain size flexibility, our 
implementation allows complete interconnectivity at 
virtually any system level. Further, new actors can be 
created or destroyed dynamically at run time. These 
capabilities provide for a rather simple elaboration of 
multi-agent environments. We believe this approach 
to be promising in attaining the speedup and 
increased processing power required of large scale 
Distributed Artificial Intelligence (DAI) applications. 
CLAP is implemented in C++. 

6.   An Experimental Model 

An initial experimental model was implemented for a 
CP-140 Aurora; a Canadian Forces anti-submarine 
aircraft [Gag93, Gag94a]. Rather than providing a 
single global behavioral model for the Aurora the 
aircraft operational behavior is guided by a series of 
micro-agents each loosely capturing some operational 
functionalities of some of the crew members. A 
simple synthetic environment was implemented to 
exercise and validate the experimental model.   The 

primary objective of the prototype leaned more 
towards demonstrating the feasibility of a multi-agent 
architecture for team or crew concept training 
[Gag95], than toward arriving at a model for 
Computer Generated Forces. 

The selection of the abstraction level, and agent grain 
size, was based on the initial objective of providing 
the Aurora entity with a virtual crew for the purpose 
of crew concept training. The crew member 
abstraction level represents an intuitive functional 
decomposition for the operations of the aircraft. This 
abstraction allowed us to capitalize on the established 
standard operating procedures existing amongst crew 
members. As a result, there was no requirements to 
implement inter-agent negotiation protocol for the 
control or influence of aircraft operational events in 
this experimental model. 

In this abstraction, the actual crew of ten was reduced 
to a virtual crew consisting of five members: the 
Pilot, the Tactical Navigator (TacNav), the Airborne 
Electronic System Operators (AESOP1 and 
AESOP2) and the Acoustic System Operator (ASO). 
Reassignment of crew duties involved piloting the 
aircraft, commanding the mission, and supervising 
and operating aircraft's detection instrumentation and 
weaponry. In this version of the experimental model, 
agents individually consist of a single expert system 
shell and a distinct knowledge base consisting of 
generic and operational knowledge. For this purpose 
the CLIPS expert system shell from NASA [Gir94] 
was ported and enhanced to execute in parallel on the 
distributed network [Gag94b]. The agents of this 
version of the prototype are monolithic and foremost 
reactive. The efforts of the next evolutionary step 
presently in progress concentrates on the elaboration 
and implementation of our recursive notion of 
agenthood to replace the present monolithic expert 
system shell architecture. 

There are three main components to the prototype: 
the synthetic environment (simulated operational 
environment), the sensors and effectors, and the 
virtual crew. A situation awareness display interface 
provides a god's view of the theatre of operations 
while seemingly tapping the conversations taking 
place between the virtual crew members. The 
prototype is a multi-agent system executing on CLAP. 
The three components of the prototype are actually 
functional grouping of actors. All objects and entities 
of this prototype are CLAP actors: the simulation 
clock, the enemy vessels, the virtual crew members, 
etc. This uniformity of the systems layer provides a 
clean, intuitive, and flexible implementation. Each 
actor can individually be distributed on a separate 
processor  of the  network.     CLAP  supports  the 
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dynamic creation and destruction of simulation 
actors, and manages all intra-actor communications. 
An earlier version of the prototype was implemented 
using a communication ring connecting the different 
agents to a simulation module[Gag94a]. 

A segment of the inter-actor communication network 
of the prototype is presented in figure 2. The figure 
only represents a snapshot since the network of 
participating actors changes dynamically at run time. 
The virtual crew's interpersonal communication 
network is depicted by a star in the figure. Note that 
the agents have no direct contact with simulation 
entities, except for the Aurora aircraft which they 
operate. 

The perception the virtual crew has of the outside 
world (in this case the simulated operational 
environment) solely rely on instrument readings and 
the pilot's field of view. Individually, each virtual 
crew member is only allowed access to situational 
information normally available through sensors on 
board the aircraft or through interaction with other 
virtual crew members. This is a necessary condition 
to assure integrity of the global behaviour of the 
Aurora as an entity in a Computer Generated Force. 

It must be stressed that the evolution of a mission in 
this implementation is completely non-deterministic 
(i.e. no canned scenarios or scripts), and solely based 
on the events taking place in the theater of operation 
and the decisions and actions taken by the virtual 
crew members (agents). An unrestricted number of 
enemy vessels can be dynamically introduced or 
removed from the simulation of the operational 
environment at run time. We consider this exogenous 
nature of our system to be a necessary condition, if 
we are to present computer generated forces as a 
valid experience gathering devices. 

This experimental model has proven to be more 
interesting than traditional stochastic models because 
not only does it provide the non-deterministic 
characteristics desired but it also assures adherence to 
the overall doctrine by having individual virtual crew 
members carrying out doctrine correct operations in 
answer to the present situation. The prototype has not 
been evaluated other than subjectively by experienced 
operators. They were convinced enough by the 
system to support further exploration of this 
approach. Short term goals include embedding the 
Aurora simulation entity in a better operational 
environment simulation model. 

: Agents 

: Sensors 

Simulation 

Figure 2: Network of Actors 
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7.   Summary and Conclusions 9.  References 

The dream of an all encompassing, omniscient CGF 
entity is at best elusive. Designers of CGFs should 
concentrate on designing the right simulation entities 
for the task at hand. 

We have argued that one should distribute the 
cognitive processes supporting doctrinal behavior of 
a simulation entity among specialized micro-agents of 
limited expertise. Through this plurality and 
heterogeneity, one can capture in a single simulation 
entity various conflicting priorities, and globally 
incoherent knowledge and interpretations of the 
present operational situation, all of which may be 
competing to suggest the next appropriate action. 
This approach best captures the diversity and non 
determinism that exist in pointwise behaviors of real 
operational entities while allowing to globally 
maintain realistic doctrinal behavior. We have 
described a system layer capable of supporting the 
design of such a simulation entity. 

An agent theory and architecture was suggested for 
team and crew level simulation. This agent theory and 
architecture is the subject of further exploration in a 
crew concept training project Finally, an 
experimental model of an anti-submarine aircraft was 
presented. Rather than providing a single behavioral 
model for the behavior for this simulation entity, the 
aircraft is controlled by a series of micro-agents. 
Behavioral integrity of this simulation entity was 
preserved by only allowing access to information 
normally available in a real operational situation. 

We believe this general approach to be promising in 
attaining realistic doctrinal behavior for Computer 
Generated Forces and are presently working at the 
next generation of simulation entities based on these 
ideas. 
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1.  Abstract 

There are fundamentally two approaches to implement 
behaviors for a CGF computer system. One is a 
forward reasoning approach and the other is a 
backward reasoning approach. Even though the 
forward reasoning approach is commonly used to 
implement behaviors in CGF because of its initial 
intuitiveness and historical familiarity, the other 
alternative should be carefully examined. Because of 
a unique philosophy behind military doctrines; 
hierarchy, unambiguity, and purposefulness, a rather 
opportunistic forward reasoning approach is less 
suited than a goal directed backward reasoning 
approach. In this paper, these two approaches and 
representations are examined and compared with a 
specific military task example, "Reaction to Air 
Attack Drill" of US Army Tank Platoon. 

2, Introduction 

One of the ultimate goals of research in computer 
generated forces (CGF) is to create automated agents 
that behave as humans would on a real battle field. 
Although some CGF softwares, such as ModSAF, 
have been successful to implement realistic CGF 
behaviors in a simulated battle field, their behavioral 
implementations have been somewhat focused on low 
level echelon behaviors. 

As climbing echelon hierarchy in military, the 
echelon's roles are getting detached from physical 
entities, such as tanks and helicopters. They are 
getting inclined to command and control rather than 
simple movement and shooting which are dominant 
roles (or behaviors) of a low level echelon. They 
spend most of time to reason about mission, enemy, 
terrain, troops, and time available (METT-t) to 
generate orders. Thus, their roles are behaviorally 
more complex than those of a lower echelon. 

Currently, each CGF software utilizes its own 
behavioral implementation for CGF. For example, 
ModSAF uses Augmented Asynchronous Finite State 
Machine (AAFSM) to implement behaviors. 
However, when CGF software starts to simulate 
higher-level echelon behaviors, the current behavioral 

implementation methodology might not well suit for 
a larger scale future CGF. 

In this paper, two behavioral representation 
alternatives will be compared; i.e., AAFSM, and 
Rational Behavior Model (RBM). AAFSM 
represents a data-driven forward reasoning behavioral 
approach, and RBM represents a backward reasoning 
behavioral approach. A data-driven forward reasoning 
approach tends to lead an exploratory implementation; 
i.e., designing a behavior from a start state to a goal 
state based on a given sequence of external inputs, 
while the latter backward approach usually guides to a 
structural top-down behavioral decomposition during 
its design stage. Thus, depending on targeted 
behaviors to be implemented one approach is expected 
to be better than the other. As an example, Reaction 
to Air Attack Drill behavior is chosen and 
implemented to compare their advantages and 
disadvantages, respectively. Especially easiness of 
converting published military Field Manual to both 
behavioral representations is discussed. 

3.  Behaviors and Behavioral 
Representations 

3.1  Systems and  Behaviors 

A computer based system, such as a CGF and a robot 
control system, basically shares great commonalities 
with other biological or social systems. That is, as a 
system, it continuously manages internals and 
interacts with other external systems. A system may 
contain multiple sub-systems, while it also becomes 
a sub-system of other systems. Therefore, in this 
paper, a system is described as a recursive entity that 
has intra- and inter- interactions between sub-systems 
and external systems. 

Interactions between systems are directly caused by 
interactions between behaviors in the systems. And 
the behaviors are entities capable of producing such 
interactions. There are two kinds of behaviors; i.e., 
internal behavior that is not observable from outside 
and interacts only internally, and external behavior 
that is externally observable and interacts with other 
external systems (including super-systems).   The 
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external behavior is simply called behavior of a 
system because it produces readily observable 
behavioral results. 

System interactions caused by a behavior do not 
spontaneously and aimlessly occur without a purpose. 
They are (especially in a man-made system) controlled 
by a sound logic that is either deliberately or 
optimistically1 implemented to reflect the purpose. 
Thus, a behavior should have means to include such 
behavioral control logic. The behavior itself cannot 
exist in a vacuum. It needs an embodiment where it 
can place "memories" needed to maintain 
individualistic nature of a behavior. Without the 
embodiment, multiple behaviors with the same 
behavioral control logic would produce 
indistinguishably identical behavioral results 
regardless their distinct situational histories. Finally, 
a behavior has to interface to other behaviors through 
either transformation or actuation. Though the last 
factor seems purely an implementational issue, 
without the interfacing activity, a behavior is not able 
to interact to other behaviors. Consequently, the 
behavior, in this paper, has three components; i.e., a 
behavioral control logic, an embodiment, and 
interfacing means. 

A system behavior manages all the system internals 
to produce an external system interaction. 
Specifically, it controls the overall operations of 
internal behaviors with the behavior control logic, 
records those operational results in the embodied 
portion, and interfaces to other systems to produce 
tangible system interactions. It can be dynamically 
delegated from the internal behaviors, but a statically 
assigned system behavior is chosen in this paper 
because of simplicity and easiness to maintain the 
whole system stability. 

The internal behaviors directly come from the sub- 
systems, and they are manipulated by the system 
behavior to constitute external system interactions. 
Therefore, the system behavior is the external 
behavior of a system. Even though the system 
behavior mainly combines all available internal 
behaviors, it is not a simple combinatorial 
combination of them because of the embodiment and 
the behavioral control logic of the system behavior. 
Thus, the system behavior (the external behavior) is 
more powerful than a mere collection of those of the 
sub-systems. 

Consequently, building a system becomes 
constructing a system behavior that manages the 

internal behaviors and including sub-systems that can 
provide necessary internal behaviors. If some of the 
behaviors are not readily available, then sub-systems 
that can provide the missing behaviors have to be 
newly built. This system building process 
recursively continues until all needed behaviors are 
included2. There are many proposed behavior models 
and related development/implementation tools. Most 
of them (Kwak 1990, Kwak 1992, Kwak 1993, 
Scholz 1993, Byrnes 1993, Loral 1995, Rosenbloom, 
1993) implicitly or explicitly support this system 
building approach. 

In this paper, those behavior models and tools are 
classified into two categories depending on the 
behavioral control part because two extreme 
representations are available; i.e., forward and 
backward reasoning representations (Jackson 1990). 
In a pure predicate calculus sense, two representations 
are totally equivalent. However, when either of the 
representations is used to implement the behavioral 
control logic that operates in a context rich 
environment, the equivalence issue is not as simple 
as a syntactic switch from one form to the other. The 
order of logic proving sequence becomes significant 
because of side-effects caused by the logic proving 
process. If the logic proving sequences vary from one 
implementation to another implementation, then 
there is no way to guarantee that the sequences of 
observable behavioral results caused by the logical 
proving process in both implementations are 
identical, even though they are logically equivalent. 
This observation leads to a special equivalence called 
behavioral equivalence (Kwak 1993). An existence of 
behaviorally equivalent pair in both representations 
was found and reported in (Kwak 1993). A similar 
finding in the context of factory assembly control was 
also reported in (Homem 1990). 

3.2 Forward and Backward Reasoning 
Representations 

The forward reasoning means a series of possible 
traversals from the start to a goal, while the other 
reasoning means a recursive goal decomposition; that 
is, starting from the goal, goals are recursively 
decomposed into simpler sub-goals. This process 
stops when simplest primitive goals are encountered, 
which can be directly accomplished by the sub- 
systems. Depending on the problem space of a 
behavioral control, either or both approaches might 
be susceptible to a combinatorial explosion. 
However, one approach is usually better off than the 
other approach. 

'Some behavioral implementations are based on 
optimistic expectations (Brooks 1986) 

2This is a top down approach.    A bottom up 
construction is equally possible. 
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Practically speaking, the recognized problem space of 
a behavioral control continuously evolves from the 
initially recognized space because of knowledge 
accumulation (experience) of a designer/implementer 
about the problem3. At the beginning of the 
behavioral implementation phase, his understanding 
of the control problem is minimal. From the start 
state, he can experiment various operations to reach 
the goal or at least to try to move toward the goal. If 
such a move is apparently closer to the goal based on 
his simplistic evaluation model, a new state is 
introduced to maintain the move and to simplify 
future moves. Unfortunately, the successive 
movements may lead to a trap (local mini/max) state 
without any further improvement due to the error of 
his simplistic evaluation model. However, a series of 
such trials and errors will (most of cases) eventually 
lead to a path (or multiple paths) to the goal. At this 
point, the collection of all the paths explored forms a 
recognized problem space that should be much limited 
compared to the complete problem space. 

If the goal is reached, then the whole problem can be 
viewed from the goal to the start. At this point, he 
starts to approach the problem by discovering goal 
and sub-goal relationships. Such investigations lead 
to form a hierarchically organized goal-subgoal tree. 
During this process, all (practically) possible 
branches (subgoals) can be systematically identified 
because of the top-down approach. Frequently, the 
complete problem space does not need to be 
identified. A certain subgoal branch may be ignored. 
If so, the branch is terminated by a simple default 
subgoal. When such tree construction is completed, 
an adequately shaped behavioral control space is 
available. This is possible because of the gained 
knowledge, i.e., experience. 

The degree of understanding of the problem space 
leads to a selection of a behavioral representation. If 
the adequately shaped goal-subgoal tree is not 
available ~ a behavioral control problem is partially 
understood or unstructurally described — then a 
forward reasoning representation and implementation 
will be a better choice. If such a goal-subgoal tree is 
available, then a backward reasoning representation 
will be the choice because a paradigm match between 
an explored problem space and a representation results 
in greatly reduced development time and efforts. 

3We, human beings, are not fully capable to grasp 
the entire problem space of a realistically sized 
behavioral control problem. We intentionally or 
unintentionally simplify or limit the size and shape 
of a behavior control problem in order to effectively 
handle the problem with our limited resources. 

4.  AAFSM  &  RBM 

4.1 AAFSM (Asynchronous Augmented 
Finite  State  Machine) 

Asynchronous Augmented Finite State Machine 
(AAFSM) (Loral 1995) is chosen to represent the 
forward reasoning representation. Though AAFSM is 
highly specialized for ModSAF to facilitate behavior 
implementation in ModSAF, it is basically a Finite 
State Machine (FSM), which defines states and state 
transitions. 

Specifically, in ModSAF, behaviors are implemented 
by tasks, and the tasks are implemented by 
AAFSM's. They are asynchornous because they 
change states in response to events in the simulated 
environment. However, if needed, ModSAF system 
clock, which can be simulated or synchronized to real- 
time clock, can trigger the state transitions. Thus, 
both asynchronous and synchronous state transitions 
can be implemented with AAFSM's. They are also 
augmented state machines because they use many 
variables, predicate functions, and procedures to 
handle variables other than their state variables. 

AAFSM implements behavior control logic with its 
FSM portion, and the augmented part provides the 
behavioral embodiment and the behavioral interfaces. 
Thus, AAFSM basically provides three components 
needed for implementing behaviors, which are 
described in the previous section. Recursiveness is 
indirectly supported in conjunction with the rest of 
the ModSAF architecture, such as tasks and task 
frames. 

The ModSAF environment also provides a tool to 
construct AAFSM, which facilitates a programmer to 
define an AAFSM. Rather than constructing an 
AAFSM with an ordinary programming language, 
such as C, he can write an AAFSM with the 
predefined AAFSM macro facility. Then the 
AAFSM code is translated by a preprocessor utility 
called "fsm2ch". The fsm2ch utility is written in 
"awk" script and converts an AAFSM code into a C 
source code so that it can be compiled together with 
other ModSAF programs that are written in C. 

The fsm2ch macro facility provides a syntax and 
commands needed to express state transitions, event 
declarations, criteria declarations, and task related 
commands (Loral 1995). The fsm2ch facility also 
allows a programmer to write C source code to 
complete an AAFSM. That is, operations in a state 
and state transition predicate functions are written in 
C programming language, but the state construction 
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and state transition themselves are expressed by the 
fsm2ch macro facility. Specifically, an AAFSM 
state starts with a grave characterf) and followed by 
the name of the state as shown in Fig. 1. After the 
name declaration, the definition of state follows. The 
operations triggered by ModSAF system clock are 
defined first in the state definition. Operations 
initiated by ModSAF "param" event follows. 
Optionally user defined events can be declared and 
operations related those events can be placed after 
param event operations. The param event is a 
ModSAF specific event that is triggered whenever 
there are changes in the inputs of the task containing 
the AAFSM. For example, if a route input to the 
task is newly updated, then C code defined in param 
section of a current state is executed as well as an 
ordinary system clock based operation also defined in 
the state. Figure 1 shows one of AAFSM state. 

under_;air_attack 
tick 
if (time_to_monitor(private)) 
{ 

check_enemy_force_spotted(privatc. vehicle_id, unit_enlry); 
check_unit_under_fire(vehicle_id. private, unit_entry); 

if (no_air_veh_for_long_time_p(vehicle_id, private, unit_entry)) 
< 

params 

send_contact_report(vehicle_id, private); 
private->time_last_monitor • 0; 
STOPTargeter 
"monitoring; 

Figure 1: AAFSM state 

4.2  RBM  (Rational  Behavior  Model) 

Rational Behavior Model (RBM) (Kwak 1992, Byrnes 
1993) is chosen to represent the backward reasoning 
representation. RBM is a multi-paradigm, multi- 
level intelligent control architecture. This 
architecture composed of three levels; i.e., Strategic, 
Tactical, and Execution levels. The behavioral 
control is performed by the Strategic level where 
behavioral control logic is located. The Strategic 
level governs the operation of the Tactical level. The 
Tactical level embodies behaviors by maintaining 
behavioral attributes for the system, which includes 
system memory and world-and-local memory models. 
The Tactical level also forms a representation of 
internal behaviors for the Strategic level. Finally, the 
actual behavioral interface to other behaviors is 
located in the Execution level. Therefore, RBM 
explicitly supports three components needed for 
implementing behaviors. Recursiveness is also 
directly supported by RBM through the behavioral 
abstraction of sub-system behaviors in the Tactical 

level. RBM recursively defines a system with the 
sub-systems and associated behaviors by 
encapsulating them in the Tactical level. 

The backward reasoning nature of RBM comes from 
the Strategic level. This level is usually written in 
Prolog, which textually describes AND/OR Goal 
Tree. In other words, there is one-to-one direct 
correspondence between the Prolog code in the 
Strategic level and AND/OR Goal Tree (Kwak 1993, 
Byrnes 1993). Specifically, AND/OR Goal Tree is 
an extended version of AND/OR Tree by 
augmenting backtracking of Prolog. The Prolog code 
in the Strategic level is a limited version of Prolog 
by disallowing use of assertions. This means that 
there is no memory at the Strategic level other than 
the memory of the Prolog inference engine, which 
allows backtracking in the Prolog code. Additionally, 
the textual order in Prolog code determines a priority 
of the code execution. Likewise, there is a node 
priority among siblings under the same parent node in 
the AND/OR Goal Tree. The node priority and the 
Prolog textual priority are used as a conflict 
resolution scheme if equally possible subgoals are 
encountered. Basically there are two types of 
subgoals; ORed and ANDed subgoals to a parent 
goal. The priorities are equally applicable to both 
types of subgoals, but only the priorities among 
ORed subgoals are treated as being significant because 
of possible conflicts among the ORed subgoals. In a 
pure predicate logic, there is no priority among either 
ANDed or ORed subgoals. 

Prolog code and its corresponding AND/OR Goal 
Graph are in Figure 2. 

A:-B 
A:-C 

X:-Y,Z.        \£)     h    (Y)     U 

Figure 2: Prolog code and AND/OR Goal Graphs 

There are a head and a body for each line of Prolog 
code, which is terminated by "." like a common 
English sentence. The head and body are separated by 
":-". The left side of ":-" is a head and the other side 
represents a body. The meaning of ":-" is in order 
that a head is true, the body should be true, or if a 
body is true than the head is true too. For example, 
the first line of the Prolog code says: in order that 
"A" is true, "B" should be true. Or if "B" is true, 
then "A" is true too. There is a mechanism to 
present logical relationships; such as AND and OR. 
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The last line of the Prolog code shows an AND 
relationship, that is, in order that "X" is true, "Y" and 
"Z" should be true. An OR relationship is shown in 
the first and the second lines. In order for "A" to be 
true, "B" or "C" is true. A direct interpretation of the 
two lines is following: in order for "A" to be true, 
"B" should be true. If not, the "C" should be true. If 
not, there is no way to make "A" true. These Prolog 
constructs can be recursively applied. 

An AND/OR goal tree has one-to-one correspondence 
to a RBM Prolog code. A node corresponds to a head 
of Prolog code, and the body becomes child nodes. 
An AND/OR goal tree is also able to show two 
relationships; i.e, AND and OR. The ANDed 
children are connected by an arc between branches, but 
the ORed children do not contain the arc. Again, 
these mechanisms can be recursively applied like the 
Prolog constructs. An AND/OR goal tree is able to 
provide immediate feels of the goal-subgoal 
relationships. However, its practical usefulness is 
rapidly degraded as the size of the tree increases. The 
intuitive graphical appeal is very much offset by a 
graphical complexity of a large AND/OR Goal Tree. 

5.  Reaction  to  Air  Attack  Drill  Behavior 

ModSAF's unit level react air task is a direct 
implementation of "Reaction to Air Attack Drill" of 
US Army Tank Platoon Field Manual (FM). In this 
section, the FM will be briefly discussed and followed 
by two implementations; i.e., AAFSM and RBM. 

5.1   FM   17-15 

FM 17-15 (Tank Platoon), pp. 3-21 - 3-23 (Army 
1987), describes "Reactions to Air Attack Drill". The 
FM states "the tank platoon should conduct a passive 
defense against air attack", and describes: 

Alert the platoon. Air guards can alert the platoon 
using either of two techniques: announcing 
"CONTACT-BANDITS-(direction)" over the radio, or 
using hand-and-arm signals. 

Seek cover and concealment. When moving, tank 
units must immediately seek cover and concealment. 
If concealment is not available, moving tanks should 
stop. A motionless tank is harder to see than a 
moving tank. (If enemy aircraft detects the tanks and 
initiate an attack, the platoon leader announces "AIR 
ATTACK," and exposed tanks move at a 45-degree 
angle toward or away from the attacking aircraft.) 
Vehicle should maintain at least 100 meter intervals 
and avoid presenting a linear target in the direction of 
attack. 

Prepare to engage. Tank commanders and loaders 
should prepare to engage aircraft with a high volume 
of machine gun fire on order of the platoon leader. 
Since firing machine guns could reveal the location of 
concealed vehicles, the platoon leader must make sure 
the aircraft are attacking. The platoon leader may 
designate an aiming point for the platoon with a burst 
of tracers. Volume is the key to effectiveness. The 
tanks throw up a wall of fire and let the aircraft fly 
through it. The tank main gun can be used effectively 
against hovering enemy attack helicopters with a high 
probability of kill. Leaders should consider enemy 
attack helicopters as tank killers and should take 
actions to kill them before engaging less dangerous 
targets. 

Report. The platoon leader sends the commander a 
contact report. Example: "CONTACT-HELICOPTER- 
SOUTH". 

Enemy aircraft operate in flights of two, four, six, or 
more. After the first aircraft passes overhead, another 
may follow. Tanks should remain in covered and 
concealed positions for at least 60 seconds after the 
first aircraft leaves. 

The above FM description about React to Air Attack 
Drill is by no means a complex task for trained tank 
platoon personnel because it is written for trained 
military men/women who have a common 
background knowledge about military operations and 
a human common sense reasoning capability. 
However, it cannot be directly used as a behavioral 
description for CGF. This limitation leads to an 
extra transformation to a structured and precise 
behavioral description. In this paper, portions of the 
above description are omitted because of functional 
limitations of ModSAF 1.0 at the time of the 
implementation. For example, ModSAF 1.0 did not 
support a cover and concealment seeking behavior 
against an aircraft. Consequently, the ModSAF 
version of React Air behavior becomes following: 

Alert the platoon. 

Avoid air attack. 
If moving, then scatter. 
If not moving, then do nothing (or keep 
stationary). 

Under air attack. 
If moving, move until having a platoon's proper 
defensive posture. 
If not moving, start scattering. 
If proper defensive posture (there are enough space 
between individual tanks), then counter attack. 

Report. 
If no air vehicles are spotted for at least 60 
seconds. 
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The above description is very close to the ModSAF 
React Air behavior, but it cannot be directly a 
running computer program. We need further 
transformations for the following implementations. 

5.2   AAFSM   Implementation 

For AAFSM implementation of React Air behavior 
in ModSAF, three states and three extra supporting 
states are introduced4. They are "monitoring", 
"avoid_attack", "under_air_attack" states, and 
"START", "END", "SUSPEND" states, respectively. 
Except the "START" state, performing the 
initialization for the AAFSM, the other two 
supporting states are just empty in this 
implementation. The three main states perform the 
necessary behavioral control. The AAFSM 
implementation is in Figure 3. 

START 

PERIOD priva(c->params->tick_period 
switch (state->state) 
< 
case monitoring: 

Amonitoring; 
case avoid_attack: 

Aavoid_attack: 
case under_air_attack: 

Aunder_air_attack; 
break: 

case ended: 
default: 

'monitoring;  wait for enemy contact 
} 

monitoring 
"   tick 

if (time_to_monitor(private)) 
{ 

check_enemy_foree_spotted(private, vehiclejd, unit_entry); 
check_unit_under_fire(vehicle_id, private. unit_entry); 

if ((private->under_fire) && 
is_proper_defensive_posture(vehicle_id, private)) 

< 
make_umxtravel_parameters_available(vehicle_id); 
SPAWN SELF Targeter 
Aunder_air_attack; 

> 

if (is_moving(vehicle_id) && (private->under_firc)) 
< 

make_umxtravel_parameters_available(vehiclejd); 
SPAWN SELF Spread 
Aavoid attack; 

> 
if ((private->enemy_force_size) && 

is moving(vehicle_id)) 
< 

make_umxtravel_parameters_available(vehicle_id); 
SPAWN SELF Spread 
Aavoid attack; 

} 
} 

params 

avoid_attack 
"   tick 

if (time_to_monitor(private)) 
{ 

chcck_cncmy_forcc_spottcd(private, vehiclejd, unit_cntry); 
chcck_unit_undcr_fire(vehicle_id, private, unit_cntry); 

/* FM specify long time = 60 sec. */ 
if (no air_veh_for_long_timc_p(vehiclc_id, private, unit_entry)) 
< 

send_contact_report(vehicle_id, private); 

> 

STOP Spread 
"monitoring; 

if ((private->under_fire) && 
is_propcr_dcfensivc_posture(vehiclc_id, private)) 

{ 
STOP Spread 
make_umxtravcl_parametcrs_available(vehicle_id); 
SPAWN SELF Targeter 
Aunder_air attack; 

} 

params 

undcr_air_attack 
'    tick 

if (timc_to monitor(private)) 
< 

check_enemy_force_spotted(private, vehiclejd, unit_entry); 
check_unit_under_fire(vehicle_id, private, unit_entry); 

/* FM specify long time = 60 sec. */ 
if (no air_veh_for_long_time p(vehicle_id. private, unit_entry)) 
{ 

send_contact_report(vehicle_id, private); 
private->time_last_monitor - 0; 
STOP Targeter 
"monitoring; 

> 

params 

END 

SUSPEND 

/* NOP */; 

4Design methodology for constructing a FSM can be 
found from [Hill 1974]. 

Figure 3: AAFSM Implementation of Reaction to 
Air Attack Drill 

In the "monitoring" state, the AAFSM performs 
following: 

1. Continuously check whether enemy air vehicles 
are visible or the platoon is under air attack. 

2. If the tank platoon is under-fire and it has a right 
defensive posture, then it has to counter attack and 
go to "under_air_attack" state. 

3. If the platoon is moving and under fire, then 
make them scatter and go to "avoid_attack" state. 

4. If enemy air vehicles are visible and the platoon 
is moving, then scatter and go to "avoid_attack" 
state. 

In the  "avoid_attack" state, the followings are 
executed: 
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1. Update status of enemy air vehicles' visibility 
and enemy attacking status. 

2. If more than 60 seconds after the last enemy air 
vehicle is spotted, then make the platoon send a 
contact report and return to "monitoring" state. 

3. If the platoon is under enemy air vehicle attack, 
and they are in a right posture, then counter attack 
and go to"under_attack" state. 

In the "under_air_attack" state, the AAFSM executes 
followings: 

1. Update status of enemy air vehicles' visibility 
and enemy attacking status. 

2. If more than 60 seconds after the last enemy air 
vehicle is spotted, then make the platoon send a 
contact report and return to "monitoring" state. 

Surprisingly enough, the ModSAF version of React 
Air behavioral description seemed complete, but 
many details were missing. To find them, a 
programmer has to go through reasoning process 
applying what-if mental tests on all plausible cases. 
For example, he has to question what has to be done 
if no air vehicles are spotted for at least 60 seconds in 
the "avoid_attack" state. Obviously, the 
"avoid_attack" state has to be terminated and to make 
a state transition to the "monitoring" state. This case 
is not explicitly described in the ModSAF version of 
React Air behavior. Soon, he will realize that the 
"under_air_attack"state should check this condition to 
make a proper state transition to the "monitoring" 
state. This is a default state transition case. This 
type of discovery process requires a common sense 
reasoning or domain expertise. 

The state like description in the FM or the ModSAF 
version React Air does not fully match with the states 
in AAFSM. Specifically, a portion of the "under air 
attack" description in the ModSAF version React Air 
is taken out from the "under_air_attack" state, and 
merged into the "avoid_attack" state because of the 
common observable sub-behavior; i.e., vehicle 
scattering. Even though this approach leads to a 
concise and cleaner state implementation in AAFSM, 
it adds an extra complication at the "monitoring" 
state. The "monitoring" state has to consider three 
state transition cases in stead of two state transition 
cases. The extra state transition case could have not 
been existed. This is an added state transition case to 
be uncovered. 

5.3  RBM   Implementation 

RBM allows to approach the problem from a totally 
opposite direction; that is, rather than directly 
following the flow of the narrative description of the 
ModSAF version of Reaction to Air Drill behavior, 
RBM guides the behavior implementation from the 
goal (or objective) to simpler objectives or subgoals. 
In this paper, the top goal (or objective) is to react to 
enemy air vehicles. Then, the goal is decomposed 
into three subgoals, which are "under_air_attack" 
"avoid_attack", and "end_react_air". Though the 
names of the first two subgoals directly match with 
the two behavioral descriptions in section 5.1, the 
last name, "end_react_air" represents the "Report" 
behavioral description. The full description of the 
React Air behavior is shown in Figure 4. 

react_air :- no_air_vehicle_last_60sec_p, 
end_react_air. 

react_air :- under_attack_p, under_air_attack. 
react_air :- air_vehicle_spotted_p, avoid_attack. 

end_react_air :- was_in_reaction_p, 
report_air_vehicle_contact, react_air_done. 

end_react_air. 

under_air_attack :- moving_p, 
under_air_attack_moving. 
under_air_attack :- under_air_attack_stationary. 

under_air_attack_moving :- 
proper_defensive_posture_p, counterattack. 

under_air_attach_moving :- spread_out. 

under_air_attack_stationary.   ; do nothing 

avoid_attack :- moving_p, spread_out. 
avoid_attack.       ; do nothing 

counterattack :- helicopter_p, attack, 
counterattack :- air_veh_p, attack, 
counterattack. 

Figure 4: RBM Prolog description of Reaction to Air 
Attack Drill 

In Figure 4, the top goal is specified as "react_air". 
The "react_air" is decomposed into three ORed 
subgoals, "under_air_attack", and "avoid_attack", 
"end_react_air". Thus, if one of the subgoals is 
achieved, then the top goal is achieved. Therefore, a 
tank platoon with this "react_air" behavior 
implementation will always perform one of the 
subgoals depending on the current situation. 
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However, there might be a subgoal conflict among 
ORed subgoals; i.e., more than one subgoals might 
be eligible at a given condition. Specifically, more 
than one predicates which are attached in front of the 
subgoals can return "true". Then, multiple subgoals 
will be chosen (or selected to be executed). For 
example, in Figure 4, the "under_attack_p" and the 
"air_vehicle_spotted_p" predicate functions return true 
when a spotted air vehicle attacks the tank platoon. 

The multiple subgoal activations generally lead to 
behavioral conflicts because they will make one tank 
platoon simultaneously perform two conflicting 
tasks. Thus, the subgoal conflict should be resolved. 
RBM uses a priority based subgoal conflict resolution 
scheme. If two subgoals are activated, then one 
subgoal having a higher priority is selected for further 
processing (or executed). 

When some of ORed subgoals are activated for 
execution, the rest of them are not activated. For 
example, an attack from a spotted air vehicle activats 
the "under_air_attack" and "avoid_attack" subgoals, 
but it does not activate "end_react_air" subgoal. The 
reason is that under the situation "under_attack_p" and 
"air_vehicle_spotted_p" predicate functions return 
true, but "no_air_vehicle_last_60sec_p" returns false. 
In general, a given situation (or a given condition) 
divides ORed subgoals of a common parent goal into 
two groups; i.e., activated and non-activated. 

In RBM, the priorities among activated ORed 
subgoals are statically assigned before a program 
execution. The priority assignment process actually 
becomes an ordering process of predicate condition 
sets whose members are conditions that satisfy the 
predicate function of each subgoal because the 
subgoal activation is directly depends on the 
satisfaction of the predicate function and because the 
predicate function's satisfaction is determined by the 
conditions. 

Ordering of the predicate condition sets requires a 
proper subset relationship. If a set is a proper subset 
of the other set, then the former has a higher priority 
in RBM. Thus, the whole condition sets are partially 
ordered by the set priority. In the above example, 
there are three predicate condition sets; 
"under_air_attack" condition set, U, "avoid_attack" 
condition set, A, and "end_react_air" condition set, E. 
Among these sets, it can be easily observable the 
following relationship5: 

A z> U 
A n£ = 0 

(1) 
(2) 

5In this problem, a direct fire air attack and a perfect 
vision sensor within a effective range of the direct fire 
attack are assumed. For example, a Hellfire 
(HELicopter Launched FIRE-and-forget) missile 

A graphical representation of the above relationship is 
shown in Figure 5. 

Figure 5: Relationship among Predicate Condition 
Sets 

Consequently, there is the following set order: 
Group 1: 

U,A 
Group 2: 

E. 

Though the above example does not clearly manifest 
a partial ordering relationship, it can be easily seen 
that there are at most two groups of sets at any level. 
That is, when following down to the partial ordering 
branch, there are zero, one, or two branching factors if 
a null set branch is allowed to be omitted. If a whole 
partially ordered set recursively meets this condition, 
then it is called partially ordered binary set or partially 
ordered binary predicate condition set. 

When the order is found, the priorities of subgoals are 
automatically determined by the set order. For 
example, the "under_air_attack" subgoal has a higher 
priority than the "avoid_attack" subgoal. However, 
the "end_react_air" subgoal does not need to be 
ordered against the other two subgoals because there 
is no priority conflict cross the boundary of the two 
disjoint groups. A conflict only occurs inside a 
group. 

There is the other type of subgoal relationship, which 
is an ANDed subgoal relationship. Though a similar 
consideration can be made, in RBM the ANDed 
subgoals are simply treated as a set of ordered 
subgoals, and tested sequentially for subgoal 
selection.   If one of them is failed to achieve its 

attack is not considered. 
Army FM 17-15. 

This seems also true for 
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subgoal, then the whole set of the ANDed subgoals is 
failed. Therefore, the parent goal fails. 

6.   Comparisons   and   Results 

States in AAFSM are used as means to sub-divide a 
behavior control problem. Because of the 
introduction of states, a big problem becomes many 
smaller problems to solve. The reduced size of each 
sub-divided problem helps a programmer to organize 
his thinking; i.e., divide-and-conquer. For example, 
the above react air behavior was divided into three 
states. This state division was strongly suggested by 
the Army FM, and it was logically correct, too. No 
two states can be merged into one without behavioral 
crash in the merged state. However, more than three 
states could be used. This observation reveals that 
introduction of the states may not be arbitrary but 
constrained by the behavioral crash. 

The goal decomposition in a RBM is an another 
means of divide-and-conquer for a behavioral control 
problem. It starts from a global goal and sub-divides 
it into subgoals. Predicate condition sets of the 
subgoals guide the decomposition process. 
Especially, OR-subgoals are created so that a partially 
ordered binary predicate condition set is constructed. 
The ANDed subgoals are simply arranged by an 
expected sequence of execution because a sequential 
execution is assumed. There is a chance that two 
types of subgoals coexist under a single parent goal. 
However, this case can be easily avoided by 
abstracting a series of contiguous ANDed subgoals 
into a single subgoal so that all subgoals under a 
single goal become either ANDed subgoals or ORed 
subgoals. Practically speaking, the mixture of two 
types is allowed as long as a series of ANDed 
subgoals is effectively treated as one subgoal. 

Both approaches have a divide-and-conquer 
mechanism; i.e., means of problem decomposition 
scheme. However, their directions of approach are 
totally opposite. AAFSM starts from a known start 
state and moves toward the goal state, while RBM 
starts from the goal and decomposes it into subgoals. 
The state decomposition of AAFSM (or FSM in 
general) is constrained by behavioral crash (sort of 
output side), but the goal decomposition of RBM is 
guided by predicate condition sets of subgoals (sort of 
input side). This observation reflects the opposite 
reasoning philosophies. In order to move forward to 
a goal, the output of the current (or future) state is 
important, but to move backward from a goal toward 
a given initial condition, the input condition check is 
important in order to know the arrival of the initial 
condition. 

Not all theoretically possible state transitions are 
actually implemented in an AAFSM, but all the 
possible transitions have to be considered at least 
once to determine the possibility of inclusion to the 
AAFSM. For example, in the reaction to Air Attack 
Drill behavior, there were 3 states. Thus, total 6 
state transitions had to be considered. Among the 
six, one transition turns out to be not needed because 
the state transition from the "under_air_attack" state 
to the "avoid_attack" state is not feasible. If an 
enemy aircraft spots a tank and starts to attack, there 
is no reason that the enemy simply stops attacking**. 

The state creation is not an easy task in a big sized 
problem, but complete consideration of all possible 
state transitions is even harder. For example, if there 
are four states in an AAFSM, then total 12 different 
state transitions have to be considered. If 5, then 20 
possibilities, and so on. In general, if there are n 
states, then (n-l)*n transition conditions have to be 
considered. Obviously, this is a case of 
combinatorial explosion. 

All of the theoretically possible state transition cases 
will not be actually included in an AAFSM, and the 
ratio between the number of practically feasible state 
transitions and the total possible state transitions 
rapidly decreases as the number of the states increases. 
However, at least consideration of all possible cases 
should be done. 

The numerous state transition cases of AAFSM (or 
FSM) tend to cause a programmer failing to include 
all necessary state transition cases. The omission 
becomes a common cause of bugs for behavioral 
implementations. Even though a theoretical number 
of transitions from a state is known, this is a very 
weak checking mechanism. The added and default 
state transition conditions make a systematic 
checking of the omission even more difficult. 

In a RBM design/implementation, a goal is 
recursively decomposed by the predicate conditions of 
subgoals. If the subgoal decomposition produces a 
partially ordered binary set, then the priorities of 
subgoals are already determined. The goal having the 
highest priority is placed at the first place, and then 
the goal with the second priority is the next, and so 
on following the partial order. Therefore, a RBM 
design/implementation becomes searching for a 

"However, in the actual implementation, 6 state 
transitions were included in the AAFSM because of 
the added case caused by the AAFSM state mismatch 
to the ModSAF (or Army FM) descriptions. 
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subgoal decomposition that produces a partially 
ordered binary set. 

If proper subgoals with a partially ordered binary 
predicate condition set are found, then there is no need 
to consider another step as the AAFSM based design, 
because all possible state transition conditions are 
implicitly included in the subgoal priorities. For 
example in the RBM Prolog implementation in 
Figure 4, three lines of the Prolog code with the 
"react_air" header automatically enumerate the 6 
possible state transition cases considered in the 
AAFSM implementation. Again this is not a 
surprising result. RBM subdivides a problem by 
optimizing predicate conditions of subgoals (or 
roughly similar to the state transition conditions). 
The omission problem of AAFSM is systematically 
prevented in RBM. For example, three lines of the 
code automatically took care of the 6 possible 
transition cases. 

The experience in implementing the React Air 
behavior in AAFSM and RBM shows that RBM 
implementation is more natural than the other. The 
military system is one of the most highly optimized 
man-made systems. It has a really long history 
(experience) and has gone through numerous selection 
processes; wars. Thus, most of the knowledge about 
their behaviors, called military doctrines and tactics, 
should be well developed and organized. For 
example, the Reaction to Air Attack Drill behavior of 
Army FM is effectively written in a backward 
reasoning representation even though it gives an 
impression of a time-line based action description. It 
basically expresses what is the global objective and 
what are the sub-objectives and associate actions, and 
so on. It even tends to implicitly prioritize sub- 
objectives too. It describes the "Seek cover and 
concealment" sub-objective in following: "When 
moving, tank units must immediately seek cover and 
concealment." Cover and concealment is the best 
behavior to achieve defensive reaction to air attack. 
This description is immediately followed by "If 
concealment is not available, moving tanks should 
stop." which is the second best to avoid air attack. 

7. Future Works  and  Conclusions 

There exist many behavioral representations other 
than AAFSM(or FSM) and RBM; such as Petri Nets, 
Production Rule based systems, and subsumption 
architecture, etc. Because almost all of them are 
fundamentally classified as a forward reasoning 
representation, it is expected that they will have 
similar characteristics of AAFSM (or FSM). 
However, they deserve careful investigations because 

of their additional characteristics over AAFSM (or 
FSM). 

A Petri Net is a super-set of a FSM (Murata 1989) 
because of its equivalent expression power of Turing 
machine. It might provide a better behavioral 
representation than a conventional FSM. A 
production rule based system allows to incrementally 
add each fragment of behavioral knowledge in IF- 
THEN rule forms. Because of this attractive nature, 
there are quite number of implementations (Scholz 
1993, Byrnes 1992, Giarratano 1991, Rosenbloom 
1993). However, this modularity can easily lead to 
unexpected interactions to the existing rules in the 
system when more and more rules are accumulated in 
the system. Finally, the subsumption architecture 
(Brooks 1986) including later variations might give a 
better behavioral representation. Especially, modified 
subsumption architecture tends to eliminate a pure 
optimistic behavioral implementation. However, no 
significant fundamental departure from the original 
data-driven forward reasoning has been observed. 

Behavioral complexity of current CGF seems not yet 
to reach the point where it clearly manifests 
characteristics and limitations of each behavioral 
representation approach. However, the future CGFs 
behaviors will be much more complex, and the scope 
of CGF broadens. Then a behavioral representation 
will be getting more important. A better 
representation with a closer domain match to a target 
behavior description, such as FM or knowledge from 
a subject matter expert, is expected to be a winner by 
saving development and maintenance time and efforts. 
This comparison study shows that a backward 
reasoning representation has an advantage over the 
other representation because of the close domain 
match with the military's behavioral knowledge 
representation. 
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1. Abstract 

In the future, all people, forces and institutions in 
the defense community will use interoperable 
simulators, simulations, and fielded systems that 
simultaneously interact on a shared synthetic 
battlefield that realistically represents 
warfighting concepts, doctrine, forces and 
weapon systems of friendly, neutral and opposing 
forces. (The DIS Master Plan, 1994) 

The Distributed Interactive Simulation (DIS) 
Master Plan calls for a flexible, consistent, 
validated, intelligent and doctrinally-based 
computer generated opposing force (OPFOR). In its 
mission to serve as the TRADOC ODCSINT point 
of contact for all intelligence, threat and opposing 
force (ITO) initiatives to DIS, the TRADOC Office 
of the Deputy Chief of Staff for Intelligence 
(ODCSINT)Threat Support Division (TSD) has 
produced two OPFOR models for use in DIS- 
compatible simulations and simulators. 

These unclassified models provide flexibility and a 
capabilities-based OPFOR which can be tailored to 
represent a wide-range of potential capabilities and 
organizations. The Heavy and Light OPFOR 
packages provide the doctrine, tactics, and 
equipment data needed to develop OPFOR 
behavioral representations for a semi-automated 
opposing force (SAF OPFOR). The OPFOR model 
captures tactical and operational representative 
behaviors and provides the organizational building- 
blocks necessary to operationalize a SAF OPFOR. 

The DIS environment requires the development of a 
model that provides a traceable, consistent, flexible 
and doctrinally-based OPFOR. TSD was 
challenged to develop a new OPFOR that provides 
increased flexibility to accommodate a wider range 
of training and simulation requirements. These 
training requirements will span the entire 
operational continuum, from heavy mechanized 
forces to operations other than war (OOTW) and 
post  conflict  operations.      In   addition  to   the 

expanded range of operations, the capabilities-based 
model is required to consider the worldwide 
proliferation of weapons and their various tactical 
applications. 

This paper will present the TSD OPFOR model and 
its use in the development of DIS-compatible 
simulations. It will, in essence, present a progress 
report on the development of the model and its 
application in the DIS environment 

Currently, the TSD-produced Heavy OPFOR is 
being used in the development of the Close Combat 
Tactical Trainer (CCTT) and Warfighter's 
Simulation (WARSIM) 2000 OPFOR. CCTT 
continues to evolve as the prototype for ITO 
simulation support, so the need to understand the 
TSD OPFOR model and its current and potential 
applications becomes even more critical. 

The new OPFOR model is capabilities-based, not 
country-based. The model provides a tailorable 
force structure in the form of a Heavy and Light 
OPFOR package. The model accommodates 
existing models while allowing for evolutionary 
change and user feedback. The outcome of the final 
OPFOR product is a validated, flexible, consistent, 
and doctrinally-based paradigm for the creation of a 
SAF OPFOR. 

This paper will explore the methodology used to 
construct the capabilities-based OPFOR, and its 
value in DIS-compatible simulations across all three 
DIS domains (TEMO, RDA, ACR). 

2. Introduction 

CCTT is the Army's number one priority training 
device. Using a system of combat vehicle 
simulators and computer workstations, armor, 
cavalry and mechanized infantry units will train to 
battalion/task force level. 

CCTT is the first in a series of five simulations 
belonging   to   the    Combined    Arms   Tactical 
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Tramer(CATT)family. CCTT serves as the 
prototype upon which future simulations will be 
built. 

A realistic OPFOR is necessary in any successful 
training environment. CCTT is no exception. This 
semi-automated OPFOR must be doctrinally-based, 
flexible and adaptable to all levels of conflict. 
OPFOR accountability and traceability are 
paramount to the success of CCTT and its follow-on 
programs. The Army cannot afford to spend scarce 
resources and limited manpower on the duplication 
of data collection and application efforts. 

The Army mandated that an accountability and 
verification methodology be established for all data 
and behavioral capabilities used to develop the 
OPFOR TSD's OPFOR model provides this 
methodology. 

Thus, TSD was tasked to develop an OPFOR model 
that would support Force XXI training and support 
needs and simulation requirements in the DIS 
environment 

Future applications of the model will be developed 
for the Advanced Concepts and Requirements 
(ACR) and the Research, Development and 
Acquisition (RDA) domains. TSD's goal is to 
provide ITO support in adequate fidelity and detail 
to facilitate realistic simulation across all three DIS 
domains : ACR RDA and Training, Exercise, and 
Military Operations (TEMO). 

3. Background 

In 1993, the US Army's Simulation, Training, and 
Instrumentation Command (STRICOM) and 
Integrated Development Team (IDT) began the 
Close Combat Tactical Trainer (CCTT) SAF 
Functional Analysis to "define the scope of tactical 
behaviors" for both the BLUFOR and the OPFOR 
STRICOM and IDT agreed to use Army Training 
and Evaluation Programs (ARTEPs) as- the 
foundation to define BLUFOR tactical behaviors. 

Such a well documented body of literature did not 
exist for the OPFOR TSD, STRICOM and IDT 
worked in concert to produce an initial list of 
OPFOR behaviors to be represented in Combat 
Instruction Sets (CISs). The result was more than 
500 OPFOR tasks and close to 40 OPFOR units. 
(For a detailed description of the CISs and the 
validation process, see McEnany and Marshall. 

"CCTT SAF Functional Analysis", Proceedings of 
the Fourth Conference on Computer Generated 
Forces and Behavioral Representation, 1994, page 
195). 

CISs were written to insure that the proper tactical 
behaviors were translated into software code. Each 
CIS provides a detailed explanation via text, 
sketches, and movement parameters of all actions 
necessary to complete a task. 

The CIS process provides the accountability of 
OPFOR sources and overall task development, 
called for in the Army mandate. 

Initial CISs are developed by SAIC (Denver) and 
passed through TSM-CATT to TSD for review and 
approval. The Heavy OPFOR package is the 
baseline for all the CCTT CIS development. All 
OPFOR CISs must be validated by TSD before 
being operationalized in CCTT. 

In addition to the validation of the CISs, other TSD 
responsibilities for CCTT include: the collection 
and accountability of data used in the simulation; 
providing the interface between the intelligence 
community and the developers to answer all 
requests for information (RFIs); participation in the 
Subject Matter Expert (SME) Network; and 
providing OPFOR representation in Working Group 
and User Exercises. Each of these responsibilities 
allows TSD to ensure the accurate and consistent 
application of the OPFOR model in CCTT and 
future DIS-compliant simulations. 

4. Catalysts for Change 

With the collapse of the monolithic Soviet threat, an 
OPFOR based on a single threat country was no 
longer feasible or realistic. The traditional country- 
based OPFOR was now antiquated and incapable of 
capturing the full spectrum of potential military 
operations. 

The Cold War paradigm for threat/OPFOR analysis 
was in need of repair. The Threat Spectrum Model 
(TSM)(Figure 1) was developed to present potential 
threats across "a spectrum from simple to complex 
in scope, doctrine, organization, training, materiel, 
leadership and soldiers."(TRADOC PAM 525-5). 
Using the TSM as a springboard, TSD began to 
develop the new OPFOR model. 
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The model captures the capabilities of a vast range 
of potential OPFORs and provides a flexible 
training force that can be tailored to represent this 
variety of potential threat capabilities, organizations 
and equipment 

Creating a model that was based on capabilities, 
rather than a specific country's military potential, 
provides a more flexible and dynamic training tool 
for     the     BLTJFOR,     and     offers     OPFOR 

commanders/operators a varied range of tactical 
options. 

The capabilities-based model has become the basis 
for the forces and doctrine used by the OPFOR at 
the Combat Training Centers (CTCs), and has been 
integrated into the latest TRADOC Common 
Teaching Scenario at the Centers and Schools. 

Phenomena 

* Environmental Disaster 

* Famine 
* Health Epidemic 

* Population Dislocation 

Threat Spectrum 
Threat Force* 

* SuAnational 
* ^national 

* Metanational 

Low 
Integration 
Capability TACTICAL OPERATIONAL STRATEGIC 

Figure 1: Threat Spectrum Model(TRADOC PAM 525-5) 

S. The Capabilities-based OPFOR Model 

The OPFOR model is based on a consistent and 
traceable body of military doctrine and tactics, 
ranging from the heavy end (Soviet-style) to the 
light (Third world and irregular) forces, as 
represented in the Heavy and Light OPFOR 
Handbook series. The six handbook package 
provides: an organization guide, an operations 
handbook, and a tactics handbook for both heavy 
and light forces. The equipment guide and OOTW 
handbook will follow the completion of the Light 
package in March 1995. 

The success of the model is evidenced by its 
selection and funding for publication as Army Field 
Manuals (FMs). The transition to FMs will occur 
in Fall 1995. 

This new series of handbooks was originally 
developed by TSD to support Force XXI training 
and development needs. However, by the 
completion of the organization guides, the model 
had been embraced by the simulation community 

for use in CCTT. This was a natural evolution of 
the model's application. It made perfect sense for 
the model being used for live training and 
instruction to also be applied in the virtual and 
constructive simulation arenas. OPFOR linkage 
and continuity was established between arenas. 
Thus, the model became the cornerstone for all ITO 
training and instruction at the CTCs, TRADOC 
Schools and Centers and the development of the 
SAF OPFOR for CATT and FAMSIM programs. 
(Figure 2) 

The Heavy and Light packages are based on a 
mixture of doctrine, organization and tactics of 
foreign armies. However, the OPFOR packages are 
not simply a collection of unclassified handbooks 
explaining how a particular foreign army fights. 
They are composites constructed to provide the 
customer a wide-range of OPFOR capabilities. The 
packages do not mandate a fixed order of battle, but 
rather provide the building-blocks from a variety of 
potential orders of battle. (Figure 3) 
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Figure 2: Consistent OPFOR Model Application 

OPFOR MODEL EXECUTION 

TSD THREATS 
RESPONSIBILITY 

RESPONSIBILITY 

OPFOR 
VMJOATS) BY THREAT «UW>OB T a via ON 

Figure 3: OPFOR Model Execution 

5.1.The Heavy OPFOR Package 

The Heavy OPFOR was initially based on a Soviet- 
type military force. As the model evolves, more 
options will be included to offer increased 
flexibility. The Heavy OPFOR structure consists of 
regiments, divisions, and armies, as well as 
brigade/corps and an infantry division. The 
organization guide's "building-block" approach 
allows the customer to select 

the needed organizations and structure based on his 
requirements. This approach allows for a wide- 
range of options to build various Heavy forces. The 

equipment includes Former Soviet Union (FSU) 
combat systems as the baseline. However, a 
worldwide equipment substitution matrix is 
included to allow the user to substitute pieces of 
equipment to fit any scenario. 

5.2.The Light OPFOR Package 

The Light OPFOR is based on a variety and mixture 
of Third World-style forces. Unlike the Heavy 
OPFOR little documentation existed upon which to 
build the Light forces. Extrapolation of existing 
light forces' doctrine and capabilities was necessary. 
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The Light OPFOR presents the forces of a country 
divided into military regions with subordinate 
military districts. The force structure includes 
brigades, divisions, militia and commando forces. 
Most of the forces are located within the districts 
and vary in strength and overall capabilities. 

Light OPFOR units could potentially range from a 
single light infantry brigade to a mechanized 
infantry division. The model provides the 
information necessary to build standing armies or 
divisions; however, separate brigades will probably 
form most of the light forces. 

6. Future Application 

Through CCTT, the OPFOR model was established 
as the prototype for the SAF OPFOR in the CATT 
family of simulations. This ongoing OPFOR 
development process is critical to the success of 
CCTT and will play an integral part in future 
CATT Programs and several Family of Simulators 
(FAMSIM) projects, i.e., WARSIM 2000 and 
JSIMS The consistent, evolutionary application of 
the model also insures that the individual soldier 
will be able to "follow" the model through his 
training career. TSD continues to evolve and 
expand the OPFOR model and respond to the 
simulation community's ITO needs. The need for a 
validated, consistent, flexible and doctrinally based 
SAF OPFOR has clearly been established. TSD's 
OPFOR model satisfies these requirements while 
retaining a consistent, traceable doctrinal base. 

WARSIM 2000 is the Army's next-generation 
simulation for supporting Force XXI Battle 
Command training. The objectives of WARSIM 
can successfully be obtained through the application 
of the OPFOR model. For example, the model will 
support Army and Joint Force Training in scenarios 
across the operational continuum, and will provide 
a flexible base for growth while reducing the 
resources required to support training. 

7. Conclusions 

Distributed Interactive Simulation (DIS) is the 
future of military training, testing, research and 
development Computer Generated Forces (CGF) 
are a critical component of the DIS environment 
and technology. The success of the simulation 
depends on an accurate and consistent application 
of a computer generated OPFOR CGFs provide the 

most economically feasible method for populating 
the synthetic battlefield. 

The TSD-produced OPFOR model provides the 
necessary doctrinal and tactical support to develop 
such forces, specifically the SAF OPFOR for CCTT 
and WARSIM 2000. The model provides the much 
needed documentation to develop OPFOR tactical 
behavioral representations in DIS. 

The unclassified model also provides an 80% 
solution for ACR and RDA OPFOR needs. 
However, the requirements for classified ITO 
support will be developed by the various national 
agencies. Current intelligence and specific country 
capabilities will supplement the OPFOR model. 
TSD will support these requirements as needed. 
The Threat Support Division will continue to 
support all three DIS domains with selected OPFOR 
data and validation. DIS will continue to evolve as 
a critical tool for military training and development 
Thus, the application of TSD's OPFOR across 
various simulations and in multiple training 
environments, provides consistency and 
accountability in the DIS environment. 
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1. Abstract 

Computer Generated Forces (CGF) systems in 
Distributed Interactive Simulation (DIS) are almost 
always designed, developed, and described with 
training applications in mind. This paper surveys the 
state of DIS CGF development from a broader point 
of view, examining the capabilities of existing CGF 
systems relative to applications in training, advanced 
technical demonstrations, and analysis. Those 
capabilities are evaluated against the requirements 
stated in the U. S. Army's Distributed Interactive 
Simulation Master plan. The paper concludes with a 
list of problem areas and recommendations for 
producing standardized CGF systems. 

2. Introduction 

In May 1994 the Army Modeling and Simulation 
Master Plan was published. This plan names 20 
areas for consideration in the Army Modeling and 
Simulation Community. Within each area, software 
standards are to be established and technical 
procedures are to be defined for implementing these 
standards across the modeling community. The 
Master Plan further encouraged standards for 
development through the establishment of "teaming 
arrangements" and "consensus building" within the 
Army modeling community. TRAC was given the 
responsibility for the area of Computer Generated 
Forces (CGF). This report represents the initial effort 
by the coordinator in CGF (the first author). Its goal 
is to set the tone for developing a standard CGF 
software system with emphasis on FY95-FY96. 

The report is divided into three sections. It begins 
with a section describing possible uses for CGF. In 
addition to the current use with the Army training 
community, uses in combat developments and force 
structuring are also described. The section concludes 
with a set of goals for CGF systems reflecting the 
suggested uses.   The report continues with a short 

tutorial on the development of a CGF software 
system. The tutorial includes a description of the 
principal software structures found in every CGF 
architecture. It is within the context of these 
structures that specific areas requiring 
standardization are discussed. The section also 
contains a description of the current "state of the art" 
in each area. The final section of the report 
summarizes those areas in CGF development 
requiring attention in terms of research and 
development resources. This section is provided as a 
guideline for suggested resource allocation. 

Two source documents were very important to this 
report. The first is the 1993 DMSO Survey of Semi- 
Automated Forces (Booker, 1993). The survey was 
sponsored by DMSO and conducted by a team from 
MITRE and IDA. The document surveyed eight 
projects developing CGF systems and described the 
architectural structure of each. It also reviewed six 
efforts conducting research related to CGF. Many of 
the thoughts in this report describing problems with 
current CGF systems were taken from the DMSO 
survey. 

The second source document is the U. S. Army's 
Distributed Interactive Simulation (DIS) Master Plan 
(U.S. Army, 1994). It describes the Army's 
requirements for DIS and a strategy for investments 
and research priorities with the goal of producing a 
useful DIS system. The recommendations for 
AMIP/DMSO support in CGF research contained in 
the last section of this paper reflect the priorities in 
the DIS Master Plan. 

3. Uses of/Goals for Computer Generated Forces 

CGF Systems had their origin in the SIMNET 
environment in the mid 1980s. Their initial use was 
to provide a set of threat vehicles (and in some cases, 
to augment the live friendly forces) to train personnel 
in the SIMNET simulators.   The two main current 
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CGF systems, ModSAF and the CCTTSAF, remain 
focused on personnel training. 

However, since 1990 CGF systems have been used in 
other ways. In particular, they have been used for 
providing both friendly and threat forces and a virtual 
experimentation environment. This has been the case 
with many of the WARBREAKER efforts where 
CGF systems were used to provide target arrays (of 
both aircraft and vehicles) and the virtual battlefield 
(to include terrain and battle environment). These 
CGF-based virtual battles have been interfaced with 
sensor simulators (J-STARS) and live personnel in 
the command and control (C2) network making 
decisions on interdiction of deep targets. One can 
claim training of the C2 personnel but most often the 
CGF systems are the virtual backdrop against which 
a new attack capability is demonstrated and analyzed. 
This use of CGF systems is expected to continue with 
more complex (larger forces of both live and virtual 
systems) Advanced Warfighting Demonstrations 
(AWDs) and Advanced Technology Demonstrations 
(ATDs). In the case of AWDs, the principal use will 
be to look at new force structures and new doctrinal 
concepts (i.e., using groups of recon helicopters to 
call in deep strike artillery) and to develop Tactics, 
Techniques and Procedures (TTPs) with new 
equipment. An excellent example use of a CGF 
system for an ATD is the Anti-Armor Advanced 
Technology Demonstration; in the first A2ATD 
experiment, ModSAF was validated against two 
M1A2 Initial Operational Test and Evaluation battles 
(Thomas, 1995). 

The analytic community has also begun to consider 
the use of virtual based CGF systems. While the 
community has long used constructive models in the 
analysis of future systems and force structures, in the 
90s much analysis will be built around a 
constructive+virtual concept. In this context, a 
portion of a lengthy battle is run in a constructive 
simulation in search of battle vignettes which will 
expose key strengths and weaknesses of the system, 
doctrine or force structure being analyzed. The 
vignette is then represented by a virtual CGF 
environment normally with man-in-the-loop 
participation. The constructive model may be 
suspended during this virtual exercise or may be run 
at real time to provide the battle context of 
supporting units surrounding the virtual battle. 
During the CGF exercise, key parameters about how 
humans will actually perform with the new system or 
tactical concept will be collected. These parameters 
can then be used to extrapolate the battle in the 

constructive model to a broader context. (See 
(Franceschini,1995) for a tutorial on how 
constructive and virtual simulation systems are 
linked, and (Kraus,1995) for a survey of such 
linkages.) 

The following list is a minimal set of objectives 
which must be met by any CGF system which will be 
accepted as a "standard". 

• The CGF system must be useful to all three 
applications (training, advanced technology 
demonstrations and analysis). This goal implies 
some specific requirements. These include: 

Ability    for    man-in-the-loop    simulators    to 
interface at any echelon. 

Ability to interface with live systems (actual 
equipment vs simulator) at any echelon. 

Ability   to   run   real-time   and,   for   analytic 
applications, faster than real-time. 

Ability to interface with constructive models in 
the constructive+virtual environment. 

• The CGF system must be DIS compatible. The 
system must also have the ability to operate 
across both local and wide area nets. This 
implies that man-in-the-loop simulators may be 
at geographically remote locations. Further, 
actual portions of the CGF system (the 
simulation processors or the operator interfaces) 
may be located at geographically remote 
processors. ( 

• The CGF system must represent the battle from 
Corps to individual vehicle. 

• The CGF system must interface with other 
Service models in a Joint exercise. 

• The number of operators in the CGF system 
must be minimal. It is recognized that when the 
system is used in training or advanced 
technical/warfighting demonstrations, the virtual 
battle must interact realistically with the exercise 
players. The current state of the CGF art 
requires some operator control of high priority 
vehicles and critical units in executing a dynamic 
and reactive virtual battle. 
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• The structures and data bases simulating the 
physical and cognitive/tactical behaviors of the 
vehicles, personnel and units must be modular 
and easily isolated for Verification, Validation & 
Accreditation (VV&A). The term "algorithms" 
has been purposely avoided in this goal since 
many CGF systems use finite state machines 
(FSMs) to represent entity behavior. In this 
case, the structure of the state transition tables 
and the time step of the FSM system are 
important elements to be considered in the 
VV&A process. 

The list of goals in the previous paragraph are not all 
inclusive. They are only a first cut at what will be 
"necessary capabilities" if the CGF is to have 
general use among the training, analytic and 
technical experimentation/demonstration 
communities. For many of the goals, technical 
feasibility has already been demonstrated. However, 
a sufficiently robust CGF software system capable of 
use in a general production environment has yet to be 
developed. 

4. Key Software Components of a CGF System 

The architectural development of any CGF system 
demands the design of certain components. These 
components provide the simulation with the ability to 
represent the physical environment in which the 
battle will take place, to represent the combatants 
themselves (vehicles, aircraft, personnel, ships, etc.) 
and to represent a C2 structure for organizing the 
individual combatants into units and a fighting force. 
The CGF system further demands the development of 
services supporting a distributed simulation. These 
include network functions for putting packets on the 
net to update the state of the simulation and system 
administration functions (sometimes called controller 
or simulation management functions) for starting the 
simulation, i.e. getting all the processors connected to 
the network and in time sine. Figure 1, taken from 
(Booker, 1993) lists these components (simulator, 
player, controller and management functions) and 
their subfunctions. For a better understanding of the 
functions of each component consider a CGF 
producing a virtual tank moving across the terrain in 
search of a firing position. The simulation of the 
terrain, tank movement rate, and the cognitive 
determination by the crew of a location for a firing 
position is done by the environmental, physical and 
C2 process models shown under Simulator Functions 
in Figure 1.   As the virtual tank moves, the CGF 

operator watches it on his 3-D display and may send 
a message, using the C2 support tools to the virtual 
tank to "adjust" the final overwatch position. 
Further, as the virtual tank moves, Protocol Data 
Units (PDUs), messages describing tank position and 
appearance, are broadcast on the DIS network so that 
simulators in the immediate area can see his 
movement. The point of this example is that there 
are several areas that must be considered when 
developing a "standard" CGF system. 

Before leaving Figure 1, one other point about CGF 
architecture should be made. Most CGF systems are 
truly distributed simulations running on several 
processors. The shaded functions in Figure 1 can be 
thought of as individual computers netted together 
forming the CGF system. For example, a typical 
CGF system run on five processors. Two of the 
processors are used for CGF operator functions (one 
for the operator controlling Red forces and another 
for Blue). Two are used to simulate the environment 
and the vehicles in the battle (Simulator Functions) 
and the fifth is used for the Distributed Simulation 
Management functions. See (Petty, 1992) or (Petty, 
1995) for more detailed discussions of CGF system 
architecture. 

The Army's DIS Master Plan contains a "road map" 
for the development of Automated Forces (aka CGF). 
This road map is shown in Figure 2. As would be 
expected from any potential user, the plan is focused 
on desired functionality. However, upon careful 
inspection of Figure 2, the focus in the early years 
(1994-1995) is on the development of a physical 
environment allowing virtual vehicle commanders to 
perform METT-T (Mission Enemy Troops Terrain 
and Time) activities and standard algorithms for 
performing the target engagement process. When 
comparing Figures 1 and 2 one can easily relate the 
functionality desired in the DIS Master Plan with the 
CGF architectural features described by the DMSO 
report. The desired virtual environment for METT-T 
in Figure 2 corresponds with the Simulator Functions 
in Figure 1. A second area of focus in the Automated 
Forces road map is the development of a structure for 
command and control of virtual forces. Note the 
block for "tactically and doctrinally correct execution 
of orders" leading to the "development of C2 of 
entities". This area again corresponds to the 
Simulator Functions in Figure 1. One other area of 
the road map contains references to "communications 
software" , "build PDUs. . .", and "modify. . .to run 
multiple processors. . ." which can be related to 
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Simulator Functions Player Functions Controller Functions 

Distributed Simulation Management Functions 

Auxiliary functions 

Data 
Logger 

3-D 
Stealth 

PIS Protocol (over local or PIS network) 

Figure 1- Notional view of the objective SAFOR system. 

Distributed Simulation Management Functions in the 
Figure 1 architecture. 

The Master Plan provides a view of where the Army 
wishes to focus its efforts and the time frames of 
particular accomplishments. Like most plans, it is 
optimistic. The first author believes that many of the 
CGF improvements (specifically dynamic terrain, 
weather and atmospheric signature transmission) 
"enabling METT-T" will not be complete until 1996- 
1997. However, the plan must be used as a guideline 
for establishing priorities in CGF improvements and 
standards. In that spirit, the following areas should 
be the focus of AMIP support for FY95-FY96. 

4.1 Physical Environment 

The environmental component for the Army 
operations consists of a representation of the terrain 
and low atmosphere (5K-10K feet). The objective 
for a CGF simulated environment must be the ability 
of the individual vehicular commander (mounted, 
dismounted or pilot) to perform METT-T activities. 
The CGF must provide a basic representation of 
environmental signature transmissions (at a minimum 

in the visual, thermal and radar spectrums) and 
effects of weather, battlefield haze and smoke on 
these transmissions. Further, the effects of dynamic 
changes in terrain (in particular, modification of 
terrain by battle activities) must be represented. 
While basic research is ongoing in these areas (e.g. 
for dynamic terrain see (Moshell, 1994) and (Kilby, 
1994)) their conditions are listed in the DIS Master 
Plan as environment:red, and terrain:amber. The 
criticality of the physical environment and terrain in 
military activities makes these efforts a high priority 
for AMIP support. 

4.2 Entity Representation 

The physical representation of vehicular platforms 
(i.e. vehicle dynamics) to a degree of fidelity 
sufficient at least for training has been well 
established in various CGF systems since SIMNET. 
More recently, ModSAF's modular structure makes it 
possible to easily assemble physical models of 
vehicles from a library of existing software routines 
(Ceranowicz,1994). 
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Finite state machines (FSMs) are often used to 
generate and control entity level behavior in CGF 
systems; ModSAF, the CCTT SAF, and the 1ST CGF 
Testbed all use variations of FSMs as a software 
control structure for their behavior generation 
algorithms (for descriptions of the FSM mechanisms, 
see (Calder,1993) for ModSAF, (Marshall, 1994) for 
the CCTT SAF, and (Smith, 1992) for the 1ST CGF 
Testbed).      • 

Unfortunately, software FSMs do not lend 
themselves easily to the verification and validation 
process. Often, only those software engineers who 
have written the FSM for a particular system can 
validate the presence of a system characteristic. 
AMIP support should be given to a standardized 
FSM form for vehicular, personnel, and airframe 
representation. Dismounted infantry, being the most 
complex vehicular form to simulate, has had only 
first order looks at behavioral representations. 
Support should be given to projects improving 
infantry behavior and the physical environment (in 
particular micro terrain) supporting this behavior. 

4.3 Command and Control of Virtual Entities 

C2 of entities in most CGF systems are currently 
limited to Company and below. The behavior of 
entities (representing the ability of platform crews to 
locate battle positions, movement routes and engage 
targets) is driven by rule bases and the structure of 
the FSM controlling the entity. These behaviors 
perform reasonably well for simple tactical 
maneuvers. However, the control of units (squads, 
platoons and companies) performing combined 
maneuvers remains a difficult problem. Significant 
progress has been made in the development of the 
CCTT SAF in this area. Rule bases related to unit 
FMs and RTEPs are being developed and well 
documented. Through the use of these rule bases, 
CCTT SAF is targeted for representation up to a 
Brigade with SAF operators directing company units 
from their console. If CGF systems are expected to 
represent larger forces, as required by the DIS Master 
Plan, then an architecture must be established to 
represent the battle command process. At a 
minimum this architecture must include the following 
capability: 

• A representation of the Battle Plan (in the form 
of an Operations Order) for distribution to all 
nits at each command echelon. CGF command 
units must have the ability to interpret both the 

battle plan and the control measures (objectives, 
phaselines, etc.) affecting their operation. 

• A structure (possibly a limited battle language), 
for CGF command units to report to higher units 
the tactical state of lower echelon units executing 
the battle plan. 

• The ability of higher echelon CGF command 
units to make decisions and manage the battle 
through the communication of commands and 
new battle plans to lower echelon units. 

Work is being conducted by the DIS community in 
this area. Under ARPA sponsorship, MITRE is 
developing CCSIL (Command and Control 
Simulation Interface Language), to be used to 
communicate C2 commands and information 
between DIS nodes (Salisbury, 1995). 

Also under ARPA sponsorship, the CFOR project 
(Command Forces) is addressing the problem of 
high-level command for CGF entities. Proposals are 
still being accepted for CFOR. The goal of CFOR is 
to develop automated C2 and planning entities that fit 
into the command hierarchy. These CFOR entities 
would communicate with each other up and down the 
hierarchy, using CCSIL (MITRE has used the Eagle 
Management Language for the basis of this CCSIL 
effort.) The Corps Level Computer Generated Forces 
project (CLCGF) sponsored the Joint Precision Strike 
Demonstration (JPSD) will send Eagle-based orders 
to ModSAF companies where they will be acted on 
by ModSAF simulated company commanders. 
However there is no standard in this area. Further the 
two efforts mentioned above are focused on purely 
maneuver and indirect fire units. Little thought has 
been given to C2 requiring sensor tasking, on call 
support of fixed and rotary wing units, or support 
from engineer and logistic units. AMIP/DMSO 
support in this area is key if computer generated 
forces are ever to grow beyond the Battalion 
firefight. 

4.4 Architecture for Distributed Computer 
Generated Forces 

I have saved the most pressing problem for last. In 
1992 when STRICOM published the original paper 
on the DIS architecture, they envisioned a system 
where remote sites could join a battle through nodes 
on the network. These sites represented users with 
different interests. Some were simulators of new 
weapon systems, others were CGF sites providing 
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forces for the network, still others were field 
equipment with live crews training in the virtual 
networked environment. The only requirement "to 
play" was conformance to the DIS Protocol Data 
Units. In short, if your site was sending and 
receiving the right message formats, interaction was 
possible. 

Pursuing this vision, the DIS community has moved 
the DIS PDUs to an IEEE standard. DIS nodes have 
been established throughout the Army and Advanced 
Technical Demonstrations have been conducted 
placing more and more (up to 1000) virtual vehicles 
on the network. In the beginning, it was believed 
that the network bandwidth (the ability of the long 
haul and local networks to transmit the massive 
number of PDUs) would be the limiting factor on this 
system. However, as a result of problems 
encountered at recent ATDs and I/ITSEC 
demonstrations many believe that the limiting 
problem will stem from an inability of remote DIS 
sites to filter PDUs not affecting their simulator, 
simulation or live equipment. 

To appreciate this problem, one must have an 
understanding of the tenets under which the DIS 
PDUs were developed. DIS has its ancestry in 
SIMNET. As such, three fundamental architectural 
features have governed development. When 
simulating any DIS vehicle you must: 

• Broadcast ground truth from your entity/CGF 
simulation. 

• Operate in an environment with distributed 
processors. 

• Expect to broadcast and receive updates for dead 
reckoning algorithms to maintain locations of 
other vehicles being simulated on other 
processors. 

Consider now the implication in terms of network 
packets from 1, 2 and 3. Every virtual platform 
(ground, air and sea) puts packets on the net 
describing its position, updates as it moves or 
performs other battle activities i.e. when a vehicle 
stops, turns its turret to fire, a packet indicating the 
stop goes onto the net and a packet indicating the 
turning of the turret (followed by many more as the 
turret rums and the gun lays) goes onto the net. 
Further, consider the implications of this structure in 
the environment of many participants in a large DIS 
exercise.    Suppose we are at a node processing a 

CGF which is simulating the northern most Battalion 
taskforce in a Corps. As virtual tanks simulated by 
another CGF representing the southern most 
Battalion move and fire our node is required to 
examine each PDU from the south Battalion, 
determine that it is outside the virtual geographical 
area simulated by our node and discard it. In short, 
each participant under the current DIS architecture is 
globally broadcasting local information. The impact 
on each DIS processing node of filtering the global 
information from that information affecting the battle 
locally being represented at that node has become the 
major problem in DIS. This problem of "servicing 
the node", as it is called by those in the ATDs and 
L/ITEC experiencing it, will ultimately limit the 
number of players and the size of the battle in any 
exercise. 

As this problem effects all DIS simulators, not just 
CGF systems, it has been taken up by the 
communications architecture group within the DIS 
community. Currently, the solution receiving the 
most attention is replacing broadcast with multicast. 
The idea is to use a large number (hundreds) of 
multicast groups created within a DIS exercise so that 
only those nodes that need to receive another node's 
PDUs are on its multicast group. This would allow a 
given simulator to only handle those packets it needs 
to, with the communications system filtering PDUs at 
the multicast level. The multicast group structure 
would be created and maintained automatically, 
possibly by a network services controller node. It is 
not yet clear what would be the best basis for creating 
the multicast groups; geographical proximity, sensor 
categories, and a data subscription request 
mechanism have all been suggested. Several papers 
discussing multicast in DIS were presented at the 
12th DIS Workshop (e.g. (Calvin, 1995) and 
(Pullen,1995)); an experimental test of applying 
multicast grouping based on geographical proximity 
to a CGF system is described in (Smith, 1995). 

A second problem is that the message structures do 
not address the integration of simulations and CGF 
systems representing varying levels of resolution. 
For example, suppose that a Corps level simulation 
was "on line" in a DIS exercise broadcasting ground 
truth locations of vehicles in Company units. 
Further, suppose a J-STARS simulator was 
displaying these vehicle traces. As the vehicles 
approach, a bridge or terrain constriction represented 
only as a "movement delay" in the Corps model, how 
will the J-STARS simulator effectively display the 
change in vehicular formation as the constriction is 
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negotiated? There must be an architecture structure 
developed for hand-off of control of these units if a 
consistent battle is to be represented to all 
participants. We realize that this is an interface 
problem but it clearly affects any standard developed 
for a CGF. Work addressing these issues has almost 
always depended heavily on CGF systems (Kraus, 
1995). 

The bottom line is that the overarching architecture 
for DIS, as reflected by the current DIS PDUs, is 
limited to the Brigade and lower battles. This 
structure will not satisfy the Army DIS Master Plan 
in either functionality or projected timelines. AMIP 
and DMSO must support research 
expanding/defining an architecture for a larger 
(Corps to Theater) DIS battle. 

5. Summary of Recommendations/Priorities 

The previous sections have described the 
requirements for developing a CGF system, related 
particular parts of the CGF system to the Army's DIS 
Master Plan, and summarized some problems with 
the DIS architecture relative to CGF systems. This 
section prioritizes the actions that should be taken to 
move toward a standard CGF system that will 
support all three application areas: training, 
advanced technology demonstrations, and analysis. 

/. Adept ModSAF as the standard CGF system for 
the short term. 

Considerable developmental effort has been invested 
in ModSAF, it is widely distributed, and it has been 
subjected (at least in part) to VV&A procedures. 
Hence, it should be the standard CGF system, at least 
for now. In this light, two efforts become critical: 

• VV&A of MODSAF as both a Training and 
Analytic CGF must be completed and given the 
necessary resourcing priorities. 

• Improvements in environmental, terrain, C2' and 
DIS Architecture representation must be 
compatible and integrated into the ModSAF 
architecture. 

2. Focus on the CCTTSAFOR for acceptance as the 
Standard CGF for the long term. 

Again, this recommendation is based on the 
practicalities of resource consideration. The CCTT 
project is expensive ($10 million for the CGF alone) 

and the Army cannot afford to develop another 
standard. Hence as it comes on line, it must sustain a 
VV&A overhead that will make it acceptable for both 
training and combat developments uses. 

3. Solve the DIS Architectural Problem. 

The problems described under the section on the DIS 
architecture will ultimately affect all modeling 
efforts. In particular, CGF systems will be limited to 
Brigade and below. The WARSIM Project will not 
have a virtual capability and the DIS Master Plan will 
not extend beyond Brigade. While the DIS Master 
Plan lists "DIS Architecture/Networks" as condition 
green, the first author does not believe this to be the 
case. At best it is amber with the current structure 
not allowing robust expansion of the virtual battle 
field. 

4. Solve the Environmental Representation Problem 
in CGF. 

Advanced weapons technology is firmly based on 
sensor technology operating in spectral regions 
outside the visual. If we are unable to represent the 
simple effects of environmental attenuation for these 
sensors, how can we expect to train and test these 
systems? Any practical use of CGF demands a 
realistic representation of the battlefield environment 
and platform signatures. 

6. Final Note 

While this report has pointed out many of the 
problems currently being experienced by developers 
and users of CGF systems, we would be remiss if I 
did not close on a positive note. The Army software 
community (both the Training, Testing and Combat 
Developers) stands in the enviable position of leading 
DoD in CGF development. WE have no doubt that 
the technical problems listed above will be solved. It 
is just a matter of priority and focus. Further, we 
believe that the DIS and CGF structures will come 
into common usage in Training, Testing and Combat 
Developments Community within the next two years. 
This opinion comes from the experience and 
conservatism of one who has viewed the "blank 
page" in the course of simulation model 
development. 
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1. Abstract 

CGF systems face two important challenges: first, 
behavioral and cognitive modeling must become 
more viable and, second, a means for efficiently 
implementing behavioral and cognitive models must 
be found. The first issue is difficult, and must be 
resolved by domain experts and modeling theoreti- 
cians. The second is difficult as well: the common 
implementation of behavioral and cognitive models is 
production (rule-based) systems, which are notori- 
ously slow. We describe an alternative approach to 
parallel implementation of rule-based systems, 
employing isotach networks. Performance studies of 
isotach networks suggest they hold significant poten- 
tial for order-of-magnitude speed-up for rule-based 
systems and, therefore, for behavioral and cognitive 
models for CGF. 

2. Introduction 

Currently, CGF systems (e.g. ModSAF, CCTT-SAF) 
employ finite state machines (FSM's) for modeling 
synthetic forces. As CGF requirements expand to 
include behavioral and cognitive models, the limita- 
tions of FSM's will force the consideration of more 
powerful modeling techniques. The most likely alter- 
native is rule-based systems. Unfortunately, tradi- 
tional approaches to the execution of rule-based 
systems have exhibited disappointing performance. 
Attempts to achieve significant speed-ups through 
parallel execution have been frustrated by synchroni- 
zation overhead, in particular, by the match-recog- 
nize-act (MRA) cycle. We describe a new approach 
that eliminates the MRA cycle. 

The first and most obvious improvement to a slow 
rule-based system is to optimize the code that imple- 
ments the Rete network, the principal data structure of 
the rule-based system. However, optimization is only 
a start. As the numbers of rules and entities modeled 
increase, a point is quickly reached at which even an 
optimized system is inadequate. At this point, the 
hope for improving the performance of the rule-based 
system lies with parallel execution. 

A rule-based system is composed of a set of if-then 
rules and a database of assertions called working 
memory elements (WME). A rule is eligible to fire 
(i.e., the actions in the "then" part of the rule can be 
executed) if the WME's match, i.e., satisfy, the con- 
junction of conditions that make up the "if part of the 
rule. The most straightforward way to execute a rule- 
based system in parallel is to give each rule (or set of 
rules) its own processor. Each rule can then be evalu- 
ated in parallel. Since rule evaluation (i.e. trying to 
match rules against the WME's) accounts for about 
90% of the execution time of a rule-based system, 
executing rules in parallel should be a winning strat- 
egy. However, parallel rule-based systems to date 
remain disappointingly slow. The problem is that rule 
firings must be coordinated in some way. Suppose two 
rules, Rl and R2, are both eligible to fire. Since firing 
a rule can change the WME's, firing Rl may make R2 
ineligible and firing R2 may make Rl ineligible. Even 
though the "if part of both rules is satisfied by the 
WME's, firing both Rl and R2 would be incorrect 
since the result would not be equivalent to any serial 
execution. 

The conventional way to coordinate rule firings in 
parallel rule-based systems is the match-recognize-act 
cycle: each processor evaluates its rule(s) in parallel; 
the processors synchronize; a single rule is selected; 
the selected rule fires; and the cycle repeats. If each 
processor had roughly the same amount of work to do 
in each cycle, the MRA cycle would be a good way to 
coordinate rule firings. Unfortunately, firing a rule in a 
rule-based system tends to affect only a small number 
of other rules (Gupta et al. 1989). This phenomenon, 
known as the small cycle problem, means that only a 
small number of processors have any useful work to 
do in any given cycle. Thus the MRA cycle severely 
limits the number of processors that can be employed 
usefully in executing a rule-based system. 

We eliminate the MRA cycle. We have found an alter- 
native that provides the coordination needed to exe- 
cute   parallel   rule-based   systems   correctly.   Our 
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approach is based on a logical time system called iso- 
tach networks that can be implemented on arbitrary 
topologies and in both tightly-coupled multiproces- 
sors and clusters of workstations. Isotach networks 
are characterized by the guarantee they provide about 
the relative order in which operations within the sys- 
tem appear to be delivered. The guarantees can be 
enforced cheaply, using purely local knowledge, and 
yet provide a sufficient basis for enforcing several 
important properties of parallel and distributed com- 
putations: causal message ordering, atomicity, and 
sequential consistency. The last two properties, espe- 
cially atomicity, are important in rule-based systems. 
An atomic action is a group of operations that must 
appear to be executed as an indivisible step, i.e. with- 
out interleaving with operations by other processes. 
Atomicity is important in a rule-based system because 
correct execution requires that the "if part of the rule 
be satisfied at the time the "then" side fires. In other 
words, each rule in a rule-based system is an atomic 
action. In an isotach rule-based system, rules fire 
asynchronously, i.e., a rule can fire whenever it is eli- 
gible. Processors with eligible rules do not need to 
synchronize before firing and yet, because each rule is 
executed atomically, the computation is correct: for 
each execution, there is an equivalent execution in 
which rules fire one at a time and no rule fires unless 
eligible. 

In the following sections we discuss related 
approaches to logical time systems and parallel exe- 
cution of rule-based systems. We describe isotach net- 
works in more detail and results of performance 
studies on isotach networks. Finally, we describe our 
planned approach for applying isotach networks to 
rule-based systems and we discuss the utility of iso- 
tach technology to CGF. 

need to identify a set of non-conflicting rules 
increases the length of the sequential phase of the 
cycle. 

We are not the first to propose eliminating the MRA 
cycle. Schmolze proposed an asynchronous system 
(Schmolze et al. 1990) in which the coordination 
among rules is handled by the same techniques used 
to enforce atomicity in distributed databases: locking, 
using a linear ordering among rules to prevent dead- 
lock. Our approach differs from this proposal in that it 
eliminates the MRA cycle without introducing lock- 
ing. We expect the isotach system to perform signifi- 
cantly better than this earlier asynchronous system 
because isotach systems are more efficient than con- 
ventional systems in providing synchronization. 

By abandoning the MRA cycle, our approach employ- 
ing isotach systems removes the imposition of 
sequential control on an inherently parallel process. 
Isotach systems are based on logical time. The semi- 
nal paper by Lamport (Lamport 1978) established a 
basis for isotach-like timing systems. Other systems 
similar to isotach systems have been proposed for 
other purposes by Awerbuch (Awerbuch 1985), 
Ranade (Ranade 1987), and Birk (Birk et al. 1989). 
Isotach systems are unique in providing guarantees of 
atomicity, sequential consistency and causal message 
ordering. 

The performance of isotach systems has been studied 
through extensive simulation (Reynolds, 1992). Order 
of magnitude speed-ups have been observed for a 
variety of workloads in which atomicity and the 
opportunity to exploit pipelining (simultaneous issu- 
ing of multiple memory references by the same pro- 
cess) are present. 

3. Background 
Two approaches to reducing the impact of the MRA 
cycle are being explored (Kuo, et al. 1992). One 
approach is to reduce the granularity of the computa- 
tion by partitioning the Rete network (Forgy, 1982) 
among the processors. Reducing the granularity of the 
computation makes it possible, with efficient schedul- 
ing, to reduce the variance among processor work- 
loads in each cycle, but it also increases 
synchronization overhead. The other approach is to 
select multiple rules to fire per cycle: each processor 
evaluates its rule; the processors synchronize; and a 
set of non-conflicting rules is selected for firing. This 
approach allows more processors to do useful work 
during the parallel match phase of the cycle, but the 

4. Isotach Systems 

4.1      Details of Isotach Technology 

Isotach networks are characterized not by their topol- 
ogy —they can be implemented on arbitrary topolo- 
gies and on clusters of workstations as well as on 
tightly-coupled multiprocessors— but by the guaran- 
tee they provide about the relative order in which 
operations appear to be delivered. The guarantee is 
expressed in logical time (an extension of Lamport's 
logical time), not physical time, i.e., the guarantee 
concerns the relative order in which messages appear 
to be delivered. Except in the case of messages deliv- 
ered to the same place, the order in which messages 
appear to be delivered is not necessarily the order in 
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which they are actually delivered. Physical time guar- 
antees would be prohibitively expensive, whereas log- 
ical time guarantees can be enforced cheaply, using 
purely local knowledge, and yet provide a sufficient 
basis for enforcing atomicity without locks and 
sequential consistency without restricting pipelining 
of operations. 

In isotach networks, each message progresses towards 
its destination at the same rate: one unit of logical dis- 
tance (for our purposes here, one hop within the net- 
work) per logical time unit. This property of isotach 
networks, called the velocity invariant, implies that 
the logical time at which an operation is emitted into 
the network completely determines the logical time at 
which it is received and executed. Thus a process can 
control the logical times at which its operations are 
executed by controlling the logical times at which 
they are emitted. This control over logical execution 
time allows each process to ensure that its accesses 
are executed in an order consistent with the program's 
atomicity and sequencing constraints without syn- 
chronizing with other processes or waiting for 
acknowledgments from memory. 

In the remainder of this section we discuss details of 
isotach networks. The reader may wish to proceed to 
the section on applications and then return to this 
point when a deeper understanding of the technology 
underlying isotach networks is desired. 

Assigning logical times to events is a way of ordering 
events. A logical time system is a set of constraints 
governing the way in which events of interest are 
ordered, i.e. assigned logical times. Isotach logical 
time is an extension of the logical time system defined 
by Lamport in his classic paper on ordering events in 
a distributed system (Lamport 1978). Lamport's time 
system assigns times consistent with the happened 
before relation, a relation over the events of sending 
and receiving messages that captures the notion of 
potential causality: event a happened before event b, 
denoted a—>b, if 1) a and b occur at the same process 
and a occurs before b; 2) a is the event of sending 
message m and b is the event of receiving the same 
message m; or 3) there exists some event c such that 
a-*c and c-*b. In Lamport's system a->b => t(a) < 
t(b), where for any event x, t(x) denotes the logical 
time assigned to x. 

Lamport gives a simple distributed algorithm that 
maintains this time system. Each process has its own 
logical clock, a variable that records the time assigned 
to the last local event.  When it sends a message, a 

process increments its clock and timestamps the mes- 
sage with the new time. When it receives a message, a 
process sets its clock to one more than the maximum 
of its current time and the timestamp of the incoming 
message. This algorithm ensures a-^b =* t(a) < t(b). 
Several researchers (Mattern 1988, Schmuck 1988, 
Fidge 1988) have independently described a way to 
maintain the more stringent constraint a->b <=> t(a) < 
t(b) by using vectors of logical times. Each element in 
a vector represents a logical time at one processor. 
This stricter form of Lamport's logical time system 
has been used to implement communication primi- 
tives for distributed computation (Birman et al. 1991). 

In an isotach logical time system, logical times are 
lexicographically ordered n-tuples of integers of 
which the first and most significant component is 
called the pulse component. Unless otherwise stated, 
assume logical times are 3-tuples in the form 
(pulse,x,y). Isotach logical time extends Lamport's 
logical time by imposing the additional constraint that 
logical times be consistent with the velocity invariant: 
each message m is received exactly d(m) pulses after 
it is sent, where d(m) denotes the logical distance m 
travels. For any message m, let ts(m) denote the logi- 
cal time assigned to the send event for m and tr(m) the 
logical time assigned to the receive event for m. Thus 
for any message m, ts(m) = (ij.k) => tr(m) = 
(i+d(m),j,k). Isotach networks are so named because 
all messages travel at the same velocity in logical time 
—one unit of logical distance per pulse. Unless other- 
wise stated, logical distance, d(m), is simply the num- 
ber of (possibly virtual) switches through which m is 
routed. 

The velocity invariant requires that the logical time 
assigned to the receive event for a message that trav- 
els zero distance be the same as the logical time 
assigned to its send event. To accommodate this case 
in which the source and destination of a message are 
collocated, we have relaxed Lamport's requirement 
that the time assigned to event a that potentially 
causes event b be strictly less than the time assigned 
to event b. In isotach logical time, a-^b => t(a) < t(b). 

The number and interpretation of the components that 
follow the pulse component can vary. In this paper, 
each logical time is of the form (pulse, pid(m), 
rank(m)), where for any message m, pid(m) is the 
identifier of the process that issued m and rank(m) is 
the issue rank of the message, i.e., rank(m) = i if m is 
the ith message issued by pid(m). In a database system 
the pid may be replaced by a transaction identifier. In 
some isotach systems, for example in a system that 
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combines operations on the same shared variable 
within the network, a 4-tuple isotach logical time sys- 
tem is most appropriate. In a 4-tuple system each log- 
ical time is in the form (pulse, destination, source, 
rank), where the destination component names the 
variable accessed (shared memory model) or the des- 
tination process or object (message-based model). 

4.2     APPLICATIONS 

In a system that maintains isotach logical time, a pro- 
cessor (PE) can control the logical time at which the 
messages it sends are received and executed. (Note: 
"sending messages" may be simple memory refer- 
ences, for example, a single shared memory refer- 
ence.) This ability to control the logical time of 
remote events is the basis for new techniques for 
enforcing atomicity and sequential consistency. This 
section describes these techniques. 

An atomic action is a group of one or more instruc- 
tions issued by the same process that appears to be 
executed indivisibly, i.e., without interleaving with 
other instructions (Owicki et al. 1976, Lomet 1977). 
In some contexts, in particular in databases, the 
atomic action is also a unit of recovery from hardware 
failure. We assume the system is fault-free or that 
faults are handled below the application level. Con- 
ventional systems enforce atomicity with some form 
of locking. Drawbacks of locking include overhead 
for lock maintenance in space, time, and communica- 
tion bandwidth, unnecessarily restricted access to 
shared variables, and the care that must be taken when 
using locks to avoid deadlock and livelock. In an iso- 
tach system, a process can execute flat atomic actions, 
(atomic actions containing no internal data depen- 
dences among shared variables) without synchroniz- 
ing with other processes and can execute structured 
atomic actions (atomic actions with such depen- 
dences) without acquiring locks or otherwise obtain- 
ing exclusive access rights to the variables accessed. 

An execution is sequentially consistent if the order in 
which operations are executed is consistent with the 
order specified by each individual process's sequential 
program (Lamport 1979). This ordering guarantee is 
so basic it is easily taken for granted, yet it is expen- 
sive to enforce. The problem is that the order in which 
operations are received and executed may differ from 
the order in which the operations were sent into the 
network due to stochastic delays within the network. 
The conventional solution is to prohibit pipelining, 
meaning that each process must delay issuing an oper- 
ation until it receives notice that its preceding opera- 

tion has been executed. Since pipelining is an 
important way to decrease effective memory latency, 
this solution is expensive. The high cost of enforcing 
sequential consistency has led to extensive explora- 
tion of weaker memory consistency models, e.g., 
(Scheurich et al. 1987, Gharachorloo et al. 1991). 
These weaker models are harder to reason about and 
still impose significant restrictions on pipelining, but 
they make sense given the cost of maintaining 
sequential consistency in a conventional system. In 
an isotach system, processes can pipeline memory 
operations without violating sequential consistency. 

The velocity invariant is the key to enforcing atomic- 
ity and sequential consistency in an isotach system. 
Given the velocity invariant, a PE that knows d(m) for 
each operation m it sends can control the logical time 
at which its operations are received and executed by 
its choice of the logical time at which it sends the 
operations. A PE can enforce atomicity and sequen- 
tial consistency by following these rules: 

ATOMICITY. Send operations from the same flat 
atomic action so they are received in the same pulse. 

SEQUENTIAL CONSISTENCY. Send each opera- 
tion so it is received in a pulse no earlier than that of 
the operation issued before it. 

The rules are applicable to any topology, but are espe- 
cially easy to apply in equidistant networks: a PE 
sends all operations in the order in which they are 
issued and all operations from the same flat atomic 
action in the same pulse. 

Example. Consider the n on-equidistant network in 
Fig. 1, in which each oval represents a switch and 
each rectangle a memory module (MM) or PE: 

Fig. 1. A Non-Equidistant Network. 
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Suppose pi is required to read shared variables A and 
B atomically and p2 to write A and B atomically. In 
conventional systems, pi and p2 need to obtain locks, 
either on the individual variables or on a section of 
code (as in a critical section), to ensure its accesses 
are executed atomically. In isotach systems, pi and 
p2 can execute their accesses without synchronizing, 
as follows: pi sends the operation on A one pulse after 
it sends the operation on B and p2 sends the operation 
on B one pulse after it sends the operation on A. By 
the velocity invariant, both operations in each atomic 
action are received in the same pulse. If all four oper- 
ations happen to be received in the same pulse, opera- 
tions on each shared variable will be received and 
executed in order by pid. Thus each atomic action 
will appear to be executed without interleaving with 
other operations. It is possible that operations may be 
executed in an interleaved order in physical time. For 
example, the actual execution order may be pi's read 
to A, p2's write to A, pi's read to B, and p2's write to 
B. This execution is correct nonetheless because it is 
equivalent to a serial execution in which operations in 
each atomic action are executed without interleaving: 
pi's read to A; pi's read to B; p2's write to A; and p2's 
write to B. 

We have also described isotach-based techniques for 
executing structured atomic actions (Williams 1993). 
Structured atomic actions cannot be executed in the 
same way as flat atomic actions because data depen- 
dences among operations make it impossible to issue 
all the operations in a batch, but the techniques for 
executing flat atomic actions together with a class of 
operations called split operations support execution 
of structured atomic actions. 

A process executes a structured atomic action by issu- 
ing a batch of split operations scheduling all the 
accesses required for the atomic action, executing the 
assignment steps for these accesses as it determines 
the values to be assigned. Execution is atomic 
because the set of operations used to schedule the 
accesses reserves a consistent time slice across the 
histories of the accessed variables. This technique 
works for atomic actions with access sets that can be 
determined at the beginning of execution of the 
atomic action. We have proposed variations on the 
technique for atomic actions with data dependent 
access sets (Williams et al. 1989). Isotach based tech- 
niques for executing flat and structured atomic actions 
extend to systems with caches. In fact, extending the 
techniques to systems with caches eliminates the need 
for a separate type of memory otherwise required to 
support structured atomic actions. 

43      Performance 

We have completed both analytical (Wagner 1993) 
and empirical (Reynolds 1992) studies of isotach sys- 
tems. We simulated conventional and isotach systems 
under a variety of workloads. Our results show that 
conventional systems have higher raw power, i.e., 
more throughput with less delay, than isotach net- 
works, but that under workloads that include atomic- 
ity and sequencing constraints, isotach networks 
outperform conventional networks. The studies show 
order of magnitude performance improvement under 
realistic workloads. In extreme cases of high conten- 
tion for shared objects, conventional systems cease to 
perform acceptably, but isotach systems continue to 
perform well. 

We have proposed several techniques for executing 
structured atomic actions using the isotach network in 
combination with split operations. Split operations are 
used to execute read and write accesses in two steps: 
the first schedules the access and the second transfers 
a value. The advantage of dividing accesses into two 
steps is it allows a process that has incomplete knowl- 
edge about an access due to an unsatisfied data depen- 
dency to reserve a slot in the variable's history that 
ensures it will appear to be executed at the same time 
as the other operations in the atomic action. (Another 
advantage is that it provides a mechanism for enforc- 
ing inter-process sequencing constraints.) An unsub- 
stantiated write (a write for which the first step, but 
not the second has been executed) delays completion 
of reads scheduled up to the next write until the write 
is substantiated, but does not delay writes or other 
reads to the same variable. 

5. Isotach. Rules, and CGF 

5.1      Isotach and Rule-Based Systems 

Atomicity and sequential consistency, especially ato- 
micity, are important in rule-based systems. An 
atomic action is a group of operations that must 
appear to be executed as an indivisible step, i.e. with- 
out interleaving with operations by other processes. 
Atomicity is important in a rule-based system because 
correct execution requires that the "if part of the rule 
be satisfied at the time the "then" side fires. In other 
words, each rule in a rule-based system is an atomic 
action. In an isotach rule-based system, rules fire 
asynchronously, i.e., whenever eligible. Processors 
with eligible rules do not need to synchronize before 
firing and yet, because each rule is executed atomi- 
cally, the computation is correct: for each execution, 
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there is an equivalent execution in which rules fire 
one at a time and no rule fires unless eligible. Elimi- 
nating the MRA cycle should make it possible to 
exploit all or most of the rule-level parallelism avail- 
able in the application. 

Schmolze and Goel (Schmolze et al. 1990) proposed 
an asynchronous system in which coordination among 
rules is handled by the same techniques used to 
enforce atomicity in distributed databases: locking, 
using a linear ordering among rules to prevent dead- 
lock. Our method differs in two respects: 

• The method of coordinating rule firings. An 
isotach rule-based system eliminates the 
MRA cycle without introducing locking. We 
expect the isotach system to perform signifi- 
cantly better than asynchronous systems that 
achieve atomic execution of rules through 
locking because isotach systems are many 
times (order of magnitude) more efficient 
than conventional systems in enforcing ato- 
micity (Reynolds et al. 1992). 

• The granularity of the computation. We 
intend to exploit fine-grained parallelism as 
well as rule-based parallelism. Other 
researchers have investigated distributing the 
Rete network, the principal data structure 
used in a rule-based system, over multiple 
processors. The previous work on using fine- 
grained parallelism has all taken place within 
the context of the MRA cycle, so this is a 
new challenge. It is important to consider 
exploiting fine-grained parallelism in rule- 
based systems because it increases available 
parallelism and because relaxing the MRA 
cycle alone is not of help with rule-based 
systems in which the conditions for rules 
implicitly require that they be fired serially. 

We discussed split operations in section 4.2. A system 
of rules could be executed concurrently, employing 
split operations, in the manner described below. Each 
process representing one or more rules would perform 
the following steps asynchronously: 

1. Read the WME's that potentially match the rule's 
left-hand-side and schedule writes called for by 
the rule's right-hand-side operations. All of these 
reads and writes would be scheduled to occur at 
the same logical time. Note, there is no require- 
ment that components of the WME be resident on 
a single processor. Using isotach-based timing, 
accesses will occur at the same logical time even 

on widely distributed networks. 

2. Perform the match step for the rules. This step 
would be highly parallel, with each process doing 
its match independent of the activities of other 
processes. 

3. For each rule that can fire, the process can write 
any WME's required by the right-hand-side of 
the rule. 

4. For each rule that can't fire, the process can can- 
cel the writes it just scheduled for the right-hand- 
side of the rule. 

These four steps would be executed repeatedly by a 
process as long as it had rules to evaluate. Note, there 
is no direct, explicit synchronization among pro- 
cesses. There are no locks. Rules fire as quickly as 
they can be determined eligible to fire. The only form 
of synchronization that occurs between processes is 
when one rule causes writes to be scheduled for 
WME's that need to be read by a second rule. Analy- 
sis of the second rule would be delayed only until the 
process for the first rule either substantiated the writes 
or cancelled them. This is the only synchronization 
that takes place in the analysis and firing of rules. 

A pessimistic variation of steps 1 and 2 given above 
would be: 

1. Read the WME's for the match step, and perform 
matching. 

2. If a match occurs, re-read the left-hand-side data 
and schedule writes called for by the rule's right- 
hand-side operations (all at the same logical 
time). 

This pessimistic variation has the advantage of reduc- 
ing contention by performing the match phases with- 
out scheduled writes pending. Its primary 
disadvantage is that it could force rule evaluation to 
take longer. Choice of the two alternatives could be 
adaptive depending on contention among rules for 
reading and writing WME's. 

Some production systems also use meta-rules (e.g. 
SOAR (Laird, 1990)): rules to select among eligible 
rules. Meta-rules are anathema to the isotach 
approach because they assume an eligible set of rules 
is identified and then an MRA-like process is applied 
where one rule to fire is selected (using the meta rules 
for guidance). We are exploring ideas for incorporat- 
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ing preferences and/or constraints expressed in meta- 
rules within an isotach system. The pessimistic varia- 
tion of steps 1 and 2 above is one example of how this 
might be done: a low priority rule must use the pessi- 
mistic approach while higher priority rules can use the 
more aggressive approach. 

52     Isotach and CGF 

Eliminating the MRA cycle should make it possible to 
exploit all or most of the parallelism available in the 
application. In other words, we would expect to see 
the speed of the system continue to improve as more 
processors are added until a limit inherent in the 
application is reached. Conventional parallel rule- 
based systems, by contrast, are limited by synchroni- 
zation overhead to a low level of parallelism. Isotach 
rule-based systems should be well suited to CGF 
because we expect such applications to be inherently 
highly parallel due to the large number of entities pos- 
sessing some scope for independent action. 

For example, in a tank platoon, the independent 
actions within the tank would include terrain reason- 
ing, situational assessment and planning. Actions 
coordinated at the platoon level would include activi- 
ties both within the platoon itself and with echelons 
above the platoon, including communication and 
receiving and processing orders. 

Within a C4I hierarchy we would expect significant 
independent processing at individual nodes within the 
hierarchy and occasional coordination among nodes 
to carry out a common mission. 

to distributed networks of workstations connected by 
ATM's. 

The traditional MRA-based approach to rule analysis 
using parallel computation is severely flawed: there is 
a sequential bottleneck in the middle of the MRA 
cycle. Our approach using isotach networks abandons 
the MRA cycle and bases rule analysis, selection and 
firing on isotach-based logical timing. Performance 
analysis of isotach networks is very encouraging, dis- 
playing order of magnitude speed-up over networks 
lacking isotach timing in cases where reasonable 
amounts of atomicity and pipelining were present. 
Rule-based systems have significant potential to 
exploit isotach technology because they have an 
abundance of atomic actions (multiple, concurrent 
read-write sets from individual rules). CGF-oriented 
rule sets should be particularly amenable to isotach 
technology because we expect such applications to be 
inherently highly parallel due to the large number of 
entities possessing some scope for independent 
action. 

A simulation study is currently underway to study the 
performance benefits isotach networks will bring to 
CGF-oriented rule-based systems. We will report on 
that study in a later paper. 
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Even if we are mistaken in our assessment of indepen- 
dence, isotach technology is significantly better able 
to manage contention than other existing concurrency 
control techniques. Thus whether entities exhibit sig- 
nificant independence or not, isotach technology 
should outperform other approaches. 

A simulation study of isotach-based production sys- 
tems is underway employing synthetic workloads. As 
good rule bases become available, we are considering 
switching to trace-driven simulation. 

6. Conclusion 
Isotach networks offer an efficient approach to order- 
ing rule analysis and firings without explicit synchro- 
nization. Isotach networks are logical networks that 
can be embedded in any physical network, ranging 
from high performance parallel computer backplanes 
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