
DEFENSE TECHNICAL INFORMATION CENTER

In/orttuiioitfor the. DtftKii C^ncmtotiiy

DTIC® has determined on (u I9n lJM>/0 that this Technical Document has the
Distribution Statement checked below. The current distribution for this document can
be found in the DTIC® Technical Report Database.

Sfl DISTRIBUTION STATEMENT A. Approved for public release; distribution is
unlimited.

• © COPYRIGHTED; U.S. Government or Federal Rights License. All other rights
and uses except those permitted by copyright law are reserved by the copyright owner.

• DISTRIBUTION STATEMENT B. Distribution authorized to U.S. Government
agencies only (fill in reason) (date of determination). Other requests for this document
shall be referred to (insert controlling DoD office)

• DISTRIBUTION STATEMENT C. Distribution authorized to U.S. Government
Agencies and their contractors (fill in reason) (date of determination). Other requests for
this document shall be referred to (insert controlling DoD office)

• DISTRIBUTION STATEMENT D. Distribution authorized to the Department of
Defense and U.S. DoD contractors only (fill in reason) (date of determination). Other
requests shall be referred to (insert controlling DoD office).

• DISTRIBUTION STATEMENT E. Distribution authorized to DoD Components only
(fill in reason) (date of determination). Other requests shall be referred to (insert
controlling DoD office).

• DISTRIBUTION STATEMENT F. Further dissemination only as directed by
(inserting controlling DoD office) (date of determination) or higher DoD authority.

Distribution Statement F is also used when a document does not contain a distribution
statement and no distribution statement can be determined.

• DISTRIBUTION STATEMENT X. Distribution authorized to U.S. Government
Agencies and private individuals or enterprises eligible to obtain export-controlled
technical data in accordance with DoDD 5230.25; (date of determination). DoD
Controlling Office is (insert controlling DoD office).

Proceedings of the
Fifth Conference on
Computer Generated Forces
and Behavioral Representation

May 9-11, 1995
Orlando, Florida
Sponsored by STRICOM-DMSO
Contract - N61339-92-C-0045

INSTITUTE FOR SIMULATION AND TRAINING • TECHNICAL REPORT

Proceedings of The Fifth
Conference on

Computer Generated Forces
and Behavioral Representation

May 9-11, 1995
Orlando, Florida

Sponsored by: / '^t' if/ ^^T
U.S. Army Simulation, Training, and Instrumentation Command „ L/,.

Defense Modeling and Simulation Office

Organized by:
Institute for Simulation and Training

3280 Progress Drive
Orlando, Florida 32826

University of Central Florida, Division of Sponsored Research

Contract N61339-92-C-0045 CDRL A00D
IST-TR-95-04

Reviewed By

*7

Daniel E. Mulla%

DMSO
^/NlV*V

1^

CO

CM

Preface

PURPOSE

This report presents the proceedings of the Fifth
Computer Generated Forces (CGF) and Behavioral
Representations (BR) Conference. The Conference
is scheduled from 9 to 11 May in Orlando, Florida
and is hosted by the Institute for Simulation and
Training (1ST). 1ST is a component of the Division
of Sponsored Research at the University of Central
Florida.

OBJECTIVES

The objectives of this conference are to:
• Provide a forum for information exchange on

CGF and BR modeling research.
• Identify gaps in CGF and BR research.
• Present upcoming research programs and

opportunities.
• Determine the CGF and BR community interest

in technology demonstrations.

Attendees will have an opportunity to participate in
discussions of Service User needs, CGF systems
issues, and technical presentations on the components
of a CGF.

BACKGROUND

Under the sponsorship of the U.S. Army, Simulation,
Training & Instrumentation Command (STRICOM)
and Defense Modeling and Simulation Office
(DMSO), the Institute for Simulation and Training,
of the University of Central Florida is conducting
this Fifth Conference on CGF and BR.

UCF/IST has hosted four previous CGF & BR
symposia. An indication of the success of these
interest group meetings is reflected in the steady
increase in attendance, rising from 84 attendees in
Oct. 1990 to 128 in May of 1991, to 310 in March of
1993, to 323 in May of 1994.

Following the topics outlined in the Second BR
symposium, 1ST is tasked by STRICOM to host a
continuing series of CGF and BR conferences. These
conferences will provide a continuing ability to
promote and focus research in this important area.
Most attendees at previous conferences expressed an
interest in continuing in a dialogue with training
developers on future requirements in order to justify
their own internal research and development
participation and commitment to this emerging
technology.

Other conference topics which merit consideration
for resolution by the community of military, industry,
and academic researchers in BR include:
• Interoperability Standards for Behavioral

Representation in Defense Simulations:
• Validation, Verification and Accreditation of

Behavioral Representation models:
• Functional Specification rationale for Behavioral

Representation models in Design, Testing and
Training Simulations;

• Interoperability issues for classified modeling in
Behavioral Representation;

• Behavioral Representation in Virtual Reality.

GENERAL

This report is presented in one volume. Wherever
possible, the papers are arranged in the order of
presentation.

A list of attendees will be distributed to all registered
attendees at the conclusion of the conference.

Conference Committee

Conference Chair

Daniel E. Mullally, Jr.

Program Committee

Douglas A. Reece

Clark R. Kan-

Robert W. Franceschini

Production Assistance

Doug Barrett

Valerie Truhan

Vicki McGurk

Local Arrangements and
Registration

Vince Amico

Linda Toth

Karen Gauvin

Deodith Mapas

ii

Table of Contents

Preface i

Session 2a: Project Status Reports
ModSAF Development Status 3 ^
Anthony J. Courtemanche, Andy Ceranowicz
Loral ADS
Cambridge, Massachusetts

The Distributed Interactive C3I Effectiveness (DICE) Simulation Project:
An Overview 15
Mike Davies, Carsten Gabrisch
Information Technology Division, DSTO
Salisbury, S. Australia

Integrated Eagle/BDS-D: A Status Report 21
Robert W. Franceschini
UCF/IST
Orlando, Florida

Simulated Intelligent Forces for Air: The SOAR/IFOR Project 1995 27
John E. Laird, Randolph M. Jones, Frank Koss, Paul E. Nielsen, Michael van Lent,
Robert E. Wray, in
Artificial Intelligence Lab, University of Michigan
Ann Arbor, Michigan
W. Lewis Johnson, Paul S. Rosenbloom, Karl Schwamb, Milind Tambe
Information Sciences Institute, USC
Marina del Rey, California
Jill F. Lehman, Robert Rubinoff, Julie Van Dyke
Computer Science Department, Carnegie Mellon University
Pittsburgh, Pennsylvania

Session 2b: Reasoning I
Building Intelligent Pilots for Simulated Rotary Wing Aircraft 39
Milind Tambe, Karl Schwamb, Paul S. Rosenbloom
ISI, USC
Marina del Rey, California

in

A Multiple Agent Hybrid Control Architecture for Automated Forces:
Design & Software Implementation 45
Xiaolin Ge, John James, Anil Nerode
Mathematical Sciences Institute, Cornell University
Ithaca, New York

^ Context-based Representation of Intelligent Behavior in Simulated
Opponents 53
Avelino J. Gonzalez
Electrical & Computer Engineering Department, UCF
Orlando, Florida
Robert Ahlers
Naval Air Warfare Center, Training Systems Division
Orlando, Florida

Automated Agents That Learn and Explain Their Own Actions:
A Progress Report 63
Sakir Kocabas, Ercan Oztemal, Mahmut Uldudag, Nazim Koc
Marmara Research Center
Gebze, Turkey

Session 3a: Constructive + Virtual Simulation
*fc Integration of Constructive, Virtual, Live, and Engineering Simulations in

theJPSDCLCGF 71
Robert B. Calder, Jeffrey C. Peacock, Jr.
SAIC
Waltham, Massachusetts
James Panagos
TASC
Reading, Massachusetts
Thomas E. Johnson
Raytheon Company
Tewksbury, Massachusetts

Implementation of a Dynamic Aggregation/Deaggregation Process in the
JPSDCLCGF 83
Robert B. Calder, Jeffrey C. Peacock, Ben P. Wise
SAIC
Waltham, Massachusetts
Thomas Stanzione, Forrest Chamberlain, James Panagos
TASC
Reading, Massachusetts

IV

Survey of Constructive + Virtual Linkages 93
Matthew K. Kraus, David R. Stober, William F. Foss, Robert W. Franceschini, Mikel D. Petty
UCF/IST
Orlando, Florida

Disaggregation Overload and Spreading Disaggregation in Constructive
+ Virtual Linkages 103
Mikel D. Petty, Robert W. Franceschini
UCF/IST
Orlando, Florida

Session 3b: Reasoning II
()£- Natural Language Processing for IFORs: Comprehension and Generation

in the Air Combat Domain 115
Jill Fain Lehman, Julie Van Dyke, Robert Rubinoff
Carnegie Mellon University
Pittsburgh, Pennsylvania

Agent Tracking in Complex Multi-Agent Environments: New Results 125
Milind Tambe, Paul S. Rosenbloom
ISI, use
Marina del Rey, California

$£ A Methodology and Tool for Constructing Adaptive Command Agents for
Computer Generated Forces 135
Michael R. Hieb, Gheorge Tecuci, J. Mark Pullen
Department of Computer Science, George Mason University
Fairfax, Virginia
Andrew Ceranowicz
Loral ADS
Cambridge, Massachusetts
David Hille
ANSER
Arlington, VA

Session 4a: Command & Control Modeling I
* An Automated CBS OPFOR 149

Ian Page
Defence Research Agency
Kent, England
Gary Kendall
Logica UK Ltd.
London, England

Automated Mission Planning in ModSAF 159
Clark R. Karr, Sumeet Rajput, Jaime E. Cisneros, Hai-Lin Nee
UCF/IST
Orlando, Florida

Multi-Application Command Agents 169
Helen Lankester
Software Engineering Centre, Defence Research Agency
Kent, England

Session 4b: W&A
Measuring Entity and Group Behaviors of Semi-Automated Forces 181
Larry L. Meliza, Eric A. Vaden
U.S. Army Research Institute, Simulator Systems Research Unit
Orlando, Florida

The Use of Automated Regression and VVA Testing in ModSAF 193
James Perneski, Paul Monday
Loral ADS
Cambridge, Massachusetts

Verification and Validation of Modular Semi-Automated Forces (ModSAF)
in Support of A2ATD Experiment 1 197
John G. Thomas
U.S. Army Materiel Systems Analysis Activity
Aberdeen Proving Ground, Maryland

Session 5a: Command & Control Modeling II
Command Entity Cognitive Behaviors for SAF and CGF 203
Howard Mall, Kent Bimson, Jenifer McCormack, Dirk Ourston
SAIC
Orlando, Florida

ifc Intelligent Computer Generated Forces for Command and Control 211
Paul E. Nielsen
Department of Electrical Engineering and Computer Science, University of Michigan
Ann Arbor, Michigan

Autonomous Agent Interactions in ModSAF 219
David R. Pratt, Gary McAndrews, Robert McGhee
Department of Computer Science - Naval Postgraduate School
Monterey, California

VI

Session 5b: Route Planning I
Route Planning in CCTT 233
Chuck Campbell, Richard Hull, Eric Root, Lance Jackson
SAIC
Orlando, Florida

Dynamic Obstacle Avoidance for Computer Generated Forces 245
Clark R. Karr, Michael A. Craft, Jaime E. Cisneros
UCF/IST
Orlando, Florida

Path Planning With Terrain Utilization in ModSAF 255
Bruce Hoff, Michael D. Howard, David Y. Tseng
Information Sciences Laboratory, Hughes Research Laboratories
Malibu, California

Session 6a: Implementation
Representation of Missiles in ModSAF 267
Anthony J. Courtemanche, Scott E. Hamilton, Paul Monday
Loral ADS
Cambridge, Massachusetts

From CIS to Software 275
Dirk Ourston, David Blanchard, Edward Chandler, Elsie Loh
SAIC
Orlando, Florida

Implementation of a Tactical Order Generator for Computer Generated Forces 287
David R. Pratt, Howard Mohn, Robert McGhee
Department of Computer Science - Naval Postgraduate School
Monterey, California

Session 6b: Route Planning I
Unit Route Planning 295
Clark R. Karr, Sumeet Rajput
UCF/IST
Orlando, Florida

Concealed Routes in ModSAF 305
Michael J. Longtin, Dalila Megherbi
Loral ADS
Cambridge, Massachusetts

vxx

Terrain Avoidance for CGF Helicopters 315
Stephen A. Schricker, Robert W. Franceschini, Mikel D. Petty, Tracy R. Tolley
UCF/IST
Orlando, Florida

Session 7a: Non-Military Uses of CGF
Bi-Directional Technology Transfer Between Government Applications of
Computer Generated Agents and Commercial Entertainment 329
Rich Warren, Mike Crowe, Don Shillcutt
GreyStone Technology, Inc.
San Diego, California

^ CGF Opportunities in Plowshares 337
Mikel Petty, Mary P. Slepow
UCF/IST
Orlando, Florida
Paul D. West
United States Military Academy
West Point, New York

Planning for Reactive Behaviors in Hide and Seek 345
Michael B. Moore, Christopher Geib, Barry D. Reich
Department of Computer and Information Science, University of Pennsylvania
Philadelphia, Pennsylvania

Session 7b: Terrain Modeling I
Abstracting Terrain Data Through Semantic Terrain Transformations 355
David Hille
ANSER
Arlington, Virginia
Michael R. Hieb, Gheorge Tecuci, J. Mark Pullen
Department of Computer Science, George Mason University
Fairfax, Virginia

Terrain Reasoning by Intelligent Player 367
Gregory A. Schaper, Ashok Pandari
Department of Computer Science, East Tennessee State University
Johnson City, Tennessee

Recent Developments in ModSAF Terrain Representation 375
Joshua E. Smith
Loral ADS
Barre, Massachusetts

V1X1

Session 8a: Applications of CGF
A Method to Quantify the Application Value of Intelligent Decision
Support Systems 385
Theodore Metzler, Joseph Kelly
LB&M Associates Inc.
Lawton, Oklahoma

Supporting Materiel R&D Using Linked Engineering, Constructive, and
Virtual Modeling and Simulation Tools 391
John A. O'Keefe, IV
U.S. Army, Natick RD&E Center
Natick, Massachusetts
Robert Mclntyre
Simulation Technologies, Inc.
Dayton, Ohio

Session 8b: Terrain Modeling II
Integrated Computer Generated Forces Terrain Database 399
Thomas Stanzione, Forrest Chamberlain
TASC
Reading, Massachusetts
Dr. Alan Evans, Cedric Buettner
SAIC
Waltham, Massachusetts

Terrain Capabilities in CCTT 411
Jon Watkins
SAIC
Orlando, Florida

Evening Plenary Session
ARPA CFOR Briefing
Implementation of Command Forces (CFOR) Simulation 423
Mamie R. Salisbury, Lashon B. Booker, David W. Seidel, Judith S. Dahmann
The MITRE Corporation
McLean, Virginia

Session 9a: Experimental Results
Experimental Conversion of the 1ST Computer Generated Forces
Simulator from C to Ada 433
Michael A. Craft, Mikel D. Petty
UCF/IST
Orlando, Florida

IX

Comparison of A* and Iterative Deepening A* in Graph Search 443
Clark R. Karr, Sumeet Rajput, Larry J. Breneman
UCF/IST
Orlando, Florida

Intervisibility Heuristics for Computer Generated Forces 451
Sumeet Rajput, Clark R. Karr, Mikel D. Petty, Michael A. Craft
UCF/IST
Orlando, Florida

Benchmarking and Optimization of the 1ST CGF Test bed 465
Stephen A. Schricker, Tracy R. Tolley, Robert W. Franceschini
UCF/IST
Orlando, Florida

Session 9b: Dismounted Infantry
Individual Combatant Development in ModSAF 479
Michael D. Howard, B. Hoff, D.Y. Tseng
Hughes Research Laboratories
Malibu, California

Mobility Behavior in Dismounted Forces 487
George R. Mastroianni
U.S. Army Natick RDEC
Natick, Massachusetts
Reed W. Hoyt
USARIEM
Natick, Massachusetts
Mark J. Buller
GEO-CENTERS, Inc.
Natick, Massachusetts

A Behavioral Approach to Fidelity Requirements for Simulation of
Dismounted Combatants 495
Robert T. Mclntyre, III
Simulation Technology Inc.
Raleigh, North Carolina
Victor E. Middleton
Simulation Technologies, Inc.
Dayton, Ohio

^ Simulation of Suppression for the Dismounted Combatant 501
Victor E. Middleton
Simulation Technologies Inc.
Dayton, Ohio
W. M. Christenson
Institute for Defense Analyses
Alexandria, Virginia
John D'Errico
Dismounted Battlespace Battle Lab
Ft. Benning, Georgia

Session 10a: Architecture
Representing Role-Based Agents Using Coloured Petri Nets 513
Mike Davies, Fred D. J. Bowden, John M. Dunn
Information Technology Division, DSTO
Salisbury, S. Australia

Realistic Doctrinal Behaviors in CGF Through Plurality 521
Denis Gagne
IntelAgent R&D
Victoriaville, Quebec, Canada

A Comparison Study of Behavioral Representation Alternatives 529
Se-hung Kwak
Loral ADS
Cambridge, Massachusetts

Session 10b: General Interest
X The OPFOR Model in CCTT and Beyond: Applications in DIS 543

Penny L. Mellies
TRADOC DCSINT Threat Support Division
Ft. Leavenworth, Kansas

^ Report on the State of Computer Generated Forces 1994 549
H. Kent Pickett
TRADOC Analysis Center
Ft. Leavenworth, Kansas
Mikel D. Petty
IST/UCF
Orlando, Florida

Asynchronous Rule-Based Systems in CGF 559
Craig Williams, Paul F. Reynolds, Jr.
Department of Computer Science, University of Virginia
Charlottesville, Virginia

Author's List 567

XI

Session 2a: Project Status Reports

Courtemanche, Loral ADS
Davies, Information Technology Division, DSTO

Franceschini, UCF/IST
Laird, University of Michigan

ModSAF Development Status

Anthony J. Courtemanche and Andy Ceranowicz
Loral Advanced Distributed Simulation

50 Moulton St., Cambridge, MA 02138
ajc@camb-lads.loral.com

aceran@camb-lads.loral.com

1. Abstract

This paper provides an overview of capabilities
recently added to the ModSAF system since version
1.0, as well as the new software development process
that has been successfully used to manage the addition
of 300 thousand lines of source code to the ModSAF
baseline.

2. ModSAF Overview

ModSAF, or Modular Semi-Automated Forces, is the
successor to the SIMNET and ODIN Semi-Automated
Forces systems. It provides a modular architecture
that DIS and CGF researchers can build upon and
extend. The development of the ModSAF architecture
was started in the spring of 1992 under ARPA/ASTO
sponsorship with documentation and fielding
sponsored by STRICOM. This effort resulted in the
release of ModSAF 1.0 in December 1993.
Subsequent development of ModSAF was jointly
funded by STRICOM and ARPA/ASTO, and releases
of ModSAF, starting with ModSAF 1.2 in July
1994, are continuing with a new release every 3
months. The latest version, ModSAF 1.4, was
released in January 1995, and it contains over one-half
million lines of software written in C.

ModSAF is intended for use as an application to
support DIS studies, as a testbed to explore new CGF
approaches, and as a source of components for other
systems. Current ModSAF development is being
driven by the requirements of the STRICOM and
ARPA programs that ModSAF is supporting. Major
programs driving ModSAF requirements include
A2ATD (Anti-Armor Advanced Technology
Demonstration) and STOW (Synthetic Theater Of
War). A2ATD is intended to develop and demonstrate
a verified, validated, and accredited (VV&A) DIS
testbed capability to support combat and material
development studies. This has resulted in the VV&A
of ModSAF for A2ATD exercises. STOW has the
objective of demonstrating the use of DIS for large
scale exercises distributed over many sites. In this
effort ModSAF is being linked to BBS, a program
that models higher level command and control.

3. New Capabilities

There have been three releases since ModSAF 1.0
(ModSAF 1.2, ModSAF 1.3, and ModSAF 1.4).
ModSAF 1.5 is scheduled for release in April, 1995.
The following sections describe many of new
capabilities that have been added during this effort.

3.1 Platoon Behaviors

ModSAF supports platoons of friendly and enemy
Tank, Mechanized Infantry, Air Defense, and Combat
Service Support units. The following sections list
some of the new behaviors, implemented as task
frames (Calder et. al. 1993) that are available to these
platoons:

3.1.1 Platoon Withdraw
The Withdraw task frame moves a unit away from the
enemy, and tells the unit to perform the Hasty
Occupy-Position task until it receives another order.
Armored vehicles withdraw in reverse if the enemy is
seen; otherwise, they move in normal forward gear.
If the enemy is no longer visible, an armored vehicle
turns to complete the withdrawal in forward gear.
Once it transitions from reverse to forward, it remains
in forward even if the enemy reappears. Unarmored
vehicles use forward gear to reach the withdraw point.

3.1.2 Platoon Minefield Withdraw
The Withdraw from Minefield task frame can be
triggered automatically when a platoon discovers it
has entered a minefield, as indicated by the detonation
of mines. When executing this behavior, vehicles
backtrack for a given distance and then the unit
performs a normal withdraw.

3.1.3 Platoon Delay
The Delay task frame lets a platoon perform a delay
maneuver. When assigning this task frame, the user
enters at least one of four alternate battle positions.
The Delay automatically ends when the unit reaches
the last battle position. Delay divides the unit into
two functional groups which perform Withdraws to
the alternate battle positions in a non bounding
fashion. For example, one functional group
withdraws to the battle position while the second
functional group stays to fire at the enemy. When
the first group completes the withdraw, the second

group begins to withdraw to the same battle position
occupied by the first group. Once the second group is
finished occupying the battle position, the first group
withdraws to the next battle position, and so on.

3.1.4 Platoon Breach
The Breach task frame divides a unit into two
functional groups: an occupy group and a travel
group. The occupy group performs an occupy
position while the travel group moves through the
area. When the travel group stops, they occupy
position. The previous occupy group then moves
along the same route. Mines explode if encountered,
but do no damage to the vehicles during the breach.
When a vehicle breaches a minefield, it can drop
objects behind itself (called breach lane markers) to
mark its path. This lets other vehicles see the safe
route. Under the direction of the US Army
Engineering School, this simplified breaching
behavior is being enhanced with improved models of
minefield effectiveness and countermine effectiveness,
including the modeling of the Full Width Mine Plow
(FWMP).

3.1.5 Platoon React To Indirect Fire and Air Attack
The React To Indirect Fire and React To Air Attack
task frames are reactions that can be triggered
automatically when a platoon discovers it is under
attack from indirect fire or aircraft. React To Indirect
Fire lets a moving ground unit respond to an artillery
burst in the immediate area by accelerating. After a
period of no indirect fire, the unit slows to its
original pace. The React-Air task monitors enemy
aircraft activity and triggers reactive events when a
unit detects enemy aircraft or receives fire from them.
A ground unit scatters when it sees or receives an
impact packet from aircraft unless it is in a defensive
battle position.

3.1.6 Platoon Attack Bv Fire
The Attack by Fire task frame tells a unit to advance
and shoot at the enemy using alternating fire. A call
for indirect fire is reported by radio at the beginning
of the attack. A spot report is sent when the attack is
over.

3.1.7 Platoon Overwatch Movement
The Overwatch Movement task frame divides the
platoon into two functional groups; only one group
moves at a time. Whenever a group is traveling
along the route, the other group (referred to as the
support group) is executing an Hasty Occupy
Position task, monitoring the traveling section and
watching for enemy vehicles. This method of travel is
useful during reconnaissance missions. The
Traveling Overwatch task frame also divides the unit
into two functional groups; a traveling group that

moves out in front and a support group that follows
behind.

3.1.8 Platoon Assemble
The Assemble task frame instructs a moving platoon
to form a coil formation and then stop moving.

3.1.9 Platoon Hastv Occupy Battle Position
The Hasty Occupy Battle Position task frame is
perhaps the most complex ground task frame. When
the user assigns this frame to a platoon, he specifies a
battle position and an engagement area, which may be
a point, line or area. Based on the battle position and
the number of subordinates, ModSAF calculates both
the number of vehicles per segment (the battle
position consists of one or more line segments) and
the battle areas (areas where each vehicle searches for
cover positions). ModSAF assigns the unit
subordinates positions from one end of the battle
position to the other in an order that prevents vehicle
crossover when the vehicles travel to their positions.
When the unit arrives at the battle area, ModSAF
places the vehicles in covered (hull defilade) firing
positions along the battle position line. ModSAF
considers a vehicle's limits for angles of elevation and
depression when selecting a good cover position. For
example, a vehicle is not placed at a location where
underlying terrain prevents the gun from being
physically pointed at the enemy. If that location is
behind a tree line or building and no cover location is
found, the vehicle moves to a concealed (partially
hidden) location behind the tree line or building. The
vehicles also move to areas where they can maintain
visibility to the engagement area. Target Reference
Points (TRPs) can be supplied by the user or
automatically computed. Enemy vehicles detected
within the sector of fire determined by the left and
right TRPs are considered first priority targets.

Units executing this task frame may optionally
execute movement to an alternating fire position.
When a vehicle detects that it is receiving accurate
enemy fire, it may move from its primary firing
position to an alternate hull-defilade firing position.
When it does this, it first backs up to a fully hidden
position to mask the new location that it is about to
take up. In addition, vehicles have enemy awareness
during the execution of this task frame. As enemies
move in and out of the engagement area, vehicles will
recalculate the location of their covered primary and
alternate firing positions.

3.2 Company Behaviors

ModSAF supports companies of friendly and enemy
Tank, and Mechanized Infantry units. The following
sections list some of the behaviors of companies.

•rowflw^w.

3.2.1 Company March and Roadmarch
March in formation and Road March task frames can
be assigned to companies. These behaviors
decompose the company order into platoon march
orders for the subordinate platoons. During
movement, the extra vehicles (such as the company
commander, XO, and others) are functionally
organized into the platoons that stay in formation.
At the end of the route, the extra vehicles (the leaders)
revert to the task organization that the unit started
with.

3.2.2 Company Attack
In the Company Attack task frame, the company
advances in line formation to the objective with fire
permission set to "free". When the company reaches
the attack objective its vehicles occupy a battle
position at that location facing the direction of the
attack. The company can also stop before reaching
the objective and occupy a position if the number of
casualties is too high. This task frame is similar to
the Assault task frame for ground platoons.

3.2.3 Company Withdraw
When assigning the Company Withdraw task frame
to a ground company, the operator specifies to which
point the company can withdraw. ModSAF uses this
point to generate final withdraw points for each
platoon. Vehicles in the company that are not part of
a platoon are functionally organized to a platoon.
The platoons withdraw one at a time. When the
withdrawing platoon occupies position, the next
platoon withdraws, and so on, until the platoons
reach their final points.

3.2.4 Company Assembly Area
The Company Assembly Area task frame tells a
company to advance to, and then occupy, an assembly
area. When the operator assigns this task frame, he
specifies a position that a unit can assemble around.
The assembly area is a circle whose center is the
point supplied. Its default radius is 700 meters. The
company uses platoon battle positions which provide
360 degree coverage. ModSAF creates TRPs along
with the battle positions.

3.2.5 Company Hasty Occupy Battle Position
To use the Company Hasty Occupy Position task
frame, the operator supplies a battle position and
three TRPs: a left TRP, right TRP, and engagement
area TRP. ModSAF divides the battle position
among the platoons in the company. ModSAF then
creates left and right TRPs for each platoon. The
company commander and executive officer are
functionally organized into one platoon each. Each
platoon moves to its battle position and receives its
calculated left and right TRP with the unmodified
engagement area TRP.

3.3 Situation Awareness and Reports

All ModSAF units maintain situation awareness.
Individual vehicles apply the NVL acquisition model
(Courtemanche and Monday 1994) to detect enemy
vehicles. The detections of individual vehicles in a
unit are fused together by platoon and company
behaviors. Platoon leaders or company commanders
use this information to construct a situation
awareness overlay which contains the locations of
observed enemy fused into platoon- or company-sized
clusters. The operator has access to this graphical
overlay maintained by each unit under his control and
can examine the situational awareness of that unit.

The clusters of fused enemy observations drive the
sending of reports to the operator. The types of
reports supported include contact reports, spot reports,
and shell reports. These reports are available in a
message log at the operator's workstation. In
addition, these reports can also be sent as digital Inter-
Vehicular Information System (IVIS) messages which
can be received by the occupants of manned
simulators.

3.4 Individual Combatants

ModSAF now supports teams of individual
combatants. Two-man Stinger teams, which are
represented as two separate DIS entities, can engage
aircraft with the Stinger missile, while two-man
Javelin and Dragon teams can engage tanks with anti-
tank missiles.

3.5 Fire Support

ModSAF supports batteries of enemy and friendly
mortar, howitzer, and MLRS units which are capable
of delivering indirect fire. Command and control
between Fire Direction Centers (FDCs) and the fire
support units are modeled via the exchange of ASCII
encoded messages transmitted via DIS Signal PDUs.
FASCAM delivered minefields are also supported.
Counter Battery Radar can detect enemy artillery and
generate fire orders to engage the inferred location of
the enemy artillery units.

3.6 Air Defense

In addition to the Stinger teams, platoon-sized units
provide air defense in ModSAF. Threat vehicles such
as ZSU 23/4, SA-9, and 2S6 are supported, as well a
friendly Avenger unit which is based on HMMWV
trucks equipped with Stinger missiles. A Ground
Based Sensor (GBS) can provide early warning of
threat aircraft to the Avenger unit.

3.7 Combat Service Support

Platoons of combat service support vehicles give
ModSAF the ability to execute towing, resupply, and
repair behaviors. Towing is accomplished via the
experimental entity handover protocol proposed for
DIS 2.1. Resupply and repair is accomplished via the
DIS 2.0.3 resupply and repair PDUs. Both service-
station and tailgate resupply is supported, as well as
the cross leveling of supplies between vehicles.

3.8 FWA

ModSAF supports flights of A10, F16, and SU-25.
ground attack aircraft. These aircraft can fly in
formation using a contour flight mode and can
execute attacks on ground targets with missiles, guns,
and bombs. The ModSAF operator can specify
various types of attack geometries, deliveries and
entries.

3.9 RWA

ModSAF supports flights of enemy and friendly
rotary wing aircraft, including AH-64D Apache and
RAH-66 Commanche. Remote laser designation of
targets for the Hellfire missile is supported. Laser
designation makes use of the DIS Laser PDU. RWA
units can follow a route or orbit using low level,
contour, or nap of earth (NOE) movement techniques.
RWA units can Assemble, as well as execute a Hasty
Occupy Battle Position task frame. RWA units can
perform attacks using hover fire and running fire
techniques.

3.10 Specialized Systems

Many specialized weapon systems are supported in
ModSAF. The following sections describe some of
these systems and their behaviors.

3.10.1 LOSAT
To ensure compatibility for the A2ATD exercises, the
Line of Sight Anti-Tank (LOSAT) fire unit modeled
in ModSAF is representative of the "AGS quick fix"
LOSAT DIS Crew Station Simulator (DISCSS).
This LOSAT fire unit consists of a hybrid chassis
with Armored Gun System (AGS) dimensions with
M2 mobility and vulnerability. AGS-LOSAT sensor
configurations, AGS-LOSAT launcher/weapons
configurations and AGS-LOSAT fire controls are
supported. The sensors represented include the
primary sensor (FLIR & TV), IR secondary
observation sensor, and the driver and commander's
vision blocks. The weapon's cage assembly consists
of two turret mounted missile pods of six missiles
each (modeled as one cage of 12) and a coaxial
mounted 7.62mm machine-gun for local security
purposes. AGS-LOSAT fire controls are capable of

autotracking and engaging in groups of up to three
targets. The missile is representative of the Kinetic
Energy (KE) missile which is utilized in the AGS-
LOSAT variant.

The basic units provided are the section and platoon.
Each section consists of two LOSATs. In addition to
the basic units, a LOSAT augmented M2 company is
provided for experimentation. This unit consists of a
normal M2 reinforced company which has been
augmented by an appropriate slice of "Echo
Company" ("Echo Company" is the anti-armor
company in a mechanized infantry battalion). In this
case, two sections of LOSAT have been aggregated
into the M2 company so that they will maneuver as a
unit together. Movement and tactics are
accomplished by the taskframes which were
previously available to ground units in ModSAF.

3.10.2 NLOS
ModSAF supports an NLOS vehicle which consists
of a HMMWV with a NLOS missile launcher. The
NLOS vehicle can receive contact reports from ground
forces or a UAV to engage non-line-of-sight targets.

3.10-3 UAV
ModSAF supports a simplified unmanned air vehicle
(UAV) which can observe the battlefield and provide
targets to systems such as NLOS.

3.10.4 STAFF
The Smart Target Activated Fire and Forget (STAFF)
munition is a 120mm main gun round being
developed for the Ml Al and M1A2 man battle tanks.
STAFF is fired from the main gun at the intended
target. At some distance before the round reaches the
target, a radar in the front of the round begins
scanning the forward area. When a target enters the
radar field of view, the round tracks the target and fires
a submunition which is the primary kill mechanism
of the round. The seeker and submunition provide the
capability for STAFF to hit the target when the body
of the main round misses the target. ModSAF
implements this munition via an Army Materiel
Systems Analysis Activity (AMSAA) approved
methodology.

3.11 Manned Simulator Interoperability

In order to participate in DIS exercises, it is critical
that ModSAF interoperate with manned simulators.
The following are examples of new behaviors
developed to support manned simulator
interoperability.

3.11.1 Follow Simulator
The Follow Simulator task frame allows a platoon to
follow a simulator. The simulator and platoon are in

formation together. If the simulator deactivates or is
incapable of movement, the platoon will occupy a
position. If the simulator reactivates, and if it is
close enough to the platoon, the platoon will rejoin
it, otherwise the platoon will continue to occupy a
position. If the platoon is tasked away and then the
Follow Simulator task frame is resumed, if the
simulator is close enough to the platoon the platoon
will rejoin it, otherwise the platoon will occupy a
position. Cue fire allows vehicles that are
performing a follow vehicle to fire when that vehicle
fires.

3.11.2 Digital Communications
A number of efforts are underway to enhance
ModSAF for use in experiments exploring
digitization of the battlefield. As stated in section,
3.3, ModSAF units can supply digital reports to
manned simulators. In addition, messages are being
defined to allow digital communications between
manned AH-64D Apache Longbow simulators, RAH-
66 Commanche simulators, and ModSAF RWA
units. These messages include target coordination.

3.12 Mine/Countermine

The Improved Mine/Countermine Delivery Order is
extending ModSAF with improved models of
minefield effectiveness and counterobstacle
effectiveness, including minefield breaching and
bridge laying. This work has included the
development of the Full Width Mine Plow (FWMP)
and Armored Vehicle Launched Bridge (AVLB). The
ability to generate dynamic ditches in the terrain is
being explored, and the AVLB can be used to allow
armored units to overcome these obstacles.

3.13 Phenomenology

The ARPA/TEC sponsored Project Phenomenology
and the Dynamic Virtual Worlds projects have
extended ModSAF with environmental effects such as
battlefield smoke, temperature, illumination, and rain
(Schaffer 1994). This work has included the addition
of tactical behaviors such as launching smoke
grenades during a platoon withdraw task frame.
Additional work is proceeding on improving these
environmental models and adding signal flares and
vehicular dust.

3.14 User Interface & Missions

ModSAF has maintained a unified user interface for
operator control (Ceranowicz et. al. 1994). Operators
are able to construct and monitor missions via an
execution matrix paradigm. Immediate commands
can be rapidly issued via an Immediate Intervention
interface.

4. Software Development Process

The capabilities that have been added since ModSAF
version 1.0 have required an unprecedented amount of
development parallelism while maintaining system
integrity and software quality. The following
sections describe the software development process
that has succeeded in managing this effort.

4.1 Distributed Development Team

Figure 1 shows the locations of the development
teams that have contributed to the ModSAF baseline
since ModSAF version 1.0, the sites involved with
VV&A (AMSAA and TRAC), as well as the
sponsoring organizations (ARPA and STRICOM).
The use of a number of subcontractors has been
motivated by a desire to leverage existing ModSAF
and/or subject matter expertise, as well as
requirements to accelerate development schedule to
meet experiment requirements.

In addition to development that is directly integrated
into the ModSAF baseline, many ModSAF users are
extending ModSAF under independent efforts.

4.2 Frozen Interfaces & ECOs

The management of such a highly distributed software
development team requires a controlled software
engineering process. With so many different teams
that are developing and modifying software, there is a
tremendous risk of software chaos. If one team were
to modify software that another team depends on,
there is no guarantee that the combined efforts of each
team will be compatible.

It was decided early on that the only approach to solve
this problem would be to "freeze" all existing public
ModSAF software interfaces. The ModSAF coding
standards make clear distinction between which
interfaces are public and which are private. The
ModSAF software is divided into a large number of
layered software libraries. Each library advertises its
public interfaces via header files and on-line
documentation. These interfaces include data
structures, global variables, argument prototypes for
public functions, and return values of public
functions. These interfaces can be used by other
libraries that are layered above this library. It is these
public interfaces which are said to be frozen in
ModSAF. They are unable to be changed without an
orderly process, and each software development team
can depend on these interfaces as they write new
software capabilities.

NRaD TRAC
BBS WSMR

Interface VV&A

Loral
ADS

Architecture MIT
Networking

Terrain
GUI

CSS
Maneuver

SAIC \
FWA \

Loral ADS
sw

Development
Integration

TSI
Artillery
NLOS Loral

Vought
LOSAT

AMSAA
VV&A
A2ATD

ARPA
Orlando, FL

Loral
MWTB
Situation

Awareness
Reports

V&V Support

Loral ADST
Program

Management
Project Engineering

Architecture
RWA STRICOM

Figure 1: ModSAF Development Sites

Of course, the existing interfaces in ModSAF were far
from being perfect when the freeze went into effect.
For this reason, an Engineering Change Order (ECO)
process was established to control the required
changes to these interfaces. Each software developer
that wishes to change a public software interface must
publish the desired changes in advance via a
formalized ECO request form. This form documents
the nature of the change, a justification for making
the change, what existing libraries might be effected
by the change, and when the change is proposed to be
integrated into the ModSAF baseline. The ModSAF
Project Engineer is responsible for collecting,
reviewing, and coordinating all ECOs between the
software development teams. ECOs must be
approved and distributed to all development teams
prior to any modification of a public interface being
integrated into the ModSAF baseline.

It is typical for design discussions between interested
parties to precede the request and approval of ECOs.
Software designs are published by developers and
distributed to all software development teams via
electronic mail. This allows all developers to
comment on designs prior to implementation. ECO
requests are mailed electronically to the Project
Engineer, and are mailed electronically to all
developers once approved.

A simple database of all ECOs is maintained by the
Project Engineer, and the status of each ECO
(pending approval, approved, integrated) is carefully
tracked. A listing of all ECOs since the last release
is published in the Version Description Document
(VDD) that accompanies each software release.

4.3 Formal Integrations

In order to manage the rapid development between
multiple software development teams working in
parallel, an integration facility has been set up to act
as the developmental configuration management site.
The integration facility is co-located with the
majority of ModSAF software development personnel
in the Loral ADS headquarters in Cambridge, MA.
Over the course of the last year, the specific hardware
makeup of the integration facility has varied, but it
currently includes a GT100 based Stealth, 3 SGI
workstations, 1 Sun Sparc workstation, and 1 Mips
workstation connected via a private Ethernet. One
SGI workstation acts as the primary configuration
management host, and runs the Concurrent Versions
System (CVS) configuration management tool.

CVS provides the support for the rolling baseline
approach that characterizes current ModSAF
development. Multiple independent development
teams work in parallel from different baselines to
minimize the development schedule. Figure 2 shows
the types of overlapping development and integration
that are possible.

Figure 2: Rolling Baseline, Developer Perspective

This diagram shows three development teams, lettered
as A, B, and C, with their activity represented as
shaded bars. Each team originally starts off
development using a common baseline release, in this
case labeled 0. Team B is the first to integrate new
capabilities into the baseline, at the integration
labeled 1. Once that integration is complete, Team B
continues to do development, however the new
development is based on the newly integrated
capabilities. Team C integrates next, and they merge
new capabilities with the new baseline created at the
previous integration. Once Team C completes their
integration, they continues to do new development,
this time based on the newly merged baseline. Team
A finally integrates at the integration labeled 3, and
they must merge new capabilities with the baseline
established by Team C. At any given point in time,
there are 3 active baselines under development. In
one baseline development may be just starting, while
in another, development may be ready to be integrated
into the main line.

To support the integration facility, a dedicated
integration team manages all the integrations. The
integration team is responsible for maintaining the
main baseline and merging in new capabilities. From
the perspective of the dedicated integration team, the
baseline looks like Figure 3.

Figure 3: Rolling Baseline, Integration Team
Perspective

The integration team sees the main baseline being
constantly updated with new capabilities. The
integration team uses the CVS tool to help automate
the 3-way merge between the current baseline, the
original baseline that the integrating team's software
was based on, and the new updated baseline that the
integrating team brings to the integration facility.

Without proper testing, the rapid and constant
introduction of new capabilities into the main
baseline could jeopardize the quality of the ModSAF
software. In order to maintain quality, two types of
testing are done at each integration. First,
capabilities testing is performed to guarantee that
only robust completed capabilities are actually
integrated into the system. The capabilities tests
demonstrate that what is about to be integrated
actually works. Capabilities tests will typically
consist of interactive instructions for the integration
team to follow to exercise a new capability. The
capabilities tests are typically designed by the head of
the software team developing the capability, and the
tests are released as part of the ModSAF software
distribution.

The second type of testing that occurs at each
integration is regression testing. Regression testing
attempts to guarantee that no previously existing
functionality has been damaged by the integration of
the new capabilities. Regression testing consists of
well defined scenarios with repeatable results, as well
as portions of previously accepted capabilities tests.
Because of the great breadth of capabilities present in
ModSAF, it is impossible to perform a complete
regression test in the short time allocated for an
integration. Automated tests, as described in a
companion paper (Monday and Perneski 1995),
maximize the amount of testing done on the system.

In addition to the tests performed at each integration,
system benchmarking (Vrablik & Richardson, 1994)
is done to measure any changes in system
performance introduced by the new capabilities.
Changes in performance are closely monitored, and
any sudden decrease may force a reevaluation of the
implementations chosen for the new capabilities.

The serial nature of the integration facility makes it
the critical resource for software development. The
integration facility is generally always in use. Each
integration typically lasts 2-3 days, and there are
usually 2 integrations per week.

4.4 Software Releases

ModSAF releases currently follow a 3 month cycle.
Fortunately, due to the constant amount of testing
going on in the integration facility, a software release
is not as traumatic an experience as it once was. The
software is completely compiled from scratch at each
integration, so there is rarely any concern about the
ability to "cold start" a software build.

Two weeks prior to a release, the ModSAF software
goes through an extensive period of testing. Teams
are assigned to test each functional area, such as
ground vehicle tasks, artillery, rotary wing, etc.
During the course of testing, software defects are
logged into the defect tracking system, and testing
reports are generated.

During the testing process, periodic reviews of the
list of defects are performed to identify those defects
which should and can be addressed prior to the release.
Engineers fix the highest priority problems and
integrate them in mini "bug-fix" integrations during
the testing period. The last "bug-fix" integration slot
is typically a few days prior to the final release. Any
problems identified after this integration are noted in
the VDD.

In addition to the preparation of the software,
documentation is prepared for each release. All the
on-line documentation that comprises the
Programmer's Reference Manual (PRM) is converted
into PostScript format for placement on the release
tape. Also, final versions of the VDD are assembled,
including all the open and closed defects as well as all
the ECOs. Two documents are under constant update
through the development process. The first is the
Users Manual, which describes how to run the
ModSAF system. The second is the Functional
Description which documents all the ModSAF
capabilities. Final versions of these documents are
prepared for the final release.

During the release process, Quality Assurance (Q/A)
representatives review the process for adherence to the

established processes and test plans. The final release
software, on-line documentation, and hardcopy
documentation is delivered to Q/A for verification and
duplication prior to distribution.

4.5 Defect Tracking

A defect tracking system called GNATS is used
during the entire ModSAF development process.
GNATS is distributed by the Free Software
Foundation. It partially automates the tracking of
problems by organizing problem reports into a
database, notifying responsible parties of suspected
bugs, allowing support personnel to edit, query, and
report on accumulated bugs, and providing a reliable
archive of problems and fixes in the system. The
main component of GNATS are problem reports
(PRs) that are generated by ModSAF users as well as
ModSAF developers. PRs are organized in to
categories, prioritized, and distributed to responsible
engineers.

The list of open and closed PRs is published as part
of the VDD for every ModSAF release.

4.6 Software Distribution and User
Support

Once released, ModSAF software is distributed by the
Tactical Warfare Simulation and Technology
Information Analysis Center (TWSTIAC), which is
affiliated with the University of Central Florida's
Institute for Simulation and Training (1ST). The
TWSTIAC has a general charter of providing
scientific and technical information and support
services to government, industrial, and academic
communities in the area of modeling and simulation.
As part of this function, the TWSTIAC distributes
software of general interest to the DIS community.
Individuals and organizations with official
government sponsors can contact the TWSTIAC to
request distributions of ModSAF software.

In addition to supporting distribution via the
TWSTIAC, 1ST maintains a ModSAF electronic-mail
reflector which is used as a forum for ModSAF users
to ask questions, share insights, and have access to
the main body of ModSAF developers. Access to
this mail reflector is available to anyone in the DIS
community. Under the direction of STRICOM, Loral
engineers and support personnel coordinate and
answers questions posed on this reflector.

4.7 Software Statistics

Figure 4 shows the ModSAF system software growth
in lines of code and software libraries since ModSAF
version 1.0.

10

600

500

400

300

200

100

1 Libraries

• KSLOC
505

4R7 • •

468 I—1

451 —

t
395

n(, 4S 0

—

342

*-

one

112

9R;
30< 30$

32J

25£
26£ 266

215 M
22(M

0

1 N
1 c

1

>
M n M

0

d

d

S
A

1 c

1 •'

_•& M

0

d

1 M-
1 0
1 d 15C

0

d 1 d
S

s I

1 • S A S F 1 F S 1 S 1 A 1 F A

F

A

F

1 A
• • I -Hi 1 ^ '

1

1
0

1 2 1 t 1 1 1

1 0 , , I 1 • 2 1 B r 3 1 4
1 1 1 I I

CO ^r ^r *• * •* ^t ^t * "* * ^ If)
CD CD CD CD CD O) CD CD CD cr> CT> CD cr> ~~~. —^. -—, •— -^. •^^ *— -— ~*~. -—.. —-. •^ ~-^
o T— T- •* CM •,— i— T— CM •* f— CO CD
CM —^ -**. T~ •— -^ -^. -^. , —- "*+> "•*! ,—

1— C\J -*, m CD h» CO **» o ",_
CM -«*

CM CO co

Figure 4: ModSAF Software Statistics

S. VV&A & A2ATD

As part of the A2ATD program and other Delivery
Orders, ModSAF is continuing to undergo
verification, validation, and accreditation (VV&A). A
description of the types of V&V activity that has
occurred in ModSAF in support of the A2ATD
program can be found in Thomas (1995).

Under the Improved Mine/Countermine Delivery
Order, AMSAA, TRAC, and the US Army Engineer
School, Ft. Leonard Wood, will be performing
verification and validation of improved breaching
behaviors, mine effectiveness, and countermine
equipment being developed for ModSAF.

11

6. Conclusions and Future Work

There is no immediate end in sight to the amount of
additional future development in ModSAF. Work is
continuing in a BBS-ModSAF linkage. Additional
work in Combat Support/Combat Service Support
(CS/CSS) is about to begin development. Additional
work in Mine/Countermine development is
proceeding. Linkages with other constructive
simulations such as Eagle (Calder & Evans, 1994),
and CBS are under development. Future efforts to
model and incorporate additional Communication
Command & Control (C3) are likely.

Additional work under the sponsorship of ARPA is
using ModSAF as a tool for the development of next
generation networks, including multicasting, as well
as next generation protocols. This is in support of
ARPA's STOW efforts (Smith et. al. 1995; Calvin
et. al 1995).

As the ModSAF software has been distributed to a
large portion of the DIS community, a number of
researchers and experimenters have been using and
extending ModSAF software. The management and
maintenance of the many resulting efforts will prove
to be a critical challenge in the future of ModSAF.

7. Acknowledgments

This work is being supported by the USA Army
STRICOM ADST program under contract number
N61339-91-D-00O1-OO58.

8. References

Calder, R. B., Smith, J. E., Courtemanche, A. J.,
Mar, J. M. F., and Ceranowicz, A. Z. (1993).
"ModSAF Behavior Simulation and Control",
Proceedings of the Third Conference on
Computer Generated Forces and Behavioral
Representation, Orlando, FL: Institute for
Simulation & Training, pp. 347-356.

Calder, R. B., and Evans, A. E. (1994).
"Construction of a Corps Level CGF",
Proceedings of the Fourth Conference on
Computer Generated Forces and Behavioral
Representation, Orlando, FL: Institute for
Simulation & Training, pp. 487-496.

Calvin, J., Seeger, J., Troxel, G., & Van Hook, D.
(1995). "STOW Real-time Information Transfer
and Networking Architecture", Proceedings of the
Twelfth Workshop on Standards for the
Interoperability of Distributed Simulations,
Orlando, FL: Institute for Simulation &
Training.

Ceranowicz, A., Coffin, D., Smith, J., Gonzalez, R.,
and Ladd, C. (1994). "Operator Control of

Behavior in ModSAF", Proceedings of the
Fourth Conference on Computer Generated
Forces and Behavioral Representation, Orlando,
FL: Institute for Simulation & Training, pp. 9-
16.

Courtemanche, A. J., and Monday, P. (1994). 'The
Incorporation of Validated Combat Models into
ModSAF", Proceedings of the Fourth Conference
on Computer Generated Forces and Behavioral
Representation, Orlando, FL: Institute for
Simulation & Training, pp. 129-140.

Monday, P., and Perneski, J. (1995). "The Use of
Automated Regression and VVA Testing in
ModSAF", Proceedings of the Fifth Conference
on Computer Generated Forces and Behavioral
Representation, Orlando, FL: Institute for
Simulation & Training.

Schaffer, R. (1994). "Environmental Extensions to
ModSAF", Proceedings of the Fourth Conference
on Computer Generated Forces and Behavioral
Representation, Orlando, FL: Institute for
Simulation & Training, pp. 17-23.

Smith, J., Russo, K., Schuette, L (1995). "Prototype
Multicast IP Implementation in ModSAF",
Proceedings of the Twelfth Workshop on
Standards for the Interoperability of Distributed
Simulations, Orlando, FL: Institute for
Simulation & Training.

Thomas, J. Jr. (1995). "Verification and Validation of
Modular Semi-Automated Forces (ModSAF) in
Support of A2ATD Experiment 1", Proceedings
of the Fifth Conference on Computer Generated
Forces and Behavioral Representation, Orlando,
FL: Institute for Simulation & Training.

Vrablik, R., and Richardson, W. (1994).
"Benchmarking and Optimization of ModSAF",
Proceedings of the Fourth Conference on
Computer Generated Forces and Behavioral
Representation, Orlando, FL: Institute for
Simulation & Training, pp. 25-33.

9. Biographies

Since graduating from MIT with a S.M. in Electrical
Engineering and Computer Science in 1987 and a
S.B. in Electrical Engineering in 1986, Mr.
Courtemanche has worked in the Multiprocessor Lisp
group at Bolt Beranek and Newman (BBN) and in the
SAF group at Loral Advanced Distributed Simulation
(formerly BBN Advanced Simulation). At Loral, he
is a Senior Software Engineering Specialist and has
been Project Engineer for the ModSAF System
Development Delivery Order. Mr. Courtemanche has
been a major contributor to the architecture,
protocols, weapon systems modeling, and targeting
behaviors in ModSAF, Odin, TCE, and SIMNET
SAF. He works out of the Loral ADST office in
Orlando, Florida.

12

Andy Ceranowicz in the manager of the Semi-
Automated Forces group at Loral Advanced
Distributed Simulation. He has been working on
Distributed Interactive Simulation and Semi-
Automated Forces since 1986 when he joined BBN to
work on the ARPA Simulation Networking
(SIMNET) Project. Prior to his work at Loral, he
was a member of the technical staff at Draper
Laboratory working on expert systems and GPS
applications. Dr. Ceranowicz earned his PhD in
control theory from the Ohio State University.

13

The Distributed Interactive C3I Effectiveness (DICE) Simulation Project: An
Overview

Mike Davics and Carstcn Gabrisch
Information Technology Division

Defence Science and Technology Organisation, Salisbury
PO Box 1500

Salisbury, South Australia, 5108.

1. Abstract

The Defence Science and Technology
Organisation (DSTO) is currently tasked by the
Headquarters Australian Defence Force (HQADF) to
develop tools, through modelling and simulation, for
effectiveness studies of Command, Control,
Communication and Intelligence (C3I) systems.
Such tools must allow for the study of C3I systems at
the strategic, operational and tactical levels
including all services and joint forces. The primary
tool being developed is the Distributed Interactive
C3I Effectiveness (DICE) simulation in which
human players are complemented by artificial
agents. The DICE simulation environment will
provide a means of interfacing to lower level
battlefield simulations and war games which are
used to represent the overall military mission,
operation or battle. The impact of C3I aspects on the
overall mission will be used to gauge C3I system
effectiveness. This paper gives an overview of the
DICE simulation project and associated activities.

2. Introduction

As stressed in the Australian Defence White Paper of
1994 (AGPS 1994), effective Command, Control,
Communication and Intelligence (C3I) of Australia's
forces is fundamental to the successful conduct of the
Australian Defence Force (ADF), in any conflict or
peacetime activity. Accordingly, there is a drive to
identify and remedy the weaknesses of existing C3I
systems and to specify and work towards goal
architectures for the future. Having the ability to
study the effectiveness of existing and future military
C3I systems is essential to this process. The
approach adopted to carry out such studies is
dependent on a number of factors, including the level
of conflict to be considered, the availability of
technology and the cost of the implementation
(Fogg 1993). Information Technology
Division (ITD) of the Defence Science and
Technology Organisation (DSTO) is sponsored to

develop modelling and simulation tools to enable
such studies to be conducted.

A typical C3I system structure for the defence of
Australia might involve elements of the three
services and accommodate conflict at all levels. The
strategic level embraces the higher echelons of the
military and political organisations concerned and
hence addressing this level requires addressing
decision-making at lower (operational and tactical)
levels also. The C3I architecture can be pictured as a
complex network of nodes and links. The nodes are
typically centres of decision making; information
processing or filtering; information transfer, or
combinations of these. The links are the inter-node
communication channels that transmit information
of many forms. In a time of conflict, the C3I system
might be stimulated by intelligence concerning the
detection of potentially hostile enemy activity. This
would consequently cause the generation and
passage of internal information that might result in
changes in readiness and maybe, the deployment of
reaction forces. To study the effectiveness of military
C3I systems requires analysis of the impact of C3I
procedures and technologies on the overall military
mission concerned. The term mission is used here to
describe, for example, an operation, battle or
exercise.

The requirement on ITD is not to develop tools
specific to any particular military service or level of
conflict, but rather to create a general purpose suite
of tools, specific instantiations of which could be
used to address any particular study at hand. It was
decided that the main means of achieving this suite
of tools and the associated expertise would be
through the process of developing an interactive
simulation with some capability for remote
participation. This paper gives an overview of the
aims and current status of the Distributed Interactive
C3I Effectiveness (DICE) simulation and associated
developments.

15

3. General Requirements

The nucleus of the software tools being developed
under this task is an interactive simulation with
some distributive capability that enables
participation by a number of possibly remotely
located human players. Players might represent
individual, or groups of, commanders in a C3I
system or an aggregated representation of some other
C3I system entity. The interactive nature of the
DICE simulation will allow the decision-making
practices of real commanders to be injected and
accommodated. Such human players will need,
however, to be complemented by a number of
artificial ones (artificial agents) in a manner whereby
the two types can communicate.

Battle simulations and possibly war games will be
employed to address the tactical levels and will need
to be interfaced with the main simulation in order for
the represented C3I system to have impact on the
military mission concerned and hence allow
evaluation of the system's effectiveness. Matters that
need to be addressed by such interfacing include the
blending of spatial and temporal based battlefield
models with the message or information flow based
C3I simulation.

For flexibility, the simulation needs to be capable of
running in interactive and non-interactive modes and
have variable execution rate allowing real-time and
non real-time execution. A scenario generation
capability is required such that specification of a
scenario can be easily achieved by analyst-assisted
military personnel. An extensive analysis capability
is required to allow effectiveness evaluation to be
conducted; this might include a replay facility and
history and review capability.

4. Simulation Structure and Development

A typical scenario to be represented by the DICE
simulation can be regarded as centred about a
complex set of nodes and links that represents the
central C3I network. The real and artificial players
in the DICE simulation generally form the nodes of
this central network. In real C3I systems,
communications between nodes can take many forms
including both formatted and unformatted messages;
tables of data; graphical displays; and video images.
In the simulation, all forms of communication are
represented by the passage of formatted textual

messages which cither bear a direct resemblance to a
military message, or accompany or summarise
information of a different form. Having a standard
language, understandable to both humans and
machines, for information exchange is also a major
requirement in command and control systems of the
ADF. The Australian Defence FORmatted Message
System (ADFORMS) is the agreed standard for the
ADF and this standard has been chosen as a
foundation in the DICE project.

The central network can be considered to be
surrounded by an external environment or node that
encompasses any aspects that are not explicitly
represented in the central network but which,
nevertheless, form important contributions to the
scenario being addressed. What lies outside the
central network and what lies within depends on the
depth and breadth of the scenario being simulated.
The conceptual external node embraces such aspects
as enemy activity; battlefield information; and sensor
information which might be represented by
individual models, simulations or simple look-up
tables. Communication between the central
environment and the external node is again achieved
through the use of messages with the external node
injecting stimuli into the central network of the
scenario.

The overall structure, requirements and
developments to date of the DICE simulation are best
presented with reference to Figure 1 which is a
breakdown of the functional areas of the DICE
simulation environment. Indicated by the uppermost
row of this figure are the players in the simulation,
namely the simulation controller or analyst; artificial
agents; and human commanders. Peripheral units in
the DICE environment include any war games and
battle simulations that may be employed plus the
command support systems (CSS) that may be
required by the human players. Players plus
peripheral units are the nodes in the overall DICE
simulation, ie the central network plus the external
environment. The simulation is primarily being
developed in the ANSI 'C programming language
using Sun SPARCstations. The Ingres relational
database management system and associated utilities
also feature strongly, along with the declarative
language Prolog. The functional diagram is
addressed by the following sections.

16

BATTLE
SIMULATION 1

BATTLE
SIMULATION:

Figure 1: Functional diagram for DICE simulation environment

4.1 Simulation kernel

The simulation kernel is the main event-stepping
engine of the DICE simulation. The current
simulation is designed around two main events:
message submission, involving submission of a
message by a node for transmission; and message
reception, concerning the receipt of a message by a
node (Davies 1993). The kernel controls time
synchronisation and execution rate of the distributed
processes and can be configured such that the
simulation can run in real or non-real time. The
simulation is capable of being paused, advanced and
resumed as required by the simulation controller.

The kernel is centred around an Ingres database and
is capable of generic communication with all nodes
in the simulation. The communication architecture
associated with the simulation is illustrated in
Figure 2. Each node has an associated mailbox
through which it receives incoming messages;
outgoing messages are placed directly on the
simulation event queue for mailing to the intended

recipient. The mailboxes are Ingres database tables
which, through the use of database event features
that Ingres provides, allow event-driven message
reception and time-synchronisation. Interfacing
between the main DICE simulation and the
peripheral units is achieved through the use of
Peripheral Unit Interfaces (PUI), one for each
peripheral unit.

It should be noted that the communication
architecture outlined in this section is intended for
the DICE simulation alone and limited to locally
distributed processes. Remote participation by
human players and the interfacing to peripheral units
that are distributed geographically are expected to be
achieved through observation of international
Distributed Interactive Simulation (DIS) protocols.

The simulation is typically initiated by pre-scheduled
external stimuli and ends at a pre-set instant; when
there are no further events in the event queue; or
following a decision bv the simulation controller.

17

1 1

CONTROLLER AGENT 1 COMMANDER 1

(

A
I

A
,' i —

A
,' 1 .1

()

MAILBOX
CONTROLLER

C)

MAILBOX
AGENT 1

c)
MAILBOX

COMMANDER 1 -H
L _T k

y c \ L

E
V
E
N
T
S

DICE
SIMULATION

KERNEL

A

I
1 I 1 i

PERIPHERAL
UNIT INTERFACE

"RATCTKA/rCC 1

d 3 INPUT BATSIM
/CSSl

MAILBOX
OUTPUT 0 AJ isMI (J5i> 1 - 3

Figure 2: DICE simulation kernel and communication

4.2 Simulation control

The simulation control function refers to the ability
to define and represent a scenario, simulate it and
carry out analysis on that simulated scenario prior to,
during and after execution.

One feature of the scenario generator suite of tools
that has been developed is a general-purpose
graphics-based drawing environment ScenCenDraw
which enables the definition of an organisational
structure of network entities. The general-purpose
nature of this tool is such that a defined network can
be used for run-lime display and also as a front end
to other layers of the scenario generator
environment. ScenGenDraw can also be used for
graphical construction of the rules describing
artificial agent behaviour. Features of the scenario
generator include the ability to specify the
characteristics of nodes and links; allocate human
commanders as players; specify and assign artificial
agents; and establish the links with required
peripheral units.

The simulation controller or analysts can program
messages to be received by nodes, at given times in
the simulation, before the simulation is started. Such
events are referred to as independent external stimuli
since they are pre-scheduled and hence independent
of activities that occur whilst the simulation is
running (Davies 1993). Recent work allows the
controller to communicate with all players (real or
artificial) and to inject stimuli during run-time into
the simulation. The controller can secretly pretend to
be any one player and send messages to others if he
wishes to influence the simulation execution in that
way. The controller can pause, advance and resume
the simulation as needed.

Other developments include the ability to specify and
inspect the standard messages that apply in a
scenario. This is important to the simulation analyst
that assists with setting up the scenario to be
addressed. An analyst can inspect characteristics of
ADF ADFORMS messages that might apply in a
scenario but, more importantly, this facility gives the
ability to define custom ADFORMS-like messages.
This is important since there will be a need to
emulate many forms of communication (including

18

telephone, fax etc) for which ADF ADFORMS
messages might not exist.

4.3 Human commanders

The main function associated with the human
commanders that form players in the simulation, is
the ability to receive, create and submit messages
such that communication with the remainder of the
simulation is achieved. Preliminary Graphical User
Interfaces (GUT) have been established such that a
basic capability to create ADFORMS messages is
enabled; however, the eventual intention is to utilise
original or tailored versions of operational software
that provide such a capability to real-world
commanders. Hence, CSS will be used, as required,
by human players in the DICE simulation. It is
considered useful if human commanders have access
to some form of analysis capability and an example
of which is the ability to retrieve summary
information on their performance and impact after
simulation execution. Such a capability will be
achieved through the run-time, pre- and post-
simulation analysis facility.

4.4 Artificial agents

The main function associated with artificial agents in
the DICE simulation is similar to that of the human
players. The artificial agents need to be able to
communicate with the human commanders in a
common form, namely through a chosen textual
formatted message system. The artificial agents need
to be able to interrogate, recognise and react to such
messages and need to be adequately realistic
representations of the real-world agents that they
portray. The underlying assumptions associated with
such agents need to be easily conveyable to an
analyst or a military domain expert who may be
assessing the credibility of the artificial
representation.

Initial developments of artificial agents have
concentrated on simple and rule-based
representations but it is expected that they will
become more sophisticated as the full capabilities of
the artificial intelligence field are investigated. The
form of the rules needs to be such that an artificial
agent can be created from building blocks that
describe basic functions or roles that are not peculiar
to a given agent in a given scenario. Research has
been carried out into the suitability and use of Petri
nets in this area and this is the current technique that
is being employed in representing artificial agents in

the DICE simulation (Bowdcn ct. al. 1995). Each
agent, then, is a data-driven Petri net simulation and
development of a GUI environment for the
description and implementation of such agents has
commenced based on the SccnGcnDraw software.
This environment will also allow access to an
associated agent explanation and analysis capability
that has been developed using the declarative
programming language Prolog (Bowdcn et. al.
1995). Seamless integration of artificial and real
players, machine learning, and other areas of
artificial intelligence are all of relevance here.

4.5 Run-time, pre- and post-simulation analysis

This facility will allow interrogation and retrieval of
database information prior to, during and after
execution of a given scenario. Such a capability will
facilitate establishment of a scenario; run-time
communication; and post-simulauon analysis and
review. Post-simulation analysis includes inspection
of C3I system characteristics such as bottlenecks;
command and information flow parameters; and
effectiveness measures. The history and review
function must also provide the ability to select and
replay aspects of the simulation including analysis of
the impact of key commands or decisions made by
artificial or human players. Configuration of the
simulation kernel about an Ingres database will
facilitate establishment of a recording and analysis
system.

4.6 Peripheral units (battle simulations, war
games, CSS)

Tactical-level (eg battlefield) simulations are used to
represent activities that are external, or at a lower
level, to the main C3I simulation and help portray
the overall military mission concerned. Such
representations allow the impact of C3I aspects to be
gauged and hence their effectiveness determined. As
mentioned earlier, interfacing of peripheral units to
the main DICE simulation is achieved through PUI.
A standard shell architecture has been developed for
PUI which includes the concept of tassels which
relates to the PUI having a number of arms
emanating from it, the loose ends of which need to
be tied down when that PUI (and hence the
associated peripheral unit itself) is employed in
building a scenario. The tassels signify the different
categories of information that a peripheral unit can
supply to other nodes in the simulation. Tying of the
tassels specifies what entities in the simulation
require what information from the peripheral unit.

19

Peripheral units can broadcast all information to all
nodes if required, which may have particular benefits
(Miller 1992).

Although some CSS may be regarded as stand-alone
or off-line, generally the interfacing problems that
apply to battlefield simulations apply here also. CSS
are generally driven by real-world data which, in the
DICE environment, is simulated.

Investigations have been made into the feasibility of
interfacing selected tacucal-lcvel simulations and
CSS, for scenarios of immediate interest, with the
DICE simulation. An in-house developed air picture
simulation has been interfaced to and used to
demonstrate many of the concepts of the DICE
project including MOE evaluation. Current efforts in
this area include investigation of DIS procedures to
enable interfacing with units that are geographically
distributed.

5. Conclusions

The DICE simulation environment will permit a
thorough examination of current and proposed C3I-
rclated procedures and technologies within the
framework of simulated military missions. The aims
and current status of the DICE program have been
reported in this paper. Clearly, there are a number of
aspects of the program which are yet to be finalised.
However, an evolutionary approach has been adopted
and at each stage a functioning facility will be
available. The DICE activity includes future research
into a number of areas related to military C3I.
Appropriate measures of effectiveness will need to be
defined and battlefield and other models will be used
to assess these measures by reason of the impact of
C3I aspects on overall military missions.

A basic environment is currently established which
relies heavily upon a tightly orchestrated scenario
utilising a limited set of standard messages. Such
orchestration will be progressively relaxed as the
sophistication and capabilities of the artificial agents,
for example, increases. One of the main current
activities is to establish a library of peripheral units
that can be called upon as required and used to
address specific ADF requests.

6. Acknowledgements

The authors would like to thank Mr Jonas
Plumecocq for his assistance in simulation kernel
design and development

'Interactive C3I Simulation with
Synthetic Decision Makers",
XXXII US Army Operations

Fort Lee, Virginia,

7. References

Australian Government Publishing Service,
"Defending Australia", Defence White Paper,
Canberra, 1994

Bowdcn, F.D.J., Davies, M., DunnJ.M.,
"Representing role-based agents using coloured
Petri nets", Proc. 5lh CGF&BR Conf., Orlando,
Florida, May 1995

Davics,M., 'Strategic command, control,
communication and intelligence (C-^I) simulation
activities', Int. Cong, on Modelling and
Simulation, Perth, Australia, 6-10 December
1993

Fogg, D.A.B.,
Additional
Proceedings
Research Symposium,
October 1993

Miller.D.C, 'Interoperability issues for distributed
interactive simulation', Proc. Summer Computer
Simulation Conf., 1992, ppl015-1018

8. Authors' Biographies

Mike Davies is a research scientist with the Defence
Science and Technology Organisation in Australia.
He has a BSc(Hon) in applied mathematics and a
PhD in mathematical modelling. His research
interests are in the areas of military operation
research, mathematical modelling and computer
simulation.
(Tel: +61 8 259 6613; Fax: +61 8 259 6781;
EMail: MichaeI.Davies@dsto.defence.gov.au)

Carsten Gabrisch is a professional officer with the
Defence Science and Technology Organisation in
Australia. He has a BSc in applied mathematics. His
interests are in the areas of computer simulation over
a distributed network, relational databases and
mathematical modelling.
(Tel: +61 8 259 5314; Fax: +61 8 259 6781;
EMail: Carsten.Gabrisch@dsto.defence.gov.au)

20

Integrated Eagle/BDS-D: A Status Report

Robert W. Franceschini
Institute for Simulation and Training

3280 Progress Drive, Orlando FL 32826^-0544
rfrances@ist.ucf.edu

1. Abstract 2.3 Constructive+Virtual Simulations

Integrated Eagle/BDS-D was the first published
constructive+virtual linkage. The project demonstrated
the concept of linking the Eagle constructive simulation
with DIS/SIMNET using the Institute for Simulation
and Training's Computer Generated Forces Testbed
(1ST CGF Testbed). Ongoing work on this project has
continued to push into new territory by expanding the
capabilities of the 1ST CGF Testbed to accommodate
envisioned uses of this linkage and by studying and
proposing DIS standards for linking constructive and
virtual simulations. This paper reports the latest work
on the Integrated Eagle/BDS-D project.

2. Background

2.1 Constructive Simulations

Many constructive simulations, or wargames, represent
aggregate units in combat scenarios using discrete time
and space representations. Such simulations have
historically been used for analysis of tactics or weapons
effectiveness in large scale battles (for example, in
corps or division level battles). Some examples of
constructive simulations include BBS, CBS, and Eagle.

There are many simulations that are called constructive
simulations. Some are capable of representing
individual vehicle platforms. For our purposes, we are
specifically interested in constructive simulations
which do not represent individual vehicles; the smallest
representable units on such systems are typically
battalions or companies. However, many of the same
techniques used in dealing with these aggregate
constructive simulations are applicable to vehicle level
constructive simulations.

2.2 Virtual Simulations

Virtual simulations represent individual vehicle
platforms, dismounted infantry fireteams, or individual
human combatants as simulation entities using
continuous time and space. Such simulations are
traditionally used for small unit training in cooperative
maneuvers and close combat. Some examples of
virtual simulations include DIS and SIMNET.

A constructive+virtual simulation links a constructive
simulation with a virtual simulation. For a tutorial on
constructive+virtual simulations, see Franceschini
(1995b).

Many technical problems must be overcome to
successfully link constructive and virtual simulations.
Time and space are handled differently in constructive
and virtual simulations. Constructive simulations
typically are time-stepped, and the amount of time
required to process the actions during a time step is
usually not related to the simulation time elapsed
during the time step. However, virtual simulations are
expected to be real-time, so that the amount of time
required to process actions approximates the simulation
time elapsed. Constructive simulations usually have an
abstract terrain representation; they do not need a
detailed polygonal or elevation post database since
their smallest units are company-sized. However, since
virtual simulations model individual entities, they
require a much higher level of detail in their terrain
representation. These two differences between
constructive and virtual simulations are at the root of
most of the difficulties in linking these types of
simulations.

We will distinguish between units and entities in this
paper. A unit is an aggregate controlled by the
constructive simulation. An entity is an individual
vehicle platform, infantry fireteam, or individual
combatant controlled by the virtual simulation.

3. The Integrated Eagle/BDS-D Project

3.1 History of Integrated Eagle/BDS-D

The Integrated Eagle/BDS-D project began in 1992.
During the first phase of the project, several
interactions were implemented across the boundary
between constructive and virtual simulations:
disaggregation, aggregation, transfer of operations
orders and CGF operator intent, and indirect fire (Karr
1992) (Karr 1993). In addition, 1ST addressed the
problem of instantiating entities during disaggregation
so that both the formation template of the unit and the

21

terrain around the entities are considered (Franceschini
1992).

In the next phase, the Integrated Eagle/BDS-D project
team generalized and extended the system (Karr 1994).
The concept of disaggregation was generalized to
include disaggregations for units of any size (Karr
1994). The possible representations for units in the
virtual simulation were extended (the project
introduced the concept of pseudo-disaggregation)
(Root 1994). Indirect fire support was extended to
allow indirect fire from disaggregated artillery batteries
at units in the constructive simulation (Karr 1994).
Other results can be found in (Karr 1994).

3.2 New Work

Since the Fourth CGF Conference, several
improvements have been made in the Integrated
Eagle/BDS-D system. The focus of much of this work
has been in preparing the Integrated Eagle/BDS-D
system for use in the Aviation Testbed at Fort Rucker
AL. Since aviation scenarios have different
characteristics than ground scenarios, certain
modifications were required to have a meaningful
simulation. The underlying 1ST CGF Testbed's
capacity has been increased, the system has been
modified to allow its operation in DIS as well as
SIMNET, and new helicopter behaviors have been
developed.

New systems based on the ideas pioneered in the
Integrated Eagle/BDS-D project are being constructed;
1ST has participated in the design of these systems by
giving in-depth discussions of the details of the
Integrated Eagle/BDS-D system and by commenting on
strawman designs. The Integrated Eagle/BDS-D
project team has also begun an effort to survey
constructive+virtual systems and propose new DIS
protocol standard PDUs intended for linking
constructive simulations to DIS.

4. System Enhancements

4.1 Increasing the Capacity of the 1ST CGF
Testbed

One use for constructive+virtual simulations is to
extend the virtual battlefield by allowing small scale
virtual exercises to be played in the context of a large
scale constructive exercise. However, the small scale
exercise played in the virtual simulation must be large
enough to have meaning in the overall scenario. For
the air scenario to be used at Fort Rucker, 1ST
determined that the 1ST CGF Testbed needed to

support many more disaggregated vehicles than its
original implementation allowed.

The 1ST CGF Testbed runs on IBM-compatible
personal computers. Upon analysis of the 1ST CGF
Testbed, it was determined that the factor limiting the
number of vehicles supported by the system was the
amount of random access memory (RAM) available to
the program. Due to its implementation, the 1ST CGF
Testbed was limited to 640 kilobytes of RAM. 1ST
increased this limit by switching to a compiler that
supports a 32-bit flat-memory model. This increased
the number of vehicles the 1ST CGF Testbed could
support by nearly 300%. At this point, we believe that
the capacity of the 1ST CGF Testbed is now limited
only by the computational power of the host
computer's processor, not on memory limitations.

More information on the increase in capacity of the 1ST
CGF Testbed can be found in a companion paper
(Schricker 1995a). This paper gives more details on
the task and presents the results of performance
analyses of the 1ST CGF Testbed.

4.2 DIS Compliance

A long term goal of the Integrated Eagle/BDS-D
project has been to transition the system to DIS
compliance. During the last year, the necessary
modifications were made to the system to allow it to
participate in exercises using the DIS 2.0.3 protocol
standard. Because of the design of the system, the
pieces affected were the 1ST CGF Testbed, including
the Eagle CGF Manager, and the SIU (See (Karr 1994)
for a discussion of the architecture of the Integrated
Eagle/BDS-D system).

Converting the 1ST CGF Testbed to the DIS protocol
was a simple matter. The 1ST CGF Testbed's design
allows different network protocols to be swapped easily
(as a link-time option). Since a module containing the
DIS protocol was already implemented at 1ST, the
conversion process consisted of building the executable
code and performing some small testing and debugging
tasks (no new code was required).

Converting the Eagle CGF Manager and the SIU to the
DIS protocol was a bit more involved. The
Interoperability Protocol used for communications
between the Eagle CGF Manager and the SIU was
switched from broadcast to point to point. Application
specific point to point communications are allowed by
the DIS protocol standard.

22

The most interesting DIS protocol issue that was
handled in this conversion was the method of
representing aggregate units in DIS. In SEMNET,
Vehicle Appearance PDUs are capable of representing
aggregate units (since echelon information is encoded
in the PDUs). Therefore, the original SIMNET
implementation of the system broadcast Vehicle
Appearance PDUs on the network to represent the
position and composition of aggregate units under
Eagle's control. However, the Entity State PDU in DIS
does not support echelon information. Further, the
Aggregate Protocol in DIS was experimental at the
time of this conversion, and was judged to be
insufficient for the purposes of the Integrated
Eagle/BDS-D system. To solve this problem, the
Integrated Eagle/BDS-D system used an application
specific message type to transmit aggregate unit
information to the 1ST CGF Testbed components on
the DIS network. As the DIS Aggregate Protocol
evolves, we plan to use it for this purpose.

4.3 Helicopter Behaviors

The 1ST CGF Testbed was developed concentrating
almost exclusively on land combat (Smith 1992). As a
result, behaviors for helicopter platforms are less
sophisticated than behaviors for land platforms.
Examples of these limitations were quickly discovered
when the Integrated Eagle/BDS-D system transitioned
to an air scenario. In early interactions with US Army
soldiers in manned Apache simulators, the CGF
helicopters were unable to fly realistically close to the
terrain at high speeds. The 1ST CGF Testbed was
enhanced to allow the CGF helicopters to fly more
realistically. More information about the algorithm
developed and the results obtained from this work can
be found in a companion paper (Schricker 1995b).

5. Installations and Demonstrations of the System

5.1 Fort Rucker's Aviation Testbed

The Integrated Eagle/BDS-D system was installed for
the first time at Fort Rucker's Aviation Testbed during
July 1994. A first-cut scenario was demonstrated for
MG Robinson of Fort Rucker. This scenario
demonstrated the capabilities of the Integrated
Eagle/BDS-D system, including the ability to include
manned helicopter simulators as part of disaggregated
units. Many of the system enhancements described in
Section 4 came as a result of experiences with this first
installation.

The latest version of the Integrated Eagle/BDS-D
system was installed at Fort Rucker during February

1995. This version of the software included the
capacity and helicopter behavior enhancements
discussed in section 4 (the Aviation Testbed is a
SIMNET facility, so the Integrated Eagle/BDS-D
system that was installed used the SIMNET protocol).
This new system was demonstrated for the Assistant
Secretary of Defense and for MG Adams.

5.2 I/TTSEC

The Integrated Eagle/BDS-D system participated in the
DIS Interoperability Demonstration at the
Interservice/Industry Training Systems and Education
Conference (I/TTSEC) in late 1994. The most
significant technical results of this demonstration were
that the DIS version of the Integrated Eagle/BDS-D
system (described in Section 4.2) passed the rigorous
DIS compliance testing required of all participants and
that the capacity increase of the 1ST CGF Testbed
(described in Section 4.1) allowed the system to handle
a simulation load of approximately 30 disaggregated
entities with a network load of approximately 100 total
entities.

6. Extensions of Integrated Eagle/BDS-D

6.1 New Constructive+Virtual System

A testament to the success of the Integrated
Eagle/BDS-D project is that the general architecture
developed on this project is the basis for another
constructive+virtual simulation: Corps Level
Computer Generated Forces. The Corps Level
Computer Generated Forces project links Eagle with
DIS using ModSAF as the CGF system; it is described
in (Calder 1995a) and (Calder 1995b).

6.2 Survey of Constructive+Virtual Simulations

1ST has begun an effort to learn about and catalog
existing constructive+virtual simulations. The goals of
this work are to provide the simulation community with
a survey of the work that has been done and to draw
some generalizations that can be used to standardize
the process of linking constructive and virtual
simulations. The initial results of the survey are
available in a companion paper (Kraus 1995); 1ST is
still collecting information about other
constructive+virtual linkages to be included in future
versions of that paper.

As part of this work, 1ST has begun examining the
existing constructive+virtual simulations and the DIS
protocol in an effort to determine whether new PDUs
should be added to the DIS protocol to standardize the

23

integration of constructive simulations into DIS
(Franceschini 1995a).

6.4 Spreading Disaggregation

Finally, the Integrated Eagle/BDS-D project team has
considered one problem that is common in
constructive+virtual linkages: the problem of spreading
disaggregation. Disaggregation can be triggered in
many different ways (see (Franceschini 1995b) for
examples of disaggregation triggering mechanisms);
ideally, the constructive+virtual simulation should
trigger disaggregation automatically and dynamically
during a scenario. However, currently proposed
automatic and dynamic disaggregation triggers suffer
from the fact that, in certain conditions, they can cause
disaggregation of an undesirably large number of units;
this is called spreading disaggregation. More
information about spreading disaggregation can be
found in a companion paper (Petty 1995).

7. Conclusions

After demonstrating the concept of linking constructive
and virtual simulations, the Integrated Eagle/BDS-D
project has pushed forward in two directions. First, the
project is preparing for the use of constructive+virtual
simulations in training and analysis activities. Second,
the project seeks to standardize the methodologies
developed for linking constructive and virtual
simulations to make it easier for future systems to be
developed.

Constructive+virtual simulations are viewed as a
solution to a current limitation of DIS exercises: the
network of simulators is incapable of supporting very
large scale exercises. They are also viewed as a new
and powerful tool for conducting analytic studies, and
as a way to bring legacy systems into the DIS
environment. As a result, many new
constructive+virtual simulations are being built.
Integrated Eagle/BDS-D is building a path for
designers of those systems to follow.

8. Acknowledgment

This research was sponsored by the US Army
Simulation, Training, and Instrumentation Command
(STRICOM) and by the US Army TRADOC Analysis
Center as part of the Integrated Eagle/BDS-D project,
contract number N61339-92-K-0002. The survey of
constructive+virtual linkages was sponsored by the US
Army STRICOM as part of the Signal
Intelligence/Electronic Warfare project, contract

number N61339-93-C-0091. That support is gratefully
acknowledged.

9. References

Calder, R.B., Peacock, J.C., Panagos, J., and Johnson,
T.E. (1995a). "Integration of Constructive,
Virtual, Live, and Engineering Simulations in the
JPSD CLCGF', Proceedings of the Fifth
Conference on Computer Generated Forces and
Behavioral Representation, Institute for
Simulation and Training, Orlando FL, May 9-11
1995.

Calder, R.B., Peacock, J.C., Wise, B., Stanzione, T.,
Chamberlain, F., and Panagos, J. (1995b).
"Implementation of a Dynamic
Aggregation/Deaggregation Process in the JPSD
CLCGF', Proceedings of the Fifth Conference on
Computer Generated Forces and Behavioral
Representation, Institute for Simulation and
Training, Orlando FL, May 9-11 1995.

Franceschini, R.W. (1992). "Intelligent Placement of
Disaggregated Entities", Proceedings of the 1992
Southeastern Simulation Conference, Society for
Computer Simulation, Pensacola FL, October 22-
23 1992, pp. 20-27.

Franceschini, R.W. and Petty, M.D. (1995a). "Status
Report on the Development of PDUs to Support
Constructive+Virtual Linkages", Proceedings of
the 12th Workshop on Standards for the
Interoperability of Distributed Simulations,
Institute for Simulation and Training, Orlando FL,
March 13-17 1995.

Franceschini, R.W. and Petty, M.D. (1995b). "Linking
Constructive and Virtual Simulation in DIS",
Proceedings of the SPIE International Symposium
on Aerospace/Defense Sensing & Control and
Dual-Use Photonics, Orlando FL, April 17-21
1995.

Karr, C.R., Franceschini, R.W., Perumalla, K.R.S., and
Petty, M.D. (1992). "Integrating Battlefield
Simulations of Different Granularity",
Proceedings of the 1992 Southeastern Simulation
Conference, Society for Computer Simulation,
Pensacola FL, October 22-23 1992, pp. 48-55.

Karr, C.R., Franceschini, R.W., Perumalla, K.R.S., and
Petty, M.D. (1993). "Integrating Aggregate and
Vehicle Level Simulations", Proceedings of the
Third Conference on Computer Generated Forces
and Behavioral Representation, Institute for
Simulation and Training, Orlando FL, March 17-
19 1993, pp. 231-239.

Karr, C.R. and Root, E.D. (1994). "Integrating
Aggregate and Vehicle Level Simulations",
Proceedings of the Fourth Conference on

24

Computer Generated Forces and Behavioral
Representation, Institute for Simulation and
Training, Orlando FL, May 4-6 1994, pp. 425-
435.

Kraus, M.K., Stober, D.R., Foss, W.F., Franceschini,
R.W., and Petty, M.D. (1995). "Survey of
Constructive+Virtual Models", Proceedings of the
Fifth Conference on Computer Generated Forces
and Behavioral Representation, Institute for
Simulation and Training, Orlando FL, May 9-11
1995.

Petty, M.D. and Franceschini, R.W. (1995).
"Disaggregation Overload and Spreading
Disaggregation in Constructive+Virtual Linkages",
Proceedings of the Fifth Conference on Computer
Generated Forces and Behavioral Representation,
Institute for Simulation and Training, Orlando FL,
May 9-11 1995.

Root, E.D. and Karr, C.R. (1994). "Displaying
Aggregate Units in a Virtual Environment",
Proceedings of the Fourth Conference on
Computer Generated Forces and Behavioral
Representation, Institute for Simulation and
Training, Orlando FL, May 4-6 1994, pp. 497-
502.

Schricker, S.A., Tolley, T.R., and Franceschini, R.W.
(1995a). "Benchmarking and Optimization of the
1ST CGF Testbed", Proceedings of the Fifth
Conference on Computer Generated Forces and
Behavioral Representation, Institute for
Simulation and Training, Orlando FL, May 9-11
1995.

Schricker, S.A., Franceschini, R.W., Petty, M.D., and
Tolley, T.R. (1995b). 'Terrain Avoidance for
CGF Helicopters", Proceedings of the Fifth
Conference on Computer Generated Forces and
Behavioral Representation, Institute for
Simulation and Training, Orlando FL, May 9-11
1995.

Smith, S.H., Karr, C.R., Petty, M.D., Franceschini,
R.W., Wood, D.W., Watkins, J.E., and Campbell,
C.E. (1992). "The 1ST Semi-Automated Forces
Testbed", Technical Report IST-TR-92-7, Institute
for Simulation and Training, February 28 1992.

10. Author's Biography

Robert W. Franceschini is a Principal Investigator at
the Institute for Simulation and Training. He currently
leads the Integrated Eagle/BDS-D project at 1ST. Mr.
Franceschini earned a B.S. in Computer Science from
the University of Central Florida; he is currendy
pursuing an M.S. in Computer Science at UCF. His
research interests are in simulation, graph theory, and
computational geometry.

25

Simulated Intelligent Forces For Air:
The Soar/IFOR Project 1995

John E. Laird,1 W. Lewis Johnson,2 Randolph M. Jones,1 Frank Koss,1 Jill F. Lehman,3

Paul E. Nielsen,1 Paul S. Rosenbloom,2 Robert Rubinoff,3 Karl Schwamb,2

Milind Tambe,2 Julie Van Dyke,3 Michael van Lent,1 and Robert E. Wray, III1

1 Artificial Intelligence Laboratory

University of Michigan

1101 Beal Ave.

Ann Arbor, MI 48109-2110
laird@umich.edu

2Information Sciences Institute

University of Southern California
4676 Admiralty Way

Marina del Rey, CA 90292
rosenbloom@isi.edu

3Ccmputer Science Department
Carnegie Mellon University

Pittsburgh, PA 15213
jef@cs.cmu.edu

1 Abstract

For the last three years, the Soar/IFOR
group has been developing intelligent forces for
distributed interactive simulation environments.
Since early 1994, our efforts have been focused on
developing computer generated forces for air mis-
sions including both fixed wing and rotary wing
aircraft. This paper reviews the current state of
the Soar/IFOR project and discusses the results
of a preliminary trial of our agents in STOW-E,
a precursor to STOW-97.

2 Introduction

The goal of the Soar/IFOR project is to de-
velop human-like synthetic agents for populating
interactive distributed simulation environments.
In contrast to the standard semi-automated forces
(SAF) approach, where it is assumed that some
higher-level authority, such as a human or a com-
puterized command force (CFOR), will be re-
sponsible for all decisions requiring judgement,
our approach is to endow all entities with knowl-
edge and decision making abilities similar to those
found in humans performing similar tasks. Our
hypothesis, confirmed in part by our participation
in a large scale simulated exercise called STOW-
E, is that building intelligent forces provides a
payoff in terms of increasing the fidelity of the
agents' behavior, while decreasing the complex-
ity of commanding the agents.

From 1992 through early 1994, our efforts were
focussed on research and development for be-

yond visual range air-to-air combat leading to
the creation of TacAir-Soar [Jones et al., 1993;
Rosenbloom et al., 1994; Tambe et al., 1995a].
In early 1994, we broadened our horizon signif-
icantly, and we are now working on developing
automated synthetic pilots for the majority of air
missions flown in the U.S. military. The var-
ious missions include air-to-air (defensive com-
bat air patrols, sweeps), air-to-ground (close air
support, interdiction, strategic attack), air-to-
surface, rotary wing (anti-armor), as well as some
support missions (refueling, resupply, etc.). We
are also developing additional agents, such as air
and ground controllers, that communicate with
the agents flying in planes and helicopters during
their missions. We will refer to all the agents
being developed by the Soar/IFOR project as
Air-IFOR agents, while TacAir-Soar refers to the
agents that fly tactical fixed wing aircraft.

During the last year, we have made progress
on many of these missions, and in this paper we
will review all aspects of the existing Soar/IFOR
agents, including: the interaction between Air-
IFOR agents and DIS, the design of Air-IFOR
agents, their capabilities, the interactions be-
tween multiple Air-IFOR agents, and the partic-
ipation of Air-IFOR agents in STOW-E.

3 Interaction with DIS

Since the inception of the Soar/IFOR project,
our goal has been to create an abstract interface
layer between Air-IFOR agents and the underly-
ing simulation (DIS) environment. We call this

27

the "virtual cockpit" abstraction, meaning that
Air-IFOR agents should have an interface that
supports the types of interactions a pilot has in
the cockpit of a plane or helicopter [Schwamb et
al., 1994]. Thus, Air-IFOR agents are isolated
from the details of the underlying simulation envi-
ronment, network protocol, plane dynamics, sen-
sor simulation, etc. Currently, we use ModSAF
[Calder et al., 1993] as the underlying software
which provides connectivity to the DIS environ-
ment as well as simulations of the vehicle dynam-
ics, sensors, weapons, and communication (radio)
systems. To support the virtual cockpit, we have
added C code, which defines a Soar/ModSAF In-
terface (SMI) [Schwamb et al., 1994]. The SMI
makes all of the appropriate calls to the underly-
ing ModSAF functions so that Air-IFOR agents
get access to the appropriate sensor and weapons
systems. The SMI does not use ModSAF tasks
or taskframes, but instead relies on lower level
functions which gives Air-IFOR agents finer-grain
control of their own behavior.

Air-IFOR agents are built within the Soar ar-
chitecture [Laird et al., 1987; Laird and Rosen-
bloom, 1994; Rosenbloom et al., 1991; Rosen-
bloom et al., 1993]. Soar, the SMI, and Mod-
SAF are integrated (within the same Unix pro-
cess) so that each Soar/IFOR agent gets "ticked"
during the simulation cycle. Using this arrange-
ment, we can run multiple, independent agents
on a single Unix workstation, as well as having
agents on many different machines — although a
single agent is not distributed across multiple ma-
chines. Air-IFOR agents do not share data except
through explicit communication using simulated
radios.

As part of building the SMI, we have ex-
tended the standard suite of ModSAF sensors and
weapons, adding such devices as a CCIP (con-
tinuously computed impact point) which displays
where a bomb will hit if released, a waypoint com-
puter which displays the appropriate heading to
fly to the next waypoint in a flight plan, air-to-
surface missiles (such as the Exocet), and a prim-
itive form of precision-guided munitions.

One result of our development has been the
recognition that the closer we model the types
of information available to humans, not at the
level of visual perception, but instead at the level
of symbolic data, the easier it is to model the
behavior of the humans. For example, we discov-
ered that creating a waypoint computer and the
CCIP greatly reduced the reasoning required by
the Soar agents because they no longer had to re-
spond to every change in their position relative to
a waypoint or target. Instead they could respond
to the changes in the heading suggested by the
waypoint computer or CCIP.

A problem we foresee in the future is the man-

agement of many Soar/IFOR agents during a pro-
tracted exercise. The problem is not in terms of
command and control (covered in the section on
multiagent interactions), but is in terms of man-
aging the creation, reuse, and destruction of Air-
IFOR agents on many different workstations. To
this end, as well as to support cleaner interfaces
to Soar agents, we have integrated Soar with Tel
[Ousterhout, 1994], a scripting language, that will
help support agent management across many ma-
chines.

4 Agent Design

The overall design of Air-IFOR agents has not
changed significantly over the last year, although
it has been refined and augmented with new tools.
Nor have the basic requirements of Air-IFOR
agents changed. They continue to be the follow-
ing:

1. Encode large bodies of knowledge about rel-
evant aspects of the world, including tactics,
doctrine, sensors, weapons, etc.

2. React quickly to the environment, such as
the behavior of enemy planes, communications
from other friendly agents, and changes in ter-
rain being traversed.

3. Determine the tactically relevant features of a
complex, dynamic environment.

4. Coordinate behavior with other agents.

5. Use minimal computational resources.

6. Deliberately plan aspects of missions not spec-
ified in orders.

4.1 Method and Approach
All of the Soar/IFOR agents are developed within
the Soar architecture. Soar has its roots in early
Al symbolic systems such as LT [Newell and Si-
mon, 1956], and GPS [Ernst and Newell, 1969], as
well as rule-based systems, such as OPS5 [Forgy,
1982]. Soar supports the above requirements by
providing two integrated levels of computation:
deliberate, sequential operators within problem
spaces, and automatic parallel rules. In terms
of the tasks that have to be performed by Air-
IFOR agents, it is easiest to think in terms of
the first level, operators. We make the claim that
sequences of deliberate operators are the most ap-
propriate way to model the second to second be-
havior of a pilot (or any human for that matter).
Example operators include flying a mission, pick-
ing a control point to fly to, intercepting a ban-
dit, entering a waypoint into the plane's waypoint
computer, deciding which missile to fire, physi-
cally selecting that missile, pushing the fire but-
ton, and so on. Some of these are purely mental
operators, such as deciding which missile to se-
lect, while others include physical actions. Many

28

of these operators cannot be performed directly as
a single act, but instead must be decomposed into
subgoals where finer-grain operators are selected
and applied. For example, the act of intercepting
a bandit is decomposed into many different op-
erators, such as achieving proximity, employing
weapons, and so forth.

Thus, Soar organizes the doctrine and tactics of
flying missions in planes and helicopters in terms
of hierarchies of operators. For a given opera-
tor that the agent is trying to pursue, such as
an intercept, the operators used to achieve it are
grouped in terms of problem spaces. They are
called problem spaces because their constituent
operators determine the space of problems that
can be solved. Operators can be shared among
more than one problem space. For example set-
ting the waypoint computer is used in flying
routes, as well as flying BARCAPs. Other, so-
called, floating operators, are available in every
active problem space. Floating operators such as
operators that detect changes in a bogey's activ-
ity, are very sensitive to changes to the environ-
ment and usually need to be selected soon after
they become relevant. More generally, the hierar-
chical and floating operators can be seen as at op-
posite ends of two dimensions: sensitivity to the
agent's current goals, and sensitivity to the cur-
rent situation. All operators must be sensitive to
both concerns, but floating operators emphasize
reacting to the current situation (within the con-
text of the current goals), while hierarchical oper-
ators emphasize responding to the current goals
(within the context of the current situation).

Within a subgoal, local situational information
is held in the subgoal's state. Each subgoal has
access to all of the state information in its super-
goals, and the state of the top goal contains all
the data used to fly a mission, including all sensor
data, the agent's interpretation of the current sit-
uation, a description of the current mission, data
on other agents, etc.

The hierarchical operator structure provides
the necessary framework for encoding knowledge
and organizing the behavior of Air-IFOR agents;
however, it alone is insufficient to provide flexibil-
ity and reactivity. What is needed is the ability
to dynamically propose, select, and apply the op-
erators that are appropriate for the current situa-
tion. This is done in Soar through its underlying
rule-base system, which directly implements the
selection, application, and termination of opera-
tors described above. Thus, there are rules which
test the current situation and propose operators,
rules which compare proposed operators and sug-
gest preferences between operators, rules which
test that tin operator has been selected and then
performs some aspect of the operator, and rules
that test that all aspect of an operator have been

completed, and signal that the operator is fin-
ished. The actual selection of operators is not
done directly by individual rules, but by a deci-
sion procedure, which selects an operator based
on all relevant preferences.

Most rule-based systems use a conflict-
resolution scheme to select a single rule to fire
on each cycle. However, rules from these systems
map more directly onto Soar's operators, which
are the locus of deliberate activity in Soar, and
where selection is controlled by preferences and
the decision procedure. Soar's rules are more like
an associative memory, where the information in
actions of rules is recalled whenever the condi-
tions of the rules match. Thus to retrieve all infor-
mation relevant to the current situation, the basic
cycle is to fire all rules that match the current sit-
uation, and continue firing until quiescence. Dur-
ing this rule firing phase, rules to implement the
current operator are firing, as well as rules propos-
ing new operators. At quiescence, assuming the
current operator is finished, a decision is made
to select a new operator based on the available
preferences, and the cycle begins again. If the
current operator cannot be finished, possibly be-
cause it requires problem solving in a subgoal, a
subgoal will be created automatically, and then
rules sensitive to the subgoal will fire to suggest
appropriate operators. When a rule detects that
the original operator is finally complete (or should
be abandoned), it will fire and cause a new op-
erator to be selected and the immediate subgoal
(and any additional subgoals) will be automati-
cally removed. Soar is integrated with ModSAF
so that one decision is made for each agent during
each clock tick of the simulation, and thus 2 to 15
decisions are made in each Air-IFOR agent each
second.

4.2 Infrastructure

In maintaining a rule-based system, the rules
must be organized so that it is easy to find rules,
not only by their name, but also by their role in
producing behavior. For the Soar/IFOR agents,
we have mapped the hierarchical structure of the
operators onto the hierarchical structure of the
Unix file system. Thus, each goal (or subgoal)
has its own directory, and within that directory
there are files for each of the operators, plus a
file for loading in those operator files. For cases
where rules are not shared across agents, we have
a dynamic load facility that loads only the subset
of the code that is relevant to the current agent's
vehicle and mission.

Our lowest-level documentation of the problem
space, operators, and rules is also organized in the
same hierarchical file structure with direct links
from the documentation to the code [Koss and
Lehman, 1994]. A higher level of documentation,

29

using the terminology and structure of our do-
main experts, links into the problem space docu-
mentation to currently support a limited form of
validation. All of our documentation is in HTML
and it can be accessed through viewers such as
Mosaic and Netscape.

To support the creation of the code and doc-
umentation with our conventions, we have cre-
ated the Soar Development Environment (SDE)
[Hucka and Laird, 1995], which is an extension to
Emacs. SDE has a template language that can
be used to automatically generate all of the nec-
essary directories, code, and documentation files
when new operators are created. SDE also pro-
vides many features to aid in debugging, such
as automatic finding of files in which rules are
stored, point and dick commands for common
functions, and general search facilities for the
rules.

4.3 Current Status and Lessons Learned

The current Air-IFOR agents have a combined
total of approximately 320 operators, with a total
of 3,100 rules. Individual agents have between
1,130 and 2,550 rules depending on their missions.
These counts do not include our natural language
or debriefing systems, which by themselves have
substantial numbers of rules.

One of the challenges in building the agents has
been to maintain the computational efficiency of
the system as we add new capabilities. The prob-
lem is not that Soar slows down as the sheer num-
ber of rules increase (research indicates that Air-
IFOR agents may be able to grow to even a mil-
lion rules without this being an issue [Doorenbos.
1994]), but instead the problem is that it is easy
to write rules that fire every time some input data
changes (such as when the current position of the
plane changes). As a result, we closely monitor
rule firings in order to identify costly rules, and
then attempt to rewrite them in order to decrease
their cost. In a few cases, we have discovered
that by removing a computation from Soar that
is done in the cockpit for a pilot, such as with the
waypoint computer and the CCIP, we have been
able to drastically reduce the computational over-
head in Soar.

During agent development, we are able to run
6-10 agents on a single 150MHz 4400 SGI Indy.
However, one of the lessons we learned from
STOW-E is that we are limited to around 4
agents when there are large numbers of entities
on the network. This is because of overhead in
both ModSAF and the Soar agents that results
from the processing of large numbers of entities.
In response, we expect to put more emphasis
on focusing attention on only the most impor-
tant entities at all levels of processing, as well
as to continue research on efficient matching of

rule-based systems [Acharya and Tambe, 1993;
Kim and Rosenbloom, 1993].

5 Agent Capabilities

Although Soar provides the basic architecture
for building Air-IFOR agents, our agents are more
than a large collection of rules that directly en-
code doctrine and tactics. They must also have
a many cognitive capabilities, some of which are
directly related to military flying such as follow-
ing a flight plan, situational awareness, planning
attacks, employing weapons, and managing fuel,
while others are more general cognitive capabil-
ities, such as communicating with other agents,
modeling the behavior of other agents, being able
to explain the agent's behavior, and using general
problem solving strategies.

To date, we have discovered that although
these general cognitive capabilities are impor-
tant, we have been able to build viable agents
by concentrating on those capabilities directly re-
lated to performing our agents' missions. Thus,
we have developed and incorporated capabilities
for following flight plans, planning attacks, em-
ploying weapons, situational awareness, manag-
ing fuel, and so on. AU of these are the building
blocks for various missions. There are also many
capabilities dealing with coordinating behavior
among multiple agents, which are discussed in
the section on multiagent interactions. These ca-
pabilities are all implemented as operators that
have complex subgoals. For example, following
a flight plan involves many operators including
flying routes (of which there are different types
depending on the aircraft), performing various ac-
tivities at waypoints (such as communicating with
control agents or deterrnining if a plane should de-
lay at the point so that it arrives on target at the
appropriate time), selecting the next route, and
processing any changes the agent might receive
to its mission. We expect these capabilities to be
reused on future missions, possibly with modifi-
cation as new variants are required.

We expect that the more general cognitive ca-
pabilities will become necessary as we try to cre-
ate agents which are more autonomous, and thus
able to handle novel situations on their own. To
that end, we are pursuing research in the follow-
ing areas:

1. Natural language processing: Even with the
advent of the Command and Control Simu-
lation Interface Language (CCSIL) [Salisbury,
1995], we will someday want Air-IFOR agents
to directly interact with humans. Air-IFOR
agents will need to understand and generate
natural language, with one of the challenges
being to integrate the processing of language

30

with all of the other agents' tasks [Lehman et
al., 1995].

2. Behavior explanation: As the complexity of
Air-IFOR agents grow, it is necessary for each
of them to be able to explain its own behav-
ior and internal reasoning. What action did it
take, why did it take that action, why did it
interpret the situation in the way it did, and
what were other options? We have been ac-
tively pursuing these issues in the Debrief sys-
tem, which is a set of Soar rules that when
included in an agent before a run, allows the
agent to be debriefed after flying a mission
[Johnson, 1994].

3. Agent modeling: In order to interpret the ac-
tions of other agents, Air-IFOR agents must
have some understanding of what the other
agents are thinking. This is currently done
in very specialized and context specific ways
in Air-IFOR agents. However, as we start to
explore complex behavior, it will be necessary
for Air-IFOR agents to create general internal
models of what other agents are thinking about
the current situation. For example, deceptive
maneuvers involve generating behaviors with
the goal of leading an opponent to incorrectly
guess what your intent and action really is. We
can currently encode "deceptive" maneuvers in
Air-IFOR agents; however, for the agent itself
to derive an appropriate deceptive maneuver
in novel situations requires the ability to inter-
nally model some of the thought processes of
other agents, a problem we are actively pursu-
ing [Tambe and Rosenbloom, 1995].

4. General Problem Solving and Planning: Our
current agents have all the necessary control
knowledge for making the decisions we ex-
pect them to encounter. However acquiring
this knowledge is difficult and time-consuming,
and this knowledge alone does not always
lead to robust performance in novel situations.
Over the last year, we have done research on
more general problem solving and planning
approaches that can use more "fundamental"
knowledge of the domain and thus increase
the ability of Air-IFOR agents to respond to
novel situations. Using experimental versions
of TacAir-Soar, we have demonstrated the fea-
sibility of integrating both look-ahead plan-
ning [van Lent, 1995] and means-ends analysis
[Wray, 1995] into Air-IFOR agents.

In addition to the more general capabilities
listed above, Air-IFOR agent must have knowl-
edge that includes the doctrine and tactics appro-
priate to the missions they are to perform. Cur-
rently, Air-IFOR agents fly the following fixed-
wing missions: BARCAP, Close Air Support,
Strategic Attack, and MiGSweep. For rotary

wing, Air-IFOR agents can fly a basic anti-armor
mission [Tambe et al., 1995b]. In addition, we
have developed the following agents that act as
controllers during missions [Nielsen, 1995].

• Air Intercept Controller (AIC) and Ground
Controlled Intercept (CGI) which give infor-
mation and commands about enemy planes.
The AIC is situated in a plane with a large
radar, such as an E2C.

• Forward Air Controller (FAC) which provides
final directions for close-air support missions.

• Direct Air Support Center (DASC) assigns air-
craft to missions, can change the mission, and
hands off control to the FAC.

• Fire Support Coordination Center (FSCC) de-
termines the type of support to utilize (close
air support, artillery, or naval gunfire) and if
close air support is determined it generates a
tactical air request form then sends the request
to the DASC.

• Tactical Air Command Center (TACC) which
provides air traffic control, intermediate rout-
ing, and deconniction.

• Tactical Air Direction (TAD) controller directs
specific air operations within the area of oper-
ations, prior to the establishment of a DASC.

We have operational versions of all of these
agents, although many are limited to producing
behavior that is only relevant to close air support
and air-to-air missions.

6 Multiagent Interactions

Although the individual agents are by them-
selves important, it is the coordination of agents
that leads to effective military forces. Our ap-
proach is to model the methods and practices
of military organizations. Air-IFOR agents co-
ordinate their activities through a combination
of common background knowledge (their knowl-
edge of military methods, procedures, doctrine
and tactics), common mission statements, and
explicit communication (non-verbal and verbal)
[Laird et al., 1995]. Because Air-IFOR agents
know what they are supposed to do and when
(because of their background knowledge and mis-
sion statements), the need for explicit commu-
nication is greatly reduced. Also, in contrast to
SAF agents, Air-IFOR agents are "smart" enough
to deal with the details of executing all aspects
of the missions they have been assigned and do
not require constant monitoring by a human or
command agent. When explicit verbal commu-
nication is used, we attempt to model both the
content and form used by real pilots. Thus,
Air-IFOR agents send simulated radio messages
whose content closely mirrors the English words

31

and phrases used by real pilots. The generation
and interpretation of these messages is currently
done by a fixed set of templates and not a general-
purpose natural language facility (although one is
under development [Lehman et a/., 1995]). Air-
IFOR agents currently can generate and interpret
approximately 100 different types of messages.

When flying as a unit, most of the coordination
occurs by the wingman visually observing and re-
sponding to the behavior of the lead of the unit.
The wingman constantly adjusts its position to
stay in the appropriate formation. The wingman
also keeps track of the progress of the unit in its
mission, observing the achievement of waypoints.
Depending on the mission details, the wingman
may change formation, break formation to fly an
independent ground attack, rejoin the formation
following an attack, or even take over as the lead.

Currently, TacAir-Soar agents (Air-IFOR
agents for tactical fixed wing aircraft) are able
to fly as either sections (two planes) or divisions
(four planes). They can fly a variety of forma-
tions and they can dynamically break into smaller
units, such as a division splitting into two sec-
tions, and then later reform as a single unit.
Within a section, the lead and wingman can coor-
dinate their radars (covering different parts of the
sky and communicating enemy contacts) as well
as coordinating their weapons employment dur-
ing air-to-air engagments. During air-to-ground
attacks, a section can use a variety of coordinated
tactics, which are planned by the lead at the be-
ginning of the mission. Our work on coordina-
tion with rotary wing units is also under devel-
opment where currently the helicopters can fly in
pairs, with the expected progression to platoons
and then companies during the next year.

A unit of TacAir-Soar agents, such as a sec-
tion or division, will also coordinate its behavior
with available controllers (AIC, CGI, FAC, TAD,
TACC, FSCC, DASC) [Nielsen, 1995]. The con-
trollers can give the unit flight information (such
as the altitude to fly at, or the name of the next
controller), permission to continue the mission
(permission to enter an area, or permission to at-
tack a target), information on other planes, or
changes to missions. In the case of changing a
mission, a controller can dynamically change al-
most any aspect of a ground attack mission in-
cluding the route, the time on target, and the
final target. When a mission change is received,
the members of the unit change their missions,
sometimes replanning the final attack for air-to-
ground missions.

Our goal is to continue to build up the co-
ordination of Air-IFOR agents into integrated
missions. We are currently close to complet-
ing close-air support which involves a variety of
controllers plus planes doing individual missions.

However, missions such as offensive strike and
integrated interdiction can involve a variety of
different planes flying many different individual
missions (strategic attack, RECCE, MiGSweep,
SEAD, etc.) that have to be closely orchestrated
to pull off the complete mission. We plan on
working on these missions and the required co-
ordination over the next year.

Our approach to date has been to support the
coordination of activities within the set of agents
under our direct control. We have been able to
develop our own templates independent of other
groups. However, in the future some Air-IFOR
agents will need to communicate with other com-
mand forces, and thus, we will soon be using
CCSIL protocols for communication between our
agents and their controllers.

7 STOW-E

During November 4-7, 1994, a large scale op-
erational military exercise called STOW-E (Sim-
ulated Theater Of War - Europe) was held across
18 installations in United States and Europe. At
its peak, over 1,800 entities were simulated on
the Defense Simulation Internet (DSI). Although
the vast majority of the entities were involved in
ground actions, there were also a significant num-
ber of air missions being flown using humans in
simulators, ModSAF agents, Soar/IFOR agents,
and in a few cases, real planes with instrumenta-
tion that allowed them to be sensed within the
DIS environment (although these planes could
not sense the DIS entities). For the Soar/IFOR
group, this was the first chance to participate
in a realistic, large scale simulation environment
where we did not have complete control over the
scenarios.

Over the four day period, the Soar/IFOR
agents were scheduled to participate in 10 events.
For each event we had specific missions assigned
to Air-IFOR agents that had been given to us
weeks in advance. These missions included defen-
sive air missions (BARCAPs), offensive air mis-
sions to disrupt BARCAPs, air to ground mis-
sions, and air to surface missions.

We successfully fielded agents for every event
in which we were scheduled (10 events, approxi-
mately 32 agents) and participated in many un-
scheduled events (5-7 events, approximately 16
agents). TacAir-Soar performed air-to-air mis-
sions against ModSAF and humans (in simula-
tors). TacAir-Soar attempted to engage planes
from other sites, but because of problems with
the network, the other agents did not see TacAir-
Soar. We also participated in air-to-ground
(bombing bridges, etc.) and air-to-surface (fir-
ing missiles at ships) attacks in which we engaged
ground and surface targets from other sites.

32

We did have a limited number of software fail-
ures with the most significant being our inability
to fly over the terrain database where the ground
battle was raging when it was populated with
hundreds of tanks. This was caused by a software
bug in our C code for processing ground targets
using radar.

One of our goals was to provide viable oppo-
nents for simulated and human pilots; however it
was difficult to evaluate the "skill'' of our TacAir-
Soar because of some problems with the under-
lying simulation models. For example, during
the first day, we were frustrated with the per-
formance of TacAir-Soar in engagements. They
were easily shot down by ModSAF F/A-18's. We
later learned that in order to populate the simula-
tion with different types of planes, the F/A-18's
were created by copying F-14's. The F/A-18's
were therefore carrying Phoenix missiles which
are much longer range than any missile carried
by an F/A-18. TacAir-Soar, basing its tactical
behavior on the known properties of F/A-18's,
was caught by surprise (as it should have been).

In engagements with humans, our planes would
often get into good tactical positions, only to see
our missiles miss when they were shot. (TacAir-
Soar did have some kills against humans in simu-
lators, but in general, TacAir-Soar got "toasted".)
We believe that the missile missed because of
flaws in the ModSAF missile models. Thus, al-
though TacAir-Soar got shot down, it was in gen-
eral using appropriate tactical maneuvers. In-
dependent of the specific outcome, this exercise
proved the value of taking systems out of the lab-
oratory and testing them in more realistic situa-
tions.

Possibly the best example of our capabilities
was in the execution of an unscheduled event for
the second day. In this mission, a section of F/A-
18's were to perform a ground attack against a set
of islands in the simulated battle area. Our planes
were used in place of a virtual (manned) ground
attack because of the failure of that simulator.
Enroute to the target, the planes were unex-
pectedly intercepted by ModSAF MiG-29's. The
F/A-18's engaged the MiG-29's to defend them-
selves and got off one or two shots (but no kills).
The MiG-29's disappeared from the network, and
our planes automatically returned to their air-
to-ground attack mission. Further enroute, they
were unexpectedly fired on from a surface-to-air
site, killing the wingman (not only did the planes
not expect it, we didn't realize there would be any
surface-to-air systems in STOW-E — clearly an
unscripted interaction). The lead continued on,
successfully dropping bombs on the designated
target and then egressing back to base.

Although we considered our participation in
this exercise a success, it did demonstrated some

weaknesses that we must address in the future.

• Number of vehicles: We discovered that for
an exercise with a large number of vehicles,
we were not able to run the number of vehi-
cles/workstation that we had expected. Part
of this is the overhead in the network process-
ing code of ModSAF, but it also was a problem
for our AIC/E2C agent which could see a large
number of agents at once because of its radar.
This has led us to use more deliberate focus-
ing of attention in Air-IFOR agents so that
they do not attempt to process the complete
situation at once, but instead concentrate on
subsets of the situation, preferably those that
are relevant to the current tactical situation.

• Mission set up: Before STOW-E, we had not
developed any tools to help specify and man-
age the missions of Air-IFOR agents. During
STOW-E, it was time-consuming and error-
prone for us to create or modify the missions.
As a result, we are currently developing graph-
ical interface tools that will make it possible
to enter and modify missions directly, without
editing intermediate data structures. Our goal
is that our interface should give the user the
same look and feel as the documents and tools
used by pilots in their normal briefings. The
integration of Tel and Soar is making this much
easier because of its ability to manage windows
and build formated graphical and textual in-
terfaces. In the future we must also have the
ability to accept missions from other software
systems using CCSIL; however the details of
the protocols have yet to be defined.

• Runtime control: Once Air-IFOR agents re-
ceived their missions, they would fly the mis-
sions without any human management. Thus,
we became observers and ran our exercises
"hands-off". In contrast, the ModSAF planes
required constant attention, with a human con-
trolling their behavior on and off during the
exercise. Although we wish to continue our
approach, we also came to recognize that we
needed the ability to dynamically change some
aspects of the missions of Air-IFOR agents
during the exercise, such as changing the way-
point at which a section of planes is stationed.
These are relatively minor changes to TacAir-
Soar.

This exercise has the additional significance of
demonstrating that "hard core" AI technology
can be successfully used in an operational exer-
cise (although in STOW-E this was in a limited
role). We believe that this is one of the first (if
not the first) time that an AI system has been
used in this way.

8 Summary and Conclusions

33

In the beginning of the Soar/IFOR project,
there were many questions as to whether it was
practical to develop intelligent forces for synthetic
environments. Although there is still much more
work to do, three years of research and devel-
opment have brought us to the point where we
can state with some degree of certainty that in-
telligent forces are practical and will play a sig-
nificant role in STOW-97. It is difficult to iso-
late specific parts of our methodology or under-
lying technology as responsible for this success,
although clearly we believe that the underlying
Soar architecture is responsible to a significant
degree. Its ability to combine fine-grain reactive
reasoning of rules, with more deliberate and hier-
archical decision making using operators within
problem spaces, appears to be well matched to
the demands of the interactive simulation and the
cognitive processes of the humans we are attempt-
ing to model.

One surprise has been our ability to build com-
plex and relatively general systems while not us-
ing many of the more advanced techniques such as
means-ends analysis, planning, learning, complex
agent modeling, or natural language. However,
we still believe that these are critical capabilities
for building robust, general agents, and we are
continuing to pursue research in these areas.

In the immediate future, we will continue to
expand the breadth of missions and capabilities
of Air-IFOR agents. For fixed wing, a primary
goal is to develop the appropriate agents to fly
integrated interdiction and strategic attack mis-
sions. The coordination of many different types
of aircraft, with different missions promises to be
challenging. In rotary wing, our goal is to field
a complete company of attack helicopters. Our
plan is for these developments to lead up to a
successful participation of Soar/IFOR agents in
STOW-97.

9 Acknowledgments

This research was supported under contract
N00014-92-K-2015 from the Advanced Systems
Technology Office of the Advanced Research
Projects Agency and the Naval Research Lab-
oratory, and contract N66001-95-C-6013 from
the Advanced Systems Technology Office of the
Advanced Research Projects Agency and the
Naval Command and Ocean Surveillance Cen-
ter, RDT&E division. The authors would like to
thank BMH Associates, Inc. for their technical
assistance.

References

[Acharya and Tambe, 1993]
A. Acharya and M. Tambe. Collection-oriented

match. In Proceedings of the Second Interna-
tional Conference on Information and Knowl-
edge Management, November 1993.

[Calder et al., 1993] R. Calder, J. Smith,
A. Courtenmanche, J. Max, and A. Ceranow-
icz. ModSAF behavior simulation and con-
trol. In Proceedings of the Third Conference
on Computer Generated Forces and Behavioral
Representation, 1993.

[Doorenbos, 1994] R.B. Doorenbos. Combining
left and right unlinking for matching a large
number of learned rules. In Proceedings of
AAAI-94, Seattle, WA, August 1994.

[Ernst and Newell, 1969] G. W. Ernst
and A. Newell. GPS: A Case Study in Gen-
erality and Problem Solving. Academic Press,
New York, 1969.

[Forgy, 1982] C. L. Forgy. Rete: A fast algorithm
for the many pattern / many object pattern
match problem. Artificial Intelligence, 19:17-
38, 1982.

[Hucka and Laird, 1995] M. Hucka and J. E.
Laird. The Soar Development Environment.
Technical report, The University of Michi-
gan, Department of Electrical Engineering and
Computer Science, 1995.

[Johnson, 1994] W.L. Johnson. Agents that learn
to explain themselves. In Proceedings of AAAI-
94, pages 1257-1263, Seattle, WA, August
1994. AAAI, AAAI Press.

[Jones et al., 1993] R. M. Jones, M. Tambe, J. E.
Laird, and P. S. Rosenbloom. Intelligent auto-
mated agents for flight training simulators. In
Proceedings of the Third Conference on Com-
puter Generated Forces and Behavioral Repre-
sentation, pages 33-42, Orlando, FL, 1993.

[Kim and Rosenbloom, 1993] J. Kim and P. S.
Rosenbloom. Constraining learning with search
control. In Machine Learning: Proceedings of
the Tenth International Conference, pages 174-
181, San Mateo, CA, 1993. Morgan Kaufmann.

[Koss and Lehman, 1994] F. V. Koss and J. F.
Lehman. Knowledge acquisition and knowl-
edge use in a distributed IFOR project. In
Proceedings of the Fourth Conference on Com-
puter Generated Forces and Behavioral Repre-
sentation, Orlando, FL, May 1994.

[Laird and Rosenbloom, 1994] J. E. Laird and
P. S. Rosenbloom. The evolution of the Soar
cognitive architecture. Technical report, Com-
puter Science and Engineering, University of
Michigan, 1994. To appear in Mind Matters,
T. Mitchell Editor, 1995.

[Laird et al., 1987] J. E. Laird, A. Newell, and
P. S. Rosenbloom. Soar: An architecture

34

for general intelligence. Artificial Intelligence,
33(3), 1987.

[Laird et al., 1995] J. E. Laird, R. M. Jones, and
P. E. Nielsen. Multiagent coordination in
distributed interactive battlefield simulations.
Technical report, Computer Science and Engi-
neering, University of Michigan, 1995.

[Lehman et al., 1995]
J. F. Lehman, J. Van Dyke, and R Rubinoff.
Natural language processing for IFORs: Com-
prehension and generation in the air combat
domain. In Proceedings of the Fifth Conference
on Computer Generated Forces and Behavioral
Representation, May 1995.

[Newell and Simon, 1956] A. Newell and H. A Si-
mon. The logic theory machine: A complex
information processing system. IRE Trans-
actions on Information Theory, IT-2:61-79,
September 1956.

[Nielsen, 1995] P. Nielsen. Intelligent computer
generated forces for command and control. In
Proceedings of the Fifth Conference on Com-
puter Generated Forces and Behavioral Repre-
sentation, May 1995.

[Ousterhout, 1994] J. Ousterhout. Tel and the
Tk Toolkit. Addison-Wesley, Reading, MA,
1994.

[Rosenbloom et al., 1991]
P. S. Rosenbloom, J. E. Laird, A. Newell, and
R. McCarl. A preliminary analysis of the Soar
architecture as a basis for general intelligence.
Artificial Intelligence, 47, 1991.

[Rosenbloom et al., 1993] P. S. Rosenbloom,
J. E. Laird, and A. Newell. The Soar Papers:
Research on Integrated Intelligence. MIT Press,
1993.

[Rosenbloom et al., 1994] P. S. Rosen-
bloom, W. L. Johnson, R. M. Jones, F. Koss,
J. E. Laird, J. F. Lehman, R. Rubinoff, K. B.
Schamb, and M. Tambe. Intelligent automated
agents for tactical air simulation: A progress
report. In Proceedings of the Fourth Conference
on Computer Generated Forces and Behavioral
Representation, May 1994.

[Salisbury, 1995] M. Salisbury. Command and
Control Simulation Interface Language (CC-
SIL): Status update. In Proceedings of the the
12th Distributed Interactive Simulation Work-
shop, 1995. Sponsored by STRICOM and the
Institute for Simulation and Training (1ST) at
the University of Central Florida.

[Schwamb et al., 1994] K. B. Schwamb, F. V.
Koss, and D. Keirsey. Working with ModSAF:
Interfaces for programs and users. In Proceed-
ings of the Fourth Conference on Computer

Generated Forces and Behavioral Representa-
tion, May 1994.

[Tambe and Rosenbloom, 1995] M. Tambe and
P. S. Rosenbloom. Agent tracking in complex
multi-agent environments: New results. In Pro-
ceedings of the Fifth Conference on Computer
Generated Forces and Behavioral Representa-
tion, May 1995.

[Tambe et al., 1995a] M. Tambe, W. L. Johnson,
R. M. Jones, F. Koss, J. E. Laird, P. S. Rosen-
bloom, and K. Schwamb. Intelligent agents for
interactive simulation environments. Al Mag-
azine, 16(1), 1995.

[Tambe et al., 1995b] M. Tambe, K. Schwamb,
and P. S. Rosenbloom. Building intelligent pi-
lots for simulated rotary wing aircraft. In Pro-
ceedings of the Fifth Conference on Computer
Generated Forces and Behavioral Representa-
tion, May 1995.

[van Lent, 1995] M. van Lent. Planning and
learning in a complex domain. Technical re-
port, The University of Michigan, Department
of Electrical Engineering and Computer Sci-
ence, 1995.

[Wray, 1995] R. E. Wray. A general framework
for means-ends analysis. Technical report, The
University of Michigan, Department of Electri-
cal Engineering and Computer Science, 1995.

10 Biographies

John E. Laird is an associate professor of
Electrical Engineering and Computer Science and
the director of the Artificial Intelligence Labora-
tory at the University of Michigan. He received
his B.S. degree in Computer and Communica-
tion Sciences from the University of Michigan in
1975 and his M.S. and Ph.D. degrees in Com-
puter Science from Carnegie Mellon University
in 1978 and 1983, respectively. His interests are
centered on creating integrated intelligent agents
(using the Soar architecture), leading to research
in problem solving, complex behavior representa-
tion, machine learning, cognitive modeling.

W. Lewis Johnson is a project leader at
the University of Southern California Information
Sciences Institute, and a research assistant profes-
sor in the USC Department of Computer Science.
Dr. Johnson received his A.B. degree in Linguis-
tics in 1978 from Princeton University, and his
M.Phil, and Ph.D. degrees in Computer Science
from Yale University in 1980 and 1985, respec-
tively. He is interested in applying artificial intel-
ligence techniques in the areas of computer-based
training and software engineering. Dr. John-
son is co-editor-in-chief of the journal Automated
Software Engineering, Secretary/Treasurer of the

35

SIG ART Bulletin, and is on the steering commit-
tee of the AI and Education Society.

Frank V. Koss is a systems research program-
mer in the Artificial Intelligence Laboratory at
the University of Michigan, where he is develop-
ing the interface between the Soar cognitive archi-
tecture and the ModSAF simulator and extending
ModSAF itself. He received his BS in computer
engineering from Carnegie Mellon University in
1991 and his MSE in computer science and engi-
neering from the University of Michigan in 1993.

Jill Fain Lehman is a research computer sci-
entist in Carnegie Mellon's School of Computer
Science. She received her B.S. from Yale in 1981,
and her M.S. and Ph.D. from Carnegie Mellon in
1987 and 1989, respectively. Her research inter-
ests span the area of natural language processing:
comprehension and generation, models of linguis-
tic performance, and machine learning techniques
for language acquisition. Her main project is NL-
Soar, the natural language effort within the Soar
project.

Randolph M. Jones received his Ph.D. in In-
formation and Computer Science from the Uni-
versity of California, Irvine, in 1989. He is cur-
rently an assistant research scientist in the Ar-
tificial Intelligence Laboratory at the University
of Michigan. His research interests lie in the ar-
eas of intelligent agents, problem solving, machine
learning, and psychological modeling.

Paul E. Nielsen is an assistant research sci-
entist at the Artificial Intelligence Laboratory of
the University of Michigan. He received his Ph.D.
from the University of Illinois in 1988. Prior
to joining the University of Michigan he worked
at the GE Corporate Research and Development
Center. His research interests include intelli-
gent agent modeling, qualitative physics, machine
learning, and time constrained reasoning.

Paul S. Rosenbloom is an associate professor
of Computer Science at the University of South-
ern California and the acting deputy director of
the Intelligent Systems Division at the Informa-
tion Sciences Institute. He received his B.S. de-
gree in mathematical sciences from Stanford Uni-
versity in 1976 and his M.S. and Ph.D. degrees in
computer science from Carnegie-Mellon Univer-
sity in 1978 and 1983, respectively. His research
centers on integrated intelligent systems (in par-
ticular, Soar), but also covers other areas such as
machine learning, production systems, planning,
and cognitive modeling. He is a Councilor and
Fellow of the AAAI and a past Chair of ACM
SIGART.

Robert RubinofT is a postdoctoral research
fellow in Carnegie Mellon's School of Computer
Science. He received his B.A., M.S.E., and Ph.D.
from the University of Pennsylvania in 1982,
1986, and 1992, respectively; his dissertation re-

search was on "Negotiation, Feedback, and Per-
spective within Natural Language Generation".
His research interests include natural language
processing, knowledge representation, and rea-
soning. He is currently working on natural lan-
guage generation within the Soar project.

Karl B. Schwamb is a Programmer Analyst
on the Soar Intelligent FORces project at the
University of Southern California's Information
Sciences Institute. He contributes to the main-
tenance of the Soar/ModSAF interface software
and the Tcl/Tk interface to Soar. He received his
M.S. in Computer Science from George Washing-
ton University.

Milind Tam.be is a research computer scien-
tist at the Information Sciences Institute, Uni-
versity of Southern California (USC) and a re-
search assistant professor with the Computer Sci-
ence Department at USC. He completed his un-
dergraduate education in computer science from
the Birla Institute of Technology and Science, In-
dia in 1986. He received his Ph.D. in computer
science from Carnegie Mellon University in 1991.
His interests are in the areas of integrated AI sys-
tems, agent modeling, plan recognition, and effi-
ciency and scalability of AI programs, especially
rule-based systems.

Julie Van Dyke is a research programmer at
Carnegie Mellon University, working on language
comprehension in NL-Soar. She is also working
toward an MS in Computational Linguistics with
a focus on modeling language acquisition.

Michael van Lent is currently a doctoral can-
didate in the Artificial Intelligence Laboratory at
the University of Michigan. He received his B.A.
with honors in computer science from Williams
College in 1991 and a Master of Science in Com-
puter Science from the University of Tennessee,
Knoxville in 1993. Mr. van Lent also worked for
the Naval Center for Applied Research in Artifi-
cial Intelligence during the summers of 1992 and
1993.

Robert Wray is currently a candidate for the
Ph.D degree in computer science at the University
of Michigan. He received a Bachelor of Science in
Electrical Engineering from Memphis State Uni-
versity in 1988 and a Master of Science in Elec-
trical Engineering from the University of Mas-
sachusetts, Dartmouth in 1993. He also worked
for the Naval Undersea Warfare Center from 1989
to 1993 as an electronics engineer. His current
research, projects and interests in computer sci-
ence include: intelligent agent architectures, ex-
tending traditional artificial intelligence planning
paradigms, machine learning, and software engi-
neering.

36

Session 2b: Reasoning I
Tambe, ISI, USC

Ge, Cornell University
Gonzalez, Dept. of Elec.JL Comp. Eng., UCF

Kocabas, Marmara Research Center

Building Intelligent Pilots for Simulated Rotary Wing Aircraft

Milind Tambe, Karl Schwamb and Paul S. Rosenbloom
Information Sciences Institute

University of Southern California
4676 Admiralty Way

Marina del Rey, CA 90292
email: {tambe, schwamb, rosenbloom}@isi.edu

1. Abstract
The Soar/IFOR project has been developing

intelligent pilot agents (henceforth IPs) for
participation in simulated battlefield environments.
While previously the project was mainly focused on
IPs for fixed-wing aircraft (FWA), more recently, the
project has also started developing IPs for rotary-
wing aircraft (RWA). This paper presents a
preliminary report on the development of IPs for
RWA. It focuses on two important issues that arise in
this development. The first is a requirement for
reasoning about the terrain — when compared to an
FWA IP, an RWA IP needs to fly much closer to the
terrain and in general take advantage of the terrain for
cover and concealment. The second issue relates to
code and concept sharing between the FWA and
RWA IPs. While sharing promises to cut down the
development time for RWA IPs by taking advantage
of our previous work for the FWA, it is not
straightforward. The paper discusses the two issues in
some detail and presents our initial resolutions of
these issues.

2. Introduction
The Soar/IFOR project has been developing

intelligent pilot agents (IPs) for simulated battlefield
environments (Laird et al., 1995, Rosenbloom, et al.,
1994, Tambe et al., 1995). Until Summer 1994, the
project was focused on building IPs for simulated
fixed-wing aircraft (FWA), including air-to-air
fighters and ground-attack aircraft. Since July 1994,
we have begun developing IPs for simulated rotary-
wing aircraft (RWA), specifically, AH-64 Apache
attack helicopters.

While there are similarities in an RWA and an
FWA pilot's missions — e.g., employing weapons on
targets, flying mission-specified routes — there are
also some important differences. One key difference
is reasoning about the terrain. For example, an RWA
pilot's mission can involve flying Nap-of-the-earth
(NOE), where it needs to fly only about 25 feet above
ground level, while avoiding obstacles. It may also
involve flying through a valley, or around a forested
region. The mission may also involve hiding
(masking) behind a ridge, popping up to spot enemy
targets, and remasking in a new hiding position.
Figure 1 provides an illustration of this type of terrain
reasoning. It presents a snapshot, taken from
ModSAF's plan-view display (Calder et al., 1993), of

a typical scenario involving Soar-based RWA IPs.
There are two RWA in the scenario, just behind the
ridge, indicated by the contour lines. The other
vehicles in the figure are a convoy of "enemy"
ground vehicles — tanks and anti-aircraft vehicles —
controlled by ModSAF. The RWA are
approximately 2.5 miles from the convoy. The IPs
have hidden their helicopters behind the ridge (their
approximate hiding area is specified to them in
advance). They unmask these helicopters by popping
out from behind the ridge to launch missiles at the
enemy vehicles, and quickly remask (hide) by
dipping behind the ridge to survive retaliatory
attacks. They subsequently change their hiding
position to avoid predictability when they pop out
later.

ii£e t»K»nifci»ouniio-;ir,t; cikkriofec tavern cut around s«ktt, clxk and c-ac mlddV. to I

Figure 1: A snapshot of ModSAF's simulation of an
air-to-ground combat situation.

Thus, the development of RWA IPs brings up the
novel issue of terrain reasoning, not addressed in
previous work on Soar/IFOR agents. There has been
much work on terrain reasoning in ModSAF in their
development of semi-automated forces or SAFs

39

(Calder et al., 1993). That work has so far primarily
focused on ground-based SAFs (e.g., (Longtin,
1994)), although there is a recent effort focused on
terrain reasoning for RWA (Tan, 1995). Outside the
arena of automated forces, terrain reasoning in the
form of route planning and execution has been
addressed extensively in AI and Robotics. The focus
of much of this work is on 2D routes (Denton and
Froeberg, 1984, Khatib, 1986, Lozano-Perez and
Wesley, 1979, Mitchell, 1990) — and this category
includes some previous work within Soar (Stobie et
al., 1992) — although some efforts have also
attacked the 3D route planning problem (Bose et al.,
1987, Rao and Arkin, 1989). Other aspects of terrain
reasoning such as tactical situation assessment
(McDermott and Gelsey, 1987) and hiding (Stobie et
al., 1992) have also received some attention, although
not nearly as much as route planning. As discussed in
Section 3, the pure route planning approaches from
this literature are unlikely to address the terrain
reasoning challenge facing the RWA IPs, which is to
accomplish these tasks in real-time, given a realistic
3D terrain database. A hybrid solution combining
some abstract plans with reactivity is currently being
investigated.

Given the similarities between the FWA and RWA
IPs, concept and code sharing between the two is a
real possibility. Sharing would speed up
development of RWA IPs by taking advantage of our
previous work on FWA. However, the differences —
such as the terrain reasoning capability above —
imply that sharing is not straightforward. There have
been some previous efforts aimed at facilitating reuse
of code and concepts among Soar systems. These
efforts have typically focused on reuse of individual
capabilities, such as inductive learning (Rosenbloom
and Aasman, 1990), or natural language (Lewis,
1993, Rubinoff and Lehman, 1994) capabilities. The
novel issue here is that a large fraction of the FWA IP
structure is potentially reusable in developing RWA
IPs and such reuse needs to be facilitated.

The rest of this paper provides more details on
these two issues. Section 3 focuses on terrain
reasoning. Section 4 discusses the issue of code and
concept sharing between Soar-based FWA and RWA
IPs. We will assume some familiarity with the Soar
architecture (Laird, Newell, and Rosenbloom, 1987,
Rosenbloom, et al., 1991).

3. Terrain Reasoning
The overall terrain reasoning tasks for an RWA IP

may be subdivided into two categories. The first is to
fly from a given source to a destination, while
abiding by mission specified constraints regarding
the flight methods. A flight method primarily
specifies maintenance of a certain air-speed and
altitude above ground level. In particular, a
high-level flight requires that the RWA fly more than

200 feet above ground level with air-speed as high as
145 knots. A low-level flight requires that the RWA
fly 100-200 feet above ground level, while
maintaining a maximum air-speed of 100 knots. A
contour flight requires the RWA to fly between
25-100 feet above ground level, but with a maximum
air-speed of 70 knots. An NOE flight requires the
RWA to fly within just 25 feet above ground level,
with a maximum air-speed of 40 knots. Additionally,
an NOE flight may require that an RWA fly through
a valley along a hillside, or through a narrow clear
corridor in a forested region. The second category of
terrain reasoning tasks involves an RWA IP's
activities once it successfully follows its route to its
battle area, and possibly engages enemy vehicles. Its
activities in this area involve selecting and occupying
good hiding positions (behind a ridge or a forested
region) and flying between hiding positions while
remaining concealed from a possibly mobile enemy.
It may also involve reasoning about possible enemy
hiding positions.

For both categories of tasks, one key issue for an
RWA IP is to execute them in the context of a large-
scale and realistic 3D terrain database, with features
such as rivers, ridges, valleys, hills and forested
regions. A second key issue is that given its
complexity, the cost of sensing and processing large
tracts of the terrain database is non-trivial. A third
related issue is that an IP has to exhibit human-like
behavior in performing these terrain reasoning tasks.
Thus, it should not make use of information that a
human pilot is unlikely to obtain. For example, as
with a human pilot, an IP should plan routes using a
map of the terrain database (which possibly may be
inaccurate), rather than using the actual terrain
database (which would always be 100% accurate). A
final issue is that an IP has to perform its tasks in
real-time. The following two subsections illustrate
how these issues are addressed for each of the two
types of tasks above.

3.1. Route Flying
For the task of route flying, one possible approach

for addressing the above issues would be to use one
of a variety of path-planning methods that provides a
very detailed 3D point-to-point route, with little need
or freedom to modify the given route (Stobie et al.,
1992, Bose et al., 1987, Rao and Arkin, 1989, Denton
and Froeberg, 1984). One such approach, based on
weighted-region path planning (Mitchell, 1990), is to
conceptually divide a map of the terrain into 3D cells
(cubes), assign an appropriate cost to each cell that
reflects mission-specified constraints, and then search
for a minimum cost path through the cells. One
advantage of such an approach is that an RWA IP
need not sense the terrain database in any detail, but
rather just enough to follow its plan. In addition, the

40

low sensing overhead would facilitate real-time task
performance. However, there are several problems
with such an approach. First, given the complexity of
the terrain, this approach would require a significant
initial computational effort to create and then search
the cells. Second, it could be wasteful given the
realism of the RWA model and its flight controls —
it will not be possible for a Soar-based IP to precisely
control an RWA to follow such a detailed route, and
it will end up having to reactively improvise the path
or replan. The original planner could potentially take
these realistic flight controls into account when
developing a plan — so that no on-line replanning
may be required — but that would further increase
the complexity of planning. Third, if the map of the
terrain is inaccurate or incomplete, the plan generated
could be inaccurate as well. Even if the map were
completely accurate (or if the IP were using the
terrain database itself rather than a map), there could
still be deviations from the planned route caused by
an unexpected encounter with hostile or friendly
vehicles. Thus, an IP may not be able to rely on just
its original planned route; it may need to replan.
Finally, human pilots typically do not rely on such
detailed plans; and thus in forcing IPs to follow such
plans, we are likely deviating from our goal of
building human-like IPs.

So instead, a Soar-based IP follows a hybrid
strategy that combines a plan-based and reactive
strategy. In particular, it relies on more abstract route
plans, that provide it just two to three intermediate
points.1 The IP then executes these route plans while
reacting to sensory information that enables it to
abide by the mission specified constraints. For ideal
human-like IPs, this sensory information should be
precisely what a human pilot would obtain visually
by looking out the window. Unfortunately, for an IP,
such visual processing is likely to be extremely
complex and expensive. Therefore, special
inexpensive sensors have been designed that
approximate such visual processing. One such sensor
is the look-ahead altitude sensor or LAS sensor. LAS
is slaved to the parameters supplied by the IP. The IP
sets parameters for LAS that specify a lookahead
range and orientation, which in turn specifies a line
segment of specific length and orientation originating
from the IP's current location. Once these
parameters are set, LAS scans the terrain database
repeatedly (in fact, each time ModSAF schedules the
agent for execution), and returns the highest altitude
value along the specified line segment. For instance,
to fly NOE, an IP sets LAS's parameters to a
lookahead range of 50 meters, and orientation in the

direction of its flight. The pilot reacts to LAS's
response by modifying the altitude of its helicopter to
be approximately 25 feet above the highest point.2

The top half of Figure 2 shows a pilot agent
making use of LAS to fly NOE. The shaded portion
in the figure is a profile of the terrain, while the
dashed line is a profile of the helicopter flying NOE.
The straight lines indicate LAS's lookahead range
while scanning the database. The bottom half of
Figure 2 indicates a longer lookahead range, and
change in the flight profile that that results.

Figure 2: Illustrations of lookahead altitude sensor. LAS scans
the terrain database each time the agent is scheduled
for execution (illustrations not from an actual run).

The precise value of the lookahead range is
determined to a large extent by the speed of the
RWA. In particular, for an NOE flight, an IP
currently flies conservatively at a speed of 20 knots.
With 50 meters lookahead, that gives it about 5
seconds to change its altitude. The other flight
methods, specifically contour, low-level and high-
level flight, require that the RWA fly at a higher
speed. This in turn requires that the IP set a longer
lookahead range to give itself more time to react.
Speed is however not the only factor determining the
lookahead range. It is also dependent on the type of
flight profile desired. For instance, at its speed of 80
knots, an IP could potentially sustain the altitude
required for its low-level flight with a lookahead of
just 200-300 meters. However, the flight profile
generated follows the terrain much too closely — it is
not as smooth as the flight profile that results from a
human pilot's low-level flight (at least as indicated
by the experts). Therefore, the low-level flight uses a
much longer lookahead range of 1500 meters. The
high-level flight uses a lookahead range of 5000
meters.

Unfortunately, long lookahead ranges in LAS
could potentially hinder an IP's real-time
performance. Therefore, to lower its cost, LAS
samples precisely 100 points along the specified line

'At present, these abstract routes are provided by a human;
although given that they are abstract, planning these routes is
expected to be much less complex.

2RWA agents in ModSAF appear to follow a similar technique
(Tan, 1995).

41

segment irrespective of the lookahead range. Thus,
despite the variation in the lookahead range in Figure
2, LAS will scan precisely 100 points. This sampling
resolution may appear to be very low, with the
potential of missing high altitude cliffs. However,
LAS's repeated scanning in effect improves its
sampling resolution. In particular, since an RWA
progresses towards its destination between two scans,
successive scans sample slightly different points. In
fact, each successive scan samples 99 points in the
neighborhood of the points from its previous scan (on
the same line segment), and one new point. This
resolution could still be insufficient for some types
terrain. For instance, if the terrain is an urban
landscape with a sparse population of pin-shaped
high-altitude structures,3 there is a small possibility
that LAS may miss those in its scanning. In such
cases, there may be a need to increase the sampling
resolution. However, the 100 point scans have so far
proved adequate over the terrain database used in our
experiments (the RWA have not crashed).

Figure 3 presents a flight profile from an actual run
of a Soar-based RWA using the contour flight
method. Figure 4 presents a flight profile from
another run of a Soar-based RWA over
approximately the same terrain, but using the NOE
flight method. The shaded portion indicates the
terrain, while the dashed line indicates the actual
flight profile. IPs smoothen out the flight by using
fuzz-boxes (McDermott and Davis, 1984) to avoid
excessive altitude adjustments.

ground
RWA

CD

E.
01

•o

860
0 5 10 15 20 25 30 35 40 45 50

Simulator ticks

Figure 3: Illustration of a contour flight
from an actual run.

Similar low-cost, LAS-type sensors approximating
a human pilot's visual input are currently being
designed to enable the RWA pilots to fly through
valleys.

en
CD

c5
E
CD

3

40 60 80
Simulator ticks

100 120

3A clock tower would be one example of such a structure.

Figure 4: Illustration of an NOE flight
from an actual run.

3.2. Hiding
Once an RWA IP reaches its mission-specified

battle area, it needs to engage in hiding-related tasks.
In general, a battle area could be of an arbitrary
(convex) shape, or specified in terms of landmarks,
such as trees or rocks. The IP should be capable of
locating good hiding positions within this area and
move between hiding positions while remaining
concealed from its enemy. This second terrain
reasoning capability, at least at this level of
generality, is very much an issue for future research.
At present, we have restricted the battle area to be a
rectangle. One side of this rectangular area, typically
coinciding with a ridge or a tree line, is a mission
specified line segment. This is in essence considered
to be an imaginary wall, and any movement behind it
is assumed to be hidden from the enemy. An RWA
IP hides in a small rectangular area (defined with a
width of 100 meters) behind this imaginary wall.
When relocating to a new hiding position, it uses the
NOE flight method to remain at a low altitude and
thus hidden behind the wall. The approximations of a
wall and a rectangular area for hiding are both based
on our previous work in the groundworld domain.
Groundworld involved a simulated terrain with
random configurations of horizontal and vertical
walls, where an intelligent agent had to hide behind a
wall to escape from another agent pursuing it (Stobie
et al., 1992, Tambe and Rosenbloom, 1993).

4. Sharing and Reuse
RWA pilots' missions have some requirements —

such as, identifying enemy vehicles, firing missiles at
target vehicles and flying in formation — in common
with those of FWA pilots. These commonalities may
be exploited to cut down development time by
sharing or reusing both code and concepts from Soar-
based FWA pilots in the development of RWA pilots.
For instance, for an FWA IP, the code for firing a

42

missile involves three operators that orient its aircraft
towards its target, then push a fire button to actually
launch the missile, and then guide the missile (should
the missile require guidance) via radar (or other)
illumination of the target. These three operators can
be reused in an RWA IP. At present, a Soar-based
RWA EP has 44 operators, with 25 (that is about
57%) reused in some form from the Soar-based FWA
IPs. The 19 new operators are those involved with
terrain reasoning tasks such as flying NOE, masking
and unmasking. This sharing is accomplished simply
by loading in appropriate operators from an FWA IP
code in an RWA IP.

Differences in concepts and terminology, however,
make some of the sharing problematic. For example,
for FWA pilots engaged in air-to-air missions, the
concept of launch-acceptability-region or LAR of a
missile combines both the range to a target and the
target aspect (angle between the target's current
heading and the straight line joining the target and the
FWA pilot's current locations). Thus, if a target is
heading towards the FWA pilot with a 0° target
aspect, the missile may be fired from a long range;
but the range is reduced substantially if the target has
a 180° target aspect. In contrast, for an RWA pilot,
the target aspect is irrelevant in calculating a
missile's LAR — the missile may be fired at an
equally long range irrespective of the target aspect.
This creates a significant difference in the concept of
a missile LAR for an FWA and an RWA IP, making
the sharing of missile-LAR-related code difficult.
There is an accompanying difference in the
terminology as well — the RWA pilot refers to the
missile LAR as a missile constraint.

At least some of these apparent discrepancies in
the two IP's concepts — and potentially their
terminology — could be resolved if the agents reason
about the concepts from first principles. For instance,
agents could calculate a missile's LAR from first
principles, based on the relative velocities (speed and
direction) of the missile and the target. Since an
FWA IP's target in air-to-air combat is a fighter jet,
moving at a speed that may be only a half to a fifth its
missile speed, its angle of movement (target aspect)
becomes an important factor in calculating LAR. In
particular, a target moving towards the FWA allows a
missile to be fired from a much longer range; while a
target that is moving away requires that the missile be
fired from a much closer range, so that the missile
may catch up with the target before expending all its
fuel. In contrast, an RWA IP's target is moving two
orders of magnitude slower than its missile — the
angle of the target's movement has a negligible
impact on the missile range. In other words, with the
first principles calculations, the target aspect
discrepancy automatically disappears. It will appear
important in FWA IP's calculations, and negligible in
an RWA IP's calculations.

While such calculations from first principles would
facilitate sharing, the calculations themselves may be
prohibitively expensive, and hinder real-time
performance. Soar's chunking (learning), could
potentially compile such first principles calculations
into new rules and alleviate this cost. However, that
remains an issue for future work. We are currently
relying on a lower cost alternative, where a
problematic aspect of the agent code is rewritten
when in reuse.

5. Current Status and Future Work
As of February 1995, the RWA agents are capable

of performing a complete attrit mission, which
involves flying to a battle area using one of the
possible flight methods, followed by masking,
unmasking, firing missiles at targets, and relocating
to a different masking location between missile
firings. We have run scenarios with up to four RWA
IPs executing the attrit mission.

At present the RWA IPs can fly in coordination, in
pairs. Extending this work to enable coordinated
mission execution involving a platoon or a company
of RWA agents (with a platoon and a company
commander), is at the top of our agenda for future
work. Agents at higher echelons of command, such
as a company commander, may also bring up issues
of communication and mission planning, which we
have currently not addressed. Other issues for future
work, mentioned in previous sections, include
improvement in terrain reasoning for hiding, and in
code/concept sharing among Soar agents.

6. Acknowledgements
This research was supported under subcontract to

the University of Southern California Information
Sciences Institute from the University of Michigan,
as part of contract N00014-92-K-2015 from the
Advanced Systems Technology Office (ASTO) of the
Advanced Research Projects Agency (ARPA) and the
Naval Research Laboratory (NRL); and under
contract N66001-95-C-6013 from the Advanced
Systems Technology Office (ASTO) of the Advanced
Research Projects Agency (ARPA) and the Naval
Command and Ocean Surveillance Center, RDT&E
division (NRAD). Critical expertise and support has
been provided by David Sullivan of BMH Inc.

7. References
Bose, P. K., Meng, A. C-C, Rajnikanth, M. (1987)

Planning flight paths in dynamic situations with
incomplete knowledge. Proceedings of the SPIE
conference on Spatial reasoning and multi-sensor
fusion.

Calder, R. B., Smith, J. E., Courtemanche, A. J., Mar,
J. M. F., Ceranowicz, A. Z. (1993) ModSAF
behavior simulation and control. Proceedings of
the Conference on Computer Generated Forces
and Behavioral Representation.

43

Denton, R. V., and Froeberg, P. L. (1984)
Applications of Artificial Intelligence in
Automated Route Planning. Proceedings of SPIE
conference on applications of Artificial
Intelligence. , pp. 126-132.

Khatib, O. (1986) "Real-time obstacle avoidance for
manipulators and mobile robots". International
Journal of Robotics Research 5, 1 , 90-98.

Laird, J. E., Johnson, W. L., Jones, R. M., Koss, F.,
Lehman, J. F., Nielsen, P. E., Rosenbloom, P. S.,
Rubinoff, R., Schwamb, K., Tambe, M., van
Lent, M., and Wray, R., (May, 1995) Simulated
Intelligent Forces for Air: The Soar/IFOR project
1995. Proceedings of the Fifth Conference on
Computer Generated Forces and Behavioral
Representation.

Laird, J. E., Newell, A. and Rosenbloom, P. S.
(1987) "Soar: An architecture for general
intelligence". Artificial Intelligence 33, 1 , 1-64.

Lewis, R. L. (1993) An architecturally-based theory
of human sentence comprehension. Proceedings
of the Eleventh Annual Conference of the
Cognitive Science Society.

Longtin, M. J. (1994) Cover and concealment in
ModSAF. Proceedings of the Conference on
Computer Generated Forces and Behavioral
Representation.

Lozano-Perez, T. and Wesley M. A. (1979) "An
algorithm for planning collision-free paths among
polyhedral obstacles". Communications of the
ACM 22, 10,560-570.

McDermott, D. and Davis, E. (1984) "Planning
routes through uncertain territory". Artificial
Intelligence 22 , 107-156.

McDermott, D., and Gelsey, A. (1987) Terrain
analysis for tactical situation assessment.
Proceedings of the SPIE conference on Spatial
reasoning and multi-sensor fusion.

Mitchell, J. S. B. (1990) Algorithmic approaches to
optimal route planning. Proceedings of the SPIE
conference on Mobile Robots.

Rao, T. M., and Arkin, R. C. (1989) 3D Path
planning for flying/crawing robots. Proceedings
of the SPIE conference on Mobile Robots.

Rosenbloom, P.S. and Aasman J. (August, 1990)
Knowledge level and inductive uses of chunking
(EBL). Proceedings of the National Conference
on Artificial Intelligence. , pp. 821-827.

Rosenbloom, P. S., Laird, J. E., Newell, A., and
McCarl, R. (1991) "A preliminary analysis of
the Soar architecture as a basis for general
intelligence". Artificial Intelligence 47, 1-3 ,
289-325.

Rosenbloom, P., Johnson, W. L., Jones, R. M., Koss,
F., Laird, J. E., Lehman, J. F., Rubinoff, R.,
Schwamb, K, and Tambe, M. (1994) Intelligent
Automated Agents for Tactical Air Simulation: A
Progress Report. Proceedings of the Conference
on Computer Generated Forces and Behavioral

Representation.
Rubinoff, R., and Lehman, J. (1994) Natural

language processing in an IFOR pilot.
Proceedings of the Fourth Conference on
Computer Generated Forces and Behavioral
Representation.

Stobie, L, Tambe, M., and Rosenbloom, P.
(Novemeber, 1992) Flexible integration of path-
planning capabilities. Proceedings of the SPIE
conference on Mobile Robots.

Tambe, M., and Rosenbloom, P. (July, 1993) On the
Masking Effect. Proceedings of the National
Conference on Artificial Intelligence.

Tambe, M., Johnson, W. L., Jones, R., Koss, F.,
Laird, J. E„ Rosenbloom, P. S., and Schwamb, K.
(Spring 1995) "Intelligent agents for interactive
simulation environments". AI Magazine 16 .

Tan,J. Flying NOE in ModSAF. Private
communication.

8. Authors' Biographies
Milind Tambe is a research computer scientist at

the Information Sciences Institute, University of
Southern California (USC) and a research assistant
professor with the computer science department at
USC. He completed his undergraduate education in
computer science from the Birla Institute of
Technology and Science, India in 1986. He received
his Ph.D. in computer science from Carnegie Mellon
University in 1991. His interests are in the areas of
integrated AI systems, agent modeling, plan
recognition, and efficiency and scalability of AI
programs, especially rule-based systems.

Karl Schwamb is a Programmer Analyst on the
Soar Intelligent FORces project at the University of
Southern California's Information Sciences Institute.
He contributes to the maintenance of the
Soar/ModSAF interface software and the Tcl/Tk
interface to Soar. He received his M.S. in Computer
Science from George Washington University.

Paul S. Rosenbloom is an associate professor of
computer science at the University of Southern
California and the acting deputy director of the
Intelligent Systems Division at the Information
Sciences Institute. He received his B.S. degree in
mathematical sciences from Stanford University in
1976 and his M.S. and Ph.D. degrees in computer
science from Carnegie-Mellon University in 1978
and 1983, respectively. His research centers on
integrated intelligent systems (in particular, Soar),
but also covers other areas such as machine learning,
production systems, planning, and cognitive
modeling. He is a Councillor and Fellow of the
AAAI and a past Chair of ACM SIGART.

44

A Multiple Agent Hybrid Control Architecture
for Automated Forces:

Design and Software Implementation
Xiaolin Ge, John James, and Anil Nerode

Mathematical Sciences Institute of Cornell University and Sagent Corp.
xge@math.comell.edu, 75767.77@compuserve.com, anil@math.comell.edu

1. Abstract

We introduce a multiple-agent hierarchical command
system for automated forces based on distributed
optimization of local cost functions. Issues of system
design and software implementations are discussed

2. Introduction

We introduce a MAHCA or mutiple agent hybrid
control architecture, for generation of computer-
generated forces (CGF) and for use with semi-
automated forces (SAF) \cite{mm94}. This architecture
has already been applied to many other areas [13] [13]
[17] [14], but each new application area presents new
intellectual modelling challenges. Here we provide (1)
an overview of ideas for apply existing MAHCA
technology to overcoming technical barriers in CGF and
SAF [24] and (2) a summary of results from a previous
demonstration of use of MAHCA for generation of
software which synchronizes logical behavior and
continuum behavior of units involved in engaging
multiple targets with multiple weapons platforms.

As discussed in [23] and [22], activities in the area of
doctrine-based software design are meant to ensure that
the final SAF performance behaviors accurately reflect
current Army doctrine. Achieving this goal is made
more difficult by the fact that, even though doctrinal
publications exist and are constantly updated, doctrine
development is itself an ongoing, dynamic process.
Additionally, even though the Army Materiel Systems
Analysis Activity (AMSAA) has accurate models for
many low-level, continuum activities, the integration of
doctrinal constraints on CGF behaviors with continuum
constraints on CGF behaviors remains an
experimentation-based design process. The current
approach for capture of battlefield activities in support
of combat maneuvers is to use Army Training and
Evaluation Program (ARTEP) documents to support
creation of Combat Instruction Sets (CISs). A Combat
Instruction Set (CIS) is defined as a computer-generated
representation of tactical combat behavior at unit

(Battalion, Company, Platoon, Squad, Section, and Fire
Team) and platform (ground vehicle, air vehicle, or
dismounted infantrv/engineer/scout entities at various
levels of organization) level [22].

At a recent meeting on research challenges in DIS the
increasingly difficult problem of achieving
interoperability between heterogeneous visual systems
such as Battlefield Distributed Simulation -
Developmental (BDS-D) and Close Combat Tactical
Trainer (CCTT) was discussed by a representative of the
U. S. Army Simulation, Training and Instrumentation
Command (STRICOM) [see [19] 9, p. 270]. At that
same meeting Kohn, Nerode, and James discussed the
application of MAHCA technology to advanced
distributed simulation [21]. Here we augment that
discussion with details concerning an initial experiment
in building a multiple-agent simulation While not
intended to capture the full complexity of the
engagement process, the experiment did show the
feasibility of using a declarative, formal approach for
synchronization of logical and continuum models
required for construction of a CIS. Also, since the
MAHCA technology applies a formal extraction
methodology, the experiments needed for the
Verification, Validation and Accreditation (W&A)
process for commissioning a CIS can be reduced.
Finally, since MAHCA technology is declarative, the
process of building the composite logical and continuum
models is incremental, which supports rapid inclusion
of doctrinal changes in CGF applications

3. MAHCA Agents for Automated Forces

The MAHCA Architecture assigns a software agent to
each unit (Fire Team, Squad, Platoon,...) of a complex
system which consists of a large number of interacting
units. Each agent observes its unit, changes agent state
as a function of the state of its unit and of messages
passed from otheroptimization algorithm to extract a
plan which comes close to minimizing the agent local
cost function. Every agent's cost function is
periodically updated by adding an adjustment term
communicated from every other agent This is one of

45

two forms of communication between the agents. The
other is communication of constraints issued by agents
higher in the hierarchy of agents. The agents otherwise
compute autonomously. The plans the agent issues are
advisory for its unit and, if followed, constrains the
actions of that unit until its agent issues a new plan We
use a simple form of optimization here. More
complexoptimizations, based on chattering and the
measure valued calculus of variation are the basis of
general MAHCA, but are not employed in this paper.

The agents have varying degrees of autonomy, but all
have to obey the constraints of the system as expressed
by doctrine, physical circumstances and laws, and also
the constraints imposed by higher commands. We
model a military command as a hierarchy of agents.
Higher agents in the hierarchy can issue plans
constaining the lower agent's behaviors. Starting
bottom-up, each asset such as an airplane, tank, or scout
vehicle is viewed as under the supervision of a
corresponding agent Similarly with the human
element A platoon has an agent for each Squad and a
higher level agent for the Platoon Leader, each with its
own cost function

The system can be modelled by building agents bottom-
up from the lowest military unit up to the highest level
of command One new feature is that every agent has its
own mathematical model of the local unit and its own
local cost function, and is performing an optimization
based on that model and cost function and terms from
other agents and constraints from higher agents. A
second new feature is that near-optimal plans are
extracted by each agent and given to its unit A
simulation based on this methodology is not limited to
answering "what if statements after imposing
strategies that arise from the outside, but can plan close
to optimal strategies itself. A third advantage is that
since a unit's cost function is what counts for
determining unit interactions, aggregated units are fully
compatible in the model with less aggregated units,
provided only that the cost functions are properly
adjusted.

This is a fully scalable architecure for complex
heterogeneous systems. Since we delegate as much
computation as possible to local units to minimize
interagent communications, this architecture is quite
suitable for distributed simulation It can be
implemented by putting one computer for MACHA at
each simulator which can monitor and replace inputs
and outputs of its simulator, and can communicate
directly with other agents, plus with agents for the
command hierarchy. It is fully compatible with

incorporating legacy simulators of all kinds,
constructive, virtual, etc., because its fuhy integrated
communications system between agents is there to take
care of all impedance and phase mismatches between
simulators to the extent this can be done at all.

3.1 Agents

What did our platoon level agent program incorporate?

(1) Each tank squad has an agent of the same lowest
hierarchy level. These are fellow agents. There is a
platoon leader agent at the next higher level in the
hierarchy. While it is feasible to create an agent for
each squad member, we did not do so for our
simulation experiment

(2) The agent has a sensor system.
(3) The agent contains a mathematical model of the

system

There are three sets of variables on the basis of which
plans are made.

(a) Variables correponding to readings of the agents
sensor systems. These will be updated through
online sensor readings. This group is updated as
often as feasible.

(b) Variables corresponding to information passed from
other agents. These are not raw data, but assessed
information which represent the other agent's
judgements on the state of the system

(c) Variables corresponding to orders passed down by
the platoon leader agent

There is no control exercised between fellow agents.
Cooperation is achieved through information passing
between agents which is about the global state of the
platoon The Platoon Leader agent can enforce policy
changes by adjusting the third set of parameters in the
mathematical formula that is used to compute plans.

(4) The platoon model has an information system and
database.

The platoon leader agent has the same design The plan
of the platoon leader is given to the platoon agents.
Similarly one can build extended hierarchies of agents
corresponding to higher levels of command

In the sections that follow we give a simple example of a
multiple agent reactive decision system which we
implemented at Picitinny Arsenal with the cooperation
of Dr. Norman Coleman.

46

This was to demonstrate MAHCA multiple agent
distributed control for a platoon of simulated tanks.

4. Describing a Decision Problem

The battlefield model was a p-kilometer x q-kilometer
rectangle. For simplicity the terrain was assumed to be
flat and open, so that no geometry of the battlefield was
present to block the view of any sensor.

On the foe side, there were m foe objects of different
types, namely, foe tanks and foe scout vehicles. We will
refer to scout vehicles simply as scouts. The scouts
move around to gather information about friendly tanks,
try to avoid being hit by friendly tanks, and at the same
time try to destroy friendly tanks. The differences
assumed between tanks and scouts were as follows.

(1) A scout carries a missile launcher with a high hit
probability if the scout is within 1km range of a target
(2) A scout is more maneuverable than a tank.

We assume that there are n stationary tanks on the
friendly side. We could handle it if they maneuvered,
but we considered only stationary friendly tanks
(pillboxes) to simplify the implcmentatioa The sensor
system of each friendly tank covers a fan-shaped sector.
We require that the part of the battlefield beyond the
300 meter line (from the bottom line) be fully covered
by the three friendly tanks in normal situations. The
friendly tanks are controlled by a multiagent control
system intended to search for and to engage the foe
objects. For the multiagent control system to make
decisions, the friendly tanks send the information about
the foe objects gathered by their sensors to the
multiagent control system.

5. The Decision Rules

Each agent representing a platoon member has a set of
rules made by a higher order commander. To make
decisions based upon these rules, the agent is simulated
as a nondeterministic automaton. The human operator
plays an important role in making decisions in the
following situations.

(a) Several choices are available.
(b) The system is in a fuzzy state.
(c) There is no choice at all.

Rule-based real time decision systems have been studied
for twenty five years and have not been very successful
in practice. One difficulty is the requirement of massive
real time rule processing. Another difficulty is

distribution of inference tasks among agents. If the
rules can't be decomposed into highly separate parts for
different agents, the simultaneous inferences required
can be very taxing. If a good decision could be made by
passing five messages but there are only three messages
that can be passed before making a decision, what do we
do? A last difficulty is the inability to handle stability
questions.

In contrast, in our distributed cost based methodology,
we replace rule based decision making by cost based
decision making. This eliminates many difficulties
associated with human operators, and, at the same time,
real time performance is possible because distributing
numerical parameters beats chaining through a
distributed knowledge base. In this model, the messages
which are passed between agents are mostly numerical
values which update certain parameters of the cost
functions of the agent, and take very little of the capacity
of communication lines.

We give samples from the rule base first We then
describe some of the cost functions that we relied on in
the next section.

Sample rules for the friendlies:

1. Engage with the closest foe object

2 If the distance from two foe objects is
approximately the same, engage the more dangerous
foe object.

3. Scouts are more dangerous than tanks.

4. Among the three modes of the foe objects, the
"engage mode" is the most dangerous. Traverse is
less dangerous. Escape is the least dangerous.

5. In general, don't let more than one friendly tank
engage with a single foe object However, in some
cases, such as when one foe object is much more
dangerous than the rest, more than one friendly can
engage the same foe object

6. If a friendly tank is already assigned a particular foe
object, then it has a higher priority of assignment to
that same object in the next control command
However, if there is an identified "emergency", it
can be assigned to engage a new foe object even if it
the current task is unfinished.

47

6. Designing Cost Functions 6.2 Prototype Cost Functions

Recall that each agent has its own model of the system.
There are three sets of parameters which contribute to
decisions of agents. The first set consists of sensor
readings. The second set consists of information passed
by fellow agents to update the global state of the model.
The third consists of higher order commander policies.
which can change the decision making entirely. For our
example we denote these parameters by r's's, X's and
/w's.

For a single agent in the platoon, a particular friendly
tank, its action decision is based on numerical formulas
Wii W2, Wy, WA and W% which represent the five foe
objects. The three sets of parameters are as follows. In
this description the subscript I corresponding IV, is
omitted.

1. Let r be the distance between the agent and the i-th
foe object

2. Let XA take values 0, 1, 2 corresponding to
the number of other agents currently targeting the
underlined foe object

Let Kf represent the foe type, taking values 0, 1
corresponding to being a scout or a tank.

Let Knd represent the foe mode and take values
0, 1, 2 corresponding to "Engage", "Traverse" and
"Escape".

Let X, represent the velocity.

Let X,,, represent angular acceleratioa

Let Xut represent the hit probability.

3. m* nity, m^ m*, nta,, and m** are corresponding
"weights" of the parameter X's. Furthermore, let m*be
the "weight" which is assigned to the i-th cost function.
By adjusting these weights, the higher agent has control
of decision making for the platoon.

6.1 Control Orders

The agent computes a command every second. A
control order is of the form of a tuple (/'a Te), where io is
the index of the foe object which is to be engaged with
Here Tcisa real number representing the time allowed
to destroy the foe object

All parameters in the following formula have subscript

Wt = mwiT,{f)(X^nAr+At)mtyr+Amfnmr

m
+r + |Xv| mv r + \Xjpiaj-i+ —!3L-).

•hit

The foe object that is to be engaged is computed as:

I0: Wn = min{Wx, W2, Wy, WM Ws).

If a tie occurs, choose the one that will require the least
gun barrel motioa

Tfi) is a function used to stabilize the decision method.

Let T,(f) = 1 if the 7 -th foe is not the target according to
the last command of this agent If ;' is the target
assigned last time, then T ,{t) is a function introduced to
stablize the decision. It decreases linearly as time
elapses. In this particular model, we took 7;. to be a
fixed number when the target is new. If the decision is
to target the same foe as was targeted in the last
command, then Tc is to be the time left according to the
last command, say Tc = Tc-\, since one second has
passed since the issue of the last command.

These are some examples of cost functions used. In a
more detailed mode, one could include new terms
representing facts such as the position of the gun barrel,
network performance, etc.

The choice of the target as that of least value is an
optimization procedure. The weights chosen are crucial
to the decision. By modifying these weights, the platoon
leader has substantial control of the decision making.
We omit discussion of the relation between local
optimization and global optimization for lack of space.

7. The Software Implementation

Our hierarchical multiple agent command model for
automated forces was designed to minimize
communication costs and distribute computation as
much as possible to individual agents. Each agent can
be implementated on a work station, or as a group of
processes, or on a PC. The agent network is
implemented by networked computers. We chose the
TCP/IP protocol to implement the communications

48

among agents. It may be better to build a
communication kernel protocol directly.

We describe the software implementation briefly.

7.1 The Target Designation Module

The agent target designation module assesses the
environmental threat and designates targets for the tank
associated with agent The multiagent controller is
formulated as a distributed optimization problem with
specially designed cost functions.

In our simplified model, the parameters have
deterministic values. The model is not event driven,
that is, a command is computed every second based on
the information available at the time.

7.2 The Data Interpretation Module

Because of the uncertainty of sensor data and possible
time delay in message passing, one has to process raw
data with some mathematical tools, i.e. probabilistic
tools. The data interpretation module interprets the
measurements and coordination messages, and resolves
inconsistencies in data. The measurements and
messages processed by the data interpretation module
produce the parameters for foe mode, foe type and hit
probability. Based on some task decomposition rules,
each agent is responsible for the parameters of a subset
of foes. The parameters then are passed to other agents.

7.3 The Sensor Management Module

The sensor management submodule schedules the area
to be covered by the sensor system The sensor of each
friendly tank covers only a sector of battle field
However, the sectors are subject to change in order to
guarantee optimal performace of the friendly sensor
system. For example, if too many foe objects fall into
the sector of one particular sensor, the system may want
to change the covered sectors of the tanks.

7.4 The Communication Module

The communication module is responsible for sending
coordination messages to fellow agents. For each agent,
the only way to get access to global information is by
message-passing. This is controlled by the
communication module. For communication among a
platoon group, we used star shaped network topology.
That is, we implemented a virtual gateway to handle all
messages. In this gateway, there were buffers for each

agent containing dynamically sorted messages waiting
to be transferred. The messages from the platoon leader
agent also go through this gateway. As one can see
from the last section, the weights of the corresponding
parameter determine the relative importance of the
parameter to the decision. Because we use a real time
default scheme in computing decisions, an algorithm for
dynamically sorting messages in the buffer according to
importance was implemented.

8. Conclusions

We introduced a multiple-agent hierarchical command
system for automated forces based on distibuted
optimization of local cost functions.

A sample cost-based decision system for a model of the
problem of engaging multiple targets with multiple
weapons platforms was implemented at Picitinny
Arsenal with the cooperation of Norman Coleman and
Wolf Kohn [14]. A software demonstration of the
computer generated system controlled by cost based
distributed controllers is available at Picatinny Arsenal
and at OR A corporation.

While the model which was implemented was not at the
same level of detail as those being experimentally
integrated to build CIS's, the demonstration did
establish the feasibility of applying a declarative
approch to integration of heterogeneous battlefield
models. The high-level logic of assigning sectors of fire
and performing target detection, identification and
assignment was declarativery integrated with the low-
level differential equation models of target motion and
the engagement process. This approach supports easy
change of the battle drill logic as well as the easy
inclusion of more accurate nonlinear differential
equation models of weapon system characteristics.

9. Acknowledgements

Research supported by Sagent Corp, ORA Corp.,
DARPA-US ARMY AMCCOM (Picatinny Arsenal,
N.J .) contract DAAA21-92-C-0013, and U. S. Army
Research Office contract DAAL03-91-C-0027.}

10. References

[1] K. Birman, The Process Group Approach to
Reliable Distributed Computing, CS Tech Report
91-1216, Cornell University, Jury 1991, Revised
September 1992.

[2] J. N. Crossley, J. B. Remmel, R. A Shore, and Moss
E. Sweedler, Logical Methods: In honor of Anil

49

Nerode's Sixtieth Birthday, Progress in Computer
Science and Applied Logic vol. 12, Birkhauser,
Boston, 1993.

[3] L Ekeland, Infinite Dimensional Optimization and
Convexity, University of Chicago Lecture Notes in
Mathematics, University of Chicago Press, 1983.

[4] X Ge, W. Kohn, and A. Nerode, Algorithms for
Chattering Approximations to Relaxed Controls,
(Patriot's Day, April 94, 1994). MSI Technical
Report 94-23, Cornell University, April 1994.

[5] X Ge, A. Nerode, Effective Content of Calculus of
Variations I: Semicontinuous Functions and
Chattering Lemma, MSI Technical Report, Cornell
University, March 1995.

[6] R L. Grossman, A. Nerode, A. Ravn, and H.
Rischel, eds., Hybrid Systems, Lecture Notes in
Computer Science 736, Springer-Verlag, 1993.

[7] W. Kohn, A Declarative Theory for Rational
Controllers, Proc. 27th IEEE CDC, pp. 130-136,
1988.

[8] W. Kohn, Autonomous Space Robots, Proc. AIAA
Conf. on Guidance, Navigation, and Control, vol. 1,
pp. 382-390,1988.

[9] W. Kohn, Cruise Missile Mission Planning: A
Declarative Control Approach, Boeing Computer
Services Technical Report, 1989.

[10] W. Kohn and A. Nerode, An Autonomous Control
Theory: An Overview, Proc. IEEE CACSD92,
March, 1992.

[11] W. Kohn and A. Nerode, Multiple Agent
Autonomous Control Systems, Proc. 31st IEEE
CDC in Tucson, pp. 2956-2966.

[12] W. Kohn and A. Nerode, Models for Hybrid
Systems: Automata, Topologies, Controllability,
Observability, in Hybrid Systems [6].

[13] W. Kohn and A Nerode, Multiple Agent Hybrid
Control Architecture, in [6], 1993.

[14] J. Lu, X Ge, W. Kohn, A. Nerode and N.
Coleman, A Semi-Autonomous Multiagent
Decision Model for a Battlefield Environment,
MSI Technical Report 94-55, Cornell University,
Oct 1994.

[15] A Nerode and W. Kohn, A Hybrid Systems
Architecture, in [2], 1993.

[16] J. James, N. DeClaris, Wolf Kohn, and A Nerode,
Intelligent Integration of Medical Models, Proc.
IEEE Conference on Systems, Man, and
Cybernetics, San Antonio, pp. 1-6, Oct 1994.

[17] A. Nerode, J. James, and W. Kohn, Multiple Agent
Hybrid Control Architecture: A generic open
architecture for incremental construction of

reactive planning and scheduling, Intermetrics
Corp. Report, June, 1994.

[18] A Nerode, W. Kohn, J. B. Remmel, and X Ge,
Multiple Agent Hybrid Control, Carrier Manifolds
and Chattering Approximations to Optimal
Control, Proc. IEEE 33rd CDC, vol. 4,1994.

[19] Proceedings of the ARO Workshop on Hybrid
Sytems and Distributed Interactive Simulations,
Feb 28-March 1, Research Triangle Park, N.C.,
1994.

[20] W. Kohn, J. James, A Nerode, and J. Lu Multiple-
Agent Hybrid Control Architecture for the Target
Engagement Process (MAHCA-TEP - Version 0.2
of MAHCA-TEP: Technical Background,
Simulation Requirements, and Engagement
Model), Intermetrics Technical Report, 25 August,
1994.

[21] W. Kohn, J. James, and A. Nerode, Multiple-Agent
Hybrid Control Architecture for Distributed
Interactive Simulation, in [19].

[22] B. McEnany and H Marshall, CCTT SAF
Functional Analysis, Proceedings of the Computer
Generated Forces Conference, May, 1994.

[23] COL James E. Shiflett, Memorandum, Subject: Use
of Doctrine Based Software Development in the
Development of CCTT, Department of the Army,
PMCATTS,Nov.4,1994.

[24] DIS Steering Committee, The DIS Vision A Map
to the Future of Distributed Simulation (comment
draft), (Margaret Loper, UCF, Chair, Steve
Seidensticker, SAIC, DIS Vision Document
Coordinator), Oct. 1993.

11. Authors'Biographies

Dr. Xiaolin Ge is in the second year of a post-doctoral
research associateship at the Mathematical Sciences
Institute of Cornell University. His work is sponsored
by the Army Research Office and the ARPA DSSA
program. He received his Ph.D. degree in Mathematics
from the University of Minnesota in 1993. He has co-
authored papers with Anil Nerode, John James, Wolf
Kohn, J. B. Remmel, and J. Lu in Hybrid Systems and
Distributed Control. He is also the author often papers,
including some with Anil Nerode and some with the
late Ian Richards, in mathematical logic, algorithmic
algebra, functional analysis, and nonlinear optimal
control. His current research program is devoted to the
design and implementation of distributed multiple agent
hybrid control systems.

Dr. John James received a B.S. from the United States
Military Academy in 1967, an MS.E.E. from the

50

University of California, Berkeley in 1973 and a PLD.
in Electrical Engineering from Rensselaer Polytechnic
Institute in 1986. He is participating in the development
of tools to support modeling, simulation, design and
implementation of control systems, particularly
intelligent control systems. Dr. James has been
involved in building analysis and design tools for
control system design for over twenty years, including
three years as Chairman of the IEEE technical
committee for Computer-Aided Control System Design.
As Director of the U.S. Army Training and Doctrine
Command (TRADOQ Artificial Intelligence (AT)
Center he directed the development of over 30
knowledge-based decision support systems for the
TRADOC staff at Fort Monroe, Virginia. TRADOC
plays a key role for the Army at two points in the life-
cycle of acquiring weapon systems: (1) TRADOC writes
the requirements documents which start the acquisition
process and (2) TRADOC writes the critical operational
issues and criteria documents which are used to evaluate
whether the item as built meets the user's needs as
stated. The TRADOC AI Center supported activities at
TRADOC schools and installations which included: the
Future Battle Laboratory at Fort Leavenworth, Kansas
which developed requirements for Army Corps-level-
and-below command and control, the Technology
Assessment Center at Fort Huachuca which developed
requirements for Intelligence and Electronic Warfare,
the Technology Assessment Center at Fort Gordon
which developed requirements for communications, and
the TRADOC Analysis Command at Fort Leavenworth
which developed force-on-force simulation software for
corps-level-and-below operational analysis studies.
Active in the Institute of Electrical and Electronics
Engineers (IEEE), he was co-organizer and co-chaired
the first invited session on hybrid systems technology at
the 1992 EEE Conference on Decision and Control.
He was also general chairman of the 1992 IEEE
Symposium on Computer-Aided Control System
Design He is currently President of Sagent
Corporation

automata, recursive and polynomial time algebra,
concurrency and distributed systems, non-monotonic
reasoning systems, logic programming, hybrid systems,
and distributed control. He has produced thirty five
PhD.'s who hold senior positions in mathematics and
computer science departments nationwide. He was an
editor of the Journal of Symbolic Logic for sixteen years,
has been an editor of Annals of Pure and Applied Logic
for fifteen years, is the associate editor of the Annals of
Math and AI, and is also editor of marry other journals
in mathematics, applied mathematics, computer science,
AL and modelling and simulation He has been a
military consultant to all the armed forces in design of
weapon systems over a period of forty-one years. He is
currently a Vice President of the American
Mathematical Society and a member of the Committee
on Mathematics of NAS/NRC.

Anil Nerode is Goldwin Smith Professor of
Mathematics and Computer Science and Director of the
Mathematical Sciences Institute at Cornell University,
an Army Research Office Center of Excellence. He
received his Ph.D. in Mathematics at the University of
Chicago in 1956 under Saunders MacLane, was an NSF
postdoctoral fellow with Kurt Godel at the Institute for
Advanced Study in Princeton and then with Alfred
Tarski at the University of California at Berkeley. He is
the author of a hundred and fifty papers and books in
mathematical logic, algebra, recursive functions,

51

Context-based Representation of Intelligent Behavior in Simulated Opponents

Avelino J. Gonzalez
Electrical and Computer Engineering Dept.

University of Central Florida
Orlando, FL 32816-2450

ajg@engr.ucf.edu

Robert Ahlers
Naval Air Warfare Center
Training Systems Division

Orlando, FL 32826

Abstract

This article describes and evaluates a concise, yet
rich representation paradigm that could effectively
and efficiently be used to model the intelligent
behavior of opponents in a simulation-based tactical
training system. This feature would be quite useful
in the training process for two reasons: 1) the trainee
would face a realistic enemy who is knowledgeable
about tactics in the domain of interest and, 2) the
instructor would not be burdened with playing the
part of the enemy in those training systems where
this is commonly done.

The representation paradigm proposed is based on
the idea that applicable tactical knowledge is highly
dependent upon the situation being faced by the
decision maker (i.e., the context). A combination of
script-like structures and pattern-matching rules in an
object-oriented environment could serve to hold all
knowledge pertinent to the context present at a
specific time. This paradigm has been preliminarily
tested in a prototype system that incorporates the
knowledge of a submarine tactical officer on a patrol
mission. Evaluation of the prototype shows that the
context-based paradigm promises to meet the desired
levels of conciseness and effectiveness required for
the task.

1. Introduction

The use of autonomous and intelligent simulated
adversaries in a training simulation can provide a
more realistic experience to the trainees than would
be presented otherwise. This would be especially
true for tactical training simulators if an intelligent
simulated adversary could be made to react and
counter the trainee's tactics in a realistic fashion.

Intelligent simulated adversaries will be henceforth
referred to in this article as Autonomous Intelligent
Platforms (or AIP's). They can be defined as
instance representations of military platforms (i.e.,
submarine, destroyer, tank, helicopter, fighter
aircraft) in a training simulation which behave as
would a real platform in actual battle from a tactical
standpoint.

Tactical knowledge is required in order to endow
AIP's with the ability to act, not only intelligently,
but also realistically, in light of a trainee's actions. In
general, tactical knowledge can be said to address
time-stressed tasks which require 1) assessment of
the situation at hand, 2) selection of a plan to most
properly address the present situation, and 3)
execution of that plan [Thorndike, 1984]. It is how
this knowledge is represented and manipulated that is
the focus of this research project.

Most tactical tasks in the military consist of a pre-
defined set of actions which are embarked upon after
a certain situation has been recognized. The
situation could be a mission, a set of orders, or
merely a reflection of a specific set of battle
conditions at the moment. The problem faced,
therefore, is two-fold: 1) how to recognize the
present situation (referred to as situational
awareness), and 2) what to do when the situation is
recognized (referred to as implementation of
actionable information).

The basis of our approach to the problem of
concisely and effectively representing ATPs is based
on the following hypotheses:

1) Tactical experts are proficient at their
task by recognizing and treating only the

53

key features of the situation, and abstracting
these for use as the premises for the general
knowledge. Thus, they only use a small, but
important portion of the available inputs.
An example of this is the tactical exercise of
driving an automobile.

The driver of an automobile is generally
bombarded with a multitude of inputs when
driving: audio inputs such as engine noise,
road noise, the radio, conversation with
passengers, etc.; visual inputs such as the
instruments, other automobiles, the
surrounding scenery, pedestrians, etc.;
tactile inputs such as vibrations of the car,
the position of the steering wheel, the gear
shifter, the clutch, etc.. These inputs are
cognitively handled rather easily by the
driver when they are all in the normal or
expected range. However, if one of these
should deviate from normal, such as the
abnormal noise and vibrations resulting
from a tire blowout, the driver will
immediately focus on these inputs in order
to recognize the present situation as a
blowout, while ignoring all the other inputs
being received.

2) There is only a limited number of things
that can realistically take place in any
situation. Using the example above, it
would not be expected that a tire blowout
take place while waiting at a stop light. This
can be used to advantage to prune the search
space of the problem, since there is no need
to consider a blowout while waiting at a
stoplight. Getting rear-ended, on the other
hand, is a much more likely proposition.

3) The presence of a new situation will
generally require alteration of the present
course of action to some degree. For
example, the recognition of a blowout at
highway speeds will cause the driver to
coast to a stop while maintaining a hard grip
on the steering wheel, and directing the car
towards the shoulder of the road. Thus, the
context changed from one of normal driving,
to one of blowout, with its attendant course
of further action. This context remains in
effect until the car comes to a complete stop,
at which point another situation will be
recognized and acted upon (i.e., get out of
car, inspect tire, change tire etc.).

The work described here is based on the idea that by
associating the possible situations and corresponding
actions to specific contexts, the identification of a
situation is simplified because only a subset of all
possible situations are applicable under the active
context. The work also addresses what course of
action to follow when a situation is correctly
recognized.

2. General Description Of Context-based
Representation Paradigm

Our approach to implementing the concepts
described above lies in the use of Scripts. A script is
a knowledge representation paradigm developed by
Roger Schank at Yale University [Schank, 1977]
which attempts to capture the actions, objects,
persons, and concepts that may be related within a
given context. For example, a restaurant script will
be composed of all the actions which are typically
part of going to a restaurant, such as reading the
menu, ordering the meal, eating it, paying the bill,
etc. A restaurant script also contains props, objects
which are typical to a restaurant scene from the
customer's standpoint, (e.g., tables, chairs, menus,
food, eating utensils, napkins, salad bars, etc.) as well
as actors (i.e., waiters, hostesses, chefs, busboys,
etc.). The actions involved are only those typical of
the restaurant experience. It would not be normally
expected, therefore, that the customer wash her car at
the restaurant.

This concept can be easily extended to military
tactics, where a script can be used to express the set
of steps (at either a high or low level) that are
necessary to carry out the action required by the
present situation. Within the context of a mission,
there is a limited number of things that are generally
expected in terms of actions to carry out and the
expectations in regards to the possible situations. It
would be quite difficult to represent all this
knowledge using rules alone. Thus, the basis for this
research project is to use scripts (in addition to
objects as well as a minimal number of rules) as the
knowledge representation paradigm for a set of
AIP's. For lack of a better name, this representation
and reasoning paradigm will be referred to as
Context-based Reasoning (CxBR).

The approach proposed here is based on the
following assumptions:

54

1) Life for an AIP is a continuous and
dynamic decision making process.
Decisions are heavily influenced by a never-
ending sequence of contexts, each of which,
when active, regulates the behavior of the
AIP as well as provide an expectation for
the future. Active contexts change not only
in response to external events or
circumstances, but also as a result of actions
taken by the decision maker (the AIP itself).
A context can be likened to a situation that
has been recognized, and which has a
prescribed set of procedures that must be
carried out, either sequentially,
methodically, or arbitrarily. One example of
a context would be driving an automobile on
an interstate highway at normal cruising
speeds. The behavior of an AIP in that
situation is controlled by the context that is
active for it at the time.

2) The active context may not be the same
for all ATP's at the same time. This is
reasonable to expect, since each may have a
different mission, different sensor inputs,
different capabilities, a different physical
location, etc.

3) At least one specific context or set of
contexts is always active. More than one
context can be valid, but only one may be
active. Furthermore, all valid contexts must
be compatible. Thus, one context must be
the central focus of attention. For example,
using the case of traveling in an automobile,
the driver may be cruising on an interstate
normally at the speed limit, a situation
which may be characterized as normal-
highway-driving. Moreover, he/she may
also be hungry which can be as a situation
labeled driver-hungry. If he/she is more
anxious to arrive at the destination than
willing to satisfy the hunger, then the first
situation will dictate the action being
undertaken. Thus, the active context would
be normal-highway-driving. Otherwise, a
driver-hungry context will be the active one
and the action will shift towards finding a
place to eat.

4) Contexts are represented temporally as
intervals of time rather than time points.
Contexts can be considered to be transitions

to reach a goal (look for a place to eat), or
they can be a goal in themselves (eating).

5) Goals can be time points, but only to
serve as transitions to other contexts. For
example, arrival at a destination can be
defined as a goal of normal-highway-
driving and it can be represented as a time
point, but it is not a context in its own right,
only a transition to another context (e.g.,
being-there). This process may go on until
the mission ends.

6) Only a limited number of things can take
place in any single context A situation,
therefore, by its very nature, will limit the
number of other situations that can
realistically follow. Using as an example
the domain of submarine warfare, it would
not be expected that the submarine would be
attacked in its own home port. This can be
used to advantage to prune the search space
of the problem, since there is no need to
watch out for a torpedo attack while waiting
to be resupplied at port. If unexpected
situations do take place, that introduces the
element of surprise into the ATP's behavior,
which is highly consistent with the real
world.

7) Certain cues exist which will indicate
that a transition to another context is
desirable. This makes use of the hypothesis
that experts look for certain few specific
cues which that will indicate a new situation
(e.g., the vibration on the steering wheel
upon a tire blowout.)

8) The presence of a new context will alter
the present course of action and/or the
applicable expectations to some degree. For
example, the recognition of a blowout at
highway speeds will cause the driver to
attempt to coast to a stop while maintaining
a firm grip on the steering wheel, and
directing the car towards the shoulder of the
road. Thus, the context changed from
normal-highway-driving, to one of tire-
blowout, with its attendant requisite action.
This context remains in effect until the car
comes to a complete and safe stop (the
goal), at which point another context will be
recognized and acted upon (e.g., fix-tire).

55

By associating the potential contexts and
corresponding actions to specific situations, the
identification of a situation can be simplified because
only a subset of all possible situations is applicable
under the active context This context-based
approach also easily addresses what course of acuon
to take when a situation is recognized.

This is in some ways similar to a system proposed by
Thorndike [1984] called "Context Template-driven
SAFOR". However, the latter appears to implement
ATP's that are intelligent in a much higher level in
that they can only respond to orders from higher
command, or requests from subordinates. They do
not appear to be able to perceive the environment
independently. Moreover, the transition from one
context to another appears to be significantly more
rigid that what is being proposed here, which may
lead to unintelligent decisions. Lastly, the system
seems to not provide the capability to its AIP's to
plan, a significant disadvantage.

Czejdo and Eick [Czejdo, 1993] present an
environment in which addresses the problem of
large-scale knowledge management. Called the
Tanguy Knowledge Base Management System, it
integrates rules, objects and database features in
order to take advantage of their respective features.

Dreyfus and Dreyfus [Dreyfus, 1986] take exception
to the idea of using contexts to simulate human
intelligence in computers. They correctly point out
that there can exist many contexts in the course of
human life, and to attempt to account for all of them
is a hopeless task. Nevertheless, their argument
arises from the standpoint of refuting the claims that
computers can be intelligent in the same way as
humans, in all aspects of human intelligence. The
objective of this work is less ambitious in scope,
since the ATP's do not have to have the breadth of
knowledge possessed by humans in order to appear
intelligent in a training simulation. Rather, they
only must appear to behave as a human enemy would
in a very specific and narrow domain (i.e., submarine
warfare, tank warfare). In fact, this may mean that
they should not display optimal behavior, as that is
not always typical under wartime stress. It is our
belief that applying context-based reasoning as
described below presents a highly effective and
efficient methodology for imparting sufficient
intelligence to ATP's so as to achieve their objective
in a training simulator.

2.1 Representation of Contexts

In CxBR, contexts are the most important
representational item. Much knowledge about how
the ATP should behave, as well as to what other
contexts it can transition is stored in the context
objects themselves. There are three levels of
contexts that can be represented, and they are ordered
hierarchically. These are 1) the mission context, 2)
the major contexts and 3) the sub-contexts. These
will be described below.

2.1.1 Mission Contexts

A mission-context (simply referred to as a mission) is
an overall definition of the objectives of the scenario.
It defines the objectives as well as the constraints of
the operation. The mission can also define the things
to avoid during the mission. Examples of missions in
the domain of submarine warfare are SEARCH-
AND-DESTROY enemy submarines, MINING a
harbor or choke point, GATE-KEEPING, BATTLE-
GROUP-ESCORT, ANTI-SURFACE-OPERATION,
SPECIAL-OPERATIONS, and others. A mission
can define the types of lower level contexts which
may be necessary during the execution of this
mission. A mission context can also describe the
political environment under which the mission is to
be carried out For example, if a hot war is in effect,
then the rules of engagement will surely be different
than if a cold war is in effect No more than one
mission will be active at any one time, and missions
are mutually exclusive. So, a new mission would
have to bump an existing mission from active status.
In practice, however, there would be little need to
change missions during the course of a training
session.

The mission defines the constraints as well as the
Major-Contexts therein. It is a class definition in an
object-oriented environment and contains the
following attributes:

Constraints: This attribute lists all the
constraints that are imposed on the ATP
during this mission. Some of these could
be: withhold fire unless fired upon, any
limitations placed upon the submarine's
performance characteristics, etc.

Avoid: This attribute describes anything
that must be avoided at all times throughout
the training scenario. One obvious one is
destruction-of-self, but there may be others
such as avoid counter-detection at all costs,
etc.

56

Major-Contexts: This attribute lists the
Major-Contexts present in the mission. For
example, for a patrol mission (called
SEARCH-AND-TRACK), the major actions
for the AIP will be getting to its assigned
sector, searching the sector in an appropriate
fashion, tracking an enemy contact if one is
found, and breaking contact to return home
when certain parameters are fulfilled.

2.1.2 Maior-Contexts

Major-Contexts are the main focus of the Context-
based reasoning and representational paradigm.
They contain all the necessary information to operate
the AIP, as well as to determine when the active
context should be deactivated and another one put in
its place.

A major-context (or simply context for short) is a
tactical operation undertaken as part of the mission in
order to assist in achieving the goals set forth. One
context is always in control of the AIP, and contexts
are, also by definition, mutually exclusive of each
other. Unlike the mission, however, contexts are
normally activated and deactivated many times
throughout the course of a training session. A
context is activated by retracting from the fact base
the fact that identifies the active status of the current
context, and calling the initialization procedure of the
newly activated context. The latter will assert into
the fact base a new fact identifying the new context
as the active one. This will allow the monitoring
rule(s) that pertains to this context to become active
and fire periodically. Furthermore, the initialization
message will also modify any parameters that so
require modification, such as possibly the AIP's
heading, speed, depth, etc. In some missions, the
sequence of some of the contexts will be known a-
priori. Although some contexts may become invalid
through the simple passage of time, this is not
common. In most cases, the context will cease to be
applicable due to either an action taking place or the
completion of its task. Therefore, contexts are
generally assumed to be active indefinitely, until
bumped from active status by another context.

Each context is defined as a class in an object
oriented environment, and possess the following
attributes:

Initializer: References the name of the
message-handler which is executed

whenever the context/sub-context is first
activated to initialize all required variables.

Objective: The objective slot puts a
message as to what the objective of the
context/sub-context is. The objective is in
general terms and it references a frame that
has some attributes that are the goal of this
context/sub-context.

Compatible-next-major-context: This
attribute lists those contexts to which
transition from the current context is
acceptable.

Compatible-sub-context: This attribute is
a list of all sub-contexts which are
compatible with the current context. For
example, it would not be advisable to put an
automobile in cruise-control when a blowout
has taken place. Thus, the cruise-control
context would not appear on that list.

Additionally, some contexts will have slots that are
specific only to them, and deal with universal
variables that need to be known throughout the entire
simulation. For example, the attack context will have
a slot defining the target of the attack and another
defining the number of weapons used. Likewise, the
under-attack context will have a slot defining the
aggressor (source of the weapons bearing down on
the AIP).

There may be other attributes added to the class
definition for context/sub-contexts in the future. One
particularly desirable would be a further refinement
of the compatibility aspect by providing a numerical
weight to each context to decide which one would be
more desirable in the case where more than one
would be acceptable given the current situation. This
competing context concept is further described later
in this article.

2.1.3 Sub-Contexts

Sub-contexts are lower level tactical procedures
which are not critical in and of themselves to
reaching the mission objectives. They are typically
of temporally short duration. Sub-contexts are at this
time mutually-exclusive with one another, but can be
compatible, and thus co-exist, with the contexts. It is
expected, however, that in the future, compatible sub-
contexts may co-exist with one another on active

57

status as long as they control different variables. In
cases of incompatibility, a sub-context will not be
activated when an incompatible context is active.
Likewise, when a new context is activated while an
incompatible sub-context is active, the sub-context is
immediately "short-circuited". In any case, however,
the contexts always take precedence. It is not
necessary for one sub-context to be active at all times
as is the case with contexts. When no sub-context is
active, the sub-context is said to be "none".

The attributes of a sub-context objects are quite
similar to those of a context, and thus will not be
described further.

2.2 Situation Assessment and Transitioning
Between Contexts

One of the foundations of the CxBR approach is that
by knowing what the AIP is doing at any one time, it
can know what to expect. This greatly facilitates the
task of situational assessment. One example in the
automobile driving domain is that when on an
interstate highway, one does not have to be
concerned with traffic crossing the roadway, as there
are no intersections per se. When driving on city
streets, however, one of the most dangerous
situations is when the automobile approaches
intersections, and thus, a driver has to be especially
aware of them. The situational awareness function in
the existing prototype is done by simply looking for
parameter values that indicate that a change in
context is warranted. This is a rather simple, yet
quite effective means of doing situauonal assessment
under CxBR.

The basic recognition of the situation is done through
pattern-matching rules. While this might not seem to
be a concise way of carrying this out, the use of the
active-context and/or active-sub-context pattern in
the rule premise will significantly limit the solution
space of the search as was described in the previous
section. Rules will have a pattern in their premises
that indicates the active context to which they are
applicable. Only when there is a fact in the factbase
indicating the active status of the appropriate context
will these rules be "active" and capable of being
executed.

The transition among the various contexts is a critical
issue in CxBR. This approach is based on the use of
monitoring rules. Each major-context/sub-context
will have at least one of these. These rules will fire
continuously (every simulation cycle) as long as its

parent context is active. In its right hand side, the
rule will have a conditional statement(s) that will
monitor the parameters which are relevant to the
continuation of the context. Examples of these
parameters are: whether the enemy contact has been
detected, whether it is moving towards or away from
the AD?, whether it is within firing range, etc. Once
these parameters are satisfied and a change of
context/sub-context is indicated, the rule will retract
the fact that advertises the active context/sub-context.
This will prohibit these monitoring rules from firing
any longer. The rule will have the transition
information embedded, so that it will call the
initializing message for the new context/sub-context
The initializer will set the revised parameters on the
AD? as may be required, and post into the factbase
the new facts that announce the newly-activated
context/sub-context. This will allow the monitoring
rule for that context to begin firing.

In some cases, the transition to a new context/sub-
context would be a result of an "external" message
(e.g., a communication from fleet command).
Examples of such would be a message to return
home, or go to periscope depth to receive or transmit
a more detailed communication. This external
message is represented as a fact posted on the fact
base which has a "prompt" indication (i.e.,
(communication prompt)). In such circumstances, an
additional rule is required, which fires only once, to
retract the current context/sub-context fact (as well as
the prompt fact) and to invoke the initializing
message that activates a new context/sub-context.

Of course, there are also universal monitoring rules
which are not tied into any one context/sub-context
These rules search for situations which could occur
under any context, such as being fired upon by an
aggressor, or the detection of an enemy contact.

A more thorough discussion of CxBR is included in
[Gonzalez, 1993; 1994].

3. Implementation and Evaluation of the CXBR
Approach

In order to properly evaluate the ideas set forth in this
article, two prototypes were developed and tested.
Prototype #1 was developed in the submarine warfare
domain, while prototype #2 was in automobile
driving. Both of these will be discussed in this article,

58

but the first prototype is more comprehensive in
nature and will thus be discussed more thoroughly.

The two prototypes were implemented in CLIPS 5.1.
This environment proved to be a good framework for
the task, but certainly not ideal. Memory limitations
of the DOS-based CLIPS version, its inability to
match facts in the factbase with patterns anywhere
but within rule premises, and its basic inadequacy as
a simulation tool often made it cumbersome to use.

3.1 Submarine Warfare Prototype

While the implementation of submarine tactics was
not per se an objective of the current investigation, it
became clear that to design an appropriate
architecture and develop a prototype that verified the
use of that architecture, a limited set of submarine
warfare tactics had to be defined. The first prototype
was thus built to evaluate the behavior of the AIP in a
SEARCH-AND-TRACK mission, in the presence of
one enemy submarine (called ownsub). In order to
make it self-contained, the prototype incorporated its
own simulation of the submarine warfare
environment, which took up considerable computing
resources.

All missions, major-contexts and sub-contexts were
represented as classes in the CLIPS Object Oriented
Language (COOL), as were the SUBMARINE
classes and the weapon classes. Monitoring rules, of
course, were implemented as CLIPS rules.
Initialization messages were implemented as
message-handlers in COOL. The central manager
was composed of the main loop which contained all
the procedures that were to be repeated every
simulation cycle, and a number of other functions
which carried out calculations such as distances,
bearings, etc., when required. The output was in the
form of a text report which, every five seconds, listed
the x and y positions as well as the depth, of all
submarines and weapons involved in the scenario.

Interruptions could be made to the simulation to
introduce control of the AIP by the instructor.
Interactions permitted with the AIP through this
interruption mechanism included orders to attack,
communication prompts, baffle-clearing prompts,
and return home orders. Interactions with other
simulated submarines (called ownsub, and driven by
the student being trained) included changing its
heading, depth, speed, and firing its weapons.

Upon satisfaction that the full Prototype #1 operated
correctly, a version of it was built that could be
interfaced with an external graphical simulation.
This would allow the investigators to evaluate the
feasibility of incorporating this technique within
existing simulator training systems, a critical step in
verifying its usefulness. The simulation employed
for this purpose was the Intelligent Platform
Modeling System (IPMS), a testbed being developed
at the Naval Air Warfare Center, Training Systems
Division in Orlando, FL.

The externally-interfaced version of Prototype #1
was developed by stripping off all the code from the
full prototype which served to support its built-in
simulation. A networked interface was used as the
means of communication between the CLIPS-based
ATP model and the DOS-based IPMS simulation. In
order to resolve the memory limitations of the DOS-
based CLIPS 5.1, a UNK-based version was
employed, running on a Silicon Graphics
workstation.

The AIP (also called opsub) implemented in
Prototype #1 was found to behave tactically correctly
from a qualitative point of view when subjected to
several different situations. The situations to which
opsub was subjected included transiting to its
designated sector using a sprint-and-drift tactic,
searching the sector for enemy activity, maneuvering
into position to track enemy contacts, tracking such
contacts, clearing its baffles, getting into position to
attack the enemy attacking the enemy when
externally ordered, (in the spirit of a reconnaissance
mission), and evading enemy attacks. Opsub was
placed in these situations through the control of the
location, bearing, speed, depth and weapons of
ownsub.

The externally-interfaced prototype was able to
transit to the sector using a sprint-and-drift
maneuver, and carry out a baffle-clearing tactic while
doing a search of the sector. It was additionally
capable of searching the sector, detecting the enemy
(ownsub), maneuvering into position to track
ownsub, and breaking contact to return home when
told to do so. The prototype also performed an
approach to fire its weapons. However, due to the
inability of the IPMS to model weapons in the water,
evaluation of attacking and evading attacks was not
possible.

The qualitative evaluations of the two versions of
Prototype #1 described in this sections allows us to

59

conclude that: 1) the CxBR paradigm can be used to
accurately represent the tactical behavior of an AIP
from a qualitative standpoint, and 2) the paradigm
has been shown to be compatible with a distributed
simulation environment.

Conclusion #1 is an essential one, since inability to
be used to represent tactical behavior would
invalidate the CxBR paradigm without the need for
any further evaluation. Conclusion #2 is significant
from a usefulness standpoint if AIP's are to be
retrofitted to existing simulators. Moreover, it is also
important in light of the U. S. Army's interest in
distributed interactive simulations.

3.2 Automobile Driving Prototype

Qualitative success in the performance of the AIP
prototype does not provide a complete picture of the
viability of the CxBR technique. Furthermore,
conciseness can only be unequivocally judged by
comparing a CxBR prototype with an equivalent
purely rule-based implementation of the knowledge
and capabilities exhibited by a CxBR protolype. This
was accomplished and the evaluation is described in
the section that follows.

The scope of the automobile driving prototype was
more modest than that of Prototype #1. This
prototype used an automobile simulator system
[Klee, 1991] and implemented a short scenario where
the AD? automobile (labelled student car) is cruising
on a two-lane road and approaching a curve near an
intersection where another car (labelled simulation
car) is waiting to turn left into the road ahead of it.
To complicate matters, a small truck (simulator van)
is coming around the bend in the opposite direction.
Figure 1 graphically depicts a bird's eye view of the
scenario faced by the ATP. The AIP is tasked with
avoiding a collision with both the car and the van, as
the car attempts to cut in between the AIP and the
approaching van. The scenario was varied by
running various tests with different "release
distances" for the car and the van. This meant that
the distance available for the AIP to maneuver ranged
from one where no real danger was present, to one
where a collision was physically inevitable. The
courses of action available to the AIP were to: 1)
slow down (possibly through the application of
brakes) in order to maintain a distance between itself
and the simulation car; 2) brake and swerve to the left
if there is sufficient distance to avoid hitting the
oncoming van; and 3) swerve to the right (off the
road) if there isn't sufficient distance.

STUDENTS CAR

Figure 1 - Bird's Eye View of
Simulated Scenario

Criteria of
comparison

CxBR Rules-
only

Execution
time avg.
(sec)

CLIPS
elements

124.1

53

126.91

43

Table 1 - Summary of
Quantitative Evaluation of CxBR

The tactics used by the AD? to accomplish this were
represented through contexts as described earlier in
this article. At the same time, a rules-only
representation was also implemented for the purpose
of comparison. Both implementations were done in

60

CLIPS 5.1 to make the comparison as straight-
forward as possible. The parameters compared were
1) the number of CLIPS elements used by each
implementation and, 2) the time of execution
required by each implementation. The results are
shown in Table 1 above. A full description of the
evaluation procedure is found in [Brown, 1994].

The execution times for the CxBR implementation
were 2.26% better than those for the pure rule-based
alternative. Although this difference is nearly
insignificant, it does demonstrate that the CxBr is
more efficient. This difference is expected to
become more pronounced as the size and scope of the
domain expands.

In regards to the number of CLIPS elements, the rule-
based alternative was actually more concise. Once
again, the limited scope of the prototype skews the
results, since the CxBR alternative requires a "fixed
overhead" in CLIPS elements in order to adequately
represent the tactical knowledge. This overhead is in
the form of the classes for each context or sub-
context defined for the tactic, and the message
handlers involved with each class instance. As the
situation becomes more complex, this overhead
becomes a smaller part of the total knowledge, while
the rules required for pure rule-based reasoning
become more numerous to account for all the
possibilities.

4. Summary and Conclusions

The use of contexts to represent and reason about
tactical knowledge has the advantage of
encapsulating all facets of such knowledge as it
applies to a small slice of the entire domain
knowledge. By modularizing the knowledge in such
a way, and by explicitly expressing the relationships
between the various contexts such that the number of
possible transitions between contexts are inherently
limited, efficiencies can be implemented. These
efficiencies are in terms of economy of knowledge as
well as in efficiency of execution of the system.

This article describes the concept of Context-based
Reasoning as well as two prototypic implementations
of these concepts in order to evaluate its effectiveness
in achieving the efficiencies expected. The
prototypes were successful in achieving the
objectives of the investigation. Nevertheless, areas
of further work were discovered where the present
system is deficient, namely in how to deal with time,

either as historical information or as in planning the
next move. Basically, the prototypes are reactionary
in nature, as their planning capabilities are rather
limited. Nevertheless, from a conceptual standpoint,
planning is quite consistent with the general CxBR
approach, and such a capability will be featured in
future versions of the prototypes.

5. Bibliography

[Brown, 1994] Brown, J. C, "Application and
Evaluation of the Context-based Reasoning
Paradigm", Master's Thesis, Department of
Electrical and Computer Engineering,
University of Central Florida, Orlando, FL,
July, 1994.

[Czejdo, 1993] Czejdo, B. and Eick, C. F.,
"Integrating Sets, Rules, and Data in an
Object-Oriented Environment", IEEE Expert.
February, 1993, pp. 59-66.

[Dreyfus, 1986] Dreyfus, H. L., and Dreyfus, S. E.,
Mind over Machine. New York: MacMillan/
The Free Press, 1986.

[Gonzalez, 1993] Gonzalez, A. J. and R. H. Ahlers,
"A Context-based Representation of Tactical
Knowledge for Use in Simulation-based
Autonomous Intelligent Platforms",
Proceedings of the 15th Annual
Interservice/Industry Training Systems and
Education Conference, Orlando, FL,
November, 1993, pp. 543-552.

[Gonzalez, 1994] Gonzalez, A. J. and R. H. Ahlers,
"A Novel Paradigm for Representing Tactical
Knowledge in Intelligent Simulated
Opponents" Proceedings of the 7th
International Conference in Industrial and
Engineering Applications of Artificial
Intelligence and Expert Systems, Austin, TX,
May 1994, pp. 515-523.

[Klee, 1991] Klee, H. I., "Development of a Low
Cost Driving Simulator", Technical Report,
Department of Computer Engineering,
University of Central Florida, 1991.

[Schank, 1977] Schank, R. C, and Abelson, R. P.,
1977, Scripts. Plans. Goals and
Understanding. Erlbaum, Hillsdale, NJ, 1977.

61

[Thomdike, 1984] Thorndike, P. W., and Wescourt,
K. T., "Modeling Time-stressed Situation
Assessment and Planning for Intelligent
Opponent Simulation," Final Technical
Report PPAFTR-1124-84-1, sponsored by the
Office of Naval research, July, 1984.

6. Author's Biographies

Avelino J. Gonzalez is an Associate Professor at the
Electrical and Computer Engineering Department at
the University of Central Florida. His area of
research is in intelligent simulations, specifically,
automated intelligent platforms in a training
simulation. He has a PhD in Electrical Engineering
from the University of Pittsburgh, and a Bachelor's
and Master's degrees also in Electrical Engineering
from the University of Miami.

Robert H. Ahlers is a Research Psychologist with
the Human/Systems Integration Division of the Naval
Air Warfare Center, Training Systems Division. He
has managed research projects concerned with the
application of knowledge-based modeling to the
simulation of intelligent agents within a training
environment. He graduated from the University of
Virginia with B.A. and MA. degrees in experimental
psychology and from North Carolina State with a
Ph.D. in Human Factors.

62

Automated Agents that Learn and Explain
Their Own Actions: A progress report

'Sakir Kocabas, 2Ercan Oztemel, Mahmut Uldudag, and Nazim Koc
Department of Artificial Intelligence

Marmara Research Center, PK 21, Gebze, 41470 Turkey
'uckoca@cc.itu.edu.tr

2eomaml@yunus. mam.tubitak.gov.tr

1. Abstract

Computer generated agents need to be able to learn
meaningful actions in various tactical situations and
explain the reasons behind such actions. Different
inductive methods have been tried by a few research
groups in teaching actions to such agents in tactical air
simulations. There have also been some attempts to
enable the intelligent agents explain reasons behind
their own actions in the form of debriefing records.
However, previous research has left the integration of
learning and real time explanation as an open issue. The
use of inductive methods in teaching tactically
meaningful actions makes it rather difficult to integrate
learning and explanation. In our research, we use
explanation-based generalization in teaching meaningful
actions and their real time explanations to an intelligent
target. Our research aims integrating artificial
intelligence in 1-v-l air combat scenario as part of an
international EUCLID project for building a distributed
intelligent simulation system.

2. Introduction

Recent research on computer generated agents focus on
using artificial intelligence (AI) techniques in controlling
such agents. Several research groups have studied the
application of AI techniques in various aspects of air to
air combat. These efforts include the application of
neural networks for acquiring air combat decision-
making skills (Crowe, 1990); automated agents for
beyond visual range (BVR) tactical air simulation
(Rosenbloom et al., 1994); knowledge based decision
aiding for BVR combat with multiple targets (Halski et
al., 1991); generating agent goals in an interactive
environment (Jones etal., 1994); and agents that explain
their own actions (Johnson, 1994).

A large part of the current research relies on static
knowledge based methods rather than machine learning

techniques which enable the dynamic acquisition of the
knowledge and skills of human behavior in tactical
situations such as in air combat.

In our research we attempt to implement explanation-
based learning (EBL), a deductive machine learning
technique, in teaching computer generated agents to
perform intelligent behavior in BVR and close combat.
This study is carried out as part of a joint EUCLID
project RTP 11.3 which aims building a distributed
simulation system capable of integrating C3I functions
and AI techniques. The project uses ITEMS as the
simulation environment.

Explanation-based learning has been one of the
extensively investigated machine learning methods in
artificial intelligence (see, e.g., Mitchell et al., 1986).
Different versions of EBL has been applied to a variety
of tasks, such as learning concepts, control rules, planning
and scheduling, but the majority of these applications
are in small domains.

3. The Task Domain

The aim of our research is to develop techniques to
create AI targets (AIT) capable of performing intelligent
behavior in tactical air combat. The tactical behavior
includes BVR and close combat, in a BARCAP (Barrier
Combat Air Patrol) scenario for an F16 plane. The task
is the intelligent control of the ATT from an AI station
connected to the main simulation system via Ethernet
(see, Figure 1.)

The ITEMS simulation system is capable of representing
a large number of independent agents called "scenario
elements" or "targets" in a real-time 3-D environment
including geographical, atmospheric and terrain data.
In a scenario, the scenario elements can be controlled by

'Also affiliated with: Department of Space Sciences and Technology, ITU, Maslak, 80626 Istanbul, Turkey
2Also affiliated with: Department of Industrial Engineering, SAU, Esentepe Kampusu, Adapazari, Turkey

63

Al Station
Ethernet

Simulation
System
(ITEMS)

Network

Figure 1. The hardware structure for the intelligent control of scenario elements.

human operators or control programs. The ITEMS
system itself has rule based facilities for developing
control programs for creating automated agents.

The acquisition of knowledge and skills for complex
real-time behavior as in tactical air combat is a difficult
task. Acquisition and handcoding of rules for such
behavior is rather tedious, as it is difficult to foresee all
possible interactions. Therefore, machine learning
methods need to be used for the acquisition of such
knowledge and skills. Some inductive methods have
been used in acquiring the rules of intelligent behavior,
e.g. from flight data obtained from exercises (see, e.g.,
Crowe, 1990;Sammutetal., 1992). However,inductive
methods require a large number of training examples in
order to support reasonably acceptable behavior.

Additionally, it is difficult, by inductive methods, to
integrate capabilities for the intelligent agent to explain
its own behavior in every tactical situation. Behavioral
explanations for intelligent agents have been studied by
Johnson (1994) using SOAR, but the explanations
provided by Johnson's Debrief system are post-flight
explanations, rather than real time explanations.

We have been developing an integrated system called
RSIM, for controlling an F16 plane in the ITEMS
simulation environment in an intelligent and human-
like way. A prototype of RSIM has been tested on a 2-
dimensional simulation medium for BARCAP mission
in 1-v-l tactical situations. The RSIM prototype is
capable of learning tactical behavior at training sessions,
and producing and explaining its agent's behavior in
real time during the execution of a mission.

4. Control Structure

In order to explain RSIM's operation, we will describe
the program in terms of its problem space, its subsystems,
and its inputs and outputs. As shown in Figure 2, the
program consists of three subsystems: Situation-
Assessment, Action-Management, and Learning
operators.

The simulation system which is controlled by RSIM, is
a program which creates and moves simple objects (or
targets) in a 2-d space in accordance with the inputs
received from RSIM. The inputs indicate the positions
and headings of the targets and the missile fires. The
simulation system calculates the positions of targets by
their intended headings, and moves targets to those
positions. It receives inputs in cycles, and operates
continuously.

RSIM's Situation-Assessment operator enables the
system to continuously assess tactical situations in the
simulation environment. The problem space of RSIM
consists of two targets, an AI target (AJT) and a man
controlled target (MCT) moving in a 2-d space. Both
targets have the same degree of freedom of movement.
Each target can move at the constant speed of one pixel
at 1/2 second. There are 12 state variables for the
targets. The variables and their types are as follows:

x,y, coordinates (AJT/MCT) (integer)
Headings (AJT/MCT) (8 directions)
Range (AIT-MCT) (real)
Positional angle (AJT-MCT) (real)
Time (real-time)
Missile range (integer)
Missile fired (integer)

64

Expert

Expert

Expert Set initial
conditions

S
1

M
U
L
A
T

1
0
N

S
Y
S
T
E
M

read
situation

generalize
situation

read
action

read
explanation

formulate
rule

Situation Assessment

x,y,z coordinates

headings, angle,
range, time,
missile envelope,
missile count, fuel.

1
Action Management

missile control/fire
select maneuver
explain action

Figure 2. Control structure of RSIM.

The values of the state variables at each instant,
determines the problem situation. As the targets change
their positions every 1/2 second, the problem situation
changes accordingly. At every cycle, RSIM has to
make situation assessment, and has to decide which
action to take. The Situation-Assessment operator
reads the coordinates of the targets and calculates the
distance and the positional angle between the targets.
The state variables and their values are sent to a message
list by the Situation-Assessment operator. This message
list is read by the Action-Management operator.

The Action-Management operator has three functions:
Select-Maneuver, Missile-Control, and Explain-
Behavior. The Select-Maneuver function decides the
action to be taken by the ATT, by reading the message
list and matching the operational variables in the message
list with the action rule set. The rule that matches is
selected as the action rule.

Each action rule points to a simple maneuver, where
each maneuver consists of a four pixel motion. As
shown in Figure 3, there are five such simple maneuvers:
go straight (gs), soft turn right (sr), hard turn right (hr),
soft turn left (si), and hard turn left (hi). Each maneuver
lasts two seconds.

gs

"•%

All messages of the Action-Management operator,
including the explanations, are sent to the simulation
system. The maneuver messages are applied by the
simulation system in single-step actions. For example,
a command message that says "apply gs maneuver" (go
straight), is performed by moving the target four pixels,
one pixel at a time, maintaining the target heading.

Figure 3. Five simple maneuevers for RSIM agents

Although the selected maneuvers last two seconds,
situation assessments continue to be made at every
cycle of 1/2 seconds. In this way, when AIT enters in a

65

missile firing position during a simple maneuver, the
Missile-Control function fires a missile if the latter is
available.

Conditions: Distance is D6,
Angle is A5,
Heading (AIT) is E.

Action: Apply maneuver GS.

Explanation: Target detected. Approach
target.

Figure 4. Example of a rule generated by RSIM.

The Action-Management operator can explain the
reasons for selecting a particular maneuver by sending
a message to the simulator to be displayed in a screen
window during the execution of that maneuver. In this
way, the behavior of ATT is explained for every simple
maneuver in a series of maneuvers.

RSIM has a learning subsystems which learns action
rules for the AIT by an explanation-based generalization
(EBG) mechanism. This method relies on deductive
inference based on the following: i) a goal concept, ii)
a domain theory, iii) training examples, and iv) a
description of the form in which the learned concept is
to be expressed, i.e., the operationality criterion. Unlike
inductive methods, EBG constrains the search by relying
on knowledge of the task domain and of the concept
under study. After analyzing a single training example,
this method is able to generate a valid generalization of
the example along with a deductive justification of the
generalization in terms of this domain knowledge.

RSIM's EBG operator generalizes problem states into
general problem states which are predefined by using
domain knowledge. In a training session, the program
finds the generalization of each problem state, and
associates the action taken by the instructor with the
generalized problem state. Action rules and explanations
are learned during training sessions in an incremental
fashion.

Action rules are if-then rules that match situations with
simple maneuvers. At each problem state, operational
variables in the message list which is periodically

updated by the Situation-Assessment operator, define
the current situation. If no rule exists to match the
current situation, then the Learning operator asks the
instructor which maneuver to select. The Learning
operator then generalizes the current situation, and
records it as the conjunctive conditional part of the rule
whose action part is the selected maneuver. The
generalization consists of generalizing the values of the
operational situation variables form real values to a
predetermined range. In this way, e.g., the distance and
angle between the two targets are mapped into particular
ranges of distance and angle.
The instructor also gives an explanation as to why that
particular maneuver was selected. This explanation is
associated with the action rule generated for the current
situation as the reason for the selection that rule. An
example rule is shown in Figure 4. The rule in this figure
says that when the distance between the targets is within
D6, the positional angle is within A5, and the heading of
the ATT is east, then continue to go straight. The reason
for this particular maneuver is that the target has been
detected and the intention is to approach the target.

RSIM can apply the rules that it has generated as soon
as the matching situations arise. In other words, the
program generates and uses its rules in a dynamic way.
Once the training session ends, learned rules can be
stored in a rule file for future use. Figure 5 shows the
behavior of RSIM against an automated target when the
system had 85 rules in its rule base.

5. Discussion

RSIM's methods of learning are similar to that of LEX
(Mitchell et al., 1986) in that it learns to associate
problem states with operations or actions. However,
unlike LEX which has been applied to static problems
such as learning to solve linear equations and integrals,
RSIM operates in a dynamic environment. Additionally,
the number of RSIM's problem states (over 400) and
associated action rules are much larger than that of LEX
(about 25).

On the other hand, RSIM controls objects in a 2-d space,
and needs to be further developed for objects moving in
a 3-d space. The system is being tested on the Flight
Simulator for 1-v-l air combat, where the simple
maneuvers are redefined, and explanations are associated
with the rules after training sessions. Beside EBL
techniques, algorithmic techniques are also being tested
for BVR and close combat maneuvers. This seemed
necessary for comparison for deciding where each
technique is more efficient.

66

:->*

:< = 13

Figure 5. The behavior of the ATT (dark triangle) controlled by RSIM, against an automated target.

As has been described, RSIM can explain its behavior
during a scenario in a continuous way. Explanation of
agent behavior in flight simulation has been the subject
of a recent paper by Johnson (1994), but his explanations
are post-flight explanations rather than real-time.
Sammut et al. (1992) have used inductive methods for
generating rules to control a fixed-wing aircraft in the
Flight Simulator, but explanation-based methods have
not been applied for such tasks.

Crowe (1990) describes the use of neural nets for
learning air combat rules in a prototype. The main
advantage of EBL over inductive methods is its ability
to use domain knowledge effectively in generating rules
of action, and hence its reliance on a far fewer training
examples than the latter.

6. Conclusion

In this paper we described a simple real-time intelligent
system RSIM which learns how to control a computer
generated agent against another one moving in a 2-d
space. The system learns its control rules by explanation-
based generalization. The learning consists of turning
human performed actions in a particular situation into
rules of action applicable in a generalized situation. In
this way, the program generates a set of condition-
action rules which enable an agent to perform intelligent
behavior, and explain its own behavior in real-time in a
2-d space.

RSIM has been developed as a prototype for testing the
applicability of deductive machine learning methods in
3-d simulation environments.

7. Acknowledgment

This research has been supported by MRC and MOD-
R&D under the joint EUCLID project RTP 11.3 led by
CAE Electronics GmbH.

8. References

Crowe, M.X. (1990). "The application of artificial
neural systems to the training of air combat decision-
making skills", In Proceedings of the 12th JTSC,
pp. 302-312.

Halski, D.J., Landy, J.R. & Kocher, J.A. (1991).
"Integrated control and avionics for air superiority:
A knowledge-based decision-aiding system",
AGARD CP-424, Madrid 1991, pp 53-1 to 53-10.

Johnson, W.L. (1994). "Agents that explain their own
actions", In Proceedings of the 4th Conference on
Computer Generated Forces, May 1994, Orlando,
Florida.

Jones, R.M., Laird, J.E., Tambe, M. & Rosenbloom,
P.S. (1994). "Generating goals in response to
interacting goals", In Proceedings of the 4th
conference on Computer Generated Forces and
Behavioral Representation.

Mitchell, T., Keller, R.M., and Kedar-Cabelli, S.T.
(1986). "Explanation-based generalization: A
unifying view", Machine Learning 1(1) 47-80.

Rosenbloom, P.S., Johnson, W.L., Jones, R.M., Koss,
F., Laird, J.E., Lehman, J.F., Rubinoff, R.,
Schwamb, K.B. & Tambe, M. (1994). "Intelligent
automated agents for tactical air simulation: A
progress report", In Proceedings of the 4th
conference on Computer Generated Forces and
Behavioral Representation, pp. 69-78.

67

Sammut, C, Hurst, S., Kedzier, D., and Michie, D.
(1992). "Learning to fly", Machine Learning
Workshop Proceedings, pp. 385-393, Morgan
Kaufman.

9. Author's Biographies

Sakir Kocabas is the head of the AI Department at
MRC and the project manager for EUCLID RTP 11.3
WP2. Dr. Kocabas has a PhD degree in Information
Engineering. His research interests are in the areas of
Machine Learning and Discovery.

Ercan Oztemel is a researcher at the AI Department of
MRC. Dr. Oztemel has a PhD degree in Artificial
Intelligence. His research interests are in the areas of
Real-Time Expert Systems and Neural Networks.

Mahmut Uludag is a researcher at the AI Department
of MRC. Mr. Uludag has a Masters of Science degree
in Mechanical Engineering. His research interests are
in the area of Real-Time Control of Computer Generated
Forces.

Nazim Koc is a researcher at the AI Department of
MRC. Mr. Koc has a Masters of Science degree in
Symbolic Computation. His research interests are
Symbolic Computation, Logic Programming and
Machine Learning.

68

Session 3a: Constructive + Virutal Simulation

Calder, SAIC
Kraus, UCF/IST
Petty, UCF/IST

Integration of Constructive, Virtual, Live, and Engineering
Simulations in the JPSD CLCGF

Robert B. Calder, Jeffrey C. Peacock, Jr.
SAIC

486 Totten Pond Road
Waltham, MA 02154

rcalder@bos.saic.com, jpeacock@bos.saic.com

James Panagos
TASC

55 Walkers Brook Drive
Reading, MA 01867

jpanagos@world.std.com

Thomas E. Johnson
Raytheon Company
50 Apple Hill Drive

Tewksbury, MA 01876
tej@swl.msd.ray.com

1. Abstract

One of the major challenges which confronts DIS
researchers today is that of integrating simulation
systems which are rooted in vastly different domains.
These simulations are designed with different
architectures and developed for varied goals.
Constructive models are developed for performing
analytical combat analysis, typically in a standalone
environment. Entity-level, DIS simulations are
developed for training and testing in a distributed,
networked environment. High-fidelity engineering
models are developed for engineering analysis of new
or prototype vehicle, weapon, or sensor systems in a
standalone environment, or as embedded software. In
addition, fielded military systems have their own
unique origins, approaches, and goals.

In order to successfully integrate systems such as
these with varied origins, architectures, interfaces, and
goals, many problems need to be solved. While
many projects have attempted to integrate some of the
above types of systems, few, if any, can claim
successful integration and interoperation of all four.
The JPSD CLCGF project has successfully
demonstrated this achievement.

In this paper, we present work which has been
performed on the JPSD CLCGF project with an
emphasis on the integration between constructive,
virtual, live, and engineering simulations.

2. Introduction

2.1 The JPSD Program

The Joint Precision Strike Demonstration (JPSD)
program's goal is to introduce and implement new
technologies into the defense arena that can address
and correct precision strike deficiencies. To facilitate
this goal, the JPSD program has created a simulation
environment which is used to evaluate technologies,
train users, and perform experiments necessary to
reduce sensor-to-shooter timelines and to attack high-
value, time-sensitive targets. As part of this
environment, the JPSD program has sponsored the
construction of the Corps Level Computer Generated
Forces (CLCGF) system.

The primary purpose of the CLCGF is to provide the
corps level simulation environment for DIS exercises
in which the above mentioned program goals can be
carried out. The CLCGF is used during the JPSD
exercises to simulate maneuver and artillery units
contained in an Army corps. The simulated units
provide stimulus for and interact with tactical
hardware systems and their operators, and interact
with high-fidelity, engineering simulations. The
CLCGF has been created by integrating the Eagle
constructive simulation with the ModSAF entity-
level simulation.

2.2 The CLCGF System

Entity-level simulations represent each entity which
exists on the virtual battlefield at the individual
platform level. They typically represent entities from
the individual platform level up to the company level.
They use the DIS protocol to interact with other
entity-level simulations, and simulate the physical

71

characteristics of each entity to determine battlefield
outcomes. On the other hand, constructive
simulations represent groups of entities as single,
aggregate unit objects. They typically represent units
at the company or battalion level up to the division
or corps level. They are typically not designed to
interact with other simulations, but instead simulate
the entire battlefield internally, and use Monte-CarJo
techniques to determine battlefield results.

The DIS environment has traditionally included only
entity-level simulations. It has provided a sound
environment for small-scale, tactical troop training,
as well as a potential testbed for evaluating new
vehicle and weapon systems. However, simulating
the effects of entity-level simulations in corps level
operations has remained beyond the reach of the DIS
environment, due to network bandwidth and computer
resource constraints. Using current network and
computer technology, a traditional DIS exercise is
simply not capable of supporting a corps level
operation. This was the primary motivation for
creating a CLCGF which utilizes both constructive
and entity-level simulations. Transmission of unit
state data at the aggregate level is a key factor which
decreases network load by significantly decreasing the
number of PDUs transmitted in a large-scale exercise.
If DIS is to support a 100,000 entity exercise,
representation of some units on the battlefield as
aggregates is likely.

The simulation engine of the CLCGF has been built
by integrating the constructive, aggregate-level
simulation Eagle, with the virtual, entity-level
simulation ModSAF. This simulation engine
interacts with various live, tactical hardware systems,
including: the All Source Analysis System (ASAS)
Warrior and Ground Station Simulator (GSS) for
presentation of the tactical battlefield situation to the
operator and potential target nominations; and the
Automated Deep Operations Coordination System
(ADOCS) for the creation and assignment of fire
missions. The simulation engine interacts with the
STRIKE engineering-level simulation, which
simulates the deployment and flyout of smart
submunitions. It also interacts with the TAFSM
simulation, which it utilizes to simulate the
deployment and flyout of various smart
submunitions. In addition, the CLCGF interacts

with various other DIS simulations, such as the
Warbreaker SimCore simulation.
In order to allow military training and analysis of
scenarios of interest to JPSD, the CLCGF must
generate a full corps-level exercise. To accomplish
this goal, many technical challenges need to be
addressed. These involve issues such as efficient
incorporation of aggregate units into DIS, effective
incorporation of DIS entity-level information into
constructive simulations, development of a dynamic
aggregation/deaggregation protocol, interaction
between constructive and entity-level simulations, and
interaction between a constructive/virtual simulation,
live systems, and engineering-level simulations. The
work performed on the CLCGF to date has focused on
these fundamental goals.

2.3 CLCGF Interaction with other JPSD
Systems

In order to create a test and evaluation environment in
which to conduct JPSD experiments and studies, the
requisite constructive, virtual, and engineering-level
simulations must interoperate with one another, as
well as with current and future fielded, tactical
systems used in Army Corps operations. A block
diagram of the CLCGF system and the non-DIS
systems with which it interfaces is shown in Figure
1.

The CLCGF system consists of the linkage between
Eagle, the SIU (Simulation Integration Unit - whose
primary function is to link Eagle to the DIS
network), and ModSAF. It is responsible for
simulating the entities and aggregate units on the
corps battlefield, presenting a plan view display of the
map and all units and entities, interacting with other
DIS simulations, and interfacing with the other non-
DIS systems shown in the block diagram. The
ASAS Warrior and GSS systems are used to present a
picture of the tactical battlefield situation to an
operator (via communication feed from a JSTARS
radar), and to initiate precision strike target
nominations. The ADOCS system is used to create,
monitor, and assign fire missions to corps artillery
assets. The STRIKE simulation is used to simulate
the deployment, flyout, and impact of smart sub-
munitions. These systems and their interactions will
be described in the remainder of this paper.

72

STRIKE

DIS DIS
POP J,

Signal PDU
DIS
POP\

PIU

FMCFF ATI CDR

ADOCS

I ^r

ModSAF
Sim

MTI file

Legend
DIS = = Version 2.0.3 +
POP= •• ModSAF Persistent

Object Protocol

WARRIOR GSS

Figure 1: CLCGF Interface Block Diagram

3. Integration of Constructive. Virtual.
Live, and Engineering Simulations

Many issues need to be addressed in integrating
simulation systems with different origins, since they
were designed and developed with different goals in
mind. Some, such as constructive models, were
developed for performing analytical combat analysis
in a standalone environment. Others, such as DIS
entity-level, virtual simulations, were developed for
training is a distributed network environment. Still
others, such as high-fidelity engineering models, were
developed for engineering analysis of new or
prototype vehicle, weapon, or sensor systems in a
standalone environment, or as embedded software.
The technical approach and level of fidelity of the
resultant simulations varies greatly. In addition,
fielded military systems have their own unique
origins, approaches, and goals.

In order to integrate these systems of varied origins,
architectures, interfaces, and goals, problems such as
communication, time synchronization, level of
fidelity, and terrain and environment correlation need
to be solved.

Communication: Constructive models and
engineering-level simulations are typically developed
as standalone systems. DIS simulations are
developed with the capability to communicate with

one another via the DIS protocol. Tactical military
systems are typically capable of communicating with
other relevant tactical systems via some military
standard protocol (e.g. TADIL, TACFIRE, etc.).

Time Synchronization: Constructive models
typically run faster-than real time in order to simulate
outcomes of events which occur over the course of a
large-scale battle in a relatively short period of time.
Some constructive simulations are capable of running
in real time. DIS simulations must run in real time,
since DIS exercises typically include humans in the
loop. Some DIS simulations are capable of running
faster-than real time. High-fidelity, engineering-level
simulations typically run slower-than real time, since
they are modeling in software some processes and
functionality which will be implemented in hardware
in a real system, and since they need to allow for
inspection into the system. Tactical military systems
run at real time since they are operating in the real
world and require a human operator.

Level of Fidelity: Constructive models represent
battlefield entities as aggregate units, usually at or
above the company level. DIS simulations represent
battlefield entities at the platform level, and the level
of fidelity is typically low, but does vary from
simulation to simulation. Some computer generated
forces systems are capable of performing coordinated
entity behaviors up to the company level, and varying
the level of fidelity of the platforms which they
simulate. Engineering-level simulations are high-
fidelity models of an actual or prototype platform

73

system. Tactical military systems are high-fidelity
systems which are built to the specifications which
are needed for a given real world application.

Terrain and Environment Correlation: Constructive
models typically represent the terrain as large
homogeneous areas of mobility and intervisibility
characteristics, with aggregated features. DIS
simulations represent the terrain at a higher level of
fidelity, with sampled elevation data and small
obstacle and feature information. Engineering-level
simulations typically represent the environment in
which they execute at a very high level of fidelity,
since their purpose is to perform analysis of how a
platform will perform in the real world. Tactical
military systems operate in the real world, and
therefore do not require any model of the
environment.

In addition, there are many other areas in these
systems in which a common concept or feature is
represented. But even these aspects, which seem to
be non-issues on the surface, require some translation
from one system to the other, since the various
systems typically implement their solutions using
different approaches.

All of these issues serve to make the challenge of
integrating constructive, virtual, live, and engineering
systems a difficult one.

4. CLCGF Simulation Engine

4.1 Constructive/Virtual
Linkage

Simulation

Some of the issues involved in integrating
constructive and virtual systems have been
documented and addressed in implementations by DIS
researchers (Calder et. al. 1994, Karr et. al. 1994,
Karr et. al. 1993, Hardy et. al. 1993). Various
approaches have been taken to solve these problems,
and some achievements have been made. All
successful constructive/virtual linkage projects have:

- represented aggregate units in DIS by transmitting
aggregate unit state information on the DIS network

- represented virtual entities in the constructive model
by forwarding entity state information from the DIS
network to the constructive model

- deaggregated constructive model aggregate units into
virtual simulation DIS entities

- re-aggregated virtual simulation DIS entities into
constructive model aggregate units

- communicated aggregate unit orders to DIS entities
upon deaggregation

- reported deaggregated unit status to the constructive
model

- provided indirect fire interaction between aggregate
units in the constructive model and DIS entities in
the virtual simulation.

The implementation of these solutions has varied
from point solutions to robust architectures.

However, there still exists a second category of issues
and problems which have not been solved, or even
seriously addressed, to date. These include
improvements in terrain correlation between
constructive and virtual terrain databases,
implementation of direct fire between virtual entities
and constructive aggregate units, incorporation of
constructive units as aggregate entities in the virtual
simulation, time synchronization between
constructive and virtual models, control of spreading
deaggregation, and, in general, the elimination of
combat results correlation error.

The CLCGF project has implemented robust
solutions to the first category of problems. We have
also begun to address some of the problems in the
second category, most notably in the incorporation of
constructive units as entities in the virtual simulation
and in the control of spreading deaggregation. These
solutions will be discussed later in this paper.

4.2 Eagle/ModSAF Simulation Linkage

The simulation engine of the CLCGF has been built
by integrating the constructive, aggregate-level
simulation Eagle, with the virtual, entity-level
simulation ModSAF. Use of these existing systems
enabled the JPSD program to create a useful CLCGF
quickly and with less risk. These two simulations are
a good match since Eagle can simulate aggregate
units down to the company level, while ModSAF can
simulate entities in units up to the company level.
In addition, work on integrating Eagle with another
CGF system, the 1ST SAF, had already made a great
deal of progress and provided a solid interface between
Eagle and the virtual world. In addition, ModSAF is
a fully distributed system and has a mechanism, the
Persistent Object (PO) protocol, for implementing
distributed command and control of CGF and for
representing information about "persistent" objects
(e.g. missions, graphics, overlays, etc.).

In order to link Eagle with ModSAF, a mechanism
was needed to allow the two simulations to
communicate. Previous work in the Integrated

74

Eagle/BDS-D project linked Eagle with the 1ST SAF
(Karr et. al. 1994/1993). This project created an
interface to Eagle which facilitated transmission and
receipt of aggregate unit and deaggregated unit state
information to and from Eagle, as well as other
relevant information. This interface was called the
Simulation Integration Unit (SIU). We decided to
reuse the SIU interface mechanisms and message
formats established by this project, in order to get
maximum reuse of their efforts and to establish a
working system as quickly as possible. In addition,
reuse of this software allowed us to make significant
progress without the need for changes to the Eagle
software.

Given the SIU interface mechanism along with the
existing interface message formats, we needed to
provide the linkage to ModSAF. The easiest way to
do this was to use ModSAF itself as the cornerstone,
since many of the features and functionality needed for
an Eagle/ModSAF SIU were already present in
ModSAF (e.g. DIS interface, PO protocol, GUI,
etc.). Given this decision, we incorporated the
Integrated Eagle/BDS-D SIU interface mechanisms
and message formats into ModSAF. The resultant
SIU for our project is a modified version of ModSAF.

The SIU performs many functions including
communication between Eagle and DIS,
communication between Eagle and ModSAF,
simulation of aggregate unit entities, approximation
of aggregate unit position between Eagle time steps,
display of aggregate units on the ModSAF PVD,
dynamic aggregation and deaggregation of units via
various mechanisms, and intelligent vehicle
placement in the deaggregation process.

Figure 2 shows the interaction of the components
which comprise the CLCGF simulation engine.
Eagle communicates via remote procedure calls
(RPCs) with a process called the Eagle RPC Server.
The information passed over this interface is described
in section 4.3.1 below. The Eagle RPC server runs
on the same host as the SIU, and communicates with
the SIU via shared memory. The information passed
over this interface is described in section 4.3.1 below.
The SIU communicates with one or more ModSAF
simulators via the Persistent Object (PO) protocol,
and with other DIS simulations (including ModSAF)
via the DIS protocol.

Sun Sparc 20

Eagle
RPC Eagle

RPC
Server

SGI lndigo2

Shared
Memory

ModSAF
SIU

DIS
POP

DIS Network DIS
POP, I

SGI lndigo2

ModSAF

Figure 2: CLCGF Simulation Engine Components and Interfaces

75

In order to integrate Eagle and ModSAF into the
CLCGF for JPSD, we needed to modify the
application software of both simulations, and create a
new, ModSAF-based SIU. The design and
implementation of the resultant features are discussed
in detail below.

4.3 CLCGF Features

4.3.1 Eagle<->SIU Interface
For Eagle to be capable of limited participation in a
DIS exercise in the CLCGF, the SIU needs to serve
as the link between Eagle and the DIS network, as
well as the link between Eagle and ModSAF. This
was accomplished by implementing an Eagle<->SIU
communication interface in the ModSAF-based SIU.
This required creating a new ModSAF library,
"libsiu", which implements this interface. It sends
and receives messages and data to the Eagle RPC
Server via shared memory. The major
communication functionality supported by "libsiu"
includes:

- Creation of Eagle aggregate units in the virtual
world, to facilitate transmission of aggregate unit
state information on the DIS network.

- Update of Eagle aggregate unit state information, to
facilitate transmission of accurate aggregate unit state
information on the DIS network.

- Reporting of deaggregated unit state information to
Eagle to provide a mechanism for status information,
such as that typically contained in situation and spot
reports, to be transmitted to Eagle to keep Eagle
informed of the state of deaggregated units in the
virtual world.

- Reporting of aggregation/deaggregation status to
Eagle for all units, to keep Eagle informed of which
units are under its control.

- Aggregation/deaggregation of a unit upon Eagle
request, to allow Eagle to initiate aggregation and
deaggregation of units based upon certain criteria.

- Deployment of indirect fire from Eagle's
constructive world into the DIS virtual world, in order
to effect DIS entities. The SIU transmits fire and
detonation PDUs on behalf of Eagle for all Eagle fire
missions. This allows constructive indirect fire to
effect the virtual world.

- Requesting that fire missions received from the
virtual world (via simulators or live, tactical

hardware) be passed to Eagle and performed as Eagle
fire missions.

4.3.2 Aggregate Unit Protocol
A protocol for aggregate units and their
aggregation/deaggregation has been defined and
implemented. It specifies the format and the
transmission, receipt, and processing requirements of
DIS 2.0.3 experimental PDUs to facilitate aggregate
units. Specifically, two new PDUs have been
defined: the Aggregate State PDU (ASPDU) and the
Deaggregation Request PDU (DRPDU).

The ASPDU is similar in usage and purpose to the
DIS Entity State PDU, but is used only for aggregate
units. It allows Eagle aggregate units to be broadcast
on the DIS network similar to the way entities are
normally broadcast in traditional DIS exercises. The
ASPDU for each aggregate unit is transmitted by the
SIU every five seconds and contains the following
fields: entity id, unit type, unit marking, aggregate
state (i.e. aggregated or deaggregated), position,
orientation, velocity, formation, extent, number of
entities in the aggregate, and subordinate entity ID's
(when the aggregate unit is deaggregated).

Aggregation and deaggregation in the CLCGF is
managed by the SIU. Aggregation and deaggregation
can be initiated by the constructive simulation
(Eagle), any virtual simulation on the DIS network
(e.g. ModSAF), or the SIU (via event-driven
mechanisms). Deaggregation is initiated by the
transmission of a DRPDU. This DRPDU is
transmitted periodically to maintain deaggregation of
an aggregate unit. Re-aggregation of a deaggregated
unit is initiated by ceasing transmission of DRPDUs
for that unit.

4.3.3 Aggregate Unit Incorporation in DIS
Aggregate unit state information is broadcast on the
DIS network using the aggregate unit protocol defined
above. In order to generate the information contained
in the ASPDU, however, it is necessary to maintain
the Eagle aggregate unit state in the SIU. This is
accomplished in the ModSAF SIU by handling
aggregate units similar to the way in which ModSAF
handles entities.

At scenario start, Eagle sends the initial state of each
aggregate unit to the SIU, and the SIU creates a local
aggregate simulation unit. This local aggregate unit
is comprised of simply an aggregate hull, and is
entered into the SIU's vehicle table. It ticks similarly
to the way ModSAF entities do, but does not execute
any ModSAF tasks, since Eagle controls its behavior.

76

Eagle runs in real-time at one or two minute time
steps in our scenarios, so the SIU receives aggregate
unit state updates every one or two minutes. Since it
is desirable to broadcast state information more
frequently in DIS, the SIU performs a local entity
approximation of an aggregate unit's position each
time the aggregate unit ticks. Presently, this is
simply a linear approximation of position along the
last velocity vector reported. In the future, we plan to
improve this approximation by considering the
routes, phase lines, and orders which the aggregate
unit is executing to compute its position between
Eagle time steps.

The periodic transmission of ASPDUs by the SIU
enables ModSAF, as well as other DIS simulations,
to consider aggregate units as remote entities. We
have modified ModSAF to receive and process the
ASPDUs and display aggregate units on the PVD.
This allows the operator to see the entire battlefield of
aggregates and entities, and to perform aggregate unit
operations (e.g. aggregations and deaggregations) as
described below.

4.3.4 Dynamic Aggregation and Deaggregation
This section will provide an overview of the dynamic
aggregation and deaggregation capability of CLCGF.
For more details, see (Calder et. al. 1995) in these
proceedings, which is devoted entirely to this subject.

Aggregation and deaggregation in the CLCGF is
dynamic based upon events which occur during the
exercise, or upon initiation by an SIU operator or
ModSAF operator at a GUI. The system does not
rely upon predetermined high-resolution areas or
spheres of influence to enable deaggregation, but it
does not preclude these mechanisms from being used
(Karr et. al. 1993, Hardy et. al. 1993). The
mechanisms currently implemented which trigger
deaggregation include assignment of a fire mission to
an MLRS unit (via live, tactical hardware or the
ModSAF GUI), Eagle request, ModSAF operator
request, and SIU operator request.

When an Eagle aggregate unit is deaggregated into
ModSAF entities, the ModSAF unit is automatically
assigned a ModSAF mission based upon its mission
in Eagle. Operations orders (OPORDs) are passed
from Eagle to the SIU upon deaggregation. However,
the SIU does not currently parse the entire OPORD to
automatically construct the ModSAF unit mission.
Instead, the SIU uses the current operational activity
of the Eagle unit, maps it to a ModSAF taskframe,
creates the taskframe (using other information from
Eagle such as heading, speed, formation, etc.), and
assigns the taskframe to the deaggregated ModSAF
unit. The ModSAF unit immediately begins
execution of the taskframe. In the future, we plan to

fully parse the OPORD to automatically construct
and assign a consistent mission to the ModSAF unit.

When an Eagle MLRS unit is deaggregated to
perform a requested fire mission, execution of a new
mission is implied for the deaggregated unit. For
example, Eagle MLRS launcher units are
deaggregated when the SIU receives a call for fire
from a live ADOCS system. In this case, a new
mission is implied for the deaggregated unit, which is
to perform the requested fire mission. This mission
is automatically constructed by the SIU as a ModSAF
taskframe, assigned to the deaggregated unit, and
executed by the deaggregated unit.

When a deaggregation occurs, formation templates are
accessed for the aggregate unit which is to be
deaggregated. Once the template has been accessed,
an intelligent entity placement algorithm is exercised
to modify the positions of the entities to be more
realistic. For example, if the unit was performing a
roadmarch, then each of the entities is placed on the
nearest road (if one exists) in a column formation.
Another component of this intelligent entity
placement is that vehicles will not be placed on the
terrain at locations where they would not be expected
to go, such as water, no-go terrain, etc.

Re-aggregation occurs when the event which triggered
the deaggregation is completed or upon operator
request (if the deaggregation was operator initiated).
In any case, it is the responsibility of the simulation
which requested the deaggregation to initiate the re-
aggregation, since it has the context of why the
deaggregation was needed initially.

Our dynamic, event-based aggregation and
deaggregation scheme helps control spreading
deaggregation, since only those units which intend to
interact are deaggregated.

4.3.5 Deaggregated MLRS Unit Capabilities
In order to support JPSD studies, several new entities
and models were needed in ModSAF. Much of this
work centered around the M270 MLRS vehicle and its
associated munitions. ModSAF already supported
individual M270 MLRS vehicles, but they did not
have the capability to launch ATACMS missiles.
This model was therefore modified to be capable of
launching ATACMS missiles.

The ATACMS missile flies a ballistic trajectory, and
the existing ModSAF missile model did not support
ballistic missile dynamics. Therefore, software to
simulate a ballistic missile capable of flying in
excess of 100 km and releasing submunitions was
added to the existing ModSAF missile model. This
ballistic model provides the dynamics for the initial

77

powered boost phase, a roll phase during which the
missile rolls to a specified angle to attain the desired
trajectory, a ballistic phase where the missile motor
has shutdown and the trajectory is computed through
apogee, and subsequent re-entry down to either a
detonation or impact phase. Throughout the course
of the flight, the rotational effects of the earth are
considered in computing the trajectory.

The ballistic missile model provides two cases for
termination of flight: detonation above the ground,
where submunition deployment occurs; and
detonation upon impact, where the missile collides
with the terrain. In the case of the ATACMS
missile, the missile was defined to detonate above the
ground in order to simulate submunition dispense at a
specified altitude above the target. In this case, the
model computes an updated detonation point each tick
after the missile has passed apogee, based on the
specified target position and the specified impact
offset and height of burst. When the position of the
missile has been determined to have entered the
detonation envelope, a Detonation PDU for the
missile entity is transmitted on the network. This
Detonation PDU acts as the trigger for a submunition
simulation to begin dispense and flyout of
submunitions.

In addition to the specific M270 MLRS vehicle
modifications, an MLRS battery was created in order
to perform deaggregations of Eagle MLRS units,
since Eagle only simulates down to the battery level.
Individual M270 MLRS vehicles in this unit needed
to be capable of performing fire missions independent
of one another, as MLRS units do in the real world.
However, the ModSAF behaviors for MLRS units did
not support this individual firing capability.
Therefore, the MLRS unit-level behaviors were
modified to allow an M270 MLRS vehicle, which
was part of a larger MLRS unit, to fire independently.

5. CLCGF Interaction with other
Simulations

The CLCGF simulation engine described above
interfaces to other systems in JPSD to provide the
simulation environment necessary to fulfill JPSD
program goals. The interfaces to these systems are
described below, and are shown in Figure 1.

5.1 CLCGF Interface to ASAS WARRIOR
and GSS

The ASAS Warrior and Ground Station Simulator
(GSS) are both operator manned workstations whose
function is to simulate actual ground station modules
which monitor the tactical battlefield environment and
nominate hostile targets for attack. The ASAS

Warrior and GSS both receive tactical situation data
from an E-8A fixed-wing aircraft equipped with a
Joint Surveillance and Target Attack Radar System (J-
STARS). For CLCGF, an E-8A entity was created
within ModSAF, based on the known characteristics
of the actual E-8A aircraft. Parametric data consistent
with that of the E-8A aircraft was used to represent
the performance of the E-8A throughout its flight
envelope. Flight dynamics for the E-8A model are
provided by the fixed-wing dynamics of ModSAF.
The E-8A was defined with a radar component to
represent the J-STARS radar used for surveillance of
the tactical battlefield. The E-8A was also defined
with the capability to fly a combat air patrol mission
to represent the flight path normally flown during
tactical missions.

The J-STARS radar model is a Pulse Doppler (PD)
model within ModSAF. Parametric data consistent
with the J-STARS PD radar was utilized in defining
the model, thus providing a representative detection
envelope and operating characteristics. The ModSAF
radar model, upon which the J-STARS model is
built, provides line-of-sight calculations for all
entities in its field of view. Any entity which is
determined to be out of range, masked by terrain, or
not meeting the other specified parameters of the radar
model is not reported as sensed by the J-STARS
radar.

In the processing of a sensed aggregate, a pseudo-
deaggregation must be performed to decompose the
contents of the aggregate into meaningful information
for transmission to the ASAS Warrior and/or GSS.
Each aggregate is defined by its DIS entity type,
number of entities, and formation. From this
information and the position of the aggregate, an
expansion based on the DIS entity type, which
defines the echelon type (e.g. U.S. armor company),
and the formation is performed to template the
aggregate into a pre-defined pattern, specified within
ModSAF, for the number of entities contained in the
aggregate. This template, combined with intelligent
entity placement algorithms, is then used to compute
the location of each pseudo-entity based on the
position of the aggregate. In order to ensure
correlation between the represented pseudo-
deaggregated unit and the same aggregate unit when it
is commanded to deaggregate, the same processing is
performed for pseudo-deaggregation, with the
exception of the creation of the individual entities.

The process of expanding the echelon and formation
for each aggregate is time-consuming, and can
become a time sink in a large scenario. In ModSAF,
the expansion of an echelon type/formation pair
always results in the same templating information,
i.e. the initial locations relative to the 0,0 point of

78

the terrain database, facing North. Therefore, by
maintaining a copy of the results of the initial
expansion for each echelon type/formation pair, it is
only necessary to perform the expansion once.
Subsequent aggregates which are defined with the
same echelon type/formation pair utilize the initial
templating information, and compute the correct
entity locations based on the position, orientation,
and size of the unit.

The CLCGF method of pseudo-deaggregation takes a
different approach than that of other
constructive/virtual linkage projects. Previous
pseudo-deaggregation implementations have
transmitted Entity State PDUs on the DIS network
when it was desirable for another simulation to obtain
entity-level position data for an aggregate unit under
control of the constructive simulation (Karr et. al.
1994/1993). In the CLCGF, the responsibility for
pseudo-deaggregation is placed on the virtual
simulations which need to access the entity-level
information for a given aggregate unit. Any
simulation which needs entity-level data for an
aggregate unit is required to receive and process
Aggregate State PDUs, and be capable of
decomposing an aggregate into its constituent
entities, applying formation templates to place the
entities on the terrain, and executing intelligent
vehicle placement algorithms to further adjust the
positions of the entities. A further requirement exists
that all simulations in a given exercise which perform
pseudo-deaggregation use the same decomposition
data, formation templates, and intelligent placement
algorithms to ensure consistent entity-level
representations of the same aggregate unit across
simulations.

will compute it in a consistent manner (by requiring
that they all use the same input data, formation
templates, and vehicle placement algorithms). It does
not sacrifice any information to achieve these
benefits.

Once the list of detected entities and pseudo-entities
has been constructed, this information must be passed
to the ASAS Warrior and/or GSS. In both cases, a
flat file, called an MTI (Moving Target Indicator) file,
is created which lists information about the entities
detected. While the format of the files is different, the
information required by both the ASAS Warrior and
GSS is similar. Both systems require a
latitude/longitude for each entity and additional
information about the entity. For the GSS, the
additional information consists of a field indicating
whether the entity is Tracked or Wheeled. For the
ASAS Warrior, the additional information is the
complete DIS entity type, along with the entity's
velocity and elevation.

The J-STARS radar model initiates processing of the
radar sensed list once every 60 seconds, replicating the
update rate of the actual J-STARS radar. Processing
of the J-STARS sensed list is spread evenly over the
60 second scan period of the J-STARS, to avoid long
ticks during large scenarios where many aggregate
units populate the battlefield. The intermediate
results of the processing are formatted and written to
memory as the radar sensed list is processed
incrementally over the scan period. At the end of the
60 second period, the data is written out to the ASAS
Warrior and/or GSS interface MTI flat file.

5.2 CLCGF Interface to ADOCS

For example, in many CLCGF scenarios there is a
JSTARS radar model which is running on a ModSAF
E-8A aircraft. The JSTARS is responsible for
performing surveillance of the entire battlefield in a
corps level exercise. Instead of transmitting entity
state PDUs for each entity of each aggregate so that
the radar model can run line-of-sight calculations on
them, the JSTARS model receives the aggregate state
PDUs, and internally pseudo-deaggregates them to the
entity level to run the radar calculations. In this way,
we do not flood the network with entity state PDUs
which are not needed by the majority of the
simulations in the exercise.

We feel that this method of pseudo-deaggregation is
superior to previously implemented methods. It
allows us to keep network bandwidth utilization at a
minimum, which is one of the primary issues in
implementing a large-scale simulation. It allows
only those sensors and systems which need entity
state information to compute it, and ensures that they

The Automated Deep Operations Coordination
System (ADOCS) uses the TACFIRE message
protocol to communicate with other military
hardware. In the JPSD program, it is utilized to issue
fire missions via the TACFIRE FMCFF (Full
Mission Call For Fire) message. Target nominations
are sent to the ADOCS from the ASAS Warrior or
GSS operator via the TACFIRE ATICDR (Artillery
Target Intelligence Coordinate Report) message. The
ADOCS operator pairs nominated targets with
available artillery assets to compose fire missions for
artillery units to execute. All TACFIRE messages
used by JPSD are transmitted on the DIS network in
the "data" field of the DIS Signal PDU.

The SIU monitors DIS PDUs to detect FMCFF
messages. The FMCFF message contains many
fields, including identification of the artillery battery
for which the fire mission is designated. If a given
fire mission is intended for a unit which the CLCGF
is simulating, the SIU fully parses and processes the

79

message. It extracts the target location, shell type,
number of rounds, etc. from the FMCFF. The SIU
then makes a determination of the area around the
target location which can be impacted by the
munition being fired. If there are any aggregate units
in the area, the SIU begins sending Deaggregation
Request PDUs to initiate the deaggregation of these
aggregates. In addition, if the unit which was
requested to fire is an aggregate, the SIU initiates
deaggregation of the unit by sending DRPDUs for it.
The SIU then constructs a ModSAF MLRS fire
mission for the entity-level MLRS unit, and assigns
that fire mission to the MLRS unit. At this point,
the ModSAF MLRS unit executes the fire mission.

During initial JPSD demonstrations, the ADOCS
TACFIRE database was populated by hand with the
ID's of a subset of the US artillery assets that were
available for a given scenario. In order to provide a
more realistic view of the battlefield for the ADOCS
operator, an interface has been added which
automatically initializes the ADOCS TACFIRE
database with the ID's and locations of all US artillery
assets in the scenario. This is accomplished by the
SIU sending the TACFIRE AFU (Ammunition Fire
Unit) UPDATE message to the ADOCS for all US
artillery assets being simulated by the CLCGF in
either Eagle or ModSAF. The AFU UPDATE is a
standard TACFIRE message used to update the
TACFIRE database with fire unit status information.

5.3 CLCGF Interface to STRIKE

The STRIKE simulation is a high-fidelity,
engineering-level simulation of a proposed weapon
system, which was modified to be capable of running
in real-time for use in DIS. It simulates the dispense,
flyout, and detonation of Brilliant Anti-Tank (BAT)
smart submunitions. The BAT is a submunition
which is dispensed from an ATACMS missile, and
uses acoustic and infrared sensors to track and attack
tanks and other armored vehicles. In order to interact
with STRIKE, a protocol for submunition dispense
and simulation handoff needed to be defined and
implemented in ModSAF. This was accomplished
via transmission of four types of PDUs: the
Application Action Request PDU, Application
Action Response PDU, Entity State PDU, and
Detonation PDU.

During ModSAF initialization, the DIS
site/application address of the STRIKE simulation
computer is initialized via command line input. At
initiation of the launch of the ATACMS missile, the
missile model transmits an Application Action
Request PDU to the STRIKE simulation, passing the
entity id of the missile, estimated time of flight,
estimated detonation coordinates, and various target

specific parameters. This PDU is re-transmitted every
5 seconds for up to 30 seconds, or until receipt of an
Application Action Response PDU from the STRIKE
simulator with the same site/host address as specified
at initialization. Receipt of the Application Action
Response PDU notifies ModSAF that the STRIKE
simulation received the Application Action Request
PDU and is ready to dispense submunitions from the
specified ATACMS missile entity.

While the ATACMS missile is in flight, the
STRIKE model monitors the ATACMS missile's
Entity State PDUs. When it is time for the
ATACMS missile to dispense submunitions, it sends
a Detonation PDU (as described in Section 4.3.5).
Receipt of the Detonation PDU by the STRIKE
model triggers it to perform a simulated dispense of
the BAT submunitions. The STRIKE model utilizes
recent ATACMS missile Entity State PDUs to
initialize the BATs with the correct initial attitude and
velocity, and begins simulation of the BAT
submunitions. The BATs fly to and attack any
detected targets in the area.

To account for the potential damage inflicted by the
submunition detonations, the ModSAF direct fire
damage tables were updated to handle the BAT
submunition type. Upon receipt of a BAT
Detonation PDU, a table lookup is performed and
direct fire damage is calculated for the target entity
based on the table.

6. Future Work

Future work will include expanding upon the current
Eagle to SIU interface through new interface
commands and enhanced functionality. Other
potential enhancements include:

- integration with other fielded or prototyped tactical
equipment.
- creation of a more realistic JSTARS downlink to a
Ground Station Module (GSM) using Emission
PDUs.
- integration of an intelligence model into CLCGF.
- summarizing and reporting DIS indirect fire to Eagle
so constructive model units can be attritted by DIS
indirect fire
- full parsing of Eagle OPORDs and mapping into
missions for deaggregated units
- investigating solutions to the terrain correlation
issues between Eagle and ModSAF
- developing the standards necessary to distribute the
"pseudo-deaggregation" capability to sensor models
which are under the control of simulations other than
ModSAF

80

- implementing a generic resolution management
capability which will allow deaggregation requests to
be registered and controlled by a single module.

The CLCGF's current role is to function as the
central simulation engine executing a Korean scenario
in the September, 1995, JPSD demonstration. Our
future development will be guided by the needs of the
JPSD program and other CLCGF users.

7. Conclusions

We have accomplished the work described in this
paper in a relatively short period of time: CLCGF
software design began in June, 1994; software
development of the SIU, and various ModSAF
modifications began in August, 1994; integration
with Eagle began in November, 1994; and
Eagle/SIU/ModSAF interoperation was first
successfully demonstrated in the CLCGF system in
January, 1995. Since the first demonstration, we
have been improving the architecture and expanding
the functionality of the CLCGF to support the long-
term needs of various sites involved in the JPSD
program.

We have created a CLCGF which can be used by the
JPSD program to aid in the study, analysis, and
testing of precision strike scenarios, and by the Depth
and Simultaneous Attack Battle Lab at Ft. Sill for
artillery system operator training and the study of new
artillery weapons, systems, missions, and concepts at
the Army Corps level. This has been accomplished
by integrating constructive, virtual, live, and
engineering simulations together into a usable, useful
environment.

8. Acknowledgment

This work is being sponsored by STRICOM, the
Topographic Engineering Center (TEC), and the
Depth and Simultaneous Attack Battle Lab at Ft.
Sill, under the Joint Precision Strike Demonstration
program, contract number DACA76-93-D-0007,
Delivery Order 3. We would also like to thank
TRAC Ft. Leavenworth for their efforts in the
development of Eagle scenarios and supporting the
ModSAF integration effort in numerous ways.

9. References

Calder, R., Evans, A., "Construction of a Corps
Level CGF", Proceedings of the Fourth Conference
on Computer Generated Forces and Behavioral
Representation, Orlando, FL, May 4-6, 1994.

Calder, R., Peacock Jr., J., Wise, B., Stanzione, T.,
Chamberlain, F., Panagos, J. , "Implementation of
a Dynamic Aggregation/Deaggregation Process in

the JPSD CLCGF", Proceedings of the Fifth
Conference on Computer Generated Forces and
Behavioral Representation, Orlando, FL, May 9-
11, 1995.

Hardy, D and Healy, M, "Constructive and Virtual
Interoperation: A Technical Challenge" proceedings
of the 3rd Conference on CGF and Behavioral
Representation, March 1993

Karr, C, Franceschini, R., Perumalla, K., Petty, M.,
"Integrating Aggregate and Vehicle Level
Simulations", Proceedings of the Third Conference
on Computer Generated Forces and Behavioral
Representation, Orlando, FL, March 17-19, 1993.

Karr, C, Root, E., "Integrating Aggregate and
Vehicle Level Simulations", Proceedings of the
Fourth Conference on Computer Generated Forces
and Behavioral Representation, Orlando, FL, May
4-6, 1994.

Smith, J. E., "Persistent Object Library
Programmer's Guide", ModSAF 1.3 Software
Documentation, Loral Advanced Distributed
Simulation, Inc., Cambridge, MA, September,
1994.

"Standard for Information Technology - Protocols for
Distributed Interactive Simulation Applications,
Version 2.0, Third Draft", Institute for Simulation
and Training, Orlando, FL, May 28, 1993.

"A Modular Solution for Semi-Automated Forces,
ModSAF, An Overview", Loral Advanced
Distributed Simulation, Inc., Cambridge, MA,
May, 1993.

10. Authors' Biographies

Robert B. Calder is a Senior Software Engineer in
the Technology Research Group at Science
Applications International Corporation. He has been
involved in the development of DIS CGF systems for
over four years, and is currently performing design
and development on the ARPA Command Forces
(CFOR) project. His primary research interests are in
the area of tactics and behavior representation and
generation for computer generated forces. Mr. Calder
has a Master of Science degree in Computer Science
from Boston University.

Jeffrey C. Peacock, Jr. is a Software Engineer
in the Technology Research Group at Science
Applications International Corporation. He has been
involved in DIS CGF systems for the past year.
Prior to entering the DIS CGF arena Mr. Peacock
spent 7 years developing real-time embedded software
systems. Mr. Peacock holds a Bachelors of Science
degree in Computer Science from Merrimack College,
Andover, MA.

James Panagos is a Consultant for TASC. He
has been involved in the development of DIS CGF

81

systems for over 9 years, and is currently performing
design and development on the ARPA Command
Forces (CFOR) project. His primary research
interests are in the area of tactics, behavior
representation, automated planning and generation for
computer generated forces. Mr. Panagos has a Master
of Science degree in Computer Science from
Massachusetts Institute of Technology.

Thomas E. Johnson is a Senior Software
Engineer in the Electronic Systems Division at
Raytheon Company. He has been involved in the
development of real-time simulation models and
manned flight simulators over the past thirteen years.
His primary interests are in the area of man-machine
interface and the development of tactical simulation
models. Mr. Johnson has a Bachelor of Science
degree in Aerospace Engineering from the Virginia
Polytechnic Institute and State University,
Blacksburg, VA.

82

Implementation of a Dynamic Aggregation/Deaggregation Process in
the JPSD CLCGF

Robert B. Calder, Jeffrey C. Peacock, Jr., Ben P. Wise
SAIC

486 Totten Pond Road
Waltham, MA 02154

rcalder@bos.saic.com, jpeacock@bos.saic.com, bwise@bos.saic.com

Thomas Stanzione, Forrest Chamberlain, James Panagos
TASC

55 Walkers Brook Drive
Reading, MA 01867

tstanzione@tasc.com, flchamberlain@tasc.com, jpanagos@world.std.com

1. Abstract

The integration of constructive and virtual simulation
systems is a simulation research topic which has
received much attention in recent years. The goal of
this integration is to develop a virtual battlefield in
which aggregate units and entities coexist, interacting
with one another at a single level. This has typically
been handled by requiring aggregate units to
deaggregate to the entity-level when a detailed
interaction is to occur. Even the most successful
integrations to date, however, have only achieved
limited success in minimizing the number of
aggregations/deaggregations performed, and efficiently
and accurately implementing the aggregation/
deaggregation process.

In this paper, we present work which has been
performed on the JPSD CLCGF project with an
emphasis on the implementation of a dynamic
aggregation/deaggregation process which is efficient,
accurate, and minimizes the number of
aggregations/deaggregations performed.

2. Introduction

2.1 The JPSD Program

The Joint Precision Strike Demonstration (JPSD)
program's goal is to introduce and implement new
technologies into the defense arena that can address
and correct precision strike deficiencies. To facilitate
this goal, the JPSD program has created a simulation
environment which is used to evaluate technologies,
train users, and perform experiments necessary to
reduce sensor-to-shooter timelines and to attack high-
value, time-sensitive targets. As part of this
environment, the JPSD program has sponsored the
construction of the Corps Level Computer Generated
Forces (CLCGF) system.

The primary purpose of the CLCGF is to provide the
corps level simulation environment for DIS exercises
in which the above mentioned program goals can be
carried out. The CLCGF is used during the JPSD
exercises to simulate maneuver and artillery units
contained in an Army corps. The simulated units
provide stimulus for and interact with tactical
hardware systems and their operators, and interact
with high-fidelity, engineering simulations. The
CLCGF has been created by integrating the Eagle
constructive simulation with the ModSAF entity-
level simulation.

2.2 The CLCGF System

Entity-level simulations represent each entity which
exists on the virtual battlefield at the individual
platform level. They typically represent entities from
the individual platform level up to the company level.
They use the DIS protocol to interact with other
entity-level simulations, and simulate the physical
characteristics of each entity to determine battlefield
outcomes. On the other hand, constructive
simulations represent groups of entities as single,
aggregate unit objects. They typically represent units
at the company or battalion level up to the division
or corps level. They are typically not designed to
interact with other simulations, but instead simulate
the entire battlefield internally, and use Monte-Carlo
techniques to determine battlefield results.

The DIS environment has traditionally included only
entity-level simulations. It has provided a sound
environment for small-scale, tactical troop training,
as well as a potential testbed for evaluating new
vehicle and weapon systems. However, simulating
the effects of entity-level simulations in corps level
operations has remained beyond the reach of the DIS
environment, due to network bandwidth and computer
resource constraints. Using current network and

83

computer technology, a traditional DIS exercise is
simply not capable of supporting a corps level
operation. This was the primary motivation for
creating a CLCGF which utilizes both constructive
and entity-level simulations. Transmission of unit
state data at the aggregate level is a key factor which
decreases network load by significantly decreasing the
number of PDUs transmitted in a large-scale exercise.
If DIS is to support a 100,000 entity exercise,
representation of some units on the battlefield as
aggregates is likely.

The simulation engine of the CLCGF has been built
by integrating the constructive, aggregate-level
simulation Eagle, with the virtual, entity-level
simulation ModSAF. This simulation engine
interacts with various live, tactical hardware systems,
including: the All Source Analysis System (ASAS)
Warrior and Ground Station Simulator (GSS) for
presentation of the tactical battlefield situation to the
operator and potential target nominations; and the
Automated Deep Operations Coordination System
(ADOCS) for the creation and assignment of fire
missions. The simulation engine interacts with the
STRIKE engineering-level simulation, which
simulates the deployment and flyout of smart
submunitions. It also interacts with the TAFSM
simulation, which it utilizes to simulate the
deployment and flyout of various smart
submunitions. In addition, the CLCGF interacts
with various other DIS simulations, such as the
Warbreaker SimCore simulation.

In order to allow military training and analysis of
scenarios of interest to JPSD, the CLCGF must
generate a full corps-level exercise. To accomplish
this goal, many technical challenges need to be
addressed. These involve issues such as efficient
incorporation of aggregate units into DIS, effective
incorporation of DIS entity-level information into
constructive simulations, development of a dynamic
aggregation/deaggregation protocol, interaction
between constructive and entity-level simulations, and
interaction between a constructive/virtual simulation,
live systems, and engineering-level simulations. The
work performed on the CLCGF to date has focused on
these fundamental goals.

2.3 Constructive/Virtual
Linkage

Simulation

Bringing together constructive and virtual simulations
on the synthetic battlefield creates difficult technical
challenges. These difficulties lie in many areas,
including management of hardware and network
capacity across simulations, ensuring correlation of
data and behaviors across simulations, resolving
timing issues, ensuring terrain and environment

correlation, and implementing an efficient, effective
set of communication protocols between simulations.
The JPSD CLCGF project has implemented
solutions which begin to address many of these
problems. The remainder of this paper will focus on
modifications made in two key areas which are critical
to implementing an accurate and efficient
aggregation/deaggregation process:

Managing Capacity: All constructive/virtual linkage
projects to date require that aggregate to entity
interaction be performed at the entity level. However,
it is not practical in terms of hardware and network
capacity to decompose all aggregate units into virtual
world entities whenever the two come within
potential interaction range or enter a pre-defined area
on the virtual battlefield, as this will lead to idle
echelons occupying valuable computer resources and
manpower, and spreading deaggregation. A dynamic
aggregation/deaggregation process is needed, in which
aggregate units deaggregate when a virtual world
entity intends to interact with them, or they intend to
interact with an entity. Using this philosophy,
aggregations/deaggregations will only occur when
absolutely necessary.

Managing Correlation: A key factor in successfully
linking constructive and virtual simulations is
ensuring data and behavior correlation between
simulations. Anomalous results will be obtained
from a linkage between systems which are poorly
correlated. In order to eliminate these anomalies, a
detailed mapping between the abstract and
approximate definition of a constructive unit and the
precise representation of entities in a virtual world
unit is needed.

The CLCGF system addresses these issues within the
context of the JPSD program. The CLCGF is
composed of the Eagle aggregate-level, constructive
simulation and the ModSAF entity-level, virtual
simulation. The major development effort on the
CLCGF project has been the implementation of the
Simulation Integration Unit (SIU), whose purpose is
to bring together the constructive world of Eagle and
the virtual world of ModSAF.

The CLCGF architecture is described in more detail in
these proceedings (Calder et. al. 1995) and will not be
revisited here. The purpose of this paper is to present
the innovative technologies devised in the CLCGF to
deal with the issues of managing both capacity and
correlation in a constructive/virtual simulation
linkage. The following sections focus on each of
these aspects separately.

3. Managing Capacity

84

3.1 Changing Simulation Resolution

When an aggregate unit deaggregates into its
component entities, a handoff of simulation is made
from the constructive to the virtual simulation.
Similarly, when an entity-level simulation unit is re-
aggregated into an aggregate unit from its component
entities, a handoff of simulation is made from the
virtual to the constructive simulation. We define the
process of performing this handoff without significant
loss of state as a resolution change. Other changes in
fidelity during the course of a simulation, such as
swapping vehicle dynamics models, constitute
resolution changes, but are not modeled in the
CLCGF. The term "resolution change" used
throughout the remainder of this paper refers to
aggregations and deaggregations only.

Current approaches to resolution change have defined
static criteria to trigger aggregation and deaggregation,
that is, criteria that do not change as the simulation
evolves. The Integrated Eagle/BDS-D project (Karr
et. al. 1993) defined one or more "high-resolution
areas" in which constructive units are required to
deaggregate into virtual entities. The BBS/DIS
project (Hardy et. al. 1993) defined a "sphere of
influence" for virtual entities, within which
constructive units are required to deaggregate into
virtual entities. In either case, constructive
simulations relinquish control entirely to virtual
simulations within these areas.

A problem resulting from the "high-resolution area"
approach to resolution change is that often times
needless deaggregations will occur for aggregate units
which pass into the high resolution area, but do not
interact with any entities over the course of the
simulation. This wastes precious network bandwidth
in large-scale simulation exercises. This needless
deaggregation can be controlled by scripting the
simulation scenario carefully to avoid needless
deaggregation, but this questions the validity of the
scenario.

A problem resulting from the "sphere of influence"
approach to resolution change is that spreading
deaggregation can easily result. Spreading
deaggregation occurs in the following situation: an
entity comes within interaction range of an aggregate
unit, which causes the aggregate unit to deaggregate;
when the aggregate unit deaggregates, one or more of
its entities is within interaction range of another
aggregate unit, which causes that aggregate unit to
deaggregate; and this process continues on. Spreading
deaggregation wastes both network bandwidth and
computer resources, since there is no reason for any
aggregate units other than the one within interaction
range of the entity to deaggregate. It can easily spiral
out of control and cause the entire battlefield to

change resolution to the entity-level, thereby
defeating the purpose of using the constructive model
in the first place. This spreading deaggregation can
be controlled by scripting the simulation scenario
carefully to prevent it from occurring, but this clearly
introduces an undesirable bias into the scenario.

In contrast, resolution changes in the CLCGF are
dynamic, based upon events which occur during the
exercise or upon initiation by a human operator at a
GUI. The CLCGF does not rely upon predetermined
high-resolution areas or spheres of influence to
initiate resolution changes, but it does not preclude
these mechanisms from being used. Instead, it places
the responsibility for initiating resolution changes on
the simulation which intends to interact with an
entity or unit simulated in the other world. This
requires that the entity-level simulations in an
exercise be capable of receiving and processing
aggregate unit state information to decide whether
interaction with an aggregate unit is desired. This
alleviates the problems of needless deaggregation and
spreading deaggregation since only those units which
intend to interact are deaggregated. Additionally, this
facilitates scenario construction which is untainted by
the mechanisms implemented in the underlying
constructive and virtual simulations.

Re-aggregation in the CLCGF is initiated when the
event which triggered the deaggregation is complete,
or upon operator request (if the deaggregation was
operator initiated). In any case, it is the
responsibility of the simulation which requested the
deaggregation to initiate the re-aggregation, since it
has the context of why the deaggregation was needed
initially. If another simulation requires that the
deaggregation be maintained, then it assumes
responsibility for maintenance of deaggregation until
it is no longer required.

3.2 Resolution Change Protocol

A protocol for aggregate units and the initiation of
resolution changes has been defined and implemented
in the CLCGF. It specifies the format and the
transmission, receipt, and processing requirements of
DIS 2.0.3 experimental PDUs to facilitate aggregate
units. Specifically, two new PDUs have been
defined: the Aggregate State PDU (ASPDU) and the
Deaggregation Request PDU (DRPDU).

The ASPDU is similar in usage and purpose to the
DIS Entity State PDU, but is used only for aggregate
units. It allows Eagle aggregate units to be broadcast
on the DIS network similar to the way entities are
normally broadcast in traditional DIS exercises. The
ASPDU for each aggregate unit is transmitted by the
SIU every five seconds and contains the following

85

fields: entity id, unit type, unit marking, aggregate
state (i.e. aggregated or deaggregated), position,
orientation, velocity, formation, extent, number of
entities in the aggregate, and subordinate entity ID's
(when the aggregate unit is in the deaggregated state).

All resolution changes in the CLCGF are managed by
the SIU, since it is the link to the constructive
simulation. Resolution changes can be initiated by
the constructive simulation (Eagle), any virtual
simulation on the DIS network (e.g. ModSAF), or
the SIU (via event-driven mechanisms). Regardless
of the source of the resolution change request, the
same protocol is used to initiate, maintain, and
terminate the resolution change.

To initiate the deaggregation of an aggregate unit, a
simulation issues a DRPDU with the ID of the unit
to be deaggregated. To maintain deaggregation of the
unit, this DRPDU is retransmitted periodically (e.g.
every five seconds). Re-aggregation of a deaggregated
unit is initiated by ceasing transmission of DRPDUs
for that unit. Re-aggregation will occur when no
DRPDUs are received for a given unit for a period of
2.4 times the retransmission rate (e.g. 12 seconds).
This timeout mechanism allows another simulation
to take over responsibility for maintaining
deaggregation (i.e. transmitting DRPDUs) if the
originally responsible simulation terminates its
interest (i.e. ceases sending DRPDUs).

3.3 Sources of Resolution Change in
CLCGF

As described above, the CLCGF uses dynamic criteria
for resolution change. Resolution changes are
initiated and terminated based on the current tactical
situation. The state of the resolution of all units in
the simulation at a given time, therefore, is based
solely on the sequence of events leading up to that
time. The mechanisms currently implemented which
trigger resolution changes include assignment of a fire
mission to an MLRS unit (from live, tactical
hardware or the ModSAF GUI), ModSAF operator
request, SIU operator request, and Eagle request.

In a typical JPSD exercise, a hostile target
nomination is received by the Automated Deep
Operations Coordination System (ADOCS) operator.
The operator creates a fire mission for that target, and
a Full Mission Call For Fire (FMCFF) message,
enclosed in a DIS Signal PDU, is dispatched to the
SIU. Upon receipt, mission parameters are used to
approximate the vehicles to be deaggregated (i.e. the
fire support battery and any potential enemy targets in
the target area. Receipt of the FMCFF message
serves as the trigger mechanism for dynamic
resolution changing in the CLCGF. Initiated by

events derived from the exercise itself, it is the first
example of an event-based resolution change used to
date.

The SIU operator, as the controller of the exercise, is
able to initiate a resolution change from the SIU's
Graphical User Interface. For example, the SIU
operator may decide that a certain engagement need be
resolved at the entity level. This may be done by
deaggregating the interacting units, which will
transfer their control and modeling to ModSAF.

By use of a similar GUI, the ModSAF operator may
change the resolution of any unit. This allows
operators with a non-exercise-wide view to control the
fidelity of the simulation, and change resolution based
on a local decision criteria.

Eagle may specifically request a resolution change for
any unit. This supports the "high resolution"
interaction area approach of conducting virtual to
constructive interactions. It is supported but, to date,
has not been used in CLCGF.

3.4 CLCGF Architectural Support for
Dynamic Resolution Change

The CLCGF's ability to efficiently and accurately
perform dynamic resolution changes is made possible
by three key design decisions: to tightly couple the
SIU to ModSAF, to represent all of Eagle's
constructive units in ModSAF's virtual world as
aggregates, and to require that Eagle units be
simulated at the company (or battery) level.

3.4.1 Tight Coupling of SIU to ModSAF
The SIU is tightly coupled to ModSAF. Like
ModSAF, it utilizes the Persistent Object (PO)
protocol to maintain the state of units, graphics, and
behaviors. This allows the SIU the same full range
of functions over an aggregate unit as if it were a
ModSAF unit itself.

For example, creation of aggregate units in the SIU is
initiated upon receipt of a Unit Create message from
Eagle. The SIU translates the aggregate unit
parameters into PO unit parameters for the given unit
type, and then broadcasts a unit creation PO message.
The SIU then begins simulation of the unit as a
ModSAF unit, as though it had been created from the
ModSAF GUI. The unit remains in the ModSAF PO
database and is updated at the appropriate times.

Similarly, upon deaggregation of an aggregate unit,
the SIU translates the unit's current state into PO unit
parameters for each entity in the unit organization. It
also creates a PO taskframe for the deaggregated unit

86

based on the aggregate unit's mission. The SIU then
broadcasts unit creation and taskframe PO messages.
A CLCGF ModSAF simulator which is on the same
PO database ID as the SIU begins simulation of the
entities in the unit, and execution of the taskframe,
within ModSAF.

3.4.2 Representation of Eagle Units in the SIU and
ModSAF
Aggregate unit state information is broadcast on the
DIS network using the ASPDU defined above. In
order to generate the information contained in the
ASPDU, however, it is necessary to maintain Eagle
aggregate unit state in the SIU. This is accomplished
in the ModSAF SIU by handling aggregate units
similar to the way in which ModSAF handles
entities.

At scenario start, Eagle sends the initial state of each
aggregate unit to the SIU, and the SIU creates a local
aggregate simulation unit. This local aggregate unit
is comprised of simply an aggregate hull, and is
entered into the SIU's vehicle table. It ticks similarly
to the way ModSAF entities do, but does not execute
any ModSAF tasks, since Eagle controls its
movement. This enables the SIU to simulate local
aggregate units in the same manner as ModSAF
simulates local entities.

The periodic transmission of ASPDUs by the SIU
enables ModSAF, as well as other DIS simulations,
to consider aggregate units as remote entities. We
have modified ModSAF to receive and process the
ASPDUs, and to incorporate remote aggregate units
in the same manner that remote entities are
incorporated. This enables the display of aggregate
units on the ModSAF PVD, which allows the
operator to see the entire battlefield of aggregates and
entities, and to perform aggregate unit operations
(e.g. aggregations and deaggregations) as described
above. Processing of ASPDUs also enables
aggregate units to be processed by ModSAF sensor
models.

3.4.3 Eagle Unit Simulation at Company Level
ModSAF organizes entities in units up to the
company level and supports company-level behavjors.
Similarly, Eagle is capable of explicitly simulating
units down to the company level and supports
company-level behaviors. The mapping of data
across the two systems can thus be made without
significantly changing the content of the data. Had
the two systems not met at a common echelon level,
a new set of problems would have been introduced
with respect to handling this gap.

To decompose an Eagle company into its constituent
members in the virtual world, the SIU utilizes a user

defined, run-time parameter file to map Eagle
company compositions into ModSAF compositions.
The unit type defines the formations it can assume,
its mix of vehicles, and other significant tactical
behaviors. Appropriate ModSAF units are chosen
from a pre-defined list. The ModSAF unit types are
not currently composed dynamically, but solutions
are being explored.

Requiring that Eagle units be simulated at the
company or battery level facilitates translation from
Eagle missions to ModSAF missions when a change
in resolution occurs. It also allows for ease in
reporting state information of ModSAF deaggregated
units to Eagle.

When an Eagle aggregate unit is deaggregated into
ModSAF entities, the ModSAF unit is automatically
assigned a ModSAF mission based upon its mission
in Eagle. Operations orders (OPORDs) are passed
from Eagle to the SIU upon deaggregation. However,
the SIU does not currently parse the entire OPORD to
automatically construct the ModSAF unit mission.
Instead, the SIU uses the current operational activity
of the Eagle unit, maps it to a ModSAF taskframe,
creates the taskframe (using other information from
Eagle such as heading, speed, formation, etc.), and
assigns the taskframe to the deaggregated ModSAF
unit. The ModSAF unit immediately begins
execution of the taskframe. In the future, we plan to
fully parse the OPORD to automatically construct
and assign a consistent mission to the ModSAF unit.

3.5 A Generalized Resolution Management
Solution

The CLCGF uses a variety of mechanisms to
implement resolution change. Yet, in CLCGF as in
other implementations, individual simulations or
operators are burdened to initiate, monitor, and
terminate resolution changes. A more general
approach is desirable, where resolution control is
analyzed and executed from a centralized module.
This module will centralize resolution management
requirements in one location (thereby avoiding code
duplication) and reduce the overhead of
communications. Resolution change requirements
can be defined over the course of the exercise.
Resolution changes themselves can occur at any time
via a reliable resolution management protocol.

The generalized resolution module would control
changes based on the following categories of criteria:

- ingress/egress of a high-resolution area. When a
unit enters or exits a specified area, a resolution
change occurs.

87

- ingress/egress of a sphere of influence. When a unit
comes within a specified range of another unit, a
resolution change occurs.

- time-based resolution changes. When a unit enters
a window of time, defined in either absolute or
relative terms, a resolution change occurs.

- event-based resolution changes. When a specific
scenario event occurs, a resolution change occurs.

Using this approach, simulations which desire
resolution changes based on the above criteria register
their specifications with the resolution management
module over the course of the simulation. These
specifications consist of the categories listed above,
and their logical combinations. The resolution
management module monitors the simulation with
respect to all registered resolution change
specifications. When resolution change conditions
are met, it initiates a resolution change, and
maintains the resolution change until termination
conditions are met.

4. Managing Correlation

4.1 Physical Characteristics

When linking constructive and virtual simulations, a
correlation must be made between representations
which are rooted in vastly different domains. Units in
a constructive simulation do not maintain detailed
information regarding their constituent entities.
Therefore, when deaggregating an aggregate unit, an
entity-level simulation must utilize the known
physical characteristics of the unit. By utilizing this
information, an accurate representation of the unit in
the virtual world can be derived.

It is critical that the physical characteristics of an
aggregate unit, such as unit composition, strength,
location, heading, and formation, can be accurately
reconstructed in the deaggregated unit's entities. In
the CLCGF, some physical characteristics, such as
unit composition, are specified in data files which are
correlated between the SIU and Eagle. Others are
transferred from Eagle to the SIU as state information
during the course of the scenario. This ensures that
these physical characteristics will be accurately
mapped from the constructive to virtual, and vice
versa, when a resolution change occurs.

4.2 Intelligent Entity Placement

When deaggregating a constructive unit, an entity
level simulation must utilize the characteristics of the
virtual environment and the mission which the unit is
executing. By utilizing this information an accurate

representation of the constructive unit in the virtual
world can be derived, in which vehicles are placed at
reasonable locations and headings.

We have developed software which makes use of the
available mission information in the Eagle
constructive simulation, as well as knowledge of the
virtual environment's terrain, to generate vehicle
placements in the virtual world in real-time. This
software is utilized for both real and pseudo-
deaggregation of Eagle units, which ensures
correlation between entity placements of a pseudo-
deaggregated unit and the same aggregate unit when it
is actually deaggregated.

The intelligent placement of entities on the virtual
battlefield is based on satisfying constraints which
can be subdivided into two classes: mission
independent constraints and mission dependent
constraints.

4.2.1 Mission Independent Constraints
Mission independent constraints are applied during all
deaggregations regardless of the constructive unit's
mission (e.g. road march, occupy battle position,
etc.) These constraints include the constructive unit's
physical characteristics (e.g. unit composition,
location, heading, and formation), as well as the
characteristics of the virtual environment (e.g.
obstacles, road networks, etc.). The physical
characteristics of the constructive unit are used to
template the individual entities which make up the
unit. This templating process is accomplished using
the inherent capabilities of ModSAF by defining new
entries in the echelon database. These new entries
coupled with location, formation, and heading
information provide enough data to establish an
initial lay down of the entities. The next step is to
take into account the mission dependent constraints,
which are discussed in the next section. Once the
mission dependent data has been factored into the
vehicle placement, the attributes of the underlying
terrain must be taken into account. Adjustments are
made to the vehicle position so that vehicles do not
overlap each other or obstacles found on the terrain.

Checking individual vehicles for overlap with
obstacles is necessary since constructive and entity
level simulations have different representations of the
underlying terrain. The Eagle terrain database is
intended to support terrain reasoning by echelons at
the company level and higher. During Eagle's terrain
generation process the terrain features are aggregated
to form go and no-go areas. These go and no-go areas
are then used to define mobility corridors for the
aggregate units. In addition, large obstacles, general
area mobility, and intervisibility characteristics are
computed for these areas. In contrast, ModSAF

88

utilizes a more detailed terrain database which is
intended for use by individual vehicles. The
information stored in ModSAF's terrain database
includes road and river networks, small obstacles, and
sampled elevation data. Thus, it is often the case that
a clear region of terrain in Eagle actually contains
obstacles that may impede the movement of
individual entities in ModSAF. For example, a
given location that is within a mobility corridor on
one database may be in a densely forested area on the
other. We must therefore check each individual entity
for overlap with obstacles when deaggregating a
constructive unit.

4.2.2 Mission Dependent Constraints
Incorporating mission dependent constraints during
the deaggregation process forms the majority of the
intelligent entity placement code added in support of
the CLCGF program. These constraints are related to
the specific mission which the unit is performing.
Missions that have been identified as needing separate
constraint sets include road march, attack, and defend.

A unit performing a road march mission attempts to
travel from an initial location to a destination
utilizing local road networks, while maintaining a
column formation. In our current implementation,
ModSAF is not given the destination. As a result we
have implemented code that uses the initial vehicle
placements, as described in Section 4.2.1, and the
desired heading to perform intelligent entity
placement on the road network. The process involves
looking for a suitable road segment in the vicinity of

the constructive unit's current position. The center of
mass of the unit is then placed on the closest point of
the selected segment and the unit is expanded outward
from the center. Subsequent road segments are
chosen for vehicles as they are created, using the
direction of the initial segment as a filter criteria.
Placement of a portion of the vehicles on roads and
the remainder off the road is supported when the local
road network is insufficient.

Figure 1 illustrates the deaggregation of a unit which
is heading Southeast and executing a road march. The
center of mass is first placed on the nearest point of
segment C. The first half of the unit formation is
then expanded forward along segment C and onto
segment E. The second half of the unit is then
expanded backward along segment C onto segment A.
Since the road network ends with segment A, any
remaining vehicles will be placed on the terrain as if
segment A continued further to the Northwest.

The vehicle placement functionality is designed to
work for both the simple case of vehicles in a column
formation, and the more difficult case of vehicles in
an arbitrary formation. For column formations, each
vehicle is placed directly on the road and the desired
inter-vehicle spacing is maintained. For non-column
formations the width of the formation is maintained,
the center of the formation follows the road, and inter-
vehicle spacing is scaled based on the geometry of the
turns in the road. The road following code is
essentially independent of the underlying road

vehicles

road segments

Figure 1: Intelligent Entity Placement for Roadmarch

89

representation. Thus, it can be used with other terrain
database formats, and can also be used to generate
vehicle placements that follow linear terrain features
other than roads. For example, this could be used to
place vehicles such that they follow a path between
two points which maximizes cover. Implementation
of placements for attack and defend missions have not
been addressed to date. We anticipate that each will
involve a mixture of cover, concealment, mobility,
and line-of-sight constraints.

System response time to deaggregation requests is
critical. Due to the frequency with which
deaggregation is performed and the need for a smooth,
rapid transition between constructive and entity-level
simulations, it is critical that intellignet entity
placement solutions emphasize performance while
achieving realistic vehicle placement. We are
therefore developing methods which rapidly
approximate complex constraints. For example, a
first-order attempt at maximizing cover might involve
finding local terrain elevation minima.

5. Future Work

Future work will include expanding upon the current
set of events which trigger dynamic aggregation/
deaggregation as well as improvements to the
intelligent vehicle placement algorithms. Possible
improvements in these areas include:

- Implementation of a generic resolution management
library which will allow deaggregation requests to be
registered and controlled by a single module. This
will involve the definition of new criteria which are
used to trigger the aggregation/deaggregation process,
as well as an interface for specifying this criteria.

- Implementation of man-made obstacle avoidance
algorithms in the entity placement process, to
improve realism.

- Investigation of solutions to the terrain correlation
issues between Eagle and ModSAF.

6. Conclusions

The development of new networking and computer
technologies will certainly help increase the number
of DIS entities which can participate in a large-scale
exercise, but as technology increases so will the
fidelity of the simulations. As fidelity increases,
more resources are consumed and the net performance
gain becomes insignificant. Dynamic aggregation/
deaggregation is one of the keys to supporting large-
scale DIS exercises. Use of this scheme allows
deaggregation to occur only when necessary, based on
battlefield events or operator interaction. Computer

and network resources are thereby conserved, as they
are utilized by tactically significant units and not
spent on tactically insignificant units.

The CLCGF system has successfully demonstrated
dynamic aggregation/deaggregation, intelligent
vehicle placement, and road network utilization in
several demonstrations at the Integration and
Evaluation Center (IEC) at the Topographic
Engineering Center (TEC) located at Ft. Belvoir, VA.

7. Acknowledgment

This work is being sponsored by STRICOM, the
Topographic Engineering Center (TEC), and the
Depth and Simultaneous Attack Battle Lab at Ft.
Sill, under the Joint Precision Strike Demonstration
program, contract number DACA76-93-D-0007,
Delivery Order 3. We would also like to thank
TRAC Ft. Leavenworth for their efforts in the
development of Eagle scenarios and supporting the
ModSAF integration effort in numerous ways.

8. References

Calder, R., Evans, A., "Construction of a Corps
Level CGF", Proceedings of the Fourth Conference
on Computer Generated Forces and Behavioral
Representation, Orlando, FL, May 4-6, 1994.

Calder, R., Peacock Jr., J., Panagos, J. , Johnson,
T., "Integration of Constructive, Virtual, Live, and
Engineering Simulations in the JPSD CLCGF",
Proceedings of the Fifth Conference on Computer
Generated Forces and Behavioral Representation,
Orlando, FL, May 9-11, 1995.

Hardy, D and Healy, M, "Constructive and Virtual
Interoperation: A Technical Challenge",Proceedings
of the 3rd Conference on CGF and Behavioral
Representation, March 1993

Karr, C, Franceschini, R., Perumalla, K., Petty, M.,
"Integrating Aggregate and Vehicle Level
Simulations", Proceedings of the Third Conference
on Computer Generated Forces and Behavioral
Representation, Orlando, FL, March 17-19, 1993.

Karr, C, Root, E., "Integrating Aggregate and
Vehicle Level Simulations", Proceedings of the
Fourth Conference on Computer Generated Forces
and Behavioral Representation, Orlando, FL, May
4-6, 1994.

Smith, J. E., "Persistent Object Library
Programmer's Guide", ModSAF 1.3 Software
Documentation, Loral Advanced Distributed
Simulation, Inc., Cambridge, MA, September,
1994.

"Standard for Information Technology - Protocols for
Distributed Interactive Simulation Applications,

90

Version 2.0, Third Draft", Institute for Simulation
and Training, Orlando, FL, May 28, 1993.

"A Modular Solution for Semi-Automated Forces,
ModSAF, An Overview", Loral Advanced
Distributed Simulation, Inc., Cambridge, MA,
May, 1993.

9. Authors' Biographies

Robert B. Calder is a Senior Software Engineer in
the Technology Research Group at Science
Applications International Corporation. He has been
involved in the development of DIS CGF systems for
over four years, and is currently performing design
and development on the ARPA Command Forces
(CFOR) project. His primary research interests are in
the area of tactics and behavior representation and
generation for computer generated forces. Mr. Calder
has a Master of Science degree in Computer Science
from Boston University.

Jeffrey C. Peacock, Jr. is a Software Engineer
in the Technology Research Group at Science
Applications International Corporation. He has been
involved in DIS CGF systems for the past year.
Prior to entering the DIS CGF arena Mr. Peacock
spent 7 years developing real-time embedded software
systems. Mr. Peacock holds a Bachelors of Science
degree in Computer Science from Merrimack College,
Andover, MA.

Ben P. Wise is a Senior Scientist in the
Technology Research Group at Science Applications
International Corporation. He has twelve years
experience in developing and implementing
techniques for simulating intelligent behavior,
including classical artificial intelligence techniques,
game theory, decision analysis, C2 in constructive
models, and CGF. Dr. Wise has a Bachelor of
Science degree in Physics from the Massachusetts
Institute of Technology, and a PhD in Engineering
and Public Policy from Carnegie Mellon University.

Thomas Stanzione is the manager of the
Synthetic Environment Section at TASC. He is the
Program Manager for the ICTDB project and a key
contributor to TASC's Synthetic Environment
programs, including Weather in DIS (WINDS) and
Multi-Echelon CFOR with ForeSight (MECFS).
Prior to joining TASC, Mr. Stanzione served as the
deputy director of the Semi-Automated Forces group
at Loral Advanced Distributed Simulation (LADS).
Mr. Stanzione has a Master of Science degree in
Photographic Science from the Rochester Institute of
Technology.

Forrest Chamberlain is a Member of the
Technical Staff in the Signal and Image Technology

Division at TASC. Mr. Chamberlain has been
involved in Computer Generated Forces work since
joining TASC in 1994. Prior to that, he was a
critical contributor to the hardware and software
design of a "wearable" computer system at Carnegie
Mellon University, where he earned his Masters
Degree in Electrical and Computer Engineering.

James Panagos is a Consultant for TASC. He
has been involved in the development of DIS CGF
systems for over 9 years, and is currently performing
design and development on the ARPA Command
Forces (CFOR) project. His primary research
interests are in the area of tactics, behavior
representation, automated planning and generation for
computer generated forces. Mr. Panagos has a Master
of Science degree in Computer Science from
Massachusetts Institute of Technology.

91

Survey of Constructive + Virtual Linkages

David R. Stober, Matthew K. Kraus, William F. Foss, Robert W. Franceschini, and Mikel D. Petty
Institute for Simulation and Training

3280 Progress Drive, Orlando, FL 32826-0544
dstober@ ist.ucf.edu

1. Abstract

This paper presents a survey of three projects at the
frontier of constructive + virtual (C+V) linkages.
C+V simulations solve problems that neither
constructive nor virtual simulations solve well
alone. Constructive simulation is frequently
thought of as war gaming, simulating battle on high
levels such as corps or division. Conversely,
virtual simulation is at the vehicle level. Users
battle in groups, using manned simulators or
computer generated forces as friend and foe. The
C+V linkage allows the commander to zoom in
during a constructive battle to see action occurring
at the vehicle level. C+V also allows players in a
virtual training exercise to realistically participate
in large scale scenarios. C+V supports execution
of larger simulations than are possible on even the
newest virtual simulations.

This paper will define C+V simulation integration
and describe its importance in battlefield
simulation. We will examine the following three
C+V linkages: Integrated Eagle/BDS-D (the first
project to integrate constructive and virtual
simulations), Corps Level CGF (CLCGF), and
BBS/SIMNET. This paper answers the following
questions: How well do these integrations allow
interaction across the C+V interface? How are
aggregation and disaggregation handled? How are
direct and indirect fire supported? What are some
of the unsolved problems?

2. Introduction

2.1 Mission Statement

Simulation technology has seen steady growth for
more than 10 years in both the areas of constructive
and virtual simulation. More recently these
technologies have been joined to solve new
problems. This paper surveys how constructive
and virtual simulations have been combined and
what new problems they are solving. In the pages
that follow we will discuss the state-of-the-art in
constructive + virtual simulation.

2.2 Scope of the Survey

Many projects have researched and/or implemented
integrations of constructive and virtual simulations.
In this survey, we focus on systems in which
aggregation and disaggregation are performed
across the constructive and virtual boundary; such
systems are termed "constructive + virtual
linkages", or C+V linkages. Each project shown in
Table 1 meets this requirement.

Project Constructive Virtual CGF
Eagle/BDS-D Eagle DIS/SMNET 1ST CGF

Testbed
CLCGF Eagle DIS ModSAF
BBS/SIMNET BBS DIS/SMNET SMNET/SAF

Table 1: C+V Projects

We will examine each of these C+V projects and
evaluate them against a set of problem areas. For
an introduction and tutorial on C+V linkages see
(Franceschini 1995).

2.3 Report Organization

This paper has three key sections. Section 3
defines what constitutes a C+V linkage and its
importance. Section 4 presents a review of current
C+V linkages. Section 5 describes common
problems found in building a C+V linkage and
introduces some interesting C+V ideas.

3. A Characterization of C+V Linkages

3.1 Constructive Simulation

For the purposes of this discussion, we will use the
following characterization of constructive
simulations.

Constructive simulations represent military units
(e.g., a tank company) as an aggregate without
simulating each individual entity (e.g., tank) within
the unit. The position, movement speed and
direction, status, and composition of an aggregate
unit are maintained for the unit as a whole, and are
often computed as the result of statistical analysis

93

of the unit's actions. BBS, CBS, and Eagle are
examples of constructive simulations.

3.2 Virtual Simulation

Virtual simulations represent each vehicle or
fireteam as a distinct simulation entity. All
necessary state information for each entity is
maintained for that entity. Each entity is capable of
independent action, and combat results are resolved
at the entity level. The position, movement speed
and direction, status, and composition of a military
unit in a virtual simulation, if needed, must be
inferred from the individual vehicles that compose
that unit. SIMNET, BDS-D, and CCTT are
examples of virtual simulations. A virtual
simulation's entities may be controlled by either
crewed simulators or computer generated forces
(CGF).

3.3 Differences Between Constructive and
Virtual Simulations

To summarize, constructive simulations represent
aggregate military units while virtual simulations
represent individual vehicles or soldiers as entities.

In general, constructive and virtual simulations
differ in their treatment of time and space. In the
case of time, virtual simulations usually intend that
the apparent passage of time within the virtual
environment of the simulation match that of the
real-world that is being modeled; hence they are
described as real-time. In contrast, constructive
simulations are often time-stepped, with the
simulation time advancing a fixed amount of time
for each computational cycle of the simulation
model. The size of the simulated time step
ordinarily has nothing to do with the time required
to compute the events of that time-step, so such
simulations are not real-time.

As for space, virtual simulations often specify the
terrain of the virtual environment in great detail,
with individual roads, buildings, trees, and bushes
represented. The possible locations a virtual entity
may occupy are essentially continuous over the
terrain. This detail is appropriate for entity level
modeling. Constructive simulations generally use
terrain that has been partitioned in a regular grid of
squares or hexagons, with the terrain of each grid
element abstracted into one or more terrain
attributes that apply to the entire element (e.g.,
forest).

Finally, the traditional users of each class differ.
Although there is considerable overlap,
constructive simulations have historically been
developed and used primarily by the analytic
community to perform system and force
development studies, whereas virtual simulations
have been developed and used by the training
community as training tools. Each community is
learning to appreciate the advantages of the other
class of simulation, and each is becoming more
interested in using the best features of both classes.

Note that the term "unit" is used when referring to
aggregates in a constructive simulation and the
term "entity" is used when referring to vehicles or
infantry in a virtual simulation.

3.4 Constructive+Virtual (C+V) Simulation

A constructive+virtual simulation is a system that
links a constructive simulation with a virtual
simulation. The goal of a C+V simulation is to
have events in one simulation influence or effect
events in the other simulation. Units or entities that
are present in a constructive or virtual simulation
are usually represented in some fashion in the other
simulation.

4. C+V Integration Review

The following presents a review of Integrated
Eagle/BDS-D, Corps Level Computer Generated
Forces (CLCGF), and BBS/SIMNET. For each
project, the following are described:

• The goal of each project
• Conceptual C+V configuration
• Description of the constructive system
• Description of the virtual system
• The interface between constructive and virtual

simulations
• Interoperability between constructive and

virtual worlds

Information about each project was gathered from
the referenced papers as well as surveys sent to
authors of the papers.

4.1 Integrated Eagle/BDS-D

The primary goal of the Integrated Eagle/BDS-D
project is to integrate the Eagle constructive
simulation (developed by the US Army TRADOC
Analysis Center) with a DIS/SIMNET virtual
environment using the Institute for Simulation and
Training's Computer Generated Forces Testbed

94

(1ST CGF Testbed). The project's objective is to
prove by demonstration the concept of
interoperability of constructive and virtual
simulations.

4.1.1 Conceptual C+V Confi guration
Figure 1 shows the conceptual system
configuration. The Eagle simulator (see Section
4.1.2) and the SIU (see Section 4.1.4) communicate
using Remote Procedure Calls (RPCs).
Communication between the SIU and the 1ST CGF
Testbed is done with an interoperability protocol
(IOP). Some currently active IOP PDUs describe
the composition of a unit, a change in a unit's
status, a unit's Operations Order, and indirect fire
between the constructive and virtual simulations.

Eagle

RPC

SIU

IOP Network
(D1S/S1MNET)

1ST CGF
Testbed

Manned
Simulator

LEGEND:
Nodes Definition
Eagle TRAC Eagle Constructive Simulator
SIU Simulator Interface Unit
Manned Simulator Manned Simulator
1ST CGF Testbed Virtual CGF System

Figure 1: Eagle/BDS-D Conceptual C+V
Configuration (Karr 1994)

4.1.2 The Eagle Simulator
The Eagle simulator is a Corps and Division level
combat model. The smallest units simulated are at
the company and battalion levels. The Eagle
simulator is used to analyze combat development
studies, the effects of weapon systems, command
and control, military doctrine, and organization on
force effectiveness (Powell 1993). It was
developed to provide an enhanced representation of
command and control to and reduce the turn-
around time of scenario development. The
following functions are performed by Eagle in the
Eagle/BDS-D system (Karr 1994).

• Simulate all aggregate units.
• Optionally send disaggregation/aggregation

requests when units move inside/outside a
"high-resolution area".

• Switch to real-time execution when any unit is
disaggregated.

• After disaggregating a unit, send an Operations
Order to the disaggregated unit.

• While a unit is disaggregated, update the unit's
status and position by processing information
received from the 1ST CGF Testbed.

• Respond to requests for indirect fire.

4.1.3 The 1ST CGF Testbed
The 1ST CGF Testbed connects to a SIMNET or
DIS network and provides a mechanism for testing
CGF control algorithms. The 1ST CGF Testbed
runs on IBM PC-compatible computers. The 1ST
CGF Testbed consists of an Eagle Manager, one or
more Operator Interface (01) computers (used as a
console for the human operator), and one or more
simulators (which control the behaviors of the
simulated vehicles). The 1ST CGF Testbed has the
following responsibilities (Karr 1994):

• When a disaggregation request for a unit is
received, break the unit down to single entities.

• Upon disaggregation, use a vehicle placement
algorithm to place vehicles around obstacles in
the virtual terrain.

• Simulate the individual entities.
• Respond to a CGF operator's commands.
• Send Eagle Operations Orders to the 01

controlling the disaggregated unit.
• When an aggregation request is received,

remove proper entities from the virtual
simulation.

4.1.4 The Simulation Interface Unit (SIU)
Developed by the Los Alamos National Laboratory
(LANL), the SIU coordinates the communication
between the Eagle simulator and the 1ST CGF
Testbed. The SIU is SIMNET and DIS
compatible. The SIU has the following
responsibilities (Karr 1994):

• Synchronize Eagle's time-stepped simulation
with the virtual real-time simulation.

• Update Eagle with events that have occurred in
the virtual simulation.

• Perform terrain coordinate conversions
between Eagle and DIS/SIMNET.

• Determine each disaggregated unit's "center of
mass".

• Update the status of Eagle's disaggregated
units by listening to appearance PDUs from
DIS/SIMNET.

95

• Send aggregate unit information to the virtual
world.

4.1.5 Appearance of Units in the Virtual World
At regular intervals, Eagle sends descriptions of
aggregate units in Unit Detail PDUs (UDPDU).
Each UDPDU contains a field for the status of the
unit. The status may be disaggregated, aggregated
(shown as an icon), pseudo-disaggregated, or
invisible. The CGF Operator chooses how
constructive units should appear.

A disaggregated unit is controlled in the virtual
world. Individual entities are either controlled by
the 1ST CGF Testbed or manned simulators.

Icon unit status is the lowest level of detail for an
aggregate unit. An internal protocol aggregate
PDU is sent for each unit in icon status. This status
allows nodes on the network to display an icon for
the aggregated unit. This minimizes network traffic
while allowing nodes in the virtual world to be
aware of units being simulated by Eagle (Karr
1994).

Pseudo-disaggregation is a more detailed level of
unit appearance. An appearance PDU is produced
for each vehicle within the unit at regular intervals
every five to ten seconds. Locations of the pseudo-
vehicles in the unit are based on the formation of
the unit. This allows nodes on the network to see a
formation of vehicles moving across the terrain.
Since the unit is controlled by Eagle, pseudo-
vehicles are not simulated as entities in the virtual
world. Thus, pseudo-vehicles may not fire their
weapons, sight other entities, or receive fire. This
permits many entities to be placed in the virtual
world, creating a realistic picture for sensor
systems (Karr 1994).

Invisible unit status is used when an operator
chooses to hide the aggregated unit from the virtual
world. This is usually done when the virtual world
is cluttered with aggregate units.

4.1.6 Interactions Across C+V Boundary
Test scenarios have been used to demonstrate the
interoperability of the Eagle/BDS-D project.
Typical scenarios have had operators initiate
disaggregation of a unit. Aggregate units on Eagle
disaggregate to CGF or manned entities in
DIS/SIMNET. Eagle executes in real-time while
any unit is disaggregated and processes
DIS/SIMNET events. Aggregate units on Eagle
may attack virtual vehicles in DIS with indirect

fire. Combat occurs between the constructive and
virtual worlds in the following ways:

• When a Call for Fire is made from the 1ST
CGF Testbed, the Eagle system responds with
indirect fire. Indirect fire appears in the virtual
world and damages virtual vehicles

• A disaggregated artillery battery with a Battery
Fire Mission may send indirect fire at a
constructive unit on orders from Eagle

• Operations Orders (unit missions) and
Operator Intent (commands from a CGF
operator) messages are transferred between
Eagle and the CGF Operator

4.2 Corps Level CGF

The Joint Precision Strike Demonstration (JPSD)
has a requirement to simulate a large number of
entities on the DIS network. To satisfy this
requirement, Corps Level Computer Generated
Forces (CLCGF) was initiated to examine theater
level simulations in DIS (Calder 1994). CLCGF
integrates the Eagle constructive simulator with a
DIS virtual simulation (using ModSAF). CLCGF
links the constructive and virtual worlds by using a
Simulation Interface Unit. This information about
CLCGF was collected from (Calder 1995) (Calder
1994).

4.2.1 Conceptual C+V Configuration
Figure 2 illustrates the conceptual arrangement of
the CLCGF system. For simplicity, only the
constructive + virtual link is shown. The Eagle
simulator and the SIU communicate using Remote
Procedure Calls (RPCs). Communication between
the SIU and ModSAF is done using Persistent
Object Protocol (POP) (developed for ModSAF).
The SIU also listens to DIS from the virtual
simulation. Previous sections discussed the Eagle
Simulator.

96

Eagle

RPC

SIU

ASPDU

T T

ModSAF
CGF System

DIS
POP

DIS

Stealth

DIS POP

DIS

Logger

LEGEND:
Protocol Definition
POP ModSAF Persistent Object Protocol
RPC Remote Procedure Calls
ASPDU Aggregate State PDU

Nodes Definition
Eagle TRAC Eagle Constructive Simulator
SIU Simulation Interface Unit
ModSAF Virtual CGF System

Figure 2: CLCGF Conceptual C+V Configuration
(after Calder 1995)

4.2.2 ModSAF
ModSAF is a well-known CGF system. For a
description of ModSAF see "ModSAF User
Manual Version 1.3" (Loral Advanced Distributed
Simulation 1994).

4.2.3 The Simulation Interface Unit
CLCGF's SIU has the same responsibilities as the
Eagle/BDS-D's SIU as listed in Section 4.1.4. To
send aggregate unit information to the virtual
world, CLCGF's SIU uses a modified version of
the experimental DIS Aggregate Protocol, called
the Aggregate State PDU (ASPDU). Aggregate
State PDUs are similar to Entity State PDUs, but
adapted for aggregate units.

4.2.4 Interoperabilities
Disaggregation is performed when a Disaggregate
Request PDU (DRPDU) is sent to the SIU. A
DRPDU must be resent periodically to keep the
unit disaggregated. When the SIU initially receives
a DRPDU, the SIU sends a POP message to
ModSAF to disaggregate the unit. If a DRPDU is
not received over a specific time period, the SIU
will send a POP message to ModSAF to aggregate
the disaggregated unit. Cease in transmission of
DRPDU may be done by a ModSAF operator or by
a timer.

SIU broadcasts Detonation PDUs to DIS.
entities may be affected by the indirect fire.

DIS

As the final step in disaggregating a unit, Eagle
sends an Operations Order to the SIU. The SIU is
able to interpret a small portion of an Operations
Order. For example, the SIU may interpret from an
Operations Order a change in unit formation. The
SIU sends commands in POP messages to ModSAF
for execution of the Operations Order.

As stated above, the SIU broadcasts ASPDUs to
the virtual world. Thus, all nodes in the virtual
world have access to information about each
aggregate unit. If a particular virtual node requires
entity level information from an aggregate unit, the
virtual node may internally pseudo-disaggregate the
unit. This technique of pseudo-disaggregation
places no Entity State PDUs on the network. For
example, a ModSAF aircraft may contain a
JSTARS system simulation. The JSTARS
simulation internally pseudo-disaggregates the units
that are within range of the radar. A vehicle
placement algorithm is used to place the pseudo-
disaggregated vehicles around obstructions on the
virtual terrain.

4.3 BBS Linkage

The primary goal of the BBS linkage is to integrate
a constructive simulation with a DIS network. The
developers chose the Brigade/Battalion Battle
Simulation (BBS) as the constructive simulation,
because it can recognize and display individual
vehicles on its graphics terminals. This
information about the BBS linkage was collected
from (Hardy 1994).

4.3.1 Conceptual C+V Configuration
As seen in Figure 3, the main linkage between BBS
and the virtual world is the Advanced Interface
Unit (AIU). The AIU communicates with both DIS
and SIMNET networks. It also communicates with
the BBS system through the Simulator Control
(SIMCON). The SAF engines (see section 4.3.4)
are part of the AIU. Since DIS CGF simulators
were not available at the time the BBS project was
started, SIMNET simulators are used to create
virtual entities to interact with the constructive
units.

CLCGF implemented indirect fire from the
constructive world to the virtual world. When
Eagle sends an indirect fire message to the SIU, the

97

BBS
System

SIMCON

A1U
SAF

engines

(DIS \ /SIMNETA
VNetwork/ VNetwork J

LEGEND:
Nodes Definition
BBS System BBS Constructive Simulator
AIU Advanced Interface Unit
SIMCON Simulator Control
SAF engines Virtual CGF Simulator

Figure 3: BBS Conceptual C+V Configuration

4.3.2 The Simulator Control (SIMCON)
SIMCON is a node on the BBS network that allows
the AIU to access and control the internal workings
of BBS. When the AIU's SAF engine is modeling
the entities of a disaggregated unit at the virtual
level, SIMCON stops BBS from modeling that
unit. When the unit is reaggregated, SIMCON tells
BBS to resume modeling the unit.

4.3.3 The Advanced Interface Unit (AIU)
The AIU has several components to complete the
integration. The AIU includes several SAF engines
to model the individual entities of disaggregated
units. It also includes a DIS/SIMNET translator.
This allows the AIU to recognize both DIS and
SIMNET protocol and translate them so both
worlds can recognize and interact with each other.

4.3.4 The SAF Engine
The SAF engine is a part of the AIU that models
disaggregated units at the entity level in the
SIMNET world. It recognizes a number of control
functions received from the AIU. Some functions
of the SAF engine are creating objects, deleting
objects, and moving objects.

4.3.5 Interoperabilities
The AIU aggregates DIS entities into BBS objects,
and periodically updates them so that the BBS
simulator can see the virtual entities and interact
with them. The AIU disaggregates BBS objects
into SIMNET entities controlled by the SAF
engine. The AIU also sends status reports back to
the BBS simulator. For example, formation and
damage assessments on a disaggregated unit would
be transferred to the BBS simulator.

5. Findings and Observations

Concepts such as aggregation, disaggregation, and
pseudo-disaggregation will be discussed in this
section as well as the complications involved in
these tasks. Also, some other problems and
concepts of C+V simulation will be addressed.

5.1 Concepts

5.1.1 Disaggregation
Disaggregation is the mechanism by which control
of a unit is transferred from the constructive
simulation to the virtual simulation. When the unit
is transferred to the virtual simulation it must be
split into its individual entities. The virtual
simulator that controls these entities is often a CGF
system. Disaggregation is thus a one-to-many
transformation.

Disaggregation involves the following steps:

1.
2.

3.

4.

5.

6.

Disaggregation is triggered.
Virtual simulator receives aggregate unit
information.
Virtual simulator separates the unit into
individual entities.
Virtual simulator creates each entity in the
virtual world. Since more information is
needed than is available, the virtual simulator
must provide it.
Constructive simulation receives
acknowledgment of disaggregation.
Constructive simulation releases control of the
unit.

5.1.2 Aggregation
Aggregation is the mechanism by which control of
a unit is transferred from the virtual simulation to
the constructive simulation. When the unit is
transferred to the constructive simulation, its
vehicles are replaced by a single aggregate unit.
Aggregation is thus a many-to-one transformation.

Aggregation involves the following steps:

1.
2.

3.

4.

Aggregation is triggered.
Constructive simulator receives aggregate unit
information. Since more information is
available than is needed, some information is
discarded.
Virtual simulator removes the entities in the
unit from the virtual world.
Constructive simulation resumes control of the
unit.

98

5.1.3 Pseudo-Disaggregation
Pseudo-disaggregation allows a virtual simulation
to display aggregate units as individual entities, but
control remains with the constructive simulation.
Pseudo-disaggregation is very similar to
disaggregation, except that the individual entities of
the unit are not modeled at the virtual level. Since
the pseudo-disaggregated units are modeled at the
constructive level, they will not respond to any
interactions in the virtual world.

In Integrated Eagle/BDS-D, the Eagle Manager
pseudo-disaggregates a unit, and sends Entity State
PDUs for each vehicle in a unit. This allows each
vehicle to be visible in DIS, while computation
overhead is at a minimum (Karr 1994). In CLCGF,
each node on the virtual network is responsible for
internally pseudo-disaggregating units about which
it wants entity level information. This minimizes
network traffic (Calder 1995).

5.2 Problems

In each of the problems that follow, the designer is
faced with temporal, spatial, or control problems.
Additionally, the C+V integration must work with
and sometimes extend rules of both the constructive
and virtual worlds.

5.2.1 C+V Equal and Level Playing Field
Entities and units must have an equal and level
playing field in which to simulate battle. The
outcome of a battle between two constructive units
should be similar to the outcome of that same battle
held in the virtual world. Since aggregation is an
information loss process and disaggregation is an
information gain process, enough information
should be retained in the
aggregation/disaggregation cycle to insure similar
outcomes. Since it is not feasible to keep all the
information, we determine what information is
most pertinent. Some questions that might help
determine important information are:

• Can units and entities at less than full strength
have multiple representations? A constructive
unit of 6 helicopters at 50% strength may also
be equivalent to 3 virtual helicopters at 100%
strength.

• Should damaged entities appear undamaged
after an aggregation/disaggregation cycle?

• Should entities low on fuel or payload be
automatically refueled and reloaded after an
aggregation/disaggregation cycle?

5.2.2 Spreading Disaggregation
One goal of C+V simulation is to keep network
traffic and computation load to a minimum.
Spreading disaggregation is a situation where a
single disaggregation triggers a chain reaction of
disaggregations that may include hundreds or
thousands of DIS entities (Petty 1995) (Trinker
1994). For example: Four red heavy armor units
and four blue heavy armor units form two lines
across a front, in a constructive battle.

Figure 4: Spreading Disaggregation

A blue helicopter on a scouting mission passes
within sensor range of a red armor unit. If the
automatic disaggregation method used is close
proximity, the red unit disaggregates. Next, a blue
armor unit is disaggregated because it is in close
proximity of a red virtual entity. The chain
reaction continues until all eight constructive units
have disaggregated. The passing helicopter may
not have intended to interact with any of these
units, yet all eight units have been dragged into the
virtual world.

Now consider a blue missile (the arrow in Figure 4)
launched from one corner of the battlefield to the
opposite corner of the battlefield, in close
proximity to red forces. Should all red forces along
the path disaggregate? If red units can interact with
the missile, should they disaggregate and engage?
If the missile is traveling at supersonic speeds, the
window of engagement is very short; how quickly
should units disaggregate?

5.2.3 Unit Formation on Disaggregation
Disaggregation requires a transfer of control from a
constructive unit into multiple entities in the virtual
world. With this transfer of control, the virtual
simulation has a location and orientation for each
entity in a constructive unit. Typically these
entities are ordered in a formation dependent on the
Operations Order. For example, when the
Operations Order is Road March, the entities will

99

be placed into a column formation. The
disaggregation process involves solving several
problems (Clark 1994), (Franceschini 1992):

• Entities must be placed intelligently onto the
terrain. Most constructive simulations will not
have the resolution for intelligent vehicle
placement in the virtual terrain. For example,
locations of trees, lakes, and rivers can impede
realistic vehicle placement. Certain formations
have strict line of sight requirements that are
unavailable at the constructive level.

• If the command vehicle of a company is
destroyed, a new vehicle must move into that
position (physically and operationally) and
assume those responsibilities.

• A formation of vehicles en route must perform
dynamic obstacle avoidance. They cannot run
into each other or fixed objects.

5.2.4 Direct and Indirect Fire
Direct fire across the C+V boundary is difficult to
support, due to immense problems with both timing
and database correlation (Trinker 1994).
Constructive level simulations typically shift to
real-time by leaping ahead in large time steps and
then waiting for the virtual world to catch up. One
direct fire exchange in the constructive world might
be statistically calculated and executed in a fraction
of a second. In the virtual world in order to be
visually realistic, each phase of the direct fire must
follow the rules and timing of physics. The
constructive database can also be in an entirely
different coordinate system and is normally at a
much lower resolution.

Indirect fire across the C+V boundary is a difficult
but solvable problem. Indirect fire from the
constructive to virtual world works as follows: An
Indirect Fire Volley is initiated against a ghost unit
in the constructive world by selecting a munitions
type and location. This is translated into a series of
Detonation PDUs in the virtual world. Information
on damaged or destroyed entities is then captured
and relayed back to the constructive simulation
(Franceschini 1995). Indirect fire from virtual to
constructive is done when a disaggregated artillery
unit chooses to attack an aggregated unit.
Information about the attack (such as the locations
of the fire detonations) is passed to the constructive
simulation. The constructive simulation calculates
statistical damage of the aggregate units near the
fire detonations (Franceschini 1995).

6. Projects Outside the Scope of this Survey

This survey focused on projects that aggregate and
disaggregate units across the C+V boundary. Some
projects that researched C+V simulations
implemented aggregation and disaggregation inside
the constructive simulation. These projects
employed a constructive simulation that supports
both aggregate units and single entities. Some
examples of these projects are IRIS, Janus, and
SOFNET-JCM.

IRIS (Internetted Range Interactive Simulation)
links constructive, virtual, and live simulators in a
DIS environment. A primary goal of this project
was to minimize the modifications to each
simulator (Kazarian 1994).

Janus is a self-contained constructive simulation
with an interface to DIS. Interfacing to DIS is
managed through a Cell Interface Unit (CIU) called
the World Modeler (Pratt 1995) (Pratt 1994).

SOFNET-JCM project generates interactions
between the constructive Joint Conflict Model
(JCM) Simulation and the SOF Inter-Simulator
Network (SOFNET) aircraft simulator (Babcock
1994).

7. Conclusion

The evaluated C+V integrations have shown
impressive results in this early stage of
development. A long term goal is to provide a
seamless interconnection supporting aggregation,
disaggregation, and full interaction between the
constructive and virtual simulation worlds. Current
unsolved problems such as spreading
disaggregation and the unequal and unlevel playing
fields prohibit a fully automated solution. The
current DIS standard 2.0.4 does not fully define an
"Aggregate PDU" that will satisfy needs of the
evaluated C+V integrations. However, C+V has
proven to be an effective solution for large
simulations.

8. Acknowledgment

This research was sponsored by the US Army
Simulation, Training, and Instrumentation
Command (STRICOM) as part of the Signal
Intelligence/Electronic Warfare project (contract
N61339-93-C-0091). IST's ongoing work in
constructive+virtual simulation is sponsored by
STRICOM and the US Army TRADOC Analysis
Center as part of the Integrated Eagle/BDS-D

100

project, contract number N61339-92-K-0002. That
support is gratefully acknowledged.

9. References

Babcock, CDR D.B., Molnar, Maj. J.M., Selix,
Maj. G.S., Conrad, G., Castle, M., Dunbar, J.,
Gendreau, S., Irvin, T., Uzelac, M., and
Matone, J. (1994) "Constructive to Virtual
Simulation Interconnection for the Sofnet-JCM
Interface Project", Proceedings of 16th
Interservice/Industry Training Systems and
Education Conference, Orlando FL, June 1994,
section 4-6.

Calder, R.B. and Evans, A.B. (1994) "Construction
of a Corps Level CGF\ Proceedings of the
Fourth Conference on Computer Generated
Forces and Behavioral Representation,
Orlando FL, May 4-6 1994, pp 487-496.

Calder, R.B. (1995) Response to IST's
Constructive/Virtual Survey, unpublished,
March 7 1995.

Clark, K.J. and Brewer, D. (1994) "Bridging the
Gap Between Aggregate Level and Object
Level Exercises", Proceedings of the Fourth
Conference on Computer Generated Forces
and Behavioral Representation, Orlando FL,
May 4-6 1994, pp 437-442.

Franceschini, R.W. (1992) "Intelligent Placement
of Disaggregated Entities", Proceedings of the
1992 Southeastern Simulation Conference,
Pensacola FL, Oct. 22-23 1992, pp 20-27.

Franceschini, R.W. and Petty, M.D. (1995)
"Linking Constructive and Virtual Simulation in
DIS", Proceedings of the SPIE International
Symposium on Aerospace/Defense Sensing &
Control and Dual-Use Photonics, Orlando FL,
April 17-21 1995.

Hardy, D. and Healy, M. (1994) "Constructive &
Virtual Interoperation: A Technical Challenge",
Proceedings of the Fourth Conference on
Computer Generated Forces and Behavioral
Representation, Orlando FL, May 4-6 1994, pp
503-507.

DIS Steering Committee (1994) "The DIS Vision:
A Map to the Future of Distributed Simulation"
Version 1, Technical Report 1ST-SP-94-01,
Institute for Simulation and Training, May
1994.

Karr, C.R., Franceschini, R.W., Perumalla, K.R.S.,
and Petty, M.D. (1993) "Integrating Aggregate
and Vehicle Level Simulations", Proceedings of
the Third Conference on Computer Generated
Forces and Behavioral Representation,
Orlando FL, May 17-19 1993, pp 231-239.

Karr, C.R. and Root, E. (1994) "Integrating
Aggregate and Vehicle Level Simulations",
Proceedings of the Fourth Conference on
Computer Generated Forces and Behavioral
Representation, Orlando FL, May 4-6 1994, pp
425-435.

Karr, C.R. and Root, E. (1994) "Integrating
Constructive and Virtual Simulations",
Proceedings of 16th Interservice/Industry
Training Systems and Education Conference,
Orlando FL, June 1994, section 4-5.

Kazarian, J.P. and Shultz, M.A. (1994) "The IRIS
Architecture: Integrating Constructive, Live,
and Virtual Simulations", Proceedings of 16th
Interservice/Industry Training Systems and
Education Conference, Orlando FL, June 1994,
section 4-4.

Loper, M.L. and Petty, M.D. (1993) "Computer
Generated Forces at the DIS Interoperability
Demonstration", Proceedings of the Third
Conference on Computer Generated Forces
and Behavioral Representation, Orlando FL,
May 17-19 1993, pp 155-167.

Loral Advanced Distributed Simulation (1994)
ModSAF User Manual Version 1.3.

Petty, M.D. and Franceschini, R.W. (1995)
"Disaggregation Overload and Spreading
Disaggregation in Constructive + Virtual
Linkages", Proceedings of the Fifth Conference
on Computer Generated Forces and Behavioral
Representation, Orlando FL, May 9-11 1995.

Powell, D.R. (1993) "Eagle II: A Prototype for
Multi-Resolution Combat Modeling",
Proceedings of the Third Conference on
Computer Generated Forces and Behavioral
Representation, Orlando FL, May 17-19 1993,
pp 221-230.

Pratt, D.R. (1995) Response to IST's
Constructive/Virtual Survey, unpublished,
February 13 1995.

Pratt, D.R., Johnson, CPT M., USA, and Locke, J.,
NPS (1994) "The Janus/BDS-D Linkage
Project: Constructive and Virtual Model
Interconnection", Proceedings of the Fourth
Conference on Computer Generated Forces
and Behavioral Representation, Orlando FL,
May 4-6 1994, pp 443-448.

Root, E.D. and Karr, C.R. (1994) "Displaying
Aggregate Units in a Virtual Environment",
Proceedings of the Fourth Conference on
Computer Generated Forces and Behavioral
Representation, Orlando FL, May 4-6 1994, pp
497-502.

STOW-E 94 (undated) "Review of the Synthetic
Theater of War - Europe"

101

Trinker, A. (1994) "General Architecture for are in the areas of simulation and artificial
Interfacing Virtual and Constructive intelligence.
Simulations in DIS Environment", Technical
Report IST-TR-94-28, Institute for Simulation
and Training, September 14 1994.

10. Author's Biographies

David R. Stober is a Research Assistant on the
Integrated Eagle /BDS-D project at the Institute for
Simulation and Training. He has earned a Bachelor
of Science in Computer Science from the
University of Central Florida. He is currently
pursing a Master of Science degree in Computer
Science from UCF. His research interests are in the
areas of simulation and artificial intelligence.

Matthew K. Kraus is a Software Engineer at the
Institute for Simulation and Training. Mr. Kraus
has a Bachelor of Science degree in Computer
Science from Western Michigan University. He is
currently working on a Master of Science degree in
Simulation Systems. His research interests are in
the areas of distributed computing, artificial
intelligence, and visualization.

William F. Foss is a Research Assistant on the
Integrated Eagle/BDS-D project at the Institute for
Simulation and Training. He is an undergraduate
student in Computer Science at the University of
Central Florida. His research interest is in the area
of simulation.

Robert W. Franceschini is a Principal
Investigator at the Institute for Simulation and
Training. He currently leads the Integrated
Eagle/BDS-D project at 1ST. Mr. Franceschini has
earned a Bachelor of Science in Computer Science
from the University of Central Florida; he is
currently pursuing a Master of Science in Computer
Science from UCF. His research interests are in the
areas of simulation, graph theory, and
computational geometry.

Mikel D. Petty is a Program Manager at the
Institute for Simulation and Training. He is
currently managing Plowshares, an emergency-
management simulation project. Previously, he led
IST's Computer Generated Forces research
projects. Mr. Petty received a M.S. in Computer
Science from the University of Central Florida and
a B.S. in Computer Science from California State
University. He is currently a Ph.D student in
Computer Science at UCF. His research interests

102

Disaggregation Overload and Spreading Disaggregation
in Constructive+Virtual Linkages

Mikel D. Petty and Robert W. Franceschini
Institute for Simulation and Training

3280 Progress Drive
Orlando FL 32826-0544 USA

mpetty@ist.ucf.edu rfrances@ist.ucf.edu

1. Abstract

A number of projects have successfully linked
constructive and virtual simulations. In these linked
systems the representation of a military unit can
transition from an aggregate unit in the constructive
simulation to a set of virtual entities in the virtual
simulation. That representational transition, which
typically occurs in response to scenario events, is
referred to as disaggregation.

Too many disaggregations can overload the linked
system with an unsupportable number of virtual
simulation entities. One possible cause of such
disaggregation overload is spreading disaggregation.
Spreading disaggregation occurs when one
disaggregation triggers another in a forced sequence.

Spreading disaggregation can be avoided by
imposing scenario limits; these may reduce the
usefulness of the linked system. It can also be
prevented by allowing interaction between the
constructive and virtual systems. The latter solution
is fraught with implementation challenges and
fidelity concerns.

2. Introduction

This introductory section defines the basic terms and
concepts of constructive and virtual simulations and
constructive+virtual linkages. See (Franceschini,
1995) for a in-depth tutorial on these topics.

2.1 Constructive and virtual simulations

Constructive simulations represent military units
(such as companies or battalions) as aggregates; the
individual entities (such as tanks or infantrymen)
within the units are not explicitly simulated. The
location, direction and speed of movement, status,
size, and composition of an aggregate unit are
maintained in a constructive simulation for the unit as
a whole, and are often computed as the result of
statistical analysis of the unit's actions. For example,

a combat encounter between two opposing battalions
may be resolved with a mathematical model of
combat that considers the overall combat power of
the units rather than representing the individual
vehicles and direct fire events than might constitute
such an engagement. The military simulations CBS,
BBS, and Eagle are examples of constructive
simulations.

Virtual simulations represent each individual combat
entity as a distinct simulation entity. State
information is maintained as needed by the
simulation for each simulation entity, each entity is
capable of independent action, and combat is
resolved at the entity level. SIMNET and DIS are
examples of virtual simulation. A virtual simulation's
entities may be controlled by either crewed
simulators or computer generated forces (CGF).

Table 1 summarizes three important ways in which
constructive and virtual simulations differ, though
there are exceptions to each entry. Those differences
are explained in more detail in (Franceschini, 1995).

2.2 Constructive+virtual linkages

A constructive+virtual system (or linkage) is a
simulation system that includes both a constructive
simulation and a virtual system linked together. The
systems are linked in such a way that events in one
simulation influence or effect events in the other.
Furthermore, units and entities may be represented in
some fashion in either simulation.

In a typical constructive+virtual scenario, aggregate
units are represented in the constructive simulation,
where they move and engage in combat. They are
located on a terrain database within the constructive
simulation. Linked to the constructive simulation is a
virtual simulation. It has a terrain database
corresponding to all or part of the constructive terrain
database.

103

Characteristic Constructive Virtual
Time Time-stepped

Simulation events organized into
uniform time increments, computed as
quickly as possible.

Real-Time
Simulation events transpire continuously, at
a rate that ostensibly matches their real-
world counterparts.

Terrain
representation

Abstracted
regular grid of squares or hexagons,
assigned abstract terrain types.

Detailed
Polygonal or elevation-post based terrain
skin with individual features.

Traditional uses Analysis
Simulation results used to evaluate
weapons or doctrine.

Training
Simulation participation used to train
participants.

Table 1 Differences between constructive and virtual simulation.

At some point one or more aggregate units move into
the terrain area that has a corresponding
representation in the virtual simulation. That fact,
and possibly other criteria to be discussed below,
trigger the disaggregation of the constructive unit.
Control of the constructive unit is transferred from
the constructive simulation to the virtual simulation,
and the unit is instantiated as individual entities in the
virtual simulation. Those individual entities move,
engage in combat, and perform other activities that
are possible there. Eventually the entities leave the
virtual terrain area, or some other criteria is met, and
the unit is aggregated. The individual entities are
removed from the virtual simulation and the
constructive simulation retakes control of the
aggregate unit, whose composition is appropriately
modified to reflect the virtual events.

Implementing such a linkage is a complex matter.
See (Franceschini,1995) for a tutorial on
constructive+virtual linkages.

2.3 Benefits of constructive+virtual linkages

Constructive and virtual systems are linked for the
following reasons:

1. Simulation analysts can obtain detailed entity
level performance and event information for use in
constructive simulations. (Franceschini,1994)

2. Trainers can conduct small unit training exercises
in virtual battles that are set in the context of larger
battles executing in constructive simulation, thereby
adding realism and motivation to the training.
(Franceschini,1994)

3. The role of constructive simulations in training

higher level commanders and the staffs can be
enriched by supplementing constructive simulation's
aggregate statistical interactions with virtual
simulation's detailed entity interactions.
(Franceschini, 1994) (Downes-Martin, 1991)

4. Large numbers of geographically distributed
virtual entities whose locations and actions are
derived from an overall constructive simulation can
provide realistic input to virtual entities that are
moving quickly or possess long-range sensors (e.g. a
JSTARS platform). (Calder, 1994) (Root, 1994)

2.4 Some existing constructive+virtual linkages

Several constructive+virtual linkages have been
implemented. Table 2 provides a partial list of those
systems and references for additional information on
them A survey of constructive+virtual linkages can
be found in (Kraus, 1995).

3. Disaggregation

This paper is concerned with the disaggregation
process, the conditions that might trigger it, and
problems that might arise. In this section we shall
examine disaggregation in more detail.

3.1 Disaggregation process and triggers

As the constructive units move, they may move into
the virtual terrain area. Constructive units in the
virtual terrain area may be eligible for
disaggregation, i.e. instantiation as virtual entities.
Their location may be enough to trigger
disaggregation or additional conditions may also be
used. Explained below are four disaggregation
criteria.

104

Project Name Constructive
Simulation

Virtual
Simulation

Research Agencies References

Integrated
Eagle/BDS-D

Eagle BDS-D
DIS

TRADOC Analysis Command
Institute for Simulation and Training
U.S. Army STRICOM

(Franceschini,
1992)
(Franceschini,
1994a)
(Franceschini,
1995b)
(Karr, 1992)
(Karr, 1993)
(Karr, 1994a)
(Karr, 1994b)
(Powell, 1993)
(Root, 1994)

Corps Level
CGF

Eagle ModSAF U.S. Army Topographic Engineering
Center
Science Applications International
Corporation
Raytheon Systems Development
Company
U.S. Army STRICOM

(Calder, 1994)
(Raytheon, 1994a)
(Raytheon, 1994b)
(Raytheon, 1994c)

BBS/SIMNET BBS SIMNET Advanced Research Projects Agency
Naval Research and Development
ETA Technologies

(Hardy, 1994)

Table 2. Existing constructive+virtual systems

1. Location in the virtual terrain area. The
aggregate unit is located within a portion of the
virtual terrain area designated in advance as a
disaggregation area (perhaps centered on militarily
important terrain feature). In general, there may be
multiple disaggregation areas specified within the
virtual simulation area. When the center of mass of
the disaggregated unit (as determined from the
entities in the unit) moves out of the disaggregation
area, the unit is aggregated. In order to prevent
anomalies, one can define the aggregation area to be
slightly larger than the disaggregation area; this will
prevent a unit on the border of a disaggregation area
from being disaggregated and then aggregated
repeatedly as it moves along the boundary.

2. Range to enemy. The aggregate unit is within a
critical range of a disaggregated enemy unit
(equivalently, within range of an enemy virtual
vehicle). The range may be the maximum detection
range of any of the unit's entities' sensor systems.

3. Intent to interact. The aggregate unit intends to
interact (e.g., employ sensors or conduct direct fire)
with some other disaggregated unit (virtual vehicles).
The intent would be recognized as a consequence of

an action the unit is taking in the constructive
simulation.

4. Operator selection. A human operator may
trigger aggregation or disaggregation using a
command interface. This approach allows human
intelligence to decide when control transfer is
appropriate, so anomalous behavior should not result.
This approach is useful as a starting point for
building constructive+virtual systems and to permit
explicit operator control in order to meet specific
exercise objectives. However, automatic
disaggregation triggers are often desirable.

5. Commander's view. A commander may wish to
view different parts of the battlefield at different
levels of granularity. As the commander's view shifts
around the battlefield, units may be disaggregated or
aggregated (Downes-Martin, 1991).

Note that the first three criteria are automatic, in that
they can be recognized and responded to by the
simulation system, whereas the last two are manual,
in that they are triggered by human intervention.
Note also that the second criteria, Range to Enemy,
can be seen as a special case of the third, Intent to

105

System Component Capacity limit based on Relationship to entity count
Network Bandwidth, maximum PDU traffic Each entity produces a required number of PDSs

(e.g., Entity State) to be carried on the network.
CGF Simulator Processor speed and memory Each entity creates a processing burden on the

CGF Simulator, e.g., Remote Entity
Approximation, intervisibility, and behavioral
control (for internal entities).

CGF Operator Human span of control Each entity can potentially be reacted to or
controlled by the operator.

Crewed Simulator Processor speed and memory Each entity creates a processing burden on the
Crewed Simulator, e.g., Remote Entity
Approximation and image generation.

Table 3. Relationship of virtual simulation component capacity limits and entity count

Interact, if the reason that range is important is that
certain interactions are possible below a given range.

When the disaggregation criteria in effect in the
scenario are met, the constructive unit is
disaggregated into its component entities. The
constructive simulation communicates the location,
composition, movement speed and direction, and
operational activity to the node of the virtual
simulation charged with controlling disaggregated
entities; that node is usually a CGF system. The
component entities are instantiated by the CGF
system as entities in the virtual simulation under its
control and the constructive simulation relinquishes
control of the unit. The virtual entities are placed in
locations that are consistent with the operational
activity of the aggregate unit (e.g., if the unit is
conducting an assault, the entities will be in an attack
formation) and in locations that do not violate
realism (i.e., they shouldn't be placed in the middle of
a lake). The constructive simulation may maintain a
"shadow" or "ghost" unit for the disaggregated unit,
which is used to store information about changes in
the unit's status as it interacts in the virtual world.
((Franceschini,1992) and (Clark, 1994) address issues
specific to placement of virtual entities during
disaggregation.)

The disaggregated entities conduct direct fire combat
(and other interactions) in the virtual simulation
under the control of the CGF system. The virtual
entities they engage may be disaggregated from other
constructive units; in some constructive+virtual
systems they may also interact with manned
simulators or virtual entities that do not belong to any
constructive unit.

Interactions between the constructive and virtual
simulations must be mediated by the linkage. An
important example of such a connection is indirect
fire. In some systems, indirect fire may be conducted
between the virtual and constructive simulations,
with constructive batteries firing into the virtual
world and vice versa.

3.2 Disaggregation overload

Virtual networked simulation systems such as DIS
have capacity limits. The different components of
the system each have a capacity limit based on some
performance characteristic of that component.
Though the performance characteristics which
impose the limits can vary for different component
types, it is often the case that the capacity limit for a
system component can be expressed in terms of
simulation entity count (the number of entities
present in the simulation). Table 3 lists primary
components of a DIS simulation system, what their
capacity limits are based upon, and how that limit
relates to entity count.

Note that the CGF components in Table 3 (CGF
Simulator and CGF Operator) are especially
important, in that CGF systems are generally used to
control the virtual entities that result from a
disaggregation.

If the simulation system is limited in the number of
simulation entities it can support, then exceeding that
limit will lead to problems, including unrealistic
results and system failure. In a linked
constructive+virtual system, one way to create a
situation where the entity capacity of the virtual
system is exceeded is to disaggregate too many units

106

from the constructive simulation. We refer to such a
situation as disaggregation overload.

Disaggregation overload can be produced by any of
the disaggregation criteria listed previously. Manual
disaggregation criteria can produce disaggregation
overload if the operator selects too many units for
disaggregation or if the commander wants to see too
much of the forces in too much detail. However, the
automatic disaggregation criteria, where
disaggregations are triggered by the system
automatically in response to simulation events, create
a more worrisome risk of disaggregation overload if
those events occur too often or without intervening
aggregations. In particular, the remainder of this
paper will examine one type of disaggregation
overload that can result from automatic
disaggregations in response to the Range to Enemy
and Intent to Interact criteria; that type is spreading
disaggregation.

3.3 Spreading disaggregation

We will define spreading disaggregation by example.
Suppose a constructive+virtual system is executing a
scenario. We will refer to the constructive simulation
as C, the virtual simulation as V, and the linked
system as C+V. For this example, C+V is using a set
of disaggregation trigger criteria that include one
based on Range to Enemy; specifically, C+V will
disaggregate a constructive unit that is within direct
fire range of a virtual entity. This criteria is used
because in C+V, direct fire combat is possible within
constructive simulation C between constructive units
and within virtual simulation V between virtual
entities, but no direct fire is possible between units in
C and entities in V.

Figure 1 shows the example scenario. It includes
Blue companies Blue-1 and Blue-2 and Red company
Red-3; all three units are within the virtual terrain
area (i.e., the portion of the terrain area for which
both constructive and virtual representations exist).
In Figure la, Blue-2 and Red-3 are constructive
units; they are engaging in direct fire within the
constructive simulation C. However, Blue-1 has
already been disaggregated; hence it is a set of virtual
entities in V corresponding to a company sized unit.
The entities of Blue-1 are moving towards Red-3. As
Blue-1 moves toward Red-3 it comes within the
disaggregation trigger range of Red-3. The
constructive unit Red-3 is now within range of a
disaggregated unit and must disaggregate (Figure
lb). Once Red-3 has been disaggregated, it becomes

a disaggregated unit within the disaggregation
triggering range of Blue-2. That event triggers Blue-
2's disaggregation (Figure lc).

In this way a chain of disaggregations can spread
across the battlefield; the phenomenon is called
spreading disaggregation. Spreading disaggregation
could easily and unpredictably result in
constructive+virtual exercises where large numbers
of units are in short order disaggregated into their
component vehicles, leading to disaggregation
overload.

The Intent to Interact disaggregation criterion can
also initiate spreading disaggregation, and might do
so at greater ranges than direct fire, depending of the
type of interaction. Remote sensing by a surveillance
aircraft, jamming by an electronic warfare unit, and
indirect fire all occur at longer ranges than direct fire
and are interactions that could trigger disaggregation
if one of the interacting units is disaggregated. The
greater range of these interactions increases the
chance of a chain of spreading disaggregations.

4. Some solutions to spreading disaggregation

This section will discuss some solutions to the
problem of spreading disaggregation.

4.1 Avoidance

The problem of spreading disaggregation in
particular (and disaggregation overload in general)
can be "solved" by rendering it impossible or
unlikely through scenario design. The simplest way
to do so is to design scenarios with few enough
constructive units that even if all of the units were
disaggregated the total number of resulting virtual
entities would not exceed the entity count capacity of
the virtual system. This method, while inarguably a
solution to the spreading disaggregation problem,
eliminates the possibility of executing scenarios
larger than the capacity of the virtual system alone,
which is one of the main objectives of linking
constructive and virtual simulation.

A more subtle form of avoidance is to design
scenarios wherein the aggregate units that are likely
to be disaggregated are sufficiently dispersed
geographically so as to make spreading
disaggregation extremely unlikely. This method, a
marginal improvement over the simpler form of
avoidance, has been used extensively in early
demonstrations of constructive+virtual systems.

107

Blue-: <T Red-3

Blue-1

Constructive

1
BIue-2 I^>

Constructive

_L
Blue-2

Virtual

Figure la

I
Red-3 Blue-I

Virtual

Figure lb

Red-3 Blue-1

Virtual

Figure lc

Figure 1 - Spreading Disaggregation

108

As an illustration of this idea, consider the scenario
used by the Integrated Eagle/BDS-D system at the
DIS Interoperability Demonstration during the 16th
Interservice/Industry Training Systems and
Education Conference. (The Integrated Eagle/BDS-D
system uses the Location in the virtual terrain area
disaggregation criterion for automatic
disaggregations and also allows operator initiated
disaggregations; therefore, it is not as susceptible to
spreading disaggregation as systems which use the
other automatic disaggregation triggering
mechanisms. However, the scenario used by the
system provides a good example of the care that must
be taken in developing scenarios for systems that are
more susceptible to spreading disaggregation. Such
care was taken in constructing the I/ITSEC scenario
so that the basic concepts of a constructive+virtual
linkage could be demonstrated without complicating
the battlefield.) This scenario was constructed so that
it was known in advance which units would be
disaggregated, which units would engage each other,
etc. Units which were not selected for disaggregation
were, in general, not close enough to the
disaggregated units to cause a need for interactions
between constructive units and virtual entities (with
the exception of indirect fire volleys from the
constructive simulation to the virtual simulation).

4.2 Interaction between simulations

Spreading disaggregation can occur because the
presence of one disaggregated unit triggers the
disaggregation of the next one. The successive
disaggregations are forced because the interactions
that may occur between the units can be resolved
only constructive<-»constructive or virtuak-»virtual.
It is possible to eliminate the forcing of
disaggregations by permitting interactions between
the constructive and virtual simulations, i.e.,
constructive<->virtual. Given such a capability, the
constructive+virtual system could choose not to
disaggregate if spreading disaggregation (or some
other type of disaggregation overload) would result.
This solution was first suggested in (Trinker,1994).

In the example given of spreading disaggregation, a
Range to Enemy disaggregation criterion leads to a
chain of disaggregations because satisfying the
criterion signals the possibility of direct fire. In
existing constructive+virtual systems, direct fire may
only be performed within the constructive and virtual
components. Providing the capability of
constructive<->virtual direct fire would halt spreading
disaggregation because the presence of a

disaggregated unit within direct fire range is no
longer an automatic trigger for disaggregation.
Spreading disaggregation would have been prevented
in the example by constructive<-»virtual direct fire
between Blue-1 and Red-3 or between Red-3 and
Blue-2.

However, experiences with allowing indirect fire
between the constructive and virtual components of a
C+V simulation have shown the difficulties that can
be encountered in implementing cross-simulation
interaction. In the Integrated Eagle/BDS-D system,
indirect fire can be conducted in both directions
between aggregate units in Eagle (the constructive
simulation) and virtual entities in DIS (the virtual
simulation). Some of the problems encountered in
implementing that interaction include timing of the
indirect fire rounds and positioning of their
detonations. For example, when indirect fire is sent
from Eagle into DIS, an volley representing the total
number of rounds fired during Eagle's current five
minute timestep is shipped to DIS in one instant. The
constructive to virtual interface is responsible for
parceling out the fire over the correct amount of real
time in the virtual simulation. As another example,
indirect fire rounds fired from DIS into Eagle must
be gathered and "aggregated" (in both time and
space) into one volley in order for Eagle to correctly
assess damage to its units. More information about
the implementation of indirect fire across the
constructive and virtual boundary in the Integrated
Eagle/BDS-D system can be found in (Karr, 1993)
and(Karr, 1994a).

Direct fire would be even more problematic. One
obvious reason is the importance of intervisibility in
conducting direct fire. How can intervisibility be
determined between virtual entities, which have
specific locations in the virtual terrain database, and
aggregate units consisting of a number of abstract
entities with no specific location? How can direct
fire be realistically conducted without intervisibility?
Difficult enough if the virtual entities are controlled
by a CGF system, these questions become vastly
more troublesome when the virtual entities involved
include crewed simulators. How can the crews shoot
at the entities of aggregate units when those entities
cannot be seen? How can they take cover from those
units' return fire?

There are additional problems to consider in
implementing constructive+-»virtual direct fire.
Several are identified and considered in
(Trinker,1994).

109

We list here the problems identified by (Trinker,
1994); readers interested in proposed solutions to
these problems should refer to that paper. Normally,
direct fire is partitioned into two separate events: hit
assessment and damage assessment; each of these
events raises implementation concerns for
constructive+virtual direct fire. For hit assessment,
how are specific entities or units identified as being
hit? How many entities are hit? When are the
entities hit? How is damage assessed, and which
simulation assesses it?

Generalizing from direct fire to a wider range of
interactions (and from Range to Enemy to Intent to
Interact disaggregation criteria), the
constructive+virtual interaction solution becomes
more challenging. If automatic disaggregations
forced by Intent to Interact are to be avoided, then
constructive+virtual interaction must be possible for
each of the types of interactions considered by the
Intent to Interact criterion. If Intent to Interact
considers sensing, then constructive+virtual sensing
must be implemented; if Intent to Interact considers
electronic warfare, then constructive+virtual
electronic warfare must be possible, and so on.

5. Conclusions

Spreading disaggregation (and disaggregation
overload) is a difficult problem that limits the utility
of constructive+virtual linkages. The best solution
currently known to the problem of spreading
disaggregation is implementing constructive+virtual
interactions. Unfortunately, implementing those
interactions would entail significant effort and would
face serious realism concerns.

6. Acknowledgments

This research is sponsored by the U. S. Army
Simulation, Training, and Instrumentation Command
(STRICOM) as part of the Signal
Intelligence/Electronic Warfare project (contract
N61339-93-C-0091). IST's ongoing work in
constructive+virtual simulation is sponsored by
STRICOM and the U. S. Army TRADOC Analysis
Center (TRAC) as part of the Integrated Eagle/BDS-
D project (contract N61339-92-K-0002). That
support is gratefully acknowledged.

7. References

Calder, R. B. and Evans, A. B. (1994). "Construction
of a Corps Level CGF", Proceedings of the

Fourth Conference on Computer Generated
Forces and Behavioral Representation,
Institute for Simulation and Training, May
4-6 1994, Orlando FL, pp. 487-496.

Clark, K. J. and Brewer, D. (1994). "Bridging the
Gap Between Aggregate Level and Object
Level Exercises", Proceedings of the Fourth
Conference on Computer Generated Forces
and Behavioral Representation, Institute for
Simulation and Training, May 4-6 1994,
Orlando FL, pp. 437-442.

Downes-Martin, S. (1991). "Vehicle Level
Wargaming for Senior Commanders:
Integrating Wargames with Vehicle Level
Simulations", Unpublished, February 1991,
33 pages.

Franceschini, R. W. (1992). "Intelligent Placement
of Disaggregated Entities", Proceedings of
the Southeastern Simulation Conference
1992, The Society for Computer Simulation,
Pensacola FL, October 22-23 1992, pp. 20-
27.

Franceschini, R. W. and Karr, C. R. (1994).
"Integrated Eagle/BDS-D: Results and
Current Work", Proceedings of the Eleventh
Workshop on the Standards for the
Interoperability of Defense Simulations,
September 26-30 1994, Orlando FL.

Franceschini, R. W. and Petty, M. D. (1995a).
"Linking constructive and virtual
simulations in DIS", Proceedings of the
SPIE International Symposium on
Aerospace/Defense Sensing & Control and
Dual-Use Photonics, Orlando FL, April 17-
21 1995.

Franceschini, R. W. (1995b). "Integrated
Eagle/BDS-D: A Status Report",
Proceedings of the Fifth Conference on
Computer Generated Forces and Behavioral
Representation, Institute for Simulation and
Training, May 9-11 1995, Orlando, FL.

Hardy, D., Healy, M. (1994). "Constructive and
Virtual Interoperation: A Technical
Challenge". Proceedings of the Fourth
Conference on Computer Generated Forces
and Behavioral Representation, Institute for
Simulation and Training, May 4-6 1994,
Orlando FL, pp. 503-507.

Karr, C. R., Franceschini, R. W., Perumalla, K. R. S.,
and Petty, M. D. (1992). "Integrating
Battlefield Simulations of Different
Granularity", Proceedings of the
Southeastern Simulation Conference 1992,
October 22-23, Pensacola FL, pp. 48-55.

110

Karr, C. R, Franceschini, R. W., Perumalla, K. R. S.,
and Petty, M. D. (1993). "Integrating
Aggregate and Vehicle Level Simulations",
Proceedings of the Third Conference on
Computer Generated Forces and Behavioral
Representation, Institute for Simulation and
Training, March 17-19 1993, Orlando FL,
pp. 231-239.

Karr, C. R. and Root, E. D. (1994a). "Integrating
Aggregate and Vehicle Level Simulations",
Proceedings of the Fourth Conference on
Computer Generated Forces and Behavioral
Representation, Institute for Simulation and
Training, May 4-6 1994, Orlando FL, pp.
425-435.

Karr, C. R. and Franceschini, R. W. (1994b). "Status
Report on the Integrated Eagle/BDS-D
Project", Proceedings of the 1994 Winter
Simulation Conference, Society for
Computer Simulation, Orlando FL,
December 11-14 1994, pp. 762-769.

Kraus, M. K., Stober, D. R., Foss, W. F.,
Franceschini, R. W., and Petty, M. D.
(1995). "Survey OF Constructive+Virtual
Linkages", Proceedings of the Fifth
Conference on Computer Generated Forces
and Behavioral Representation, Institute for
Simulation and Training, May 9-11,
Orlando, FL.

Powell, D. R. and Hutchinson, J. L. (1993). "Eagle
II: A Prototype for Mult-Resolution
Combat Modeling", Proceedings of the
Third Conference on Computer Generated
Forces and Behavioral Representation,
Institute for Simulation and Training, March
17-19 1993, Orlando FL, pp. 221-230.

Raytheon (1994a). "System Specification for the
Corps Level Computer Generated Forces",
Contract No. DACA76-93-D-0007 CDRL
Sequence No. A0010, Raytheon System
Development Company, July 22 1994.

Raytheon (1994b). "Draft System Segment Design
Document for the Corps Level Computer
Generated Forces", Contract No. DACA76-
93-D-0007 CDRL Sequence No. A0011,

Raytheon System Development Company,
August 8 1994.

Raytheon (1994c). "Implementation Plan for the
Corps Level Computer Generated Forces",
Contract No. DACA76-93-D-0007 CDRL
Sequence No. A0012, Raytheon System
Development Company, August 8 1994.

Root, E. D. and Karr, C. R. (1994). "Displaying
Aggregate Units in a Virtual Environment",
Proceedings of the Fourth Conference on
Computer Generated Forces and Behavioral
Representation, Institute for Simulation and
Training, May 4-6 1994, Orlando FL, pp.
497-502.

Trinker, A. (1994). "General Architecture for
Interfacing Virtual and Constructive
Simulations in DIS Environment",
Technical Report IST-TR-94-28, Institute for
Simulation and Training, September 14
1994.

8. Authors' Biographies

Mikel D. Petty is a Program Manager at the Institute
for Simulation and Training. He is currently
managing Plowshares, an emergency management
simulation project. Previously he led ISPs Computer
Generated Forces research projects. Mr. Petty
received a M.S. in Computer Science from the
University of Central Florida and a B.S. in Computer
Science from California State University,
Sacramento. He is a Ph.D. student in Computer
Science at UCF. His research interests are in
simulation and artificial intelligence.

Robert W. Franceschini is a Principal Investigator
at the Institute for Simulation and Training. He leads
the Integrated Eagle/BDS-D project, which was the
first research effort to successfully link a constructive
simulation with a virtual simulation. Mr.
Franceschini earned a B.S. in Computer Science from
the University of Central Florida; he is currently
pursuing an M.S. in Computer Science at UCF. His
research interests are in simulation, graph theory, and
computational geometry.

Ill

Session 3b: Reasoning II

Lehman, Carnegie Mellon University
Tambe, ISI, USC

Hieb, George Mason University

Natural Language Processing for IFORs: Comprehension and Generation in
the Air Combat Domain

Jill Fain Lehman, Julie Van Dyke, and Robert Rubinoff

Carnegie Mellon University

Pittsburgh, PA 15213
jefQcs.cmu.edu

Abstract

In support of the Soar/IFOR project's
goal of providing intelligent forces for dis-
tributed interactive simulation environ-
ments [Laird et al, 1995], the NL-Soar
project works toward the implementation
of a full natural language capability for
Air-IFOR agents. In this paper we dis-
cuss the design of that language capa-
bility (NL-Soar) and its integration into
TacAir-Soar agents. In particular, we
demonstrate how NL-Soar's linear com-
plexity, interruptibility, and atomaticity
of language processing provide language
comprehension and generation processes
that do not compromise agent reactivity.

1 Introduction

Autonomous intelligent forces (IFORs) play an
increasingly critical role in both large-scale dis-
tributed simulations and small-scale, focused
training exercises. An IFOR is a complex agent
that requires diverse capabilities to perform at a
useful level of functionality. Since an IFOR's role
will often be to replace one or more individuals in
an engagement, the ability to communicate in nat-
ural language can be a key capability contributing
to its overall performance. An agent that is rigid
in its communicative ability may introduce a brit-
tleness into the simulation (i.e. a tendency to fail
in unexpected ways) that has nothing to do with
imperfections in strategic or tactical knowledge.
Thus, in building TacAir-Soar agents to partici-
pate in beyond-visual-range combat [Laird et al,
1995], an NL capability is needed to ensure reac-
tive, human-like performance in basic interactions
among pilot, wing, and air intercept control (AIC).

In [Rubinoff and Lehman, 1994a] we identi-
fied three main characteristics of communication
during air combat that present challenging ar-
eas of research: (1) it occurs in real-time, (2) it
must seamlessly integrate with the agent's non-
linguistic capabilities, e.g. perception, planning,
reasoning about the task, and (3) its content must
be comprehended and generated in accordance

with performance data, i.e. with all of the idiosyn-
cratic constructions, ungrammaticalities, and self-
corrections found in real language. Within the
context of these research issues, we introduced
NL-Soar, a language comprehension and gener-
ation capability designed to provide integrated,
real-time natural language processing for systems
built within the Soar architecture [Lewis, 1993;
Nelson et al, 1994a; Nelson et al, 1994b; Rubi-
noff and Lehman, 1994b]. In this paper we concen-
trate on issues (1) and (2), exploring our progress
toward their solution using NL-Soar in Soar-based
Air-IFOR agents.

2 Demands of reactivity

The naive approach to communication between
agents, and the one available using off-the-shelf
technology, treats language as front-end and back-
end interfaces. Messages are comprehended by
a front-end module, which creates a system-
dependent representation of the message that can
be used by the other modules responsible for the
agent's behavior. Similarly, when an agent needs
to send a message, that same representation is
passed to a back-end module that generates an
output message to be directed to other agents.1

This makes language an all-or-nothing en-
deavor, the implications of which can be seen in
Figure 1. In this typical tactical air scenario, blue
is flying an intercept (1) and is actively pursu-
ing the goal of achieving its launch acceptability
region (LAR) when an incoming message arrives
(2). The message is buffered until the current goal
is achieved and blue has fired a missile (3). Next,
processing of the input begins (4); it ends some-
time after red has returned fire (5) and (6). Only
after the communiation has been understood can
blue begin its evasive maneuver (7).

It is clear that reactivity is compromised if un-
derstanding must be postponed until the current

2The approach being described here does not de-
pend in any way on the content of the message or
the style of language accepted and generated. Thus
it would apply equally whether the language passed is
natural language or a formal communication protocol
(such as CCSIL [Salisbury, 1995]).

115

External
events:

Blue Agent
events:

(I) (5)
comm red
arrives fires

_L I
T t t t t '
begin achieve begin end begin
intercept lar/flre comm comm f-pole

(I) (3) (4) (6) (7)

^. time

Figure 1: All-or-nothing: a communication model that compromises reactivity

External
events:

Agent
events:

(2)
comm
arrives

begin
intercept

(1)

i
MM
cl \2 c2 i3 i4...

comm
subtask

.,. intercept
' ' subtask

~T1
ck in

t \
I

begin
f-pole

red
fires

end achieve
comm lar/fire

(4)

_• time

Figure 2: Reactive communication: interleaving comm and non-comm subtasks

goal has been accomplished, and then is pursued
to the exclusion of all else. In particular, two cases
are cause for concern. Consider first what hap-
pens at (2) if the content of the message is rele-
vant to the situation at the time it is received. In
this case, buffering the message leads, at best, to
wasted processing in the future (when the message
has become obsolete). At worst buffering compro-
mises the decision making of the agent by preclud-
ing access to timely, necessary information. To re-
move this possibility, we could modify the control
of the agent to always attend to communication
needs first. But this would simply put us in the
second problematic situation more often.

In this second case (4), if the content of the mes-
sage is not critical, devoting processing to it rather
than other things can compromise the agent's re-
activity as well. In short, shutting out either com-
munication processes or non-communication pro-
cesses can be equally dangerous. The point, of
course, is that you can't tell which situation you
will be in until you process the message, at which
time it is too late to change your mind.~

2 Dedicating a separate, parallel process to commu-
nication might ameliorate the problem but won't nec-
essarily solve it. A separate process will be able to
comprehend or generate the message while the agent

Figure 2 gives a more desirable version of the
same task events. Again, the pilot is flying an in-
tercept (1), trying to achieve firing position when
a message arrives (2). The message is attended to
immediately, its processing interleaved with the
ongoing effort to achieve LAR (3). In this exam-
ple, the message is completely processed by the
time the pilot is in a position to fire (4), and eva-
sive maneuvers can be started immediately, well
before red returns fire.

The model in Figure 2 overcomes the problems
in the simpler model of Figure 1 by intertwining
the different strands of agent behavior at the sub-

is performing other tasks, but will have to work in
isolation, i.e. cut off from the changing situation and
goals of the agent. To the extent that there is relevant
information that is unavailable during communication
processing, the agent may formulate interpretations or
communications that are inappropriate or out of sync.
To the extent that the relevant information is commu-
nicated to the language process, parallelism is lost. In
the tactical air domain information is updated quickly,
and so an increasing proportion of CPU cycles will be
necessary to keep the two processes in sync. Thus,
to maximize reactivity, we conjecture that a separate
process for communication would be more costly and
no more effective than the method outlined in the fol-
lowing section.

116

Comprehension ,^
Spaces £-

Top
control knowledge for interleaving
top-level task operators
top -level language operators

Generation
Spaces

Figure 3: An Example of the Top-state Control Model

task level rather than at the full task level. In
other words, we can view the all-or-nothing model
as a degenerate case of Figure 2, one in which the
granularity of the interleavable components is sis
large as possible. As we have seen, the disadvan-
tage of choosing the maximal grain size is that the
components are too large for the agent to behave
in a timelv fashion.

3 Achieving Interleavable Commu-
nication

For NL-Soar to provide a reactive, interleavable
language capability for IFOR agents, the system
as a whole must have three properties: linear com-
plexity, interruptability. and atomaticity. The first
property, linear complexity, means that processing
to understand or generate a message must take
time that is roughly linear in the size of the mes-
sage. This is necessary to keep pace with human
rates of language use. The second property, inter-
ruptability, ensures that time-critical task behav-
iors cannot be shut out by language processing
(and vice versa). The third property, atomaticity,
ensures that if language processing is interrupted,
partially constructed representations are left in a
consistent and resumable state.

To understand how NL-Soar provides the de-
sired communication model, we must first briefly
review the components out of which Soar systems

are organized. Figure 3 is a graphical representa-
tion of a hypothetical Soar system that uses NL-
Soar for comprehension and generation. Linguistic
processes, like all processes in Soar, are cast as se-
quences of operators (small arrows) that transform
states (boxes) until a goal state is achieved. The
triangles in the picture represent problem spaces
which are collections of operators and states.3 The
comprehension problem spaces contain operators
that use input from the perceptual system to build
syntactic and semantic structures on the state; the
generation problem spaces contain operators that
use semantic structures to produce syntactic struc-
tures and motor output. Note that the problem
space labelled Top is the only space connected to
the perceptual and motor systems and it is this
space that is designated by the Soar architecture;
all other problem spaces are provided by the sys-
tem designer.

The dotted lines in the figure represent Soar im-
passes which arise automatically when there is a
lack of knowledge available in the current problem
space. When an impasse arises, processing contin-
ues in a subspace until the goal state in the sub-
space is reached. Note that impasses are a general
recursive structure (a subspace can impasse into
another subspace) that gives rise to a goal/subgoal
hierarchy, or goal stack. The thick banded arrow

For more details on how Soar uses problem spaces,
states and operators to organize its processing see
[Laird et al, 1987; Laird et al., 1995].

117

that overlays the impasse represents the resolu-
tion of the impasse, and the new knowledge (called
chunks) that results from Soar's learning mecha-
nism. Chunks capture the work done in the sub-
space, making it available in the superspace with-
out impasse during future processing. This means
that when a system structured as in Figure 3 is
fully chunked all of its behavior will be produced
by operators in the Top space.

We now have all the pieces to build an inter-
leavable language capability. In the following sec-
tions, we address how to achieve linearity, inter-
ruptability, and atomaticity using these compo-
nents. For the time being we will consider com-
munication only in systems where the desired be-
havior shown in Figure 2 would occur completely
within the Top problem space when fully chunked.
We call a system organized in this way, a Top-state
control model.4

3.1 Achieving Linear Complexity
Communication in an IFOR must occur in real-
time to keep pace with the flow of human events.
This is not a statement about how fast the sys-
tem must run, per se. Rather, it is a theoreti-
cal statement about how processing must occur
within the system. Although there is some vari-
ability (some words do reliably take longer to pro-
cess than other words), in general, the amount
of time taken by people is linear in the num-
ber of words in the utterance. A number of de-
sign constraints follow from this simple regular-
ity [Lehman ei ai, 1996], e.g. construction of the
meaning of the sentence must proceed incremen-
tally, and different knowledge sources (syntax, se-
mantics, pragmatics) must be applied in an inte-
grated rather than pipe-lined or multi-pass fash-
ion. NL-Soar provides these properties [Lehman et
a/., 1991a; Lewis, 1993]. Briefly, the system relies
on Soar's notion of impasse to control the search
through its linguistic knowledge sources, and then
on Soar's learning mechanism to compile the dis-
parate pieces of knowledge into an integrated form
that can be applied directly (i.e. in approximately
constant time/word) in the future.

Figure 4 depicts the process graphically for one
type of language operator, expanding the left por-
tion of Figure 3. Consider the arrival of a new
word into the Top state and assume that the
system has not encountered the word in a simi-
lar context in the past (i.e. the system has no
pre-chunked knowledge about how to process this
word). Once the word has been attended to, the
learn-comprehension operator will be selected, af-
ter which an impasse will arise. Problem solving

TOP
attend
learn-comprehension
u-constructorl
u-constructor2...

Create-operator
new-u-constructor
return-operator

U-construct
link
snip

Generate
try-link
try-snip

Constraint-check
check-agreement
check-number...

4 As we will see in Section 4, this is not the only
structure permitted by Soar, but it is a valid organi-
zation and the simplest place to begin.

Figure 4: Achieving linearity through learning

will continue in the Create-operator space which
will generate a symbol for a new u-constructor.
A u-constructor is a language operator that fits
the new word into the current syntactic structure
for the message. The u-constructor is composed
piecemeal in the U-construct space which per-
forms links and snips on syntactic trees based on
knowledge provided by Generate and Constraint-
check. As the goal of each subspace is achieved,
each impasse is resolved, creating chunks. Only
two kinds of chunks concern us here. The imple-
mentation of the u-constructor is contained in the
chunks created when the impasse between Create-
operator and U-construct is resolved. This means
that the syntactic tree that resulted from the se-
quential links and snips that were done in the
lower spaces will now be produced immediately
whenever this u-constructor executes. The u-
constructor itself is returned from Create-operator
to the Top space, resulting in a chunk that tells
when this u-constructor can apply in the future.
Note that the next time this word is seen in a
similar contect, this chunk will propose the new
u-constructor directly in the Top state. In other
words, once we have learned the top-level opera-

118

tor, no impasse will occur. Instead, the (possibly
lengthy) problem solving that took place in the
subspaces has been compiled into a single Top-
space operator that executes directly to build the
relevant syntactic structure on the Top state.

Figure 4 shows how the application of gen-
eral knowledge about syntax is contextualized and
made efficient. A similar story can be told about s-
constructors, the Top-space operators that fit the
new word into the semantic and discourse struc-
tures maintained on the Top state. Thus, once
behavior is fully chunked, the arrival of a message
results in only a small number of Top operators per
word, the linear complexity we were after. Equally
important, the language process itself is now rep-
resented in the Top space in terms of more finely-
grained operators (u- and s-constructors) that cre-
ate the opportunity for interleavability. On the
generation side, of course, there is a different task
decomposition producing a different set of Top-
space operators, but the principle is the same.

3.2 Achieving Interruptability
In Soar, agent behavior is produced by the appli-
cation of operators to a state. Moreover, the ar-
chitecture defines the application of an operator as
a non-interruptable unit of work. In other words,
once an operator has been selected for application,
all the state changes associated with that operator
are guaranteed to be made before any other opera-
tor is selected. What does this mean for NL-Soar?
In short, it means that the Top-level language op-
erators dictate the granularity of the interleavable
components. To anchor the point in the context of
Figure 4, once a u-constructor exists, we cannot in-
terleave changes to the syntax tree with other non-
linguistic tasks. Put more strongly, once the u-
constructor is selected, all other subtasks are shut
out for the duration of its application. In addition,
if the Top state changes during the application of
the u-constructor (via perception), those changes
are effectively invisible until the u-constructor's
state changes have been made.5

How is this situation different from the one in
Figure 1, where lack of interruptibility meant re-
activity was diminished to the point of inviting
wasted work, if not disaster? The difference here
is that the granularity of NL-Soar's operators is
small enough to allow interruptibility below the
full task level. The current scheme separates the
work of attention from work done to the syntac-

5This is an overstatement. In fact, it is possible to
encode knowledge in Soar in such a way that it is tied
only to the state, not to any particular operator. Such
knowledge will lead to state changes regardless of what
operator is being applied. Since most task knowledge
is tied to task operators, however, the discussion above
is still a useful way to think about what's going on.

tic tree (u-constructors) from work done to the
semantic and discourse models (s-constructors).
Thus, the current comprehension capability al-
lows for interruption between each set of state
changes. Note, however, that we could have made
this choice differently. We could, for example,
build both syntactic and semantic structures in
the impasse under the learn-comprehension op-
erator. The resulting Top-space comprehension
operator would effectively bundle all of compre-
hension into a single operator.6 Alternatively, we
could make link and snip the Top operators, giv-
ing an even finer grain. Although it is clear that
the architecture permits a wide range of choices,
choosing the right granularity is not a wholey un-
principled exercise. In general, the more work en-
compassed by a Top operator, the more specific
will be the conditions under which it can apply.
The more specific the conditions the less transfer
of the knowledge to new situations and the more
learning events will be required to get fully chun-
ked language behavior. On the other side, the less
work encompassed by a Top operator, the more
operators per word there will be, until, eventually,
the number will reflect some non-linear quantity
(e.g. the size of the parse tree). In Section 4, be-
low, we demonstrate how the operator granularity
we have chosen allows both transfer and interleav-
ing while maintaining linearity.

Now that we have language operators of a size
that allows interruptibility, the next question that
needs to be addressed is: how do you decide which
type of operator, linguistic or non-linguistic, to
select next? Many control schemes are possible,
ranging from random selection to a complete par-
tial ordering over all the operators in the system,
to always attending to communication first (or
last). In integrating NL-Soar with TacAir-Soar we
will use random selection for its simplicity. What
is important to remember, however, is that under
Top-state control the selection decision is made on
an operator by operator basis, not task by task.

3.3 Achieving Atomaticity

Recall that atomaticity ensures that if language
processing is interrupted, partially constructed
representations are left in a consistent and re-
sumable state. Given our discussion above,
it would seem that the architecturally enforced
non-interruptability of operators would guarantee
atomaticity as well. This is certainly true if all of
the language behavior is impasse-free. Suppose,
however, that the system is in the middle of learn-
ing a new u-constructor or s-constructor, as in Fig-
ure 4, when state changes create a preference for
a non-linguistic Top-space operator. In this case,

6An early version of NL-Soar did, in fact, use this
scheme [Lehman et al., 1991b].

119

External

(1)
bogey
detected

set heading
and turn rate

n
events: i

ParrotlOl T" " T " T t " t
events: report check for open

contact commit discourse
(2) id as in missile ...

bandit range ' '

(3)

notice nyt0

bandit waypoint
t<;\ compute start turn

pointing ^rate^ turn (8)
(5) discourse construct(7) realize

move summons subject

Figure 5: The lead TacAir agent composes a message while tracking a threat and flying

once the operator currently being applied in the
lowest subspace is finished, the task operator will
be selected in the Top space and the language goal
stack will collapse. Can we be sure that we have
been left in a consistent state so that language
processing can be smoothly resumed?

The answer is yes because the design of NL-soar
ensures that no changes are actually made to the
language data structures on the Top state until the
u-constructor is returned. Look again at Figure
4. The only operator that can result in changes to
the Top state is Create-operator's return-operator.
But if it is being applied when a preference is cre-
ated for a Top-space task operator, then we know
it will complete, the results will be returned, and
the u-constructor proposal chunk will be built. If
the subspace operator is not the return-operator,
no results will be returned from the top-most im-
passe and no proposal chunk will be built for the
u-constructor. Observe, however, that the con-
ditions that led to the learn-comprehension oper-
ator in the Top space may well still obtain. So
once the task operator has been applied, language
may be resumed. Since no u-constructor was built,
the system will have to rebuild the goal stack
to continue. In practice, the situation is not as
bad as it sounds because chunks may have been
built in the subspaces during the previous learn-
comprehension processing that were not specific
to the particular u-constructor. These chunks will
transfer to the current situation and the impasses
that created them will be avoided.

4 Bringing it all together in TacAir-
Soar

In Section 2 we argued that a communication ca-
pability for IFORs had to have three properties:
linear complexity, interruptability, and atomatic-
ity. In the previous section we introduced the
Top-state control model in which whole tasks are
interleaved on an operator-by-operator basis and
communication is just another task. One of the

interesting characteristics of systems organized as
in Figure 3 is that the goal stack is never shared
across linguistic and non-linguistic tasks; the need
to understand or produce a message pulls the sys-
tem out of a task goal stack. As a result, Top-state
task operators, like the Top-state language oper-
ators, tend to represent subtasks of fairly short
duration.

In contrast, systems like TacAir-Soar are com-
posed of a Top task operator of very long dura-
tion, and a goal stack that reflects many levels
of abstraction of that task. Each level stays ac-
tive as long as it is being carried out. In partic-
ular, TacAir uses Soar's Top state to keep track
of the "execute-mission" task, which stays active
for the entire simulation. Under this will be a
stack of sub-tasks, such as "mig-sweep", "inter-
cept", "employ-weapons", and so on, each repre-
senting a more detailed view of what the agent is
currently trying to do. Much of TacAir's knowl-
edge of its current situation and goals is stored in
sub-states associated with these subtasks, not on
the Top state.7 Thus, if TacAir switched to lan-
guage in its Top state, it would lose much of this
knowledge. Clearly, TacAir-Soar is incompatible
with the Top-state control model outlined above.
To understand how to modify Top-state control
without sacrificing linearity, interruptibility and
atomaticity, we must answer the question: what
role, exactly, does the Top state play in maintain-
ing each property?

For linear complexity, the role played by the
Top state is simply a place to apply the so-called
Top-state operators. In reality, what is critical
for linear complexity is that there is an effective
procedure for building the top-level language op-
erators, and that only a small number of them are
necessary for each word in the message. For in-
terruptability and atomaticity, the Top state does
play a more central role. Specifically, it must be
the place where Top-level language operators leave

' A fuller description of TacAir-Soar can be found
in [Laird et ai, 1995].

120

External
events:

Parrotl02
events:

(9)
"parrot 102"

n

External
events:

Parrot 101
events:

set altitude

t
set speed "this"

(ID
"is"

t L

set heading
and turn rate

A

say-

start
racetrack

(14)

"parrot 102"
set heading
and turn rate

assume
bogey fired fly to

racetrack

t
fly to

waypoint
say

say

(10)

"this"

realize
object

compute ,JJ\
turn
direction

start
turn

(13)

achieve

attend Pr•mity

parrotl02 (15>

attend
this

r<
u-con2

s-con6 /](,)

achieve
compute proximity
turn

s-consl2

(18)

time

u-conS

direction (17)

Figure 6: Figure 5 continued: Pilot continues to talk as wing begins to listen

their results because it is the only state that is
guaranteed to still be in the goal stack when lan-
guage processing resumes. Thus, where top-level
language operators are applied is immaterial as

long as they leave their results on the Top state
where they can be found whenever, and wherever,
language processing resumes.

Separating the question of where top-level lan-

guage operators are applied from the question of
where they leave their results allows us to define a
variety of virtual Top-state control schemes. The

simplest one, and the one we use when integrating
NL-Soar with TacAir agents, is to interleave lan-
guage operators with whatever task operators are
available in the lowest problem space in the goal
stack. Because the goal stack grows and shrinks
over time, the interleaving of communication will
take place more or less throughout the range of
non-linguistic subtasks. The simplicity of the in-

tegration is extended by allowing the architecture
to decide randomly between language and non-
language operators whenever both types are ap-
plicable in the current situation.

Figures 5 through 7 capture a portion of the
behavior of two TacAir-Soar agents running with
a fully-chunked NL-Soar under virtual Top-state

control.8 In the scenario depicted, two pilots fly

'Requiring NL-Soar to "learn while doing" would
be equivalent to expecting the pilot to learn the do-
main language while flying the plane in battle. Con-
sequently, we use off-line training to allow NL-Soar to
learn from experience in a non-real-time setting. This
gives the system the time it needs to integrate its dis-

F14s as a section with a single red plane flying
against them. ParrotlOl is the lead and Parrotl02
is the wing. The timelines in the figures show
the operators that each agent executed in a par-

ticular engagement, together with those events in
the external world that affect or depend on their
behavior. Language operators are indicated via

bold-face. For simplicity, the representation does
not try to preserve the goal-subgoal relationship
of the task operators.

In the time prior to the first event shown in

Figure 5, the two planes have begun to fly in a
racetrack configuration. The portion of behavior
we are interested in begins when the lead notices
the bogey (1), and must communicate the relevant
information to its wing. The report-contact oper-
ator (2) posts a communicative goal on the Top
state indicating that the agent wants to say some-
thing. Interleaving begins (somewhat unevenly
due to the random control scheme) at (3). First,
three task operators are executed in which the
agent determines that the bogey is in fact a ban-
dit, decides to check whether the commit criteria

have been satisfied (they have not), and notices
that the bandit is within missile range. Then, at
(4), language operators begin to compose the mes-

sage according to communication doctrine. The
first step in any lead-wing communication is the

parate knowledge sources into the top-level operators
discussed in Section 3.1. It is this highly compiled
form of language knowledge that models an experi-
enced pilot and provides real-time language behavior
on-line.

121

External
events: •

Parrot 101
events:

External
events:

Parrotl02
events:

"parrot 101" "have"
(19)

"contact"

say

t t t t
t " t

continue
discourse

construct
assertion

pause

"parrot 101"

realize
subject

realize say
verb

"I"

T
say

•
say

t
say

.time

realize
object

realize
object

"have"

T
attend

is
u-conl5

attend
parrotlOl

u-coiii8

s-con22

J_J

pause
attend attend
pause J

(20)

s-con26

u-con2

"contact"

attend
have

u-cons28
(21)

Figure 7: Figure 6 continued: completion of summons generation

exchange of callsigns, here, the sentence Parrotl02
this is ParrotlOl. This is a domain-dependent in-
stance of the more general class of utterances we
call summons (for example the telephone exchange
John? It's Jill.) The summons is constructed
piece by piece using top-level generation operators
(in boldface). Figure 5 shows this linguistic pro-
cess interleaved with operators that contribute to
situation awareness (5) and operators that fly the
plane (6), (7), and (8).

Figure 6 continues the timeline for ParrotlOl
and introduces Parrotl02 at the point just be-
fore the first word of the summons arrives into the
agent's input buffer. The timelines are aligned by
the linguistic output of ParrotlOl and the linguis-
tic input of Parrotl02.

To this point in the scenario, the wing has sim-
ply been flying a racetrack with the lead. At (9)
ParrotlOl outputs the wing's callsign in the upper
timeline. Note that this is done even though the
construction of the remainder of the summons is
still being interleaved with non-linguistic subtasks
(10) through (12); both generation and compre-
hension are incremental. Meanwhile, shortly af-
ter Parrotl02 has begun to turn (13), the call-
sign is heard (14). The lower timeline continues
with comprehension of the first few words of the
summons ((16) and (18)) interleaved with oper-
ators that keep the wing in formation ((15) and
(17)). Note that the s- and u-constructors for the
word this (18) fire after the word is has already
been heard. This is partly because the lead's mes-
sage is coming out quickly, and partly because the
wing's attention has been focused on flying the
plane. The input buffer that holds unattended
speech has a decay rate; as in people, if speech

goes unattended long enough (as it may if the pi-
lot is in a stressful situation), it simply disappears
from the buffer.

Figure 7 continues the interchange to the point
that ParrotlOl outputs the final word of the sum-
mons (19). There is no interleaving in this por-
tion of the trace because both pilots are simply
flying the long leg of the racetrack where no task
operators are proposed. Notice that by the time
the lead has begun the second portion of the sum-
mons, the wing has caught up on the comprehen-
sion side (19). The rapidity with which / have
a contact emerges, however, once again results in
buffered input for Parrotl02 (21). Thus, linguis-
tic processing continues in the wing agent after
the lead has already begun to wait for a reply (not
shown). As a final observation, note that the same
u-constructor that processes ParrotlOl in Figure 6
also processes I'm Figure 7 (u-constructor2). This
is an example of where the granularity of the top-
level operators affords some transfer of syntactic
processing despite the difference in semantics (s-
constructor6 vs. s-construct26).

5 Conclusions

The ability to communicate in natural language
can be a key capability contributing to an IFOR's
performance in both simulation and training exer-
cises. In this paper we have discussed how the de-
sign of NL-Soar uses linear complexity, interrupt-
ibility, and atomaticity of language processing to
provide a language capability that does not com-
promise reactivity. What we have not discussed,
however, is the third area of interest identified in

122

[Rubinoffand Lehman, 1994a]: performance in ac-
cordance with empirical data from pilots in real-
life simulations. Our continued work, therefore,
will focus on making the NL-Soar integration more
robust, including handling linguistic constructions
specific to the domain and allowing for the inter-
ruptions and self-corrections that necessarily come
with real language use.

6 Acknowledgement

This research was supported under subcontract
to Carnegie Mellon University from the Univer-
sity of Michigan, as part of contract N00014-92-
K-2015 from the Advanced Systems Technology
Office (ASTO) of the Advanced Research Projects
Agency (ARPA) and the Naval Research Labora-
tory (NRL). The authors would like to thank BMH
Associates, Inc. for their technical assistance, and
gratefully acknowledge the system-building sup-
port of Greg Nelson.

References

[Laird et al., 1987] John E. Laird, Allen Newell,
and Paul S. Rosenbloom. Soar: An architecture
for general intelligence. Artificial Intelligence,
33:1-64, 1987.

[Laird et al., 1995] John E. Laird, W. Lewis John-
son, Randolph M. Jones, Frank Koss, Jill F.
Lehman, Paul E. Nielsen, Paul S. Rosen-
bloom, Robert RubinofT, Karl Schwamb, Milind
Tambe, Julie Van Dyke, Michael van Lent, and
III Robert E. Wray. Simulated intelligent forces
for air: The soar/ifor project 1995. In Pro-
ceedings of the Fifth Conference on Computer
Generated Forces and Behavioral Representa-
tion, 1995.

[Lehman et al., 1991a] J. Fain Lehman, R. Lewis,
and A. Newell. Integrating knowledge sources in
language comprehension. In Proceedings of the
Thirteenth Annual Conferences of the Cognitive
Science Society, 1991.

[Lehman et al., 1991b] J. Fain Lehman, R. Lewis,
and A. Newell. Natural language comprehension
in soar: Spring 1991. Technical report, School of
Computer Science, Carnegie Mellon University,
CMU-CS-91-117, 1991.

[Lehman et al., 1996] J. Fain Lehman, R. Lewis,
and A. Newell. NL-Soar: Architectural influ-
ences on language comprehension. In Cognitive
Architecture. Ablex Press, 1996. in press.

[Lewis, 1993] R. L. Lewis. An Architecturally-
based Theory of Human Sentence Comprehen-
sion. PhD thesis. Carnegie Mellon University,
1993.

[Nelson et al., 1994a] G. Nelson, J. F. Lehman,
and B. E. John. Experiences in interruptible
language processing. In Proceedings of the 1994
AAAI Spring Symposium on Active NLP, 1994.

[Nelson et al., 1994b] G. Nelson, J. F. Lehman,
and B. E. John. Integrating cognitive capabil-
ities in a real-time task. In Proceedings of the
Sixteenth Annual Conference of the Cognitive
Science Society, 1994.

[RubinofT and Lehman, 1994a] R. RubinofT and
J. F. Lehman. Natural language processing in
an ifor pilot. In Proceedings of the Fourth Con-
ference on Computer Generated Forces and Be-
havioral Representation, pages 97-104, 1994.

[RubinofT and Lehman, 1994b] R. RubinofT and
J. F. Lehman. Real-time natural language gen-
eration in nl-soar. In Proceedings of the Sev-
enth International Workshop on Natural Lan-
guage Generation, 1994.

[Salisbury, 1995] M. Salisbury. Command and
Control Simulation Interface Language (ccsil):
Status update. In Proceedings of the the 12th
Distributed Interactive Simulation Workshop,
1995. Sponsored by STRICOM and the Insti-
tute for Simulation and Training (1ST) at the
University of Central Florida.

7 Biographies

Jill Fain Lehman is a research computer scien-
tist in Carnegie Mellon's School of Computer Sci-
ence. She received her B.S. from Yale in 1981,
and her M.S. and Ph.D. from Carnegie Mellon in
1987 and 1989, respectively. Her research inter-
ests span the area of natural language processing:
comprehension and generation, models of linguis-
tic performance, and machine learning techniques
for language acquisition. Her main project is NL-
Soar, the natural language effort within the Soar
project.

Robert Rubinoff is a postdoctoral research fel-
low in Carnegie Mellon's School of Computer Sci-
ence. He received his B.A., M.S.E., and Ph.D.
from the University of Pennsylvania in 1982, 1986,
and 1992, respectively; his dissertation research
was on "Negotiation, Feedback, and Perspective
within Natural Language Generation". His re-
search interests include natural language process-
ing, knowledge representation, and reasoning. He
is currently working on natural language genera-
tion within the Soar project.

Julie Van Dyke is a Research Programmer work-
ing on language comprehension in NL-Soar. She
is also working toward an MS in Computational
Linguistics with a focus on modeling language ac-
quisition.

123

Agent Tracking in Complex Multi-agent Environments: New Results

Milind Tambe and Paul S. Rosenbloom
Information Sciences Institute

University of Southern California
4676 Admiralty Way

Marina del Rey, CA 90292
email: {tambe, rosenbloom}®isi.edu

1. Abstract
Agent tracking is an important capability that an

intelligent agent requires for interacting with other
agents. It involves monitoring the observable actions
of other agents as well as inferring their unobserved
actions or high-level plans, goals and behaviors. The
dynamic, real-time, multi-agent environment of air-
combat simulation presents several novel challenges
for agent tracking. In particular, an intelligent pilot
agent needs to track the highly flexible mix of goal-
driven and reactive behaviors of other pilots, track in
real-time with sufficient accuracy despite
ambiguities, track the activities of groups of pilots,
and recursively track its own activities and possibly
those of other pilots.

In our previous report at this conference (Tambe
and Rosenbloom, 1994), we presented an approach
that enabled a pilot agent to track flexible and
reactive behaviors. This paper presents new results
that address some of the remaining challenges via
intra-model and inter-model optimization techniques.
We have developed a system based on these
techniques, and present some experimental results
from it.

2. Introduction
The Soar/IFOR project (Laird et al., 1995,

Rosenbloom, et al., 1994, Tambe et al., 1995) has
been developing intelligent pilot agents (henceforth
IPs) for participation in simulated battlefield
exercises intended for training as well as for testing
of new doctrine, tactics and weapon system concepts
(Loper et al., 1994). These IPs have already
participated in simulated combat exercises with
expert human pilots, including the STOW-E exercise
in November, 1994, a precursor to the much larger
scale STOW-97 exercise. Agent tracking is one key
capability that the IPs require for effective
participation in these exercises. It involves
monitoring the observable actions of other agents as
well as inferring their unobserved actions, high-level
goals, plans and behaviors. This capability is
particularly useful in simulated air-combat to track
the activities of other hostile or friendly pilots.

The example air-combat simulation scenario in

Figure 1, based on (Tambe and Rosenbloom, 1994),
illustrates the importance of agent tracking. It shows
two combatting IPs: L in the light-shaded aircraft
and D in the dark-shaded one. Initially, L and D's
aircraft are 50 miles apart, so they can only see each
other's actions on radar. For effective performance,
they have to continually track these actions. Indeed,
D is able to survive a missile attack by L in this
scenario due to such tracking, despite the missile
being invisible to D's radar.

(a)

L D

(b)

- #

(c)

- #

(d) (el

Figure 1: A simulated air-combat scenario from
(Tambe and Rosenbloom, 1994). An arc on an

aircraft's nose shows its rum direction.

In Figure 1-a, D observes L turning its aircraft to a
collision-course heading (i.e., at this heading, L will
collide with D at the point shown by x). Since this
heading is often used to reach one's missile firing
range, D infers the possibility that L is trying to reach
this range to fire a missile. In Figure 1-b, D turns its
aircraft 15° right. L reacts by turning 15° left, to
maintain collision course. In Figure 1-c, L reaches its
missile range, points its aircraft at D's aircraft and
fires a radar-guided missile. While D cannot see the
missile on its radar, it observes L's turn, and infers it
to be part of L's missile firing behavior.
Subsequently, D observes L executing a 35° turn
away from its aircraft (Figure 1-d). D infers this to
be an fpole turn, typically executed after firing a
missile to provide radar guidance to the missile,
while slowing the closure between the two aircraft.
While D still cannot observe the missile, it is now
sufficiently convinced to attempt to evade the missile

125

by turning 90° relative to the direction of L's aircraft
(Figure 1-e). This beam turn causes D's aircraft to
become invisible to L's (doppler) radar. Deprived of
radar guidance, L's missile is rendered harmless.
Meanwhile, L tracks D's beam turn in Figure 1-e,
and prepares counter-measures in anticipation of the
likely loss of both its missile and radar contact.

Thus, IPs need to continually track their
opponents' actions, such as turns, and infer
unobserved actions, high-level goals and behaviors,
such as the fpole, beam or missile firing behaviors.
This agent tracking capability is related to plan
recognition (Kautz and Allen, 1986, Azarewicz, et
al., 1986, Song and Cohen, 1991, Carberry, 1990),
which involves recognizing agents' plans based on
observations of their actions. Indeed, as with plan
recognition, one key problem in agent tracking is
resolving ambiguities. For instance, when L turns in
Figure 1-c, from D's perspective, it could be a turn to
fire a missile, but it could also be the beginning of a
180° turn to run away, or a tum to re-establish
contact given a problem in L's radar. To accurately
track L's maneuvers D has to resolve such
ambiguities. Despite such similarities, as we reported
in the proceedings of this conference last year
(Tambe and Rosenbloom, 1994) (also see (Tambe
and Rosenbloom, 1995a)), agent tracking in the air-
combat simulation environment brings up a novel
combination of challenges. In particular, previous
plan recognition work has primary focused on static,
single-agent environments where agents tend to
adhere to rigid plans. In stark contrast, the air-combat
simulation environment is a real-time, dynamic,
multi-agent environment. It is also a real-world
environment, with realistic sensors,1 and complex
agent behaviors. The key issues that arise as a result
are:
1. IPs must track other pilots' highly flexible mix

of goal-driven and reactive behaviors, rather
than purely plan-based behaviors (as with the
previous work on plan recognition).

2. IPs must track opponents' maneuvers in real-
time with sufficient accuracy, despite
ambiguities.

3. The interactions among IPs create a need for
recursive agent tracking — an IP needs to
recursively track its opponent's tracking of its
own maneuvers so as to understand their impact
on the opponent.

4. IPs need to track maneuvers of groups of

opponents.

In (Tambe and Rosenbloom, 1994), we presented
an approach to agent tracking that addresses the first
issue above of tracking flexible and reactive
behaviors. The approach was based on the model
tracing technique used in intelligent tutoring systems
(ITS) for tracking student actions (Anderson, et al.,
1990, Ward, 1991). Thus, to track the activities of its
opponent, an IP executes a model of that opponent to
generate predictions matching actual observations of
that opponent's actions. However, as with plan
recognition, previous ITS work has primarily focused
on static environments.2 This work applies model
tracing to the dynamic, multi-agent environment of
air-combat simulation, where agents exhibit a
complex mix of goal-driven and reactive behaviors.
Section 3 presents an overview of this work.

In this paper, we present new results pertaining to
the three issues above that were left unaddressed in
our previous report.3 The first unaddressed issue
concerns real-time tracking with accurate resolution
of ambiguities. Previous model tracing and plan
recognition systems have certainly dealt with the
problem of ambiguity resolution; however, their
solutions have turned out to be inappropriate, because
of the real-time nature of this domain. In Section 4,
we present a new approach called RESC (for
REal-time Situated Commitments), that builds upon
our previous work, and enables ambiguity resolution
within real-time constraints. RESC's situatedness is
based on its ability to continuously track an
opponent's actions in the current world state. Despite
the ambiguities it faces, RESC quickly commits to a
single interpretation of the opponent's on-going
actions — there is no exhaustive examination of
alternatives. With additional information becoming
available later, these commitments may turn out to be
inappropriate, and the interpretations may need to be
revised. These revisions occur on-line, in the context
of the current state via a process called single-state
backtracking. RESC's real-time character derives
from its situatedness, its quick commitments, and its
single-state backtracking.

Section 5 applies the RESC approach to address
the remaining two issues from the list: recursive
agent tracking and agent-group tracking. Recursive

'While the simulated radar, which is the primary sensor of concern
here provides numbers as input instead of radar images, it does
realistically model a radar's limitations.

2While there are some recent ITS applications that have ventured
into dynamic environments, e.g., REACT (Hill and Johnson, 1994),
they still primarily rely upon a plan-driven tracking strategy, dealing
with the dynamic aspects as exceptions.

3This is an overview of results presented elsewhere in (Tambe and
Rosenbloom, 1995a), (Tambe and Rosenbloom, 1995b) and (Tambe,
1995).

126

agent tracking requires that an IP execute its model of
its opponent's model of itself. For example, to
engage in recursive agent tracking, D would execute
its model of L's model of D. Tracking agent-groups
requires that an IP execute its models of the different
opponents. Unfortunately, the recursive tracking of a
large opponent group can involve the execution of a
large number of models. Given N opponents, and r
levels of nested models, an IP may need to track an
exponential number (0(Nr)) of models. Since this
computational cost is unacceptable in this real-time
environment, the IP uses heuristic optimizations of
model selectivity and model sharing to reduce the
number of models it has to execute. In contrast with
RESC, which is an intra-model approach to real-time
tracking, model selectivity and model sharing are
essential inter-model optimizations in service of real-
time tracking. These inter-model optimizations are
independent of the underlying intra-model
mechanisms.

All of the descriptions in this paper are provided in
concrete terms, using an implementation of the IPs in
TacAir-SoarRESC, which is an experimental variant
of the TacAir-Soar system created as part of the
Soar/IFOR project (Tambe et al., 1995, Rosenbloom,
et al., 1994, Laird et al., 1995). The
TacAir-Soar1^50 implementation will also be used in
Section 6 to present an empirical evaluation of the
effectiveness of the RESC approach, and the inter-
model optimizations. TacAir-SoarRESC contains
about 1050 rules, which is about half the number of
rules in TacAir-Soar. The main motivation behind
TacAir-SoarRESC is to understand the principles
underlying agent tracking. To that end, it
aggressively engages in agent tracking, using
experimental methods such as RESC, while TacAir-
Soar takes a more conservative approach. There are
thus some differences between the two systems with
respect to agent tracking, although TacAir-Soar's
agent tracking capabilities are a strict subset of the
agent tracking capabilities of TacAir-Soar1^^
Proven agent-tracking techniques uncovered in
TacAir-SoarRESC are to be (and some already have
been) transferred back into TacAir-Soar.

As with TacAir-Soar, TacAir-SoarRESC is built
using the Soar architecture (Laird, Newell, and
Rosenbloom, 1987, Rosenbloom, et al., 1991). In our
descriptions, we will assume some familiarity with
Soar's problem-solving model, which involves
applying operators to states to reach a desired state.

3. Tracking Flexible Behaviors
The basic approach for tracking an opponent's

actions is to execute a model of that opponent, while
matching the model's predictions against the

opponent's actual actions. Thus, to track its opponent
L's actions, D executes a model of L, matching
predictions against actions. The key observation here,
that enables D to meet the challenge of tracking
flexible and reactive behaviors is the following: D
and L, and in general other IPs involved in air-
combat, exhibit a similar flexible mix of goal-driven
and reactive behavior. Thus, while executing L's
model, D reuses the mechanisms that it uses in
generating its own flexible and reactive behaviors.

To understand this in more detail, consider D's
internal state and operator hierarchy as depicted in
Figure 2-a. D's internal state maintains information
regarding mission specifications, and receives input
from its radar or visual sensor. Based on the state, D
makes appropriate operator selections so as to
generate the desired behavior in its external
environment. In this case, it has selected
execute-mission as the top-most operator. Since the
termination condition of this operator — completion
of D's mission — is not yet achieved, a subgoal is
generated. The intercept operator is selected in that
subgoal. In the following subgoal, the employ-missile
operator is selected. The subgoal after that applies
get-firing-position to get to a missile firing position.
Skipping down to the final subgoal,
maintain-heading enables D to maintain heading, as
seen in Figure 1-c. The operators in Figure 2-a used
for generating D's own actions will henceforth be
denoted with the subscript D, e.g., intercept^.
OperatorD will denote an arbitrary operator of D.
StateD will denote the state. Together, stateD and the
operatorD hierarchy may be considered as D's model
of its present self, referred to as modelD.

Modelp supports D's flexible/reactive behavior
given the mechanisms for operator selection and
termination in the Soar architecture. These
mechanisms include Soar's preference-based
decision procedure for operator selection, and
termination conditions for operators (Laird and
Rosenbloom, 1990). To illustrate the reuse of these
mechanisms for tracking, we assume for now that D
and L possess an identical set of maneuvers.4 Thus,
D uses a hierarchy such as the one in Figure 2-b to
track L's behaviors. Here, the hierarchy represents
D's model of L's current operators in the situation of
Figure 1-c. These operators are denoted with the
subscript DL. The operatorDL hierarchy, along with
the stateDL that goes with it, constitute D's model of
L or modelDL. ModelDL obviously cannot and does
not directly influence L's actual behavior, it only
tracks L's behavior. For instance, in the final

•"This is not a necessary condition. The main requirement is for an
accurate model of the possible maneuvers.

127

Operator^ Hierarchy

EXECUTE-MISSION

INTERCEPT • FOLLOW-FLGT-PLAN
RUN-AWAY

EMPLOY -MISSILE

GET-FIRING-POSTTN

1 ""•

SEARCH-&-ACQUIRE
CHASE-OPPONENT

A CHIEVE-PR0X1MITY

MAINTAIN-HEADING

STATE

(a)

in the same flexible manner. For instance, as stateDL

changes, an operatorDL terminates if its conditions
are satisfied, and new operatorsDL get selected. This
enables D to track L's on-going flexible and reactive
behaviors.

To engage in its own actions while simultaneously
tracking its opponent's actions, D needs to execute
both modelD and modelDL simultaneously. It
currently achieves this by cycling through the process
of selecting an operator randomly from the heap of
applicable operatorsD and operatorsDL, and executing
that. As discussed later, if there are more models, the
heap of available operators can grow quite large, and
the random selection strategy can prove inadequate.
A better operator selection strategy is an issue for
future work.

Operator Hierarchy
DL

EXECUTE-MISSION

'
INTERCEPT

FOLLOW-FLGT-PLAN
RUN-AWAY

EMPLOY-MISSILE SEARCH-&-ACQU1RE

FINAL-MISSL-MANVR

""""-
POINT-AT-TARGET

_' CHASE-OPPONENT

START-MAINTN-TURN

SIATE'

(b)

Figure 2: (a) ModelD, and (b) ModelDL.
Solid lines indicate the actual operator hierarchy;

dashed lines indicate unselected alternatives,
(e.g., run-away is an alternative to intercept.)

subgoal D has applied the start-S.-maintain-turn^
operator to stateDL. This operator cannot cause L to
turn. It predicts L's turn and matches the prediction
against L's actual action. Thus, if L starts turning to
point at D's aircraft, then there is a match with
modelDL's predictions. Given this match, D now
believes L is turning to point at its target, (i.e., D), to
fire a missile, as indicated by other higher-level
operators in the hierarchy. D tracks L's behaviors in
this manner by continuously executing the
operatorDL hierarchy, and matching it with L's
actions.

Thus, D uses a uniform apparatus for the
generation of its own flexible/reactive behaviors and
tracking other agents' behaviors. In particular,
operatorD and operator• are selected and terminated

4. Addressing Ambiguity in Real-time
There are two types of ambiguities in the agent

tracking process introduced in the previous section.
The first type is the alternative tracking operators, as
shown in the dashed boxes in Figure 2-b. Given this
ambiguity, it is possible for D to make an inaccurate
selection of an operatorDL. An inaccurate selection
typically results in a match failure, i.e., a difference
in the anticipated and actual observed action. For
example, the operators in Figure 2-b predict L will
turn to point at D's aircraft. If L were to turn away
from D, there would be a match failure. The second
type of ambiguity is seen in stateDL. D needs to
model on statep^ ambiguous static information, such
as L's radar and missile capabilities, and equally
ambiguous dynamic information, such as whether L
has detected D on radar. Inaccuracies in state^ may
result in an incorrect operatorDL being selected, and
thus may also result in match failures. This paper
will mostly focus on the first type of ambiguity; see
(Tambe and Rosenbloom, 1995a) for more details on
resolving the second type of ambiguity.

Ambiguity resolution has been the focus of much
previous work in plan recognition and model tracing.
The challenge here, not addressed in previous work,
is that an IP has to resolve ambiguity in real-time. If
an IP lags behind in tracking, it risks being ignorant
of an opponent's important maneuvers that may
either jeopardize its own survival, or otherwise
deprive it of gaining an advantage over its opponent.
Ambiguity resolution techniques that have been
previously suggested in the literature, such as an
exhaustive search of alternatives (Ward, 1991), or
automated deduction (Kautz and Allen, 1986), fail to
meet this real-time challenge. An IP also cannot
avoid the ambiguity resolution problem by relying on
an abstract characterization of the opponent's actions.

128

For instance, D's recognition that L is engaged in an
intercept may be accurate and unambiguous, but it is
not sufficiently specific to enable D to counter-act
L's maneuvers by, say, evading a missile fired at it.

To meet the challenge of real-time ambiguity
resolution, we propose a new approach called RESC
(REal-time Situated Commitments). RESC relies on
three sub-components to meet this real-time
challenge: (i) situatedness, (ii) quick commitments,
and (iii) single-state backtracking.

RESC's situatedness arises from its continuous
tracking of L's on-going actions and behaviors in the
context of the current stateDL. Thus, as stateDL

changes, it can cause an operatorDL to terminate by
satisfying its termination conditions, and cause new
operatorDL to be selected.

RESC's commitment is to a single modelDL, with
a single stateDL that records the on-going world
situation in real-time, and a single operatorDL

hierarchy, that provides an on-going interpretation of
an opponent's actions. Given the intense real-time
pressure, RESC does not spend time trying to match
alternatives. Instead, it applies three inexpensive
filters to weed out unsuitable alternatives. The first
fuzz box filter filters out small changes in L's
heading, since these are typically small errors in an
IP's actions, and tracking such detailed errors is
unuseful. The second bottom up filter uses
observations of an opponent's actions to avoid
generating alternatives that are guaranteed to lead to
match failures. For instance, if L is turning right, any
alternative operatorDL that models L's left turn is
guaranteed to cause match failure, and need not be
generated. A third worst case filter, applied after the
first two, selects the worst of the remaining
alternatives — since this is a hostile environment, an
opponent is likely to engage in the most harmful
maneuver. For instance, if there is ambiguity between
run-awayDL or intercept^, D will select the more
harmful interceptDL. If more than one alternative still
remain active, D will pick one at random and commit
to that.

When faced with ambiguity, it is possible that
RESC commits to an inaccurate operatorDL and
stateDL, leading to a match failure. RESC recovers
from such failures by relying on single-state
backtracking to undo some of its commitments,
resulting in the generation of new operatorDL

hierarchies, in real-time. As its name suggests,
backtracking takes place within the context of a
single current stateDL. Starting from the bottom of
the operatorDL hierarchy, operators are terminated
one by one in an attempt to get alternatives to take

their place. Only those alternatives that are relevant
to the current state get installed in the hierarchy.
Some of these alternatives may lead to match failures
(possibly after changing stateDL). These are also
replaced, until some alternative leads to an
operatorDL hierarchy that leads to match success. The
key to the real-time character of this process is that it
occurs in the now, i.e., within the context of the
single updated current state. There is no re-
examination of past states as would be done in
normal backtrack search. Backtracking also does not
remain wedded to the state where the failure
occurred. Instead, it marches forward with the current
continuously changing state.

To understand why such backtracking may
actually work, let us consider the following example.
Suppose at time TQ D has committed to the modelDL

in Figure 2-b. At time TQ, point-at-target^ has
match success in that, as predicted, L indeed starts
turning towards D. This match success continues for
some time after T0, and stateDL is continuously
updated with new aircraft positions during all this
time. However, L really has decided to run away; so
it continues turning 180° without stopping when
pointing at D. This causes a match failure in the
operatorDL hierarchy. Single-state backtracking now
ensues, terminating operators beginning from the
bottom of the hierarchy. Finally, at time T0 + 8,
interceptDL is terminated and replaced by
run-awayDL. This predicts L to be turning towards its
home-base, which successfully matches L's actions.

In a normal backtrack search, in order to apply
run-away^ D would need to mentally recreate
stateDL at time T0 — after all, that is the state in
which L initiated the run-away maneuver. However,
with single state backtracking, D applies run-awayD^
to stateDL as it exists at time TQ + 8. Thus, the
conditions and actions of run-away^ have to be
such that they are independent of the passage of time
8. This is achieved here, since run-awayD^ requires
that an agent turn towards its home-base, which does
not change position in 8. In fact, conditions and
actions of operatorsDL typically refer to aspects of
the world that change at a rate slower than the
possible time delay caused in noticing a match failure
and backtracking, and thus can be successfully
applied in single-state backtracking.

Overall, RESC trades off completeness in service
of real-time tracking. That is, RESC could potentially
lead to errors in tracking, which a more exhaustive
tracker could possibly avoid. Fortunately, RESC's
worst-case filter attempts to ensure that its tracking
errors will at least not be fatal. In any event, as
illustrated in Section 6, RESC has so far not suffered

129

along the completeness dimension.

5. Recursive Agent and
Agent-Group Tracking

The RESC approach can be applied in a
straightforward manner for both recursive agent
tracking and agent-group tracking. Let us first focus
on recursive tracking. If D believes L to be aware of
D's presence, D can recursively track its own actions
from L's perspective, by executing modelDLD or D's
model of L's model of D. ModelDLD consists of a
stateDLD and an operatorDLD hierarchy. D tracks
modelDLD by matching operatorDLD predictions with
its own actions. Thus, if D were to engage in an
fpoleD after a missile firing, it would be D's recursive
tracking of fpoleDLD which would indicate a missile
firing to modelDL, eventually leading to the selection
of evade-missileDL to track L's missile evasion. On
the contrary, if D believes L to be unaware of itself,
then it would not create a modelDLD. In this case,
modelDL will not be informed of D's missile firing,
and thus, D would not expect L to engage in
evade-missileDL. Further nesting of recursive models
could lead to the creation of modelDLDL,
modelDLDLD, etc.

To track groups of opponents, D can again execute
its models of different individual opponents. For
instance, suppose a second opponent, J joins L in
attacking D. D can track J's actions just as it tracked
L's actions, by executing new models, such as
modelpj and modelDJD. In addition, it may also
execute others such as model
modelpLjL and so on.

DJL' model DLJ'
These models may be

important to track J's interactions with L.

Unfortunately, this scheme points to an
exponential growth in the number of models that an
IP needs to execute. In general, for N opponents, and
r levels of nesting (measured with r=l for modelD,
r=2 for modelDL, and so on), L may need to execute

> •_nN
l =-n—r different models. Given its limited

•^^(=11 A'—1

computational resources, D would be unable to
execute relevant operators from all these models in
real-time, jeopardizing its combat effectiveness and
survival.

Two inter-model optimizations, model selectivity
and model sharing, can help alleviate this problem.
Model selectivity suggests selective construction of
only those models as are relevant to the given
situation. Such selectivity may be exercised based on
the current or anticipated level of interaction between
two agents, and abstraction. For instance, suppose D
determines the two opponents attacking it, L and J to

be independent of each other. It can then avoid the
construction of models such as modelDI, and
modelDJL since those were originally intended to
model their interactions. For further selectivity, D
may also abstract away from differences in recursive
models across levels, at least at deep levels of
nesting. Currently, based on our interviews with
domain experts (pilots), we have set the level of
nesting to r<3. Thus, D avoids creating models at
r>4 such as modelDLDL — it abstracts away from
differences in models such as modelDL and
modelDLDL.

The overall result of model selectivity is to reduce
the total number of models for N independent

opponents from -jn-y to 2N+1. Model sharing now

helps in further reduction by suggesting direct
sharing of states and operators among different
models, to reduce the number of models being
executed. For an illustration of this optimization,
consider modelD and modelDLD. The operatorD

hierarchy can be shared with the operatorDLD

hierarchy since the two are often identical.
Furthermore, information in stateD, such as radar
input, is shared with stateDLD. If there may be some
unsharable secret aspects of stateD, e.g., if D's
missile range is a secret, then it will be maintained on
statep, but it will not be shared with stateDLD. With
the sharing of such recursive models, the total
number of models being executed goes down to
N+l. There is a further opportunity for model
sharing, if the opponents are seen to be attacking in a
closely coordinated fashion, as often occurs in air-to-
air combat. For instance, if L and J are closely
coordinated, D may share modelDL with modelDj,
and modelDLD with modelDJD. Thus, if all N
opponents are coordinated, D may need to execute
only two models instead of N+1.

Unfortunately, in some cases, shared models need
to be un-shared (that is one of the key reason why the
models are shared rather than being eliminated via
selectivity). For instance, L and J may initially
engage in identical maneuvers, but then launch a
pincer tactical attack on D from two sides. Tracking
this requires that there be some unsharing of models,
since L may be turning left as part of the pincer while
J turns right. The penalty for such unsharing is in
terms of copying information from what was
previously one model into a second one. Thus, an IP
has to trade off the benefits of sharing with the cost
of possible unsharing. In general, if it greedily shares
two models whenever they appear identical, it could
face a very heavy unsharing overhead. At present,
this sharing question is resolved based on the
following heuristics:

130

• If two agents are engaged in a tightly
coordinated attack, then their models are shared.
If they engage in a tactic, such as a pincer, that
requires model unsharing, then the models are
not re-shared. The motivation being that if the
models are unshared once, they are likely to face
unsharing repeatedly, and thus, re-sharing would
not be beneficial.

• An agent's model and its recursive agent model
(e.g., modelD and modelDLD) are shared. When
an agent engages in a deceptive tactic, the
models are partially unshared. They are then re-
shared upon completion of the deceptive tactic.

6. Evaluating TacAir-Soar1^80

As mentioned in Section 2, we have developed a
system called TacAir-SoarRESC that brings together
the ideas presented in this paper. There are two
aspects to the evaluation of TacAir-SoarRESC. The
first aspect is whether the current approach enables
D, the TacAir-SoarRESC pilot agent, to track its
opponents' actions accurately in real-time. We
conducted two sets of experiments to address this
issue. The first set involved running Soar-vs-Soar air-
combat simulation scenarios, as outlined by the
human experts, with the number of opponents
varying from one to four.5 The following presents
some observations about these experiments,
presented in terms of the TacAir-SoarRESC based IP
D's ability to track its opponent's maneuvers:
1. The amount of effort involved in agent tracking,

as measured by the percentage of overall
operators involved in agent tracking varied from
8% to 63%. The actual effort depended on both
the number of opponents and the complexity of
the opponents' maneuvers.

2. In some scenarios up to 20% of the agent
tracking operators resulted in match failures.
However, the IP still recovered from these
failures, and settled on a matching operator in
real-time.

3. The model-sharing and selectivity optimizations
do help in alleviating resource contentions. In
the case of four coordinated opponents, the
model-sharing optimization reduces the number
of models from (2N+1 =) 9 to just 2. In terms of
actual operators, it is projected to provide up to
a 4 fold improvement in operator executions.

4. In the case of four independent opponents,
however, D still does face some resource

5In these experiments, the opponents did not perform coordinated
tactics such as pincer or double-pincer—that is left for future work.

contention, and it is seen to be unable to track
the actions of all of the agents in time. Further
improvements in model-sharing and model-
selectivity optimizations may be required to
address this issue.

Our second set of experiments involved Soar-vs-
ModSAF simulated air-combat scenarios. ModSAF-
based (Calder et al., 1993) pilot agents are controlled
by finite state machines combined with arbitrary
pieces of code, and do not exhibit high behavioral
flexibility. While D was in general successful in
agent tracking in these experiments — it did
recognize the maneuvers in real-time and respond to
them — one interesting issue did come up. In
particular, in one of the scenarios here, there was a
substantial mismatch in D's worst assumptions
regarding its opponent's missile capabilities and the
actual capabilities — D assumed the range to be 30
miles, even though the actual range was about 15
miles. This led to tracking failures. Dealing with
model mismatch is also an issue for future work.

The second aspect to understanding the
effectiveness of TacAir-SoarRESC is an estimate of
the impact of agent tracking on improving D's
overall performance. In general, this is a difficult
issue to address. A quantitative estimate is difficult,
since it is difficult to quantify an improvement or
degradation in D's overall performance.
Nonetheless, we can at least list some of the types of
benefits that D accrues from this capability. First,
agent tracking is crucial for D's survival. Indeed, it is
based on agent tracking that D can recognize an
opponent's missile firing behavior and evade it.
Second, agent tracking improves D's overall
understanding of a situation, so it can act/react more
intelligently. For instance, if an opponent is
understood to be running away, D can chase it down,
which would be inappropriate if the opponent is not
really running away. Similarly, if D is about to fire a
missile, and it recognizes that the opponent is also
about to do the same, then it can be more tolerant of
small errors in its own missile firing position so that
it can fire first. Finally, agent tracking helps D in
providing a better explanation of its behaviors to
human experts. (Such an explanation capability is
currently being developed (Johnson, 1994)). If
human experts see D as performing its task with an
inaccurate understanding of opponents' actions, they
may not have sufficient confidence to actually use it
in training.

7. Conclusion
The real-time, dynamic, multi-agent environment

of air-combat simulation, poses novel challenges for
agent tracking. This paper presented some new

131

results in agent tracking that built upon our previous
work reported at this conference (Tambe and
Rosenbloom, 1994). Specific contributions include:
(i) an approach called RESC (Real-time Situated
Commitments) that enabled tracking of flexible and
reactive behaviors with real-time ambiguity
resolution: (ii) extension of RESC to recursive agent
and agent-group tracking; and (iii) model selectivity
and model sharing optimizations to alleviate some of
the overheads of a large number of models. The
paper presented results from a system called
TacAir-SoarRESC that was built based on the ideas
presented in the paper.

An important issue for future work is tracking a
coordinated tactic such as a pincer. This requires that
we address, among other things, the issues of model
sharing and unsharing. As noted in Section 6,
addressing model mismatch is another important
issue for future work. We hope that resolution of
these issues will lead towards an improved
understanding of agent tracking, and its possible
application in other domains, such as education and
entertainment.

8. Acknowledgements
This research was supported under subcontract to

the University of Southern California Information
Sciences Institute from the University of Michigan,
as part of contract N00014-92-K-2015 from the
Advanced Systems Technology Office (ASTO) of the
Advanced Research Projects Agency (ARPA) and the
Naval Research Laboratory (NRL); and as part of
contract N66001-95-C-6013 from the Advanced
Systems Technology Office (ASTO) of the Advanced
Research Projects Agency (ARPA) and the Naval
Command and Ocean Surveillance Center, RDT&E
division (NRAD).

9. References
Anderson, J. R., Boyle, C. F., Corbett, A. T., and

Lewis, M. W. (1990) "Cognitive modeling and
intelligent tutoring". Artificial Intelligence 42 ,
7-49.

Azarewicz, J., Fala, G., Fink, R., and Heithecker, C.
(1986) Plan recognition for airborne tactical
decision making. Proceedings of the National
Conference on Artificial Intelligence. , pp.
805-811.

Calder, R. B., Smith, J. E., Courtemanche, A. J., Mar,
J. M. F., Ceranowicz, A. Z. (1993) ModSAF
behavior simulation and control. Proceedings of
the Conference on Computer Generated Forces
and Behavioral Representation.

Carberry, S. (1990) Incorporating default inferences
into Plan Recognition. Proceedings of National
Conference on Artificial Intelligence. , pp.
471-478.

Hill, R., and Johnson, W. L. (1994) Situated plan
attribution for intelligent tutoring. Proceedings of
the National Conference on Artificial
Intelligence.

Johnson, W. L. (August, 1994) Agents that learn to
explain themselves. Proceedings of the National
Conference on Artificial Intelligence. Seattle,
WA,

Kautz, A., and Allen J. F. (1986) Generalized plan
recognition. Proceedings of the National
Conference on Artificial Intelligence. , pp. 32-37.

Laird, J.E. and Rosenbloom, P.S. (July, 1990)
Integrating execution, planning, and learning in
Soar for external environments. Proceedings of
the National Conference on Artificial
Intelligence.

Laird, J. E., Johnson, W. L., Jones, R. M., Koss, F.,
Lehman, J. F., Nielsen, P. E., Rosenbloom, P. S.,
Rubinoff, R., Schwamb, K., Tambe, M., van
Lent, M., and Wray, R., (May, 1995) Simulated
Intelligent Forces for Air: The Soar/IFOR project
1995. Proceedings of the Fifth Conference on
Computer Generated Forces and Behavioral
Representation.

Laird, J. E., Newell, A. and Rosenbloom, P. S.
(1987) "Soar: An architecture for general
intelligence". Artificial Intelligence 33, 1 , 1-64.

The DIS steering committee. (May, 1994)The DIS
vision: A map to the future of distributed
simulation. Tech. Rept. IST-SP-94-01, Institute
for simulation and training, University of Central
Florida,.

Rosenbloom, P. S., Laird, J. E., Newell, A., and
McCarl, R. (1991) "A preliminary analysis of
the Soar architecture as a basis for general
intelligence". Artificial Intelligence 47, 1-3 ,
289-325.

Rosenbloom, P., Johnson, W. L., Jones, R. M., Koss,
F., Laird, J. E., Lehman, J. F., Rubinoff, R.,
Schwamb, K., and Tambe, M. (1994) Intelligent
Automated Agents for Tactical Air Simulation: A
Progress Report. Proceedings of the Conference
on Computer Generated Forces and Behavioral
Representation.

Song, F. and Cohen, R. (1991) Temporal reasoning
during plan recognition. Proceedings of the
National Conference on Artificial Intelligence.

Tambe, M. (1995) "Recursive agent and agent-
group tracking in a real-time dynamic
environment". Information Sciences Institute,
University of Southern California Unpublished
note.

Tambe M., and Rosenbloom, P. S. (May, 1994)
Event tracking in complex multi-agent
environments. Proceedings of the Conference on

132

TirrjjvT*'

Computer Generated Forces and Behavioral
Representation.

Tambe, M. and Rosenbloom, P. S. (1995) "Event
Tracking in a dynamic multi-agent environment".
Computational Intelligence (To appear).

Tambe, M. and Rosenbloom, P. S. (1995) "RESC:
an approach to real-time, dynamic agent
tracking". Information Sciences Institute,
University of Southern California Unpublished
note.

Tambe, M., Johnson, W. L., Jones, R., Koss, F.,
Laird, J. E., Rosenbloom, P. S., and Schwamb, K.
(Spring 1995) "Intelligent agents for interactive
simulation environments". AI Magazine 16 .

Ward, B. (May 1991) ET-Soar: Toward an ITS for
Theory-Based Representations. Ph.D. Th.,
School of Computer Science, Carnegie Mellon
University,.

10. Authors' Biographies
Milind Tambe is a research computer scientist at

the Information Sciences Institute, University of
Southern California (USC) and a research assistant
professor with the computer science department at
USC. He completed his undergraduate education in
computer science from the Birla Institute of
Technology and Science, India in 1986. He received
his Ph.D. in computer science from Carnegie Mellon
University in 1991. His interests are in the areas of
integrated AI systems, agent modeling, plan
recognition, and efficiency and scalability of AI
programs, especially rule-based systems.

Paul S. Rosenbloom is an associate professor of
computer science at the University of Southern
California and the acting deputy director of the
Intelligent Systems Division at the Information
Sciences Institute. He received his B.S. degree in
mathematical sciences from Stanford University in
1976 and his M.S. and Ph.D. degrees in computer
science from Carnegie-Mellon University in 1978
and 1983, respectively. His research centers on
integrated intelligent systems (in particular, Soar),
but also covers other areas such as machine learning,
production systems, planning, and cognitive
modeling. He is a Councillor and Fellow of the
AAAI and a past Chair of ACM SIGART.

133

A Methodology and Tool for Constructing Adaptive Command Agents for
Computer Generated Forces

Michael R. Hieb, Gheorghe Tecuci, J. Mark Pullen
Department of Computer Science
George Mason University,
Fairfax, VA 22030
{hieb, tecuci, mpullen}@cs.gmu.edu

Andrew Ceranowicz
Loral Advanced Distributed
Simulation, 50 Moulton St.
Cambridge, MA 02138
aceran@camb-lads.loral.com

David Hille
ANSER
1215 Jefferson Davis Hwy
Arlington, VA 22202
hilled@anser.org

1. Abstract

The ability to build intelligent command agents for
Computer Generated Forces (CGF) is significantly
constrained by the knowledge acquisition effort
required. Many iterations by Subject Matter Experts
(SME), programmers and knowledge engineers are
required to develop acceptable behavior even for a
narrow range of situations. Moreover, once built the
agents cannot adapt themselves to changes. This
paper presents an automated knowledge acquisition
system, called Captain, which allows the SME to
"teach" a CGF command agent in much the same
way the SME would teach a human student. Captain
is built upon Disciple, a multistrategy apprenticeship
learning system that combines machine learning and
knowledge acquisition methods. With Captain, an
SME gives the CGF command agent specific
examples of problems and solutions, explanations of
these solutions, or supervises the agent as it solves
new problems. During such interactions, the agent
learns how to behave in similar situations. This
approach produces verified behavior and addresses
the problem of validating existing behaviors when
new behaviors are added. In this paper we describe
the teaching modes of Captain and illustrate it with an
extended example from a specific CGF system,
Modular Semi-Automated Forces (ModSAF), where
an SME teaches a CGF entity a desired behavior,
using the ModSAF and Captain interfaces.

2. Introduction

We are currently developing a methodology and tool,
called Captain (Tecuci, et al. 1994; Hille, et. al 1994)
to construct virtual command agents for Computer
Generated Forces. This general approach has the
potential to significantly advance the state of the art
of constructing intelligent agents. Captain is built
upon the Disciple multistrategy machine learning
technology we have been developing for several
years (Tecuci 1988, Tecuci & Kodratoff 1990, Tecuci
1992). This methodology is based on a synergistic
combination of a wide range of machine learning
strategies (explanation-based learning, learning by
analogy, empirical inductive learning from examples,
abductive learning, etc.) which significantly increases
the capabilities of a machine learning system.

An extensive and error-prone knowledge acquisition
effort is currently required to develop validated
acceptable behavior of CGF entities. Moreover,
because CGF agents cannot adapt themselves to
changes, these efforts must resume whenever tactics
and weapon systems are changed, or the simulated
environments become more sophisticated. New
methods are needed to cope with the challenge of
building virtual commanders, which can command
large numbers of entity level CGF. Captain is an
initial approach to this problem that enables an SME
(e.g., an Armored Company Commander) to build an
adaptive command agent for a CGF system, (e.g.,
ModSAF (Ceranowicz, 1994)), following a tutoring
approach rather than a traditional knowledge
engineering approach.

With Captain, an SME can teach an agent in many of
the same ways the SME would teach a human
student. The SME will give the agent specific
examples of problems and solutions, will give
explanations of these solutions, and will supervise the
agent as it solves new problems. During such
interactions, the agent learns general rules and
concepts, continuously extending and improving its
knowledge base. This approach produces verified
knowledge-based command agents, because it is
based on an SME interacting with, verifying and
correcting the way the agent solves problems.
Moreover, the command agent could continue to
learn from its own experiences, during its normal use
in simulations, by using the same learning strategies
it employed to learn from the SME. We expect that
this type of technology will be a key driver in shifting
the job of agent construction from programmers and
knowledge engineers to SMEs.

This paper gives an overview of the Captain
methodology and tool, and illustrates them with an
example of teaching an automated company
commander how to place its units for a defensive
mission, as in the situation in Figure 1.

The rest of the paper is organized as follows. Section
3 presents the general methodology of the Captain
approach. Section 4 describes the knowledge
representation of Captain. Section 5 presents the
learning methods. Section 6 presents an extended
example of agent training. Finally, section 7

135

Figure 1: Placement of platoons by a Captain
agent for a defensive mission

concludes the paper with a discussion of our agent-
building approach.

3. Captain Methodology

CGF, such as ModSAF, provide a system for
collective training of military forces that uses no fuel,
causes no training injuries (except perhaps to the
ego), and avoids much of the cost associated with
travel to far-away training grounds. While virtual
simulation will not completely replace field training,
it will significantly reduce the total cost of training.

One of the applications of the Captain methodology
is to build command agents at different echelons.
Such command agents will generate orders for their
subordinates and will represent the behavior of forces
containing hundreds of vehicles, expanding the
effective scope of Distributed Interactive Simulation
applications to much larger forces.

In the Captain methodology, we define three phases
in the creation of an agent.

In the first phase, Knowledge Elicitation, the SME
works with a knowledge engineer to define an initial
knowledge base (KB) which will contain whatever
knowledge could be easily expressed by the expert.
This KB is expected to be incomplete and partially
incorrect at this point.

In the second phase, Apprenticeship Learning, the
Command Agent will interactively learn from the
expert by employing apprenticeship multistrategy
learning. During this phase, the agent's KB is
extended and corrected until it becomes complete and
correct enough to meet required specifications. There
are three Interactive Learning Modes involving an
SME that are available during this phase as shown in
Figure 2: Teaching, Cooperating and Critiquing.

In the Teaching Mode, the SME will show the agent
examples of typical situations and correct orders to
give to subordinate units to achieve the goals of a
certain mission. This will take the form of detailing a
specific scenario in ModSAF and then giving the
agent a mission and specifying how it is to respond.
From each such scenario, the agent will learn a rule
that will allow it to respond adequately to situations
similar to the one indicated by the SME. The Captain
Agent will attempt to understand the example given,
by asking the SME questions and asking for
explanations when necessary. The Captain Agent
may also elicit new concepts or relations from the
SME, when it does not have the required knowledge
available. An extended example of the Teaching
Mode is given in Section 6.

In the Cooperating Mode, the Captain agent will
work through a ModSAF scenario with the help of
the SME. The Captain Agent will issue orders for a
given mission and the SME will either verify that
they are correct, or propose specific changes that the

TEACHING the Agent through
examples of typical scenarios

COOPERATING with the Agent to
generate orders during a scenario

CRITIQUING the Agent's performance
by identifying failures

AUTONOMOUS PERFORMANCE by the Agent
(learning from its own experience)

Figure 2: Different modes of learning in Captain

136

Captain Agent can learn from. The aim of the
Cooperating Mode is to improve the rules that have
already been learned. This interaction is easier for the
SME than the previous mode, because the agent is
generating the orders. The system will require less
explanation and will not need to elicit as much new
information.

In the Critiquing Mode, the agent will perform
unassisted in a ModSAF scenario. A logger will then
be used by the SME to play back the ModSAF
scenario, who will select particular orders that were
not generated properly, and suggest better orders.
This mode could be thought of as "debugging" the
learned knowledge. The aim is to verify that the
learned knowledge is correct, and to improve it when
necessary.

When the Captain command agent has been trained
with examples of the typical ModSAF scenarios it
should be able to solve, it enters a third phase,
Autonomous Learning, where it is used in simulations
without the assistance of the SME. However, the
agent will continue to learn from its own experiences
by employing the same multistrategy techniques it
used when learning from an SME.

It is important to stress that both the apprenticeship
learning and autonomous learning take place off-line.
Therefore they are not constrained by the limited time
or limited computational resources available during
real-time simulations. The only constraint imposed
during the actual simulation is to keep a record of the
agent's decision process.

The Captain agent in ModSAF acts as an automated
commander that receives missions and generates
appropriate orders for its subordinate units. For
instance, the agent may represent a company
commander, and receive the mission of defending its
area of responsibility (shown in Figure 1) against an
enemy attack. The agent will then issue orders to its
subordinate platoons to move to the positions
indicated in Figure 1, to protect themselves and to
prevent the enemy from passing through their area.
Solving this placement problem requires a very
complex reasoning process about terrain, weapon
systems capabilities, and tactics. In the next sections
we will describe the knowledge representation and
reasoning of Captain agents, and how they are taught
to solve the class of problems illustrated in Figure 1.

4. Knowledge Representation
Captain agents use a hybrid knowledge representation
integrating semantic networks and rules. Semantic
networks represent information from a terrain
database at a conceptual level, as well as generic and
specific knowledge about weapon systems and forces.
Rules are used to represent the behavior and decision

making of the agent as it generates orders for
accomplishing missions.

In order to facilitate learning, the objects and the
rules both use the following representation unit:

(concept-i concept-k (FEATURE-1 value-1)

(FEATURE-n value-n))

This expression defines 'concept-k' as being a
subclass of 'concept-i' (from which it inherits
features) with additional features. The value of a
feature may be a constant or another concept.

Captain agents in ModSAF must reason about the
placement and movement of their forces. Humans
subconsciously transform terrain they see on a map
(see Figure 1) or from their personal observation into
an abstract model that they then use when reasoning.
Automated commanders need to do a similar kind of
transformation, since the data readily available to
them in a terrain database has too much detail to rea-
son about terrain efficiently. Captain uses semantic
terrain transformations (transforming the terrain data
to relevant symbolic concepts), described in (Hille, et
al. 1995). After the terrain transformations are per-
formed, the map is represented in a symbolic form
expressing concepts and relationships in a semantic
network. For instance, a portion of information from
the map in Figure 1 is represented in the Captain
knowledge base as shown in Figure 3.

The rules in the agent's knowledge base are if-then
rules represented as plausible version spaces (Tecuci,
1992). A concrete example of such a rule is shown in
Figure 4. It is a rule for placing the platoons of a
company to defend a company's area of

(hill hill-911
(orientation "right")
(size 5)
(in company-a-area-of-responsibility))

(hill-sector hill-sector-911-1
(quadrant 1)
(visible mobility-corridor-a)
(visible engagement-area-a)
(has-exit "yes")
(in company-a-area-of-responsibility)
(distance-to-engagement-area "close")
(part-of hill-911))

(hill-sector hill-sector-911-2
(quadrant 2)
(visible mobility-corridor-a)
(visible engagement-area-a)
(has-exit "yes")
(in company-a-area-of-responsibility)
(distance-to-engagement-area "close")
(part-of hill-911))

Figure 3: Terrain knowledge

137

IF
plausible upper bound
(SOMETHING AR20)
(SOMETHING AV21 (PART-OF AR20))
(ENGAGEMENT-AREA E22 (PART-OFAV21))
(HILL-SECTOR HS-TP1 (IN AR20) (VISIBLE E22))
(HILL-SECTOR HS-TP2 (IN AR20) (VISIBLE E22))
(HILL-SECTOR HS-I (IN AR20) (VISIBLE E22) (DISTANCE-TO-ENGAGEMENT-AREA "close"))
(SOMETHING P1)
(SOMETHING P2)
(SOMETHING P3 (WEAPONS-CLASSIFICATION "light"))
(SOMETHING C19 (NUMBER-OF-PLATOONS 3) (COMMANDS P3) (COMMANDS P2) (COMMANDS P1))
(DEFEND-AREA-MISSION M23 (WITHC19)(INAR20))

plausible lower bound
(AREA-OF-RESPONSIB1LITY AR20)
(AVENUE-OF-APPROACH AV21 (PART-OF AR20))
(ENGAGEMENT-AREA E22 (PART-OF AV21))
(HILL-SECTOR HS-TP1 (IN AR20) (VISIBLE E22))
(HILL-SECTOR HS-TP2 (IN AR20) (VISIBLE E22))
(HILL-SECTOR HS-I (IN AR20) (VISIBLE E22) (DISTANCE-TO-ENGAGEMENT-AREA "close"))
(ARMORED-PLATOON P1)
(ARMORED-PLATOON P2)
(INFANTRY-PLATOON P3 (WEAPONS-CLASSIFICATION "light"))
(COMPANY C19 (NUMBER-OF-PLATOONS 3) (COMMANDS P3) (COMMANDS P2) (COMMANDS P1))
(DEFEND-AREA-MISSION M23 (WITHC19)(INAR20))

THEN
the problem

PLACE-COMPANY C19 IN AR20 TO-DESTROY-ENEMY-IN E22 FOR M23

has the following solution
PLACE-INFANTRY-PLATOON P3 IN HS-I
PLACE-TANK-PLATOON P1 IN HS-TP1
PLACE-TANK-PLATOON P2 IN HS-TP2

Figure 4: A rule for company defensive placement

responsibility while protecting itself. The plausible
lower bound is a conjunctive expression that is
approximately less general than the hypothetical
exact condition of the rule. The plausible upper
bound is a conjunctive expression that is
approximately more general than the hypothetical
exact condition. This type of rule allows the agent to
respond to a wide variety of situations.

If the plausible lower bound of the rule in Figure 4
matches the current situation, then the placement
indicated by the rule is most likely a correct one. If
the plausible lower bound does not match the current
situation, but the plausible upper bound does, then the
placement indicated by the rule is considered only
plausibly correct. Finally, if the plausible upper
bound does not match the current situation, the rule is
not considered applicable. The placement indicated in
Figure 1 was generated by applying the plausible
lower bound of the rule in Figure 4, which gives this
solution a high degree of confidence.

While Captain uses a plausible version space to learn
rules that have plausible bounds, these plausible
version space rules may then be translated to single
condition rules, or other formats required by specific
CGF systems.

It is important to stress that there are many correct
placements, corresponding to different ways of
matching the plausible lower bound and the situation
represented in Figure 1. For instance, the 1st armored
platoon could also be placed in sector 1 of hill 911.
During a simulation, the agent may randomly pick
one placement covered by the lower bound. This is a
very important aspect of our rule representation that
accounts for the unpredictability of an agent's
behavior, a feature which is characteristic of human
agents but very rare among automated agents. The
rules from the agent's knowledge base are learned by
the agent during training sessions with a human
expert, as illustrated in Section 6. The generalization
language for the rules is provided by the semantic
network of object concepts. This language is
incomplete and partially incorrect, and will also
evolve during the training sessions. Therefore, the
learning goal of the agent is not to learn a consistent
and complete rule, but a rule that has as few
inconsistencies as possible and is as complete as
possible.

138

5. Learning in Captain

The rule learning process is summarized in Table 1
and partially illustrated in the next section which
presents a training session with Captain and ModSAF
in which Captain interacts directly with an SME to
learn how to place platoons of a ModSAF company
commander to defend the company's area of
responsibility. An example of such a scenario is
shown in Figure 1.

Given a company and its area of responsibility, the
SME is asked to place the company's platoons using
the ModSAF graphical interface. The SME is then
asked to select relevant explanations from a menu of
plausible explanations generated by Captain. Captain
generates these explanations by using heuristics to
look for various types of correlations in its
knowledge of the situation.

Given knowledge of the current situation, the correct
placement for the defensive mission and the
explanations of why the placement is good, Captain
generates an initial plausible version space rule for
placing platoons. However the rule is not completely
learned and is still in a very general form that allows
a great many possible placements, some of which
may not be correct. The system uses this intermediate
form of the rule to generate a concrete placement for
the company and shows this to the SME on the
ModSAF graphical display. The SME is asked if this
is a good placement. If the SME agrees, then the
system generalizes from the two placements utilized
and learns a better rule. If the SME disagrees then the
system elicits an explanation as to why the placement
is not correct (e.g., one of the platoons cannot see the
area of engagement or the infantry is too far away)
and corrects the rule to eliminate the generation of
such placements. The learning process continues in
this manner. After Captain has learned a rule, the
SME is allowed to validate the rule by examining
other placements which Captain generates. When the
SME is satisfied that the rule represents acceptable
behavior the rule is placed into the Captain
knowledge base. As noted previously, the rule(s)
learned may then be translated into forms required by
specific CGF systems.

During learning, both the plausible lower bound and
the plausible upper bound are adjusted to better ap-
proximate the hypothetical exact condition of the
rule. This is achieved by successive generalizations
and specializations of each of the bounds. However,
in spite of these incremental adjustments, the plausi-
ble bounds may not become identical because of the
incompleteness of the representation language or be-
cause there are not enough examples to learn from.

The SME may express whatever knowledge is
necessary at any time in the process. If an explanation
is not given when the initial rule is formed, it may be

INPUT: an example of problem and its correct solution
indicated by the expert

• Find an explanation of the validity of the training
example

• Define an initial plausible version space for the rule
to be learned, in which the plausible lower bound
corresponds to the explanation of the training
example, and the plausible upper bound
corresponds to an over-generalization of the
explanation

• Use the plausible upper bound to generate
examples analogous with the input and ask the
expert to characterize each of them as correct
(positive example) or incorrect (negative example).
Additional examples may also be indicated by the
expert.

• Use these analogous examples to elicit additional
explanations from the expert and to modify the
plausible bounds of the rule's condition to better
approximate the hypothetical exact condition.

OUTPUT: one or more rules for solving the problems
illustrated by the initial example, as well as an
improved semantic network representing more
complete and correct descriptions of the
application domain objects.

Table 1: Overview of the learning method

given at a later time. In this way, the rule for unit
placement is incrementally improved during the
teaching mode. The rule is available for modification
at any time, even by another SME. The teaching
mode stops when the SME is satisfied with the
behavior, or the system has considered all possible
solutions to the problem presented. After the initial
rule is learned in the Teaching Mode, it may be
further refined and verified in the subsequent two
modes, Cooperating and Critiquing. In these modes
the placement rule would be used by the agent in the
performance of an actual mission.

6 An Illustration of Teaching a Captain Agent

In this section we will illustrate how an SME will
teach a Captain agent to behave as an automated
company commander. We will show how the SME
will teach the Captain agent how to place its units in
order to defend an area from an enemy attack. The
SME initiates the teaching session by showing the
agent a specific example of a correct placement. The
SME places the three platoons of Company D on the
ModSAF map, to defend the company's area of re-
sponsibility, as indicated in the left hand side of
Figure 5. The SME uses the ModSAF simulation in-
terface as the SME normally would when orienting
units. The right hand side of Figure 5 shows the
textual representation of the example mission and

139

Initial Problem:
Place-company company-D

in company-D-area-of-responsibility
to-destroy-enemy-in engagement-area-D
for defend-area-mission

Initial Solution:
place-infantry-platoon platoon-D3

in hill-sector-868-1
position-tank-platoon platoon-D1

in hill-sector-863-2
position-tank-platoon platoon-D2

in hill-sector-875-2

Figure 5: Initial Placement for Company D

also the solution. The system maintains a correspon-
dence between each concept in the textual represen-
tation (e.g., hill-sector-868-1) and the corresponding
object (region) on the map.

The Captain agent will attempt to understand why the
indicated solution is correct. It will use several
heuristics to propose partial plausible explanations
from which the SME has to choose the relevant ones,
as indicated in Figure 6. The partial explanations
proposed by the system are relationships between the
objects from the problem and its solution, or
properties of these objects that are represented in the

agent's knowledge base. For instance, in the case of
the example considered, they are relationships
between the platoons and the terrain features.

There are several general explanation patterns in
Captain, which are matched against the knowledge
base to generate specific plausible explanations. The
SME first selects the relevant ones, then may request
additional explanations, or the SME may give
additional relevant explanations (which were not
generated by the system). As indicated in Figure 6,
the system generated 35 explanations from which the
SME chose 13 as relevant, and has given an

CHOOSE THE EXPLANATIONS

1> defend-area-mission-D IN company-D-area-of-responsibility
2> defend-area-mission-D WITH company-D
3> engagement-area-d PART-OF avenue-of-approach-D
4> hill-sector-875-2 VISIBLE engagement-area-D
5> hill-sector-863-2 VISIBLE engagement-area-D
6> hill-sector-868-1 VISIBLE engagement-area-D
7> avenue-of-approach-D PART-OF company-D-area-of-responsibility
8> hill-sector-863-2 VISIBLE mobility-corridor-D PART-OF avenue-of-approach-D
9> hill-sector-868-1 VISIBLE mobility-corridor-D PART-OF avenue-of-approach-D
10> hill-sector-875-2 IN company-D-area-of-responsibility
11> hill-sector-863-2 IN company-D-area-of-responsibility
12> hill-sector-868-1 IN company-D-area-of-responsibility
13> company-D COMMANDS platoon-D2
14> company-D COMMANDS platoon-D1
15> company-D COMMANDS platoon-D3
16> hill-sector-875-2 QUADRANT 2 AND hill-sector-863-2 QUADRANT 2
18> platoon-D2 EFFECTIVE-RANGE "far" AND platoon-D1 EFFECTIVE-RANGE "far"

35> hill-sector-863-2 VISIBLE mobility-corridor-D and hill-sector-868-1 VISIBLE mobility-corridor-D

Enter Selection List: (1 2 3 4 5 6 7 10 11 12 13 14 15)

Give some other explanations [explanation/?/c]:
platoon-D3 WEAPONS-CLASSIFICATION "light"

Figure 6: Explanations given for Initial Problem/Solution

140

plausible upper bound
(SOMETHING AR20)
(SOMETHING AV21 (PART-OF AR20))
(SOMETHING E22 (PART-OF AV21))
(SOMETHING HS-I (IN AR20) (VISIBLE E22))
(SOMETHING HS-TP1(IN AR20) (VISIBLE E22))
(SOMETHING HS-TP2 (IN AR20) (VISIBLE E22))
(SOMETHING C19 (COMMANDS P3)(COMMANDS P2)(COMMANDS P1))
(SOMETHING P1)
(SOMETHING P2)
(SOMETHING P3 (WEAPONS-CLASSIFICATION "light"))
(SOMETHING M23 (WITH C19) (IN AR20))

plausible lower bound
(COMPANY-D-AREA-OF-RESPONSIBILITYAR20)
(COMPANY-D-AVENUE-OF-APPROACH AV21 (PART-OF AR20))
(ENGAGEMENT-AREA-D E22 (PART-OF AR20))
(HILL-SECTOR-868-1 HS-I (IN AR20)(VISIBLE E22))
(HILL-SECTOR-863-2 HS-TP1 (IN AR20) (VISIBLE E22))
(HILL-SECTOR-875-2 HS-TP2 (IN AR20) (VISIBLE E22))
(COMPANY-D C19 (COMMANDS P3)(COMMANDS P2)(COMMANDS P1))
(PLATOON-D1 P1)
(PLATOON-D2 P2)
(PLATOON-D3 P3 (WEAPONS-CLASSIFICATION "light"))
(DEFEND-AREA-MISSION-D M23 (WITH C19) (IN AR20))

THEN
the problem

PLACE-COMPANY C19
IN AR20
TO-DESTROY-ENEMY-IN E22
FOR M23

has the following solution
PLACE-INFANTRY-PLATOON P3 IN HS-I
PLACE-TANK-PLATOON P1 IN HS-TP1
PLACE-TANK-PLATOON P2 IN HS-TP2

Figure 7: Initial PVS rule

additional explanation. The chosen
explanations indicate that it is important
that this is a defend area mission for
Company D, that the platoons to be placed
belong to Company D, and that these
platoons are placed in Company D's area
of responsibility, in positions where they
can see the engagement area. In the
experiments conducted we have found that
it is very useful to let the SME control the
explanation generation process, so that the
SME can balance the effort of choosing
explanations from a (possibly long)
generated list, with the effort of directly
giving explanations.

We stress, however, that while it is impor-
tant to have some explanations of the ini-
tial example, there is no requirement that a
complete set of explanations must be
specified. Indeed, the assumption made by
the agent is that this initial explanation set
is incomplete (and possibly even incorrect)
and will be completed during experimenta-
tion. Consequently, a window with the ini-
tial example from Figure 5 will be kept on
the screen for the entire duration of the
learning session so that the agent can ask
additional questions about this example.

The relevant explanations identified by the
SME are used by the agent to generate an
initial plausible version space for a general
placement rule to be learned. This version
space is indicated in Figure 7 and will not

Generated Problem:
Place-company company-D

in company-D-area-of-responsibility
to-destroy-enemy-in engagement-area-D
for defend-area-mission

Proposed Solution:
place-infantry-platoon platoon-D3

in hi!l-sector-878-2
position-tank-platoon platoon-D1

in hill-sector-863-1
position-tank-platoon platoon-D2

in hill-sector-878-1

Could you provide an explanation of the failure?
hill-sector-878-2 DISTANCE-TO-ENGAGEMENT-AREA "far"

Could you now provide an explanation of why the initial episode is correct?
hill-sector-868-l DISTANCE-TO-ENGAGEMENT-AREA "close"

Figure 8: User rejects Company D Placement

141

Generated Problem:
Place-company company-D

in company-D-area-of-responsibility
to-destroy-enemy-in engagement-area-D
for defend-area-mission

Proposed Solution:
place-infantry-platoon platoon-D3

in hill-sector-863-1
position-tank-platoon platoon-D2

in hill-sector-878-2
position-tank-platoon platoon-D1

in hill-sector-863-2

Figure 9: User accepts Company D Placement

be shown to the SME who communicates with the
system only through concrete examples and
explanations. The conclusion of the rule in Figure 7 is
obtained by turning the objects from the initial
example (see right hand side of Figure 5) into
variables. The plausible lower bound is the
conjunction of the selected explanations, reexpressed
in terms of the variables from the rule's conclusion.
In other words, the plausible lower bound covers only
the initial example from Figure 5. The plausible
upper bound is an over-generalization of the plausible
lower bound, in which individual objects are turned
into the most general object "something" and the
relationships between the objects are preserved.

The agent will use the plausible version space in
Figure 7 to generate other placements for defensive
missions, and will show these to the SME, who will
accept or reject them. The SME can control this
experimentation process by fixing some of the
parameters of the defensive mission. For instance, it
is useful to ask the agent to initially generate only
placements of Company-D in its area of
responsibility. This limits the search space the agent
must deal with.

The Captain agent generates a new placement of
Company-D by simply matching the plausible upper
bound of the rule in Figure 7 with the map region in
Figure 5. It then proposes the placement to the SME
on the ModSAF screen, as shown in the left hand side
of Figure 8. The SME rejects this placement and
explains that the infantry unit is too far away from the
area of engagement.

As a result of these explanations, the property value
pair (distance-to-engagement-area "close") is added
to the clause for the variable HS-I in both the upper
and lower bound:

new plausible upper bound
(SOMETHING HS-I (IN AR20) (VISIBLE E22)

(DISTANCE-TO-ENGAGEMENT-AREA "close")

new plausible lower bound
(HILL-SECTOR HS-I (IN AR20) (VISIBLE E22)

(DISTANCE-TO-ENGAGEMENT-AREA "close")

Then the agent generates the placement in Figure 9
that is accepted by the user. Consequently, the system
makes the following generalizations in the lower
bound that correspond to the generalization of the
positive examples from Figure 5 and Figure 9:

HILL-SECTOR-868-1 HILL-SECTOR-863-1
-» HILL-SECTOR

PLATOON-D1 PLATOON-D2 -> ARMORED-PLATOON

HILL-SECTOR-863-2 HILL-SECTOR-878-2
-> HILL-SECTOR

HILL-SECTOR-875-2 HILL-SECTOR-863-2
-» HILL-SECTOR

At this point, all the placement examples for
Company-D that the system might generate are
already covered by the plausible lower bound of the
version space. Therefore the SME requires the agent
to experiment with placing other companies for
defending their areas of responsibility. The system
then generates a new example for the SME to
validate, as shown in Figure 10. This example comes
from a different area on the map, which is in the area
of responsibility for Company E.

Because the SME accepted the placement generated
by the agent for Company E, the system is able to
make a significant reduction in the plausible version
space by generalizing the following concepts from
the plausible lower bound:

142

Generated Problem:
Place-company company-E

in company-E-area-of-responsibility
to-destroy-enemy-in engagement-area-E
for defend-area-mission

Proposed Solution:
place-infantry-platoon platoon-E3

in hill-sector-893-1
position-tank-platoon platoon-E2

in hill-sector-893-2
position-tank-platoon platoon-E1

in hill-sector-875-1

Figure 10: Company E Placement generated by Captain

COMPANY-D COMPANY-E -> COMPANY

AVENUE-OF-APPROACH-DAVENUE-OF-APPROACH-E
-> AVENUE-OF-APPROACH

ENGAGEMENT-AREA-D ENGAGEMENT-AREA-E
—> ENGAGEMENT-AREA

DEFEND-AREA-MISSION-DDEFEND-AREA-MISSION-E
-» DEFEND-AREA-MISSION

PLATOON-D3 PLATOON-E3 -» INFANTRY-PLATOON

COMPANY-D-AREA-OF-RESPONSIBILITY
COMPANY-E-AREA-OF-RESPONSIBILITY

-» AREA-OF-RESPONSIBILITY

After considering one more area of responsibility (for
Company F), the agent now learns the rule shown in
Figure 4. It is important to stress that while this rule
has been learned from five examples, the agent
internally examined approximately 5,000 different
placements that are covered by the upper bound of
the rule in Figure 4. These placements are for the
three areas considered so far - for Companies D, E
and F. The learning process stopped because the rule
was refined to where all the placements that could be
generated were covered by the lower bound of the
rule being learned (there was no other placement both
covered by the plausible upper bound and not
covered by the plausible lower bound). It is obviously
impractical for a human expert to consider this many
solutions individually. However, the SME may, if the
SME wishes, continue to verify the learned rule, by
examining placements covered by the plausible lower
bound.

This illustration gives only a very general outline of
the learning method. There are many other kinds of
interactions between the SME and the aaent. For

instance, the SME may explain why a company
placement is wrong by pointing to one or more
platoons that are not correctly positioned, instead of
giving a textual explanation (e.g., in Figure 8 the
SME may point to the position of platoon D-3 when
asked why the solution was not acceptable). The
SME may also choose to give the agent additional
examples of good placements. These may cause the
generalization of the plausible lower bound or of both
the lower and the upper bounds.

During learning, the agent may also accumulate
negative or positive exceptions of the rule. These are
bad placements that are covered by the plausible
lower bound, or good placements which are not
covered by the plausible upper bound. In such cases,
the agent will attempt to elicit new knowledge (e.g.,
new features of platoons or their positions that are not
defined in the knowledge base) from the SME. These
knowledge items will allow the agent to modify the
plausible version space of the rule such that the nega-
tive and the positive exceptions become negative ex-
amples and positive examples, respectively. Some of
these knowledge elicitation techniques are described
in (Tecuci and Hieb, 1994). Another way of dealing
with a rule's exceptions is to split the plausible
version space into several plausible version spaces
that do not have exceptions. This will, of course, lead
to learning more rules for the particular problem.

The general idea of this approach is to allow the SME
to teach the agent in a variety of ways, as the SME
would train an assistant and to intervene whenever
the SME wishes in the teaching process. On the other
hand, the agent learner has a very proactive strategy
of soliciting explanations in a variety of ways so as to
remedy its failures.

143

Because this approach is based on an expert interact-
ing with, checking and correcting the way the agents
solve problems, it produces verified knowledge-based
agents.

When the agent has been trained with examples of the
typical situations it should be able to cope with, it
enters a further phase, Autonomous Learning, where
it is used in simulations without the assistance of the
SME. The training received during the
Apprenticeship Learning Phase will allow the agent
to solve most of the planning problems through
deductive reasoning. However, it will also be able to
solve unanticipated problems through plausible
reasoning, and to learn from these experiences, in the
same way it learned from the SME. The main
difference is that the agent must assign credit or
blame to the actions by itself. For instance, if the
agent generated appropriate orders by using the
plausible upper bound condition, it could then
generalize the plausible lower bound condition, to
cover the respective situation. If, on the other hand,
the agent generated incorrect orders, it could need to
specialize the rule's conditions. Therefore, the agents
developed using this approach will also have the ca-
pability of continuously improving themselves during
their normal use.

7. Conclusions

In this paper we have presented the Captain tool for
building intelligent adaptive agents capable of
complex terrain reasoning, which act as automated
commanders within the ModSAF distributed
interactive simulation environment. In the
experiments described, Captain learned placement
rules for ModSAF armored company commanders in
hilly terrain by generating four to eight examples of
company deployments (to show to the SME on the
ModSAF graphical interface). The rules were learned
from consideration of over 5000 different placements
in three different areas of responsibility. Below, we
describe some of the benefits obtained from using the
Captain approach, describe a few of the future
research areas and conclude with a discussion of
using Captain to construct agents.

The efficiency of our agent building methodology is
achieved through the use of simple plausible version
spaces and a human guided heuristic search of these
spaces. Plausible version spaces have been inspired
by the classical version space concept introduced by
Mitchell (1978), developing it along the following
directions:

• the ability to learn from only a few examples
since the expert's explanations identify the
relevant features of the examples. In our
experiments we have found that, during a
learning session, the system usually needs to

generate less than 10 examples, in order to learn
a rule that may have several thousands of
instances in the knowledge base.

• the ability to learn partially inconsistent rules,
when the representation language is incomplete,
as well as to guide the elicitation of additional
knowledge from the expert, to reduce this
incompleteness.
the use of a heuristic search by limiting the upper
and lower bounds to only one conjunctive
expression. This avoids a combinatorial
explosion of the version space bounds. This
might lead to a rule that is not as general as it
could be. However, it will always lead to a useful
rule that is a generalization of the initial training
example provided by the expert.

A characteristic feature of our agent building
approach is that an SME trains the agent using a
variety of techniques, many of which are similar to
how an SME would instruct a human apprentice. This
is achieved with the help of ModSAF's graphical user
interface that allows the SME to communicate with
the agent by placing and moving units on a map.
Also, both the SME and the agent actively
communicate, with the agent asking questions, and
the SME providing answers and training examples.
Agent's questions are, in general, easy to answer.
Many of them ask for a "yes" or "no" answer (e.g.,
asking if an example generated by the agent is
positive or negative; if some expression is or is not an
explanation of some failure; if an object has or does
not have a certain feature; if an abduced fact is true or
not; etc.). More difficult questions are those asking
the SME to provide an explanation of some failure
(when the system was not able to propose any) or to
indicate the name of a concept covering specific
instances (Tecuci & Hieb, 1994). However, in our
experiments, we have found that even these questions
are not very difficult to answer.

Further research is necessary in four broad areas:
improving the basic learning methods that constitute
our approach; developing more flexible methods of
instruction; developing semantic terrain transforma-
tions; and improving the Captain interface to
ModSAF.

While the system is able to perform adequately, more
work remains to be done on improving efficiency in
learning through better search algorithms. We are
currently working on simultaneously learning several
rules when the incompleteness of the representation
language prevents learning one consistent rule. We
are also working on elicitation methods for
eliminating exceptions as they occur in the learning
process.

We are currently working on developing even more
flexible methods of instruction that allow the expert

144

to express whatever instruction is desired at any point
in the learning process, as advocated by Huffman
(1994) in his work on Instructo-Soar. We are also
working on developing additional methods of
consistency driven knowledge elicitation, in order to
reduce the burden of explanation on the expert.

The terrain reasoning capabilities of Captain are
based on semantic terrain transformations, a model
transformation process that transforms a digital
terrain database into a conceptual semantic network
(Hille, et al., 1995). Further work is required to
develop and automate this process. In particular,
methods for the manipulation and generalization of
numbers must be improved, since the current
implementation is based on a translation between
numeric parameters and symbolic concepts.

We are continuing to enhance Captain's interface to
ModSAF. Captain is advancing to the battalion level,
where it is learning to establish company area-of-
responsibilities and company placements.

The agent building approach illustrated by Captain is
based on the Disciple theory and methodology that
integrates multistrategy machine learning (Michalski
and Tecuci, 1994) and knowledge acquisition (Tecuci
& Kodratoff, 1995), within the framework of
apprenticeship learning (Mitchell et al., 1985; Tecuci,
1988; Wilkins, 1990). It synergistically combines
explanation-based learning, learning by analogy,
empirical inductive learning from examples,
conceptual clustering, and learning by instruction.

Building on the work on intelligent agents (Laird and
Rosenbloom 1990; Gordon and Subramanian 1993;
Van de Velde 1993; Maes, 1994; Mitchell et al.,
1994), we are also working on integrating experience-
based learning with the available learning strategies,
to be used when the agent is acting autonomously.

Captain's learning approach offers several benefits to
CGF developers. It produces verified knowledge
bases for command agents and, when new knowledge
is added or new behaviors learned, the system will
verify that the existing behaviors are still correct.
When a behavior needs to be modified, the same
rules can be easily adjusted through the
"apprenticeship" process, rather than thrown away
and rewritten. These capabilities make Captain
appropriate for use in large exercises, where many
units need to be quickly modified to a new doctrine.
Most importantly, in Captain the role of the
knowledge engineer is significantly reduced and the
learning process is interactive - producing better
deliberative behavior with less time than is needed
using traditional knowledge acquisition methods.

8. Acknowledgment

This research was conducted in the Computer Science
Department and the Center for Excellence in
Command, Control, Communications & Intelligence
at George Mason University. Work on ModSAF
applications was sponsored in part by the Defense
Modeling and Simulation Office under contract
DCA100-91-C-0033.

9. References

Ceranowicz A., (1994). ModSAF Capabilities. 4th
Conference on Computer Generated Forces and
Behavior Representation, May, Orlando, Florida.

Gammack J.G. (1987). Different Techniques and
Different Aspects on Declarative Knowledge. In
A.L. Kidd, Ed. Knowledge Acquisition for Expert
Systems: A Practical Handbook, Plenum Press.

Gordon, D. & Subramanian, D. (1993). A
Multistrategy Learning Scheme for Agent
Knowledge Acquisition. Informatica, 17(4).

Hieb, M.R., Hille D. and Tecuci, G. 1993. Designing
a Computer Opponent for War Games:
Integrating Planning, Learning and Knowledge
Acquisition in WARGLES. In Proceedings of
the 1993 AAAI Fall Symposium on Games:
Learning and Planning, AAAI Press Technical
Report FS-93-02, Menlo Park, CA.

Hille D., Hieb M.R., Pullen J.M. & Tecuci G. (1995).
Abstracting Terrain Data through Semantic
Terrain Transformations. 5th Conference on
Computer Generated Forces and Behavioral
Representation. Orlando, Florida.

Hille D., Hieb, M.R. & Tecuci, G. 1994. Captain:
Building Agents that Plan and Learn. In
Proceedings of the Fourth Conference on
Computer Generated Forces and Behavioral
Representation.

Huffman, S.B. (1994). Instructable Autonomous
Agents. PhD Thesis. Department of Computer
Science and Engineering. University of
Michigan.

Laird J.E. & Rosenbloom P.S. (1990). Integrating
Execution Planning and Learning in Soar for
External Environments, Proceedings. AAAI-90.
Boston.

Maes, P., (1994). Agents That Reduce Work and
Information Overload, in Communications of the
ACM, 37(7).

Michalski R.S. & Tecuci G. Eds. (1994). Machine
Learning: A Multistrategy Approach, Vol. IV,
Morgan Kaufmann, San Mateo.

Mitchell, T.M. (1978). Version Spaces: An Approach
to Concept Learning, Doctoral Dissertation,
Stanford University.

Mitchell T. M., Mahadevan S. & Steinberg L. I..
(1985). LEAP: A Learning Apprentice System

145

for VLSI Design, in Proceedings of the IJCAI-
85, Los Angeles, Morgan Kaufmann.

Mitchell T. M., Caruana R., Freitag D., McDermott J.
& Zabowski D., (1994). Experience with a
Learning Personal Assistant, in Communications
of the ACM, 37:7.

Pullen, J.M. (1994). Networking for Distributed
Virtual Simulation. In B. Planner & J. Kiers Eds,
Proceedings, of INET'94/JENC5. Internet
Society (isoc@isoc.org).

Tecuci, G. (1988). DISCIPLE: A Theory,
Methodology and System for Learning Expert
Knowledge, Ph.D. Thesis, University of Paris
South.

Tecuci G. (1992). "Automating Knowledge
Acquisition as Extending, Updating and
Improving a Knowledge Base," IEEE
Transactions of SMC. 22(6).

Tecuci, G. & Hieb, M.R. (1994). Consistency-driven
Knowledge Elicitation: Using a Machine
Learning-oriented Knowledge Representation to
Integrate Learning and Knowledge Elicitation in
NeoDISCIPLE. Knowledge Acquisition, 6(1).

Tecuci, G., Hieb M.R., Hille D. & Pullen J.M.
(1994). Building Adaptive Autonomous Agents
for Adversarial Domains, Proceedings of the
AAAI 94 Fall Symposium - Planning and
Learning: On To Real Applications.

Tecuci G. & Kodratoff Y. (Eds). (1995). Machine
Learning and Knowledge Acquisition: Integrated
Approaches, Academic Press.

Van de Velde W., (Ed). (1993). Towards Learning
Robots. MIT Press: Cambridge, MA.

Wilkins D.C., (1990). Knowledge Base Refinement
as Improving an Incorrect and Incomplete
Domain Theory, in Y. Kodratoff and R. S.
Michalski (Eds). Machine Learning: An
Artificial Intelligence Approach. Vol. 3. Morgan
Kaufmann.

10. Authors' Biographies

Michael Hieb is a PhD candidate in Information
Technology at George Mason University in Virginia.
He is currently a researcher at the Computer Science
Department of George Mason University working on
automated knowledge acquisition of behavior in
complex domains, such as ModSAF. He is also
researching interaction modes for knowledge
acquisition interfaces. He has published papers in the
areas of knowledge acquisition, multistrategy
learning, and plausible reasoning. He has served as a
consultant in AI for CSC and implemented a
distributed problem solving testbed at the Goddard
Space Flight Center for IntelliTek, Inc.

Dr. Gheorghe Tecuci is Associate Professor of
Computer Science at George Mason University. He

has published over 70 scientific papers, mostly in the
area of artificial intelligence. Gheorghe Tecuci is a
member of the Romanian Academy and is known for
his pioneering work on multistrategy machine
learning and its integration with knowledge
acquisition. He developed Disciple, which is one of
the first multistrategy learning systems, and co-edited
the first books on multistrategy learning and on the
integration of machine learning and knowledge
acquisition. He was the program chairman of the first
workshops in these areas (MSL-91, MSL-93, IJCAI-
93: ML & KA).

Dr. Mark Pullen is Associate Professor of Computer
Science at George Mason University. He also has an
appointment with the Center for Excellence in
Command, Control, Communications and
Intelligence. Dr. Mark Pullen was employed by the
Defense Advanced Research Projects Agency
(DARPA) from 1986 to 1992, where he was Program
Manager for Advanced Computing, Networking and
Distributed Simulation, and Deputy Director of the
Tactical Technology Office and the Information
Science and Technology Office. His research
interests include distributed and parallel computing
systems and their applications to educational and
military simulations.

Dr. Andrew Ceranowicz is the manager of the
Semi-Automated Forces group at LADS. He has been
working on Distributed Interactive Simulation and
Semi-Automated Forces since 1986 when he joined
BBN to work on the ARPA SIMNET Project. Since
then he has contributed to the ARPA ODIN Project
for intelligence visualization, battle reenactment, and
ModSAF. Prior to his work at Loral, Dr. Ceranowicz
was a member of the technical staff at Draper
Laboratory working on expert systems and GPS
applications. Dr. Ceranowicz earned his Ph.D. in
control theory from the Ohio State University.

David Hille is a computer scientist at ANSER, a
public service research institute. He received a
Masters of Science in Computer Science at Syracuse
University and is currently a Doctor of Science
candidate in the Information Technology PhD
program at George Mason University. He has
designed military simulations published
commercially by Strategic Simulations, Inc. and
helped to develop the wargame methodology for
technology base seminar wargames. He has been
working on the Captain Learning and Planning
System project, a system that performs as an
automated agent in simulations.

146

• ^-•ifrxfuwuft

Session 4a: Command & Control Modeling I

Page, UK DRA
Karr, UCF/IST

Lankester, UK DRA

An Automated CBS OPFOR

Ian Page
Simulation, Training & AI Research Group

LSC1, Building Q27
Defence Research Agency

Fort Halstead, Sevenoaks, Kent, TN14 7BP
United Kingdom

ipage@dra.hmg.gb

Gary Kendall
Logica UK Ltd

Stephenson House
75 Hampstead Road
London, NW1 2PL
United Kingdom

garyk@logcam.co.uk

1. Abstract

Training is vital to sustain a combat ready state. As the
availability of real terrain areas to train on decreases, the
importance of simulation increases.

Simulations for Command and Staff Training usually
require a large number of controllers to operate them.
One of the controllers' tasks is to make command
decisions for units not under player control. It is a
research aim of the UK Ministry of Defence to
investigate the role of intelligent Computer Generated
Forces to support controllers with this task.

This paper examines the issues involved with increased
controller automation using the Corps Battle Simulation
(CBS). Specifically it describes a proof of principle
demonstrator showing the complete automation of
controller functions for both OPFOR and Blue forces.
This is achieved using rule based command agents
within the existing GEKNOFLEXE model of battlefield
decision making.

The demonstrator controls approximately 200 units over
the course of a fifteen hour battle, with over 5,000
orders submitted to CBS. A task that would require
approximately ten controllers.

Current research is concentrating on the UK Army's
recently installed Higher Formation Trainer - ABACUS.

2. Introduction

2.1 Requirement

Maintaining an acceptable level of combat readiness for
the armed forces is extremely important, and
increasingly difficult, with today's rapidly changing
world political scene. Key to sustaining this readiness is
training. Unfortunately, due to a combination of
environmental pressures, decreasing defence budgets
and increasing weapon capabilities, the availability of
training areas is diminishing.

Military commanders are therefore looking to simulation
technology to help address this shortfall. Within the area
of Command and Staff Training (CAST), there is a
requirement for simulations to run Command Post
Exercises (CPXs). During a CPX, particular
headquarters are tested. To increase realism, many
superior, subordinate and flanking forces, and their
headquarters, are also required and have therefore to be
simulated.

To play these roles, human controllers are normally
required to make the command decisions for those units
in the simulation which have no corresponding real
world players. This includes all of the opposition forces
(OPFOR). For a large exercise, the total number of
controllers can be in the hundreds. These people are
expensive, difficult to obtain and receive little, or no,
training benefit from the exercise.

What current operational simulation technology is not
yet able to offer is the automated decision making
capability typical of such command headquarters.
Research is therefore being conducted to investigate the
role of so-called intelligent Computer Generated Force
(iCGF) technologies to increase automation of the
decision making process.

2.2 Aims

The main aims of the research presented here were to
investigate the feasibility of connecting the
GEKNOFLEXE studies tool, which includes an iCGF
system (Lankester & Robinson, 1994), to a CAST
simulation, namely the Corps Battle Simulation (CBS).
The purpose of this was to gain a better understanding
of the issues involved in automating CAST controller
functions.

CBS (JPL, 1991) is a constructive, aggregate level
battlefield simulation designed to run Corps and
Divisional exercises. CBS takes in orders from the
players, via human controllers. The effects of these are
modelled in CBS and the results fed back to the players,

149

again via the controllers.

GEKNOFLEXE is a fully automated, two-sided model of
battlefield C'l (Command, Control, Communications
and Intelligence). It models the decision making process
of command headquarters using knowledge based
software constructs known as 'command agents'. The
GEKNOFLEXE command agents form a distinct group of
objects separate from the GEKNOFLEXE battlefield
simulation which handles events like sighting,
movement and attrition. Command agents make the
same decisions which CAST simulations presently
require human controllers to make. By connecting
GEKNOFLEXE command agents to CBS, automation of
controller functions should be possible.

Feasibility, design, implementation and validation stages
for this connection were to be completed during a
twelve month period. The initial stages of which have
already been presented (Cox, Gibb & Page, 1994). This
paper describes the results from this work.

A number of issues need to be resolved to produce a
satisfactory level of controller automation with
command agents. These are discussed by Cox, et al.
(1994), but generally cover the need for realistic
behaviours over a wide range of settings, a sufficient
representation of unit types, manual override facilities
and mechanisms for validation. It was important,
therefore, to scope the research down to the immediate
problem of connecting the GEKNOFLEXE iCGF to the
CBS CAST system. To achieve this, it was intended to
simplify the approach wherever possible.

Consequently, the feasibility study recommended that
the CBS OPFOR be fully automated by GEKNOFLEXE.

This has several advantages.

Fully automating the OPFOR removes the immediate
need to address the complex issue of interactions
between players, controllers and the iCGF. For example,
for players to communicate directly with the iCGF
would require speech generation and synthesis well
outside the scope of this research. Allowing the iCGF to
function entirely under its own control also avoids the
need for controller iCGF supervisory faculties.

CBS has a simpler OPFOR representation of logistic,
maintenance and medical functions than for own forces.
Since GEKNOFLEXE had no model of these anyway, it
was more sensible to let GEKNOFLEXE control CBS
OPFOR units.

Thus it was the intention to produce a working
demonstrator by the end of this research which would

show full automation of the OPFOR units within CBS.
This would then meet the main aim of investigating the
feasibility of the GEKNOFLEXE iCGF acting as an
automated CBS controller. By doing this, a more
comprehensive understanding of controller automation
in general would be attained.

3. Design and Implementation

3.1 Ideal System Architecture

The first stage of the design was to plan an ideal system
architecture for automating the CBS OPFOR which has
already been discussed by Cox, et al. (1994). From this
ideal architecture a more practical design could be
derived, if necessary.

Figure 1 shows a typical CBS configuration for a
headquarters under exercise. The trainee staff
communicate with their controllers as normal. Other
controllers play the roles of superior, subordinate and
flanking forces present within the setting, for whom
there are no player counterparts.

The controllers therefore input orders into their CBS
workstations, and report back events occurring on the
battlefield to the trainees. The trainees should not be
aware of the underlying computer system controlling
battlefield events. To all intents and purposes, the
trainees are in a real battle situation, communicating
with other real forces. In reality these are all modelled
within CBS under controller command.

A senior controller monitors the exercise, and makes
adjustments to the simulation as and when necessary, to
maintain the exercise objectives.

OPFOR units have no OPFOR trainees. The OPFOR is
therefore fully commanded by the OPFOR controllers.

Figure 1 shows GEKNOFLEXE OPFOR command agents
in place of human controllers. Whereas human
controllers input orders manually into their CBS
workstation, and receive reports from CBS on their
workstation, GEKNOFLEXE command agents are
electronically connected to CBS via its generic interface
(GI). CBS has a GI to allow the majority of controller
functions to be electronically input, and CBS reports to
be output, from and to other software.

3.2 Proposed System Architecture

Based on this ideal design, a proposed system
architecture was constructed (see figure 2). The main
constraints preventing the implementation of the ideal

150

normal communications

Senior
Controller H

OPFOR CBSi
Workstation,

CBS Simulation

5*£"
OPFOR CBS
Workstation

OPFOR CBS
Workstation

GEKNOFLEXE
CBS-GI Link

jSupervisorV
Operator/

GEKNOFLEXE
Comms Link

GEKNOFLEXE
Command Agent GEKNOFLEXE

Inter-Agent
Comms Link

GEKNOFLEXE
Command Agent

Figure 1: Ideal system architecture

Trainee

Controller

Blue CBS
^Workstation!

CBS Simulation

Replicated
as required

Internal CBS
Communications

Link

OPFOR
Workstation
CBS Generic

Interface VMS/Unix
Communications

Link

Modified
GEKNOFLEXE

System J

Figure 2: Proposed system architecture

151

design, and influencing the proposed architecture are
described below.

The initial research programme was only to last for a
twelve month period, for financial reasons. The UK
Army was also installing its own Higher Formation
Trainer (HFT) - ABACUS (All Arms Battlefield
Computer Simulation). After twelve months would be a
suitable breakpoint in the long term research programme
to review how the work was progressing. This would
allow the lessons leamt to date to be assessed and the
research focus to switch to ABACUS, reflecting the
CAST needs of the UK Army.

It was also desirable to make as few, if any, changes to
the still developing GEKNOFLEXE system and CBS, as
an operational trainer, could not be modified at all. It
was essential, therefore, to make any link between these
two systems as independent as possible from the actual
systems themselves.

Figure 2 shows the proposed design and figure 3 the
processes involved in automating the OPFOR Although
the Blue situation remains unchanged from the ideal
design, the OPFOR is subtly different, as explained
below.

Instead of separating out the GEKNOFLEXE command
agents from the GEKNOFLEXE simulation, it was
decided to modify the GEKNOFLEXE simulation so that
it would emulate CBS. This GEKNOFLEXE 'simulation
emulation' would receive battlefield event updates from
CBS, via the GI, and reflect these changes in the
GEKNOFLEXE simulation. In effect, control of the
GEKNOFLEXE simulation would be handed over to
CBS. In this way, GEKNOFLEXE would not need to be
altered as much as if the command agents were isolated
from the GEKNOFLEXE simulation.

The GEKNOFLEXE simulation does not totally emulate
CBS. In the case of its sightings model GEKNOFLEXE

has this integrated into the simulation and includes
facilities for modelling RPVs (Remotely Piloted
Vehicles). This capability was not directly available
from the version of CBS used. So sightings reports
received by the command agents are taken from the
GEKNOFLEXE simulation, rather than CBS.

Limiting the OPFOR representation is the battlefield
functionality of GEKNOFLEXE. The version of
GEKNOFLEXE used was only able to reason about
armoured, armoured infantry, artillery, mortar, recce and
command headquarter units. Division, Brigade and

CBS Workstation

r \
CBSGI

Event Monitor
Process

 VMS C process
running on micro VAX

DECnet/
SunLinkDNl

Services /

Allegro Lisp process
running on Sun SPARCstation

/
/

Client Repeater
Lisp stream
based LPC

Unix C process
running on

Sun SPARCstation

GEKNOFLEXE /
CBS Interface

GEKNOFLEXE

Command Agentsj

Function call /
return value

communications

Figure 3: Detailed process structure

152

Battalion level battlefield decision making is modelled,
with Company units simply obeying orders.

This version uses a post-CFE (Conventional Forces in
Europe) setting, which has an OPFOR tank Division
attacking from the east, over the former East Germany,
against a Blue force based on the ACE (Allied
Command Europe) Rapid Reaction Corps fighting a
covering battle. It was also necessary to configure the
CBS scenario to match this GEKNOFLEXE setting.

As already stated, GEKNOFLEXE is a developing system
and its latest version is already much enhanced over the
version taken for this work. This new version
considerably increases the military functionality and
terrain resolution modelled, and uses an intervention-
based scenario.

Figure 3 depicts the processes created to achieve
OPFOR controller automation. The event monitor
process runs on the Micro VAX hosting the CBS GI.
This process monitors CBS for any update notifications,
e.g. a change to a unit's location, and forwards this
information to the repeater process on the Sun
SPARCstation which hosts GEKNOFLEXE. The other
function of the event monitor process is to transmit
orders originating from GEKNOFLEXE to CBS using the
GI.

The client repeater process performs no processing
itself, but rather acts as a buffer between the modified
GEKNOFLEXE process and the event monitor process.
The client repeater process is necessary because it is
difficult for the other two processes to communicate
directly. The client repeater talks to the event monitor
via the DECnet communications protocol and the client
repeater communicates with the modified GEKNOFLEXE

process through a Unix pipe.

The modified GEKNOFLEXE process is hosted on a Sun
SPARCstation and listens for information coming from
the client repeater process, as well as passing
GEKNOFLEXE command agent orders to the client
repeater process. When a report from CBS arrives, a
layer of software within the GEKNOFLEXE Lisp process
updates the GEKNOFLEXE simulation, thus keeping both
the GEKNOFLEXE and CBS simulations synchronised.
This same software also routes GEKNOFLEXE orders to
CBS, via the various processes.

In this way, GEKNOFLEXE command agent decisions, in
the form of orders, are passed to CBS. Similarly, event
updates are routed from CBS to the GEKNOFLEXE

simulation for the GEKNOFLEXE command agents to act
upon.

A final consequence of producing a fully automated
OPFOR and ignoring the provision of supervisory
facilities for controllers, is that the role of the senior
controller is dramatically reduced. This is because the
GEKNOFLEXE command agents are not able to cope
with the non-real world activities, e.g. magic moves and
over-ruling of decisions, often associated with the senior
controller function.

3.3 Implementation of the Proposed System

The implementation largely followed the design
specified by the proposed system architecture. The
majority of the effort concentrated on building the link
to the GEKNOFLEXE simulation. The implemented CBS
simulation emulation allowed the iCGF components of
GEKNOFLEXE to retain their existing software harness.
Though not an elegant solution as it requires two
simulations (GEKNOFLEXE and CBS) to be kept
synchronised, it allowed a proof of principle
demonstration of the automation of controller functions
to be produced in a remarkably short time. It took
approximately twelve man months of effort over a six
month period.

This resulted in a demonstration system showing the
complete automation of both OPFOR and Blue CBS
forces. Control of the Blue forces can also be handed
over to human controllers, thus allowing players to fight
an automated enemy. Further details of the
demonstration system are given in §4.2. A description of
the problems faced while implementing the
demonstrator system are presented below.

3.4 Problems

3.4.1 Restrictions
As mentioned earlier, GEKNOFLEXE has a limited
battlefield representation compared to the functionality
offered by CBS, and this introduced a number of
restrictions to the demonstration scenario.

Foremost of these is the ORBAT. It was necessary to
configure the CBS ORBAT to match that of
GEKNOFLEXE. This emphasised resolution problems
arising from the different levels at which each system
was designed to operate. For instance, CBS typically
represents recce platoons, whereas GEKNOFLEXE

models recce sections.

GEKNOFLEXE allows opposing forces to occupy the
same terrain cell, however, the version of CBS used
does not. In the GEKNOFLEXE simulation, units have a
probabilistic chance of seeing each other. It is not
uncommon for opposing recce sections to occupy the

153

same 3km terrain cell as the chances of them spotting
each other are relatively low. Hence, such small units
often pass by one another unsighted. This cannot
happen in CBS, which was not designed to represent
units in such detail.

It was therefore necessary to implement a mechanism to
halt a unit before it entered an enemy occupied terrain
cell. If the unit is not engaged, then after an appropriate
delay it is 'magic moved' to where it would have been
had it passed conventionally through the enemy cell.

Similarly, a small unit like a recce section can hold up a
significantly larger enemy force for longer than would
be expected, again, because opposing forces are not
allowed in the same terrain cell. The effects of this can
be reduced by forcing such small units to operate under
the CBS 'avoid combat' mode. This reduces the chances
of such units engaging.

These problems arise purely due to our use of CBS at
levels for which CBS was not designed.

Since GEKNOFLEXE had no representation of logistics,
it was necessary to give all units infinite supplies. This
is justifiable as the GEKNOFLEXE command agents, in
this post-CFE scenario, have been validated for only a
fifteen hour battle period and do not abuse their limitless
supplies.

3.4.2 GEKNOFLEXE Command Agent Dependencies
Because the GEKNOFLEXE command agents have been
developed with their own simulation, a couple of
command agent dependencies on it were uncovered.

GEKNOFLEXE has a fairly simple congestion model, and
only three units, moving in column formation, are
allowed in any one terrain cell. When facing an enemy
or obstacle, the GEKNOFLEXE congestion model halts
the leading three units and consequently all the
following units also halt. However, CBS does allow
more than three units into the same terrain cell. This
means that when units halt, units following the leading
three will not necessarily stop. To solve this, a basic
congestion model was implemented to cause enough
extra congestion to make CBS halt any following units.
In the latest version of GEKNOFLEXE, command agents
control all aspects of unit movement.

When replanning routes, instead of GEKNOFLEXE

command agents sending reroute orders to units, the low
level route within the GEKNOFLEXE simulation is
changed. As routes are much simpler in CBS, a change
to the appropriate GEKNOFLEXE knowledge base was
implemented to make the command agents also send

new movement orders down to affected units.

3.4.3 Command Agent Flexibility
One of the initial fears was that the command agents
would not appear realistic when operating within the
CBS environment, since they were not designed to work
outside of the GEKNOFLEXE simulation. However, the
command agents were found to be remarkably robust
and, with the exception of the few cases described
below, act in a reasonably believable manner.

When replanning routes, sometimes a route is chosen
which, for example, crosses a river instead of using a
suitable nearby bridge. This is due to the reroute
algorithms working under the constraints of avoiding
enemy occupied terrain cells, where these cells are 3km
across. Nearby bridges are ignored if they are in an
enemy occupied cell, even though in reality the bridge
may be only a few hundred metres from the unit and
over 2km from the enemy unit.

When a column formation is disrupted, the command
agents are not always able to reform the column in the
correct order.

Command agents frequently send fire support orders to
artillery units for targets outside their range. These
orders have to be filtered out before being sent to CBS.

3.4.4 Implementation Problems
During implementation, a number of unexpected
problems arose. Chief among these related to the
communications link between the GEKNOFLEXE Lisp
process and the CBS GI. These mainly concerned
limitations in the development environments used and
are of little relevance to the research conducted.

Another problem concerned the apparent failure of CBS
to report all unit updates to the GI. This is particularly
the case when a number of changes to a unit occur in
quick succession. For example, if an artillery unit fires
only a few rounds, the following update to say the unit
has ceased firing may not be sent. This leaves the
GEKNOFLEXE command agents thinking the unit is still
firing and so will not task that unit with other fire orders.
The problem only affects a small number of the units
and so has a limited effect on the simulation.

3.4.5 Simulation Differences
In addition to the already mentioned problem of
differing levels of resolution between the CBS and
GEKNOFLEXE simulations, a number of other
differences were observed.

When converting between the GEKNOFLEXE simulation

154

and CBS coordinates, only a 200-300 metre accuracy
level could be achieved. This led to particular problems
when a route along a road is given. This can translate to
CBS as a series of points near a road, and consequently
a lot of unnecessary off-road movements could be
observed.

Only twenty points could be specified in a CBS
movement order. Command agents were not so
restricted. So a low level monitoring process had to be
implemented in the GEKNOFLEXE simulation emulation
to issue new movement orders to CBS as and when
required.

4. Achievements

4.1 Lessons Learnt

The main aims of this research were to gain a better
understanding of the issues involved in automating
CAST controller functions. This was achieved by
designing and implementing a proof of principle
research prototype demonstrating the automation of
OPFOR controller functions in CBS. A number of
lessons were learnt during this process.

4.1.1 Design
The importance of conducting a thorough feasibility
study and using this to produce a well thought out
design cannot be emphasised enough. These initial
stages, while not a guarantee to success, help to
drastically reduce the problems encountered during the
implementation stage.

4.1.2 Software & Documentation
The extensive documentation set and the reliability of
the CBS software meant that relatively few problems
were encountered with CBS. Similarly, few problems
with GEKNOFLEXE were observed, again due to the
robustness of the software. The lesson to be learnt here
is that well documented and reliable software
significantly eases the connection process of distinct
systems.

4.1.3 Command Agent Assumptions
In relation to congestion (see §3.4.2), a more realistic
method of halting a column needs to be implemented.
Merely halting the leading three units causes problems
outside the GEKNOFLEXE simulation and this has been
addressed in the latest version of GEKNOFLEXE.

Regarding movement, the GEKNOFLEXE simulation
determines if a moving unit has reached its destination
by testing whether the current location matches the end
route location. Although CBS end movement reports

match those in the movement order, this may not be the
case with other simulations. This is an example of the
risk of using two synchronised simulations.

4.1.4 Simulation Synchronisation
The adopted approach of having a GEKNOFLEXE

simulation emulation leads to obvious problems in
keeping both the GEKNOFLEXE and CBS simulations in
step with each other. The reason for this double
simulation approach was to allow a proof of principle
demonstrator to be quickly implemented. This should
not be viewed as a long term solution to the problem of
controller automation. The overheads of having two
simulations in a real training exercise would soon
become prohibitive.

4.1.5 Simulation Resolution
CBS and GEKNOFLEXE are different systems designed
to do different tasks. What is acceptable at a coarse
resolution in CBS is not necessarily adequate in
GEKNOFLEXE, e.g. opposing units not being allowed in
the same terrain cell. What has been learnt here is that
solutions can generally be found, which although by no
means optimal, do work. These problems would be
reduced if both systems were designed to function at the
same resolution, as is more the case with GEKNOFLEXE

command agents and ABACUS.

4.1.6 Command Agent Capabilities
One of the aims of this piece of research was to
determine whether or not the GEKNOFLEXE command
agents were capable of providing an OPFOR in a
training environment. The command agents were
realistically able to run the full fifteen hour scenario
whilst connected to CBS without any changes to the
existing knowledge base rules. When fighting against a
totally free play, human controlled Blue force for eight
hours (see §4.2), the Blue players acknowledged that
they had fought a realistic opposition, given the
constraints of the scenario. This success indicates the
immense potential of command agents for controller
automation.

4.1.7 Command Agent Inabilities
GEKNOFLEXE command agents need to be able to
control engineering functions, reason more realistically
about reforming a disrupted column, and check the
range of artillery targets before issuing impossible
artillery orders. These are specific problems which are
already being addressed as part of new GEKNOFLEXE

releases.

What needs greater understanding is the production of
a wider variety of command agents which can work in
a large number of different scenarios. Current

155

expectations are that these are feasible, but very costly
to develop.

Command agents are also unable to make realistic
decisions based on real world information alone. Taking
the example of data fusion, software techniques are
unable to replicate the human information fusion
process. So GEKNOFLEXE command agents 'cheat', and
are provided with sufficient ground truth information
via so-called 'back door' mechanisms to the simulation,
to allow realistic decisions to be made. Such techniques
are valid, however, so long as they do not detract from
training effectiveness.

4.1.8 Validation
GEKNOFLEXE itself has been validated by independent
military experts to confirm that it provides a credible
military engagement between two opposing forces,
within the context of the scenario and forces modelled.
Validation of the CBS automated force behaviour
remains somewhat subjective, since validation is context
dependent. What is valid in one simulation environment,
e.g. the GEKNOFLEXE simulation, is not necessarily
valid in another, for instance CBS. Differences in the
CBS battlefield simulation, and variation caused by
human controlled Blue forces, cause the OPFOR
command agents to react in different ways. As a result,
new combinations of decisions are produced which have
not been previously validated in GEKNOFLEXE.

Nevertheless, in a limited trial exercise (see §4.2), the
GEKNOFLEXE command agents proved to be robust and
provided a reasonable OPFOR

4.1.9 Coordinate Systems
Whereas using a lat/long coordinate system is more
accurate for large areas, army users prefer to see UTM
(Universal Transverse Mercator) locations. A translation
process was required to convert from GEKNOFLEXE

coordinates to the UTM coordinates used by CBS.
Though it was only necessary to implement conversions
for one UTM zone.

4.2 Demonstration System

The demonstration system is the culmination of this
research work. It illustrates the capability for the
practical automation of controller functions. Although
the original aim was to concentrate on purely an
automated OPFOR, the system actually provides for
automation of both an aggressive OPFOR behaviour
and a fighting withdrawal behaviour by Blue forces. The
system is able to operate in one of three modes:

• both Blue and OPFOR fully automated by the
GEKNOFLEXE command agents. This is useful when

demonstrating or debugging the system,
controllers are not required.

as

• as above, but with a once-only handover of Blue
force control to human controllers, thus disabling the
Blue GEKNOFLEXE command agents from further
play. This allows the scenario to be automatically
advanced to an appropriate point in the battle.

• GEKNOFLEXE command agents playing the OPFOR
human controllers supervising the Blue forces.

While playing the scenario, GEKNOFLEXE is in control
of approximately 140 OPFOR units and about 60 Blue
units. During the course of a fifteen hour scenario, a
total of around 5,000 orders are submitted to CBS from
the GEKNOFLEXE command agents. If we assume a
human controller takes about two minutes to issue a
particular order, then it would require over ten
controllers issuing orders non-stop for fifteen hours real
time to issue 5,000 orders.

A 'mini-exercise' to test out the demonstration system
was conducted. This consisted of two military personnel
(a serving Major and a retired Colonel) controlling the
Blue forces and fighting a fully automated opposition
over a period of eight hours. Given the constraints of the
scenario, they reported that they had met a credible
force.

5. Future Research

The research has now reached a natural breakpoint. A
proof of principle system, showing the automation of
CBS controller functions by GEKNOFLEXE command
agents, has been successfully demonstrated. During this
time, the UK Army's HFT ABACUS has been installed
and partially accepted. This now forms the natural focus
for further research into the automation of controller
functions.

The wide applicability of the GEKNOFLEXE command
agents to areas outside their originally intended use, i.e.
C3I studies, has been largely acknowledged and the
Command Agents Research (CARE) programme
instigated (Lankester, 1995). The main aims of this
involve the separation of the GEKNOFLEXE decision
making components (command agents) from the
GEKNOFLEXE simulation, and the production of further
command agents. These will be available for use by the
research programmes funding CARE.

For the next stage of controller automation research, it
seems sensible to consider the implications of
connecting ABACUS with the command agents

156

emanating from the CARE programme. A number of
issues need to be tackled, and these are briefly outlined
below.

A connection mechanism to ABACUS needs to be
developed. ABACUS does not have a GI like CBS, and
so a library of routines need to be developed to provide
a sufficient level of functionality for command agents to
control ABACUS units.

Communications between players, controllers and
command agents need improving. Facilities are required
for exercise controllers to monitor, understand and alter
command agent activities. This requires a Graphical
User Interface (GUI) to readily present the information
needed by controllers to allow them to comprehend the
what and why of command agent decision making. The
capability to then modify command agent states is
necessary should a decision need to be overruled or the
state of the exercise changed.

Actual verbal communication between players and
command agents would require well developed speech
recognition and generation software, beyond the current
levels of such technology.

Command agent to command agent communications
needs to be examined if command agents are to work
within a distributed framework such as the Distributed
Interactive Simulation (DIS) network. This requires an
open, modular architecture. The ARPA (Advanced
Research Projects Agency) led Command and Control
Simulation Interface Language (CCSIL) may well prove
useful for such communications, and further
investigation is warranted. There are concerns, however,
with CCSIL's philosophy of only providing real world
information. It is currently believed that command
agents need more than just real world information to
model command decision making.

Training exercises can now take place in a wide range of
locations, under various concepts of operation, and with
diverse ORBATs. Command agents need to be flexible
enough to cope. This requires significant effort to
optimise the process by which knowledge is captured
and encapsulated in command agent form.

The validity of command agent behaviours within a
CAST environment needs to be further assessed. It is
vital that units controlled by command agents, both
OPFOR and friendly, act in a realistic manner so that the
trainees are presented with a credible setting. There is
much uncertainty within the community as to how to
best validate force behaviours, particularly in new
scenarios.

6. Conclusions

This research has shown that the automation of
controller functions is viable. The demonstrator system
has shown itself to be an excellent means of both
understanding the issues involved with the automation
of CAST controller functions and illustrating the
research objectives.

The practical lessons leamt will provide a sound basis
for future research into automating ABACUS controller
functions. The main lessons learnt relate to the provision
of a well defined interface between simulations and
iCGFs, the increased functionality of command agents,
and the need to avoid having more than one simulation
in the system.

There are a number of risks associated with the plans for
future research Dependencies on ABACUS and CARE
are high. ABACUS is a new system about which very
little is known or understood by the research team.
However, the ABACUS Higher Formation Trainer
(HFT) best reflects the UK Army's requirements from a
CAST. CARE is itself a research programme and
consequently comes with a certain element of risk. But
no other software appears to offer the advanced decision
making capability provided by GEKNOFLEXE command
agents.

The cost benefits from reducing the numbers of
controllers required to run a CAST system are obvious.
GEKNOFLEXE command agents show the potential to
achieve this. Benefits beyond financial savings include
the increased usage of CAST systems since they will
become more affordable to run. Controllers, already in
limited supply, will be able to focus on the important
aspects of an exercise, thus improving the training
benefits to the players. Increasing the automation could
ultimately provide a facility for individual commander
training. Outside of training, an automated HFT could
be used for mission rehearsal, studies and as an
operational 'what if tool.

7. Acknowledgments

The research described in this paper is funded by the
UK Ministry of Defence, under Applied Research
Programme 25b.

Acknowledgement must be given to the development
team which, in addition to the authors, consists of
Richard Gaskin and Bill Jackson from DRA, and Tom
Stibbe, Peter Robinson and Alastair Gibb from Logica
UK. Without their expertise, this demonstrator could not
have been so successful.

157

Acknowledgement must also be given to the members
of the GEKNOFLEXE research programme for their
support during this integration.

Finally, thanks must go to Major Adrian Orr and Col
John Heard (Retd) for their time and effort fighting the
automated OPFOR.

8. References

JPL (1991) "CBS System Design Document", JPL
Publication D-7850, Jet Propulsion Laboratory,
California Institute of Technology.

Lankester, H.G. (1995) "Multi-Application Command
Agents", Proceedings of the Fifth Conference on
Computer Generated Forces and Behavioural
Representation, Institute for Simulation and Training,
University of Central Florida.

Lankester, H.G. & Robinson, P.K. (1994)
"GEKNOFLEXE: A Generic, Flexible Model of C3I",
Proceedings of the Fourth Conference on Computer
Generated Forces and Behavioural Representation,
Institute for Simulation and Training, University of
Central Florida.

Cox, A., Gibb, A. & Page, I. (1994) "Army Training
and CGFs - A UK Perspective", Proceedings of the
Fourth Conference on Computer Generated Forces and
Behavioural Representation, Institute for Simulation
and Training, University of Central Florida.

9. Authors' Biographies

Gary Kendall is a consultant for Logica UK Ltd. He has
studied for a BSc and PhD in Physics at King's College
London, specialising in learning theory in artificial
neural networks. He works in the areas of Artificial
Intelligence and Object-Oriented analysis and design.

Ian Page is a Higher Scientific Officer in the UK
Defence Research Agency. He has a BSc (Hons) degree
in Applied Biology from Liverpool Polytechnic and an
MSc in Computer Studies from Sheffield Polytechnic.
After spending two years as a member of the
GEKNOFLEXE research team, he is now involved with
CGFs and synthetic terrain for the Simulation, Training
& AI Research group.

158

Automated Mission Planning in ModSAF

Clark R. Karr, Sumeet Rajput, Jaime E. Cisneros, and Hai-Lin Nee
Institute for Simulation and Training

3280 Progress Dr., Orlando, FL 32826
ckarr@ist.ucf.edu

1. Abstract

The ongoing success in realistically representing
individual vehicles within Computer Generated
Forces (CGF) systems has allowed attention to be
shifted to the behavior of groups of vehicles (units) in
the battlefield. For the behavior of CGF units to
appear realistic, the entities within the units must
follow realistic plans. This paper describes a
Simulation Based Planning capability developed
within the ModSAF CGF system. Simulation Based
Planning integrates simulations of candidate plans
into the Planning process mirroring the "wargaming"
simulation process in human military planning.

2. Introduction

Over the last decade, Computer Generated Force
systems have evolved in complexity and detail. The
process began with the simulation of simple vehicle
dynamics/behaviors and continued through the
addition of single entity and small unit (Platoon)
behaviors. Now the problem of simulating the
Command and Control (C2) process is attracting
attention and effort. One facet of the C2 process is
mission planning; that is, building a coherent set of
actions for subunits and individual entities to
accomplish a military goal. The general task of
planning has been a topic of research in Artificial
Intelligence for many years. Applying the
generalized AI Planning techniques within the CGF
domain has had some successes and has revealed
some problems. Among these problems are the large
computational resources required, the difficulty in
completely describing the knowledge required, and
the lengthy time required for planning.

Lee and Fishwick (1994) propose a Simulation Based
Planner (SBP) wherein planning occurs through a two
stage process of plan generation and plan evaluation.
The evaluation of candidate plans is done through
simulation of the plans rather than traditional AI
reasoning approaches (e.g. the Multiagent
Adversarial Planner (Elsaesser 1991)). The Mission
Planner (MP) described here adds a Simulation Based
Planning capability to ModSAF. The MP features a
Course of Action (COA) Generator that creates

multiple COAs (i.e. Plans) and a COA Simulator that
simulates each candidate plan. Both the COA
Generator and Simulator interact with a Terrain
Analyzer for terrain information. "Good" plans
emerge as successful simulations while "poor" plans
are unsuccessful. The "best" plan is converted to an
execution matrix within ModSAF for execution of the
plan.

3. Mission Planner architecture

Order

ModSAF

Command Entity

Mission Planner

World
DataBase

Skeletal
Plans

Terrain
Analyzer

Plan in Execution Matrix

Plan Follower

Figure 1: Mission Planner Architecture

Figure 1 shows the architecture of the Mission
Planner (MP). The MP is embedded inside a
ModSAF Command entity. The input to the MP is
given through pull-down menus and is a simple order
consisting of:

• the mission, e.g., ASSAULT an objective

159

• the objective and
• enemy data sets; each set details:

• an enemy's location
• the enemy's type (e.g., ARMOR) and
• the enemy's echelon level (e.g.,

COMPANY)

3.1 The World DataBase

The World DataBase (WDB) contains information
about the battlefield known or believed to be true by
the planning entity. This is not a complete spatial
representation but a simplified database. It contains:

• location, type, and echelon of enemy units taken
from the Order and

• terrain information such as tactical positions and
routes, developed during the planning process.

3.2 The Course Of Action Generator

The COA Generator is the module that generates
candidate plans from Skeletal Plans (SP) and terrain
information from the WDB. The output of the COA
Generator is a series of candidate plans which are
sent to the COA Simulator for evaluation. The COA
Generator is discussed in more detail in Section 6.

3.3 The Course Of Action Simulator

The COA Simulator simulates each candidate plan
and outputs a score indicating the relative
effectiveness of the candidate plan in completing the
mission. The COA Simulator relies on the WDB for
the locations of enemy and friendly units. The COA
Simulator is discussed in more detail in Section 7.

3.4 The Terrain Analyzer

The Terrain Analyzer (TA) supplies tactical positions
(e.g., Assault and Support-By-Fire Positions), routes,
and area visibility information. The Terrain Analyzer
is discussed in more detail in Section 4.

4. The Terrain Analyzer

The Terrain Analyzer (TA) is a collection of services
that provide the Mission Planner with terrain
information. The available services are: Area Line of
Sight, Route Planning, and Tactical Positions.

4.1 Area Line of Sight (ALOS)

The ALOS module calculates a percentage of
visibility between two circular areas. It is given two
ordered triples consisting of a point, a radius, and a
number of sample points; for example, (pu n, nj) and
(P2. r2, n2).

Then, ni locations are randomly selected within rj
distance of pi. Similarly, n2 locations are randomly
selected within r2 distance of p2. Finally, n^ n2

point-to-point line-of-sight (LOS) checks are done
and the percentage of unblocked LOSs is returned.
Each LOS check is done three meters above ground
level.

4.2 Route Planning

The Route planning component is built on ModSAFs
route planning facilities. Given a start location and
destination a single route is returned.

4.3 Tactical Positions

Three types of tactical positions are supported:
Assault, Support-By-Fire, and Defense. Figure 2
shows two Assault Positions and one Support-By-Fire
Position.

Figure 2: Tactical Positions Example

In Figure 2 the objective lies on a hill. The Support-
By-Fire Position is also on a hill and has unblocked
LOS to the objective. The Assault Positions are
behind treelines and are concealed from the objective.

A grid based approach is used to analyze the terrain.
Using the objective as the center, a square 4000m2 is
determined and divided into square grid cells. The
unit boundaries are determined by computing a
bounding box encompassing the unit, the objective,
and suspected enemy locations. Certain grid cells are

160

marked as unavailable: cells outside the unit
boundaries, cells within grid cell distance of the
objective, cells occupied by enemy units, and
unreachable cells (e.g., canopies, unfordable water,
etc.)

The equation for evaluating grid cells for Assault
Positions is:

Wap = 0.6 • rt_ ratio + 0.2 • slope - 0.5 • (los_ obj + los_ en)

where
Wap is the Assault Position weight of a grid

cell
rt_ratio is the ratio of the length of a straight

line to the route length from the grid cell
to the objective

slope is the slope of the terrain from the grid
cell to the objective and

los_obj is the ALOS to the objective
los_en is the cumulative ALOS to the enemies

This equation evaluates most positively the cells that
have straight line routes to the objective, are "uphill"
from the objective, and are concealed from the
objective and enemies.

The equation for evaluating grid cells for Support-
By-Fire Positions is:

Wsbfp = 0.6 *los_ obj - 0.2 • los_en +0.2* slope

where
W^p is the Support-By-Fire Position weight of

a grid cell and
los_obj, los_en, slope are defined earlier

This equation evaluates most positively the cells that
have unblocked LOS to the objective, are concealed
from enemies, and are "uphill" from the objective.

The equation for evaluating grid cells for Defensive
positions is:

This equation evaluates most positively the cells that
have unblocked LOS to the objective and nearby
terrain, are "uphill" from the objective, and are
difficult to reach (have obstacles nearby).

To avoid clustering of resulting tactical positions,
when a grid cell has the highest weight among its
eight neighbors, the eight neighbors are marked as
non-candidates.

The requested number of tactical positions are picked
from the highest weighted grid cells in descending
order. In the case of equal weights, they are
randomly selected.

5. Mission Planner implementation

The MP is implemented as a finite-state machine
(FSM) inside a ModSAF task. The user assigns the
task to the planning unit from the ModSAF
SAFStation. Currently, Assault plans are generated
for Company sized units comprised of three or four
platoons.

A simplified state diagram of the FSM follows:

START

Wdp = 0.5 • los_obj + 0.6 • los_nearby + 0.2 • slope +

0.2 • obstacle

where
W, dp is the defensive position weight of a

grid cell
los_nearby is the average ALOS to nearby grid

cells
obstacle is the ratio of the number of nearby

grid cells with obstacles to the total
number of nearby grid cells and

los_obj and slope are defined earlier

Figure 3: Mission Planning FSM

In state "Read SPs", the Skeletal Plans (SP) for the
mission are read from a file and "empty" Internal
Skeletal Plans (ISP) are created.

In state "Get Tactical Positions And Routes", tactical
positions as specified in the SP and routes are
obtained from the TA and stored for later use.

161

In state "Complete ISPs", the stored tactical positions
and routes are added to the empty ISPs to create a list
of ISPs. The list of ISPs contain the information to
generate the candidate plans.

In state "Generate Plan", a candidate plan is
generated. The candidate plan is a "fleshed out" SP
with specific locations and routes.

In state "Simulate Plan", a time-stepped aggregate
simulation simulates the candidate plan.

In state "Record Best Plan", the best plan for the unit
is assigned to the unit's Execution Matrix (Loral
1994a) for execution.

6. Course Of Action Generator

This section describes how candidate plans are
generated.

6.1 Reading Skeletal Plans

Skeletal Plans (SPs) are stored in user-defined files.
The MP reads from these files the SPs for the task
contained in the order. For example, for an Assault
task:

(ASSAULT
(ASSAULT_POSmON 4)
(SUPPORT^BY_HRE_POSITION 2)
(SP

(
; subunit 1
((MOVEJTO ASSAULT_POSrTION) ; phase 1
(ASSAULT OBJECTIVE) ; phase 2
(CONSOLIDATE_AFTER_ASSAULT ; phase 3
OBJECTIVE))

; subunit 2
((MOVEJTO ASSAULT_POSITION)
(ASSAULT OBJECTIVE)
(CONSOLIDATE_AFTER_ASSAULT OBJECTIVE))

; subunit 3
((MOVEJTO SUPPORT_BY_FIRE_POSITION)
(SUPPORT_BY_FIRE OBJECTIVE)
(CONSOLIDATE_AFTER_SUPPORT_BY_FIRE
OBJECTIVE))

)
... Other SPs listed here ...

Figure 4: Example Skeletal Plan

Figure 4 shows a portion of the ASSAULT SP file
and details the first SP. The second and third lines
indicate the number of Assault and Support-By-Fire
Positions to obtain from the TA. Typically more

tactical positions (of a variety) than necessary are
requested so that plans using different tactical
positions can be evaluated. For example, although a
SP may need only one Support-By-Fire (SBF)
Position, two or more SBF Positions will be obtained
from the TA and individually incorporated into
different plans.

Each SP contains a general description of the actions
of each of its subunits. The description consists of a
list of (task, location variable) pairs, e.g.,
(MOVEJTO ASSAULT_POSmON). The location
variable will be unified with the locations supplied by
the Terrain Analyzer during the process of candidate
plan generation. Each (task, location variable) pair is
treated as a "phase" in the SP.

After the SPs have been read, two data structures are
created:

• a mission-specific data structure (for example
ASSAULT_DATA for the Assault mission) and

• a list of empty Internal Skeletal Plans.

Initially, the data structures contain basic information
such as unit location and location of the objective.

The Internal Skeletal Plans possess the same structure
as the Skeletal Plans from which they have been
created. They contain lists of phases but these phases
do not yet contain any data to create candidate plans.

6.2 Getting tactical positions and routes

The TA is queried for tactical positions and routes.

The number of tactical positions specified in the
Skeletal Plan (see Section 6.1) are requested. The
generated tactical positions are stored in lists.

Routes are requested between the start location and
each tactical position and between each tactical
position and the objective. The generated routes are
also arranged in lists inside the list containing the
tactical positions.

6.3 Completing ISPs

Completing ISPs consists of:

• placing combinatorial information in the phases
and

• creating links from the phases in the ISP to the
tactical position and route lists.

162

The combinatorial information determines whether
information in each phase changes in the generation
of the next candidate plan.

A large amount of memory would be required to put
complete terrain data in each phase of the ISP
because some information is repeated in multiple
phases. To save memory, the data in the phases is
linked to tactical positions and route lists inside the
mission-specific data structure (Section 6.1). For
example, for the SP in Section 6.1 the linkage is
shown in Figure 5 .

ASSAULT_DATA

Assault
Positions

SBF
Positions

a Aslt. Psn. 1
a

route list

a
SBF Psn. 1

ISP

a

route list

Aslt. Psn. 2

1
route list

SBF Psn. 2

i
r

route list

sub-unit 1

PHASE 1 PHASE 2 PHASE 3

Move

a

Assault Consolidate

'a

sub-unit 2 Move

a

Assault

a

Consolidate

sub-unit 3 Move

a

Support-
Bv-Fire

a

Consolidate

a

Figure 5: Linkage between ISPs and
ASSAULT.DATA

In Figure 5,'«' is a generic link from a phase to a list
(of tactical positions or routes) in the mission-specific
data structure. Each tactical position points to the
routes available to reach the position.

6.4 Generating candidate plans

At this stage, the MP has a list of ISPs with each task
(phase) of the plans linked to lists of tactical positions
and routes. For example, a MOVE_TO
ASSAULT_POSrnON task might be linked to three
Assault Positions and the routes to use. Generating
all the candidate plans involves generating all the

combinations specified in the ISPs. The
combinations are generated by advancing the links to
tactical positions and routes in an orderly fashion.
Each distinct pattern of links to tactical positions and
routes represents a new candidate plan.

6.4.1 Adjusting data in subsequent phases
When a phase link pointing to a list of tactical
positions is updated the routes to use in subsequent
phases becomes invalid and needs to be adjusted.

Suppose, that Phase 1 is a (MOVE_TO
ASSAULTJPOSITION) phase and the next phase is
an (ASSAULT OBJECTIVE). The data link in Phase
1 points to Assault Position A. With this setting, the
subunit will move from the start location to Assault
Position A in Phase 1 and then assault the objective
from A in Phase 2. When the data link in Phase 1 is
updated to point to, say, Assault Position B Phase 2
must be corrected to Assault along a route from B.
Thus, whenever the data link pointing to a tactical
position is updated, data links to routes in the same
and subsequent phases are also updated to make sure
that the routes start from the position being moved to
in the previous phase(s).

7. Course Of Action Simulator

The COA simulator simulates and evaluates each
candidate plan, using a simple, time-stepped,
aggregate simulation (constructive). A constructive
simulation is used, instead of a continuous time
vehicle level simulation, to reduce the time and
resources to simulate each candidate plan.

Each time step consists of three stages: Move, Look,
and Shoot. That is, all units are moved, all visibility
determinations are made, and finally, all combat is
executed.

All the phases in a plan are synchronized, and a plan
is simulated by executing one phase at a time. When
a unit finishes its task ahead of other units, the unit
changes to a hasty defense until all the other units
have finished their tasks. When all tasks in a phase
are complete, the COA Simulator transitions to the
next phase.

7.1 Move stage

Vehicle type, maximum vehicle speed and the
Operational Activity (OA) of a unit determine how
fast a unit moves. The maximum unit speed is taken
to be the maximum speed of the slowest vehicle in the
unit. The unit speed is adjusted by the operational

163

activity in which the unit is currently involved. For
example, a unit performing a Bounding Overwatch
will move slower than the unit performing a Hasty
Attack.

Information about enemy units comes in the order and
is stored in the WDB rather than being obtained from
the simulation ground truth. This mirrors the "real
world" where planning must use intelligence
information rather than ground truth. The unit speed
for enemy units is determined from table 1, based on
the unit's echelon type.

Echelon type Speed (mimin.)
Infantry 90
Mechanized infantry 480
Armor 480
Artillery 480
Supply 480

Table 1: Echelon speeds

Table 2 is used to modify the speed of a unit:

Operational Activity Speed Adjuster
Move 0.5
Assault 0.8
Attack By Fire 0.8
Hasty Defense 0.0
Road March 0.6
Travel Overwatch 0.5
Bounding Overwatch 0.2
Overwatch 0.2
Hasty Attack 0.8
Deliberate Attack 0.8
Support-By-Fire 0.0

Table 2: Modifying a unit's speed

Once the unit speed is calculated, the simulation time
step is used to determine how far the unit will
advance along its route. If in a time step the unit can
go past one of its route points, the unit will "corner"
the route point, and end up on a new leg of its route.

7.2 Look stage

The look stage determines visibility between units at
their new locations. Due to the aggregate nature of
the simulation, only the center of mass of each unit is
maintained. Thus, Line-Of-Sight (LOS) between
units' centers of mass could be unrealistic. Instead, a
percentage of LOS from circles centered at the

centers of mass is determined,
radii by echelon level:

Table 3 shows the

Echelon level Radius in meters
Battalion 1000
Company 300
Platoon 125
Vehicle 20

Table 3: Area LOS circle radii for echelons

The percentage of LOS values are used in computing
how much damage units take.

7.3 Shoot stage

In contrast to using a realistic damage model, we have
chosen a simple combat model. In contrast to
Lanchester equations (Taylor 1983), this combat
model does not reduce the strength of the combatant
units. Rather, "damage" accumulates throughout the
simulation run and the total damage is used to
evaluate the plan. This approach eliminates some of
the artifacts introduced by using a time-stepped,
aggregate simulation at small unit sizes.

The damage is calculated with these equations:

S*E* FP. * %LOS_,
D,=

E, * FP*Enemy_units_seetis

where
D,
Ss

is the damage this time step,
is the strength (number of vehicles) of
the shooting unit.
is the effectiveness of the shooting unit
based on its OA (Table 4).
is the target unit's firepower (Table 5).
is the percentage of area line-of- sight
from the shooting unit to the target unit
is the effectiveness of the target unit
based on its OA.
is the shooting unit's firepower.

Enemy_units_seen is the number of enemy units
seen by the shooting unit.

FP,
%LOS

FP

and
length of simulation

D.= ID,

where
D, is the accumulated "damage" for the target

unit.

164

These equations show the factors that are
incorporated into the damage calculation. The
"strength" of the shooting unit is adjusted by five
factors:

1. The visibility to the target (%LOSs.>t).
2. The effect of the unit's current OA (Es).
3. The firepower of the unit (Fps).
4. The effectiveness and firepower of the target.
5. The firepower spread among visible targets.

A unit's effectiveness is determined by its OA (U.S.
Army, 1986):

Operational Activity Effectiveness
Move 0.2
Assault 1.0
Attack By Fire 1.0
Hasty Defense 1.0
Road March 0.1
Travel Overwatch 0.4
Bounding Overwatch 0.5
Overwatch 0.6
Hasty Attack 1.0
Deliberate Attack 1.0
Support-By-Fire 1.0

Table 4: Operational Activity effectiveness

A unit's firepower is determined by its echelon type.

Echelon type Fire power
Infantry 0.2
Mechanized Infantry 0.7
Armor 1.0
Artillery 0.9
Supply 0.05

Table 5: Fire power of echelons

As mentioned before, information about enemy units
comes from the order, so unit strength is determined
by the unit's echelon level:

Echelon level Strength
Battalion 40
Company 12
Platoon 4
Vehicle 1

The final score of the plan is the difference between
the damage done to enemy units and the damage
taken from enemy units:

EP = ID, - XZ)«
where

Ep is the score for the plan.
5X>, is the damage to all enemy units and.
ZDU is the damage received by unit u.

8. The Plan Follower

The best plan is given to the Plan Follower (PF) for
execution. The PF is ModSAFs Execution Matrix
controlled mission constructing facility (Loral
1994b).

The best plan appears in the unit's Execution Matrix
and is "on order" for execution. Upon receipt of the
"on order" signal from the user the first phases for all
the subunits are executed. Phases are synchronized
so that subunits do not start executing a subsequent
phase until all the subunits complete the tasks in their
current phase.

ModSAF causes the subunits to take reactive
behavior if they are threatened such as by an enemy
presence. The reactive behavior may consist of
"scrambling" for cover when an enemy is sighted.
Options allow the user to override the reaction
causing the subunits to resume execution of the plan.

9. Experience with ModSAF

ModSAF 1.3 was used as the platform for
development. The CTDB (Compact Terrain Data
Base) was used for terrain reasoning purposes.
ModSAF library functions were used whenever
possible. The capability of generating candidate
plans with alternative routes between locations was
not exercised because the ModSAF route planner
returns only one route between positions.

Display time during COA simulation can be
significant and may slow down execution causing
non-real time execution of the system.

Table 6: Enemy unit strength

165

Planning Unit SBF Position routes friendly platoon being attacked by Ul

enemy
platoon
Ul

Assault
Objective

enemy
platoon
U2

friendly
platoon on
Aslt. Psn.

Figure 6: Candidate Plan Simulation in ModSAF

We experienced this problem when we attempted to
display all the tactical positions and routes that were
part of a candidate plan in a single state of the MP
FSM. Modifications had to be made to the MP FSM
to spread the display across states to alleviate the
problem.

10. Results

Skeletal Plans (SPs) for the Assault mission have
been implemented (see Figure 4). For the SP shown
in that figure, the COA Generator and Simulator
generate and simulate 32 candidate plans.

Figure 6 is a screen dump that shows a candidate plan
being simulated for an Armor Company. The
Company is positioned to the left of a lake and is
planning an Assault mission on the hill shown on the
right side of the picture (Assault Objective). The
plan being simulated in Figure 6 involves a Company
of three platoons. One platoon provides supporting
fire. The other two platoons assault the objective
from different Assault Positions. Figure 6 shows one
platoon at the Support-By-Fire (SBF) position,
another at an Assault Position, and a third being hit

by enemy fire (represented by a circle) while on its
way to the second Assault Position. The routes being
used by the Platoons are visible in the background.

The editor below the tactical map display shows the
current score of the plan and the score for the best
plan so far. The greater the score, the better the
candidate plan. The score for the current plan (-
6967) is greater than the score for the best plan so far
(-10275). If the final score for this plan is greater
than the "best plan so far", it will become the new
best plan; otherwise it is discarded.

11. Conclusions and future work

CGF systems are becoming increasingly complex and
greater attention is being paid to representing the
behavior of units. Mission Planning is an essential
component of the Command and Control process.
The Simulation Based Planning approach described
here mirrors the human decision making process
wherein different courses of action are evaluated and
the "best" one is chosen. This approach provides an
alternative or adjunct planning mechanism to the
traditional AI knowledge intensive approaches. The

166

Mission Planner (MP) has been implemented in
ModSAF and tested for a Company Assault mission.

There are several opportunities for future work with
this system. The MP consists of three primary
modules: the Terrain Analyzer (TA), COA Generator,
and COA Simulator. Each component can be
improved and extended; some ideas are discussed
below.

The TA currently returns a single route between
locations. Thus, candidate plans with alternative
routes between locations cannot be generated. Karr
et. al. (1995) describes a Unit Route Planner that has
the ability to generate multiple routes between
locations. Implementing this route planning
capability in ModSAF (as part of the Terrain
Analyzer) would increase the variety of candidate
plans.

The TA's grid based analysis of tactical positions can
be improved by a more thorough analysis based on
computational geometry.

The COA Generator creates candidate plans by
systematically generating all the combinations
specified in the Skeletal Plans. Applying AI planning
techniques during this process to detect and eliminate
from consideration impossible plans could
significantly decrease the computational expense of
simulating "bad" plans.

12. References

Lee, J. J. and Fishwick P. A. (1994). "Simulation-
Based Planning for Computer Generated
Forces", Proceedings of the Fourth Conference
on Computer Generated Forces and Behavioral
Representation, University of Central Florida,
Orlando, Florida, pp 451 -460.

Elsaesser, C. and MacMillan, T. R. (1991)
"Representation and Algorithms for Multiagent
Adversarial Planning", Technical Report MTR-
91W000207, MITRE Corp. pp 1-56.

Loral (1994a). "LibExecmat documentation", Loral
Advanced Distributed Simulation, Cambridge,
Massachusetts, 1994.

Taylor (1983). Lanchester Models of Warfare.
Volume 1,1983.

U.S. Army (1986). "The division 86 Tank Company
SOP", Coordinating Draft, U.S. Army Armor
School, May 1986.

Loral (1994b). "ModSAF User Manual", Loral
Advanced Distribution Simulation, Cambridge,
Massachusetts, September 30, 1994.

Karr, C. R. and Rajput S. (1995). "Unit Route
Planning", Proceedings of the Fifth Conference
on Computer Generated Forces and Behavioral
Representation, University of Central Florida,
Orlando, Florida.

Winston, P. H. (1992). Artificial Intelligence, Third
Edition, Addison-Wesley Publishing Company,
1992.

The COA Simulator could simulate plans more
realistically by applying a more sophisticated combat
model (e.g., one using Lanchester equations
described in (U.S. Army 1986)). Additional criteria
can also be incorporated into plan evaluation. For
example, considering the time of completion of a
plan. In real military planning, the time of
completion of a plan is important

This project has shown that realistic plans can be
created and evaluated with a Simulation Based
Planning approach. It seems reasonable that this
approach could be applied within knowledge
intensive planning approaches to reduce the
complexity and breadth of knowledge required. That
is, a COA Generator/Simulator module could identify
(through simulation) better plans without encoding
specific knowledge to make fine distinctions among
plans.

13. Author biographies

Clark R. Karr is a Program Manager and the
Principal Investigator of the Intelligent Simulated
Forces project at the Institute for Simulation and
Training. Mr. Karr has a Master of Science degree in
Computer Science. His research interests are in the
areas of Artificial Intelligence and Computer
Generated Forces.

Sumeet Rajput is an Associate Engineer in the
Intelligent Simulated Forces project at the Institute
for Simulation and Training. Mr. Rajput has a Master
of Science degree in Computer Science. His research
interests are in the areas of Computational Geometry,
Physical Modeling, and Computer Generated Forces.

Jaime E. Cisneros is a Research Associate in the
Intelligent Simulated Forces project at the Institute
for Simulation and Training. Mr. Cisneros has a
Masters of Science degree in Computer Science, and
is currently working on a Masters of Electrical

167

Engineering. His research interests are in the areas of
Natural Language Understanding, Machine Learning,
and Computer Generated Forces.

Hai-Lin Nee is an Assistant Engineer in the
Intelligent Simulated Forces Project at the Institute
for Simulation and Training. Mr. Nee has a Master of
Science degree in Computer Engineering. His
research interests are in the areas of Expert Systems,
Object Oriented Analysis, and Computer Generated
Forces.

168

Multi-Application Command Agents

Helen Lankester
Software Engineering Centre,

Defence Research Agency, Fort Halstead
Sevenoaks, Kent TN14 7BP, UK.

hlankester@dra.hmg.gb

1. Abstract

The UK Defence Research Agency has set up a
collaborative research programme, called CARE,
aimed at developing a command decision-making
function for use by a number of different applications.
This work will build from the command agents
developed for the GEKNOFLEXE project, making
them accessible to other simulation systems,
extending their use and enhancing the tools provided
for users and developers.

Proof of principle demonstrators have been produced;
these link the existing GEKNOFLEXE simulation to a
Higher Formation Trainer and a divisional level war
game used for operational analysis. This has allowed
command agents to successfully control units within
these simulations. A more open and modular
approach is required which provides for a better
interface between command agents and simulations.

An outline architecture for the common command
agent software has been designed. This consists of a
command agent shell and an environment in which
multiple shells can operate and interact with entities
within simulations. The CARE programme will
develop more generic knowledge bases for the
command agents so that they can operate in a wider
range of scenarios and simulation systems.

2. Introduction

A number of research projects within the UK Defence
Research Agency (DRA) have recognised the need for
an explicit representation of command and control, in
order to meet their differing requirements. Four of
these programmes have joined together to share the
effort and cost of this by developing a common
software model of command decision-making. This
collaborative programme is called the DRA
Command Agent Research (CARE) initiative.

This paper describes the current use of command
agents within the projects contributing to CARE and
discusses their requirements for the common software
model. The issues associated with implementing such
a model and an architecture to provide the required
facilities are outlined.

2.1 Command Agents

Work under the CARE programme is based on the
command agent function developed as part of the
GEKNOFLEXE system. This was presented at the
Fourth Computer Generated Forces and Behavioral
Representation conference (Lankester and Robinson,
1994). Command agents are used to represent the
decision-making nodes within the command
hierarchy. Each command agent typically represents a
command post which is able to make decisions and
interact with other command agents and entities
within a simulation thus controlling battlefield
operations.

Command agents are entities within the battlefield
simulation and so are subject to battlefield effects.
The decision-making capability of a command agent
is represented using a set of rules describing the
tactics which that command agent needs to use to
perform its role in the battle and an object structure in
which it stores its perception of the battlefield.

Each type or class of command agent has its own set
of rules and domain knowledge structures which
define its behaviour. Instances of command agents are
created which have their own perceptions of the
battlefield which they maintain as the simulation
progresses.

2.2 Terminology

Command Agent - software which represents the
command and control decision-making of a command
post.

GEKNOFLEXE (GEneric KNOwledge-based FLEXible
Enemy) is a project which has produced a tool set for
modelling command and control as a set of
communicating command agents.

CARE (Command Agents REsearch) is a DRA
initiative to develop a generic command agent
software function and associated facilities. It is based
on GEKNOFLEXE.

3. Applications of Command Agents

Large numbers of human players and controllers are

169

required to operate many war games and simulations
to represent command and control. Providing them is
costly and it is becoming increasingly difficult to find
suitable military personnel to staff such systems.
This has led several different projects to investigate
the use of command agents within their simulations.

3.1 Current use of GEKNOFLEXE Command
Agents

The GEKNOFLEXE project has been using and
developing command agents for three years to
characterise command and control so that its
effectiveness in different situations can be studied.
Two major scenarios have been developed and a
number of studies have been undertaken using them.

Two simulations which require a command and
control model have also used the GeKnoFlexE system
to provide a proof of principle demonstrator to show
how they could use command agents. These
demonstrators are described below.

3.1.1 Command Agents for a Higher Formation
Trainer
One of the demonstration systems links the existing
GEKNOFLEXE software to the Corps Battle
Simulation (CBS) and is described in more detail in
Kendall and Page (1995). This demonstrator has
successfully used the CBS generic interface to enable
the GeKnoFlexE command agents to control the
opposition forces within CBS thus reducing the
number of controllers required. Current research in
this area is focused on reducing the controller
workload in the UK Army's new Higher Formation
Trainer, ABACUS.

3.1.2 Command Agents for Operational Analysis
The GEKNOFLEXE software has also been connected
to a divisional level war game used for operational
analysis. The GEKNOFLEXE system acts as a virtual
player on the simulation's network so that command
agents are able to control recce units. Recce units
were automated because they are used extensively
early in the simulation, when the external players
controlling the game are not very familiar with its
operation. Future work is aimed at reducing player
workload and ultimately the number of players by
automating parts of other sub-functions, e.g.
manoeuvre and engineers, thus helping to solve the
problem of finding sufficient military players for the
game.

3.2 Common Command Agent Software

The GEKNOFLEXE system has its own battlefield
simulation in which the command agents operate.

The simplest way to adapt the GEKNOFLEXE system
to get its command agent to control units in another
simulation is to make the GEKNOFLEXE battlefield
simulation emulate the target simulation. In this way
the command agents can continue to work within the
simulation designed for them but have their orders
forwarded to the new one. This approach has been
used to produce both of the demonstration systems
described above.

The current approach to using GEKNOFLEXE
command agents in other simulations is restricting
further development and running two battlefield
simulations is an unnecessary overhead. A more open
and modular approach is required to command agents,
one which allows a better interface between command
agents and simulations. Approaching the development
of command agents in this way will enable central
development of a command agent software function
which can be used by a number of different
applications.

The projects described above are contributing to the
CARE programme as they all require a similar model
of command decision-making. It is clear from the use
of the existing system by other projects that
GEKNOFLEXE command agents are applicable to
other areas and therefore the cost of developing them
could be shared. A collaborative program based around
one simulation system with a command decision-
making model would be ideal, however most of the
prospective users of such a system each have their
own simulation system specifically designed for their
purposes. The element which these simulations are
lacking is a representation of command decision
making which GEKNOFLEXE command agents offer.

The aim of the CARE project is therefore to extract
the GEKNOFLEXE command agents from their current
simulation, make them accessible to the other
simulation systems as well as extending their use and
enhancing the tools provided for the user and
developer.

3.3 Other Applications

The approach taken by CARE does not restrict the
use of command agents to the current application
areas which are supporting the project. CARE's
command agents could be used in other training or
operational analysis systems as well as in doctrine
development and perhaps in the longer term used
within a decision support tool. Any simulation which
requires a reasonably complex command decision-
making capability could make use of the command
agent approach.

170

4. Requirements

The requirements of the different applications are
surprisingly similar given their different ultimate
aims. They all require a representation of command
decision making and the facilities to interact with the
command agents during operation.

4.1 Command and Control Representation

Some of the requirements are already met by the
existing GEKNOFLEXE command agents which
provide the ability to represent different levels and
sub-functions of command. The modularity provided
by the GEKNOFLEXE command agent enables the
complexity of the C2 model to be represented
appropriately.

With increasingly sophisticated command agents the
need for processing power quickly increases and the
architecture must take this into account. One solution
to this problem is to allow distributed and parallel use
of command agents. Command agents are particularly
suited to parallel operation as this is exactly how real
world command posts operate. The performance of
command agents is important as they must operate in
synchronisation with the simulation and not affect the
overall performance of the system.

A framework is required in which different command
and control models can be represented. This is
essentially what the GeKnoFlexE tool set already
provides with its ability to represent different types of
command agent

Some applications require the command agent's
decision-making to be deterministic, for example an
operational analysis study comparing different weapon
types. On other occasions it may be appropriate to
vary the decision-making to represent different
commanders so that trainees do not become too
familiar with the behaviour of command agents.

4.2 User Interfaces

A major part of CARE is devoted to developing the
facilities and graphical interfaces to develop and use
command agents. There are three main types of user:
the command agent developer, the military validator
and military users who act as controllers or players.
The user interface must allow users to understand the
command agent's behaviour. This is important for
verification and validation as well as for run time
users, who can then decide if and when they need to
alter or take over control from a command agent.

The faculties required by validators and run time users
are similar since they must both be able to monitor
what command agents are doing. A trace and

explanation of the command agent's decision-making
process goes some way to achieving this and can also
be used for After Action Review. The huge quantity
of this sort of trace information in a reasonably
complex command agent system can quickly become
unmanageable so user definable filters are needed.

4.3 Human Command Agent Interaction

A user of the CARE system must be able to override
the decisions made by command agents. This may be
to make them act in a non-doctrinally correct manner
in order to meet a particular training objective or to
ensure that a new weapon type is used in an
operational analysis study run. Another reason for
wanting to override decisions is to cover areas of
knowledge where the command agent is deficient.

A step on from overriding command agents is
handing control over to a human controller
completely i.e. a 'man in the loop'. The human
controller may need to work with command agents as
his superior or subordinates. This facility could be
used for similar purposes to overriding.

The controller may want to hand back control to the
command agent. Whilst a command agent is
operating it maintains its own perception of the
battlefield and what it is doing on which to base its
decisions. The command agent will have to maintain
a perception of what is happening whilst the human
is in control if it is to be able to take control back.

A controller could also control a command agent's
behaviour by acting as its superior and giving it
appropriate orders. This introduces the issue of voice
communication with command agents.

4.4 Interaction with Simulations

The command agents need to be able to interact with
a number of different simulations. Command agents
have to give orders to and receive reports from other
entities within the simulation. They will also need to
be able to move the command vehicles which are
their physical representation in the simulation and
gain access to information from the simulation, e.g.
time and the terrain database.

4.4.1 Magic Moves
Simulations requiring a C2 model often have a 'magic
move' facility which is used to correct human errors,
for example, players often forget about bridging units
until they need to use them. This sort of mistake
should not hold up the whole game so corrections are
made by 'magically' transporting the relevant units
into position. Magic moves are also used to meet
specific objectives but in a more dramatic way than

171

overriding decisions. A magic move may require the
perceptions of some of the command agents to be
changed, just as a human controller's perception
would need to be changed.

Changing the perception of command agents when a
bridging unit has been magic moved will be fairly
easy and have few side effects. If a whole brigade had
been magic moved into a new location the effect on
the command agents would be more severe. Their
perceptions need to be changed so that they have a
realistic picture of the battlefield and do not
undermine the intention behind the magic move.

4.4.2 Re-execution. Rewind and Fast Forwarding
Other simulation functions which the command
agents will need to handle include re-execution,
rewinding and fast forwarding. Re-execution and
rewinding require sufficient data to be stored for the
command agents to recall their perceptions from a
point earlier in the simulation and be able to start
again from this point. This kind of data is also
required for After Action Review. Fast-forwarding the
command agents' actions has further performance
implications, making the ability to use command
agents in parallel more important.

The scenarios which are used in simulations often
start when the forces have, or are about to, come into
contact. A controller of the simulation will have to
give each of the players an idea of their situation. The
same is true for command agents. The fast forward
facility could be used to allow the simulation to be
started slightly before the forces have come into
contact so that the command agents build up their
own detailed perception of the batdefield. Being able
to fast forward the command agents will also aid
development and validation.

4.4.3 Use of Simulation Models
Command agents currently use models within the
GEKNOFLEXE simulation, for example to send
messages or plan routes. The command agents will
continue to need to exploit models within the target
simulation directly, for example the communications
and terrain models. The effects of various simulation
models, such as attrition will also have to be
considered. The limitations of the simulation will
need to be handled by the system, for example, the
simulation's congestion model may prevent command
agent from deploying their units as they would wish.

4.5 Generic Knowledge Bases

So far command agent knowledge base development
has been centred around specific scenarios to constrain
the required functionality. The knowledge bases
required by command agents are very costly to

produce, as considerable effort is required to write and
validate them, and they are currently limited to
specific types of scenario. The CARE programme has
been tasked with designing knowledge bases which
are as reusable as possible. Command agents need
knowledge bases which allow their operation in a
range of scenarios as well as with a number of
different simulations.

4.6 Standards

Appropriate standards need to be adopted so that the
CARE system can be used as widely as possible and
interact with other computer generated forces, e.g.
ModSAF. In this context adoption of the ARPA's
(Advanced Research Projects Agency, US) emerging
Command and Control Simulation Interface Language
(CCSIL) will be considered.

5. Command Agent Architecture

An architecture and approach to developing the
common command agent software has been designed
in outline. It consists of a command agent shell and
an environment in which multiple shells can operate.
The command agent software will interact with each
simulation via a mediating process which provides an
interface between the simulation and the command
agents.

5.1 Command Agent Shell

The command agent shell is a command agent
without a knowledge base. It provides the facilities
for developing and using a command agent. This part
of the CARE work will reuse the inference engine,
knowledge representation and knowledge base tool
used in the GEKNOFLEXE project.

5.1.1 Support Functions
The GEKNOFLEXE command agent knowledge bases
currently use a number of support functions to aid
decision-making. Some of these functions access the
simulation directly to effect actions such as establish
the current time and use the terrain database. Some
support functions may even access ground truth
directly to simplify a process, for example data
fusion. Whilst this is clearly allowing the command
agent to have access to non-real world information, it
significantly reduces the complexity of the command
agent, allowing a wider representation of the
battlefield for a given amount of resources. It is also
thought that command agents will continue to need
more than real world information to model command
decision-making effectively.

5.1.2 Message Interpreter
As well as facilities for building and executing

172

knowledge bases the command agent shell will need
to include a message interpreter which takes in
messages from other command agents and entities and
sends out messages from the command agent. The
message interpreter will forward messages to the
appropriate part of the command agent and queue
messages if it is busy.

5.1.3 User Interfaces
The developer's interface is largely present in the form
of the knowledge base tool already in use by the
GeKnoFlexE project. This tool allows the user to

develop rules and objects in a menu driven system.
The same tool provides facilities for tracing through
rule executions and domain knowledge structures.

The knowledge base tool is a good starting point for
the development of facilities to allow users to
understand the behaviour of command agents. The
interface needs to be able to convey to the user the
information he wants as quickly as possible so that
he is able to follow what the command agent is
doing. Figure 1 shows what this interface might look
like.

3 Order Bde Attack Task Bl

WHERE

THEN

BECAUSE

I

4i

B G3 Decision Trace ~D!
KMerUdeAttacTl

1
Battle Plan •01

Level
Time noo

Primary Location *i

Units Involved a**
o*»
aye

Enemy Positions "a
Y«SC
I7»S

Command Agent t*Hs 1TB

BLUE 123 Div

G2(ASC)

Air Defence G3 (Plans)

Air/Avn G3(Ops)

Engr COMMCEN

Arty

Domain Knowledge Message/
Action

Log

H Message/Actor Log 3B
Attack Order

Action

B Units Details HB
Type xmtcommv f
Strength wm
Location s« ace

Time Reported !«cc
Source «v 3

Figure 1: Window Based User Interface

173

A multi-window system allows different types of
information to be displayed simultaneously, for
example a map display of the perception of a
command agent and a trace of the decisions being
made using that perception.

It is important that information is displayed to the
user in a consistent and familiar format. The
command agent cells window in figure 1 represents
the command agent in a similar way to that used to
represent command posts in officer's handbooks.

The quantity of information available to the user is so
large that the interface must provide facilities to
enable him to manage it easily. This can be achieved
using user definable filters, which only show the user
the information he has requested, and also by using
the multi-window approach to provide top level
information, which can be selected and focused in on
as necessary. An example of this might be for the
user to monitor a high level action and message log.
When he sees something happening of particular
interest, he could then select it and look at the
decision-making trace and perhaps even the rules
themselves. This approach could also be used for
displaying the domain knowledge; a map display
showing the command agent's perception of the
battlefield could be displayed and units on the map
selected for more detailed information.

5.2 Command Agent Environment

The command agent environment will contain a
configuration facility which sets up the command
agents to be used in a particular simulation run and
defines their relationship to each other and the
processes in which they are located. This
configuration information will need to be maintained
persistently within a database.

The command agent environment controller will be
responsible for passing messages between command
agents and routing messages to and from the
simulation. Messages from the simulation may be
from entities modelled by the simulation or the
results of support function queries. Orders and reports
will have to be sent using the simulation's
communications model (if it has one). This will
allow messages to be delayed or lost as the
communication model dictates.

The environment controller will have to ensure that
the command agents' decision-making is keeping up
with the simulation. This is particularly necessary

when command agents are making decisions over a
period of simulation time. The controller also needs
to be able to take account of the effects of attrition on
command agents.

5.3 Simulation Interface

The interface between the system developed by the
CARE initiative and the simulation is referred to as
the mediating process. This process is made up of
two parts; a generic part common to all simulations
and a simulation specific part. It is hoped that this
will ultimately be compliant with emerging standards
like CCSIL. However, CCSIL provides only real
world messages which may not be sufficient for
current command agents.

This mediating process is responsible for translating
message formats from the simulation to the command
agents and vice versa. The mediating process needs to
monitor the simulation so that it can provide
command agents with realistic battlefield reports
where these are not provided by the simulation. It
also extracts information from the simulation required
by the support functions and by the command agent
environment controller. This will include simulation
time and details of magic moves and rewinds.

In order for the GEKNOFLEXE system to use the new
command agent facilities a simulation specific part of
the mediating process must be produced. This is seen
as relatively simple, since the simulation has been
designed to interact with command agents. Building
an interface to other simulations is likely to be more
complex. Most training and operational analysis
simulations have been designed to work with people
so a command agent should be able to interface in a
similar way to the human. However, there are
problems associated with their different abilities to
reason with information, for example a human
controller can interpret a raster map where as a
command agent would have difficulty!

5.4 Physical Layout

Provision has been made to encompass distributed and
parallel processing techniques in order to achieve the
required levels of command agent performance. Figure
2 shows the physical layout of the command agent
architecture. There will be a command agent
environment controller and command agent shell on
each process running command agents. Each
command agent shell will run a number of command
agent instances.

174

command agent
instances

multiple
processes

r
Process 1

Controller

f
Controller

1
generic

Mediating Process

simulation specific

Figure 2: The CARE System Architecture

6. Knowledge Bases

The command agent shell outlined in section 5.1
describes the software which is used to develop and
run command agents. Each type of command agent
requires the development of a knowledge base to
provide it with the appropriate decision-making
capability.

The knowledge bases developed for the scenarios used
in the GEKNOFLEXE project will be used initially
whilst the CARE architecture is developed. These

knowledge bases have been developed for specific
concept of operations and force structures. This means
that the command agents can only be applied in a
limited range of scenarios. As figure 3 shows this
representation is better than the more conventional
scripted models of command and control but not
nearly as flexible as a human would be. If the
command agents are to be reused to a greater extent
they will need to be more flexible so they can cope
with a wider range of scenarios.

inflexible

scenario
and situation dependent

flexible

scenario
independent

"1
scripted C2

models

 1
existing

GeKnoFlexE
knowledge bases

human
commanders

Figure 3: C2 Modelling Flexibility Scale

175

DIV

BDE

BTN

/

z

current GeKnoFlexE
knowledge base

coverage

mission
analysis

development of
Concept of Ops planning

battle
management

mission
analysis

development of
Concept of Ops planning

battle
management

mission
analysis

development of
Concept of Ops planning

battle
management

Figure 4: Military Decision-Making Currently Represented Using GeKnoFlexE

increasing
time cycle

The CARE knowledge base development work will
build on the experience of the GEKNOFLEXE project
to expand the applicability of the command agents.
Figure 4 shows the types and levels of military
decision-making currently represented in
GEKNOFLEXE. The more reactive types of decision-
making have been covered in more detail. Command
posts at the lower levels have to make decisions over
smaller time periods than the higher ones. This tends
to be easier to represent and needs to come into play
earlier on in a simulation run.

The less reactive types of decision-making need to be
represented. This includes the kind of knowledge
required to develop the concept of operations. This
will enable the higher levels of command,, for
example at divisional level, to be represented in more
detail and therefore provide longer running, more
varied scenarios than have currently been achieved.

As well as operating in a wider range of scenarios,
command agents must cope with differences in the
behaviour of distinct simulations. Only then will it
be possible for them to be used more generally by
different applications.

7. Work Programme

A feasibility and scoping study for the collaborative
command agents research work was completed in
October 1994 (Heard et. al. 1994). This study showed
that the establishment of a collaborative project to
develop a generic command agent software function
was both feasible and likely to provide significant
savings in comparison to each project pursuing
independent programmes. As a result of the study a
project has been set up and initial design and
development work started.

A spiral development approach has been taken to the
development of the command agent software. The
first spiral consists of developing a prototype system
which will be used to further identify die requirements
of the applications and research possible solutions.
Early work will remove the command agents from the
GEKNOFLEXE system and produce a mediating
process to link them back to the simulation. It is
hoped that the CARE prototype system will be
demonstrated linked to ABACUS by the end of 1995.
This first phase will not develop any further
knowledge bases but will use the existing ones
developed for the GEKNOFLEXE project.

176

The second spiral will develop the full command
agent system including a comprehensive set of tools
and interfaces for users. It will also provide a wider
and more applicable set of knowledge bases which
each of the programmes can use.

8. Conclusions

GEKNOFLEXE command agents have successfully
controlled units within three different simulations,
reducing controller/player workload. These
simulations are used for different applications ranging
from training to operational analysis, and yet they all
require a similar command decision-making model and
associated facilities for users. The command agent
capability provided by GEKNOFLEXE has been shown
to be a suitable basis from which a common
command agent software function and facilities can be
developed for use by different applications.

The CARE programme was set up to develop the
common command agent software, making the use of
GEKNOFLEXE command agents more accessible. The
command agents will be extracted from their current
simulation and improved facilities for users and
developers provided. Command agents will also be
made more reusable by extending their knowledge
bases to cover a wider range of scenarios, battlefield
functions and use within different simulation
systems.

9. Acknowledgements

The CARE project is funded by the UK Ministry of
Defence. The project is conducted by the Software
Engineering Centre of the UK Defence Research
Agency with 'Rainbow Team' support from Logica
UK.

10. References

Heard, R. J. B., Lankester H. G., and Robinson, P.
K. (1994) "Command Agents research
feasibility/scoping study report" Technical report
DRA/CIS/CSS1/TR94006/1.0, Defence Research
Agency.

Kendall, G., and Page, I. (1995) "An Automated CBS
OPFOR", Proceedings of the Fifth Conference on
Computer Generated Forces and Behavioral
Representation.

Lankester, H. G., Robinson, P. K. (1994)
"GeKnoFlexE: A Generic, Flexible Model of
C3I", Proceedings of the Fourth Conference on
Computer Generated Forces and Behavioral

Representation.

11. Author's Biography

Helen Lankester is a Higher Scientific Officer in
the UK Defence Research Agency - an agency of the
UK Ministry of Defence. She graduated from Sussex
University with a BSc degree in Computer Science in
1991. Since then she has worked on the
GEKNOFLEXE project and a rule-based movement
model. She is now the Technical Leader of the CARE
project.

177

Session 4b: W&A

Meliza, ARI
Perneski, Loral ADS

Thomas, AMSAA

Measuring Entity and Group Behaviors of
Semi-Automated Forces

Larry L. Meliza and Eric A. Vaden
U.S. Army Research Institute

Simulator Systems Research Unit
12350 Research Parkway, Orlando, FL 32836-3276

1. Abstract

The Unit Performance Assessment System (UPAS)
was developed to measure the behavior of manned
units in distributed interactive simulation (DIS)
exercises, but measures of performance used to
assess manned units can also be applied in
measuring the behavior of computer generated
forces (CGF). This paper describes the use of the
UPAS as part of an effort to compare the behavior
of Semi-Automated Force (SAFOR) Version 4.3.3
with Modular SAFOR (ModSAF) Version 1.2.
UPAS data displays were used to assess how well
the actions of individual entities were controlled by
mission, enemy, time, and terrain variables. These
displays were also used to assess how well entities
worked together as part of armor or mechanized
infantry platoon-level organizations in performing
collective tasks described in the Mission Training
Plan (MTP) document appropriate to each type of
unit. Behavioral assessments in the individual
entity mode included examinations of the effects of
terrain on vehicle speed, rate of fires when
confronted with target arrays, land navigation, and
scanning behavior. Group behaviors assessed at
platoon level included quality of formations,
smoothness of transitions among formations,
observation (scanning) within assigned sectors,
reaction to contact, and the conduct of an assault.
The two CGF systems differed from one another in
terms of various measures of performance.
Overall, both types of CGF displayed inadequate
sensitivity to the mission, enemy, time, terrain, and
troop (METT-T) variables that should be
controlling CGF behavior.

2. Introduction

The Unit Performance Assessment System (UPAS)
was developed to measure the behavior of manned
units in distributed interactive simulation (DIS)

exercises (Meliza, Bessemer, and Tan, 1994), but
measures of performance used to assess manned
units can also be applied in measuring the behavior
of CGF. The UPAS has previously been used to
compare the behavior of manned units with that of
one version of CGF (Vaden, Meliza, and Johnson,
1994; Mengel, 1994) in an effort known as
Summer Exercise I (SUMMEX I). This paper
describes the use of the UPAS as part of an effort
to compare the behavior of two CGF systems
Semi-Automated Force (SAFOR) Version 4.3.3
and Modular SAFOR (ModSAF) Version 1.2.

A week of exercises were conducted in July of
1994 to compare the behaviors of ModSAF Version
1.2 and SAFOR Version 4.3.3 to determine which
system was most appropriate for Synthetic Theater
of War-Europe (STOW-E). Many of the tactical
scenarios used in comparing the behavior of the
CGF were taken from Summer Exercise I
(SUMMEX I) in which the behavior of ModSAF
Version C was compared with that of manned
platoons (Mengel, 1994). These platoon and
company level scenarios were supplemented by
mini-scenarios in which the focus of observation
was a single entity.

Many of the behavioral performance criteria could
be applied by the members of the assessment group
viewing the action through an out-the-window view
from a stealth station (Loral GT-101). In other
cases, UPAS data displays were used either as the
initial assessment tool or to quantify a differences
in performance we believed we were seeing as we
observed the out-the-window view. In certain
cases the UPAS displays were used to document
critical behaviors in a manner that could be readily
incorporated into reports. Because ModSAF
operated under DIS 2.03 protocols rather than
SIMNET protocols during portions of the test, the

181

UPAS collected network data from the SIMNET
side of a protocol translator.

The UPAS data displays included "Snapshots"
showing overhead views of the exercise, traces of
entity or unit movement over time, data summary
tables, and graphs. Graphs and tables were
produced using data loaded into two relational
database tables, the Pairing Event Table (PET) and
the Ground Player Location Table (GPLT). The
PET is based on information taken from the
SIMNET Fire, Impact, and Status Change Protocol
Data Units (PDUs). For each firing event, the
PET shows the time, location of firing entity,
location of the round or bomb impact, ID of the
firer, ID of the target, ID of the type of weapon
system, ID of the type of ammunition, the number
of rounds fired, the result of the firing event, the
range from firer to impact, and the firing event
number. The GPLT contains information taken
from the Vehicle Appearance and Vehicle Status
PDUs. This table identifies the time of the status
update, the ID of the entity, the location of the
entity in terms of X, Y, and Z coordinates, entity
speed, direction of movement, orientation of gun
tube, elevation of the gun tube, odometer readings,
fuel levels, and ammunition levels.

UPAS data displays were used to assess how well
the actions of individual entities were controlled by
mission, enemy, time, terrain, and troop variables.
These displays were also used to assess how well
entities worked together as part of armor or
mechanized infantry platoon-level organizations in
performing collective tasks described in the
Mission Training Plan (MTP) document appropriate
to each type of unit. Behavioral assessments in the
individual entity mode included examinations of the
effects of terrain on vehicle speed, rate of fires
when confronted with target arrays, land
navigation, and scanning behavior. Group
behaviors assessed at platoon level included quality
of formations, smoothness of transitions among
formations, observation (scanning) within assigned
sectors, reaction to contact, and the conduct of an
assault.

This paper reviews selected types of measures of
performance (MOPs) for which the UPAS is well
suited. For a comprehensive report of the results
of the comparison study, see the ModSAF 1.2/SAF

4.3.3 Comparison Study Summary Report (Loral,
1994).

3. Results

3.1 River Crossing

One of the first variables assessed at the entity
level was the ability of an entity to locate and cross
fordable water. Both ModSAF and SAFOR
vehicles had difficulty with this task. For ModSAF
vehicles in particular, the availability of a bridge or
fordable area appeared to be little help. Figure 1,
a UPAS Battle Flow display, shows the movement
of a ModSAF vehicle during its approach to a
river. Confusion and backtracking behavior are
evident even in the presence of a bridge. Although
SAFOR vehicles crossed bridges without much
difficulty, the behavior of both SAFOR and
ModSAF vehicles resembled that of the vehicle
shown in Figure 1 when bridges were absent.

3.2 Terrain Slope and Speed Variation

The UPAS data tables proved effective in assessing
speed adjustments associated with changes in the
slope of terrain. For example, Table 1, from the

Speed % of Time Speed % of Time
(Km/Hr) Moving at (Km/Hr) Moving at

This Speed This Speed

1 1% 26 1%
3 1% 27 1%
8 1% 28 1%
9 1% 29 1%

10 1% 30 1%
12 1% 32 1%
13 \% 33 1%
14 2% 35 2%
15 \% 36 54%
16 6% 37 2%
17 2% 38 \%
18 1% 39 1%
19 \% 50 \%
20 \% 62 1%
22 1% 73 \%
24 \% 76 1%
25 2%

Table 1. % of Time ModSAF Tanks Spent
Traveling at Various Speeds.

182

S»»rt Tina: 131618 Itttll flow

A <PLI l/LEAt> :oil

Dtti : M-7-is Ex is: eel c

91.SBK

rin«l Tina: 143747

a n»io»n: i

/
s^:

Figure 1. Trace of Movement of ModSAF
River is

UPAS GPLT table, shows the percentage of time
a ModSAF entity spent traveling at various speeds.
For the exercise segment captured in this table, the
vehicle encountered inclines and declines of as
much as 40 percent. The fact that slightly more
than half of the terrain was approximately level is
reflected byt he fact that 54 percent of the travel
time was spent at 36 Km/Hr. In contrast, a
SAFOR vehicle traveling over the same path spent
98 percent of the time at a speed of 29 Km/Hr
demonstrating minimal responsiveness to terrain
variation.

3.3 Firing Variables

During the comparison study, a "turkey shoot"
scenario was employed to systematically compare
firing accuracies across multiple ranges. All
targets were stationary and non-firing. During the
first set of turkey shoot scenarios, there was only
one firing Ml tank, and it was given unlimited
ammunition. This firing entity was given a
"reasonable" amount of time to fire on the target
entities. The original intent of the exercise was to
allow the firing entity to continue firing until all of
the target entities were destroyed. While, in

Vehicle Showing Confusion and Backtracking as
Approached.

theory, this would have provided a more robust
comparison, it turned out to be impractical
because, in several situations, the ModSAF firing
entities required far more rounds than expected to
inflict catastrophic kills on the targets. In these
cases, the exercises were halted when the rate of
fire slowed or when it appeared that the
effectiveness of continued firing had decreased to
near zero.

For the first of these scenarios, a company of 10
T-72 vehicles was placed at a range of 750 meters,
and the firing competence was set to 1.00. After
the firing was complete, a new target company was
placed at 1500 meters and then at 2500 meters.
These three firing scenarios were conducted with
both ModSAF and SAFOR as the firing entity.
The data for the turkey shoot scenarios are
presented in Table 2.

From the data presented in Table 2, two
conclusions are clear. First, the rate of fire for
SAFOR entities was considerably faster than that of
the ModSAF entities. In interpreting the SAFOR
rate of fire data however, it should be noted that
the SAFOR entities showed some peculiar firing

183

Range CGF Hits Misses Mean Time
Between Rounds

Range CGF Ammunition Hits MJSSS

750 ModSAF 19 1 11

SAFOR 15 0 6

1500 ModSAF 17 5 10

SAFOR 12

2500 ModSAF 22

SAFOR 18

18

1

10

Table 2. Number of Hits and Misses and Mean
Time Between Rounds for MODSAF and

SAFOR Tanks Firing at Stationary Targets at
Three Ranges.

behavior. While they were firing, there was very
little deviation from the mean time between rounds
of six seconds. However, they tended to stop
firing while targets were still available. These
breaks in firing were relatively long (as much as
two minutes) and were subsequently removed from
the rate of fire data. On several occasions,
SAFOR entities that had stopped firing had to be
"prompted" to evoke more firing. Usually, this
prompting was done by setting the target entities in
motion.

The second conclusion to be drawn from the data
in Table 2, is that fire coming from SAFOR
entities was unrealistically effective. If they fired,
they almost always hit the target. This was evident
throughout the exercises and will be shown in most
of the firing data presented in this paper.

Bradley vehicles were also tested in the turkey
shoot design. ModSAF and SAFOR fires appeared
to be highly accurate across all ranges for both
TOW and 25mm fires. Table 3 presents the
accuracy data for TOW and 25mm fires by range
and CGF type.

750 ModSAF TOW 33 4
25 MM 174 4

SAFOR TOW 24 0
25 MM 27 0

1500 ModSAF TOW 11 0
25MM 170 26

SAFOR TOW 24 0
25 MM 188 0

2500 ModSAF TOW 21 1
25 MM 48 48

SAF TOW 60 2
25 MM 90 1

Table 3. ModSAF and SAFOR Bradley Hits and
Misses as a Function of Ammunition and Range.

It is of special interest to note that 25mm fires
from both ModSAF and SAFOR Bradleys
inappropriately resulted in catastrophic kills of
tanks. Although the probability of kills appeared to
drop with increased range, catastrophic kills
resulted from 25mm fire even at 2500 meters.
Problems with the effectiveness of 25mm fire were
further demonstrated when a ModSAF Bradley
platoon was later placed in a defensive position.
Both 25mm and USSR 30mm rounds were found to
hit and kill targets at impossible ranges. Hits were
recorded at ranges as great as 3,452 meters for
25mm fire and 3,390 meters for 30mm fire. The
longest catastrophic kill occurred at 3,350 meters
with 25mm fire. Overall, weapons effects for
25mm rounds were unrealistic.

TOW fires, on the other hand, appeared to be less
effective than expected. For example, in the
turkey shoot scenario, a SAFOR Bradley fired 60
TOW missiles to achieve 10 catastrophic kills on
tanks at 2500 meters (see Table 3).

Bradley firing effectiveness was also assessed while
firing vehicles were on the move. A stationary,
non-firing, T-72 platoon provided targets. The
overall effectiveness of fire for both TOW and

184

25mm rounds appeared more realistic under these
conditions. Table 4 shows the combined results of
firing from four individually tested SAFOR
Bradleys.

AMMO RESULT NUMBER

TOW

25 MM

HIT
KILL
MISS

HIT
KILL
MISS

9
6
1

70
0
1

Table 4. TOW and 25 MM Engagements for
SAFOR Bradley Platoon.

Only one ModSAF Bradley was observed in the
same situation. The results are presented in Table

suggest that there were either problems associated
with the vulnerability of the blue ModSAF Mis or
with the firing effectiveness of the red ModSAF
entities. When red SAFOR entities fired on blue
SAFOR Mis in the same format, only 12 rounds
were required to inflict catastrophic kills on the
entire blue platoon.

A turkey shoot scenario was then conducted to
assess damage sustained. Both ModSAF and
SAFOR entities were fired upon by a single blue
SAFOR vehicle. In these scenarios, the most hits
received by any entity before becoming a
catastrophic kill was seven. This was a ModSAF
entity at 750 meters. The number of rounds
required to inflict catastrophic kills are presented in
Table 6 by range and SAFOR type.

Rounds Required to Kill Target
5.

1 2 3 4 or more

ModSAF

750
1500
2500

SAFOR

750
1500
2500

7
2
5

6
8
5

1
2
1

2
2
2

1
1
0

1
0
1

AMMO RESULT NUMBER

TOW

25 MM

HIT
KILL
MISS

HIT
KILL
MISS

3
6
1

70
0
1

1
1
2

0
0

Table 5. TOW and 25 MM E neagements for
V

ModSAF Bradley Platoon.

3.4 Damage Sustained

The damage sustained while under fire was
assessed for both ModSAF and SAFOR entities. In
the first exercise to assess damage sustained, a
platoon of red ModSAF tanks fired on a platoon of
non-firing blue ModSAF tanks at a range of 1500
meters. The red tanks fired 120 HEAT and
SABOT rounds and recorded only one catastrophic
kill. All of the blue tanks received fire power and
mobility kills very early in the exercise but later
rounds appeared to have little effect. The one
entity that became a catastrophic kill did so only
after being hit by 18 rounds. These findings

Table 6. Number of Hits by SAFOR Tank
Rounds Before Targets Became Catastrophic Kills

as a Function of Range and CGF Target Type.

Overall, there were no major differences between
the ModSAF and SAFOR target entities during the
turkey shoot scenarios. These findings suggest that
the reduced vulnerability of ModSAF entities noted
above was due to a problem in the firing
effectiveness of ModSAF.

185

3.5 Movement in Formation

The UPAS provides a wide variety of position and
movement related displays which can be used to
assess the quality of formations. Several, but not
all, of these displays are presented along with brief
descriptions of the specific ways they were used in
the ModSAF/SAFOR comparison study. A more
robust analysis of ModSAF and SAFOR movement
data is presented in the ModSAF 1.2/SAFOR 4.3.3
Comparison Study Summary Report (Loral, 1994).

On numerous occasions, formations were judged on
the level of "perfectness" exhibited during
movement. The "goal" of the CGF was to execute
formations in a manner that was not too perfect
(e.g. perfect an invariable spacing among entities)
and yet not involving fixed, uncontrollable errors.
In the majority of cases, variation within
formations appeared to be fairly realistic with
distances between entities varying over time. That
is, they were not too "perfect." During a road
march, for instance, the accordion behavior typical

of manned units was observed. The UPAS Battle
Snapshots in Figures 2 and 3 show a ModSAF
platoon in exactly this situation.

A plot of the distance of each of three vehicles
from a fourth over time can also be generated with
the UPAS. This plot was used to identify points in
time when major changes occurred in distances
among entities. An example of this graph is shown
in Figure 4. Notice that the time represented in
Figure 4 includes the times at which the Battle
Snapshots in Figures 2 and 3 were taken.

The corresponding displays for SAFOR platoon
movement during the same road march showed
similar variability. On several occasions, SAFOR
vehicles had unique difficulties in maintaining an
orderly line formation. For example, The UPAS
Battle Snapshot in Figure 5 shows SAFOR vehicles
passing one another during the road march. This
is an example of one of the fixed uncontrollable
errors we want to identify for removal.

BATTLE SNAPSHOT

A <PLT 1> : A12
C <PLT lXLEAIO :A14

Exircif•ID :

B <PLT 1> : All
D <PLT 1/SEKC) : A13

Conp^na:

98.3BK

Figure 2. Bunching up of ModSAF Tanks During Movement.

186

D<u : 94-7-16 BATTLE SNAPSHOT Tine: B838BB

A <PLT 1> : A12 B <PLT 1> : fill

C <PLT 1/LEflD) : A14 D <PLT l/SERO : (113

95.3BK-
Exercise ID: BB1 Conpanv: A

///
o

/
O

95.2BK-

' L F—
«
X
«
>

95. 1BK-

93-BBK-

<c

o

-^

D ^v!

88 . >ax 88 . 7SK 88.

0

3«K 88 .)BK 89. 9BX 89 . 1BK 89.

X Ax i •>

Figure 3. Gap in ModSAF Platoon Formation During Movement.

Ditt*nc« bituian plitoon llimnts

1.33.18BB
1.33.18B1

1.33.1BB3

88 :5B

Figure 4. Graph Showing Distance Over Time Between Each of Three ModSAF Tanks and
the Fourth Tank in a Platoon During a Tactical Road March.

3.6 Changing Formation

Both ModSAF and SAFOR demonstrated similar
problems when changing from one formation to

another. The most common problem was the
exposing of vehicle flanks to the enemy during
transitions. This occurred because the adjustments
from one formation to the next were made by

187

Diti : 94-7-16 BOTTLE SNAPSHOT Tina: B9B38B

A <PLT 2> : B <PLT 2> :

C CPLT 2/LEAD> : D <PLT 2/SERC> :

IBS .30K-
ExtrciscID: BB1

/
'/^

iaa.48K-

*
X

>

1B8.3«K-

88 . BBK 88 . 1BV 88. 2BX 88. 3BK

X Axis

Figure 5. SAFOR Entities Passing One Another During Tactical Road March.

taking abrupt, sharp turns without regard for
terrain or enemy position. The UPAS Battle
Snapshots in Figures 6 and 7 show this problem
clearly. Figure 6 shows a ModSAF platoon in a
wedge formation. Figure 7 shows the same
platoon approximately 20 seconds later in the
middle of the transition from the wedge to a line
formation.

3.7 Cross Country

Numerous problems resulted from encounters with
natural obstacles for both ModSAF and SAFOR
platoons during cross country marches. Canopied
areas and tree lines proved difficult for both CGF
systems to navigate. For example, tree lines
invariably interrupted CGF platoon formations.

The UPAS Battle Snapshots shown in Figures 8
and 9 depict a SAFOR platoon approaching and
then navigating a tree line. In this case, and many
others, the integrity of the platoon was reduced
when the two sections lost line-of-sight (LOS). In
some cases, a single tank split from the others to
avoid the tree line. There was no clear logic
behind which entities were able to pass through the
tree lines and which entities had to circumvent
them as impenetrable obstacles.

3.8 Scanning Behavior

Numerous observations of inadequate scanning
behavior were made throughout the exercises. One
goal was to assess whether the entities provided
good security by collectively covering all of the
critical sectors. These sectors differed as a
function of the formations used and other aspects of
the tactical situation. The UPAS Battle Snapshot
display captures turret orientation, and an example
of inadequate scanning behavior can be seen in the
Battle Snapshot in Figure 10.

The UPAS data tables can also be used to calculate
slue rates and ranges. For example, scanning
behavior for single ModSAF and SAFOR Bradley
vehicles was assessed during a cross country march
to a halt. In this situation, each entity should be
providing 360 security. Data from the UPAS
indicated that the ModSAF Bradley scanned a full
360 degrees in a time of one minute and thirty-five
seconds or at a rate of 67 mils per second. The
SAFOR Bradley scanned a small sector to the left
front that covered just 589 mils. The rate of
scanning for the SAFOR entity was not calculated
as the turret azimuth often remained constant for
many seconds. Unfortunately, the pattern remained
the same when ModSAF and SAFOR entities move
as part of a platoon. That is, formation variables
had little effect on scanning.

188

p*t« : BATTLE SNAPSHOT TtlM : i *•!.••

A <TLI X> X (null) S <FLT X> I Cnul 1 >
C <M-T 1/LCAD> : (null) X> <Ftl 1/SEIO I Cnull)

titt>ai«« ID: M«C :vBOS:C:N.BNvucoii»A«iiii:.upn

ck
m
M

or-

c^

—S3

*
T«. 1IK 7t . i>K « . 7»X 76 .

X

• •X 7t. »»K 77 . • •X 77 . X«K

Figure 6. ModSAF Platoon Moving in the Wedge Formation.

X
C
>

±»i.s»x-

l»l. 3»X-

i«x.a*x-

MTTU SNAPSHOT tlnl lltia*

A <nt i> : (iwili B <PLT l> : <MIII>
C <PX.T l/lt«»> : (null) D <PLT t/ICIO : (null)

tsircli«I>: H=c :\SOS ;C : \tH\UConlru*il:.UPtl

^
»

-3
&-

7S . BOX 7C tOK 7(. 7»K 76.

X

1SK 7C. 9BX 77 . sax 77 . n«

Figure 7. Tanks Expose Their Flanks to the Enemy as the Platoon Changes Formation 20
Seconds Later.

189

&*%• t Cn«l1 > BATTLE tNWSHOI Tina : 1M53I

A <PLT 1> :
C <PLT 1/LH

tnull>
>> : <r.«»» 1 >

B <PII x> : (nulI>
a <n.T i/si>c> : (null)

Eitrc If IP: < »M 1 1 >

>T.a«x

^

7».SK 79 .SOX 79

p-jt—jai

-^3

»I T1.3U T>.3« 79. 4SK 79.8«X

Figure 8. SAFOR Platoon Moving in the Line Formation as it Approaches a Tree Line.

MTTU SNAPSHOT Ilnal 1MS45

A <PLT X> Cm.ll)
C <PI_T 1/LCOD) : (anil)

• <FLT X> : (null >
a <*>LT 1/tllC) : (mil)

C*wyim

Figure 9. Formation is Disrupted by the Treeline.

190

94-7-16

o <PtI 1> :
C <PLT l/LEflD>

ExercisiID

BOTTLE SNAPSHOT

C112
A14

Tina: 082330

B <PLT 1> All
D <PLT 1/SERO : A13

Figure 10. Gaps in Sectors Covered By Scanning of MODSAF Tank Platoon During
Tactical Road March.

3.9 Reaction to Contact

ModSAF and SAFOR entities (Mi's, M2's, and
Bradleys) were assessed for reactions to contact
during road and cross country marches on
numerous occasions. In general, entities reacted to
contact by firing only. That is, they did not
change speed or formation, and never tried to use
cover and concealment or deploy against the threat.

SAFOR entities exhibited the same unrealistic
firing accuracy indicated earlier. On one occasion,
a SAFOR tank platoon on a road march fired three
rounds and destroyed three T-72s, that were set up
for an ambush, at a range of 1500 meters. The
SAFOR entities never slowed down and there was
no adjustment in their gun tube orientation.

ModSAF entities were less accurate in their firing
but their overall reaction to contact was similar to
that of the SAFOR entities. ModSAF tank platoons
varied their speed only because of changes in
terrain elevation and their direction of travel never
varied. If approaching the enemy head on upon
contact, the approach was not altered. Most
entities participated in the firing and there appeared
to be some coordinated firing within platoon

sections. This conclusion was based on the
correlation of fire times for entities within sections.
There did not appear to be any coordinated fire
between platoon sections. Further, in several
company level exercises, there was no evidence of
coordination (firing or otherwise) between platoons
except that they all moved in the same general
direction

3.10 Conduct of Assault

Behaviors associated with the conduct of assaults
were generally the same as those observed during
reaction to contact. That is, both SAFOR and
ModSAF entities maintained constant speeds
(except that ModSAF adjusted speed for changes in
terrain elevation), did not change formation, and
failed to use cover and concealment. SAFOR fire
was extremely lethal as usual. During one assault,
a SAFOR tank platoon, travelling at a constant
speed of 40Km/Hr, opened fire on an enemy
platoon at a range of 2350 meters. Each entity
fired at least once, however, only five total rounds
were fired. All five rounds resulted in hits, and
the enemy platoon was destroyed in seven seconds.

191

4. Conclusion

Overall, both types of CGF displayed inadequate
sensitivity to the mission, enemy, time, terrain, and
troop (METT-T) variables that should be
controlling CGF behavior. On certain measures,
differences were observed between the CGF.

Illustrative examples of the results are as follows:

o one type of CGF was superior to the other in
terms of the ability to adjust individual or group
behavior to fit the terrain situation, but the
behavior of both types of CGF could be disrupted
by certain types of terrain

Alexandria, VA: U.S. Army Research Institute
for the Behavioral and Social Sciences.

Mengel, L.L. (1994) ModSAF Summer Exercise
(SUMEX-I) Final Report.

Vaden, E.A., Meliza, L.L. & Johnson, W.R.
(1994). "Using the Unit Performance
Assessment System (UPAS) to Measure
Modular Semi-Automated Force Behavior". In
Proceedings of the Fourth Conference on
Computer Generated Forces and Behavioral
Representation. Orlando, FL: University of
Central Florida Institute for Simulation and
Training.

6. Biographies

o both versions make hard, abrupt turns when
changing formations causing flanks to be exposed
to enemy positions

o one version demonstrated little or no movement
of gun tubes (scanning) during movement while the
other version tended to scan aggressively, but the
coverage of sectors by the platoon for the second
version failed to meet MTP standards

o both versions used inappropriate assault
techniques, and vehicle speeds were not properly
adjusted during an assault

o rate and effectiveness of fire was much higher
for one version than the other

o many cases were observed where firing
effectiveness or vulnerability of entities to fires
were at unrealistic levels

o effectiveness of fires varied across weapon
systems within a version of CGF as well as
differing between CGF versions

5. References

Loral (1994). ModSAF 1.2/SAF 4.3.3
Comparison Study Summary Report
(ADST/WDL/TR--94-W003328). Orlando, JL
Loral ADST Program Office.

Meliza, L.L., Bessemer, D.W., & Tan, S.C
(1994). Unit Performance Assessment System
Development. (ARI Technical Report 1008).

Larry Meliza is a Research Psychologist with the
U.S. Army Research Institute Simulator Systems
Research Unit at Orlando, FL. He earned his
Ph.D. degree in psychology from the University of
Arizona. His experience in collective performance
measurement includes measuring the effects of
tactical engagement simulation on collective
training, developing prototype Army Mission
Training Plan documents to guide collective
training, and developing/using the Unit
Performance Assessment System (UPAS) for
training research.

Eric Vaden is a doctoral student in Human Factors
Psychology at the University of Central Florida.
His primary area of study is human computer
interaction and he spent a four month internship
working with the usability group at Microsoft
Corporation. When this work was performed he
was a Research Fellow with the Consortium
Research Fellows Program at the U.S. Army
Research Institute Simulator Systems Research Unit
at Orlando, FL. His experience in the collective
performance arena includes using the Unit
Performance Assessment System for training
research and CGF assessment, and evaluating the
human-computer interfaces of several After Action
Review (AAR) systems.

192

The Use of Automated Regression and VVA Testing in ModSAF

Paul Monday, James Perneski
Loral Advanced Distributed Simulation
50 Moulton St.,Cambridge, MA 02138

monday® knox .loral .com
jpernesk@camb-lads.loral.com

1. Abstract

This paper discusses the reasons for and the
implementation of automated testing techniques in
the ModSAF program. There are, in general, two
major areas to be tested in ModSAF. The first is the
overall correctness of simulated behavior; since this
area is tested whenever code changes are submitted,
this type of testing is called Regression testing. The
second area of testing is that of adherence to specific
model criteria, which is called VVA. Each of these
areas requires different testing and evaluation
techniques and will be discussed separately. The tools
used in the implementation will be briefly described,
and the benefits in terms of manpower and time will
be discussed. In addition, ongoing and future
development will be discussed.

2. The ModSAF System

The ModSAF software architecture is an extensible
set of reusable software modules which allows rapid
development and testing of new agents in the DIS
simulated environment. The ModSAF application
program uses the ModSAF architecture to construct a
Semi-Automated Forces (SAF) system which is
currently used for a variety of different applications
including a DIS test bed used by researchers
implementing intelligent control algorithms, a SAF
system supporting training exercise for the National
Guard using manned simulators, an architectural
prototype for SAF design for the CCTT program and
as the SAF system to be used to support combat
development experiments for the BDS-D program,
including the Anti-Armor Advanced Technology
Demonstration (A2ATD) and Line of Sight Anti-
Tank Program (LOSAT).

ModSAF supports DIS 1.0, 2.0.3 and SIMNET
protocols ; it can be run in a variety of
configurations using one or multiple workstations. It
is supported on SGI, Mips, SUN Sparc, and IBM
Rise platforms.

It is a large program, consisting of over 500,000
lines of executable C code distributed over 300
libraries

3. Need for Automatic Testing

Since ModSAF is used for rapid prototyping and
development, there are a large number of contributors
of code to the program, including contract
contributors outside of the Loral staff. At any time
in the ModSAF release cycle, there are several
projects underway, which are being developed
independently, and therefore must be integrated.

Code integrations are performed at least on a weekly
basis during the development cycle to accommodate
these large and rapid contributions. However each
contribution must be validated before a new
contribution is added to the program. To accomplish
this validation, a suite of tests must be performed to
insure that the basic functionality of the program
existing before the integration is still intact. Before
each release, a more extensive period of testing takes
place in order to validate if the behavior of the
modeling, such as Direct Fire Damage Assessment
continues to perform as originally specified. This pre-
release testing also exercises the entire program to
insure that it is properly working.

The basic method used in most of the testing
described above is to reload and run "Scenario" files
created in previous releases and integrations, and to
observe if they continue to perform as before. A
Scenario is a file that captures all of the information
concerning the entities, their positions, their assigned
tasks and the terrain on which they are located. A
Scenario therefore captures a moment in time and
space from which the exercise can continue. A tester
then observes the subsequent behavior. This method
is expensive in both time and manpower; the time it
takes to run the scenario and the person necessary to
observe the test and determine if it passed.

Improvements to the testing procedures take place by
automating the execution of the scenarios and
recording the results in such a way that deviations
from expected behavior are highlighted. VVA testing,
as explained later, is able to be more objective
because many of its procedures involve gathering
data, such as hits upon a target, for subsequent data
analysis.

193

4. Regression Testing

As discussed above, a suite of tests are performed after
each integration of new code into the ModSAF
program, and a larger suite of tests are performed
before each release. The tests consist of reloading,
running, and observing a standard set of scenarios. A
large part of these tests have been automated as
described below.

4.1. Present Implementation

A procedure has been developed to cycle through a
directory of scenario files. For each to the scenarios,
the procedure will start a debugger program, and from
within the debugger, the ModSAF program itself will
be started. The scenario is then loaded, and
executed.While executing, some information is
recorded, most notable information concerning
successful loading and the code location of program
crashes, if they occur. If a crash does occur, the
procedure records where in the code the crash occurred,
exits the debugging program and repeats the
procedure for the next scenario in the directory. On
the other hand, if the scenario has executed for a time,
determined as an argument to the procedure, the
ModSAF program is terminated, the debugging
program is terminated, and the procedure is repeated
for the next scenario in the directory.

This procedure is written as a shell script and a few
points are worth discussing. The scenarios used are
designed to create and simulate all the entities and
units of entities which ModSAF can create. As new
entities are added, new scenarios are added, increasing
the amount of testing. The successful loading of the
scenarios demonstrates that conversion files, which
are generated to update the data structures of entities,
work properly. Since there are many scenarios to be
tested, a time limit for each must be imposed. New
scenarios built for automated testing must execute the
questioned behavior with a time limit. A debugging
program is used not only to prevent time consuming
core dumps, but to aid the responsible programmer
with his analysis.

Using the above procedure, typically 170 scenarios
are loaded and executed, and the procedure will run
continually for over 10 hours. Before an integration is
finally accepted, this procedure is run overnight and
the recording file scanned for any anomalies.

4.2 Ongoing and Future Work

There are two primary directions of extending the
above procedure in order to make it more widely
applicable. Both of these extensions, described below,

are presently undergoing development and
implementation.

4.2.1 Multiple Machine Implementation
The above procedure is designed to be executed on one
workstation running ModSAF as a pocket system,
that is the work station acts as both the user interface
to ModSAF and also simulates all entities. However,
the "natural" environment for simulation exercises is
spread over several work stations, some of which act
as user interfaces to the exercise and others do the
work of simulating the entities and events. Of course
they are all communicating over a network.

The testing of scenarios should also be done
automatically in the distributed environment. For
example, it is important that, if one of the simulators
goes down during an exercise, the entities being
simulated there are taken over by other simulators.

In order to test scenarios automatically over a
network, a client- server model is being developed.
This will establish another level of communication
between the workstations above the communications
that ModSAF needs. One machine will act as the
server, which will command the registered clients to
start the debugging program and to load ModSAF
using the appropriate terrain necessary for the scenario
to be loaded. The server will execute the scenario,
and each client will record data locally during the
execution of the scenario. The server can instruct one
or more simulators to stop running to determine it
the simulated entities are passed to the remaining
simulators. Finally, the server can instruct the clients
to stop ModSAF and the debugging program in order
to repeat the cycle for the next scenario.

4.2.2 Seeking Significant Events
Another direction of extension being pursued is the
recording the occurrence, or non occurrence of specific
events during the execution of a scenario. All the
events, such as collisions between vehicles and or
between vehicles and the environment are sent as
network packets. Presently these packets can be
recorded for analysis by any of several data logging
programs. However using a logger in this way, more
data than necessary is recorded, and must be analyzed
at later time.

Code will be developed to allow the procedures above
to look for events that indicate if expected behavior
was executed. For example, the procedure could be
set to look for and record collisions and positions
while executing a scenario of a unit of vehicles
crossing a bridge. If collisions are recorded, the test
fails. This will provide a pass-fail criterion with out
any further analysis.

194

5. Verification and Validation Testing

Since ModSAF is becoming an accepted model for
combat developments activities, the Validation and
Verification (V&V) of important models in ModSAF
has become an essential part of the software
development process. V&V tests should be
performed when these models are developed and when
they are changed. In addition, mini-V&V check tests
should be performed on each ModSAF release to
ensure that none of the important models was
inadvertently changed.

Several models have been evaluated for V&V by the
Army Material Systems Analysis Activity
(AMSAA), including target acquisition (LibVisual),
direct fire delivery accuracy (LibBalGun), direct fire
rate-of-fire (LibBalGun), direct fire vdamage
assessment (LibDfDam), and indirect fire damage
assessment (LiblfDam). Specific tests and data
requirements were specified by AMSAA for each
model. A data structure that can be transmitted via a
DIS Event Report PDU was developed for each model
that contains all of the detailed, internal parameters
necessary for the evaluation.

5.1 Target Acquisition

The V&V test for target acquisition is intended to
examine table lookups of parameters like target
contrast, calculation of values like critical dimension,
and evaluation of output parameters including
pjnfinity. Data contained in the VVA data structure
includes:

target entity id
sensor type (optical, infra-red)
exposure (full, hull-defilade)
magnification
critical dimension
intervisibility
range
apparent contrast
cycles on target
acquisition time
p_infinities for four acquisition levels
random numbers used

A V&V check test can be performed by running a pre-
defined scenario, and recording the resulting PDUs.
VVA data from the appropriate Event Report PDUs is
extracted and analyzed. Parameters like range and
intervisibility are independently calculated by the
ADST Data Collection and Analysis (DCA) system
for comparison. The table lookups and calculations
for the other parameters are duplicated in the DCA
system. Any deviations are reported.

5.2 DF Delivery Accuracy

The V&V test for direct fire delivery accuracy is
intended to examine table lookups of parameters like
the biases and dispersions, the calculation of
parameters like the miss distance, and the
determination of hit or miss.

Data contained in the VVA data structure includes:

shot's event id
firer location
target location
aimpoint location
firer and target movement (SS, SM, MS, MM)
exposure (full, hull-defilade)
inputs biases/dispersions
output biases
horizontal and vertical miss distance
horizontal and vertical hit assessment

A V&V check test can be performed by configuring a
ModSAF firer with a large amount of ammunition
and with very small reload times. By presenting the
firer with many targets in a variety of ranges,
exposures, and aspects, a dataset containing several
thousand shots can be acquired quickly.

VVA data from the appropriate Event Report PDUs is
extracted and analyzed. Parameters like locations and
firer/target movement conditions are independently
calculated by the DCA system for comparison. The
table lookups and calculations for the other
parameters are duplicated in the DCA system. The
random draws are statistically analyzed for
reasonableness. Finally, the a statistical evaluation
of the hit assessment algorithm is performed.

5.3 DF Damage Assessment

The V&V test for direct fire damage assessment is
intended to examine calculation of lookup parameters
like dispersion, table lookups of the Pks,
transformation of the Pks, and damage assessment.
Data contained in the WA data structure includes:

shot's event id
target's location
impact location
exposure (full, hull-defilade)
range
dispersion (from center-of-mass)
aspect angle
elevation angle
looked-up Pks
only-type Pks
thermometer Pks
random number

195

indicated damage
before and after status

A V&V check test can be performed using a pre-
recorded dataset that contains many direct fire impacts
(Detonate PDUs), but has had the target of these
impacts removed. Then, if a ModSAF vehicle is
generated, and the pre-recorded dataset is played back,
the new ModSAF vehicle receives the prerecorded
impacts and performs damage assessment. In this
manner, a test with several hundred impacts can be
run in a couple of minutes.

As before, VVA data from the appropriate Event
Report PDUs is extracted and analyzed. Parameters
like range and dispersion are independently calculated
by the DCA system for comparison. The table
lookups, Pk conversions, and damage assessment are
duplicated in the DCA system.

5.4 IF Damage Assessment

The V&V test for indirect fire damage assessment is
intended to examine calculation of lookup parameters,
table lookups of the lethal areas, calculation and
transformation of the Pks, and damage assessment.
Data contained in the WA data structure includes:

shot's event id
target's location
impact location
impact-to-target range
cutoff range
damage function (cookie, carleton)
DO (carleton)
angle of fall (carleton)
range/deflection miss distance (carleton)
firer-to-impact range (cookie)
slope, intercept (cookie)
pattern radius (cookie)
lethal areas
computed Pks
only-type Pks
thermometer Pks
random number
indicated damage
before and after status

A V&V check test can be performed similarly to the
direct fire damage assessment test, except with an
indirect fire munition. When a ModSAF vehicle is
generated and the pre-recorded dataset is played back,
the new ModSAF vehicle receives the prerecorded
impacts and performs damage assessment. In this
manner, a test with several hundred impacts can be
run in a couple of minutes.

As before, VVA data from the appropriate Event
Report PDUs is extracted and analyzed. Parameters
like range are independently calculated by the DCA
system for comparison. The calculation of the Pks
by either method, Pk conversions, and damage
assessment are duplicated in the DCA system.

6. Summary

It is necessary to perform a large number of tests to
insure the quality of the ModSAF program as it is
being developed. In this paper two types of testing
where discussed, Automated regression testing and
VVA testing.

The automated regression testing allows many tests
to be preformed, and recorded, in such a manner that
pass or failure is easily and quickly determined. The
methods presently in place have been very successful,
because they allow more scenarios to be executed and
evaluated while using less time and requiring less
supervision. These methods are being developed
further.

VVA testing insures the quality of the ModSAF
program by demonstrating conformance of a model to
specifications. Methods have been developed here for
the production and collection of data, and its analysis.

7 Acknowledgements

This work is being supported by the USA Army
STRICOM ADST program under contract number
N61339-91-D-0001-0058.

8. Biographies

Mr. Monday has worked on the SIMNET-D and
ADST projects for BBN and Loral since 1987. He is
currently Chief Analyst at the Mounted Warfare Test
Bed (MWTB), Ft Knox, Kentucky where he designs
and develops software for data analysis, ModSAF, and
other simulations. He graduated from the University
of Toledo in 1978 with a B.S. in geology and from
Stanford University in 1979 with a M.S. in
geophysics. Mr. Monday previously worked for 7
years in petroleum exploration.

Before joining Loral, James Perneski spent several
years in the CAD-CAM industry; during which time
geometric modeling was his main interest He
received a B.S. from Lehigh University, and an M.A.
from the University of Connecticut.

196

VERIFICATION AND VALIDATION OF MODULAR SEMI-
AUTOMATED FORCES (ModSAF) IN SUPPORT OF A2 ATD

EXPERIMENT 1

John G. Thomas
U.S. Army Materiel Systems Analysis Activity

Aberdeen Proving Ground, Maryland 21005-5071
jgthomas@arl.mil

1. Abstract

In support of the Anti-Armor Advanced Technology
Demonstration (A2 ATD) program, the US Army
Materiel Systems Analysis Activity (AMSAA) is
responsible for the verification and validation of the
physical models incorporated within the ModSAF
model. The ModSAF verification, validation and
accreditation effort is a joint effort between AMSAA
and the US Army Training and Analysis Command
(TRAC) - White Sands Missile Range (WSMR) with
TRAC having the overall lead. TRAC is responsible
for the verification and validation of the ModSAF
combat behaviors.

ModSAF is a set of software modules and application
programs that permits a single operator to control large
numbers of vehicles on the virtual battlefield.
ModSAF is being developed under the sponsorship of
the U.S. Army Simulation, Training, and
Instrumentation Command (STRICOM) and the
Advanced Research Projects Agency (ARPA). The
objective of ModSAF is threefold: 1) replace the
current Simulation Network (SIMNET) Semi-
Automated Forces (SAF) systems at the Battlefield
Distributive Simulation-Developmental (BDS-D) sites,
2) support BDS-D experiments (A2 ATD, Horizontal
Technology Integration, etc.), and 3) support ARPA
programs (Synthetic Theater of War, etc.).

ModSAF was verified, validated, and accredited for A2
ATD experiment 1. The purpose of the first A2 ATD
experiment was to validate virtual simulation (BDS-D)
with live simulation (M1A2 Initial Operational Test
and Evaluation) and to validate constructive simulation
(ModSAF and CASTFOREM (Combined Arms
Support and Task Force Evaluation Model)) with live
and virtual simulation.

In support of ModSAF V&V, AMSAA conducted a
series of ModSAF verification and validation check
tests. In particular, for experiment 1, AMSAA
conducted ModSAF check tests which focused on the
following physical models and related data: Direct-Fire

Vulnerability, Target Acquisition, Direct-Fire Delivery
Accuracy, Direct-Fire Rate-of-Fire, Indirect-Fire
Vulnerability, and Mobility. Similarly, TRAC-WSMR
examined the behavioral algorithms for ModSAF.
Since experiment 1 was strictly armor, the behaviors
reviewed were all armored tactics.

Moreover, ModSAF performance was benchmarked in
experiment 1 against CASTFOREM. Also, the
employment of CASTFOREM to pre-experiment
analysis provided the capability for refinement of
input performance and scenario data prior to initiation
of the experiment. CASTFOREM is a TRADOC (US
Army Training and Doctrine Command) accredited,
stochastic, constructive force-on-force combat
simulation which has been employed in Army
acquisition COEAs (Cost Operational Effectiveness
Analysis) for years.

2. Introduction

The focus of this paper is to provide an overview of the
ModSAF Verification and Validation (V&V) efforts in
support of the A2 ATD program. ModSAF is the SAF
(semi-automated forces) model currently used in A2
ATD. A2ATD is ajoint Department of the Army and
Department of Defense program initiated with the goal
of maturing Distributed Interactive Simulation (DIS) as
a credible evaluation tool to support acquisition
decisions. The purpose of the A2 ATD is to develop
and demonstrate a verified, validated, accredited DIS
capability to support anti-armor weapon system virtual
prototyping, concept formulation, requirements
definition, effectiveness evaluation, and mission area
analysis on a combined arms battlefield at the Battalion
Task Force or Brigade level.

The A2 ATD technical objectives are:

• Demonstrate DIS as an evaluation tool and
verify, validate, and accredit simulators used in
A2 ATD experiments, semi-automated forces,
and the BDS-D simulation.

197

• Develop, demonstrate, and document
techniques/analytical tools to analyze simulation
results to include Verification and Validation of
ModSAF.

• Demonstrate the linkage of constructive models
(JANUS) to DIS.

• Demonstrate upgraded virtual prototypes
(M1A2, M2A3/M3A3, NLOS, LOSAT) and
virtual prototypes to be developed (AGS,
JAVELIN, Comanche, EFOGM, Hunter).

3. ModSAF Model

ModSAF is a set of software modules and application
programs that permits a single operator to control many
vehicles on the virtual battlefield. The U.S. Army
Simulation, Training, and Instrumentation Command
(STRICOM) and the Advanced Research Projects
Agency (ARPA) are sponsoring the development of
ModSAF. The objective of ModSAF is threefold: 1)
replace the current Simulation Network (SIMNET)
Semi-Automated Forces (SAF) systems at the
Battlefield Distributive Simulation-Developmental
(BDS-D) sites, 2) support BDS-D experiments (A2
ATD, Horizontal Technology Integration, etc.), and 3)
support ARPA programs (Synthetic Theater of War,
etc.).

4. ModSAF V&V

In support of the A2 ATD program, the US Army
Materiel Systems Analysis Activity (AMSAA) is
responsible for the verification and validation of the
physical models incorporated within the ModSAF
model. The ModSAF verification, validation and
accreditation effort is a joint effort between AMSAA
and the US Army TRADOC Analysis Center (TRAC) -
White Sands Missile Range (WSMR) with TRAC
having the overall lead. TRAC is responsible for the
verification and validation of the ModSAF combat
behaviors.

Simulator and semi-automated forces VV&A and
development of analytical tools to support the
evaluation of causes of simulation outcomes were
initiated in FY93 to provide the foundation for a series
of six experiments. The first experiment, completed
September 14, 1994, replicated two M1A2 Initial
Operational Test and Evaluation (IOT&E) battles
conducted at Ft. Hood during the autumn of 93.

ModSAF was verified, validated, and accredited for A2
ATD Experiment 1. The purpose of the first A2 ATD

experiment was to validate virtual simulation(BDS-D)
with live simulation (M1A2 Initial Operational Test
and Evaluation) and to validate constructive simulation
(ModSAF and CASTFOREM (Combined Arms
Support and Task Force Evaluation Model)) with live
and virtual simulation.

4.1 Physical Models

In support of ModSAF V&V, AMSAA conducted a
series of ModSAF verification and validation check
tests. In particular, for Experiment 1, AMSAA
conducted ModSAF check tests that focused on the
following physical models and related data: Direct-Fire
Vulnerability, Target Acquisition, Direct-Fire Delivery
Accuracy, Direct-Fire Rate-of -Fire, Indirect-Fire
Vulnerability, and Mobility [Ref 3].

As one of the A2 ATD technical objectives, a set of
DISATs (DIS Analytical Tools) to analyze simulation
results to include V&V of ModSAF were developed.
Moreover, the DISATs were used to support the
analysis effort of A2 ATD experiment 1 to include V &
V of the physical models employed by ModSAF.

ModSAF V&V exercises sometimes referred to as
check tests, utilize the VV&A portion of the DISAT.
At the time of execution of a ModSAF V&V exercise
the ModSAF W&A flags are set and the DISAT data
logger is activated.

These flags activate the VV&A protocol data units
(PDU's). These flags include the following [Ref 2]:

• Status Change VV&A Data
• Target Acquisition VV&A Data
• Direct-Fire Delivery Accuracy VV&A Data
• Direct-Fire Damage Assessment VV&A Data
• Indirect-Fire Damage Assessment VV&A Data

After the exercise is completed, the DISAT software
used in conjunction with the logged file generates a
series of computer files containing VV&A data tables.
Figure 1 provides an overview of the ModSAF
VV&A/DISAT operation.

For each VV&A flag set, multiple files are created
except in the case of the status change flag. These files
consist of target status change, direct-fire vulnerability,
direct-fire delivery accuracy, target acquisition, and
indirect-fire vulnerability VV&A data tables.

198

ModSAF WAA ANALYSIS

Figure 1. Overview of ModSAF VV&A Analysis

BEHAVIORAL WORK AROUNDS
(M1A2 10TE)

BEHAVIOR
SUB-FUNCTION NEEDING

WORKAROUND WORK AROUNDS

FORMATIONS

MOVEMENT
TO

CONTACT

• EXE TRAVEUNO
- EOF TRAVELSM OVERWATCH
- exz aouNOwo OVERWATCM

• DU IWH2 MOVE COMMANDt
• NONS-USE ANOTHER MOVE TECIBMOUE
• USE TERRA* TOOL. LINE OBJJNO

VEH MOVES

ACnOMl
ON

CONTACT

P DOI ACTIONS ON CONTACT
P TAKE ACTIONS ON OBSTACLE

• USE CONNECT RULES OR ENGAGEMENT
• NOT NEEDED RON M1A1 KfTSS

BATTLE - OCCUPY RLT BATTLE POSITION
- EXE RLT MP IUMHON

- AtSKW TASKS TO RKHV VEHB AND
ASSURE RULES OR BNOJUMUNDiT
ARE CORRECT

Figure 3. Behavioral Work Arounds

A summary of AMSAA's ModSAF VV&A efforts
prior to A2 ATD Experiment 1 is provided in Figure 2.

CHECK TESTS SUMMARY
(PHYSICAL MODELS)

METHODOLOGY AREA
IMPLEMENTATION

ALGORITHMS DATA

• DIRECTORS VUUNaUURBJTT ® ®
. TAROST ACtausfnoN ® ®
* DMCT-ffRE OEUVERT ACC ® O
• DIRECT-FIRE RATE-Of-nRf O O
• BKMRCCT-RM VULNERASRJTT ® ®
P MOSSJTT O 0

o to PROBLEMS BSMIRHED g) MTOS1-EM(») OENTIFIED - t mm

| ModSAF ITEM-LEVEL PEHF CONFORMS TO AHMV-ACCEPTED STANOAKOC 1

Figure 2. Check Tests V&V Summary

4.2 Combat Behaviors

Similarly, TRAC-WSMR examined the behavioral
algorithms for ModSAF. Since experiment 1 was
strictly armor, the behaviors reviewed were all armored
tactics. Moreover, TRAC-WSMR identified behavioral
algorithm deficiencies within ModSAF that will be
addressed in future releases of ModSAF. Figure 3
shows 'work arounds' for these deficiencies [Ref 1].
For Experiment 1, manned intervention compensated
for the behavioral deficiencies such that armor tactics
and doctrine could be adequately represented.

5. A2 ATD Experiment Overview

The purpose of the first experiment was to validate
virtual simulation (BDS-D) with live simulation
(IOT&E) and to validate constructive simulation
(ModSAF and CASTFOREM) with live and virtual
simulation. Experiment 1 satisfied the following
technical objectives for A2 ATD: the demonstration of
DIS as an evaluation tool; VV&A of the M1A2
simulator, ModSAF, and BDS-D; demonstration of
analytical tools supporting VV&A and evaluation of
simulation outcomes; and demonstration of the Ml A2
virtual prototype.

Two battles from the M1A2 IOT&E were replicated, a
hasty attack and hasty defense. In each battle a blue
platoon of four MlA2s was represented by manned
simulators and the remaining ten tanks in the company
(two platoons, CO and XO) were implemented by
ModSAF entities. Fourteen Ml A2s comprised all blue
force entities in each battle. In the hasty attack,
ModSAF portrayed four T80s and three BMP systems.
For the hasty defense, ModSAF portrayed twenty-six
T80s and 1 BMP system. Red forces fired anti-armor
missiles and sabot rounds while blue forces fired only
sabot rounds.

The first experiment was conducted on a DIS local area
network at the Mounted Warfare Test Bed at Ft. Knox,
Ky. Intercommunication was through ethernet.
Components of the network included the four manned
simulators, a stealth display, simulation manager,
ModSAF Red and Blue commanders' workstations,
and data loggers that logged protocol data units traffic
during experiment trials and forwarded the logs to the
DIS analytical tools.

199

Before the experiment, detailed evaluation and test
plans were prepared and troops were trained. Pilot tests
were run to insure that the experiment could be
executed and data could be collected and analyzed
using DIS analytical tools. The TRADOC accredited
stochastic constructive force-on-force combat
simulation, CASTFOREM was run prior to Experiment
1 to perform several data checks and comparisons with
ModSAF. The employment of CASTFOREM to pre-
experiment analysis provided the capability to refine
performance and scenario input data. It also provided
a means to benchmark the performance of ModSAF
throughout the experiment.

The first A2 ATD experiment was credible because the
entrance criteria were satisfied. Forty-eight trials were
run over a 12-day period. Twenty-four trials were run
for each battle. (12 trials with manned simulators and
12 trials with ModSAF only). The platoon locations
were randomized to minimize the effects of learning
the scenario during the experiment.

6. A2 ATD Experiment Analysis Cvcle

The analysis cycle for Experiment 1 is presented in
figure 4. The scenario vignette and performance data
were fed into both BDS-D and CASTFOREM.

algorithms will be changed as appropriate for
subsequent experiments. BDS-D simulation outcomes
were compared with CASTFOREM outcomes to
determine the nature of and reasons for differences.
CASTFOREM algorithm changes and runs were made
to bring the outcomes into better agreement with BDS-
D simulation outcomes that were previously VV&A'd
to base simulations.

7. References

Denney, Carrol (1994),
"ModSAF VV&A Presentation", TRAC-WSMR

Monday, Paul (1995)
"DISVVA Users Manual", Loral ADST

Topper, Phil (1993)
"A Compendium of Close Combat Tactical Trainer

Data Structures", US AMSAA

8. Author's Biography

John G. Thomas is an Operations Research Analyst
in the Simulation Branch , Combat Integration
Division, AMSAA. Mr. Thomas is AMSAA's lead
analyst for ModSAF and Close Combat Tactical
Trainer (CCTT) SAF W&A efforts. Mr. Thomas has
a Master of Arts degree in Mathematics.

EXPERIMENT ANALYSIS CYCLE

•iPMDICTAaU MFPCRENCU
UPGRADE

ALOonrrHKS

Figure 4. Experiment 1 Analysis Cycle

The BDS-D simulations were run with verified,
validated, and accredited ModSAF and simulators
(level 2 CIGs) in a level 2 environment with level 2
DIS standards (necessary conditions for conducting
experiments). BDS-D simulation runs were made with
and without simulators to provide the basis for
comparing SAFOR and simulator behaviors and
simulation outcomes. For Experiment 1, these
outcomes were compared to the outcomes of the Ml A2
IOT&E for the replicated battles. ModSAF behavior

200

'TT^»*

Session 5a: Command & Control Modeling II

Mall, SA1C
Nielsen, University of Michigan

Pratt, NPGS

Command Entity Cognitive Behaviors for SAF and CGF

Howard Mall
malih@nefarious.saic.com

Kent Bimson Jenifer McCormack Dirk Ours ton
bimsonk@nefarious.saic.com mccormaj@nefarious.saic.com ourstond@nefarious.saic.com

Science Applications International Corporation
3045 Technology Parkway, Orlando, FL 32826-3299

Abstract

This paper discusses the development of a computer-
generated Command Entity (CE) capable of operating
autonomously on a simulated battlefield. The SAF
operator's workload would be reduced by extending the
reasoning ability of Computer Generated Forces. The
construction of a general architecture that allows the
integration of heterogeneous AI technologies is
described. The system starts with a Knowledge Base
(KB) that interconnects both a symbolic (semantic net)
and spatial (tactical map) representation of the CE's
perception of the battlefield. The KB is maintained and
monitored by Intelligent Agents that act within then-
own designated areas of expertise as staff officers to the
CE. The interoperation of the CE's components are
explained through an example scenario. This work has
impact in the areas of mission replanning, command-
decision support, and after action review.

1 Introduction

Battlefield commanders analyze Mission, Enemy,
Terrain, Troops, and Time (METT-T) in order to do
situation assessment. The operation of SAF are divided
into event-driven and judgmental behaviors (Bimson,
Marsden, McKenzie, Paz 1994). This paper describes
the construction of a computer-generated Command
Entity (CE) that can produce the judgmental behaviors
needed to increase SAF autonomy. Specifically, the
decision-making behaviors of a generic US Army
company commander in the mechanized warfare
domain is being examined. At this level of command
hierarchy the tactical coordination of troops and tanks
requires judgment and provides an excellent starting
point for this project

1.1 Judgmental METT-T

METT-T reasoning is the situation assessment process
laid out in Army doctrinal literature for their
commanders. The basic flow of the commander's
decision making process can be seen in Figure 1. Each
oval represents a complex set of subprocesses of which
METT-T analysis is part. This flowchart represents

both pre-exercise planning and the response to discrete
events on the battlefield.

:::V Mission

NrrQntesot JUajai
Il!kiQMClMB . C

\ MU. >/""AMrf»7>\ ***_ y

PttaithJ)

n—micttu
Oi»UH

~ Sttact \:g

y (MI«I "7 VSiUiationV

SotwUm UfcorStoaan
MK* Change

Orders J^-xmmws^ Ordcn VU^^^/^OftuiwdV .^*3d«J

Figure 1. Flowchart of Commander Decision Making Process

These two types of behavior require different cognitive
skills. The commanders response to attack by an
enemy force is clearly defined and results in an
immediate response. There is very little high-level
judgment required. The commander considers only his
local situation and not the "big picture". Higher-level
examination of events requires significantly more
sophisticated cognitive skills in order to generate
judgmental decision-making.

1.2 Current METT-T Capabilities on CCTT

Current CCTT SAF capabilities fall into one of two
categories: (1) executing tasks assigned by the SAF
operator and (2) responding to discrete battlefield
events. In other words, SAF CE behaviors are invoked
in one of three ways within a simulation exercise:

1. Execution of the operations order,
2. SAF operator inputs,
3. Response to situational interrupts.

The SAF operator is in charge of constructing the
operations order of the military units and providing new
commands to generate realistic human-like behaviors in
the simulation. The third operation has been automated
with simple "reactive" behaviors in CCTT.

The project began with the event-driven SAF behaviors
developed for CCTT and sought to augment them with
judgmental METT-T. It was found that in order to
develop judgmental capabilities a new architecture that
could be integrated into the existing simulation
environments would be needed. The CE concept was
designed to act as a SAF operator augmentation or

203

• •--•• • • • - •• • -•--•••

Terrain Object
Attributes:
Terrainjd: Hammer
Location: 2,2 2,3 3,2

Domain Relations:
Occupied_by: Sov1
Overwatches: Route 33

Company Team Object
Attributes:
Unit_id: Alpha
Unit_echelon: Blue_company_team

Domain Relations:
Occupies: Black_forest
Has_subordinates: 1Plt, 2Plt, 3Plt
Has_execution_matrix: Alpha_EM
Has_mission: Alpha_mission; k

Platoon Object

Attributes:
Unitjd: 1 Pit
Unit_echelon: Blu_tank_plt

Domain Relations:
Has_superior: Alpha
Has_missk>n: Alpha_misajon

•KWWWvWiW;

Figure 2. Semantic Network

surrogate. The inherent flexibility and generality of the
architecture will allow CE's to be developed with a
variety of capabilities and applications to many
different simulation systems.

2 Representation

Much as the human brain has two functionally different
sides so does the CE's Knowledge Base (KB). It is
composed of two structures that represent perceptions
of the battlefield: (1) a Semantic Network and (2) a
Tactical Map. These structures reconstruct the
battlefield based on information the CE has received
from reports, orders, and sensor data. The semantic
network forms relationships among battlefield objects
through the use of symbolic links. The CE's map
captures spatial relationships using a two-dimensional
array of pointers to objects within the semantic
network. This approach effectively aggregates complex
information by allowing conduits between the spatial
and symbolic relationships among objects.

2.1 Semantic Network

The CE's Semantic Network builds connections
between objects in the battlefield environment. Figure

2 is an example of some battlefield objects and how
they interrelate. The objects have attributes to store
important data. The Terrain object in Fig. 2 has
terrainjd and location attributes for identification and
spatial orientation, respectively.

Attributes also facilitate domain relationships between
objects in the CE's semantic net. For example, a
company is composed of three platoons. The
Has_subordinates attribute in the Company object lists
three instances of the Platoon class to indicate this
hierarchical relationship.

The semantic network stores declarative knowledge
meaningfully, allowing it to be quickly accessed
through the domain relations. The flexible structure of
the semantic network helps to easily express the
dynamic nature of the battlefield. As relationships
between objects change and new objects are introduced
the semantic network expands to encompass more
information, improving the CE's knowledge of the
battlefield.

2.2 Tactical Map

To complete the CE's view of the world, a

204

representation of its spatial environment is needed.
Semantic nets represent conceptual relationships well,
but they are inadequate in capturing geographical
information.

The Tactical Map coalesces information from
terrain assessments and military reports and represents
these results in a two-dimensional grid. The cells of
this grid contain pointers to objects within the semantic
network (see Figure 3). From the Tactical Map, a CE
can determine its position on the terrain grid and its
position relative to terrain features, enemy positions,
friendly forces, objects, etc. Symbolic relationships are
traced through the Map's links to the semantic network.

identified five areas that their own battlefield
commanders should consider in situation assessment:
Mission, Enemy, Terrain, Troops, and Time (METT-T).
Commanders plan and replan missions, extrapolate
enemy intentions, assess terrain, and manage troops, all
within the constraints of time. To produce realistic
behaviors within the battlefield domain, the CE must be
capable of these cognitive activities. These behaviors
require a significant amount of specialized knowledge
and analyses which cannot be easily accomplished by
any one AI technique. The following architecture
provides a facility for applying heterogeneous AI
technologies in a cooperative manner.

The CE's Map is also a repository of tactical influence
factors. The impact of specific objects are numerically
determined for Trafficability, Cover and Concealment,
and Threat Each grid square has a 3-tuple to store
these factors. The extent of an object's impact is
reflected in the grid squares over which it has influence.

Platoon Objact

UMt kJ: Sovl
Ech»lon: Op_t«nk_plt

CcmpanyTean Ob>ct

UnHJd: Alpha
Ectolon: Blu»_COJ»am
Occupies: Blackjorast
Hat oblactlw: Himmn

Figure 3. The CE's Tactical Map

Tactical influence factors allow new routes to be
quickly generated and selected. The A* algorithm has
been used with success (Ourston et al. 1995). Because
the three factors are differentiated, they can be assigned
different weights for generating routes. Using this
technique, routes are generated based on one of the
factors or any combination of factors. The factors also
act to differentiate candidate routes as a basis for
selection among them. For example, speed may be
more important than being observed by the enemy;
therefore the numerical value for Trafficability carries
greater weight that that for Cover and Concealment.
The CE would search for and select the most trafficable
route versus the one providing more concealment.

3 Reasoning

For tactical situation assessment the US Army has

The CE reasoning is accomplished through Intelligent
Agents (IA's) that independendy monitor and maintain
the common KB. Figure 4 shows how information
flows to the CE from the battlefield domain through
reports, orders, and sensors (direct observation). The
CE communicates with other elements in the battlefield
domain through these same channels. As a model of
human command judgment this approach approximates
the way it is believed actual commanders obtain and
process information. Commanders update their
complete perception of the battlefield, then they analyze
this information from different viewpoints using a
variety of cognitive skills. The specialized activities of
the IA's blend to generate complex behaviors.

Figure 4. The Command Entity Reasoning Concept

3.1 Intelligent Agents

Specialist Intelligent Agents (IA's) were developed to
classify domain knowledge and compartmentalize their
reasoning processes. The IA's act independently to
build, modify, observe, and analyze the CE's KB.
Having the KB common to all of the IA's allows their
independent actions to be distributed to other IA's.
This communication occurs when one IA modifies a
part of the semantic network which another IA
monitors. The IA's are also capable of direct dialog in
which one IA requests a specialized service from

205

another.

Figure S is the model used to construct an IA. This
architecture creates a mechanism for heterogeneous
reasoning processes to be executed and integrated. The
IA has a defined expertise, a reasoning mechanism, a
representation of specialized domain knowledge, a
facility for inter-agent communication, and links to the
KB.

Figure 5. The Intelligent Agent Model

The following discussion will describe the construction
of the Mission IA, the Terrain IA, and the Alternative
Generator IA as examples of this architecture. These
three examples all use different techniques for
reasoning about the battlefield situation, employing
technology from planning, expert systems, and Case
Based Reasoning (CBR). They are currently very
simple, yet they cooperatively generate complex
behaviors.

3.1.1 The Mission IA

Figure 6 shows the Mission IA based on the intelligent
agent model. The Mission IA monitors the battlefield
environment to assure that the military units can
achieve their goals. A mission is simply a plan. For
this reason the Mission IA has a unique viewpoint on
the battlefield which differs from that of other IA's.
The domain knowledge of the Mission IA expresses its
different viewpoint.

The Mission IA's domain knowledge is stored in a
conjunctive goal network (Jones, Laird, Tanbe,
Rosenbloom 1994 and Wilkins 1988). Each node
represents a goal that must be accomplished. The
horizontal arcs represent temporal relationships, as in

Figure 6 where goal A comes before goal B. The
vertical arcs indicate hierarchical dependencies. For
instance, goal B will be accomplished when goals C
and D are accomplished. This is similar to a PERT
chart in project management

The arcs from goal C to the KB "link" in Figure 5
indicate the dependencies of C on attributes within the
KB. For example, goal C's feasibility may depend on
the size attribute of an enemy object within the CE's
semantic network. A link would be established
between this attribute and goal C. If the size of the
expected enemy is too large, then there is a problem
with the mission. The problem is characterized as a
force mismatch originating in goal C.

Figure 6. The Mission Intelligent Agent

The reasoning engine of the Mission IA consists of
simple rules and procedures that manage the operation
of the goal network. The services of the current
Mission IA are to compute delays and to return mission
critical goals. By developing more sophisticated rules
and procedures and expanding the services it provides,
the Mission IA can grow without an effect on the other
IA's. To increase its capability the Mission IA will use
other IA's as a knowledge resource.

3.1.2 The Terrain IA

The Terrain IA is responsible for monitoring and
updating information about the terrain elements on the
battlefield, such as rivers, hills, forests and cultural
features like bridges. Figure 7 shows how the Terrain
IA is constructed to carry out its duties. It expresses its
domain knowledge with inductive rules that pattern

206

match on objects within the CE's KB. Its reasoning
mechanism is conducted by a forward-chaining
inference engine. Using this technique, the Terrain IA
provides the services of identifying trafficable areas,
obstacles, and the status of dynamic terrain.

The Terrain IA examines reports about the terrain and
updates the semantic net, instantiating new terrain
objects when necessary. The Terrain IA also updates
the CE's map by recalculating any changed influences.
For example, the Terrain IA receives a report that a
road has been destroyed. The Terrain IA would update
its existing road object in the semantic network. The
grid squares through which that road passes now have
lower trafficability. The Terrain IA calculates the new
trafficability score for those grid squares and updates
the CE's map accordingly.

Figure 7. The Alternative Generator

The Terrain IA's analyses are communicated to other
IA's through the KB link. Other IA's need only be
aware of those changes to terrain that impact their
particular specialties.

3.1.3 The Alternative Generator

The Alternative Generator finds appropriate courses of
action to given problem situations (Wall 1987). These
problem situations are identified by other IA's, as the
Mission IA is doing in Figure 8. The domain
knowledge of the Alternative generator is expressed
using Case Based Reasoning (CBR). The Alternative
Generator contains a case library of possible solutions
to problems. Its reasoning mechanism matches a given
problem situation to one or more appropriate
alternatives in its case library.
The problem situation is characterized by its class, its
type, and its origin. Alternatives that match the class of
the problem situation are general solutions to the
problem, while those that match both class and type are

more specific. For instance, a problem situation of
class obstacle would have general solutions, such as
reroute or break-through. A problem situation of type
bridge-out, however, is an obstacle with more specific
solutions such as find-river-crossing or build-
temporary-bridge. Alternatives are further
discriminated by the origin of the problem situation. A
problem that occurs at a battalion level of command has
different options from those at the platoon level. This
allows the same case-base to be used by different CE's
within a hierarchical command structure. It also allows
problems that cannot be solved at lower levels to be
referred to higher levels where solutions exist.

Figure 8. The Alternative Generator

The alternatives produced by this IA identify a number
of resources for judging a solutions feasibility. These
resources include materiel, personnel, and time. These
resources are examined for their availability and if
found lacking the solution is judged infeasible. Once
feasibility has been determined, then the more specific
alternatives have precedence over the general. If no
solutions prove feasible, then the problem situation is
referred to higher levels of command.

4. Example Scenario

The following example illustrates the interoperation of
the CE's components. The CE's objective is to move
from point A to point B through battlefield terrain as
quickly as possible while avoiding enemy contact. The
battlefield contains a forest, a river, and a bridge.

No enemy is currently known to be in the area so a
route seeking to maximize Trafficability is generated by
the Terrain IA. However, before the mission is begun a

207

report is received indicating enemy was spotted in the
area. The Enemy IA uses the information from the
report to instantiate an enemy unit in the Semantic
Network and place it on the Tactical Map. The Terrain
IA updates the influence factors for Threat. One of the
objectives of the mission is to avoid the enemy. The
Mission IA, therefore, monitors the Threat influences
along the current route. The Threat is now high, so the
Mission IA indicates this problem to the Alternative
Generator.

The Alternative Generator returns feasible solutions
from its case library. The Mission IA determines the
delays of any of these alternatives and selects to
reroute. The Terrain IA generates a new route which
has lower Trafficability but also lower Threat. The CE
now executes its mission and begins to send orders to
move its troops and vehicles.

The route crosses the river at a bridge. As the mission
progresses the CE receives a report indicating the
bridge has been destroyed. The Terrain IA updates the
bridge object. The Mission IA has been monitoring its
new route and queries the Terrain IA to define the
problem. The Terrain IA recognizes the problem
situation of bridge-out, which is sent to the Alternative
Generator. The Alternative Generator returns possible
solutions from its case library. The Mission IA chooses
to find-river-crossing. One is found, the CE's forces
cross to point B, and the Mission IA indicates the
successful completion of the mission.

In this scenario, the CE looked at trade-offs between its
objectives in order to plan routes through the terrain. It
evaluated changes in its situation for their impact on the
mission. The CE replanned its mission by analyzing
alternatives and making a final decision. In spite of the
simple inner workings of each individual IA, their
intcroperation produces sophisticated behaviors.

5. Conclusion

The architecture presented herein has application in
mission reassessment, command-decision support, and
After Action Review (AAR). This concept provides a
model of CE cognitive behavior. Its use not only
generates complex autonomous behaviors to reduce
SAF operator workload, but it can be used to explain
and understand the cognitive process used in command
decision making.

The robust representation of battlefield knowledge
found in the CE's KB aggregates a significant amount

of data. Through the Mission IA many variables are
monitored and evaluated to determine their impact on
the mission. This approach determines when the
mission becomes infeasible. This is useful not only for
automated mission replanning but in supporting the
SAF operator or an actual battlefield commander in
compiling a vast array of knowledge sources into a
simple viewpoint.
Command-decision support can be applied in allowing
the CE to operate as an advisor. The CE can generate
alternatives suggested by the battiefield situation for an
actual commander to consider. The CE could also
examine a commander's decisions for viability when
stress or fatigue may impair human judgment

AAR support is currently being examined. The CE is
being extended to act as a knowledgeable, automated
observer of events on a simulated battlefield. The
assessments of the CE can be compared with those of a
human participant to provide a view of the human's
cognitive process. This could facilitate knowledge
acquisition by the CE to improve its capabilities. The
architecture developed facilitates easy extension of the
CE's capacities.

(?. Acknowledgments

The creativity and guidance of Frederic McKenzie and
Noemi Paz contributed significantly to this project.

7. References

Kent Bimson, Craig Marsden, Frederic McKenzie,
and Noemi Paz; "Knowledge-Based Tactical
Decision Making in the CCTT SAF Prototype",
Computer Generated Forces and Behavioral
Representation Conference Proceedings, May
1994, pp. 293-306.

Randolph M. Jones, John E. Laird, Milind Tambe,
and Paul S. Rosenbloom; "Generating Behavior in
Response to Interacting Goals", Computer
Generated Forces and Behavioral Representation
Conference Proceedings, May 1994, pp. 317-323.

Dirk Ourston, "Maneuver Vector Based Route
Planning", 1995 FLAIRS Proceedings.

Rajendra S. Wall, "Case-Based Reasoning for
Command and Control", Proceedings of the
DARPA Knowledge-Based Planning Workshop,
Austin, TX, December, 1987.

David Edward Wilkins, Practical Planning: Extending
the Classical AI Paradigm, Morgan Kaufmann
Publishers, 1988, pp. 28-37,121-124.

208

8. Authors' Biotn-anhies

Howard Mall is a Master's Candidate in computer
science at the University of Central Florida. He
currently works on the Command Entity Cognitive
Modeling research project at SAIC while completing
his advanced degree. He hopes to have completed his
Master's thesis by the end of this summer. He has
brought an eclectic background with him to SAIC and
to UCF. He holds a B.E. in Mechanical Engineering
from Vanderbilt University. While there he held a part-
time job at the Center for Molecular and Atomic
Science at Surfaces doing physics research. He briefly
worked a variety of temporary jobs in logistics and
manufacturing for Martin-Marietta after college and
enrolled in computer science classes at UCF. His
research interests are in Artificial Intelligence and
Computer Vision, and hopes to continue to contribute
in these areas while pursuing a Ph.D.

Jenifer McCormack is currently completing her Ph.D.
thesis in Industrial Engineering at the University of
Central Florida where she also earned her bachelor's
and master's degrees. Her dissertation concerns
machine learning and student modeling. For a number
of years, she worked on a variety of development
projects at Harris Corporation. She has instructed
courses applying artificial intelligence to industrial
engineering. She now contributes her skills to SAIC on
the Command Entity Cognitive Modeling research
project and at the Intelligent Simulation Laboratory of
UCF.

Dr. Kent D. Bimson is Chief Scientist at Science
Applications International Corporation (SAIC)
Orlando. Dr. Bimson is in charge of coordinating R&D
for SAIC's Orlando office and for business
development in support of the group's research efforts.
He has been involved in AI research and development
activities for 13 years, including work in knowledge-
based project management and risk management.
Before joining SAIC, Dr. Bimson previously served as
a Research Scientist at Lockheed Software Technology
Center in Austin, TX, from 1985-1991. He also served
as Associate Professor of Computer Science at
California State University, Sacramento from 1983-
1985, where he taught courses in AI and Natural
Language Processing. He holds a Ph.D. in Linguistics
from UCLA and a Master of Science in Computer
Science (AI) from California State University,
Sacramento. Dr. Bimson has published in numerous
professional conference proceedings and publications.

Dirk Ourston is currently Principal Investigator for the
Command Entity Cognitive Modeling research project
at SAIC. Prior to his current assignment he was
responsible for the Behaviors software development on
the CCTT SAF project (a Semi-Automated Forces
simulation being developed for the U.S. Army). Prior
to joining SAIC, he worked at BP America, where he
was responsible for the artificial intelligence
applications for use in the oil industry. He has a Ph.D.
in Computer Science from the University of Texas at
Austin, with a specialization in machine learning
techniques. He has had over 25 years of experience in
various types of software applications.

209

Intelligent Computer Generated Forces for Command and Control

Paul E. Nielsen
Department of Electrical Engineering and Computer Science

University of Michigan
1101 Beal Ave., Ann Arbor, MI 48109-2110

nielsen@eecs.umich.edu

The clever combatant looks to the effect
of combined energy, and does not require too much
from individuals.

SunTzu The Art of War

1. Abstract

The effectiveness of intelligent computer generated
forces is limited by their ability to closely coordinate
their actions within the overall battlefield situation We
have developed intelligent command and control agents
which monitor large sections of the battlefield and
deploy other forces for increased effectiveness. These
agents have been demonstrated in the air to air, close air
support, and air strike domains.

2. Introduction

Our goal is the development of intelligent forces
(IFOR's), computer agents which are functionally
indistinguishable from human agents in their ability to
interact with the synthetic environment The
Soar/IFOR consortium, involving the University of
Michigan, Information Sciences Institute of the
University of Southern California, and Carnegie Melon
University, is developing IFORs for all military air
missions: air to air, air to ground, air supply, anti-armor
attack, etc. IFORs must have many capabilities to be
successful including: extensive knowledge, real-time
reactivity, goal-directed problem solving, and planning.
Additionally, they must coordinate their activities with
other friendly forces (Laird et al., 1995a).

To fulfy support very large scale battle field simulations,
such as those envisioned for STOW-97, intelligent
computer generated forces cannot act independently, but
rather, they must coordinate their efforts for increased
effect just as humans do. This requires a means and a
method for coordination, the ability to convey
coordination information, and the ability for large scale
situation assessment In military parlance this is
commonly referred to as command, control,
communications, and intelligence (C3!).

This paper discusses our current state of development of
intelligent, realistic CT agents for simulation in the air
domain. These agents have been implemented using
ModSAF (Calder et al., 1993) and the Soar/ModSAF
interface (Schwamb et al., 1994).

The remainder of this introductory section provides an
overview of the CT domain and some motivation for
this work. Section 3 has a description of the C31 agents
implemented by this project to date. Section 4 discusses
the general responsibilities of each agent and goes on to
show how our agents demonstrate each of the CT
functions. Section 5 provides an extended example of
the interaction between multiple CT agents and a
section of planes flying close air support Section 6
discusses research and open problems. Finally, section 7
provides general discussion and conclusions.

2.1. Domain Overview

Previous work in computer generated forces has either
focused on individual agents working in relative
isolation or groups of agents which may be treated as a
whole (Rao et al., 1994). A notable exception is (Ballas
etal., in press). These approaches avoid the problems of
Cl by allowing human guidance, but when the agents
number in the tens of thousands, finding enough people
to control them is infeasible.

In 1994, the Soar/IFOR project was tasked to provide
automated pilots for all air vehicles and missions in
support of STOW-97. (See (Laird et al., 1995b) for an
overview of the current state of this project) In order to
accomplish this task we needed to extend the scope of
the project to include those interactions necessary
between pilots and controllers, even if they are not
airborne. For example, orange agents are at a severe
disadvantage if they cannot rely on ground based radar
control (GO) to track threats outside the limited scope
of their own radar.

The most intensive C31 missions we have implemented
to date are air to air combat and close air support
(CAS). In the air to air domain, the controller may be
responsible for mamtaining a defensive perimeter

211

around the carrier battle group, locating potential
threats, confirming that an unknown aircraft is a threat,
providing timely updates until friendly planes have
radar contact, then issuing additional information in
response to queries.

While air to air combat has a single (or small number
of) controllers, in contrast, the close air support domain
demonstrates a wide variety of controllers. In the CAS
domain, the attack planes must have detailed integration
with multiple agents because of close proximity between
targets
and friendly forces. These controllers communicate with
the planes (locating targets and deconfheting) as well as
amongst themselves (requesting missions and allocating
forces.)

2.2. Motivation

The primary motivation for doing this work is to
develop realistic CT agents. The IFOR CT agents
should be indistinguishable from human agents
performing similar functions. This involves believable
interacts with the simulator as well as interactions with
other agents and humans at a natural level. By basing
IFOR agents on Soar, a theory of cognition (Laird &
Rosenbloom, 1994; Laird et al., 1987; Newell, 1987),
and modeling not only the externally observable
behavior, but plausible thought processes which are
necessary to produce realistic behavior, we intend to
overcome both dumb, canned responses and
implausible, superhuman responses.

The second motivation for doing this work is
effectiveness. Without C3I agents our automated pilots
have only limited ability to sense and interact with their
environment. Enemy agents can sneak up behind them
or fry around them. In addition the automated pilots
have only limited ability to change their mission
Without the large scale perspective provided by the
controller, they dont even realize that there might be a
need to change their mission

Adding CT can increase the level and types of
applications for military simulation As battlefield
simulators become more realistic, we want to make
them available for more advanced purposes. The major
use of air simulators to date is in pilot training. By
providing intermediate level controllers, we expect to
make simulation usable not only in pilot training, but
also in training human controllers to interact with and
control these controllers.

Finally, we wish to study human cognition and the
ability to model it in Soar. C3! provides a new domain
for this research which suggests more knowledge and
exhibits different types of knowledge than that used by
aircraft pilots.

3. C3! Agents

In order to increase realism and promote playability at
various levels, we base C3! on existing techniques
currently in use by military organizations and embody
them in specialized agents corresponding to military
controllers. Thus there is a direct one to one mapping
between our agents and humans.

Currently, we have operational versions of the following
CT agents:

• Air Intercept Controller (AIC) which assigns
planes to stations, spots threats, and provides
information about enemy planes. The AIC is
airborne, situated in a plane with a large radar,
such as an E-2C.

• Ground Controlled Intercept (GCI) performs the
same sort of mission as an AIC but is ground based
and immovable.

• Forward Air Controller (FAC) which locates
targets and provides final directions for close air
support Forward air controllers may be either
ground based or airborne (FAC(A)).

• Direct Air Support Center (DASC) which assigns
aircraft to missions, potentially alters the missions,
and hands off attack missions to the FAC. The
DASC is ship based, usually on the aircraft carrier.

• Tactical Air Direction Controller (TAD) directs air
operations within the Amphibious Operations Area
(AOA) prior to the establishment of a DASC. The
TAD is also ship based and may be co-located with
the DASC.

• Fire Support (Ordination Center (FSCC)
determines the type of support to utilize (CAS,
artillery, naval gunfire). If CAS is determined it
generates a Joint Tactical Airstrike Request and
coordinates CAS requests with the DASC. The
FSCC is ground based within the AOA

• Tactical Air Command Center (TACC) which
provides air traffic control, routing, and
deconfliction within the AOA The TACC is

212

ground based and usually co-located with the
FSCC.

In the following section we explore how agents
demonstrate the capabilities necessary for coordinating
the behaviors of multiple agents.

4. Responsibilities

In addition to the specific responsibilities of each agent
given above there are several general responsibilities
associated with C3! agents. These responsibilities are
broken out into separate topics, but it must be realized
that to work effectively all of these activities must be
going on simultaneously.

4.1. Command

CT agents are responsible for mission initiation as well
as tracking and modifying the mission as it develops.
Typically the planes will have a prebriefed mission, but
often this mission will need to be changed or replaced
entirely as the battlefield situation developed. Our
command agents can change almost every aspect of a
mission including assignment of individual CAP1

stations, routes, target times, and the final targets.

In order to effectively carry out their command function,
CT agents need to have a command organization.
WeVe observed two different command organizations
for CT agents.

In the air to air domain command is centralized. Either
the AIC or the GO are responsible for all air traffic.
These agents provide continuous control and
information for many sections of planes. Though there
may be multiple controllers acting at the same time they
have clearly separated duties, and there is very little
interactioa

In contrast, in the CAS domain command is
decentralized. As the planes fly through different
regions they are directed by multiple controllers, all of
which are responsible for the ultimate success of the
missioa Though there is still a chain of command,
because of limited numbers of radios and limited
broadcast range the planes may not be in continuous
contact with any single controller.

The controllers in CAS need to coordinate not only the
planes, but also themselves. The TACC, DASC, FSCC,
and FAC have to form a distributed control network in

Combat Air Palrol

which mission requests and assignments are propagated
through the network.

4.2. Control

The mission of a controller is to continually assess the
situation then allocate, or re-allocate, forces for
maximum effect The combined knowledge of overall
mission objectives and threat detection makes
controllers uniquely capable of resource allocation. They
need to assess the resources available and when future
resources might become available, balanced against
current and potential threats. They must synchronize
their own forces, and their efforts with respect to other
controllers. Higher level controllers have to trade off
the utility of multiple potential assignments for maximal
effectiveness, while low level controllers can only shout
louder hoping to increase the priority of their request for
resource allocation.

Poorly coordinated attacks can be weak and ineffective.
One way CT agents coordinate is by synchronizing
attacks through timing constraints. For example, in the
CAS domain, when bombing in tight proximity to
friendly troops, timings must be accurate to plus or
minus ten seconds to avoid interference with friendly
troops.

To accomplish this CT agents must be capable of real-
time reactive planning. Both threats, friendly forces, and
messages from other controllers may arrive at any time.
The overall battle plan must be incrementally
supplemented with new information so that we seize
opportunities and knowingly avoid or confront risks.

Soar provides several capabilities which help manage
these real-time asynchronous inputs. First, the decision
of what to do next is handled through production rules.
During each decision cycle all relevant rules are tested
and allowed to fire in parallel. Thus the sequence of
execution is not fixed.

The real-time is requirement handled by making the
speed of operator execution comparable to experimental
results in humans (Newell, 1990). Since this can only
guarantee soft real-time, our agents will react quickly,
but may fail to react quickly enough when faced with
overly complex situations, just as people do. Limiting
the number of available choices increases the speed of
decision making. Soar uses operator subgoaling to
provide a context for focusing decisions on information
relevant to the current situation. For example, when
under attack and bugging out an E-2 might not be

213

overly concerned with planning the course to its CAP
station.

Another way to increase military effectiveness is to
decrease the interference from one's own forces. In
actual combat (as opposed to simulation) this will have
serious morale consequences. The deconfliction duties
we've implemented range from air traffic control to
route planning to explicitly informing the plane of the
location friendly forces.

4.3. Communication

The nature of communication is that commands must be
brief, and commands must be clear. CT agents must
communicate relevant information in a timely and
effective manner. Communication can range from
simple (e.g., "proceed as briefed" or "negative") to very
complex, such as a nine line brief shown in figure 1.

The domain of military' communication is well
researched, and the military jargon provides a form of
communication which is brief yet maximizes the
communication of necessary knowledge without undue
overhead. We attempt to model CT using standardized
forms, realistic dialog from actual communications of
former pilots, and examples from training manuals
whenever possible. We believe that by making
communication explicit and based on human
communication we can offer an approach to better
human interaction and easier evaluation of the results of
a simulation.

The approach used by the military, and the approach
we've adopted, is to use a shared format for all
communication. Complex commands use a standard
template to reduce transmission time and ensure all
relevant information has been communicated.

To compensate for lost messages and electronic
interference we repeat messages until confirmation is
forthcoming. The receipt of commands must be
confirmed through "roger," or if some action is
necessary, by the recipient either "wilco" (will comply)
or "negative" (will not comply).

While we have yet to incorporate a general natural
language understanding system with TacAirSoar, the
commands used are based on the actual English
communications used between controllers and pilots in
similar situations. This makes it easier to understand the
behavior of the IFOR commanders, and allows human
communication with the IFOR commanders. In order to

communicate with other CGFs we will be adopting
CCSIL protocols (Salisbury, 1995).

4.4. Intelligence

The most important responsibility of an air controller is
to locate, identify, and track threats. "Timely
interception is totally dependent of two factors: early
detection and positive identification" (Gunston & Spick,
1983). The need to track the threat arises because enemy
agents are eminently uncooperative. Some early failures
of our fighter agents acting alone arose because human
pilots would feign an attack from one direction, then
beam or drop and attack from a different direction. The
more powerful radar capabilities of the AIC and GO
makes our agents less vulnerable to these tactics.

Each agent has limited capability. Controllers are
limited by weapons,2 [Though, at least one E-2 pilot
considers every friendly plane in the sky his weapoa]
maneuverability, and speed when compared with the
targets they must defend against To compensate for this
lack of ability they provide greater situational awareness
either through proximity (e.g., a FAC) or superior
equipment (such as an E-2's radar). They must use this
awareness to perform continuous intelligence gathering.
Without this information even a veteran pilot may be
defeated by a poorly equipped pilot of lesser training.

5. Example scenario

Figures 2 through 8 illustrate some of the interaction
between command agents and combat aircraft during a
close-air support mission. All of this dialog is taken
from a simulation run of a close air support mission.

Our agents include a section of F-14d fighters (lead by
Falconl4), a TACC (Icepack), an FSCC (Bronco), a
DASC (Mustang) and a FAC (Rattler). Each utterance
is preceded by the name of the speaker and the radio
frequency used for this communication. The frequencies
are color coded to match the encryption scheme used in
the communication.

Falconl4 (white) : Icepack this-is Falconl4
Icepack (white): go-ahead
Falconl4 (white) : Falconl4
Falconl4 (white) : mission-number 20-059
Falconl4 (white) : proceeding-to Elmer
Falconl4 (white) : angels 32
Falconl4 (white) : time-on-station 1+30
Falconl4 (white) : checking-in-as fragged
Icepack (white) : roger

^Though, at least one E-2 pilot considers every friendly plane in the sky his
weapoa

214

Icepack (white): Falconl4
Icepack (white): radar-contact
Icepack (white): cleared-to-enter-aoa
Icepack (white): proceed-as-briefed
Icepack (white): maintain angels 32
Icepack (white): check-in-with Mustang
Icepack (white): on orange
Icepack (white): at Tiger
Falconl4 (white): wilco

Figure 1: Mission checks in to AOA

In figure 2 the two planes check into the amphibious
operations area (AOA) with Icepack. The exact form of
the plane's initial check-in message is specified in the
SPINs (SPecial INstructions) and may vary across
scenarios, but will convey the essential information 1)
who I am, 2) where I am, and 3) what am I doing here.

The JTAR includes target type, location, time, and
desired results. Note that Rattler has elected to be the
forward air controller for the mission and direct the
final bombing run. The FSCC supplements this
information with coordination and mission data.

In figure 4 Bronco (the FSCC) has determined that
close air support is the logical response, and transmits
the necessary information from the JTAR to Mustang
(the DASC). If this were more realistic, the request
would be transmitted in hard copy form rather than over
the radio, but we are constrained with the information
exchanges allowable through ModSAF.

Icepack recognizes this message and realizes that they
are both friendly and supposed to be there. Icepack
locates their corresponding blip on radar, gives them
permission to enter the AOA, and does not change their
mission

Our TACC is capable of some low level air traffic
control. In this case it consists of assigning unique, even
altitudes to inbound flights, while outbound flights are
expected to maintain odd altitudes.

Finally, Icepack hands off control to the next agent,
Mustang, at a pre-briefed radio setting.

Rattler (silver): Bronco this-is Rattler
Rattler (silver): immediate-mission
Rattler (silver): target-is tank
Rattler (silver): target-location-is
Rattler (silver): x 127000
Rattler (silver): y 27500
Rattler (silver): target-time ASAP
Rattler (silver): desired-results destroy
Rattler (silver): final-control FAC Rattler
Rattler (silver): on green
Bronco (silver): roger Rattler

Figure 2: FAC sends tactical air request to FSCC

In figure 3 Rattler finds itself in the line of unfriendly
fire and radios back to the FSCC that it needs support
immediately. In addition it provides information
sufficient for the FSCC to initiate a Joint Tactical
Airstrike Request (JTAR).3

We've elected not to include an example of a Joint Tactical Airstrike
Request because of its detailed nature. The nine/twelve line brief of figure

1 accounts for less than one sixth of its content by size.

Bronco (orange): Mustang this-is Bronco
Bronco (orange): reguest-number 28-59
Bronco (orange): immediate-mission
Bronco (orange): target-is tank
Bronco (orange): target-location-is
Bronco (orange): x 127000
Bronco (orange): y 27500
Bronco (orange): target-time ASAP
Bronco (orange): desired-results destroy
Bronco (orange): final-control FAC Rattler
Bronco (orange): on green
Mustang (orange) : roger

Figure 3: FSCC radios DASC

Falconl4 (orange) this-is Falconl4
Mustang (orange): go-ahead
Falconl4 (orange) Falconl4
Falconl4 (orange) mission-number 20-059
Falconl4 (orange) proceeding-to Tiger
Falconl4 (orange) angels 32
Falconl4 (orange) time-on-station 1+30
Falconl4 (orange) checking-in-as fragged
Mustang (orange): Falconl4 this-is Mustang
Mustang (orange): proceed-as-briefed
Mustang (orange): check-in-with Rattler
Mustang (orange): on green at Chevy
Falconl4 (orange) wilco

Figure 4: Mission checks in with DASC

In figure 5 the lead plane is approaching a holding point
and checks in with Mustang. The plane's check in
sequence has the same form as seen in figure 2.

At this stage Mustang alters the mission from its pre-
specified course. Even though the planes have a pre-
briefed mission, Mustang determines that the new
mission is more important and redirects the flight to a
new contact point (Chevy) and a new controller
(Rattler) for further details.

Figure 6 shows Mustang iirforming Rattler that help is
on the way, who they are, and where to expect them

215

Rattler has no radar and will assume a plane
approaching from that direction is the expected mission

In figure 7 the planes finally arrive at the contact point
for Rattler and check in according to the format seen in
figure 2.

Mustang (green): Rattler this-is Mustang
Rattler (green): go-ahead
Mustang (green): expect-cas-mission 20-059
Mustang (green): call-sign Falconl4
Mustang (green): at Chevy
Rattler (green): roger

Figure 5: DASC contacts FAC

Falconl4 (green) : Rattler this-is Falconl4
Rattler (green): go-ahead
Falconl4 (green): : Falconl4
Falconl4 (green): : mission-number 20-059
Falconl4 (green): : 2 F-14d
Falconl4 (green): : holding-at Chevy
Falconl4 (green) : angels 32
Falconl4 (green) : 10 MK82
Falconl4 (green) : time-on-station 1+30
Falconl4 (green): : no-laser-capability
Rattler (green): roger
Rattler (green): Falconl4

Figure 6: Mission check in with FAC

Figure 8 shows Rattler delivering a nine line brief
similar to that shown in figure 1. This is an information
intensive message which relies on the controller and
pilot sharing a common communication model. All and
only the necessary values are given sequentially without
reference to meaning or line numbers.

What's being expressed here is that the initial point will
be Joyce. The heading in magnetic degrees, from the
initial point to the target is 052. The distance from the
initial point to the target is 18.6 nautical miles. The
target's elevation is 0 above mean sea level. The target's
description is a "tank". The target's coordinates are
127000 by 27500 in the X/Y coordinate system of
ModSAF. The target will be marked with white
phosphor.4 There are friendlies in the area which are
8000 meters to the south-west After the attack the plane
should egress through Ford And the attack should
commence as soon as possible.

FalconU signals that he copies all of that information
and agrees to it by repeating the time.

*The capability for marking a target does not yet exist

Rattler (green): standing-by
Rattler (green): with-9-line-brief
FalconU (green) : ready-to-copy
Rattler (green): Joyce
Rattler (green): 052
Rattler (green): 18.6
Rattler (green): 0
Rattler (green): tank
Rattler (green): x 127000 y 27500
Rattler (green): wp
Rattler (green): sw 8000 meters
Rattler (green): Ford
Rattler (green): tot ASAP
Falconl4 (green) : ASAP

Figure 7: FAC gives 9 line brief

Following this, there are brief exchanges when the
planes are spotted, cleared to drop, and for damage
assessment

6. Research Issues in C3!

The development of C3! agents presents several
interesting research issues.

From a broader artificial intelligence perspective, CT
presents interesting problems in reactive planning and
managing dynamically changing goals in the face of
uncertainty. The battle field environment is constantly
changing. This requires a fast and efficient architecture
to keep up with the speed requirements of the situation
as well as a flexible architecture for incremental
reasoning and reactive planning.

Most of the planning currently done by our system is
reactive planning. In some situations the C3! agents may
have some time for decision making and should use this
time for more deliberate planning Recent research
explores the possibility of incorporating planning and
means-ends analysis mechanisms with our agents (van
Lent, 1995; Wray, 1995).

This work is very closely related to distributed artificial
intelligence. Since we are basing our work on an
existing model which seems to work reasonably well,
we can avoid many of the problems of distributed
artificial intelligence systems. For example, our agents
need not carry out protracted negotiations.

WeVe demonstrated that a template driven approach to
language understanding provides a sufficiently flexible
command language for many aspects of
communication, but it's not clear how far this approach
can be extended. More work needs to be done on natural
language understand both for agent flexibility and ease

216

of use in human computer interaction See (Lehman et
al., 1995) for recent work. 9. References

Though these agents were prepared to take part in the
STOW-E demonstration, during rehearsal they were
unable to handle the large number of other agents they
saw in the world and crashed. This turned out to be a
buffer overflow problem, but suggested several methods
for reorganizing the way IFOR agents handle large
numbers of inputs. Currently, these IFOR agents will
slow down and their performance will degrade as the
number of other agents they have to consider increases.

In the immediate future we will address more mundane,
but no less critical tasks of tracking fuel states and
allocating fuel assets.

7. Discussion

We have described the current state of development of
CT agents used by Soar/IFOR We have shown how the
agents currently implemented demonstrate the specific
aspects of the CT domain Finally, we worked through
an example which showed multiple control agents
interacting with planes on a close air support mission

We have demonstrated an ability to cope with
incomplete knowledge and incrementally supplement
information as it becomes available. This requires
continuous situation assessment: commands, threats,
and resources may arrive at any time.

We believe that automation must be pushed up the
command hierarchy. As the number of simulated agents
grows, people will have to supervise larger numbers of
agents. We believe that the best way to do this is to
emulate the present military command hierarchy. This
has the advantage of ease of use (nothing new to learn),
effectiveness (it has been proven through centuries of
warfare), and ease of understanding.

8. Acknowledgments

This work was done in close cooperation with John E.
Laird and Randolph M. Jones.
Thanks to BMH Associates, Inc. for their technical
assistance, especially Craig Petersen, Mark Checchio,
Tom Brandt, and Bob Richards. This research was
supported at the University of Michigan as part of
contract N00014-92-K-2015 from the Advanced
Systems Technology Office of the Advanced Research
Projects Agency and the Naval Research Laboratory.

Ballas, J. A. abd McFarlane, D. C, Achille, L. B.,
Stroup, J. L., Heithecker, C. H, & Kushnier, S. D.
in press. Interfaces for intelligent control systems.
Tech. rept NRL Technical Report Washington, D.
C: Naval Research Laboratory.

Calder, R, Smith, J., Courtenmanche, A., Mar, J., &
Ceranowicz, A. 1993. ModSAF behavior simulation
and control. In: Proceedings of the third conference

on computer generated forces and

behavioral representation.
Gunston, B., & Spick, M 1983. Modern air combat.

New York: Crescent Books.
Laird, J. E., & Rosenbloom, P. S. 1994. The evolution of

the Soar cognitive architecture. Tech. repL
Computer Science and Engineering, University of
Michigan To appear in Mind Matters, T. Mitchell
Editor, 1995.

Laird, J. E., Newell, A., & Rosenbloom, P. S. 1987.
Soar: An architecture for general intelligence.
Artificial intelligence, 33(3).

Laird, J. E., Jones, R M, & Nielsen, P. E.
1995a. Multiagent coordination in distributed
interactive battlefield simulations. Tech rept
Computer Science and Engineering, University of
Michigan.

Laird, John E., Johnson, W. Lewis, Jones, Randolph
M, Koss, Frank, Lehman, Jill F., Nielsen, Paul E.,
Rosenbloom, Paul S., Rubinoff Robert, Schwamb,
Karl, Tambe, Milind, Dyke, Julie Van, van Lent,
Michael, & Wray, Robert. 1995b (May). Simulated
intelligent forces for air: The Soar/IFOR Project
1995. In: Proceedings of the fifth conference on
computer generated forces and behavioral
representation.

Lehman, J. F., Rubinoff, R, & Van Dyke, J. 1995
(May). Natural language processing for IFORs:
Comprehension and generation in the air combat
domain. In: Proceedings of the fifth conference on
computer generated forces and behavioral
representation.

Newell, A. 1987. Unified theories of cognition: 1987
William James lectures. Available on videocassette
from Harvard Psychology Department.

Newell, A. 1990. Unified theories of cognition.
Cambridge, MA: Harvard University Press.

Rao, A., Lucas, A., Selvestrel, M., & Murray, G. 1994.
Agent-oriented architecture for air combat
simulation. Tech rept. The Australian Artificial
Intelligence Institute. Technical Note 42.

217

Salisbury, ML 1995. Command and Control Simulation
Interface Language (ccsil): Status update. In:
Proceedings of the 12th distributed interactive
simulation workshop. Sponsored by STRICOM and
the Institute for Simulation and Training (1ST) at
the University of Central Florida.

Schwamb, K. B., Koss, F. V., & Keirsey, D. 1994
(May). Working with ModSAF: Interfaces for
programs and users. In: Proceedings of the fourth
conference on computer generated forces and
behavioral representation.

van Lent, M. 1995. Planning and learning in a complex
domain. Tech. rept The University of Michigan,
Department of Electrical Engineering and Computer
Science.

Wray, R. E. 1995. A general framework for meansends
analysis. Tech. repL The University of Michigan,
Department of Electrical Engineering and Computer
Science.

10. Author's Bioeraphy

Paul E. Nielsen is an assistant research scientist
working on the Intelligent Forces Project at the
Artificial Intelligence Laboratory of the University of
Michigan. He received his Ph.D. from the University of
Illinois in 1988. Prior to joining the University of
Michigan he worked at the GE Corporate Research and
Development Center. His research interests include
intelligent agent modeling, qualitative physics, machine
learning, and time constrained reasoning.

218

Autonomous Agent Interactions In Modsaf

David R. Pratt, Gary McAndrews, Robert McGhee
Department of Computer Science

Naval Postgraduate School
Monterey, CA 93943
pratt@cs.nps.navy.mil

1. Abstract

The major problem addressed by this research is the
design and implementation of a command and control
architecture to add realistic company-level missions to
an existing real-time combat-simulation system. The
US Army is using the Modular Semi-Autonomous
Forces (ModSAF) simulator to conduct research in
simulation training (Loral 1993a) (Loral 1993b).
While ModSAF is probably the most capable of the
Semi-Autonomous Force (SAF) systems in existence,
it has the inherit limitation of all such systems. It is pri-
mary a reactive system. The missions, or goals, must
be set by a higher order controller. This controller can
be a computer, Command Forces (CFOR), or a human.
However, in the current implementation of ModSAF
(1.x), there is no provision for the generation of goals,
and hence very little in the way of command and con-
trol.

2. Introduction

Since ModSAF is a large system and the range of ar-
mored tactics is larger still, we had to focus our efforts
into a single company team level task. For this task we
chose the "Occupy an Assembly Area" task. At a high
level this task can be broken down in subtasks as fol-
lows:

The goal of this thesis is to show by proof-of-concept
that we can simulate company level tasks utilizing
ModSAF's asynchronous augmented finite state ma-
chine architecture. The premise is that a finite state
machine abstracted to the company commander level
can spawn and control existing platoon and vehicle
tasks in ModSAF.

The Computer Generated Forces in ModSAF are
termed "Semi-Automated" not autonomous. ModSAF
behaviors at the vehicle and platoon level exhibit fairly
realistic behaviors. However, it is still the responsibil-
ity of the operator to provide the realistic interactions
between platoons when portraying a higher level unit,
like a company or a battalion. One of the design goals
was to show that the finite state machine architecture

could additionally provide mission planning at the
company level, issuing platoon and vehicle instruc-
tions to accomplish a mission. Not only will this ap-
proach provide more realistic behaviors at the compa-
ny level, it will reduce the parametric input responsi-
bilities of the operator, allowing him to control a
greater number of forces.

The addition of a limited degree of terrain reasoning at
the company level, and the ability for units to identify
and create their own road routes are features that Mod-
SAF currently does not offer.

3. Task Organization

The task organization for the company assembly area
mission includes fourteen Ml tanks, and a utility truck
for the First Sergeant. The First Sergeant is given the
responsibilities of the quartering party. The purpose of
adding the First Sergeant's vehicle was to provide a
non-combat type vehicle that performs the reconnais-
sance and route selections for the company assembly
area mission. The Ml tanks of the company continue
their current missions while the First Sergeant per-
forms the initial stages of the assembly area mission.

4. Assembly Area Mission Stages

The first step in the design process was identifying a
sequence of operations describing the assembly area
mission. The sequence of operations used to represent
the company assembly area mission are listed in Fig-
ure 1.

The first step is identifying the search area for the as-
sembly area. The operator provides this information
when the assembly area mission is first assigned. The
First Sergeant (1SG) performs the next stages of the
mission; planning a route to get to the location, and a
terrain reconnaissance of the area. The final stages are
performed by the company; movement to the assembly
area and occupation of their positions. Each of these
actions is discussed in greater detail in the following
paragraphs.

219

Assembly Area (AA) Stages:

•Identification of Assembly Area (AA) Search Location, (opera-
tor)
•Planning the Route to the AA Search Location, (1SG)
•Moving to AA Search Location, (ISO
•Reconnaissance of Search Area, (1SG)
•Designating Unit AA Locations, (1SG)
•Route Planning for Company, (1SG)
•Company Moves to AA, (Company)

Figure 1: Steps for Company Assembly Area

4.1 Identification of Assembly Area Search

Location

One of the design goals requires the unit to conduct the
mission planning for the assembly area task. The para-
metric data supplied by the operator for most ModSAF
tasks specifies an end goal for a unit. The assembly ar-
ea mission is somewhat different in its parametric in-
put. Instead of having the operator provide a point lo-
cation to establish an assembly area, we want a point
location that will determine the center of mass of a

search area. The unit will determine where to establish
the assembly area given the bounding search region.
The size of the search area was selected to be a three
kilometer by three kilometer square area surrounding
the operator's selected center of mass (Figure 2).

4.2 Planning the Route to the Search Location

Many of the ModSAF unit and vehicle tasks ~ like
move, travel, and assault — require the operator to in-
put either a point, a line, or some text that provides the
parametric input for the task. The unit then performs
its task, and often the goal of the task is to move to the
point or line designated by the user. There are current-
ly three alternative route inputs; a point location, a line
route, and a line route that uses road networks. Regard-
less of which object the operator utilizes to designate
the unit route, it is the operator that supplies the route
for the unit.

As part of the design strategy, the assembly area mis-
sion attempts to utilize road networks to conduct unit
movements. Since it was a design goal to reduce the
burden on the operator for providing parametric in-
puts, like providing the routes for a unit, the unit itself

Figure 2: Assembly Area Search Space

220

should plan its own route. Without modification, how-
ever, ModSAF does not provide the functional ability
for a unit to determine its own road route. It is a design
strategy and goal to provide this capability to Mod-
SAF. The utilization of the road networks is discussed
more in Route Planning for the Company.

4.3 Moving to Assembly Area Search Location

Once the First Sergeant identifies a route to the search
area, he conducts a ModSAF Vehicle Move Task to
get to that location. Where the operator normally pro-
vides the parametric inputs for the Vehicle Move task,
assembly area routines select the route and pass this in-
formation to the Vehicle Move task. The company
(minus the 1SG) continues its assigned mission. Once
the 1SG arrives at the search area location, he performs
a reconnaissance of the area.

4.4 Reconnaissance of the Search Area

After the 1SG arrives in the search area, he begins a re-
connaissance. He is looking for areas that provide suf-
ficient space and ideally, both cover and concealment.
For the purposes of this mission, we narrowed the
search criteria to include only tree canopies large
enough to support a company assembly area. The re-
sult of this reconnaissance is either the identification
of a tree canopy large enough to support a company
sized assembly area within the confines of the search
area box, or the center of mass location provided by
the user.

4.5 Designating Unit Assembly Area Locations

In a company assembly area, each platoon is given a
"piece of ground" to occupy within the boundaries of
the assembly area. The platoon positions within the as-
sembly area must provide 360 degree security for the
company. The amount of space allocated to each pla-
toon depends on the overall size of the assembly area.
We can vary the size of our assembly area based on
terrain constraints. The minimum radius for our as-
sembly area was chosen to be thirty meters. The max-
imum, and default assembly area radius, is 250 meters.
By distributing the three platoons (twelve company
vehicles) in thirty degree increments around a 360 de-
gree assembly area, the platoon locations provide all
around security for the company. The platoon occupa-
tion positions are sized in accordance with the mini-
mum radius of the selected assembly area. An example
diagram of an assembly area is shown below in Figure
3. The headquarters vehicles - 7, the First Sergeant,
66, the Company Commander and 65, the Executive
Officer ~ orient their positions facing the enemy direc-

tion. The platoon positions on the perimeter of the as-
sembly area are not changed with respect to the ene-
my's direction.

2nd Pit

IstPlf

Direction
to Enemy

3rd Pit

Figure 3: Occupation Positions for Assembly Area

4.6 Route Planning for the Company

After the 1SG completes his reconnaissance, he has ei-
ther found a suitable tree canopy location for the com-
pany, or establishes the assembly area at the center of
mass location provided by the operator. He then iden-
tifies and selects a road route for the company. The
route will include a start point (SP), a release point
(RP), and the route itself, the three basic control mea-
sures utilized for a military move operation.

When the operator desires to designate a route for a
unit, he uses ModSAF's line editor. A line editor op-
tion is to generate a road route from the operator's in-
put. The operator selects a start point and end point for
the route. ModSAF utilizes an A-star search to identify
a road route that connects the start point and end point,
if one exists. The result of this function is a road route
that gets stored as an object in the PO Database, or a
system error message stating a road route could not be
found. It was proposed that instead of having the oper-
ator use the line editor to specify a unit's route, that the
unit have access to the road route building functions
and build their own road routes.

4.7 Company Movement to the Assembly Area

The company road march is conducted as individual
platoon road marches. The platoon closest to the as-
sembly area moves first, and reports when it has ar-
rived at the start point (SP). The commander, the sec-
ond to move, then begins his movement. The com-
mander in turn reports the SP and the next closest
platoon begins its move. The company road march
continues as determined by the company order of
march. By breaking the company movement into pla-
toon and vehicle moves, the assembly area mission can

221

utilize the existing ModSAF Unit Travel Task ~ a pla-
toon level task.

4.8 Occupation of the Assembly Area

The assembly area mission uses the ModSAF "Occupy
Position" task. Each platoon and headquarters tank is
given a position to occupy within the assembly area.
The assembly area support functions pass the required
parameters to the occupy position task, which includes
a line object representing the position to occupy, and
three target reference points (TRPs), a left TRP, a right
TRP, and an Engagement Area TRP. These TRPs are
used to designate sectors of responsibility for each pla-
toon.

5. Modsaf Vehicle. Unit. And Reactionary

Tasks

In addition to the ModSAF Vehicle Move Task used
by the First Sergeant, and the Unit Travel and Occupy
Position Tasks used by the platoons, several vehicle
level tasks including collision avoidance, path plan-
ning, sensor, turret, gun control, and the unit reaction-
ary task, "Actions on Contact", are used by all of the
vehicles when performing the assembly area mission.

6. Finite State Machine Architecture

The development of a finite state machine that repre-
sents the company mission assembly area was derived
from Figure 1, Assembly Area Stages. The resulting
finite state machine used for this mission is shown in
Figure 4. The reverse path from "Moving_To Recon"

Figure 4: Assembly Area Finite State Machine

back to "Plan_Route_To_Recon" was a design strate-
gy that allows the First Sergeant to plan multiple
routes during his reconnaissance mission. He first
plans a route to get to the assembly search area. He
then plans a route from that location to the closest tree

canopy that fulfills the requirements for the assembly
area location.

7. Assembly Area Library Module

The result of the design for the company assembly area
mission will be an independent ModSAF library mod-
ule, "Uassembly". The design plan was to currently
limit its execution to the specific task organization of
fourteen Ml tanks and a First Sergeant's vehicle. The
assembly area library module uses the same architec-
ture and design as the other unit level tasks currently
implemented in ModSAF.

8. Communication Between Autonomous

Agents

The assembly area mission attempts to capture the bat-
tlefield communication between the platoons, the
Company Commander and the First Sergeant. The
ability to display the intercommunication between
units exists in ModSAF and was used within the as-
sembly area mission.

9. Task Organization

ModSAF offers an Ml tank company as one of its unit
types. The assembly area mission requires adding a
new unit type, "Ml Company w/lSG", which includes
fourteen Ml tanks and a First Sergeant's truck. Adding
this new unit organization requires modifying "eche-
lon.rdr" in the ModSAF Library Module "Libeche-
londb". The "echelon.rdr" file is a ModSAF "reader
file". A reader file is a text based file that allows easy
modification by the developer when changing the pa-
rameters for ModSAF. The Libechelondb library pro-
vides standard military echelon unit organizations,
from section to battalion and higher. A unit organiza-
tion is developed by adding vehicle leaf nodes or other
unit tree nodes to the organization. A tree node is an-
other unit organization previously defined in "eche-
lon.rdr" and is recursively expanded when the unit is
created. The echelondb format for an Ml Armor Pla-
toon is:

(unit_US_Ml_Platoon (
(leaf vehicle_US_Ml "??1")
(leaf vehicle_US_Ml "??2")
(leaf vehicle_US_Ml »??3*)
(leaf vehicle_US_Ml "??4"))).

Using the echelondb format, creating a new unit entry
for "Ml Company w/lSG" is:

(unit_US_Ml_Company (
(leaf vehicle USHUMMV l?7"

222

(leaf vehicle_US_Ml "?66*)
(leaf vehicle_US_Ml *?65")
(tree unit_US_Ml_Platoon »?1 *)
(tree unit_US_Ml_Platoon ~?2 ")
(tree unit_US_Ml_Platoon "?3 "))).

The characteristics for a specific vehicle type are con-
tained in parametric reader files. These files are locat-
ed in the "entities" subdirectory. An example model
parameter file for the US Ml Abrams Tank is con-
tained in Appendix A. Since these files are reader files
they can be tailored by the operator for a specific ap-
plication. The model parameter file for the US HUM-
MWV, the First Sergeant's vehicle, was not included
in version 1.0 of ModSAF, and was therefore added to
the existing set of vehicle model parameter files.

10. Development Of The Finite State Machine

Code

The first step in creating the Unit Assembly Area Mis-
sion was to create the library module directory for the
task. This library was named "libuassembly" and was
included in "/modsaf/common/libsrc". The finite state
machine file for the unit assembly area mission was
named "uassembly_task.fsm" and the task named
"uassembly". After designing the finite state diagram,
we considered which existing ModSAF tasks the as-
sembly area finite state machine would utilize to con-
duct its mission. These ModSAF tasks become sub-
tasks for the uassembly task.

10.1 Vehicle Tasks

The First Sergeant moves on his own to the assembly
area search site. This being a single vehicle move, the
existing ModSAF task Vehicle Move was selected for
inclusion as a subtask. Additionally, the reactive tasks
for "Actions on Contact" were included as a subtask in
the "taskframes.rdr" file for the uassembly task. By in-
cluding the reactive task in the "taskframes.rdr" file,
all entities within the uassembly task have these reac-
tive tasks running concurrently with the assembly area
tasks.

10.2Platoon Level Tasks

Two of the existing ModSAF unit tasks were selected
as subtasks for the assembly area mission. The first
was the Unit Travel task. Each platoon, and both of the
headquarters tanks, use a Unit Travel task to perform
the company roadmarch phase of the mission. When
the units arrive at the assembly area location, they oc-
cupy their respective positions within the assembly ar-
ea. The ModSAF task "Occupy Position" performs

this task sequence. Chapter V describes the occupation
task for the assembly area mission.

lOJModSAF Finite State Machine Protocol

Language

The Assembly Area finite state machine is written in
accordance with the specifications described in the
LibTask Programmer's Guide. 1993. The Program-
mer's Guide sets forth a finite state machine protocol
language which allows the use of the ModSAF Asyn-
chronous Augmented Finite State Machine (AAFSM)
Code Generator. The code generator converts a finite
state machine source file into C code. Thus, a simple
finite state machine protocol language is utilized to de-
scribe the structure of the task. The supporting rou-
tines, written in C, are added by the developer to sup-
port the behaviors of his task.

11. Finite State Machine Support Routines

The finite state machine support routines for a Mod-
SAF task are created by the developer to perform the
desired actions while in a particular state. In the fol-
lowing paragraphs we discuss the support routines
needed to perform the actions for each state of the fi-
nite state machine.

11.1 Plan Route to Recon

The assembly area mission begins in the state
"Plan__Route_To_Recon". The purpose of this state is
to:

• Establish the search space for the assembly
area,

• Create a graphic entry in the unit's overlay,

• Establish a route for the First Sergeant to get to
this location,

• Create the route graphic for the First
Sergeant's overlay, and

• Spawn a ModSAF Vehicle Move Task for the
First Sergeant.

The support functions for this state include:

• "compute_recon_route",

• "create_new_ route_to_objective_com", and

• "create_aa_bound_box".

We transition to the next state, "Moving_To_Recon"
after spawning the First Sergeant's Vehicle Move
(VMOVE) task.

223

One of the fundamentals of developing a ModSAF
task is the ability to relate graphic control measures de-
picted on the terrain map display with a particular unit
or entity. ModSAF maintains a unit overlay for each
entity it simulates. When the operator selects a unit,
the overlay for that unit is displayed on the terrain
map. We wish to add a bounding box graphic in the
company overlay for the assembly area mission. When
the operator selects the assembly area mission, he is
asked to designate a center of mass location for the
search area. This location is stored in a private variable
"private->objective_com" associated with the unit.
The center of mass (COM) for the search space is used
by the function "create_aa_bound_box" to create a
graphical box entry in the company overlay.

Once the data for the line object has been entered, we
must save the line object into the PO Database — the
database ModSAF utilizes to store the necessary infor-
mation about the entities it is simulating. We want to
check to find if their already exists an assembly area
bounding box. If there exists a box, we update its po-
sition. If it does not exist, we create a new object and
store it in the PO Database. We save this line object as
a state variable for the company as "state->assy_area".

That way if we change the location for the assembly
area, we have a state variable we can lookup and mod-
ify.

11.2Moving to the Reconnaissance Site

The purpose of the state "Moving_to_Recon" is to
monitor the progress of the Vehicle Move task
spawned by "PIan_Route_To_Recon". The support
function for this state includes "send_arrival_report".
We transition to the next state, "Conduct_Recon" af-
ter the First Sergeant's Vehicle Move (VMOVE) task
transitions to an "arrived" state.

The Vehicle Move task is an existing ModSAF unit
task and includes several states of its own as shown in
Figure 6. The previous state,
"Plan_Route_To_Recon" spawns the Vehicle Move
task and then switches the state of the assembly area fi-
nite state machine to "Moving_To_Recon". When the
First Sergeant arrives at the search area, the Vehicle
Move task transitions to the "arrived" state.
"Moving_To_Recon" sends an arrival report to the
commander, and transitions to the next state,

Figure 5: Moving to the Reconnaissance Area

224

"ConductJRecon". Figure 5shows the company as-
sembly mission's "Moving_To_Recon" state

Figure 5: State Plan Route to Recon

11.3Conducting the Reconnaissance

The purpose of the state "Conduct_Recon" is to iden-
tify the best location to establish an assembly area
within the confines of the assembly area bounding
box. The support function for this state is
"search_for_tree_canopies". If a tree canopy is found
within the bounding box that is large enough to sup-
port the assembly area, we transition back to
"Moving_To_Recon" and move to the tree canopy.
Otherwise, we did not find a tree canopy and we estab-
lish the assembly area location at the center of mass of
the search area, and transition to the next state
"Establish _AA".

One of the design goals of the assembly area mission
was to add a degree of company level mission plan-
ning. There are currently only a few terrain analysis
functions available in ModSAF. We incorporated a
search of the QUAD Tree database for tree canopy lo-
cations and a very simplistic algorithm that estimates
the center of mass location for the tree canopy. The
goal here was not to perfect the terrain analysis algo-
rithm, but to use it as the means to demonstrate the
ability of a unit to conduct some level of autonomous
mission planning.

Tree canopies are features contained in the Quad Tree
Database of the ModSAF "terrain" library. A tree can-
opy is composed of a set of points that establishes the
perimeter of the canopy. Very simply, we average
these point locations to estimate a center of mass loca-
tion for the canopy. This does not work for concave
canopies. When a canopy extends beyond the bound-
aries of our assembly area bounding box, we do not
consider those points in the center of mass calculation.
The result is a very unsophisticated algorithm that es-

timates the center of mass of tree canopies, providing
a limited terrain analysis ability for tree canopies that
currently does not exist in ModSAF.

11.4Establishing the Assembly Area

The purpose of the state "Establish_AA" is to create
the graphic entries for all of the unit's "Occupy Posi-
tion" tasks. The support function for this state is
"build_assembly_area". Once the positions are creat-
ed, we transition to the next state,
"Plan_Roadmarch".

The function "build_assembly_area" establishes the
occupation positions and target reference points for
each of the platoons and headquarters tanks, and stores
these graphic entries in the respective unit overlay.
These graphics are required for the ModSAF Occupy
Position tasks.

11.5 Planning the Roadmarch to the Assembly Area

The purpose of the state "Plan_Roadmarch" is to es-
tablish a route for the company to get to the AA, and
create the route graphic for the company overlay. The
support function for this state is "build_roadmarch".
After building the route for the company, we transition
to the next state, "Conduct_Roadmarch".

First we discuss adding the functionality to ModSAF
that will allow a unit to develop its own road route.
Then we discuss how we utilize this new functionality
to establish the road routes for the First Sergeant and
for the company.

First, we needed to determine what ModSAF used to
allow the operator to implement a road route. We ana-
lyzed the C code of "edtjine.c" in the "Libeditor" di-
rectory of the ModSAF source library. Building a road
route consists of reading in the operator's mouse loca-
tion as he designates the start point and updating the
road route as the mouse is moved towards the end
point. The parametric inputs are the X and Y locations
of the mouse as the operator is making the route, and
are passed to a function
"rt_allocate_road_route_from_networks" contained in
"rt_roads.c" of the "Libroute" directory. This function
searches the Quad Tree Database and selects the clos-
est road segment for the starting road point, and using
an A-star search, attempts to make a road route that
connects the start point to the current position of the
mouse cursor. The
"rt_allocate_road_route_from_networks" function
takes as input arguments the Quad Tree Database be-
ing used, the segment number of the closest road seg-

225

menCfhe start location, the segment number of the
ending road segment, and the ending location. It then
attempts to create a road route that starts at the start
point, gets on the road at the near segment, travels on
the road to the far segment, and moves to the end point.
The function returns a "ROUTE_LIST" which de-
scribes the road route in terms of the road segments,
the individual points of the road segments used for the
route, and an ordering of these points.

The parameters that we did not currently have to make
a direct call to
"rt_allocate_road_route_from_networks" were the
segment numbers of the near and far road segments.
We found a function "find_nearest_segment" in
"road_routes.c" of the "Libquad" directory. This func-
tion, however, was an internal private function. We
needed the ability to determine the segment numbers
of the nearest road to a given location which this func-
tion provides. We therefore added
"find_nearest_segment" to the header file for
"libquad.h" making it a publicly accessible function.
With these modifications, we could utilize
"rt_allocate_road_route_from_networks" directly. By
providing the unit's current location as the start point,
the desired ending location for the end point, and the
return road segment numbers from calls to
"find_nearest_segment" for both of these points, Mod-
SAF will build a road route for our unit.

In the design strategy, we decided that the road route
should include a start point (SP), a release point (RP),
and the road route itself. The RP was selected to be the
last road point of the road route. The route object was
the "ROUTE LIST' returned by the call to
"rt_allocate_road_route_from_networks". The start
point had to be "massaged" to prevent a problem en-
countered when using ModSAF's Unit Travel task.
When a unit is assigned a route and performs the Unit
Travel task, it first determines the "optimal" starting
point to get on to the route. This "optimization" could
lead a unit to skip the start point, which is not allowed
in a standard military road march. Travelling to the
start point when conducting a military road march is
not an option.

11.6Moving to Assembly Area

The purpose of the state "Conduct_Roadmarch" is to
conduct the company's roadmarch to the assembly ar-
ea and act as an abstracted command finite state ma-
chine. The supporting functions for this state include:
"check_for_SP", "send_sp_report", and
"send_rp_report". We transition to the next state,
"OccupyingJPositions" when all of the units have
completed their Unit Travel tasks.

The assembly area state "Conduct_Roadmarch" not
only controls the movement of the company to the as-
sembly area, but also monitors and assigns the appro-
priate task to each platoon depending on their situa-
tions. It is this part of the assembly area finite state ma-

Figure 1: Allocating a Route From Roads

226

chine that makes it unique from moSt'ModSAF unit
tasks. In a typical ModSAF unit task, we only change
states when the unit performing the task meets the
transition requirements of the task. For instance, if a
unit is given a mission to move to a point and then oc-
cupy a position, that unit must complete its movement
before it can transition into occupying the position. If
we applied this rigidity to the assembly area mission,
the company road march must be completed by the en-
tire company before the first platoon begins its occu-
pation of the assembly area. We could end up with a
company of tanks in a column formation sitting on the
road waiting for the last platoon to finish its road-
march. In an actual roadmarch, the platoons do not
stop at the release point, but begin occupation of the
assembly area as soon as they arrive at the release
point. This is in compliance with (ARMY FM 71-1
1988) which states: "Move vehicles from Release
Point (RP) into assembly area without stopping."
Therefore the "Conduct_Roadmarch" state of the as-
sembly area finite state machine acts as a sequencer for
the subordinate unit's tasks, and abstracts the com-
mand and control of the company — like the control
provided by the Company Commander. It is this com-
mand and control element that we wished to capture in
the assembly area mission.

The roadmarch is actually five separate Unit Travel
tasks ~ one for each platoon, and one for each head-
quarters tank. The order of march for the company is
determined according to the proximity of the platoons
to the assembly area location. The closest platoon be-
comes the lead platoon. The Commander (66 tank) fol-
lows the lead platoon. The next closest platoon is next
in the order of march and is followed by the Executive
Officer (65 tank). The platoon farthest from the assem-
bly area is last in the order of march.

The movement of the individual units is monitored and
controlled by the "Conduct_Roadmarch" state of the
assembly area finite state machine. When the lead pla-
toon arrives at the SP location, it sends a report to the
commander ("send_sp_report") and then the Com-
mander begins his movement. Likewise, when the
Commander reaches the SP, he communicates this to
the company and the next closest platoon begins its
movement. In this way, we maintain adequate spacing
between the units and control their movement along
the company route.

The command level abstraction of the assembly area
mission is most prominently displayed in the transition
between the company beginning its roadmarch and
then occupying the assembly area. The purpose is to

allow the platoons to independently change states
while the company commander monitors their states.
This was a design implementation that we felt provid-
ed an abstracted command and control finite state ma-
chine. In fact, there typically is a time during the as-
sembly area mission when the lead platoon is occupy-
ing the assembly area task, the next platoon is
conducting its roadmarch, and the last platoon is wait-
ing to begin its roadmarch.

11.7Occupying the Assembly Area

The purpose of the state "OccupyingJPositions" is to
monitor the status of the unit Occupy Position tasks
spawned in the previous state,
"Conduct_Roadmarch". The supporting function for
this state is "clean_march_points". We transition to
the next state, "Occupied" when all of the units have
finished their Occupy Position tasks. The
"clean_march_points" function is a utility that re-
moves the graphic entries used to conduct the compa-
ny roadmarch to the assembly area.

11.8Unit Occupied Assembly Area

The purpose of the state "Occupied" is to maintain the
assembly area location until the operator terminates
the mission. This state required no supporting func-
tions and transitions to the "End State" when the op-
erator terminates the mission or selects a different mis-
sion for the unit.

11.9Ending the Assembly Area Mission

The purpose of the state "End" is to remove from the
Persistent Object Database the graphic entries intro-
duced for the occupy position tasks. The support func-
tions for this state are "clean_occupy_pts" and
"delete_graphic_com". The assembly area finite state
machine exits after completing this state.

12. Tasks And Task Frame Management

A company level task cannot be generalized to being
simply a collection of three identical platoon level
tasks running concurrently. As discussed earlier, in the
assembly area mission, the company first conducts a
road march to the assembly area location and then oc-
cupies the location. We do not, however, want the en-
tire company to complete the roadmarch before begin-
ning the occupation of the assembly area. The platoons
are conducting different individual missions that en-
compass the overall company level mission. We need
a mechanism to decide the particular unit task an indi-
vidual platoon should execute. The problem with at-
tempting to generalize a company level mission from

227

a like platoon level mission can best be explained us-
ing a company attack. A platoon on its own conducting
an attack may maneuver and fire towards the enemy.
A company attack, however, is not simply three pla-
toons conducting concurrent attacks on the same ene-
my location. The company commander must analyze
the enemy situation as soon as the lead platoon makes
contact. He may then decide to establish an attack by
fire position for the lead platoon and maneuver the re-
maining two platoons to capitalize on the enemy's
weak side. It is proposed that the command finite state
machine as used by the assembly area mission could
interpret the changing environment (identify an enemy
weakness) and initiate the necessary platoon level ac-
tions to capitalize on this weakness.

13. Assessment Of Assembly Area Mission

13.1 Route Planning

The ability for a unit to determine its own road route
given a starting location and and ending location was
added to ModSAF. We attempted to portray a standard
military road march which includes some basic control
measures. This included (as a minimum) a start point,
a route, and a release point. We discussed having to
work around some of the "features" that ModSAF pro-
vides in its Unit Travel task, like the optimization of
the entrance point to a route that conflicts with having
to cross the start point before using the route. Future
developments in ModSAF may allow the designation
of an absolute starting point for the route, which would
more closely replicate a standard military road move-
ment.

13.2 Abstracted Command Finite State Machine

Architecture

We used a finite state machine architecture that ab-
stracted the command and control of a company level
mission by controlling the independent platoon tasks
which make up this mission. Our implementation of
the finite state machine architecture is different from
most existing ModSAF tasks. Adding real-time mis-
sion planning to a company level mission more closely
resembles the Company Commander's real-time deci-
sion making process occuring on the battlefield. With
more research, the use of a command-level finite state
machine may be shown to be instrumental in control-
ling company level tasks as a collection of indepen-
dent platoon level tasks. The trade off of real-time mis-
sion planning is the potential time delays introduced
into a real time simulation system. However, without a
greater degree of autonomy, the goal of alleviating the

operator "from providing the necessary realism be-
tween platoons and companies will prevent him from
replicating a force much larger than a battalion.

14. Conclusions

The primary purpose of this research was to establish
a proof-of-concept that higher level tasks, specifically
company level tasks and missions, could be developed
and incorporated into ModSAF. The result is a proto-
type company level mission ~ Occupy an Assembly
Area ~ using the finite state machine architecture of
ModSAF 1.0. This mission provides realistic timing
constraints, communication amongst the autonomous
agents, and an abstracted commanding finite state ma-
chine that provides the building blocks for the more
complex company-level missions Attack and Defend.
The limited complexity of the Assembly Area mission
permitted rapid development and testing while utiliz-
ing the finite state machine architecture. The individu-
al behaviors of the autonomous agents could be indi-
vidually analyzed and selectively modified.

In our developed Company Assembly Area mission,
the First Sergeant, operating independendy of the
company, conducted a reconnaissance type mission
with specific parameters — identifying a suitable as-
sembly area location. The Company Commander,
communicating with the First Sergeant, developed a
company road march plan, integrating the individual
platoons' road marches into a company level road
march. The ability to control multiple platoons per-
forming different unit level tasks is demonstrated in
the Assembly Area state "Conduct_Roadmarch". The
ability to control platoon level tasks at an abstracted
company commander level utilizing ModSAF 1.0's
current finite state machine architecture is both possi-
ble and promising.

The analysis of the existing ModSAF architecture, the
development of a new company level mission, and the
testing and evaluation of this mission leads us to draw
the following conclusions:

• ModSAF entities require additional terrain
reasoning algorithms.

• ModSAF entities should perform some degree
of mission planning.

• Company level missions should be designed as
a collection of independent platoon level tasks.

• The current AAFSM architecture of ModSAF
can be utilized to develop realistic company-
level missions.

• An abstracted command-level finite state

228

machine controlling the platoon level finite
state machines is one approach to higher-level
command and control.

15. Acknowledgments

The work described in this paper was funded by STRI-
COM. The work would not have been possible with
out the help of Mr. Joshua Smith and Dr. Andrew Cer-
anowicz, both of LORAL-ADS.

16. References

United States Army, Field Manual 71-1, The Tank
and Mechanized Infantry Battalion Task Force.
Headquarters, Department of the Army, October
1988.

Loral ADS, "ModSAF Software Architecture Design
and Overview Document," 1993.

Loral ADS, "A Modular Solution for Semi-
Automated Forces — ModSAF, An Overview,"
Loral ADS Briefing Slides, 1993.

17. Authors' Biographies

Dr. David R. Pratt, an Assistant Professor in the De-
partment of Computer Science at the Naval Postgrad-
uate School. He is extremely active in the DIS commu-
nity as both a developer and information resource for
systems development and network integration.

Maj. Gary Mac Andrews, USA, earned his Masters in
Computer Science from the Naval Postgraduate
School in September, 1994. A former Armor Compa-
ny Commanding Officer, he is now an Aqusition
Corps Officer.

Dr. Robert B. McGhee is a full Professor in the Depart-
ment of Computer Science of the Naval Postgraduate
School. A Fellow of the IEEE, he lead the Ohio State
Walking Machine project. His current interests include
dynamics and autonomous entity interaction.

229

Session 5b: Route Planning I
Campbell, SAIC

Karr, UCF/IST
Hoff, Hughes Research Laboratories

Route Planning in CCTT

Chuck Campbell, Richard Hull, Eric Root, Lance Jackson
Science Applications International Corporation

3045 Technology Parkway
Orlando, FL 32826

{Campbell hull eroot jackson}Qgreatwall.cctt.com
(407) 282-6700

1. Abstract

One aspect of Computer Generated Forces
(CGF) terrain reasoning is the ability to get
simulated entities from one location to another.
The first step in this task usually involves some
level of planning to generate a path between
locations for the entity to follow. In the Close
Combat Tactical Trainer (CCTT) CGF system,
this planning is accomplished through three
major terrain reasoning areas: routing, obsta-
cle avoidance, and dynamic entity avoidance.
Routing provides a high-level path, or route,
around large terrain features such as rivers,
forests, and urban areas as well as routes which
follow road networks that criss-cross the terrain
database. Obstacle avoidance, on the other
hand, provides a low-level path through the
database, avoiding all features considered as
obstacles, including individual trees and build-
ings. Dynamic entity avoidance predicts poten-
tial collisions between entities and takes appro-
priate actions to avoid contact. This paper fo-
cuses on the implementation of obstacle avoid-
ance and road route planning for the CCTT
CGF.

2. Introduction

The CCTT system is the first trainer in the
Combined Arms Tactical Trainer (CATT) fam-
ily of training systems. CCTT is a real-
time networked simulation environment de-
signed to provide training of specific military
skills at a fraction of the cost of an equiv-
alent field exercise. CCTT is composed of

several different types of systems including
Manned Modules, Workstations, and Semi-
Automated Forces (SAF). Manned Modules
consist of crew cabin simulators, including
MlAls, M2A2s, HMMWVs, and dismounted
infantry (DI). Workstations provide simulation
capabilities for the battalion support staff, Af-
ter Action Review, and simulation support.
SAF provides additional friendly (BLUFOR)
and enemy (OPFOR) entities by emulation of
vehicle dynamics and crew behaviors. Each
of these systems communicates using the Dis-
tributed Interactive Simulation (DIS) network
protocol. A comprehensive discussion of ter-
rain reasoning within CCTT can be found in
(Watkins 1995).

This paper describes the work that has been
done in CCTT to support road routing and low
level obstacle avoidance. Discussion of cross-
country route planning will not be presented
here. Section 3 discusses what is involved in
road routing and how it is used by the user.
Section 4 describes the iterative-deepening A*
algorithm used to find optimal road routes.
Preliminary results for the road route planner
are given in Section 5. Section 6 discusses ob-
stacle and dynamic entity avoidance. Section
7 describes relocatable objects that affect ob-
stacle avoidance and road routing. Section 8
presents related work. Section 9 gives the au-
thors' plans for future work.

3. Routing Across Networks

A functional requirement of CCTT is the

233

ability to route vehicles over road networks
that criss-cross the simulation database. This
presents several challenges to the terrain rea-
soning system due to the complexity of the
problem of finding optimal routes within a
database with the size and feature density of
the CCTT databases. An additional consid-
eration is dynamic features, such as destruc-
tible bridges and log cribs, which can change
the road network at run-time. CCTT's ap-
proach combines specialized representations of
the road network with an efficient algorithm
that manipulates them. These representations
are computed in an a priori compilation phase,
which is performed off-line thereby reducing the
level of computational effort required during
the simulation. Moreover, road routing is im-
plemented as a separate process which allows
the caller to perform other computations while
the route is being generated.

3.1 Usage

The road routing functionality provided in
CCTT is relatively simple to use. The user sup-
plies a proposed route that consists of a series of
points that the user wants fully expanded into
a road route, and a road snapping threshold.
The road snapping threshold is used to deter-
mine how far from an actual road the point can
be before it is considered to be non-road point.
The user simply sends a request to the routing
process and then periodically checks to see if
the plan has finished. Using a separate process
allows the user to continue with other tasks and
allows the routing process to take as much time
as necessary to completely expand the route.
Once the routing process has finished expand-
ing the route, it returns the completed route
to the user with any error conditions set. Cur-
rently several things can go wrong when gener-
ating a road route:

• A point specified by the user is off the
database.

• Point(s) marked as road points with no
corresponding road in the database within
the road snapping threshold.

• During the route expansion a point the
user specified may be unreachable. That
is, the road network may be unconnected
or obstacles may prevent reaching the goal.

When an error occurs during route expansion
the partially completed route is returned to the
user along with the bad point. The user may
then fix the problem and resubmit the route for
further expansion.

4. IDA*

The algorithm used to search the road network,
and which produces optimal road routes is a
variation of the A* (Hart et al. 1968) algo-
rithm known as iterative-deepening A* (IDA*)
(Korf 1985). A* is a popular search algorithm
that improves upon branch-and-bound tech-
niques by incorporating dynamic programming
and an admissible estimator of the remaining
distance to the goal location called a heuris-
tic estimate. A heuristic estimate is considered
admissible if it is guaranteed to always under-
estimate the remaining distance. Straight-line
distance is commonly used as such a heuristic,
because no route can ever be shorter than the
straight-line distance. One disadvantage of the
A* algorithm is its need to save all partial paths
to the goal for "possible" expansion. These par-
tial paths are usually stored in a sorted queue,
whose size can become extremely large. This
may severely impact run-time memory require-
ments resulting in memory allocation failures.

IDA* is a variation of A* that resolves much of
the run-time memory problem by eliminating
the need to maintain the sorted queue of partial
paths. Instead, this algorithm searches a tree
or graph by repeatedly performing depth-first
searches to greater and greater depths, hence
the name "iterative-deepening". This might
seem to contradict one's intuition in that the
algorithm examines most of the same nodes
over and over again. However, it is has been
proven that as the branching factor of the tree
increases, the performance of IDA* becomes

234

asymptotically close to the performance of A*
(Korf 1985). Therefore, the performance of
IDA* is not as bad as it may appear to be.

4.1 Space vs. Time Tradeoff

Given that IDA* is never faster than A*, when
should it be used? The answer to this question
depends on whether the critical aspect one is
interested in is space or time. In this particular
application, where the planning of road routes
is primarily performed pre-exercise, the time
factor is not as important as run-time mem-
ory requirements. If on the other hand, time
is crucial and memory is not a concern, then
A* should be used. An interesting comparison
of the space vs. time tradeoff between A* and
IDA* for cross country route planning can be
found in (Karr et al. 1995).

4.2 Trees and Graphs

The topology of the search space is another is-
sue that one must be prepared to face. Road
networks represent a graph topology and must
be handled differently from tree topologies. For
example, during a depth-first search the al-
gorithm should not visit a given intersection
more than once, i.e., care must be taken to
prevent cycles. This is accomplished by main-
taining a "visited" boolean for each intersec-
tion which is made true when the intersection
is expanded, and is reset to false after the re-
cursive call has terminated. Additionally, when
using IDA* on graphs it is very important to
remember the cost of the least cost path from
the source to each intersection that has been
visited. This dynamic programming principle
saves a tremendous amount of time because
many paths of the depth-first search can be
pruned.

4.3 Algorithm

CCTT's implementation of IDA* for road rout-
ing is embodied in an ADA procedure called

Find-Route. Find-Route takes two intersec-
tions, the source and the goal, and returns a
list of road segments defining the route if one
exists. The algorithm is shown in Figure 1.

The depth-first search routine recursively tra-
verses the graph by expanding all paths from
the source until the cost of that particular path
is greater than the current threshold cost. If
the goal is reached along a particular path, the
cost of the path is compared against that of
any other solutions that might have been found
and if the cost of the newly found path is less
than the best so far, we save the new path
and discard the previous best. The procedure
Depth-First is shown in Figure 2.

5. Road Routing Observations

Preliminary investigations have shown that the
iterative-deepening A* algorithm is working
well during pre-exercise road route planning.
The road routing process generates distance-
optimal routes in an "acceptable " amount of
time. Because integration activities are under
way, however, we cannot conduct system level
timing tests of the road routing capability at
this time.

Figure 3 shows a sample of the road networks
found in a preliminary release of the CCTT
"Primaryl" terrain database. The area shown
represents approximately 2 square kilometers.
The dark lines are the linear features which rep-
resent the road network.

Figure 4 shows an example of a route across
the network. Although the route appears to be
sub-optimal, it is the shortest route which visits
all of the route points selected by the user.

6. Obstacle Avoidance

CCTT CGF obstacle avoidance performs short
term routing around individual terrain fea-
tures such as trees and buildings. It uses the
long term route information, to be provided by
CCTT SAF's cross country routing, as a guide.

235

Find_Route (source, goal)

1. Initialize Threshold_Cost to the straight-line distance from source to goal.

2. Initialize final path array.

3. While not Goal_Found and Threshold_Cost does not equal Infinite_Value loop

3.1 SetNextJThreshold to Infinite_Value

3.2 Set the initial cost to 0.

3.3 Perform depth-first search from source until the cost of all paths exceed

Threshold_Cost.

3.4 If not Goal_Found then Threshold_Cost = Next_Threshold.

end loop

4.0 If ThresholdjCost = Infinite_Value then Success = False,
else Return the list of segments defining the route.

Figure 1: Find jtoute Algorithm

Figure 3: Primaryl Road Network Figure 4: An Example Road Route

The long term route is divided into smaller seg-
ments along which obstacle avoidance is per-
formed. Obstacle avoidance provides a list of
path points which define a clear path through
the obstacles along the short term route.

CCTT CGF short term route planning is ac-

complished through a combination of static and
dynamic obstacle avoidance. The separation
of static and dynamic obstacle avoidance for
CCTT CGF was influenced by several factors:

• A clear path through static obstacles can
be accurately computed. This path will
not need to be altered unless a dynamic

236

Depth_First (root, goal, threshold cost, actual cost)

1. Calculate the heuristic cost of the root intersection as the sum of the actual cost from

the source to the root and the heurstic estimate of the cost from the root to the goal.

2. If the heuristic cost is greater than the threshold cost then

2.1 If the heuristic cost is less than the next threshold then save the heuristic cost

of the root as the new next threshold

Else

2.2 Add the root intersection to the current path.

2.3 If the root = the goal then

2.3.1 If the cost of this path is the cheapest so far then save it

Else

2.3.2 For each intersection connected to root loop:
2.3.2.1 If the segment connecting intersection(i) to root is trafficable, and

intersection(i) has not been visited, and the cost from the source

to the root is the least we've encountered, then
2.3.2.1.1 Calculate the actual cost for intersection(i)
2.3.2.1.2 Mark intersection^) as visited.
2.3.2.1.3 Recursively call Depth_First(intersection(i) , goal, threshold cost, actual cost)

2.3.2.1.4 Mark intersection® as unvisited.

Figure 2: DepthJFirst Algorithm

entity or relocatable object forces a replan.
It is assumed that most potential con-
flicts with dynamic entities can be avoided
through speed changes.

It is assumed that CCTT database feature
densities will often render extrapolations
of entity positions useless after some tens
of meters, due to frequent heading modifi-
cations.

Any attempt at short term route following
must continue to make frequent checks for
dynamic entities in the area, since the be-
havior of a dynamic entity over time can-
not be accurately determined.

Road following will only need static obsta-
cle avoidance when an entity must leave
the road to avoid a collision, which is as-
sumed to be infrequent, while dynamic en-
tity avoidance is constantly queried.

As with most terrain reasoning functions, ob-
stacle avoidance is a computationally expensive
operation. The approach taken by CCTT CGF
is based upon ModSAF's libmovemap routines.

6.1 Static Obstacle Avoidance

The static obstacle avoidance algorithm used
in CCTT CGF is heavily based upon the
method in ModSAF for generating spatial
curves (Smith 1994). This approach generates
Catmull-Rom splines (Foley et al. 1990) to pro-
duce a smooth course through the database.
The control points for the splines are taken
from the vehicle's location and heading, the
long term route points generated by cross coun-
try routing, and from skirt points generated to
avoid static obstacles. A linear approximation
to the splines is computed to derive the points
which make up the obstacle avoidance path.

237

:^f?##*v^<^. WL ^^mpm^s^^m
¥*•%?*$

\i<-; %v<;/;V'

*&

Figure 6: Example short term route path gen-
erated around trees, steep slope areas, and
rivers

Figure 5: Example short term route path gen-
erated around buildings

Preliminary results are shown in Figures 5 and
6.

The CCTT obstacle avoidance algorithm con-
sists of two main units. The first unit exam-
ines the overall route supplied by the long term
cross country router and determines the por-
tion of the route to be currently considered by
obstacle avoidance. Using the moving entity's
position and the route corridor, the relevant
obstacles in the area around the route are ex-
tracted into an obstacle map. The obstacles
in the map are expanded by the width of the
routing entity so that a simple line intersection
can be used to detect collisions.

The second unit creates the initial path from
the entity's location and heading and the long
term route points within the short term plan-
ning horizon. If the end of the route is not
reached before the short term horizon, an addi-
tional point is added at the edge of the obstacle
map to ensure the entity proceeds correctly to
the next set of route points.

Once the initial path is determined, a recursive
procedure checks the current path against the

obstacles in the obstacle map. If an intersec-
tion with an obstacle is found, the routine at-
tempts to go around the obstacle on both sides
by generating skirt points in between the cur-
rent path points. If the obstacle can be skirted,
the routine recursively checks the new path, at-
tempting to skirt the obstacle in the direction
with the shortest skirt path first. If no skirt
paths can be found around an obstacle, a fail-
ure flag is set and the recursive algorithm backs
up and attempts a different path.

Once a path with no obstacle intersections is
found, it is optimized by removing all skirt
points which are no longer important. Skirt
points required to get around an early obsta-
cle are often no longer needed once a later ob-
stacle is skirted. The resulting successful path
is evaluated for complexity, with greater num-
bers of control points and longer paths consid-
ered more complex, and the least complex path
found so far is stored. After a predetermined
number of successful paths are found, the re-
cursion is stopped and the best path found is
returned.

A detailed discussion of the methods used to
expand the obstacles in the map, to compute
the spline coefficients, and to generate the skirt
points around obstacles can be found in (Smith
1994).

238

6.2 Dynamic Entity Avoidance

The dynamic entity avoidance in CCTT CGF
also uses ideas implemented in ModSAF. Dy-
namic entity avoidance must be checked fre-
quently, since the headings and velocities of en-
tities are constantly changing.

The algorithm projects an entity along its
static obstacle path at small time intervals to
some event horizon. Concurrently, the pro-
jected positions of other entities in the area are
calculated, using their velocities and the time
interval. An entity does not consider other en-
tities currently behind him; it is assumed that
the trailing entity will avoid the leading entity.

The bounding boxes of all entities are projected
into the xy plane and are checked for over-
lap with the detecting entity Figure 7. Non-
overlaps are thrown out, and overlaps are fur-
ther investigated using a more rigorous check
to determine if the entities will in fact collide.
When a probable collision is detected, the avail-
able information (the time until collision, entity
relative velocities, etc.) is used to determine
the appropriate action to take.

An interesting problem arises when the courses
of two entities converge but do not cross, or
when entities that are following similar paths
have different speeds. In these situations, col-
lisions can be difficult to anticipate. Entities
traveling in formation are particularly suscep-
tible to these problems; swerving to avoid a tree
or slowing to avoid an entity can result in a col-
lision with another entity in one's own platoon.

Since CCTT requires large numbers of enti-
ties to travel in formation, an efficient solu-
tion had to be found for these situations. Once
the bounding box check described above has
indicated an overlap, then a check is made
to determine if the two entities actually come
close enough to each other to cause a collision.

Figure 7: Detecting possible collisions between
entities by projecting the areas entities cover
during discrete time steps

By describing the motion of both entities with
parametric equations, the time when the enti-
ties come within a given distance of each other
can be determined.

Given two entities with velocities Vi and V2 and
locations L\ and £2, the two dimensional dis-
tance d between them at any given time t is
shown in Figure 8.

By setting the distance to the collision distance
threshold desired, and by scaling the velocity
vectors over the required time frame, a proba-
ble collision can be accurately detected.

7. Relocatable Objects

Relocatable objects are terrain features which
can be dynamically placed into the terrain
database during a simulation. In CCTT, Com-
bat Engineering entities place relocatable ob-
jects to provide mobility, countermobility, and
survivability.

Relocatable objects may be surface obstacles,
changes to terrain geometry, or other traffica-

239

d = y/(Vut - Llt - V2J - i2xy + (Vlyt - Lly - V2yt - L2yy

Squaring both sides and simplifying:

d2 = [<Yu ~ V2x)
2 + (Vly - V2y)

2]t2 + 2[(Vlx - V2x){Lu - L2x) + (Vly - V2y)(Lly - L2y)]t + (Llx

L2l? + (Lly - L2yy

Denning the relative velocity and relative location vectors as:

VTel =V,-V2

Lrel — L\ — L2

We have:
d2 = (Vrei • Vrel)t

2 + 2{Vrel • Lrel)t + (Lrel • Lrel)

Subtracting d2 from both sides and using the quadratic formula:

t = _ -Vr,rLrti±y/(Vr.rLTel^-(Vr.rVrcl)(LrcrLrcl)+(VrCrVrCi)di

Vrel-Vret

Since ||Ke; X Ire,||2 = ||Fre;||
2||Ire/||2 - \\Vrel • Lrei\\2 :

t =
_ -Vr,l-I>rd±Vf'P(Vr«fV,r«l)-l|Vr«|XLr„|P

Vr«.-Vre,

Figure 8: Derivation of equations to determine the time two when two vehicles come within a
certain distance of each other.

bility factors. The list of relocatable objects
used for CCTT includes log crib, abatis, tank
ditch, concertina wire, minefield, armored ve-
hicle launched bridge (AVLB), ribbon bridge,
and vehicle and DI prepared fighting positions.
Each of the relocatable objects can be dam-
aged, destroyed, or breached.

For the most part, relocatable objects can be
treated as any other terrain obstacles to be
avoided. The interesting behavior for obstacle
avoidance is associated with the bridges, mine-
fields, and prepared fighting positions.

cle avoidance must recognize these features as
trafficable and make use of them where appro-
priate.

Minefields present several interesting cases. An
opposing force may not know about an existing
minefield, in which case the minefield is not an
obstacle until its presence is known. When the
presence of a minefield is known, it becomes an
obstacle, unless it is breached. Route planning,
both at the high and low levels, must be aware
of and take advantage of breached lanes in the
minefield when planning trafficable paths.

Most terrain features are either treated as ob-
stacles to be avoided (e.g. buildings) or are
ignored (e.g. roads) with respect to obsta-
cle avoidance. Relocatable bridges, however,
present a special case, in that they are features
to be approached, rather than avoided. Obsta-

Prepared fighting positions, such as hull de-
filades, are generally considered obstacles for
short term routing. However, obstacle avoid-
ance must be able to plan paths into prepared
positions for entities wishing to take cover in
them.

240

Relocatable objects also affect road route plan-
ning. The approach we are currently investigat-
ing is to change the road network at run-time
when relocatables are placed. For example, if a
log crib or abatis were placed across a road seg-
ment, the road network would be modified to
reflect the obstacles affect on trafficability. The
original road segment is split into smaller seg-
ments by creating two intersections that mark
the extents of the obstacle. The road segment
defined by these two intersections is not trafR-
cable, and its associated trafficability flag is set
accordingly. The trafficability of the new road
segments leading up to and away from the ob-
stacle are not affected. This allows vehicles to
be routed right up to the obstacle if necessary.
Moreover, the changes to the road network are
localized and can be made quickly.

8. Related Work

While research in route planning for CGF pur-
poses is relatively new, a great deal of work
has been done in the field of robotics regard-
ing motion planning (Arkin 1989, Brooks 1986,
Chattergy 1985, Thorpe 1984). An excellent
compendium of route planning techniques and
their associated complexities can be found in
(Mitchell 1988). A detailed discussion of "least-
risk" watchman routes, which is extremely rel-
evant to CGF researchers interested in develop-
ing systems capable of generating covered and
concealed routes can be found in (Gewali et
al. 1989). The artificial intelligence commu-
nity has also given attention to this problem
(Kuipers and Levitt 1988, Levitt and Lawton
1990, McDermott and Davis 1984). A recent,
knowledge-based approach to the problem of
finding "reasonable" road routes is discussed in
(Goel et al. 1991). Our approach to planning
road routes and performing obstacle avoidance
was directly influenced by the techniques in-
cluded in ModSAF (Smith 1993). However,
there are several noticeable differences. IDA*
was used instead of A* for planning road routes
and route planning is implemented as a sepa-
rate process.

9. Future Work

This paper describes the status of the CCTT
routing capability as of March 1995. Future
work will focus on the implementation of cross
country routing and enhancing current routing
capability.

For cross country routing, two approaches are
currently being investigated. One is the al-
gorithm used by ModSAF. The other is an
abstraction of the obstacle avoidance routines
which will operate on larger features such as
forests and urban areas, ignoring individual
trees and buildings.

Several enhancements to existing routing func-
tionality are being considered. CCTT rout-
ing is currently performed using only short-
est distance as a heuristic. More sophisti-
cated heuristics for choosing routes are being
explored, such as modifying segment weights by
factoring in terrain slope and soil type (includ-
ing "wet" soils). Obstacle avoidance and route
planning enhancements may include a more so-
phisticated path optimizing (smoothing) algo-
rithm, reuse of obstacle maps for multiple en-
tities within a platoon, and support for multi-
level terrain and relocatable objects.

10. References

Arkin, R. Navigational Path Planning for
a Vision-Based Mobile Robot. Robotica,
7:49-63, 1989.

Brooks, R. A Robust Layered Control System
for a Mobile Robot. IEEE J. of Robotics
and Automation, RA-2(l):14-23, 1986.

Chattergy, R. Some Heuristics for the Nav-
igation of a Robot. Int. J. of Robotics
Research, 4(l):59-66,1985.

Foley, James D., van Dam, Andreas, Feiner,
Steven K., and Hughes, John F. Computer
Graphics Principles and Practice, Second
Edition. Addison-Wesley Publishing Com-
pany, Inc., 1990.

241

Gewali, L., Meng, A., Mitchell, J.S.B., and
Ntafos, S. Path Planning in 0/l/infi-
nite Weighted Regions with Applications.
Technical Report 831, Cornell University,
College of Engineering, 1989.

Goel, Ashok K., Callantine, Todd J., Shankar,
Murali, and Chandrasekaran, B. Repre-
sentation, Organization, and Use of To-
pographic Models of Physical Spaces for
Route Planning. In Proceedings of the 7th
Conference on Artificial Intelligence Ap-
plications CAIA-92, pages 308-314. IEEE,
1991.

Hart, Peter E., Nilsson, Nils J., and Raphael,
Bertram. A formal basis for the heuris-
tic determination of minimum cost paths.
IEEE Transactions on Systems, Science
and Cybernetics, 4(2), 1968.

Karr, Clark R., Rajput, Sumeet, and Bren-
eman, Larry. Comparison of A* and It-
erative Deepening A* to Graph Search.
In Proceedings of the 5th Conference on
Computer Generated Forces and Behav-
ioral Representation. Institute for Simu-
lation and Training, 1995.

Korf, Richard E. Iterative-Deepening-A*: An
Optimal Admissible Tree Search. In
IJCAI-85. Morgan Kaufmann, 1985.

Kuipers, B. and Levitt, T. Navigation and
Mapping in Large-Scale Space. AI Mag-
azine, 9(2):25-43, 1988.

Levitt, T. and Lawton, D. Qualitative Navi-
gation for Mobile Robots. Artificial Intel-
ligence, 39, 1990.

McDermott, Drew and Davis, Ernest. Plan-
ning Routes through Uncertain Territory.
Artificial Intelligence, 22:107-156, 1984.

Mitchell, J.S.B. An Algorithmic Approach to
Some Problems in Terrain Navigation. Ar-
tificial Intelligence, 37:171-201, 1988.

Smith, Joshua E. ModSAF programmer's
guide. Technical report, Loral Advanced

Distributed Simulation, Cambridge, Mas-
sachusetts, 1993.

Smith, Joshua E. Near-term movement con-
trol in ModSAF. In Proceedings of the 4th
Conference on Computer Generated Forces
and Behavioral Representation. Institute
for Simulation and Training, 1994.

Thorpe, C. Path Relaxation: Path Planning
for a Mobile Robot. Technical Report
CMU-RI-TR-84-5, CMU Robotics Insti-
tute, 1984.

Watkins, Jon. Terrain Capabilities in CCTT.
In Proceedings of the 5th Conference on
Computer Generated Forces and Behav-
ioral Representation. Institute for Simu-
lation and Training, 1995.

11. Biographies

Chuck Campbell is a Software Engineer on the
CCTT project at SAIC in Orlando, Florida. He
has earned a M.S. in Computer Science from
the University of Central Florida and a B.S.
in Computer Science from Indiana University.
Mr. Campbell has over four years' experience
developing Computer Generated Forces soft-
ware. His interests include simulation, graph-
ics, and computational geometry.

Richard Hull is a Software Engineer on the
CCTT project at SAIC. He is also a PhD stu-
dent at the University of Central Florida, where
he is working in the areas of Natural Language
Understanding and Knowledge Acquisition. He
has four years of experience implementing var-
ious components of CGF systems. His related
interests include the application of artificial in-
telligence techniques to CGF problems, high-
level planning, and knowledge representation.

Eric Root is a Software Engineer on the CCTT
project at SAIC. He has worked in the simula-
tion and training industry for over two years.
Mr. Root has earned a B.S. in Computer Sci-
ence and Mathematics from Missouri Western
State College; he is currently an M.S. student

242

in Computer Science at the University of Cen-
tral Florida.

Lance Jackson is currently a student at the Uni-
versity of Central Florida working towards a
B.S. in Computer Science. His research inter-
ests are simulation and computational geome-
try.

243

Dynamic Obstacle Avoidance for Computer Generated Forces

Clark R. Karr, Michael A. Craft, and Jaime E. Cisneros
Institute for Simulation and Training

3280 Progress Drive, Orlando, Florida 32826
ckarr@ist.ucf.edu

1. ABSTRACT

Techniques to allow simulated entities to avoid static
terrain, such as trees, buildings, rivers, etc., have been
in use in Distributed Interactive Simulation (DIS)
environments for many years. Avoidance of objects
in motion, "dynamic obstacles", is a complicated
issue. Although simple dynamic obstacle collision
avoidance has been implemented, the resulting
behavior is usually less than realistic. While complex
algorithms for dynamic obstacle collision avoidance
are computationally expensive. The paper presents a
novel approach that allows simulated DIS entities to
make reasonably intelligent and realistic maneuvers
to avoid dynamic (and static) objects without
excessive computational cost. This Dynamic Obstacle
Avoidance (DOA) Model combines two disparate
motion planning approaches: potential fields and grid
based route planning.

2. INTRODUCTION

2.1 General Path Planning Approaches

Motion planning with particular emphasis on robot
path planning and robot manipulator path planning
has seen considerable work (Hwang et. al. 1992).
There are four broad categories of path planning
approaches: free/blocked space analysis, vertex
graphs analysis, potential fields, and grid (regular
tesselation) based algorithms (Thorpe 1984). Each
approach has strengths and weaknesses.

2.1.1 Free/Blocked Space Analysis
In a free space approach, only the space not blocked
or occupied by obstacles is represented and planning
occurs within this space. For example, using Voronoi
diagrams (Roos and Noltemeier 1984) to represent
the center of movement corridors is an efficient free
space approach. However. Voronoi diagrams and
other free space approaches have some deficiencies.
First, they tend to generate unrealistic paths. Paths
derived from Voronoi diagrams follow the center of
corridors while paths derived from visibility graphs
(Mitchell 1988) clip the edges of obstacles. Second,
the width and trafficability of corridors are typically

ignored. Third, distance is generally the only factor
considered in choosing the optimal path.

In contrast, near-term maneuver control in ModSAF
is a blocked space analysis using analytic geometry
and AI search (Smith, 1994). Obstacles are projected
in time and routes are found outside the obstacles by
curve fitting through spline control point adjustment.
The route finding algorithm is reapplied throughout
movement to recalculate and refine the current route
segment. The speed, acceleration, and turn rates are
determined for the entire route segment. Although
the computational expense of this approach is
controlled by scheduling planning events as
infrequently as possible, this approach is
computationally wasteful in that carefully crafted
routes are discarded and recalculated in exactly those
situations where dynamic obstacle avoidance is
needed most.

2.1.2 Vertex Graph Analysis
In the vertex graph approach, only the endpoints
(vertices) of possible path segments are represented
(Mitchell 1988). This approach has three difficulties.
First, i is suitable only for spaces that have a
sufficient density of obstacles; determining the
vertices in "open" terrain is difficult. Representing
only path vertices creates two other difficulties.
Second, trafficability over the path segments is not
represented; routes segments between arbitrary
vertices are typically "open" or "blocked". Third,
factors other than distance can not be included in
evaluating possible routes. In the military simulation
domain, concealment and cover are important factors
in route planning.

2.1.3 Potential Fields
In the potential field approach, the goal (destination)
is represented as an "attractor", obstacles are
represented by "repellors", and the vehicle is pulled
toward the goal while being repelled from the
obstacles (NASA 1991). There are two difficulties
with the potential field approach. First, the vehicles
can be attracted into box canyons from which they
can not escape (NASA 1991). Second, some
elements of the terrain may simultaneously attract and
repel. For example, an obstacle to movement, a

245

repellor, may create an area of concealment. A
vehicle should be attracted to the obstacle for
concealment while being repelled from the obstacle
creating the "visibility shadow".

2.1.4 Regular Grids
In the regular grid approach, a grid overlays the
terrain, terrain features are abstracted into the grid,
and the grid rather than the terrain is analyzed. Each
grid cell is typically marked as "open" or "blocked".
Quadtrees are an example of the regular grid
approach (Mitchell 1988). This approach simplifies
the analysis but has two disadvantages. First,
"jagged" paths are produced because movement out
of a grid cell is restricted its "n" neighbors (typically
four or eight for square grids and six for hexagonal
grids). Second, the grid granularity (size of the grid
cells) determines the smallest "opening" between
obstacles that can be identified. When the granularity
is too large, small openings in obstacles (e.g. bridges
over rivers) are lost. Increasing the grid granularity
to capture the small openings increases the
computational expense of the analysis.

3. THE DOA MODEL

The DOA Model combines the potential field and
regular grid approaches into a single mechanism for
avoiding moving and static obstacles during
movement along a predetermined route. The Neural
Net paradigm (Glasius et. al. 1994 and Hertz et. al.
1992), was the genesis for this work, although the
traditional Al hill climbing is another excellent
metaphor (Charniak and McDermott 1987).

A "small" rectangular grid overlays the vehicle and
the area to its front and sides. The cells in the grid
fall into several classes:

1. barrier: a static obstacle the vehicle cannot
cross and which does not change position,
such as a river,

2. target: represents the position the vehicle
wants to reach (potentially interpolated from
the next route point),

3. vehicle: represents the position of the
vehicle doing the routing,

4. obstacle: represents the positions and
projected positions of moving objects, and

5. open: all other cells.

B

B

B

T

V 0

0

For example:

ABC

1

2

3

4

5

6

7

8

Figure 1 : DOA Grid.

In this example, the vehicle has no barriers (B)
between it and its target, but a moving obstacle (O) is,
at least temporarily, blocking a line from the vehicle
(V) to the target (T).

3.1 Application of the DOA Grids

This work was performed in the Institute for
Simulation (1ST) Computer Generated Forces (CGF)
Testbed (Smith 199?). When a CGF vehicle is to
route to a destination, a long term planner selects a
collection of intermediate points (route points) to be
used in traveling to the destination. The long term
planner analyses only static terrain features. To avoid
moving objects, the DOA logic is applied periodically
during route transversal. The frequency of DOA
analysis is determined from the vehicle's speed such
that the vehicle will move approximately 1 cell before
the next DOA analysis The grid is laid out so that the
vehicle is on an edge and the target, or an interpolated
target, falls on the opposite edge (see Figure 4).

3.2 Interpretations of the DOA Grid

The grid can be viewed as a network of cell
connections. For example, consider a subset of the
full graph showing a path from the vehicle in Figure 1
to its target destination:

246

3D 4D

2E 3E I
4F

4E

Figure 2 : Path as Tree Transversal.

It is the directed graph view that triggered the 1ST
notion of looking for parallels between this problem
and the neural net and potential field approaches.
Traditionally, such a graph would be used to reduce
the problem to that of a search avoiding "danger
areas" (Cortes-Rello and Golshani 1990). However,
the search metaphor inevitably leads one to treat grid
cells as open (passable) or closed (blocked) (Mitchell
1988); something more subtle is needed. While cell
4D is not blocked, its proximity to a moving obstacle
should make 4D less attractive than 3D (hence the
choice of 3D rather than 4D in Figure 1). It is not
obvious how to take such things into account when
viewing this as a simple search problem.

3.2.1 The Neural Net Model

If we view the cells as elements in a Hopfield neural
net (Hertz 1992), the cells (particularly 3D and 4D in
the example at hand) should be influenced by their
adjoining cells. In neural net theory, the "energy" of
a cell is calculated in two steps. First, the
contributions of neighboring cells are summed:

hj = V Wijhi

Where hj represents the energy of a cell j, Wij
represents the "connection weight" from cell i to cell
j, and h, represents the energy of cell i. The second
step involves "clamping" h; within a 0/1 or ±1 range
with an "activation" function, g(h). Neural net theory
provides two frequently used activation functions: a
sigmoid function and a hyperbolic function. However,
Glasius (1994) suggests that a linear activation
function, g(x) = Kx, is adequate for propagating the
obstacle values within the net (where K is a constant
in the range [0, 1.25)). In this research, the linear
activation function was used and the range expanded

to [0,10,000). Understandably, large K values tended
to magnify the effects of obstacles.

The DOA Grid can be viewed as a neural net with
connection weights held at 1. Thus, only cell values
are manipulated.

3.2.2 The Potential Field Model

In the DOA Model, the grid and its obstacles are
manipulated via the potential field metaphor. The
DOA algorithm assigns the target cell a negative
(attractive) potential, the barrier cells potentials of 0,
and the obstacles cells positive (repulsive) potentials.
Neural Net mechanics propagate the potentials
throughout the grid. Thus, a cell's value represents
the combined attractive and the repulsive potentials
of the target, barriers, and obstacles. For simplicity,
one can view these values as either elevations or
temperatures. If viewed as elevations, the vehicle is
seeking the lowest point not unlike a marble rolling
downhill. If viewed as temperatures on a uniform
sheet (the grid), the vehicle is trying to negotiate the
sheet to reach the coolest point.

As stated, the problem still appears to be a simple
search: some points are forbidden, there is a start and
a finish location. However, if we view the sheet as
heat conducting, and the obstacles as points where
heat is being applied (perhaps with a soldering gun)
and the target as a point being cooled, it becomes
clear how one cell can influence those around it. The
key now is to let time pass so the effects of the
heating and cooling can spread. After some time we
might have a new situation such as:

B D

B

B

B

T

V O

O

Figure 3 : Heated DOA Grid.

247

The shaded squares indicate an elevated temperature
because the obstacles have heated the cells next to
them. Eventually, those cells could warm those next
to them, and so on. Some cells (such as 5C) are
adjacent to 2 obstacle cells and so are heated from
two sources, others, such as 4E are heated on one side
and cooled on the other. Rather than attempt to apply
any realistic temperature model, discrete time steps
are taken and at each step a cell's new temperature is
a weighted average of its own temperature and the
temperature of the surrounding (or, if viewed as a
graph, the connected) cells' temperatures. At each
iteration, a new set of cells are affected by obstacle
cells and cells which had already been adjusted are
re-adjusted.

If we view the DOA Grid through the elevation
metaphor, the initial grid is flat but for some plateaus
(obstacles) and a pit (the target). The smoothing
process causes the ground (cells) around the poles
and pits to erupt or sink. Continued iterations cause
the grid to approach terrain sloping smoothly from
the vehicle toward the goal and around the "hills"
surrounding the obstacles and barriers. The path to
be taken avoids high spots and runs down to the low
areas.

The resulting grid captures a great deal of information
and is the basis for the algorithms developed. A cell
containing an obstacle effects surrounding cells and
the resulting gradient is an imprecise measure of the
probability the vehicle will move there. A gradient
based search would now select 3D rather than 4D. It
is quite easy now for people to express opinions with
a glance at the grid. The path already described does
not go too much out of the way but avoids 1 "hot"
square. A path starting out due South East could stay
on cool squares for the entire trip, albeit by taking a
longer trip.

A central premise of this work is that a grid can be
constructed, smoothed (which means carrying out
several iterations to allow the potentials to spread),
and an algorithm to select velocity applied very
rapidly.

The grid approach is prone to all of the classic hill
climbing problems. Our view is "upside down", we
can get trapped in local minimum rather than a local
maximum; in any case, local extremes are a problem
(Charniak and McDermott, 1987). To some extent,
these problems are mitigated by the fact that there is
only one low point at the outset; if a cell is depressed,
there must be a clear path from that cell to the target
because it was influenced by the target. In general, a

lower point is either further from obstacles or closer
to the target.

3.3 Long Range, Short Range, and Immediate
Planning

Planning a complete route is a long range process.
What direction to travel for the next few seconds is
dependent on the long term goal and the local
conditions. Given arbitrary computation time, long
term planning can be used for DOA problems by
treating the moving obstacles as fixed for the purpose
of computation, and re-computing frequently with
updated obstacle positions. Unfortunately, long term
planning probably requires more effort than can be
expended for rapid speed and course adjustments. In
contrast, considering only the immediate vicinity
(immmediate planning) can avoid collisions by
making "snap decisions" on what to do next without
full analysis of the situation (in particular, without
guaranteeing that the destination can be reached from
the new position).

3.3.1 Short Range Planning
The A* search algorithm (Winston 1992), is a
efficient long range search algorithm. In the DOA
Model, A* treats the DOA grid as a terrain map
where, essentially, the distance traveled is minimized
(taking the elevated areas into account by charging
extra distance for crossing elevated areas). Because
the DOA grid is small and provides only local
information, the route found by A* is not a long
range route to a destination or intermediate route
point. Rather it is a short range route around and
through the local obstacles.

3.3.2 Immediate (Next Step) Planning Algorithms
The other algorithms tested are of the immediate
planning type (Karr, 1995). Only the cells adjacent to
the vehicle are considered in making course and
speed adjustments. The danger to such an approach,
of course, is that the vehicle could become trapped or
cycle. These concerns are greatly mitigated by the
way the method is applied. First, each cell's value
reflects the combined potentials within the entire
DOA grid. Second, a clear path is known to exist (at
least the first time a grid is built). Third, obstacles
will eventually move out of the way (or be passed).
Fourth, the target position is re-computed (by
interpolation) each time a grid is built.

The immediate planning algorithms first select a
target cell and then select a speed as a function of the
target cell's value. If the value is negative a clear
path to the target is presumed to exist and so the full

248

specified speed is used by the vehicle. If the cell has
a positive value, the vehicle's speed is reduced.

3.4 Avoiding Collisions

To avoid colliding with a moving object, two options
exist: change speed or direction. In real life a speed
change could involve an increase in speed, but for our
work we use only deceleration from the vehicle's
desired speed.

The DOA algorithms look at cells' values both for
direction (smaller values generally indicate more
desirable paths) and speed (smaller values indicate
higher speeds can safely be used). After the direction
is selected, the relative elevation of the cell being
entered is used to select a speed. If the cell's value is
less than zero, a clear path to the target is at hand and
the vehicle moves at full speed. A relatively large
elevation indicates the cell is near obstacles and lower
speeds are selected.

3.5 The DOA Testbed

In order to better understand the DOA Model prior to
implementing it within the 1ST CGF Testbed, a stand
alone DOA Testbed was created. The DOA Testbed
allows experimentation with DOA approaches
without the complexities of terrain navigation and
vehicle dynamics within a DIS environment.
Although the DOA analysis was moved to the 1ST
CGF Testbed so simulated vehicle behavior could be
directly examined, the fundamental work and
algorithm selection was done in this stand alone DOA
Testbed.

4.1 The ManeuverToPoint FSM

Within the CGF Testbed, routes are piecewise linear
curves represented by a list of points. These routes
are generated by a vehicle level route planner which
plans route around static obstacles. Route following
causes entities to maneuver towards the first route
point on its route point list. As each route point is
reached, it is removed from the route point list,
causing the vehicle to move towards the next point on
the route.

Route following is implemented in the
ManeuverToPoint FSM. The states within the
ManeuverToPoint FSM set requested values (such as,
requested speed, requested turn) which are used by
the entity's dynamics process. The ManeuverToPoint
FSM maneuvers the entity so that it passes near each
route point and comes to a stop near the last route
point on the route point list.

4.2 Maneuver control with the DOA Model

The DOA FSM is started for a vehicle when the
vehicle is beginning to move along a route and
terminated when the vehicle reaches its destination.

The DOA FSM performs a "snapshot" analysis of the
local situation, makes recommendations for speed and
heading, and schedules itself to be repeated in the
near future. The scheduled time is proportional to the
speed of the vehicle so that the vehicle moves less
than the width of a grid cell between DOA analyses.

4.3 DOA Algorithm

4. IMPLEMENTING THE DOA MODEL IN
THE 1ST CGF TESTBED

Behavior control within the CGF Testbed is
implemented through a code structuring technique
based on Finite State Machines (FSMs)(Smith, 1992).
An FSM manages task resources and scheduling in a
manner similar to that of a process in a multitasking
operating system. It isolates and protects its state
information much as an object does in an object
oriented programming environment.

An FSM encoding the DOA Model (the DOA FSM)
was added to the CGF Testbed. This FSM schedules
itself based on the speed of the vehicle and awakens
the ManueverToPoint FSM (see below) to make
suggested changes in vehicle speed and direction.

The DOA algorithm is:

1. Fill the DOA grid. Grid cells are marked with
obstacles (moving vehicles), barriers (stationary
vehicles, static objects), the interpolated target
location, the vehicle's location, and information
about the terrain surrounding the vehicle.

2. Propagate cell values within the grid, as
described in Section 3.2.1.

3. Apply the algorithm
configuration file. A
heading are produced.

4. Change the vehicle's speed and heading

specified in
suggested speed

the
and

249

vehicle 1'sDOA
grid

obstacles
representing

vehicle 3

barriers

vehicle l's
DOA target

vehicle 3 vehicle l's vehicle 1 vehicle 2
trail

Figure 4: DOA Grid

a. If the nearest vehicle is less than 20 meters
away, slow to a stop (i.e. halt).

b. If the nearest vehicle is between 20 and 30
meters away and to the right, slow to a stop.

c. If the vehicle has been halted and should
remain halted, backup.

d. If the vehicle has been halted and doesn't need
to remain halted, resume movement.

e. If the suggested speed is less than a threshold,
maneuver along the suggested heading with the
suggested speed.

f. Otherwise, use the suggested speed heading
directly at the target.

Steps 1-3 are straight forward. Step 4 makes the final
maneuvering decisions. Steps 4a-d encode rules for
resolving imminent collision situations:

a) Rule 4a causes the vehicle to begin abrupt
braking if a collision seems imminent.

b) Rule 4b encodes a "yield to the right" rule of
the road.

c) Rule 4c allows the vehicle to backup out of
deadlock situations.

d) Rule 4d permits the vehicle to resume
movement after halting and backing up.

Rules 4e and 4f accept the DOA Model suggestions.
4e causes the vehicle to follow the speed and heading
suggestions while 4f accepts only the speed

In summary, the DOA algorithm causes vehicles to
avoid collisions by:

a) Slowing first (rule 4f),

b) Then slowing and steering away from
obstacles (rule 4e),

c) Then stopping (rules 4a and 4b), and finally
d) Backing up (rule 4c).

Of course only the maneuvering that is necessary to
avoid collisions is performed; e.g. if slowing resolves
the problem then steering, halting, and backing up are
not utilized.

4.4 The DOA grid

Figure 4 depicts three Mis showing only Vehicle l's
DOA grid. The DOA grid is 100m by 200m with
10m by 10m grid cells. This allows Vehicle 1 to do
perform localized DOA 100 meters to its front.
Vehicle 1 is using DOA to maneuver around
obstacles (Vehicle 2 and Vehicle 3) and a barrier (a
river).

Notice that Vehicle 3's projected position creates
obstacles in front of Vehicle 1. The DOA Model has
suggested a target location for Vehicle 1 to the right
so as to avoid Vehicle 3. Vehicle 2 is behind and to
the right of Vehicle 1 and does not influence Vehicle
l's DOA grid.

The DOA grid is a rectangular array of cells, each
contains:

1. Contents of a cell:
• EMPTY: If it contains only open terrain,
• DOAJVEHICLE: If it contains the vehicle

for which the DOA analysis is being
performed,

250

vehicle 1

vehicle 2

vehicle 3

vehicle 3's
destination

vehicle 2's
destination

vehicle l's
destination

route point that
all vehicles must

reach
Figure 5: Competition for the Bridge

• TARGET: If it contains the target location to
which the DOAJVEHICLE is trying to
reach,

• OBSTACLE: If it contains a moving vehicle
or a moving vehicle's projected position, or

• BARRIER: If it contains a stationary object
or barrier; e.g. a river.

2. Value of the cell:
• The propagation of cell values within the

grid if it is an EMPTY cell, or
• The fixed value used for DOAJVEHICLE,

TARGET, OBSTACLE or BARRIER.

The DOA grid is placed in front of the vehicle
oriented along the vehicle's heading. The vehicle is
located at the "rear" center of the DOA grid. This
arrangement allows the vehicle to detect and avoid
obstacles and barriers on its forward path. Passed
obstacles and barriers drop off the vehicle's DOA
grid, and stop influencing its maneuvering.

5. DOA MODEL RESULTS IN THE 1ST CGF
TESTBED

Experiments with the DOA Testbed revealed that
analyzing the DOA grid with the A* algorithm (step 3
in Section 4.3) gave the most stable and realistic
results. Five different scenarios using A* based DOA
analysis were developed to test the DOA Model:

1. X-scenario (two vehicles moving in a 315 and
225 degree collision course),

2. Head On Collision scenario (two vehicles
moving in a head on collision course),

3. Right Angle Collision scenario (two vehicles
moving in a 0 and 270 degree collision
course),

4. Competition for the Bridge scenario (three
vehicles competing to cross a bridge), and

5. Head On Collision On the Bridge scenario
(two vehicles moving in a head on collision
course on a bridge).

The DOA Model produced realistic driving behavior
in all five scenarios. Space limitations allow only one
scenario (4. Competition for the Bridge) to be
discussed in detail.

5.1 Scenario 4: Competition for the Bridge.

In contrast to the other scenarios, this scenario
involves three vehicles moving in the same direction.
The complication is that they must all cross a narrow
bridge. The scenario is arranged so that the vehicles
would arrive at the bridge simultaneously without
DOA
locations and their routes
the bridge

Figure 5 shows the vehicles in their starting
The routes converge on

Figure 6 shows the vehicles at their destinations. For
clarity, the vehicles and their "trails" are shown in the
Figures; the DOA grids are not shown. The density
of trail marks indicates the vehicle's speed; the denser
the trail the slower the vehicle was moving.

In this scenario, the three vehicles were ordered to
proceed at normal speed with DOA active. All
maneuvering and speed changes were the results of
the DOA Model.

251

vehicle 3 at
destination

vehicle 2 at
destination

vehicle 1 at
destination

Figure 6: Competition for the Bridge

The maneuvers made by each vehicle in this
scenario were:

Vehicle 1:
1. Started to move slowly towards its first route

point.
2. Broke loose from the other vehicles influence

and accelerated.
3. Crossed the bridge at normal speed.
4. Reached its destination.

Vehicle 2:
1. Started to move slowly towards its first route

point.
2. Continued to move slowly to avoid Vehicles 1

and 3.
3. Moved a little bit ahead of vehicle 3.
4. Crossed the bridge at normal speed.
5. Approached destination.
6. Reached its destination.

Vehicle 3:
1. Started to move slowly towards its first route

point.
2. Continued to move slowly to avoid Vehicles 2

and 3.
3. Decelerated to avoid Vehicle 2.
4. Steered to its right to avoid Vehicle 2.
5. Crossed the bridge at normal speed.
6. Decelerated after crossing bridge to avoid

Vehicle 2.
7. Accelerated after Vehicle 2 stopped.

In summary, the vehicles, through a combination of
deceleration and minimal steering, passed over the
bridge without collision. This scenario demonstrates
that the DOA Model resolves conflicts at chokepoints
without a complex set of "rules of right-of-way".

6. CONCLUSIONS AND FUTURE WORK

1ST has developed a novel approach to attack the DIS
dynamic obstacle avoidance (DOA) problem by
combining two disparate motion planning
approaches: potential field and regular grid analysis.
This approach is rooted in neural net fundamentals
and the underlying design allows various techniques
to be brought to bear on the avoidance problem. To
allow focused study of the DOA problem, 1ST
developed a stand alone DOA Testbed. On this
foundation, 1ST has implemented and evaluated many
techniques which would seem inapplicable using
other approaches (from a simple "best guess" method
to spline fits). To test the validity and applicability of
these results, 1ST implemented the more successful
DOA algorithms within its CGF Testbed and studied
their results within a DIS environment. In particular,
the A* based DOA Model shows excellent moving
obstacle avoidance while maintaining reasonably
close adherence to previously created piecewise
linear routes.

There are several opportunities for further work in the
area of Dynamic Obstacle Avoidance. Among them
are the real time coordination of route following,
station keeping within formation, and dynamic
obstacle avoidance. This work has focused on
dynamic obstacle avoidance within the context of
following lengthy routes generated by route planners
that ignore dynamic (moving) obstacles. The
coordination of dynamic obstacle avoidance and
station keeping within a formation is an interesting
area for further research.

7. ACKNOWLEDGMENT

This research was sponsored by the US Army
Simulation. Training, and Instrumentation Command
as part of the Intelligent Simulated Forces project,
contract N61339-92-C-0045. That support is
gratefully acknowledged.

8. REFERENCES

Charniak, Eugene and McDermott, Drew (1987).
Introduction to Artificial Intelligence. Addison-
Wesley.

Cortes-Rello, E. and Golshani, F. (1990). "Dynamic
Route Planning", Proceedins of the Fifth Rocky
Mountain Conference on Artificial Intelligence:
Pragmatics in Artificial Intelligence, Las Cruces,
NM, pp 87-92.

Craft, M. A., Cisneros, J. E., and Karr, C. R.
"Dynamic Obstacle Avoidance", Technical Report

252

IST-CR-94-41, Institute for Simulation and
Training, University of Central Florida, 54 pages.

Karr, C. R., Craft, M. A., and Cisneros, J. E. (1995)
"Dynamic Obstacle Avoidance" SPIE
Proceedings CR58, Orlando, Florida, April 17-21
1995.

Glasius, R., Komoda, A., and Gielen, S. (1994).
"Neural Network Dynamics for Path Planning
and Obstacle Avoidance", Neural Networks,
March 1994 (to appear).

Hertz, John, Krogh, Anders, and Palmer, Richard G
(1992). Introduction To The Theory Of Neural
Computation, Addison-Wesley.

Hwang, Y. K. and Ahuja, N. (1992). "Gross Motion
Planning—A Survey", ACM Computing Surveys,
Vol. 24, No. 3,pp.219-291.

Mitchell, J. S. B. (1988). "An Algorithmic Approach
to Some Problems in Terrain Navigation",
Artificial Intelligence, Vol. 37, pp. 171-201.

NASA (1991), "Potential-Field Scheme for
Avoidance of Obstacles by a Robot", NASA Tech
Brief KSC-11491, John F. Kennedy Space Center,
Fl., pp. 1-43.

Roos, T. and Noltemeier, H. (1991). "Dynamic
Voronoi diagrams in Motion Planning",
Proceedings of the International Workshop on
Computational Geometry, Bern Switzerland,
March 1991, pp 228-236.

Smith, J. (1994), "Near-term Movement Control in
ModSAF', Proceeding of the 4th Computer
Generated Forces and Behavioral
Representation Conference, Orlando Florida,
May 4-6 1994, pg. 249-260.

Smith, S. H., Karr, C. R., Petty, M. D., Franceschini
R. W.. and Watkins, J. E. (1992). "The 1ST
Computer Generated Forces Testbed", Technical
Report IST-TR-92-7, Institute for Simulation and
Training, University of Central Florida.

Thorpe, C. E. (1984). "Path Relaxation: Path
Planning for a Mobile Robot", CMU-RI-TR-84-5,
Carnegie-Mellon University The Robotics
Institute Technical Report, April 1984.

Winston, Henry Patrick (1992). Artificial
Intelligence. Third Edition, Addision-Wesley.

Michael A. Craft is a Research Associate working
for the Intelligent Simulated Forces project at the
Institute for Simulation and Training. He has a
Master of Science degree in Mathematics and a
Master of Science in Computer Science. His research
interests are in the areas of Software Engineering,
Real Time Systems, Simulation, and Network
Protocols. Mr. Craft has a broad and diverse
background ranging from Office Automation to
Missile Tracking Systems.

Jaime E. Cisneros is a Research Associate in the
Intelligent Simulated Forces project at the Institute
for Simulation and Training. Mr. Cisneros has a
Masters of Science degree in Computer Science, and
is currently working on a Masters of Electrical
Engineering. His research interests are in the areas of
Natural Language Understanding, Machine Learning,
and Computer Generated Forces.

9. AUTHORS'BIOGRAPHIES

Clark R. Karr is the Computer Generated Forces
Program Manager and the Principal Investigator of
the Intelligent Simulated Forces project at the
Institute for Simulation and Training. Mr. Karr has a
Master of Science degree in Computer Science. His
research interests are in the areas of Artificial
Intelligence and Computer Generated Forces.

253

Path Planning with Terrain Utilization in ModSAF

Bruce Hoff1, Michael D. Howard, and David Y. Tseng
Information Sciences Laboratory

Hughes Research Laboratories
3011 Malibu Canyon Rd., Malibu CA 90265

1. Abstract

The development of infantry operations in Marine
Corps SAF requires the use of small scale terrain
features for cover and concealment. A useful method
of incorporating such features in path planning
involves the assignment of cost factors to each
feature; e.g. low costs assigned to highly protected
terrain, and high costs to exposed areas. The
appropriate representation of the terrain plays an
important role in selecting the best path from a start
point to a destination and in maximizing
computational efficiency. We compare the suitability
of grid-base (GB) and weighted-region (WR) based
terrain representations for planning.

We have applied the weighted-regions approach to the
path planning needs of Marine Corps SAF in
ModSAF [presented in a companion paper by
Howard, et al.]. Because terrain features in ModSAF
are represented as disjoint polygons superimposed on
a uniform background, while the weighted-regions
representation requires a "tiling" of the plane made up
of weighted contiguous polygons, an interface was
required to bridge these two representations. We will
describe this interface and discuss the application of
the resulting system for the path planning needs of
infantry movements. Finally, future research issues
relating to geometrical terrain analysis and path
planning are discussed.

2. Introduction

The development of military simulations has focused
on Semi-Automated Forces (SAF). This reflects the
need for entities which, while not having complete
autonomy, exhibit enough intelligence to fill in the
behavioral details when assigned a task by a human
operator. While much of the Computer Generated
Forces (CGF) effort has focused on armored vehicles
and aircraft, Marine Corps SAF requirements include,
as a major part, the need for SAF entities which are
simulated infantry, or "Individual Combatants" (ICs).
Actual infantry units, when moving under threat of

JTo whom correspondence should be addressed.
Internet: hoff@isl.hrl.hac.com

enemy fire, move both quickly and with maximum
use of cover and concealment. Therefore, an IC-S AF
unit ought to be capable of making a judicious choice
of route, when tasked to move to a specific battlefield
destination, thus freeing the workstation operator
from having to study the terrain and make the route
choice.

For both the Marine Corps LeatherNet project and the
IC-SAF portion of STOW97, we were given the
mission of building IC capabilities into the latest
version of ModSAF (version 1.2, when we began in
mid-1994). One of the basic "behaviors" to be
developed was the ability to move using the cover and
concealment afforded by the surrounding terrain.
ModSAF operates in the context of a terrain database,
which includes an elevation map and terrain features
such as obstacles. ModSAF obstacles include
buildings, lakes, rivers, and tree canopies (the latter
being more of an obstacle to armored vehicles than to
ICs). These features are internally represented as
planar polygons, stored by their vertices, and
annotated with other descriptive information (Loral
1994).

ModSAF has the capability of generating obstacle
free paths: Given a destination for a vehicle situated
in the terrain, ModSAF will generate a path for the
vehicle which skirts the intervening obstacles. In the
"spirit of SAF", an operator can issue a Move task to
a vehicle, which will then find its way to its goal,
avoiding obstacles in a natural way (Loral 1994).
However, ModSAF lacked the representation of
"desirable" terrain regions, i.e. regions, such as
covered-or-concealed corridors, which are somehow
advantageous to a vehicle. It therefore also lacked the
ability to plan paths which use such desirable
regions. (Version 1.4 of ModSAF begins to provide
such a capability.) We needed to model the ability of
human ICs to choose paths that take advantage of
cover and concealment, when moving to a
destination.

The remainder of this paper describes the modeling of
path choice, by turning to a family of terrain feature
representations and their associated path-planning
algorithms. We explain our specific representation
and algorithm selections and the interface between the
chosen path-planning algorithm and the ModSAF

255

system. We show the results of the enhanced system,
and discuss prospects for future research.

3. The "Shortest-Path" Paradigm

The problem of choosing a path through the terrain
which maximizes the use of cover and concealment
can be couched in terms of a "shortest-path" problem
(Mitchell 1988). In the "shortest-path" paradigm,
sections of terrain are weighted with non-negative
costs. The cost for a path is computed by summing
the costs incurred in each section. By assigning low
costs to highly concealed or covered sections of
terrain, and high costs for exposed sections, we
convert the problem of finding the most covered-and-
concealed path to the problem of finding the path that
has the lowest cost (also called the "shortest path"
from the analogy of cost to length). The cost values
may be computed based on a number of algorithms,
including line-of-sight from a known enemy location.
Speed of movement through the terrain may be
factored in, so that exposure in a "slow-go" region is
more costly that exposure in a "go" region.
Impassable regions (obstacles) are assigned very high,
or even infinite, weights so that there is no choice of
start and end points for which the shortest path passes
through such a region. Clearly there is a need for a
wide spectrum of cost values, so that graded levels of
region desirability may be defined.

There is a choice in the representation of the weighted
terrain. In a grid-based (GB) representation, the plane
is divided into small, regular regions, e.g. equal sized
squares. The center of each region is connected to
that of its neighbors with weighted edges. The
allowed paths travel along these connecting edges,
through the regions, and are assigned costs which are
the sum of the weights of the edges traversed. The
path choices are discrete, bound to the shape of the
grid. (This constraint is called digitization bias by
Mitchell, 1988.) There are a finite number of simple
(non-self-intersecting) paths between any two points.

In a weighted regions (WR) representation the plane
is "tessellated" by polygonal subdivisions, each
weighted with a non-negative cost-per-unit-length.
The cost for a path within each section is the distance
the path takes through each section times the weight
assigned to that section. The total cost for the path is
the sum of the costs through each section. The space
of paths is continuous: Any locus of points
contained in the plane, connecting a start and end
point, is valid in this representation, and there are an
infinite number of simple paths connecting any two
points. Intuitively, the WR representation is more
natural yet less computationally tractable than the GB
representation.

An advantage of the GB representation is that it
affords well understood solutions to the problem of
finding the shortest-path, e.g. Dijkstra's algorithm
(Dijkstra 1959) which has worst case running time of
0(n log n) where n is the number of vertices in the
graph. The solution to the WR problem is less well
known, but a polynomial time algorithm for finding
near optimal paths has been developed (Mitchell and
Papadimitriou 1991) and will be discussed in Section
4.

A strong influence on our choice of representation for
IC-SAF is the problem the GB approach has with
capturing small terrain features: The grid spacing
must be as small as the smallest feature to be
captured. A representative terrain database (discussed
in Section 6) has size of about 1.5 km x 1.5 km.
Assume that terrain features important to IC path
planning are on the order of the size of ICs. In
ModSAFs physdb.rdr file, the width of an IC is
specified as 0.5 m. The number of graph vertices
necessary to allow the representation of features of
that magnitude in a uniform rectangular grid is then
(1.5 km / 0.5 m)2, or about 10^ vertices. In
contrast, the WR approach allows us to specify
polygonal regions of any size, so that arbitrarily
small features may be represented by small polygons
at the same time that a few large polygons describe
featureless sections of terrain. The total number of
WR graph vertices is based only on the number of
vertices in the polygonal features, and is independent
of the dimensions of the terrain database. In the
application described in Section 6, the planning
graph, which is based on manually entered terrain
features, has less than 30 vertices. In a planned
extension to the algorithm (discussed in Section 7)
which would generate the features automatically from
ModSAFs microterrain, the graph would still only be
about 4x10^ vertices (and about 10* edges), several
orders of magnitude smaller than the corresponding
grid.

Because of the polygonal feature representation
existing in ModSAF, the lack of digitization bias and
relatively small graph size in WR, and the
availability of a WR-based path planner (presented
below), we chose to adopt the Weighted Regions
approach for IC-SAF path planning. (We note that as
of this writing, the latest version of ModSAF has
gained a grid-based cover-and-concealment route
planner, and acknowledge that such a choice of
representation may be suitable for armored vehicles,
concerned with larger scale terrain features.)

256

4. The Weighted Regions Algorithm

The weighted regions algorithm is quite complex, and
is described in detail by Mitchell and Papadimitriou
(1991). Here we give the flavor of the algorithm, by
describing the "Continuous Dijkstra" approach which
it employs, the local optimality properties of shortest
paths, and the ray tracing algorithm used to produce
paths.

In a grid based representation, the shortest path can be
readily solved by a straightforward technique by
Dijkstra (1959): From the start point, propagate
through the grid step-by-step such that at any step a
collection of grid points is maintained all of which
are the same distance from the start, when connected
to the start by their shortest path. This collection of
grid nodes can be thought of as a "wave-front" of
constant cost. When this front meets the end point,
the search is complete. In the Continuous Dijkstra
paradigm, a continuous analog of this wavefront is
computed. The WR algorithm generates this
wavefront along a discrete set of rays, projected
outward from the start point in all directions. Each
ray obeys local optimality criteria, and so provides a
candidate shortest-path. The idea is to trap the goal
point within a two-dimensional "cone" whose
boundaries are two projected rays.

The local optimality criteria obeyed by the projected
rays, are that 1) rays travel in straight lines through
regions of constant weight (as the regions in the WR
representation), 2) rays refract across boundaries
between regions of different weights according Snell's
Law (which is a commonly known property of
optics), and 3) rays don't strike boundaries at angles
greater than the critical angle defined by Snell's Law.
Local criteria for projecting paths break down when
the path either 1) strikes a region vertex, or 2) strikes
a region edge at a critical angle, refracting along the
edge, and traveling on that edge for a distance
unpredictable from local information. These
breakdowns in the determination of the optimal path
from local criteria cause the algorithm to revert to an
exploration of alternative paths. However, this search
is reduced by the important theoretical finding by
Mitchell and Papadimitriou (1991) that "between any
critical point of exit and the next critical point of
entry, there must be a vertex." This property places a
tight rein on the otherwise arbitrary length of the
critical reflection section of an optimal path.

The algorithm is e-optimal, meaning that the derived
path is no longer than (1+e) times the optimal path
length, for some small, preset e. This tolerance, e,
is related to the closeness of neighboring rays
between which the goal point is trapped: The more

rays utilized, the closer the rays come to the goal
point, and the closer the path is to being optimal.
The use of an e-optimal algorithm, rather than an
optimal algorithm, results in an algorithm which has
polynomial time complexity, rather than exponential
time complexity. The complexity of the algorithm is
0(ES) where E is a number of "critical events" in the
algorithm (occasions when a ray strikes an edge or
vertex), and is at most O(n^) (where n is the number
of vertices). S is the complexity of the processing
done for each event, and is at worst O(n^) also. Thus
the entire algorithm then has worst case complexity
0(n°), but Mitchell and Papadimitriou have found
that E and S may be much smaller in practice, and
thus the algorithm may often run much faster than
this worst case complexity.

The following section discusses the interface of
ModSAF's feature representation to the WR path
planner, after which we present simulation results for
the integrated system.

L Path Planner to ModSAF Interface

In adding terrain utilization to ModSAF's path
planning, the programming task was to interface
ModSAFs feature representation to the path planner's
weighted region representation. ModSAF represents
obstacles (lakes, buildings, etc.) as non-overlapping
polygons lying on a background plane. To be
consistent, we represent desirable terrain regions in
the same way. The concept is illustrated in the first
panel of Figure 1, where the light and dark polygons
are features, lying on a background plane of uniform
cost. The existing obstacle polygons represented in
ModSAF are copied into a data structure called a
"movemap" which is created for each vehicle. We add
to this data structure a list of cover-and-concealment
features, which are read in from a file.

The WR path planner places several requirements on
the format of its data. The map must be composed of
polygons, each assigned a positive numerical weight.
Further, each polygonal region must be convex,
meaning that no interior angle may exceed 180°.
Lastly, the polygons must fit together like a puzzle,
creating a contiguous tiling of the plane. We use
three weight values for the regions: a "medium" one
for the background plane, a "high" one for obstacles,
and a "low" one for desirable features, as shown in the
first panel of Figure 1. This diagram shows two
violations of these WR requirements: First the light
region on the left is not convex, having an interior
angle greater than 180°. Second, the two polygonal
features alone don't create a contiguous tiling of the
plane. We can solve this second problem by viewing
the background as a weighted region. Now we do

257

\ 10 _ •*?

10

\ i 10 ^S^ /
\ 1 -^^ 10 /

\ ^>s^»^ ^B ^^^ \
\ io ^^^^^ \

10 J^S I" \

Figure 1: Top left: In the ModSAF style of terrain feature representation,
disjoint polygons lie in a background plane. We can assign a "cost" to each
polygon, and to the background, to represent the penalty for planning a path
through that region. By giving the region on the left a cost less than that of the
background, we specify that movement through that region is more desirable
than movement through open space. We give obstacles weights much higher
than the background, so that low cost paths avoid them. Top right: Since the
Weighted Regions algorithm requires a contiguous tiling of the plane by simple,
convex regions, we subdivide non-convex regions (e.g. the region on the left)
and the background plane, by adding an edge whenever we find an angle greater
than 180° at a polygon vertex. Bottom: A minimum-cost path from "Start" to
"End" is shown. Note the deviation through the low cost region and the locally
optimal "Snell's Law" refraction when crossing the boundary between the
background and the low-cost region.

258

have the requisite contiguous tiling, but have
introduced another illegal polygon, since this
background plane has many concave angles. The
second panel of Figure 1 shows the solution to the
concavity problem: For each angle greater than 180°,
there is another vertex in the graph such that an edge
can be added from that vertex to the vertex possessing
the concave angle, splitting the concave angle in two,
and splitting some weighted region in two also. The
two new regions are each weighted as was their parent
region. Edges can always be added, until no concave
angles remain. (The extreme case would be to keep
dividing regions until all the regions were triangles,
which are necessarily convex.) The result is the
required tessellation of the plane with convex
polygons.

The complete translation algorithm can be
summarized as follows:

1) From the input polygon list, build a list
of vertices.

2) Add the vertices of a bounding box (or
of any convex polygon surrounding the
given regions).

3) Build a visibility map for each vertex (a
list of vertices reachable from that
vertex without crossing an existing
edge), and note whether a connecting
edge to a visible vertex exists already.

4) For each concave angle (except the
exterior angles of the bounding box),
add edges from the vertex of the angle to
another vertex which is in its visibility
list and which is "inside" the concave
angle. More than one edge per concave
angle may be added.

5) Pass the resulting convex, weighted
tiling to the WR planner.

To apply path planning to IC movement, we
intercept the IC unit's planned route, in the
appropriate ModSAF move task: VMove,
UTraveling, or UCMarch. We take each waypoint in
the planned route as an unchangeable constraint, and
optimize the sub-paths in between the waypoints:
We pass to the WR path planner each route point and
the one which follows it. The path planner returns
the minimum-cost path connecting the two points.
The third panel of Figure 1 illustrates the result of
optimizing a path: The two point route from "Start"
to "End" is transformed by the planner into an
optimized route containing five points. After
repeating this optimization for all route segments, we
assemble the returned paths into the unit's complete
route, and return it to ModSAF.

The following section describes sample results of the
integrated ModSAF/WR system.

6. Application to the "LeatherNet" Project

A goal of the Marine Corps LeatherNet project is the
creation of a training and simulation environment for
Marine exercises. One of the training "ranges",
Range 400, has been digitized at the one meter level,
for the purpose of computer simulation. A ModSAF
"CTDB" format database with imbedded microterrain
based on this data has been created. The exercise
carried out on Range 400 is a company-size deliberate
attack. When the Marines move up the range toward
their objectives, they choose concealed routes. While
no tree canopies or buildings exist on this range,
there are a number of deep wadis (dry stream beds)
that provide concealment during the advance.
Accurate simulation of Range 400 exercises therefore
requires representation and usage of these wadis in
route planning.

The top of Figure 2 shows a plan view of Range 400,
as displayed by ModSAF. The terrain database
provides the topography and roads. The borders of
concealed regions, provided by wadis, were manually
extracted from an elevation map, and listed in a file in
terms of the vertices of the resulting polygons.
These polygons were automatically added to the
movemap data structures of the ICs. The polygons
are shown as shaded regions in Figure 2. Also shown
in this Figure are a Marine fire team, situated at the
southern end of the range, and a goal position at the
northern end.

When the first movement command is issued to the
unit in ModSAF, the polygonal features are processed
as described in Section 5. They are subdivided into
convex regions and assigned the appropriate weight.
(The process is illustrated in Figure 1.) The uniform
background is also subdivided into convex regions.
The resulting map is then passed to the WR path
planner. The path generated by the planner is shown
at the bottom of Figure 2. The length of the path
outside the wadis has been minimized, thus
maximizing the use of cover and concealment.

Figure 3 shows a situation where the minimum-cost
path doesn't use the wadis at all. The algorithm has
discovered that deviation of the straight-line path
(connecting the unit to its goal) to use the available
concealment would add more exposure (for the
sections of the route that carry the unit to and from
the concealed regions) then it would remove by
utilizing those regions. Figure 4 gives an example
(in a different terrain database) of the algorithm
simultaneously making use of desirable regions and
deviating around obstacles. The unit detours around a
lake to reach its destination, and also uses two of
three available low-cost regions in its minimal path.

259

Figure 2: Top: Plan view of sample terrain database. Shown are topographical
lines, roads, concealed regions (shaded polygons), a unit icon (box near bottom),
and the unit's assigned goal (near top). The path planning algorithm considers
only the concealed regions, obstacles, and the start and goal points for the unit.
Bottom: Results of planning the "shortest" (i.e. minimum-cost) path from
unit's position to its goal. The shown path is the shortest in terms of the
amount of exposed terrain (outside concealed regions) used.

260

7. Future Work

In the application discussed in Section 6 the low-cost
terrain regions were added manually. The primary
extension to this work is to derive the low-cost
regions from the terrain database. ModSAF
represents small scale terrain elevation by patches of
microterrain in the form of contiguous, non-coplanar
triangles, called triangulated irregular networks
(TTNs). The main 1.5 km x 1.5 km section of the
ModSAF Range-400 database, for example, contains
a TIN which has about 4xlfP vertices (triangle
corners). Visibility from a given enemy position
could be calculated for each vertex (using ModSAFs
point-to-point visibility algorithm), and the triangles
would be weighted appropriately. The weighted
triangles would then provide the weighted regions for
the WR path planner. Returning to the discussion in
Section 3 on the choice between WR and GB
representations, we see that for such a vertex-
visibility approach, the WR representation would
have far fewer vertices than the 10' vertices of the
alternative grid.

In using the TIN triangles as weighted regions, one
approach is to project the triangles into the horizontal
plane, creating the familiar planar tiling. An
alternative is to plan on the non-planar TEN map
itself. Mitchell (1988) has examined a form of this
problem called the Discrete Geodesic Problem, in
which the regions have uniform weight. A related
issue is directionality of region weight. For instance,
we might want to assign a high cost to a region of
steep terrain, but only if the path ascends that region.
A high cost should not be assigned if the path merely
traverses the region at constant elevation. This
problem has been examined by Rowe and Ross
(1990).

In the applications discussed above, only three region
weights were used (to differentiate desirable regions,
nominal regions, and obstacles). In general, however,
the WR approach allows an entire spectrum of
weights. Applications of this capability include
representation of graded levels of visibility,
combinations of visibility with other factors (e.g.
maximum speed for each region), and more complex
models of danger to the traveler. Other factors can
also be entered by using a bi-criteria planning
paradigm, in which we minimize the path cost,
subject to some constraint. An example is
movement with maximum cover and concealment
(the cost) subject to the constraint of arriving within
a certain time limit.

The path planning approach of this paper is based on
a complete map, giving unrealistic terrain

omniscience to the traveling unit. A more realistic
approach would incorporate a "visibility horizon",
which would only provide terrain knowledge for a
certain radius around the moving unit. This problem
has been studied by others (e.g. Brock et al., 1992).

We have only discussed polygonal features, but we
might also add such linear features as roads and rivers,
which could be handled by the WR path planner much
as it handles edges of polygons.

We have assumed a static planning map, but in real
life movement takes place within a constantly
changing environment. A complex problem is that
of planning routes that anticipate enemy movements,
represented as changing levels of exposure for regions
over time. (A hidden region may become exposed to
the enemy as he moves toward it.)

Alternatively, we may remain within the static map
paradigm, replanning when changes to the map occur.
The issue is then how to take advantage of the
computation already completed, so that the revision is
done faster than if the plan were computed from
scratch.

8. Acknowledgments

The research reported in this paper was supported in
part by ARPA contract DAAE07-92-C-R007,
contracted through US Army TACOM. We
gratefully acknowledge the continued guidance and
support of LCDR Peggy Feldmann and LT Jeff
Clarkson in the performance of this program. Our
colleagues Prof. Joseph Mitchell and Christian Mata
of State University of New York at Stony Brook
collaborated closely with us in the planning aspects
of the problem, and their weighted regions algorithm
plays a crucial role in our approach. Dr. Jimmy
Krozel, of Hughes Research Laboratories, provided
useful, theoretical discussion, and relevant references,
on path planning alternatives. The support and
encouragement from Scott Harmon is very much
appreciated.

9. References

Brock, D.L., Montana, D.J., Ceranowicz, A.Z.
(1992) "Coordination and Control of Multiple
Autonomous Vehicles", Proceedings of the 1992
IEEE International Conference on Robotics and
Automation, 2725-2730.

Dijkstra, E.W. (1959) "A Note on Two Problems in
Connexion with Graphs", Numerische
Mathematik, 1: 269-271.

Loral (1994) ModSAF Software Architecture Design
and Overview Document. Loral Advanced

261

Figure 3: Results of planning "shortest-path" from unit's position to its goal,
for a case in which the resulting path does not use the concealed regions: The
algorithm has discovered that deviation of the straight-line path to use the
available concealment would add more exposure (for the sections of the route that
carry the unit to and from the concealed regions) then it would remove by
utilizing those regions.

Desirable
Regions

Figure 4: A path which both utilizes desirable regions and avoids obstacles.
The unit must detour around a lake to reach its destination. It uses two of three
low-cost regions in its minimal path. While this example utilizes only three
different numerical region weights (as shown in Figure 1), the weighted regions
approach allows the assignment of a whole spectrum of weights, to specify
graded levels of desirability for the terrain regions.

262

Distributed Simulation, Cambridge, Pennsylvania. He is a member of IEEE and AAAI,
Massachusetts. has 29 technical publications, and holds 3 patents.

Mitchell, J.S.B. (1988) "An Algorithmic Approach
to Some Problems in Terrain Navigation",
Artificial Intelligence, 37: 171-201.

Mitchell, J.S.B., Papadimitriou C.H. (1991) "The
Weighted Region Problem: Finding Shortest
Paths Through a Weighted Planar Subdivision",
Journal of the Association for Computing
Machinery, 38(1): 18-71.

Rowe, N.C., Ross, R.S. (1990) "Optimal Grid-Free
Path Planning Across Arbitrarily Contoured
Terrain with Ansiotropic Friction and Gravity
Effects", IEEE Transactions on Robotics and
Automation, 6(5): 540-553.

10. Authors' Biographies

Bruce Hoff is the Principal Investigator for the
USMC-SAF project at Hughes Research
Laboratories. At H.R.L. Dr. Hoff has also worked on
the ARPA autonomous vehicle project, and CGF
Command Forces (C-FOR). Dr. Hoff earned B.S. and
M.S. degrees from Rensselaer Polytechnic Institute,
and the Ph.D. degree from the University of Southern
California, all in Computer Science. His research
interests are in the areas of Artificial Intelligence,
Autonomous Vehicles, Adaptive Control, and
Computer Generated Forces.

Michael D. Howard has been active in the study
of Semi-Autonomous Forces and Autonomous
Systems since 1988. Since the work described in this
paper, he has become Principal Investigator of the
Command Forces program, a new ARPA program.
He continues to contribute to the USMC SAF
program. Mr. Howard holds the MSEE degree from
University of Southern California (1986), a BSEE
from Louisiana State University (1981), and a BA in
English from St. Andrews College (1977).

David Y. Tseng joined Hughes Research
Laboratories in 1969. For the past 15 years, he has
been actively involved in directing research in
autonomous systems, distributed simulation, and
information management systems. In 1988, he
started Hughes' research activities in autonomous
agents, which paved the way for the current SAF and
CGF research, and remains one of his primary
interests today. He is responsible for initiating and
directing the Hughes autonomous vehicle navigation
program which culminated in the first autonomous
cross country navigation in 1987. In 1984, he was
instrumental in initiating the Artificial Intelligence
activities in Hughes, and was manager of the Hughes
AI Center for 10 years. He received his Ph.D. from
the Polytechnic Institute of Brooklyn, S.M. from
Harvard Univ., and B.S.E.E. from the Univ. of

263

Session 6a: Implementation

Courtemanche, Loral ADS
Ourston, SAIC

Pratt, NPGS

Representation of Missiles in ModSAF

Anthony J. Courtemanche, Scott E. Hamilton, and Paul Monday
Loral Advanced Distributed Simulation

50 Moulton St., Cambridge, MA 02138
ajc@camb-lads.loral.com

shamilto@camb-lads.loral .com
pmonday@vox.knox.loral.com

1. Abstract

The DIS standards allow for missiles to be represented
as visible entities in the synthetic battlefield. One
approach to modeling missiles in DIS is to treat them
as full dynamic entities, with explicit simulation of
the propulsion, guidance, and fuzing of the missile
prior to its detonation. A model such as this will
typically require a great deal of fidelity and processing
power to accurately characterize the missile. A
second approach is to use a statistical method, as is
frequently done for direct fire weapons.

This paper describes two possible implementation
approaches to modeling missiles in DIS, and how
ModSAF has provided a working testbed to
implement both types of models. The fundamental
advantages and disadvantages of each approach are
discussed, and the implementation details in ModSAF
are described.

2. Use of Missiles In ModSAF

The DIS standards allow for missiles to be represented
as visible entities in the synthetic battlefield. These
missiles are similar to other simulation entities in
that they generate Entity State PDUs and can move
and interact with other entities in the environment.
There are subtle differences, however, between missile
entities and other types of entities. One difference is
that missiles are usually launched from DIS vehicles.
As such, the missile is dormant until the time of
launch, at which point the missile appears near its
launcher and subsequently flies toward its destination.
Once it has arrived at its destination, the missile
detonates and is removed from the DIS exercise. A
second difference between missiles and other entities
is that missiles typically move at much greater
velocities than other entities in the DIS simulation.
A third difference is that relatively minor errors in the
modeling of vehicle dynamics can have a large effect
on the battlefield, since they can cause large errors in
the effective probability of hit of the missiles.

There are several reasons why it is useful to represent
missiles as visible entities in a DIS environment.
First, the observation of visible missile flyout can
provide clues about the location of the enemy vehicle
that is shooting the missile. Second, targets can

attempt to defeat incoming missiles via evasion and
countermeasures. These can only be attempted if the
target can detect the incoming missile in some way.
Third, visually displaying dynamic missile entities
allows weapon system developers and simulation
modelers to visualize and understand missile guidance
and dynamics models.

The ModSAF, Computer Generated Forces (CGF)
system (Ceranowicz 1994), supports a number of
different types of missiles. There are anti-tank (AT)
missiles which are both ground and air launched.
There are also anti-aircraft (AA) missiles which are
both ground and air launched. Each of these missiles
could be implemented in ModSAF using a dynamic
or probabilistic simulation.

Missile Type Delivery Dynamic /
Probabilistic

Alamo AA Air D
Archer AA Air D
Dragon AT Ground D
Gaskin AA Ground D
Gauntlet AA Ground D
German HOT AT Ground P
USSR HOT AT Air D
Hellfire AT Air P
Javelin AT Ground P
LOSAT AT Ground P
Maverick AT Air D
Milan AT Ground P/D
NLOSTV AT Ground P*
Phoenix AA Air D
SA-16 AA Ground D
SA-19 AA Ground D
Sagger AT Ground P
Sidewinder AA Air D
Songster AT Air/Ground P/D
Spandrel AT Ground P
Sparrow AA Air D
Spigot AT Ground D
Spiral AT Air D
Stinger AA Air/Ground D
TOW AT Ground P/D

Table 1: ModSAF Missile Types

Table 1 contains the missiles which are currently
implemented in ModSAF, what type of missile each

267

is (Anti-Tank or Anti-Aircraft), and from where the
missiles are delivered. The fourth column shows how
the missiles are currently being implemented, where
D indicates a dynamic missile simulation, P indicates
a probabilistic simulation, and P/D indicates that
both dynamic and probabilistic simulations are
implemented.

A vehicle parameter file currently exists in ModSAF
for each of these missiles, so all of them could be
implemented as dynamic missile simulations as
explained in section 3. Also, as will be described in
section 4.2, there are default flyout equations that
could be used to support a probabilistic simulation,
so all of these missiles could also easily be
implemented as probabilistic missile simulations.

The one exception is the NLOS TV missile which is
implemented via another library which relies on the
ballistic gun model to provide the probabilistic
missile simulation (hence the P* in table 1). A
vehicle parameter file does not currently exist for this
missile.

The Dynamic and Ph (probabilistic) Missile
Simulations will be explained in more detail in the
following sections.

3. Dynamic Missile Simulation

Since ModSAF Version 1.0, released December 1993,
ModSAF has had a dynamic missile simulation.
This simulation was originally developed for the
weapons of threat and friendly aircraft in support of
the WISSARD project (Rosenbloom et. al. 1994).
The simulation contains a motion model of the boost
and coast phases of the missile, as well as a collision
model and detonation model. Some of these missiles,
such as the Phoenix missile launched from the F14D
aircraft, are sequenced by complex state machines
which control the interaction between the sensors on
the firing aircraft and the missile itself. For example,
the Phoenix missile can be controlled by the host
aircraft for the majority of its flight. As the aircraft
continues to track the target with its on-board radar
system, the aircraft will issue steering commands to
the missile to have it fly toward the target. During
the last phases of the engagement, the missile can be
commanded to go into an active mode, where an on-
board radar system on the missile can track the target
itself, without any commands from the host aircraft.

In order to use Dynamic Missile Simulation in
ModSAF, the launching vehicle must contain a
missile launcher model which shoots the missile. A
vehicle parameter file must exist for the missile
munition which describes its flight dynamics.

3.1 Equations of Motion

The dynamic missiles in ModSAF are controlled by
the following equations of motion, where P is the
position of the missile, v is the velocity of the
missile, r is the time between the last tick and the
current tick, D is the desired missile direction
clamped by a maximum rate of turn, S is the current
speed of the missile, clamped by a maximum speed,
and A is the acceleration of the missile during its
boost phase:

*New = *Old + VOld ' T

vNew = S-D

S = A-T

There is no effect of gravity, unless the missile has
lost power, in which case it falls along a parabolic
trajectory.

3.2 Collision And Detonation Modeling

As a dynamic missile moves through space, there are
two types of events which may affect it. First, the
missile can collide with another object or the terrain.
The ModSAF library LibCollision provides a 3D
physical model of collision detection. It can detect
collisions with other network entities such as
vehicles, other missiles, or even dynamic structures,
as well as terrain objects such as treelines, buildings,
and the ground. This library is also responsible for
generating and processing Collision PDUs. In the
case of colliding with other entities, collision
detection for the missile is based on the intersection
of the bounding boxes of the missile and the object
being collided with.

A second event that may affect a missile during its
flight is detonation near a target. The ModSAF
library LibDetonation provides a model of proximity
detonation. It can detect detonations due to proximity
with other network entities This library determines
that a detonation should occur if the distance to the
target, as measured from the secant between positions
of the missile during consecutive ticks, achieves a
local minimum and is less than the detonation radius
parameter specified for the missile. In performing this
calculation, the position of the target is projected
forward or backward in time to find the point on its
trajectory closest to the point where the local
minimum occurred.

If either a collision with an entity or a proximate
detonation with an entity is detected, a DIS
Detonation PDU will be sent specifying the target
entity. In the case of a detonation, the DIS

268

Detonation result type will be "PROXIMATE
DETONATION". In all other cases, the result type
will be "IMPACT".

3.3. Missile Guidance

The modeling of the seeker and guidance of the
missile can vary from missile to missile. For
example, the Phoenix missile can be steered by the
radar sensor on the host aircraft, or by its on board
radar sensor. The TOW missile is wire guided and
could also be modeled as being guided by a visual
sensor on the host platform, in this case the Bradley
Fighting Vehicle. A fire-and-forget missile such as
the Stinger missile can be guided exclusively by its
on-board IR sensor.

Lead-pursuit and pure-pursuit guidance is supported,
and all guidance information simply generates the
desired direction, D, for the missile.

3.4 Advantages

The advantage of this implementation is that it is an
interactive simulation. As the target changes
location, the missile can adapt dynamically. This
allows for the possibility of simple counter-measures,
such as target jinking, to attempt to defeat the
missile.

3.5 Limitations

There are two major types of limitations to the
dynamic missile approach in ModSAF. First is the
rather simplistic modeling of the missile, as
represented by the equations of motion. The various
forces, such as thrust, gravity, and drag are not
modeled. The treatment of turn rate is very
simplistic. Maximum turn rate should depend on
speed and altitude. Related to the simplicity of the
model is the inability to predictably control missile
performance. The only real performance inputs to the
dynamic missile model are maximum speeds, burn
times, and turn rates. This is an insufficient amount
of control to distinguish different types of missile
performance. Especially lacking is the type of
guidance control that would allow a dynamic
ModSAF missile to approximate the trajectory of an
actual missile (Bencke et. al. 1994). Also, it is
impossible to correlate this simple missile model
with available field testing data, such as probability
of hit. This makes it difficult to use these types of
missiles in a combat developments experiment.

The second type of limitation to this missile
approach in ModSAF is the tick rate constraint that
ModSAF must obey. Available computational
resources are always a limiting factor in the number
of entities that a ModSAF workstation can support.

ModSAF is a variable frame rate simulation. Ground
vehicles in ModSAF have been tested to behave
acceptably under a 2 Hz frame rate. This frame rate
characterizes the minimum acceptable simulation
performance (Vrablik & Richardson 1994).
Obviously, a varying frame rate that can be as low as
2 Hz is quite limiting for the modeling of a high
speed missile. ModSAF does support high priority
scheduling which could be used to guarantee a faster
frame rate for missiles, however it would be difficult
to accept the resulting loss of performance in the rest
of the system.

4. Ph Missile Simulation

The dynamic missile model has proven to be
unsatisfactory for combat developments experiments
such as the Anti-Armor Advanced Technology
Demonstration (A2ATD). When DIS is used for
combat developments, there are many issues that
must be resolved when running experiments
involving missiles and other weapons fire. For
example, the algorithms used to model the accuracy
of a given weapon system against a particular target
must be verified and validated before useful
experimental results can be gathered. As the dynamic
missile model fails to generate accurate flight
trajectories and cannot be controlled to give specific
performance results, it cannot be used for this type of
experiment. A different approach, which is based on
a statistical model of accuracy, is required.

4.1 Direct Fire Biases & Dispersions
Delivery Accuracy Model

For non-guided direct fire weapons, Army Materiel
Systems Analysis Activity (AMSAA) has prescribed
a statistical model based on biases and dispersions to
characterize the accuracy of direct fire weapons. This
model generates a horizontal and vertical miss
distance for each round at the target's location,
referenced to an assumed aim point (Courtemanche &
Monday, 1994).

The ModSAF library LibBalGun provides a model of
a ballistic gun's operations with the delivery accuracy
portion based on biases and dispersions. It includes
modeling of the time from gunner initiation of the
engagement to firing (track time), gun firing and
loading, application of biases and dispersions to
generate an impact point, and determination of hit or
miss.

A vehicle level task identifies the most urgent target
and makes recommendations of which weapons to use
against the target. A vehicle level task collects the
recommendations and performs targeting actions
against the target. Part of these targeting actions is
to give the target to a gun so it will fire at it. It is

269

possible for the gun to determine that it will actually
hit another target or location based on the lack of
intervisibility to the original target. The gun may
also be given a location to fire at instead of a target.
This functionality can be used to launch smoke
grenades or to shoot at a laser designation.

Range indexed track time tables are used to define
how long the target will be tracked before the gun is
fired. The track time is generated from these tables
using a value from a lognormal distribution which is
adjusted for firer competency and firer and/or target
motion.

The gun determines whether the target was hit or
missed using the biases and dispersions generated
from hit tables. These tables are indexed by range and
contain biases, error, and firer and target
stationary/motion dispersion values. The hit tables
are derived directly from AMSAA weapon delivery
accuracy data (Topper, 1993). The biases and
dispersions define the impact's offset from the aim
point. The aim point's actual location is calculated
from the target's location when the munition arrives
at the target. This approach effectively removes
target behavior from the outcome and ensures that the
desired delivery accuracy statistics are honored. If the
target was hit the gun sends a Detonation PDU on the
target, otherwise it sends a Detonation PDU on a
miss location at impact time.

Ph missile simulations are initiated or shot from
these same direct fire ballistic gun models in
ModSAF. These simulations do not use missile
dynamics for determining whether or not the missile
will arrive at the target. Instead the probability of hit
is determined from the biases and dispersions. In
order to use the Ph missile simulation, the launching
vehicle must contain a ballistic gun model which
shoots the missile as a munition.

This method of missile delivery was first used in
A2ATD experiment 1 replication of the M1A2 IOTE
in order to achieve the desired hit probabilities for the
Sagger missile launched from the T-80 tank and the
Spandrel missile launched from the BMP2. Before
this, the missiles were delivered as Dynamic Missile
Simulation shot from missile launcher models.
Delivering the two missiles via a Ph Missile
Simulation entailed adding hit tables for the Sagger
and Spandrel delivery accuracy model and using
ballistic gun models to shoot the munitions. There
were no visual flyouts of the missiles via the Ph
Missile Simulation since, at the time, ballistic guns
only sent out Fire and Detonation PDUs.

4.2 Extensions to support missiles

In order to address the lack of a visual missile flyout
when the munition was shot from a ballistic gun as a
Ph Missile Simulation, extensions were made to
ModSAF.

The ballistic gun model has been enhanced to shoot
munitions with or without visual flyout. Visual
flyouts are accomplished via the addition of a
computationally lightweight missile entity. The
ballistic gun model is responsible for ticking the
lightweight missile entities. The tick processing
causes Entity State PDUs to be sent out for the
missile entities. These PDUs provide for the visual
flyout. This capability can be used for any munition,
although It is most appropriate for slow-moving
missiles.

The actual positions of the missiles during the flyout
are provided by flight path or flyout equation
functions. The ballistic gun provides a service which
allows flyout equation functions to be registered with
the gun. As part of the tick of the lightweight
missile entities, the gun calls the registered flyout
equation function to update the missile position and
provide other information such as whether or not the
missile has reached the target. Each munition can
have a separate flyout equation registered, or the same
flyout equation can be used for multiple munitions.

As described previously, the ballistic gun is
responsible for determining whether or not the
missile actually hits the target based on the statistical
outcome of the biases and dispersions. If the target is
not hit, the flyout equation function is also
responsible for calculating and flying out to a miss
location. The ballistic gun model also makes sure
that the missile position provided by the flyout
equation avoids the terrain until the missile has
reached the point at which it should impact, as shown
in Figure 1.

Figure 1: Javelin Missile Engagement

Besides providing updated positions, the flyout
equation can also change from flying at a target to
flying to a location or vice versa. The first capability
can be used to model breaking missile lock on a
target due lack of intervisibility, as is performed in
the CASTFOREM model (Mackey et. al., 1994).
The second capability can be used to model a non-

270

*?wyr

line-of-sight missile flying to a location prior to
acquiring a target

4.3 Advantages

There are a number of advantages to the Ph Missile
Simulation in comparison to the Dynamic Missile
Simulation. The probability of target hit is
controlled which is crucial for the validation of
models. These probabilities are generated from
easily-available and understood data. Another major
advantage is that realistic flight-paths can now be
easily incorporated via the flyout equation function
registration. The inherent flexibility of the flyout
equations and registration service for modeling new
systems has already been demonstrated, as will be
described in section 5.3.

4.4 Limitations

There are some limitations to the Ph Missile
Simulation. These limitations are due to the
statistical nature of the simulation as well as the fact
that the Ph model will typically guarantee delivery of
the missile to target.

The Ph Missile Simulation is inherently non-
interactive. This is an unavoidable consequence of
honoring a statistical delivery accuracy model. If
evasive battlefield behaviors like jinking are expected,
the delivery accuracy statistics can be adjusted
accordingly. But since this adjustment will be for the
typical case, it will not match each specific case. So
the target that makes a better-then-expected jink will
not necessarily be rewarded.

Because of the requirement to honor delivery accuracy
statistics and because the evaluation of these statistics
is performed when the missile reaches the target,
some visual anomalies are sometimes apparent. For
example, missiles never impact the ground
significantly short of the target. In fact, missiles are
prevented from hitting the ground even if their flyout
would otherwise cause that event. Otherwise, the
delivery accuracy statistics would be unduly distorted.
Similarly, even if missiles appear to fly through such
obstacles as buildings, trees, or other vehicles, they
do not detonate but instead continue on to their
original target.

There is no current ability to deal with counter
measures. The lightweight missile entities do not
contain all the models that would be required and
neither the ballistic gun models nor the flyout
equations are equipped to handle these situations.
However, the effects of counter-measures could be
added in the future when required.

5. Remotely Designated Missiles

The use of the Ph methodology to represent missiles
has proven to be very useful for specialized missiles
such as SAL (Semi-Active Laser) Hellfire. The SAL
Hellfire missile can be launched from an attack
helicopter such as an AH-64 Apache. The SAL
Hellfire missile seeks the reflection of a laser
designation spot on a target. Either the firing Apache
can designate the target, or the target can be
designated by a remote vehicle such as a OH-58D
Kiowa scout helicopter. The remote designation case
is the most complex, as described below.

5.1 Remote Laser Designation Process

Figure 2 shows a typical scenario for remote
designation with the Hellfire. Here, a scout aircraft
has line of sight to the target and designates it by
shining the laser on it. The attack aircraft can fire
from a concealed position, and the Hellfire will track
toward the laser spot once the missile acquires the
spot with an on board sensor. The advantages to this
technique are that the scout can lase from one
azimuth, with potentially only its mast laser device
exposed, while the attack helicopter is completely
concealed along a different azimuth. Since the
missile firing is from a concealed position, very little
visual cueing is provided to the target. Both the
scout and the attack helicopter may have increased
survivability when remote laser designation is used.

Figure 2: Remote Laser Designation

5.2 LDWSS Model

The Laser Designator Weapons System Simulation
(LDWSS) system is used by AMSAA to relate laser
designator performance to weapon system
performance (Alongi et. al. 1984). The output of
LDWSS simulations are performance tables which
relate round center of impact and dispersions to target
range for a given combination of designation (scout
lasing or attack helicopter firing and lasing), tracking
sensor (TV, FLIR, DVO), and tracking mode
(manual, automatic). For A2ATD experiments
involving Hellfire missiles, it is desirable that
ModSAF be able to use LDWSS data as part of its

271

Hellfire simulation. Under close supervision by
AMSAA, the following methodology has been
developed to support remote laser designation by both
ModSAF and the manned Longbow and Commanche
simulators that are participating in the exercise. This
methodology is a natural extension to the existing Pn

missile methodology.

5.3 ModSAF Implementation

The methodology chosen for implementation of SAL
Hellfire in ModSAF decouples the components of the
designator and firer as much as possible. Under this
methodology, the designator determines laser spot
position on the target by drawing from a random
number generator based on test data. This data is
indexed by tracking sensor and tracking mode, but
this is all internal to the designator, whether the
designator is a manned simulator or a ModSAF
vehicle. This data is not summary output LDWSS
performance data, but will be available from AMSAA
as test data or data that can be computed from the
SPOTGEN (Spot Jitter Generator Model)
subcomponent of the LDWSS simulation. The
output of this random draw will be a spot location,
relative to the target. The randomization that is done
is very similar to the biases and dispersions
calculation done for direct fire, however the input
tables may be in a slightly different format.

The spot location is broadcast via DIS Laser PDUs.
As the spot location is broadcast in DIS, all exercise
participants can react to the presence of the spot, if
they can detect it with the appropriate sensor. Actual
laser designation spots have encoded information in
them to allow unique designation of multiple targets
in the same area. In DIS, the designator will specify
a laser code for the laser spot using the laser code field
in the Laser PDU, and the SAL Hellfire missile will
have to be seeking that same laser code for it to
engage and track that particular laser spot.

The spot location incorporates the error of the spot
with respect to the aim point on the target. The firer
of the Hellfire missile, who may be the same entity
as the designator, or may be a different entity, will
use "perfect aim" LDWSS data to deliver the round to
the spot location. This perfect aim LDWSS data has
no component of spot location error in it. This
perfect aim data simply describes the accuracy of the
missile in hitting the spot. This perfect aim data is
completely independent of the sensor device or
tracking mode used by the designator to generate the
spot. The firer draws from a random number
generator based on the perfect aim LDWSS data to
determine the error of the missile in hitting the spot.
This randomization is also very similar to the biases
and dispersions calculation done for direct fire, with a

slightly different input table format as generated by
the LDWSS model. At the time of the arrival of the
missile to spot location, the firer will add the two
errors together to determine the actual location of the
missile with respect to the target, and therefore
determine a hit or a miss, as shown in Figure 3.

Missile
Error

Missile
Impact

Location

Presented Area
Spot

Location

Intended
Aimpoint

Spot Error

Figure 3: SAL Hellfire Delivery Accuracy

In this diagram, we see that the error of the missile
impact with respect to the spot, which was drawn by
the firer, is added to the error of the spot with respect
to the aim point on the target, which was drawn by
the designator and broadcast as part of the information
in the Laser PDU. The sum of the two errors is used
in geometric calculations to determine whether the
missile actually intersected the target. If an
intersection is determined, a Detonation PDU which
contains a relative impact location with respect to the
target will be issued.

This methodology allows for the laser designation
spot to move or disappear from the battlefield while
a missile is in flight. This can occur if some
situation forces the designator to alter what it is
designating. During flight, the missile tests for line
of sight with any of the laser spots that are encoded
with the proper laser code. If line of sight is
established, the missile will adjust its flight path to
seek toward that laser spot. During the time of
flight, the Hellfire missile issues Entity State PDUs
according to a registered flyout equation as specified
in section 4.2. This equation allows the missile to
trace a path that is representative of an actual Hellfire
missile.

This methodology allows the designator and the firer
to be different entities, or the same entity. If the firer
and designator are different entities, this methodology
also allows any combination of manned and ModSAF
vehicles to take on the roles of firing vehicle and
designating vehicle.

Since, in the case of remote designation, the firing
vehicle is not required to have line of sight to the
target before engaging, some sort of command and
control is required to coordinate the scout lasing with

272

»«p.«i*fvp-*(*U •

the attack helicopter firing. In an initial
implementation, this is accomplished in ModSAF via
the transmission of an ASCII encoded radio message
from the scout to the attack helicopter. This message
contains information about the location of the target
and that the target is ready to be engaged. Future
implementations may make use of specialized digital
messages defined by the Air Warfighting Cell (AWC)
for transmission of targeting information between
scout RAH-66 Commanche helicopters manned
simulators and attack AH-64D Apache Longbow
manned simulators.

6. Futwre Work

6.1 V&V by AMSAA

The Ph missile model will be evaluated for Validation
and Verification (V&V) by AMSAA as part of the
A2ATD program. AMSAA has already evaluated the
delivery accuracy model LibBalGun for direct fire
weapons. This work was performed by causing
ModSAF vehicles to fire at targets many times and
recording a variety of internal model parameters for
each firing using the Direct Fire Delivery Accuracy
VVA Data structure encapsulated in a DIS Event
Report PDU. This data was analyzed to verify such
processes as table lookups, handling of biases and
dispersions, determination of aim point, calculation
of miss distance, and hit assessment.

Since the Ph missile model is mainly an extension of
LibBalGun, the V&V evaluations can be performed in
a similar manner.

6.2 Alternate Ph Mechanisms

ModSAF currently supports the standard direct fire
bias and dispersion tables or the LDWSS accuracy
tables to compute hit or miss based on a geometric
model of the target and a randomly calculated error
from the desired aim point. As such, the calculation
of hit or miss is derived primarily from a geometric
calculation, and an explicit probability of hit (Ph) is
not actually represented in the model. Other
statistical methods might also be desired. For
example, AMSAA and TRAC studies involving the
Javelin missile have traditionally used test data that
provide a simple Ph based on target range, target
type, and target aspect angle. Although not currently
in place, it would be straightforward to extend the
existing ModSAF methodology to use one of a
number of different statistical or geometrical
calculations to determine hit or miss, while still
supporting flyout equations to generate the missile
flight paths. Based on current direction from
AMSAA, all ModSAF missile flyouts for A2ATD

experiments will be based on the statistical biases and
dispersions methodology.

6.3 Engagements of NLOS Missile

Analysis of upcoming A2ATD scenarios shows that
additional behaviors involving missiles may be
required. For example, vulnerability data will be
provided for the NLOS missile to be potentially shot
down by the 2S6 air defense vehicle. This will
require a number of changes. For instance, the 2S6
firing behaviors will have to be enhanced to target and
engage missiles as well as aircraft. More
importantly, the NLOS missile simulation will have
to be able to accept received DIS Detonation PDUs
and calculate damage based on the information in
those PDUs. This should be a straightforward
enhancement. Just as every regular vehicle in
ModSAF has damage processing mixed in to the
vehicle via the including of the LibDFDam (Direct
Fire Damage) vehicle subclass as part of the vehicle
definition, the lightweight entity used to represent the
NLOS missile will need to include this subclass as
well.

6.4 Missing Missile Behaviors

As a side-effect of moving the launching of missiles
from missile launchers into ballistic guns when using
the Ph Missile Simulation, certain launcher model
capabilities do not occur during the simulation. For
example, using the Dynamic Missile Simulation to
shoot a TOW missile from an M2 in ModSAF causes
the M2 to include an appearance bit in its Entity
State PDU which will show the TOW launcher as
being in a raised position. This capability was not
implemented in the ballistic gun model because guns
did not have corresponding launcher up/down
positions. This deficiency will be corrected in future
ModSAF versions.

6.5 Generalization

While implementing the Ph extensions to ModSAF,
efforts were made to reuse common models and
provide for future reuse. The biases and dispersions
model was abstracted out of LibBalGun and put in a
combat models library for reuse by laser designation
or other models. The ballistic gun model is heavily
used in ModSAF and historically has been modified
repeatedly as new munitions and systems have been
added. This model needs to remain fairly stable for
verification and validation purposes. By providing
the flyout equation registration service, new flyout
equation functions can be added as opposed to
modifying LibBalGun as new munitions and systems
are added. It is likely that future development in
ModSAF will turn up other opportunities to

273

generalize existing simulation software for the
purpose of reuse.

7. Conclusions

Two implementation approaches to modeling
missiles currently exist in ModSAF, Dynamic
Missile Simulation and Ph Missile Simulation.
Each approach has its advantages and disadvantages,
however the Ph Missile Simulation approach is
needed for combat developments experiments because
of the ability to control the outcome. In addition the
Ph method is easily extended and adapted for new
munitions and systems, further adding to its
usefulness for experimentation and system validation.

8. Acknowledgments

This work is being supported by the USA Army
STRICOM ADST program under contract number
N61339-91-D-0001-0058.

9. References

Alongi, R. E., Bosley, J., and Lee, A. W. Jr. (1984).
"LDWSS Users Guide", Technical Report RG-
84-5, US Army Missile Command, Redstone
Arsenal, Alabama.

Bencke, J., Mosier, .P., Marks, B., Chavin, S.
(1994). Technical Report - Studies!Services,
Software Component Test Report (DRAFT),
Illgen Simulation Technologies Inc.

Ceranowicz, A. (1994). "ModSAF Capabilities",
Proceedings of the Fourth Conference on
Computer Generated Forces and Behavioral
Representation, Orlando, FL: Institute for
Simulation & Training, pp. 3-8/

Courtemanche, A. J., and Monday, P. (1994). 'The
Incorporation of Validated Combat Models into
ModSAF", Proceedings of the Fourth Conference
on Computer Generated Forces and Behavioral
Representation, Orlando, FL: Institute for
Simulation & Training, pp. 129-140.

Mackey, Dixon, Jensen, Loncarich, Swaim (1994).
CASTFOREM Update: Methodologies,
Department of the Army, US Army TRADOC
Analysis Command.

Rosenbloom, P. S., Johnson, W. L., Jones, R. M.,
Koss, F., Laird, J. E., Lehman, J. F., Rubinoff,
R., Schwamb, K. B., and Tambe, M. (1994).
"Intelligent Automated Agents for Tactical Air
Simulation: A Progress Report", Proceedings of
the Fourth Conference on Computer Generated
Forces and Behavioral Representation, Orlando,
FL: Institute for Simulation & Training, pp. 69-
78.

Topper (1993). A Compendium of Close Combat
Tactical Trainer Data Structures, Algorithms, and
Generic System Mappings, AMSAA.

Vrablik, R., and Richardson, W. (1994).
"Benchmarking and Optimization of ModSAF",
Proceedings of the Fourth Conference on
Computer Generated Forces and Behavioral
Representation, Orlando, FL: Institute for
Simulation & Training, pp. 25-33.

10. Biographies

Since graduating from MIT with a S.M. in Electrical
Engineering and Computer Science in 1987 and a
S.B. in Electrical Engineering in 1986, Mr.
Courtemanche has worked in the Multiprocessor Lisp
group at Bolt Beranek and Newman (BBN) and in the
SAF group at Loral Advanced Distributed Simulation
(formerly BBN Advanced Simulation). At Loral, he
is a Senior Software Engineering Specialist and has
been Project Engineer for the ModSAF System
Development Delivery Order. Mr. Courtemanche has
been a major contributor to the architecture,
protocols, weapon systems modeling, and targeting
behaviors in ModSAF, Odin, TCE, and SIMNET
SAF. He works out of the Loral ADST office in
Orlando, Florida.

After receiving his B.S. in Computer Science from
Brigham Young University in 1985, Mr. Hamilton
worked for Hughes Aircraft Company until joining
Loral Advanced Distributed Simulation in January of
1994. Mr. Hamilton was a Hughes Masters Fellow
and received his M.S. in Computer Science from the
University of Colorado at Boulder in 1993. At
Hughes, Mr. Hamilton designed and developed large-
scale satellite ground station systems. While there,
he was a member of a small team which began
Hughes' successful object-oriented C++ development.
At Loral in Cambridge, Massachusetts, Mr. Hamilton
is a Senior Software Engineer designing and
developing software for the ModSAF program.

Mr. Monday has worked on the SIMNET-D and
ADST projects for BBN and Loral since 1987. He is
currently Chief Analyst at the Mounted Warfare Test
Bed (MWTB), Ft Knox, Kentucky where he designs
and develops software for data analysis, ModSAF, and
other simulations. He graduated from the University
of Toledo in 1978 with a B.S. in geology and from
Stanford University in 1979 with a M.S. in
geophysics. Mr. Monday previously worked for 7
years in petroleum exploration.

274

From CIS to Software
Dirk Ourston, David Blanchard, Edward Chandler, Elsie Loh

Science Applications International Corporation
3045 Technology Parkway, Orlando, FL 32826

Henry Marshall
U.S. Army STRICOM

1. Abstract

This paper presents the approach used on CCTT SAF
to transform tactical behaviors into delivered soft-
ware. The process starts with the development of a
Combat Instruction Set (CIS), generated by Subject
Matter Experts (SMEs). This natural language de-
scription of the tactical behavior is then transformed
into detailed software requirements through a process
that was developed on the CCTT SAF program. The
detailed software requirements are then implemented
as Ada software using the DOD-STD-2167A method-
ology.

2. Introduction

One of the challenges facing the builders of the Close
Combat Tactical Trainer (CCTT) Semi—Automated
Forces (SAF) simulation is that of generating SAF be-
haviors that can be efficiently implemented in soft-
ware, and yet accurately reflect tactical doctrine. To
accomplish this, a new type of behavior description
has been created, a Combat Instruction Set (CIS) [4].
Through a series of well-defined processes the CIS is

translated into simulation software. The completed
CISs serve as both a tactical data base for any future
tactical simulations requiring combat behaviors, and
the source of the behavior specifications for the CCTT
SAF. This paper describes the process by which a CIS
is developed and transformed into implemented soft-
ware.

3. The CIS-To-Software Process

Figure 1 shows the process used for implementing
software derived from CISs. The figure divides the
software development process into five phases, CIS
development, CIS software analysis, preliminary de-
sign, detailed design, and code and development test.
Figure lalso shows the "interface" documents for the
software development process, that is, those docu-
ments that serve to connect one phase with the next.
The phases "CIS Development" and "CIS Software
Analysis" correspond to the software requirements
analysis phase in traditional software development.
Because these phases are unique to the CIS software
development activity, they are the focus of this paper.

CIS
Development

CIS Software
Analysis

Preliminary
Design

Detailed
Design

Code and Develop-
ment Test

Translate
"standards"
Into Natural

Language CIS

Translate CIS
into Software
Requirements

Identify Ob-
jects and Be-

haviors

Complete Data
Specifications
and Algorithms

Complete Cod-
ing, CSC In-

tegration

Figure 1: Top Level CIS Software Development Process

275

Figure 2 presents more detail concerning the products
generated during the software development process.
As can be seen from the figures, the CIS development
activity starts with reference doctrinal literature and
results in a Natural Language CIS. The natural lan-

guage CIS provides a structured description of and due
to space limitations are not covered in more detail
here. The interested reader is referred to reference 2.a
combat behavior The details of the CIS development
activity are presented in Section 4.

Software
Preliminary Design

Software
Detailed Design

Code and
Development Test

Test
Proce-

s

Software Design
Document

(SDD)

Requirements
Traceability
Matrix to CISs

Preliminary Design
Requirements
Traceability Matrix
to CSC Level
External InterfacesrS

Detailed Design
Requirements
Traceability Ma-
trix to CSU Level
Internal Interfaces r^
Source Listings V

^
^ IPR-R IPR-H IPR-L Hand Over Review

Figure 2: CIS Analysis and Implementation

The natural language description is then used as the
starting point for the CIS software analysis activity,
described in Section 5. The CIS software analysis ac-
tivity results in a Software Requirements specification
that is then used as the basis for the remainder of the
software design and development activity. For CCTT
SAF, these software design and development activities
follow the DOD-2167A standard as interpreted for the
CCTT program ([1], [2]), and reported on in [5]. The
standard requires that the developer maintain Soft-
ware Development Folders (SDFs), which contain de-
velopment and test information relating to the various
software components. The information in the folders
are used to build the various documents required.
Many of the CIS process products generated reside in
the SDFs. An automated requirements tracking tool,
Requirements Traceability Matrix (RTM) Tool is be-
ing used to track traceability from ARTEP to code.
Due to space limitations, for a detailed implementa-
tion of the DOD-2167A standard, refer to reference 2.

4. CIS Development Description

This section provides further detail on the process used
to develop the CIS, and the products that result.

4.1 CIS Development Process

The natural language Combat Instruction Set (CIS) is
obtained through the conversion of current training
and doctrinal literature into a structured, formatted de-
scription of how a training task is to be performed. The
natural language CIS therefore forms the description
of interactions between platforms and units that soft-
ware (S/W) engineers will implement in code. A CIS
describes tactical combat behavior at the unit and plat-
form level. After translation into software, CISs may
be utilized by SAF Operators to emulate specific unit
and platform behaviors in support of the execution of
CCTT operational plans.

For BLUFOR units, the CISs are based on current doc-
trine and tactics found in U. S. Army Training and
Evaluation Program (ARTEP) Mission Training Plans

276

(MTPs). For OPFOR units, the CISs are based on for-
eign military publications and the U. S. Army Training
and Doctrine Command (TRADOC) OPFOR Heavy
Guide. In addition, doctrinal references are consulted
for OPFOR behaviors, since training standards do not
exist for OPFOR units. In developing CISs, behaviors
are organized according to four major primitives
(move, shoot, search/observe, and communicate) and
include initial conditions, termination conditions, and
situational conditions (interrupts) that may trigger the
execution of other CISs. All developed CISs require
formal approval. This is provided by responsible
Army schools for BLUFOR doctrine, and TRADOC's
Threat Support Division for OPFOR doctrine.

The process for developing doctrinally correct CISs
was created jointly over several months between the
U.S. Army (TRADOC System Manager, CATT and
PM, CATT) and contractor Subject Matter Experts
(SMEs). This effort resulted in the current CIS format
and development process. As a result, CIS develop-
ment is an approved process that provides a doctrinally
correct combat behavior base for the S/W engineers to
code. These CISs will also form the basis for mainte-
nance activity on the delivered software. The CIS de-
velopment process consists of the following steps.

Analyze the ARTEP task. The process of developing
a BLUFOR1 CIS begins with an analysis of a specific
ARTEP task, e.g., 17-237-10-MTP, Tank Platoon,
Collective Task: React to Indirect Fires. First a review
of all doctrinal and training references pertaining to
this task is made. This includes information in the AR-
TEP, pertinent tables of organization and equipment
(TOE), Field Manuals, Training Circulars, Service
School Training Texts, and other doctrinal literature.
Prior to researching information for a specific CIS, in-
formation is generated for the unit type associated with
the CIS, e.g., Tank Platoon in the case of the React to
Indirect Fire CIS. This information is put into an ap-
pendix that is then attached to all CISs associated with
the given unit type. The appendix provides common
parameters for the unit, including capabilities and li-
mitations, organization, platforms and weapons sys-
tems, employment techniques, and MOVE/SHOOT/
COMMUNICATE/SEARCH/OBSERVE parameters,
and success/failure criteria defaults.

Develop the general description statement Next,
the CIS developer describes in a brief paragraph the

purpose of the task and how it is to be executed. This
paragraph is informational for the software engineers
so that they can get the "big picture" with respect to the
CIS.

Specify initial conditions. The CIS developer then
determines initial conditions and input data. Initial
conditions describe the conditions, state, or posture of
the unit at the commencement of the CIS, e.g., moving
in a formation, stationary, etc.

Input data includes specific data from external sources
that transform the generic CIS into an exercise—specif-
ic one. These data also must be known at the com-
mencement of the CIS, and include the unit's direc-
tion, speed of movement, movement technique, center
of mass, terrain limitations, known direction of threat,
etc.

Describe subtasks and standards. The CIS developer
then follows the ARTEPs subtasks and standards in ex-
act sequence order and addresses each subtask/stan-
dard with doctrinal descriptions of how it is to be per-
formed. Each performance "how to do" is described
in terms of move, shoot, search/observe and communi-
cate functions, as follows:

MOVE: Describe the sequence of steps that must oc-
cur to move the platforms or unit as associated with
this particular subtask/standard. Describe movement
directions, platform positioning and orientation, etc.
Include parameters for speed, interval, etc.

SHOOT: Describe target priorities, fire control and
distribution and engagement/termination conditions,
as appropriate. Include effective fire and ammunition
parameters, etc.

SEARCH/OBSERVE: Describe weapons orientation,
search/observe sectors, and search techniques, as ap-
propriate. Use degrees or clock method (the latter is
preferred). Include search ranges for various types of
targets, sector of observation, etc.

COMMUNICATE: Describe instructions to be dis-
seminated or messages to be sent based upon control
measures or other conditions/situation.

Describe situational interrupts. The developer then
determines conditions or events that apply to the CISs
that may cause immediate reaction by the unit or plat-
forms to engagements by the enemy. These are called
situational interrupts (Sis) and describe the conditions
that cause the SAF unit to respond to enemy activities

OPFOR CISs are developed in generally the same manner. The difference is that OPFOR CISs are not developed from ARTEPs (OPFOR

Heavy doctrine does not have ARTEPs). They are instead developed by describing OPFOR Heavy collective tasks actions and behaviors in the

order in which they occur. Additionally, the OPFOR CISs are not formatted into the MOVE/SHOOT/COMMUNICATE/SEARCH/OBSERVE
parameters but rather are written in sequential order as behaviors take place over time. The parameters are included in the sequential
description or are included in a separate appendix. This process provides the training unit with a doctrinally structured opposing force that can
be analyzed and studied to determine its strengths and weaknesses.

277

or to selected terrain features. There may be as many
as five such conditions: Contact with an enemy with/
without lethal weapons system; air attack; indirect
fire; and certain terrain conditions (e.g., defiles, close
terrain, obstacles that affect movement).

Describe termination conditions. Conditions are
then described that cause the CIS to be terminated and
the next event in the overall sequence of tactical activi-
ties to begin. Typically there are three such conditions:
enemy contact is broken or a new more dangerous en-
emy contact is present, arrival at a control measure re-
quiring change of formation, and a directed change of
mission.

Describe battlefield operation systems (BOS). Fi-
nally, coordination requirements needed to satisfy
each BOS area, if appropriate, are addressed. These
are essential considerations needed to cause coordina-
tion and synchronization on the combined arms battle-
field.

4.2 CIS Description

This section presents the sections contained in a typi-
cal CIS (sections shown in bold face type), and short
descriptions of each section, where the title of the sec-
tion is not self-explanatory (shown in italics). These
sections are graphically depicted in Figure 3, Figure 4,
Figure 5, Figure 6, and Figure 7.

43 CIS Excerpts

Figure 8 contains short excerpts from selected sec-
tions of an actual CIS — React to Indirect fire, as an il-
lustration of the types of material contained in the CIS.

Note that the individual sections are not complete, but
only contain enough material to illustrate the type of
material contained in each section.

5. CIS Software Analysis Description

The CIS software analysis process is responsible for
translating the behavior descriptions contained in the
English language CISs into detailed software require-
ments.

5.1 CIS Software Analysis Process

The CIS Software Analysis process provides a mecha-
nism for insuring that the detailed software require-
ments are faithful to the intent of the natural language
CISs. The input to the CIS software analysis activity
is the completed and approved natural language CIS
from the CIS development phase. The CIS software
analysis activity consists of the following steps.

Create state transition diagrams and activity
charts. State Transition Diagrams represent states,
events, and activities. Conditions/guards are used
when the event corresponds to checking a variable that
is already available. An example would be an order
that includes a variable that designates whether the
platoon is working as part of a company or indepen-
dently. Conditions are not used when the condition
would involve a complex calculation. In this case, an
activity is created that evaluates to the possible out-
comes of the decision making process. This activity
then produces a series of events such that each event
represents one of the conditions in the State Transition
Diagram.

COMBAT INSTRUCTION SET (CIS)
CCTT SEMI-AUTOMATED FORCES (SAF)

SECTION A. IDENTIFYING AND ADMINISTRATIVE DATA
1. CIS ID #: The sequential identifying number of the CIS, using

the letter B for BLUFOR and the letters HVY for OPFOR, followed by a
four digit number. Blocks of CIS numbers are assigned to specific BLUFOR
and OPFOR units.

2. DATE PREPARED OR UPDATED:
3. CIS TITLE: The name of the collective task or tactical behavior

to be represented.
4. TYPE UNIT: The type and level of the unit, e.g.. Tank Platoon.
5. RELEVANT ENTITIES/PLATFORMS: The entities that predominantly

characterize the type and level of the unit. For example, for a BLUFOR
tank platoon, this would be the M1A1/M1A2 MBT.

6. NAME OF PREPARER: PHONE NO.:
7. APPROVING GOVERNMENT AGENCY: The designation of the Government

agency validating the CIS, e.g., TSM-CATT, Fort Knox KY, or Threat Sup-
port Division, Fort Leavenworth, KS..

8. DATE APPROVED:
9. NAME OF APPROVING OFFICIAL:

Figure 3: CIS Section A - Identifying and Administrative Data

278

 1
SECTION B. DOCTRINAL FRAMEWORK FOR CIS

1. REFERENCES: Lists all doctrinal and training references from which
information is extracted in developing the CIS.

2. ARTEP TASK AND NUMBER: .Repeats the title of the collective task
exactly as it appears in the ARTEP. For OPFOR that does not have ARTEPs,
this paragraph identifies the source from which the task is drawn.

3. GENERAL DESCRIPTION OF TASK: Describes the purpose of the task and
how it is to be executed.

4. ARTEP SUBTASKS AND STANDARDS: Lists in narrative form (BLUFOR only)
an abbreviated version of the subtasks and standards of the collective
task as they appear in the ARTEP. Subtasks and standards are not included
for OPFOR, however, identification of other sources as appropriate, will
be made.

5. INITIAL CONDITIONS: Includes the condition, state, or posture of
the unit at the commencement of the CIS, e.g. , moving in line formation,
expectation of enemy contact, etc.

6. INPUT DATA: Includes specific data from external sources that
transfer the generic CIS into an exercise-specific one. These are the data
that must be known at the commencement of the CIS, such as the unit's
direction, speed of movement, movement technique, etc.

7. NOTES: Any explanatory notes that need to be included for clarity,
such as reference to schematics, doctrinal definitions, etc.

Figure 4: CIS Section B — Doctrinal Framework for CIS

SECTION C. ACTIONS TO BE TAKEN
1. SEQUENCE OF ACTIONS: Describes the precise sequential actions

that must occur in order to properly execute this tactical behavior. As
a means of traceability, actions are described in the order in which
the subtask and standard are delineated in the ARTEP. OPFOR actions are
described as they typically occur.

2. TIME-DEPENDENT ACTIONS/RESULTS: Includes such things as time
factors which may not be immediately apparent when "taking a snapshot"
on the battlefield but which can have a cumulative impact over time.
For example, "after 6 hours the battle position will have hasty mine-
fields in place."

Figure 5: CIS Section - Actions To Be Taken

SECTION D. CHANGES IN CIS STATUS
1. SITUATIONAL INTERRUPTS: Indicates those selected conditions or

events that cause immediate reaction by the unit to engagement by the
enemy.

2. TERMINATING CONDITIONS: Describes the conditions that cause the
CIS to be terminated and the next event in the overall sequence of
tactical activities to begin.

Figure 6: CIS Section - Changes in CIS Status

SECTION E. BATTLEFIELD OPERATING SYSTEMS (BOS) COORDINATION
BOS Coordination allows specific behaviors to be identified for BLUFOR
units to reflect autonomous coordination. BOS is a BLUFOR term, for
OPFOR this section is labeled COORDINATION. The BOSs are Maneuver, Fire
Support, Air Defense, Command and Control, Intelligence, Mobility/Coun-
termobility/Survivability, and Combat Service Support.

Figure 7: CIS Section - Battlefield Operating Systems (BOS) Coordination

279

3. GENERAL DESCRIPTION OF TASK:
The indirect fire drill is used to minimize the effects of artil-

lery, mortar, or chemical attack. If the platoon is on the move when
attacked by indirect fire, all vehicles maintain speed and direction
while moving out of the impact area. If the platoon is stationary, tanks
move to covered, turret-down positions and continue the mission, or move
out of the impact area. If the mission requires the platoon to remain
stationary, permission must be obtained from the company commander before
moving. The PL initially sends a SPOTREP to the company commander, fol-
lowed by, situation permitting, a more detailed SHELREP. (FM 17-15, p.
3-21; STP 17-19EK4-SM, p. 2-133)

6. INPUT DATA:
a. Specify the platoon's mobility condition (moving or station-

ary) .
b. If moving, specify the platoon's formation, movement tech-

nique, direction of movement, and speed (use overlay, OPORD, FRAGO, ter-
rain reasoning).

c. If stationary, specify the platoon's center of mass.
SECTION C. ACTIONS TO BE TAKEN

1. SEQUENCE OF ACTIONS:
1. Platoon is on the move and must react to indirect fires

[Condition #11:
a. Immediately executes evasive action to avoid the impact

area (V)
MOVE: All vehicles execute evasive action without stop-

ping or changing general direction (i.e., increase to dash speed and
execute sharp left and right oblique turns). (ARTEP 17-237-10-MTP, p.
A-15; FM 17-12-1, p. 12-101; IDT judgment)

Figure 8:

Generalize activities that span multiple echelon
levels. Any activity that is used by more than one eche-
lon level of the force structure is an excellent candidate
for the common activities table (see below).

Add short descriptions for States, Information-
flows, Events, Activities, and Controlling Activities
that are not self explanatory. The short descriptions
provide a high level description of the associated chart
element. Short descriptions are contained in the data
dictionary forms for the charts.

Complete the Mapping to CIS portion of the long de-
scriptions. Long descriptions contain CIS Mapping
statements, rationale (if any), and any notes or general
comments that are too long to fit in the short descrip-
tion field for the chart element.

Submit the CIS State Transition Diagrams, CIS Ac-
tivity Charts, CIS mapping in the long descriptions,
and short descriptions for approval by the Subject
Matter Experts (SMEs). This step forces both sides
of the CIS analysis process to meet and reach agree-
ment regarding the translation of the natural language
CIS description into software requirements.

Review the individual activities in the CIS Activity
Charts that are not already defined in the common
activities table. The common activities table contains
activities that apply across more than one CIS. Each of
the "new" activities that are not in the list are reviewed

CIS Excerpts

to determine if the activity could possibly be used in
another CIS. If it appears to be common, the level of
commonality is determined. (For example, is it com-
mon to both OPFOR and BLUFOR platoons or just
OPFOR platoons.) The potential common activities
are denoted on the CIS Activity Charts and may later
be added to the common activities table.

Review the CIS State Transition Diagrams and CIS
Activity Charts with the software lead engineer. At
this point the commonality level and names of the pro-
posed common activities are approved for inclusion in
the common activities table, if acceptable.

Complete long descriptions for the activities that
are not currently denoted as common to more than
one CIS. Long descriptions are required for activities
and their associated events. The activities requiring
long descriptions at this point include those which are
unique to the given CIS, as well as those that were pro-
posed for inclusion in the common activities table, but
have not yet been included. In this step the long de-
scriptions are also updated to reflect any assumptions
or agreements that were reached in the reviews by the
SME and the software lead engineer.

For all common activities (both newly designated as
common and preexisting common activities), com-
plete the fields Is activity and Implemented by Mod-
ule. These fields point to the location of the module

280

jSTW

which contains the definition of the activity along with
the activity's long description.

Update the common activity list to include the new
common activities. Once the new common activities
have been determined, the responsible software lead
engineer adds them to the common activities table.

For each newly defined common or unique activity,
write one or more SRS requirements The software
requirements for an activity are directly derivable
from the long description for the activity.

Enter the long definition for each information-flow
in the CIS Activity Charts that has not already been
defined in the main model. For information-flows,
the components of the flow, if there are any, are also
entered. In this case, each of the components are de-
fined as information-flows, including long descrip-
tions, if they do not already exist. For any informa-
tion-flow which has a range of values the values are
specified in the long description. For example, an in-
formation-flow which corresponds to the role of the
vehicle within a BLUFOR platoon can have the range
of values from role one to role four.

5.2 CIS Software Analysis Products

This section provides examples of the products that are
developed during the CIS Software Analysis activity.
These products have all been generated using the Sta-
temate CASE tool. These include state diagrams and
associated activity charts, the data dictionary

associated with the state and activity charts, the com-
mon activities table, a cross reference table that links
the CIS standards to their associated activities, and the
SRS as a final product. The examples are all derived
from the CIS software analysis activity associated
with the React to Indirect Fire CIS.

5.2.1 State Diagrams and Activity Charts
Figure 9 shows the state diagram for the BOO 13 pla-
toon control operations. Each of the boxes in the dia-
gram correspond to states that the platoon can be in
while accomplishing the React to Indirect Fire CIS.
The arcs in the figure represent transitions between
states. The identifiers in capital letters (e.g. RE-
QUEST_APPROVED) are labels for the transition, in-
dicating the reason that the transition occurred. The
conditions in square brackets ([]) represent guard
conditions (i.e. conditions that must be met for the
state transformation to take place). The format /st! fol-
lowed by an activity name in parentheses (e.g.
/st!(PLT_GENERATE_REQUEST_TO_CDR)) indi-
cates that the named activity is to commence at the
specified point. The referenced activities are then
shown with their associated data flows in the unit ac-
tivity chart, Figure 10, which shows platoon activities
to be accomplished while simulating the React to Indi-
rect Fire CIS. The boxes in dotted lines represent ex-
ternal components that have communications inter-
faces with the activity.

Chart: B0013_PLT_CONTROI, Date: 10-OCT-1994 16:28:18

B0013_PLT_CONTROL

CREATING_MOVE_OUT
^AREA_ORDERS 3

CREATED_QK_ORDERS
/stIIPLltCHBCK POSITION)

INDING_COVERED_
CONCEALED_POS>

CFINDING_COVERED_ 1
CONCEALED_POS>

CREATED_CR ORDERS
/st!(PLTJ ISTRIBUTE ORDERS)

EXECUTING_30013
CREW ORDERS>

AWAIT:NG_ORDERS

Figure 9: BOO 13 Platoon Control State Chart

281

r
Chart: B0013_PLT_AC7IVITY Date: 10-OCT-1994 16:30:18

B0013 PLT. ORDER

COMMAND
AND
CONTROL

VEHICLE_PROCRESS_REPORTS

STATIONARY

 b ENTITY_ L
SIMULATION |

:OVER_CONCEAL_PC

r B0013_CR_ORDER

I I

B0013 PLT ACTIVITY

»B0013_PLT_CONTROL J
1

PUT,

,

IDENTIFY_COVER
_CONCEAL_POS

IN_POSITION

f£\ COVER_CCNCEAL_POS

PLT_ CHECK_POSITION

CRETTED_CR
.ORDERS

CREATE_B 0013_CR_ORDER

PLT_GENERATE_REQUEST_
TO_CDR

PLT_DISTRIBUTE_ORDERS

Figure 10: B0013 Platoon Activity Chart

As an example of the correspondence between the var-
ious charts, consider the reference to
CREATE_B0013_CR_ORDERinFigure9. This ref-
erence occurs in the transition to CREAT-
ING_B0013_CREW_ORDERS. This transition can
come from several previous states, dependent on
whether the unit was moving or stationary, or whether
the unit was able to find a covered and concealed posi-
tion. The actions specified by the
CREATE_B0013_CR_ORDER activity are to be ac-
complished while the unit is in the state CREAT-
ING_B0013_CREW_ORDERS. The
CREATE_B0013_CR_ORDER activity is then speci-
fied on the BOO 13 platoon activity chart, Figure lOIn
this chart, CREATE_B0013_CR_ORDER is shown
providing a data output to the PLT_DIS-
TRIBUTEjORDERS activity, namely the BOO 13
crew order. It has a data input from the IDENTI-
FY_COVER_CONCEAL_POS activity, the covered
and concealed location. It provides a logical output to
the BOO 13 platoon control chart, the

CREATED_CR_ORDERS flag, indicating that the
crew orders have been completed. All of the activity
descriptions for this activity are given in the data dic-
tionary entry associated with the activity (see Section
5.2.2). The software requirements associated with the
CREATE_B0013_CR_ORDER activity are then
derived from the combination of its reference in the
BOO 13 state transition diagram, its relationship with
the other entries in the BOO 13 activity chart, and its de-
scription in the data dictionary.

5.2.2 The Data Dictionary
The data dictionary entries provide backup informa-
tion pertaining to the state and activity charts pres-
ented in the previous section. In particular, the notes
section documents any interpretation of the CIS that
may have been required during the CIS Software Anal-
ysis activity. An example of a data dictionary entry
from the React to Indirect Fires state and activity
charts is given in Figure 11.

282

Activity CREATE_B0013_CR_ORDER
Defined in chart: B0013_PLT_ACTIVITY
Type: BASIC
Long description:
CISSTMT.C.1.1 &2
DESCRIPTION: Crew Order to Perform BLUFOR Tank Platoon React to Indirect Fire is created us-
ing the inputs listed below.
INPUTS:
Mobility condition<HR>
Formation <HR>
Movement technique <HR>
Direction <HR>
Speed <HR>
Route <HR>
Center of mass
OUTPUTS:
CREATE_B0013_CR_ORDER
RATIONALE: None.
NOTES:
#2- If platoon is stationary (input) and movement request is denied platoon stays in position (turret
down positions). Any tanks not in turret down positions move to nearest turret down positions. For
tanks staying in position the position given will its current position. Possible CISs using this condition:
B0034 .Execute Platoon Defensive Mission.
#3- If platoon is stationary (input) and movement request is approved platoon moves 600m out of
impact area and then moves into covered and concealed positions, taking evasive action and main-
taining wingman orientation. Platoon then goes into awaiting orders. Possible CISs using this condi-
tion: B0008 .Execute Herringbone Formation.
#1 - If platoon is on the move platoon moves out of impact area without changing direction using
evasive action (at dash speed and execute sharp left and right oblique turns). Platoon moves at least
500m from initial point of impact.

Figure 11: Example from Data Dictionary

5.2.3 CIS-to-Activity Cross Reference Table derived during the CIS software analysis process.
The CIS-to-Activity Cross Reference Table provides Figure 12 shows an example of a cross reference table
the link between the CIS standards and the activities created for the React to Indirect Fire CIS.

B0013

CIS Statement Cross—Reference Report

Statement Activity /Rationale

C.1.1 CREATE_B0013_CR_ORDER
C.1.2 CRE ATE_B0013_CR_ORDER
C.1.2.C.1 PLT_GENERATE_REQUESTTO_CDR
C.1.2.C.1 SHELREPs are not implemented in SAF. But the information will be

included in Spot reports which are implemented as a general background
routine and not shown in the charts.

C.1.2.C.2 PLT_GENERATE_REQUEST_TO_CDR
C.1.2.C.2 PL specifies a new formation, reassembles the platoon, and continues

mission. These actions are represented by the state awaiting orders.
C.1.2.C.3 IDENTIFY C C POS
C.1.2.C.3 PLT_GENERATE_REQUEST_TO_CDR

Figure 12: Example of Cross Reference Table

283

5.2.4 Common Activities Table
This section contains an excerpt from the Common
Activities Table that pertains to the execution of the
React to Indirect Fires CIS. Common activities are ac-

tivities that are performed across units, echelons, or
forces which are alike in their use and functionality.
The Common Activities Table sample is shown in
Figure 13.

Activity Name Description

IDENTIFY_COVER_CONCEAL_POS This activity finds a set of covered and concealed positions for an
entity. The covered and concealed position will offer cover from
entities that are approaching from a given direction. In addition,
the position will be within a specified area and be able to conceal
the entity.
Inputs:

Bounding Area (Rectangle)
Enemy Location
Entity Physical Characteristics

Outputs:
Covered and Concealed Position

Figure 13: Excerpt from Common Activities Table

The following list provides examples of various primi-
tive state activities which have been developed out of
the analysis:

Adjust Spacing

Cease Fire

Determine Assembly Area Positions

Determine Sectors of Fire

Estimate Enemy Size

Follow Route

• Generate Resource Report to Head-
quarters

• Move to Position

• Orient Weapon

• Scan Sector

• Vehicle Tether to Platoon

5.2.5 SRS Products
Figure 14 presents an excerpt from the SRS document
directly related to the React to Indirect Fire CIS.

RCG93010: The Combat Unit Tactics capability shall request covered and concealed positions from the
Environment capability when any of the following occur:
a. BLUFOR Tank Platoon executes a React To Indirect Fire Order
b. BLUFOR Tank Platoon executes an Occupy a Platoon Battle Position Order
c. BLUFOR Tank Platoon executes a Perform Platoon Fire and Movement Order
d. BLUFOR Mechanized Infantry Platoon executes a React to Indirect Fire Order
e. BLUFOR Mechanized Infantry Platoon executes a Hasty Dismount Order
f. BLUFOR Mechanized Infantry Platoon executes a Mount a Platform Order
g. BLUFOR Mechanized Infantry Platoon executes a React to Contact (Mounted) Order
h. OPFOR Motorized Rifle Platoon executes a Remount Platform Order
i. OPFOR Motorized Rifle Platoon executes an Occupy a Defensive Strong Point Order
j. OPFOR Motorized Rifle Platoon executes a Fire Engagement Order
k. OPFOR Motorized Rifle Platoon executes a Withdraw/Disengage Order
1. OPFOR Motorized Rifle Platoon executes an Occupy a Temporary Defensive Position Order
m. OPFOR ATGM Squad executes an Occupy a Defensive Position Order
n. OPFOR Motorized Rifle Company executes a Fire Engagement Order
o. OPFOR Motorized Rifle Company executes an Assault an Enemy Position Order.System Component:
SAF
Analysis Activity: Identify_Cover_Conceal_Pos

Figure 14: Excerpt from SRS Document

284

6. Conclusions

The techniques described in this paper have been suc-
cessfully used to describe and implement combat be-
haviors for the CCTT SAF program. The CIS descrip-
tion of behaviors has proven to be useful not only on
the CCTT SAF program, but should also be of benefit
to any DIS simulation program that requires a descrip-
tion of appropriate tactical behaviors. Using formal
CIS software analysis techniques helped to bridge the
gap between Subject Matter Experts, who know a
great deal about tactical doctrine but very little about
software development, and software engineers, for
whom just the reverse is true.

7. References

[1] Defense System Software Development. DOD~
Standard-2167A. February 29, 1988.
[2] CCTT Software Development Plan, Report Num-
ber 94-CCTT-LFS-00005. May 27, 1994.
[3] Turning Combat Instruction Sets into Software.
CCTT Design Document, January 27, 1995.
[4] McEnany, B.R. and Marshall, H. CCTT SAF Func-
tional Analysis. Fourth Conference on Computer Gen-
erated Forces and Behavioral Representation. May
1994.
[5] Ourston, D. and Bimson, K. Integrating Heteroge-
neous Knowledge Processes in the SAF Behaviors Im-
plementation. Fourth Conference on Computer Gen-
erated Forces and Behavioral Representation. May
1994.

8. Author's Biographies

Dirk Ourston was responsible for the Behaviors soft-
ware development activity during the early phases of
the CCTT SAF program. He is currently working on

internal research projects that seek to extend the rea-
soning capabilities associated with SAF command en-
tities. He has a PhD in computer science from the Uni-
versity of Texas at Austin, with a specialization in
artificial intelligence. He has over 25 years of experi-
ence in software design and development.

Ed Chandler is the on-site Subject Matter Expert
(SME) for SAF. He has developed, written/reviewed
extensive natural language CISs. Currently Mr. Chan-
dler is reviewing CIS analyses of those CISs to be in-
cluded in SAF. He has 30 years experience in the
Army's joint tactical operation planning and execu-
tion, and has commanded from platoon through Bri-
gade.

Elsie Loh is currently responsible for the CCTT SAF
Behaviors CIS Analysis effort. She has a MSE in Com-
puter Engineering from the University of Central Flor-
ida. She has 15 years experience in software design
and development.

Dave Blanchard is currently responsible for the Be-
haviors software component of the SAF. He has a BS
in computer science from the Virginia Polytechnic
Institute and State University. He has 8 years experi-
ence in the design and implementation of Ada soft-
ware.

Henry Marshall is the government lead on the CCTT
SAF Concurrent Engineering team. Most of his duties
have been in software and CGF acquisition support for
STRICOM and NTSC. He received a BSE in Electri-
cal Engineering and an MS in Systems Simulation
from the University of Central Florida.

285

Implementation Of A Tactical Order Generator For Computer Generated
Forces

David R. Pratt, Howard Mohn, Robert McGhee
Department of Computer Science

Naval Postgraduate School
Monterey, CA 93943
pratt@cs.nps.navy.mil

1. Abstract

The Modular Semi-Automated Forces (ModSAF)1

system has shown itself to be a valuable tool to gener-
ate forces in the synthetic battlefield (Calder et. al.
1993) (Loral 1993). Major projects, such as the Syn-
thetic Theater of War (STOW) call for it use to simu-
late a significant number of entities. While it has prov-
en quite capable of this, its modeling of the order gen-
eration process is some what lacking. Focusing
exclusively on the third paragraph, Execution, of the
Army's five paragraph order. The purpose of this work
is to develop an interface that would more closely
model the generation of the five paragraph order. A
key component of this was the generation of both a
ModSAF scenario and a printed five paragraph order.

2. Introduction

The creation of the scenarios form a five paragraph or-
der required modifications to the current mission plan-
ning and task assignment process. Primarily, this in-
volved the use of the Rational Behavior Model (RBM)
to generate the task frames (Byrnes et. al. 1993). RBM
was developed primarily as a means of mission plan-
ning and control for autonomous robots. Extending
this concept to address the problems of mission plan-
ning for computer generated forces allows the human
greater flexibility and capability in controlling large
numbers of computer generated forces in a large-scale
virtual environment. *

A prototype mission planner was added as a library.
Using the US Army's five paragraph operations order
as the basis, modifications and enhancements were
made to the standard Modsaf GUI editors to allow the
user to generate the five paragraph orders. The editors
provide information to the framework about which ar-

1. This paper assumes a basic knowledge of
and familiarly with ModSAF. If the reader is
unfamiliar with the system, please refer to the
ModSAF User's Guide for an overview.

tificial intelligence modules operate on the data input
from the order, generating ModSAF tasks that are sub-
sequently executed by the company. Currently, the in-
put is parsed directly into a series of company-level
ModSAF mission tasks.

3. The Five Paragraph Order

The US Army's five-paragraph operations order
(OPORD) is a standardized document that enables a
trained reader to rapidly develop an understanding of
the overall situation, mission, commander's intent for
the operation, and tasks of subordinate units. This for-
mat is universally understood throughout the US Ar-
my, and thus is an intuitive way for a military user to
assign orders to subordinate units. The five paragraphs
are Situation, Mission, Execution, Service Support,
and Command and Signal. Figure 1 contains a sample
OPORD generated by the Tactical Order Generator
(Army FM 10105-1) (ARMY FM 71-1).

Map overlays containing maneuver graphics are es-
sential accessories to the basic text order. Overlays
serve to graphically illustrate the contents of the order.
In most cases, the OPORD text will refer the reader to
these overlays, especially within the Situation and Ex-
ecution paragraphs.

4. Initial Attempt: Distributed Design Strategy

The initial effort was focused on the development of a
stand-alone application that would allow the use of a
truly object-oriented language, such as C++. This lan-
guage, unlike K&R C, supports stronger type-check-
ing, polymorphism, and object inheritance. This was
initially selected to make the application development
easier, as C++ supports stronger type checking, and
the use of objects for mission selection would closely
follow the object-oriented paradigms in the Common
Lisp Object System (CLOS) and CLIPS (Giarratano
1993) (Steele 1990) (Stroustrup 91).

A number of lessons were learned in pursuing this ap-
proach. The selection of a particular language depends

287

Operations Order for A
PO Database Number 1/1/359

Paragraph 1: Situation
a. Enemy forces.
Total Number of Enemy Combat Systems in Area of In-

terest: 83

b. Friendly Forces.
Total number of Friendly Combat Systems in Area of In-

terest: 60
Number of Tanks: 14
Number of IFV's: 4
Number of Other Vehicles: 2

c. Area of Interest (Company Level).
Southwest Comer Location: UTM Grid: 10SFQ546773
Southeast Comer Point: UTM Grid: 10SFQ595771
Northwest Comer Point: UTM Grid: 10SFQ542795
Northeast Comer Point: UTM Grid: 10SFQ593795

Paragraph 2: Mission
TF 6-40 AR/Berlin Bde attacks 45 minutes from now,

from point UTM Grid: 10SFQ562784 to point UTM
Grid: 10SFQ545788

Paragraph 3: Execution
a. Concept of the Operation
This Mission will be executed in 4 phases.
b. Detailed Instructions - A Company:
Phase 1:

Attack along axis UTM Grid: 10SFQ551782
Assault from attack position, location UTM Grid:
10SFQ547785 to seize objective, UTM Grid:
10SFQ545788

Phase 2:
Transition from phase 1 to phase 2: on order.
Defend battle position UTM Grid: 10SFQ545788
Oriented on the TRP located UTM Grid:
10SFQ538792
Left Limit: UTM Grid: 10SFQ533789
Right Limit: UTM Grid: 10SFQ542795

Phase 3:
Transition from phase 2 to phase 3: on order.
Conduct a road march, Start Point UTM Grid:
10SFQ562784
End at Release Point UTM Grid: 10SFQ573805

Phase 4:
Transition from phase 3 to phase 4: continue.
Occupy Assembly Area at location UTM Grid:
10SFQ584805

Paragraph 4: Service Support
a. Supply

Supplies on hand:
Ammunition basic load: 100.00.
Fuel basic load: 100.00.
Resupply Points:

Ammunition Resupply Point Location: UTM Grid:
10SFQ582780
Fuel Resupply Point Location: UTM Grid:
10SFQ580784

b. Services
Battalion Aid Station Location: UTM Grid:
10SFQ584784
Admin Log Operations Center Location: UTM Grid:
10SFQ580778

Paragraph 5: Command & Signal
a. Signal.

Current CEOI in Effect.
b. Command.

Chain of Command is
Commander
Third Platoon Leader
First Platoon Leader
Second Platoon Leader

Figure 1. Sample Five Paragraph Operations
Order Generated by the OPORD System

significantly on the language of the preexisting code.
Unless one is willing to do a complete rewrite of the
program, the programming language should be the
same as the majority of the code that will be reused in
the new application. A minimalist approach to code
modification and extensibility should be pursued
whenever possible. In attempting to use the large body
of preexisting ModSAF code, changes were made that
were inconsistent with good programming practices.
The integration of the new code with the old code was
not well-defined, and thus allowed inconsistencies in
the application's execution.

5. Second Attempt: Integrated Design Strategy

The second attempt was much more successful, and in-
volved the building of a separate library and incorpo-
rating it into the existing ModSAF code. This new li-
brary — "LibOpord" — was created and integrated in
the same manner as the other subordinate ModSAF li-
braries. Analysis of the code structure for both ver-
sions of ModSAF revealed that the unit operations ed-
itor was the best choice for the insertion of the code to
initialize and call LibOpord. This is a base editor de-
fined in the LibUnits library that allows the user to en-
ter a set of tasks for the selected unit, its subordinate
units (if any), and individual vehicles. It links these
tasks together through operator defined phase transi-
tions, called enabling tasks. The unit operations editor
was chosen as it is the one that appears when a unit or
a vehicle is selected from the Plan View Display. As a
result, a minimal change to one existing ModSAF li-
brary was required, in addition to the inclusion of the
header file in the main.c preprocessor directives.

5.1 Integration of the Mission Planner Into

ModSAF

The integration of LibOpord into the ModSAF library
set was done in accordance with (Loral 1993). The li-
brary requires the following modifications to LibUnits
to become available to the user:

• Modification of the data structure within
LibUnits to include a Motif pushbutton widget
that will call the LibOpord editor, add a pointer
to the LibOpord data structure, and define
LibOpord as an additional sub-editor.

• Inclusion of the initialization function within
the LibUnits initialization routine
("units_create_editor(...)) that will allocate
memory for the data structures and build the
Motif GUI widget tree.

• Addition of a callback

288

(units_operations_order(...)) within LibUnits
that handles the pushbutton mouse event.

Initialization of LibOpord is done as part of the Li-
bUnits initialization steps; no other library requires
modification. This form of library initialization and
utilization is identical to the way other ModSAF edi-
tors are created and called.

5.2 Graphical User Interface Development

The base operations order editor was intended to be
built using the LibEditor functions, but this proved un-
feasible due to the irregular nature and complexity of
the editor. Instead, the editor was created using a Motif
widget tree that allows the programmer to build a cus-
tomized GUI (Figure 2). The root of the widget tree is
attached to the ModSAF base GUI, forming a branch
that is displayed when called.

The subordinate editors were developed using the
LibEditor library. The LibEditor create function is
called in the LibOpord initialization function for each
subordinate editor. Currently, there are nine subordi-
nate editors that are initialized in this manner. Every
subordinate editor has two corresponding functions
that are called during run-time when the editor is dis-
played. The first function hides the base editor and
calls a LibEditor function to display the selected edi-
tor. The second function collects the user input data
when the editor is exited and control returns to the base
editor.

5.3 Implementation Limitations

The OPORD editors constrain the user to a limited set
of choices, which is significantly different than a free-
text OPORD. There are several obvious reasons for
this:

a. Natural Language Processing

Limitations

The limitations inherent in natural language process-
ing do not allow for rapid integration of the data input
to the other modules in the mission planner. This prob-
lem is a subject of ongoing research; such a data entry
system would be too complex and cumbersome to im-
plement here.

b. Mission Simplification

One of the goals of the mission planner is to simplify
mission determination and selection by the human. An
extremely rich OPORD editor would only serve to
complicate the generation of company level missions.
Instead, a robust expert system should be able to com-
pensate for the simplicity of input by reasoning about
the circumstances of the input data and making deci-
sions in the context of the assigned mission.

5.4 Data Formatter

The purpose of the Data Formatter is to ensure the ar-
tificial intelligence submodules of the Mission Selec-
tor/Evaluator receive the user input data in a usable

ModSAF GUI

OpordBas e (Box)

SystemFrame (Frame)

SystemRC (Row-Column)

— Operations Order (Label)
- Assign (Pushbutton)
 Cancel (Pushbutton)
'— Print (Pushbutton)

org_frame (frame)

Organization
Display
Widget Set

SubEditors (Frame)

I
SubEditorRowCol
(Row-Column)

Emat (Row-Column)

Situation
(Pushbutton)

Service Support
n) (Pushbutton)

Mission
(Pushbutton)

Command & Signal
(Pushbutton)

MissionBox (Box)

Phase %i (Label)"

Separator Phases (Box)

Transition %\ (Label)—

RadioMission (Radio Box)

Attack Move
(Radio Button) (Radio Button)

Defend Halt
(Radio Button) (Radio Button)

Continue
(Radio Button)

RadioPhase (Radio Box)

On Order
(Radio Button)

Control Measure
(Radio Button)

Msn Complete
(Radio Button

Figure 2. OPORD Widget Tree

289

form. The Data Formatter is a set of data structures and
the code that converts the data from one structure to
the other. Its current implementation is as a structure
of structures. There is currently no modification being
done as the artificial intelligence submodules are not
developed. The user interface through LibEditor re-
quires that the data displayed and entered must be
placed in a separate structure for later processing. To
simplify this procedure, a base structure is defined that
contains the five paragraphs in separate structures
(Figure 3). This compartmentalization of data allows
one portion of the structure to be modified based on the
user's selection.

)PORD_MISSION_DAT7

SITUATION

MISSION

SUPPLY_SVCS

EXECUTION

f C OMMAND.SIGNA .

Phase

sition | p Transition Phase_Missioi

Figure 3. Compartmentalized Data Structure

The OPORD_MISSION_DATA structure aggregates
the information from all editors into one structure.
This approach provides the capability to easily change
the data parameters in one centralized structure. This
area is ripe for additional enhancements; the main dan-
ger here is overwhelming the user with data. The focus
here is to request the essential data (keep it simple) and
let the AI reason about the context and situation, and
modify those parameters as required. Currently, the
maximum number of phases for a given operations or-
der is four. This limitation was a design choice. Most
battalion-level operations orders never exceed four or
five phases; this number can be changed through ad-
justing the value of the array variable through the con-
stant MAX_OPORD_PHASES.

5.5 Mission Selector/Evaluator

This module was not implemented due to the time con-
straints involved. The shell about which the Mission
Selector/Evaluator operates was successfully complet-
ed, but the initial attempts to develop a distributed mis-
sion planner consumed the available time. This sub-
module could be the subject of future work.

5.6 ModSAF Orders Generator

The ModSAF Orders Generator is also a prototype
module. It makes extensive use of the new
LibTaskUtil library, which is designed to allow direct
creation of specified task frames without calling the
task's associated editor. This allows libraries like Li-
bOpord to generate a set of task frames and assign
them to a unit, without human intervention. The li-
brary was modified by J. E. Smith to allow multiple
task frames to be linked by enabling tasks. These mod-
ifications will become generally available in the next
version update of ModSAF (Version 1.3). A single
reader file was modified to include company-level
tasks; the associated editors and libraries were passed
to the taskutil_init function during initiation of the op-
erations order structures and editors.

6. Summary

The distributed design strategy was more involved, but
was probably due to faulty methodology than the strat-
egy itself. The integrated design strategy resulted in
the rapid development of a proof-of-concept proto-
type. While this strategy is the simpler of the two, it
may be rendered unusable due to the potential resource
requirements of the artificial intelligence modules.
The prototype terrain reasoner, written in CLIPS, re-
quires sixty seconds to determine a single route using
A* search on a three kilometer by three kilometer ter-
rain. Expanding this to cover an "average" battalion
area of interest of five by five kilometers could easily
triple the time required. Additionally, this would re-
quire heavy use of system resources, which may not be
available due to the demands of ModSAF. Combining
this submodule with other expert system submodules
may make the integrated design strategy unfeasible,
however, its advantages are the ability to rapidly de-
velop and test a module within the framework of Mod-
SAF.

The initial results from the prototype resulted in a sig-
nificant simplification of task generation for the user.
One operations order phase generated on the average
two and a half ModSAF phases, with no requirements
for additional parameter changes. Further research is
needed, however, to fully determine the resource im-
plications of including AI modules in an already com-
plex system. The use of the operations order as a
means to generate a company-level mission simplifies
mission generation, but a robust expert system is need-
ed to effectively convert the operations order input da-
ta to a set of ModSAF tasks.

290

7. Acknowledgments

The work described in this paper was funded by STRI-
COM. The work would not have been possible with
out the help of Mr. Joshua Smith and Dr. Andrew Cer-
anowicz, both of LORAL-ADS.

8. References

US Army Field Manual 101-5-1, Operational Terms
and Graphics. Headquarters, Department of the
Army, October 1985.

United States Army, Field Manual 71-1, The Tank
and Mechanized Infantry Battalion Task Force.
Headquarters, Department of the Army, October
1988.

Byrnes, R. B., Nelson, M. L., Kwak, S.,McGhee, R.
B., Healey, A. J. "Rational Behavior Model: An
Implemented Tri-Level Multilingual Software
Architecture for Control of Autonomous
Underwater Vehicles," Proceedings of the 8th
International Symposium on Unmanned
Untethered Submersible Technology, University
of New Hampshire, Durham, NH, September 27-
29 1993, pp. 160-178.

Calder, R. B., Smith, J. E., Courtemanche, A. J., Mar,
J. M. F, Ceranowicz, A. Z., "ModSAF Behavior
Simulation and Control," Proceedings of the
Third Conference on Computer Generated Forces
and Behavioral Representation, University of
Central Florida, Orlando, FL, March 17-19 1993.

Giarratano, J. C, CLIPS User's Guide. CLIPS
Version 6.0. Lyndon B. Johnson Space Center
Information Systems Directorate, Software
Technology Branch (NASA), 1993.

Loral ADS, "ModSAF Software Architecture Design
and Overview Document," 1993.

Loral ADS, "A Modular Solution for Semi-
Automated Forces ~ ModSAF, An Overview,"
Loral ADS Briefing Slides, 1993.

Steele, G. L.. Common LISP. 2d Ed., Digital Press,
1990.

Stroustrup, B.. The C++ Programming Language. 2d
Ed., Addison-Wesley, 1991.

9. Authors' Biographies

Dr. David R. Pratt, an Assistant Professor in the De-
partment of Computer Science at the Naval Postgrad-
uate School. He is extremely active in the DIS commu-
nity as both a developer and information resource for
systems development and network integration.

Maj. Howard Mohn, USA, earned his Masters in Com-
puter Science from the Naval Postgraduate School in

September, 1994. A former Armor Officer, he current-
ly and Military Intelligence Officer serving in a bunker
somewhere in Germany.

Dr. Robert B. McGhee is a full Professor in the Depart-
ment of Computer Science of the Naval Postgraduate
School. A Fellow of the IEEE, he lead the Ohio State
Walking Machine project. His current interests include
dynamics and autonomous entity interaction.

291

Session 6b: Route Planning I

Karr, UCF/IST
Longtin, Loral ADS
Schricker, UCF/IST

Unit Route Planning

Clark R. Karr and Sumeet Rajput
Institute for Simulation and Training

3280 Progress Dr., Orlando, FL 32826
ckarr@ist.ucf.edu

1. Abstract

This paper presents a new Unit Route Planning
Algorithm (RPA) based on a novel abstraction
called the Obstacle Segment Abstraction (OSA).
The OSA is a space efficient representation of
obstacles within a terrain database The Unit Route
Planning Algorithm combines the OSA with two
route planning approaches, regular grid and vertex
graph. An efficient search algorithm, A*, is
applied to the grid to determine the optimal route.
Factors in addition to distance are incorporated into
the route cost determination to introduce
trafficability and cover and concealment in the
evaluation of the potential routes. The RPA has
several strengths. It is scalable. It considers
distance, trafficability, and cover and concealment.
It generates multiple routes and identifies
chokepoints. Finally, it can be used to find and
progressively refine lengthly, precise routes.

2. Route Planning

Route planning occurs at multiple levels within
CGF systems. At the lowest level, routes for
individual vehicles are prepared that allow vehicles
to move from one point to another. Vehicle routes
typically consist of a series of line/curve segments.
These piecewise routes are represented as a list of
points (called "route points") and the vehicle is
expected to travel along a line/curve between route
points. A companion paper (Karr 1995) describes
a mechanism for avoiding moving obstacles while
traversing a route.

At levels above the vehicle, routes are prepared for
groups of vehicles, i.e. units (platoons, companies,
battalions). As the hierarchy of units is ascended,
the unit's size and therefore the width of the route
increases. Unit routes occur within "movement
corridors" reflecting the fact that, formations and
tactics aside, the vehicles' routes are only
constrained to be within the corridor. A corridor
has sufficient width for a unit to move through it.
Planning routes for units of differing sizes may
seem a simple matter of generating a route for a
single vehicle and treating that route as the center

of a corridor. While feasible, this approach retains
the complexities of creating precise vehicle routes
which increases the computational expense/time
above that required for unit route planning.

This paper details research into route planning for
military units. A novel approach based on the
combination of two disparate route planning
approaches is presented that:

1. is scaleable, suitable for battalion through
vehicle route planning,

2. computationally fast,
3. considers distance, cover and concealment,

and trafficability,
4. generates multiple acceptable routes

between points within unit boundaries, and
5. finds and reports chokepoints within the

routes.

This research has been done in conjunction with the
development of a Computer Generated Forces
(CGF) Automated Mission Planner capability. To
generate and evaluate multiple courses of action to
fulfill a mission, the Mission Planner requires
multiple, tactically sound unit routes and the
identification of chokepoints along the routes (Lee
1994).

2.1 General Path Planning Approaches

Motion planning with particular emphasis on robot
path planning and robot manipulator path planning
has seen considerable work, see Hwang et. al.
(1992) for a survey. There are four broad
categories of path planning approaches:
free/blocked space analysis, vertex graphs analysis,
potential fields, and grid (regular tessellation)
based algorithms (Thorpe 1984). Each approach
has strengths and weaknesses. See companion
paper (Karr 1995) for a discussion of free/blocked
space analysis and potential fields. The discussion
of the vertex graph and regular grid approaches is
repeated here.

In the vertex graph approach, the endpoints,
vertices, of possible path segments are represented

295

(Mitchell 1988). This approach is suitable for
spaces that have sufficient obstacles to determine
the endpoints; determining the vertices in "open"
terrain is difficult. In addition, representing only
path vertices creates three other difficulties. First,
trafficability over the path segments is not
represented; route segments between arbitrary
vertices are typically "open" or "blocked". Second,
factors other than distance can not be included in
evaluating possible routes. In the military
simulation domain, concealment and cover are
important factors in route planning. Third, because
the width of route segments is not represented one
of two problems occurs. Chokepoints (narrow
sections of routes) are marked "blocked" or
"open". If "blocked", acceptable routes are
discarded. If "open", unacceptably long, narrow
routes are accepted. Thus, the vertex graph
approach has difficulty representing route width.

In the regular grid approach, a grid overlays the
terrain, terrain features are abstracted into the grid,
and the grid rather than the terrain is analyzed.
Each grid cell is typically marked as "open" or
"blocked". Quadtrees are an example of the
regular grid approach (Mitchell 1988). Grid routes
are converted into terrain routes typically by adding
the z-coordinate to the xy-coordinates in the grid
route. This approach simplifies the analysis but has
two disadvantages. First, "jagged" paths are
produced because movement out of a grid cell is
restricted to four (or eight) directions
corresponding to the four neighboring cells (eight
to allow diagonal moves). Second, the granularity
(size of the grid cells) determines the smallest
"opening" that can be identified. If the granularity
is too large, small openings in obstacles (e.g.
bridges over rivers) are lost. A small granularity is
required to capture small openings which increases
the computational expense of the analysis.

3. Unit Route Planning

The Route Planning Algorithm (RPA) presented
here combines a unique obstacle abstraction with
two route planning approaches, regular grid and
vertex graph. A regular grid overlays the terrain.
The size and location of the grid is determined by
the unit boundaries of the unit planning the route.
The scale of the grid is determined by the unit size;
grid scales less than the typical "frontage" of the
unit give good results. For example, grid scales
from 75 to 125 meters are suitable for platoons.
250 to 500 meters for companies, and 750 to 1000
meters for battalions. Obstacles on the terrain are

encoded in the grid using a novel abstraction called
the Obstacle Segment Abstraction (OSA). The A*
search algorithm is applied to the grid to determine
the optimal route. Cost factors for distance,
trafficability, and cover and concealment are
included in the evaluation of the potential routes.

This work was performed in the 1ST CGF Testbed,
an environment for testing CGF behavioral control
algorithms developed under the sponsorship of
ARPA and STRICOM (Danisas et. al. 1990,
Gonzalez et. al. 1990, Petty 1992, Smith et. al.
1992a, and Smith et. al. 1992b).

3.1 Terrain Grid

CGF systems operating within DIS type
environments rely on a representation of terrain
termed a Terrain Database (TDB). This research
was performed using the SIMNET TDB which
encodes terrain and terrain features as polygons;
these are encoded in turn in edge and vertex lists.
This TDB contains features such as treelines,
canopies, rivers, and lakes. These features are the
physical obstacles. The RPA is applicable to any
polygonal TDB format (e.g., ModSAF's CTDB
(Smith 1994)) and to TDB formats that represents
obstacles as distinct features.

When a route is requested, a regular grid is laid
over a portion of the terrain. The location and size
of the grid are determined by the unit boundaries
and the orientation of the grid is determined by the
orientation of the destination to the starting
location. The granularity of the grid (the size of
each grid cell) is determined by the unit size. Each
grid cell has eight neighboring grid cells. The cells
to the north (N), south (S), east (E), west (W) are
the orthogonal cells and the cells to the northeast
(NE). northwest (NW), southeast (SE). and
southwest (SW) are the diagonal cells.

NW 0 NE

W 0
SW a SE

Figure 1 Neighboring cells

296

3.2 Obstacle Segment Abstraction

The terrain underlying the grid is analyzed and
each obstacle in encoded in the grid. The encoding
uses a small set of linear segments called the
Obstacle Segments (OSs). The different types of
OSs are: horizontal and vertical, diagonal, and
tunnel as shown in Figure 2.

example, Figure 3 shows some notional area of
terrain and Figure 4 shows the resulting OSA grid.

* i *

Horizontal and Vertical OS

Diagonal OS

Tunnel OS

Figure 2 Obstacle Segments

Each OS is identified with an Obstacle
Identification Number (OIN). The OSs
representing a single terrain feature are assigned
the same OIN. Thus, each OSA represents a single
terrain feature and is the set of OSs with the same
OIN.

Treating physical obstacles as OS abstractions is
the basis for OSA route planning. The precise
polygonal details of the obstacle are be dispensed
with and an encoded representation is used in its
place. As will be seen, the grid granularity
determines the "correlation" error between the
feature and its abstraction. So long as the
granularity reflects the unit size, the correlation
error is not a significant issue.

3.2.1 Creating Obstacle Segments
The intersections of terrain obstacles and the edges
of the grid cells are determined and converted to
OSs. An OS is created between the sides of the
two entry points of an obstacle into a grid cell. An
obstacle that does not exit a cell does not impose a
barrier to travel within the cell; a vehicle can
simply move around it.

Obstacles with width (e.g., rivers and lakes) will
sometimes be represented by more than one OS in a
grid cell. This occurs when the edges of the
obstacle cross different grid cell boundaries. For

/

c~ r
~>— k y

canopy

Figure 3 Notional Terrain

The OSs representing each obstacle are assigned
unique OINs. In this example, the river's OSs are
assigned the id "1" and the canopy's OSs are
assigned the id "2". The river crossing the corner
of a grid cell causes the river's OSA representation
to include two cells with multiple OSs.

1
/\

\/
1-i

1

,''l
1/

\ 2

\

2\ /2

nver
OSA

canopy
OSA

Figure 4 Obstacle Segment Abstraction Grid

3.3 Creating Routes

Route planning within the OSA grid is a matter of
searching the grid for optimal routes. The search
through the grid utilizes the vertex graph approach
to route planning. Within each grid cell, "sample"
points (see Section 4.3.2) are isolated. Beginning
at the start location, a partial route to each

297

neighboring cells' sample points is created
provided that the partial route does not cross an
Obstacle Segment. In turn, each partial route is
extended. This is a graph search problem. An
efficient algorithm for performing graph searches is
A*, Winston (1992).

The Unit Route Planner calculates route cost from
distance, trafficability, and cover and concealment.
As the length of a route increases, its cost also
increases. Route segments that are not concealed
from enemy positions increase total route cost
reflecting increased "danger" along those route
segments. Poor trafficability similarly increases the
cost of route segments. For this work, terrain slope
and soil type governed trafficability. Flat terrain
was the least costly. Soil types were given costs in
relation to the ease of travel over them.

3.4 Advantages of the OSA Approach

The OSA approach combines the strengths of the
vertex graph and the regular grid approaches and
solves or alleviates their problems. Consider the
shortcomings of the regular grid approach. First,
the OSA encoding of obstacles within the grid is
more sophisticated than the typical "open" or
"blocked" approach. This encoding allows the
interiors of cells containing obstacles to be
considered for route segments. This removes the
restriction that grid granularity is dictated by the
smallest opening in the terrain. Second, within
each grid cell, candidate route vertices called
"sample points" are identified. The introduction of
sample vertices into the regular grid solves the
"jagged" path problem of regular grids. Consider
the shortcomings of the vertex graphs approach.
First, determining vertices in open terrain is not a
problem because the grid overlays open terrain and
vertices, sample points, are found within all grid
cells. Second, trafficability and cover and
concealment are encoded in the grid cell and are
included in the evaluation of candidate routes.

4. The Unit Route Planning Algorithm

This section discusses the Unit Route Planning
Algorithm that was implemented in the 1ST CGF
Testbed. Specifically, Section 4.1 presents the
PlanRoute algorithm. Section 4.2 discusses how the
grid granularity can be set to the optimum value.
Finally. Section 4.3 presents details of the
algorithm implementation.

4.1 Algorithm PlanRoute

Algorithm PlanRoute plans a route between two
points.

Algorithm PlanRoute

Input:
The grid to route on, the start, and

destination points.

Output:
A list of points defining the route.

Variables:
routejist: A list of routes, sorted in

ascending order of estimated total route
cost. The first route on this list is
referred to as routejist;.

route_to_be_extended; The least costly
(and hence the first) route on the
route_list. It is the same as route_list1.

reachable_points: A list of points that are
reachable from the last point on
route_to_be_extended.

1. [Create the grid]
2. [Fill the grid]
3. [Initialize routejist]

routejiist = empty
4. [Are we there?]

If the first route on the route_list terminates
at the destination then

4.1 Return route_list]
else

4.2 [Extend least costly partial route]
4.2.1 route JoJ>e_extended =

routejiist i.
4.2.2 Determine the points

reachable from the last point on
route _toJbe_extended
(described in Section 4.3.6).
reachablejpoints = {r/,r2,...,rn}.

4.2.3 Expand route_to_be_
extended to each of the points in
reachable joints if another, less
expensive route to those points
does not exist.

4.2.4 Add these new routes to
routejist in ascending order of
route cost and underestimate.

4.2.5 Go to step 4.

Steps 1 and 2 in the algorithm create the grid and
populate it with abstract obstacles (see Section

298

4.3.1 for details on converting polygonal features to
OSs). Step 3 initializes the routejist to empty.
Step 4 finds the route.

In step 4, a check is made to determine if
route jo _be_extended has reached the destination.
If so, the result is sent to the caller; otherwise,
route jo_be_extended is extended.

Step 4.2 extends the least costly partial route. The
first route on the route_list, route_listh is removed
and assigned to routejo_be_extended. All the
points that are reachable from the end of this route
are determined and stored in the list
reachable jpoints (see Section 4.3.6 to see how
reachable points are determined.) The route is
extended to each reachable point only if another,
less costly route does not exist. These "extended"
routes are added to the route_list in sorted order
and step 4 is repeated.

4.2 Grid granularity auto-detection

It is easy to see that at certain grid sizes the density
of obstacles on portions of terrain can exceed the
capacity of the OSA grid to represent them. When
the granularity of the grid is too coarse for the
density of obstacles, the Unit Route Planner
attempts to create too many identical OSs. The
Unit Route Planner detects when this occurs and
prevents analysis from continuing at the same
granularity. There are at least two solutions to the
problem of a too coarse grid granularity. First, the
algorithm can simply stop and replan the entire
route at a finer granularity. This is the simplest
solution conceptually. The algorithm simply
"halves" the grid width and starts over. The second
solution is similar to the quadtree representation.
In this approach only the granularity of the grid cell
that is too coarse is increased. This approach
avoids the computational expense of repeated
replanning but is more complex. For this work, the
first approach was chosen.

4.3 Algorithm details

Sections 4.3.1 through 4.3.7 describe aspects of the
PlanRoute in greater detail.

4.3.1 Marking Obstacle Segment Abstractions in
Grid Cells
Physical obstacles (treelines, canopies, rivers, and
lakes) that cross a cell's boundaries are marked as
Obstacle Segments for each grid cell. In the
polyonal SIMNET TDB, obstacle edge and

polygon lists within terrain patches were searched
and converted to OSAs.

4.3.2 Sample points
In the typical regular grid approach to route
planning, the center of the grid cell is the single
available route point. The Unit Route Planner has
instead a set of 12 available route points called
sample points. The sample points are the vertices
used by A* in searching the OSA grid for routes.
Figure 5 shows the sample points in relation to the
diagonal OSs, a horizontal OS, and a vertical
tunnel OS. They are arranged so there is at least
one sample point on each side of each OS.

o
1

a
9 2

sample
point

a
3

a
4 _ cell

11 • o 12
boundary

5 6 .-

Segment
o o •
7 10 8

Figure 5 Sample Points

All grid cells have at least the first eight sample
points. If the grid cell contains a tunnel, four
additional points (9.. 12) are added.

Regular grids typically show a "digitization bias",
Mitchell (1988), in which only 4 (8 if diagonal
moves are allowed) angles out of each cell are
available; these angles correspond to moves to the
orthogonal and diagonal cells. This digitization
bias causes the "jagged" appearance of routes.
Sample points greatly reduce digitization bias.
Each cell has between 512 angles and 1152 angles.
Each partial route can be extended to between 64
and 96 available sample points.

4.3.3 Adjusting start and destination points
Because of the correlation error between an
obstacle and its OSs, the start and destination
points can not be translated to the OSA grid
directly from their locations on the terrain. Simply
put, the start or destination points must remain on
the correct "side" of the Obstacle Segments.
Figure 6 illustrates the problem. The start point in
the OSA grid must be to the southwest of the
river's OS.

299

point x
treeline

start point

obstacle
segment

sample
point

Figure 6 Start point adjustment

An algorithm was devised to move the start and
destination points so that their positions relative to
the abstract obstacles matched their positions
relative to the physical obstacles. Specifically, the
start or destination point is moved to a sample point
(see Section 4.3.2) inside the grid cell. The
algorithm is based on the floodfilling approach as
described in Foley et.al. (1991). The edges that are
"colored" by the floodfill are analyzed to determine
which sample point to use as the terminal location.

4.3.4 Movement between grid cells
OSAs are approximations of the underlying terrain
obstacles. OSAs in a cell and in orthogonal cells
may "touch" on the edge between the cells even
though the obstacles do not touch. This creates an
artificial barrier to routing. To solve this problem
the concepts of the "shared point" and "Obstacle
Segment Displacement" were introduced.

4.3.4.1 Shared points
The point of contact of two OSs is called a shared
point. Shared points are the midpoints of the edge
separating two cells. Figure 9 illustrates a shared
point.

4.3.4.2 Obstacle Segment Displacement
Obstacle Segment Abstractions may be aligned so
as to block movement that would otherwise be
possible if routes were being generated with respect
to the underlying terrain features only. Consider,
for example, the movement from cell A to cell B in
Figure 7.

Figure 7 Access to region between physical
obstacles in two cells

It is clear that a route may be extended from point x
to the accessible area in cell B.

The OSAs for these two grid cells restrict access to
the accessible area. Without adjustment, the only
move from x is to the NW of the treeline:

point X

" treeline OS A

.• s— —•>* inacc
"— " —' area

cell A
s -*— river OSA

cellB Vv

Figure 8 The corresponding obstacle abstractions

To prevent "touching" OSAs from unrealistically
eliminating route segments, OSAs are "displaced"
away from shared points. This is reasonable; the
terrain features do not touch (they would be
represented as the same OSA if they did), so the
OSAs should not touch.

point x treeline OSA (displaced)

 _£-a accessible

cellB

river OSA
(displaced)

Figure 9 Displaced obstacle segments

In Figure 9, the OSA representing the river is
displaced to the South and the treeline OSA is
displaced to the North. The displacement opens

300

the gap between different OSAs making movement
between them possible.

4.3.5 Extended Obstacle Segments
The PlanRoute algorithm (Section 4.1) considers
only two grid cells at a time when extending partial
routes. In Figure 10, a move is being considered
from "current position" in cell A to y in cell C.
The move appears to be valid when only cells A
and C are considered; knowledge of OSs in cell B
is not used. However, such moves should be
disallowed because the OSA in cell C will extend
into cell B.

To disallow such moves, "Extended OSs"
consisting of three components, the Obstacle
Segment and two extensions (one from each
endpoint), are created. Each extension is a line
segment at a right angle to its edge of the grid cell.
When determining if a sample point can be
reached, Extended OSs are checked.

i

i extension 2

blocked
move

sy/
extension 1 .' - Obstacle

Segment

cell B cellC

current
position

cell A

Figure 10 Extended Obstacle Segment

4.3.6 Determining Reachable Points
Routes are extended to "reachable" points in
neighboring grid cells. A sample point is reachable
if a line segment to the point does not intersect an
OS.

If two adjacent grid cells do not contain a shared
point (Section 4.3.4.1), line segments are drawn
from the end of the route to each of the sample
points in the destination grid cell. If a line segment
intersects an OS, the sample point is unreachable
and discarded.

However, if two adjacent grid cells contain a
shared point, the shared point is checked for

reachability. If so, the sample points are checked
for reachability from the shared point. Thus, a
sample point is reachable if it is reachable from a
reachable shared point.

Reachable points are partitioned into mutually
reachable sets (MRS) which have the property that
all points in a MRS are mutually reachable.
Reachable points partitioning controls the
combinatorial explosion of partial routes
introduced by the multiple sample points. If any
point in a MRS is involved in a route, all sample
points in the MRS are considered to be part of the
route and are not considered when extending
additional partial routes. Thus, a MRS defines a
reachable area and the least costly sample point
within a MRS is used for routes into that area.

For example:

unreachable,
points

MRS1-

Current
Location-

• • -• •

-+*

-MRS2

Figure 11 Mutually Reachable Sets

In Figure 11, sample points 1 and 3 in the North
grid cell are unreachable from "Current Location".
The reachable sample points have been partitioned
into two MRSs corresponding to two possible
destination areas in the North cell from "current
location". Two partial routes will be created from
Current Location into the North cell. The partial
route into MRS1 will be to the least costly of
MRSl's two sample points. The partial route into
MRS2 will be to the least costly of MRS2's four
sample points. Hence, two, rather than six, partial
routes are created for further analysis by A*.

4.3.7 Computation of route cost
The A* algorithm evaluates partial routes on their
"cost". The cost of a route, partial or whole, is the
sum of the costs of its route segments and an
underestimate of the remaining cost to the

301

destination. Three factors are considered in
determining the segment cost: distance,
trafficability, and concealment. Segment cost is the
cost of moving between sample points in adjacent
grid cells and is made up of three components:

• The distance between points.
• The trafficability which is calculated

from:
a. the base cost of the terrain in the

destination grid cell and,
b. the slope of the terrain around the

destination sample point.
• The percentage of intervisibility from an

area around the destination sample point
to the areas around enemy locations.

The cost of a segment increases with length. Two
factors governed trafficability: slope and type of
terrain. Flat terrain had minimal cost with cost
increasing with slope. The base cost is an average
determined from the types of terrain in the grid cell.
The average is calculated from 25 points taken
from a regular 5x5 grid within the grid cell. For
example, the base cost for a grid cell mostly on
sand is greater than for a grid cell mostly on dirt.

There are other approaches to calculating the base
cost. A simple approach would use only the terrain
under the sample point. This approach ignores the
terrain along the route. Another approach is to
sample the terrain along the route segment. This
approach considers each route to have zero width.
Zero width routes have a major defect. Because
unit routes have width (i.e. units travel along
corridors), the terrain under the corridor is not
introduced into the cost calculation. For example,
narrow corridors are weighted the same as wide
corridors. Although the approach taken in the RPA
may consider too much terrain, it has the advantage
that the terrain under a corridor is considered.
Recall that grid granularity is determined by the
size of the unit; so, the expectation is that most of
the area under a grid cell will be traversed by the
vehicles in the unit. Calculating an average over a
grid cell appropriately increases the cost of grid
cells with slow-go or no-go terrain.

Concealment is considered by calculating a
percentage of intervisibility from a circular area
around the destination sample point to the areas
around enemy positions known by the routing unit.

Parameters into the algorithm control how much
weight is given to trafficability and concealment.
Thus, concealment can be weighted more to obtain
routes that maximize concealment over
trafficability. See Rajput (1994) for a thorough
discussion of the cost calculation.

4.3.8 Multiple "Optimal" Routes and Chokepoints
This research was done in conjunction with the
development of a CGF Automated Mission
Planning capability. The Mission Planner requires
multiple, tactically sound unit routes between
points and the identification of chokepoints along
the route.

The Unit Route Planner generates multiple
"optimal" routes between two points. As each
route is generated the terrain covered by the route
is made "less desirable" for subsequent routes by
increasing the base cost of grid cells under the
route. Hence, the base cost of "used" grid cells
increases and subsequent routes tend to avoid
repeating the previous routes. Each route is
"optimal" considering that previously generated
routes should be avoided.

Keeping track of previous routes allows
chokepoints to be identified. When multiple routes
between points are requested, route segments
corresponding to narrow corridors and chokepoints
must be reused. The Unit Route Planner identifies
multiple used route segments as chokepoints.

5. Conclusions and Future Work

The Unit Route Planner is flexible and efficient. Its
flexibility comes from its scalability. The
granularity (i.e. size) of the underlying grid varies
based on the size of the routing unit. The finer the
granularity, the closer the Obstacle Segment
Abstractions correspond to the physical obstacles.
Fine granularity routing is suitable for finding
precise vehicle routes while coarser granularity
routing is suitable for finding unit routes. The
smaller the unit, the finer the required granularity.
The Unit Route Planner algorithm can be applied to
other polygonal TDBs.

The efficiency of the Unit Route Planner derives
from three factors. First, the Obstacle Segment
Abstraction approach allows obstacles to be
represented with sufficient precision for routing but
not so precise as to waste computational power.
Second, the scaleable grid approach allows the
representation of the terrain to correspond to the

302

requirements dictated by the size of the unit. These
two factors together prevent unnecessarily precise
(i.e. computationally expensive) routes from being
generated. Third, the Obstacle Segment
Abstraction in combination with the vertex graph
approach allows the application of an efficient
search technique, A*, to the problem of
determining routes.

The Unit Route Planner has additional strengths.
First, three routing factors, distance, trafficability,
and concealment, are considered in finding optimal
routes. The relative contribution of each routing
factor is controlled by parameters to the algorithm.
Hence, optimal routes of different characteristics
can be determined. For example, concealment can
be weighted more heavily than distance to produce
predominately concealed but lengthy routes.
Second, the Unit Route Planner generates multiple
"optimal" routes between two points. As each
route is generated the terrain covered by the route
is considered less desirable. Subsequent routes
tend to avoid the previous routes. Hence, each
route is "optimal" considering that previously
generated routes should be avoided. Third,
chokepoints are identified. When multiple routes
between points are requested, route segments
corresponding to narrow corridors and chokepoints
must be reused. The Unit Route Planner identifies
those route segments as chokepoints. Fourth,
narrow corridors between "close" obstacles are
found. That is, corridors narrower than the
granularity of the grid are represented. Fifth, the
Unit Route Planner can be used to find and refine
lengthy, precise routes through a process of
successive refinement of routes. That is, a coarse
route generated with a coarse grid granularity can
be refined by applying the Route Planning process
to sections of the coarse route at successively finer
granularities. This approach would provide an
efficient mechanism for planning detailed, lengthy
routes. Sixth, although the goal of this research
was a scalable, unit route planner, the Unit Route
Planner is also an efficient vehicle route planner. It
requires only the addition of a route smoothing
algorithm to plan realistic vehicle routes.

In the current work, only terrain obstacles that are
uncrossable (canopies, rivers, and treelines) are
abstracted into OSAs. There are other features in
the terrain which may prevent or hinder a unit's
movement across them. These features are
considered "no-go" and "slow-go" areas. For
example, extremely steep terrain is a no-go area for
many units. No-go areas could easily be

represented as OSAs which would further decrease
the combinatorial explosion of partial routes within
the Unit Route Planner. Sandy and swampy terrain
are slow-go areas because vehicles cannot move
quickly over such terrain. An interesting area for
future research would be to extend the OSA
concept to representing slow-go obstacles.

One mechanism for representing slow-go obstacles
is to add a "cost" for crossing each obstacle. In the
current implementation, obstacles are considered to
have infinite cost; this prevents movement across
them. Slow-go areas could be represented with
OSAs that have finite costs for crossing them.

Finally, it seems possible to extend the OSA
approach from regular tesselation (the OSA grid) to
irregular tesselation. Polygonal TDBs typically
represent the ground surface with an irregular
tesselation; e.g., as a set of triangles. It seems
likely that the OSA approach could be implemented
directly on these polygonal representations with
minor modifications.

6. Acknowledgement

This research was sponsored by the US Army
Simulation, Training, and Instrumentation
Command as part of the Intelligent Simulated
Forces project, contract N61339-92-C-0045. That
support is gratefully acknowledged.

7. References

Danisas, K., Smith, S. H., and Wood, D. D. (1990).
"Sequencer/Executive for Modular Simulator
Design", Technical Report IST-TR-90-1, Institute
for Simulation and Training, University of
Central Florida, 16 pages.

Foley, J. D., van Dam, Andries, Feiner, S. K.,
Hughes, J. F. (1991). "Compute Graphics
Principles And Practice". 2nd edition, Addison-
Wesley Publishing Company, Inc.

Gonzalez, G., Mullally, D. E., Smith, S. H.,
Vanzant-Hodge, A. F.. Watkins, J. E., and Wood,
D. D. (1990). "A Testbed for Automated Entity
Generation in Distributed Interactive Simulation",
Technical Report IST-TR-90-15. Institute for
Simulation and Training, University of Central
Florida, 37 pages.

Hwang, Y. K. and Ahuja, N. (1992). "Gross
Motion Planning—A Survey", ACM Computing
Surveys, Vol. 24, No. 3, pp.219-291.

Karr, C. R., Craft, M. A., and Cisneros, J. E.
(1995). "Dynamic Obstacle Avoidance",

303

Proceeding of the 5th Conference of Computer
Generated Forces and Behavorial
Representation, Orlando, FL, May 9-11, 1995, to
be published.

Lee, J. J. and Fishwick, P. A. (1994), "Simulation-
Based Planning for Computer Generated
Forces", Proceeding of the 4th Conference of
Computer Generated Forces and Behavorial
Representation, Orlando, FL, May 4-6, 1994, pp.
451-459.

Mitchell, J. S. B. (1988). "An Algorithmic
Approach to Some Problems in Terrain
Navigation", Artificial Intelligence, Vol. 37, pp.
171-201.

Petty, M. D. (1992). "Computer Generated Forces
in Battlefield Simulation", Proceedings of the
Southeastern Simulation Conference 1992, The
Society for Computer Simulation, Pensacola FL,
October 22-23 1992, pp. 56-71.

Rajput, S. and Karr, C. R. (1994). "Unit Route
Planning" Technical Report IST-TR-94-42,
Institute for Simulation and Training, University
of Central Florida.

Smith, J. E. (1994), ModSAF Programer's Guide:
LibCTDB, Loral Advanced Distributed
Simulation, Cambridge, Massachusetts.

Smith, S. H., Karr, C. R., Petty, M. D.,
Franceschini R. W., and Watkins, J. E. (1992a).
"The 1ST Computer Generated Forces Testbed",
Technical Report 1ST-TR-92-7, Institute for
Simulation and Training, University of Central
Florida.

Smith, S. H., and Petty, M. D. (1992b).
"Controlling Autonomous Behavior in Real-Time
Simulation", Proceedings of the Southeastern
Simulation Conference 1992, The Society for
Computer Simulation, Pensacola FL, October 22-
23 1992, pp. 27-40.

Thorpe, C. E. (1984). "Path Relaxation: Path
Planning for a Mobile Robot", CMU-RI-TR-84-
5, Carnegie-Mellon University The Robotics
Institute Technical Report, April 1984.

Winston, Henry Patrick (1992). Artificial
Intelligence. Third Edition, Addision-Wesley,
1992.

8. Authors' Biographies

Clark R. Karr is the Computer Generated Forces
Program Manager and the Principal Investigator of
the Intelligent Simulated Forces project at the
Institute for Simulation and Training. Mr. Karr has
a Master of Science degree in Computer Science.
His research interests are in the areas of Artificial
Intelligence and Computer Generated Forces.

Sumeet Rajput is an Associate Engineer in the
Intelligent Simulated Forces project at the Institute
for Simulation and Training. Mr. Rajput has a
Master of Science degree in Computer Science.
His research interests are in the areas of
Computational Geometry, Physical Modeling, and
Computer Generated Forces.

304

Concealed Routes in ModSAF

Michael J. Longtin
Dalila Megherbi

Loral Advanced Distributed Simulation
50 Moulton Street, Cambridge, MA 02138

1. Abstract

The ModSAF CGF system currently has the capa-
bility of attempting to find routes that are concealed
as much as possible from the enemy. Two fundamen-
tal problems must be overcome in order to do this.
Firstly, given information about the enemy, the sys-
tem must compute the areas that are concealed or
may be concealed from the enemy. This involves an-
alyzing terrain features and performing intervisibility
calculations. Secondly, given a list of concealed re-
gions, a route from a specified starting point to a
specified goal point which is the most favorable in
terms of concealment must be found. This paper ex-
plores both problems, gives an overview of how they
are currently implemented in ModSAF, and suggests
enhancements that might be made in order to im-
prove the current algorithm.

2. Introduction

The need to find concealed routes with respect to en-
emy locations arises frequently in CGF systems, since
there are many real-life tactics which require this abil-
ity, such as bounding overwatch maneuvers or recon-
naissance missions. A concealed-route algorithm is
a vital component of CGF systems since it is a ma-
jor contributor toward the realism of the generated
forces. Such is the case with the ModSAF (Modular
Semi-Automated Forces) CGF system sponsored by
ARPA and STRICOM. A new concealed-route algo-
rithm has recently been developed and incorporated
into ModSAF. This algorithm consists of two inde-
pendent components: the concealment-map genera-
tor and the concealed-route planner. A fundamen-
tal element of the concealed routes solution approach
presented in this paper is the utilization and the ex-
ploitation of graph representation and search tech-
niques.

The concealment-map generator uses terrain reason-
ing to compute concealed areas. It takes information

about the enemy as an input and produces a series of
concealed-area polygons, referred to as the "conceal-
ment map", as an output. The enemy information is
specified is a list of "enemy descriptors". An enemy
descriptor can be a direction (when it is known that
the enemy is in a certain direction), an area (when it
is known that the enemies are located or are maneu-
vering in a particular area), or a location (when the
actual location of an enemy is known). The contri-
bution of each enemy descriptor to the concealment
map is computed separately, and the final conceal-
ment map is computed by taking the intersection of
these.

The concealed-route planner takes a concealment
map, a source point, and a goal point as inputs and
produces a series of route points as an output. In
particular, a graph is constructed where each con-
cealed region produced by the concealment-map gen-
erator is treated as a node. A generalized tech-
nique is developed to automatically and efficiently
determine which pairs of nodes (concealed regions)
need to be linked together. In particular, to im-
prove the problem-solving performance, the gener-
alized technique uses some additional information
about the problem at hand to decide which node suc-
cessor should be expanded next (instead of blindly
expanding all possible node successors) and which
nodes should be disregarded (pruned from the search
graph), while still heading and progressing toward the
goal point. Finally, a concealed route from the source
point to the goal point is found by applying one of
the graph search techniques. The planner uses the
A* search technique to find an optimal path through
the concealment-map space. In this context, an opti-
mal path is one which has the smallest total exposed
distance.

The concealed-route algorithm uses the CTDB (com-
pact terrain database) representation of terrain to ob-

305

tain terrain elevation and feature information. The
compact representation is favorable because more ter-
rain can be stored in physical RAM, thus decreas-
ing the access time for terrain data. The algorithm
also uses a non-preemptive asynchronous ring-based
scheduler to allow searches to be distributed over time
while giving the rest of the simulation a chance to run.

This paper describes the approach, implementa-
tion details, and future enhancements for the
concealment-map generator and the concealed-route
planner.

3. General Approach

The problem of finding concealed routes is not a triv-
ial one. The algorithm must be flexible enough to ac-
commodate information about the enemy with vary-
ing degrees of specificity; in a real-life battle situa-
tion, information about the enemy may be available
in many different forms. An actual enemy location
may be known, it could be known that several enemy
vehicles are moving about in a given area, or as little
as the general direction of the enemy could be known.

The algorithm must also have a keen sense of ter-
rain awareness, including information about terrain
features and the terrain skin. The ability to perform
intervisibility calculations must also be available.

Thirdly, a concealed-route algorithm must be able to
integrate information about the enemy and terrain
into a route which is concealed from the enemy as
much as possible.

The approach used in the concealed-route algorithm
currently employed by ModSAF divides the problem
into two independent sub-problems. The first is that
of finding areas of the terrain which are concealed
from the enemy, and the second is that of finding a
route which best utilizes these concealed regions.

The first sub-problem is handled by the concealment-
map generator, which accepts information about the
enemy and performs an analysis of the terrain to com-
pute which areas are concealed. The second is han-
dled by the concealed-route planner, which accepts
a series of concealed regions and produces the route
with the best concealment. The concealment-map
generator and the concealed-route planner will now
be described in detail.

4. The Concealment-Map Generator

The purpose of the concealment-map generator is to
accept information about the enemy and transform

it into a series of areas which are likely to be hidden
from the enemy. The concealed areas are described
by a series of polygons which collectively comprise a
significant portion of what is known as the conceal-
ment map. The concealment map contains informa-
tion about the search area, the enemy, and the con-
cealed areas.

4.1 Approach

There are two major areas of difficulty that need to
be addressed in order to successfully implement the
concealment-map generator, the first of those being
information representation and the second being in-
formation processing.

The two types of information that must be repre-
sented are the terrain information and the enemy
information. Fortunately, the former is handled by
ModSAF's libctdb (Compact Terrain DataBase),
which provides an interface for terrain feature ex-
traction and the capability to perform intervisibility
calculations. The latter problem is solved by enemy
descriptors, which will be described later.

Once the terrain and enemy information is stored and
available for processing, the concealed regions must
be computed. This is explained next.

4.2 The Algorithm

The user of the concealment-map generator may spec-
ify an arbitrary number of enemy descriptors. An
enemy descriptor is a piece of information about the
enemy situation and can be one of the following: a
direction, a location, or an area. The contribution
of each enemy descriptor to the concealment map is
computed separately, and the final concealment map
is the intersection of these.

The processing of an enemy descriptor starts with
the production of a grid of values. Each value in the
grid corresponds to a location in the area that is be-
ing searched for concealed regions. This area is called
the search area or concealment-map space. If a grid
location has a value of one, then that location is con-
cealed from the enemy described by that particular
descriptor. If it has a value of zero, it is exposed.

The grid portion of the concealment map due to the
first enemy descriptor is computed and copied verba-
tim to a cumulative concealment map. Next, the grid
portion of the concealment map due to the second en-
emy descriptor is computed, and the intersection of

306

V en enemy direction vector

^ ^r

extreme tangent

Figure 1: Concealed Areas Behind Features

that concealment map and the cumulative conceal-
ment map is computed. The result of the intersection
is copied into the cumulative map. The intersection
of two concealment maps is simply the logical ANDs
of the corresponding grid locations. The contribu-
tions of each of the enemy descriptors are "merged"
with the cumulative concealment map until all of the
enemy descriptors have been processed.

One beneficial effect that results from the cumula-
tive concealment map is that the information per-
taining to all of the enemy descriptors is contained
in the concealment map, and any enemy descriptor
can be added to the concealment map without losing
the information from the previously-specified enemy
descriptors. For example, consider that information
about enemies A, B, and C are known at time to, and
a concealment map is computed for these enemies.
Later, at time ti, a new enemy, D, is spotted. The
concealment-map generator can be invoked, specify-
ing only the enemy descriptor for enemy D, and the
resulting concealment map will contain areas that are
concealed from enemies A through D.

After the last enemy descriptor has been processed,
the grid portion of the cumulative concealment map

is polygonalized, that is, polygons which enclose the
clusters of ones in the grid are computed. The polygo-
nalization must be performed because the route plan-
ner needs a list of polygons as an input.

4.3 Enemy Descriptors

This section describes how the concealment map con-
tributions of each type of enemy descriptor is com-
puted.

4.3.1 Enemy Direction
An enemy direction is usually specified only if neither
the area that the enemy is occupying nor the exact
location(s) of the enemy is known. This descriptor
contains the least amount of information among the
three types of descriptors. It is represented by a two-
dimensional vector.

The contribution of an enemy direction to the con-
cealment map is computed by applying a heuristic-
based (non-exact) technique and includes areas be-
hind treelines, buildings, and tree canopies. No ele-
vation data is taken into consideration since the ele-
vation of the enemy is not known. The heuristic used
is that areas behind objects with respect to the en-
emy direction are suitable for concealment. Note that
trees and buildings are assumed to be tall enough to
provide concealment.

The concealed areas are found by first performing
a search for terrain features such as treelines, tree
canopies, and buildings. The challenge lies in com-
puting areas behind these features with respect to the
enemy direction. For linear features (i.e. treelines),
this is relatively easy. The "front" of the polygon is
just a copy of the vertices of the linear feature. The
"back" of the polygon is found by adding a vector to
each of the vertices of the linear feature. This vector
has a direction which is the negative of that specified
in the enemy descriptor. The magnitude of the vector
is simply the depth of the concealed region, or how
far back the region extends from the linear feature.
See Figure 1 for an example of a concealed region be-
hind a linear feature.

Finding areas behind polygonal features like buildings
and tree canopies is slightly more difficult. The chal-
lenge lies in determining the front of the concealed
region, which is actually the back of the polygonal
feature. In order to find this, the extreme tangents
of the polygonal feature in the direction of the en-
emy vector must be found. This is done by first con-
verting the vertices of the feature into a coordinate

307

system whose y-axis is aligned with the enemy direc-
tion vector. Then, the vertices with the minimum
and maximum x-values are found. These vertices are
the first and last points of the back of the feature, as
well as those of the front of the feature. Once these
points are found, the back has to be distinguished
from the front. This is done by first choosing one of
the tangent-point vertices and taking the dot product
of two vectors: the vector from the tangent vertex to
an adjacent vertex, and the enemy direction vector.
If the dot product is negative, then the adjacent ver-
tex is part of the back of the feature. See Figure 1 for
an example of a concealed region behind a polygonal
feature.

4.3.2 Enemy Location
An enemy location may be specified when the exact
location of an enemy is known. Since more exact in-
formation about the enemy is known in this case, an
exact (non-heuristic-based) method is used to gener-
ate the concealment map contribution of an enemy
location.

The grid portion of the concealment map is gener-
ated simply by using libctdb's intervisibility engine.
The intervisibility from the enemy location to each
grid location is computed. If intervisibility to a given
grid location passes, a "zero" is assigned to its corre-
sponding entry in the concealment map. Otherwise,
a "one" is assigned, meaning that the point is con-
cealed.

4.3.3 Enemy Area
An enemy area may be specified when it is known
that the enemy are moving about in a certain area. It
may also be specified if the exact location of a given
enemy is not known, but the general area in which
an enemy exists is known or assumed. The conceal-
ment map contribution of an enemy area is computed
by using a combination of exact- and heuristic-based
techniques.

The difficulty with finding concealment from an area
stems from the fact that there is an infinite number of
locations within an area. Since all of these locations
cannot be processed, a reasonably small number of
them must be selected. This is where the heuristics
come into play. A number of observation posts from
within the specified area are selected. Observation
posts are locations within the enemy area from which
the highest level of visibility to the concealment-
map area is available. Each observation post is then
treated as an enemy location. The contribution of
each observation post is integrated into the conceal-

observation posts

principal axis enemy area-

Figure 2: Observation Posts Within an Enemy Area

ment map. This provides a near-worst-case scenario
for enemy visibility (i.e. the case where the enemy
has the best possible visibility).

The algorithm which computes the locations of
the observation posts is reasonably straightforward.
First, the principal axis of the search area is com-
puted. Next, a series of line segments which are per-
pendicular to this axis are computed. The distance
between these lines depends on the grid spacing of the
concealment map, and the line segments are bounded
by the enemy area (i.e. their endpoints lie on the edge
of the enemy-area polygon). The point along each line
segment with the highest elevation is chosen as an ob-
servation post. Refer to Figure 2 for an illustration.

5. The Concealed-Route Planner

The purpose of the concealed-route planner is to gen-
erate a route which passes through concealed areas
as much as possible while progressing toward a goal.
The planner is given a start point, a goal point, and
a list of concealed regions.

The route planner goes through three main phases
during the course of a plan: a graph is constructed,
the graph is searched for the most optimal route, and
some post processing is performed on the route to
doctor it. Each of these phases will be described in
detail.

5.1 Constructing the Graph

The first phase of the concealed-route-planning algo-
rithm is the graph construction. The graph consists of
a series of nodes, and segments which interconnect the
nodes. The nodes in this case are line segments that

308

'YfTfWH*

• • node segment
 graph segment
g§ concealed region ,'

3b y'

goal point

goal vector \\ ^-''
4\ • start point

Figure 3: An Example of a Graph

are calculated directly from the concealed regions;
each concealed-region polygon has a corresponding
node in the graph. The line segments which repre-
sent the nodes will be referred to as node segments.
The segments which interconnect the nodes will be
referred to as graph segments. Note that the actual
number of nodes exceeds the number of concealed-
region polygons by two. These extra nodes are lo-
cated at the start and goal points.

5.1.1 Calculating Node Segments
In order to calculate a node segment from a
concealed-region polygon, the vertices of the polygon
are first converted into a coordinate system whose x-
axis is aligned with the goal vector (the vector from
the start point to the goal point). See Figure 3. The
vertex with the minimum x-coordinate and that with
the maximum x-coordinate are found. These two
points are the endpoints of the node segment for that
concealed-region polygon. In effect, each concealed-
region polygon is simplified down to a node segment.
This greatly speeds up the search, since not all ver-
tices of the polygons need to be processed during the
search. Note that the node segments are not neces-

sarily parallel to the goal vector. The direction of the
node segment depends on the locations of the vertices
of the concealed-region polygons.

5.1.2 Calculating Graph Segments
Two heuristic rules are applied in the construction of
the graph segments. Firstly, no graph segment can go
backwards, that is, the component of a graph segment
in the direction of the goal vector must be positive.
This ensures that the route never turns away from
the goal. This rule is applied in order to eliminate
excessively long routes.

The second heuristic rule concerns the selection of
successor nodes. The maximum number of succes-
sors of a given node cannot exceed three, that is, the
end of a node segment can be connected to at most
three nodes. If there are more than three possible
next nodes, the three closest are chosen. This rule
came about with the assumption that a "next node"
which is farther away than three other "next nodes"
has a low probability of being chosen over the other
nodes. Considering only the three closest nodes has
the effect of eliminating lots of unnecessary search-
ing, which improves the computational efficiency of
the search.

Refer to Figure 3 for an example of a fully-constructed
graph. Note that no graph segment points away from
the goal and there are at most three successor nodes
for any given node.

5.2 Searching the Graph

Once the graph has been constructed, it is searched
for an optimal path. The A* search algorithm is
used to perform the search (Tanimoto 1987). In
essence, the search algorithm considers all possible
paths along the graph segments from the start point
to the goal point and assigns a weight to each path.
The path with the minimum weight is chosen as the
optimal path. The mapping from a path to a weight is
done by an optimization function. The choice of opti-
mization function is extremely important, and greatly
impacts which route is chosen.

The definition of an "optimal route" is derived from
a set of criteria which is determined before the search
begins. The optimization function is derived directly
from this set of criteria. In this case, the optimal
route is the one with the lowest total exposed dis-
tance. The total length of the route which does not
traverse concealed areas (i.e. the length of the graph
segments along the path) should be minimized and is

309

node segment
resulting route

concealed region

Figure 4: The Route Post-Processing Phase

used as the optimization function.

During the search, paths with weights greater than
the euclidean distance from the start point to the
goal point are eliminated from the search, since these
paths can not possibly be the most optimal. This
speed-enhancing technique is known as pruning (Barr
et. al. 1981).

The search algorithm produces a list of nodes through
which the optimal route passes. The actual route is
then constructed from the endpoints of the node seg-
ments. The most optimal route for the example in
Figure 3 is probably the one which traverses nodes
two and four.

5.3 Route Post-Processing

It is possible for a node segment to leave and re-enter
a concealed region, since concealed-region polygons
are not guaranteed to be convex. An example of this
can be found in Figure 3. In this case, node segment
number three leaves and re-enters its concealed re-
gion. Such segments are modified in a post-processing
phase after the search has been completed.

This post processing involves replacing node segments
which are not completely contained within concealed

regions to route segments that are. This is done by
first constructing a series of evenly-spaced line seg-
ments which are perpendicular to the node segment.
For each line segment, the intersections that it makes
with the concealed-region polygon are found, and the
average of these points is assigned as a route point.
The result is a route which follows the middle of the
polygon. See Figure 4.

Note that it is possible, although highly unlikely, for
there to be more than two intersections between one
of the line segments and the concealed-region poly-
gon. In this case, the polygon is not processed, and
the original node segment is used.

6. Usage

The concealed-route functionality is contained in a
library of terrain-reasoning routines in the ModSAF
system (Longtin 1994). Its interface consists of the
following four public functions:

tr_create_concealment_map()
tr_destroy_concealment_map()
tr_generate_concealment_map()
tr_plan_concealed_route()

The first of the above functions allocates memory for
a concealment map and initializes it. The user sup-
plies the actual search area and the spacing of the
grid points. The search area and grid spacing infor-
mation is kept in the concealment map structure.

The second function simply frees the memory asso-
ciated with a concealment map.

The third function actually begins the concealment-
map generation. The user specifies the concealment
map for which to compute concealed regions, an array
of enemy descriptors, and a search state. The search
state is a structure which keeps track of information
pertaining to the search in progress. This is needed
because the search is distributed across multiple
simulation ticks. tr_generate_concealment_map
schedules a function which actually performs the
search to be called periodically. When the search has
finished, a ready flag in the search state is set. The
application must therefore poll this flag after calling
tr_generate_concealment_map and wait for it to be
set before calling tr_plan_concealed_route.

Finally, the fourth of the above functions actu-
ally attempts to find an optimal route through the
concealment-map space. The user specifies a con-
cealment map, a start point, and a goal point. A

310

goal point

start point

Figure 5: Large Concealed Regions

list of route points representing the concealed route
is returned.

7. Future Enhancements

The current implementation of concealed routes in
ModSAF is a first-cut attempt at producing a flex-
ible concealed-route planner. This section describes
future work that may be done to enhance the plan-
ner.

7.1 Node-Segment Generation

There are several problems with simplifying each con-
cealed region down to a line segment. Firstly, as
stated earlier, a node segment may leave the con-
cealed region with which it is associated. This ne-
cessitates the inclusion of the post-processing phase
of the route planner.

Secondly, the current design of node segments may
lead to routes that are unnecessarily long. This may
happen in cases where concealed regions are relatively
large. Consider Figure 5. Obviously the current route
planner will find a route which traverses the single
node, passing through points la and lb. The route
goes through the middle of the concealed region, while

a shorter route along the edge, passing through points
2a and 2b, would be more optimal because such a
route is not only shorter, but the exposed segments
of the route are shorter.

A third problem with the current method of node
segment generation has to do with exposed segments.
Currently, all graph segments are considered to be
completely exposed, when in actuality, they may not
be. This can lead to inaccuracies in computing the
weights of the prospective routes. See Figure 3 for an
example of this. Note, for example, that the graph
segment starting at 2b and going toward node three
is not fully exposed.

The solutions to these problems may lie in finding a
better way to represent the concealed regions in the
graph.

7.2 Obstacle Avoidance

The current concealed-route planner assumes that
all prospective paths are unobstructed. In actuality,
it is very possible for a generated path to traverse
obstacles such as rivers or steep slopes. Planning
around obstacles and planning through concealed ar-
eas are currently done independently. The concealed
route is modified to avoid obstacles after it has been
planned. This can lead to sub-optimal routes because
the concealed-route planner does not take the extra
exposed distances imposed by obstacle avoidance into
consideration. Ideally, one planner should be able to
accommodate obstacles to avoid as well as attractive
regions to traverse.

7.3 Considering Width

Currently, the concealed-route planner assumes that
the vehicle or unit that travels along the route is
infinitely thin. A vehicle located on the edge of a
concealed region will actually be half-exposed. This
problem can be solved by shrinking the concealed-
region polygons by the half-width of the units follow-
ing the routes.

8. Conclusions

One of the primary considerations in designing an
algorithm in a CGF system is determining how
well it fits in with the simulation. Specifically,
does the algorithm cause long ticks? Overcoming
the long-tick problem is especially challenging when
computationally-expensive tasks, such as those which
involve searching the terrain, need to be performed.

311

Figure 6: Concealed Routes Test Program

312

1 JflWffWfW**'

Concealment-map generation may take several sec-
onds, depending on the size of the search area, and
grid spacing, and the number of enemy descriptors.
This problem is solved by using ModSAF's scheduler
to distribute the search across multiple ticks, so that
the rest of the simulation can run while the search is
in progress. The route planner runs fast enough to
be done in a single tick.

The concealed-route functionality has been tested
both in the ModSAF system and by using a specially-
designed test program, with promising results. A
screen dump from the test program is shown in Fig-
ure 6. In this example, one enemy descriptor, an
enemy direction, has been specified. This is denoted
by the arrow. Each plus sign represents a "one" in
the concealment-map grid, representing concealed re-
gions. Note how the route (the black line) takes ad-
vantage of the available concealed regions.

The algorithms described in this paper are included
in the terrain-reasoning library within the ModSAF
system, and is comprised of roughly 2800 lines of C
code.

The current version of ModSAF uses the concealed-
route functionality in its bounding overwatch move-
ment behavior and in rotary-wing aircraft nap-of-
earth flight. Other behaviors currently implemented
in ModSAF may be enhanced to take advantage of
this functionality.

9. Acknowledgments

This work is being supported by the USA Army
STRICOM ADST program under contract number
N61339-91-D-0001-0058.

10. References

Barr A. and Feigenbaum, E. (1981). The Handbook
of Artificial Intelligence, Volume I, Addison-
Wesley.

Longtin, M. J. (1994) ModSAF Programmer's Guide:
LibCTDB, Loral Advanced Distributed Sim-
ulation, Cambridge, Massachusetts.

Tanimoto, S. L. (1987). The Elements or Artificial
Intelligence, Computer Science Press.

11. Biographies

Michael J. Longtin graduated from the University
of Maine with a B.S. in Electrical Engineering in 1991

and an M.S. in Electrical Engineering in 1993. His
Master's thesis involved the design and development
of an object-oriented robot programming language in
C++. He has developed many programs using C in
the areas of digital image processing, neural networks,
and computer graphics. Since graduating, Michael
has worked as a Software Engineer at Loral Advanced
Distributed Simulation. He works at the Cambridge,
Massachusetts office.

Dalila Megherbi graduated from Brown University
with a Ph.D. in Electrical Engineering in 1993. Her
research introduced to the robotics community an in-
novative approach for autonomous robot navigation
based on the complex variable methodology. Her in-
terests include computer-controlled robotics and au-
tomation, automatic control systems, and machine
intelligence. Dalila joined Loral in September of 1994.
She works at the Cambridge, Massachusetts office.

313

Terrain Avoidance for CGF Helicopters

Stephen A. Schricker, Robert W. Franceschini, Mikel D. Petty, Tracy R. Tolley
Institute for Simulation and Training

3280 Progress Drive, Orlando, Florida 32826-0544
sschrick@ist.ucf.edu

1. Abstract

The flight characteristics of a helicopter allow it to fly
very close to the ground at relatively high speeds.
Thus, the helicopter pilot, flying his or her aircraft at
low altitude, must constantly adjust the helicopter's
dynamics in order to prevent a disastrous and most
likely lethal collision with the terrain. Simulating this
process of terrain avoidance on a Computer Generated
Forces system presents its own special challenges for
the CGF programmer. This paper presents an
algorithm for above-ground-level flight for helicopters;
discusses its implementation in the 1ST CGF Testbed;
discusses its use at the Aviation Testbed at Fort
Rucker, emphasizing the interaction between CGF
helicopters and U. S. Army soldiers flying manned
helicopter simulators; and presents an analysis of the
efficiency of the algorithm.

2. Background

Like many Computer Generated Forces systems, the
focus in the development of the 1ST CGF Testbed was
on ground combat (Smith 1992). The dynamics,
combat, and behavioral models are quite detailed for
tanks, infantry fighting vehicles, and dismounted
infantry. Though the 1ST CGF Testbed initially
contained some rudimentary algorithms for air
vehicles, they were not as sophisticated as the
algorithms for ground vehicles.

During 1994, the Integrated Eagle/BDS-D project
(Franceschini 1995), which uses the 1ST CGF Testbed
as a component, began using an armed reconnaissance
scenario involving helicopters. A long-range goal was
to use this scenario for training and analysis activities at
Fort Rucker's Airnet site (a SIMNET facility).

1ST installed a preliminary version of the Integrated
Eagle/BDS-D system at Fort Rucker in July, 1994.
During this installation, the Eagle project team
observed the interactions between CGF-controlled
helicopters and U.S. Army soldiers flying a manned
helicopter simulator. It became clear that the CGF
helicopters were not able to fly at low altitude as well
as the U. S. Army pilots. The CGF helicopters

frequently crashed when flying at low altitudes over
mountainous terrain. This was due to the inadequacy
of the simple above-ground-level flight algorithm in the
1ST CGF Testbed.

Late in 1994, the Eagle team presented the Integrated
Eagle/BDS-D system in the Distributed Interactive
Simulation (DIS) Interoperability Demonstration at the
Interservice/Industry Training Systems and Education
Conference (I/ITSEC). For the purposes of this
demonstration, the CGF helicopters flew in an above-
sea-level (ASL) mode which ignored the terrain under
the vehicles and kept the helicopters at a constant
height above sea-level. The heights of the helicopters
were scripted prior to the demonstration rather than
being calculated in real-time during the scenario.
Although in this case the helicopters did not crash, the
scripting of aircraft heights is clearly an undesirable
strategem when dealing with supposedly autonomous
entities.

To increase the realism of the virtual simulation,
therefore, 1ST examined the problem of above-ground-
level flight for CGF helicopters.

3. Above-Ground-Level Flight

A competent above-ground-level flight algorithm will
allow helicopters to fly as fast and as close to the
terrain as possible without crashing into the ground.
One likely and easily implemented method (call it
Algorithm S) would be to simply determine the height
of the ground immediately underneath the helicopter
and adjust the helicopter's altitude to maintain a
predetermined above-ground-level height. Simple
though Algorithm S may be, it is woefully inadequate.
Since all helicopters have a limited rate at which they
can climb-or descend, for that matter-the use of this
method alone will produce disastrous results. There is
no guarantee that the terrain will comply with the
helicopter's physical limitations. For example, Figure
1 shows a helicopter moving forward at 30 m/s and
climbing at its maximum rate of 12 m/s. Basic
trigonometry defines the tangent of an angle to be equal
to the magnitude of the y-component of the angle
divided by the magnitude of the x-component of the

315

Crash v /'

.-'*"*
^j-*

12m/s j

^J C "- »...-•
^^

...-•'" 30 m/s

Tan(a) = y/x

a = Tan"1 (12/30)
a = Tan"1 (0.4)
a = 21.801°

a = Tan' (y/x)

Figure 1

angle. Under these conditions, the helicopter will only
be able to successfully traverse a grade of, at most,
about 22 degrees. Any steeper grade will result in a
collision with the terrain.

A variation on Algorithm S (say, Algorithm SL) might
be to look ahead on the terrain some predetermined
distance. This would give the helicopter a little extra
time to account for steep terrain. Though the use of
Algorithm SL could still yield results similar to
Algorithm S, another not-so-evident shortcoming
becomes apparent when the helicopter encounters a
peak in the terrain.

look-ahead

Crash

Since the helicopter is following the terrain
from the look-ahead point, it will start
descending too soon and will crash into the
ground before it can clear the peak.

e
J

i

*
V

1
1 \ \

Helicopter's path

^-6
Terrain contour > '"s.

y **•. .*

Figure 2

Figure 3

As Figure 2 shows, the slope on the far side of the peak
could be steep enough to cause the helicopter to
descend too early and too quickly, causing the
helicopter to crash before it has cleared the peak.

Another major pitfall of both Algorithm S and
Algorithm SL is that they tend to produce "bouncing"
helicopters. By varying the helicopter's above-ground-
level height with respect to a single point on the terrain,
the helicopter's movement becomes sensitive to small
variations in the contour of the terrain. In other words,
with the helicopter adjusting its height according to
every bump in the terrain along its path, as in Figure 3,
it will "bounce" along as it flies.

4. A Mission Statement

To determine exactly what it is that an above-ground-
level flight algorithm should and should not do, it is
important to explicitly state the goals of such an
endeavor. Of course, the ultimate goal is to produce
realistic above-ground-level flight in helicopters; that
is, to allow helicopters to fly as close to the terrain and
as fast as possible, limited by the vehicle's dynamics
and the algorithm's competence, while maintaining
authentic flight characteristics. We can define the
objectives that we need to satisfy in order to reach this
final goal. First of all, the helicopters need to judge, in
an empirical manner, the general trend of the terrain.
Secondly, the helicopters need to determine whether
they can adhere to the general trend of the terrain given
their own design limitations. Finally, the method used
to compel the helicopters into such behavior needs to
be efficient and effective in order to maintain the
integrity of the simulation.

5. IST's Above-Ground-Level Flight Algorithm

The phrase "general trend," repeated twice in the
mission statement, suggests the application of statistical
regression analysis to produce above-ground-level

316

flight in helicopters. Regression, in a statistical sense,
concerns the prediction of the average value of one
variable in terms of the known values of other variables
(Freund 1979). In essence, regression is the process of
"fitting" a curve to a set of points such that the curve
describes, to a measurable degree of accuracy, the
general trend of the set of points. In terms of above-
ground-level flight for helicopters, regression analysis
may be used to describe the general slope of the terrain
along the helicopter's flight path.

5.1 Linear Regression Analysis

Linear regression is an analysis tool that attempts to fit
a straight line to a set of sample points. Though there
are more complex and accurate regression models that
fit curved lines to a set of sample points, linear
regression is computationally inexpensive, yet it is also
sufficiendy robust to accurately represent the small
sample of terrain points that CGF helicopters need to
establish above-ground-level flight. The time required
to calculate the best-fitting line for the terrain sample is
an order of magnitude proportional to n (O(n)), where
n is the number of points in the sample. We will later
show, however, that this calculation can be reduced to
0(1) on average. In addition, most terrain samples,
regardless of the rate at which they slope, show a
discernible linear trend when the bounds of the sample
are relatively small, as is the case for IST's above-
ground-level flight algorithm, presented below. This is
especially true for a polygonal terrain database.

IST's above-ground-level flight algorithm for
helicopters uses simple linear regression to determine
the general slope of the terrain in front of the
helicopter. It accomplishes this by sampling the
upcoming terrain along the helicopter's current flight
path. It then uses linear regression analysis to
determine the general slope of the terrain given the set
of terrain points that it has sampled. By determining
this general slope, the algorithm can adjust the
helicopter's dynamics values to reflect changes in the
terrain in front of the helicopter. In essence, regression
analysis produces a generalized "picture" of the terrain
in front of the helicopter, giving equal weight to every
point sampled along the terrain, thus diminishing the
effect of minor terrain contour variations on the
helicopter's flight. This produces smooth flight
characteristics while allowing the helicopter to
simultaneously conform to the terrain and account for
its own physical limitations.

The algorithm utilizes the method of least squares to
determine the best-fitting straight line in which to
model the terrain. The method of least squares

computes a straight line such that the sum of the
squares of the vertical deviations of the sample points
from that line is a minimum (Freund 1979).

5.2 The Least-Squares-Determined Line

The equation for a straight line represented in the
Cartesian coordinate system, shown in the top part of
Figure 4, takes the form y=a + bx, where a is the y-
intercept and b is the slope of the line. Given two
points on the line, the line's slope is determined by
dividing the difference in the y-values of the two points
by the difference in the x-values of the two points.
Now, given just one (x, y) coordinate pair and the slope
of the line, it is possible to compute the y-intercept of
the line.

Equation for a line: y = a + bx (1)
a equals the value for y when x=0.
b equals the magnitude of the slope.

Equation for the slope of the line from (x1t y,)
to (x2, y2):

b = (y2 - yi) / (x2 - x,)

Equation for the y-intercept of a line (from
Equation (1) above):

a = y - bx

Equation for the average slope of a curve
using the least-squares method:

b =
n(Ixy)-(IxXZy)

n(lx2)-Q»2

Equation for the y-intercept of a curve using
the least-squares method:

a =
(Iy)(Xx2)-(5;xXXxy)

n(Sx2)-(Ix)2

n is the number of sample points
£x is the sum of all x values.
Xy is the sum of all y values.
Exy is the sum of all x values multiplied by
their respective y values.
Ex2 is the sum of the squares of all x values.

Figure 4

Computing the slope and y-intercept values for a least
squares line is not so straightforward, however, as the

317

Terrain Height vs. Time Index

—o— First Sample
~^> Second Sample
— - Average Slope of First Sample
— - Average Slope of Second Sample

Time Index

Figure 5

PerformAnalysis(); /* Perform regression analysis. */
predicted_height = InterpolateGroundHeight;

/* Perform altitude adjustment. */
if (predicted_height > sample_max)

/* Change height relative to predicted height. */
else

/* Change height relative to sample_max. */

/* Perform speed adjustment. */
grade_factor = 1 - (current_speed / max_speed);

if (terrain_slope != 0.0 &&
(terrain_slope > (grade_factor * MAX_HEIGHT_CHANGE_RATE)))

C
speed_adj_ratio = (grade_factor * MAX_HEIGHT_CHANGE_RATE) /

terrain_slope;
current_speed = current_speed * speed_adj_ratio;

}
else if (heli_altitude > sample_max)

current_speed = initial_requested_speed;

Figure 6

bottom part of Figure 4 shows. For a more complete
discussion on the determination of the least squares
line, see (Freund 1979).

Figure 5 shows the least squares line determined for
two successive samplings of the terrain. Notice how
the magnitude of the slope of the line changes gradually
from one sample to the next. The application of this

principle not only produces smoother, more realistic
flight, but it also allows the helicopter to make other
adjustments, based on the magnitude of the slope, to
account for the helicopter's design limitations.

318

5.3 How Does the Algorithm Work?

The above-ground-level flight algorithm, shown in
Figure 6, performs its terrain analysis every time the
helicopter's dynamics are updated.
PerformAnalysis () performs the actual linear
regression analysis, computing the intercept (a) and the
slope (b) of the least-squares line for the current terrain
sample. Given the values for a and b,
InterpolateGroundHeight () predicts the
height of the terrain along the helicopter's path at a pre-
determined point in time. The algorithm then performs
simultaneous adjustments to both the helicopter's
altitude and its speed. The altitude adjustment requires
little explanation since the goal of this algorithm is to
compel the helicopter over the terrain-thus, the need
for the altitude adjustment. The speed adjustment,
however, is what takes into account the physical
limitations of the helicopter and its ability to change its
altitude.

>=S
Given:

z(m/s)

x (m/s)

1) x>0;z>0
2) 0°<a<90°

tan(a) = z/x

Suppose that x varies while z is constant. As
x->0, Z/X-VH» (since z>0 and x>0). Thus,
tan(oc)-

Since 0° < a < 90°, we know that, as
tan(a)-»+«>, a—»90°, because on the interval
0° < a < 90°, a increases as tan(a) increases.

Therefore, the maximum climbing angle
increases as the forward speed of the
helicopter (and hence, x) decreases.

Figure 7

It is important to note here the relation between
forward speed and climbing rate. Using trigonometry,

it is possible to determine the maximum slope that a
helicopter can traverse given its forward speed and its
maximum climbing rate. In addition, as Figure 7
shows, when the helicopter's speed decreases, the
maximum slope that the helicopter can traverse
increases. In Figure 7, x represents the helicopter's
forward speed, z represents the helicopter's climbing
rate, and a represents the angle formed by those two
components of the helicopter's motion. In this
example, the following conditions exist: the helicopter
is moving forward at some positive rate (x > 0), it is
climbing at some positive rate (z > 0), and therefore,
the angle formed by the two components of the
helicopter's motion (a) is between 0° and 90°. The
tangent of a is equal to zlx. Now, suppose that z
remains constant while x changes (which corresponds
to decreasing the helicopter's forward speed while
allowing its climbing rate to remain constant). As x
decreases, a increases and finally approaches 90°.
Therefore, the helicopter's maximum climbing angle
increases as its forward speed (and hence, x) decreases,
which means that slowing down the helicopter makes it
better able to avoid steep terrain.

The helicopter performs its terrain analysis based on its
sample of terrain heights at various points along the
helicopter's flight path, and the time at which the
helicopter recorded each sample point. Using the least
squares method for linear regression analysis, the
helicopter determines the average slope, in meters per
second, of the terrain in front of it. This average slope
shows how quickly the helicopter must climb in order
to remain at a relatively uniform height above the
terrain. Based on the computed average slope of the
terrain, the helicopter predicts a height for the terrain at
a pre-determined point along its flight path. The
helicopter adjusts its altitude to reflect a given desired
height above the ground relative to the height of the
terrain.

5.4 Why Adjust the Helicopter's Speed, as Well?

There are two valid reasons behind the speed
adjustment. First, we have already shown that a speed
adjustment is necessary to account for the physical
limitations of the helicopter. Secondly, although
changes in the helicopter's dynamics settings as a result
of the algorithm do occur instantaneously, the
behaviors that reflect such changes are not
instantaneous. In addition to accommodating the
physical limitations of the helicopter, the speed
adjustment provides a buffer to take into account the
time that it takes for the helicopter to reflect in its
behavior any changes in its dynamics.

319

<=5
Suppose:

MAX
MAX

75 m/s

SPEED = 120 m/s
DELTA Z = 12.0 m/s

CURRENT_SPEED

MAX.SPEED

75 m/s

speed_ ratio =

speed, ratio = •
120 m/s

speed_ ratio = 0.625

grade_factor
= 1 - speed_ratio
= 1 - 0.625
= 0.325

Slope threshold
= 0.325 * MAX_DELTA_Z
= 0.325* 12.0 m/s
= 3.9 m/s

Therefore, in this example, if the terrain slope
is greater than 3.9 m/s, the algorithm will
decrease the speed of the helicopter
proportional to the ratio of the slope threshold
to the terrain slope.

Figure 8

From the pseudo-code in Figure 6, the altitude
adjustment is rather simple. The helicopter merely
adjusts its altitude to reflect changes in the height of the
terrain. The speed adjustment is a little more complex,
however. From Figure 8, the helicopter first computes
its speed ratio-the ratio of its current speed to its
maximum attainable speed. The helicopter uses the
speed ratio to compute the grade factor. The grade
factor gives the helicopter the buffer that it needs to
account for the time that it takes to reflect in its
behavior any changes in its dynamics. Thus, the grade
factor is inversely proportional to the speed of the
helicopter relative to its maximum speed (computed by
subtracting the helicopter's speed ratio from 1). The
slope threshold is then computed from the grade factor
and the maximum rate at which the helicopter can
climb. Therefore, the point at which the helicopter
begins adjusting its speed is inversely proportional to
the relative speed of the helicopter. In other words, the

faster the helicopter is moving, the earlier it will begin
adjusting its speed. This process of sampling and
dynamics adjustment is continuous.

6. Implementation in the 1ST CGF Testbed

The 1ST CGF Testbed is designed such that, under all
but the very worst conditions, the dynamics model of
any entity is updated roughly five times per second.
This greatly simplifies the sample-gathering process.
Rather than gathering an entire sample during each
iteration of the dynamics update, the helicopter merely
disposes of the oldest sample point and all traces of it
and replaces it with a new one. However, before
destroying the oldest sample point, its components are
subtracted from Ex, £y, Exy, and Zx2, and the values
for the new sample point are then added to what
remains. The helicopter must gather an entirely new
set of sample points only when it changes its angular
velocity. Thus, the gathering of the sampling data and
the performance of the regression analysis is 0(1), on
average.

1ST determined that a five-second look ahead would be
sufficient to accurately model the terrain for the
purpose of establishing above-ground-level flight. This
determination was made based on an interpretation of
when a real helicopter pilot would begin adjusting his
or her aircraft to avoid the terrain. Given this five-
second look-ahead, and the fact that the helicopter's
dynamics model is updated about five times per
second, the above-ground-level algorithm uses a
sample size of twenty-five points with which it
performs its regression analysis. The projection of the
helicopter's position five seconds into the future is a
simple calculation given the helicopter's velocity and
its current speed.

In order to keep track of all of the data required to
establish above-ground-level flight, it was necessary to
add some new data structures, shown in Figure 9, to the
entity control structure for helicopters.

GROUND_HEIGHT_DATA is the structure which holds
the data for the computation of the least squares line for
the terrain sample, and consists of the following:

sample is an array which holds the ground-
height/time-index sampling pairs.

head points to the oldest sample in the array.
The sample data is implemented as a circular
list, which makes it easy to determine which
sample point to discard when collecting a new
sample point.

320

typedef struct
{

double ground_height;
double time_index;

} GROUND_SAMPLE;

/* Helicopter Ground Sample */

/* Ground height of sample */
/* Time index of sample */

typedef struct
{

/* Helicopter Ground Sampling Data */

GROUND_SAMPLE
sample[TERRAIN_SAMPLE_SIZE];

int head;
double gh_mean_slope;
double gh_intercept;
double gh_max;
doub1e sigma_x;
double sigma_y;
doub1e sigma_xy;
double sigma_x_squared;
TIME latest;

GROUND_HEIGHT_DATA;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Terrain Sample */
Head of sample list */
Least-squares determined slope */
Least-squares determined int. */
Max. height value in sample */
Sum of x (time_index) */
Sum of y (ground_height) */
Sum of x*y */
Sum of x^2 */
Most recent time index */

Figure 9

gh_mean_slope and gh_intercept
describe the least squares line. The equation
for the line is of the form y=a + bx, where
a is the y-intercept, which corresponds to
gh_intercept, and b is the slope of the
line, which corresponds to
gh_mean_s1ope.

gh_max stores the maximum terrain height
value in the sample. By comparing the
predicted height of the terrain with the
maximum height in the sample, the helicopter
has a buffer to prevent collisions with the tops
of terrain peaks.

sigma_x, siqma y. sigma_xy, and
sigma_x_squared are used in the
computation of gh_mean_slope and
gh_intercept. These variables
correspond to Ex, Ey, Zxy, and Ex2,
respectively, in the regression analysis. They
are stored in the helicopter's control structure
to optimize the computation of the least
squares line.

latest records the time at which the latest
sample point was recorded.

6.1 Minor Algorithm Modifications

In the real world, flying a helicopter-or any aircraft, for
that matter-just above the treetops and at maximum

speed is a risky venture, to put it mildly. The
probability of the flight ending in a fatal collision with
the ground is very real. The cost of such a crash in the
virtual world may not be as high, but the goal of the
simulation is to make the consequences just as real.
Therefore, any CGF helicopter that crashes into the
ground due to the inadequacies of its above-ground-
level flight algorithm is unacceptable. The algorithm
must be perfect in the sense that it does not allow any
helicopter to crash as a result of the characteristics of
the terrain.

It is for this reason that the above-ground-level flight
algorithm presented here implements certain measures
that cause the helicopters to behave more
conservatively with respect to their flight
characteristics. Regression analysis is able to base its
conclusions only on the sample on which it has to
operate. With these conclusions comes a measurable
degree of accuracy, which means that they are not
always the correct conclusions. Any analysis
performed on the terrain with the intent to produce
above-ground-level flight in helicopters must always
arrive at the correct conclusion, however. Thus, in
addition to the terrain height sample, the helicopter also
stores the maximum value of the terrain height in the
sample. In adjusting its altitude, the helicopter
proceeds to its given height above the ground plus the
greater of either the predicted terrain height or the
maximum terrain height in the sample.

The use of the grade factor in the adjustment of the
helicopter's speed performs an analogous function.

321

Future Position

Velocity

Current Position

Figure 10

Current
Velocity

Future Position

Turn Rate

Current Position

Figure 11

6.2 Curved Flight-Path Projection

When the helicopter is flying in a straight line, as in
Figure 10, the projection of its path along that line is a
simple calculation given the helicopter's current
position, its velocity (remember from physics, a body's
velocity consists of its speed and direction), and the
time displacement of the projection-the length, in time,
of the look-ahead. It would be unrealistic and would
most likely yield unacceptable results to project a
straight-line position when the helicopter is actually
following a curved, or more precisely, circular path, as
in Figure 11. It becomes necessary, therefore, to

Knowns: velocity (v), turn rate (co), time (t),
helicopter's current position (x,, y^.

Remember:
speed (s) & heading comprise velocity

a-> heading
p=at

s=cor -> r=oys

x^rcosoc

Xi = Xo + Xi
XQ = Xi - Xi

X = a + p

x2' = r cos%

X2 = XQ + X2

yi = r sina

yi=yo + yi'
y0 = yi - yi'

y2 = r sinx

y2 = y0 + V2

Figure 12

project the helicopter's position along a circular path,
given a constant angular velocity, in order for it to
gather a valid terrain sample along that path.

In projecting the helicopter's position along a straight-
line path, it is necessary to know the helicopter's
current position, its velocity, and the length of the look-
ahead time. In projecting the helicopter's position
along a circular path, it is also necessary to know the
rate at which the helicopter is turning. Given these
known values, Figure 12 shows the method by which
the helicopter projects its position along a circular path.

From Figure 12, the helicopter knows its current
position (xi, yO, its speed (s) and its heading
(determined directly from its velocity [v]), its turn rate

322

(co), and the time displacement for the projection (f).
The projection of the helicopter's position along its
circular path through f requires two steps. First, the
helicopter must determine its center of motion (xo, yo)-
Given (xo, yo), it can then proceed to project its future
position (x2, y2).

To compute (xo, yo), the helicopter must first
"normalize" its heading relative to (xo, yo). (xo, yo) will
be different depending on whether the helicopter is
moving in a clockwise fashion or a counter-clockwise
fashion, determined by the sign of co. A positive co
depicts clockwise motion. Figure 12 shows the
helicopter moving in a clockwise fashion. The
normalized heading (a) is determined directly from the
helicopter's actual heading and the value of co.

Given co and s, the helicopter can compute the radius
(r) of the circle defined by its motion. Now, after
computing a and r, the helicopter can determine
(Xo, yo) given (x,, y,).

To perform the actual projection of the helicopter's
position along its current circular flight path, the
helicopter first calculates, directly from co and t, the
magnitude of the angle (p) through which it passes
during /. x> the normalized value for p, is determined
simply by adding a and p. Finally, after computing %,
the helicopter can now determine its future position,
(x2, yi), given (x^ y,).

7. Fort Rucker's Aviation Testbed

The original scenario installed at Fort Rucker in July,
1994, was criticized for its lack of tactical realism. The
main reason for this was that the CGF helicopters were
unable to fly close to the ground without crashing. In
order to make it through the scenario without colliding
with the terrain, however, the helicopters needed to be
placed at very high altitudes-an unrealistic and
tactically unsound enterprise.

In early 1995, 1ST installed an updated version of the
Integrated Eagle/BDS-D system at Fort Rucker.
Among the revisions was a new training and analysis
scenario and an improved CGF Testbed which
included the above-ground-level flight algorithm for
helicopters.

In the revamped scenario, the above-ground-level
algorithm allows the use of CGF helicopters in a more
tactically feasible manner.

8. CGF/Manned Simulator Interaction

The Integrated Eagle/BDS-D system has the capability
to instantiate manned simulators in the virtual
environment, allowing the interaction between CGF
entities and U.S. Army soldiers operating manned
simulators. In the original installation of the Integrated
Eagle/BDS-D system at Fort Rucker, the scenario
normally proceeded with a manned helicopter
simulator flying extremely low to the ground at a
relatively high speed while the CGF helicopters in the
scenario followed at very high altitude. The soldiers
operating the manned helicopter simulator, and
observers alike, readily noticed this unrealistic
formation and criticized the CGF helicopters' behavior.
With the new above-ground-level flight algorithm,
however, the CGF helicopters were able to fly as low
as the pilots without crashing, though not quite as fast.

9. Algorithm Efficiency

This algorithm has a distinct advantage over similar
algorithms due to its size and efficiency. By storing the
Z-values as part of the helicopter's control structure,
complete recomputation of these values is not
necessary. Only when the helicopter changes its
angular velocity and, therefore, gathers a new sample,
does it need to perform an entire recomputation of the
2-values. Therefore, on average, the regression
analysis has an order of magnitude of one (0(7)).

The determination of the maximum terrain height value
in the sample is also O(l) on average. Recall that when
a new sample point (p„ew) is gathered, the oldest point
in the sample (poW) is removed from the sample. To
determine the maximum height in the sample, Pnew's
terrain height is compared with the stored maximum
height of the sample (if Pnew's height is larger than the
maximum, then Pn^'s height becomes the new
maximum). This operation requires 0(1) steps.
However, if p0id's terrain height is the maximum height
of the sample, then the algorithm must recompute the
maximum height of the sample by examining each
point in the sample. Although this operation takes O(n)
steps, it is performed infrequently as compared to the
0(1) calculation above; therefore, the height
determination for the sample takes 0(1) steps on
average.

10. Limitations and Future Work

The above-ground-level flight algorithm presented here
does have its weaknesses, however. The Assault
Support Helicopter Tactical Manual (Department of
the Navy 1984) describes three types of flight that a

323

helicopter might be required to perform: low-level,
contour, and nap-of-the-earth. Low-level flight places
the helicopter just above the terrain as a whole,
allowing it to fly at its absolute maximum speed
without regard to the terrain. Contour flight places the
helicopter much closer to the terrain, making it
necessary for the helicopter to take into account the
terrain in order to avoid crashing. The above-ground-
level flight algorithm presented here most closely
mimics contour flight. Nap-of-the-earth flight involves
flying "as close to the Earth's surface as vegetation and
obstacles permit while generally following the contours
of the Earth's surface" (Department of the Navy 1984).
Nap-of-the-earth flight techniques are usually limited to
missions in which the threat and tactical situation
preclude the safe use of low level or contour flight
techniques. This technique greatly sacrifices speed, but
it takes advantage of the cover and concealment
afforded by terrain, vegetation, and manmade features.

The Integrated Eagle/BDS-D system utilizes contour
flight for its CGF helicopters simply because the
system's demonstration scenario calls for that particular
flight mode. To produce a more realistic simulation
environment, however, the system should implement
both low-level and nap-of-the-earth flight, as well. The
human operator could specify the desired flight mode
of a CGF helicopter upon its instantiation. Each mode
might define a minimum height at which it would allow
helicopters to fly. In addition, the operator could
switch flight modes for specific helicopters during the
simulation. Ideally, however, a CGF helicopter would
vary its flight mode automatically and intelligently,
depending on its environment or on orders from higher
headquarters.

10.1 Operational Activities in Eagle/BDS-D

The Integrated Eagle/BDS-D Project has successfully
linked a constructive, aggregate-level simulation with a
virtual, entity-level simulation using both manned
simulators and computer generated forces
(Franceschini 1995). When units from the constructive
simulation are disaggregated as computer generated
forces into their respective vehicles in the virtual
simulation, they are given operational activities upon
which they are to act in an intelligent manner. Among
the operational activities for helicopters are "FLY-
NOE" and "FLY-CONTOUR", telling the CGF
helicopters the mode in which they will be flying. In
such a system, those helicopters should be placed at
altitudes corresponding to their operational activities:
perhaps 100 to 150 meters for low-level flight; 20 to 30
meters for contour flight; 5 to 10 meters for nap-of-the-
earth flight.

10.2 Intelligent Route Planning

Thus far, the subject of this paper has focused solely on
the adjustment of the helicopter's height (and its speed;
but only for the purposes of allowing the helicopter to
climb at a steeper rate). A more autonomous CGF
helicopter would adjust its route as well in response to
its environment. For example, it is more tactically
sound for a helicopter to fly through a canyon than to
fly outside of one. Therefore, a CGF helicopter should
analyze the terrain with regards to the mode in which it
is flying to take full tactical advantage of the
surrounding environment. Such analysis is beyond the
scope of the above-ground-level flight algorithm
presented here, and would require an intelligent route
planning algorithm not unlike that which is in place for
ground vehicles in the 1ST CGF Testbed (Smith 1992).
Route planning occurs before the helicopter even starts
moving, while the above-ground-level flight algorithm
presented here adjusts the helicopter en route. Hence,
the two algorithms would be able to work
independently, but for the same higher goal: realistic
and tactically sound helicopter flight.

At this time, however, the scope of the Integrated
Eagle/BDS-D Project does not encompass these types
of intelligent flight controls for CGF helicopters.

10.3 Future Work

Future work in the area of above-ground-level flight for
CGF helicopters should include the implementation of
low-level and nap-of-the-earth flight modes; intelligent
interpretation of operational activities, especially for
constructive+virtual linkages, and intelligent route-
planning that accompanies both contour and nap-of-
the-earth flight.

11. Acknowledgment

This research was sponsored by the U.S. Army
Simulation, Training, and Instrumentation Command
and by the U.S. Army TRADOC Analysis Center as
part of the Integrated Eagle/BDS-D Project, contract
number N61339-92-K-0002. That support is gratefully
acknowledged.

Special acknowledgment goes to Robert C. Schricker,
who provided invaluable assistance in the
determination of the curved-flight-projection routine.

12. References

Department of the Navy (1984). Assault Support
Helicopter Tactical Manual NWP 55-9-ASH,

324

Volume I (Rev. B) NAVAIR 01-1ASH-1T,
Office of the Chief of Naval Operations.

Franceschini, Robert W. (1995). "Integrated
Eagle/BDS-D: A Status Report",
Proceedings of the Fifth Conference on
Computer Generated Forces and Behavioral
Representation, Orlando, Florida, May 9-11,
1995.

Freund, John E. (1979). Modern Elementary Statistics.
Fifth Edition, Prentice-Hall.

Smith, Scott H., Karr, Clark R., Petty, Mikel D.,
Franceschini, Robert W., Wood, Douglas D.,
Watkins, Jon E., and Campbell, Charles E.
(1992). "The 1ST Semi-Automated Forces
Testbed", Technical Report IST-TR-92-7,
Institute for Simulation and Training,
University of Central Florida.

13. Biographies

Stephen A. Schricker is a Software Engineer on the
Integrated Eagle/BDS-D Project at the Institute for
Simulation and Training. He has earned a B. S. in
Computer Science from the University of Central
Florida. His research interests are in the area of
simulation.

Robert W, Franceschini is a Principal Investigator at
the Institute for Simulation and Training. He currendy
leads the Integrated Eagle/BDS-D project at 1ST. Mr.
Franceschini has earned a B. S. in Computer Science
from the University of Central Florida; he is currently
pursuing an M. S. in Computer Science from UCF. His
research interests are in the areas of simulation, graph
theory, and computational geometry.

Mikel D. Petty is a Program Manager at the Institute
for Simulation and Training. He is currently managing
Plowshares, an emergency-management simulation
project. Previously, he led IST's Computer Generated
Forces research projects. Mr. Petty has earned a B. S.
in Computer Science from California State University
at Sacramento, and an M. S. in Computer Science from
the University of Central Florida. He is currently a Ph.
D. student in Computer Science at UCF. His research
interests are in the areas of simulation and artificial
intelligence.

Tracy R. Tolley is a Graduate Research Assistant on
the Integrated Eagle/BDS-D project at the Institute for
Simulation and Training. She has earned a B. S. in
Mathematics from the University of Central Florida,
and is currendy pursuing an M. S. in Computer Science
at UCF. Her research interests are in the area of
simulation.

325

Session 7a: Non-Military Uses of CGF

Warren, GreyStone Technology, Inc.
Petty, UCF/IST

Moore, University of Pennsylvania

Bi-Directional Technology Transfer Between Government Applications
of Computer Generated Agents and Commercial Entertainment

Rich Warren
Mike Crowe

Don Shillcutt
GreyStone Technology, Inc.

10766 Goldentop Road
San Diego CA 92127
rwarren@gstone.com

1. Abstract

The transfer of Computer Generated Forces
(CGF) technology between government
simulation and commercial entertainment
communities, facilitates the development of
more evolved and cost effective Autonomous
Intelligent Adversaries (AIA). As commercial
AIA requirements begin to also meet government
CGF requirements, breakthroughs in intelligent
adversary technology are incorporated into
Commercial Off The Shelf (COTS) and Value
Added software. The commercial reusable
software tools are in turn made available to
government CGF managers who realize
immediate reductions in development costs and
program maintainability.

This paper will describe early application of
CGF technology to both government simulation
and commercial gaming environments. More
recent applications of the technology will also be
discussed to show that the fidelity requirements
of AIA in simulation and gaming are, by today's
standards, nearly identical. Motivation to reduce
the development, acquisition and operations cost
of CGF and AIA software tools that increase the
fidelity, performance and portability of behavior
models is also offered.

2. Common Vision

The Distributed Interactive Simulation (DIS)
glossary defines CGF and Semi-automated
Forces (SAFOR) as the "Simulation of friendly,
enemy and neutral entities on the virtual
battlefield in which the individual platforms are
operated by computer simulation of the crew and
command hierarchy." The Virtual or Electronic
Battlefield is likewise defined as the "Illusion
resulting from simulating the actual battlefield
(1ST, 1994)."

The application of CGF technology in
government military Test, Training and Analysis
exercises satisfies the government's need to
reduce cost and logistics support while
maintaining the density, depth and diversity of
forces required to accomplish the exercise
objectives. Though the human or live forces in
the exercise remain the focal point, the use of
CGF provides an economic solution that
stimulates interactions between "players" on the
virtual battlefield.

The commercial entertainment industry, like the
military, has similar needs for an economic
solution that stimulates live (i.e., cash paying)
customers. The profit for commercial
entertainment is derived from enticing the
customer to participate in and repeatedly return
to the gaming environments and location based
experiences . Commercial Virtual Reality
opportunities are growing through the
application of technology that offers a solution.

The DIS glossary defines VR as the "effect
created by generating an environment that does
not exist in the real world. Usually, a
stereoscopic display and computer-generated
three-dimensional environment giving the
immersion effect. The environment is
interactive, allowing the participant to look and
navigate about the environment, enhancing the
immersion effect. Virtual environment and
virtual world are synonyms for virtual reality
(1ST, 1994)."

Notice that a "virtual battlefield" is one
representation or application of "virtual reality."
GreyStone Technology's commercial virtual
reality entertainment systems combine multi-
sensory human-computer interfaces with real-
time simulations and dynamic models that
display intelligent and interactive behaviors

329

(Crowe, M., 1994). GreyStone's VR
entertainment systems represent commercial
CGF applications that are strikingly similar
those required by the military.

As outlined above, government simulation and
commercial entertainment managers now share a
common goal to reduce the cost of development,
acquisition and operation of CGF technology. In
the sections that follow, early applications of
CGF technology to both government simulation
and commercial gaming environments will be
presented to show that CGF requirements across
the two environments were at one time distinct.
More recent applications of CGF technology,
however, will also be discussed to show that the
fidelity requirements of Intelligent Adversaries in
simulation and gaming are by today's standards
nearly identical. Closing sections of this paper
will offer motivation to reduce the development,
acquisition and operations cost of CGF and AIA
software tools that increase the fidelity,
performance and portability of behavior models.

3. Early Applications of CGF Technology

Until recently, user requirements across
government simulation and commercial gaming
environments have placed differing emphasis on
the fidelity of the CGF and AIA. While the
government simulation environments required
high fidelity CGF , the commercial gaming
environments required high fidelity presentation
systems. In the sections that follow, several
exemplar applications of early work from both
government simulation and commercial gaming
will be presented to show that computational
resources were not sufficient to simultaneously
host both CGF and display technology.

3.1 Early Government Simulation

The government has shown an interest in
modeling adversarial forces since WWII. Much
of modem CGF technology can in fact be traced
back to the work of John Von Neumann and his
theories of game play (Von Neumann, 1944).
This section will trace early work in game theory
and Operations Research to motivate the
discussion of applications that show
government's early emphasis on CGF.

Adversarial Agent Modeling and Computer
Generated Vehicle Commanders are applications
that are described to show an early government
emphasis on CGF technology rather than on
presentation technology. Following, GreyStone
Technology's Advanced Maneuvering Logic - 90

(AML-90) (GreyStone, 1994) will be presented
to illustrate a government interest in CGF
technology hosted in a computational
environment sufficient enough to also provide
two dimensional bitmapped graphics.

3.1.1 Operations Research
Operations Research is an activity with a long
history that dates back to World War II.
Methods of Operations Research, including
statistical analysis, theory of probability and
gaming theory, have been applied to tactical
analysis and operational experiments with
equipment and procedure for over half a century.
(Morse and Kimball, 1951).

Tactical analysis became necessary as the onset
of WWII introduced many new tactics and
equipment types for which effective measure-
counter measures were needed. A counter
measure to minimize the threat of the Japanese
Kamikaze, for example, was found through
statistical solutions that considered damage due
to suicide planes, the effects of maneuvering and
the effect of angle of approach. The results of
the Kamikaze study produced a number of
suggested tactics which resemble, in content, the
consequent of modern day expert system rules.
Below is a summary table of some of the tactics
learned through the statistical analysis of suicide
planes.

Rule No Tactic Learned
1 All ships should attempt to present

their beams to high-diving planes.
2 All ships should attempt to turn

their beams away from low-diving
planes.

3 Battleships, cruisers, and carriers
should employ radical changes of
course

4 Destroyers and smaller fleet units
should turn slowly to present the
proper aspect to the diving plane.

5 Destroyers and smaller fleet units
should not turn rapidly enough to
affect the accuracy of their AA.

Table 1: Tactics Learned

In addition to statistical analysis, search and
game theories were developed to provide more
analytical solutions to tactical analysis. Search
theories, for example, can state the probability
of making contact with a target placed at
random within some given area. The probability

330

of hit (Pk) is likewise computed using
statistical theory.

Game theories were also developed as problem
solving methodologies to tactical analysis.
Specifically, the analysis of countermeasure
action is accomplished using principals
established by Von Neumann. These principals
are particularly effective under situations where
battlefield intelligence is complete and the
opposing forces are reasonably familiar with
measures and countermeasures that apply to the
tactical situation. The driving principal under
such situations, know as the minmax principal,
works to maximize gain while minimizing loss.

3.1.2 Enemv Platforms
Much of the Operations Research described
above was conducted at the very dawn of the
computer revolution. Since then, a number of
research efforts have contributed towards the
development of computerized tactical decision
aids which incorporate many of the principals
and strategies developed through Operations
Research.

The Naval Air Development Center, for example,
has sponsored research efforts to model plan
recognition agents that operate within adversarial
domains. For program development, verification
and validation purposes, Computer Adversarial
Agents that model enemy platforms (e.g. aircraft
and ships) are generated. These computer
adversaries pose a threat to Naval aircraft carrier
Task Forces and are capable of interaction in a
dynamically changing world.

The intelligently guided operators of
Azarewicz's plan recognition systems project
plan hypothesis forward in time much like
implementations of the minmax game principal.
Due to the dynamics of the battlefield, however,
Azarewicz's models use differential gaming
principals that better model domains where joint
moves by both opposing forces might
simultaneously occur (Azarewicz, 1987).

3.1.3 Combat Commanders
The preceding section introduced the application
of game theory to computer generated
autonomous adversaries. This section will
introduce the use of expert system technology as
it is applied to model a combat vehicle
commander.

Gibson describes an expert system used to model
a combat vehicle commander's thought or
combat decision-making process (Gibson,

1989). Additionally, Gibsons system applies
MYCIN certainty factor methodology to model
uncertainty common to many battlefield
situations.

3.1.4 Adaptive Maneuvering Logic - 90
While the previous section introduced an expert
system based vehicle commander, this section
will describe a fully autonomous rule based air
combat adversary that GreyStone Technology has
commercialized.

Adaptive Maneuvering Logic - 90 (AML-90) is
an advanced, synthetic adversary control model
that allows for real-time, interactive air combat
with a six degree-of-freedom air combat
simulation for one-versus-one and two-versus-
one engagements (GreyStone, 1994). The
decision-making process is implemented using a
rule-based system that contains a set of air
combat rules and associated target behavior
modes that consider multiple phases of a fighter
combat mission including: Beyond Visual
Range (BVR), Intercept, Close-in-Combat
(CIC), and Bugout. The adversaries execute in
real-time to provide realistic air target simulation
for air engagements.

The GreyStone Adaptive Maneuvering Logic -
90 (AML-90) software provides several user
selectable aerodynamic models of fighter aircraft
platform and allows for 4 computer generated
pairs (ownship and wingman), 8 aircraft total, to
be simulated simultaneously during a session.
The AML-90 pairs can be controlled as
adversarial forces within a simulation exercise
and may be directed by the user to engage other
aircraft entities in either a 1-v-l or a 2-v-l
engagement.

The Relative Reference Display (RRD) allows
the user to control and monitor the AML-90
simulation environment. The RRD provides a
two dimensional gods-eye-view of both the
simulated arena and the CGF. A Graphical User
Interface (GUI) is provided by the RRD which
allows the user to set-up the initial positions of
AML-90 entities and to establish routes of
flight. The GUI also allows the user to
specifically control the targets that the AML
aircraft will intercept or engage.

3.2 Early Entertainment Environments

The previous section (3.1) offers examples of
early applications of CGF technology to
government simulation and decision aiding
environments. The early government applications

331

clearly demonstrate that limited computer
processing power forced a development emphasis
on high fidelity Intelligent Adversaries. At the
same time, however, commercial gaming
applications were developed with an emphasis on
high fidelity presentation because the limited
computer processing power allowed for only
rudimentary or brute force computer adversaries
in the gaming environments.

The following sections offer examples of early
applications of CGF technology to commercial
gaming environments. GreyStone's Purple Heart
Corner is exemplar of the presentation fidelity
common to high end adversarial gaming
environments. GreyStone's Pteranodon
Experience is also an early example of the high
fidelity presentation system common to many
commercial gaming environments.

3.2.1 Purple Heart Corner
Purple Heart Corner is a commercially available
entertainment game that combines state-of-the-art
in virtual reality computer graphics with a
detailed mock-up of a WWII bomber gun station.
The shell of the gaming simulator closely
represents the interior of the B-17 bomber at the
waist gunner position, complete with stringers
and bulkhead rings. An accurately-sized window
opening in the fuselage side holds a copy of the
50 caliber Browning machine gun, and is flanked
by a standard issue ammunition box (GreyStone,
1992).

The replica 50-caI Browning machine gun
faithfully reproduces the heft and feel of the
original gun, while a built-in pneumatic actuator
recreates the hammering recoil of the big
weapon. The sights are also accurately replicated,
allowing the user to glimpse the skill required
to aim the Browning accurately in the heat of the
battle.

A description of the action of air combat
experience shows that a heavier emphasis is
placed on presentation rather than on the
intelligence of the computer adversaries.

Mel09's and FW190's, silhouetted
against the sky, drop in from the south
west, ahead of the formation. The
relentless drone of the engines is
interrupted, first by the top turret
gunner, as he sends orange-red tracers
out to greet the incoming fighters.
Wave after wave of fighters dive
through the formation. Tracers arc
across the smoky sky. The 50-caliber

Browning clatters on its mount as the
fighters loom in the sights, with
muzzles flashing. A hit! White flames
claw the fighter to pieces as it spins
downward, raining embers and trailing
smoke. No time to exult; you turn to
face the next attacker.

The above excerpt illustrates that a heavier
emphasis is placed on graphics and sound
technology. Though the experience provides
computer generated targets as well as adversaries,
they are controlled using scripted programming
techniques.

3.2.2 Pteranodon
The Pteranodon experience, first developed as a
showcase for Silicon Graphics' powerful Onyx
image generator, represents the state of the art in
premium virtual reality. The Pteranodon
experience offers 180 degree visibility afforded
by three large screens, and thousands of fully-
textured, anti-aliased polygons refreshing the
screens at thirty times a second. The detailed,
colorful textures and realistic movement of
objects in the simulation are complemented by
the rich, booming, natural sounds of the
environment (Crowe, B., 1994).

Although the Pteranodon is programmed to
follow the commands of a rider, an intelligent
obstacle avoidance system will execute a course
deviation when necessary to avoid a collision
with obstacles. The Pteranodon is also
programmed to search for and follow other
creatures with its gaze.

A description of the action of the Pteranodon
experience shows that a heavier emphasis is
placed on display and presentation.

Echoes of a primal screech rumble
through the canyon, announcing the
arrival of the raptor. Wings sweep the
sky, mocking the winds. A rider guides
the beast around cascades of water
which plummet from dizzy heights to
the river below ... vampire bats flutter
above the next bend and monstrous
wasps dive and swoop over a whirlpool
that devours the river.

As the master of the Pteranodon, you
guide it with the reins and by leaning
in the saddle. It obeys your every
command, but as you cruise through
the canyons of this fantasy world, it
skillfully avoids obstacles on its own.

332

The above excerpt should illustrate that a heavier
emphasis is placed on graphics and sound and
other presentation technology.

4. Recent Simulation and Gaming

The previous section (3.0) discussed early
applications of CGF Technology and showed
that limited computational resources forced
government and commercial CGF applications to
place differing emphasis on the fidelity of the
Intelligent Adversary. This section will
demonstrate that increased processing power has
made it possible to incorporate both high fidelity
CGF and high fidelity virtual reality in today's
simulation and gaming environments.

4.1 Recent Government Simulation

A review of more recent application of CGF
technology to government simulation
environments will show a continued emphasis
on high fidelity Intelligent Adversary technology
but will also show a move towards the coupling
of the technology with a high fidelity real-time
virtual reality graphics environment.

The government simulation community has
realized the full potential of today's computer
technology and has coupled Computer Generated
Forces technology with high fidelity real-time
Virtual Reality. The Naval Postgraduate
School's continued development of NPSNET,
internationally known for its networked virtual
environments technology, has incorporated
Autonomous Players into their virtual
battlefield. GreyStone Technology's AML-D
RAGE , like NPSNET, is a networked
application that combines the latest in real-time
VR technology with high fidelity Computer
Generated Forces technology. Both the NPSNET
and AML-D RAGE applications will be
discussed in more detail.

4.1.1 NPSNET Autonomous Players
The Navel Postgraduate School has included
Autonomous Players in the NPSNET simulation
environment to "provide interactive players when
live players are not available or affordable (Zyda
1994)". The NPS Intelligent behaviors are
modeled using expert system rule based
technology capable of commanding unmanned
vehicles in the simulation environment.

Among the autonomous NPS players are the
autonomous tank forces players that provide
intelligent behavior models which have the

capability to work cooperatively. If numerous
entities, for example, approach the autonomous
tank force from several directions, then the NPS
autonomous computer generated force can
distribute their fire such that some tanks fire one
direction and others in another direction. Should
the autonomous player become outnumbered, it
has the additional capability to call for
reinforcements.

The NPSNET autonomous players are also using
elevation data to reason about terrain. If, for
example, a forward observation vehicle has Line
of Site (LOS) with an enemy vehicle, the
Autonomous Player can relay the coordinates to
one of several howitzers. The threat is fired upon
if it is in range of the howitzer.

Additionally, the autonomous players are
equipped with intelligence reports that provide
them with knowledge of the battlefield. Given
whether a vehicle is friendly or not, the
autonomous players can prioritize targets so that
those targets with a higher priority are fired upon
before lower priority vehicles.

4.1.2 RAGE AML-D
GreyStone's Real-time Advanced Graphics
Environment (RAGE) coupled with AML-D is a
showcase of both high fidelity graphics and
intelligent adversaries running seemlessly
together.

RAGE• is a 3D visualization product designed
for US and foreign government agencies and
military services, and any members of the US or
international defense industries who simulate
operational scenarios, avionics and weapons
systems, airframes, and mission
planning/preview/rehearsal/training systems or
conduct range operations for test or training, or
manage C4I systems. It is particularly designed
for organizations that have a need for advanced
visualization but do not have the time, resources,
or expertise to buy and build their own
visualization products.

RAGE• provides a 3D visualization component
for avionics, weapons and aircraft system
simulations, constructive and virtual mission
simulations, mission preview, rehearsal and
training systems/simulators, live training
missions and actual combat missions. It can
receive object (entity) state and event data from
multiple intelligence and instrumentation sources
and present a near real-time representation of live
or simulated events at a 30Hz refresh rate. In
addition to three standard viewpoint options:

333

Stealth, Out-the-Window, and Tethered,
RAGE• features two simultaneous viewpoints
(i.e., Stealth on one monitor, out-the-window on
another), sensor-related control functions
including scan, slave, and zoom, and 3D
visualization of non-visible phenomena such as
weapons envelopes, platform signatures, EW
signals, sensor beams and scan volumes, and
operational area boundaries. RAGE• can
interface with large multi-screen displays, single
screen systems, standard system monitors,
helmet mounted displays and mini-domes
(Shillicutt, 1994).

Depending on user requirements, RAGE• can
be integrated with multiple simulations, various
user input/output interfaces, and display
alternatives. Specific models and environment
renderings can be produced. Non-visible
phenomena functionality can be made dynamic
such that they respond to the physical criteria
which influence their behavior. Examples
include dynamic SAM envelopes based on target
altitude, and velocity vector and radar detection
volumes based on pulse repetition interval or
radar cross section.

Distributed Interactive Simulation provides a
specialized method for integrating simulations
into your visualization environment. RAGE•
is certified to receive DIS entity state and event
PDUs. If a user needs to add a 3D visualization
product to any entity state source (constructive
or virtual simulation, live range data or live
combat data), entity state source can be translated
into DIS protocols.

AML-D is a (DIS) compliant version of the
Adaptive Maneuvering Logic - 90 software
(detailed in section 3.1.4 and GreyStone '93)
that translates entity state data to DIS PDU
which are forwarded to the RAGE application.
This combination of high fidelity VR and CGF
technology allows for interaction between
dynamic AML-90 aircraft and large multi-player
exercises (GreyStone, 1994).

4.2 Commercial Entertainment

The following sections will show that
commercial entertainment has realized the full
potential of today's computer technology and has
incorporated intelligent adversary technology and
high fidelity real-time virtual reality technology
in a single synthetic environment.

The ThunderBolt commercial gaming
environment, developed at GreyStone for a state-

of-the art amusement park ride, is a synthetic
environment that satisfies many requirements
also common to government simulation.
Thunderbolt has successfully combined high
fidelity adversary technology with state of art
presentation technology.

4.2.1 The Thunderbolt Experience
The computer generated forces developed for the
ThunderBolt application are designed to provide
a constant level of action for the human players
who participate in the gaming environment. The
underlying goal is to keep a continuous flow of
adversary aircraft (both target and threat) in the
field of view of each of the human players.

The technologies used to develop the
ThunderBolt intelligent adversary fundamental
behaviors are based on the modeling techniques
utilized within the AML-90 adversary software.
Although the number of actual CGF players
required for the experience is significant, the
constraints of the ThunderBolt compute
environment allowed a CGF design based on a
derivative of AML-90 behavioral model.

Like AML-90 adversaries, the ThunderBolt CGF
derive relative threat geometry and apply a set of
logic in order to assess an appropriate action.
The logic is both phase and goal-based in that
geometrical parameters such as range and target
aspect are determined. The four CGF phases are
Intercept, Engage, CIC, and Bugout. The phase
is used to determine the set of tactical logic to
apply to the situation and ultimately determines
the CGF's flight behavior and actions. While the
AML-90 CGF includes a robust set of tactical
logic, including cooperative logic with a
wingman, the ThunderBolt CGF operate
independently of one another.

5. Conclusion

GreyStone Technology believes that many of the
needs of both government simulation and
commercial entertainment communities can be
satisfied through Virtual Environments
technology. Furthermore, these virtual
environments are combinations of Multi-Sensory
Human-Computer interfaces with real-time
simulations that are populated by dynamic,
intelligent and interactive behavioral models
(CGF). In the final solution, the distinction
between government CGF and commercial
Intelligent Adversaries, is defined by the user's
needs and the personality or behavior of the
application. The underlying software structures
and technologies should be common and

334

.tfS-WflST

reusable. As the user determines the fidelity of
both the adversaries and the interfaces needed, a
compromise must be made on the requirements
of costs and operational logistics.

REAL WORLD APPLICATIONS REQUIRE A BALANCE OF
CONVENTIONAL AND VR TECHNIQUES

VIRTUAL REALITY SHOULD ENHANCE, NOT HINDER
THE HUMAN-COMPUTER INTERFACE

THE AMOUNT AND TYPE OF VR
IS DEPENDENT ON THE APPLICATION

HOW MUCH VR?

FUNCTIONAL
UTILITY

SUSPENSION
OF DISBELIEF

Figure 1: VR Application Axioms

As a single solution for all applications will
unlikely satisfy all users, we propose that a
common foundation class of object oriented
CGF libraries can be cost effectively shared
across both commercial entertainment and
government simulation applications. With the
axioms shown in figure 1 above, the end user
can determine the optimal operations point and
the developer can determine which of the
libraries are needed to ensure the requirements of
a specific exercise or experience are met with
optimal efficiency.

6. References

Azarewicz, J., et. al. (1987) "Multi-Agent Plan
Recognition in an Adversarial Domain",
Third Annual Expert Systems in Government
Proceedings, pages 188-193, Washington,
DC, October, 1987.

Crowe, B., "Pteranodon Sighting at SIGGRAPH
'93", Virtual Reality World, November 1994

Crowe, M., "Virtual Environments at
GreyStone", technical presentation,
GreyStone Technology

Gibson, T. J., "Modelling a Combat Vehicle
Commander with an Expert System", D77C,
AD-A208 533, 1989.

GreyStone (1994), "AML-D User's Manual" ,
GSD-AMLD-UM110, GreyStone Technology.

GreyStone (1992), "Purple Heart Corner", Tech
Memo, GreyStone Technology.

GreyStone (1993), "ThunderBolt", Tech Memo,
GreyStone Technology

1ST, "A Glossary of Modeling and Simulation
Terms for Distributed Interactive Simulation"
11th DIS Workshop on Standards for the
Interoperability of Distributed Simulation,
Vol. 1, 1994

Morse, P.M., Kimball, G. E. (19511 Methods of
Operations Research. First Edition,
Peninsula Publishing.

Shillicutt, D., "On the Cover ...", Simulation,
Vol. 63, No. 5, 1994

Von Neumann, J. and Morgenstem, O. (1944)
Theory of Games and Economic Behavior.
Princeton University Press.

Zyda et. al., "The Software Required for the
Computer Generation of Virtual
Environments", Presence, Vol. 2, No. 2.

7. Authors' Biographies

Rich Warren is Staff Engineer and Intelligent
Systems Technology Group Leader at
GreyStone. Mr. Warren holds a Bachelors
degree in Computer/Cognitive Science. His
research interest is in Artificial Intelligence and
Autonomous Intelligent Adversary's.

Mike Crowe is the Director of Technology at
GreyStone. Mr. Crowe holds a Bachelors degree
in Cognitive Science/Artificial Intelligence. His
technical focus is on the research and
development of advanced, automated control,
and decision-making methodologies to provide
intelligent computer-generated players within
virtual environments.

Don Shillcutt is Principal Systems Engineer at
GreyStone Technology. Mr. Shillcutt holds
Masters degrees in Electrical Engineering and
Management. His principal area of interest is in
Information Technology.

335

CGF Opportunities in Plowshares

Mikel D. Petty and Mary P. Slepow
Institute for Simulation and Training

3280 Progress Drive
Orlando FL 32826-0544

mpetty@ist.ucf.edu cslepow@ist.ucf.edu

Paul D. West
Unites States Military Academy

West Point, NY 10996
fp8049@trotter.usma.edu

1. Abstract

Plowshares is a military sponsored project to apply
military constructive simulation technology to
training and analysis for emergency management. In
the first phase of the Plowshares project, the U. S.
Army's Janus simulation model is being modified and
extended to support certain types of emergency
management scenarios (hurricanes and chemical
spills. In order to be useful, emergency management
simulation will require CGF capabilities. The
capabilities will be similar, but not identical, to the
CGF capabilities already developed for battlefield
simulation.

2. Plowshares

2.1 Project Overview

The Plowshares project is a military sponsored effort
to apply military constructive simulation technology
to training and analysis for emergency management.

In the first phase of the project the project team
members are collaborating on an effort which will
culminate in a "Proof of Principle Demonstration"
scheduled for August 1995. For that demonstration,
the project team will be modifying and enhancing the
U. S. Army's Janus simulation model (described
below) to permit it to support two types of
emergency management scenarios: a hurricane and a
chemical spill. Both of those scenarios will be
located in Orange County Florida.

2.2 Project Organization

The Plowshares project team is composed of four
organizations; each has specific project functions to
perform They are:

1. U.S. Army Simulation, Training,
Instrumentation Command (STRICOM)
Project management
Janus software modifications

and

2. United States Military Academy at West Point
(USMA)

• Terrain generation
• Scenario generation
• Janus software modifications

Training and Simulation
Consortium (TSTC)
Requirements analysis
Commercialization and marketing

Technology

4. Institute for Simulation and Training (1ST)
• System integration and testing
• Model survey
• Documentation

In addition to the four organizations listed above,
Orange County Florida is also playing a key role in
the project. County personnel are providing
considerable time and information in support of the
requirements analysis process. Furthermore, it is
planned that county personnel will operate the
Plowshares simulation during the Proof of Principle
demonstration; that topic will be discussed below.

2.3 Project Goals

The primary goal of the project is to implement a
computer simulation that can simulate natural and
man-made disasters and the actions taken in response
to them. The simulation is intended to serve the
purpose of training local authorities.

337

Implicit tasks associated with that goal are to:

1. Convert a military training simulation to a civil
emergency management application.

2. Conduct a Proof of Principle Demonstration of
that simulation.

3. Show reuse capability to the sponsor (U.S.
Army).

4. Serve as a technology transfer initiative.

chemical weapons. Janus uses a digitized terrain
database format developed by the Defense Mapping
Agency that can represent contours, roads, rivers,
vegetation, and urban areas. Terrain affects
movement and visibility in a realistic manner. Janus
typically runs on workstations and supports scenarios
of up to battalion size.

3. Plowshares Test Demonstration

2.4 Using the Simulation

Once delivered, the Plowshares simulation will be
used to train local authorities at the emergency
management decision maker level. The simulation
will be used in a manner known as a "command post
exercise" in military training practice. While being
trained, persons in charge of fire and rescue
departments, police departments, public works
departments, and so on will receive information,
make decisions, and give orders in their usual
manner, operating from their normal emergency
operations center. However, the source of the
information they receive will not be an actual
emergency; rather, it will be the Plowshares
simulation software running the training scenario.
Similarly, their orders will not go to actual fire
fighters, police officers, and medical personnel for
execution; instead they will be input into the
simulation, which will determine the results of the
decisions. The persons actually operating the
simulation will be emergency management personnel
who have been trained to use the software so that the
orders given by the decision makers can be properly
interpreted by subject matter experts.

2.5 Introduction to Janus

Janus is an "interactive, two-sided, closed, stochastic,
ground combat simulation" (Titan, 1993). It is used
by military analysts, who control the actions of
simulated combat entities during execution, for
analytical purposes including evaluating new
weapons systems, tactics, and force structures. The
primary focus of the Janus simulation is on ground
combat maneuver and artillery units. Janus typically
simulates individual vehicles and infantrymen,
tracking their movement across the terrain and
resolving combat at the level of the individual entity;
groups of entities can also be represented. Combat,
such as direct fire, is resolved stochastically.

Janus models weather and its effects, day and night
visibility, engineer support, minefields, aircraft, and

3.1 Test Demonstration Overview

Prior to the full-scale implementation of Plowshares,
a preliminary test of the adaptability of the Janus
simulation to emergency management simulation was
performed. In this Plowshares test demonstration,
STRICOM and USMA personnel made a moderate
set of modifications to the Janus "databases", or
configuration files, to adapt it to a simple hurricane
scenario.

The test demonstration scenario proceeds as follows.
A hurricane under the control of the simulation
moves through "Tuskawilla", an actual residential
subdivision in Seminole County Florida, which was
recreated in the Janus terrain database format. The
hurricane has various effects on the area, including
creating rubble, starting fires, knocking out power
stations, and triggering a small chemical spill.

Once the hurricane itself has cleared the simulation
area, the scenario continues. Citizens flee the
hurricane under the control of the computer
simulation software. Police, fire, and public works
vehicles and personnel respond to the storms effects.

For the test demonstration, Janus' existing
capabilities were used as much as possible. Those
existing capabilities are combat oriented. Therefore
the hurricane was modeled as a formation of slow
moving helicopters and its effects on the buildings
were modeled as weapons firing. Similarly, the fire
trucks move as if they were military vehicles and put
out fires with a different form of weapons firing.

3.2 Terrain and Systems Modeling

In Janus, the term "system" refers to a single
simulated entity, such as a vehicle or person. This
section and the following one will adhere to that
usage.

338

Modeled Emergency
Management System

Original Janus
Military System

Comments

Hurricane* Mi-24 Hind helicopter 8 Hinds in fixed formation
Police car High-Moblity Multipurpose

Wheeled Vehicle (HMMWV)
Higher maximum road speed

Police officer Infantryman
Bulldozer* D-7 military bulldozer Equipped with M-16, used to

clear rubble
Dump truck 2 1/2 ton truck
Fire truck M-106 self-propelled mortar

carrier
Medical evacuation helicopter UH-60 Blackhawk helicopter
Ambulance HMMWV ambulance

Table I. System mappings in the Plowshares test demonstration

The basic Janus terrain database was overlaid with
three terrain zoning categories. Their characteristics
affected movement and lines of sight. These
categories were:
1. Single-story basic residential
2. Two-story commercial.
3. Open areas (e.g. parks and clear spaces); these

were used as areas in which to locate schools,
etc.

Significant individual buildings and building types
were modeled as Janus systems using existing
characteristics from the Janus database. Systems (i.e.
vehicles) were used because Janus does not represent
individual buildings. This was done by finding the
best match between an existing Janus system and the
desired building type. The Janus database entries
then were modified to represent the building type as
well as possible. The result of this process was that
various armored vehicles were transformed into
buildings. This required deleting their weapons and
ability to move and increasing their size and
personnel-carrying capacity.

In Janus, "enemy" systems only appear on "friendly"
screens when there is a direct line of sight with a
friendly system. In the Tuskawilla hurricane
scenario, this means that for the hurricane, fires,
smoke, and so on (enemy systems) to be visible on
the screen, one of the police cars, fire trucks, and so
on (friendly systems) had to have a line of sight to
them. Because we wanted the hurricane and its
effects to be continuously visible for the
demonstration, the buildings were given the ability to
"see" for short distances. Additionally, invisible
systems with no screen display icon were positioned
to ensure that the storm and its effects would be seen.

Representing emergency management vehicles and
personnel (the friendly systems) was easier; existing
Janus systems were modified (in the database) to
match their characteristics. Table 1 summarizes
those changes. In all these cases, new screen display
icons were drawn to represent the demilitarized
system.

3.3 Events Modeling

The hurricane's movement was scripted so that
representative effects would occur time synchronized
with its passage. These effects took five forms:

1. Off-screen artillery fired smoke rounds onto
burning buildings to provide signatures.

2. Off-screen artillery fired high explosive rounds
to indicate rubbling.

3. Hidden fire icons moved onto burning buildings
to enhance visual representation. These appeared
on-screen when they were "seen" by the
buildings.

4. Hidden rubble icons moved into scripted
positions and appeared when seen.

5. A hidden spill icon began moving toward the
river. Its speed was set so that a prompt response
would stop it before it reached the river. It if
reached the river the spill would spread
downstream.

There were two interactions between emergency
crews and storm effects:

1. The bulldozer cleared the rubble blocking a road
by killing it with its M-16. This was the only
direct fire event.

339

Event How modeled Comments
Storm moves through* Grouped helicopters fly preplanned

route
8 Hinds in fixed
formation

Storm is continually
observed*

Invisible spotters watch storm path

Rubbling appears* (1) Indirect fire (HE) from off-screen
artillery
(2) Hidden rubble icons move into
position and are seen

Fires appear at multiple sites* Hidden fire icons move into position
and are seen

Smoke appears from fires Indirect fire (smoke) from off-screen
artillery

Emergency crews respond Preplanned routes for modified
military vehicles

Crews wait for rubble to
clear*

Timed stop nodes on preplanned
routes

Dozer clears rubble blocking
road

Rubble killed by direct fire,
disappears from screen

Failure to clear possible
(hit probability)

Spill approaches waterway Timed, preplanned route for vehicle
simulating spill

Police cars dismount officers Infantrymen dismount from vehicle
Fire trucks put out fires Indirect fire weapons kill fire Fire truck and fire are

both Janus systems

Table 2. Events in the Plowshares test demonstration

2. Fire trucks fired a combination of smoke and
high explosive rounds (indirect fire) onto the
burning buildings. This accomplished two
things: the smoke continued to give the fire
signature, and the high explosive rounds with a
modified (low) probability of kill enabled the
fire trucks to eventually kill the fire.

The events of the test demonstration scenario and
how they were modeled are summarized in Table 2.

3.4 Comments

The implementation of the test demonstration has
proven to be a valuable exercise. It served to reveal
in Janus both its flexibility and its limitations when
applied without code modification to emergency
management simulation. The system and event
mappings shown in the tables that seem most forced,
as indicated by an asterisk (*), suggest areas where
special attention is needed.

For the test demonstration, emergency crew reactions
(i.e. movement paths, destinations, and actions) were
also scripted. They were scripted for the test
demonstration only so that the demonstration could
run without intervention. Normally, the emergency
crew reactions would be under the control (direct or
indirect) of the simulation user or trainee, who would
be learning how best to react, in terms of resource
allocation and response timing, to an emergency and
its immediate aftereffects.

4. Future Project Plans

4.1 Proof of Principle Demonstration

Janus was used essentially unchanged for the test
demonstration; the scenario was implemented
entirely within the Janus databases. The scenario
scope and realism goals for the Proof of Principle
Demonstration will require that much more
significant changes be made to Janus. That work will
be a major focus of the project team's efforts over the
next eight months. Janus developers at USMA will
be working to modify Janus with new capabilities
needed for emergency management. These include

340

more realistic hurricane models and damage
assessment procedures.

In August 1995 a Proof of Principle Demonstration
of the enhanced Janus simulation (i.e. the Plowshares
simulation) will be conducted at the Orange County
Florida Emergency Operations Center. Two
scenarios, a hurricane and a chemical spill, will be
run on the Plowshares simulation. Orange County
personnel will interact with the simulation and report
the status of the emergency to high-level emergency
response managers. Those managers will make
decisions and give orders intended to save lives and
property. Those orders will be interpreted and input
into the simulation by their subordinates, where their
effects will be determined by the simulation. Both
exercises will be recorded and evaluated to determine
the success of the development effort.

4.2 Model Survey

Janus was chosen as the base software for the Proof
of Principle Demonstration because of its availability
and seeming applicability. However, no final
decision has been made that Janus is the best choice
for long-term development of emergency
management simulation. While Janus is being
enhanced for the Proof of Principle Demonstration, a
parallel task will be conducted by 1ST to survey the
available set of military simulation models. Janus
and a number of other models will be examined
carefully and one selected for further development.
Even if the initial selection of Janus proves to be the
correct choice, surveying the other models will
doubtlessly supply a wealth of ideas for
enhancements and functionality for future emergency
management simulation.

4.3 DIS Compatibility

In the first phase, Plowshares will run as a stand-
alone constructive model. As might be expected
given the project's military sponsorship, we will be
examining the possibility of interconnecting
Plowshares with virtual simulation, i.e. Distributed
Interactive Simulation (DIS). Such a connection
would allow low-level participation by trainees in
virtual simulators (e.g. medical evacuation
helicopters) in the same emergency response action
that is being overseen by high-level response
managers. The applicability of DIS, in both its
current and future versions, to emergency
management simulation in general is discussed in a
companion paper (Loper,1995). Janus has already

been linked experimentally to DIS (Pratt, 1994), and
some of that technology will be useful to bringing
Plowshares into DIS.

S. Computer Generated Forces

5.1 Overview

The goal of the first phase of the Plowshares project
is to show that Emergency Management is a valid
application of constructive (and later, virtual)
simulation technology. Emergency Management
(EM) simulation will need computer controlled
autonomous entities, i.e. Computer Generated Forces
(CGF), for reasons and in roles analogous to those of
CGF in battlefield simulation. This section will list
some of those reasons and roles, identify some
specific CGF-type capabilities needed in EM
simulation, and compare and contrast those EM CGF
requirements with what has been developed for
battlefield simulation. We will move freely between
CGF capabilities that relate to EM simulation in
general and those that relate to Plowshares in
particular.

5.2 CGF roles in EM simulation

There are two roles for CGF entities in EM
simulation: low-level entity control and high-level
replacement players. Each will be discussed in turn.

5.2.1 Low-level entity control

As described previously, the goal of the Plowshares
simulation is to train EM managers. Those
individuals typically make resource allocation
decisions at a high-level and rarely exercise control
over the emergency response units at a detail level
(such as planning a route for a fire truck). However,
in the current Plowshares simulation many of the
low-level behaviors must be controlled by a human
operator; for example, detailed routes must be
planned by the operator for vehicles. Many other
low-level behaviors are also under operator control.
This characteristic is inherited from the Janus
software base.

The result is that human operators, who are part of
the simulation rather than trainees, are required to use
the Plowshares software in a training exercise. These
operators must interpret the command decisions of
the trainees and give detailed low-level behavioral
commands to the simulation entities. Obviously, this
raises the expense of an exercise and reduces the

341

flexibility of the software. CGF capabilities are
needed to provide low-level EM behavior control for
the entities. The degree to which low-level EM
behaviors resemble battlefield behaviors varies by
behavior.

5.2.2 High-level replacement players

EM simulation will also need CGF replacement
players for high-level decision makers. In the
context of a Plowshares-style county-wide scenario,
such decision makers might be the chiefs of the
typical EM response departments:
1. Fire and Rescue
2. Public Utilities
3. Public Works
4. Health Services

In a battlefield simulation, these decision makers
might be analogous to battalion or brigade
commanders. For the most part, CGF systems for
battlefield simulation have to date not provided
decision makers at that level (although the ongoing
ARPA Command Forces project is intending to do
so). Their omission has not been a severe limitation
for two reasons. First, useful training can be
conducted with lower-level scenarios, such as
company-sized actions. Second, human controllers
have been available to provide higher-level decision
making where needed.

Unfortunately, these two reasons are less applicable
to EM simulation. First, virtually all interesting EM
training will require more than one of the response
departments. For example, there are not many
"police only" emergencies; even something like a riot
will involve medical services to evacuate and treat
casualties and fire and rescue services to fight fires
that may start. The same comment applies to the
other branches. Second, it will be more difficult to
provide human operators to fill in for decision
makers not available for the exercise because of the
wide differences in required expertise and inter-
departmental separation. Consequently, EM
simulation will need CGF replacements for these
decision makers early in its development to provide
training flexibility, e.g. so that the Police department
can have a meaningful exercise even if the Fire
department is not available to participate.

5.3 CGF capabilities in EM simulation

How applicable are CGF capabilities already
developed for battlefield simulation to EM

simulation? This section will examine a few
common CGF functions and compare and contrast
them in the CGF and EM contexts.

5.3.1 Route planning

The basic CGF capability is route planning. In its
simplest form, a CGF entity is able to move from its
current location to an assigned destination after
autonomously planning a route between the two
points. In battlefield CGF systems, the CGF system's
route planner might consider factors such as distance,
terrain trafficability, unit boundaries, and cover and
concealment from enemy fire. In EM simulation,
there are three interesting aspects of route planning.

First, the terrain, and thus the terrain database (TDB),
is likely to be very different in "feel" from a typical
battlefield TDB. In particular, EM TDBs will often
be primarily or entirely urban. That means that they
will be dense with features, such as buildings, walls,
bridges, and roads of significantly different types.
There will also likely be "zones", or regions of the
TDB defined to have specific characteristics (e.g.
residential or light industrial) that will also influence
route planning.

Second, factors other than the TDB itself will affect
EM route planning to a degree greater than battlefield
route planing. One such factor is road blockage.
Often the emergency itself (hurricane, earthquake, or
flood) will block roads or other movement corridors;
this might be a form of dynamic terrain. A route
planning algorithm should consider blockages only if
the fact of the blockage would be known to the entity
for which a route is being planned. A fire truck that
could not be aware that a building has collapsed onto
an important access road should not route around that
point; instead, it should plan a route through that
point, and when the blockage is encountered, the
route should be replanned (and the blockage
reported). Roads may also be blocked by masses of
citizens fleeing a disaster; however it may be valid to
allow for that type of blockage prior to discovery
under the assumption that the EM entities would
expect it.

Finally, there is to some degree an assumption of
optimality implicit in route planning by EM entities.
The reason for this is that, unlike combat entities, EM
entities are crewed by personnel who are typically
very familiar with the terrain in which they are
operating; the driver of a police vehicle normally
knows his or her precinct very well. Therefore,

342

within the limits of available information, an EM
route planning algorithm should normally find
minimum time routes. That level of performance
may not be demanded from battlefield CGF systems.

5.3.2 Cooperative behaviors

The repertoire of behaviors expected from EM
entities include many that are cooperative at a low-
level, possible more than in battlefield simulation. A
few examples should suggest the set:
1. A bulldozer and a dump truck cooperate to clear
rubble
2. Multiple police officers dismount from a vehicle
and disperse to separate intersections to direct traffic
3. A fire truck waits for a bulldozer to clear rubble,
rather than rerouting around it, based on travel time
estimates

To be useful, emergency management simulation will
require CGF capabilities that are similar but not
identical to those developed for battlefield
simulation. The extent to which battlefield CGF
software and algorithms can be transferred to the EM
domain remains to be determined.

7. Acknowledgment

The preparation of this paper was supported by the
U. S. Army Simulation, Training, and
Instrumentation Command under the Plowshares
project, contract N61339-95-K-0003. That support is
gratefully acknowledged. However, all comments in
this paper are the responsibility of the authors and do
not necessarily reflect STRICOM positions.

8. References

These low-level entity-to-entity cooperative
behaviors will have to be provided in an EM CGF
application. Of course, high-level cooperation
between groups of EM entities is the responsibility of
the human trainees, and a training goal of the
simulation.

5.3.3 Citizens

Realistic EM simulations will need to include citizens
because of the many ways they affect the response to
an emergency. Citizens flee the disaster, often in
non-optimal ways, and clog the road network,
requiring avoidance in route planning and traffic
direction. Citizens are injured, thus requiring
medical assistance from medical entities. Citizens
take advantage of the chaos associated with an
emergency and loot residences and businesses, and
therefore constitute a problem for the police entities
to solve. Providing all of these behaviors in an EM
application will be required. Furthermore, the EM
CGF system will have to control the citizens
essentially without operator intervention because
their numbers will likely be too large to do otherwise.

6. Conclusions

Simulation is growing in importance as a tool to
prepare and train for emergencies. The U. S.
military's responsibilities in emergency response are
expanding. The Plowshares project team intends to
apply the large body of military simulation
technology to emergency management simulation.

Loper, M. L. and Petty, M. D. (1995). "Distributed
Interactive Simulation and Emergency
Management", Proceedings of the 1995 SCS
Simulation MultiConference, Simulation for
Emergency Management, Society for Computer
Simulation, Phoenix AZ, April 9-13 1995.

Pratt, D. R, Johnson, M., and Locke, J. (1994). "The
Janus/BDS-D Linkage Project: Constructive
and Virtual Model Interface", Proceedings of
the Fourth Conference on Computer Generated
Forces and Behavioral Representation, Institute
for Simulation and Training, Orlando FL, May
4-6 1994, pp. 443-448

Titan, Inc. (1993). The Janus 3.X/UNLX Model
User's Manual, W800XR-3125-0052,
TRADOC Analysis Center.

9. Author's Biographies

Mikel D. Petty is a Program Manager at the Institute
for Simulation and Training. He is currently
managing Plowshares, an emergency management
simulation project. Previously he led IST's
Computer Generated Forces research projects. Mr.
Petty received a M.S. in Computer Science from the
University of Central Florida and a B.S. in Computer
Science from California State University,
Sacramento. He is currently a Ph.D. student in
Computer Science at UCF. His research interests are
in simulation and artificial intelligence.

Mary P. Slepow is an Engineering Writer for the
Plowshares project at the Institute for Simulation and
Training. She has a B.S. in Mechanical Engineering
from the University of Florida and has experience in

343

the power generation field. Ms. Slepow is currently a
graduate student in Instructional Technology at the
University of Central Florida.

Paul D. West is the Warfighting Simulation Manager
in the Department of Systems Engineering at the
United States Military Academy in West Point NY.
He received an MBA in Management from Long
Island University and a B.S. in Liberal Arts from the
University of the State of New York. Mr. West has
an extensive military background and is a former
Assistant Professor of Military Arts and Science at
West Point.

344

Planning for Reactive Behaviors in Hide and Seek*

Michael B. Moore, Christopher Geib, Barry D. Reich

University of Pennsylvania
Department of Computer and Information Science

200 S. 33rd Street, Philadelphia, PA 19104-6389

March 16, 1995

1 Abstract

We describe the ZAROFF system, a plan-based
controller for the players in a game of hide and
seek. The system features visually realistic hu-
man figure animation including realistic human
locomotion. We discuss the planner's interaction
with a changing environment to which it has only
limited perceptual access. A hierarchical planner
translates the game's goals of finding hiding play-
ers into locomotion goals, assisted by a special-
purpose search planner. We describe a system of
parallel finite state machines for controlling the
player's locomotion. Neither path-planning nor
explicit instructions are used to drive locomotion;
agent control and apparent complexity are the re-
sult of the interaction of a few relatively simple
behaviors with a complex (and changing) environ-
ment.

2 Introduction

The game of hide and seek challenges the ability
of players to plan for acquiring information and to
react quickly to what they see. The player who
is "it" (the seeker) must explore his environment
attempting to locate other players (hiders). Those
players must select hiding places which are difficult
to discover while providing access for them to run
safely to home base when the way is clear. The
goal of this work is to develop simulated agents
that can play hide and seek (or more dangerous

*This research is partially supported by ARO DAAL03-
89-C-0031 including U.S. Army Research Laboratory;
ARPA AASERT DAAH04-94-G-0362; DMSO DAAH04-
94-G-0402; ARPA DAMD17-94-J-4486; U.S. Air Force
DEPTH through Hughes Missile Systems F33615-91-C-
0001; DMSO through the University of Iowa; and NSF
CISE CDA88-22719.

games) (Moore, Geib, & Reich 1995).

We describe a planning system for a player (which
can change roles between hider and seeker during
the game) and its vertical integration into a system
called ZAROFF that selects reactive behaviors to
execute in an animated simulation. Operation of
the planner is interleaved with execution of the
reactive behaviors so that the agent may adapt to
a dynamic environment.

The software chosen for this work is
Jack® (Badler, Phillips, k Webber 1993) running
on Silicon Graphics workstations. Jack is a hu-
man modeling and simulation program developed
at the Center for Human Modeling and Simula-
tion at the University of Pennsylvania, that fea-
tures visually realistic human locomotion based on
both kinematic and dynamic techniques (Ko 1994;
Ko et al. 1994). Jack's LISP application pro-
gramming interface (Becket 1994) was used to im-
plement ZAROFF. This interface supports access
to the environment (a database) and its behavioral
simulation system.

3 Generating Behaviors

Human locomotion is performed by the Behav-
ioral Simulation System (BSS) (Badler, Phillips,
& Webber 1993; Becket & Badler 1993). ZAROFF
controls this locomotion indirectly by binding
behaviors to human figures in the environment
database. BSS, which constantly monitors the
environment, immediately initiates locomotion
based on the agent's bound behaviors.

A player utilizes a set of behaviors in interacting
with its environment. ZAROFF includes the follow-
ing behaviors: attraction, avoidance, field-of-view
(to avoid areas visible to the seeker), path follow-

345

ing (to draw an agent to a path) and chasing.

4 Action Execution

The Action Execution module is responsible for
the control of all actions occurring in ZAROFF.

Most actions such as opening and closing doors are
performed directly by this module. (As noted ear-
lier, human locomotion is performed by the Behav-
ioral Simulation System (BSS) (Badler, Phillips,
& Webber 1993; Becket & Badler 1993), so is con-
trolled only indirectly by Action Execution.)

Non-locomotion actions are performed directly by
Action Execution manipulating the environment.
For example, a door is opened by rotating it about
its hinges. This rotation is done incrementally, a
small amount each frame of animation.

Locomotion is performed indirectly by Action Ex-
ecution binding behaviors to human figures in the
environment database, which means neither path-
planning nor explicit instructions are used to drive
locomotion: rather, agent control and apparent
complexity are the result of the interaction of a few
relatively simple behaviors with a complex (and
changing) environment. An agent is made aware
of its environment through the use of a network
of sensors. Based on the information gathered by
these sensors the path through the terrain is in-
crementally computed. This allows the agent to
react to unexpected events such as moving obsta-
cles, changing terrain, or a moving goal (Reich et
al. 1994).

of attraction moves appropriately. The out-
put (stress value) of an attraction behavior is
high when the agent is far from the goal and
decreases as the agent nears the goal.

Avoidance: An avoidance behavior is used to
avoid collisions between the agent and objects
or other agents. The sensor component of an
avoidance behavior has a sector-shaped region
of sensitivity. If there are no objects in this
region, the output of the avoidance behavior
is zero. Otherwise the output is proportional
to the distance and size of the detected ob-
jects.

Field-of-View: A field-of-view behavior uses a
sensor to determine whether or not the agent
is visible to any other agents. The output is
proportional to the number of agents' fields-
of-view it is in and inversely proportional to
the distances to these agents. This behavior is
primarily used to support hiders in ZAROFF.

4.2 The Behavioral Simulation System

BSS provides general locomotion of objects in Jack
(Becket k Badler 1993), and is used in ZAROFF

to generate human locomotion. The central con-
trol mechanism of BSS is a perception control, and
action loop. During the perception phase the be-
havior outputs are determined, during the control
phase the next foot position is selected, and during
the action phase the step is taken.

4.1 Sensors and Behaviors 4.3 Behavior Scheduling

A sensor senses an object or location in the envi-
ronment. It is a function which returns the dis-
tance and angle to that object or location relative
to the agent's position and orientation (his state).
A control behavior, such as attract or avoid, is a
function that maps distance and angle to a stress
value, where lower values represent more desirable
states. The combination of a sensor and a control
behavior results is referred to as a behavior. The
agent utilizes a set of behaviors in interacting with
its environment. The following three classes of be-
haviors are currently in use.

Attraction: An attraction behavior draws an
agent toward a goal - either an object or a
location. If a goal object moves, the point

For control of the agents' behaviors we use a set of
finite state machines which run in parallel with
the simulation. These machines are responsible
for behavior scheduling and act as a high level
interface to the behaviors. They may instanti-
ate other machines and either run in parallel with
them or wait for them to exit. Communication
among state machines is also possible. We make
use of this communication among machines to im-
plement interaction between players (Section 5).

When the planner commits to an action it invokes
the Action Execution module. The Action Exe-
cution module instantiates and runs the machines
necessary to carry out that action. Each machine
is responsible for the scheduling and control of the
appropriate behaviors.

346

f Suui\

*l Turning j

Figure 1: The Attract Machine

•"H Avoidance >-EXIT

Monitor

Figure 2: The Avoid Machine

4.3.1 Attraction

An attract machine consists of two states (Fig-
ure 1). In state 1 the agent turns to face the
object or point of attraction. In state 2 an attrac-
tion behavior is bound to the agent. The agent
walks to the goal object or location. When the
agent arrives, this behavior is unbound and the
machine exits.

An attract machine optionally includes a moni-
toring process which checks, in parallel, for an ar-
bitrary condition (a LISP expression passed as an
argument when the machine is created) to be true.
If this condition evaluates to true at any time, the
attraction behavior is unbound and the machine
exits. The value returned by the machine when it
exits indicates the cause of the exit.

We use the monitoring process primarily to con-
trol the behavior of the seeker. As the seeker ex-
plores the environment, moving from one location
to another through the binding and unbinding of
attraction behaviors, its progress is interrupted if
at any time a hider becomes visible. This allows
the seeker to stop and formulate a new plan, tak-
ing advantage of the opportunity.

4.3.2 Avoidance

An avoid machine consists of only one state (Fig-
ure 2). It binds an avoidance behavior to the
agent for each avoidable object in the environ-
ment, and then exits. Unlike attraction, avoid-
ance is maintained throughout the entire simula-

f State 2 \/»

/'State 1 \
VbJWj^-^

Object
\ Attraction AN,

) Visible

^1 Turning J \Arrtved

Not
Visible

\Vlsible

Not
Visible EXIT

(Successfully)

t Arrived
J Stale 3 \>>

Location 1
^N Not

(Unsuccessfully) yAttraction y^

Figure 3: The Chase Machine

tion. In ZAROFF the objects to avoid are doors,
walls, and other agents. An avoid machine is used
during the initialization of the simulation, once
for each agent. This prevents the agents from col-
liding with each other, walls, and doors, and can
easily be extended to any other objects that might
be added to the system.

4.3.3 Chasing

The internal structure of a chase machine is a loop
consisting of three states (Figure 3). If the target,
the agent being chased, is not immediately visi-
ble, the machine exits unsuccessfully. Success is
indicated by the exit value.

When the target is visible to the agent, the ma-
chine starts in state 1. The agent turns to face
the target and the transition to state 2 is made.
An attraction to the target is bound. The agent
walks toward the target until one of two things
happen. Either the agent arrives at the target in
which case the machine exits successfully, or the
target ceases to be visible to the agent. The target
may have walked around a corner. In the latter
case the transition to state 3 is made. An at-
traction to the last known location of the target
is bound to the agent. The agent walks toward
this location until it arrives or the target becomes
visible again. In the former case the machine exits
unsuccessfully. In the latter case the transition to
state 1 is made.

A potential improvement to this machine would
be to add an Extrapolation State. If the machine
is in state 3 and the agent arrives at the last
known location of the target without seeing the
target, instead of exiting unsuccessfully the agent
would walk in the direction the target was walking
before disappearing. This would require maintain-

347

f State 2 V y State 3 \

Human^*'
•«(Move First 1

V Foot /
1 Move Other J
V Foot J

/State 1 Y"^ Not Done
>f Calculate 1

V Angle jL Done

Not HumniN,
f State 4 \

\ Spin
f

V Object J

Figure 4: The Turn Machine

Figure 5: The Path Machine

ing two pieces of information about the target: its
last known location and its vector velocity.

4.3.4 Turning

A turn machine is used to rotate an object or
human to face an object or location. The ro-
tation may be either clockwise or counterclock-
wise, whichever is smaller, or may be specified.
A turn machine consists of four states (Figure 4).
In state 1 the angle and direction of rotation are
calculated. If the object is not a human, it is spun
about its center of mass and the turn machine ex-
its.

Humans are a special case. The human agent ro-
tates the first foot to the right for clockwise, or to
the left for counterclockwise. The leg and body
follow, maintaining the agent's balance. The ro-
tation angle for the first foot is the minimum of
the goal angle and ninety degrees. The agent then
follows the first foot with its other foot. If the
goal angle is greater than ninety degrees, this cy-
cle repeats until the goal has been reached. An
optional argument can specify that the agent not
follow with the other foot in the final cycle. When
locomotion is to follow turning, it looks more nat-
ural when the final cycle is not completed.

4.3.5 Path Following

The idea behind a path following machine is to
generate a path from the agent's current location
to a goal location somewhere in the world and have
the agent follow the path to the goal. A path fol-
lowing machine consists of two states (Figure 5).
In state 1 the path is calculated as a series of
connected segments. The path has three impor-
tant properties: it connects the agent to the goal,
it avoids obstacles by a clearance specified by the
user, and it is a path of minimal length given the
first two constraints. In state 2 the agent is at-
tracted to successive vertices along the path. As
the agent approaches a vertex, the attraction to
that vertex is unbound and a new attraction to
the next vertex along the path is bound. When
the agent arrives at the goal, the path following
machine exits.

Our path following differs from path planning be-
cause the agent is not constrained to the path.
Instead, an attraction to the path is bound to
the agent. This behavior competes with any other
bound behavior for control of the agent. If a mov-
ing object crossed the path, the path-following
agent would avoid it, and if a hider came into view
the seeker would pursue it.

5 Planning

A player's goals change during the course of a
game of hide and seek. The seeker must first lo-
cate a hider and then tag it before it reaches home
base. Hiders first attempt to locate a hiding place.
When one have successfully hidden, it stays there
until it is necessary to move. When flushed from
their hiding place by the seeker, they attempt to
move back to home base. If they successfully ar-
rive home, they wait until the start of the next
game when their behavior resets. If one is caught,
the first one caught adopts the behavior of the
seeker.

These high-level goals are quickly translated into
situationally appropriate reactive behaviors by IT-

PLANS (Geib 1992), a hierarchical planner. IT-

PLANS interleaves hierarchical expansion with ac-
tion execution. It does this by using an incremen-
tal left to right expansion of the frontier of the
plan structure to successively lower levels of ab-
straction. Thus planning only takes place to the
degree necessary to determine the next action to
be carried out. This is important for this domain
since the seeker does not have complete knowl-
edge of the domain and its knowledge is constantly

348

(Hider entry)

(Seeker entry)

Figure 6: Player goal machine

changing.

A finite state machine is used to change a player's
goals over the course of the game (Figure 6) and
thus indirectly, what actions the player takes at
different times during the game to achieve its
goals.

The left side of Figure 6 corresponds to the hider
role and the right side corresponds to the seeker
role. There are two entry points to this network
depending on which role the player will take ini-
tially; hiders start in state 1 and seekers start in
state 4. The hider starts hiding when the seeker
begins to count. This is represented in the di-
agram by the dashed line. The transition in to
state 2 is in response to communication trans-
mitted by the seeker's goal machine. Similarly,
the transition from hider role to seeker role is in
response to an external signal from the seeker's
machine, being tagged.

When a player locates a hiding place (state 2), it
remains there until seen by the seeker. Once dis-
covered, the player attempts to evade the seeker
and return safely to home base. Evading (state 3)
is accomplished by combining avoidance of the
seeker and attraction to base.

The seeker begins by going to home base (state 4)
and synchronizing the start of the game by forc-
ing the other players to transition from state 1
to state 2. The seeker delays the start of its
search by counting state 5 to permit the hiders
time to reach their hiding places. Then the seeker

hider

/N: doorO

seeker

Figure 8: Plan view of example environment

begins to explore the environment to find a hider
(state 6). When a hider is discovered, it becomes
the target for a chase (state 7). The outcome
of the chase determines whether the player will
be a hider next game (when a hider is tagged be-
fore reaching base) or a seeker again (when all the
hiders safely evade the seeker). If a single hider
successfully evades the seeker, the seeker continues
to search for other hiders until they are all safe.
This may result in different hiders being chased at
different times.

A consequence of limited perception is the occa-
sional need to find objects. Our approach is to
isolate this reasoning in a specialized module, a
search planner that translates information acqui-
sition goals to high-level physical goals to explore
parts of the environment. Our approach to search
planning requires that each player maintain infor-
mation about the state of a heuristic search on an
internal map. The heuristic search has finding a
desired object as its goal.

6 Example

Having given an overview of the system's compo-
nents, we now illustrate ZAROFF with an example
drawn from a two-player game of hide and seek.
To illustrate the conduct of a search, we will use
an example environment with two buildings, one of
which has two internal rooms separated by a door
(Figure 8). Our example begins in the middle of
a game, after the hider has hidden and the seeker
has finished counting. The hider is in state 2,
waiting to be seen. The seeker changes to state
6 of its goal machine and begins to seek. The
goal machine state specifies a "seek" goal to the
planner as goto(X) with the added constraint that
type(X) = HUMAN.

The ITPLANS planner considers the action
goto(X) to be primitive but underspecified since

349

goto(X)

type(X)=HUMAN

find(X)

(a)

goto(X)

find(X)

explore(doorl)

(b)

goto(doorl) open(doorl)

(c)

Figure 7: Evolution of the plan graph

Figure 9: Initial map Figure 10: Final map

the variable X is not bound to a particular object
of type HUMAN. In order to bind the variable, the
search planner must be called to generate a plan
for locating a HUMAN. To this end, ITPLANS adds
to the plan afind node and calls the search planner
to instantiate a search plan (Figure 7a).

The search planner reasons from this knowledge
acquisition goal of locating a HUMAN, to the goal of
exploring regions where a HUMAN might be. Satisfy-
ing this goal requires physically searching through
possible regions.

IT PLAN S asks the search planner to expand the
find node. Each time a find node is expanded,
the search planner first examines the Jack environ-
ment to determine if an object of the specified type
is visible to the agent. If not, the search planner
selects a region to explore next, generates a goal to
explore that region, and adds it to the plan (Fig-
ure 7b). The initial map (Figure 9) of regions con-
tains all the regions in the environment except the
interior room of the building on the right. Regions
that are completely visible are marked as having

been explored; partially visible regions are marked
for future exploration. The closest available unex-
plored region is the first room in the building on
the right; it is recommended for exploration. This
goal is then further expanded by ITPLANS to go
to doorl and open it (Figure 7c). Since all of the
arguments in the first action are bound to specific
objects, it can be carried out. Action Execution
performs this action indirectly by binding an at-
traction sensor to the seeker. When the seeker
arrives, doorl is opened directly by Action Exe-
cution.

After doorl is opened, ITPLANS uses the search
planner to evaluate the progress of the search by
examining the world for objects having the prop-
erty HUMAN. If one is located, the search is consid-
ered successful. If not, the search planner selects a
new region for exploration and the searching pro-
cess repeats until there are no more regions to ex-
plore.

In this case, opening doorl does not reveal a
HUMAN, but does permit the agent to see another

350

region that is automatically added to the search
planner's internal map. As this new region is the
closest unexplored space, on the next iteration the
planner will plan to explore it. Opening door2
does not reveal the HUMAN, so the search proceeds
to the next closest unexplored region, the right
side of this building.

Here we see the advantage of maintaining a map.
Immediately after opening door2, the agent is in-
side one building and decides to go to a non-
neighboring region. Since this destination region
is known (from having seen it previously), we
could simply go there. This would result in the
agent walking directly toward the destination un-
til stopped by the wall. To avoid getting caught in
this local minimum, the search planner uses its in-
ternal map (Figure 10) to plan a path to the next
region.

The only known path there is to exit the cur-
rent building through doori. The search planner
returns this sequence of intentions to ITPLANS,

which then invokes Action Execution to gener-
ate locomotion along this path. Eventually, after
opening doorO, the seeker finally sees a HUMAN and
can go to it.

7 Conclusion

We have implemented a plan-based controller for a
player in the game of hide and seek. The complete
seeker is implemented, we are extending our archi-
tecture to implement the hider. Our agent dynam-
ically reacts to changes in the environment, from
avoiding collisions with obstacles and other players
to exploiting changes in information about where
the other players may be hiding. The implemen-
tation combines general purpose planning, special
purpose reasoning about conducting a search, and
reactive control of human behaviors.

ZAROFF is an effective system for animating hu-
mans carrying out tasks that require locomotion.
Limiting the human agent's awareness of its en-
vironment by simulated perception increases the
realism of the behavior generated.

8 Acknowledgements

We wish to thank our advisors Norm Badler and
Bonnie Webber for their support of this work.
Thanks also to them, Welton Becket. Jonathan

Crabtree, Brett Douville, and Jeff Nimeroff for
commenting on drafts of this paper.

9 References

Badler, Phillips, & Webber 1993 Badler, N.;
Phillips, C; and Webber, B. 1993. Simulat-
ing Humans: Computer Graphics, Animation
and Control. Oxford University Press.

Becket & Badler 1993 Becket,
W., and Badler, N. I. 1993. Integrated be-
havioral agent architecture. In Proceedings of
the Third Conference on Computer Generated
Forces and Behavior Representation, 57-68.

Becket 1994 Becket, W. M. 1994. The Jack
LISP API. Technical Report MS-CIS-94-01,
University of Pennsylvania, Philadelphia, PA.

Geib 1992 Geib, C. 1992. Intentions in means-
end planning. Technical Report MS-CIS-92-
73, Department of Computer and Information
Science, University of Pennsylvania.

Ko et al. 1994 Ko, H.; Reich, B. D.; Becket, W.;
and Badler, N. I. 1994. Terrain navigation
skills and reasoning. In Proceedings of the
Fourth Conference on Computer Generated
Forces and Behavioral Representations.

Ko 1994 Ko, H. 1994. Kinematic and Dynamic
Techniques for Analyzing, Predicting, and
Animating Human Locomotion. Ph.D. Dis-
sertation, University of Pennsylvania.

Moore, Geib, & Reich 1995 Moore, M. B.;
Geib, C; and Reich, B. D. 1995. Planning
and terrain reasoning. In AAAI Spring Sym-
posium on Integrated Planning Applications.
(also University of Pennsylvania CIS depart-
ment Technical Report MS-CIS-94-63/LINC
LAB 280).

Reich et al. 1994 Reich, B. D.; Ko, H.; Becket,
W.; and Badler, N. I. 1994. Terrain reason-
ing for human locomotion. In Proceedings of
Computer Animation '94, 996-1005. Geneva,
Switzerland: IEEE Computer Society Press.

10 Biographies

Michael B. Moore is a Ph.D. candidate in Com-
puter and Information Science at the University of

351

Pennsylvania. His current research in Artificial In-
telligence is planning for information acquisition.
He received his A.B. degree in Philosophy in 1986
from the University of Maryland and his M.S.E.
degree in Computer and Information Science in
1990 from the University of Pennsylvania.

Christopher Geib is a post-doctoral research fel-
low at the University of British Columbia. His cur-
rent research in Artificial Intelligence is planning.
He received his Ph.D. degree in Computer and In-
formation Science from the University of Pennsyl-
vania in 1995.

Barry D. Reich is a Ph.D. candidate in Com-
puter and Information Science at the University of
Pennsylvania. His current research includes pro-
viding high-level behavioral control over the an-
imation of human locomotion. He received his
B.S. degree in Mathematics and Computer Sci-
ence in 1989 from the University of Maryland and
his M.S.E. degree in Computer and Information
Science in 1991 from the University of Pennsylva-
nia.

352

Session 7b: Terrain Modeling I

Hille, ANSER
Schaper, East Tennessee State University

Smith, Loral ADS

Abstracting Terrain Data Through Semantic Terrain Transformations

David Hille
ANSER

1215 Jefferson Davis Hwy
Arlington, VA 22202

hilled@anser.org

Michael R. Hieb Gheorghe Tecuci J. Mark Pullen
Department of Computer Science

George Mason University,
Fairfax, VA 22030

hieb@cs.gmu.edu tecuci@cs.gmu.edu mpullen@cs.gmu.edu

1. Abstract

Human commanders transform terrain from a map or
from their personal observation into an abstract
model used for reasoning. Automated commanders of
CGF need to do a similar kind of transformation,
since the data in a terrain database is too detailed.
This paper describes Semantic Terrain
Transformations developed during our work on the
Captain project to transform data from a terrain
database into concepts relevant to the mission given
to the automated commander. Captain is an
automated knowledge acquisition system that allows
a subject matter expert to easily teach a command
agent required behavior. Semantic Terrain
Transformations first transform the digital data from
the terrain database into an abstract geometric model
(at the appropriate level of detail for the commander)
and then translate the geometric model into symbolic
concepts appropriate for reasoning. The concepts
created are then used by an automated agent in
performing its mission. We illustrate the
methodology with detailed examples at both the
battalion and company level. Captain has successfully
learned rules for automated company commanders
based on concepts generated by applying this
methodology.

2. Introduction

We are currently developing a methodology and
implementing a system, called Captain (Hille et al.,
1994; Tecuci et al., 1994; Hieb et al., 1995) to
construct command agents for Computer Generated
Forces . This general approach offers advantages over
the knowledge acquisition methods currently used for
CGF behavior. Recent experiments with the Captain
and ModSAF (Ceranowicz, 1994) systems led to the
development of improved terrain representations
more appropriate to command CGF than entity CGF.
In order to derive these concepts from the CGF
terrain database, we developed a method and set of
transformations called Semantic Terrain
Transformations. In this paper, we describe these
transformations and illustrate them with two
examples, from two different command levels.

The terrain database of a Distributed Interactive
Simulation (Pullen, 1994) is typically in a form
intended to satisfy several simulation goals. A terrain
database represents a set of features such as soil,

trees, roads, rivers, and buildings. It contains the
elevations and relief of the terrain. The terrain
database should be compact enough so that it does
not occupy too much memory, allow for rapid access
during a simulation, represent those features relevant
to the real world events, and provide sufficient detail
so that the world it represents seems realistic. It
should simultaneously facilitate various processes
such as observation, fields of fire, cover,
concealment, and movement. No matter how well a
terrain database satisfies all these goals, it is difficult
to represent all the concepts an automated
commander at any echelon might require in one
database, without any transformation.

While general terrain reasoning methods have been
described (Stanzione, 1993), most of the terrain
reasoning methods in the literature are concerned
with near-term movement (Cunningham, 1993, 1994;
Smith, 1994), route-planning (Van Brackle, 1993) or
cover and concealment (Longtin, 1994). Because of
the size of typical CGF terrain databases and the need
to process the data efficiently, solutions to these
problems are generally algorithmic and focus on the
entity level. However, an automated commander
must be able to perform a wide range of missions
adequately. This requires both a broad terrain
reasoning capability and an ability to create more
general and abstract concepts. Our approach is to
build upon the work already done (e.g., use the
techniques that calculate cover or avenues of
approaches) and create a hierarchy of more abstract
models that can be used by different echelons of
command.

Human commanders must reason about the
placement and movement of their forces. They
subconsciously transform terrain they see on a map
(as in Figure 1) or from their personal observation of
a battlefield into an abstract model that they then use
for reasoning as they make tactical decisions.
Automated commanders need to do a similar kind of
transformation, since the data in a terrain database
may be too detailed for them to reason about it
efficiently, and may not directly represent concepts
pertinent to their decisions. When an agent (human or
computer) makes decisions about terrain, the agent
does not view terrain in terms of just elevations and
relief. Instead, the agent reasons using abstract
concepts such as hills (with ridges, forward slopes,

355

Figure 1: Terrain Map of Portion of Fort Knox, Kentucky

rear slopes, etc.), valleys, draws, wadis, spurs,
saddles, depressions, cuts, fills, and cliffs.

In two extended examples, we illustrate our method
by performing semantic terrain transformations' on a
terrain database in the context of an automated
commander given a defensive mission. First, we
transform detailed geometric data from a terrain
database of Fort Knox, Kentucky into a geometric
model at an appropriate level of abstraction, given the
level of the commander (e.g., company, battalion,
etc.). In a second step we form relevant concepts
from the abstract geometric model. The result of our
semantic terrain transformation process is a semantic
network containing information an automated agent
needs for efficient planning and learning. See
(Tecuci, 1992) for an explanation of semantic
networks.

The first example is at the battalion level. Terrain
concepts are created to enable the automated battalion
commander to form company sector boundaries in a
sector defense. The second example uses the
transformations to support an automated company
commander as it places the tank and mechanized
infantry platoons of a U.S. Army company to defend
a company sector against an expected attack by an
opposing force, given sector boundaries and an

avenue of approach, from the automated
battalion commander. A more detailed
description of the second example is
given in (Hieb et al., 1995), which
concentrates on learning a placement
rule after the Semantic Terrain
Transformations have been performed.

The rest of this paper is organized as
follows. Section 3 presents the general
methodology of the Captain approach.
Section 4 describes the Semantic Terrain
Transformation process. Section 5
presents an extended example at the
company level. Finally, Section 6
concludes the paper with a discussion of
our terrain reasoning approach.

3. Captain Methodology

Captain is a methodology for building
adaptive command agents for CGF. The
Captain implementation includes an
apprenticeship learning system, which
combines machine learning and
knowledge acquisition methods (Tecuci
1988; Tecuci 1992). Captain creates
adaptive command agents in an
integrated framework that facilitates
both 1) building agents through
knowledge elicitation and interactive
apprenticeship learning from subject

matter experts, and 2) making these agents adapt and
improve during their normal use through autonomous
learning.

In the Captain methodology (Tecuci et al., 1994), we
define three phases in the creation of an agent (see
Figure 2).

In the first phase, Knowledge Elicitation, the subject
matter expert (SME) works with a knowledge
engineer to define an initial knowledge base (KB)
which will contain relevant background concepts and
relationships. This KB is expected to be incomplete
and partially incorrect at this point. Semantic Terrain
Transformations are an essential part of building this
initial knowledge base, to develop the terrain
concepts and transformation rules required for a type
of mission.

In the second phase, Apprenticeship Learning, the
Command Agent will interactively learn from the
SME by employing apprenticeship learning
techniques (Hieb et al., 1995). This consists of
showing the SME instances of a type of mission (e.g.,
defend in sector for a company command agent), and
learning how to produce the orders to accomplish the
mission. The result of this process is a set of rules
that can be used to generate orders for similar types

356

r
Phase 1

Knowledge
Elicitation

Subject Matter
Expert

Knowledge
Engineer

Interactive
Agent

Apprenticeship
Learning

Semantic
Terrain

Transf orma tions. ms^

Phase 3

Au tonamous
Learning

Au tonamous
Agent

k- -^
Improved

KB 1
/

Figure 2: The Main Stages of Building
a Captain Agent

of missions. These rules can be translated into a more
efficient form for use during problem solving.
Semantic Terrain Transformations will be utilized
repeatedly, to process the terrain considered for each
specific mission.

When the Captain command agent has been trained
with examples of the typical ModSAF problems it
should be able to solve, it enters a third phase,
Autonomous Learning, where it is used in simulations
without the assistance of the SME. However, the
agent will continue to learn from its own experiences
by employing the same multistrategy learning
techniques it used when learning from an SME.

Semantic terrain transformations are an integral part
of both building the initial knowledge representation,
and in the learning process used by Captain in phases
2 and 3.

4. Semantic Terrain Transformations

Captain agents use a hybrid knowledge representation
integrating semantic networks and rules. Semantic
networks represent the information from a terrain
database at a conceptual level, as well as generic and
specific knowledge about weapon systems and forces.
Rules are used to represent the behavior and decision

making of the agent as it generates orders for
accomplishing missions.

The detailed geometric representation is the source of
the data to be transformed (e.g., ctdb database). The
transformation process is based on background
knowledge, a decision context, and a set of relevance
criteria. The background knowledge defines the
concepts pertinent to the transformation process. The
decision context is the set of circumstances at the
time a transformation takes place. This context is
based on the mission the automated agent has been
assigned and the current situation of the agent. A
variety of abstract models may be generated from a
given terrain database, depending on context. The
relevance criteria identify which features and which
levels of detail need to be reflected in the target
model. A critical component of the semantic terrain
transformation process is the categorization of each
component of the more detailed geometric model as
important or unimportant, based on the context of the
decision. The relevance criteria provide metrics for
identifying what features may be deleted or
simplified. The abstract geometric representation
reflects the set of concepts to be used in the decision
process, where each concept is represented at a level
of detail appropriate for satisfying decision goals.

Transformations are accomplished by the successive
application of operators. These operators are four
kinds of elementary knowledge transformations:
abstraction, generalization, aggregation, and
simplification.

The abstraction process involves selectively
removing "unimportant" features from a model.
Features are unimportant if they have little impact on
the quality of decisions made in a given context,
when using the resulting model (i.e., the relevance
criteria considers them unimportant). For example,
individual trees may be removed when transforming a
detailed terrain database into a representation
appropriate for use by a company commander, since
the location of individual trees is usually not relevant
to the decisions of the company commander.

The generalization process replaces the representation
of individual features with the representation of
classes of features. For example, instead of
representing the unique effect of each piece of road
on the movement of a unit, road segments may be
categorized and an effect associated with each
category of segment.

Aggregation involves summing up detailed data and
representing it in aggregated form. For example, a
line of hills is composed of different parts: a ridge
crest running along the tops of the hills, the front
slope of the line of hills (relative to the observer), the
rear slope, and side slopes. The ridge crest, in turn, is

357

Figure 3: Situation at Start of 3rd Battalion Mission

composed of the high areas of the line of hills, spurs
jutting out from the sides of the ridge, and saddles
(dips in the ridge crest). The aggregation of indivdual
features produces composite features or superfeatures
(Stanzione, 1994).

Simplification is similar to abstraction in that it
eliminates some details, but it also may include some
distortion of unimportant details, in the process of
producing a more compact knowledge representation.
For example, the complex shapes of contour lines
may be replaced with simpler shapes.

In the examples in this paper, we identified those
features that could be abstracted out of the model and
used simplification to reduce the shapes of the
regions to simple geometric objects, including line
segments and rectangles. The resulting geometric
model contains only physical features and does not
include individual elevations or trees, for instance.

4.1. Transformation Phases
Semantic terrain transformations constitute the
process of converting terrain information from a
terrain database into a semantic network for use by an
automated command agent and consists of two
phases.

In the first phase, the geometric representation from a
terrain database is iteratively transformed into one or
more increasingly abstract geometric models. These
models are more compact and contain higher level
concepts needed for reasoning efficiently.

In the second phase, the geometric model at the
appropriate level of abstraction is translated into a
textual representation in the form of a semantic
network. The semantic network describes the
geometric information as a set of concepts and the
relationships among the concepts. The textual
representation in the semantic network may then be
used by an automated agent in making decisions.

4.2. Generation of the Abstract Geometric Model
In this phase, we transform detailed geometric data
from a CGF terrain database of Fort Knox, Kentucky
into a geometric model at an appropriate level of
abstraction, given the decision-making context. The
situation confronting an automated commander (of
the 3rd Battalion) is represented in Figure 3. In this
figure, changes in elevation in intervals of 10 meters
are depicted by contour lines.

There are three separate problems the automated
battalion commander must solve using the semantic
network. First, the agent must choose the appropriate
form of defense. Its options include company sector
defense, company battle position defense, or
company strong point defense. Second, the agent
must establish company areas of responsibility.
Finally, given its choice of defense, the agent must
establish decide which particular company will
occupy which area of responsibility.

In choosing the appropriate form of defense, the
automated battalion commander uses rules that
require a company sector defense if it cannot
concentrate fires (as when there are multiple avenues
of approach such as in our example). There are three
avenues of approach leading into the 3rd battalion's
area of responsibility. The battalion commander
accordingly chooses a sector defense with one
company sector per avenue of approach and one of
the two tank companies in reserve to the rear of the
company areas. During a battle, the reserve company
may be used in local counterattacks or may be moved
to bolster the defense of a company being attacked.

In this situation, an automated battalion commander
has decided to use a sector defense. Defense of a
sector is the most common defense mission for a
battalion in contemporary combat missions. The
sector is an area designated by boundaries that form
an area of responsibility. Sectors are generally deeper
than they are wide to permit the defending unit to
fight the battle in depth. In the current situation, the
enemy forces are expected to approach from the
Southwest of the battalion's area of responsibility.
The automated battalion commander must then
perform a set of semantic terrain transformations to
determine the company sector boundaries within it's
area of responsibility.

358

The process of transforming a detailed terrain model
into an abstract terrain model consists of four steps:

Step!: Identify decision context.
Step 2: Identify relevance criteria.
Step 3: Establish new concepts to be represented in

the target terrain model and generalization
hierarchies for terrain regions.

Step 4: Apply transformation operators to the
current terrain model to produce the target
terrain model.

Step 1 involves making explicit the parameters and
types of operations affecting the transformation
process. These influence the application of the
relevance criteria. In our example, we identify the
decision context as the placement of the companies of
a battalion. The context includes the primary decision
factors: mission, enemy, troops, terrain (and
weather), and time available (METT-T). In this
situation, the mission of the battalion commander is
to defend a battalion sector against an expected attack
by an opposing force expected to consist of two or
more tank or motorized infantry battalions. The
battalion sector boundaries have been identified and
are reflected in Figure 3. The troops available to the
3rd Battalion commander are two tank and two
mechanized infantry companies of a battalion task
force.

Step 2 determines the relevance criteria that are used
to determine the forms of concepts to be included in
the target terrain model. The resulting relevance
criteria determine the set of transformation operators
that are needed to perform the transformations and
their sequence. The relevance criteria may be
expressed in a set of rules. These rules may be
learned by command agents using the Captain
methodology as explained in (Hieb et al., 1995). An
example of a rule defining a relevance criteria might
be: "If a terrain feature cannot significantly affect
mobility of subordinate units and the terrain feature
cannot significantly affect vision of subordinate units
and the terrain feature cannot significantly affect
concealment of subordinate units then the terrain
feature is irrelevant." If this rule is applied in a
situation where the terrain feature is an individual
tree and subordinate units are companies, since an
individual tree affects neither the mobility, nor the
vision, nor the concealment of a company as a whole
to a significant degree, any individual tree would be
considered irrelevant and excluded from an abstract
terrain model at that level. On the other hand, if the
subordinate unit is an individual entity, a tree would
be relevant since it may offer concealment to the
entity and may affect its field of view.

Granularity refers to the level of detail of
representation for the objects in the target terrain

model. There is a trade-off between the higher quality
of decisions that accompany fine granularity and the
greater speed of decision-making that accompanies
coarser granularity. For reasoning about the
placement of companies in the battalion we chose the
level as about l/1000th the area of the model. The
area the model represents is about 7 kilometers by 8
kilometers, or about 56 square kilometers. Dividing
this by 1000, a size of about 1/16 of a square
kilometer is established as the model granularity.
That is, shapes are simplified into the nearest 1/16th
square kilometer (1 /4th kilometer by l/4th kilometer).

Step 3 requires establishing generalization hierarchies
for terrain regions. A terrain region may be classified
as a physical region or an organizational region.
Physical regions are classified according to the
physical properties of the terrain that affect the
accomplishment of goals. Organizational regions
correspond to regions established in map overlays. In
past military operations, an overlay was a transparent
medium on which information was plotted on top of a
map, photograph, or other graphic. In operations
supported by map automation, the overlay
information is plotted on top of information from the
terrain database. It reflects unit boundaries, routes,
areas of responsibility, engagement areas, etc.

We identify three physical and three organizational
subclasses of regions: 1) the physical relief regions in
which terrain is classified as being in hills or
relatively flat areas; 2) the physical cover regions in
which terrain is aggregated into regions based on the
presence of natural or man-made forms of cover and
concealment; 3) the physical mobility regions in
which terrain is aggregated into regions based on the
presence of natural or man-made obstacles or features
such as roads that enhance mobility; 4) the
organizational avenues of approach, each of which
consists of a mobility corridor and an engagement
area; 5) the organizational regions that define the area
of responsibility for the command agent; and 6) the
organizational regions defining boundaries of
subordinate units. Within each region subclass, each
region is discrete; there is no overlap.

Figure 4 shows the abstract model resulting from
Phase 1 of the transformations. It displays four of the
six primary regions in one diagram. The physical
mobility regions were omitted since they correspond
closely to the avenues of approach displayed. Also,
organizational regions defining boundaries of
subordinate units were omitted since these boundaries
are not determined until after phase 2 of the semantic
terrain transformations has been completed and the
battalion commander has decided the sector
boundaries of its companies.

359

Figure 4: Abstract Model.

Hills and various other terrain features such as
valleys, ridges, and depressions are concepts that may
not be explicitly represented as such in a terrain
database. They may be determined by examining
contour lines. For the purpose of terrain
transformations, we defined a hill more precisely as
an area where there are at least three concentric rings
of contour lines (total elevation change of 30 meters)
enclosing an area less that one square kilometer
whose average slope is greater than 12° .

Step 4 maps from the source terrain model to the
target terrain model. The process uses operators to
accomplish a homomorphic mapping from the
features in the source terrain model to the features in
the target terrain model.

Figure 4 is an abstract model of parts of the terrain
database for use in making decisions by a battalion
commander. Each square in the grid represents one
kilometer. The light gray rectangles are hills, dark
gray rectangles with slanted lines are tree canopies,
lines with double hash marks denote the battalion
area of responsibility, and x's inside circles denote the
forward edge of battle area (FEBA).

The avenues of approach are identified using existing
terrain analysis programs.

At this point in the example, the abstract geometric
terrain model contains information at a level of
abstraction appropriate for making decisions. For an
automated agent to reason about the information, it

needs to be translated into objects and
relationships in a semantic network. This is done
in the second phase of the semantic terrain
transformation process.

4.3. Concept Identification
In the second phase of the transformation process
we transform information from the abstract
geometric model into concepts and relationships
among concepts in a semantic network. This
process requires identifying appropriate types of
concepts and relationships and the application of
further knowledge transformations.

This process consists of four steps:

Step 1: Assign a name to each separate object in
the geometric terrain database.

Step 2: Establish the set of relationships to be
used to represent relationships among
objects in the terrain model.

Step 3: Establish relevance criteria for choosing
which ordered pairs of objects named in
Step 1 will be associated with each kind
of relationship described in Step 2.

Step 4: Create the semantic network for the
command agent.

Step 1 assigns names to objects. Some of the names
assigned are shown in Figure 5.

In Step 2, the set of relationships among objects is
identified and defined based on the decision context.
The relative location of opposing forces to the
friendly unit is used to orient objects in terms of
"LEFT," "RIGHT," "IN-FRONT-OF," and
"BEHIND." Relationships such as "NEXT-TO,"
"NEAR," and "FAR" are defined based on number
generalization, which maps distances between objects
to general concepts.

In Step 3, the relevance criteria are established based
on mission and level of the unit. They may be
expressed as a set of rules that may be learned by the
agent (Hieb et al., 1995).

In our example, the concept of "area-of-
responsibility" had already been defined in the in the
agent's knowledge base, as well as a rule for
"WITHIN," which determined whether an arbitrary
object was contained in the battalion area of
responsibility. One relevance criterion holds that only
terrain objects (physical regions) contained within the
area of responsibility of the battalion may be related
to other objects in the semantic network. Other
relevance criteria pertain to distance.

In Step 4, the relevant information, representing
interrelation-ships among objects from the geometric

360

72 73 74 75 76 77 78
917

Figure 5: Selected Object Names

terrain model, is entered into the semantic network. A
small part of the resulting semantic network is shown
in Figure 6. The gray unlabeled arrows in the diagram
indicate instance-of relationships.

The semantic network in the agent's knowledge base
represents concepts that are used by the agent during
learning. In the case of the 3rd Battalion commander
given the defensive mission, Captain will work with

the SME to learn a rule that establishes company
sector defense boundaries.

In positioning company sector boundaries, the
SME may teach the automated battalion com-
mander to orient the boundaries on the avenues
of approach to provide dominating terrain for
each company. The result of this learning pro-
cess would be a rule that establishes company
sector defense boundaries as in Figure 7.

5. Company Terrain Transformations

In the previous section, the automated battalion
commander used Semantic Terrain Trans-
formations to establish company sector
boundaries for the four companies under its
command. The automated battalion commander
then would issue orders to automated company
commanders to establish defensive positions in
the sectors assigned.

To carry out the order from the battalion
commander, each company commander must
reason about the area of terrain for which it is
responsible. The company commander uses a set
of Semantic Terrain Transformations to put the
terrain information into a useful form. The
terrain model used by the battalion commander

does not reflect all the concepts a company
commander needs to consider nor are the concepts in
the battalion's model in sufficient detail. In this
section we will describe how Semantic Terrain
Transformations may be done by a company
commander who has received a defend sector mission
from its battalion commander.

The area of responsibility of the company

3rd-bn-FEBA

INTE

INTERSECTS

3rd-bn-area-of-responsibility

IN ?T^ 3rd-bn-rear-boundary

avenue-of-approach-3

aven ue-oPapproach-1

avenue-of-approach

Figure 6: Portion of Battalion Semantic Network

361

72 73 74 75 76 7

Figure 7: Company Sector Boundaries

commander is shown in Figure 8a. It is the Southern
area of responsiblity shown in Figure 7. To change
the data from the terrain database into a form that can
be effectively used by the company commander, the
commander employs Semantic Terrain
Transformations using the same algorithm discussed
in the previous section but applied in a much different
context. The company command agent applies the
four steps of phase 1 in generating an abstract
geometric model.

In Step 1 the decision context is the mission of the
company commander to defend a company sector
against an expected attack by an opposing force
consisting of one or two tank or motorized infantry
battalions. The troops available to the commander are
two tank and one mechanized infantry platoons.

In Step 2 of the algorithm, the commander determines
what must be included in the target terrain model.
The existing features considered relevant for the
current decisions are avenues of approaches,
engagement areas, and hills.

In Step 3, the agent generates needed concepts such
as the concepts of hills and various types of hill
features. A hill from the perspective of a company
commander has the same basic definition as that used
by the battalion commander. However, a hill is
represented differently for the company commander
than for the battalion commander. The main
difference in the representation of hills between the

two is that the company commander needs a finer
granularity of the representation and must also
represent hill parts such as front slope (relative to
the avenue of approach), rear slope, and crest.

A hill is represented in the abstract terrain model
of a company commander as a circle. Long hills
are represented as a series of connected circles, as
in Figure 8b. To reflect the locations of front and
rear slopes and the crest of the hill, each hill is
twice bisected to form four quadrants. The first
two quadrants face the avenue of approach while
the last two quadrants face away from it. Each hill
quadrant has a special set of features relevant to
the company commander's decisions and is thus
considered a separate object in the agent's
knowledge base.

The avenue of approach is obtained from the
automated battalion commander, while the
engagement area will be calculated using existing
terrain analysis programs.

Various other concepts were generated at this
point such as the visibility of one region to an-
other region, using line of sight algorithms com-
monly implemented in CGF systems. Distances
from one region to another were defined as close,

near, far, or remote based on the weapons systems of
the type of unit and other factors.

In Step 4 of the first phase, the agent applies
transformation operators to generate the terrain model
shown in Figure 8c.

In the second phase of the transformation process the
map is transformed into a symbolic form expressing
concepts and relationships in a semantic network.
This process included labeling objects, identifying
relevant relationships and entering the concepts into
the semantic network as shown in Figure 9. Several
of the representation units in the knowledge base are
shown in Figure 8d.

The representation units have the notation:

(concept-i concept-k (FEATURE-1 value-1)

(FEATURE-n value-n))
This expression defines "concept-k" as being a
subclass of "concept-i" (from which it inherits
features) with additional features. The value of a
feature may be a constant or another concept.

Based on the concepts in the semantic network
resulting from the Semantic Terrain Transformations,
the automated company commander is able to make
effective decisions. Our method of teaching such
decision rules to automated command agents is
described in (Hieb et al., 1995).

362

8c 8d

(hill hill-863
(orientation "right")
(across hil!875)
(across hill878)
(front hill868)
(size 3))

(hill-sector hill-sector-863-1
(quadrant 1)
(visible mobility-corridor-d)
(visible engagement-area-d)
(in company-d-area-of-responsibility)
(part-of hill863)
(distance-to-engagement-area "close"))

(hill-sector hill-sector-863-2
(quadrent 2)
(visible mobility-corridor-d)
(visible engagement-area-d)
(in company-d-area-of-responsibility)
(part-of hill863)
(distance-to-engagement-area "close"))

Figure 8: Company Semantic Terrain Transformations

363

hill 875

.ACROSS"

PART-OF PART-OF PART-OF^

hill868

hill 878
hill 863-

^4V
hill-sector

VISIBLE-^ ^VISIBLE

engagement-area-d mobility-corridor-d company-d-area-of-responsibility

.PART-OF '

avenue-of-approach-d

Figure 9: Portion of Company Semantic Network

6. Conclusions

In this paper we have presented a methodology for
transforming a terrain database into a semantic
network which is used by automated command agents
to perform terrain reasoning. We have applied this
methodology to generate the semantic network
representation of the terrain necessary for teaching
ModSAJF company commanders defensive missions,
as described in (Hieb et al., 1995). We are currently
refining the methodology of semantic terrain
transformations and automating this process as part of
the development of the overall Captain methodology.

7. Acknowledgments

This research was conducted in the Computer Science
Department and the Center for Excellence in
Command, Control, Communications & Intelligence
at George Mason University. Work on ModSAF
applications was sponsored in part by the Defense
Modeling and Simulation Office under contract
DCA100-91-C-0033.

8. References

Ceranowicz A., (1994). ModSAF Capabilities,
Proceedings, of 4th Conference on Computer
Generated Forces and Behavior Representation,
Orlando, Florida.

Cunningham, C.T. (1993). Control of Movement in
an Arbitrary Polygonal Terrain. Proceedings of

the 3rd Conference on Computer Generated
Forces and Behavioral Representation., Orlando,
Florida.

Cunningham, C.T. (1994). Development of
Intelligent Simulations at LLNL. Proceedings of
the 4th Conference on Computer Generated
Forces and Behavioral Representation., Orlando,
Florida.

Hieb, M.R., Hille D. and Tecuci, G. 1993. Designing
a Computer Opponent for War Games:
Integrating Planning, Learning and Knowledge
Acquisition in WARGLES. In Proceedings of
the 1993 AAAI Fall Symposium on Games:
Learning and Planning, AAAI Press Technical
Report FS-93-02, Menlo Park, CA.

Hieb, M.R., Tecuci, G., Pullen J.M., Ceranowicz A.,
& Hille D.(1995). A Methodology and Tool for
Constructing Adaptive Command Agents for
Computer Generated Forces. Proceedings of the
5th Conference on Computer Generated Forces
and Behavioral Representation., Orlando,
Florida.

Hille D., Hieb, M.R. & Tecuci, G. (1994). Captain:
Building Agents that Plan and Learn. In
Proceedings of the Fourth Conference on
Computer Generated Forces and Behavioral
Representation, Orlando, Florida.

Longtin, M.J. (1994). Cover and Concealment in
ModSAF. Proceedings of the 4rd Conference on
Computer Generated Forces and Behavioral
Representation., Orlando, Florida.

364

Pullen, J.M. (1994). Networking for Distributed
Virtual Simulation. In B. Plattner & J. Kiers Eds,
Proceedings, of INET'94/JENC5. Internet
Society (isoc@isoc.org).

Smith, J. (1994). Near-term Movement Control in
ModSAF. Proceedings of the 4rd Conference on
Computer Generated Forces and Behavioral
Representation., Orlando, Florida.

Stanzione, T., Smith, J.E., Brock, D.L., Mar, J.M.F.
& Calder, R.B. (1993). Terrain Reasoning in the
ODIN Semi-Automated Forces System.
Proceedings of the 3rd Conference on Computer
Generated Forces and Behavioral
Representation., Orlando, Florida.

Stanzione, T. (1994). Suitability of the Standard
Simulator Database Interchange Format for
Representation of Terrain for Computer
Generated Forces. Proceedings of the 4rd
Conference on Computer Generated Forces and
Behavioral Representation., Orlando, Florida.

Tecuci G. (1992). "Automating Knowledge
Acquisition as Extending, Updating and
Improving a Knowledge Base," IEEE
Transactions of SMC, 22(6).

Tecuci, G., Hieb M.R., Hille D. & Pullen J.M.
(1994). Building Adaptive Autonomous Agents
for Adversarial Domains, Proceedings of the
AAA1 94 Fall Symposium - Planning and
Learning: On To Real Applications. November

Tecuci G., Kedar S. & Kodratoff Y. (Eds), (1994).
Knowledge Acquisition Special Issue on the
Integration of Machine Learning and Knowledge
Acquisition, 6(2).

Van Brackle, D.R., Petty, M.D., Gouge, CD. & Hull,
R.D. (1993). Terrain Reasoning for
Reconnaissance Planning in Polygonal Terrain.
Proceedings of the 3rd Conference on Computer
Generated Forces and Behavioral
Representation., Orlando, Florida.

9. Authors' Biographies

David Hille is a computer scientist at ANSER, a
public service research institute. He received a
Masters of Science in Computer Science at Syracuse
University and is currently a Doctor of Science
candidate in the Information Technology PhD
program at George Mason University. He has
designed military simulations published
commercially by Strategic Simulations, Inc. and
helped to develop the wargame methodology for
technology base seminar wargames. He has been
working on the Captain Learning and Planning
System project, a system that performs as an
automated agent in simulations.

Michael Hieb is a PhD candidate in Information
Technology at George Mason University in Virginia.
He is currently a researcher at the Computer Science
Department of George Mason University working on
automated knowledge acquisition of behavior in
complex domains, such as ModSAF. He is also
researching interaction modes for knowledge
acquisition interfaces. He has published papers in the
areas of knowledge acquisition, multistrategy
learning, and plausible reasoning. He has served as a
consultant in AI for CSC and implemented a
distributed problem solving testbed at the Goddard
Space Flight Center for IntelliTek, Inc.

Dr. Gheorghe Tecuci is Associate Professor of
Computer Science at George Mason University. He
has published over 70 scientific papers, mostly in the
area of artificial intelligence. Gheorghe Tecuci is a
member of the Romanian Academy and is known for
his pioneering work on multistrategy machine
learning and its integration with knowledge
acquisition. He developed Disciple, which is one of
the first multistrategy learning systems, and co-edited
the first books on multistrategy learning and on the
integration of machine learning and knowledge
acquisition. He was the program chairman of the first
workshops in these areas (MSL-91, MSL-93, IJCAI-
93: ML & KA).

Dr. J. Mark Pullen is Associate Professor of
Computer Science at George Mason University. He
also has an appointment with the Center for
Excellence in Command, Control, Communications
and Intelligence. Dr. Mark Pullen was employed by
the Defense Advanced Research Projects Agency
(DARPA) from 1986 to 1992, where he was Program
Manager for Advanced Computing, Networking and
Distributed Simulation, and Deputy Director of the
Tactical Technology Office and the Information
Science and Technology Office. His research
interests include distributed and parallel computing
systems and their applications to educational and
military simulations.

365

Terrain Reasoning by Intelligent Player

Ashok Pandari and Gregory A. Schaper
Department of Computer Science
East Tennessee State University
Johnson City, TN 37614-0002

1. Abstract

Intelligent Player (IP) is a computer generated
fighting helicopter that uses a game tree for deter-
mining combat maneuver decisions. It has been
demonstrated that IP is a viable real-time simula-
tion entity that is capable of formulating plans in
real time. Planning gives IP the capability of se-
lecting a maneuver to implement that might result
in a temporary tactical disadvantage while achiev-
ing a superior tactical advantage in the future.
Previous implementations of IP have focused on
investigating the feasibility of computing a plan in
real time. In this paper we expand previous imple-
mentations by incorporating terrain into the plan-
ning computation of IP. Experiments show that
even when IP performs terrain avoidance it is still
capable of formulating a plan in real time.

2. Introduction

Intelligent Player (IP) is a computer generated
fighting helicopter used in the simulation of air-
to-air combat. IP computes combat maneuvers in
real time using a game tree [5] lookahead computa-
tion. IPs main utility is the computation of high
fidelity maneuvers during close quarters, one-on-
one, air combat. In a simulation environment with
many entities, a workstation running IP code can
be used for controlling helicopter entities involved
in air-to-air combat. Other automated simulation
techniques can be used for other portions of com-
bat nussion simulation.

Katz first defined IP in [2] [3] [4] and later provide
an improved version of IP based upon differential
game theory [1]. This improved version of IP has
the significance of separating the issues of air com-
bat, such as vehicle control, from those involved
in the lookahead computation. Schaper, Pandari
and Singh [9] implemented this improved version
of IP with specific interest in determining the max-
imum amount, of lookahead that could be com-
puted in real time on current PC and workstation

platforms. Their investigation revealed IP to be a
viable real-time simulation entity. Specifically, it
was shown that IP is a tenacious and aggressive
opponent with the capability of formulating plans
during lookahead computation. A plan is the abil-
ity to select a maneuver to carry out which will re-
sult in a temporary tactical disadvantage but will
ultimately result in a tactical advantage.

In this paper we expand the current IP implemen-
tation to include terrain avoidance. In previous IP
implementations, IP simulations were carried out
in a three-dimensional void. We investigate the
behavior and lookahead performance of IP when
terrain avoidance is performed. Results of experi-
ments based upon this implementation show that
IP continues to behave in an aggressive and tena-
cious fashion. We also show execution timing re-
sults on RS6000 workstation which show that even
when terrain avoidance is performed, IP is still ca-
pable of planning in real time.

Section 3 discusses terrain modeling techniques
used in our IP implementation. Section 4 details
specific modifications to existing IP implementa-
tion required to perform terrain avoidance. Sec-
tion 5 presents measurements of IP's behavior and
performance. Section 6 contains concluding re-
marks.

3. Terrain Modeling

Several techniques for modeling terrain have been
used in combat simulation. Polygon Terrain Rep-
resentation [8] and Digital Terrain Model [6] are
two common techniques. When considering the
use of a terrain modeling technique there are sev-
eral key attributes that must be addressed. These
attributes include the amount of memory used to
represent the terrain, the fidelity of the representa-
tion, and the computation time required to look up
terrain features during simulation exercises. One
major limiting factor in the IP implementation de-
scribed in this paper is the amount of available

367

memory on the RS6000 workstations. This forced
a choice of terrain modeling technique that was
memory efficient in representing terrain with rea-
sonable fidelity and modest look up speeds. Poly-
gon Terrain Representation and Digital Terrain
Model require large memory for terrain represen-
tation. For this reason we choose to use quadtrees.

3.1 Quadtrees

A quadtrees is a data structure that makes effi-
cient use of storage in representing cartographic
databases that involve large amounts of data.
Quadtrees are a special type of tree data struc-
ture in which each node, except the leaf nodes,
have an outdegree of four.

At level one of a quadtree there is one node,
called the root, of the quadtree. This node rep-
resents an extent of square terrain. This square
extent is subdivided into four equal sized subquad-
rants, namely, northeast (NE), northwest (NW),
southeast (SE) , southwest (SW). Each of these
subquadrants are represented by a child node of
the root and holds relevant information about its
subquadrant. This decomposition continues re-
cursively until all points in the subquadrant fall
within a single plane. A least square error com-
putation is used to determine if all points of the
quadrant can be represented by a single plane.

Each node of the quadtree stores the coordinates
of the lower left corner and the upper right corner
of the quadrant it represents. Each node also con-
tains pointers to each of its four child nodes and
a pointer to its parent node. During construc-
tion of the quadtree, each node requires access to
all terrain points which fall within the associated
quadrant. This access is provided by a pointer
to a list containing all points which belong to the
quadrant.

Each node of the quadtree is processed to deter-
mine if all points of the subquadrant. form a plane.
If all points do form a plane then this node is a
leaf. Otherwise, the node's quadrant will be re-
cursively subdivided.

A plane is represented by an equation of the form

= Ax + By + C. (1)

The .4, B, and C coefficients of this equation are
stored in the associated node. If all data points
have the same z value then A and B are assigned
0. If the data points do not have the same z values
then a least square error computation is used to

determine if the points in this quadrant lie along
a single plane.

3.2 Least Square Error Computation

To determine if a quadtree node is a leaf node, it
must be determined if the coordinates in the as-
sociated quadrant can be represented by a single
plane. First, a plane equation of form specified in
(1) is determined by using partial differential equa-
tions. The J4, B, and C coefficients of the plane
equation are computed by taking partial deriva-
tives of the least square error equation

E2 =
_ EIU--. - (AXJ + BVi + C))2

(2)

Coefficient A is computed by taking the partial
derivative of E2 with respect to A and equating
the result to 0. Similarly, the coefficient B is com-
puted by taking the partial derivative of E2 with
respect to B and equating the result to 0. After A
and B are known then C can be easily determined.

Once the best-fit plane equation has been found,
the least square error, E2 is computed. E2 is com-
pared to a predefined tolerance value. If E2 is less
than the tolerance then the plane is created using
A, B, and C as it's coefficients. Otherwise the
quadrant is recursively subdivided.

In IP simulation we used a mix of artificially cre-
ated terrain and real terrain taken from a Geo-
graphical Information System [6]. In both cases
the input terrain forms a grid of points at regular
50 meter intervals in both x and y coordinates.
The overall size of the terrain is 100 by 100 grid
points.

3.3 Terrain Elevation Evaluation

After the quadtree is constructed, terrain eleva-
tions can be determined for any (x,y) coordi-
nate point by searching the quadtree. Function
Get-Elevation performs this lookup. It takes an
(x,y) coordinate as input and returns the eleva-
tion (z value) at this location. This function must
traverse the quadtree from the root to the appro-
priate leaf node which represents the area of ter-
rain being examined. The x and y coordinates are
substituted into the plane equation formed by the
A, B, and C coefficients, stored in the leaf node,
to determine the associated z value. For a square
area of terrain consisting of n2 points, function
Get.Elevation has a worst case computation time
of 0(log4n

2).

368

4. Terrain Avoidance

This section details the specific modifications to
existing IP implementation required for IP to per-
form terrain avoidance. Specific references will be
made to concepts, terminology, and algorithms de-
fined in [1] and [9].

Consider a one-on-one air combat scenario with
two players, RED and BLUE. Without loss of
generality the BLUE player is IP. A lookahead
computation for the BLUE player has two distinct,
phases. First trajectory trees are constructed for
each of the two players. Secondly, the game tree
used to select the next maneuver for the BLUE
player is computed. Function Lookahead performs
this computation.

Lookahead(BLUE,RED:sUte);

const T = 1.0;
r = 0.1;
max-ply = 3;

var BJraj.RJraj:trajectory-tree;
sco7'e:float;
m.maneuver;

begin
Compute.BLU E-Trajectories(BLU £\1.5,

BJraj);
Compute-RE D.Trajcctories(RED,l.b,

RJraj);
Select-Mancuv(r(B-iraj, R-traj,

maxjply, 0,
score,m);

return(m)
end;

During construction of the trajectory tree for each
player, each new trajectory is compared with the
underlying terrain to determine if the player has
crashed. If a crash is detected then boolean vari-
able crash is set to true in the corresponding tra-
jectory tree node. This node of the trajectory tree
becomes a leaf. In order keep the computation of
trajectories isolated from the rest of the lookahead
computation, the modifications to the code were
isolated in the Compute-Red-Trajectory-Tree
and Compute-Trajectory procedures. This choice
allows the Maneuver-Interprct function to re-
main as an independent functional module from
the rest of the IP implementation. The follow-
ing modified Compute-Trajectory procedure il-
lustrates the specific changes required to deter-

mine crashes. A similar modification was made
to the Compute-Red-Trajectory-Tree procedure.

Compute-Trajectory(s:state; dept/i:integer;
var traj:trajectory-tree);

var m:maneuver;
begin

if depth = 0.5 then
Maneuver-Interpret(s,m,T,j,traj)\
traj.crash = Check-Crash(traj ,j);

else
if depth ^ 0 then

Maneuver.Interpret(s,m,r,T,traj);
traj.crash = Check-Crash(traj ,T);
if not traj.crash then

for m = SF to DL do
Compute.Trajectory(lraj[j],

depth — 1,
Next-Trajectory(traj,m));

end for;
end if;

end if;
end if;

end;

Function Check-Crash takes a trajectory tree
node as input along with the information as to
which half of the trajectory is being evaluated. It
returns a boolean which is true if the player has
crashed into the terrain and false otherwise.

Check-Crash(vas traj:trajectoryJ.ree
T : float);

var iiinteger;
elevation: float;
crash.boolean;

begin
crash = false;
»=1;
while (not crash) and (i ^ T) do

elevation — Get-Elevation(traj[i].x,
traj[i].y);

if traj[i].z < elevation then
crash = true;

end if;
»' = »'+l;

end while;
return(cras/i);

end;

The Select-Maneuver procedure drives the con-
struction of the lookahead game tree. The selected
maneuver is determined by a score that is prop-
agated from the leaves to the root and takes the

369

probability of kill computed along the path from
leaf to root during the lookahead computation into
consideration. The scoring function is a reflection
of the possible tactical situations. A score of —1
indicates that the RED player has the best pos-
sible tactical position. A score of +1 indicates
that the BLUE player is in the best possible tac-
tical position. If a crash occurs then the associated
game tree node becomes a leaf and the appropri-
ate node score is assigned to it. Since a crash for
the BLUE player reflects the worst possible tac-
tical situation, the lookahead computation is be
forced (by the scoring function) to choose a ma-
neuver that does not lead to a crash (if one exists)
in the foreseeable future (the period of time that
lookahead is performed).

Selfct.Maneuvrr(BJraj, RJtraj.trajectory;
max-ply, pi y Ante ger;
var score:float;
var m.maneuver);

var man,best-m:maneuver;
childscore ,SS,be st score rfloat;
Kh,Kr,P2,Pr,Pb:h'oa.t;

begin
if ply = 0 then

P2= 1;
P* = 0;
Pr=0;

else
if odd(p/y) then

B.traj = Next-Trajectory(BJraj,m);
else

RJraj — Ncxt.Trajectory(RJraj,m);
end if;
if not(B-traj.crash or R-traj.crash) then

Probability-of -K ill(BJ. raj, R~t raj,
ply, Kb, A'r);

Compute-Game State s{ K j,,A'r,P2
Pr,Pb);

end if;
end if;
if B-Iraj.crash and not RJraj.crash then

score = —1
else if RJ.ruj.crash and not BJraj.crash then

score = 1;
else if BJraj.crash and RJraj.crash then

score — — 1;
else if ply = max-ply then

if odd(p/y) then
SS = Static-Score(BJraj[^],RJraj{^]);

else

SS = Static-Score{BJraj[^],RJraj[-^));
end if;
score = Pb-Pr + P7SS;

else
for man = SF to DL do

best-score = — 1;
Select-Maneuver(BJraj, RJraj,

max-ply, ply + 1,
child-score ,man);

if childscore > best-score then
bestscore = childscore;
best-m — man;

end if;
end for;
score = Pi — Pr + P2bestscore;
m = best-m;

end if;
end

The remaining module that requires modification
to accommodate terrain is the Check-Kill proce-
dure. This procedure determines if either player is
in the gun envelope of the other. The gun envelope
defines a lethal area in which an opponent may be
fired upon. However, if terrain blocks the line of
sight between the two players then firing is disal-
lowed. Thus, Check-Kill must determine if the
terrain blocks the line of sight between the play-
ers. The function LOS-Blocked returns a boolean
value of true if the line of sight between the two
players is blocked by terrain and false otherwise.

Check-Kill(Bstate, Rstate: state;
var BJcill,R-kill:boo\eain);

var R-mgntd,B-mgntd,los-mgntd:Roa.t;
LOS.vector;
cos_Q,cos./?:float;
blocked.boolean;

begin
B.kill = FALSE;
R-kill = FALSE;
LOS =line of site vector;
LOS-mgntd =magnitude los vector;
blocked = LOSJ3locked(Bstate, Rstate,

LOS);
if not blocked then

R-mgntd =magnitude RED velocity vector;
B-mgntd =magnitude BLUE velocity vector;
cos-ot — (R-vel • LOS)/R.mgntdLOS-mgntd;
cos-0 = (B-vel • LOS)/ B-mgntd LOS-mgntd;
if los-mgntd < gun-range then

if cos-Q > cos(gunjangle) then
R-kill = TRUE

end if;
if cos-0 > cos(gun-angle) then

370

-i—i—i—:—i—i—;—i r—i—r—T—i—r

Figure 1: IP terrain avoidance example 1. Figure 2: IP terrain avoidance example 2.

B.kill = TRUE
end if;

end if:
end if

end;

The LOS-Dlocked function takes as input the
states of both players and the line of sight vec-
tor. The function traces the line of sight vector
through the quad tree to determine which quad-
rants the line of sight vector crosses. The function
then determines if the line of sight vector inter-
sects any of the involved quadrants by using their
plane equations. At present this function is imple-
mented using a rather brute force technique that
is not particularly efficient and will not be further
described.

5. Results

5.1 IP Behavior

Figures 1 and 2 show IP simulations involving ter-
rain. Figure 1 illustrates an artificially constructed
terrain region with a large obstruction. The RED
player is placed in a stationary position to the east
of the obstacle and facing east. The BLUE player
is placed on the west side of the obstacle facing
east. As the figure illustrates, the BLUE player
is able to avoid the obstacle and assume a favor-
able tactical position on the RED player.

Figure 2 is a combat scenario that uses real ter-
rain generated from the Geographical Information

System. As the simulation verifies, both players
are able to avoid the terrain while also exhibiting
aggressive and tenacious behavior.

5.2 Execution Speed

Timing experiments on IP lookahead are designed
to measure the elapsed execution time of IP for a
specified number of plies. For each of the measure-
ments reported lookahead was executed for the
given conditions 100 times. The elapsed time of
the total run was divided by 100 to get the average
elapsed time for a single lookahead.

There are two cases to consider when measuring
elapsed time of IP lookahead computation. If the
players are in each others gun envelope, then the
Check-Kill computation must be performed for
each combination of players states. This adds con-
siderable expense to the lookahead computation.
Table 1 shows the elapsed execution times of IP
lookahead when players are out of range of one an-
other. Table 2 shows the elapsed execution times
of lookahead when the players are in range of each
other.

6. Conclusions

All simulation experiments of IP using terrain
avoidance have demonstrated that IP is a tena-
cious and aggressive simulation entity. Execution

371

Number of
Maneuvers

Plies 5 7 11
1 0.002 0.003 0.010
2 0.006 0.010 0.019
3 0.020 0.053 0.166
4 0.092 0.307 1.620
5 0.411 1.970
6 1.800

Table 1: IP execution time in seconds on IBM
RS6000 when players are out of range.

timing results demonstrate that IP is capable of 3-
ply lookahead in under one second on IBM RS6000
workstation. Thus, IP is still capable of planning
even when terrain avoidance is performed.

It is important to note that these execution speeds
for IP should be considered worst case since
quadtrees do not provide a particularly efficient
lookup function. We expect that a 486 class PC
or IBM RS6000 class workstation with sufficient
memory to support the use of polygon terrain rep-
resentation or digital terrain models would signifi-
cantly improve execution speeds of lookahead com-
putation.

A more efficient compu-
tation for the LOS-Blocked function should also
improve execution speeds. Future efforts should
investigate improving this computation by using
a method akin to Bresenham's line drawing algo-
rithm [10] to trace through the quadtree along the
line of sight vector. This should significantly re-
duce the total number of quadrants which must be
searched during this computation.

Number of
Maneuvers

Plies 5 7 11
1 0.003 0.006 0.010
2 0.008 0.022 0.030
3 0.026 0.183 0.310
4 0.133 1.620 3.137
5 0.456
6 1.950

Table 2: IP execution time in seconds on IBM
RS6000 when the players are in range.

7. References

[1] Amnon Katz, "Intelligent Player - First Princi-
ple Foundations", Proceedings of Third Computer
Generated Forces Conference, 1993.

[2] Amnon Katz and A. Ross, "One on One Heli-
copter Combat Simulated by Chess Type Looka-
head", Journal of Aircraft, 28, no. 2, 1991.

[3] Amnon Katz and Bret Butler, "A Flight Model
for Unmanned Simulated Helicopters", Journal of
Aircraft, 29, No. 4, 1992.

[4] Amnon Katz, Bret Butler, and D. Allan, "A
Computer Generated Helicopter for Air to Air
Combat", AIAA Simulation Technologies Confer-
ence, New Orleans, 1991.

[5] Ellis Horowitz and Sartaj Sahni, "Fundamen-
tals of Computer Algorithms", Computer Science
Press, 1978.

[6] David J Maguire, Michael Goodchild, and
David Rhines, "Geographical Information Sys-
tems Principles and Applications", Longman Sci-
entific and Technical, 1991.

[7] F. Austin, G. Carbone, M. Falco, and H. Hinz,
"Automated Maneuvering Decisions for Air to Air
Combat", Grumman Report RE- 742, November
1987.

372

[8] Michael D. Petty, "Terrain Reasoning for Re-
connaissance Planning in Polygon Terrain with
Cultural Features", Institute for Simulation and
Training, IST-TR-93-03, Jan 1993.

[9] Gregory A. Schaper, Shridhar Pandari, and
Mandeep Singh, "Lookahead Limits of Intelligent
Player". Proceedings of the Fourth Conference on
Computer Generated Forces and Behavioral Rep-
resentation, Institute for Simulation and Training,
Orlando, FL., 1994.

[10] J.D. Foley and A. Van Dam, "Fundamentals of
Interactive Computer Graphics", Addison Wesley,
1982.

8. Author's Biographies

Gregory A. Schaper. Currently an Assistant
Professor in the Department of Computer and In-
formation Sciences at East Tennessee State Uni-
versity. Earned PH.D. from University of Cen-
tral Florida in Computer Science in 1989. Re-
ceived Bachelors degree in Computer Science from
Arkansas State University in 1984. Has worked as
a Research Associate at the Institute for Simula-
tion and Training, Orlando, FL (1987-1988) and
McDonnell Douglas Helicopter - Simulation Divi-
sion, Phoenix, AZ (1990). Areas of interest in-
clude Computer Architecture, Parallel Processing,
Graph Theory, Battlefield Simulation, and Neural
Networks.

Ashok Pandari. Currently a graduate student in
the Department of Computer and Information Sci-
ences at East Tennessee State University. Earned
B.S in Computer Science and Engineering from
Jawaharlal Nehru Technological University, India,
in 1993. Is a Graduate Assistant in Department
of Housing, East Tennessee State University. Ar-
eas of interest include Database design. Graphi-
cal User Interfaces and Object Oriented Program-
ming.

37:

Recent Developments in ModSAF Terrain Representation

Joshua E. Smith
Loral Advanced Distributed Simulation

80 Pleasant St., Barre, MA 01005
jesmith@camb-lads.loral.com

Abstract 2. Terrain Representation Legacy

After five years of stability in representation, the
growing demands of terrain complexity and terrain
reasoning within the DIS environment have forced a
re-engineering of terrain representation within
ModSAF. The representations inherited from the
SIMNET and Odin legacy have been changed
significantly to support current and future terrain
requirements. This paper will discuss the most
significant changes, and will detail the implications
of these developments for the rest of the CGF
community.

The terrain representation currently used in ModSAF
is derived from a legacy of prior representations, as
shown in Figure 1.

2.1 LibTDB

The terrain representation used in SIMNET SAF was
a format called libTDB. This was a completely
polygonal format. For example, the only
representation of roads in this format was as a
sequence of triangles and rectangles which composed
the surface of the road. This representation was
completely interoperable with SIMNET simulators,

SIMNET
libQUAD

• Network topology
• Abstract features

Future
Versions

ModSAF 1.4
CTDB (3) I

• Integrated network topology
• Integrated abstract features
• Terrain search API
• Formal compiler methodology
• S1000 API-based compiler

• Little-endian support
• ITD-style terrain attributes
• E&S and Multigen compilers
• MRTDB interoperability
• Contrast model for trees
• Multi-level terrain (visibility)
• 800km x 800km database

AGPG Mardei
CTDB (2)

• Alternate grid diagonalization
• Multi-level terrain (elevation only)

A
SIMNET
libTDB

Odin
CTDB(l) J

• More accurate representation of features
• Fractional visibility
• Improved performance
• Reduced storage
• 360km x 290km database

• Interoperability through common source (S1000)
• Polygon-based terrain visibility calculations
• Support for microterrain
• 75km x 50km databases

1988 1990 1992 1994

Figure 1: ModSAF Terrain Legacy

375

because it was based on the same source data.

2.2 LibQuad

In addition to this format, another terrain
representation called libQuad was also used in
SIMNET. This representation was designed to
support map display and planning. It included a
network topology which could be used to plan road
routes, breach river obstacles, etc. This format also
included "abstract" terrain features, such as lake and
forest footprints.

2.3 CTDB Format 1

The libTDB format worked well with SIMNET-size
databases which were typically less than 100 km on a
side, but proved problematic for very large databases,
such as the 290 km by 360 km' "SAKI" (Saudi
Arabia, Kuwait, and Iraq) database. To support this
database, and to improve performance on smaller
databases, a new format called CTDB, for Compact
Terrain DataBase, was developed.

The CTDB format took advantage of the gridded
nature of SIMNET terrain databases to significantly
reduce storage requirements. It also used various real
time compression mechanisms (such as fixed point
numeric representations) to reduce storage demands.
Reducing size improves performance in two ways.
First, more of the terrain area can be brought into
active memory, reducing the need for disk access.
Second, by squeezing more geography into fewer
bytes, data cache coherency is improved, which can
lead to performance gains on RISC processors.

In addition to these improvements, new algorithms
were developed for performing visibility calculations,
determining ground elevations, placing entities on the
terrain, and other operations. These algorithms both
improved performance, and in many cases increased
fidelity. For example, the time to complete a
visibility calculations was reducedby 75%, while the
results were changed from a discrete (visible, partially
visible, invisible) to an analog result (visible area).

It was around the same time that ModSAF
development was started in support of the DARPA
WISSARD program, under the direction of CDR
Dennis McBride. The ModSAF system used the
CTDB and libQuad terrain representations without
modification.

2.4 CTDB Format 2

In 1992, the ModSAF program was adopted for use as
the Computer Generated Force simulation in the
German AGPG program (a platoon level troop

training system for the Marder Infantry Fighting
Vehicle). The most significant additions made under
this program were the introduction of an alternate
diagonalization of the terrain grid, and "multi-level"
terrain.

2.4.1 Alternate Diagonalization

The SIMNET databases all used a northwest to
southeast diagonalization for the regular grid of
elevations. For interoperability with its image
generator, the AGPG program required that the
diagonalization instead be northeast to southwest.
The CTDB database format was modified to support
either diagonalization, and the various terrain analysis
algorithms were modified to support both
diagonalization options. The specification of
diagonal direction was made on a per-database basis.

2.4.2 "Multi-Level" Terrain

One of the ways the performance of terrain analysis
algorithms can be improved is by introducing
"implicit" information in the representation. For
example, if one can assume that it is impossible to
see under a terrain polygon, then a visibility
calculation can be performed which only checks
polygon edges - if line of sight passes under a
polygon edge, then visibility is necessarily blocked.

However, if one introduces multiple levels of terrain
(tunnels, bridges, etc.), then this implicit information
is not correct. Thus, the algorithms for visibility
calculation need to be generalized to remove this
assumption. Of course, this would have a detrimental
impact on performance. The compromise struck in
the CTDB representation is to divide terrain into
classes. In addition to the regular grid, which
provides general coverage of the terrain area, portions
of the terrain surface can be represented by:

• Base Terrain: A Triangular Irregular Network
(TIN) which abides by the implicit assumption
that visibility under the triangles is impossible.

• Multi-Level Terrain: A TIN which does not
abide by this assumption.

• Default Terrain: A TIN which should be used
only if no other terrain triangles are found at a
location.

The last type was introduced to allow compact storage
of areas where the regular grid was replaced only
partially by a TINned region (such as a river bed).

376

Physical Topological

D Patch: Feature
Edge Composition

1 1:7-, 3:5+
2 3:7+
3 3:2+, 4:1+, 2:1-

Nodes
1 to 2
2 to 3
2 to 4

O Node:Edge
Node Connections

1 2:1
2 1:1,3:2,4:3
3 2:2
4 2:3

Figure 2: Integrated Network Topology

The implementation of multi-level terrain for AGPG
was only preliminary. A mechanism was added to
the file format to represent this information, and the
terrain elevation lookup algorithms were modified to
support fetching elevations using a reference elevation
which is used to determine what level of terrain
should be used. For visibility calculations, the
multi-level terrain polygons are simply ignored (as if
all bridges are made of glass).

3. CTDB Format 3

Although the libQuad database had served the needs
of ModSAF well through version 1.3, it had some
drawbacks which needed to be remedied. The primary
problem was the terrain compiler, which was rather
fragile and only worked on an outdated computer
platform. In addition, the format and software were
developed before the ModSAF software quality and
documentation standards had been adopted. As such,
it was quite difficult to maintain.

Another nagging problem with the libQuad format
was its memory consumption. The entire database
had to be read into memory (no caching was
supported), and much of the information was
redundant with data stored in the CTDB format.
Finally, the libQuad software did not provide much
of an Application Programming Interface. To
traverse features in the libQuad database, an
application would have to traverse the actual data

structures used internally by libQuad . (Note that
CTDB also suffered from the same problem.)

To alleviate these problems, LEADS' funded the
development of CTDB format 3

3.1 Integrated Network Topology

CTDB now supports a complete integrated network
topology, as shown in Figure 2.

The physical representation of each linear feature (road
or river) is stored with other physical information in
the CTDB "Patch" data structure. The topology-
makes reference to this information, without
duplication. For example, in the figure, edge 1
consists of two linear features: linear feature 1 of
patch 1 traversed last-to-first (1:7-); and linear feature
3 of patch 3 traversed first-to-last (3:5+).

' Software development was funded by LEADS
(Loral Experimental and Developmental Simulation
System), a Loral corporate chartered project to
promote the effective use of DIS throughout Loral.
However, this software is being provided to the
government with exactly the same rights as other
ModSAF software so that it can be freely used
throughout the DIS community.

377

The physical representations of the linear features in
turn reference the topologic edge. For example,
feature 1 of patch 1 and feature 3 of patch 3 both
reference edge 1. This is important, because the
physical representation is stored using spatial
indexing, which means that given a location, a feature
can be found quickly. Then, given the physical
feature at a point, a planning algorithm can go
directly to the topology of the area without search.

3.2 Integrated "Abstract" Features

As explained earlier, the libQuad database included
"abstract" features. With the elimination of
libQuad, CTDB is required to pick up these
features. The spatial indexing used for physical
features (a grid of small patches) is not particularly
good for representing these terrain abstractions
because forested areas and lakes tend to cover large
areas. The natural data structure to use for these is a
dynamic quad tree, as shown in Figure 3.

The file format allows nodes of the quad tree to be
expanded using any criteria In the example above,
the distribution of features warrants smaller quad
nodes in some places, and larger nodes in others.
Features are stored in both interior and leaf nodes of
the quadtree, to achieve fairly even distribution.

These features abstractions are not actively used by
the terrain analysis algorithms within the CTDB
software (visibility calculations, elevation lookup,
etc.). CTDB acts only as a repository for this
information. This means that the format can be quite
flexible about what sorts of abstractions are stored.
Currently, CTDB has enumerations and instance data
defined for many abstract features, as shown in Figure
4. Of course, each feature also has a series of
locations which define its position, extents, or
content. This list can be easily extended to support
additional abstract feature classes.

Feature

&

„ li^•OI

—figwP fj

£ yj w*

1***VI *t

%
[in B SJ

p> E

Quad Nodes

Quad
Node

Canopy

Soil
Defrag-

mentation

Steep
Slope

Railroad

Pipeline

Political
Boundary

Label

Tactical
Sign

Off-read
Segment

Description Instance
Data

Indicates that this is an interior
quad node, and that the
children of this node are
represented elsewhere in the
list of abstract features.

Tree canopy footprint.

Bounding footprint of an area
with a uniform soil type, such
as a lake or a marsh.

Bounding footprint of an area
with steep slope.

Railroad lines.

Pipeline lines.

Political boundaries, such as
country borders, or city limits

Map labels, such as town
names.

Areas identified as tactically
dangerous.

Precomputed traffic networks
indicating desired routes which
do not follow physical linear
features.

Child node
storage
locations

Penetrability

Soil type
Layer number

Slope

Text

Topological
edge

Figure 4: Abstract Feature Enumerations

3.3 Terrain Search API

With the centralization of all terrain information
within a single software module, it became clear that
a uniform application programming interface (API)
was needed to support access to this data. The
interface paradigm chosen is one quite common in
this domain: iterative fetching. Pseudocode
demonstrating this paradigm is shown in Figure 5.

Global Search
Create a Search Space (Geographic Extents, Iteration Options)
Repeat for Each Type of Feature:

Repeat until No Features of a Type Remain in the Space:
Get the Next Feature of a Type (Search Space)
Process the Feature

Destroy the Search Space (Search Space)

Local Search
Create a Search Space (Geographic Extents, Iteration Options)
Repeat until No "Patches" Remain in the Space:

Get the Next Patch (Search Space)
Repeat for Each Type of Feature

Repeat until No Features of a Type Remain in the Patch:
Get the Next Feature of a Type (Patch)
Process the Feature

Destroy the Search Space (Search Space)

Figure 5: Iterative Fetching Paradigm

Figure 3: Quad tree of features

378

To access terrain features, an application creates a
search space which is defined to contain all the
features in a geographic area. The application can
then retrieve these one at a time from the space. As
the figure demonstrates, two search methods are
supported: global search and local search. Global
search is simpler to use, but fails to exploit the
spatial indexing of the system. In a local search, the
application is given all the features from the search
area, but they are returned in an order which is more
natural for the internal representation of the data.
Thus, an application which uses the local search
approach will typically execute faster than one which
uses the global approach.

4. Terrain Compilers

With ModSAF version 1.4 the mechanisms used to
"compile" CTDB databases from source formats have
been, solidified and documented. The ModSAF
distribution now includes the source code to build two
terrain compilers: an S1000 to CTDB compiler, and a
CTDB to CTDB recompiler (for converting between
CTDB formats, and correcting errors in existing
CTDB databases). Also included in the distribution
are software and documentation which can be used to
construct new terrain compilers for other source
formats.

The compiler is divided into two components: the
back end which builds the CTDB data structures and
the from end which assembles the required data

4.1 Compiler Back End

The compiler back end provides functions to assist in
the encoding of terrain data, so that it can be stored in
a CTDB format terrain database file. The compiler
back end does not change the content of the data given
to it - only the format. The back end does perform
the following data scrubbing, which does not change
the nature of the physical representation, but will
reduce storage space:

• Clipping of buildings, tree lines, and linear
features at patch boundaries.

• Elimination of vertical terrain or tree canopy
triangles.

• Elimination of intermediate 3D collinear vertices
in tree lines, and 2D collinear vertices in linear
features.

• Elimination of repeated vertices in features.
• "Defragmentation" of connected linear features

(identifying that two adjacent linear features have
identical attributes, and thus can be represented as
a single linear feature).

• "Fragmentation" of intersecting linear features
(except when the intersection occurs in the

bounds of a multi -level terrain polygon, where
linear features may actually cross without
intersecting).

• Elimination of duplicate linear segments.

The back end of the compiler also has functions
which can generate the network topology from the
physical and abstract linear features. This is required
because few source formats have a complete integrated
topology already computed. Note that this is an
error-prone process, however, and should be
considered a stop-gap measure as we wait for source
formats to provide the complete picture of the terrain.

4.2 Compiler Front Ends

The compiler front end is responsible for retrieving
terrain information from a source format, and
providing it to the back end for encoding. The front
end is responsible for execution flow (it is the
"main" program), and file I/O operations. The front
end performs the steps shown in Figure 6.

1. Open a file for output.
2. Fill in the file header.
3. Unpack the header into a CTDB structure (the

CTDB software archive provides a utility
function to do this).

4. Generate a list of physical features in memory.
This is done by making repeated calls to a feature
encoding function. Put the feature count into the
header.

5. Ask the compiler back end to derive a caching
scheme so that terrain can be efficiently accessed
at run time. Put the result into the header.

6. Generate the quad tree of abstract features.
Again, this is done by making repeated calls to a
set of feature encoding functions. Put the count
into the header.

7. Generate the lists of nodes and edges (the network
topology) in memory. This can be done by
calling a function in the back end which
regenerates topology. Put the sizes and counts
into the header.

8. Write the header to the output file.
9. Write the physical features to the output file.
10. Write the grid of elevations and feature-presence

flags to the output file.
11. Write the nodes and edges to the output file.
12. Write the abstract feature quad tree to the output

file.
13. Close the output file.

Figure 6: Steps Performed by the Front End

To simplify the task of writing front ends, the
ModSAF 1.4 software distribution includes a CTDB
to CTDB "recompiler". This program uses CTDB as

379

its input format, and follows all the steps of a
standard terrain compiler. Since all the data is already
formatted exactly as needed for encoding, the compiler
is very simple. It can be used as a template for
developing new compilers.

The CTDB format will likely be changed to use the
model reference approach for trees. In place of the
radius of each tree (which is currently stored as a 16
bit fixed point number), an index into a tree table will
be stored. Each entrv in the tree table will have:

5. Future Directions

CTDB is not a "dead" format. It continues to be
adapted as the complexity, size, and nature of the
environmental representation within DIS evolves.
The following sections describe some of the changes
which will likely be added to CTDB in the very near
future.

5.1 MRTDB Interoperability

The CGF component of the CCTT program will be
using a new terrain format called MRTDB. This
format is much like CTDB in functionality, but is
using new approaches in spatial indexing, model
storage, and surface representation. In order to
interoperate with CCTT CGFs and simulators, the
CTDB format will need to be upgraded to include
some of the more significant features of MRTDB.

5.1.1 Variable Diagonalization

The MRTDB format will support varying grid
diagonalization on a per-grid-cell basis, instead of just
per-database. This allows the terrain representation to
more closely match reality, with significantly less
overhead than using arbitrary triangles (often referred
to as "microterrain"). While CTDB could interoperate
with this terrain by using a TIN, performance will be
enhanced if CTDB is instead modified to also support
varying diagonalizations.

This will most likely be implemented by taking one
bit of the elevation data currently stored for each grid
cell, and instead using that bit to indicate which

diagonalization is being used (S or \Zl). This will
result the loss of either a bit of resolution or a bit of
representable range in elevations.

5.1.2 Tree Model References

Another innovation in the MRTDB format is the use
of model references. The idea is that rather than
storing all the information about an object at a
location, a reference to an object is stored. Each
unique object is placed in a library, and substitutions
of objects for references are made on the fly. While
this is not helpful for buildings in CTDB (which are
each uniquely placed on the terrain), the idea is quite
handy for trees, which have the potential for a lot of
commonality between instances.

Foliage radius
Trunk radius
Foliage opacity
sensors, etc.

for visual sensors, thermal

5.2 Tree Contrast Model

When CTDB was originally defined, the "right" way
to use trees in visibility calculations was unknown.
A guess was made that it was reasonable to use tree
transmittance to effectively decrease the size of an
object being viewed. It turns out that this is not the
best way to model loss of visibility due to trees.
Instead, the cumulative opacity of all trees intersected
should be returned separately from the apparent size of
the object, so that they may be used to determine loss
of visual contrast, a parameter of the Night Vision
Laboratory target detection model used in ModSAF
(Courtemanche et. al. 1994).

Also, the responsibility for knowing what tree
opacity values are will be transitioned from the
application to the terrain representation. The
application will merely specify a sensor type, and this
will be used to select a tree opacity for each tree
encountered. This will allow more variation in the
types of trees represented within CTDB.

5.3 Mobility Information

The representation used for mobility in CTDB is a
holdover from the SIMNET databases. Each polygon
is assigned a numeric "soil type" value which can be
used by an application to control platform mobility.
This approach is insufficient to represent the wide
variety of mobility types desired on modern databases.
Furthermore, there are no validated kinematics or
dynamics models available which can use this
generalized information.

Thus, CTDB is likely to be changed to support tables
of mobility characteristics similar to the information
available in DMA ITD data sets. The individual
polygons of the database will hold indices into these
tables. For backward compatibility to existing
simulations which use CTDB, one of the entries in
the mobility table should be a mapping to the
SIMNET constant most appropriate for the area.

380

5.4 Visibility on Multi-Level Terrain

As mentioned earlier, multi-level terrain can be
represented in CTDB, but not all the algorithms have
been updated to use this terrain correctly.
Specifically, the visibility calculations do not account
for blockage due to multi-level terrain (a platform
cannot hide under a bridge, for example). These
algorithms will be updated to support multi-level
terrain fully.

5.5 Larger Databases

The largest CTDB database compiled to date is 416
km by 416 km. Without modification, CTDB can
conceivably handle databases as large as 800 km on a
side. Beyond that size, local coordinates are
insufficient (UTM projection becomes invalid over
larger ranges, and the loss of accuracy in local tangent
coordinates makes them insufficient as well). Thus,
for larger areas, a tiling approach will be needed. The
terrain surface will be represented by tiles which each
have their own local coordinate system, and a
translation mechanism will convert between that and
a system of global coordinates.

5.6 Little-Endian Support

The current CTDB format and software assume
execution on a "big-endian" byte order platform (SGI,
Sun, Motorola, etc.). Some modification to the
software will be necessary to support "little-endian"
CPUs (DEC Alpha, Intel), but we anticipate making
these extensions in the near future. In preparation for
this change, the naming convention used for CTDB
databases has been changed, as shown in Figure 7.

Extension Byte Order

ctb Compact Terrain Big-Endian

ctl Compact Terrain Little-Endian

Figure 7: File Naming Convention

5.7 New Source Formats

Currently, CTDB compilers are available to convert
from S1000 (the format used for the large SIMNET
repository of databases), and from CTDB. A
compiler was also written to convert from the
interchange format used on the AGPG training
svstem mentioned earlier.

interoperability with manned simulators is not
required, it may be possible to convert directly from
DMA products such as DTED and ITD. We hope and
expect that ModSAF users will undertake conversion
efforts using the compilation tools provided with the
ModSAF software tools, and will share these with the
community at large.

6. Acknowledgments

This work is being supported in part by the USA
Army STRICOM ADST program under contract
number N61339-91-D-0001-0058, and in part by
LEADS, a Loral corporate development program.

7. References

Courtemanche, A. J., Monday, P., (1994). 'The
Incorporation of Validated Combat Models
into ModSAF', Proceedings of the Fourth
Conference on Computer Generated Forces
and Behavioral Representation, Institute for
Simulation and Training, University of
Central Florida.

Smith, J. E. (1994). LibCTDB: Compact Terrain
DataBase Library User Manual and Report,
Loral Advanced Distributed Simulation,
Cambridge, Massachusetts.

Stanzione, T., Smith, J. E., Brock, D. L., Mar, J.
M. F., Calder, R. B. (1993). "Terrain
Reasoning in the ODIN Semi-Automated
Forces System", Proceedings of the Third
Conference on Computer Generated Forces
and Behavioral Representation, Institute for
Simulation and Training, University of
Central Florida.

8. Author's Biography

Since graduating from Worcester Polytechnic Institute
with a Bachelor of Science in Computer Science in
1988, Mr. Smith has been working in the Semi-
Automated Forces group of Loral Advanced
Distributed Simulation (formerly BBN Advanced
Simulation). He is a Software Engineering Specialist
with Loral, responsible for the software architecture
of ModSAF. Mr. Smith is the chair of the Computer
Generated Forces working group of the DIS standards
workshop.

Efforts are currently underway to create compilers
which convert Evans & Sutherland and Multigen
formats to CTDB. Also, for applications where

381

Session 8a: Applications of CGF

Metzler, LB&JVI Associates Inc.
O'Keefe, U.S. Army, Natick RD&E Center

A Method to Quantify the Application Value of Intelligent Decision
Support Systems

Theodore Metzler and Joseph Kelly
LB&M Associates, Inc.

211 SW A Ave.
Lawton, OK 73501-4051

metzlert@lbm.com kellyj@lbm.com

1. Abstract

Published methodologies for evaluating
Intelligent Decision Support Systems (IDSSs)
have tended to neglect the important need to
quantify their organizational impacts—i.e., their
applied value. We present the outline of an
approach that directly addresses this need,
recommending use of the Distributed Interactive
Simulation (DIS) infrastructure, exploitation of
existing software resources that support
"intelligent objects" and application of a simple
Value Calculus for data analysis.

2. Introduction

Intelligent Decision Support Systems (IDSSs)
offer assistance to decision makers on a range of
application areas that includes business
management, medicine, and military operations.
The advanced technologies typically
incorporated in these systems (such as neural
networks, expert systems, Dempster-Shafer
evidential reasoning, fuzzy logic and the like)
tend to introduce substantial development costs.
Moreover, performance of the systems can have
important practical consequences. With business
applications, for example, significant sums of
money may be at stake. Medical applications, as
Wyatt and Spiegelhalter have observed (Wyatt
1990), present the IDSS also with ethical
responsibilities—a condition obviously shared by
military applications, in which the lives of our
soldiers may be the cost of deficient
performance. Hence, it is reasonable to take
seriously—even during early stages of research
and development—the task of quantifying the
value of introducing IDSSs to given
applications.

Unfortunately, progress with this task in the
Artificial Intelligence (AI) community has
generally left much to be desired. As Cohen and

Howe candidly acknowledge in AI Magazine,
"... we rarely publish performance evaluations
and, still less, evaluations of other research
stages" (Cohen 1988). Again, Wyatt and
Spiegelhalter point out that although "many
believe that medical expert systems have great
potential to improve health care, ... few of these
systems have been rigorously evaluated
..."(Wyatt 1990). Similarly, the authors of the
present paper recognize military leaders are still
waiting to see the presumed value of IDSSs
clearly quantified for battlefield applications.

This need for methodological advancement of
evaluation appears also to be more urgent in
some stages of the IDSS lifecycle than in others.
Laboratory testing of expert systems, for
example, has received relatively more attention,
producing a number of useful techniques such as
black-box / white-box testing; checks for the
consistency, completeness and redundancy of
rules; and measures for the accuracy and
robustness of their conclusions (Wyatt 1990,
Kirani 1992). Undoubtedly, these techniques
contribute to determining the overall worth of an
IDSS, for it certainly matters whether advice
produced by the system is timely, accurate,
reliable and so forth.

On the other hand, a conspicuously less
advanced stage of evaluation methodology is
noted in the following comment by Heathfield
and Wyatt (Heathfield 1993) regarding medical
IDSSs: "Many evaluation methodologies have
addressed specific aspects of system structure
and function, but have not addressed evaluation
of the impact of the system on users or patients."
Indeed, one may properly ask, "Given that this
system produces medical advice that is timely,
accurate and reliable, how much does its use in a
hospital setting actually improve health
services?" Again, the business executive may
wonder, "Given that this IDSS is technically

385

sound, how much will my corporation benefit
from its everyday employment in my
operations!" In a similar fashion, it is
reasonable for the military commander to
enquire, "Given that this IDSS on my howitzers
can produce advice that is timely, accurate,
reliable, etc., how much will its introduction to
my artillery battalion actually improve our
performance of particular missions!" In each
case, the most fully-developed evaluation
methods now available tend to fall silent when
this type of question is asked. If a name is
required for the missing piece of methodology,
perhaps we should say a general method is
needed to quantify the application value of
IDSSs.

A method to meet this need is described in this
paper. Although our proposed solution is
sufficiently generic to serve any of the kinds of
application areas previously mentioned, we shall
use the context of a specific U.S. Army Field
Artillery program to illustrate its details.

3. Problem Statement

The U.S. Army requires a new generation of
artillery vehicles, comprised of an improved
howitzer and its companion resupply vehicle
(collectively designated the Crusader system).
The initial operational concept (Preliminary
1994) specifies this system must "enhance the
capability of the Field Artillery to provide
supporting fires" for maneuver forces equipped
with modern armored vehicles. Provision of this
enhanced capability will require a Crusader
battalion to demonstrate a "significant increase"
in the ability to accomplish assigned missions
(such as deliver fires, communicate, move,
survive, resupply and maintain). One of the
difficult problems presented by this requirement
is that of determining whether—and,
quantitatively, to what degree-certain IDSS
capabilities on Crusader vehicles will improve
system performance. For example, Army
planners need to know—at early stages of
research and development-just how much better
the Crusader howitzer and the howitzer platoons
may be expected to accomplish "move" missions
if they are furnished with an automated route-
planning IDSS component. Questions of this
kind are particularly challenging at the present
time, since neither vehicle is available yet for
testing (a type of problem not uncommon in

other application areas as well). Accordingly,
our solutions (at least, in the near-term) must
often involve the use of simulation-and, in the
given case, appropriate simulation should
represent complete Crusader units in realistic
operational scenarios.

4. Solution - Part 1: Simulation Environment

Fortunately, many of the resources for solving
the problem we have described can be found in
the infrastructure of Distributed Interactive
Simulation (DIS). Evolving DIS architecture
and protocol standards are envisioned as
ultimately supporting a "wide spectrum of
applications" (The DIS Vision 1994),
recommending them as a potentially generic
environment to serve the needs of such areas as
business and medicine. Currently, they already
furnish a framework for exercises representing
the military operations of existing armor and
artillery units. With the provision of additional
crewstation simulators for Crusader vehicles—
and the provision of selected prototype IDSSs-
so-called "virtual" DIS exercises should be
possible in the future to support evaluation at the
level of individual soldier or section
performance. In the near-term, however, other
capabilities of the DIS infrastructure are likely to
be more cost-effective. A particularly attractive
option would be to exploit the existing
technology of Computer Generated Forces
(CGF) by adapting it to serve the problem we are
addressing.

5. Solution - Part 2: Intellieent Objects

Generically, the CGF entities generated for a
military DIS exercise (e.g., tanks, helicopters,
etc.) may be characterized as (artificially)
"intelligent objects." For example, a simulated
tank created with ModSAF, the modular CGF
software system developed by Loral
(Ceranowicz 1993), can automatically perform a
number of tasks (such as route planning or road
following) that would normally be performed by
a human operator. Moreover, the intelligent
behavior of this object can be changed to
simulate the effect of an IDSS upon task
execution. One of the methods for implementing
such changes in ModSAF is to alter the system
parameters in appropriate task models (Mohn
1994). The ModSAF software package also
permits human operators to direct the behavior

386

of CGF entities, selectively, offering an
alternative mechanism for simulating IDSS
effects upon vehicle behavior. That is to say, it
is technically feasible to modify and extend
existing ModSAF entities in ways that allow
them to simulate the battlefield behavior of
Crusader vehicles—with or without particular
types of IDSS equipment. Moreover, the
ModSAF environment includes extensive
automated logging of data concerning behavior
of CGF entities in a simulation exercise.

All of the basic resources, then, are available in
DIS and environments such as ModSAF to
support data collection for solution of the given
problem. A representative experiment, using
this approach, would involve comparative
analysis of data collected from two simulation
exercises (in the DIS environment and with
Crusader CGF units generated by suitably
adapted ModSAF components). Both exercises
would employ a common battlefield scenario and
Crusader units, but only one of them would
simulate performance of the units equipped with
a chosen IDSS component or system. The other
exercise would yield "baseline" data for
comparisons. A similar experimental procedure
(albeit, without use of CGF entities) has been
employed successfully in a simulation testbed to
validate knowledge-based sensor control
(Harrison 1994). Both DIS and the ModSAF
technology happen currently to be focused upon
military applications; however, the DIS protocol
standards, as well as the modular "intelligent
objects" of ModSAF, are clearly suitable
resources for extension to other domains, such as
business and medicine.

It may be objected that the proposed procedure is
"circular"; i.e., provision in the CGF entities of
simulated effects of IDSS equipment may appear
to "beg the question." The objection, however,
overlooks two important points. First, the
proposed procedure must be understood as part
of a larger, comprehensive evaluation process.
Initial estimates of IDSS effects upon individual
task performance for individual vehicles can
later be refined by more complete (and more
expensive) man-in-the-loop crewstation
simulations. Second, even when such
refinements become available, the proposed
experiments will still be needed to determine the
organizational impact of the (now more precise)
quantifications of task or vehicle-level effects.

As previously noted, the form of the question we
are addressing concerns the application value of
an IDSS. Given certain assumptions about the
accuracy, speed, etc., with which a particular
IDSS component on individual vehicles allows
specific tasks to be performed, we wish to
explore systematically the consequences of these
assumptions for units of such vehicles (e.g.,
Crusader platoons) executing higher-level
operations (e.g., "move" missions) under the
conditions of realistic battlefield scenarios.
Knowing the rule base in a given IDSS is
consistent may, indeed, be an important piece of
evaluative information, but it does not, ipso
facto, tell a Brigade or Division commander
what the applied value of the IDSS will be for
his Field Artillery battalion on the battlefield.
To determine the value quantitatively, data must
be collected in a realistic simulation of
battlefield operations, and then subjected to
analysis-a solution step we shall now address.
The "Value Calculus" we propose for this step is
based upon a simple utility model that has been
applied successfully to prior evaluation tasks by
one of the authors of this paper (McGee 1991).

6. Solution - Part 3: Value Calculus

Techniques for data analysis can be made
arbitrarily complex, but no amount of
mathematical labor can transform bad data into
useful information. Accordingly, we
acknowledge at once the importance of some
preparatory work that is assumed in all
applications of our Value Calculus.

First, it is necessary to identify primitive units
and operations for which appropriate measures
of performance can be defined. In the military
problem we have selected, individual vehicles
(e.g., Crusader howitzers or resupply vehicles)
would illustrate elementary units, and their
assigned tasks (e.g., plan route, follow route,
etc.) would illustrate elementary operations. An
example of appropriate measures of
performance, in this context, might concern the
merits of a route-planning task execution on an
individual Crusader vehicle, and be comprised of
specific measures such as the following:

=> speed with which the route is planned

387

=> degree to which the planned route avoids
exposure to enemy detection

=> overall length (i.e., directness) of the
planned route

We shall designate such measures "merit
factors," and note that their specification serves
to define certain data elements that must be
collected in each simulation exercise.
Knowledge of these required data elements, will,
in turn, play a role in construction of the
battlefield scenario to be used in the simulation
exercises; minimally, for example, the scenario
for the case we are considering will need to task
at least one Crusader vehicle with route
planning. Only when preparatory work of this
kind has been well performed can we expect the
Value Calculus--or any other analytical
technique, for that matter—to produce sound
quantification of IDSS application value.

For each merit factor associated with a particular
task and vehicle type, the Value Calculus maps
raw data (often, averages of collected data
elements) onto the real-valued interval [0,1] by
means of a specific satisfaction function,
producing a merit value for the given merit
factor. For example, the average time in which
an individual Crusader vehicle completes the
route planning task in the course of an exercise
may happen to be 3 minutes; in this case, an
appropriate satisfaction function takes 3 as its
argument and returns some value such as 0.75.
In the next step, the Value Calculus determines a
primitive Figure of Merit (FOM) for the given
vehicle and task by computing a weighted sum,
as shown in the following equation:

(1) FOM (V(vO, T(tj)) = I wn fn(x)
where «

V(Vj) = vehicle Vj (in this case, a specific
Crusader vehicle),
T(tj) = task tj (in this case, the route planning
task),
n = the number of merit factors associated
with execution of task tj by vehicle Vj,
fn = the appropriate satisfaction function for
merit factor n (and task tj on Crusader
vehicles),
x = the raw data (for example, average time
in which Crusader vehicle Vj executed task

tj).
and

wn = a weight assigned by the experimenter
to merit factor n, subject to the following

constraint: Sw„=l.
n

The weights, wn, provide the experimenter with a
useful capability to tailor the FOM for a given
task and vehicle type to reflect the relative
importance of its composite merit factors. For
example, military domain experts may judge the
speed with which a Crusader howitzer plans its
routes to be generally a more significant
consideration, in evaluating its execution of the
task, than the "directness" of the routes that it
plans.

Although computation of a set of FOMs (for
Crusader vehicles in an exercise, executing a
number of different tasks) is an important first
step, the principal utility of the Value Calculus is
realized when it combines these results to answer
questions such as the following:

For "move" missions, in the uniform
battlefield scenario, is the applied value of
adding an IDSS with route-planning capability
greater for platoons of Crusader howitzers than
for platoons of Crusader resupply vehicles?

To deliver quantitative answers for such
questions, the Value Calculus must support
computations over units composed of multiple
vehicles, and operations comprised of multiple
tasks. For this purpose, the following general
equation is applied, producing real-valued
measures of applied value, V, on the range [0,1]:

(2) V (UNIT, OPERATION) = l/(m+n) Z Z
w^ FOM (VtvJ/IXO) - n
where

m = number of tasks, tm that comprise
OPERATION,
n = number of vehicles, vn, that comprise
UNIT,
FOM (V(vB),T(tm)) is the primitive real-
valued Figure of Merit, on the range [0,1],
previously computed according to equation
(1) for vehicle vn executing task tm

and
Wm+n = weights assigned by the experimenter
to reflect relative impact of particular unit
operations upon outcome of the simulated
battle, subject to the following constraint:
Zwn
m+n

= 1.

388

It is worthy of notice that equation (2), in
application to the suggested experimental
question, would determine an average Figure of
Merit for all Crusader howitzers or resupply
vehicles in a platoon and for all tasks required to
execute the "move" mission. This allows the
applied value, V, to capture possible secondary
effects that may result-in a realistic battlefield
context—from the IDSS assistance with route
planning. For example, it is conceivable that
more efficiently planned routes may enhance
performance of the route following task that is
also a part of the "move" mission. Recognizing
that interdependencies of this sort are by no
means uncommon in the real operations of
complex organizations (including hospitals and
business corporations), we propose an evaluative
methodology that does not "throw away"
pertinent information about secondary effects.

Our provision of weights for the terms in
equations (1) and (2) also permits use of
information about certain causal relations that
affect assessment of applied value. In the case of
simulated military exercises, for example, After
Action Review (AAR) typically reveals critical
operations by units (or even key tasks performed
by individual vehicles) that trigger chains of
cause and effect with important consequences for
the outcome of the battle. Relatively more
weight must be assigned to such "key" events if
we expect to assess accurately the applied value
of proposed IDSSs. Used in conjunction with
appropriate software resources for capturing data
about such events from the simulation network,
our Value Calculus provides a simple
mechanism for including them in computation of
applied value. This provision, moreover, should
be equally useful for analyzing data from
business or medical simulations. Indeed, the
operation of nearly any complex system can be
expected to involve "critical" events in which
even relatively small advantages from IDSSs
may play an important causal role in determining
overall success or failure of the system.

7. Conclusion

Published methodologies for evaluating IDSS
technology have tended to neglect the important
need to measure its organizational impacts—i.e.,
to quantify its applied'value. We have presented
the outline of an approach that directly addresses

this need. The three major components of our
solution recommend use of the DIS simulation
infrastructure, exploitation of existing software
resources that support "intelligent objects" and
application of a simple Value Calculus for data
analysis.

8. References

Ceranowicz, Andy; Ladd, Carol; Smith, Joshua;
and Vrablik, Robert. ModSAF
SOFTWARE ARCHITECTURE DESIGN
AND OVERVIEW DOCUMENT. Orlando,
FL: Loral Systems Company, 1993.

Cohen, Paul R, and Howe, Adele E. "How
Evaluation Guides AI Research." AI
Magazine 9 (Winter 1988): 35-42.

Harrison, Patrick R. and Harrison, Ann P.
"Validating an Embedded Intelligent Sensor
Control System." IEEE Expert (June 1994):
49-53.

Heatbiield, H. A., and Wyatt, J. "Philosophies
for the Design and Development of Clinical
Decision-Support Systems." Methods of
Information in Medicine 32 ('1993'): 1-8.

Kirani, Shekhar; Zualkernan, I. A.; and Tsai, W.
T. "Comparative Evaluation of Expert
System Testing Methods." Technical
Report, University of Minnesota, Computer
Science Department, April 28, 1992.

McGee, J.; Metzler, T.; and Paesano, S. Pre-
planned Product Improvement Study:
Advanced Command & Control Evaluation.
Groton, CT: General Dynamics - Electric
Boat Division, June 28, 1991.

Mohn, Howard Lee. "Implementation of a
Tactical Mission Planner for Command and
Control of Computer Generated Forces in
ModSAF." Monterey, CA: Naval
Postgraduate School, Master's Thesis,
September 1994.

Preliminary Operational Concept for Advanced
Field Artillery System (AFAS) and Future
Armored Resupply Vehicle (FARV). United
States Army Field Artillery School,
(DRAFT) 3 March, 1994.

The DIS Vision: A Map to the Future of
Distributed Simulation. Version 1. Prepared
by DIS Steering Committee. Orlando, FL:
Institute for Simulation & Training, May,
1994.

389

Wyatt, J., and Spiegelhalter, D. "Evaluating
medical expert systems: what to test and
how?" Medical Informatics 15 (1990): 205-
217.

9. Authors' Biographies

Theodore Metzler is a Systems Engineer at
LB&M Associates, Inc. Mr. Metzler has an
M.S. degree in Computer and Communication
Sciences and a Ph.D. in Philosophy. His
research interests are in the areas of Hybrid
Artificial Intelligence and Artificial Neural
Networks.

Joseph Kelly is a Systems Analyst at LB&M
Associates, Inc. His educational background is
in General Business, Computer Systems
Analysis and Material Acquisition Management.
His research interests are in the areas of
Logistics, Human Factors, Graphical User
Interfaces, Artificial Intelligence/Expert
Systems.

390

Supporting Materiel R&D Using Linked Engineering,
Constructive, and Virtual Modeling and Simulation

Tools

John A. O'Keefe IV
US Army Natick Research, Development and Engineering Center

Natick, MA 01760-5015
jokeefe@natick-emh2.army.mil

Robert Mclntyre
Simulation Technologies, Inc.
111 W. First Street, Suite 748

Dayton, OH 45402
rmcintyr@natick-emh2.army.mil

1. Abstract

In a world of ever decreasing funding and accelerated
development programs designers of protective
equipment can no longer depend solely on the
traditional methods of trial and error. Recently,
developers of individual ballistic protective clothing
have been required to reexamine such issues as non-
homogeneous construction, increased body coverage,
new materials, and rapidly evolving threats.

Traditional engineering models used in the design
and evaluation of individual ballistic protective
clothing compare the maximum possible serious and
lethal wounds that would be expected for a given
design worn by a standing man exposed to a
fragmentation munition. The models are useful in
making system comparisons for potential injuries.
They do not provide a result that can be easily
translated or related to an operational setting.

Wargames such as Janus and CASTFOREM provide
a means to model such operationally relevant issues
as loss exchange ratios and time to engagement in a
controlled operational environment. They do not,
however, provide a means to examine human factors
issues such as fatigue, heat stress, the effects of
environment on human movement speed, or a means
to develop probability of detection, probability of hit,
probability of kill from engineering descriptions of
proposed clothing and equipment.

Virtual simulations such as SIMNET, SAFDI, CCTT,
and MODSAF provide an opportunity to insert the
human into the loop minimizing much of the
traditional administrative overhead associated with
traditional wargames. They also provide extremely
vivid visualization tools in the form of computer
image generators (CIGs) and Stealth Workstations
that, if properly used, allow decision makers to view

proposed equipment operating in a realistic tactical
setting before it is even prototyped.

During the last year, the 21st Century Land Warrior
Integrated Technology Program (21CLW ITP) and
the Generation II Soldier Advanced Technology
Demonstration (GEN II ATD) have been examining
concepts for inclusion in their technology
demonstrations. One of the issues that both 21CLW
ITP and GEN II ATD are seeking to illustrate is how
to use technology to make dismounted individuals
more effective while increasing their survivability.
In preparation for the concept development phase of
GEN II a large number of material combination and
area of coverages had to be rapidly examined to
identify three ballistic fragmentation protective
ensembles that weighted 13, 14, and 15 lbs. while
minimizing the expected levels of casualties, heat
stress and fatigue. The required analysis was
accomplished using a linkage of engineering casualty
assessment models, linear programming tools,
performance models, and DIS simulations.

The analysis identified the three proposed systems,
studied their impacts on heat stress fatigue and
survival and provided visualization of the effects of
the three systems plus two existing baseline systems
over a period of six weeks. The resulting systems
have become the basis for an Body Armor Advanced
Warfighting Experiment (AWE). The analysis has
been extended to include the effects of individual
small arms.

The analysis has won the FY94 Army Materiel
Command Group Systems Analysis Award and the
performance model, the Integrated Unit Simulation
System (IUSS), used in the analysis was used during
the 16th Interservice/Industry Training Systems and
Education Conference (I/ITSEC) to provide
individual computer generated dismounted infantry.

391

2. Introduction

US Army research and development programs are
being required to use a full spectrum of modeling and
simulation (M&S) tools to support design and
investment decisions. These M&S tools include
engineering models, casualty assessment models,
performance simulations, wargame simulations and
Distributed Interactive Simulations (DIS). While
many of these M&S tools have existed for quite some
time, they have not been previously linked in
coherent support of a materiel development program.
Recent US Army guidance from the Assistant of the
Army for Research Development and Acquisition
requires that all Army Advanced Technology
Demonstrations (ATDs) must address the use of DIS
in published Simulation Support Plans (SSPs). The
use of DIS to support materiel development decisions
is still very much in its infancy. A prototype analysis
using a full spectrum of M&S tools including DIS
was accomplished for the 21st Century Land Warrior
Integrated Technology Program (21CLWITP) during
March-April 1994. This prototype analysis examined
the potential of using M&S tools to optimize
individual ballistic fragmentation protective
ensembles. The M&S paradigm developed for this
analysis has become the cornerstone of the 21CLW
ITP SSP and the SSP for a number of other ATDs.

3. Background

Basic and applied Department of Army and
Department of Defense research and development
programs are today required to shorten the time to
develop solutions to battlefield deficiencies. At the
same time these programs have significantly reduced
budgets and constantly increasing program oversight
and review requirements. Modeling and simulation
have the potential to aid these materiel development
programs meet the requirement to shorten the
research and development schedule while providing
the data necessary to answer the requirements of the
many program review and oversight requirements.

Recently the US Army Soldier Systems Command -
Natick Research, Development and Engineering
Center (Natick) used a suite of modeling and
simulation tools to address the needs of Soldier
System materiel developers. Over a period of six
weeks, modeling and simulation tools were used to
examine over 75 different body armor configurations

to identify an optimal system that could be
constructed for user testing. The optimal system
needed to minimize the serious and lethal wounds
from bursting munitions, minimize the effect on heat
stress and fatigue, and not adversely affect the ability
of the individual and small unit to accomplish a
military mission across a wide range of
environmental conditions. In addition, data was
required to support the defense of the contribution of
the proposed optimal armor system to individual
survivability and mission accomplishment.

4. Approach

The required analysis was accomplished by linking
widely accepted engineering level ballistic casualty
assessment models with a human and small unit
performance analytic simulation. The human and
small unit performance model was operated in a
Distributed Interactive Simulation (DIS) synthetic
environment to provide visualization and a larger
force than normally possible in a single model. The
human and small unit performance analytic
simulation generated aggregate data inputs for use in
constructive wargame simulations. Each set of
variables were executed repeatedly until sufficient
data had been produced to support the statistical
definition of the distribution of the results.

The approach used during this analysis was to:

• Model body armor alternatives (by body zone
and by material)

• Select the four most promising alternatives
based upon the modeling

• Model the four selected alternatives to
produce lethal areas

• Calculate the system weights for each of the
selected alternatives

• Simulate the tactical mission using the
Integrated Unit Simulation System (IUSS)

• Develop inputs for Janus from the results of
the IUSS simulations

The models and simulations that were used in this
analysis were: the ballistic casualty reduction model
CASRED and the Integrated Unit Simulation System
(IUSS) Version 1.0. In addition, a linear program
was developed to select a manageable number of
proposed armor configurations from the large number
modeled in CASRED for simulation in IUSS. Figure
1 illustrates the analytic flow used in this study.

392

ANALYSIS M&S FLOW

Area of Coverage
Material Characteristics
Munition Challenge

Communication
Capabilities
Fire Support

Mission
Environment
Terrain
Individual Loads &
Capabilities

Squad Mission
Accomplishment
Soldier Heat Stress
Movement Speed
Probability Of Kill

Probability of
- Serious Wounds
- Lethal Wounds

Lethal Areas

V
Initial Screening

of Possible
Armor System
Designs

Loss
Exchange

Ratio (LER)

Body
Armor
Trade

Off
Analysis

Figure 1. Analytical Flow

5. Discussion

Development of individual body armor has
traditionally required extensive testing of materials
followed by the building and testing of prototype
systems. The testing of potential materials for use in
proposed systems has required detailed testing using
small panels of the material which are impacted with
a representative set of ballistic fragment simulation
projectiles. This testing generally costs between
$25,000 and $75,000 for each proposed material and
can require up to six months to accomplish. The
exact cost and time of the testing is related to the
availability of material, Government test facilities
and the required levels of detail for the
characterization of the ballistic protective properties
of the material.

Following the ballistic panel testing, promising
materials are fabricated into protective ensembles

that undergo human use testing and further ballistic
testing. Each of these prototype armor ensembles can
cost as much as $5,000 and require six weeks to
build. Engineering modeling using the CASRED,
HELMETRAN, and ARMORTRAN ballistic
casualty assessment models must be performed to
provid a basis for comparison to existing protective
equipment prior to type classification of a proposed
body armor item.1 This evaluation -prototype -
evaluation & modeling cycle can be very time
consuming and expensive, resulting in long periods
between type classification of new protective
ensembles for the soldier in the field.

The evolving worldwide political environment and
US foreign policy, plus the need to rapidly insert new
technologies into the field necessitates a reevaluation
of how Soldier System equipment is developed and
fielded. The Land Warrior (LW), 21 st Century Land
Warrior (21 CLW), and Generation II Soldier (GEN
II) programs have further emphasized the need to

393

CoawUilalcMd

Figure 2 Operational Scenario Vignette

shorten the traditional Soldier System research and
development cycle. Therefore, during March and
April 1994, a consortium lead by the Modeling and
Simulation Branch, Advanced System Concepts
Directorate, Natick undertook the task of developing
a new paradigm to shorten the time required to design
Soldier System equipment using linked engineering,
performance, DIS, and constructive models. This
effort2 used as input to the CASRED model the
following information:

• Three armor materials,
• Five possible percentages of coverage for

five zones of the body
• Two helmet collar combinations
• Seven threat munitions

CASRED is designed to calculate the serious and
lethal wounds for each body region that statistically
would occur for a given munition/protective system
combination. These body region results are then
summed for the entire body. The results for both the
individual zones and the total body are calculated by
the model. During the Analysis of Ballistic
Protection Concepts Quantifying Operational
Impacts and Design Criteria, the individual body
zone results for each possible armor
material/munition combination and the associated
material weights were input to a linear program. This
linear program identified the armor system
configuration for any given system weight which
provided the lowest possible expected lethal wounds
while minimizing the expect serious wounds.

Optimized ballistic protective systems were
developed for system weights between 6 and 25
pounds. In addition, a set of design criteria based
upon the results of the casualty reduction modeling
and the linear program optimization were developed.

Based upon user input, three optimal systems were
selected for simulation in an operational setting using
IUSS and Distributed Interactive Simulation (DIS)
tools. These systems were a 13 lbs., 14 lbs. and 15
lbs. armor system. In addition, the current Personal
Armor System Ground Troops (PASGT) vest and
helmet, plus systems composed of 100% coverage of
all five body regions with each of the three armor
materials were simulated in the same operational
setting. Figure 2. graphically depicts the operational
scenario.

For each pairing of alternative system, threat bursting
munition, munition circular error probability (CEP),
temperature and humidity, 250 iterations of the IUSS
simulation were executed. During the IUSS
simulations environmental conditions ranging
between 10°C to 30°C, 25% to 95% humidity, and
either night or clear day sky were examined. The
results of these iterations were then statistically
analyzed to determine the mean, median, and mode
for heat stress casualties, serious wounds, lethal
wounds, mission completion time, and movement
speeds. The simulation results were also subjected to
T test and Student T analysis.

394

DIS tools were used to provide visualization and data
logging of the simulation exercises. The virtual
reality visualization was used to perform rapid sanity
checking of the tactics, techniques and procedures
(TTP) used for the simulated dismounted infantry in
IUSS. The data logs were used to provide replay of
the simulation exercises. These replays allowed
operational users and analysts to visually review all
aspects of the simulation exercises and rapidly
identify those event which warranted further detailed
investigation.

6. Limitations

The casualty assessment models used to develop the
expected casualty data for IUSS, Janus, and
CASTFOREM contain a number of limitations.
These include that the soldiers are assumed to remain
in a standing position during the entire artillery attack
and they simplify their representation of the human
body by dividing it in to six cylindrical parts to which
was assigned a uniform statistical probability of
serious or lethal wounds based upon a residual
kinetic energy for the various presented fragments.
The available computational capabilities necessitated
these model simplifications when the casualty model
was originally developed. Newer techniques are now
available to support more detailed calculation of
ballistic casualty for a dynamic array of body
postures during a ballistic attack.

7. Study Results

The results of 250 IUSS simulation runs for each
body armor alternative (PASGT Helmet, PASGT
Vest plus Helmet, 13 lb. Optimized System, 14 lb.
Optimized System, and 15 lb. Optimized System)
showed that ballistic protection and soldier
dispersion/tactical employment must be balanced.

While the CASRED results show the maximum
possible lethal and serious wounds if soldiers were
located at every possible location around the
detonation of the munition, IUSS illustrates that less
dynamic casualty results will be observed when
soldiers are dispersed and maintain a minimum of 35
meters spacing.

The simulation results are influenced by the
capabilities of the CASRED model. Currently, only
casualties for standing soldiers are calculated. In a
battlefield setting, soldiers will tend to initially go to
ground while they identify where the attack is
coming from. This would require the casualty
calculations, first, to be calculated for standing and
then prone soldiers.

The Distributed Interactive Simulation (DIS) version
of IUSS was used in conjunction with a Photo
Realistic DIS Stealth to illustrate the findings of the
analysis. These tools allow the rapid visualization of
the effects on movement and survivability that each
of the simulated alternatives produced.

The following observations were made during the
analysis:

• A 25% increase in protective equipment
system weight is a 5% increase in the total
combat load

• 5% increase does not create an operationally
significant increase in the impact of total load
on marching speed or mission completion
times

• However, this increase may produce a
significant increase in ballistic survivability

8. Future Plans

Since the initial analysis was completed additional
analyses have been conducted to examine the effects
of current and proposed body armor on expected
small arms casualties. The technique has been
expanded to simulate larger units of dismounted
infantry using IUSS simulations linked using a DIS
network and DIS communication protocols.

The operational mission has also been expanded to
include a larger friendly force engaging an opposing
infantry force. This scenario will be progressively
expanded to include more and more of the total
combined arms team.

Simulation of additional operational missions are
planned. These planned missions include Military
Operations in Built-up Areas (MOBA) and
Operations Other Than War (OOTW).

9. Potential Uses

While conducting the Analysis of Ballistic Protection
Concepts Quantifying Operational Impacts and
Design Criteria the potential power of DIS
visualization tools to help decision makers rapidly
review the application of hypothetical equipment was
demonstrated. This was accomplished by describing
the proposed equipment's characteristics in IUSS and
transmitting the individual activities of each soldier
across a DIS network using Entity State Protocol
Data Units (PDUs). These Entity State PDUs were
then used to animate a "Photo Realistic" Stealth
Workstation that displayed the activities of the
soldiers. This linkage of extremely high fidelity

395

computer simulation of soldier performance and
survivability with the stealth workstation provided a
rapid visualization of proposed equipment,
procedures and tactics helping to debug and
understand the outcomes of the simulation exercises.
The remainder of the synthetic environment could be
populated using Modular Semi-Automated Forces
(MODSAF), other computer generated forces and/or
manned simulators.

Another area with rich potential is the use of data
logger tapes from previous training and mission
rehearsal simulation exercises to establish a scenario
setting into which proposed technologies can be
inserted. This would free the technologist from the
potential pitfalls associated with the population of a
realistic synthetic environment with systems and
forces that are unfamiliar to them. Instead, the
technologist would be free to concentrate on the
simulation of their proposed technology, depending
on the previously capture synthetic environment to
describe the other forces and systems operating in the
synthetic environment.

10. Conclusions

This analysis has shown how engineering and
integrated performance models and simulations can
be used to develop inputs usable for Combat Models
such as Janus and CASTFOREM. It provides a
methodology for optimization of material
configurations which resulted in significant increases
in protection over current equipment. The 15 lb.
optimum system provides the maximum reduction of
serious and lethal wounds across the fragmentation
munitions with the least negative impact on mobility,
heat stress, and mission accomplishment. The
usefulness of DIS tools to support analytic efforts
was demonstrated during this analysis.

The analysis also highlighted the need to improve
engineering and CASRED methodologies to address
the effects of: different soldier positions; vital organ
protective strategies; small arms and flechettes. It
also showed that the expected ballistic fragmentation
casualties could be reduced by more than 30% when
a structured system approach was used.

11. References

'O'Keefe, John A. IV, "Casualty Reduction
Modeling" , Natick TR/89-00 , Natick, MA,

20'Keefe, John A. IV, et. al., "Analysis of Ballistic
Protection Concepts Quantifying Operational
Impacts and Design Criteria", Natick, MA, 26
March 1994

12. Author's Biographies

John A. O'Keefe IV, a graduate of Norwich
University (BA 1975), American Technological
University (MA 1981), the U.S. Army Infantry
Officer Basic Course, the U.S. Army Infantry Mortar
Platoon Course, The U.S. Army Ordnance Officer
Advanced Course, the U.S. Army Combined Arms
Service Staff School, the U.S. Army Inspector
General Course, the U.S. Army Command and
General Staff Course, and the U.S. Army Materiel
Acquisition Management Course, and a disabled
Regular Army Major, is a senior operations research
analyst with the Advanced Concepts Division,
Advanced Systems Concepts Directorate, U.S. Army
Natick Research, Development and Engineering
Center. He is the project officer in charge of the
development of the Integrated Unit Simulation
System (IUSS), Dismounted Infantry Support System
(DISS), and the Soldier Protective Equipment
Computer Aided Design (SPE CAD) system and is
the Chairman of the Modeling Working Group of the
U.S. Army Soldier System Technology Base
Executive Steering Committee. He has been active in
the application of modeling and simulation
technologies to support materiel development since
1988.

Robert Mclntyre, III, Vice-President, Operations
for Simulation Technologies, Inc. He is the
Simulation Technologies, Inc. Program Manager for
IUSS. Mr Mclntyre is a graduate of the University
of Alabama, Birmingham, where he studied Bio-
Physics and Management Science.

396

Session 8b: Terrain Modeling II

Stanzione, TASC
Watkins, SAIC

Integrated Computer Generated Forces Terrain Database

Thomas Stanzione
Forrest Chamberlain

Dr. Alan Evans
Cedric Buettner

TASC
55 Walkers Brook Drive

Reading, MA 01867
tstanzione@tasc.com

flchamberlain @ tasc .com

SAIC
486 Totten Pond Rd.
Waltham, MA 02154
aevans@bos.saic.com

buettner@bos.saic.com

1. Abstract

The Integrated Computer Generated Forces Terrain
Database (ICTDB) project, being developed jointly by
TASC and SAIC, is part of the ARPA/TEC
Advanced Distributed Simulation Synthetic
Environments program. The main goal of this project
is to develop an integrated terrain representation that
will satisfy the Computer Generated Forces (CGF)
environmental reasoning requirements for ARPA's
Synthetic Theater of War (STOW) program. This
representation will address many of the shortcomings
of current CGF terrain databases, as well as include a
richer set of terrain features and attributes for advanced
terrain reasoning. As with previous CGF terrain
databases, this database will contain terrain features as
spatially organized objects. However, irregular terrain
grids, multiple elevation features such as tunnels and
bridges, and feature aggregation for higher echelon
terrain reasoning will all be supported. This
representation will allow for real time updates in order
to handle dynamic terrain and weather effects. The
representation will provide CGF terrain support for
the other Synthetic Environment programs. A few
terrain databases will be generated in this
representation and demonstrated using ModSAF.

2. Requirements Analysis

The first phase of this project, which was completed
in March, consisted of a requirements analysis, data
source investigation, and preliminary design. In the
second phase, an incremental development is
underway to provide the components of the
representation to support the more critical STOW
requirements. A series of engineering demonstrations
is scheduled at TEC through the summer and fall of
1995 to test these changes within the ModSAF

environment. This paper focuses on the results of the
work performed in the first phase of this program.

The requirements analysis task started with a literature
review of current and some future computer generated
forces, command forces, and constructive simulations
in order to determine the terrain content,
representation, analysis, and reasoning requirements
of a wide variety of these systems. From this review,
we developed a Requirements Survey Form that was
used as a basis for our program interviews. We chose
a number of specific programs to interview as part of
this requirements analysis in order represent a broad
spectrum of CGF terrain users and programs:

ModSAF
CCTT
CFOR
STOW
War Breaker/JPSD
Eagle

The STOW program requirements analysis was a very
important part of this task. There are many terrain
implications in the STOW requirements that this
project needs to address. STOW will be a Joint
Services training program, which implies that a
variable resolution terrain representation is needed to
accommodate individual combatants, ground entities,
and high flying aircraft. This also implies that an
ocean and littoral region representation is needed.
STOW requires the integration of virtual, live, and
constructive simulations, which implies that the
terrain databases used in the simulations need to be
correlated to the real world as well as each other.
STOW terrain databases will be much larger than
previous near-ground databases, on the order of
hundreds of a kilometer on a side, so a global
coordinate system that allows for compact terrain
representations is necessary. STOW will also require
the simulation of tens of thousands of entities, so all

399

terrain services must be efficient. STOW requires that
the simulation environment must be dynamic, which
requires that terrain databases must be able to be
updated in real-time for battle damage, combat
engineering effects, and weather effects.

We also performed a review of terrain analysis
procedures in order to insure the terrain representation
will provide the appropriate terrain data. These
analyses included mobility and trafficability models,
cover and concealment determinations, and
identification of landing zones. A draft Requirements
Analysis document (Stanzione & Evans 1994) and
draft Application Programmer's Interface document
(Evans et. al. 1994) were generated and distributed to
a number of organizations for review:

• ARPA (PM Synthetic Environments, PM
Synthetic Forces)
TEC
STRICOM
Loral
Mitre
MIT Lincoln Labs
NPS
SRS
TRAC, Ft. Leavenworth

From the results of these analyses and reviews, a
common set of requirements for the ICTDB
representation was determined and is shown in Table
1. The requirements were grouped into two categories
in order to distinguish those requirements that are
already provided by current CGF terrain databases and
required to maintain current functionality, and those
requirements that are currently not supported to the
level necessary for STOW.

A data source definition task was also performed in
phase one of this project. It focused on populating the
ICTDB representation from integrated terrain datasets
consisting of Triangulated Irregular Networks (TINs)
for elevation data and feature data from operational
data sources, such as Interim Terrain Data (ITD). The
combined capabilities of ARC/INFO and the SI000
toolkit were examined as the primary terrain database
generation tools, with particular focus given to the
SI000 Application Programmer's Interface. A Data
Source Definition document (Buettner, et. al. 1995)
was generated as part of this task.

Table 1:
Requirements for ICTDB

Basic Requirements Advanced Features

ANSI C (with ADA interface) Global coordinates w/ local cartesian

Vehicle placement Storage of integrated TINed surfaces

Elevation lookup Multiple LOD elevation data
Soil type and slope queries Dynamic updates

Negative elevation values Non-homogenous aggregate features

Multiple elevations at location Expandable features and attributes
Line-of-sight and area intervisibility USCS soil types and other mobility attributes
Spatially organized Mobility corridor networks
Road and river networks Building interiors
General feature type queries Precipitation and temperature effects
Contour line generation Sea state and sea floor representation

Expandability of database during generation

Partial database loading
Check pointing terrain

Multiple terrain views

400

3. Representation Design

The ICTDB representation design task consisted of
developing an overall design for the integrated terrain
information, as well as designs for the individual
components. The ICTDB representation consists of
three integrated components: a local terrain
component for elevation and trafficability
information, a global terrain component for terrain
reasoning information, and a feature component for
specific feature and attribute information. A global
coordinate system designed to support near-ground
exercises on any scale was also defined. Figure 1
shows an overview of this design.

3.1 Coordinate System

As part of the ICTDB design phase, a white paper on
the use of coordinate systems by CGF simulations
has been written (Evans & Stanzione, 1995). This
paper spells out the reasons for using a global
coordinate system which differs somewhat from what
is currently in use in most CGF applications.

Simulations participating in a DIS exercise are
constrained to use a common public representation of
coordinates in the virtual world, as specified by the

DIS protocol. This public representation is, of
course, Geocentric Cartesian Coordinates (GCC) with
coordinate values represented using 64-bit double
precision vectors. A good summary of the rationale
behind using GCC for DIS can be found in the BBN
white paper (Burchfiel & Smyth, 1990). GCC is
based on a right-handed Cartesian system with its
origin at the Earth's center, the X-axis passing
through the Equator at the Prime Meridian, the Y-axis
passing through the Equator at 90 degrees east, and
the Z-axis passing through the North Pole. This
representation has obvious advantages. GCC is a real-
world system. Put simply, straight lines in GCC
represent straight lines in the real world, unlike
systems which involve coordinate projections.
Furthermore, GCC is inherently extensible to
exercise regions of arbitrary size. The GCC
representation is however, very unwieldy for internal
use by a simulation application, since the magnitude
of the numbers required to represent vectors near the
surface of the Earth is quite large. Furthermore, the
interpretation of GCC coordinates at points on or near
the Earth's surface is not intuitive, since GCC is not
a local frame of reference. This is clearly an obstacle
to the developers of code implementing behaviors,
platform kinematics, sensors, weapons systems, and
so on within a CGF application.

/ \
Page / Patch

Figure 1: ICTDB Overall Design

401

Current CGF systems which simulate ground entities
usually use some form of local Cartesian coordinate
system with position specified as an offset vector
from a fixed origin, typically the southwest corner of
the database. The terrain data are derived from a
representation that is a planar projection of some
form, most often a UTM representation. Indeed, prior
to the adoption of DIS as an IEEE standard, the
SIMNET protocol specified a public representation on
the network of coordinates as X and Y offsets in
meters from an origin at the southwest corner of the
database in a suitable UTM grid zone.

There are two fundamental problems with coordinate
systems based on UTM representations. First is the
difficulty of scaling to large exercise areas. In order to
participate in an exercise spanning multiple UTM
grid zones, a CGF application would be forced to
manage transformations from one local (projected)
frame of reference to another. These transformations
would need to take place quickly and be transparent to
the behavioral and platform models. A second
problem is encountered in the inherent simulation
anomalies that result from the fact that "straight"
lines parameterized in such systems actually represent
curves in the real world, owing to the transformations
employed in planar projection. In past exercises
spanning UTM grid zones, database coordinates have
simply been extended beyond grid zones specifically
to avoid transformation difficulties. This leads to even
greater projection anomalies. Of course, DIS requires
that coordinates be represented in GCC when being
transmitted on the network. Therefore, efficiency
concerns suggest that future CGF systems will
represent locations in the virtual world using an
internal representation easily converted to GCC.
Because developers tend naturally to write code which
is based on linear parametric equations, a Cartesian
coordinate representation is also suggested to avoid
the anomalies due to projection.

The following are the fundamental simulation
requirements which affect the choice of coordinate
representation in a CGF system:

• Scaleability - As simulations grow larger in
scale, it is crucial that an internal
representation support arbitrarily large
exercise areas, perhaps even the entire surface
of the Earth.

• Compactness - Storage must make efficient
use of space. This requirement is, of course,

closely related to the scaleability
requirement.

• Faithfulness - The coordinate representation
should be free of anomalies such as curvature
effects.

• Ease of translation to and from GCC - For
efficiency reasons, an internal coordinate
representation should support fast conversion
both to and from GCC, since this translation
must occur for every location vector which
is read from or written to the DIS network.

• Naturality - The coordinates values returned
to code simulating platforms and command
elements must be natural in the sense that
they must have an intuitive relationship to
the real world for the benefit of developers of
this code.

The ICTDB project has chosen a coordinate
representation which addresses all of the requirements
listed above. Based on our survey of CGF systems,
we believe that ICTDB is building the first
simulation subsystem for storing and accessing
digital topographic data that, in fact, meets all five
requirements identified above: scaleability,
compactness, faithfulness, ease of translation to and
from GCC, and naturality.

In elaborating a design for ICTDB, we have chosen a
hierarchical database organization, which in principle
can be scaled to accommodate exercises of arbitrary
size. At the highest level, the surface of the Earth is
subdivided into cells, one degree in latitude by one
degree in longitude. A cell is thus approximately 100
kilometers by 100 kilometers square. This
terminology is borrowed from the War Breaker World
Reference Model (Brockway & Weiblen, 1994).
Within a cell, ICTDB data are further organized into
pages, which are in turn subdivided into patches.
Patch size can vary from database to database,
depending on feature density. The page is really a
logical unit used to fetch and store data. The patch is
the fundamental unit of organization for both features
and TIN data. While storage limitations will certainly
be a factor in building large databases, ICTDB has
met the scaleability requirement by providing the
ability to support large databases that can span
multiple cells.

Within each cell, a local Cartesian frame of reference
is defined. The origin is at the center of the cell, with

402

the X axis pointing east, the Y axis pointing north,
so the X-Y plane is tangent to the Earth's surface at
the origin of the local frame of reference, and the Z
axis is an outward normal vector to the Earth's
surface. The requirement of naturality is met by using
Cartesian frames locally. It must be noted however,
that the ICTDB cell coordinates do not furnish a Z
vector which is normal to the Earth's surface, except
at the origin of each cell frame. There is a deflection
from the vertical which increases toward the edge of
each cell, up to a maximum value of about 0.7
degrees. While not significant for ground vehicles, it
will be necessary for the ICTDB API to provide an
inward normal, if requested, at a given point (X,Y) in
each cell frame. This will be especially important for
long range ballistics calculations.

In order to convert GCC coordinates to the ICTDB
representation, the cell number is first calculated by a
geodetic transformation. This yields an pair of indices
which reference the cell data. Each cell has an
associated offset vector and 3D rotation matrix.
Vectors in the cartesian coordinate frame in the cell
are simply GCC vectors, with the offset vector
subtracted, that are then multiplied by the cell
rotation matrix. This means that the transformation
from GCC to cell coordinates is linear. Of course, the
inverse transformation from cell coordinates to GCC
is also linear. This meets the fourth requirement that
coordinates be easily transformed to and from GCC.
Furthermore, since the transformations are linear, the
ICTDB global coordinate system meets the
faithfulness requirement, unlike projected coordinate
systems.

We note that a similar local Cartesian coordinate
system has been in use for some time in some
airborne radar systems. An analysis of some of the
tolerances involved in the paper (Gadeken, 1976)
suggests a larger cell size, say five degrees by five
degrees, may be appropriate. The smaller cell size in
ICTDB is actually tied to the compactness
requirement. We have elected to store elevation values
for TIN data in a compact fixed point format similar
to the ModSAF CTDB implementation (Smith,
1994). Use of the larger cells would require floating
point elevation data, hence would use more storage.
In addition, we estimate that the overall storage
requirements for such larger cells would be on the
order of magnitude of a hundred megabytes instead of
four or five megabytes, which is unacceptable for
system performance. These storage considerations,
together with the much larger gravitational deflection

in large cells, led to our choice of a relatively small
cell size.

Most calls to the ICTDB API will require that a
complete set of coordinates in this global reference
system be passed. That means that the cell, or a
pointer to the cell, along with the X and Y in the cell
cartesian coordinate frame are needed to specify a
location. We considered defining a current cell with
all calls referencing the current cell by default. While
this would make porting ICTDB into existing
applications a little easier, it would blur the interface
and introduce ambiguity.

Since the ICTDB API defines coordinates as a type
which includes not just the X,Y and Z in the cell
frame, but also a reference to the cell itself, ICTDB
will need to support operations on these coordinates,
that is a vector algebra for cell coordinates. For
example, an application often needs to calculate an
offset vector from a platform location A to another
entity location B, for an intervisibility calculation,
say. If A and B are in different cells, the application
cannot simply subtract vectors. The ICTDB library
will have to provide these vector operators, to assist
in cell transitions.

3.2 Local Representation

The ICTDB local representation has been designed to
contain all elevation data and physical feature data.
The physical feature data are divided into two parts:
geometric data and attribute data. Geometric feature
data are maintained within the local representation,
while the attribute data, not required for time critical
functions, is accessed by referencing the feature
component of the representation. The rational for
maintaining geometric data locally is to minimize
data access time, thereby minimizing the terrain
representations effect on time critical routines (i.e.,
elevation lookup and intervisibility).

The fundamental assumptions behind ICTDB's local
representation is that terrain surfaces will be primarily
integrated TINs. The representation will maintain the
minimum set of data required for terrain services, so
data access is efficient for time critical routines
(elevation lookup and intervisibility). Although we
expect most future databases to be generated from
integrated TINs, our design will not preclude the use
of gridded terrain. We are addressing the merits of two
approaches. If the database cell is completely gridded,
then we may use the ModSAF representation to

403

handle the cell. If the database is partially TTNned,
then the non-TINned grid posts could be converted
into two triangles and accessed using the point
location algorithm mentioned below. By changing
grids into TINs, there would be a slight increase in
database size (duplication of stored vertices) and a
small performance penalty (extra level of indirection).
For the TINed portion of a database, the elevation data
will be stored as terrain elements in the local
representation. A terrain element is either a triangle (3
vertices) or a polygon (4 vertices). Each terrain
element will contain all vertices, edges (implicit or
explicit), soil information, and adjacency/topological
information (neighbor to my edge). The
representation also includes new data structures called
virtual grids. These virtual grids enable a direct
mapping from a point on the database to the most
probable terrain element. By adding adjacency
information, in addition to the virtual grid,
neighboring terrain elements may be interrogated if
the most probable terrain element does not contain
the database point. Also, the intervisibility engine
traverses through terrain elements, only looking at
those elements that have a direct effect on
intervisibility. In order to convert TINs to our
prototype representation we used ModSAFs
algorithms that produce the terrain element edges and
vertices in patch relative coordinates. The data were
augmented with adjacency information and then stored
into the final format. The new representation requires
some extra storage, but the storage cost is offset by
the recycling of most of the grid post data. However,
we do plan to keep the features present mask
capability of the grid posts. Our current data show an
increase in database size by 25-30 percent, but efforts
are being made to decrease the size without impacting
performance.

Currently the design and profiling effort has focused
on improving the performance of two terrain services
routines (intervisibility and elevation lookup) in a
TTNned database. To improve performance
substantially, we need direct access to the terrain
element which corresponds to a given position on the
database. The point location algorithm we
implemented was derived from an algorithm developed
for use during the TINing process (Scarlatos, 1993).
The approach overlays a TTNned region (i.e., patch)
with a grid, which we call a virtual grid. The number
of rows and columns in the virtual grid is based on
the square root of the density of the terrain elements
(triangle) rounded to the nearest integer. For example
(see Figure 2.), if there were 10 terrain elements in a
region then the virtual grid would be a 3x3 virtual

grid. Next, one terrain element is mapped to a virtual
grid, if the area of intersection between the terrain
element and the virtual grid is a maximum of all
terrain element intersections (see shaded areas within
Figure 2.). This ensures that the point location
algorithm will first interrogate the most probable
terrain element associated with a virtual grid. If the
point is not within the mapped terrain element, the
adjacent terrain elements are interrogated using the
topological information about neighbors
accompanying each terrain element. If the point is not
within the neighboring terrain elements, then their
neighbors are interrogated. If the point is not within
these neighbors, then all remaining terrain elements
will be interrogated. A mask containing the index of
all terrain elements interrogated will be maintained to
prevent duplicate interrogation of a terrain element.
We are investigating additional optimizations on this
approach.

I
yi

"!^—-

V> l| r\J
^^JL \

S\ /I

Jr i r i

Figure 2: Virtual Grids

Current CGF terrain representations are highly
optimized, and since our goal is to improve
performance when using TINs, we needed to
prototype and profile our local representation designs
to get a feel for the potential storage and performance
costs. We used ModSAF 1.3 libctdb as the timing
and storage baseline. To facilitate the profiling effort
the following steps were taken.

1. Reformatted a TTNned CTDB database (local
representation) into a prototype ICTDB format.

404

"vwwf*"

2. Generated a new terrain service algorithm that
exploited the new representation.

3. Generated a profiling routine that incrementally
stepped over a database, determined the average
terrain element density over the interrogated
region, interrogated a set of random points, and
then returned the average time required to
interrogate each point.

4. Ran profiling tests on the same machine (SGI
Indy R4400 with 96 MBytes RAM) and collected
data using either the ICTDB or CTDB terrain
representation and the applicable terrain service
routine.

We expect the time required for elevation lookup to
be "approximately" constant for the average case,
since we have a direct mapping from a position to a
virtual grid which in turn maps to the most probable
terrain element. The "approximately" arises if the
point does not map directly to the terrain element,
requiring that the adjacent triangles be interrogated.
Further prototyping will address effects of variable
and decoupled (feature and terrain) patch size,
summary data (i.e., maximum or minimum elevation
data), terrain compactness, and conversion of grids to
terrain elements in partially TTNned cells.

3.3 Global Representation

The ICTDB global representation stores references to
every feature in the database. References are organized
to support queries at varying levels of detail
requesting lists of features found in a specified area.
Levels of detail are designed to meet the needs of
units of varying echelon.

Past terrain representations for computer generated
forces, such as the ModSAF Quadtree database, have
organized features by location to support rapid
retrieval of features found in an area. However, these
representations generally retrieve a list consisting of
every feature in the given area, presenting more detail
than is required by higher-order echelons. The goal of
the ICTDB global representation is to provide the
capability to filter these lists to generate only features
of potential interest to echelons of varying size.

The primary distinguishing characteristic determining
whether a given feature is of interest to a unit of a
given echelon level is its size: larger units are less
likely to be concerned about smaller features. In
addition, real-world commanders of larger units are
likely to mentally group many smaller features, such

as individual buildings, into a few larger features,
such as city blocks or towns. Thus, it is important to
support multiple level of detail queries via two
mechanisms: selecting features based on their size,
and grouping features together to form new features.
To support this second mechanism, we define an
aggregate feature to be an abstraction representing a
group of two or more features, which may themselves
be aggregate features. We believe that the basic query
supported by the global representation should be of
the form:

Return all features in area A larger than size S. If
possible, do not return multiple references to any
feature at multiple levels of aggregation.

Building on past work in the field, we chose a
quadtree as the basic data structure for the global
representation. This provides the desired spatial
organization. As stated above, the novelty of our
approach stems from our treatment of multiple levels
of detail queries. In the ICTDB global representation,
each level of the quadtree implements a distinct level
of detail. Any given node should be able to rapidly
generate a list of all features that overlap it and are at
least as large as the node itself. If both a feature and
an aggregate containing that feature meet these
criteria, the aggregate should be removed from the
list, since it can be accessed through its association
with the feature. This could easily be accomplished
by storing a list of all such features at each node.
However, doing so would result in extensive
replication of references to large features.

To avoid undue repetition of references, a scheme was
developed whereby two classes of reference are
distinguished: explicit references and implicit
references. Explicit references are pointers to features
contained in a node. Implicit references are a means
for a node to include features explicitly referenced at
another node, thus limiting replication. Ideally,
references should be made according to the following
two rules:

1. Each feature is explicitly referenced at the
level of the quadtree whose nodes are closest
to it in side dimension. At that level, each
node overlapping the feature contains a
pointer to the feature.

2. Each feature is implicitly referenced at each
node, N, descended from those nodes at which
the feature is explicitly referenced after
meeting the following criteria:

405

a. N overlaps the feature.
b. If the feature is an aggregate feature, N

does not overlap any component of the
feature at or above N's level in the
quadtree.

Figure 3 shows an example of this referencing
scheme. In this example, the large square represents
level 0 of the quadtree, its four sub-squares are at level
1, and the four smallest squares in the upper-right
corner are at level 2. The dotted line is the outline of
an aggregate feature whose components are the black
circles. Due to their respective sizes, the aggregate
feature will be explicitly referenced at level 0, and the
components will be explicitly referenced at level 2.
Because the components are not referenced until level
2, all four level 1 nodes will implicitly reference the
aggregate feature. Finally, at level 2 those nodes that
overlap one or more components will explicitly
reference those components and not reference the
aggregate at all, while those that do not overlap any
components will implicitly reference the aggregate
feature.

With this scheme, there remains some duplication of
explicit feature references. However, since features are
of roughly the same size as nodes, each feature is
unlikely to be explicitly referenced more than four
times. Note that a combination of rule 1 and rule 2a

would be adequate if there were no aggregate features;
rule 2b ensures that each feature is accessed at only
one level of aggregation.

While implementing rule 1 is straightforward, exactly
implementing rule 2 would require some form of flag
for each implicit reference, again causing waste of
storage. We have chosen instead to approximate rule
2 through two mechanisms with very modest storage
requirements. First, each node of the quadtree
maintains a bitmask specifying at which of its
ancestors it implicitly references at least one feature.
And second, the list of features explicitly referenced at
each node is sorted based on the maximum depth in
the quadtree at which they should be implicitly
referenced below the node. Using these structures,
each node generates, at run time, the list of features it
should reference in the following manner:

• Reference all features explicitly pointed to at
the node itself.

• For each ancestor, if the bit mask specifies
that at least one feature should be implicitly
referenced, iterate through all features that
can be implicitly referenced down to at least
the level of the node. Any such features that
overlap the node should be added to the list.

Aggregate Feature:

Aggregate explicitly referenced
at level 0

Components explicitly referenced
at level 2

Aggregate is implicitly referenced
at level 1

Aggregate implicitly referenced
at this node

Aggregate not referenced at this
node

Figure 3: Aggregate Feature

406

This technique ensures that every node references
every feature it should according to rules 1 and 2
above. In addition, nodes may reference some features
at more than one level of aggregation. This is deemed
an acceptable cost for the savings in space since it
involves only the generation of redundant
information.

Code implementing this representation has been
written and tested. Performance analysis is still under
way, but execution time is expected to be comparable
to existing systems for simple queries, and superior
for higher-echelon queries.

3.4 Other Design Considerations

Other factors were considered in the design process of
the ICTDB representation. These include memory
management, extensibility, topology, dynamic
effects, and terrain views. Each of these topics is
addressed in this section.

It is essential to limit the quantity of terrain data read
by a CGF application to avoid consuming too much
of the system's memory resources. This is balanced
against the need to have all the data within an area of
interest resident in memory to avoid slow disk
accesses. In a simulation environment that supports
dynamic terrain, this problem is compounded, since
an application cannot be expected to predict with
certainty which areas of a database will need to be
modified as an exercise unfolds. Clearly, it is not
possible to read an entire terrain database, since future
databases may be many hundreds of kilometers on a
side.

ICTDB has elected to allow the application to put a
hard limit on the area of interest for terrain data. The
API will provide a function ictdb_set_aoi() that
specifies the database extents for an exercise. Outside
this area of interest, updates to the database will be
ignored. Initially, the area of interest will be specified
using an application parameter file, or from the
application's command interface, or both. Eventually,
it would be desirable to build a GUI, perhaps with
cartographic raster images, to provide the human user
a convenient way to specify the area of interest.

Inside the geographic area of interest of an exercise,
ICTDB will provide an additional function, say
ictdb_set_extents(), that specifies the extents within
which terrain data will actually be read when the
exercise is started. All of the cell data necessary to

cover the extents will be read at initialization time,
with new cells (within the limits of the area of
interest) read as required at run time. These additional
reads will not require explicit application calls.
ICTDB will maintain a list of cells within the area of
interest which have been read, and a read of a new cell
will be implicitly triggered by database references
outside the extents.

ICTDB supports a rich set of feature types and
attributes. In order to make the implementation
flexible enough to support adding feature types and
attributes at run time without a dramatic impact on
performance, feature types and attributes have been
divided into two categories. First, there are the core
feature types and core attributes for an ICTDB
database. Core feature types and attributes are defined
via a compiler data file when an ICTDB database is
built. Each core feature type has an associated set of
attributes taken from the global set of defined core
attributes. The core attributes of a core feature type
can be inferred from the feature type name. Similarly,
the data type of a core attribute can be inferred from
the attribute name. In addition to core feature types
and attributes, ICTDB supports extended feature types
and attributes. The attributes of an extended feature
type and the data types of extended attributes are
explicitly tagged. Extended feature types and attributes
may be defined at run time, but access is slower and
storage is less efficient.

ICTDB stores topological information about the
terrain in several ways. 2-1/2D information about
network features such as roads and rivers is
topological. The internal representation is an abstract
graph to allow non-planar networks of roads. ICTDB
stores a level three, or full planar topology for TIN
data. This means that complete edge adjacency
information is stored, although each edge is shared by
only two triangles. This mean of course, that three
dimensional features which are not simply-connected,
such as a tunnel, are not supported in the local
representation. (In topology, a surface is said to be
simply-connected if closed curves drawn on a surface
can be shrunk to a point on the surface. A sphere is
simply-connected; a torus is not.) In order to support
a full 3D topology, features can be placed in ICTDB
which have arbitrarily complex geometry, fully
supporting multiple elevations with route planning
implications. Such features are expected to be rare.

Because full topology is only supported in feature
data, all changes to the topology of an ICTDB
database must be made by adding or deleting features,

407

or by modifying existing features. Feature addition
requires update to all three database components:
local, global and feature data. When a feature is added,
all terrain elements in the TIN data which intersect
the footprint of the feature are marked. This is
necessary since a feature's geometry overrides the
geometry of the terrain element(s) on which it is
planted. This is required since changes to the
underlying TIN are not supported at run time, and
features can be added to the database that negate the
validity of terrain elements (holes, trenches, etc.)
Feature modification means changing the attributes of
an existing feature. One frequent case of this will be
modifications to the geometry of a feature. If model
references or feature references are in use, then a new
model or attribute set will need to be generated in the
model/attribute library. Feature deletion must be
supported to implement retraction in a view (see
below). However, deletion from the default ground
truth view is not supported.

In ICTDB, no history of updates in maintained. The
database represents ground truth as a simulation
unfolds. We have not yet addressed the issue of
coherence in the presence of multiple assertions and
retractions. Since ICTDB does not support retractions
in the ground truth view, as explained below, this is
not expected to be a problem.

ICTDB does not provide derived data, or features, such
as mobility corridors. The issue of assertions with
side effects on derived features is being addressed in
the CFOR Environmental Utilities (MITRE, 1995).
Our eventual goal is to fully integrate ICTDB with
the CFOR infrastructure and reuse the software
components which support assertions (Layer 1) and
mobility corridor analysis (Layer 2B).

One of the more challenging desiderata emerging from
the ICTDB requirements phase was the realization
that a CGF terrain subsystem ought to support
multiple database views. Views are a standard
software layer in commercial database management
products. Furthermore, in a CGF application, it is
natural to want planning or situational awareness code
to be able to make assertions about the terrain
environment which are notional or temporary, or
which have been derived from intelligence
information. As an example, it should be possible to
reason about "What would be the tactical significance
of a bridge placed at location P?" or "How would
route planning change if a road segment was added
between points A and B?" Since ICTDB supports
dynamic terrain, assertions can be made via the same

interface function which adds dynamic features to the
database. A retraction, that is undoing an assertion,
can than be implemented as feature deletion. This is
the only case we could see in fact, where actual
feature deletion would occur.

The default view in ICTDB is ground truth. No
attempt is made to save the static view of the database
at exercise initialization. A small number of
additional views can be created by user request. Each
feature has a bitmask specifying view membership on
a per-feature basis. In addition, a table mapping
feature types to view masks will support the
membership of feature types in a view. Thus, all
features of a given type can be added to, or deleted
from, a user-defined view of the database.

4. Conclusion

We have completed the requirements analysis and
design phases of this project, and are in the process of
implementing key components and integrating them
into ModSAF. We have started with the local
representation and global coordinate system. We plan
to demonstrate these enhancements to ModSAF in the
summer of 1995. The global component and dynamic
aspects of the ICTDB representation will be added
later in 1995.

5. Acknowledgment

This work is being done as part of contract DACA76-
94-C-002 from the Advanced Research Projects
Agency (ARPA) and the US Army Topographic
Engineering Center (TEC). The authors wish to thank
George Lukes of ARPA and Kevin Mullane of TEC
for their interest, encouragement, and guidance. We
would also like to thank all of the organizations and
individuals that have helped with the requirements
surveys and analyses.

6. References

Brockway, D., Weiblen, M. (1994), "World Reference
Model", Working Document prepared for ARPA
War Breaker Program, Release 2 Draft 12.

Buettner, C, Chamberlain, F., Drutman, C, Evans,
A., Stanzione, T. (1995), "Integrated CGF
Terrain Database Data Source Definition
Document", TASC.

Burchfiel, J., Smyth, S., (1990), "Use of Global
Coordinates in the SIMNET Protocol", White
Paper ASD-90-10, BBN Systems and

408

Technologies Corporation, Advanced Simulation
Division.

Evans, A., Stanzione, T., Chamberlain, F. (1994),
"Integrated CGF Terrain Database Application
Programmer's Interface Specification, First
Draft", TASC.

Evans, A., Stanzione, T., (1995), "Coordinate
Representations for CGF Systems", White Paper
submitted to ARPA.

Gadeken, L., (1976), "Cartesian Coordinate
Transformations in the Elliptical and Spherical
Approximations to the Shape of the Earth",
MRS3 Working Paper No. 17, PAR
Corporation.

MITRE, (1995), CFOR Environmental Utilities API.
Scarlatos, L. (1993), "Spatial Data Representations

for Rapid Visualization and Analysis", Doctoral
Dissertation, State University of New York at
Stony Brook.

Smith, J. (1994), "Compact Terrain Data Base
Library User Manual and Report", LORAL ADS.

Stanzione, T., Evans, A. (1994), "Integrated CGF
Terrain Database Requirements Analysis, Second
Draft", TASC.

Mathematics from Michigan State University as well
as an M.S. in Computer Science from New York
University.

Cedric Buettner is a Software Engineer at SAIC.
Prior to joining SAIC, he worked on Raytheon's
Patriot Fire Unit software developing prototype
tactical system enhancements. He is a graduate of
Gordon College in Wenham, MA with a BS in
Physics and Mathematics.

Forrest Chamberlain is a Member of the
Technical Staff in the Signal and Image Technology
Division at TASC. Forrest has been involved in
Computer Generated Forces work since joining
TASC in 1994. Prior to that, he was a critical
contributor to the hardware and software design of a
"wearable" computer system at Carnegie Mellon
University, where he earned his Masters Degree in
Electrical and Computer Engineering.

7. Authors' Biographies

Thomas Stanzione is the manager of the
Synthetic Environment Section at TASC. He is the
Program Manager for the ICTDB project and a key
contributor to TASC's other Synthetic Environment
programs, including Weather in DIS (WINDS) and
Multi-Echelon CFOR with ForeSight (MECFS).
Prior to joining TASC, Mr. Stanzione served as the
deputy director of the Semi-Automated Forces group
at Loral's Advanced Simulation Division (LADS).
Mr. Stanzione has a Masters of Science degree in
Photographic Science from the Rochester Institute of
Technology.

Alan B. Evans is a Senior Engineer in SAIC's
Technology Research Group (TRG). Dr. Evans is the
Principle Investigator for the SimTool IR&D effort
and the technical lead on the ICTDB Terrain Database
effort sponsored under the ARPA Synthetic
Environments Program. His areas of interest include
simulation architecture and performance analysis,
terrain representation and reasoning, and tactics and
behavioral representation. Before joining SAIC, Dr.
Evans served with Bolt, Beranek and Newman's
Advanced Simulation Division (ASD), and
subsequently, Loral's Advanced Simulation Division
(LADS). Dr. Evans holds an M.S. and a Ph.D. in

409

Terrain Capabilities in CCTT

Jon Watkins
Science Applications International Corporation

3045 Technology Parkway
Orlando, FL 32826-3299

watkins@greatwall.cctt.com

1. Abstract

The Close Combat Tactical Trainer is a complex train-
ing system composed of manned modules, user
workstations, CGF simulators, and a number of sup-
port stations for system initialization and after action
review. Each of these components has different re-
quirements for terrain representation and use, includ-
ing visualization of the simulated environment for
trainee immersion, viewing of the terrain on a two di-
mensional display, basic terrain query routines, and
terrain reasoning. In CCTT, these terrain functions are
supported by three representations referred to as the
visual, plan view, and terrain reasoning databases.

This paper focuses on the Environment CSC, which
provides terrain query and terrain reasoning function-
ality by operating on the terrain reasoning database.
Areas of interest include design issues, use by different
CCTT components, database representation, and data-
base correlation.

2. Overview

2.1 CCTT Project Summary

The Close Combat Tactical Trainer (CCTT) is the first
system in the Combined Arms Tactical Trainer
(CATT) family of training systems. CCTT will utilize
the Distributed Interactive Simulation (DIS) network
protocol to provide a virtual environment for training
of armor and mechanized infantry personnel. CCTT
is composed of a variety of manned modules, an Op-
erations Center (OC), Semi-Automated Forces (SAF),
and several support workstations. The manned mod-
ules are cabin simulations with virtual out-the-win-
dow views for training on vehicles such as the Ml A2,
M2A2, and M113. SAF and OC provide emulated ve-
hicles to populate the battlefield; they share a common
architecture referred to as Computer Generated Forces
(CGF). SAF provides a wide range of both BLUFOR
(friendly) and OPFOR (enemy) entities. OC provides
BLUFOR entities to support battalion staff training
and to add depth to the battlefield with entities which
provide resupply, maintenance, combat engineering,
and fire support capabilities. Both SAF and OC are
controlled via user interfaces provided on the SAF

Workstations and OC Workstations, respectively. The
actual simulation of the SAF and OC entities is pro-
vided by separate CGF processors dedicated to entity
simulation.

There are three correlated databases used throughout
the CCTT system. The visual database is used for all
out—the—window visual displays. The plan view dis-
play (PVD) database is heavily optimized to meet re-
sponse time and display requirements for a two dimen-
sional display on user interfaces in a format similar to
standard maps. The "Model Reference" terrain data-
base (or MRTDB) is used for all other terrain opera-
tions. The Environment CSC operates on MRTDB
(among other objects) to provide terrain query and ter-
rain reasoning capabilities. While the Environment
CSC was originally designed to support terrain reason-
ing operations on CGF systems, other CCTT compo-
nents use it as well.

2.2 Scope of Paper

CCTT is utilizing spiral development to mitigate risk
and provide incremental drops before contract
completion. Simple terrain operations were provided
in two of the early system spirals in which SAF partici-
pated (Builds 2 and 4). As this paper is written, Build
5 integration efforts are underway. Because there are
two more builds following Build 5, and because the re-
quirements analysis efforts for these last two builds
have yet to begin, the issues and resolutions described
in this paper may be subject to change. The intent of
this paper is merely to inform the community of cur-
rent work, thereby providing insight into one aspect of
a large and potentially influential system in the simula-
tion and training community. There will continue to
be changes and improvements to the terrain capabili-
ties, terrain representation, and requirements as sys-
tem level issues are resolved and spiral development
moves forward. Thus, while the final CCTT terrain
implementation may or may not include all ideas pres-
ented herein, the discussions still serve to provide
practical examples of how CCTT's ambitious require-
ments are encouraging new approaches to terrain func-
tionality and representations.

411

23 Paper Topics

Section 3 will provide a brief description of the Envi-
ronment CSC from a functional standpoint. The vary-
ing needs of the Environment CSC's disparate users
are discussed in Section 4. The following sections then
focus on MRTDB, including how the database is gen-
erated, representation issues, and a brief overview of
the database design.

3. Environment CSC Capabilities

The Environment CSC is the software component re-
sponsible for providing terrain querying (e.g. height of
terrain) and terrain reasoning (e.g. obstacle avoidance)
functionality. One design objective for the Environ-
ment CSC is to provide both "sight" and basic "inter-
pretation" of what is seen. This is analogous to the
man-in-the-4oop looking out the manned modules'
vision blocks and observing an undulation in the ter-
rain skin which he determines is a good cover location
(without determining, for example, when to go to the
cover position). The Environment CSC, then, encap-
sulates basic environment data (such as the terrain da-
tabase representation) by providing "value added"
routines to callers.

Functionality developed through Build 5 includes
height of/above terrain, collision detection, munition
impact detection, line of sight, road routing, static ob-
stacle avoidance, area intervisibility, and covered
positions based upon terrain skin. Additional func-
tionality to be provided in Builds 6 & 7 includes cross
country routing, refinements to obstacle avoidance,
cover and concealment based upon features, and
weather. These and other future capabilities are dis-
cussed from the perspective of a "snapshot" of the lat-
est available requirements and preliminary design.

While many of these capabilities will sound familiar
to those who have examined other CGF systems, a
number of new twists have been provided by CCTT's
databases and requirements. As a result, significant
new functionality is provided as discussed throughout
this paper. A few sample cases are briefly discussed
here.

3.1 Sample Issue: Dynamic Terrain

Some terrain features (referred to as prepositioned ob-
jects), will change their geometry at run time. This re-
quires a mechanism for uniquely identifying features
and a means to efficiently alter their geometries. In
addition, Combat Engineering emplacements (re-
ferred to as relocatable objects) may be created before
and during the exercise for survivability, counter-mo-
bility, and mobility operations. Relocatable objects

may supplement the geometry of terrain skin, as well
as create new obstacles where none existed before.
Dynamic terrain issues for CGF and DIS representa-
tion are discussed in (Campbell 1994) and (Crowley
1994).

One interesting issue presently being addressed in
CCTT is how to handle "omniscience" relative to ter-
rain state. If a bridge is destroyed by an OPFOR entity,
BLUFOR entities should not automatically alter their
long distance road routes if there was no mechanism
by which they could have known that the bridge was
destroyed. However, other OPFOR entities that could
have communicated with the entities who destroyed
the bridge should respond appropriately. Finally,
when BLUFOR entities first "sight" the destroyed
bridge, they should be able to inform other friendly en-
tities of the bridge's destruction.

Design discussions on this issue are underway, but the
Environment CSC presently will provide routines
which will allow a caller to create and modify a private
data type representing an "awareness state". Because
it is up to the Environment CSC's consumers to create
and retain these structures, support is provided for
variable levels of "awareness" resolution. CCTT will
probably use a simple "force" case wherein each side
is a collective conscience such that what any OPFOR
entity knows about the terrain state is known by all oth-
er OPFOR entities. If future needs require a unique
awareness for each company, platoon, or even entity,
this is already supported by the Environment CSC,
since any number of awareness state data structures
may be created and operated on.

Observe that only a subset of Environment CSC capa-
bilities are impacted by the awareness issue. Query
operations are inherently based on reality rather than
perception (e.g. line of sight is blocked by a log crib
regardless of who is aware of the log crib's presence).
Long distance routing is the main piece of functional-
ity which must accept a terrain "state" from the caller
in order to determine what is known. Obstacle avoid-
ance is impacted, but only for minefields because oth-
er obstacles such as log cribs and destroyed bridges can
be seen when an entity gets close enough to plan a local
path. Thus, obstacle avoidance can accept the caller's
perceived state and avoid only those minefields which
the CGF entity is aware of, while correctly blundering
into the others.

3.2 Sample Issue: Overpasses and Bridges

Bi-level terrain will be supported in CCTT for over-
passes and bridges. Support will extend beyond recog-
nition of multiple valid Z values at a given x,y loca-

412

tion. Bridge supports running vertically from the
ground to the suspended span are recognized by colli-
sion detection, munition impact detection, line of
sight, obstacle avoidance, etc. Suspended spans will
be recognized by these same algorithms as well as by
cover and concealment, providing overhead cover for
entities. For destructible bridges, munition impact
detection will uniquely identify the bridge so the deto-
nation PDU can name the bridge explicitly. Destroyed
bridges will result in the entire suspended span being
removed. System design decisions require us to con-
sider the suspended roadway "sides" to be a collision
volume so that entities cannot maneuver off the sus-
pended parts of a bridge or overpass.

3.3 Sample Issue: Penetrable Forests

Original system specifications required tree densities
of approximately 150 trees per square kilometer as a
representation of forested areas. Customer desires and
innovative applications of image generator (IG) re-
sources permitted much higher fidelity representa-
tions of forests than the aforementioned density of
trees or SEMNET's familiar "canopies". Evans & Su-
therland was able to provide incredible tree densities
by using "fading" boundaries (on forest sides and
tops) that provided the illusion of many trees while ac-
tually only displaying relatively few at a time. Unfor-
tunately, the tree density was so high as to overwhelm
any practical CGF representation. In addition, repre-
sentation of the fading boundaries would have tied the
Environment CSC's capabilities to a specific IG tech-
nique for load management, something we have
sought to avoid.

A number of system tradeoffs were discussed, includ-
ing use of an abstract "fog" to represent the interior
sections of forests in CGF, serious reductions in tree
densities, and "bands" of variable density. More back-
ground on options pursued is provided by (Braudaway
1995). The final solution agreed upon provides a rela-
tively high tree density (peaking at a density of about
2200 trees per square kilometer), that will nonetheless
be fully correlated in MRTDB. The IG will dynami-
cally introduce forest boundaries at 1 km in support of
load management, but demonstrations indicated that
there is no need for CGF to represent these artificial
boundaries because the tree densities at forest edges
are so high that the transition from trees to boundary
is difficult to perceive at a range of 1 km. Thus CGF
represents forests "correctly" (i.e. as many individual
trees), without dealing with IG techniques such as
boundaries or canopies. This provides extensibility
because as IG capabilities improve over time, the

boundary range or tree densities may increase, but this
will not require changes to CGF's representation.

As part of the give and take of system design, the pene-
trable forest does include some "stretch" for MRTDB
and Environment CSC algorithms. The tree densities
are sufficiently high so as to threaten available caching
space due to potential spikes in storage requirements
in certain regions, and would also sharply increase the
total size of the database. Even with a tightly space-
optimized representation, storage of the 10 million in-
dependent tree instances that are expected to appear in
CCTT's forested Primary #1 database could consume
160 megabytes.

One possible approach to resolving this issue is the use
of "aggregate models", wherein groups of trees whose
2D configuration is used repeatedly throughout the
visual database are stored once and referenced many
times with different offsets. We have investigated
ideas that will maintain the low cost 2D filtering that
is at the heart of efficient feature accesses for terrain
operations. However, 2D placement of each tree sur-
viving these initial filters will require 2 integer addi-
tions, and Z placement will require several floating
point multiplications and additions. This cost may be
acceptable for the forest interiors where expensive line
of sight operations (which will require full 3D place-
ment of trees) will typically be truncated at very short
ranges due to the high tree densities Other algorithms
either don't need a full 3D representation (e.g. obstacle
avoidance) or can use 2D filtering to limit full tree
placement (e.g. collision detection). We plan to ex-
periment with aggregate models in Build 6.

4. Non-CGF Requirements

Originally, MRTDB and the Environment CSC were
designed for use on CGF simulators (which use most
CSC capabilities) and SAF workstations (area intervi-
sibility, routing support, etc.). Later, though, it be-
came apparent that other CCTT components could
make use of these CGF-oriented capabilities. For ex-
ample, the after action review stations use the Envi-
ronment CSC to keep the "stealth" eyepoint within the
database dimensions and above the terrain skin. Also,
scenario analysis and reporting information can be ex-
tended beyond what is available directly from DIS
traffic, such as determining line of sight between vari-
ous entities. Also, the OC workstation (run by a train-
ee) has slightly different needs than the SAF worksta-
tion (run by a dedicated operator) which can also be
met by the Environment CSC (e.g. different levels of
support for automated routing can be achieved with
the same software).

413

The aforementioned CCTT components have been
able to reduce development efforts by making use of
software originally developed for CGF; however, the
greatest benefit has been derived from manned mod-
ules' (MM) reuse of the Environment CSC.

4.1 MM vs CGF: Correlation Issues

While the DIS standard has gone a long way toward
providing interoperability between fundamentally dif-
ferent simulation components in a networked environ-
ment, there are a number of other interoperability is-
sues that must be dealt with. Database correlation is
an oft-cited example of such an issue. Another layer
on top of this problem is the possibility of different ap-
plications having a different perception of the world
not because of correlation errors in the databases
themselves, but rather in the algorithms which are
accessing and operating on the databases.

The issue of correlation between the visual and CGF
databases has been addressed aggressively in CCTT,
and appears well in hand despite a number of pitfalls
encountered along the way. Significant work remains
before us in this area. However, CCTT has managed
to shift the related problem of algorithms operating on
the different databases up a layer in the conceptual
"protocol stack" of terrain correlation, by having
CCTT manned modules use a subset of the same Envi-
ronment CSC used by CGF. The subset of Environ-
ment CSC capabilities needed by manned modules are
height of terrain at a location, mobility indication (i.e.
surface characterization) at a location, collision detec-
tion, munition impact detection, and a number of sim-
ple query routines (e.g. indication of whether an area
is "forested", "urban", or "open" in support of dam-
age assessment from proximate impacts). This idea
represents a departure from the original CCTT design
which called for use of the IGs for basic terrain opera-
tions needed by manned modules. The correlation
problem is thus reduced to just data correlation with-
out the additional concern of access algorithm correla-
tion. If a manned module queries the height of terrain
at a given x,y location it will get the same z result as
a CGF entity at the same location.

While the Environment CSC provides a self-consis-
tent baseline for CGF and manned modules, these two
systems have somewhat different requirements and
needs which drive them to use the supplied informa-
tion in different ways. At times, we have been able to
meet all needs with a single (more generic) interface,
but sometimes specialized access routines were re-
quired at the external interface level.

4.2 MM vs CGF: Vehicle Placement

Vehicle placement requirements represent an example
where our interface was impacted by the different
needs of our consumers. Based upon legacy systems,
an interface for vehicle placement (returning, for ex-
ample, a rotation matrix) may have been provided.
Our object oriented design pushed us away from this
concept (i.e. a rotation matrix is an attribute of an enti-
ty, which has a heading, not of the terrain), and this no-
tion was reinforced when it was discovered that
manned modules needs up to 14 contact points, each
with a unit normal to the terrain skin and a mobility in-
dicator. In contrast, CGF's simpler entity placement
requires only four contact points. While the Environ-
ment CSC uses the same primitive routines for deter-
mining elevation and mobility indicators, a special-
ized external interface was added for manned modules
so the unit normal could be returned to them without
complicating CGF's interfaces.

43 MM vs CGF: Collision Detection

For collision detection, CGF uses a single, fully ori-
ented bounding volume to describe the location of the
querying entity. However, manned modules requires
separate bounding volumes for the hull, turret, and
gun. In this case, the Environment CSC interface sim-
ply became more generic by providing the caller the
opportunity to specify the bounding volume to be op-
erated against. In this manner, the caller can select the
fidelity of representation to be used without changes
to the collision detection code itself.

4.4 MM vs CGF: Caching Approaches

Manned modules' caching needs have a clear bound
since a region need only be maintained around the
own-vehicle in order to prevent cache misses. A sim-
ple look-ahead caching scheme can maintain the
cached area around the own—vehicle at sufficient dis-
tance to handle worst-case munition flyout ranges.
However, manned modules' extremely stringent tim-
ing requirements (based upon a required 15 Hz update
of the IG) leave no leeway for cache misses or even
disk I/O needed for look-ahead cache priming.

At the opposite end of the spectrum, CGF must deal
with many vehicles, potentially spread out over large
areas. While this complicates efforts to predictively
read in sufficient terrain data to avoid a cache miss dur-
ing a terrain query, CGF is nonetheless more tolerant
of a missed update for a given entity (or component of
an entity) as long as other entities can still be updated.

Use of a separate AIX process for disk I/O when acces-
sing MRTDB goes a long way toward meeting these

414

different needs. While disk I/O is blocking the caching
process, the main process can continue on. This may
resolve the problem of manned module's strict update
times since the 15 Hz appointment can be met even
while disk I/O for predictive caching is underway. The
separate process simultaneously meets CGF's needs
because a cache miss for critical data can cause an enti-
ty component to "yield" its tick. This allows other en-
tities to continue on unaffected, while the terrain data
should be available for the next tick of the skipped
component. This works well for some terrain requests
(line of sight, path planning), but may cause anomalies
for other capabilities (vehicle dynamics, collision
detection). These are the same anomalies that would
be encountered on a global scale as any CGF system's
performance degrades under peak load. The alterna-
tive would be to hold the entire CGF process during
disk I/O, thus imposing the worst-case performance
on all entities on the affected CGF processor. These
issues will be explored in more detail during Builds 6
& 7, including decisions as to whether it is practical to
implement the concept of "yielding" a tick.

4.5 MM vs CGF: SIMNET Interoperability

The final requirement levied on the Environment CSC
in support of manned modules was correlation of and
operation on the Grafenfels database, which is needed
for SIMNET interoperability. While CCTT manned
modules (and other components) are required to inter-
operate with SIMNET (via a protocol translator), the
CCTT CGF system is not required to do so. Thus, un-
der the original system design of using the IG .for
manned module terrain needs, there would have been
no need to generate a terrain reasoning version of the
SIMNET interop database. CCTT databases represent
a superset of SIMNET databases with the exception of
canopies and treelines (as discussed elsewhere in this
paper), so these were the main problem areas. Fortu-
nately, SIMNET treelines and canopies do not effect
any of the functional areas needed by manned modules
(e.g. these features don't cause collisions in SIMNET).
As a result, only minimal effort was required to sup-
port SIMNET databases for manned modules. One
simple example is the fact that tree trunks also do not
cause collisions in SIMNET, so we must provide a
mechanism for ignoring tree trunks while determining
collisions in SIMNET interoperability mode.

5. Terrain Database Generation

The process for deriving the terrain reasoning and
PVD databases from the visual database source data is
illustrated in Figure 1. The visual database is built
from a number of sources to meet the needs of the cus-

tomer while simultaneously conforming to polygon
budgets for the target IG. The resultant database is
then exported to a data file (which is in a modified SIF
format, aka "SIF++"). The details of the data source
format are hidden by an API, which is linked in by any
application which needs to build a correlated database.
This API provides data in a consumer-oriented format
(in contrast to a format reminiscent of the data source),
with some value added to simplify the consumer ap-
plication and reduce duplication (e.g. regional access
and clipping).

This approach can be extended for support of other
data sources by simply replacing the CCTT API with
a version that accesses the new data source. The new
data source could be the S1000 API, CTDB, or any
other terrain representation. By the same token, other
target database formats could be generated by creating
a new terrain compiler that links in the CCTT API.

6. Terrain Representation Issues

In addition to the functional issues described in Sec-
tion 3, a number of design concerns arise directly from
the nature of the terrain database being generated in
support of visual requirements.

6.1 Terrain database density and size

The density of terrain features and resolution of terrain
skin are being driven by the substantial capabilities of
the ESIG HD, which is the CCTT visual system (Evans
& Sutherland 1994). The terrain skin will be repre-
sented with minimum base ground polygon sizes of
30m for CCTT's desert database ("Primary #2"), and
of 60m for the forested database ("Primary #1"). Mi-
croterrain (also known as "cut and fill") will be used
extensively to fracture or build up the base terrain
polygons to ensure that all roads are trafficable and
that rivers don't appear to flow uphill.

Visual database development is still underway and a
number of fundamental design issues are still out-
standing; however, initial estimates indicate that over
30,000 man-made structures (10,000 of which will be
destructible) and over 10 million individual trees will
be present in the first full-size CCTT database. These
overwhelming feature densities in databases of 100
km x 150 km have forced us to design around the idea
that only small subsets of the database will be accessi-
ble in memory at one time and that it will not be practi-
cal to read in all of the terrain needed for long range
operations such as radio degradation and fixed-wing
aircraft terrain following. Some examples of our ap-
proach to these issues are provided in 3.3 and 7.4.

415

\Sun Workstation

I 1
RS6000 Development

Environment

SIF++
Interface
(API)

PVD Terraii
Compiler

SAF Terraii
Compiler

(Other stations)

A

! (

i SAF/OC Workstation •

_J

PVDTDB

-I
SAF TDB

PVD provides display!

SAF TDB provides
route verification and I
area intervislbllltlty j

CGF Simulator
(SAF/OC/DIMM)

All terrain tasks.

I 1 , Manned Module Host,

Figure 1: Correlated Database Process

— Vehicle Placement I
—Collision Detection]

• —Munition Flyout •
i L.J

Point features (trees, buildings, bridges) will be much
more dense than in SIMNET databases. Indeed, fea-
ture densities will be sufficient to provide detailed rep-
resentations of urban areas and forests. Since tree den-
sities can be greater than 2200 trees per square
kilometer, two familiar SIMNET features types, cano-
pies (hollow, tent-like structures representing forests)
and treelines (paper thin green "walls" representing
stands of trees), are no longer needed.

6.2 Detailed Representations

A number of CCTT requirements are driving us to con-
sider more complex or detailed feature representations
than would otherwise be used. For example, CCTT
entities are required to detect collisions with tree
trunks as opposed to foliage, while foliage affects line
of sight, thus requiring us to store a radius for the trunk
and a radius for the foliage.

There will be approximately 16 to 30 unique mobility
indicators in the terrain reasoning database. These
mobility indicators will be determined via a mapping
from those visual database "material codes" which
may be driven on. The "drive on" material codes are
essentially permutations of ITD thematic layer values.
We must also support a mapping from a "dry state"
material indicator and its corresponding "wet state"
indicator in order to provide different mobility effects
in rainy conditions. The material code boundaries will

be conveyed as complex, dense areal features which
need not conform to post boundaries. The number of
points expected for these feature types will defy full
representation given the timing and storage require-
ments for manned modules and CGF, so we are investi-
gating approximations that provide a balance between
these performance concerns, the customer's desire to
have a reasonable range of unique mobility effects,
and our ability to provide sufficient correlation with
the visual database.

As alluded to earlier, accuracy requirements for colli-
sion detection and munition flyout capabilities have
driven us to consider use of bounding volumes for enti-
ties instead of potentially faster representations such
as "leading edge" or "sample point" calculations for
collisions. Use of more expensive routines for high fi-
delity calculations encourage the introduction of addi-
tional layers providing filtering in order to reduce the
number of high fidelity calculations required, espe-
cially in light of the unusually high feature densities in
CCTT databases. This filtering is beyond the fast spa-
tial filtering provided by the primitive terrain database
access routines and supported by the database repre-
sentation. For example, collision detection can use a
rectangle orthogonal to the coordinate system axes de-
fined by the two-dimensional minimum and maxi-
mum points of the fully oriented bounding volume as
a very fast filter mechanism, which should reduce or

416

eliminate complex checks against excessive numbers
of nearby features. These types of algorithmic filters
are made more important by the sharp peaks in feature
densities exemplified by penetrable forests.

63 New feature types

Hedgerows, walls, dams, suspended bridges, and over-
passes are all presently planned for the visual database.
Representation of tunnels is still under discussion.
The visual database's representation of forests has al-
lowed incredible tree densities to be represented (de-
sign issues with penetrable forests are expanded on in
3.3). Urban areas are represented with high densities
of buildings complete with urban clutter, driveways,
and residential streets.

6.4 Storage and Correlation

The Environment CSC uses a number of approxima-
tions and simplifications in both algorithms and terrain
representation in an attempt to balance fidelity, perfor-
mance, and correlation concerns. We are investigating
low-cost solutions to the correlation errors derived
from some of the simplified feature storage mecha-
nisms we have reused from other database formats.

One example is the truncation effect caused by storage
of features in square patches with local coordinate sys-
tems bounded to the patch's dimensions. Trees sitting
at the boundary of a patch would appear to accessing
routines to be truncated at the patch edge. Other fea-
ture types, including roads and rivers would suffer the
same problems. In some cases, one can store pieces of
the feature in each patch. This would complicate ab-
stract recognition of features. For example, a building
sitting at the intersection of four patches would appear
as 4 buildings, thus confusing reasoning on the feature
while also complicating operations on uniquely identi-
fied destructible buildings. In other cases, storage of
multiple clipped features would require special case
code, such as storing most of a river in one patch, and
the remainder in another. This case would confuse
code which assesses a river feature to see if an AVLB
can span it; perhaps each of the truncated features can
be spanned, while the actual full-size river cannot.

If linear features are stored as a series of line segments
and widths, then correlation is sacrificed at each
"bend" on the linear. The error becomes more signifi-
cant for wider features and sharper turns. The gaps
which appear in linears may be marginally acceptable
for roads, but significant errors in river linears may re-
sult in unacceptably anomalous behavior.

Figure 2 illustrates these concerns. The four boxes
represent patches. Feature 1 is a linear (i.e. road or riv-

er) which has small "truncation" errors at the top and
bottom. Feature 2 is a building which crosses 4
patches. Feature 3 is a tree which cannot be accurately
represented by duplicate feature types (i.e. a point and
radius in the upper patch would not match the needed
geometry). Feature 4 is a linear which would suffer
truncation on the vertical segment and also demon-
strates some representation errors on extreme turns.

Figure 2: Feature Truncation & Linear Storage

7. MRTDB Design

This section provides a brief overview of some of the
design principles being used or experimented with in
MRTDB's design. These ideas are a snapshot of the
Build 5 representation, along with some speculative
information on future capabilities such as dynamic ter-
rain. A much more extensive treatment of these con-
cepts as applied to the Build 4 MRTDB version is pro-
vided by (Watkins 1994).

7.1 Object Oriented Design

We used an object-oriented approach in designing and
implementing the Environment CSC and MRTDB; see
(Rumbaugh 1991) for the OOD methodology used
within CCTT. We designed our database using Rum-
baugh's object-oriented design methods and imple-
mented it in the Ada language. Figure 2 is the terrain
database Object Model using Rumbaugh's Object
Model notation.

7.2 Separate Files

As discussed in Section 4, different consumers with
different needs use the Environment CSC. One early
concern with this reuse was the fact that all CCTT

417

Terrain
Database

Cache
Terrain Database

i

Page Cache Page
Page

Number

Store
Posts,

Features
Verts For

Feature Model Library

Object Model Notation

Class
Name I is-a f has-a

Multiplicity of Associations:

Class | Exactly one

Many Class!

*i Class! Numerically Specified

Link Attribute:
rci5igTL-Aasnf;if\ti/in Name rgrgggzl

link attribute

Figure 3: Terrain database object model.

components using the Environment CSC might need
to store the massive database file used for CGF terrain
reasoning. While estimates of final database size are
difficult at this point, the larger of CCTT's two data-
base (Primary #1) may be between 150M and 350M.
To minimize the storage impact on the Environment
CSC's users, the terrain database is composed of a
number of files. Thus, OC workstation, which only
needs routing support, does not need to read in (or even
store on its hard drive) the 100's of megabytes of high
fidelity terrain data. The space savings for applica-
tions which need the high fidelity representation but
not routing (e.g. manned modules) is less, but it is still
useful considering how important sufficient cache
space is.

A potential benefit of storing a database as multiple
files is incremental database development and/or se-

lective replacement of portions of the database. For
example, if something changes in the header file, the
much larger feature file need not change (and thus fea-
ture offset values need not change, etc.). Replacement
of the model file is discussed in the following subsec-
tion.

13 Feature Model Library

The Feature Model Library is a set of feature models,
where each model has a unique model ID. Each model
maintains information about a feature that is common
across many features. For instance, a tree model main-
tains the opacity, height, and radius of the foliage, as
well as the trunk radius for a particular kind of tree.
Each tree in the database that shares the same attrib-
utes can then reference the same tree model (via the
model ID) to complete its definition. Since the model
is stored only once, an enormous space savings can be

418

realized. In the case of trees, there may be 10's of mod-
els in the forested database, but there may be as many
as 10 million tree instances.

The Feature Model Library facilitates the imple-
mentation of prepositioned objects since to "damage"
a building we can simply modify the building model
ID from the "normal model" ID to the "damaged mod-
el" ID. This is also much faster than performing com-
putations to alter the geometry. Also, use of the library
allows for a database modeler to supply the exact mod-
el of a damaged building, instead of describing the al-
terations that would need to be performed on a normal
building to damage it. In addition, different buildings
may be altered in different ways based on their dam-
aged models, with no additional special case imple-
mentation.

Finally, since the Feature Model Library is stored in its
own file, it may be swapped out for another library
with the same feature models where some number of
the feature models contain different information. For
example, if we want all the trees to drop their leaves,
we can read in a different Feature Model Library
where all tree foliage opacities have been diminished.
Furthermore, we can increase the fidelity of feature
representations with little impact on storage require-
ments and with disregard for feature densities, since
we only need increase the size of the models, not the
size of each feature instance.

7.4 Header Data

The Environment CSC relies upon information stored
for each patch in the terrain database (where a patch is
a square region of terrain which may be scaled depend-
ing upon the database). These patch headers are then
maintained in memory at all times to provide abstract
or low fidelity information for the patch's region of ter-
rain. For example, the off—line database generation
tools can apply parametric criteria to these square re-
gions to determine if they are generally urban or for-
ested. A rough characterization of the terrain is pro-
vided by storing the maximum elevation in the region.
This can then support rough communications degrada-
tion or terrain following for fast moving aircraft with-
out requiring reference to the much larger high fidelity
representation. We thus avoid the need to cache in
huge amounts of data for a long distance communica-
tions check.

MRTDB patch headers also contain direct indices into
their feature array. In order to determine if a given x,y
point is on a road, one need only calculate which patch

the point is in, then directly access the road linear fea-
tures.

8. Conclusions

The Environment CSC, operating on MRTDB, pro-
vides a number of key capabilities to CCTT compo-
nents with dissimilar needs and objectives. Thus, the
Environment CSC not only meets CCTT's stringent
requirements as implemented to date, but also exem-
plifies reuse of complex software components in large
systems. This reduces development costs and im-
proves correlation. Although many complex issues re-
main ahead, work to date indicates that each will be re-
solved in a manner which simultaneously advances the
state of the art in distributed simulation and meets the
needs of CCTT as a production system. It is hoped that
this success will continue not only through the comple-
tion of CCTT, but throughout the development and
fielding of future CATT systems.

9. References

Braudaway, W. (1995) "CCTT System Architecture
Design Note #52: Penetrable Forest".

Campbell, C, McCulley, G. (1994). "Terrain Rea-
soning Challenges in the CCTT Dynamic Environ-
ment", Proc. of the Fifth Conference on AI, Simu-
lation, and Planning in High—Autonomy Systems,
pp. 55-61.

Crowley, J., Moore, R. (1994). "Synthetic Environ-
ment Protocol", Summary Report of the 11th Work-
shop on Standards for the Interoperability of De-
fense Simulations.

Evans & Sutherland (1994). "Close Combat Tactical
Trainer: Central United States", Database Design
Document.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F.,
and Lorenson, W. (1991). Object-Oriented Mod-
eling and Design, Prentice Hall, Englewood Cliffs,
New Jersey.

Watkins, J., Provost, M. (1994). "Design of Terrain
Reasoning Database for CCTT", Proc. of the Fifth
Conference on AI, Simulation, and Planning in
High-Autonomy Systems, pp. 62-68.

10. Biography

Jon Watkins is team lead for CCTT's "terrain team",
focusing on the Environment CSC and several other
components. Mr. Watkins received his B.S.E in Com-
puter Engineering from the University of Central Flor-
ida in 1990. He has been involved with research and
development in the CGF area for nearly five years.

419

Evening Plenary Session - ARPA CFOR Briefing

Salisbury - The MITRE Corporation

Implementation of Command Forces (CFOR) Simulation

Mamie R. Salisbury (marnie@mitre.org)
Lashon B. Booker (booker@mitre.org)
David W. Seidel (dseidel@mitre.org)

Judith S. Dahmann (jdahmann@mitre.org)

The MITRE Corporation
7525 Colshire Drive
McLean V A 22102

1. Abstract

The command forces (CFOR) program will imple-
ment a new aspect of warfare simulation: explicit
modeling of command and control. The program pre-
sents several aspects: (1) a concept of operations
where command and control nodes occupy the bat-
tlespace in the same manner as weapons systems; (2)
an architecture where software simulation of com-
mand and control interacts with the battlefield
through a set of common services; (3) a software de-
sign for the services that forms an infrastructure that
integrates with the underlying ModSAF wargame; (4)
a mechanism that facilitates automated integration of
real world C2 systems with simulations; and (5) an
implementation plan that integrates the efforts of
multiple developers to produce a functioning multi-
service command forces simulation.

The CFOR program has passed through the concept
and planning phases and is now beginning implemen-
tation. Lessons learned from progress to date are pre-
sented along with a plan for multi-vendor implemen-
tation.

2. Background

The Command Forces (CFOR) project is a part of the
Synthetic Theater of War (STOW) program, an
Advanced Concept Technical Demonstration
(ACTD) that is jointly sponsored by the United States
Atlantic Command (USACOM) and the Advanced
Research Projects Agency (ARPA). The STOW pro-
gram is scheduled to support a USACOM exercise in
1997. In the exercise, objects from each US armed
service will interact with each other and with credible
opposing force objects in the virtual simulation envi-
ronment using the Distributed Interactive Simulation
(DIS) protocol.

The STOW ACTD requires the ability to represent
larger-scale and more diversified military operations
in virtual simulation. A key element in achieving this
goal is the ability to represent both fighting forces
and their commanders in software. Current computer
generated forces (CGF) implementations allow the

virtual battlefield to be populated with a useful col-
lection of combat entities at the individual platform
and small unit levels. CFOR extends the basic DIS
architecture to incorporate explicit, virtual represen-
tation of command nodes, C^ information exchange,
and command decision making.

3. CFOR Concent

Extension of DIS to incorporate command and con-
trol is based on four fundamental tenets.

(1) Command and control can be represented in
terms of the interactions and behaviors of com-
mand entities.

(2) The C2 process is an information flow process
among command entities. As a part of the
CFOR concept, the Command and Control
Simulation Interface Language (CCSIL) repre-
sents the information exchanges between com-
manders.

(3) C2 information flow must be restricted by a
faithful representation of real world communi-
cations. Information flow must be routed
through command nodes compatible with the
real world and subjected to battlefield effects.
As with real commanders, virtual command
decision makers will have access to information
about the world through their sensors, informa-
tion reported by subordinates through CCSIL
messages, and CCSIL intelligence messages
from superiors.

(4) The C2 decision process is represented in the
individual command entities—the originators
and recipients of information exchanges.

Under the CFOR architecture, a command entity may
be represented in one of three ways:

• a complex software application (the original goal
of the Command Forces program),

• a traditional computer generated forces application
(e.g., an abstraction of the platoon leader is embed-
ded in the ModSAF application),

• a human working at his/her real world command

423

and control workstation.

ARPA's CFOR program is working to build and inte-
grate several examples of all three representations of
command entities to create a robust and intelligent
synthetic force for the STOW ACTD.

4. CFOR Architecture

The DIS protocols define a common interface for
each entity that attempts to ensure interoperability
and consistent physical interactions on the virtual bat-
tlefield. Analogous requirements exist for the C2 in-
teractions among entities. Accordingly, the CFOR
framework includes an architecture for command en-
tities that extends beyond the DIS network interface
to provide a well-defined, common interface for all
command decision activities. Command entities are
under no implementation constraints beyond those
imposed by the interface specified by the architec-
ture. In this way, the CFOR framework extends the
basic tenets of the DIS paradigm into a new mode of
entity interactions.

The CFOR architecture comprises two primary ele-
ments: a technical reference model for command en-
tity development and the Command and Control
Simulation Interface Language (CCSIL) for insuring
interoperability among

4.1 Command Entity Technical Reference Model

A technical reference model (see Figure 1) was de-
fined that describes the command entity architecture.
This architecture promotes interoperability and co-
herent C2 activity by providing a shared infrastruc-
ture, a common set of information and computing
services, accessible through a well-defined applica-
tions interface. The architecture is composed of three
layers: Application Layer, Information Services and
Utilities Layer, and Baseline Infrastructure Layer. A
layered approach was selected for three specific ben-
efits: 1) it provides a means of centralizing control
over the baseline of doctrinal knowledge needed by
the command entity applications; 2) it reduces com-
mand entity developers' efforts by providing common
reusable software; and 3) it shelters the command en-
tity developers from technology and functional en-
hancements in the baseline applications (e.g.,
ModSAF) and allows them to focus on command
decision behavior.
• The Command Entity Application layer is where

the command decision-making processes reside.
Command Entity Applications may be fully auto-
mated software or C2 workstations operated by live
command entities. All details about the actual im-
plementation of a full automated software com-
mand entity are under the purview of the simula-
tion developer organizations; they are free to im-
plement their own approach to malting command

decisions. Likewise, the adaptation of C2 worksta-
tions to the CFOR architecture is dependent only
on the interface specification to selected modules
with the Information Services layer. Workstation
developers have free rein to decide how to display,
massage, or augment the simulation data available
via the Information Services layer.

The Information Services layer contains the ser-
vices and utilities that provide the information
needed to support command decisions. These ser-
vices impose few restrictions on how to model the
decision process. They avoid making any infer-
ences or judgments that are the proper purview of
command entities.

Access to the services and utilities is implemented
using an object-oriented, implementation-language
independent interface between command entity
applications and the information services. To ac-
complish this, the Interface Definition Language
(IDL) specification of the Common Object Request
Broker Architecture (CORBA) was selected to de-
fine the interface and specify all interface parame-
ters.
Services available include the following:

• Platform Behaviors provide a generic interface
to a command entity's physical representation on
the battlefield. Services provided mimic the
commander's ability to sense from his vehicle,

 Command Entity_Applicatjqn_ _
Command Decision Processes

E ••••-I API

CE Information Services and Utilities

Platform
Behavior

C2 Utilities

Sense
Perceive

Tactics,
Techniques,
Procedures Missions

& Tasks

Move Comms
Environment

Utilities

Shoot Unit Into

t t I
CGF / CE Baseline Infrastructure

Computer Generated Force Application

Figure 1. Command Forces Technical Reference Model

424

move his vehicle around the battlefield, and em-
ploy his weapons.

• Communications offer an application interface
to CCSIL message utilities.

• Command and Control Utilities represent the
background knowledge and rote reasoning capa-
bility of the commander. They include

Environmental Utilities include the ability to
compute mobility corridors, control measures,
reverse slopes, routes, travel time and speed.
(Environment includes terrain, ocean, and atmo-
sphere.)

Unit Info provides access to static data about
units (own and enemy) and the ability to make
basic inferences (e.g., combat power) from the
raw data.

Missions and Tasks which provides doctrinal
decision templates to help interpret an ordered
mission and to devise a plan.

Tactics, Techniques, Procedures which provides
templates to help fill out orders and implement a
plan.

• The Baseline Infrastructure Layer contains the ba-
sic platform representation and general DIS inter-
face utilities. These capabilities are accessed by
command entity applications indirectly through the
Information Services layer.

4.2 CCSIL

The Command and Control Simulation Interface
Language (CCSIL) is a special language for commu-
nicating between and among command entities and
small units of virtual platforms generated by comput-
ers for the DIS environment. CCSIL includes
a set of messages and a vocabulary of
military terms to fill out those messages.
CCSIL was developed to facilitate
interoperability between various
implementations of command entities (i.e., ^^
decision makers) and platform entities (e.g.,
vehicles, weapons, sensors) in the DIS
environment.

ware command entities can exchange messages with
each other.

Without a common language and communications
services, every new element added to a DIS exercise
would need to be iteratively retrofitted to interoperate
with every other existing element of the virtual simu-
lation environment. CCSIL serves as a unifying
thread among diverse implementations of command
entities, computer generated forces, and command
and control workstations.

5. Integration With Real World
Command and Control Systems

"Simulations should be driven by military personnel
using their go-to-war C2 systems." Simulation de-
velopers, especially in the training simulation world,
have heard this requirement expressed routinely by
the military user community. Until recently it has
been very difficult to meet this requirement. In lim-
ited cases, special automated links have been devel-
oped to link a particular C2 system with a particular
simulation. Unfortunately, these point solutions are
not generalizable to other C2 systems or other
simulations.

The ability to interface C2 systems with simulations
is premised on several characteristics of computer
simulations:

1) There needs to be a way for users at real world
systems to communicate with simulated counterparts.
This means that simulations must represent informa-
tion exchanges internally in a way functionally com-
patible with the real world and the simulations must
include representation of command functions for the
real world users (e.g., commanders and staffs) to
communicate with. Most combat simulations have

• •

Figure 2 shows a view of the CFOR architec-
ture from the CCSIL perspective.

A common language designed for interpreta-
tion by software (e.g., simulations or cogni-
tive processing systems) is needed to allow
all three implementation approaches to work
together in one environment. By using the
highly structured format of CCSIL messages,
humans at real world command and control
workstations can send orders and directives
to software command entities and expect
them to react appropriately. Likewise, soft-

Live
Command
Entity

real world
C2 network

Software
Command

Entity
(Planning and

decision-making
process)

CCSIL Interface
Utilities

CGF
Application

(Small Units
and Platforms)

CCSIL Interface
Utilities

DIS(CCSIL)

Figure 2. A View of the Command Forces (CFOR) Architecture

425

not included representations of either C2 information
exchange or command entities carrying out the com-
mand and control process to produce behavior in the
unit. Often combat units are manipulated in the
simulation environment as conglomerates using a set
of very abstract "orders" that have no real world
analog.

2) Unfortunately there is an inherent incompatibility
between the way people exchange information and
the way computer simulations can accept and inter-
pret information. Humans use natural language
which is rich, but fuzzy. Computer simulations re-
quire precise terminology organized in highly struc-
tured forms.

The CFOR concept and CCSIL bring a new approach
to the construction of simulations that address this
problem.

First, by providing an explicit representation of
command entities and information exchanges, the
CFOR concept provides a more appropriate
simulated entity for a human operator to
communicate with. A CFOR command entity is busy
collecting and reasoning on simulation information
that is in a form appropriate for the human operator.
The CFOR command entity can reply to requests for
tactical state information, as well as, administrative
and logistics information.

Second, CCSIL was designed to be both interpretable
by software and to be a valid abstraction of the in-
formation exchanged by battlefield command
entities. The current set of CCSIL messages focuses
on providing highly structured, yet flexible formats
for the types of information normally conveyed using
natural language. The vocabulary of CCSIL
messages was selected to coincide with the
vocabulary of military personnel. The definitions
and semantics for CCSIL vocabulary was originally
gleaned from field manuals and is continuously
refined to reflect common military usage. Although
it is not natural language English, it is much more
robust than highly abstract simulation instructions
like "Move-Unit" or "Attack".

One piece of ARPA's CFOR program is to use
CCSIL and the CFOR infrastructure services soft-
ware to adapt existing real world command and con-
trol systems to interoperate with the simulation com-
ponents: the CFOR software command entities and
the computer generated force representation. This
task is described in more detail in the following sec-
tion.

6. CFOR Software Design

The CFOR architecture is supported by a set of soft-
ware. The software developed to date has been to
support the command entity application developers

brought onboard by ARPA to build Army Company
Team commanders and other Army commanders in
the next 12-18 months. Eventually software will be
developed to support command entity development
for the other military Services. This work lags 6-12
months behind the Army CFOR work due to the
shortfalls in simulations of platforms and small units
for the other Services. This paper describes the work
done to date.

The CFOR software comprises three components:
the adapted C2 workstation application, the infras-
tructure services software, and the adapted computer
generated force application. This section describes
the current status of these software components.

6.1 Adapted C2 Workstation

Work is underway to adapt the Army's B2C2 work-
station prototype to be compatible with the CFOR
simulation environment. Using this Adapted B2C2
Workstation, a commander or staff officer can send
and receive CCSIL messages to and from his subor-
dinate units. The Adapted B2C2 Workstation will
capitalize on several elements of the Information
Services layer of the CFOR architecture.

The intent for the STOW-97 ACTD is to deploy a
group of these workstations at Battalion command
post mock-ups. Experienced Army personnel or ex-
ercise support personnel at these command posts
would use these workstations to direct and monitor
the activities of the virtual Companies in the virtual
simulation environment. They would use these and
other real world C2 workstations or communications
devices to communicate and exchange data with
members of the training audience at brigade, division,
other command posts.

As ARPA's Synthetic Forces program continues to
extend the type of forces achievable in virtual simula-
tion, new C2 workstations will be added to the family
of CFOR applications. For example, in the Navy
arena we are looking at the JMCIS workstation as a
likely candidate.

6.2 CFOR Infrastructure Services Software

The CFOR infrastructure services software comprises
several modules as outlined in the CFOR architecture
that provide commonly used functions to the CFOR
command entities. This infrastructure consists of
layers of software organized into libraries, following
the programming practices of ModSAF.

6.2.1 Platform Behaviors Module

Platform Behaviors Services provide a generic inter-
face to a command entity's physical representation on
the battlefield. A command entity can be associated
with a vehicle or a set of vehicles (e.g., a command
post). For example, an Army Company commander

426

may ride in a tank, a Bradley Fighting Vehicle, a he-
licopter, or a HMMWV. The Platform Behaviors
Services were built to use the basic behaviors imple-
mented in the computer generated force application
in the Baseline Infrastructure Layer (e.g., ModSAF in
the current application). There are three groups of
functions in the Platform Behaviors Services.

Within the Move group, the services allow the com-
mand entity to drive his vehicle to a specific location,
drive in a specified direction, follow another entity,
change the speed his vehicle is traveling, and change
the orientation of his vehicle. Within the Sense
group, the services allow the command entity to use
the full range of sensors on his vehicle to sense other
entities around him or to sense distinguishable terrain
features around him. Within the Shoot group, the ser-
vices allow the command entity to fire at a target, to
fire at a location, to fire in sector, and to cease firing.

6.2.2 Communications Module

The Communications Module helps a command en-
tity application send and receive CCSIL messages. It
offers an application interface to the following
CCSIL message utilities:

• Message dispatcher that maintains a queue of in-
coming messages waiting to be processed.

• Notification mechanism that responds to polling by
command entity for new messages.

• Message queue accessor that allows command enti-
ties to retrieve incoming messages from the queue.

One new feature that the Communications Module
brings to the DIS environment is a capability that in-
sures delivery of the DIS Signal PDU from the send-
ing unit's machine (i.e., CPU) to the receiving units'
machines. The capability uses an acknowledgment
and retransmission (up to three times) scheme to in-
sure delivery of the Signal PDUs containing CCSIL
messages. As the DIS protocol evolves and TCP-IP
multicasting services become available, we will re-
move this feature from the CFOR Communications
Module.

Note that this feature of insuring delivery of the
Signal PDU is not the same as insuring delivery of
the message between two command entities in the
simulation. Realistic modeling of real world commu-
nications devices is a multi-faceted problem. The
Communications Module software provides one
piece of the large problem of simulating
communications devices. It compares the radio
identifier and frequency on incoming messages with
the radio identifiers and frequencies to which they are
tuned for the units being simulated. If any of the units
simulated have radios tuned to that frequency, then
the message is passed along to the unit. Otherwise the
message is discarded. In this way, simulated units
listening to the wrong communications net (i.e.,

tuned to the wrong frequency) will miss messages
broadcast on the net that they were supposed to be
listening to.

The remaining aspects of communications effects
modeling (e.g., propagation loss due to jamming, ge-
ography, and weather) are not provided by the CFOR
infrastructure services software. Rather, the
Communications Module hands the CCSIL messages
over to the radio models in the simulation applica-
tions being used. In the current version, ModSAF 1.3
has no simulation of the communications devices
(e.g., radios). Solving this aspect of the communica-
tions modeling problem is not part of the CFOR pro-
gram.

6.2.3 Command and Control Utilities Module

Command and Control Utilities are included in the
CFOR infrastructure to give command entities access
to "routine" knowledge, shared by every human
commander, that does not depend on subjective
judgments. This is important for several reasons:

• To prevent redundant and potentially inconsistent
knowledge acquisition and engineering efforts by
the command entity developers.

• To help focus the activities of the command entity
developers on addressing the difficult issues in
modeling subjective, context-sensitive judgments
and decisions.

• To localize, as much as possible, the encoding of
doctrinal information within the CFOR family of
application software for two reasons: 1) to facili-
tate CFOR testing and evaluation; and 2) to mini-
mize the effort needed for future enhancements or
modifications for particular exercises or scenarios.

This capability is implemented using a collection of
software modules that have an input parameter list
and return one or more data structures of information.
The information is generated using basic data re-
trieval operations and simple assessment functions.
These services have been designed to avoid making
any inferences or judgments that should be made by
the command entities themselves.

The Command and Control Services are organized
into four subject areas: Environment Utilities; Unit
Information; Tactics, Techniques, and Procedures;
and, Missions and Tasks. The current release of the
infrastructure software includes an interface specifi-
cation for the Environment Utilities along with the
software modules implementing that functionality.
Complete interface specifications and software im-
plementations for the other C2 services are scheduled
for the April 1995 release of the CFOR infrastructure
software.

427

6.2.4 Environmental Utilities

The goal of the Environmental Utilities (EU) is to
provide an interface to SI000 terrain data that sup-
ports automated decision making. The utilities focus
primarily on factors affecting movement of vehicles,
cover, and delivery of fires for lower-echelon units.

The SI000 data format, used for SIMNET and
ModSAF simulations, is efficient for real-time graph-
ical display of terrain, but does not directly support
automated command entity reasoning. The EU inter-
face to this data is presented in a series of layers, as
follows.

• LAYER 0 provides implementation-independent
access to the basic terrain data: elevation, slope,
soil type, feature type and location, platform capa-
bilities, time of day, etc. Provided analyses at this
layer include trafficability, line of sight, and coor-
dinate conversion. Most data is floating point.

• LAYER 1 accepts dynamic, user-defined no-go
overlays. These specify areas of operation, av-
enues of approach, area obstacles, and other muta-
ble restrictions to movement. Subsequent analyses
(at higher layers) will respect any active overlays.

• LAYER 2a provides a fully connected topology of
vertices, edges, and faces atop Layer 0. Faces are
guaranteed to be planar and of uniform soil type.
Linear edges guarantee constant trafficability for a
point platform. Full connectivity allows consistent
and convenient movement-oriented terrain reason-
ing. Analysis at this level includes a general-pur-
pose route finder, weapons fan, and cover determi-
nation. Data is integer where suitable.

• LAYER 2b provides a graph topology representing
precomputed mobility corridors. These are used to
reason about trafficability of aggregate entities that
require a doctrinal frontage. A corridor segment
guarantees uniform width and trafficability.
Analysis at this layer includes identifying the mo-
bility corridor nearest to a query point, and corri-
dor-based routing. Data is integer where suitable.

During an exercise, layers 0, 2a, and 2b are static for
a given playbox (for example, the ModSAF 1.2 Fort
Knox terrain database).

The EU package is structured to be independent of
the underlying terrain representation where possible
and to anticipate near-term developments (such as
dynamic terrain) by including place holders for these
concepts in the design. In this way, the infrastructure
can help command entity developers anticipate and
design to future needs using existing software.

6.2.5 Unit Information

The purpose of the Unit Information utilities is to as-
sist in providing command entities with part of the

minimal body of information expected of all com-
manders, no matter what their branch, experience, or
expertise. These functions fall generally into two cat-
egories:

• Static information found in the battle books, field
manuals, and technical manuals that commanders
have access to during combat and training situa-
tions. This includes such details as unit sizes and
compositions, weapon and vehicle data, and esti-
mated times to complete certain tasks. For exam-
ple, a commander may look up the composition of
a motorized rifle regiment to determine their com-
position, then lookup the ranges of the weapons in
an Motorized Rifle Regiment to determine their
maximum range and effects.

• Unit assessment functions, which aggregate raw
data into commonly used terms. For example,
when a commander wishes to report the location of
his unit, he can obtain his unit location by calling a
function with the location of each subunit in his
command.

6.2.6 Missions and Tasks

The Missions and Tasks services provide a command
entity with a skeletal decomposition of standard
Company Team operations into tactically meaningful
components, along with guidelines for implementing
the tasks and subtasks associated with each compo-
nent. The rationale for providing such a declarative
representation of doctrine is that a command entity
competent in executing all the basic components can
execute any mission defined in terms of those com-
ponents. The components for Company teams build
on the ARTEP collective tasks. The target repertoire
of mission decompositions includes those missions
corresponding to the set of virtual training exercises
(Attack, Defend, Delay, Movement to Contact,
Reconnaissance in Force, Raid, Exploitation, and
Pursuit).

Initial implementations will only consider a service
that relates missions to tasks. It may be useful to offer
other classes of these services that relate tasks to sub-
tasks, or Company tasks to Platoon missions and
tasks.

6.2.7 Tactics. Techniques, and Procedures

The Tactics, Techniques and Procedures (TCP) ser-
vices will provide a command entity with doctrinally
acceptable decision options for conducting an opera-
tion. These services are designed to present tactical
considerations and techniques, standard operating
procedures, and "tricks of the trade" in a manner that
facilitates the "how to" aspects of a commander's job.
The decision options offered typically represent
"textbook" solutions that every human commander
would recognize from his military education. The
motivating rationale for TTP services is to help

428

command entities in those areas where human com-
manders can routinely generate an acceptable solu-
tion, regardless of their level of competence.

6.3 Adapted ModSAF

Adapted ModSAF is the current CFOR implementa-
tion of the Baseline Infrastructure Layer of the archi-
tecture. At the time of this paper we are using
ModSAF version 1.3. Five libraries have been added
to make it CCSIL-compatible. That is, to enhance
ModSAF so that ModSAF units receive and react to
CCSIL messages from command entities, as well as
generate and send CCSIL messages to command enti-
ties.

The Communications Module of the infrastructure
software can accurately send and receive all CCSIL
message types. Unfortunately the adapted ModSAF
component cannot respond appropriately to all
CCSIL message types. The current release can re-
spond to and react to the following subset of CCSIL
messages:

• Operation Order

• Fragmentary Order

• Execute Directive (a subset of the complete family
of messages)

• Report-Request

Using these messages, an Armor Company command
entity (portrayed by a human in lab tests) can com-
mand and control his company through a military
scenario that we call a virtual training exercise. A vir-
tual training exercise is a military operation that logi-
cally combines a sequence of Army Training and
Evaluation Program (ARTEP) tasks in order to test
the unit on its ability to execute those tasks.

A CFOR Armor Company (commanded by a human
or software command entity), comprising three tank
platoons plus the Commander's tank and the
Executive Officer's tank, can carry out a subset of the
doctrinally prescribed tasks for Tank Platoons
(ARTEP 17-237-10-MTP) and Armored/Mechanized
Companies (ARTEP 71-1-MTP).1 ModSAF's tank
platoons and armored/mechanized companies can
perform the fundamental fire and movement tasks.
Tasks (or behaviors) that are more abstract, less visu-
ally observable, are not supported as well. For exam-
ple, "assist passage of lines." Other tasks that are not
supported involve interactions with the terrain that
are either vaguely supported or not supported at all in
the DIS environment. For example, "construct a hasty
obstacle" and "execute a prepared obstacle" require

1 Tank platoons in ModSAF version 1.3 can perform 22 of
36 prescribed ARTEP tasks. Armored/mechanized
companies in ModSAF version 1.3 can perform 8 of 30
prescribed ARTEP tasks.

the capability to move earth or environmental fea-
tures (e.g., fell trees) and effect a semi-permanent
change to the terrain. As the DIS community finds
solutions to these problems, ModSAF units can
evolve to perform more doctrinally prescribed tasks.
In turn, CFOR command entities can grow to take
advantage of fully-capable subordinate units.

The tank platoons in adapted ModSAF have been
modified to generate and send the following CCSIL
messages:

• Unit Situation Report

• Unit Status Report

This adaptation is transferable to all unit organiza-
tions in ModSAF. As ModSAFs capability to repre-
sent platforms and units expands over the next fiscal
year, the CFOR program's adaptations will expand as
well.

7. CFOR Implementation Plan

The program plan for CFOR calls for multiple, con-
current activities:

• Knowledge Acquisition. Experts in each field and
for each military Service will gather information
about the command process. Particular emphasis
will be placed on planning, decision-making, moni-
toring, and revising plans.

• Infrastructure Implementation. As described ear-
lier, the CFOR infrastructure will provide services
to the command entity simulation and the real
world C2 systems used in a simulation exercise. An
initial delivery of this software was made in
January 1995; new versions will be issued every
three to six months.

• Command Entity Simulation Implementation. The
CFOR program plan calls for multiple contractors,
each developing a software implementation of a
command entity. After a suitable period of devel-
opment, the implementations will be evaluated.
Subsequently, the developers will deliver new and
improved command entities every six months until
the 1997 demonstration. It is expected that initial
experience will be gained in implementing Army
command entities and that experience will be ap-
plied to implementing those of the other military
services.

• ModSAF Enhancement. ModSAF will be enhanced
to model new entities (vehicles and small units), to
model new behaviors for entities and small units,
and to properly carry out CCSIL orders and re-
quests and to generate CCSIL reports.

• C2 Workstation Adaptation Beginning with the
Brigade and Battalion Command and Control sys-
tem (B2C2), selected examples of real world C2
systems will be adapted to work in a virtual simula-

429

tion exercise. The C2 systems will be modified to
use the CFOR infrastructure services software to
send and receive CCSIL messages and to control
the physical portrayal of the commander in the
virtual simulation environment (e.g., to move the
command post from one location to another).

8. Acknowledgments

This work is being supported by the ARPA
Advanced Distributed Simulation Project. COL
Robert Reddy, MG Larry Budge (US Army retired),
and LCDR Peggy Feldmann, Program Manager for
Synthetic Forces, have provided continuous support
and guidance. Mr. Kent Pickett and the Eagle
development team at TRAC-Ft. Leavenworth
provided the groundbreaking work in explicit
modeling of command and control in combat
simulations and the Battle Management Language.
Mr. Ben King, Mr. Kurt Louis, Mr. Jeff Pace, and
Mr. James Hughes developed the CFOR
infrastructure services software.

9. References
MITRE Corporation, January 1995 Command and

Control Simulation Interface Language (CCSIL)
Message Content Definitions, McLean VA.

MJTRE Corporation, January 1995 Command and
Control Simulation Interface Language (CCSIL)
Appendix A: Enumerations, McLean VA.

MJTRE Corporation, January 1995 Command and
Control Simulation Interface Language (CCSIL)
Appendix B: Formatted Data Types, McLean VA.

MJTRE Corporation, January 1995, Command and
Control Simulation Interface Language (CCSIL)
Usage and Guidance, McLean VA.

MITRE Corporation, January 1995, Command
Forces (CFOR) Environment Utilities Application
Programmer's Interface (API), McLean VA.

MITRE Corporation, January 1995, Command
Forces (CFOR) Infrastructure Interface

Definition, McLean VA.
Salisbury, Mamie, March 1995, Command and

Control Simulation Interface Language (CCSIL):
Status Update, McLean VA.

10. Authors' Biographies

Marnie R. Salisbury is a Member of the Technical
Staff at the MITRE Corporation. She is the task
leader of the CFOR CCSIL effort and primary author
of CCSIL. Ms. Salisbury has ten years experience in
military command and control and battle simulation.

Lashon B. Booker received the Ph.D. in Computer
and Communication Sciences from the University of
Michigan in 1982. Dr. Booker joined MITRE in
August 1990 and is currently a Principal Scientist in
the Artificial Intelligence Technical Center. From
1982 to 1990, Dr. Booker worked at the Naval Re-
search Laboratory where he was head of the Intelli-
gent Decision Aids Section in the Navy Center for
Applied Research in Artificial Intelligence.

David W. Seidel is project leader for the Command
Forces effort at the MITRE Corporation. For the past
five years he has supported DoD agencies in integrat-
ing military simulations. He has over fifteen years of
experience in development and application of mili-
tary wargames.

Judith S. Dahmann currently leads the MJTRE Ad-
vanced Simulation Program Area. With twenty years
of experience with command and control and simula-
tion technology, Dr. Dahmann has led several efforts
to develop and transition these technologies, includ-
ing the Aggregate Level Simulation Protocol, to ef-
fective battlefield application. Dr. Dahmann holds a
Masters degree from the University of Chicago and a
Doctorate from the Johns Hopkins University.

430

Session 9a: Experimental Results

Craft, UCF/IST
Karr, UCF/IST

Rajput, UCF/IST
Schricker, UCF/IST

Experimental Conversion
of the 1ST Computer Generated Forces Simulator

from C to Ada

Michael A. Craft and Mikel D. Petty
Institute for Simulation and Training

3280 Progress Dr., Orlando, FL 32826
mcraft@ist.ucf.edu
mpetty@ist.ucf.edu

1. Executive Summary

This project developed an Ada equivalent of an
existing C Simulator, the latter also developed by
1ST. The C Simulator, a Computer Generated
Forces system with a SIMNET interface, is complex
enough to assure a worthwhile experiment The
resulting Ada Simulator is equivalent in every
meaningful way to the C version.

The original project time estimate was missed by a
wide margin (20 versus 54 person-months) but the
experiment was of a much better caliber than
originally outlined. Whereas a "conversion" was
envisioned, it became clear early in the project that a
redesign was essential to take advantage of Ada's
capabilities. In particular, the Ada Simulator makes
heavy use of Ada tasking, whereas the C version
used its own executive: this leaves the Ada version
at the mercy of the run time support but gives a
much better and more portable environment

A peculiarity of the PC architecture (real versus
protected mode) forced compromises in the
networking support A great deal of effort was
devoted to solving this problem and the solution is
not completely satisfactory (it may be a time
bottleneck).

Compilation time became a real problem as the
project matured. A C Simulator can be built in about
5 minutes; the Ada version takes over 2 hours on
equivalent machines. Even worse, minor changes
often force 20 minute compiles.

The Ada Simulator's performance was uniformly
inferior to the C version's. Depending on how the
data is examined, one could argue the Ada version is
anywhere from 3 to 5 times as slow. The reason for

this is not well understood, although the network
support is suspect (as is the overhead incurred by our
heavy use of tasking).

It is commonly believed that Ada projects are "much
larger" than their C equivalents but we did not find
this to be so. The Ada Simulator is larger, but only
by about 11%.

All the senior members of the team had worked on
the C Simulator and knew it well. Nonetheless, all
agreed the Ada product was superior in a software
engineering sense. Objective measures of
complexity bear this out

2. Introduction

Considerable controversy has surrounded the
question of what programming language should be
used for developing computer software for
simulation systems. The Ada and C (or C++)
languages each have their proponents. Many of the
language selection discussions are based on
comparisons of language features or reports of
development projects in one language or the other.
A direct comparison of two implementations, one in
C and one in Ada, of a simulation software system of
significant size has rarely been undertaken because
of cost considerations.

1ST had previously developed a CGF Simulator as an
environment in which to perform CGF research.
That research software system is written in ANSI C.
In the experiment described herein, a version of that
CGF Simulator was re-implemented in Ada so as to
provide a direct comparison of C and Ada, at least
for the specific purpose of implementing CGF
systems.

433

To perform the experiment, a stable version of the
CGF Simulator was frozen for the purposes of the
conversion experiment. The team assigned to the
experiment then redesigned and re-implemented a
functionally equivalent CGF Simulator in Ada (and
only Ada, there is no assembly or C in the Ada
Simulator). There are two important points to keep
in mind about the conversion. First, great care and
effort was expended to produce an Ada Simulator
that was functionally equivalent to the C Simulator
to the extent achievable, so as to make the
comparison as direct as possible. Second, the Ada
Simulator was a redesign of the Simulator, based on
full use of Ada language constructs.

At the conclusion of the conversion, the two CGF
Simulators were tested for functional equivalence
and run-time performance.

From the experiment we expected to learn which
language was better suited for the specific problem of
implementing Computer Generated Forces systems
for real-time virtual battlefield simulations. We also
hoped to gain insight into the larger question of what
language to use for general simulation systems.
Finally, we wanted to be able to confirm or deny the
often heard opinion that "C should be used for
research systems and Ada for production systems."
The full technical report on this experiment is [Craft,
1994].

3. Project Overview

The Ada project was undertaken by a group of
people (the "Ada Team") who were, in most cases,
intimately familiar with the C Simulator, a lack of
knowledge of the C Simulator was never a critical
issue.

The Ada Simulator was to be equivalent in every
meaningful way to the C version; it was even hoped
the Ada Simulator would pass a sort of Turing Test -
- a user of a Simulator would be unable to tell
whether the C or Ada version was in use.

The new Simulator was to be evaluated using the C
version as a baseline.

It makes sense to base an Ada conversion project of
this kind on ISTs Simulator. The 1ST Simulator is
sufficiently complex (offering semi-automated
behavior for scores of vehicles with interconnection

through the SIMNET protocol) and yet sufficiently
tractable (it is completely self-contained, right down
to its own executive, and yet has less than 60,000
lines of code) to make it an excellent target

The Ada Team took a "can do" approach to
producing an Ada equivalent The assumption was,
contrary anecdotes not withstanding, that an Ada
equivalent could be built that was not "too much"
larger and, at worst "slightly" slower than the C
version. Further, the Ada Team expected to produce
a better overall product

3.1 The Baseline Simulator

This work was performed in the 1ST CGF Testbed,
an environment for testing CGF behavioral control
algorithms developed under the sponsorship of
ARPA and STRICOM (Danisas et al. 1990,
Gonzalez et. al. 1990, Petty 1992, Smith et. al.
1992a, and Smith et al. 1992b).

ISTs 6.4 Simulator, which is the basis of this
project is the 4th release of the Simulator's 6th
major revision; it is a mature product. The C
Simulator had been subjected, many times, to
rigorous evaluations leading to large scale
refinements both in performance and reliability

3.1.1 Key Capabilities
The Simulator supports semi-automated forces,
including infantry, suitable for use as opponents in
training scenarios intended for human participants.

Action is displayed through a graphic "bird's eye
view" called the Plan View Display (PVD). The user
can control the scale of the display and what area of
the terrain is shown. The display shows terrain
features as well as vehicles and infantry.

A user can create as many as 12 entities on a
Simulator, selected from over 20 entity types. These
can be made to carry out a variety of activities
including planning routes, following routes (planned
or supplied), and opening fire (selecting and firing
appropriate weapons chosen from scores of munition
types).

Remote entities are recognized and shown on the
PVD. The Simulator interacts with remote vehicles

434

(e.g., local infantry can get on board (mount) remote
vehicles).

The entities created have sensible approximations of
correct behavior: they accelerate and travel at
feasible rates, they compute line of sight (LOS) and
"understand" what they see (a key point in target
selection), and the entities use appropriate weapons.
There are many other such considerations carried out
by the Simulator.

The Simulator is driven by 2 external sources, the
keyboard and the network, each representing at least
2 types of control.

Human beings enter Simulator commands through
the keyboard. The keyboard is logically extended by
the use of script files, which give keyboard
commands through a file, rather than actually
striking keys.

At least two types of network traffic are handled.
The obvious traffic is of the SIMNET protocol type,
which allows the Simulator to "see" remote vehicles
(and to tell the world about its own vehicles). The
other type of traffic follows the 1ST CGF Testbed's
"message" protocol. This protocol allows one
Simulator to control another Simulator and, more
importantly, allows a user-friendly Operator
Interface (01) to control several Simulators.

4. Personnel

It is unfortunate that the personnel roster was
somewhat unstable, but this is not atypical of such a
project, especially when student assistants are
employed. The staff instability cannot be ignored as
a factor in the project's duration, so a chart
indicating the staff status is supplied here. The
initials on the vertical axis identify specific
individuals. Split blocks indicate part time
employees.

JAN FE8 KM APA HAY JUN JUL AUG SEP OCT NOV DEC

Total p«r*on-v*«k»:

Tabl* 1: F*r*oniMl Rostar

The total time expanded was approximately 54
person months (170% more than was originally
estimated.

4.1 Original Project Estimates

The project, including evaluations and technical
report production, was expected to take less than 6
calendar months (the project was first estimated at
20 person-months [Petty, 1991]).

The original estimate discussed things which, in
retrospect, were ridiculous considerations, such as
how to translate comments and constants. To be
fair, when that was written the translation was
anticipated to be much closer to the C Simulator
than was to prove to be the case.

The estimate explicitly stated the project was to yield
a "language conversion, not a software redesign." A
particularly telling statement in the estimate
indicated Ada tasking would not play a role in the
new Simulator.

Time and again the Ada Team members agreed that
the decision to use Ada tasking was correct; some
felt it is Ada tasking that, more than any other
feature, showed Ada to be the right choice for
Simulator development. Having such a capability in
the language greatly simplifies the designer's work
and greatly increases portability.

While it is true the original estimate was missed by a
wide margin (running over 170%), the experiment
was of a much higher caliber than the original goal
outlined. The deviation from what was intended is
largely because of the seductive nature of the Ada
language.

435

S. Technical Problems S.2 Ada Compiler Limitations

A project as complex as this severely tests the
development tools used (hardware and software).
Difficult technical problems must be expected. The
major problems for this project were in the areas of
the PC's Real and Protected modes and compiler
limitations.

S.1 Real-mode Versus Protected Mode

In brief, the IBM PC and compatibles can operate in
two modes, "protected" and "real." DOS runs in real
mode, which has its roots in the earliest PC
architectures (the 8086 family).

The Alsys compiler produces protected mode code,
whereas the C Simulator is a real mode program.
However, the packet driver, which both Simulators
use to send and receive network packets, is a real
mode program, and so a protected/real mode
interface must stand between the Ada Simulator and
the packet driver GST did not have access to, and it
was impractical to build, a protected mode packet
driver). For packets being transmitted this is
straightforward, but handling incoming packets is
problematic.

Software to support these interactions is defined by
the DOS Protected Mode Interface (DPMI) [INTEL,
1993]. Since the DPMI specifies what the Ada
Team thought was needed, no particular difficulty
was anticipated once the problem was understood.

Unfortunately, the interfaces available to 1ST did not
implement a feature of the DPMI which was needed
(handling "call backs").

1ST avoided the problem by writing another real
mode program to field the packet interrupts and
queue incoming traffic. This new program is in the
form of a Terminate and Stay Resident (TSR)
program, and so remains active and accessible once
loaded. The Ada Simulator gets packets by polling
this new program.

Polling (in general) is not desirable, but no
alternative was found. The Ada Simulator only polls
when no other activity is scheduled which tends to
make the Ada Simulator show stress through lost
packets before entity behavior breaks down.

On the whole, the Ada Team was satisfied with the
Alsys Ada Compiler. Most of the other Alsys
supplied tools (in particular, AdaMake) appeared to
have problems and were abandoned quite early in the
project

5.2.1 Compilation Time
The Ada project was scheduled to be done on 33
MHz. 386 PCs with 4 megabytes of memory. As
soon as the compilers arrived it was clear the project
could not continue without more memory. Within 3
months it was necessary to switch to 486 based PCs
to continue. In spite of this, a system build took
about an hour 4 months into the project (for 20,000
lines of code).

After 6 months system compilation time was over 1
hour 35 minutes and it was obvious the Ada Team
would have to eventually reduce disk caches to the
point where compilation would be impractical.
Additional memory was installed bringing every
machine up to at least 16 megabytes. This allowed
disk caches to be expanded and was a great help.
Nonetheless, a great deal of our development work
involved "simple" changes which yielded a specific
chain of compilations which take about 20 minutes.

At each stage of the project, system reorganizations
were made to reduce file dependencies and so
compilation times

Experienced Ada professionals have shown no
surprise at the length of the compilations. The Ada
Team, however, which was accustomed to Borland
C++ compilers building the C Simulator in about 5
minutes, found the long compilations a constant and
serious irritant.

The long compilation time affected the less
experienced programmers the most. Some of the
part time student programmers never seemed able to
understand how to get the most out of a compilation
and their productivity suffered as a consequence.

At the project close a complete system build required
a minimum of 2 hours 16 minutes.

436

5.2.2 Compiler Bugs
There were serious problems with the Alsys compiler
support tools. AdaMake, for example, which was
supposed to help Ada programmers compile only
what was necessary never worked properly.
Borland's "make" utility was used in conjunction
with an 1ST developed dependency generator
(creating it was a non-trivial task).

The compiler itself showed some intermittent bugs
and one serious, consistent, bug.

The intermittent bugs were manifested as compiler
crashes during compilations. In the history of the
project (which probably generated at least 100,000
compilations) there were only about a dozen of these
unexplained crashes. These crashes appeared to be
caused by, or to cause, library corruption and so
often set work back several hours.

A serious bug appeared when a certain generic was
instantiated. The compiler would abort with an
internal error while compiling the file that contained
the instantiation. The problem was eventually
avoided by introducing dummy packages.

6. Results

reduced tool set It should be noted, however, that
the Ada protocol code is, as a consequence of the
different techniques used, much more
straightforward. Further, the Ada code, because of
Ada's exception handling capability, is much more
robust than the C version.

6.1.1 Performance Testing Methodology
Two questions must be answered to evaluate
performance: what objective conditions will be used
to indicate a lack of performance and what
parameters will be adjusted to illicit a breakdown in
performance?

To recognize stress (lack of performance)
objectively, a vehicle was told to route in such a way
as to cause it to collide with another vehicle (which
is driving in a straight line). Under sufficient stress,
the System Under Test (SUT) breaks down in such a
way that the vehicles do not collide, or, if network
traffic is sufficient it will discard packets. If the
vehicles do not collide as expected or if more than
1% of packets are discarded, the stress threshold is
considered to be passed (i.e., the SUT fails the test).

There are two fundamental types of stress which bear
on the Simulator: internal stress and external stress.

From the outset it was expected the Ada version
would be better in terms of software engineering
(human) issues but the C version would exhibit
better performance. The experiment confirms these
expectations.

6.1 Run-time Performance

Nobody on the Ada project expected the Ada
Simulator to out perform the C version. C is a
system implementation language; it allows virtually
any desired optimization. Further, the C Simulator
has undergone many revisions over the years
intended to improve performance.

The protocol code was written by the same person
(Craft) for both the C and Ada versions. Some of the
techniques used in the C rendition were deemed
inappropriate in an Ada design and were not carried
forward. Since the protocol author had optimized
the C version as best as he was able, it was unlikely
he would be able to get as good performance in the
Ada version since the work was done in Ada with a

6.1.1.1 External Stress
External stress comes about from attempts to interact
with the world outside of the Simulator's code and
internal data. This includes interaction with files
(reading a terrain database), interaction with a
human user (through the keyboard), and interaction
with remote Simulators through the network. Only
the third item was studied; it is universally
recognized that network traffic can cause Simulator
problems and tests for network stress are
manageable.

To avoid logistics problems in designing and
executing repeatable tests to be applied to the C and
Ada Simulators, a tool was developed to generate
traffic from many vehicles at a controllable rate. All
the network stress tests were done using this tool.

6.1.1.2 Internal Stress
Internal stress comes about as the Simulator is
required to carry out more work to maintain its
vehicles' representations and behaviors.

437

Both Simulators can support 12 vehicles without
stress (with their usual configurations). All tests
were done with 12 vehicles.

An important and expensive computation done for
each local vehicle is a LOS computation (used to
answer the question "can I see you?"). Being
computationally expensive and easily controlled (the
delay between updates is read from a configuration
file) it is a natural parameter for stress experiments.

6.1.2 Performance Analysis
Figure 1 captures the essence of the performance
results.

On the horizontal axis the Line of Sight rate is
shown, on the vertical axis the network load is
shown. Points indicate the boundary between
acceptable behavior and manifestations of stress.

0 0.5 1 1.5 2

Figure 1: Performance Threeholda lor the Ada and C

6.1.2.1 Optimizations
Because of the relatively poor performance of the
Ada Simulator relative to the C Simulator, methods
to improve the Ada Simulator's performance were
studied.

The Ada Team tried several methods: some of the
various checks generated by the compiler were
suppressed; direct rendezvous replaced some
instances of daisy chained message passing; and the
executive's priority was adjusted. The latter idea was
recognized as dangerous and unlikely to help.

None of these, individually or in combination, had
any effect out of the bounds of experimental error
except when there was no network traffic.

The effect of Ada constraint checks may often be
overstated, as (for example) they need only be done
when a type change is taking place. Nonetheless, the

checks do have some impact, so it was surprising to
see no improvement. The checks were shut off in
what were believed to be the most important areas.

Shutting off the checks in protocol code is not
practical as constraint errors are the basis for
filtering suspect packets. Even with this extreme
approach, no significant improvement was noted.

6.2 Software Quality

As is pointed out by [Sommerville, 1992], the state
of software science is such that we cannot directly
measure software quality. Rather, we develop
objective measurements for things we believe to be
related to the quality such as the program's size or
the number of conditions in the program. These
sections describe what was measured, how the
measurements were done, and the results of the
measurements.

6.2.1 Relative Sizes
The C sources consist of 58,185 lines; 32,373 of
those lines are neither blank nor comments. The
Ada sources consist of 64,233 lines, 45,288 lines of
which are neither blank nor comments. It may be
worth noting that the Ada version consists of about
30% comments and blank lines, while the C version
consists of about 44% blanks and comments. This
may simply indicate the C version is better
documented (it is, after all, a much more mature
product) or it may be a sign that the C version
requires more documentation to be understandable; it
is probably a combination of these and other factors.

Based on these figures, the complete Ada sources are
11% larger than the C sources, and the non-blank,
non-comment Ada sources are 40% larger than their
C counterparts.

The nature of Ada is such that people have come to
expect larger sources than when C is used (C is very
compact, using combinations of ++, ?:, loops whose
exit conditions contain more than tests, and the like,
whereas Ada is verbose, requiring end-if and end-
loop, null, etc.). Further, the Ada design
incorporates specific data types for almost every
contingency and this leads to larger source files.

The Ada Simulator sources contain 314 globally
visible functions and procedures, whereas the C

438

Simulator contains 432 functions and procedures
(this does not count macros).

The Ada sources consist of 249 files, the C Simulator
sources are made up of 138 "cpp" files and 78
"include" files, for a total of 216 files.

The Ada sources are divided among 4 directories,
with 176 package specifications. The C sources are
divided among 32 directories.

To give a graphical comparison of the two
Simulator's sources, figure 2 shows the relative
concentration of (all) lines, lines of code, functions
and procedures, and files between the two programs.
For example, 52% of the lines making up both
Simulators is found in the Ada version.

Lln*9

Lln«o of
Cod*

Functions I
Ptoc*dur«s

ril.a

luauuiuia ••»

"•••""""• 421

nininw 4e\

Figure 2: kalativ* Program Siz*s

6.2.2 Complexity
To measure software complexity a software tool was
developed to count the number of decisions made.
This metric has been in use for years [McCabe,
1976] and experience has shown it to be a reasonable
indication of the human perception of a program's
complexity.

Consider two programs of equal length, one with no
conditions (and so no indentation, just statement
after statement is executed, always in sequence)
while the other program has several tests, possibly
imbedded. Even if the programs are of equal length,
most people agree the latter is more "complex."

As a plausibility check on the tool developed, and
the method in general, it was used to select the "most
complex" of the Ada files and the "most complex" of
the C files. Before knowing the results of the test, a
subjective selection for the most complex file was
made by a senior team member.

Although the top Ada selection was a surprise, after
examining it was agreed that it was, indeed, very

complex. The tool's second choice matched the team
member's choice for first place. The top choice for
the C Simulator is complex but a pathological case,
the second choice matched the team's selection.

6.2.2.1 Complexity Results
It is disappointing to find the Ada tests are denser
than the C tests, this was not anticipated.

The C version contains 3,075 tests in 32,373 lines of
code (blanks and comments ignored). This means
there are 9.5 tests per 100 lines of C. The Ada
version contains 4,690 tests in 45,288 lines of code
(again, blanks and comments are ignored). This
means there are 10.4 tests per 100 lines of Ada.

The C version uses extensive headers (essentially test
free), many supplied by outside agencies containing
hundreds of lines which are little more than filler for
the purposes of this measurement To see if this
plays an important part, the calculations were re-
done excluding the C headers and excluding the Ada
files which contain nothing but package
specifications.

With these adjustments, the C version has 3,052 tests
out of 23,341 lines, or 13.1 tests out of 100 lines.
The corresponding Ada version has 4,625 tests in
36,574 lines, or 12.7 tests per 100 lines. Further
analysis along these lines (removing any remaining
specifications, removing "#define" from the C
sources) would be difficult and questionable.

It appears the C and Ada Simulator sources are of
about the same complexity using the described
metric.

6.2.3 Human Factors
The Ada Team members are familiar with, and have
worked on, both Simulators. All the remaining
members of the Team, and most of those who left
before the project end, have expressed the opinion
that the Ada Simulator is easier to understand. One
member, who left the project and later returned,
expressed the belief that the Ada Simulator was
easier to follow.

6.3 Reliability

There is no way to objectively determine reliability
for a product as complex as the Ada Simulator. At

439

best metrics are selected which should indicate the
overall health of the target software.

6.3.1 Reliability Metrics
A common hypothesis [Sommerville, 1992] is that
the number of "bugs" in software is related (possibly
proportional) to the number found in testing if the
testing is done well.

The Ada Team attempted to find the relative
frequency of errors in the two Simulators by
applying a set of identical tests to each.

6.3.2 Method Used to Locate Problems
Tests were designed and applied to each Simulator
and the results recorded. Most team members
contributed experiments to be run, usually in the
form of scripts to be processed.

6.3.3 Verification Results
Of 58 tests the C Simulator failed 19 tests and the
Ada Simulator failed 24 tests (failures are common
because these scripts were designed to make the
Simulators fail). In 4 tests the Ada failures were
minor, the problems are understood and could be
solved with just a little effort. One C failure was so
severe that it caused the C Simulator to crash and
required the PC to be re-booted.

Based on these raw statistics, it appears the Ada
Simulator is about 27% more error prone than the C
version. As already noted, however, 4 of the Ada
failures are of a minor nature and would have been
fixed had the Ada version undergone any serious
testing before this. Excluding these we get rough
parity between the Simulators.

The C Simulator is quite mature and has undergone
years of debugging. In contrast, the Ada Simulator
was brand new with no history of error removal. The
small difference in error frequency between the C
and Ada Simulators suggests that a similarly mature
Ada Simulator would have an advantage. The Ada
project spent no time seeking bugs; those uncovered
and repaired were found by happenstance during
development With some effort the Ada Team
believes the Ada Simulator would improve a great
deal and easily surpass the C Simulator's reliability.

7. Conclusions

Ada versions of programs do not have to be very
large by comparison with their C counterparts. 1ST
has produced an Ada equivalent of a complex and
sophisticated software product that is only 11%
larger than its C equivalent (40% larger if blank
lines and comments are ignored).

Another important realization is that it is difficult to
objectively determine whether one software approach
is superior to another. Not a single point of
evaluation was as clear cut as was hoped. It is
disappointing to have to continue to say that the Ada
Team, as a whole, believes the Ada Simulator is the
"better" product, but a clear demonstration of this
eludes us.

The complexity measure favors the Ada version but
only after excluding "include files" from the C
version and their (rough) equivalent, package
specifications, from the Ada version. This exclusion
does seem reasonable.

The Ada performance is uniformly inferior to the C
Simulator's performance. It is important to realize
the reason for this is not understood: various
attempts to improve performance were ineffective.
The network interface is considered a likely source
of problems but there is no solid objective evidence
of this.

People familiar with both systems (i.e., the Ada
Team members) think the Ada Simulator is a better
product

7.1 Key Questions

Now that 1ST has built a Simulator in Ada based
directly on a well understood and sufficiently
complex C Simulator, it is possible to take a stand on
some of the most common questions regarding Ada
projects.

• Is the resulting code too large?

No. The Ada equivalent is only about 10%
larger than the C version (40% if blanks
and comments are excluded). This hardly
seems unreasonable if the gains in
maintainability and understandability are

440

granted. If an Ada project "balloons" there
may be a design flaw.

• Is the resulting code too slow?

Possibly. There is no escaping the fact that
the Ada Simulator cannot handle nearly as
much traffic as its C equivalent. Because of
the protected mode/real mode dilemma it is
quite possible that the Ada Simulator is
being unfairly penalized To determine this
Ada drivers for the protocol board need to
be written. In the meantime, this remains
an open question. The quality of the
compiler is also an important issue here.
However, contrary to popular belief Ada's
constraint checking does not appear to be a
major factor.

• Is the development process too cumbersome?

Possibly. The target Simulator is a
relatively small project and yet we found
ourselves suffering with, what seemed to us,
very long compilations. Eventually some
compromises were made to speed up
compilations. Nonetheless, it does not
appear there will be a "compilation
explosion," once we passed a certain size we
were able to keep the compilation times
under control and, in some cases, reduced
compilation time. Better tools may reduce
development problems.

• Is the lack of pointers to functions a major
handicap?

No. At the time a function pointer is
declared the profile (signature) of the
function is specified. Since the profiles are
consistent it is an easy matter to replace the
function pointer with an enumeration
variable to be used in conjunction with a
call dispatcher. Instead of calling the
function directly, the dispatcher is called
with the same parameters as the target
function except that it also takes an
enumeration value to select the desired
function. There are reasonable answers to
the objections sometimes made to this
approach.

8. References

Craft, M. A., and Petty, M. D. (1994).
"Experimental Conversion of the 1ST Computer
Generated Forces Simulator from C to Ada",
Technical Report IST-TR-94-13, Institute for
Simulation and Training, April 20 1994.

Danisas, K., Smith, S. H., and Wood, D. D. (1990).
"Sequencer/Executive for Modular Simulator
Design", Technical Report IST-TR-90-1,
Institute for Simulation and Training, University
of Central Florida, 16 pages.

Gonzalez, G, Mullally, D. E., Smith, S. H.,
Vanzant-Hodge, A. F., Watkins, J. E., and Wood,
D. D. (1990). "A Testbed for Automated Entity
Generation in Distributed Interactive
Simulation", Technical Report IST-TR-90-15,
Institute for Simulation and Training, University
of Central Florida, 37 pages.

INTEL, (1993) "An Introduction to the DOS
Protected Mode Interface", Intel Corp, April
1993, 20 pages.

McCabe, T.J. (1976). "A complexity measure".
IEEE Transactions Software Engineering, 2 (4),
pages 308-320.

Petty, M D. (1991). "Intelligent Autonomous
Behavior by Semi-Automated Forces in
Distributed Interactive Simulation", Technical
Report IST-PR-91-12, Institute for Simulation
and Training, November 15 1991.

Petty, M D. (1992). "Computer Generated Forces in
Battlefield Simulation", Proceedings of the
Southeastern Simulation Conference 1992, The
Society for Computer Simulation, Pensacola FL,
October 22-23 1992, pp. 56-71.

Petty & Smith (1991). "Intelligent Autonomous
Behavior by Semi-Automated Forces in
Distributed Interactive Simulation", A proposal
submitted to PM TRADE in response to BAA
NTSC 91-02 by the Institute for Simulation and
Training.

Smith, S. H., Karr, C. R, Petty, M. D., Franceschini
R W., and Watkins, J. E. (1992a). "The 1ST
Computer Generated Forces Testbed", Technical
Report IST-TR-92-7, Institute for Simulation and
Training, University of Central Florida.

Smith, S. H., and Petty, M. D. (1992b). "Controlling
Autonomous Behavior in Real-Time Simulation",
Proceedings of the Southeastern Simulation

441

Conference 1992, The Society for Computer
Simulation, Pensacola FL, October 22-23 1992,
pp. 27-40.

Sommerville, Ian (1992). "Software Engineering,
Fourth Edition". Addison-Wesley Publishing,
Reading, Massachusetts.

9. Authors' Biographies

Michael A. Craft is a Research Associate working
for the Intelligent Simulated Forces project at the
Institute for Simulation and Training. He has a
Master of Science degree in Mathematics and a
Master of Science in Computer Science. His
research interests are in the areas of Software
Engineering, Real Time Systems, Simulation, and
Network Protocols. Mr. Craft has a broad and
diverse background ranging from Office Automation
to Missile Tracking Systems.

Mikel D. Petty is a Program Manager at the Institute
for Simulation and Training. He currently manages
the Plowshares emergency management simulation
project; previously he led Computer Generated
Forces research at 1ST. Mr. Petty has a B.S. in
Computer Science from the California State
University Sacramento and a M.S. in Computer
Science from the University of Central Florida. His
research interests are in simulation and artificial
intelligence.

442

Comparison of the A* and Iterative Deepening A* Graph Search
Techniques

Clark R. Karr, Sumeet Rajput, and Larry J. Breneman
Institute for Simulation and Training

3280 Progress Dr., Orlando, FL 32826
ckarr@ist.ucf.edu

1. Abstract

A* is a time-efficient search algorithm but shows
exponential growth in memory usage. Iterative
Deepening A* (IDA*) has been shown to be space-
efficient in searching trees. This paper compares the
two algorithms in terms of run time and memory
usage in graph search within a route planning
algorithm. This research shows IDA* to be space-
efficient in searching graphs as well, but the run
times are very high. To reduce run times, we propose
optimizations to the algorithm that allow IDA* to
approach A*'s run times, while using less memory.

2. Introduction

A* is a time-efficient search algorithm and has been
used for route planning in Computer Generated
Forces (CGF) systems (Karr 1995) (Loral 1994).
Because A* shows exponential growth in memory
usage, Campbell (1995) use a variant of A*, Iterative
Deepening A* (Korf 1985), that has linear growth in
memory usage.

Korf (1985) shows Iterative Deepening A* (IDA*) to
be space efficient in searching trees. It is unclear
how IDA* would perform in a graph search. The
motivation for this study was to determine the time
and space efficiency trade offs for graph search
within the CGF route planning domain.

In the Route Planner (RP) described in Karr (1995), a
two-dimensional grid is overlaid over the terrain.
The grid is divided into a number of grid cells and is
populated with obstacles (canopies, treelines, rivers,
and lakes). The grid cells contain Sample Points
which can be reached from other grid cells. These
Sample Points are treated as nodes in a graph and a
search of the graph finds routes. The RP uses the A*
algorithm (Winston 1992) as the search algorithm.
For this study, a version of the RP was built that used
the IDA* algorithm in place of A*. The two
algorithms could then be directly compared.

3. Algorithm descriptions

The following sections present brief descriptions of
the A* and IDA* algorithms.

3.1 A* search algorithm

The A* algorithm is a branch-and-bound search, with
an estimate of the remaining cost, combined with the
dynamic-programming principle, (Winston 1992).
When the estimate of the remaining cost is a lower-
bound on the actual cost, A* produces optimal
solutions. This estimate of the remaining cost is
called the "underestimate". Route cost is the sum of
the cost of the partial route and the underestimate to
complete the route. A natural underestimate in route
planning is the "cheapest" cost of a linear route from
the last point on a partial route to the destination.
The dynamic programming principle improves search
efficiency by retaining only the best partial solution to
each point for further analysis.

The following pseudo-code describes the A*
procedure (Winston 1992).

Algorithm A*

1. Form a one-element queue consisting of a zero-
length route that contains only the root node.

2. Until the first route in the queue terminates at the
goal node or the queue is empty,

2.1 Remove the first route from the queue;
create new routes by extending this route to
the neighbors of the terminal node.

2.2 Reject all new routes with loops.
2.3 If two routes reach a common node, retain

only the route with the minimum cost.
2.4 Insert each new route into the queue in

ascending cost order.

3. If the goal node is found, announce success;
otherwise, announce failure.

443

3.2 Iterative Deepening A* (IDA*)

IDA* works by doing a depth-first search (DFS) from
the initial state until the total cost of the current
branch being expanded exceeds a given threshold. If
the goal is not reached, the threshold is increased and
the DFS is repeated with the new threshold. The
threshold starts at the underestimate from the start
and the destination. After each iteration the new
threshold is set to the minimum cost of all the values
that exceeded the previous threshold.

IDA* uses less memory because at any given point in
the DFS, only the stack of states corresponding to the
current search path is stored. The pseudo-code
description of the IDA*, as it was used in the RP, is:

Algorithm IDA*

The Main Loop
1. Initialize threshold to the linear distance

between the start and the destination.

2. Until a route is found,
2.1 Do IDA* (call Procedure IDA*) search

from the start.
2.2 Update the threshold for the next iteration.

Procedure IDA*
1. If the route being expanded reaches the goal

node announce success; otherwise,

2. Determine the locations that are reachable from
the terminal node.
2.1 Expand the route to the next unvisited

reachable location. When all are visited,
exit.

2.2 If the cost of the expanded route is greater
than the threshold, reject this route;
otherwise,

2.3 Call IDA* recursively.
2.4 Go to 2.1.

We start by initializing the threshold to the linear
distance between the start and the destination (the
underestimate). Then, until a route is found, the
threshold is advanced and IDA* is called starting at
the start. As the threshold increases between
iterations, the algorithm can be seen progressing in
"waves".

The IDA* procedure is recursive. The route is
expanded to each of the reachable locations from the
last route point. If the cost of expanding the route is
below the threshold, we continue the DFS from the

end of the route. If the cost of the expanded route
exceeds the threshold, the route is rejected and IDA*
backs up. Whenever the threshold is exceeded, the
cost of the route is a candidate for the next iteration's
threshold. The minimum route cost that exceeds the
threshold becomes the next iteration's threshold. The
expansion of all nodes up to the current threshold
constitutes an iteration.

The number of reachable neighbors from a location is
the Branching Factor (BF).

 A

v v '.,-

•* :;4 —_.

y i X

Figure 1: A location with a Branching Factor of eight

For example, in Figure 1, location A's BF is eight
because eight locations in neighboring grid cells are
reachable. Korf (1985) gives an equation that states
the relationship of average BF (i.e., the average of the
BFs of all nodes that were expanded in the search) to
the run time of the algorithm. The equation reveals
that DDA* performance relative to A* improves as the
BF increases. Because the maximum BF in the RP is
24, this result provided an additional motivation to
compare A* and IDA*.

4. Experimental setup

In the RP, route planning involves searching a grid
based terrain abstraction for an optimal route (Karr
1995).

Two factors can affect the performance of the search
algorithms.

• Abstract Obstacle Density in the grid and
• Grid cell size.

4.1 Abstract Obstacle Density

Abstract Obstacle Density (AOD) is a measure of the
number of abstract obstacles present inside the grid.
The terrain is characterized as: Open, Mixed, or
Closed. Closed terrain has the highest AOD. Open
terrain contains no or very few obstacles and its AOD
is nearly zero. Mixed terrain lies between Closed and
Open. The AOD was determined subjectively.

444

4.2 Grid cell size

In Section 5.2.2, we discuss the affects of increasing
the threshold between iterations by a fraction of the
grid cell size.

4.3 Classification of scenarios

Eight scenarios (A through H) were designed for
testing the algorithms' performance. Depending on
the AOD of the grid and the grid cell size the eight
scenarios were developed:

Terrain type
Grid cell size (meters)

5 85 300 530 550
Open A

Mixed F G B C
Closed D E H

Table 1: Classification of scenarios

Each scenario represents conditions for routing in a
specific type of terrain using a specific grid cell size.
For example, scenario B utilizes a grid lying on
Mixed terrain with the grid cell size being 300
meters.

5. Results

For each algorithm, we compute the time to find a
route and the total memory utilized. All the
experimental runs were done once; no run to run
variability was expected.

5.1 Comparison of A* and IDA*

The run times of the two algorithms are shown in
Figure 2.

Figure 2: Run times (seconds) of A* and IDA*

For all scenarios, IDA* takes substantially more time
than A* in determining the route. For some cases,
e.g., scenario F, the difference is very large. Table 2
summarizes the run times of A* and IDA*.

Algorithm Best Worst Average
A* 1.10 9.62 4.58

IDA* 22.09 424.78 161.55

Table 2: Run times (seconds) of A* and IDA*

On average, A* is 35.27 times faster than IDA*.

The memory usage of the two algorithms is shown in
Figure 3. Note that the bars showing A*'s and JDA*'s
memory usage have been flipped with respect to the
bars in Figure 2.

Figure 3: Memory usage (Kb) of A* and IDA*

445

For all scenarios, A* uses substantially more memory
than EDA* in determining the route. For some cases,
e.g., scenario C, the difference is very large. Table 3
summarizes the memory usage of A* and IDA*.

Algorithm Best Worst Average
A* 10.77 24.34 16.92

IDA* 2.59 5.11 3.25

Table 3: Memory usage (Kb) of A* and IDA*

On average, A* consumes 5.21 times as much
memory as IDA*.

These two results show that even though IDA* is
more space efficient, it is less time efficient than A*.
The space-time tradeoff, mentioned in Computer
Science, is seen here.

5.2 Optimizing IDA*

By using additional memory, IDA* can be optimized
to yield run times that approach A*'s. The following
sections discuss the optimizations that were done to
speed up IDA*.

5.2.1 Storing reachable locations in the grid cell
In a graph, determining a node's neighbors is an O(n)
time operation. When neighbors are needed, an
Adjacency Matrix (Even 1979) type structure is
usually consulted. In the RP, the neighbors of each
cell are stored but the reachable locations within
neighboring cells are computed during the search. A*
determines a node's neighbors once as a consequence
of the dynamic programming principle (Winston
1992). Because IDA* makes several iterations over
parts of the grid, recomputing reachable locations
during the search penalizes IDA*.

In order to establish a fair comparison with A*, the
IDA* procedure was modified so that when a node is
expanded its reachable locations are stored as part of
the grid cell structure. In subsequent iterations, this
information is available and the time to recompute the
reachable locations is saved.

The run times and memory usage of A* and the
optimized IDA* version
locations in the grid cell,
shown in Figures 4 and 5.

that stores reachable
designated IDA*p, are

Figure 4: Run times (seconds) of A* and IDA*p

The results reveal a substantial drop in the run times
of IDA*. Table 4 summarizes the run times of A*
and IDA*p.

Algorithm Best Worst Average
A* 1.10 9.62 4.58

IDA*p 4.51 53.08 18.55

Table 4: Run times (seconds) of A* and IDA*p

On average, A* is 4.05 times faster than IDA*p.

k •jZ<D

r*

\
. m

BCD S, DtKp

3

1Q00 o
E

DA"

1
HO

A- ! VB H
on

H

SUBWOB

Figure 5: Memory usage (Kb) of A* and IDA*p

As expected, the memory consumption of IDA* has
increased because reachable locations are stored as
part of the grid cell. However, for most of the
scenarios the memory usage is still below that of A*'s.
Table 5 summarizes the memory usage of A* and
IDA*p.

446

Algorithm Best Worst Average
A* 10.77 24.34 16.92

IDA*p 6.58 19.96 10.94

Table 5: Memory usage (Kb) of A* and IDA*p

On average, A* consumes 1.55 times as much
memory as IDA*p.

It is not possible to predict the additional memory
consumption caused by using IDA*p for any
scenario. In the worst case, the entire grid would be
searched and the memory for reachable locations for
all cells would be an upper bound. However, this is
likely to be considerably less than A*'s worst case
memory requirements.

5.2.2 Using larger thresholds
After each IDA* iteration, the threshold is set to a
new threshold (Section 3.2). Normally, the new
threshold is the minimum value of the route costs that
exceeded the previous threshold. The threshold
increment was observed to generally be small (1-2
meters). To test whether a larger increment improved
performance, IDA* was modified to use a user
defined advancement_increment.

If the difference between the previous and new
thresholds is less than the advancementjncrement,
the new threshold is set to the sum of the previous
threshold and the advancementjncrement.

Figure 6 shows the run times of IDA* using different
advancement increments. The p in the notation
lDA*p, t=X means that IDA* stores reachability
information to neighbors in the grid cell (Section
5.2.1). The t=X means that advancementjncrement
is set to X times the grid cell size.

The shape of the run time curves indicate that as soon
as user-defined threshold increments are introduced,
run times decrease, and then increase with the
increments; i.e., the curves "dip" initially and then
rise. The best run times are seen at the "dip". This
may seem counter-intuitive as one would expect the
algorithm to compute a route faster when larger
advancementincrements are used.

\
/ \\ \ / /

\\ •
1 \\ /

/ *

vV*"^"^' •"***"-w iS^ f

\^S**J* *Jt Si /'7

 1 1— l__l— —1 1

C c 5

I s
i a

Figure 6: Run times (seconds) of IDA* with different
thresholds

IDA*p, t=l/32 shows the fastest run times among
different EDA*p, t=X versions for four scenarios (A,
B, C, and E). IDA*p, t=l/4 had the fastest run times
on two scenarios (D and G). The fastest run time for
scenario F occurred at t = 2 apparently due to the
small (5 meter) grid size. IDA*p, t=l/32 showed the
fastest run time over all scenarios. Figure 7 shows
the run times of A* and IDA*p, t=l/32.

Figure 7: Run times (seconds) of A* and IDA*p,
t=l/32

Table 6 summarizes the run times of A* and IDA*p,
t=l/32.

447

Algorithm Best Worst Average
A* 1.10 9.62 4.58

IDA*p, t=l/32 4.01 52.80 14.76

Table 6: Run times (seconds) of A* and IDA*p,
t=l/32

On average A* is 3.22 times faster than IDA*p,
t=l/32.

Figure 8 shows the memory usage of IDA* using
different advancement increments.

©

3D
,-* /

-•-A

• •'

9 / ~*~C

• / -*-D

r i»

_(-E

-•-F

-i-e

10 4= =*=

—H

0

£ \ I 8 « CO

"ii u Ii II
2
a

0

c L —- *J a. Q. a. a. < < 5" 5* 5 Q Q o
Q Q O n

Figure 8: Memory usage (Kb) of IDA* with different
thresholds

Memory usage is lowest for the plain IDA*, but
increases across the other versions because
reachability information to the neighbors is kept in
the grid cells.

In contrast to run times, IDA*p, t=l/32 shows the
least increase in memory usage on all but one
scenario (D) whose t = 1/16 had slightly less memory
usage. Figure 9 shows the memory usage of A* and
IDA*p, t=l/32.

Figure 9: Memory usage (Kb) of A* and IDA*p,
t=l/32

Table 7 summarizes the memory usage of A* and
IDA*p, t=l/32.

Algorithm Best Worst Average
A* 10.77 24.34 16.92

IDA*p, t=l/32 8.15 19.92 12.13

Table 7: Memory usage (Kb) of A* and IDA*p,
t=l/32

On average, A* consumes 1.39 times as much
memory as IDA*p, t=l/32.

6. Conclusions

This study compared the performance of A* and
IDA* on graph search in a grid based terrain
abstraction for route planning. The experiment
showed A* to have faster run times but greater
memory usage than IDA*'s.

Some techniques for optimizing EDA*'s run time
performance were examined. These techniques yield
run times that approach those of A*'s while increasing
memory usage.

In Table 8, the algorithms are shown ranked in
increasing order of run times.

448

Algorithm Best Worst Average
A* 1.10 9.62 4.58

IDA*p, t=l/32 4.01 52.80 14.76
IDA*p 4.51 53.08 18.55
IDA* 22.09 424.78 161.55

Table 8: Summary of run times (seconds)

In Table 9, the algorithms are shown ranked in
decreasing order of memory usage.

Algorithm Best Worst Average
A* 10.77 24.34 16.92

IDA*p,t=l/32 8.15 19.92 12.13
E)A*p 6.58 19.96 10.94
IDA* 2.59 5.11 3.25

Table 9: Summary of memory usage (Kb)

Table 8 and 9 show the expected inverse relation
between time and space efficiency.

Which algorithm is "better"? For graph searches,
where memory usage is not a constraint (i.e., the
search space is "small" or adequate memory is
available), A* appears the better choice. When
memory is a constraint, IDA* provides a memory
efficient alternative. Because A*'s memory usage
grows exponentially, IDA*'s linear growth rate is
attractive. To obtain the best run time performance,
two optimizations are available for IDA*. First, the
neighbors (i.e., reachable locations) of each node
should be stored in the search space rather than
recomputed during search. Second, a small
advancement_increment can be employed.

7. References

Karr C. R., and Rajput S. (1995). "Unit Route
Planning", Proceedings of the Fifth Conference
on Computer Generated Forces and Behavioral
Representation, University of Central Florida,
Orlando, Florida.

Loral (1994). "LibRoutemap documentation", Loral
Advanced Distributed Simulation, Cambridge,
Massachusetts, 1994.

Campbell, C. E. (1995). "Route Planning in CCTT",
Proceedings of the Fifth Conference on
Computer Generated Forces and Behavioral
Representation, University of Central Florida,
Orlando, Florida.

Korf, R. E. (1985). "Iterative-Deepening-A*: An
Optimal Admissible Tree Search", Proceedings

of IJCAI-85, Morgan Kaufmann, Los Altos, CA,
1985, 1034-1036.

Winston, P. H. (1992). Artificial Intelligence. Third
Edition, Addison-Wesley Publishing Company,
1992.

Even, S. (1979). Graph Algorithms. Computer
Science Press, 1979.

8. Authors' biographies

Clark R. Karr is a Program Manager and the
Principal Investigator of the Intelligent Simulated
Forces project at the Institute for Simulation and
Training. Mr. Karr has a Master of Science degree in
Computer Science. His research interests are in the
areas of Artificial Intelligence and Computer
Generated Forces.

Sumeet Rajput is an Associate Engineer in the
Intelligent Simulated Forces project at the Institute
for Simulation and Training. Mr. Rajput has a Master
of Science degree in Computer Science from the
University of Central Florida. His research interests
are in the areas of Computational Geometry, Physical
Modeling, and Computer Generated Forces.

Larry J. Breneman provides software support to the
Institute for Simulation and Training. Mr. Breneman
has a Master of Science degree in Computer Science
from Bowling Green State University, Ohio.

449

Intervisibility Heuristics for Computer Generated Forces

Sumeet Rajput, Clark R. Kan-, Mikel D. Petty, and Michael A. Craft
Institute for Simulation and Training

3280 Progress Dr., Orlando, FL 32826
srajput@ist.ucf.edu

1. Abstract

Intervisibility between entities in a Distributed
Interactive Simulation (DIS) environment is a
mandatory, computationally expensive process.
Computer Generated Forces (CGF) systems must
frequently determine the intervisibility status between
each of its controlled entities and each of the other
entities in the simulation. Previous work has focused
on developing algorithms to perform intervisibility
determinations as quickly as possible. In this work,
the problem was approached differently. Instead of
speeding each intervisibility determination, heuristics
were developed for reducing the number of
determinations. The heuristics reduced intervisibility
determinations with the savings ranging from 10% to
50%. The computational savings had negligible
negative effect on the CGF entities' behavior with an
average delay in sightings of 0.3 to 0.5. These results
are independent of terrain representation and thereby
applicable to any CGF system.

2. Intervisibility concepts

This section describes some of the basic concepts for
intervisibility.

2.1 Definitions

Before the question "Does an entity see another
entity?" is answered within a CGF system, the
question "Is it possible for the entity to see the other
entity?" must be answered? Typically, CGF
systems' "sighting models" determine if entities "see"
one another and incorporate the effects of attention,
angle of view, weather, obscurants, time of day, and
the details of sensor systems. However, sighting
models are active only after "intervisibility" between
two entities has been established. An intervisibility
determination establishes or denies the existence of
an unblocked Line of Sight (LOS) between two
entities.

Establishing intervisibility between two entities
involves checking to see whether terrain features
(such as hills) or other objects (such as other
vehicles) prevent a ray of light from traveling from

one entity to the other. If a ray of light travels
unhindered between two entities, the LOS is
"unblocked". For the remainder of this discussion,
the term "see" refers only to an unblocked LOS and
does not imply that a sighting model has determined
that an entity has sighted another. The notation A i-»
B will be used to mean A "can see" B. Note that
intervisibility, as used in this discussion, is
symmetric; if A can see B then B can also see A.

The phrase "intervisibility update" (IU) is used when
an entity determines which of its opponents it can see.
If there are n opponents in a scenario, A will do n
individual (i.e., A-to-B) intervisibility determinations
as part of an IU. The periodicity of IUs is determined
by the "intervisibility update rate" (IUR).

Whenever the intervisibility status changes (from
blocked to unblocked or vice-versa) an intervisibility
"transition" is said to occur.

2.2 Computational methods and cost

Since extensive terrain checks are required to
determine intervisibility status (blocked or
unblocked) and the checks themselves are
complicated, it comes as no surprise that the
intervisibility computation taxes a system's resources.
Very high intervisibility update rates can load a CGF
system so much that the generated vehicle behavior
degrades. Thus, it is important that the time spent in
performing intervisibility determinations be reduced
without sacrificing the tactical behavior of vehicles.

2.3 Statement of the problem

The goal of the research described in this report is to
reduce the total computational load of intervisibility
determinations on a CGF system. The reduction is to
be achieved in a manner that has a minimum impact
on the realism of the CGF entities' behaviors
generated by the system.

IST's previous intervisibility research focused on
efficiently performing each intervisibility
determination within a polygonal terrain database
(Petty et. al. 1992b). For the current work, an attempt

451

was made to reduce the number of intervisibility
determinations made by a CGF system. The
approach taken was to design, implement, and
evaluate heuristics which would decide which
intervisibility determinations could be skipped or
delayed without affecting the CGF entities' behavior.
See (Rajput et. al. 1994) for a complete description of
this project. Because this heuristic approach is
independent of terrain database format, the heuristics
described and evaluated herein can be used in any
CGF system.

3. Intervisibility in the 1ST CGF Testbed

Under the sponsorship of ARPA and STRICOM, 1ST
has been conducting research in the area of CGF
systems, seeking to increase the realism and
autonomy of CGF behavior. A key product of that
sponsorship is the 1ST CGF Testbed. The 1ST CGF
Testbed is a CGF system that provides an
environment for testing CGF behavioral control
algorithms (Danisas et. al. 1990, Gonzalez et. al.
1990, Petty 1992a, Smith et. al. 1992a, and Smith et.
al. 1992b). This section discusses the way
intervisibility is done in the 1ST CGF Testbed and the
data structures used to track entity intervisibility
status, i.e., who has intervisibility to whom.

3.1 Intervisibility determination algorithm

Algorithm F (Petty et. al. 1992b), the Grid edge
traversal method algorithm, is used in the 1ST CGF
Testbed for computing intervisibility between entities.
The CGF Testbed's internal terrain database format is
a polygonal database. The surface of the terrain is
represented in the database by contiguous non-
overlapped polygons; the 3D vertices of each polygon
are used to compute the height of any point within the
polygon. The polygons are represented as edge lists
and vertex lists within 125 meter2 grids.

To determine intervisibility all edges of the polygons
in the grids containing the LOS are checked for
intersection with the LOS in two dimensions. If an
edge/LOS intersection is found, the algorithm
calculates whether the intersection lies above or
below the LOS. If above, the LOS is blocked by the
polygon edge; otherwise is unblocked by that edge.
The number and complexity of calculations produce a
time consuming computation.

3.2 Sightings list and intervisibility update
duration

Each entity maintains a sightings list, which is a
doubly linked list containing SIGHTTNGS_ENTRY
records. Each SIGHTINGS.ENTRY record
describes the entity on whom sighting is being done,
and intervisibility status (ERROR, INVISIBLE,
DETECTED, RECOGNIZED and IDENTIFIED.).

During an IU, an entity does point-to-point
intervisibility determinations to all target entities
within visual range. Depending on the result of the
point-to-point intervisibility determination (can the
target entity be seen?) the status of the target entity is
updated. New entities (those not already on the
sightings list) are added to the list. Target entities
which have remained invisible for a time greater than
the "sighting persistence" limit are removed from the
sightings list.

Receipt of an IU message triggers an entity to do its
intervisibility update. When the intervisibility update
is completed, the entity sends itself another IU
message. Table 1 describes the terms used in
connection with intervisibility updates.

Term Description

IUD Intervisibility Update Duration. This is
the time between successive intervisibility
updates and can vary as the simulation
proceeds. In the 1ST CGF Testbed this is
measured in one hundredths of a second.
For example, an IUD of 25 means that
intervisibility updates would be done
every 0.25 seconds.

IUR Intervisibility Update Rate. This is the
frequency of the intervisibility updates
and is the inverse of IUD. Thus, an IUD
of 25 yields an IUR of 4 (i.e., 4 updates
per second).

BUD Base Update Duration. The IUD is
initially set to this value which is read
from a configuration file (sim.lod). The
BUD is a constant for the simulation and
is also measured in one hundredths of a
second.

BUR Base Update Rate. This is the initial
frequency of the intervisibility updates
and is the inverse of the BUD

Table 1: Intervisibility update durations and rates

452

Ideally, an IUD of 25 would cause an entity to do 4
intervisibility updates per second (an IUR of 4), while
an IUD of 400 would, ideally, cause the entity to do 1
update every 4 seconds (an IUR of 0.25). If we are
using an IUD of 100, we expect updates to be done at
t+1 seconds, t+2 seconds, etc. The "ideal" IUR is
always a maximum because of the systems clock
granularity and various kinds of system overhead.

Although at lower IURs (i.e., high IUDs) delays due
to system overhead are insignificant, one type of
heuristic, Continuous Intervisibility Determination
Avoidance (CIDA), Section 4.1.5, requires precise
message delays because of the high message rates
involved. In order to achieve the message rate for
these heuristics, the software makes an adjustment to
the message delay.

4. Intervisibility heuristics

4.1.2 Symmetry heuristic
As already noted, intervisibility is symmetric and,
equally important, lack of intervisibility is also
symmetric. An obvious heuristic is to inform B when
A determines that AHB. B keeps this result in a
scratch area (an area in memory containing historical
and heuristic specific information). When B does an
intervisibility determination, it first consults the
scratch area for an AHB result. If the interval
between A H* B and "now" is "small", the result
supplied by AHB is accepted. Otherwise, it is
assumed that A or B has moved enough to invalidate
the determination and B l-» A is determined.

4.1.3 History heuristic
It is often the case that when the outcome of an
experiment or observation is consistent over time,
people begin to assume the next outcome or
observation will be the same.

This section discusses the types of heuristics that
were implemented and their implementation details.

4.1 Types of heuristics

Generally, intervisibility heuristics are of two types:
physical and behavioral. Physical heuristics attempt
to reduce the number of intervisibility determinations
by using some physical characteristic of intervisibility
whereas behavioral heuristics exploit vehicle
behavior.

A good example of a physical heuristic is the
symmetry heuristic (Section 4.1.2). It is based on the
physical nature of light that if A can see B then B can
see A. Thus, the physical nature of light is the basis
behind this heuristic.

Behavioral heuristics attempt to reduce the
intervisibility determinations by using some behavior
being done by an entity. The coarse-grain and fine-
grain heuristics are all behavioral heuristics.

4.1.1 Varying the base update rate
The frequency of intervisibility updates is controlled
by the intervisibility update duration (IUD). The IUD
is initially set to the base update duration (BUD).

For the problem at hand, it is reasonable to assume
that if A H* B for a "long" time, then it is likely that
A H» B the next intervisibility update. Similarly, if A
doesn't see B for a "long" time, then it is likely the A
will not see B the next intervisibility update.

The history heuristic is based on this idea. The
heuristic tracks the number of consecutive
intervisibility determinations that have returned the
same intervisibility value. When a threshold value is
passed, intervisibility determinations are skipped.
When a transition is made, determinations are not
skipped until a sufficient history accumulates.

4.1.4 Discrete intervisibility determination
avoidance (DIDA) heuristics
The idea is to reduce intervisibility computation by
skipping some of the intervisibility determinations for
an entity. The role of the heuristic is to decide when
to skip. DIDA heuristics are also known as coarse-
grain heuristics.

For DIDA heuristics, the IUR, which had been
initially set to the BUR, is not modified. Instead,
intervisibility rate reduction is accomplished by
skipping selected A-to-B intervisibility
determinations.

In battles fought in obstructed or hilly terrain, a low
IUR may have a deleterious effect on the scenario.
Sightings that could have been possible during
periods of brief intervisibility may be missed. Hence,
entities that could have been destroyed may survive to
change the coarse of the battle.

Boolean heuristics are desired for discrete
intervisibility determinations. The only choice is
either to skip or not to skip the A-to-B intervisibility
determination under consideration.

453

The main fault with this technique is its granularity.
If the BUR is set as low (i.e., as infrequent) as is
practical for realistic behavior, any skip (unless
cunningly selected) is apt to cause behavior
deterioration due to missed sightings. A natural
tendency is to increase the BUR when discrete
avoidance techniques are employed.

4.1.5 Continuous intervisibility determination
avoidance (CIDA) heuristics
With CIDA heuristics, the interval between
intervisibility determinations (IUD) is not necessarily
an integer multiple of the BUD. The heuristics guess
how long it is safe to wait until the next intervisibility
determination based on the behavior of the entities in
the simulation. CIDA heuristics are also known as
fine-grain heuristics.

An optimal continuous avoidance algorithm would
require separate IU messages for each A-to-B
intervisibility determination being considered. This
approach was not considered for this project because
of the considerable programming and run time
overhead involved.

Another approach is to adjust the interval between IU
messages but this has the disadvantage of delaying a
complete intervisibility update by an entity in order to
delay a specific A-to-B intervisibility determination.

One practical technique is to approximate continuous
delays for individual intervisibility determinations by
using a relatively high IUR (in comparison to the
BUR) in combination with the discrete techniques.
This "fine-grain" approach is supported in these
experiments. With suitable parameter adjustments
(no algorithmic changes), the fine-grain technique
will delay most intervisibility determinations most of
the time and "intelligently" select which A-to-B
intervisibility determinations should be applied for a
given IU message. With a high IUR, a reasonable
approximation of arbitrarily selected delays between
A-to-B intervisibility determinations is feasible.

CIDA heuristics should yield a continuum of values.
For convenience, all such functions are constrained to
yield a range from zero to one. Zero indicates a
minimum delay should be used (another intervisibility
determination is needed soon), whereas one indicates
the next intervisibility determination may be delayed
by the maximum allowed interval (see Section 4.2).

The IUR should be high enough to approximate
continuous delays substantially better than the BUR.

But care should be taken that a high IUR does not
overload the system with IU messages. In these
experiments the IUR is obtained by multiplying the
BUR by a RATE factor. This value indicates the
number of times intervisibility checks are actually
requested by the system as a multiplier of the BUR.

4.1.6 Composite heuristics
The composite heuristics are composed of sub-
heuristics which vote whether to do an intervisibility
determination. Each sub-heuristic computes a metric
(M) value based on certain characteristics of the
current simulation state. The computed metrics for
the various sub-heuristics are used to determine a
weighted average. If the weighted average exceeds a
threshold, an intervisibility determination is skipped.

Sighter and target-based heuristics (Table 2) lend
themselves to being composite heuristics. Composite
heuristics can be either discrete (coarse-grain) or
continuous (fine-grain). The three letter abbreviation
for each heuristic appears in Table 2.

Characteristic

Heuristic Composite Discrete

(coarse-

grain)

Continuous

(fine-grain)

Varying the BUR No

Symmetry No Sym

History No His Fgh

Sighter-based Yes Sgt Fgs

Target-based Yes Trg Fgt

Table 2: Implemented heuristics and their
characteristics

4.2 Update rate limits for heuristics

Although DIDA and CIDA heuristics could make
recommendations for arbitrarily long delays between
updates, none of the heuristics designed could be
expected to correctly predict long transition free
periods. Thus, all the heuristics use a minimum
sighting rate of half the user's requested rate (BUR).
Given a BUR of 4.0, this ensures that after a sighting
at tQ another sighting will occur no later than (tQ+0.5)
seconds.

4.2.1 DIDA heuristics
The coarse-grain heuristics receive IU messages at
the user specified BUR. These heuristics ensure that
only one intervisibility determination is skipped for
any two consecutive messages. Thus, for a BUR of

454

1.0, if an intervisibility determination is done at tg,
the next determination will occur at either (tQ+1.0) or
(trj+2.0).

4.2.2 CIDA heuristics
This section discusses the minimum, maximum, and
possible IURs for CIDA heuristics.

4.2.2.1 The minimum update rate for CIDA
heuristics
The intervisibility scratch area keeps the last time an
intervisibility determination was accomplished.
When an IU message arrives, this area is checked
and, if necessary to avoid too great a gap between
updates, an intervisibility determination is forced.
When this happens in a fine-grain heuristic, the
heuristic is invoked to determine a new interval
before the next determination.

4.2.2.2 The maximum update rate for CIDA
heuristics
Although it is reasonable to hope heuristics could
predict times when an accelerated rate would be
beneficial, that is not a goal of this project. To this
end, heuristic's recommendations are always bounded
above by the user requested rate (BUR).

4.2.2.3 Possible update intervals for CIDA heuristics
For all the experiments completed, the fine-grain
heuristics received IU messages at four times the
BUR. So, for a BUR of 1.0 messages per second IU
messages were received (approximately) every 0.25
seconds.

4.3 Heuristics and message overhead

The fine-grain technique increases the message
handling overhead by increasing the number of IU
messages sent. The finer the granularity, the greater
the overhead.

4.4 Implemented heuristics

The heuristics implemented are:

• Varying the intervisibility BUR,
• The symmetry heuristic,
• The history heuristic (coarse and fine-grain), and
• The composite heuristics (coarse and fine-grain)

4.4.1 Varying the intervisibility base update rate
This is implemented as discussed in Section 5.1.1

4.4.2 Symmetry heuristic
The symmetry heuristic is implemented as discussed
in Section 5.1.2.

4.4.3 History heuristic
For a discussion of the history heuristic see Section
5.1.3. This section discusses the mechanism that
recommends whether to skip or not.

Both the coarse-grain and the fine-grain version of
the history heuristic track the number of consecutive
intervisibility determinations which have returned the
same intervisibility result. In the coarse-grain
version, the history of identical intervisibility values
are compared to a threshold value. When the
threshold value is exceeded, intervisibility
determinations are skipped effectively reducing the
update rate. When a sighting transition occurs, skips
are inhibited until a sufficient history accumulates.

The fine-grain version calculates a skip value after a
sufficient sighting history accumulates; this value
refers to the number of intervisibility determinations
that can be safely skipped between the sighter and a
target.

The formula used to calculate the skip value in the
fine-grain version is:

Only the addition of local vehicles, vehicles created
on this Simulator, adds to the message load. The
number of messages per unit time is easily computed
as the message rate per vehicle times the number of
vehicles.

Skip = RATE - 1 + (MAX_ SKIP -

Matches
RATE + 1) •

Interval

The fine-grain heuristics are designed to increase the
message rate above the BUR according to a where:
multiplier. When this parameter is 1 no additional Skip
messages are generated. When it is R, the requested
rate will approximate R times the user requested rate.
For these experiments. R was set to 4 (see Section RATE
4.2.2.3).

is the number of fine-grain
intervisibility determinations to be
skipped for this sighter/target pair
is the fine-grain multiplier (IUR =
RATE BUR)

455

MAX_SKIP is the maximum number of skips to
preserve the minimum update rate
(MAX_SKIP = 2- RATE-I)

Matches is the number of consecutive
intervisibility determinations
yielding the same result

Interval is the "full confidence interval".
Once Matches equals Interval the
minimum update rate is used.

When there have been no matches, Skip will be RATE
- 1, which yields an IUR equal to the BUR. If the
number of matches is as great as the interval, a
heuristic parameter, the maximum number of skips
will be done.

4.4.4 Composite, sighter-based, and target-based
heuristics
Each component of a composite heuristic always
computes a metric value (M) based on certain
characteristics of the current simulation state. The
metric computed by each sub-heuristic lies in the
interval [0,1]. Composite heuristics occur in both the
coarse-grain and the fine-grain versions.

4.4.4.1 Sighter-based heuristics
Sighter-based heuristics attempt to reduce the number
of intervisibility determinations done by an entity by
taking its behavior into account. The behavior may
be some physical action of the entity, such as being
stationary, or it may be some abstract behavior, such
as having permission to fire.

Four sighter entity behaviors (sub-heuristics) were
characterized for this study:

1. The movement of the sighter,
2. The sighter's permission to fire,
3. The sighter's ability to fire, and
4. The proximity of the sighter to enemy entities

The four sub-heuristics are assigned weights to
increase or decrease their effects in deciding whether
an intervisibility determination is required. A
weighted average is computed to decide whether to
do an intervisibility determination. In all cases, 0.0
indicates to do an intervisibility determination and 1.0
indicates NOT to do an intervisibility determination.

Any weight can be assigned to a sub-heuristic. The
heuristic computes a metric for each behavior which
is then multiplied by the weight assigned to it. For
some behaviors this metric may be a boolean metric
(0 or 1). For example, does an entity have permission

to fire? For other behaviors this metric may be a
floating point value; for example, the metric
associated with the distance of a sighter to an enemy
entity may be large (small) if the sighter is near (far)
from the enemy entity.

The weighted average of the metrics for all the
behaviors is guaranteed to be in the interval [0,1].
The weighted average of the metrics is given by the
following equation.

4
X wi * Mi

Weighted_ average = ~ ,

X wi
i=l

where:
wi is the weight assigned to a sub-heuristic i
Mi is the metric computed by sub-heuristic i (Mi

is in the interval [0,1])

For the coarse-grain heuristics, judging whether or
not to skip an intervisibility determination requires
that a split point (threshold) be determined within this
range. If the weighted average is greater than the
split point, an intervisibility determination should be
skipped, whereas a value less than the split value
requires an intervisibility determination.

The fine-grain sighter heuristics are precise analogs to
their coarse-grain versions. The key difference is that
the composite vote of the heuristic elements no longer
needs to be binary (no split point is needed) because
the intervisibility determination is delayed by
skipping intermediate fine-grain intervisibility
determinations. In this case the number of fine-grain
intervisibility determinations skipped is given by:

Skip = RATE - 1 + (MAX_ SKIP - RATE + 1)

• Weighted _ average

where:
Skip, RATE, and MAX_SKIP are the same as in

Section 5.4.3 and
Weighted_average is the weighted average of

the metrics of each sub-
heuristic

A weighted average of 0.0 will yield the maximum
check rate (RATE-l) while a value of 1.0 will yield
the minimum rate (MAXJSKIP).

A A A. 1.1 Moving and stationary
This sub-heuristic is based on the premise that
moving entities need to check intervisibility more

456

often than stationary entities. This sub-heuristic
requests the minimum rate for a stationary vehicle
and the maximum rate for a vehicle moving at its
"normal speed".

normal — current
Mi - ;

normal
where:

normal is the normal speed of a vehicle
current is the current speed of the vehicle

When a vehicle is stationary, its "current speed" is 0
and the value of the metric. Mi, is equal to 1. This
means that the sub-heuristic requires an intervisibility
determination to be skipped. When the "current
speed" equals the "normal speed", Mt is 0 signifying
that the sub-heuristic does not require any
intervisibility determination to be skipped.

4.4.4.1.2 Permission to fire
Entities that have permission to fire should conduct
more intervisibility determinations than entities that
do not. This sub-heuristic falls into the category of
boolean sub-heuristics.

M2 = 1.0 if entity has permission to fire, 0.0 otherwise

4.4.4.1.3 Able to fire
The ability to fire may be lost by an entity after it has
been hit by enemy fire. This sub-heuristic also falls
in the category of boolean behaviors.

M} = 1.0 if able to fire, 0.0 otherwise

4.4.4.1.4 Proximity to target
It seems natural that an entity would do more
intervisibility determinations when it is in the vicinity
of enemy entities than when it is far away from them.
An entity is considered "in the vicinity" of an enemy
entity when it is lies within the maximum weapon
range of the target entity.

As the entity or sighter gets closer to the enemy or
target entity more intervisibility determinations are
done.

d
A/4 = -

r

where:
d is the distance to the target entity
r is the sighter's maximum weapon range.

4.4.4.2 Tarset-based heuristics
Target-based heuristics reduce the number of
intervisibility determinations done by a sighter to a

particular target by taking into account the type,
appearance and behavior of that target.

The implementation of the target based heuristics is
very similar to the sighter-based heuristics except
characteristics of the target are examined. Four target
entity behaviors were characterized for this study:

1. The relative movement of the sighter and target
2. The estimated threat of the target
3. Target damage status and
4. The proximity of the sighter to a target

4.4.4.2.1 Relative movement of sighter and target
The movement dimension to this heuristic uses the
sighter's and target's velocities to determine the speed
at which they are closing/separating. The rational is
sighters need to more carefully watch approaching
targets.

R
Ms = 0.5 +

2»C
where:

R is the rate the sighter and target are closing
(in m/sec), expected range [-C, C]

C is the closing rate for the maximum update
rate (12 m/sec. in these experiments)

If vehicles are separating rapidly R < - C, A/5 = 0.
If they are closing rapidly, R > C, M5= 1.

4.4.4.2.2 Estimated threat of target
Sighters do more intervisibility determinations to
targets that are considered more threatening than to
targets that are less threatening. A target's threat is
determined by the priority the target has been given
as a target for the weapons the sighter carries.

M6 = 1.0 if target is NOT first, second or third
priority; 0.0 otherwise

4.4.4.2.3 Target damage status
Damaged targets are given less attention than healthy
targets.

M7 = 1.0 if target has firepower kill or is destroyed;
0.5 if it has mobility kill; 0.0 otherwise

5.4.4.2.4 Proximity to target
Entities check more often when an enemy entity is
relatively close. Close is computed in terms of the
target's firing range, and the amount of attention paid
is proportional to its distance.

457

d
M8=-

r
where:

d is the distance to the target entity
r is the maximum range of any

possessed by the target entity
weapon

This behavior is similar to the case in the sighter-
based heuristics where a sighter varied its IUR to a
target depending on their relative distance. However,
in one case the sighter's maximum weapons' range is
used to determine its IUR while in the other, the
target's maximum weapons' range is used.

In Figure 1 the circles represent the maximum range
of weapons of entities A and B. Consider the sighter-
based sub-heuristic with A being the sighter entity
and B the target entity. A's IUR should not increase
because B is beyond its (the sighter's) maximum
range of weapons. However, if B is the sighter entity,
B's IUR should increase.

Figure 1: Sighter, target maximum weapons ranges

In contrast, consider the target-based sub-heuristic.
When B is the target entity, A's IUR should increase.
When A is the target entity, B's IUR should not
increase.

5. Evaluation of the intervisibilitv heuristics

Evaluation of the heuristics requires:

• Establishing the performance metrics,
• Data collection, and
• Heuristic ranking based on effectiveness.

This section addresses these points in detail.

5.1 Evaluation experiment

The performance of the intervisibility heuristics was
evaluated in the context of a set of three standard
military scenarios (Rajput et. al. 1994).

The performance of the CGF Testbed Simulator in
the area of intervisibility was measured and compared
for heuristic and "base" versions in each scenario.
The "base" versions were "no-heuristic" versions.
Intervisibility performance was based on number of
intervisibility determinations, sighting event times,
and computational overhead.

A "sighting event" or "sighting" refers to the first
detection of an unblocked line of sight between two
entities for which there was no such line of sight just
prior to the event. The "sighting event time" is the
simulation time of such an event.

5.1.1 Performance metrics
The following data was gathered:

• The total number of sighting events,
• The sighting event time, the sighter and target

IDs, and their locations, and
• The time, in clock ticks, at various stages of the

intervisibility updating process.

For a scenario, the set of sighting events and sighting
event times found by the no-heuristic version is taken
to be the "true" or "correct" set. When a heuristic is
compared to the no-heuristic version the following
cases arise:

• Sighting events may be missed by a heuristic
• There may be extra sighting events in the

heuristic output
• Sighting events may be delayed
• Sighting events may occur earlier

Some sightings will be missed or be extra because of
sampling error. Using coarse BUDs (1/2 second or
more) makes it inevitable that some transitions will be
missed, both by the heuristic version (labeled
"missed") and by the no-heuristic version (labeled
"extra"). The real question is how many sightings are
missed because of delayed checking. Extra sightings
are always from sampling error since the heuristics
never do more frequent checks than the no-heuristic
version of the system. It seems likely (and
experiments support this) that the greater the average
sighting delay for the System Under Test (SUT) the
more misses will be recorded.

458

It is possible that the computational cost of
computing some heuristic may exceed the cost of
doing a real intervisibility determination. Both the
sighter and target-based heuristics are quite complex,
particularly when all their components are active. It
is, therefore, not enough to simply count the number
of intervisibility determinations done. Instead, a
comprehensive evaluation is needed that takes the
computational cost of the heuristics in account.

Because the fine-grain heuristics produce a large
number of internal messages, heuristics of this type
must consider the message delivery overhead.
Experiments revealed that message delivery time was
a minor issue. Measurements yield delivery time on
the order of 1/4 to 1/2 milliseconds (4000-2000
deliveries/sec). On the other hand, overhead for
heuristics is proportional to the number of targets. If
/ is the number of local vehicles and m is the number
of remote vehicles, the heuristic overhead is
proportional to their product Urn, but message
delivery is proportional to / only.

With this in mind, the sighting delays and the
computational overhead of a heuristic are used in
measuring the "cost" of the heuristic.

5.1.1.1 Savings calculation
Naively, it may seem that the effectiveness of using a
heuristic is the difference between the number of
point-to-point intervisibility determinations expected
by a user for the scenario with a particular setting of
the BUD and the number of point-to-point
intervisibility determinations actually done by a
scenario. This is not true because the savings
obtained may be optimistic as the heuristic overhead
has not been taken into account. The overhead of the
heuristic offsets the savings from a reduction in the
number of intervisibility determinations. The net
savings must be used to evaluate the quality of a
heuristic.

The effectiveness of a heuristic is represented as the
ratio of its savings to the cost the system has to incur
to use it. Thus, we have:

j~, Sli, s
Eh,s = —-

Ch,s
where:

Etui is the effectiveness of heuristic h for
scenario s

Sh.s is the savings achieved by heuristic h for
scenario s

Ck..s is the cost of using heuristic h for scenario s.

Table 3 shows the Overhead Multiplier (OM) for
each heuristic. The OM for a heuristic is a measure
of the overhead associated with using that heuristic.
It is defined as the ratio of the total time spent
processing point-to-point intervisibility
determinations between vehicles with the heuristic to
the total time spent in doing these determinations
without a heuristic.

Heur OM

Sym 1.06
His 1.01
Sgt 1.03
Trg 1.05
Fgh 1.02
Fgs 1.005
Fgt 1.03

Table 3: Computing the overhead multiplier

where:
Heur Name of the heuristic (refer to Section 5)
Raw Number of point-to-point intervisibility

determinations done
Tics Total time spent by the SUT exercising

intervisibility code
Time that would be taken if no heuristic
was being used to do the checks (t,-aw =
Raw/53.9)
Overhead multiplier (OM = Tics / traw)

'raw

OM

After the overhead multiplier has been determined,
the savings Sh.s can be determined.

Sh.s = (1 - (T|*0/,)) * 100.0

where T| is the number of sightings that heuristic h
does in scenario s and Oh is the OM for heuristic h.

Example:
Assume a heuristic does 75% of the intervisibility
determinations done by the no-heuristic version in the
same scenario (an apparent saving of 25%).
However, if it has an overhead multiplier of 1.05 the
real saving is:

Sh,s= 1 -(0.75x1.05) = 0.2125 or 21.25%

5.1.1.2 Missed and extra sightings calculation
It may seem that a heuristic should be penalized for
"missed" sighting events. A sighting event is

459

considered "missed" by a heuristic if it failed to
produce a sighting event found by the no-heuristic
version. It may be argued that a heuristic must be
"bad" if it misses many sighting events (and "good" if
it does not). However, the situation is more
complicated than that.

When a scenario is repeated results from the second
run are not generally the same as in the first run.
Small system perturbations from various non-
deterministic events, such as network packet delivery
times, have cumulative effects resulting in different
intervisibility determination sampling (although the
frequency is the same). It was found that a no-
heuristic simulator run against the test scenarios
showed approximately 5% variability from run to run
in terms of missed and extra sightings.

It would be difficult to directly reflect the missed
events in the computation of the heuristic's cost. One
real difficulty to overcome was how to allow for the
misses generated by heuristics which intentionally
"missed" many sightings. Misses, other than those
caused through sampling variation, are closely tied to
the mean and standard deviation for the sighting
delays. Heuristics that delayed sightings greatly are
prone to miss sightings.

Analysis of the results of the combat scenarios (see
Section 5.1.2), excluding the sighter and target data,
revealed a positive correlation between the raw metric
used for evaluation and the number of misses seen for
the heuristic/scenario trial. The correlation was not
very high (correlation coefficient was 0.374). The
low correlation, the variability from run to run, and
the difficulty of accounting for the misses led us to
ignore this factor in evaluation.

5.1.1.3 Sighting delay calculation
The "sighting delay" is the difference in the
simulation times of the same sighting event in the
heuristic and no-heuristic version. The sighting
delays must be a factor in determining a heuristic's
cost (and hence its effectiveness). A heuristic should
be penalized for delays; a heuristic that "sees" events
earlier is preferable to another that "sees" them later.
The absolute mean of the delays is used as one of the
measures of the cost of using a heuristic.

One may argue that the mean of the signed delays
should have been used instead of the absolute value.
However, the heuristics are not designed to sight
earlier. There may be some negative delays in
sightings (i.e., sightings were done earlier) but these

are generally due to sampling variations. A heuristic
should not be given credit for sampling variations and
so a signed value should not be used.

Another parameter used in the cost equation is the
standard deviation of the absolute delays. If two
heuristics have the same sightings delays, the
heuristic having a smaller standard deviation is
preferred over the other.

Although the cost of a heuristic should rise with the
standard deviation, the standard deviation is deemed
less important than the mean. To reduce the impact
of the standard deviation its square root is used.

5.1.1.4 Heuristic cost calculation
Combining the cost parameters we obtain the
following equation for the raw measure of the cost of
using a heuristic h for scenario 5.

Rh,s = \x * Vo
where:

Rh,s is the raw measure of the cost of using
heuristic h for scenario 5

u. is the absolute mean of the sighting delays
induced by heuristic h for scenario s

o~ is the absolute standard deviation of the
sighting delays

Table 4 displays the data used to compute the run to
run variance, an important factor in calculating a
heuristic's cost. The lu.1 and the lal values are
obtained by running the no-heuristic version twice
and comparing the data.

Scenario ¥ lol K0,s . ||l| . M
Meeting 0.21 0.34 0.122
Delay 0.31 0.32 0.175
Assault 0.26 0.39 0.162
Meeting (C) 0.30 0.26 0.153
Delay (C) 0.31 0.34 0.181
Assault (C) 0.29 0.31 0.161

Table 4: Computing run to run variance

The Ro.s column indicates the run to run variance for
each scenario. To compute the cost, Ch,s, for each
heuristic/scenario pair, the raw measure of the cost
Rh,s of that heuristic/scenario pair is divided by the
Ro.s value for the scenario s.

Rk,s
UJ =

Ro.s

460

where:
Ch.s is the cost of using heuristic h for scenario s
Rh.s is the raw measure of the cost of using

heuristic h for scenario 5 and
Ro.s is the nominal cost (variation) from run to

run

After the cost of using a heuristic Ch.s is determined,
the effectiveness Eh,s is computed by dividing the
savings Sh.s by the heuristic cost.

Sh,s
Eh. a =

Ch,s

5.1.2 Experimental design
Three types of engagements were used to test the
heuristics:

• Meeting
• Delay
• Assault

Six scenarios were developed; a movement-only and a
combat version for each type of engagement. The
experiment consisted of running an unmodified and
heuristically modified versions of the Simulator with
these scenarios and collecting data for analysis.

5.1.3 Data collection
A project of this complexity requires the analysis of
large amounts of data. The scenarios that were
developed for the evaluation of heuristics ran from 6
to 10 minutes. For each scenario, data was collected
for 7 heuristics. Two runs were made without
heuristics; one became the reference data, and the
other a "base version" used to evaluate run to run
variability.

Initially, data was collected by creating a point-to-
point network (to reduce network processing)
between two Simulators; each running its part of the
scenario. This approach did not prove viable.
Because of the ill conditioned nature of the
experiment (Rajput et. al. 1994), a second run of a
scenario would usually diverge from the first. By the
end of a run of more than a few minutes the sighting
event histories would be very different.

The problem of scenario divergence was solved by
logging each scenario's network traffic. For the
evaluation of a system, the logged data was replayed;
the scenarios were recreated exactly in terms of the
network activity. The logging process was automated
to remove errors in synchronizing the start and end of

the scenarios. Two personal computers ran the
Simulators, while a third logged the network traffic.
The experiment was isolated on a LAN.

To conduct an experiment, a scenario log was played
back to generate test data for heuristic evaluation
using a two PC point-to-point arrangement. One PC
played the logged scenarios repeatedly, while the
second PC ran a modified Simulator that did
intervisibility tests between entities that were on
remote machines.

5.2 Experimental results

AH the components of the sighter and target-based
heuristics, both the fine and coarse-grain versions,
were given equal weights so all of the components
could be exercised (refer to Section 4.4.4.1 and
Section 4.4.4.2).

5.2.1 Overall heuristic performance
A heuristic's overall performance can be seen by
comparing the range of its Eh,s values. A good
heuristic has high Eh.s values and low variability.
Heuristic A is said to be more stable than B if its
effectiveness is independent of the scenario.

Figure 2 shows the range of Eh.s values for the
implemented heuristics, and Eh,s values for
intervisibility BURs of 0.67 (a check every 1.5
seconds) and 0.5 (a check every 2 seconds). This
figure shows the history heuristic to be the most
stable heuristic. Sighter and target-based heuristics
have very large spreads, with the extreme left points
showing negative efficiency. The fine-grain sighter
and target-based heuristics are marginally more stable
and effective then their coarse-grain versions. The
symmetry heuristic showed the greatest effectiveness
with stability second to the history heuristic.

££!_

SflT,

TR(i

£!S_

UD.

5 10 15 20 25 30 35

th,s
Figure 2: Heuristic performance spread

461

Interestingly, all heuristics performed well in
vigorous situations. The combat scenarios appeared
predominantly on the right of each line and the non-
combat on the left.

To determine the overall effectiveness Eh of a
heuristic a weighted average is used. Since heuristics
have more to offer in the combat scenarios, more
weight (3 times) is given to such scenarios than to
non-combat scenarios. Eh is computed as:

_(£M+£M+B.*3)+3(B.'4+^5+£M)

where:
Eh is the overall effectiveness heuristic h
£/i,.tis the effectiveness of heuristic h for

scenario x
sJ is the Meeting scenario
s2 is the Delay scenario
s3 is the Assault scenario
s4 is the Meeting (Combat) scenario
s5 is the Delay (Combat) scenario
s6 is the Assault (Combat) scenario

Using this metric the heuristics are "ranked" in Table
5. The table also shows the overall savings, Sh, and
the overall cost, Ch.

Heuristic Eh Sh Ch

Symmetry (Sym) 37.0 46.4 1.3
Fine-grain target (Fgt) 23.2 29.7 1.30
Fine-grain history (Fgh) 22.0 35.1 1.7
Fine-grain sighter (Fgs) 21.3 25.5 1.2
Sighter (Sgt) 19.4 16.7 0.9
History (His) 18.9 45.8 2.5
BUR 0.67 18.3 33.3 1.8
BUR 0.5 17.6 50.0 2.8
Target (Trg) 12.4 16.2 1.2
BUR 0.33 10.9 66.6 6.2
BUR 0.25 7.2 75.0 10.5
BUR 0.2 5.1 80.0 15.8
BUR 2.0 -85.0 -100.0 1.2

Table 5: Heuristic rankings

Data was gathered by running the Simulator with
different BUR settings (2.0, 0.67, 0.5, 0.33, 0.25, and
0.2) to see the effects of the IUR on the sightings.
Table 5 shows that except for BUR 0.67 and BUR

0.5, the BUR-based heuristics performed poorly and
are at the bottom of the rankings.

BUR 0.67 and BUR 0.5 seem to perform better than
the target-based heuristic; but this is partly an
illusion. In contrast to fixed BURs, the target-based
heuristic (as well as all other heuristics) save
"intelligently." Intervisibility determinations are
delayed only when they are deemed acceptable, for
example, when a scenario is calm. However, no
delays are allowed when the scenario becomes more
active, for example, when combat starts.

5.3 Evaluation comments

Even the least effective heuristic studied (coarse-
grain target) saves almost 40% of the intervisibility
determinations for some scenarios; for example,
Delay with Combat. It does this with high
effectiveness. It can be argued that combat situations
are where the heuristics are most needed because this
is the most typical use of CGF systems.

The sighter and target-based heuristics seem
reasonable; for example, destroyed vehicles should
not be sighted or attempt to sight. The other
components of these composite heuristics are
similarly reasonable, but time did not permit
experimental validation of each component
individually. The components taken together
performed well.

Symmetry is shown to save on the order of 50% for
all scenarios. This is a very intuitive result; because
of the way symmetry works, one would expect it to
eliminate half of the intervisibility determinations.
The fact that this result was found in the experiment
adds credibility to the experimental method used. Of
course, the symmetry heuristic was tested only for
entities that were generated by the same Simulator.
Applying the symmetry heuristic across multiple
Simulators (i.e., multiple network nodes) would
require network traffic to communicate the symmetry
results. It is not clear whether the reduction in
intervisibility processing produced by the symmetry
heuristic is worth the additional network processing.

6. Future work

Perhaps the biggest unanswered question, and,
thereby, an opportunity for future work, is what might
happen if the different heuristics were combined?
Time constraints did not permit the examination of
this issue in the project. Symmetry especially seems

462

to be a likely candidate for combination with other
heuristics , as its basic idea is very different from the
other heuristics.

7. Conclusions

Computer generated forces are becoming increasingly
complex as additional functionality is being added
and more realistic behaviors are expected. It makes
sense that some of the computational load be
removed so that the CGF system can give more time
to processing additional functions.

For this project, a number of intervisibility heuristics
were designed, implemented, and experimentally
evaluated within a CGF system. The overall goal of
the heuristics was to reduce the overall computational
expense of intervisibility determination in CGF
systems without materially affecting the realism of the
autonomous behavior produced by those systems. The
results show that the implemented intervisibility
heuristics save substantial portions of the processing
devoted to intervisibility checks, ranging from 10% to
50%.

Moreover, these savings were achieved at little cost in
terms of CGF behavior realism. The behavior
generated by the CGF system would be expected to
suffer if an intervisibility heuristic significantly
delayed the times at which hostile entities were
sighted. That did not occur; the average sighting
delay imposed by the various heuristics fell in the
range of 0.3 to 0.5 seconds. Such a delay is
negligible, especially in light of the tremendous
savings in processing.

These results can be of great importance to CGF
systems. By using one of these heuristics, the
computational load of intervisibility determination
can be greatly reduced, thereby freeing computational
capacity that can be applied to generating more
sophisticated behavior, performing more realistic
physical modeling, or simply controlling more entities
on a given system. Because these heuristics are
independent of the terrain database format, they can
be applied to any CGF system. Therefore, one or
more intervisibility heuristics should be seriously
considered for inclusion in any real-time CGF system.

8. Acknowledgment

This research was sponsored by the US Army
Simulation, Training, and Instrumentation Command
as part of the Intelligent Simulated Forces project,

contract N61339-92-C-0045.
gratefully acknowledged.

9. References

That support is

DIS Steering Committee (1993). "The DIS Vision:
A Map to the Future of Distributed Simulation",
1ST Technical Report, 47 pages.

Loper, M. L., Thompson, J. R., and Williams, H. L.
(1991). "Simulator Networking: What Can It
Offer The Training Community?", Military
Simulation & Training, Issue 4 1991, pp. 11-14.

Danisas, K., Smith, S. H., and Wood, D. D. (1990).
"Sequencer/Executive for Modular Simulator
Design", Technical Report IST-TR-90-1, Institute
for Simulation and Training, University of
Central Florida, 16 pages.

Gonzalez, G., Mullally, D. E., Smith, S. H., Vanzant-
Hodge, A. F., Watkins, J. E., and Wood, D. D.
(1990). "A Testbed for Automated Entity
Generation in Distributed Interactive
Simulation", Technical Report IST-TR-90-15,
Institute for Simulation and Training, University
of Central Florida, 37 pages.

Petty, M. D. (1992a). "Computer Generated Forces
in Battlefield Simulation", Proceedings of the
Southeastern Simulation Conference 1992, The
Society for Computer Simulation, Pensacola FL,
October 22-23 1992, pp. 56-71.

Smith, S. H., Karr, C. R., Petty, M. D., Franceschini
R. W., and Watkins, J. E. (1992a). "The 1ST
Computer Generated Forces Testbed", Technical
Report 1ST-TR-92-7, Institute for Simulation and
Training, University of Central Florida.

Smith, S. H., and Petty, M. D. (1992b). "Controlling
Autonomous Behavior in Real-Time
Simulation", Proceedings of the Southeastern
Simulation Conference 1992, The Society for
Computer Simulation, Pensacola FL, October 22-
23 1992, pp. 27-40.

Petty, M. D., Campbell, C. E., Franceschini, R. W.,
Provost, M. H., and Karr, C. R. (1992b).
"Preliminary Investigations into Efficient Line of
Sight Determination in Polygonal Terrain",
Technical Report 1ST-TR-92-5, Institute for
Simulation and Training. February 28 1992.

Rajput S., Craft, M. A., Breneman, L. J., Petty, M.
D., Karr, C. R., Holly, T. P.. Ng, J. J. (1994).
"Intervisibility Heuristics for Computer
Generated Forces", Technical Report IST-TR-94-
22, Institute for Simulation and Training,
University of Central Florida.

463

10. Authors' Biographies

Sumeet Rajput is an Associate Engineer in the
Intelligent Simulated Forces project at the Institute
for Simulation and Training. Mr. Rajput has a Master
of Science degree in Computer Science. His research
interests are in the areas of Computational Geometry,
Physical Modeling, and Computer Generated Forces.

Clark R. Karr is the Computer Generated Forces
Program Manager and the Principal Investigator of
the Intelligent Simulated Forces project at the
Institute for Simulation and Training. Mr. Karr has a
Master of Science degree in Computer Science. His
research interests are in the areas of Artificial
Intelligence and Computer Generated Forces.

Mikel D. Petty is a Program Manager at the Institute
for Simulation and Training. He currently manages
the Plowshares emergency management simulation
project; previously he led Computer Generated
Forces research at 1ST. Mr. Petty has a B.S. in
Computer Science from the California State
University Sacramento and a M.S. in Computer
Science from the University of Central Florida. His
research interests are in simulation and artificial
intelligence.

Michael A. Craft is a Research Associate working
for the Intelligent Simulated Forces project at the
Institute for Simulation and Training. He has a
Master of Science degree in Mathematics and a
Master of Science in Computer Science. His research
interests are in the areas of Software Engineering,
Real Time Systems, Simulation, and Network
Protocols. Mr. Craft has a broad and diverse
background ranging from Office Automation to
Missile Tracking Systems.

464

Benchmarking and Optimization of the 1ST CGF Testbed

Stephen A. Schricker, Tracy R. Tolley, Robert W. Franceschini
Institute for Simulation and Training

3280 Progress Drive, Orlando, Florida 32826
sschrick@ist.ucf.edu

1. Abstract

This paper discusses the establishment of a
performance benchmark and the current capacity of the
1ST CGF Testbed (henceforth called the Testbed). It
also describes the manner in which the Testbed
manages and subsequently measures its simulation
load, and relates a particular means of load
measurement to that which has been standardized for
ModSAF. It then introduces additional methods for
benchmarking those features that are unique to the
Integrated Eagle/BDS-D project, which uses the
Testbed as a component. In addition, this paper
presents some benchmarking results of scenarios for
which a corresponding benchmark of ModSAF is not
currently available.

2. Background

The Integrated Eagle/BDS-D project (Franceschini
1995) (Karr 1994) links a constructive, aggregate-level
simulation (Eagle) with a virtual, entity-level
simulation (DIS/SEMNET). The linkage uses the
Testbed to control those vehicle platforms that are
instantiated in the virtual simulation as the components
of aggregate units in the constructive simulation.

Network bandwidth and computer processing power
severely limit the number of vehicle platforms (or
entities) that can participate in existing DIS/SIMNET
exercises. Therefore, one of the major goals of a
constructive+virtual linkage (Franceschini 1995) is to
manage this limitation. The constructive simulation
provides the context of a large-scale battle (say, at the
Corps or Division level) while the virtual simulation
plays out the smaller engagements. Such smaller
engagements, however, need to be large enough for the
battle to have any intrinsic meaning. Consider, for
example, a scenario involving helicopters on a
reconnaissance mission. In order for the small
engagement occurring in the virtual simulation to
include the helicopters, the virtual environment must
also contain many other disaggregated units from the
constructive environment, as a helicopter's sensor
systems typically allow it to detect and engage vehicles
from over four kilometers away. To ensure the realism

and usefulness of the constructive+virtual linkage, the
CGF component of the virtual simulation must
therefore have a large entity capacity.

1ST developed its CGF Testbed as an inexpensive,
experimental simulation engine that could run on IBM-
compatible personal computers operating under DOS.
As such, and written entirely in C, it was developed
under the Borland C environment, version 3.1. The
Testbed developers ultimately discovered, however,
that as a DOS application, the Testbed was constrained
to the first 640 kilobytes of internal RAM on a personal
computer that DOS considers conventional memory.
This effectively limited to twelve the maximum number
of entities that could be simulated on a single personal
computer. The ever-increasing power of personal
computer processors, however, suggested that the
Testbed might support many more entities.

In an effort to increase the capacity of the Testbed,
IST's Integrated Eagle/BDS-D project team converted
the Testbed to the WATCOM development
environment, version 10.0, which in conjunction with
Rational Systems' DOS/4GW DOS extender, gives
DOS applications access to as much as four gigabytes
of RAM in a flat address space (WATCOM 1994).

2.1 Why Benchmark the Testbed Now?

It has now become evident that by giving the Testbed
potential access to every bit of free memory on the
computer, the limiting factor in the performance of the
Testbed may be the processor itself. Thus it seems an
opportune time to benchmark and standardize the
performance of the Testbed to determine whether this
is actually the case. As an added benefit, the methods
for benchmarking the Testbed will not only show just
how large an entity load it can handle, but also provide
an objective means of gauging the system's
performance under aiy conditions.

In an effort to produce valid, standard results, the
methods used to benchmark the Testbed were similar to
those described in (Vrablik 1994) in the benchmarking
of ModSAF.

465

3. How Do ModSAF and the Testbed Differ?

Both ModSAF and the Testbed perform basically the
same function, but minor differences in the methods
they use become more apparent under closer analysis.

3.1 Simulation Hosts and Operator Interfaces

One important difference between ModSAF and the
Testbed is that ModSAF consists of a single executable
application, though it can take on different forms
through the use of the available command-line options.
In this manner, ModSAF can run as either a ModSAF
Station (SAFStation) or a ModSAF Simulator
(SAFSim). A SAFStation can run as an operator
interface, a simulation host, or a "pocket" system: an
integrated operator interface/simulation host. A
SAFSim can run only as a simulation host It is
possible to network several SAFSims and SAFStations
in order to increase the entity capacity of an exercise
(ModSAF 1994).

The Testbed, on the other hand, is composed of
separate executable applications: the simulation host,
which performs the virtual-level simulation of entities;
and the operator interface, which provides a graphical
interface for the user. Though the simulation host does
have a rudimentary operator interface, the Integrated
Eagle/BDS-D system utilizes the dedicated operator
interface exclusively as its user interface.

In any case, there is a distinct advantage to running the
simulation host and operator interface separately.
Though it is possible to develop a single integrated
application which is able to perform all of these
functions (as the SAFStation can), under a heavy load,
such an application spends most of the time processing
its own overhead (Vrablik 1994). Running the
simulation host and the operator interface separately
maximizes the amount of processor resources devoted
to performing each task. Of course, this type of system
requires more hardware, but since the Integrated
Eagle/BDS-D system uses IBM-compatible personal
computers, the cost of gathering the requisite hardware
(for Eagle/BDS-D, at least) is relatively small.

3.2 How Does ModSAF Simulate its Entities?

As with most virtual-level simulation hosts, ModSAF
and the Testbed are both sequential in nature. In other
words, they can process only one thing at a time. This
presents a special challenge when developing an
application that simulates the behaviors of numerous
entities. The developer must ensure that the execution

of any one task does not overtly compromise the
integrity of the simulation.

To this extent, ModSAF utilizes a task scheduler,
which keeps a list of the jobs it needs to do, including
running each vehicle it is simulating (Vrablik 1994).
The scheduler uses, as its basic data structure, a heap-
based priority queue. The ModSAF scheduler is non-
preemptive-it allows each task to finish before moving
on to the next. For more information on ModSAF's
task scheduler, refer to the LibSched documentation in
the ModSAF Programmer's Reference Manual
(ModSAF 1994)

The tasks that ModSAF must perform in updating a
vehicle are based on what that vehicle is doing at that
particular time. It may be a single, simple task, such as
broadcasting the vehicle's position over the network; or
there may be multiple, complex tasks, such as
performing complicated movements, performing
intervisibility and detection calculations on other
potential targets, tracking a target, and firing a weapon
(Vrablik 1994). Thus, the amount of processor time
devoted to a single update of a single vehicle may be
either quite small or relatively large, depending on
what that vehicle is doing.

3.3 How Does the Testbed Work?

Likewise, the Testbed's simulation host uses a message
scheduler to oversee its tasks. Like ModSAF's task
scheduler, the Testbed's message scheduler is
implemented as a priority queue. Also, like ModSAF,
the Testbed's message scheduler is non-preemptive.
The most significant difference between the
implementations of ModSAF's task scheduler and the
Testbed's message scheduler, however, lies in what
happens during the processing of a single task.

Essentially, a task in ModSAF's task queue and its
analog, a message in the Testbed's message queue, is a
request for access to the processor to perform the
specified task. When a vehicle in ModSAF requests
access to the processor to perform an update, it updates
all of its systems at once-from its position, heading,
and orientation, to tracking and firing at a target, to
whatever else it may need to update at the time. Thus,
there may be a large difference in the amount of
processor time devoted to the updating of two different
vehicles, depending on what those vehicles are doing.

Messages in the Testbed, however, are much more
specific. For example, a vehicle in the Testbed may
request access to the processor to update its position,
heading, and orientation. To update its target

466

acquisition list or to fire a weapon, for example, the
vehicle would place a different request onto the
message queue corresponding to the respective activity.
In essence, whereas a single task in ModSAF might be
"update vehicle number 100," the analog in the Testbed
would be "update the position of vehicle number 100,"
or "update the damage incurred on vehicle number
100," and so forth. Thus, even though there is still a
difference in the amount of processor time devoted to
the performance of different tasks, the amount of
processor time devoted to the performance of any
single task is much smaller.

Each of these methods of updating vehicles has its own
advantages and disadvantages, though this is not the
subject of this paper.

4. Metrics for Measuring CGF Performance

The process in ModSAF of going through the
scheduler's list of vehicles and tasks once is called a
"tick," and the process of handling a particular
vehicle's requirements during a single pass through the
local vehicle list is called "ticking" that vehicle
(Vrablik 1994). One interpretation of this definition
might be that a tick consists of a single access to the
processor for any particular vehicle. This seems a most
likely application of the definition when attempting to
benchmark the Testbed due to the system's underlying
architecture. This application, however, will yield very
different results when gauging the system's
performance.

4.2 The Underlying Problem

(Vrablik 1994) describes a method of benchmarking
ModSAF by measuring the average interval between
ticks for individual vehicles. As the number of
simulated vehicles increases, the load on the system
also increases. Hence, the frequency with which the
system ticks a particular vehicle decreases. There
exists a point where the time between individual
vehicle ticks becomes large enough that it begins to
affect the behaviors and movements of the simulated
vehicles. Historically, this threshold tends to occur at
tick lengths of about half a second (Vrablik 1994). The
ModSAF standard specifies that the system is running
within established limits if 90 percent of the individual
vehicle ticks are occurring in less than half a second
(Vrablik 1994).

However, if a tick is defined as the act of passing
control of the processor to a particular entity to perform
an update (as is the case for ModSAF), then a problem
arises when attempting to directly compare vehicle
ticks from the two systems, since a tick in ModSAF is
not the same as a tick in the Testbed. Therefore, it is
impossible to directly compare-or even establish, for
that matter-standardized benchmarking results across
the two systems (at least by using vehicle ticks as the
standard metric). Likewise, it would be exceedingly
difficult to establish a sound conversion between a tick
in ModSAF and a tick (or ticks) in the Testbed.

4.3 What, Then, Will Be Our Metric?

4.1 Not All Ticks Are Created Equal

When ModSAF ticks a vehicle, everything about that
vehicle is updated at once. Therefore, depending upon
what a vehicle is doing, there may be quite a large
difference in the amount of processor time devoted to
updating two distinct vehicles. However, during the
course of a simulation, ModSAF will tick each vehicle
the same number of times.

A single update of any particular vehicle in the Testbed
consists strictly of updating only one system on' that
vehicle, such as the vehicle's movement, target
acquisition, tracking of targets, or weapons firing. If
we determine that each of these actions comprises a
single tick, it becomes apparent that there will be a
smaller difference, compared to ModSAF, in the
amount of processor time devoted to a single update for
two different vehicles. This implies that the Testbed
will tick more frequently those vehicles that are more
active.

This is not to say, however, that vehicle ticks are not an
adequate measure of the performance of the Testbed;
quite the contrary. It merely means that the Testbed
has a different performance threshold than does
ModSAF in terms of the average vehicle tick interval.
In other words, if we are to use vehicle ticks to measure
performance, system degradation will become apparent
at different tick rates for the two systems.

4.3.1 How Do We Measure System Degradation?
The most obvious manner in which we can measure
system degradation is by observing the movements of
the simulated vehicles. In the Testbed, a vehicle's
route is broken down into smaller sub-routes, called
waypoints (Smith 1992), which allow the vehicle to
avoid the obstacles along its path. While the vehicle is
moving toward its waypoint, it places update-position
messages in the message queue at regular intervals. As
the vehicle nears its waypoint it places a new message
on the queue at such an interval that under optimum
conditions, the message will be dispatched at exactly
the time in which the vehicle hits the waypoint.

467

Figure 1

However, if the message is dispatched late, due to an
overload on the system, the vehicle will have passed its
waypoint by the time the new update occurs. This
causes the vehicle to compensate by turning back-it
needs to reach its waypoint before it can continue. If
the system is loaded sufficiently, the vehicle will again
miss its waypoint in the same manner. This
degradation is marked by the vehicle endlessly circling
in a futile attempt to reach its waypoint. If this
"spinning" happens to any vehicle during the
simulation, then the simulation has sufficiently
degraded, causing unacceptable behavior (Franceschini
1993).

4.3.2 Establishment of the Performance Benchmark
With the system running under optimum conditions,
tick lengths should differ only as a result of the
different tasks performed during a single tick. In
benchmarking ModSAF, (Vrablik 1994) states that the
system is running under ideal conditions if ninety
percent of the vehicle ticks occur in less than 0.5
seconds. There is statistical evidence to support a
similar claim for the Testbed.

By gathering data for the average tick interval for
individual vehicles, it is possible to compute a tick
interval under which the system can operate that will
maximize the entity load while minimizing system
degradation. Figure 1 is a histogram showing the

frequency distribution of vehicle tick intervals. The
distribution assumes a distinctly normal quality, though
it does seem a bit skewed (Freund 1979). However, we
may attribute this skewness to the fact that the majority
of tasks requires little processing time to complete. For
instance, those tasks involving entity updates, by
nature, require less time than those tasks involving line-
of-sight calculations, but are also much more abundant.
Therefore, if we assume that individual tick intervals
generally take on a normal probability distribution, we
can compute a mean and standard deviation for the
average tick interval to determine the system's
performance threshold (Freund 1979).

4.4 An Alternate Metric

Along with measuring the average vehicle tick interval,
the Testbed tracks many other performance statistics.
Among these is a measure of the amount of time that
the system spends performing its tasks (as opposed to
sitting idle). The Testbed reflects the executive busy
time as a percentage of the total execution time. Figure
2 shows a graph of the executive busy percentage
versus the number of vehicles in the simulation. The
graph shows that the load on the system increases
steadily as the number of vehicles increases. It reaches
a point, however, where the curve changes concavity
and begins to flatten. It is at this point that the integrity
of the system begins to degrade. In other words, we

468

Executive Busy Percentage vs. Number of Vehicles (M1/T72)

H 1 1 1 1 1 1 1 1—I—I 1 H—I 1 1 1 1 1—I 1—I 1 ^ I 1—I—I—I—I 1 1 1 1 1 1 1 1-

10 18 26 34 42 50 58

Number of Vehicles

66 82 90 98

Figure 2

have reached the performance threshold. This
resembles the characteristic phenomenon of network
throughput times in operating system task queuing
theory.

According to (Kleinrock 1976), the delay encountered
by networks in sending packets remains essentially
constant as network throughput increases. It reaches a
threshold, however, at which point the delay grows in
an unbounded fashion. In our system, this delay
correlates with the average tick interval. The average
vehicle tick interval remains relatively constant as the
number of vehicles in the simulation increases so long
as the system load has not exceeded the performance
threshold. As Figure 3 shows, the total number of
vehicle ticks increases steadily with the number of
vehicles in the simulation-corresponding to a linear
increase in the system load-but eventually reaches the
threshold where the system's efficiency drops
drastically. From Figure 2, we can see that the system
never reaches 100 percent capacity. This merely
reflects the minimum operating system overhead.

(Kleinrock 1976) shows that network delay beyond the
critical threshold increases exponentially. In the
Testbed, however, the placement of new messages into
the message queue is entirely dependent upon the
processing of messages at the front of the queue. That
is, most messages trigger new messages to be placed

into the queue. This dependence causes the average
interval between messages (and, thus, the average tick
interval) to increase in a roughly linear fashion once the
system exceeds its performance threshold (see Figure
4).

5. The Benchmarking Procedure

The procedure for benchmarking the Testbed consists
of six parts; the first three of which are described in
(Vrablik 1994).

5.1 Part I-Two Rows of Opposing-Force Tanks

The first part of the procedure involves a scenario in
which a row of blue-force tanks (Mis) engages a row
of red-force tanks (T72s). All vehicles have modified
damage tables that make them invincible, so they
continue to move and fire throughout the entire test.
The scenario begins with the two rows facing, but out
of sight of one another. All of the vehicles are given
permission to fire and are then told to route toward the
opposing row of tanks. The benchmark lasts for five
minutes, and begins after the vehicles have been
moving for approximately a minute. This test is run on
a completely isolated network.

469

Total Vehicle Ticks vs. Number of Vehicles (M1/T72)

140000 T

120000

100000 ••

80000

-i—I—I—I—I—i—I—I—I—I—I—I—I- H 1

10 18 26 34 42 SO 58

Number of Vehicles

66 74 82 90 98

Figure 3

5.2 Part II-Remote Network Traffic I

Part II of the procedure uses the same scenario
described in Part I, but with a remote network load of
800 entities created by a packet "blaster" (Vrablik
1994). The blaster is merely a utility that floods the
network with Vehicle Appearance PDUs (or Entity
State PDUs). For this test, the remote vehicles are
generated on the same exercise ID as the local
simulator allowing the interaction between local and
remote entities. This test simulates the effect that a
very large exercise would have on the Testbed.

5.3 Part 111-Remote Network Traffic II

Part III is identical to Part II except that the remote
vehicles are on a different exercise ID from the test
scenario. This simulates the effect that numerous
smaller exercises running on the same physical network
would have on the Testbed.

5.4 Part rV-Air/Ground Interaction

Part IV is identical to Part I, except that the row of
blue-force tanks has been replaced by a row of blue-
force helicopters (AH64s). (Vrablik 1994) was unable
to benchmark a scenario of this nature because, at the
time, units of air vehicles had not yet been created for
ModSAF.

5.5 Part V-Integrated Eagle/BDS-D

The Integrated Eagle/BDS-D system links a
constructive simulation with a virtual simulation
(Franceschini 1995). This linkage establishes three
classifications for the units that it simulates:
aggregated, disaggregated, and pseudo-disaggregated.
Aggregated units are those units that are modeled and
represented in the constructive simulation.
Disaggregated units are those units whose individual
entities are modeled and represented in the virtual
simulation. Pseudo-disaggregated units are those units
whose behaviors are modeled in the constructive
simulation, but whose individual entities are
represented in the virtual simulation. In the Integrated
Eagle/BDS-D system, the Eagle Manager provides a
key segment in the link between the constructive and
virtual simulations. Essentially, it directs the flow of
information between the two worlds. Thus, in order to
produce a complete benchmark of the Integrated
Eagle/BDS-D system, a benchmark of the Eagle
Manager is necessary.

The experiment involves a demonstration scenario that
the developers of the Integrated Eagle/BDS-D system
have created and consists of three trials. The scenario
starts with a large number of aggregated units
represented in the constructive simulation. All of the
aggregated units are pseudo-disaggregated, placing as

470

Average Tick Interval vs. Number of Vehicles (M1/T72)

0.50

0.45-

0.40 ••

0.35
5

| 0.30-
s
i 0.25
i-

I 0.20
> <

0.15-

0.10-

0.05 -

0.00 -(—I—l—t—I—I—I—I—I—I—l—I—I—I—I—I—l—M—I—I

10 18 26 34 42 50 58 66 74 82 90 98

Number of Vehicles

Figure 4

much a load as possible onto the Eagle Manager. Each
trial then consists of fully disaggregating an increasing
number of units into the virtual environment.

The Eagle Manager's job here is threefold: it shows in
icon form the locations in the virtual world of the
aggregated units being modeled in the constructive
environment; it places the individual vehicles into the
virtual world that compose the pseudo-disaggregated
units being modeled in the constructive environment;
and it reflects the status in the constructive world of the
disaggregated units being modeled in the virtual
environment.

5.6 Part VI-SEVINET versus DIS

All of the previous procedures involved testing the
system in SIMNET. The Testbed (and, hence, the
Integrated Eagle/BDS-D system), however, is
compliant under both SIMNET and DIS. Since the
underlying simulation process is identical between the
SIMNET system and the DIS system (in other words,
only the protocols differ), it is possible to directly
compare the efficiency of the two protocols. Part VI,
therefore, is identical to Part I, except that the system is
running under DIS rather than SIMNET.

5.7 The Testing Environment

The Testbed was designed to run on IBM-compatible
personal computers. The Integrated Eagle/BDS-D
system uses Eagle as its constructive simulation, which
runs on a SparcStation2. All tests involving only the
Testbed were conducted on identical Dell Pentium
personal computers with clock speeds of 60 MHz, and
16MB of RAM. To provide maximum performance,
graphics output was turned off.

6. Experimental Results

6.1 Parti

Figure 4 shows a graph of the average interval between
vehicle ticks in the Testbed. Notice that the interval
remains constant (at about 0.08 seconds) for scenarios
consisting of fewer than forty vehicles. Therefore, we
can conclude that the system is running most efficiently
when the average interval between vehicle ticks is
about 0.08 seconds. This does not mean, however, that
if the average tick interval is greater than 0.08 seconds,
the system is running beyond its capacity. Thus we
need to determine the point at which the system begins
to function so inefficiently that degradation of the
simulation occurs.

6.1.1 When Does System Degradation Begin?
We have already stated that one method of measuring
system performance is by monitoring the behavior of

471

Average Tick Interval vs. Number of Vehicles
w/ Remote Vehicles on Same Exercise 10

0.35

0.30 •-

0.25

£ 0.20

0.15

0.10-

0.05

0.00
10 12

Number of Vehicles

16 18 20

Figure 5

the simulated entities. We have observed, however,
that degradation of the system begins before a
noticeable decay in the behaviors of individual
vehicles. As Figure 4 shows, the system is running
most efficiently when the average interval between
vehicle ticks is about 0.08 seconds. At higher tick
intervals (say, 0.10 seconds), the Testbed may still
appear to perform reasonably well, but system
degradation has already begun. The question remains,
then, "At what point does sufficient degradation occur
in the system as to affect the behaviors of individual
vehicles?" The graph of the total vehicle ticks shown
in Figure 2 increases steadily until it takes a dramatic
nose-dive after forty vehicles. This shows that under
the conditions created by the test scenario, the system
runs without degradation with a load of up to forty
vehicles. After forty vehicles, degradation begins. We
can now use the forty-vehicle scenario to determine the
Testbed's performance threshold by establishing a
range for the average tick interval based on those
individual intervals measured for the forty-vehicle
scenario.

Given the normal distribution of vehicle tick intervals,
we can calculate the mean and standard deviation for
the average tick interval using the forty-vehicle
scenario as the standard. It is in this manner that we
have determined that the Testbed is running with no
system degradation when the average vehicle tick

interval is 0.0922 seconds. More precisely, we can say
with ninety percent confidence that the Testbed is
running with no system degradation when the average
vehicle tick interval is between 0.0840 and 0.1004
seconds (Freund 1979).

6.2 Parts II, m, and IV

Figure 5 shows the average tick interval for vehicles in
the scenario where the system is under a network load
of 800 remote entities on the same exercise ID. It is
clear that the remote network load places an extra
burden on the system, since at the 0.0922-second tick
interval threshold, the system is at capacity with a local
load of only eight vehicles.

Figure 6 shows the average tick interval for vehicles in
the scenario where the system is under the same
network load, but with the entities on a different
exercise ID. The threshold in this case appears to be at
about thirty-six vehicles. Therefore, the presence of a
large number of exercises running on the same physical
network should not critically affect the performance of
each exercise.

Figure 7 shows the average tick interval for vehicles in
the scenario involving air/ground interaction. Notice
that the Testbed reaches its capacity with fewer
vehicles. The primary weapon that helicopters use in

472

0.35-

0.30

0.25-

5 0.20 •

0.10-

Average Tick Interval vs. Number of Vehicles
w/ Remote Vehicles on Different Exercise ID

0.05-

0.00-
12 16 20 24 28 32 36

Number of Vehicles

40 44 48 52 56 60

Figure 6

Average Tick Interval vs. Number of Vehicles (AH647T72)

0.50 x

0.45 -

0.40-

^ °-35'
ft

£ 0.30-
o

•g 0.25-
P

I 0.20-
S > <

0.15 +

0.10-

0.05 --

0.00- H 1

10 18 26 34 42 50 58 66 74 82 90 98

Number of Vehicles

Figure 7

473

0.45

0.40-

0.35 -

J 0.30-

f 0.25
M
o

« 0.20 -
a •
8
< 0.15

0.10 -•

0.05

0.00

Average Tick Interval vs. Number of Vehicles (M1/T72/DIS)

H 1-

10 18 26 34 42 50 58 66 74 82

Number of Vehicles

—i—i—i—(—i—i

90 98

Figure 8

engaging tanks is the guided missile, which, unlike
other forms of fire, is itself represented as an individual
entity in the virtual environment. Therefore, we can
attribute the smaller capacity to the additional overhead
that the missile flyouts generate.

6.3 PartV

The Eagle Manager's operating characteristics are very
different from those of the simulation host. In the
linkage between the constructive and virtual
simulations, the Eagle Manager acts primarily as a
packet blaster, placing Vehicle Appearance PDUs (or
Entity State PDUs, depending on the protocol) on the
network to represent pseudo-disaggregated vehicles in
the virtual environment. Otherwise, the Eagle Manager
remains mosdy idle, waiting to route the occasional
message from one side to the other. When it does
receive a message, such as a request for disaggregation,
the Eagle Manager operates at or near capacity through
the completion of the task at hand. It then returns to its
somewhat idle state. However, due to the non-
preemptive nature of the Eagle Manager, each task
finishes before the next one starts. Therefore, the only
way to overload the Eagle Manager is to attempt to
pseudo-disaggregate so many vehicles that it simply
can not place Vehicle Appearance PDUs on the
network fast enough. To this extent, the Eagle
Manager is limited by the capacity of its network

interface hardware. We were therefore unable to
determine a limit on the capacity of the Eagle Manager.

6.4 Part VI

Figure 8 shows the average vehicle tick interval for the
tank scenario under the DIS protocol. From these
results, it appears that there is very little difference (if
any) between the two protocols. DIS, however, does
support a much wider variety of PDUs than does
SIMNET. Therefore, these results may be skewed
since the test scenario did not require the utilization of
those PDUs that are specific to DIS.

7. Conclusions

7.1 The Test Conditions-A Caveat

It is important to note that the test scenarios were
conducted with altered damage tables for those entities
in the simulation. By making the vehicles invincible,
the test procedure produces a worse-than-worst-case
scenario in which all of the vehicles are continuously
routing, targeting, and firing-yet never dying.

7.2 Impact of Terrain on the Benchmark

It is also important to note the limitations that the
terrain imposes on such a test (Vrablik 1994). If the
terrain were completely flat and contained no obstacles,

474

every vehicle would be able to see every other vehicle,
thus creating a distorted view of the capacity of the
system. Likewise, if the terrain were extremely rough,
a similar distorted view might result. Therefore, the
vehicle tick interval seems a trustworthy measure of the
system load because it removes all of these factors
from the equation. The bottom line becomes: The
system is running within its limits if the average
interval between vehicle ticks is within the determined
range.

7.3 Limitations of the Executive Busy Percentage

The use of the executive busy percentage as a measure
of performance can also be disputed. The executive
busy percentage measures the amount of time that the
executive spends processing its tasks. It does this by
determining the difference between the time at which
the task was dispatched and the time at which the task
was finished. However, given the granularity of the
timer, a task might finish before any measurable
amount of time has passed.

Obviously, the purpose of benchmarking such a system
is not merely to determine how many entities it can
support. Its primary goal is to provide a standard by
which we can measure future performance.

7.4 Future Work

1ST has not yet integrated the measurement of the
vehicle ticks into the Testbed, mainly because of the
abundance of performance data that it already gathers.
With the possible exception of the executive busy
percentage, however, the average vehicle tick interval
seems to be the most accurate measure of the system's
performance. Therefore, the future developers of the
Testbed may decide to implement the vehicle tick
measurement into the system.

When the benchmarking option is specified from the
command line in ModSAF, not only does the system
tally vehicle ticks, but it also halts the simulation as
soon as it determines that it is running beyond its
capacity. In any case, it would be very helpful for the
system to at least warn of possible spurious behaviors
resulting from an impending system overload.

The accuracy of the executive busy percentage as a
measure of system performance is questionable due to
the granularity of the timer involved in measuring the
executive busy percentage. It is apparent, though, that
a finer timing mechanism would produce more accurate
results.

Lastly, more work is needed in developing a
benchmark for a constructive+virtual linkage, because
of the complex nature of this type of system.

8. Acknowledgment

This research was sponsored by the U.S. Army
Simulation, Training, and Instrumentation Command as
part of the Integrated Eagle/BDS-D Project, contract
number N61339-92-K-0002. That support is gratefully
acknowledged.

Special acknowledgment goes to Michael A. Craft and
Robert D. Russell, who provided invaluable guidance
from their knowledge of operating systems.

9. References

Franceschini, Robert W., Watkins, Jon E., Parra,
Fernando R., McCulley, James E.,
Lautenschlager, Jennifer A., Jackson, Lance
A., Nanda, Sanjeeb (1993). "SAFDI Support
Manual", Technical Report IST-TR-93-24,
Institute for Simulation and Training,
University of Central Florida.

Franceschini, Robert W. (1995). "Integrated
Eagle/BDS-D: A Status Report",
Proceedings on the Fifth Conference on
Computer Generated Forces and Behavioral
Representation, Orlando, Florida, May 9-11,
1995.

Freund, John E. (1979). Modern Elementary Statistics.
Fifth Edition, Prentice Hall.

Karr, Clark R., and Root, Eric D. (1994). "Integrating
Aggregate and Vehicle Level Simulations",
Proceedings of the Fourth Conference on
Computer Generated Forces and Behavioral
Representation, Institute for Simulation and
Training, Orlando, Florida, May 4-6, 1994,
pp. 425^35.

Kleinrock, Leonard (1976). Oueueinp Systems-
Volume II: Computer Applications. John
Wiley and Sons.

ModSAF Programmer's Reference Manual, (1994).
Loral Advanced Distributed Simulation,
Cambridge, Massachusetts, 1994.

Smith, Scott H, Karr, Clark R., Petty, Mikel D.,
Franceschini, Robert W., Wood, Douglas D.,
Watkins, Jon E., and Campbell, Charles E.
(1992). "The 1ST Semi-Automated Forces
Testbed", Technical Report IST-TR-92-7,
Institute for Simulation and Training,
University of Central Florida.

WATCOM C/C++ Programmer's Guide, (1994).
WATCOM International Corporation,

475

Waterloo, Ontario, Canada.
Vrablik, Rob, and Richardson, Wendy (1994).

"Benchmarking and Optimization of
ModSAF', Proceedings of the Fourth
Conference on Computer Generated Forces
and Behavioral Representation, Institute for
Simulation and Training, Orlando, Florida,
May 4-6 1994.

10. Biographies

Stephen A. Schricker is a Software Engineer on the
Integrated Eagle/BDS-D project at the Institute for
Simulation and Training. He has earned a B. S. in
Computer Science from the University of Central
Florida. His research interests are in the area of
simulation.

Tracy R. Tolley is a Graduate Research Assistant on
the Integrated Eagle/BDS-D project at the Institute for
Simulation and Training. She has earned a B. S. in
Mathematics from the University of Central Florida,
and is currently pursuing an M. S. in Computer Science
from UCF. Her research interests are in the area of
simulation.

Robert W. Franceschini is a Principal Investigator at
the Institute for Simulation and Training. He currently
leads the Integrated Eagle/BDS-D project at 1ST. Mr.
Franceschini has earned a B. S. in Computer Science
from the University of Central Florida; he is currendy
pursuing an M. S. in Computer Science from UCF. His
research interests are in the areas of simulation, graph
theory, and computational geometry.

476

Session 9b: Dismounted Infantry

Howard, Hughes Research Laboratories
Mastroianni, U.S. Army , Natick RD&E Center

Mclntyre, Simulation Technology Inc.
Middleton, Simulation Technology Inc.

Individual Combatant Development in ModSAF

M. D. Howard1, B. Hoff, and D. Y. Tseng
Hughes Research Laboratories

Malibu, CA 90265

1. Abstract

Individual Combatant (IC) capabilities have been
developed in ModSAF as part of the Marine Corps
Semi-Automated Forces requirements for the
LeatherNet project and STOW '97. The initial
development effort has been focused on modifying
and enhancing ModSAF to enable the inclusion of the
Marine Corps IC at the lowest echelon levels: Fire
Teams and Rifle Squads. Additionally, three special
teams (60mm Mortar team, Machine Gun team, and
Assault team) have been created. Early development
concentrated on basic functions and basic movements
of the ICs, which are building blocks for more
complex tactics and maneuvers. These results have
been incorporated into Build One of the Marine Corps
LeatherNet project.

The modification to, and enhancement of, ModSAF to
create the appropriate Marine IC functionality will be
described. This was not a trivial undertaking because
of ModSAF's orientation toward Army armor. Also,
the integration of IC formations and movements with
planning techniques which utilize terrain features for
cover and concealment [presented in more detail in a
companion paper by Hoff, et al] will be discussed.

2. Introduction

2.1 Previous SAFOR work

Hughes Research Labs (HRL) first applied
autonomous vehicle navigation ideas (Mitchell, et. al,
1987) to the problem of tank platoon and company
movement with formation maintenance in the
SIMNET Semi-Automated FORces (SAFOR) project
in 1990. A concurrent-control scheme for driving
SAFOR tanks balanced the competing goals of
avoiding obstacles, maintaining a formation, and

To whom correspondence should be addressed via
internet: howard@isl.hrl.hac.com

following an assigned route. This control scheme
showed a measured improvement over the finite state
machine approach used in SAFOR (Harmon et al,
1990). We also applied concurrent-control to the
gunner and company commander. In particular, our
concurrent control commander (Harmon, et al, 1994)
was able to balance competing objectives to make
decisions about breaking formation to respond to
incoming enemy fire and sending orders to
subordinate commanders by means of PDUs. In
phase two of this project we applied case-based
reasoning and concurrent control to the air vehicles in
the WISSARD IFOR program (Keirsey et al, 1994),
which was built on top of ModSAF A.

2.2 The Need for USMC SAF

The goal of HRL's work in the current LeatherNet
project is to develop the Individual Combatant (IC)
capabilities for the Marine Corps component of
STOW97. Early versions (A and B) of ModSAF
included models of air vehicles for the WISSARD
IFOR program, and the IX versions have
concentrated on Army armor units. IC capabilities
required for Marine Corps simulation have not been
sufficiently developed in ModSAF. A ModSAF
Dismounted Infantry (DI) is basically a slow,
vulnerable tank with a rifle, that can mount and
dismount Infantry Fighting Vehicles (IFVs). This is
not an unreasonable way to simulate an IC given
ModSAF's existing code library and the need to
conserve CPU cycles. For instance, the hull model in
ModSAF simulates variations in speed with soil type
and the turret / loader / gunner model simulates
ammunition supplies, loading time, targeting/tracking
and shooting. These models can be applied to ICs
with appropriate parameter changes.

Some existing tasks such as VMove, which controls
vehicle movement, can be reparameterized to get a
quick start of the behavior, but ultimately some
deeper aspects of the behavior need to be addressed.
For example, a tank considers a tree canopy to be a
penetrable obstacle; that is, it will detour around the
canopy unless specifically tasked to go inside. An IC
is probably attracted to a tree canopy as it affords

479

concealment without significantly slowing forward
progress. Attraction to an area of concealment is not
well developed in ModSAF; section 3.4 discusses our
approach. Furthermore, there are tactical
considerations that might make an IC stay out of a
tree canopy, including the need to stay in visual
contact for hand signals not used by the tanks. Some
of these higher level behaviors may eventually require
the more sophisticated blending of lower behaviors
called concurrent control.

There is no model of "suppression" (direct or indirect
fires brought to bear on an enemy to prevent effective
fire on friendly forces) in ModSAF, or of a response
to suppression. We will need to model the way that
suppressive incoming fire affects a soldier's firing
rate and targeting accuracy. The ability to signal
other units by means of smoke and flares is not
present in ModSAF as of version 1.4. Finally, Marine
Corps echelons, formations, techniques of movement
and tactics are not represented in ModSAF.

In the next section, our enhancements to ModSAF for
the LeatherNet Build One demonstration (six months
into the program) is described in some detail. To date
we have addressed a subset of needs mentioned
above. Our successful Build One demo is described
in section 4, "Results".

3. ModSAF Enhancements

3.1 Integration Choices

The following discussion will be more understandable
if we define two terms to describe how a developer's
code is integrated with ModSAF: loose and tight. A
loose integration implies that the developer's code is a
separate code module, with few links into ModSAF.
An extreme example of this might be a module that
runs in a different process, using a low bandwidth
socket or shared memory interface. A more moderate
example is the way SOAR was integrated, running in
the same process but bypassing ModSAF's movemap
for vehicle control and providing its own user
interface (Schwamb etal, 1994). The advantages of a
loose integration with ModSAF include easier porting
to new versions of ModSAF and avoidance of much
of the ModSAF learning curve. The drawback for the
developer is the likelihood that certain ModSAF code
will need to be duplicated. As a result, ModSAF's
already complex code can become duplicative and
disorganized.

A tight integration uses standard ModSAF
mechanisms as much as possible. In this method, the
developer's code adds functionality to ModSAF by
making changes as subtly as possible. Developers
desiring to embed their control mechanisms in
ModSAF in this way face a steep learning curve
because a deep understanding of ModSAF is required.
It is riskier and more expensive, at least in the short
term, to do this.

At the beginning of HRL's involvement in the
LeatherNet program, the 1.0 version of ModSAF
which was then available did not simulate two-
echelon-deep units like an Army company. We were
aware that company level capabilities were being
developed and would soon be available, but our
schedule was too tight to wait. In order to show an
early capability in the LeatherNet program, we chose
to use some basic movement, formation, and echelon
logic we had developed for another program, and to
loosely integrate it with ModSAF. In other words, a
Marine Corps entity would run our concurrent control
code for route planning, obstacle avoidance, and
formation keeping, instead of running the ModSAF
movemap planning code.

When ModSAF 1.2 was delivered and contained
company level capabilities, some of our code became
redundant. We opted to use the new ModSAF
echelon and formation code and to use ModSAF's
movemap for movement, thereby shifting to a tight
integration. The next section describes our resulting
tight integration with ModSAF 1.2 in some detail.

3.2 Creation of Marine Corps Entities

3.2.1 Marine Corps Rifle Squad
Our first job was to create, in ModSAF, a Marine
Corps rifle squad. In ModSAF, a tank is an atomic
entity which can move, shoot, and communicate.
ModSAF models two echelons for Army armor: a
platoon composed of tanks, and a company composed
of platoons. For simulation purposes, a Marine Corps
squad has a similar two echelon structure: a fireteam
composed of Individual Combatants (ICs), and a rifle
squad composed of fireteams. This is important
because the echelon organization determines how a
behavior task is structured in ModSAF, and we were
able to obtain early results in Marine Corps modeling
by re-coding some ModSAF company tasks for the
Marine squad.

For example, a ModSAF company task such as
"UCMarch" is a meta-task that spawns and controls
platoon tasks such as "UTraveling", which in turn

480

spawns individual vehicle tasks such as "VMove".
But ModSAF's company unit tasks could only be run
by units that were called "Company." It was
necessary to extend them so they could also be used,
with some revisions, on Marine rifle squads. This
involved not only changes in parameters such as
formation spacings and speeds, but also changes in
some of the finite state machine logic used to
implement these behaviors, written with Army
doctrine in mind. Some examples of this are
discussed below in section 3.3, "Formations and
Basic Movement."

Figure 1. A machine gun team (upper left) is
sitting at its base of fire on a ridge. A mortar
team (lower right) and a machine gun team are
shown traveling nearby. Each team is portrayed
by a single icon, which represents the team's
weapon (The grid shown is 100 meters).

3,2,2 Special Weapons Teams
Three special weapons teams were needed in the
Build One context: an assault team armed with a
Mkl53 SMAW, a M224 60mm mortar team, and a
machine gun team armed with a M240G machine gun
For Build One, it was only necessary to simulate the
functionality of each of these teams. In this case we
used a simple entity that could move to a location,
simulate setup time, and then orient itself on a target.
Setting up the weapon was simulated by having the
team icon wait for a specified after arriving near the
base of fire before moving into position.

3.2.4 Marine Corps Iconic Display
The standard ModSAF icon view shows at a glance
which entities are ModSAF Dismounted Infantry (DI)
and which are vehicles. But in order to debug the
[simulated] Marine formations and enable [real]
Marines to W&A our work, we had to display more
information for each entity in the rifle squad.
Military symbols for Marine Individual Combatants
(ICs) denote such information; they graphically
differentiate each squad member (squad leader,
fireteam leader, rifleman, etc.) by portraying its role
in the squad. ModSAF does have a concept of role:
the job of unit leader can be passed from one entity to
another in a defined order, if the entity currently
performing that job is killed. However, icons
displayed on ModSAF's plan view represent only
entity type. Using the "View As..." menu item, the
user can choose to see either a "picture" or an "icon"
of the entities. But the information presented in
either case is basically the same.

The only method ModSAF provides to override the
default and attach a particular icon to an entity is to
list the entity and its icon individually in a reader file.
To use this method, it was necessary to create five
Marine Corps entities (squad leader, fireteam leader,
machine gunner, machine gunner's assistant and
rifleman), one for each role in the squad. The
appropriate military icon was attached to each
individual in the squad. Role icons can now be
displayed by selecting "Vehicle Icons" from the
"View As..." menu in the ModSAF plan view display.
An example of this view is shown in figure 2.

Though the roles of the squad members are now
visible, the mechanism we used has two drawbacks
for the long term which will have to be addressed in
the future. First, though several members of a
fireteam carry the same weapon, it was necessary to
make them different entity types just for the purpose
of displaying an icon. This is undesirable not just
because it is unnecessarily duplicative, but because
ModSAF hard-codes the maximum number of entities
in a unit to be four and makes several program loops
and arrays dependent on that number (there are five
roles in a squad). Most importantly, in the Marine
rifle squad, it is not just the leader's role that can
migrate. For example, if the Automatic Rifleman
(who carries an M249 Squad Automatic Weapon or
SAW) is killed, his assistant picks up the SAW and
becomes the Automatic Rifleman. ModSAF only
allows us to attach an icon to an entity in a reader file,
at startup time, so we cannot change the role icon to
simulate this migration of roles until this software
design is enhanced.

481

3.3 Formations and Basic Movement

3.3.1 Squad and Team formations
Our extension to basic ModSAF formations for the
Marine Corps consists of two parts: a mechanism for
specifying a leader's position within the squad, and a
mechanism for creating different team formations
within a squad formation.

®sb J <

Squad Leader

2S©
Asst. Auto

L Rifleman *"» \ J» Rifleman

V Ml
^^^ Auto /

^^Rifleman—'

_ Fireteam
Leader

Figure 2. A squad in vee formation. Note that
some fireteam formations are mirror images of
each other. The individual combatants (ICs) are
displayed on the ModSAF plan view display
using military icons that identify their roles.
The text labels in the figure were added to the
figure for explanation. (Squad is shown on
100m grid).

3-3.1.1 Leader's Position within Squad
In ModSAF, formation specifications for a company
only apply to subordinate units (the platoons).
Leaders (XO and CO) are, by convention, situated
behind the formation. In fact, ModSAF was designed
so that leaders of a company cannot be put anywhere
else when the company is created. This is another
case in which ModSAF's basic design was not
general enough to easily accommodate a different
military service. Because the leader of a Marine
Corps squad is usually closer to the center of the
squad for better control, we added to ModSAF the
capability to flexibly specify the position of a leader
within the squad or company formation

Our solution works within ModSAF's formation
specification mechanism, so the squad leader's
position is specified using the standard formation
syntax. One possible future need that we have not yet
addressed is to allow a squad leader to move around
to different positions within the squad dynamically,

depending on tactical situation as well as formation.
We hope to accomplish this within the ModSAF
framework as well.

3 3 12 Mixing Subformations
Using the new formation specification capability, a
set of new formations was generated. The following
table lists the Marine Corps formations for fireteams
and rifle squads that have been implemented for Build
One. The designation "(R/L)" indicates that the
formation can be oriented differently (right or left)
depending on circumstance or position within a larger
formation

RIFLE SQUAD FIRETEAM
Tactical Column Tactical Column
Online Online
Wedge Wedge (R/L)
Vee Vee (R/L)
Echelon (R/L) Echelon (R/L)
Rear Point (nominal)

Skirmisher's (R/L)
Table 1. Marine Corps formations simulated for
Build One demo.

Several Marine squad formations are composed of
mixed team formations. For example, a rifle squad
rear point formation, shown in figure 3 below,
consists of fireteams in echelon right, echelon left,
and wedge subformations (indicated by "nominal"
designation in the table above). A squad vee (figure
2) has each fireteam in a vee, but each wedge is
oriented differently. Standard ModSAF did not
allow mixed subformations. It allows the user to
specify only a single subformation type for each
formation. Our extension to ModSAF allows the user
to choose the formation and have the correct
subformations automatically filled in. But the
standard ModSAF functionality is still available: if
the user specifies a certain subformation, that
subformation is used for all sub-units.

3.3.2 Basic Movement
In standard ModSAF, though a leader is located
behind its company when created, it functionally joins
one of the platoons when the company is tasked to
move. Each movement task recreates the company
(or squad) formation when specifying the
subordinates' routes. The task uses its own rules,
including spacing parameters.

With the close formation spacing required for Marines
(on the order of 10-20m between ICs vs. 50-100m
between tanks), excessive collisions occur between
members of the squad traveling along the same route

482

{e.g., when in a column formation). This is because
ModSAF gives each member of the team a private
route, and plans its speed in advance based on the
maximum speed an entity can travel on the terrain.
However, the entity constantly adjusts its speed as it
travels, and it can get behind its planned position. If
the entity behind is following closely and doesn't
anticipate the speed change, a collision can occur.
Then both do a collision recovery, which involves
recoiling, and that causes more bumping and more
delay. This low frequency predictive approach to
collision avoidance is a reasonable compromise with
the need to save cpu cycles. But in complex
microterrain, team members are constantly changing
their speed and the problem is magnified. We will
have to add some stronger station-keeping and
collision avoidance to ModSAF especially to deal
with column formations on the 5 to 10 meter spacings
needed for ICs. We have addressed this problem in
earlier work (Harmon et al, 1990), using our
concurrent control mechanisms. We are still studying
the problem in ModSAF, and may use concurrent
control in a future build.

3.4 Advanced Movement Using Terrain for Cover
and Concealment

ModSAF has a primitive capability to find covered
and concealed (C&C) positions for stopping, but it
had no way to use cover while moving until the grid-
based C&C route planner in version 1.4. We have
added an ability to intelligently plan routes so they
take advantage of nearby cover and concealment. A
unit's route is passed into a path planning module,
where it is altered to use nearby regions of cover.
This "weighted-regions" path uses an optimal path-
planning algorithm based on a polygonal
representation of terrain features, developed at SUNY
Stonybrook. Because the weighted regions approach
can deal directly with the Triangulated Irregular
Network (TINs) of the microterrain, this approach is
potentially faster than grid based approaches such as
that used in ModSAF 1.4, and the result is not prone
to "digitization bias". A companion paper (Hoff et al,
1995) in this conference presents the weighted regions
path planning approach.

4. Results and Future Work

The Build One demo

The Build One scenario developed for us by our
Marine SMEs involved an assault on an enemy
occupying two trenches in Range 400. Figure 4

Figure 3. Trailing end of a platoon column
moving north (toward the top of the page),
showing 2 squads on a 100m grid. The squad in
front is in a tactical column, and the rear squad is
in rear point formation.

shows the ModSAF plan view display set up for the
Build One scenario, which is as follows:

The enemy has established a base of fire at a Security
Position near the center of the range, and his main
force is dug into a long trench at the north end of the
range, Objective A (figure 5). The terrain is a desert
valley surrounded on North, East and West by
mountains. Friendly forces, located at Assembly Area
AA in the south end of the range, consist of a squad
with attachments. The three attached special weapons
teams are an assault team armed with a SMAW, a
machine gun team with Mk 153 machine guns, and a
mortar team with a 60mm mortar. The plan,
developed and input by a human platoon commander,
is to send the mortar team NE to CP3, where it can
destroy the Security Position. Meanwhile the squad

483

Figure 4. Build One Scenario. Squad and special teams begin at assembly area AA at bottom of map, south of
the area of operations. Bases of fire are set up just north of minefield to West and at CP3 to East. Security
Position target is in center, and final Objective A trench is North. Image depicts mortar team set up at CP3,
oriented on Security Position, while rifle squad is just emerging from breach through minefield, with machine
gun team and assault team in trace.

0 484

Figure 5. Squad is just arriving at final assault
position CP5 at Objective A trench. (Grid is
100m.)

moves NW, breaches the Minefield, and moves North
toward the Objective A trench. The other two special
teams trace the squad.

After breaching the minefield, the machine gun team
breaks off to establish a base of fire on a hill (marked
"Base of Fire), and suppresses Objective A. The
squad, with assault team still in trace, maneuvers
through a series of WADIs (desert washes that
provide cover and concealment), until it reaches the
final assault position CP5 on the right flank of the
enemy in Objective A. At this point, the machine gun
team to reorients its base of fire to the eastern end of
Objective A, and the squad and assault team assault
the objective from the western end.

The overall goal of our work is to develop the Marine
Corps component of the STOW97 exercise. Various
builds in the program are working incrementally
toward that goal. Our Build One demo was
successfully completed in December 1994, and we
have begun to work on the Build Two demo. For
Build Two, planned for late August 1995, more
complex behaviors will be implemented for the ICs,
and engagements between OPFOR and BLUFOR will
take place. The precise scenario for Build Two is still
under consideration.

5. Acknowledgments

This work was supported in part by ARPA contract
DAAE07-92-C-R007, contracted through NRaD. We
gratefully acknowledge the guidance and support of
LCDR Peggy Feldmann and LT Jeff Clarkson in the
performance of this program. Mac Brewer's advice
and feedback kept us aware of USMC needs.
Knowledge Acquisition of Marine Corps tactics and
doctrine for the LeatherNet program has been
provided by BMH.

6. References

Harmon, S.Y, Yang, S. C, Howard, M. D, and Tseng,
D. Y. (1990), "A Behavior-Based SAFOR and its
Preliminary Evaluation", in Proceedings ofU. S.
Army PM Trade 2nd Behavioral Representation
and Computer Generated Forces Symposium.

Harmon, S.Y, Yang, S. C. and Tseng, D. Y. (1994),
"Command and Control Simulation for Computer
Generated Forces", inProceedings of the Fourth
Conference on Behavioral Representation and
Computer Generated Forces.

Keirsey, D. M., Krozel, J. A., Payton, D. W., and
Tseng, D. Y. (1994) "Case-Based Computer
Generated Forces," in Proceedings of the Fourth
Conference on Behavioral Representation and
Computer Generated Forces.

Mitchell, J., Payton, D.W., Keirsey, D.M. (1987)
"Planning and Reasoning for Autonomous
Vehicle Control," International Journal of
Intelligent Systems, Vol. II.

Schwamb, K., Koss, F., and Keirsey, D. (1994)
"Working withModSAF: Interfaces for Programs
and Users," in Proceedings of the Fourth
Conference on Behavioral Representation and
Computer Generated Forces.

7. Authors' Biographies

Michael D. Howard has been active in the study of
Semi-Autonomous Forces and Autonomous Systems
since 1988. Since the work described in this paper,
he has become Principal Investigator of the
Command Forces program, a new ARPA program.
Mr. Howard holds the MSEE degree from University
of Southern California (1986), a BSEE from
Louisiana State University (1981), and a BA in
English from St. Andrews College (1977). His
research interests are in the areas of multi-agent
coordination, autonomous systems, and adaptive
planning.

485

Bruce Hoff is the Principal Investigator for the
USMC-SAF project at Hughes Research
Laboratories. At HRL Dr. Hoff has also worked on
the ARPA autonomous vehicle project, and CGF
Command Forces (CFOR). Dr. Hoff earned B.S. and
M.S. degrees from Rensselaer Polytechnic Institute,
and the Ph.D. degree from the University of Southern
California, all in Computer Science. His research
interests are in the areas of Artificial Intelligence,
Autonomous Vehicles, Adaptive Control, and
Computer Generated Forces.

David Y. Tseng is the Manager of Government
Program Development for the Information Sciences
Laboratory. Dr. Tseng holds a Ph.D. from the
Polytechnic Institute of Brooklyn (1967), a S.M. from
Harvard Univ. (1962) and a B.S.E.E. from the Univ.
of Pennsylvania (1960). Dr. Tseng's current
activities are in the areas of artificial intelligence,
autonomous systems, synthetic environments, and
information management. He is actively involved in
developing programs that utilize artificial intelligence
technologies to advance the capabilities of military
systems.

486

Mobility Behavior in Dismounted Forces

George R. Mastroianni
US Army Natick RDEC
SATNC-YBH
Natick, MA 01760

Reed W. Hoyt
USARffiM
Altitude Phys and Med Div
Natick, MA 01760

Mark J. Buller
GEO-CENTERS, Inc.
190 N. Main St.
Natick, MA 01760

1. Abstract

We have been working to enhance the
representation of dismounted soldier mobility
behavior in the Integrated Unit Simulation
System (IUSS). This paper reports the results of
our analysis of the mobility behavior of twelve
US Marines who walked 112 kilometers in
Yosemite National Park over seven days in
September 1994. Using GPS monitoring, we
recorded the position of the Marines, the time,
and their verbal description of the terrain as they
completed this hike. Using the GPS records,
trail logs, and topographic maps, we constructed
a comprehensive description of the march rate
and rest patterns of the Marines and of the trail
grade, footing, and conditions. We analyzed the
available data and established functional
relationships among terrain conditions and the
march rate and rest patterns of the Marines. We
concluded that grade was an important
determinant of march rate.

2. Introduction

The Integrated Unit Simulation System (IUSS)
is a comprehensive small-unit simulation
environment being developed by Natick
Research, Development and Engineering Center
and Simulation Technologies, Inc. (O'Keefe,
1994) IUSS includes sophisticated modeling of
the physiological state of dismounted soldiers.
Environmental conditions, mission demands,
and terrain interact dynamically to alter the heat
stress and energy requirements of dismounted
soldiers in IUSS. The system tracks a variety' of
individual physiological parameters, such as
core temperature, skin temperature,and heart
rate, and computes appropriate changes in these
parameters during simulation runs. This
information is continuously available during the
simulation and is used to alter the performance
capabilities of simulated individuals.

2.1 Mobility Control in IUSS

Using the terrain databases provided to the
system, IUSS computes the grade of route
segments along which dismounted soldiers
travel. (The segmentation of the route is
determined by the magnitude of the grade
change - the threshold for defining new
segments is controllable). As simulated
individuals travel the route the system uses the
environmental conditions, terrain
characteristics, and load to compute energy
expenditure and heat production.

The system also uses the thermal transfer
properties of clothing and equipment worn by
the simulated soldier to calculate heat strain on
the individual (Pandolf et al, 1986). When
predetermined thresholds for core temperature
are exceeded, the individuals performance is
degraded.

2.2 Mobility Behavior of Soldiers

The existing computational approach to mobility
control is adequate for making relative
comparisons or trade-off analyses, but may not
accurately represent the behavior of soldiers
under operationally realistic conditions. The
availability of more sophisticated information
about how soldiers move across terrain would
enhance both the analytic value of IUSS (or
other simulation systems) and the realism of
computer generated dismounted forces.

2.2.1 March Rate Control

Most studies of soldier locomotion have been
conducted in laboratories using treadmills.
March rate is typically controlled by the
experimenter, leaving little opportunity for
assessment of march rate under ecologically

487

valid conditions. The limited field data available
suggest that soldiers may tend to maintain a
more or less constant level of effort rather than a
constant speed (Myles et al, 1979). In any case,
it is apparent that march rate control is a
complex and dynamic process affected by
environmental conditions, individual
physiological and psychological variables,
mission requirements, and terrain
characteristics. We used a field study to try to
improve our understanding of this complex
process.

2.3 Field Study

The study described below was designed to
provide field data to further validate and refine
the energy expenditure and heat production
algorithms developed at USARIEM (US Army
Research Institute of Environmental Medicine)
that are used by IUSS. An additional effort was
made to collect data on soldier mobility behavior
during the study to begin the process of
developing more complex soldier march rate
control modules for IUSS.

3. Study Plan

The field study was conducted at Yosemite
National Park in the fall of 1994. Twellve
Marines traversed a pre-planned route covering
approximately 110 kilometers while bearing
loads of approximately fifty pounds. The groups
were permitted to move at their own pace, but
were required to arrive at checkpoints on
particular days to accomplish resupply and data
downloading tasks.

3.1 Data Collection

The main purpose of the effort was to study
energy expenditure of soldiers and Marines
engaged in a lengthy, rigorous hike at moderate
altitude. Extensive measures of individual
physiological fitness, including aerobic capacity
and body composition, were made on each
participant before the hike. Participants also
ingested doubly-labelled water and provided
periodic body fluid samples during the study to
permit accurate measurement of energy
expenditure. Dietary intake and heart rate were
also monitored throughout the study.

Global Positioning System (GPS) fixes were
recorded by the group frequently during the
hike; an audio tape recorder was used to record
trail descriptions and annotate rest break timing.
The primary intent of gathering these data was
to obtain high-resolution information to aid in
the refining of our predictions of energy
expenditure.

3.2 Analytic Approach

Since our sub-goal was to relate terrain
characteristics to march rate, we had first to
adopt a data processing strategy that would
extract as much information from the available
data as feasible. Since we had time-tagged GPS
fixes, we used these fixes to develop our route
profile. This route profile was the basis for most
of our subsequent analysis.

3.2.1 Route Profile Construction

We began by plotting the route taken by the
Marines on a topographic map. We then
segmented the route into discrete pieces. The
segments were chosen such that the time,
elevation, and location of the beginning and end
of the segment were known, and the segment
contained terrain that was consistent in type and
grade. Insofar as was possible with the data
available, segments were chosen so that the
average grade across the segment represented
well most of the terrain in the segment. The
topographic maps and the trail logs from the
tape recorder provided the basis for these
segmenting decisions. Because the terrain was
quite variable, segments varied in length from a
few hundred meters to several kilometers; the
average segment length was just under one
kilometer. Rest breaks also ended and began
segments, even if they occurred in terrain that
would not ordinarily have triggered a new
segment. Figure 1 shows a frequency
distribution of the segments we used in the
analysis. This distribution illustrates that even
though the terrain was very mountainous, most
of the walking was done at low to moderate
grades (0 - 10%).

3.2.2 Route Profile Analysis

Using the topographic maps, the trail distance
from the beginning to the end of each segment
was measured. The topographic maps were also

488

CD

O

o
CO
o

£ o
O
CD

2

(w>0 eoue;s!Q

489

used to validate the elevation estimates provided
with the GPS fixes. (The contour interval of the
maps was 40 feet.) When there was an elevation
change over a segment, the distance used was
the "slant distance" taking into account the
elevation change. Velocities for each segment
were then computed by dividing the distance
traversed over a segment by the time taken to
move from the beginning to the end of the
segment. Grade was computed by dividing the
elevation change from beginning to end of the
segment by the total length of the segment.

4. Study Results

Our analysis has thus far focussed on two issues:
the relationship between grade and velocity and
the timing of rest breaks.

4.1 Grade and Velocity

How fast an individual walks is, as we
mentioned above, determined by a complex
constellation of variables. Because grade is
closely related to the work output required,
which is in turn closely related to heat
production and fatigue, grade is likely to
account for a fair amount of the variation
observed in velocity. Moreover, grade can be
quantified relatively easily, unlike the less
tangible variables such as motivation or
perceived mission demands.

4.1.1 Steepness and Velocity

Figure 2 shows a scatter plot of all the segments
defined along the route. This plot contains
segments from seven different days. The
intensity of effort varied dramatically across
these different days of the hike; some days were
characterized by a relatively leisurely pace and
other days (such as the day the group lost the
trail and struggled to reach a camp before
nightfall) were characterized by exhausting
effort. Median velocity for the uphill segments
was 0.93 m/s; for downhill segments, the
median was 1.15 m/s. The vertical scatter of the
points on Figure 2 for a particular grade shows
that while grade clearly accounts for some of the
variability in velocity, there are also other
factors at work.

Figure 3 shows a plot of average velocity as a
function of grade using bins of 2% . (Due to the

low density of data at grades higher than 12%,
individual points are plotted beyond these
values). This plot shows nicely the effect of
increasing uphill grade on velocity. The
decrease in velocity with increasing grade is less
pronounced for downhill grades, probably
reflecting the more variable effects of footing
and stability on velocity when moving downhill,
instead of the work output limitation on velocity
on uphill segments.

4.2 Rest Break Patterns

In laboratory studies of locomotion on
treadmills, a work-rest cycle of 50 minutes
walking and 10 minutes rest is often assumed. .
Our Marines took thirty-seven breaks over the
seven days of hiking. These breaks included
brief pauses to adjust equipment, lunch breaks,
and rest breaks. Distances traversed before
taking a break ranged from a few hundred
meters to more than six kilometers; times
ranged from a few minutes to nearly ninety
minutes. Figure 4 is a scatter plot of the breaks
taken by our Marines.

As with the relationship between grade and
velocity, the factors that determine when a
group of soldiers will pause for a break are
apparendy quite complex. There is a tendency
for higher grades to be associated with a shorter
time between breaks and a shorter distance
covered between breaks. Figure 5 shows the
average time and distance since last break for
intervals with average grades above 5%, less
than -5%, or between -5% and 5%. Uphill
grades are associated with a decline in
performance relative to flatter terrain, and
downhill grades show a similar but smaller
change. This effect is greater for the distance
covered than for the time taken before a break,
suggesting that the group sacrificed some
velocity before taking a break under stressful
conditions.

5. Discussion

The results of this study have shown us that it is
possible to acquire useful and interesting
information about dismounted soldier mobility
behavior in the field using relatively unobtrusive
and inexpensive methods. The continuing
improvement in the quality and availability of

490

2.5

2-

•
J1.5
>.
o
o
I 1

0.5

-40

Velocity and Grade
For Each of 135 Segments

-30 -20

.' .••••••
• •

•• • t
> • / . •

-10 0
% Grade

—i—

10
—i—

20 30

Figure 2

Average Velocity as a Function of Grade
1.6

1.4

1.2-

"* 1 -
E

>0.8i
o
o
»0.6 -

0.4 -|

0.2

-40
-i 1—

-30 -20 -10 0
% Grade

10
—i—

20 30

Figure 3

20 80 40 60
Time (min)
Figure 4

This figure shows the distance traveled and time elapsed between breaks.
All breaks taken over seven days are included.

100

Distance and Time Since Last Break (SLB)
vs %Grade

<-5% >-5% and <-5%

Grade
>5%

Time SLB Distance SLB

Figure 5

492

GPS equipment should make studies like this
one even easier in the future.

5.1 Study Limitations

The generalizability of the results of this study is
limited in several respects. The Marines who
took part in the study were young, fit, well-
trained and led by experienced mountaineering
instructors from the USMC Mountain Warfare
Training Center. The mission scenario did not
include a tactical context; the guidance given
the mission planners was to attempt to plan a
schedule that would ensure a variety of work
intensities over the course of the hike. The loads
carried by the Marines were moderate but
significant. The information extracted from this
study clearly cannot be considered to be typical
of movement rates under very different
conditions in the absence of further empirical
investigation.

Future studies undertaken to extend the findings
of this study should include variations in the
tactical context of the study, the group size and
group composition, and mission duration. The
tactical context is critical because it introduces
many more constraints on movement rate than
existed in this exercise. Our Marines were not
attempting to move stealthily, nor were they
attempting to scan the terrain for obstacles or
enemy. Tactical operations also demand pauses
for communication with other units, as well as a
variety of non-locomotion tasks that may sap
strength and alter movement rates relative to our
sample.

The group size and composition clearly affect
performance on a long hike. Group composition
is important insofar as age, fitness, and
experience determine the physical resources
available to the group. The leader of the group
sets the pace but does so with due consideration
of the capabilities of the members of the group
and the potential for sustaining the pace long
enough to complete the mission.

The duration of the mission is a critical factor in
determining movement rate. Wise leaders
husband resources effectively to ensure the
mission can be accomplished. Both pace and
break timing would have been very different if
the mission had been much longer or shorter
than seven days. Taking into account the

cumulative effect of stress and exertion when
modeling soldier mobility performance is an
important area for further work.

5.2 Future Plans

We intend to continue our analysis of the data
described here by systematically attempting to
explain some of the variation in movement rate
not explainable by grade. Footing or soil
composition and the cumulative effects of
fatigue over the course of the seven days are
possible avenues of investigation.

We plan to integrate the extensive physiological
data collected during the study into our mobility
analysis. Heart rate recording, for example,
provides us with a way to relate effort to pace
and break timing in a much more rigorous way
than is possible using only the terrain
characteristics.

We also plan to extend our analysis to the group
of 12 Army Special Forces soldiers that
negotiated the route independently. This will
afford us a unique opportunity to compare the
performance of two different and independent
groups on exactly the same terrain, under the
same environmental conditions. An assessment
of the magnitude of the differences in mobility
performance between the two groups will
provide an initial check on the generalizability
of our findings.

6. Acknowledgements

The authors would like to acknowledge the
assistance of John O'Keefe and John Ward of
Natick PvDEC; Victor Middleton of Simulation
Technologies, Inc.; the staff of the USMC
Mountain Warfare Training Center; and the
Marines and soldiers who performed with good
cheer and incomparable professionalism.

7. References

Myles, W.S., Eclache, J.P., and Beaury, J.
(1979) Self Pacing During Sustained,
Repetitive Exercise. Aviation Space
and Environmental Medicine, 921 -

924, September 1979.

Pandolf, K.B., Stroschein, L.A., Drolet, L.L.,
Gonzalez, R.R., and Sawka, M.N.

493

(1986) Prediction Modeling of
Phyisiological Responses and Human
Performance in the Heat. Comput. Biol.
Med. Vol 16, No. 5, 319-329.

O'Keefe, J.A. When Are Data Base Simulations
Not Good Enough? (1994) Proceedings
of the Fourth Conference on Computer
Generated Forces and Behavioral
Representation, Orlando, FL, May 4-6,
1994.

8. Authors' Biographies

George R. Mastroianni, Ph.D. is a Research
Psychologist in the Human Factors and
Ergonomics Branch, Behavioral Science
Division, Science and Technology Directorate,
Natick Research Development and Engineering
Center. His research interests are in the area of
human performance measurement.

Reed W. Hoyt, Ph.D. is a Research Physiologist
in the Altitude Physiology and Medicine
Division, Environmental Physiology and
Medicine Directorate, US Army Research
Institute of Environmental Medicine. His
research interests are in altitude, metabolism,
and human performance.

Mark J. Buller is a Human Factors Engineer at
GEO-CENTERS, Inc., working under contract
to Natick RDEC. His research interests are in
artificial intelligence and human performance.

494

A Behavioral Approach to Fidelity Requirements for
Simulation of Dismounted Combatants

Robert T. Mclntyre, III
Simulation Technologies, Inc.

1604 Cedar Lane
Raleigh, NC 27614-9350

rmcintyr@snap.org

1.0 Abstract

The introduction of the individual dismounted
combatant into distributed simulation has
generated considerable controversy with respect
to questions of simulation fidelity and
resolution. Model resolution is a function of
several factors, among them technology
constraints driven by hardware and software
capabilities, the availability of data to support
specific simulations, and the compatibility
requirements of different simulation modules.

While these factors are important, an often
overlooked concern is the ability of simulated
entities, such as dismounted combatants, to
provide the necessary behavioral cues to other
participants in a distributed simulation. This
paper examines an approach to building
simulation scenarios based on decision trees that
represent entity options in reaction to the
observed behaviors of others. These decision
trees are associated with specific battlefield
operation systems tasks of the Army Training
and Evaluation Program. The level of detail of
entity action required to trigger these decision
trees provides one measure of the resolution
required for associated simulations.

2.0 Introduction

The growth of Distributed Interactive Simulation
(DIS) has injected new fervor in an old debate:
how do we define the adequacy of model fidelity
and resolution. As little as 10 years ago, many
were content to answer this question by saying:
Whatever I can get! We were driven more by
software and hardware constraints than by
questions of relevancy ~ what was possible as
opposed to what was needed to get the job done.
While hardware and software constraints haven't
gone away, current and near-term capabilities
have pushed the realm of the possible
enormously. While in some ways this makes
our job easier, it does present more choices.
When the menu had only a couple of items on it,
picking one wasn't hard.

Victor E. Middleton
Simulation Technologies, Inc.

111 West First Street, Suite 748
Dayton, Ohio 45402-1106

middletv@rcinet.com

Today we are faced with the need to make
multiple, informed choices concerning the degree
of resolution we employ. What is the basis for
these choices? The DIS world has been accused
of opting for show, picking that level of
resolution that grabs the attention of the
observer. This is justified if a distributed
simulation exercise is successful only if it can
capture the participants, interjecting them into
the simulated world. A primary goal of DIS is
the seamless transfer of behaviors from the
simulated battlefield to the actual. The difficulty
is that we can get caught up in the race to make
our exercises and demonstrations increasingly
spectacular, and find our efforts driven by the
ever-more impressive capabilities of display
technologies as opposed to the substance of our
underlying simulations.

The thesis of this paper is that, ultimately,
issues of resolution and fidelity must be decided
concerning the level of detail needed to simulate
the behavior, and therefore the performance, of the
simulation entities. The network architecture
that allows these entities to interact must
incorporate representations of the battlefield
environment to whatever level of detail is
sufficient to determine the dynamic response of
each entity to that environment, and, to each
other.

3.0 Background

It is important to say that the authors of this
paper take a rather parochial view of their subject
matter. We are concerned with modeling and
simulation (M&S) of the individual dismounted
combatant, and in particular, the application of
M&S tools to solve the problems of the Soldier
as a System. This alone provides a first, gross
filter concerning questions of model resolution:
to whit, models that don't represent the
individual versus those that do. The former are
outside the scope of this paper, which is directed
to addressing issues involved in simulating the
Soldier System, and specifically the individual
dismounted combatant. The authors have been
heavily involved in the development of the

495

Integrated Unit Simulation System (IUSS) for
the US Army Natick Research, Development and
Engineering Center (Natick). The IUSS
provides an architecture for the integration of
individual models simulating different aspects of
battlefield environment, and thus represents in
microcosm the problems DIS has in the
coordination of large-scale distributed operation
of multiple simulations. The IUSS also
provides a context for this paper's discussion of
resolution issues, if only because development of
the IUSS has forced the authors to confront these
issues head-on.

3.1 The Soldier System

Historically, equipment for the soldier has been
developed through separate, distinct initiatives.
M&S tools to support such development and to
represent the result in distributed simulations,
have traditionally followed this division, with
separate models for ballistic weapons, individual
protection, etc. While the single piece or
"eaches" development may have been carefully
planned and implemented concerning their
individual goals, the result was still an
overwhelming collection of disparate items,
contributing to a grossly overloaded soldier.
The current recognition of the need to treat the
soldier as a "Soldier as a System" comes from
the realization that the soldier, his weapons,
protective gear, and other supplemental
equipment must function together as a integrated
system, and hence must be designed, evaluated,
and maintained as a system. This systems
approach to the soldier, and a corresponding
obligation to look comprehensively at the entire
battlefield environment, drive a need for
consistent resolution across multiple facets of
battlefield operations.

Estimation of any single aspect of the battlefield
environment (e.g., combat systems, personnel
attrition, performance degradation, thermal stress)
does not provide a comprehensive understanding
of a unit's (or an individual's) ability to perform
its mission. For this reason, an integrated
approach to simulation of the battlefield
environment is required, combining the effects
from a variety of factors, while permitting
assessment of the contribution from each. Such
an approach should facilitate the incremental
inclusion of additional factors, allowing the
construction of increasingly more complex
scenarios (i.e., scenarios with a higher degree of
resolution). These factors can be represented by
integrating features of classical models, each of
which emphasis a single specific aspect of the

battlefield (e.g., combat systems, performance
degradation, thermal stress), into a cohesive
architecture to provide a comprehensive
understanding of an individual's ability to
perform combat mission tasks.

This approach conforms to DIS philosophy,
permitting disparate models or simulations to
interact with each other. This approach must,
however, also ensure that such disparate players
share some level of common assumptions.
Furthermore, if these models do not operate at
common levels of fidelity or resolution, some
mechanism must be provided to aggregate or de-
aggregate their output to a common interface.

3.2 The Integrated Unit Simulation System

Natick, supported by Simulation Technologies,
Inc. (and, in particular, the authors of this paper),
has developed the Integrated Unit Simulation
System (IUSS), to provide a comprehensive
analysis environment for the evaluation of
Soldier System's survivability and effectiveness.
The IUSS design has paralleled the evolution of
the Soldier System concept, combining
historically disparate models of different aspects
of the soldier and the soldier's combat systems
into an integrated representation of the battlefield.
The IUSS provides an open, extensible
architecture for the unified representation of all
aspects of the modern battlefield: threats,
personnel, equipment, and environmental factors.
The IUSS is designed to accommodate bundled
access to current and evolving methodologies,
providing a flexible simulation package. In
particular, this design facilitates the integration of
disparate models and has had to contend with
reconciling disparate levels of model resolution,
either by filtering or averaging fine resolution
data to fit more coarse input requirements, or
augmenting and extrapolating coarse data to fill
up fine grid requirements.

The common basis for all IUSS effects is the
psycho-physiological state of the individual
soldier, and how that state relates to the soldier's
task and mission performance. Unit performance
depends on the performance of the unit's
components (the individual combatants), just as
mission success depends on the successful
completion of mission components (the mission
tasks). The IUSS represents missions as task
networks, with the tasks following the form of
the Battlefield Operating Systems/Tasks (BOS-
T) of the Army Training and Evaluation
Program (ARTEP) manuals. The ARTEPs
describe practically any task a soldier may be

496

called upon to perform, subject to the dictates of
mission, enemy, terrain, troops, and time
available (METT-T). Using the BOS-
T/METT-T paradigm allows the IUSS to
dynamically adjust task performance as
appropriate based on the behaviors of the
individuals performing specific tasks throughout
the execution of a simulation scenario.
Developing the mechanisms to control this
dynamic adjustment has led the authors to
conclude that the detail needed to represent the
behaviors of individuals, and the environmental
cues that drive those behaviors, is the most
important consideration in determining
appropriate model resolution.

3.3 Vocabulary

Fidelity and resolution have different definitions
to different individuals and therefore are
ambiguous terms. To avoid being side-tracked
by a debate that is not particularly germane to
our purpose, we propose to avoid defining them
explicitly. Instead, we focus on making a
differentiation between two distinct types of
resolution (or fidelity). The first of these types is
resolution of kind, and the second is resolution
of degree. Resolution of kind refers to the kinds
of things we are modeling, the types of detail we
wish to include. Perhaps the best known
example of resolution of kind is classification of
models by echelons of combat represented.
Under this scheme, theater or global campaign
models represent the lowest degree of resolution,
while models of squad or individual operations
the highest. Resolution of degree refers to
quantitative measurement accuracy: spatial
measurements in terms of millimeters represent
higher resolution than measurements in terms of
furlongs (or kilometers), temporal measurements
in picoseconds higher resolution than those in
years.

4.0 Quantification Issues

Clearly, there is a loose correlation between the
two types of resolution described above. When
modeling theater echelons of combat, we seldom
concern ourselves with terrain at the millimeter
level or time at the pico-second level. We tend
to measure macro-level phenomena with coarse
measures and micro-level phenomena with finer
ones. Still, we occasionally fall prey to the
desire to have a really impressive display, and
show the fine level of detail where it may not be
required, or worse, where it may not be
consistent with other linked models ~ the
process sometimes characterized as: measure

with a micrometer, mark with a crayon, cut with
a chain saw. This leads us to a first principle in
choosing an appropriate resolution: consistency.
One should not attempt to suggest a spurious
accuracy or validity for simulation outcomes by
providing an output format or display which is
not consistent with the resolution of the
underlying processes — chain saw cuts require
drawing your output display with a thick, blunt
crayon.

4.1 Simulation Without the Man-in-the-
Loop: Decision Trees

As mentioned above, much of the concern over
model resolution in the DIS world has to do
with the question of the show, the visualization
of the simulated environment that is presented to
the DIS participant, and as noted, this can be
important to the success of a DIS exercise. It is
not, however, important to the discussion in this
paper. The IUSS, unlike many of the
components of the DIS environment, does not
provide for a man in the loop during actual
simulation execution. This restricts the scope
for issues of model resolution and fidelity to the
requirements of the simulation, as opposed to the
perceptual needs of a human observer. This is
not to say that the IUSS does not consider
human sensory capabilities. Rather, the IUSS
restricts the consideration of these capabilities to
the level of detail specific object procedures
require. For example, to determine if a
simulated soldier sees an enemy target, a number
of different algorithms can be called into to play.
The simplest determines if a line of sight exists
between the soldier and the target, while there are
also complex calculations that consider the
contrast sensitivity between the target and its
background, the possible confounding presence of
obscurants, and the ability to augment human
capability with a variety of optical sensors.
Ultimately, whatever algorithms are used, the
simulated process of seeing will come down to a
yes or no decision concerning any particular
target.

In fact, all the behaviors of the simulated soldiers
ultimately reduce to a set of such decisions:
describe environmental features and/or entities by
classification by deciding the status of specific
state variables (e.g., — is target present, does line
of sight exist to target, is there sufficient ambient
light to observe target, is the target obscured by
smoke or foliage, is target signature sufficient)
and deciding what the appropriate entity response
is to that classification. Such decision processes
can be arranged in a hierarchy or decision tree,

497

analogous to increasingly finer filters to sift out
behavioral choices. These decision trees provide
a natural classification scheme for levels cf
resolution, corresponding to the levels of the
decision tree itself. Furthermore, this supports
the concept of variable resolution requirements,
since a simulation need provide only enough
information to support whatever levels cf
decisions are deemed appropriate to a specific
application. The level of decision depends on the
types of behavior being simulated, and there is
no need to assume that behavior must always be
studied concerning individuals — unit behavior
may be quite adequate for many applications.

4.1 An Example: Resolution in Kind

The IUSS provides the ability to model multiple
echelons of combat, but as stated above, the
focus of the authors and the primary design
consideration of the IUSS is explicit
representation of the individual, operating in the
context of platoon or squad sized mission tasks.
These tasks take place in a battlefield
environment, specifying the factors to be played
(resolution in kind), calling for selecting aspects
of the battlefield and the soldier's interaction with
it, including the environment (terrain, weather,
time of day), the threat, the mission, and the
composition of the forces assigned that mission.
To over-simplify, those factors that describe the
environment are cues to the soldier's behaviors,
the behaviors themselves are specified by the
mission task structure, and within that structure,
further refinement of individual procedures or
options.

IUSS input scenario mission descriptions need
to provide detail down to the level of individual
tasking, accompanied by the first level decision
trees that specify individual behaviors: the rules
of engagement and the specific tactics to be
employed for each mission task or phase. Since
the IUSS is a two-sided simulation this level of
detail needs to be given for both Blue and Red
forces to the extent to which either or both are to
be played. There is, of course, no requirement
to include the same level of forces if there is no
need to play explicit force-on-force interaction,
i.e., Blue forces can be played without any Red
opposition, or opposed only by indirect fire, or
opposed by Red Forces represented at the same
level as the Blue, according to the objectives of
any given scenario.

The underlying basis of the IUSS is the psycho-
physiological state of the individual. Following
the object oriented paradigm, this state is

represented by a number of different attributes
belonging to the soldier object. These attributes
include such things as a thermal regulation,
ballistic injury mechanisms and chemical
intoxication accumulation. Each of these
attributes can be ignored or turned off to speed
model execution times as appropriate to specific
simulation objectives. The factors above may
each be broken down into sub-factors; the choice
of which factors and sub-factors to include in
scenario inputs is driven by the needs of the
attribute update processes.

4.3 An Example: Resolution in Degree

One of the surest ways to provoke spirited debate
among players in the DIS world is to raise the
topic of terrain resolution. How fine a terrain
grid is needed for a valid battlefield for the
individual dismounted combatant? A soldier in
combat can and will make use of very meager
cover if that is what's available. To represent
that soldier faithfully, do we have to include any
rock or tree that he might hide behind? Or the
height of the individual blades of grass through
which he might crawl? There is no doubt that a
soldier being shot at may become very familiar
with his terrain on a very micro-level.

To make the debate even more spirited,
introduce the question of the simulation
application. One contention holds that if the
application is training, we need to very faithfully,
and in great detail (lm.<), replicate the terrain to
present a valid virtual environment for soldier
training. This theory may be true, but
experience suggests otherwise, at least as a
blanket assumption. The function of training is
to induce transfer of behaviors from the training
environment to the actual environment; the cues
that are presented to the trainee need only be
adequate to facilitate that transference. As an
example, the use of silhouette targets appears
adequate to train riflemen, the advantages of
being able to present them a more detailed
articulated body picture have not been
demonstrated for that purpose. On the other
hand such an articulated body picture may be
required to support training in another arena, for
example, the use of hand signals. Is fidelity
enhanced by using digitized terrain from actual
locations? And if so, how fine a grid must be
used. Experimentation with such data is
extremely useful with respect to trying to verify
the correctness of many of our models that use
terrain data, does its use increase the predictive
validity of those models? To what extent can
we get by with the use of geo-typical terrain, or

498

•^ww l»WWfl*R

random draws from statistical distributions of
terrain features? If we use statistical
distributions, how many sampling points should
we use for our grid? It is hard, if not impossible
to answer such questions in the abstract.

However, for a specific simulation experiment we
can fall back on the concept of behavioral
requirements. If (as the author's are currently
trying to do) we are investigating the self-pacing
behavior of marching soldiers as a function of
their load, the ambient weather, terrain grade and
surface type, we can determine from actual field
trials the resolution required. We can observe
the changes in these terrain factors that are
sufficient to cause the soldiers to alter their
behavior, either by changing their rate of speed,
the frequency with which they take breaks, or
their choice of route.

7.0 Authors Biography

Robert T. Mclntyre, III, is the Program
Manager for the Integrated Unit Simulation
System and is the Vice-President for Operations
for Simulation Technologies, Inc.

Victor E. Middleton, is a Senior Operations
Research Analyst under contract to Simulation
Technologies, Inc. Mr. Middleton earned an
MS degree in Mathematics from Michigan
Technical University in 1975 and an MS in
Applied Mathematics from Michigan State
University in 1978.

A fundamental question we need to ask regarding
increasing resolution of terrain, and any other
factor, is: if more detail is provided in the
simulation, do I know how the individual will
alter his or her behavior in response to that
increased detail? We can populate the forest
with trees and rocks to incredible levels of detail
- do we know which ones the soldier will pick
for protection? Or for how long?

5.0 Summary

The admittedly hard questions as to what is
adequate resolution in our models and
simulations are at least approachable if we
consider them from a behavioral perspective.
Simulation is, after all, a process for attempting
to assess how entities interact with their
environment. This interaction, in the case of the
dismounted combatant, is equivalent to soldier
behaviors. Assessment of model resolution
requirements should be driven by what is
required to trigger or alter those behaviors. It is
enormously easier to include high resolution
terrain data bases in our models than it is to
include high resolution behavioral data bases.
What is the benefit of the one without the other?

6.0 Acknowledgments

This work was supported primarily under
contract DAAK60-94-C-1061 with the U.S.
Army Natick Research Development and
Engineering Center. The authors would like to
acknowledge the encouragement of John O'Keefe,
U.S. Army Natick RDEC, Daniel E. Mullally,
Jr., Institute for Simulation and Training,
University of Central Florida

499

Simulation of Suppression for the Dismounted Combatant

Victor E. Middleton
Simulation Technologies, Inc.

111 West First St.
Dayton Ohio 45402

middletv@rcinet.com

W. M. Christenson
Institute for Defense Analyses

1801 N. Beauregard St.
Alexandria, VA 22311-1772

wchriste@cs.ida.org

John D'Errico
Dismounted Battlespace Battle Lab

FortBenning,GA31905
derrico @benning-emh 1 .army.mil

1. Abstract

Recent advances in the sophistication of
distributed interactive simulation (DIS), coupled
with the development of the concept of the
Soldier as a System, have produced a
requirement for greater fidelity in soldier
simulation. Historically, the individual
dismounted combatant has not been a key player
in distributed simulations or analytical studies.
When individuals were represented in such
simulations, they were generally treated simply
as smaller, slower, less lethal versions of other
simulation entities, e.g., an unarmored tank.
Such a representation does not allow the
examination of the dynamics of small unit
conflict required for training, or for research and
development in support of the individual soldier.

To maintain even face validity, simulations of
individual combatants must characterize the
individuals' interaction with the environment
and with other individuals. This requires explicit
representation of the soldier's dynamic response
to the battlefield, and the effect of the soldier's
behaviors on the outcome of the conflict. In
particular the role of suppression is a significant
component of this interaction, but one which as
yet we have been to capture effectively in M&S.
The authors' approach to simulation of
suppression begins with a definition the problem,
identifies critical factors, and suggests priorities
determined by current analysis.

2. Introduction

The current emphasis on the role of the
dismounted combatant in distributed interactive
simulation (DIS) is part of a revolutionary view
of the individual soldier: the concept of the
soldier as an integrated weapon system. This
revolution is itself outside the scope of this
paper, (interested readers are directed for
example to: Haley et. al., 1992, or US Army
Materiel Command, 1992), but its consequences

have forced the modeling and simulation (M&S)
community to deal with the individual soldier in
far greater detail than we ever have before.

To maintain even face validity, simulations of
individual combatants must clearly characterize
the individuals' interaction with the environment
and with other individuals. Suppression is a
significant component of this interaction, and
one which as yet we have been either unable or
unwilling to capture effectively in M&S. While
the authors are not so bold as to suggest that we
have a solution to this problem, we would like to
suggest an approach to simulation of suppression
with respect to the dismounted combatant. We
will begin with a definition the problem, identify
critical factors, and present a plan of attack with
priorities determined by current analysis
initiatives.

2.1 The Authors' Perspective

Our perspective on the problem is, of course,
biased by our background. The authors have all
been heavily involved in the development of the
concept of the Soldier System and the
application of that concept to the Soldier
Integrated Protective Ensemble (SIPE)
Advanced Technology Demonstration (ATD)
and the Twenty First Century Land Warrior (21
CLW) Integrated Technology Program. The
need for analytical support for Soldier System
initiatives has motivated a good deal of model
development; of special interest to the authors
are the US Army Natick Research, Development,
and Engineering Center's Integrated Unit
Simulation System (IUSS) (as described in:
Middleton, 1992; Middleton and O'Keefe, 1993)
and other high resolution combat simulations
used in support of the US Army Infantry
School's Dismounted Battle Space Battle Lab at
Ft. Benning Georgia.

Our approach develops a simulation of
suppression within the specific context of the

501

IUSS, although the methodology proposed is not
unique to that context.

2.2 The Paper's Purpose

The purpose of this paper is to initiate a dialogue
within the M&S community by explaining our
approach and soliciting the opinions of others.
Interested readers are encouraged to contact the
authors with comments, opinions, additions,
deletions, sources of data and/or methodology,
and suggestions as to possible alternatives to that
approach. After developing a framework for the
representation of suppression, we hope to
achieve general consensus with the community
on that framework, develop and submit
strawman values as appropriate to the
methodologies decided upon, and iterate a
process of analytical application and review of
the results to evolve the sophistication of our
representation while continuing the community's
consensus.

3. Statement of the Problem

The concept of suppression is an integral part of
combat at the level of the individual dismounted
soldier. The ability to interrupt, impede, or
suspend enemy operations may satisfy mission
objectives as well (or better than) the destruction
of enemy forces. Certainly in past wars
suppressive fire played a role that was at least as
significant as that of accurate aimed fire.
However, small arms R&D studies and analyses
have not reflected this fact. The vast majority of
such studies have been directed towards the
improvement of weapon accuracy, with
relatively short shrift given to the investigation
of suppression.

Why is this so? First, improving the accuracy of
weapons fire is an undeniable benefit (or at least
an unassailable goal). Secondly, modeling and
simulation of weapons accuracy is something we
(the M&S community) know how to do. Our
models are based on well understood concepts of
physics and the behavior of projectiles; we are
comfortable in the acceptance of the accuracy of
our results.

By contrast, we cannot (or at least haven't yet)
even agree on a suitable definition of what
suppression is, much less arrive at acceptable

models of how it is achieved and how to
represent it in simulations of combat.

3.1 The Challenge

We can no longer afford the luxury of ignoring
these issues. We are faced with an urgent
requirement for high fidelity simulation of the
individual soldier, and that requirement cannot
be met without explicit consideration of the role
of suppression in determining the outcome of
conflict. This requirement is driven by the
downsizing of our military and the evolving
nature of military mission, e.g., the need to
examine smaller scale conflicts and operations
other than war. The urgency is fueled by a need
for more efficient application of resources for
R&D, training, and operational support.
Fortunately, this urgency is accompanied by
enabling technologies: recent advances in the
sophistication of distributed interactive
simulation (DIS) and other hardware/software
tools

The challenge we face now is how to best apply
these technologies in the present era of shrinking
budgets and expanding expectations. We need
to achieve cost-effective improvements in our
ability to simulate the individual dismounted
combatant and, by extension, the representation
of that combatant in DIS. The lack of unlimited
resources means that we cannot achieve the
additional fidelity we require by simply adding
detail to our simulations. We must choose
carefully what we add, and just as carefully what
we leave out. Clearly, the authors (having
undertaken this task and not being terribly
enamored of unnecessary work) believe that
suppression is one of the things we must add.
That being the case, it now becomes our duty to
explain exactly what we mean by simulation of
suppression, to describe our rationale and
objectives, and to provide our approach for
achieving those objectives.

3.2 Simulation Rationale and Objectives

First, why are we tackling this problem? As
stated above, suppression and the role of
suppressive fire are important parts of small unit
engagement, but two specific M&S initiatives,
both involving application of the IUSS, are
behind our current efforts.

502

The first of these is development of a computer
generated force (CGF) module for the individual
combatant. CGF forces who don't react
"realistically" when being fired upon by other
DIS entities, won't pass the initial test of surface
believability. Our first goal in modeling
suppression, therefore, is to ensure that CGF
dismounted combatants provide "realistic"
behavioral cues for other DIS entities. At a
minimum we want them to react to immediate
threats by appropriate avoidance behaviors, e.g.,
to duck, to move more cautiously and with
effective use of cover.

The second M&S initiative of immediate
concern is analytical support to the 21st Century
Land Warrior (21 CLW) Integrated Technology
Program. The 21 CLW program, and the
associated Generation II Soldier Advanced
Technology Demonstration (GEN II ATD) are
the current instantiation of the Soldier System
concept. These programs seek to examine the
benefits in over-all soldier capability achievable
by integrated application of technologies
available now and in the near-term. This
includes development and implementation of
new weapon systems, sensors, communications,
individual protection, and associated training and
doctrine.

These programs acknowledge that Soldier
System lethality, survivability, mobility,
command and control, and sustainability are all
intertwined, and that integrated improvement of
these capabilities will produce synergistic
benefits; the whole is greater than the sum of its
parts. As an example, making the soldier more
lethal can increase the ability to suppress enemy
fire, making the soldier more survivable, which
could lead to decreased weight required for
individual protection, which could increase
soldier mobility, which could allow faster
closure with the enemy, leading to the ability to
concentrate more fire on the enemy while
reducing exposure to the soldier, which in turn
increases lethality and survivability, etc.

Analysis in support of 21 CLW provides us with
another set of objectives (albeit ones which
overlap with CGF requirements) for simulation
of suppression. To establish the benefits from
proposed improvements in the Soldier System,
we must measure the performance of these
improvements and compare them to some

baseline, i.e., determine deltas between the
current (95 soldier) and the 21st Century Land
Warrior capabilities. This requires determining
the relationships between Soldier System MOE's
(e.g., mission completion times, percent mission
tasks completed, casualties, ammunition
expenditure rates, soldier physiological state
variables) and soldier behaviors as constrained
by battlefield factors and as affected by the
soldier's ability to employ technology.

This paper examines a set of key battlefield
factors which contribute to combat stress or
other measures of combat intensity, and suggests
that these factors and their effects be loosely
defined as suppression. In this context, our goal
in outlining a framework for representation of
suppression is accomplished by defining that set
of factors, estimating their effects on soldier
behaviors, and thus their effects on the analytical
MOE's associated with those behaviors. Within
this framework we then have the ability to
examine how 21 CLW technologies can mitigate
suppression as it affects friendly forces, and
induce or exacerbate it with respect to enemy
forces.

4. Approach

We begin by discussing what we mean by the
term "suppression", at least within the confines
of this paper. We define "degrees" of
suppression in terms of the effects of such
suppression on Soldier System performance and
combat outcomes. We establish a set of
battlefield factors or combat stressors which may
induce suppression, and conclude by suggesting
how our simulation methodology can represent
the translation from the causes of suppression to
observable and quantifiable effects.

4.1 What Is Suppression?

Our original discussions with combat veterans
began with a very narrow definition of
suppression: it is that instinctive reaction to an
environmental cue, such as a nearby bullet
impact, which causes the soldier to immediately
seek the lowest possible profile, stop all
movement, and in general try to disappear into
the ground. Although this behavior basically
implies complete disruption of combat
operations while it lasts, this period is generally
of very short duration. A more difficult question

503

is whether the residual effects of the original cue
linger as some degree of combat stress, based at
least in part on the intensity of conflict and the
presence or absence of other combat stressors.

If we were to adhere to a narrow definition of
suppression, concerned only with that initial
brief reaction, our job would be relatively easy,
modeling suppression as a brief cessation of
activity when a "near" miss occurs. This narrow
definition still leaves room for argument: exactly
what is a "near" miss (i.e., which environmental
cues will trigger the reaction), exactly how long
"brief is (i.e., how long do suppressive effects
last). Even if we include the issue of how to best
ensure that simulation, especially distributed
simulation, contains enough detail to accurately
represent these cues, these questions can be
addressed by means of parametric analysis or
similar techniques. Our intention in this paper is
to provoke a more spirited debate, so we shall let
our ambition reach farther.

In order to do this, and in keeping with the
objectives stated above, we will broaden the
definition of what we wish to consider as
suppression. The US Army (FM-101-S-1,
Operational Terms and Symbols pi-68) defines
suppression as "direct and indirect fires ...
brought to bear on enemy personnel, weapons or
equipment to prevent effective fire on friendly
forces." This, of course, raise the question of
what is meant by "effective" fire, past studies
(e.g., Torre, 1963) suggest that soldiers under
fire become less accurate in their own fire, firing
more rounds to less effect. This suggests that, by
extension to other tasks, we consider suppression
as degradation of performance (i.e., changes in
the accuracy and rate of task accomplishment).

We will take suppression to include:

potential degradation in performance which
may be a result of the lingering effect of a
single threat-associated environmental cue
(especially small arms fire),

potential degradation in performance which
may be a result of the accumulated effect
of many of such combat stressors.

the alteration of current/planned actions as a
result of these stressors.

To summarize: suppression is a disruptive
response to an intrusive manifestation of a

combat threat. In other words (as if any other
words were needed!), the soldier perceives a
threat which demands a reaction. If that reaction
is in some way deleterious to the soldier's
mission, then we describe this
perception/reaction process as suppression.

4.2 Suppression: Perceptions/Reactions

Being ambitious, but not, however, entirely
bereft of sense, we propose to limit
consideration (at least at this time) to a small
number of threat cues and associated reactions.
In this paper we consider only stressors
associated with kinetic energy weapons: small
arms fire or indirect fire kinetic energy
munitions. For the moment we will ignore
natural environmental threats or other enemy
weapons: e.g., nuclear, biological, chemical,
directed energy. This is simply to keep our
current analysis tractable; we anticipate that the
methodology we are proposing could be adapted
to handle such threats and indeed, in many cases
they may manifest themselves in the same
environmental cues (as listed below) provided by
the threats we ARE considering.

4.2.1 Types of behavioral cues

Aural
- bullet/fragment impact/fly by
- small arms detonation/weapon muzzle

sounds
- explosive detonation

Visual
- muzzle flash
- explosion
- obvious injury to a companion

These cues can be further characterized
according to:

Intensity
duration - how long did it last?
number - how many cues might be lumped

into one group, e.g. a burst of fire?
magnitude - how loud, how bright, how

intrusive?
Frequency -what is the rate of arrival, or

"inter-cue" time?
Proximity - how close was the cue event to

the soldier being suppressed?

504

Immediacy - does the cue demand
immediate, delayed, or cumulative
reaction?

Ambiguity - does the cue indicate what the
source of the threat is and where it's
located?

Predictability - do the cues come from one
area and/or in a discernible pattern

4.2.2 Types of soldier reaction

1) immediate, or total, suppression - the
instinctive reaction to a threat as discussed
above, manifested through one or more of:

freezing (complete cessation of
movement),

- assumption of extreme protective
posture

- panic
2) partial suppression - degradation in

performance as a result of having
experienced the threat or anticipation of the
threat, manifested through:

- increased time to detect, acquire, and
engage targets

- decreased accuracy in weapons fire,
accompanied by increased volume
(more shots/less hits)

- decreased movement rates,
3) defensive avoidance - behaviors designed

to reduce exposure to the threat, such as:
- change of posture (e.g., standing to

prone or kneeling)
- increased use of cover,
- alteration of routes of march, changed

formations
- panic and/or flight

Furthermore, while offensive actions may not be
classically associated as a reaction to
suppression, we would like to include them here
because they represent a reaction to the threat
which may delay or obviate original mission
objectives; adding:

4) offensive avoidance - behaviors designed
to reduce the threat, such as:

- call for fire
initiation (or continuation) of

suppressive fire against the threat.

Clearly, the above types are somewhat arbitrary
and in fact overlap. This imposes consistency

requirements on inter-related behaviors, e.g.,
prone soldiers must crawl, they can't run, so if
we change posture from standing to prone we
must degrade the soldier's rate of movement. At
the same time we would probably also alter that
soldier's movement mode to facilitate maximum
use of cover, and change the soldier's mode of
small arms fire as appropriate, with associated
revisions in accuracy and rate of fire as well.

4.3 Translation from Cause to Effect

The suppression simulation paradigm as outlined
so far is something like:

1) present the soldier with a behavioral cue
(e.g., sound of bullet impact)

2) determine the appropriate response(s) to
the cue (e.g., soldier changes from walking
upright to crawling prone)

3) determine duration of response (e.g.,
soldier will resume an upright posture if
one of the following happens:
a) source of the bullet is eliminated
b) soldier manages to move to a position

shielded from source of bullet
c) upon assurance of command authority

that source of bullet is neutralized
. d) x minutes with no further indication of

enemy activity occurs)
3) update soldier status and activity

parameters as appropriate to that response
(e.g., decrease soldier's speed and
presented area)

4) calculate the soldier's task performance
metrics subject to the updated parameters
(e.g., increase time required for soldier to
achieve next position objective, determine
response of rest of soldier's squad)

5) As required, schedule new updates of
soldier status.

There are a number of non-trivial details
associated with this paradigm: how do we
generate the behavioral cues, how do we handle
the logistics of multiple simultaneous or near-
simultaneous cues, how do we handle the
interactions between multiple soldiers, and a
myriad of other details of simulation event
management. These details, while important, are
not the central focus of this paper. The
paramount questions for us are

505

1) how do we determine the appropriate
soldier response to a specific cue (or in the
more general case, to a complex sequence
of such cues), and

2) how do we quantify the effects of that
response on simulation parameters such as
soldier movement rates and error budgets.

Possible approaches include:

1) table look-up: cues are matched to
specific behaviors, with those behaviors
specified in discrete increments to
enumerate levels of response.

2) aggregate measure: integrate cues into a
single measure of conflict, called ,for
example, combat intensity, and make
behavior parameters a dynamic function of
this measure, for example applying a
suppression percentage as a function of
combat intensity.

3) expert system hybrid - expand the table
of 1) into a set of situationally dependent
rules to determine the appropriate kind of
response, and use an aggregate measure as
in 2) to determine the intensity of the
response. This approach is similar to that
described in the methodology for the US
Army TRADOC Analysis Center's
CASTFOREM model (Mackey et. al.
1994)

Approach 3) fits in neatly with the design
philosophy of the IUSS. The IUSS simulates
small unit and individual soldier performance as
a networked series of tasks. These tasks follow
the form of the Battlefield Operating
Systems/Tasks (BOS-T) of the Army Training
and Evaluation Program (ARTEP) manuals (US
Army 1988). The ARTEPs describe literally any
task a soldier may be called upon to perform,
subject to the dictates of mission, enemy, terrain,
troops, and time available (METT-T). Using the
BOS-T/METT-T paradigm allows the IUSS to
dynamically adjust task performance as
appropriate to current conditions throughout the
execution of a simulation scenario.

The IUSS already tracks many of the individual's
psycho-physiological indicators and calculates
response to battlefield stressors; we propose to
devise an appropriate aggregate measure of
combat intensity based on these indicators as

adjusted to reflect additional response to
suppression cues.

4.4 Features of Combat Intensity/Response
Functions

Functions which measure combat intensity and
associated responses should:

1) exhibit decay of effects over time, i.e., the
longer the time since the observation of the
cue, the less intense the effect (e.g., a
decaying exponential)

2) allow for predominance of most intense
effect, i.e., for multiple cues at the same
time, the strongest one dominates

3) support re-enforcement by multiple effects
over time, while allowing for some
decrease in intensity due to familiarity

4) represent variable response to specific
cues, i.e., to have a stochastic component.
This component is essential for
representing the tremendous variability in
response from one individual to another,
and indeed, the variability in response
which could be exhibited by a single
individual observed at different times.

Ideally these functions would support definition
of a level of effects varying from a modest
increase in an individual's caution, all the way to
the ultimate suppression: complete deterioration
of the will to fight and capitulation or
abandonment of the battlefield to the aggressor
force. As one side in the conflict begins to
achieve success at suppression, the combat
intensity function should represent the
preponderance of fire by that side, and the
associated increasing level of suppression of the
opposing force.

5. Implementation and Application

Our initial implementation of a suppression
simulation is intended to address the most
obvious aspects of suppression. Briefly, we
want individuals to duck when they're shot at, to
proceed very cautiously if they're under fire, and
to proceed with some degree of care if there is a
possibility of enemy contact.

We propose a paradigm whereby environmental
cues, such as small arms fire, will eventually be
translated into quantitative effects on the

506

parameters which dictate the outcome of
individual task processes. The IUSS, or any
task/process model of behavior, must translate
the effects of stressors such as suppressive fire
into two fundamental measures of task
performance: rate and the accuracy. The
paradigm to achieve this translation is:

Given an activity
Given a cue

Given a context (cue and behavior
history)

Determine the probability distribution
of suppressive effects of given
intensities and durations

Make a Monte Carlo draw against this
distribution and apply the effects to
the parameters which specify the
accuracy and/or rate of the given
activity.

To achieve our goals, while limiting our first cut
implementation to a tractable level, we will limit
consideration of suppressed behaviors to: 1)
movement and 2) small arms fire. We will
consider as suppression cues: 1) friendly force
casualties, 2) enemy fire, and 3) friendly fire.
The immediate response of the individual will be
described in terms of changes of posture and use
of cover, which will in turn affect rate of
movement and accuracy of fire. Depending on
the situational context and results of a Monte
Carlo draw, the individual may increase or
decrease rate of fire, may alter choice of targets
and/or type of fire (single shot vs. burst, aimed
fire vs. pointed or area fire), and may also
advance, retreat, or freeze in position. Another
Monte Carlo draw will determine the maximum
duration of these responses to the suppression
cues, i.e. the time at which behavior will return
to pre-cue levels, assuming no additional cues or
changes in task status.

We will develop a SIMPLE context-dependent
expert system to determine the soldier's response
to these behaviors and cues. Context will be
established by examining cue history in terms of
rate, intensity, and proximity. An additional
important context consideration is the extent to
which the individual can take effective action
against the threat which produces the cues, i.e., if
the individual can determine the source of the

threat and has a course of action against that
source.

At present we are developing the exact nature of
the expert system rule set: the variables and their
values which will define Monte Carlo draw
parameters, and the appropriate levels of cue
rate, proximity, and intensity to trigger
suppression behaviors (e.g., how close does a
bullet have to come to induce full defilade, how
many casualties in how short a time will produce
what probability of retreat, etc.?). As stated up
front, one objective of this paper is to solicit the
support of the community in this development
process; the reader is invited to contact any and
all of the authors for this purpose.

6. Future Directions

It is our intention to implement into the IUSS the
simple expert system approach discussed above.
By the end of FY95, we plan on using the IUSS
and this simulation of suppression to explore
issues relating to the lethality and survivability
of the Twenty First Century Land Warrior. As
discussed above, however, to assess the full
potential of the 21 CLW will require
examination of the synergistic effects of other
capabilities, most notably command and control.
We believe that the expert system approach we
have outlined will lend itself to simulation of
these capabilities and their contributions to
mitigating the effects of enemy's attempts at
suppression, through situational awareness,
ability of units to respond for quickly and more
appropriately to their leaders' decisions, and the
ability of those leaders to integrate battlefield
data to support their own decision processes.
Furthermore, the context-sensitive nature of the
expert system approach will permit consideration
of the so-called "soft" factors: morale, training,
leadership, national will, and others. These
factors are important not only for estimating
WHAT the effects of suppression might be, but
also for determining HOW soldiers can most
effectively adjust their actions to maximize
suppression of the enemy and minimize
suppression of their own forces.

7. Summary

We believe we have developed a framework
adequate for beginning the discussion of first
how to define suppression, and second how to

507

represent it in our models and simulations. We
are currently working on the rule sets to describe
the variable context-dependent reactions of the
individual dismounted warrior to a limited set of
perceived battlefield stressors. To the extent that
those reactions are in some way deleterious to
the soldier's mission, then we describe this
perception/reaction process as suppression. We
have begun the process of implementing this rule
set paradigm into the Integrated Unit Simulation
System, and are embarking on an iterative
process of explaining our concepts, soliciting
community and user feedback, and incorporating
that feedback into the development.

8. Acknowledgments

The work described herein was supported
primarily under contract DAAK60-94-1061 with
the US Army Natick Research Development and
Engineering Center. The opinions expressed are
solely those of the authors and do not represent
any official US Army position. The authors
would also like to extend their appreciation to
Dr. George Mastrioanni and Mr. John O'Keefe
of the US Army Natick RD&EC and Daniel E.
Mullally, Jr. of the Institute for Simulation and
Training of the University of Central Florida for
their ideas and support.

9. References

Haley, Richard L.; Shields, Joyce; Campbell,
Crystal, C; Godden, Gerald D.; Holter,
Marvin R.; Laberge, Walter B.; Army Science
Board 1991 Summer Study - "Soldier as a
System": Office of the Deputy Assistant for
Research Development and Technology
OASA(RDA), Attn: SARD-ZT, Washington
D.C. 20310-0103; December 1991

Mackey, Douglas C; Dixon David S.; Jensen,
Karl G.; Loncarich, Thomas C; Swaim, Jerry
T.; CASTFOREM: Methodologies: US Army
TRADOC Analysis Center - White Sands;
White Sands Missile Range, NM; 88002-5502;
April 1994; TRAC-WSMR-TR-94-010

Middleton, Victor E.; Integrated Unit and
Soldier System Survivability and
Effectiveness Evaluation Roadmap: US Army
Natick Research Development & Engineering
Center; Natick, MA; January 1992;
Natick/TR-92/022L

Middleton, Victor E. and O'Keefe, John; The
Integrated Unit Simulation System:
Quantifying Individual and Small Unit
Mission Effectiveness on the Battlefield of the
Future; Proceedings of the 1993 Winter
Simulation Conference; ppl043-1047;
December 1993; Los Angeles, CA; G.W.
Evans, M. Mollaghasemi, E.C. Russel, W.E.
Biles (ed.s); ISBN 0-7803-1380-1 (softbound),
0-7803-1382-8 (microfiche); IEEE Catalog
Number 93CH3338-1, Library of Congress
Number 87-654182

Torre, James P.; Human Factors Affecting Rifle
Accuracy in Automatic and Semiautomatic
Fire: US Army Human Engineering
Laboratories; Aberdeen Proving Ground, MD;
May 1963; Technical Memorandum 11-63

US Army ARTEP 7-8-MTP. Mission Training
Plan for the Infantry Rifle Platoon and Squad,
dated September 1988.

US Army Materiel Command; Proceedings of
the Soldier as a System Symposium/
Exposition: held at Hyatt Regency, Crystal
City, Arlington, VA 22202; 30 June - 1 July
1992

10. Author Biographies

Victor E. Middleton is a Senior Operations
Research Analyst under contract to Simulation
Technologies, Inc. of Dayton, OH, supporting
the US Army Natick Research, Development &
Engineering Center. He is responsible for the
development of simulation algorithms and
architectures for the Integrated Unit Simulation
System. He has over 15 years experience in
developing, implementing and applying
mathematical models and simulations to a wide
range of military and civilian studies and
analyses. Mr. Middleton earned an MS degree
in mathematics from Michigan Technological
University in 1975 and an MS in applied
mathematics from Michigan State University in
1978.

W.M. (Chris) Christenson is a Research Staff
Member of the Institute for Defense Analyses,
where he is the Coordinator, Janus Activities and
an active participant across a broad spectrum of
combat modeling and simulation activities. He
served in the US Army from 1957 to 1983 and is
a graduate of the US Military Academy (BS
Engineering, 1957), the US Army General Staff

508

College, British Staff College, National War
College, National Defense University, and
George Washington University (MPA, 1978).

John D'Errico is an Operations Research
Analyst in the Dismounted Battlespace Battle
Lab, fort Benning Georgia. He has 12 years of
experience in combat developments force-on-
force models and simulations. Mr. D'Errico has
a BS and a year's post graduate study in
mathematics. He served 20 years active duty
with the US Army and commanded an infantry
company in the Vietnam War.

509

Session 10a: Architecture
Davies, DSTO

Gagne, Intel Agent R&D
Kwak, Loral ADS

Representing Role-Based Agents Using Coloured Petri Nets

Fred D.J. Bowden, Mike Davies and John M. Dunn

Information Technology Division
Defence Science and Technology Organisation, Salisbury

PO Box 1500,
Salisbury, South Australia 5108

1. Abstract

To assist in effectiveness studies of Command,
Control, Communication and Intelligence (C3I)
systems in the Australian Defence Force the Defence
Science and Technology Organisation is currently
developing the Distributed Interactive C3I
Effectiveness simulation. A key part of this
simulation is the use of computer generated forces.
This paper describes one of the two types of
computer generated forces which the simulation
uses: artificial agents. These artificial agents are
defined by a role-based structure, based on extended
Petri nets, allowing for sequential and concurrent
processes as well as top down and bottom up design
techniques.

2. Introduction

The use of effective command, control,
communication and intelligence (C3I) is very
important in a military environment. To assist the
Australian Defence Organisation, Information
Technology Division of the Defence Science and
Technology Organisation is developing computer
software to enable the study of military C3I systems
effectiveness. The nucleus of the software being
produced, known as the Distributed Interactive C3I
Effectiveness (DICE) simulation, will enable the
study of C3I systems through distributed interactive
simulation (Davies, Gabrisch 1995).

The DICE simulation environment is considered to
be comprised of a number of interacting nodes. Each
node represents a different entity in the central C3I
system being modelled and the external environment
about that system (Davies, Gabrisch 1995). All the
nodes interact with each other by sending formatted
textual messages along communication links. The
message content depends on the nodes which are
communicating. There are two different types of
nodes in the DICE simulation: interactive players
and computer generated forces (CGF).

Interactive players in the DICE simulation will
generally be used to represent decision makers or
commanders in the C3I system being studied.
Interfaces are under development to allow the
players to interact with the other nodes in the DICE
simulation regardless of whether they are interactive
players or CGF.

CGF in the DICE simulation are used to represent a
variety of nodes, or cells within nodes, of the C3I
system being studied and also entities external to the
C3I system. C3I system entities can include single
or groups of decision makers, centres of information
filtering and processing, or combinations of these.
External entities might include sensors, weapon
systems, forces and also representation of the overall
tactical-level battle or operation. Each CGF will
have a unique structure that must be represented in
the simulation. There are two types of CGF:
peripheral units and agents.

In some cases there may be existing models and
simulations that represent a given aspect of the
system being studied, for example a battle simulation
such as JANUS may be used to represent low level
conflict between two forces. When models and
simulations are incorporated into a given DICE
scenario they are referred to as peripheral units. In
general, peripheral units do not model C3I aspects of
the system but are used to assist in measuring the
effectiveness of the C3I system by helping form a
representation of the overall military mission
(Davies, Gabrisch 1995).

As is frequently the case with interactive
simulations, there is often a need to use some form of
CGF to represent different aspects of the system. In
DICE each time a node cannot be represented by a
peripheral unit or does not have a human player
representing it, an artificial agent is designed to
perform its task. The artificial agents in DICE are
extended Petri net (PN) simulations and are

513

considered to be made up of a number of roles which
are brought together to form the overall artificial
agent structure. Each role may also be constructed
from a number of roles, thus forming a hierarchical
structure where the detail increases with depth. This
document considers how these role-based artificial
agents are designed and incorporated into the DICE
simulation.

It should be noted that there will be times when
studies will be carried out using a non-interactive
simulation. In these cases the DICE simulation will
be used and all the nodes will be either represented
by peripheral units or artificial agents.

3. Requirements of Artificial Agents in the DICE
Simulation

In considering the requirements of artificial agents it
must be remembered that DICE is an interactive
simulation and so involves both real and artificial
players. The inclusion of interactive players in the
DICE simulation adds to the requirements of the
artificial agents.

In the DICE simulation the two types of agents, real
and artificial, must interact in a way which will
make interactive players unable to determine
whether they are communicating with a real or
artificial decision maker. The need for seamless
integration is internationally recognised (Lewis
1994; Cox et. al 1994) and is very important to
maintain a realistic simulation of the real
environment. Interactive players cannot be allowed
to determine between which nodes are CGF and
which are interactive players as this knowledge may
prejudice how they treat the other nodes. To help
address this problem a standard language based on
formatted textual messages has been chosen for
communication between nodes[l]. Agents need to be
able to comprehend and communicate in this
language. Interface environments need to be
developed for both human and artificial players that
enable communications in the chosen language.

The requirements on the design of artificial agents in
the DICE simulation are not unique to this project,
other researchers have also seen some of them as
important requirements of the CGF they are
designing (Lewis 1994; Lankester et. al. 1994; Laird
et. al. 1994; Cox et. al. 1994). It should be noted
that research into the functions and interactions of
real commanders is required in the development of
artificial agents and the interfaces used by real

players and peripheral units. This document
concentrates on the design requirements of artificial
agents.

3.1 Basic Artificial Agent Structure

Initially, the artificial agents to be designed are
essentially rule-based; more sophisticated
representations may be adopted as the field of
artificial intelligence is researched and practical
benefits determined. It has been expressed that
current machine learning techniques are not
sophisticated enough to deal with a problem this
complicated (Cox et al. 1994).

The fact that the artificial agents are rule-based,
leads to there being a natural break down of their
processes into smaller components. These
components will be loosely termed "roles". A role is
not necessarily the base element of the agent (as in
the work by Levis 1993) it is more a function, which
may in turn have many roles within it. This
structure leads to a hierarchical design technique.
By taking a hierarchical approach (Aronson 1994)
the complexity at the level the designer is working at
is reduced to a level which is relevant for the work
being carried out. This method also supports the
natural break down of complex systems into simpler
ones. This means the artificial agent roles can be
designed initially and then brought together to form
the overall artificial agent, leading to a bottom up
design approach. Alternatively the designer can
initially sketch out the basic functions of the
artificial agent and then add detail by enhancing its
roles independently, leading to a top down modelling
approach. The artificial agent being modelled and
the information about the artificial agent will
determine which method is most appropriate for the
task at hand, making it necessary to allow either
approach. This method also makes changes to the
artificial agent easier as they will only involve
change to a limited number of roles, keeping the rest
of the agent unchanged.

C3I networks involve many different systems
working both concurrently and consecutively towards
the same main objective. This is also true for each of
the nodes in the system. Thus, an artificial agent
may involve events which occur either in series or in
parallel. This is an important feature of any decision
making process and so must be reflected in the
artificial agent design. To some extent this is dealt
with by taking the role approach, where roles are

514

arranged according to the way their related functions
occur in the real system.

3.2 Explanation and Analysis Capability

Adequate credibility and realism in artificial agents
is essential; judgement of such qualities can
generally be best made by military domain experts.
The underlying assumptions and characteristics of
artificial agents need to be conveyable in a form
easily understandable to a military expert. Such an
expert should be able to interrogate features of the
agents and to form some judgement on the realism of
that artificial agent compared with the real-world
system that the artificial agent represents. Having
military endorsement of the assumptions used in
such representations is a vital prerequisite to any C3I
system study. The ability to have artificial agents, for
example, explain their actions in an easily
understandable form, is recognised as a very
important requirement in the CGF arena (Cox et. al.
1994; Lewis 1994).

4. The DICE Simulation Artificial Agent
Representation

Having defined the requirements of the artificial
agent design in the DICE simulation it was then
necessary to find an efficient method of modelling
artificial agents with these features. Many different
methods were considered, some of which are
described below, before the decision on the use of
extended Petri nets (PN) was made. The use of CGF
in computer simulations is wide spread, however,
this discussion is restricted to those methods taken
by researchers who are designing CGF with similar
structures to that of the artificial agents in the DICE
simulation.

4.1 Finite State Machines and State Transition
Diagrams

The main problem with using FSM is that they do
not efficiently model concurrence and their
representations can become very complex for large
systems. The problem of complexity is partially
overcome by using hierarchical FSM as in Cox et. al.
(1994). However, the modelling of concurrence is
very important in the artificial agents of DICE and
this can not be represented easily by FSM. Other
problems with the FSM approach are outlined in
Harmon et. al. (1994).

4.2 Boolean and Fuzzy Logic

In Lankester et. al. (1994) the rules governing the
actions of the agents are defined using boolean logic.
As with the DICE agents the logic is set up in a
hierarchical structure to try and keep the design
controlled. This approach can be easily applied to
the small system but becomes very cumbersome
when it is used on more complex systems with large
state spaces. This problem can be reduced by the use
of fuzzy logic instead of boolean logic, as expressed
by Parsons (1994), as this reduces the state space in
most cases. However, regardless of whether boolean
logic or fuzzy logic are used, artificial agents
represented by either method are hard to change, and
the implications of any changes are often very hard
to determine.

4.3 Petri Nets

Petri nets (PN) have been used in the study of C3I
systems by many researchers and even applied to the
modelling of decision makers (Levis 19??). As such
they have not been applied to the design of artificial
agents in a DIS environment in the way required in
DICE. However, PN have all the required features to
model the operation of the DICE agents.

PN have a graphical modular representation that
allows the artificial agent designer to represent the
role logic in an easy and simple manner. Each role
can be thought of as a PN which is then joined to
other PN via common places and transitions, this
allows each of the roles to be designed individually
and then brought together. Alternatively a PN can
be constructed outlining the artificial agent structure
and then refined adding detail. Thus artificial
agents can be designed in the same fashion as is
described in section 2.1.

Due to the PN representation, PN are easy to modify
and the effect of changes can be easily seen. An
inherent feature of the PN structure is that it allows
for the modelling of features such as
synchronisation, concurrence and resource sharing,
which are features the artificial agents in DICE will
have. As with FSM, PN get very complicated and
confusing when the complexity of the system
increases. However, PN have been extended by
adding elements such as coloured tokens and
hierarchies which reduces the complexity of the
graphical representation when representing large
and/or complex systems.

515

In considering which method is best to model the
DICE artificial agents it should be noted that a FSM
is PN in which each transition has only one input arc
and only one output arc. The fact that FSM are a
subset of PN illustrates the advantage of using
extended PN over FSM. Extended PN can also
represent both boolean or fuzzy logic (Levis 19??).
However, the main advantage that boolean or fuzzy
logic have over the use of extended PN, in particular
the boolean logic approach, is that it is easy for the
layman to model and change the agents using this
method. The problem with the logic approach is that
once the system being represented gets large it is
hard to make modifications and find errors, the
graphical approach of extended PN does not have
this problem.

In representing an agent the aim is to model a
system that comprises discrete events occurring
under defined conditions. It is this that makes
extended PN the ideal tool for modelling such
systems since this is what PN were designed for. It
should be noted that the methods described above do
not cover all the possible ways of modelling
conditional event systems. However many of the
other methods can be shown to be either equivalent
to or subclasses of PN (Peterson 1977).

5. Simple Example of Role-Based Agent

The following sections introduce a simple example
of a role-based agent and refer to this example to
illustrate many of the concepts associated with the
role-based methodology and other features. Artificial
agent design and implementation will be achieved
through use of the Petri net ANalysis Environment
(PANE) that is currently being developed, which will
automate many of the procedures that are discussed
below. It should be noted that the example given
here is purely being used as a way of demonstrating
the role-based architecture described above and the
reader should not be concerned about the mechanics
ofthePN.

5.1 Designing Roles

The role-based architecture of the DICE artificial
agents is illustrated in the example given in
Figure 1. The notation used for the PN in this
example is that defined by Jensen (1990).

Consider the situation where a pilot requests
permission from an air traffic control tower to taxi to
a runway so that he/she can begin preparation for

take off. If permission is given then the pilot will
proceed along the taxiway, otherwise he waits for a
period of time before submitting the request again.
If a plane is taxying, then the taxiway is considered
unavailable to other aircraft. On receiving a request
the control tower must check the current weather
conditions and then the availability of the taxiway
before deciding if the pilot is cleared to taxi.

Figure 1 shows the role-based model representation
of this system. In Figure 1 (a) the higher level model
defining the roles as seen at the pilot level is shown.
First he submits his request, which is represented in
the PN by the firing of transition tl and the creation
of an r token in place p2. Next the control tower
responds, either approving or disapproving the
request, ie transition Tl fires. If the pilot is given
permission to taxi then a p token is created in p3,
otherwise an r token is created in pi. If the request is
approved the pilot proceeds to taxi, transition i2 fires
on completion of the taxying placing an/token in p4
to indicate the pilot has completed his taxi and a t
token in p5 signifying the availability of the taxiway.

In Figure 1 (b) the details of the control tower are
modelled. The extended PN shown here is a
substitution transition to transition Tl in the PN of
Figure 1 (a). This model involves two different
roles; the checking of the weather conditions
(transitions fa) and taxiway (transitions tb). Also
given in Figure 1 is a description of the physical
meaning associated with the tokens of these nets. To
make the associations between the two nets easily
seen, like places and tokens have been given the
same names.

The above example shows a top down approach to
modelling. Initially the basic top level structure of
the pilot net was defined and then the control tower
role was modelled in more detail. An alternative
bottom up design can be illustrated by considering
the design of the control tower.

Figure 2 shows the two roles that exist in the control
tower. Figure 2 (a) shows a general "checking of
conditions" role and Figure 2 (b) shows a general
"checking the availability of a resource" role.
Having designed these two roles we can then bring
them together to form the control tower modelled in
Figure 1 (b). The two roles in Figure 2 could be
regarded as existing in a library of roles from which
they are selected and employed in constructing the
control tower role. It is important to note that the
lower level roles are originally general but become

516

(a) Pilot Net

Token Description
r Signifies the submission of a request

to taxi.
P Signifies the control tower giving

permission to taxi.
f This token in place p4 indicates the

pilot has completed taxying.
t This token in place p5 implies that the

taxiway is available.
y This token in place pa implies the

weather condition is satisfactory.
n This token in pa implies the weather

condition is unsatisfactory.

(b) Control Tower Net

Figure 1: Aircraft Ground Control Example of Role-Based Agent

instantiated with a particular purpose when
employed in the control tower role. The conditions
to be checked become the weather and the resource
being checked for availability becomes the taxiway.
The PANE will allow for any combination of the
above role-based design approaches as well as giving
the designed systems the analysis and explanation
capability required of them in the DICE project

It should be noted that the control tower net
represented here only makes up a very small part of
what would be a complete control tower model. The
portion shown is that activated by the particular
problem being considered. This illustrates another
nice feature of the PN role approach to agent design,
only the relevant part of the PN model is activated
when called upon.

5.2 Explanation and Analysis Capability

A PN explanation and analysis capability has been
established using the declarative language Prolog.
Prolog is a particularly suitable language for
describing PN, where the basic connectivity
characteristics can be regarded as a set of facts or
clauses plus logical conditions. Perhaps the most
powerful feature of Prolog, with regard to
establishing an explanation and analysis capability is
its search and multiple solution identification
abilities. The analysis component interrogates a
given Petri net according to user-specified goals or
queries whilst the explanation capability abstracts
and translates the query results such that they are
presented in a form more easily understood to

517

(a) Check Conditions Role (b) Check Resource Availability

Token Description

q Represents the submission of a query on a condition or the availability of a resource.
f Indicates conditions are not satisfactory or the resource is not available.
s Indicates conditions are satisfactory or the resource is available.
y Corresponds to satisfactory conditions.
n Corresponds to unsatisfactory conditions.
r Represents the resource, its presence in p2 indicates that the taxiway is available.

Figure 2: Control Tower Roles

someone less versed in Petri net notation. The
explanation capability is achieved through the use of
declarative tags on the PN that give descriptions of
the significance of a particular token residing at a
particular place in the net; the firing of a particular
transition mode; and summary information for an
instantiated role.

A number of important queries were determined and
are discussed below. The Prolog software
automatically identifies any multiple, ie alternative,
solutions to any query. The presence of roles allows
explanations to be presented at a level appropriate to
a user's query. A graphical user interface
environment associated with this capability has been
developed.

and it is in this form that a user can specify a
situation. Consider specifying this situation and
indicating that the level of abstraction required (the
target net) is at the Pilot net. A query for the reaction
to this situation would return an outcome of:

['Control Tower determined that permission should
not be granted for taxi']

The mode that has actually fired in response to this
goal is one associated with the Check Conditions net
which checked the conditions (the weather) and
returned in the negative. However, abstraction was
used through the Control Tower net to the Pilot net
resulting in the summary information above.

5.2.1 Reaction to a given situation

In a PN, a situation is described by a certain marking
which, in raw Prolog form, might be
[[p2,r,l],[pa,n,l]]. The PN explanation capability
allows this situation to be expressed in the form:

5.2.2 Sequence of Actions Resulting From a Given
Situation

This clause generates an outcome consisting of a
sequence of actions that occurs in response to a
stated initial situation and resulting in some fully or
partially defined final situation.

[Permission to taxi requested',
'ct: Weather not suitable for taxi']

For example, with a target net of Pilot, if the initial
situation were:

518

[' Permission to taxi requested',
'ct: Weather suitable for taxi',

'ct: Taxiway available']

and the final situation were any situation which
contains the state:

['At runway']

then the response to this query would be the
outcome:

[['Control Tower determined that permission should
be granted for taxi'],
[Taxied to runway']].

Changing the target net to the Control Tower level
would result in the outcome:

[['ct Determined that weather is OK for taxi'],
['ct: Determined that taxiway is available for taxi']]

which indicates the same outcome but in terms
relevant to the Ground Control net.

5.2.3 Explanation of Actions
This query gives the ability to select a particular
action (or group of actions) and ask the question
"Why did/would this action occur?". In the case of a
role-based PN, actions will either be associated with
the firing of regular transition modes or effective
firings of substitution transitions. An explanation of
why an action occurred or would occur is given,
then, by the input requirements of the associated
mode or a description of the mode summarised by a
substitution transitions.

5.2.4 Sensitivity of Actions That Could Arise From
a Given Situation
This query refers to taking a specified situation and
requesting an illustration of the sensitivity of any
actions (ie mode firings) to this situation. Processing
of this query involves determining which firings are
dependent on part or all of the given situation and
ascertaining to what extent that situation would need
to change in order for that firins» to occur.

5.2.5 Actions That Could Result in a Given
Situation

This query determines what groups of modes can fire
such that their combined firings result exactly in a
given situation. It is important to note that firing
time considerations are not made here; the clause
will return modes whose outputs upon firing cause a
given situation, the modes do not necessarily fire
simultaneously.

5.2.6 Actions That Could Contribute to a Given
Situation

This query determines what actions could contribute
to a given situation, ie what firings have output that
is sensitive to the situation concerned. The result of
any firings might not be exactly the required
situation but could contribute to it. This approach is
particularly important when multiple or repeated
firings of a mode are required in order to produce a
given situation.

6. Conclusions

This paper has outlined a role-based methodology for
designing agents. This methodology allows for both
top down and bottom up design, and uses extended
PN to describe the roles. An explanation and
analysis capability has been developed to accompany
the PN technique. However, the explanation
capability is only as good as the quality of the
declarative tags attached to the PN and this will be
the subject of further research as is addressing the
transient and stochastic features that an agent can
possess. Research is also being carried out to
develop a PN extension designed exclusively to deal
with the problems associated with role-based agent
modelling.

7. References

Aronson, J. (1994) "The SimCore Tactics
Representation and Specification Language", Proc.
4th CGF&BR Conf., Orlando, Florida.

Cox, A., Gibb, A., Page, I. (1994) "Army Training
and CGFs - A UK Perspective", Proc. 4th
CGF&BR Conf., Orlando, Florida

Davies, M., Gabrisch, C. (1995) "The Distributed
Interactive C3I Effectiveness (DICE) simulation
project: an overview", Proc. 5th CGF&BR Conf.,
Orlando, Florida.

Harmon S.Y., Yang S.C., Tseng D.Y. (1994)
"Command and Control Simulation for Computer

519

Generated Forces", Proc. 4th CGF&BR Conf.,
Orlando, Florida

Jensen, K. (1990) "Coloured Petri Nets: A High
Level Language for System Design and Analysis",
LNCS 483, Advances in Petri Nets, pp. 342-416,
Springer-Verlag.

Laird, J.E., Jones, R.M., Nielsen, P.E. (1994)
"Coordinated Behavior of Computer Generated
Forces in Tac-Air-Soar", Proc. 4th CGF&BR
Conf., Orlando, Florida.

Lankester, H., Robinson, P. (1994) "GeKnoFlexe a
Generic, flexible model for C3I", Proc. 4th
CGF&BR Conf., Orlando, Florida.

Levis, A.H. (1993) "Colored Petri Net Model of
Command and Control Nodes", Toward a Science
of Command, Control, and Communications,
Editor Carl Jones, Progress in Astronautics and
Aeronautics, Volume 156, pp.181-192.

Lewis, J.W. (1994) "Agents that explain their own
actions", Proc. 4th CGF&BR Conf., Orlando,
Florida.

Parsons, J.D. (1994) "Using Fuzzy Logic Control
Technology to simulate Human Decision-Making
in Warfare Models", Proc. 4th CGF&BR Conf.,
Orlando, Florida.

Peterson, J.L. (1977) "Petri Nets", Computing
Surveys, Vol. 9, No. 3, pp.223-252.

8. Biographies

Fred D. J. Bowden is a professional officer with the
Defence Science and Technology Organisation in
Australia. He has a Bachelor of Science degree in
Physics and Mathematics and an Honours degree in
Applied Mathematics. He is currendy studying for a
doctorate relating to the application of extended Petri
nets to military C3I studies.
(Tel: +61 8 259 5205; Fax: +61 8 259 6781;
EMail: Fred.Bowden@dsto.defence.gov.au)

Mike Davies is a research scientist with the Defence
Science and Technology Organisation in Australia.
He has a Bachelor of Science (Honours) degree in
Applied Mathematics and a PhD in Mathematical
Modelling. His research interests are in the areas of
military operation research, mathematical modelling
and computer simulation.
(Tel: +61 8 259 6613; Fax: +61 8 259 6781;
EMail: Michael.Davies@dsto.defence.gov.au)

John M. Dunn is an information technology officer
with the Defence Science and Technology
Organisation in Australia. He has a Bachelor of
Applied Science degree in Mathematics and

Computing. He has worked at DSTO for six years,
primarily involved in programming and computer
support on PC and UNDC based systems.
(Tel: +61 8 259 5546; Fax: +61 8 259 6781;
EMail: John.M.Dunn@dsto.defence.gov.au)

520

Realistic Doctrinal Behaviors in Computer Generated Forces
Through Plurality

Denis Gagn6
IntelAgent R&D
1169 Notre Dame

Victoriaville, (Qudbec)
Canada, G6P 7L1

1. Abstract

Realistic doctrinal behavior in computer generated
forces is a hard requirement to fulfill. We discuss the
inherent diversity that exists in the assessment of
realism of these forces and point out that building the
right computer generated force for the task should be
the goal aimed for. We argue that doctrinal realism
can better be achieved via simulation entities
consisting of multiple micro-agents and that the
behavior requirements of the task should guide the
level of abstraction selected. We present a system
layer capable of supporting the ontology and an
exploratory model of a simulation entity for an anti-
submarine aircraft applying these concepts.

2. Introduction

Simulation training environments have always been
predominant in the military training system.
Advanced synthetic devices are now available to
reproduce with high fidelity the characteristics of
most existing weapon systems, providing ideal
mediums for the transfer of procedural and technical
skills. As simulation training technology evolved, the
capability of interconnecting several manned
simulators into a single simulation scenario was
achieved. Today, network simulation environments,
such as SIMNET and DIS, are central to the research
and development efforts surrounding simulation
training.

Network simulation environments have heightened
the expectations about the resulting product of the
training system. Increasingly complex readiness
requirements are being specified which are aimed at
attaining broader sets of tactical and judgment skills.
Network simulation environments are now being
proposed for a spectrum of combined arms operations
ranging from mission training, mission preview, to
mission rehearsal, as well as to analyze and evaluate
strategies, tactics, doctrines and new weapon systems.
Atop the requirement for realistic depiction of
operational environments comes the requirement for
the participation of plausible and believable opponent
and supporting forces. Computer Generated Forces

(CGFs) represent a cost effective solution to populate
with varying numbers of simulation entities the
operational environments of network simulations.

Scenarios to be engaged by CGFs vary greatly in
complexity. In all cases, it is desired (if not required)
that the CGF act/react in time conforming to the
entity being emulated, and that the CGF behave
rationally given the present operational situation and
in accordance with the doctrine governing the force
being simulated. Such requirements command the
design of complex real time rational systems able to
carry out a wide spectrum of tasks.

In this article, we describe current and ongoing
research in the development of a general framework
that can be applied to the design and implementation
of CGFs. A discussion on doctrinal behaviors and
abstraction levels points to a multi-agent ontology
applicable to CGFs. We also describe an
implementation of a system layer supporting that
ontology. We conclude with an overview of an
experimental model of a simulation entity based on
the proposed ontology.

3. The Diversity of Realism

Realistic doctrinal behavior is desired of CGFs. This
expectation generally applies to all types of CGFs, be
they own, friendly or opposing forces. However,
realism of a behavior is by nature qualitative which
makes it an elusive goal to strive for [Har91]. There
are at least two factors contributing to the elusive
nature of this problem; the observer of the behavior
and the definition of what constitutes realistic
doctrinal behavior.

Realism of a behavior is in the eye of the observer
and further depending on his standpoint and
apprehension. Some observers are more critical or
perceptive than others and will quickly recognize
even the smallest unusual behavior in a participating
simulation entity. An external unengaged observer
focused on perceiving its environment will be more
prompt to categorize an entity that deviates from
familiar behavior, where as an engaged observer (or

521

active participant) only devoting peripheral attention
to situation awareness will be more lenient toward
delinquent behaviors (maybe not noticing). Probably
the most influential factor is the observer's
apprehension; if there is anticipation of participating
CGFs in the scenario, the observer will subjectively
be more critical of all behaviors.

Realistic doctrinal behavior is not all that "typical".
Strategist and tacticians do not generally have
unanimous agreement about the "right thing" to do in
a given operational situation. Partly because
individuals differ in their subjective appreciation of
the present operational situation and because of the
way each prioritize the tradeoff between conservative
and aggressive course of actions. This in part is due
to the fact that each rely on different partial
information about the situation and each have their
own set of values and beliefs with respect to what is
best for the mission.

Conditions vary greatly across operational situations
dictating different accomplishment strategies. Further,
accomplishment of tactics occur under several
adverse situational conditions, sometime leading to
pointwise behaviors that are not in accordance with
the doctrine. But it is the global behavior that is of
interest. Not all combatants are expert tacticians or
strategist, but theirs, the weapon systems they control,
and the units they belong to, are the behaviors we
want to capture. Further and most significant,
flawless tactics and behavior bring about a sense of
dealing with "super" entities which diminish the sense
of suspended disbelief sought after.

Proponents of the "situated" behavior [Agr90, Bro91]
make the argument that interaction and adaptation to
the dynamic external demands of an environment is
what makes a behavior realistic. For CGFs this is not
enough, doctrinal behavior is also a key factor. What
makes a behavior realistic in the context of CGFs is
that the actions/reactions to the operational
environment also generally follow a set of standard
operating procedures that embodies the doctrine
governing the force being simulated.

Realistic doctrinal behavior within the context of
Computer Generated Forces can better be achieved
via simulation entities consisting of a pandemonium
of micro-agents [Hew73, Min85, Ten88]. Each
micro-agent specializes in different and narrow
aspects of operations. As they go about their tasks,
these micro-agents confer with each other and form
coalitions, producing collated, revised enhanced
views of the raw data they take in. The process goes
on ceaselessly. The information is under continuous
revision so that at any point in time there are multiple

views of information fragments at various stages of
revision in various coalitions. These coalitions and
their mechanism implement various cognitive
processes and the desired doctrine.

Simulation entities can be individual micro-agents,
several micro-agents, or even several other simulation
entities aggregated. The recursive definition of the
functional entity allows global control mechanisms to
be applied at all levels of abstraction, from specific
tasks to higher organizational levels. The higher
levels of abstraction consist of coalitions of
heterogeneous micro-agents. Through this plurality
and heterogeneity, one can capture in a single
simulation entity various conflicting priorities and
globally incoherent knowledge, all of which are
competing to suggest the next appropriate action for
the given situation. Such simulation entities are more
representative of real world situations where most
complex military weapon systems are controlled by
teams of crew members with diverse interpretations
and intentions with respect to a given situation.

4. Selecting the Appropriate Abstraction

It is futile to try to design CGF entities that always do
the "right thing" per se, instead we should
concentrate on designing the right system for the task
[Rus91]. Whether the CGF is needed for training,
weapon system evaluation or developing doctrinal
concepts, or whether the simulation entity is of the
individual, team or aggregate level should determine
the behavior requirements and direct the abstraction
level to aim for.

A particular choice must be made for the number of
micro-agents used to implement a particular
abstraction. This choice can have a profound effect
on the cognitive abilities and doctrinal correctness of
the simulation entity as a whole, not withstanding the
processing cost to maintain real time reaction. The
ontology proposed favors knowledge distribution and
functional autonomy which makes it ideal for
distributed computing architectures, from transputer
based machines to networks of computers.

Depending on the simulation being performed, the
abstraction can be carried out at various levels. In a
distributed type simulation, the micro-agents could
emulate selected operational functionalities of crew
members of the participating vehicles or vessels,
where as in aggregate level wargaming, the micro-
agents may be abstracted to key commander functions
of a battalion or any other relevant military unit.
Note that the recursive nature in the definition of a
participating entity allows one to abstract to any
desired level. The decision of the appropriate level to

522

model is guided by the amount of detailed behavior
desired and the processing power available to
maintain real time.

Analyzing and defining the appropriate abstraction
for CGF entity is akin to the analysis and definition
phases of the engineering lifecycle. It consists in
identifying the required functionalities and behavior
of the simulation entity and attributing them to a
series of micro-agents. It is a tedious process for
which not many tools are available. We are presently
working at defining a toolset based on visual
programming to alleviate this task.

We have been doing some work in defining a general
agent theory to be applied to the team or crew level
simulation. It is important to note here that within the
context of this work, we are interested in the
operational functionality of the team and crew
members and not their personalities and/or higher
cognitive abilities. Central to our agent theory and
architecture is our belief that the main desirable
property of the agent lies toward the reactive end of
the cognitive abilities spectrum. We thus advocate a
centrally situated and reactive philosophy [Agr90,
Bro91] augmented with goal directed behavior.

We identified the following generic functionalities as
required of the individual agents participating in a
team or crew simulation entity: a reactive layer, a
deliberative layer, a self model, models of his
acquaintances, and a communication layer. These are
depicted in figure 1.

f >

Reactive
V J

(

Communications

/
JT

f *\

Deliberative

r \

Self and
• Acquaintances

models

V •„••••„• i

Figure 1: Agent's Generic Functionality Layers

Although depicted as modules in the figure, these
only represent functional grouping and may actually
be implemented quite differently. The reactive layer
embodies the pre-compiled plans (behaviors) of the
agent. It contains specialized micro-agents to address
specific functions of the global agent {e.g. the routine
operation of different sensors available to the crew

member). The reactive layer provides the potential
for real time performance. Rather than having to
reason about which action should be taken next, the
micro-agents of the reactive layer merely have to
recognize their specific stimulus in a situation and
carry out the associated action sequence.

The deliberative layer is where most reflective
processing of the agent takes place. If an exception
occurs, it is the task of the deliberative layer to reason
about it and find a way out. The deliberative layer
may also influence the reactive layer in its selection
of the appropriate behavior. A degree of generality is
achieved in the deliberative layer by using micro-
agents with expertise in generic tasks. These generic
tasks, which are meaningful in many different
situations, when taken in context capture the domain
specific information.

The self and acquaintance models consist of a
collection of models capturing the agent's knowledge
and beliefs of the present situation, and his beliefs
and knowledge about other entities. We have
reported on an ontology to capture such knowledge
[Gag94b, Gag94d]. These models are a pre-requisite
for any coordination of activities among the different
participating members such as requesting
information.

Agents require a communication facility in order to
interact with others. This layer actually provides
more services than just communication. The micro-
agents of this layer actually carry out the transfer of
information to the interested crew members as
determined by the deliberative layer. Identification
and composition of the appropriate request is the
responsibility of the communication layer. Requests
from others are similarly treated. Actual monitoring
of the agent self status takes place within this layer.

Our present research focuses on perfecting and
realizing this agent theory and architecture. Similar
agent architecture have been proven quite effective in
dealing with real-time environment [Wit92].

5. A Uniform System Layer

To support the above ontology for CGFs and agent
theory and architecture, we generated a system layer
called CLAP (C++ Library for Actor Programming.)
CLAP is a uniform system layer implementing a
variant of the ACTOR computational model [Agh86,
Hew73]. The Actor model is a natural extension of
the object-oriented paradigm, where each actor is an
active, independent computational entity,
communicating freely with other actors. CLAP
implements the following concepts of the Actor

523

model: the notion of actor, behaviors, mailbox and
parallelism at the actor level. Further, CLAP offers
the extension of intra-actor parallelism to the model.

CLAP applications generally consist of many
programs distributed over available processors, each
executing as a task under the control of the CLAP run
time environment. In CLAP, each actor is a member
of a given task. The aforementioned actors are
actually processes executing in parallel that may vary
greatly in nature and size, from small simple
processes to substantial software programs such as
complete knowledge based systems. It is up to the
programmer to determine how many actors are
attributed to a given task (although, a large number of
actors in a single task could mean the lost of potential
parallelism in the application.) A scheduler controls
the execution of processes inside the tasks. Each task
possesses a message server that handles message
reception for the actors in the task. Inter-processor
message transmissions are handled via Remote
Procedure Call (RPC) servers. External Data
Representation (XDR) filters and type information
are utilized for the encoding and decoding of these
messages.

The present version of CLAP executes on a
distributed heterogeneous environment consisting of
SPARC workstations and Alex Informatique AVX
machines which are transputer based distributed
memory machines [Des93]. A port to HP and SGI
workstations is in progress. An appreciable gain in
power is achieved by distributing the actors over the
network of processors making efficient use of the
available processing power. With its exceptional
modularity and grain size flexibility, our
implementation allows complete interconnectivity at
virtually any system level. Further, new actors can be
created or destroyed dynamically at run time. These
capabilities provide for a rather simple elaboration of
multi-agent environments. We believe this approach
to be promising in attaining the speedup and
increased processing power required of large scale
Distributed Artificial Intelligence (DAI) applications.
CLAP is implemented in C++.

6. An Experimental Model

An initial experimental model was implemented for a
CP-140 Aurora; a Canadian Forces anti-submarine
aircraft [Gag93, Gag94a]. Rather than providing a
single global behavioral model for the Aurora the
aircraft operational behavior is guided by a series of
micro-agents each loosely capturing some operational
functionalities of some of the crew members. A
simple synthetic environment was implemented to
exercise and validate the experimental model. The

primary objective of the prototype leaned more
towards demonstrating the feasibility of a multi-agent
architecture for team or crew concept training
[Gag95], than toward arriving at a model for
Computer Generated Forces.

The selection of the abstraction level, and agent grain
size, was based on the initial objective of providing
the Aurora entity with a virtual crew for the purpose
of crew concept training. The crew member
abstraction level represents an intuitive functional
decomposition for the operations of the aircraft. This
abstraction allowed us to capitalize on the established
standard operating procedures existing amongst crew
members. As a result, there was no requirements to
implement inter-agent negotiation protocol for the
control or influence of aircraft operational events in
this experimental model.

In this abstraction, the actual crew of ten was reduced
to a virtual crew consisting of five members: the
Pilot, the Tactical Navigator (TacNav), the Airborne
Electronic System Operators (AESOP1 and
AESOP2) and the Acoustic System Operator (ASO).
Reassignment of crew duties involved piloting the
aircraft, commanding the mission, and supervising
and operating aircraft's detection instrumentation and
weaponry. In this version of the experimental model,
agents individually consist of a single expert system
shell and a distinct knowledge base consisting of
generic and operational knowledge. For this purpose
the CLIPS expert system shell from NASA [Gir94]
was ported and enhanced to execute in parallel on the
distributed network [Gag94b]. The agents of this
version of the prototype are monolithic and foremost
reactive. The efforts of the next evolutionary step
presently in progress concentrates on the elaboration
and implementation of our recursive notion of
agenthood to replace the present monolithic expert
system shell architecture.

There are three main components to the prototype:
the synthetic environment (simulated operational
environment), the sensors and effectors, and the
virtual crew. A situation awareness display interface
provides a god's view of the theatre of operations
while seemingly tapping the conversations taking
place between the virtual crew members. The
prototype is a multi-agent system executing on CLAP.
The three components of the prototype are actually
functional grouping of actors. All objects and entities
of this prototype are CLAP actors: the simulation
clock, the enemy vessels, the virtual crew members,
etc. This uniformity of the systems layer provides a
clean, intuitive, and flexible implementation. Each
actor can individually be distributed on a separate
processor of the network. CLAP supports the

524

^SfWWPWT*!^'*

dynamic creation and destruction of simulation
actors, and manages all intra-actor communications.
An earlier version of the prototype was implemented
using a communication ring connecting the different
agents to a simulation module[Gag94a].

A segment of the inter-actor communication network
of the prototype is presented in figure 2. The figure
only represents a snapshot since the network of
participating actors changes dynamically at run time.
The virtual crew's interpersonal communication
network is depicted by a star in the figure. Note that
the agents have no direct contact with simulation
entities, except for the Aurora aircraft which they
operate.

The perception the virtual crew has of the outside
world (in this case the simulated operational
environment) solely rely on instrument readings and
the pilot's field of view. Individually, each virtual
crew member is only allowed access to situational
information normally available through sensors on
board the aircraft or through interaction with other
virtual crew members. This is a necessary condition
to assure integrity of the global behaviour of the
Aurora as an entity in a Computer Generated Force.

It must be stressed that the evolution of a mission in
this implementation is completely non-deterministic
(i.e. no canned scenarios or scripts), and solely based
on the events taking place in the theater of operation
and the decisions and actions taken by the virtual
crew members (agents). An unrestricted number of
enemy vessels can be dynamically introduced or
removed from the simulation of the operational
environment at run time. We consider this exogenous
nature of our system to be a necessary condition, if
we are to present computer generated forces as a
valid experience gathering devices.

This experimental model has proven to be more
interesting than traditional stochastic models because
not only does it provide the non-deterministic
characteristics desired but it also assures adherence to
the overall doctrine by having individual virtual crew
members carrying out doctrine correct operations in
answer to the present situation. The prototype has not
been evaluated other than subjectively by experienced
operators. They were convinced enough by the
system to support further exploration of this
approach. Short term goals include embedding the
Aurora simulation entity in a better operational
environment simulation model.

: Agents

: Sensors

Simulation

Figure 2: Network of Actors

525

7. Summary and Conclusions 9. References

The dream of an all encompassing, omniscient CGF
entity is at best elusive. Designers of CGFs should
concentrate on designing the right simulation entities
for the task at hand.

We have argued that one should distribute the
cognitive processes supporting doctrinal behavior of
a simulation entity among specialized micro-agents of
limited expertise. Through this plurality and
heterogeneity, one can capture in a single simulation
entity various conflicting priorities, and globally
incoherent knowledge and interpretations of the
present operational situation, all of which may be
competing to suggest the next appropriate action.
This approach best captures the diversity and non
determinism that exist in pointwise behaviors of real
operational entities while allowing to globally
maintain realistic doctrinal behavior. We have
described a system layer capable of supporting the
design of such a simulation entity.

An agent theory and architecture was suggested for
team and crew level simulation. This agent theory and
architecture is the subject of further exploration in a
crew concept training project Finally, an
experimental model of an anti-submarine aircraft was
presented. Rather than providing a single behavioral
model for the behavior for this simulation entity, the
aircraft is controlled by a series of micro-agents.
Behavioral integrity of this simulation entity was
preserved by only allowing access to information
normally available in a real operational situation.

We believe this general approach to be promising in
attaining realistic doctrinal behavior for Computer
Generated Forces and are presently working at the
next generation of simulation entities based on these
ideas.

8. Acknowledgment

The prototypes reported herein are the results of
efforts from many people and where for most
developed while at the College Militaire Royal
(CMR) de Saint-Jean. I would like to acknowledge
the support of Jocelyn Desbiens and his team at CMR
without whom none of this would be. I also would
like to thank Andre Trudel and Alain Dubreuil for
their comments on earlier draft.

[Agh86]Agha, G., ACTORS: A Model of Concurrent
Computation in Distributed Systems. The
MIT Press, Cambridge, Massachusetts,
1986.

[Bro91] Brooks, R., "Intelligence without
Representation" In Artificial Intelligence,
47:139-159,1991.

[Des93] Desbiens, J., Toulouse, M., & Gagne, D.,
"CLAP: Une implementation du modele
Acteur sur r6seau hdterogene." In
Proceedings of the Department of National
Defence (DND) Workshop on Knowledge
Based Systems/Robotics. Ottawa, Ontario,
1993.

[Gag95]Gagn6, D., 'Training the Crew Concept via
Multi-Agent Systems." In Proceedings of the
International Training Equipment
Conference (ITEC95). The Hague,
Netherlands, 1995.

[Gag94a]Gagn6, D., Desbiens, J., & Nault, G., "A
Multi-Agent System Simulating Crew
Interaction in a Military Aircraft." In
Proceedings of the Second World Congress
on Expert Systems. Estoril, Portugal, 1994.

[Gag94b] Gagne, D., & Trudel, A., "A Multi-Agent
Temporal Structure: Preliminary Results." In
Proceedings of the Canadian Workshop on
Distributed Artificial Intelligence (CWDAI),
D. Gagne (Ed.), Banff, Alberta, 1994.

[Gag94c] Gagnd, D., & Garant, A, "DAI-CLIPS:
Distributed, Asynchronous, Interacting
CLIPS." In Proceedings of the Third CLIPS
Conference. NASA: Lyndon B. Johnson,
Houston, Texas, 1994.

[Gag94d] Gagn£, D., Pang, W., & Trudel, A, "A
Spatio-Temporal Logic for 2D Multi-Agent
Problem Domains." IntelAgent Technical
Report, 1994. Submitted to First
International Conference on Multi-Agent
Systems (ICMAS),

[Gag93] Gagne, D., Nault, G., Garant, A, &
Desbiens, J., "Aurora: A Multi-Agent
Prototype Modelling Crew Interpersonal
Communication Network." In Proceedings
of the Department of National Defence
(DND) Workshop on Knowledge Based
Systems/Robotics. Ottawa, Ontario, 1993.

[Gir93] Giarratano, J. & Riley, G., Expert Systems:
Principles and Programming. PWS
Publishing, Boston, Maine, 1993.

rHam91] Hammond, S., Yang, S., Howard, M., &
Tseng D., "A Behavior-Based SAFOR and
its Preliminary Evaluation." In Proceedings

526

of the 2nd Behavioral Representation and
Computer Generated Forces Conference.
Orlando, Florida, 1991.

[Hew73] Hewit, CE., Bishop, P. and Steiger, R., "A
Universal Modular ACTOR Formalism for
Intelligence." In Proceedings of the
International Joint Conference on Artificial
Intelligence (IJCAI-73). Stanford,
California, 1973.

[Min85] Minsky, M., The Society of the Mind. The
MTT Press, Cambridge, Massachusetts,
1985.

[Rus91] Russell, S., & Wefald, E., Do the Right
Thing: Studies in Limited Rationality. The
MTT Press Cambridge, Massachusetts, 1991.

[Ten88] Tenney, R. & Sendel, R., "Strategies for
Distributed Decision Making." In Readings
in Distributed Artificial Intelligence, Bond
& Gasser (Eds.). Morgan Kaufmann, San
Mateo, California, 1988.

[Wit92] Wittig, T. (Ed.), ARCHON: an architecture
for multi-agent systems. Ellis Horwood,
West Sussex, England, 1992.

527

A Comparison Study of Behavioral Representation Alternatives

Se-Hung Kwak
Loral Advanced Distributed Simulation

50 Moulton St., Cambridge, MA 02138
skwak@camb-lads.loral.com

1. Abstract

There are fundamentally two approaches to implement
behaviors for a CGF computer system. One is a
forward reasoning approach and the other is a
backward reasoning approach. Even though the
forward reasoning approach is commonly used to
implement behaviors in CGF because of its initial
intuitiveness and historical familiarity, the other
alternative should be carefully examined. Because of
a unique philosophy behind military doctrines;
hierarchy, unambiguity, and purposefulness, a rather
opportunistic forward reasoning approach is less
suited than a goal directed backward reasoning
approach. In this paper, these two approaches and
representations are examined and compared with a
specific military task example, "Reaction to Air
Attack Drill" of US Army Tank Platoon.

2, Introduction

One of the ultimate goals of research in computer
generated forces (CGF) is to create automated agents
that behave as humans would on a real battle field.
Although some CGF softwares, such as ModSAF,
have been successful to implement realistic CGF
behaviors in a simulated battle field, their behavioral
implementations have been somewhat focused on low
level echelon behaviors.

As climbing echelon hierarchy in military, the
echelon's roles are getting detached from physical
entities, such as tanks and helicopters. They are
getting inclined to command and control rather than
simple movement and shooting which are dominant
roles (or behaviors) of a low level echelon. They
spend most of time to reason about mission, enemy,
terrain, troops, and time available (METT-t) to
generate orders. Thus, their roles are behaviorally
more complex than those of a lower echelon.

Currently, each CGF software utilizes its own
behavioral implementation for CGF. For example,
ModSAF uses Augmented Asynchronous Finite State
Machine (AAFSM) to implement behaviors.
However, when CGF software starts to simulate
higher-level echelon behaviors, the current behavioral

implementation methodology might not well suit for
a larger scale future CGF.

In this paper, two behavioral representation
alternatives will be compared; i.e., AAFSM, and
Rational Behavior Model (RBM). AAFSM
represents a data-driven forward reasoning behavioral
approach, and RBM represents a backward reasoning
behavioral approach. A data-driven forward reasoning
approach tends to lead an exploratory implementation;
i.e., designing a behavior from a start state to a goal
state based on a given sequence of external inputs,
while the latter backward approach usually guides to a
structural top-down behavioral decomposition during
its design stage. Thus, depending on targeted
behaviors to be implemented one approach is expected
to be better than the other. As an example, Reaction
to Air Attack Drill behavior is chosen and
implemented to compare their advantages and
disadvantages, respectively. Especially easiness of
converting published military Field Manual to both
behavioral representations is discussed.

3. Behaviors and Behavioral
Representations

3.1 Systems and Behaviors

A computer based system, such as a CGF and a robot
control system, basically shares great commonalities
with other biological or social systems. That is, as a
system, it continuously manages internals and
interacts with other external systems. A system may
contain multiple sub-systems, while it also becomes
a sub-system of other systems. Therefore, in this
paper, a system is described as a recursive entity that
has intra- and inter- interactions between sub-systems
and external systems.

Interactions between systems are directly caused by
interactions between behaviors in the systems. And
the behaviors are entities capable of producing such
interactions. There are two kinds of behaviors; i.e.,
internal behavior that is not observable from outside
and interacts only internally, and external behavior
that is externally observable and interacts with other
external systems (including super-systems). The

529

external behavior is simply called behavior of a
system because it produces readily observable
behavioral results.

System interactions caused by a behavior do not
spontaneously and aimlessly occur without a purpose.
They are (especially in a man-made system) controlled
by a sound logic that is either deliberately or
optimistically1 implemented to reflect the purpose.
Thus, a behavior should have means to include such
behavioral control logic. The behavior itself cannot
exist in a vacuum. It needs an embodiment where it
can place "memories" needed to maintain
individualistic nature of a behavior. Without the
embodiment, multiple behaviors with the same
behavioral control logic would produce
indistinguishably identical behavioral results
regardless their distinct situational histories. Finally,
a behavior has to interface to other behaviors through
either transformation or actuation. Though the last
factor seems purely an implementational issue,
without the interfacing activity, a behavior is not able
to interact to other behaviors. Consequently, the
behavior, in this paper, has three components; i.e., a
behavioral control logic, an embodiment, and
interfacing means.

A system behavior manages all the system internals
to produce an external system interaction.
Specifically, it controls the overall operations of
internal behaviors with the behavior control logic,
records those operational results in the embodied
portion, and interfaces to other systems to produce
tangible system interactions. It can be dynamically
delegated from the internal behaviors, but a statically
assigned system behavior is chosen in this paper
because of simplicity and easiness to maintain the
whole system stability.

The internal behaviors directly come from the sub-
systems, and they are manipulated by the system
behavior to constitute external system interactions.
Therefore, the system behavior is the external
behavior of a system. Even though the system
behavior mainly combines all available internal
behaviors, it is not a simple combinatorial
combination of them because of the embodiment and
the behavioral control logic of the system behavior.
Thus, the system behavior (the external behavior) is
more powerful than a mere collection of those of the
sub-systems.

Consequently, building a system becomes
constructing a system behavior that manages the

internal behaviors and including sub-systems that can
provide necessary internal behaviors. If some of the
behaviors are not readily available, then sub-systems
that can provide the missing behaviors have to be
newly built. This system building process
recursively continues until all needed behaviors are
included2. There are many proposed behavior models
and related development/implementation tools. Most
of them (Kwak 1990, Kwak 1992, Kwak 1993,
Scholz 1993, Byrnes 1993, Loral 1995, Rosenbloom,
1993) implicitly or explicitly support this system
building approach.

In this paper, those behavior models and tools are
classified into two categories depending on the
behavioral control part because two extreme
representations are available; i.e., forward and
backward reasoning representations (Jackson 1990).
In a pure predicate calculus sense, two representations
are totally equivalent. However, when either of the
representations is used to implement the behavioral
control logic that operates in a context rich
environment, the equivalence issue is not as simple
as a syntactic switch from one form to the other. The
order of logic proving sequence becomes significant
because of side-effects caused by the logic proving
process. If the logic proving sequences vary from one
implementation to another implementation, then
there is no way to guarantee that the sequences of
observable behavioral results caused by the logical
proving process in both implementations are
identical, even though they are logically equivalent.
This observation leads to a special equivalence called
behavioral equivalence (Kwak 1993). An existence of
behaviorally equivalent pair in both representations
was found and reported in (Kwak 1993). A similar
finding in the context of factory assembly control was
also reported in (Homem 1990).

3.2 Forward and Backward Reasoning
Representations

The forward reasoning means a series of possible
traversals from the start to a goal, while the other
reasoning means a recursive goal decomposition; that
is, starting from the goal, goals are recursively
decomposed into simpler sub-goals. This process
stops when simplest primitive goals are encountered,
which can be directly accomplished by the sub-
systems. Depending on the problem space of a
behavioral control, either or both approaches might
be susceptible to a combinatorial explosion.
However, one approach is usually better off than the
other approach.

'Some behavioral implementations are based on
optimistic expectations (Brooks 1986)

2This is a top down approach. A bottom up
construction is equally possible.

530

Practically speaking, the recognized problem space of
a behavioral control continuously evolves from the
initially recognized space because of knowledge
accumulation (experience) of a designer/implementer
about the problem3. At the beginning of the
behavioral implementation phase, his understanding
of the control problem is minimal. From the start
state, he can experiment various operations to reach
the goal or at least to try to move toward the goal. If
such a move is apparently closer to the goal based on
his simplistic evaluation model, a new state is
introduced to maintain the move and to simplify
future moves. Unfortunately, the successive
movements may lead to a trap (local mini/max) state
without any further improvement due to the error of
his simplistic evaluation model. However, a series of
such trials and errors will (most of cases) eventually
lead to a path (or multiple paths) to the goal. At this
point, the collection of all the paths explored forms a
recognized problem space that should be much limited
compared to the complete problem space.

If the goal is reached, then the whole problem can be
viewed from the goal to the start. At this point, he
starts to approach the problem by discovering goal
and sub-goal relationships. Such investigations lead
to form a hierarchically organized goal-subgoal tree.
During this process, all (practically) possible
branches (subgoals) can be systematically identified
because of the top-down approach. Frequently, the
complete problem space does not need to be
identified. A certain subgoal branch may be ignored.
If so, the branch is terminated by a simple default
subgoal. When such tree construction is completed,
an adequately shaped behavioral control space is
available. This is possible because of the gained
knowledge, i.e., experience.

The degree of understanding of the problem space
leads to a selection of a behavioral representation. If
the adequately shaped goal-subgoal tree is not
available ~ a behavioral control problem is partially
understood or unstructurally described — then a
forward reasoning representation and implementation
will be a better choice. If such a goal-subgoal tree is
available, then a backward reasoning representation
will be the choice because a paradigm match between
an explored problem space and a representation results
in greatly reduced development time and efforts.

3We, human beings, are not fully capable to grasp
the entire problem space of a realistically sized
behavioral control problem. We intentionally or
unintentionally simplify or limit the size and shape
of a behavior control problem in order to effectively
handle the problem with our limited resources.

4. AAFSM & RBM

4.1 AAFSM (Asynchronous Augmented
Finite State Machine)

Asynchronous Augmented Finite State Machine
(AAFSM) (Loral 1995) is chosen to represent the
forward reasoning representation. Though AAFSM is
highly specialized for ModSAF to facilitate behavior
implementation in ModSAF, it is basically a Finite
State Machine (FSM), which defines states and state
transitions.

Specifically, in ModSAF, behaviors are implemented
by tasks, and the tasks are implemented by
AAFSM's. They are asynchornous because they
change states in response to events in the simulated
environment. However, if needed, ModSAF system
clock, which can be simulated or synchronized to real-
time clock, can trigger the state transitions. Thus,
both asynchronous and synchronous state transitions
can be implemented with AAFSM's. They are also
augmented state machines because they use many
variables, predicate functions, and procedures to
handle variables other than their state variables.

AAFSM implements behavior control logic with its
FSM portion, and the augmented part provides the
behavioral embodiment and the behavioral interfaces.
Thus, AAFSM basically provides three components
needed for implementing behaviors, which are
described in the previous section. Recursiveness is
indirectly supported in conjunction with the rest of
the ModSAF architecture, such as tasks and task
frames.

The ModSAF environment also provides a tool to
construct AAFSM, which facilitates a programmer to
define an AAFSM. Rather than constructing an
AAFSM with an ordinary programming language,
such as C, he can write an AAFSM with the
predefined AAFSM macro facility. Then the
AAFSM code is translated by a preprocessor utility
called "fsm2ch". The fsm2ch utility is written in
"awk" script and converts an AAFSM code into a C
source code so that it can be compiled together with
other ModSAF programs that are written in C.

The fsm2ch macro facility provides a syntax and
commands needed to express state transitions, event
declarations, criteria declarations, and task related
commands (Loral 1995). The fsm2ch facility also
allows a programmer to write C source code to
complete an AAFSM. That is, operations in a state
and state transition predicate functions are written in
C programming language, but the state construction

531

and state transition themselves are expressed by the
fsm2ch macro facility. Specifically, an AAFSM
state starts with a grave characterf) and followed by
the name of the state as shown in Fig. 1. After the
name declaration, the definition of state follows. The
operations triggered by ModSAF system clock are
defined first in the state definition. Operations
initiated by ModSAF "param" event follows.
Optionally user defined events can be declared and
operations related those events can be placed after
param event operations. The param event is a
ModSAF specific event that is triggered whenever
there are changes in the inputs of the task containing
the AAFSM. For example, if a route input to the
task is newly updated, then C code defined in param
section of a current state is executed as well as an
ordinary system clock based operation also defined in
the state. Figure 1 shows one of AAFSM state.

under_;air_attack
tick
if (time_to_monitor(private))
{

check_enemy_force_spotted(privatc. vehicle_id, unit_enlry);
check_unit_under_fire(vehicle_id. private, unit_entry);

if (no_air_veh_for_long_time_p(vehicle_id, private, unit_entry))
<

params

send_contact_report(vehicle_id, private);
private->time_last_monitor • 0;
STOPTargeter
"monitoring;

Figure 1: AAFSM state

4.2 RBM (Rational Behavior Model)

Rational Behavior Model (RBM) (Kwak 1992, Byrnes
1993) is chosen to represent the backward reasoning
representation. RBM is a multi-paradigm, multi-
level intelligent control architecture. This
architecture composed of three levels; i.e., Strategic,
Tactical, and Execution levels. The behavioral
control is performed by the Strategic level where
behavioral control logic is located. The Strategic
level governs the operation of the Tactical level. The
Tactical level embodies behaviors by maintaining
behavioral attributes for the system, which includes
system memory and world-and-local memory models.
The Tactical level also forms a representation of
internal behaviors for the Strategic level. Finally, the
actual behavioral interface to other behaviors is
located in the Execution level. Therefore, RBM
explicitly supports three components needed for
implementing behaviors. Recursiveness is also
directly supported by RBM through the behavioral
abstraction of sub-system behaviors in the Tactical

level. RBM recursively defines a system with the
sub-systems and associated behaviors by
encapsulating them in the Tactical level.

The backward reasoning nature of RBM comes from
the Strategic level. This level is usually written in
Prolog, which textually describes AND/OR Goal
Tree. In other words, there is one-to-one direct
correspondence between the Prolog code in the
Strategic level and AND/OR Goal Tree (Kwak 1993,
Byrnes 1993). Specifically, AND/OR Goal Tree is
an extended version of AND/OR Tree by
augmenting backtracking of Prolog. The Prolog code
in the Strategic level is a limited version of Prolog
by disallowing use of assertions. This means that
there is no memory at the Strategic level other than
the memory of the Prolog inference engine, which
allows backtracking in the Prolog code. Additionally,
the textual order in Prolog code determines a priority
of the code execution. Likewise, there is a node
priority among siblings under the same parent node in
the AND/OR Goal Tree. The node priority and the
Prolog textual priority are used as a conflict
resolution scheme if equally possible subgoals are
encountered. Basically there are two types of
subgoals; ORed and ANDed subgoals to a parent
goal. The priorities are equally applicable to both
types of subgoals, but only the priorities among
ORed subgoals are treated as being significant because
of possible conflicts among the ORed subgoals. In a
pure predicate logic, there is no priority among either
ANDed or ORed subgoals.

Prolog code and its corresponding AND/OR Goal
Graph are in Figure 2.

A:-B
A:-C

X:-Y,Z. \£) h (Y) U

Figure 2: Prolog code and AND/OR Goal Graphs

There are a head and a body for each line of Prolog
code, which is terminated by "." like a common
English sentence. The head and body are separated by
":-". The left side of ":-" is a head and the other side
represents a body. The meaning of ":-" is in order
that a head is true, the body should be true, or if a
body is true than the head is true too. For example,
the first line of the Prolog code says: in order that
"A" is true, "B" should be true. Or if "B" is true,
then "A" is true too. There is a mechanism to
present logical relationships; such as AND and OR.

532

'i'.'TfWEt

The last line of the Prolog code shows an AND
relationship, that is, in order that "X" is true, "Y" and
"Z" should be true. An OR relationship is shown in
the first and the second lines. In order for "A" to be
true, "B" or "C" is true. A direct interpretation of the
two lines is following: in order for "A" to be true,
"B" should be true. If not, the "C" should be true. If
not, there is no way to make "A" true. These Prolog
constructs can be recursively applied.

An AND/OR goal tree has one-to-one correspondence
to a RBM Prolog code. A node corresponds to a head
of Prolog code, and the body becomes child nodes.
An AND/OR goal tree is also able to show two
relationships; i.e, AND and OR. The ANDed
children are connected by an arc between branches, but
the ORed children do not contain the arc. Again,
these mechanisms can be recursively applied like the
Prolog constructs. An AND/OR goal tree is able to
provide immediate feels of the goal-subgoal
relationships. However, its practical usefulness is
rapidly degraded as the size of the tree increases. The
intuitive graphical appeal is very much offset by a
graphical complexity of a large AND/OR Goal Tree.

5. Reaction to Air Attack Drill Behavior

ModSAF's unit level react air task is a direct
implementation of "Reaction to Air Attack Drill" of
US Army Tank Platoon Field Manual (FM). In this
section, the FM will be briefly discussed and followed
by two implementations; i.e., AAFSM and RBM.

5.1 FM 17-15

FM 17-15 (Tank Platoon), pp. 3-21 - 3-23 (Army
1987), describes "Reactions to Air Attack Drill". The
FM states "the tank platoon should conduct a passive
defense against air attack", and describes:

Alert the platoon. Air guards can alert the platoon
using either of two techniques: announcing
"CONTACT-BANDITS-(direction)" over the radio, or
using hand-and-arm signals.

Seek cover and concealment. When moving, tank
units must immediately seek cover and concealment.
If concealment is not available, moving tanks should
stop. A motionless tank is harder to see than a
moving tank. (If enemy aircraft detects the tanks and
initiate an attack, the platoon leader announces "AIR
ATTACK," and exposed tanks move at a 45-degree
angle toward or away from the attacking aircraft.)
Vehicle should maintain at least 100 meter intervals
and avoid presenting a linear target in the direction of
attack.

Prepare to engage. Tank commanders and loaders
should prepare to engage aircraft with a high volume
of machine gun fire on order of the platoon leader.
Since firing machine guns could reveal the location of
concealed vehicles, the platoon leader must make sure
the aircraft are attacking. The platoon leader may
designate an aiming point for the platoon with a burst
of tracers. Volume is the key to effectiveness. The
tanks throw up a wall of fire and let the aircraft fly
through it. The tank main gun can be used effectively
against hovering enemy attack helicopters with a high
probability of kill. Leaders should consider enemy
attack helicopters as tank killers and should take
actions to kill them before engaging less dangerous
targets.

Report. The platoon leader sends the commander a
contact report. Example: "CONTACT-HELICOPTER-
SOUTH".

Enemy aircraft operate in flights of two, four, six, or
more. After the first aircraft passes overhead, another
may follow. Tanks should remain in covered and
concealed positions for at least 60 seconds after the
first aircraft leaves.

The above FM description about React to Air Attack
Drill is by no means a complex task for trained tank
platoon personnel because it is written for trained
military men/women who have a common
background knowledge about military operations and
a human common sense reasoning capability.
However, it cannot be directly used as a behavioral
description for CGF. This limitation leads to an
extra transformation to a structured and precise
behavioral description. In this paper, portions of the
above description are omitted because of functional
limitations of ModSAF 1.0 at the time of the
implementation. For example, ModSAF 1.0 did not
support a cover and concealment seeking behavior
against an aircraft. Consequently, the ModSAF
version of React Air behavior becomes following:

Alert the platoon.

Avoid air attack.
If moving, then scatter.
If not moving, then do nothing (or keep
stationary).

Under air attack.
If moving, move until having a platoon's proper
defensive posture.
If not moving, start scattering.
If proper defensive posture (there are enough space
between individual tanks), then counter attack.

Report.
If no air vehicles are spotted for at least 60
seconds.

533

The above description is very close to the ModSAF
React Air behavior, but it cannot be directly a
running computer program. We need further
transformations for the following implementations.

5.2 AAFSM Implementation

For AAFSM implementation of React Air behavior
in ModSAF, three states and three extra supporting
states are introduced4. They are "monitoring",
"avoid_attack", "under_air_attack" states, and
"START", "END", "SUSPEND" states, respectively.
Except the "START" state, performing the
initialization for the AAFSM, the other two
supporting states are just empty in this
implementation. The three main states perform the
necessary behavioral control. The AAFSM
implementation is in Figure 3.

START

PERIOD priva(c->params->tick_period
switch (state->state)
<
case monitoring:

Amonitoring;
case avoid_attack:

Aavoid_attack:
case under_air_attack:

Aunder_air_attack;
break:

case ended:
default:

'monitoring; wait for enemy contact
}

monitoring
" tick

if (time_to_monitor(private))
{

check_enemy_foree_spotted(private, vehiclejd, unit_entry);
check_unit_under_fire(vehicle_id, private. unit_entry);

if ((private->under_fire) &&
is_proper_defensive_posture(vehicle_id, private))

<
make_umxtravel_parameters_available(vehicle_id);
SPAWN SELF Targeter
Aunder_air_attack;

>

if (is_moving(vehicle_id) && (private->under_firc))
<

make_umxtravel_parameters_available(vehiclejd);
SPAWN SELF Spread
Aavoid attack;

>
if ((private->enemy_force_size) &&

is moving(vehicle_id))
<

make_umxtravel_parameters_available(vehicle_id);
SPAWN SELF Spread
Aavoid attack;

}
}

params

avoid_attack
" tick

if (time_to_monitor(private))
{

chcck_cncmy_forcc_spottcd(private, vehiclejd, unit_cntry);
chcck_unit_undcr_fire(vehicle_id, private, unit_cntry);

/* FM specify long time = 60 sec. */
if (no air_veh_for_long_timc_p(vehiclc_id, private, unit_entry))
<

send_contact_report(vehicle_id, private);

>

STOP Spread
"monitoring;

if ((private->under_fire) &&
is_propcr_dcfensivc_posture(vehiclc_id, private))

{
STOP Spread
make_umxtravcl_parametcrs_available(vehicle_id);
SPAWN SELF Targeter
Aunder_air attack;

}

params

undcr_air_attack
' tick

if (timc_to monitor(private))
<

check_enemy_force_spotted(private, vehiclejd, unit_entry);
check_unit_under_fire(vehicle_id, private, unit_entry);

/* FM specify long time = 60 sec. */
if (no air_veh_for_long_time p(vehicle_id. private, unit_entry))
{

send_contact_report(vehicle_id, private);
private->time_last_monitor - 0;
STOP Targeter
"monitoring;

>

params

END

SUSPEND

/* NOP */;

4Design methodology for constructing a FSM can be
found from [Hill 1974].

Figure 3: AAFSM Implementation of Reaction to
Air Attack Drill

In the "monitoring" state, the AAFSM performs
following:

1. Continuously check whether enemy air vehicles
are visible or the platoon is under air attack.

2. If the tank platoon is under-fire and it has a right
defensive posture, then it has to counter attack and
go to "under_air_attack" state.

3. If the platoon is moving and under fire, then
make them scatter and go to "avoid_attack" state.

4. If enemy air vehicles are visible and the platoon
is moving, then scatter and go to "avoid_attack"
state.

In the "avoid_attack" state, the followings are
executed:

534

1. Update status of enemy air vehicles' visibility
and enemy attacking status.

2. If more than 60 seconds after the last enemy air
vehicle is spotted, then make the platoon send a
contact report and return to "monitoring" state.

3. If the platoon is under enemy air vehicle attack,
and they are in a right posture, then counter attack
and go to"under_attack" state.

In the "under_air_attack" state, the AAFSM executes
followings:

1. Update status of enemy air vehicles' visibility
and enemy attacking status.

2. If more than 60 seconds after the last enemy air
vehicle is spotted, then make the platoon send a
contact report and return to "monitoring" state.

Surprisingly enough, the ModSAF version of React
Air behavioral description seemed complete, but
many details were missing. To find them, a
programmer has to go through reasoning process
applying what-if mental tests on all plausible cases.
For example, he has to question what has to be done
if no air vehicles are spotted for at least 60 seconds in
the "avoid_attack" state. Obviously, the
"avoid_attack" state has to be terminated and to make
a state transition to the "monitoring" state. This case
is not explicitly described in the ModSAF version of
React Air behavior. Soon, he will realize that the
"under_air_attack"state should check this condition to
make a proper state transition to the "monitoring"
state. This is a default state transition case. This
type of discovery process requires a common sense
reasoning or domain expertise.

The state like description in the FM or the ModSAF
version React Air does not fully match with the states
in AAFSM. Specifically, a portion of the "under air
attack" description in the ModSAF version React Air
is taken out from the "under_air_attack" state, and
merged into the "avoid_attack" state because of the
common observable sub-behavior; i.e., vehicle
scattering. Even though this approach leads to a
concise and cleaner state implementation in AAFSM,
it adds an extra complication at the "monitoring"
state. The "monitoring" state has to consider three
state transition cases in stead of two state transition
cases. The extra state transition case could have not
been existed. This is an added state transition case to
be uncovered.

5.3 RBM Implementation

RBM allows to approach the problem from a totally
opposite direction; that is, rather than directly
following the flow of the narrative description of the
ModSAF version of Reaction to Air Drill behavior,
RBM guides the behavior implementation from the
goal (or objective) to simpler objectives or subgoals.
In this paper, the top goal (or objective) is to react to
enemy air vehicles. Then, the goal is decomposed
into three subgoals, which are "under_air_attack"
"avoid_attack", and "end_react_air". Though the
names of the first two subgoals directly match with
the two behavioral descriptions in section 5.1, the
last name, "end_react_air" represents the "Report"
behavioral description. The full description of the
React Air behavior is shown in Figure 4.

react_air :- no_air_vehicle_last_60sec_p,
end_react_air.

react_air :- under_attack_p, under_air_attack.
react_air :- air_vehicle_spotted_p, avoid_attack.

end_react_air :- was_in_reaction_p,
report_air_vehicle_contact, react_air_done.

end_react_air.

under_air_attack :- moving_p,
under_air_attack_moving.
under_air_attack :- under_air_attack_stationary.

under_air_attack_moving :-
proper_defensive_posture_p, counterattack.

under_air_attach_moving :- spread_out.

under_air_attack_stationary. ; do nothing

avoid_attack :- moving_p, spread_out.
avoid_attack. ; do nothing

counterattack :- helicopter_p, attack,
counterattack :- air_veh_p, attack,
counterattack.

Figure 4: RBM Prolog description of Reaction to Air
Attack Drill

In Figure 4, the top goal is specified as "react_air".
The "react_air" is decomposed into three ORed
subgoals, "under_air_attack", and "avoid_attack",
"end_react_air". Thus, if one of the subgoals is
achieved, then the top goal is achieved. Therefore, a
tank platoon with this "react_air" behavior
implementation will always perform one of the
subgoals depending on the current situation.

535

However, there might be a subgoal conflict among
ORed subgoals; i.e., more than one subgoals might
be eligible at a given condition. Specifically, more
than one predicates which are attached in front of the
subgoals can return "true". Then, multiple subgoals
will be chosen (or selected to be executed). For
example, in Figure 4, the "under_attack_p" and the
"air_vehicle_spotted_p" predicate functions return true
when a spotted air vehicle attacks the tank platoon.

The multiple subgoal activations generally lead to
behavioral conflicts because they will make one tank
platoon simultaneously perform two conflicting
tasks. Thus, the subgoal conflict should be resolved.
RBM uses a priority based subgoal conflict resolution
scheme. If two subgoals are activated, then one
subgoal having a higher priority is selected for further
processing (or executed).

When some of ORed subgoals are activated for
execution, the rest of them are not activated. For
example, an attack from a spotted air vehicle activats
the "under_air_attack" and "avoid_attack" subgoals,
but it does not activate "end_react_air" subgoal. The
reason is that under the situation "under_attack_p" and
"air_vehicle_spotted_p" predicate functions return
true, but "no_air_vehicle_last_60sec_p" returns false.
In general, a given situation (or a given condition)
divides ORed subgoals of a common parent goal into
two groups; i.e., activated and non-activated.

In RBM, the priorities among activated ORed
subgoals are statically assigned before a program
execution. The priority assignment process actually
becomes an ordering process of predicate condition
sets whose members are conditions that satisfy the
predicate function of each subgoal because the
subgoal activation is directly depends on the
satisfaction of the predicate function and because the
predicate function's satisfaction is determined by the
conditions.

Ordering of the predicate condition sets requires a
proper subset relationship. If a set is a proper subset
of the other set, then the former has a higher priority
in RBM. Thus, the whole condition sets are partially
ordered by the set priority. In the above example,
there are three predicate condition sets;
"under_air_attack" condition set, U, "avoid_attack"
condition set, A, and "end_react_air" condition set, E.
Among these sets, it can be easily observable the
following relationship5:

A z> U
A n£ = 0

(1)
(2)

5In this problem, a direct fire air attack and a perfect
vision sensor within a effective range of the direct fire
attack are assumed. For example, a Hellfire
(HELicopter Launched FIRE-and-forget) missile

A graphical representation of the above relationship is
shown in Figure 5.

Figure 5: Relationship among Predicate Condition
Sets

Consequently, there is the following set order:
Group 1:

U,A
Group 2:

E.

Though the above example does not clearly manifest
a partial ordering relationship, it can be easily seen
that there are at most two groups of sets at any level.
That is, when following down to the partial ordering
branch, there are zero, one, or two branching factors if
a null set branch is allowed to be omitted. If a whole
partially ordered set recursively meets this condition,
then it is called partially ordered binary set or partially
ordered binary predicate condition set.

When the order is found, the priorities of subgoals are
automatically determined by the set order. For
example, the "under_air_attack" subgoal has a higher
priority than the "avoid_attack" subgoal. However,
the "end_react_air" subgoal does not need to be
ordered against the other two subgoals because there
is no priority conflict cross the boundary of the two
disjoint groups. A conflict only occurs inside a
group.

There is the other type of subgoal relationship, which
is an ANDed subgoal relationship. Though a similar
consideration can be made, in RBM the ANDed
subgoals are simply treated as a set of ordered
subgoals, and tested sequentially for subgoal
selection. If one of them is failed to achieve its

attack is not considered.
Army FM 17-15.

This seems also true for

536

subgoal, then the whole set of the ANDed subgoals is
failed. Therefore, the parent goal fails.

6. Comparisons and Results

States in AAFSM are used as means to sub-divide a
behavior control problem. Because of the
introduction of states, a big problem becomes many
smaller problems to solve. The reduced size of each
sub-divided problem helps a programmer to organize
his thinking; i.e., divide-and-conquer. For example,
the above react air behavior was divided into three
states. This state division was strongly suggested by
the Army FM, and it was logically correct, too. No
two states can be merged into one without behavioral
crash in the merged state. However, more than three
states could be used. This observation reveals that
introduction of the states may not be arbitrary but
constrained by the behavioral crash.

The goal decomposition in a RBM is an another
means of divide-and-conquer for a behavioral control
problem. It starts from a global goal and sub-divides
it into subgoals. Predicate condition sets of the
subgoals guide the decomposition process.
Especially, OR-subgoals are created so that a partially
ordered binary predicate condition set is constructed.
The ANDed subgoals are simply arranged by an
expected sequence of execution because a sequential
execution is assumed. There is a chance that two
types of subgoals coexist under a single parent goal.
However, this case can be easily avoided by
abstracting a series of contiguous ANDed subgoals
into a single subgoal so that all subgoals under a
single goal become either ANDed subgoals or ORed
subgoals. Practically speaking, the mixture of two
types is allowed as long as a series of ANDed
subgoals is effectively treated as one subgoal.

Both approaches have a divide-and-conquer
mechanism; i.e., means of problem decomposition
scheme. However, their directions of approach are
totally opposite. AAFSM starts from a known start
state and moves toward the goal state, while RBM
starts from the goal and decomposes it into subgoals.
The state decomposition of AAFSM (or FSM in
general) is constrained by behavioral crash (sort of
output side), but the goal decomposition of RBM is
guided by predicate condition sets of subgoals (sort of
input side). This observation reflects the opposite
reasoning philosophies. In order to move forward to
a goal, the output of the current (or future) state is
important, but to move backward from a goal toward
a given initial condition, the input condition check is
important in order to know the arrival of the initial
condition.

Not all theoretically possible state transitions are
actually implemented in an AAFSM, but all the
possible transitions have to be considered at least
once to determine the possibility of inclusion to the
AAFSM. For example, in the reaction to Air Attack
Drill behavior, there were 3 states. Thus, total 6
state transitions had to be considered. Among the
six, one transition turns out to be not needed because
the state transition from the "under_air_attack" state
to the "avoid_attack" state is not feasible. If an
enemy aircraft spots a tank and starts to attack, there
is no reason that the enemy simply stops attacking**.

The state creation is not an easy task in a big sized
problem, but complete consideration of all possible
state transitions is even harder. For example, if there
are four states in an AAFSM, then total 12 different
state transitions have to be considered. If 5, then 20
possibilities, and so on. In general, if there are n
states, then (n-l)*n transition conditions have to be
considered. Obviously, this is a case of
combinatorial explosion.

All of the theoretically possible state transition cases
will not be actually included in an AAFSM, and the
ratio between the number of practically feasible state
transitions and the total possible state transitions
rapidly decreases as the number of the states increases.
However, at least consideration of all possible cases
should be done.

The numerous state transition cases of AAFSM (or
FSM) tend to cause a programmer failing to include
all necessary state transition cases. The omission
becomes a common cause of bugs for behavioral
implementations. Even though a theoretical number
of transitions from a state is known, this is a very
weak checking mechanism. The added and default
state transition conditions make a systematic
checking of the omission even more difficult.

In a RBM design/implementation, a goal is
recursively decomposed by the predicate conditions of
subgoals. If the subgoal decomposition produces a
partially ordered binary set, then the priorities of
subgoals are already determined. The goal having the
highest priority is placed at the first place, and then
the goal with the second priority is the next, and so
on following the partial order. Therefore, a RBM
design/implementation becomes searching for a

"However, in the actual implementation, 6 state
transitions were included in the AAFSM because of
the added case caused by the AAFSM state mismatch
to the ModSAF (or Army FM) descriptions.

537

subgoal decomposition that produces a partially
ordered binary set.

If proper subgoals with a partially ordered binary
predicate condition set are found, then there is no need
to consider another step as the AAFSM based design,
because all possible state transition conditions are
implicitly included in the subgoal priorities. For
example in the RBM Prolog implementation in
Figure 4, three lines of the Prolog code with the
"react_air" header automatically enumerate the 6
possible state transition cases considered in the
AAFSM implementation. Again this is not a
surprising result. RBM subdivides a problem by
optimizing predicate conditions of subgoals (or
roughly similar to the state transition conditions).
The omission problem of AAFSM is systematically
prevented in RBM. For example, three lines of the
code automatically took care of the 6 possible
transition cases.

The experience in implementing the React Air
behavior in AAFSM and RBM shows that RBM
implementation is more natural than the other. The
military system is one of the most highly optimized
man-made systems. It has a really long history
(experience) and has gone through numerous selection
processes; wars. Thus, most of the knowledge about
their behaviors, called military doctrines and tactics,
should be well developed and organized. For
example, the Reaction to Air Attack Drill behavior of
Army FM is effectively written in a backward
reasoning representation even though it gives an
impression of a time-line based action description. It
basically expresses what is the global objective and
what are the sub-objectives and associate actions, and
so on. It even tends to implicitly prioritize sub-
objectives too. It describes the "Seek cover and
concealment" sub-objective in following: "When
moving, tank units must immediately seek cover and
concealment." Cover and concealment is the best
behavior to achieve defensive reaction to air attack.
This description is immediately followed by "If
concealment is not available, moving tanks should
stop." which is the second best to avoid air attack.

7. Future Works and Conclusions

There exist many behavioral representations other
than AAFSM(or FSM) and RBM; such as Petri Nets,
Production Rule based systems, and subsumption
architecture, etc. Because almost all of them are
fundamentally classified as a forward reasoning
representation, it is expected that they will have
similar characteristics of AAFSM (or FSM).
However, they deserve careful investigations because

of their additional characteristics over AAFSM (or
FSM).

A Petri Net is a super-set of a FSM (Murata 1989)
because of its equivalent expression power of Turing
machine. It might provide a better behavioral
representation than a conventional FSM. A
production rule based system allows to incrementally
add each fragment of behavioral knowledge in IF-
THEN rule forms. Because of this attractive nature,
there are quite number of implementations (Scholz
1993, Byrnes 1992, Giarratano 1991, Rosenbloom
1993). However, this modularity can easily lead to
unexpected interactions to the existing rules in the
system when more and more rules are accumulated in
the system. Finally, the subsumption architecture
(Brooks 1986) including later variations might give a
better behavioral representation. Especially, modified
subsumption architecture tends to eliminate a pure
optimistic behavioral implementation. However, no
significant fundamental departure from the original
data-driven forward reasoning has been observed.

Behavioral complexity of current CGF seems not yet
to reach the point where it clearly manifests
characteristics and limitations of each behavioral
representation approach. However, the future CGFs
behaviors will be much more complex, and the scope
of CGF broadens. Then a behavioral representation
will be getting more important. A better
representation with a closer domain match to a target
behavior description, such as FM or knowledge from
a subject matter expert, is expected to be a winner by
saving development and maintenance time and efforts.
This comparison study shows that a backward
reasoning representation has an advantage over the
other representation because of the close domain
match with the military's behavioral knowledge
representation.

8. Acknowledgments

This work is being supported by the USA Army
STRICOM ADST program under contract number
N61339-91-D-0001-0O58.

9. References

Army (1987). Tank Platoon, FM17-15, US Army,
October.

Brooks, R (1986). "A Robust Layered Control
System for a Mobile Robot", IEEE Journal of
Robotics and Automation, Vol, RA-2, No.l.,
pp. 14-23.

Byrnes, R.B., McPherson, D.L., Kwak, S.H.,
McGhee, R.B., and Nelson, M.L. (1992). "An

538

Experimental Comparison of Hierarchical and
Subsumption Software Architecture for Control
of an Autonomous Underwater Vehicle",
Proceedings of 1992 IEEE Symposium on
Autonomous Underwater Vehicle Technology,
Washington D.C., June 2-3, pp.235-241.

Byrnes, R.B. (1993). The Rational Behavior Model:
A Multi-Paradigm, Tri-Level Software
Architecture for the Control of Autonomous
Vehicles, PhD Dissertation, Naval Postgraduate
School, Monterey, CA.

Hill, F.J., Peterson, G.R. (1974). Introduction to
Switching Theory and Logical Design, 2nd ed.,
John Wiley & Sons, New York, New York.

Homem de Mello, L.S., and Sanderson, A.C. (1991).
"Representations of Mechanical Assembly
Sequences", IEEE Transactions on Robotics and
Automation, Vol. 7, No. 2, April, pp. 221-227.

Jackson, P. (1990). Introduction to Expert Systems,
2nd Ed., Addison-Wesley, Reading, MA.

Kwak, S.H., McGhee, R.B. (1990). "Rule-based
Motion Coordination for Hexpod Walking
Machine", Advanced Robotics, Vol. 4, No. 3,
1990, pp. 263-282.

Kwak, S.H., McGhee, R.B., and Bihari, T.E. (1992).
Rational Behavior Model: A Tri-Level Multiple
Paradigm Architecture for Robot Vehicle Control
Software, Technical Report NPS CS-92-003,
Naval Postgraduate School, Monterey, CA.

Kwak, S.H., Scholz, T., and Byrnes, R.B. (1993).
The State Transition Diagram with Path Priority
and Its Applicability to the Translation between
Backward and Forward Implementations of the
Rational Behavior Model, Technical Report, CS-
93-003, Naval Postgraduate School, Monterey,
CA.

Loral (1995). ModSAF Software Architecture Design
and Overview Document, Loral, Cambridge,
MA.

Rosenbloom, P.S., Laird, J.E., Newell, A., and
McCarl, R. (1993). "A Preliminary Analysis of
the Soar Architecture as a Basis for General
Intelligence", The Soar Papers, Vol. 2., The MIT
Press, Cambridge, MA, pp.860-896.

Scholz, T. (1993). The State Transition Diagram
with Path Priority and Its Applications, MS
Thesis, Naval Postgraduate School, CA.

National University in Electronics Engineering in
1979. Before joining Loral, he was Research
Associate Professor of Computer Science at Naval
Postgraduate School. His research has focused on
intelligent robot control and control architecture. He
is also the originator of the Rational Behavior
Model(RBM). His research interests include Artificial
Intelligence, Robotics, Mission Planning Expert
Systems, Object-Oriented Parallel Systems, Software
Engineering, and GPS/INS Navigation Systems.

10. Biography

Se-Hung Kwak is Principal Software Engineer at
Loral, Advanced Distributed Simulation, where he has
led development and application of software
architecture for Computer Generated Forces since
1993. He received his Ph.D. and M.S. from Ohio
State University in Electrical Engineering in 1986
and 1984 respectively, and his B.S. from Seoul

539

Session 10b: General Interest

Mellies, TRADOC DCSINT
Pickett, TRADOC Analysis Center

Williams, University of Virginia

The OPFOR Model in CCTT and Beyond:
Applications in DIS

Penny L. Mellies
TRADOC DCSINT, Threat Support Division

Ft. Leavenworth, Ks
melliesp@leav-emhl.anny.mil

1. Abstract

In the future, all people, forces and institutions in
the defense community will use interoperable
simulators, simulations, and fielded systems that
simultaneously interact on a shared synthetic
battlefield that realistically represents
warfighting concepts, doctrine, forces and
weapon systems of friendly, neutral and opposing
forces. (The DIS Master Plan, 1994)

The Distributed Interactive Simulation (DIS)
Master Plan calls for a flexible, consistent,
validated, intelligent and doctrinally-based
computer generated opposing force (OPFOR). In its
mission to serve as the TRADOC ODCSINT point
of contact for all intelligence, threat and opposing
force (ITO) initiatives to DIS, the TRADOC Office
of the Deputy Chief of Staff for Intelligence
(ODCSINT)Threat Support Division (TSD) has
produced two OPFOR models for use in DIS-
compatible simulations and simulators.

These unclassified models provide flexibility and a
capabilities-based OPFOR which can be tailored to
represent a wide-range of potential capabilities and
organizations. The Heavy and Light OPFOR
packages provide the doctrine, tactics, and
equipment data needed to develop OPFOR
behavioral representations for a semi-automated
opposing force (SAF OPFOR). The OPFOR model
captures tactical and operational representative
behaviors and provides the organizational building-
blocks necessary to operationalize a SAF OPFOR.

The DIS environment requires the development of a
model that provides a traceable, consistent, flexible
and doctrinally-based OPFOR. TSD was
challenged to develop a new OPFOR that provides
increased flexibility to accommodate a wider range
of training and simulation requirements. These
training requirements will span the entire
operational continuum, from heavy mechanized
forces to operations other than war (OOTW) and
post conflict operations. In addition to the

expanded range of operations, the capabilities-based
model is required to consider the worldwide
proliferation of weapons and their various tactical
applications.

This paper will present the TSD OPFOR model and
its use in the development of DIS-compatible
simulations. It will, in essence, present a progress
report on the development of the model and its
application in the DIS environment

Currently, the TSD-produced Heavy OPFOR is
being used in the development of the Close Combat
Tactical Trainer (CCTT) and Warfighter's
Simulation (WARSIM) 2000 OPFOR. CCTT
continues to evolve as the prototype for ITO
simulation support, so the need to understand the
TSD OPFOR model and its current and potential
applications becomes even more critical.

The new OPFOR model is capabilities-based, not
country-based. The model provides a tailorable
force structure in the form of a Heavy and Light
OPFOR package. The model accommodates
existing models while allowing for evolutionary
change and user feedback. The outcome of the final
OPFOR product is a validated, flexible, consistent,
and doctrinally-based paradigm for the creation of a
SAF OPFOR.

This paper will explore the methodology used to
construct the capabilities-based OPFOR, and its
value in DIS-compatible simulations across all three
DIS domains (TEMO, RDA, ACR).

2. Introduction

CCTT is the Army's number one priority training
device. Using a system of combat vehicle
simulators and computer workstations, armor,
cavalry and mechanized infantry units will train to
battalion/task force level.

CCTT is the first in a series of five simulations
belonging to the Combined Arms Tactical

543

Tramer(CATT)family. CCTT serves as the
prototype upon which future simulations will be
built.

A realistic OPFOR is necessary in any successful
training environment. CCTT is no exception. This
semi-automated OPFOR must be doctrinally-based,
flexible and adaptable to all levels of conflict.
OPFOR accountability and traceability are
paramount to the success of CCTT and its follow-on
programs. The Army cannot afford to spend scarce
resources and limited manpower on the duplication
of data collection and application efforts.

The Army mandated that an accountability and
verification methodology be established for all data
and behavioral capabilities used to develop the
OPFOR TSD's OPFOR model provides this
methodology.

Thus, TSD was tasked to develop an OPFOR model
that would support Force XXI training and support
needs and simulation requirements in the DIS
environment

Future applications of the model will be developed
for the Advanced Concepts and Requirements
(ACR) and the Research, Development and
Acquisition (RDA) domains. TSD's goal is to
provide ITO support in adequate fidelity and detail
to facilitate realistic simulation across all three DIS
domains : ACR RDA and Training, Exercise, and
Military Operations (TEMO).

3. Background

In 1993, the US Army's Simulation, Training, and
Instrumentation Command (STRICOM) and
Integrated Development Team (IDT) began the
Close Combat Tactical Trainer (CCTT) SAF
Functional Analysis to "define the scope of tactical
behaviors" for both the BLUFOR and the OPFOR
STRICOM and IDT agreed to use Army Training
and Evaluation Programs (ARTEPs) as- the
foundation to define BLUFOR tactical behaviors.

Such a well documented body of literature did not
exist for the OPFOR TSD, STRICOM and IDT
worked in concert to produce an initial list of
OPFOR behaviors to be represented in Combat
Instruction Sets (CISs). The result was more than
500 OPFOR tasks and close to 40 OPFOR units.
(For a detailed description of the CISs and the
validation process, see McEnany and Marshall.

"CCTT SAF Functional Analysis", Proceedings of
the Fourth Conference on Computer Generated
Forces and Behavioral Representation, 1994, page
195).

CISs were written to insure that the proper tactical
behaviors were translated into software code. Each
CIS provides a detailed explanation via text,
sketches, and movement parameters of all actions
necessary to complete a task.

The CIS process provides the accountability of
OPFOR sources and overall task development,
called for in the Army mandate.

Initial CISs are developed by SAIC (Denver) and
passed through TSM-CATT to TSD for review and
approval. The Heavy OPFOR package is the
baseline for all the CCTT CIS development. All
OPFOR CISs must be validated by TSD before
being operationalized in CCTT.

In addition to the validation of the CISs, other TSD
responsibilities for CCTT include: the collection
and accountability of data used in the simulation;
providing the interface between the intelligence
community and the developers to answer all
requests for information (RFIs); participation in the
Subject Matter Expert (SME) Network; and
providing OPFOR representation in Working Group
and User Exercises. Each of these responsibilities
allows TSD to ensure the accurate and consistent
application of the OPFOR model in CCTT and
future DIS-compliant simulations.

4. Catalysts for Change

With the collapse of the monolithic Soviet threat, an
OPFOR based on a single threat country was no
longer feasible or realistic. The traditional country-
based OPFOR was now antiquated and incapable of
capturing the full spectrum of potential military
operations.

The Cold War paradigm for threat/OPFOR analysis
was in need of repair. The Threat Spectrum Model
(TSM)(Figure 1) was developed to present potential
threats across "a spectrum from simple to complex
in scope, doctrine, organization, training, materiel,
leadership and soldiers."(TRADOC PAM 525-5).
Using the TSM as a springboard, TSD began to
develop the new OPFOR model.

544

'

The model captures the capabilities of a vast range
of potential OPFORs and provides a flexible
training force that can be tailored to represent this
variety of potential threat capabilities, organizations
and equipment

Creating a model that was based on capabilities,
rather than a specific country's military potential,
provides a more flexible and dynamic training tool
for the BLTJFOR, and offers OPFOR

commanders/operators a varied range of tactical
options.

The capabilities-based model has become the basis
for the forces and doctrine used by the OPFOR at
the Combat Training Centers (CTCs), and has been
integrated into the latest TRADOC Common
Teaching Scenario at the Centers and Schools.

Phenomena

* Environmental Disaster

* Famine
* Health Epidemic

* Population Dislocation

Threat Spectrum
Threat Force*

* SuAnational
* ^national

* Metanational

Low
Integration
Capability TACTICAL OPERATIONAL STRATEGIC

Figure 1: Threat Spectrum Model(TRADOC PAM 525-5)

S. The Capabilities-based OPFOR Model

The OPFOR model is based on a consistent and
traceable body of military doctrine and tactics,
ranging from the heavy end (Soviet-style) to the
light (Third world and irregular) forces, as
represented in the Heavy and Light OPFOR
Handbook series. The six handbook package
provides: an organization guide, an operations
handbook, and a tactics handbook for both heavy
and light forces. The equipment guide and OOTW
handbook will follow the completion of the Light
package in March 1995.

The success of the model is evidenced by its
selection and funding for publication as Army Field
Manuals (FMs). The transition to FMs will occur
in Fall 1995.

This new series of handbooks was originally
developed by TSD to support Force XXI training
and development needs. However, by the
completion of the organization guides, the model
had been embraced by the simulation community

for use in CCTT. This was a natural evolution of
the model's application. It made perfect sense for
the model being used for live training and
instruction to also be applied in the virtual and
constructive simulation arenas. OPFOR linkage
and continuity was established between arenas.
Thus, the model became the cornerstone for all ITO
training and instruction at the CTCs, TRADOC
Schools and Centers and the development of the
SAF OPFOR for CATT and FAMSIM programs.
(Figure 2)

The Heavy and Light packages are based on a
mixture of doctrine, organization and tactics of
foreign armies. However, the OPFOR packages are
not simply a collection of unclassified handbooks
explaining how a particular foreign army fights.
They are composites constructed to provide the
customer a wide-range of OPFOR capabilities. The
packages do not mandate a fixed order of battle, but
rather provide the building-blocks from a variety of
potential orders of battle. (Figure 3)

545

Figure 2: Consistent OPFOR Model Application

OPFOR MODEL EXECUTION

TSD THREATS
RESPONSIBILITY

RESPONSIBILITY

OPFOR
VMJOATS) BY THREAT «UW>OB T a via ON

Figure 3: OPFOR Model Execution

5.1.The Heavy OPFOR Package

The Heavy OPFOR was initially based on a Soviet-
type military force. As the model evolves, more
options will be included to offer increased
flexibility. The Heavy OPFOR structure consists of
regiments, divisions, and armies, as well as
brigade/corps and an infantry division. The
organization guide's "building-block" approach
allows the customer to select

the needed organizations and structure based on his
requirements. This approach allows for a wide-
range of options to build various Heavy forces. The

equipment includes Former Soviet Union (FSU)
combat systems as the baseline. However, a
worldwide equipment substitution matrix is
included to allow the user to substitute pieces of
equipment to fit any scenario.

5.2.The Light OPFOR Package

The Light OPFOR is based on a variety and mixture
of Third World-style forces. Unlike the Heavy
OPFOR little documentation existed upon which to
build the Light forces. Extrapolation of existing
light forces' doctrine and capabilities was necessary.

546

The Light OPFOR presents the forces of a country
divided into military regions with subordinate
military districts. The force structure includes
brigades, divisions, militia and commando forces.
Most of the forces are located within the districts
and vary in strength and overall capabilities.

Light OPFOR units could potentially range from a
single light infantry brigade to a mechanized
infantry division. The model provides the
information necessary to build standing armies or
divisions; however, separate brigades will probably
form most of the light forces.

6. Future Application

Through CCTT, the OPFOR model was established
as the prototype for the SAF OPFOR in the CATT
family of simulations. This ongoing OPFOR
development process is critical to the success of
CCTT and will play an integral part in future
CATT Programs and several Family of Simulators
(FAMSIM) projects, i.e., WARSIM 2000 and
JSIMS The consistent, evolutionary application of
the model also insures that the individual soldier
will be able to "follow" the model through his
training career. TSD continues to evolve and
expand the OPFOR model and respond to the
simulation community's ITO needs. The need for a
validated, consistent, flexible and doctrinally based
SAF OPFOR has clearly been established. TSD's
OPFOR model satisfies these requirements while
retaining a consistent, traceable doctrinal base.

WARSIM 2000 is the Army's next-generation
simulation for supporting Force XXI Battle
Command training. The objectives of WARSIM
can successfully be obtained through the application
of the OPFOR model. For example, the model will
support Army and Joint Force Training in scenarios
across the operational continuum, and will provide
a flexible base for growth while reducing the
resources required to support training.

7. Conclusions

Distributed Interactive Simulation (DIS) is the
future of military training, testing, research and
development Computer Generated Forces (CGF)
are a critical component of the DIS environment
and technology. The success of the simulation
depends on an accurate and consistent application
of a computer generated OPFOR CGFs provide the

most economically feasible method for populating
the synthetic battlefield.

The TSD-produced OPFOR model provides the
necessary doctrinal and tactical support to develop
such forces, specifically the SAF OPFOR for CCTT
and WARSIM 2000. The model provides the much
needed documentation to develop OPFOR tactical
behavioral representations in DIS.

The unclassified model also provides an 80%
solution for ACR and RDA OPFOR needs.
However, the requirements for classified ITO
support will be developed by the various national
agencies. Current intelligence and specific country
capabilities will supplement the OPFOR model.
TSD will support these requirements as needed.
The Threat Support Division will continue to
support all three DIS domains with selected OPFOR
data and validation. DIS will continue to evolve as
a critical tool for military training and development
Thus, the application of TSD's OPFOR across
various simulations and in multiple training
environments, provides consistency and
accountability in the DIS environment.

8. References

CAC Threats. (1994) The Capability-Based
OPFOR," Threats Update. 63 pages.

CAC Threats. (1994) "Threat Force Package,"
Threats Update. 63 pages

Ceranowicz, A. (1994). "ModSAF Capabilities,"
Proceedings of the Fourth Conference on
Computer Generated Forces and Behavioral
Representation. STRICOM, DMSO and 1ST. 544
pages.

HDQA, Office of the Assistant Deputy Chief of
Staff for Operations and Plans. (1994). Army
Modernization Plan Distributed Interactive
Simulation (DIS).

The DIS Master Plan. (1994).
McEnany, B.R, Marshall, H. (1994). "CCTT SAF

Functional Analysis," Proceedings of the Fourth
Conference on Computer Generated Forces and
Behavioral Representation. STRICOM DMSO
and 1ST. 544.

Memorandum For TSD from DAMI-FTT, (1995)
Subject: Minutes of Distributed Interactive
Simulation Threat Support Working Group
(DIS-TSWG), 7-8 Feb. 95. 6 pages.

Memorandum For TSD from TSM-CATT, (1994).
Subject: CATT Fact Sheet. 4 pages.

547

National Simulations Center. (1995) "The
Functional Description of the Battlespace", 22
pages.

National Simulations Center. (1995) "Warfighter's
Simulation 2000 (WARSIM) Overview," 39
pages.

TRADOC DCSINT, TSD Mission Briefing,
February 1994.

TRADOC PAM 525-5 (1994) Force XXI
Operations: A Concept for the Evolution of
Full-Dimensional Operational for the Strategic
Army of the Early Twenty-First Century.

Wright, R (1994) "Source Data Acquisition For the
Close Combat Tactical Training Systems and
Education Conference," Proceedings of the 16th
I Interservice/Industry Training Systems and
Education Conference.

9. Authors' Biography

Penny L. Mellies is an Intelligence Research
Specialist at the Threat Support Division, TRADOC
DCSINT, Ft Leavenworth. Ms. Mellies is
responsible for ITO support to CATT and FAMSIM
projects. Previously, she served as co-author for the
OPFOR Heavy Package. She has a Masters of Arts
degree in Political Science and International
Relations from the University of Kansas. She is a
1992 graduate of the Army Intelligence Internship
Program and the Military Intelligence Officer's
Basic Course (MIOBC). Her research interests
include ITO support to simulations and OPFOR
development and applications in DIS.

548

Report on The State of Computer Generated Forces 1994

H. Kent Pickett
TRADOC Analysis Center
Ft. Leavenworth KS 66027

Mikel D. Petty
Institute for Simulation and Training

3280 Progress Drive
Orlando FL 32826-0544

1. Abstract

Computer Generated Forces (CGF) systems in
Distributed Interactive Simulation (DIS) are almost
always designed, developed, and described with
training applications in mind. This paper surveys the
state of DIS CGF development from a broader point
of view, examining the capabilities of existing CGF
systems relative to applications in training, advanced
technical demonstrations, and analysis. Those
capabilities are evaluated against the requirements
stated in the U. S. Army's Distributed Interactive
Simulation Master plan. The paper concludes with a
list of problem areas and recommendations for
producing standardized CGF systems.

2. Introduction

In May 1994 the Army Modeling and Simulation
Master Plan was published. This plan names 20
areas for consideration in the Army Modeling and
Simulation Community. Within each area, software
standards are to be established and technical
procedures are to be defined for implementing these
standards across the modeling community. The
Master Plan further encouraged standards for
development through the establishment of "teaming
arrangements" and "consensus building" within the
Army modeling community. TRAC was given the
responsibility for the area of Computer Generated
Forces (CGF). This report represents the initial effort
by the coordinator in CGF (the first author). Its goal
is to set the tone for developing a standard CGF
software system with emphasis on FY95-FY96.

The report is divided into three sections. It begins
with a section describing possible uses for CGF. In
addition to the current use with the Army training
community, uses in combat developments and force
structuring are also described. The section concludes
with a set of goals for CGF systems reflecting the
suggested uses. The report continues with a short

tutorial on the development of a CGF software
system. The tutorial includes a description of the
principal software structures found in every CGF
architecture. It is within the context of these
structures that specific areas requiring
standardization are discussed. The section also
contains a description of the current "state of the art"
in each area. The final section of the report
summarizes those areas in CGF development
requiring attention in terms of research and
development resources. This section is provided as a
guideline for suggested resource allocation.

Two source documents were very important to this
report. The first is the 1993 DMSO Survey of Semi-
Automated Forces (Booker, 1993). The survey was
sponsored by DMSO and conducted by a team from
MITRE and IDA. The document surveyed eight
projects developing CGF systems and described the
architectural structure of each. It also reviewed six
efforts conducting research related to CGF. Many of
the thoughts in this report describing problems with
current CGF systems were taken from the DMSO
survey.

The second source document is the U. S. Army's
Distributed Interactive Simulation (DIS) Master Plan
(U.S. Army, 1994). It describes the Army's
requirements for DIS and a strategy for investments
and research priorities with the goal of producing a
useful DIS system. The recommendations for
AMIP/DMSO support in CGF research contained in
the last section of this paper reflect the priorities in
the DIS Master Plan.

3. Uses of/Goals for Computer Generated Forces

CGF Systems had their origin in the SIMNET
environment in the mid 1980s. Their initial use was
to provide a set of threat vehicles (and in some cases,
to augment the live friendly forces) to train personnel
in the SIMNET simulators. The two main current

549

CGF systems, ModSAF and the CCTTSAF, remain
focused on personnel training.

However, since 1990 CGF systems have been used in
other ways. In particular, they have been used for
providing both friendly and threat forces and a virtual
experimentation environment. This has been the case
with many of the WARBREAKER efforts where
CGF systems were used to provide target arrays (of
both aircraft and vehicles) and the virtual battlefield
(to include terrain and battle environment). These
CGF-based virtual battles have been interfaced with
sensor simulators (J-STARS) and live personnel in
the command and control (C2) network making
decisions on interdiction of deep targets. One can
claim training of the C2 personnel but most often the
CGF systems are the virtual backdrop against which
a new attack capability is demonstrated and analyzed.
This use of CGF systems is expected to continue with
more complex (larger forces of both live and virtual
systems) Advanced Warfighting Demonstrations
(AWDs) and Advanced Technology Demonstrations
(ATDs). In the case of AWDs, the principal use will
be to look at new force structures and new doctrinal
concepts (i.e., using groups of recon helicopters to
call in deep strike artillery) and to develop Tactics,
Techniques and Procedures (TTPs) with new
equipment. An excellent example use of a CGF
system for an ATD is the Anti-Armor Advanced
Technology Demonstration; in the first A2ATD
experiment, ModSAF was validated against two
M1A2 Initial Operational Test and Evaluation battles
(Thomas, 1995).

The analytic community has also begun to consider
the use of virtual based CGF systems. While the
community has long used constructive models in the
analysis of future systems and force structures, in the
90s much analysis will be built around a
constructive+virtual concept. In this context, a
portion of a lengthy battle is run in a constructive
simulation in search of battle vignettes which will
expose key strengths and weaknesses of the system,
doctrine or force structure being analyzed. The
vignette is then represented by a virtual CGF
environment normally with man-in-the-loop
participation. The constructive model may be
suspended during this virtual exercise or may be run
at real time to provide the battle context of
supporting units surrounding the virtual battle.
During the CGF exercise, key parameters about how
humans will actually perform with the new system or
tactical concept will be collected. These parameters
can then be used to extrapolate the battle in the

constructive model to a broader context. (See
(Franceschini,1995) for a tutorial on how
constructive and virtual simulation systems are
linked, and (Kraus,1995) for a survey of such
linkages.)

The following list is a minimal set of objectives
which must be met by any CGF system which will be
accepted as a "standard".

• The CGF system must be useful to all three
applications (training, advanced technology
demonstrations and analysis). This goal implies
some specific requirements. These include:

Ability for man-in-the-loop simulators to
interface at any echelon.

Ability to interface with live systems (actual
equipment vs simulator) at any echelon.

Ability to run real-time and, for analytic
applications, faster than real-time.

Ability to interface with constructive models in
the constructive+virtual environment.

• The CGF system must be DIS compatible. The
system must also have the ability to operate
across both local and wide area nets. This
implies that man-in-the-loop simulators may be
at geographically remote locations. Further,
actual portions of the CGF system (the
simulation processors or the operator interfaces)
may be located at geographically remote
processors. (

• The CGF system must represent the battle from
Corps to individual vehicle.

• The CGF system must interface with other
Service models in a Joint exercise.

• The number of operators in the CGF system
must be minimal. It is recognized that when the
system is used in training or advanced
technical/warfighting demonstrations, the virtual
battle must interact realistically with the exercise
players. The current state of the CGF art
requires some operator control of high priority
vehicles and critical units in executing a dynamic
and reactive virtual battle.

550

• The structures and data bases simulating the
physical and cognitive/tactical behaviors of the
vehicles, personnel and units must be modular
and easily isolated for Verification, Validation &
Accreditation (VV&A). The term "algorithms"
has been purposely avoided in this goal since
many CGF systems use finite state machines
(FSMs) to represent entity behavior. In this
case, the structure of the state transition tables
and the time step of the FSM system are
important elements to be considered in the
VV&A process.

The list of goals in the previous paragraph are not all
inclusive. They are only a first cut at what will be
"necessary capabilities" if the CGF is to have
general use among the training, analytic and
technical experimentation/demonstration
communities. For many of the goals, technical
feasibility has already been demonstrated. However,
a sufficiently robust CGF software system capable of
use in a general production environment has yet to be
developed.

4. Key Software Components of a CGF System

The architectural development of any CGF system
demands the design of certain components. These
components provide the simulation with the ability to
represent the physical environment in which the
battle will take place, to represent the combatants
themselves (vehicles, aircraft, personnel, ships, etc.)
and to represent a C2 structure for organizing the
individual combatants into units and a fighting force.
The CGF system further demands the development of
services supporting a distributed simulation. These
include network functions for putting packets on the
net to update the state of the simulation and system
administration functions (sometimes called controller
or simulation management functions) for starting the
simulation, i.e. getting all the processors connected to
the network and in time sine. Figure 1, taken from
(Booker, 1993) lists these components (simulator,
player, controller and management functions) and
their subfunctions. For a better understanding of the
functions of each component consider a CGF
producing a virtual tank moving across the terrain in
search of a firing position. The simulation of the
terrain, tank movement rate, and the cognitive
determination by the crew of a location for a firing
position is done by the environmental, physical and
C2 process models shown under Simulator Functions
in Figure 1. As the virtual tank moves, the CGF

operator watches it on his 3-D display and may send
a message, using the C2 support tools to the virtual
tank to "adjust" the final overwatch position.
Further, as the virtual tank moves, Protocol Data
Units (PDUs), messages describing tank position and
appearance, are broadcast on the DIS network so that
simulators in the immediate area can see his
movement. The point of this example is that there
are several areas that must be considered when
developing a "standard" CGF system.

Before leaving Figure 1, one other point about CGF
architecture should be made. Most CGF systems are
truly distributed simulations running on several
processors. The shaded functions in Figure 1 can be
thought of as individual computers netted together
forming the CGF system. For example, a typical
CGF system run on five processors. Two of the
processors are used for CGF operator functions (one
for the operator controlling Red forces and another
for Blue). Two are used to simulate the environment
and the vehicles in the battle (Simulator Functions)
and the fifth is used for the Distributed Simulation
Management functions. See (Petty, 1992) or (Petty,
1995) for more detailed discussions of CGF system
architecture.

The Army's DIS Master Plan contains a "road map"
for the development of Automated Forces (aka CGF).
This road map is shown in Figure 2. As would be
expected from any potential user, the plan is focused
on desired functionality. However, upon careful
inspection of Figure 2, the focus in the early years
(1994-1995) is on the development of a physical
environment allowing virtual vehicle commanders to
perform METT-T (Mission Enemy Troops Terrain
and Time) activities and standard algorithms for
performing the target engagement process. When
comparing Figures 1 and 2 one can easily relate the
functionality desired in the DIS Master Plan with the
CGF architectural features described by the DMSO
report. The desired virtual environment for METT-T
in Figure 2 corresponds with the Simulator Functions
in Figure 1. A second area of focus in the Automated
Forces road map is the development of a structure for
command and control of virtual forces. Note the
block for "tactically and doctrinally correct execution
of orders" leading to the "development of C2 of
entities". This area again corresponds to the
Simulator Functions in Figure 1. One other area of
the road map contains references to "communications
software" , "build PDUs. . .", and "modify. . .to run
multiple processors. . ." which can be related to

551

Simulator Functions Player Functions Controller Functions

Distributed Simulation Management Functions

Auxiliary functions

Data
Logger

3-D
Stealth

PIS Protocol (over local or PIS network)

Figure 1- Notional view of the objective SAFOR system.

Distributed Simulation Management Functions in the
Figure 1 architecture.

The Master Plan provides a view of where the Army
wishes to focus its efforts and the time frames of
particular accomplishments. Like most plans, it is
optimistic. The first author believes that many of the
CGF improvements (specifically dynamic terrain,
weather and atmospheric signature transmission)
"enabling METT-T" will not be complete until 1996-
1997. However, the plan must be used as a guideline
for establishing priorities in CGF improvements and
standards. In that spirit, the following areas should
be the focus of AMIP support for FY95-FY96.

4.1 Physical Environment

The environmental component for the Army
operations consists of a representation of the terrain
and low atmosphere (5K-10K feet). The objective
for a CGF simulated environment must be the ability
of the individual vehicular commander (mounted,
dismounted or pilot) to perform METT-T activities.
The CGF must provide a basic representation of
environmental signature transmissions (at a minimum

in the visual, thermal and radar spectrums) and
effects of weather, battlefield haze and smoke on
these transmissions. Further, the effects of dynamic
changes in terrain (in particular, modification of
terrain by battle activities) must be represented.
While basic research is ongoing in these areas (e.g.
for dynamic terrain see (Moshell, 1994) and (Kilby,
1994)) their conditions are listed in the DIS Master
Plan as environment:red, and terrain:amber. The
criticality of the physical environment and terrain in
military activities makes these efforts a high priority
for AMIP support.

4.2 Entity Representation

The physical representation of vehicular platforms
(i.e. vehicle dynamics) to a degree of fidelity
sufficient at least for training has been well
established in various CGF systems since SIMNET.
More recently, ModSAF's modular structure makes it
possible to easily assemble physical models of
vehicles from a library of existing software routines
(Ceranowicz,1994).

552

ex

_^^k
_IB1 Bam i ________

m Ok ^^i_i_i_^ o

-a = s. i •-1B-1B-B

r~

s>

8 £
?-| — c

•> i
•£ -o
- E
a c
u O

11
C j-

•
•
•

c

y

>

X

B_p_p_p_p_yj

•V

5
M
C
0
E

o3
•1 o •a

CD
c e

u. <
00
c

OS

d
th

e
sc

op
e

n
s,

 t
he

 i
n

d
i

tio
n

s.
 ^

CO

^

o

"o

81
0 u

3

•5
•

w

E
xp

a
r

S
ys

te

O
p

e
ra

jV 3pej8dfi/doi3A3Q u i \
u •

i
td

0

s
u
o

(0

o

ON Ti £
o u

B>
o

—
< £

<
t/2

3D

F JVJO U0ISJ3A >y o.

>
Q

3
£
c
3 c
0 2

V

1 o
o
o

(HIM ve suoi]E|nujis/sjoic|niuis pUB Sduuus
3
i

CO

jV UB OlOfl JOJSUBJJ Bjep pazuiSip 'jBnsiA) sfiQj p|ing « o
V

T3
(U *—»
CO

E
o

f o o
5 a

Q
a.

o

f-"

U

V

3 -n

<
*

c
C3 a.

a
0

C3

on'

< —^
a"
Q n

E

•
o

00

1

H
H

J°,B,*»I1"!^, •^"=^35

C
o
rr

e
ct
 E

xe
cu

t
flo

w
 o

f
r

an
d

lo
w

e
r-

to
-

C
o

h
e

si
o

n
 V

r-
00
c

A A
„•

00 J c « ^ ^ Ui 00

C

e _!' im
s

o
fC

re

e
te

ct
in

n,

 T
ar

g

ct
ri
n
a
l

is
 (

2
w

;r

-t
o

-l
o

iz

a
tio

n

> 5 QU

OJ
B

>> *e u *- *S o if I >
c
0 XI

-r

c
3
o

o
1-

< L
O

S

S
ig

n
a

tu
re

s
T

ra
ff
ic

a
b
ili

ty

M
a
n
e
u
ve

ra
b
i

T
e
rr

a
in

W

e
a

th
e

r

S
ta

n
d

a
rd

 A
lg

C

o
g
n
iti

ve
 E

fl

(R
o
u
te

s,
 T

a
rg

T

a
rg

e
t

A
c
q
u
i

E
n
g
a
g
e
m

e
n
t)

T
a
c
ti
c
a
lly

 a
nc

o
f

o
rd

e
rs

 a
nd

in

fo
rm

a
ti
o

n
 h

h
ig

h
e
r)

.
 S

yc
h

ar
e

th
e

ke
ys

.

i

"3

-a

I?

553

Finite state machines (FSMs) are often used to
generate and control entity level behavior in CGF
systems; ModSAF, the CCTT SAF, and the 1ST CGF
Testbed all use variations of FSMs as a software
control structure for their behavior generation
algorithms (for descriptions of the FSM mechanisms,
see (Calder,1993) for ModSAF, (Marshall, 1994) for
the CCTT SAF, and (Smith, 1992) for the 1ST CGF
Testbed). •

Unfortunately, software FSMs do not lend
themselves easily to the verification and validation
process. Often, only those software engineers who
have written the FSM for a particular system can
validate the presence of a system characteristic.
AMIP support should be given to a standardized
FSM form for vehicular, personnel, and airframe
representation. Dismounted infantry, being the most
complex vehicular form to simulate, has had only
first order looks at behavioral representations.
Support should be given to projects improving
infantry behavior and the physical environment (in
particular micro terrain) supporting this behavior.

4.3 Command and Control of Virtual Entities

C2 of entities in most CGF systems are currently
limited to Company and below. The behavior of
entities (representing the ability of platform crews to
locate battle positions, movement routes and engage
targets) is driven by rule bases and the structure of
the FSM controlling the entity. These behaviors
perform reasonably well for simple tactical
maneuvers. However, the control of units (squads,
platoons and companies) performing combined
maneuvers remains a difficult problem. Significant
progress has been made in the development of the
CCTT SAF in this area. Rule bases related to unit
FMs and RTEPs are being developed and well
documented. Through the use of these rule bases,
CCTT SAF is targeted for representation up to a
Brigade with SAF operators directing company units
from their console. If CGF systems are expected to
represent larger forces, as required by the DIS Master
Plan, then an architecture must be established to
represent the battle command process. At a
minimum this architecture must include the following
capability:

• A representation of the Battle Plan (in the form
of an Operations Order) for distribution to all
nits at each command echelon. CGF command
units must have the ability to interpret both the

battle plan and the control measures (objectives,
phaselines, etc.) affecting their operation.

• A structure (possibly a limited battle language),
for CGF command units to report to higher units
the tactical state of lower echelon units executing
the battle plan.

• The ability of higher echelon CGF command
units to make decisions and manage the battle
through the communication of commands and
new battle plans to lower echelon units.

Work is being conducted by the DIS community in
this area. Under ARPA sponsorship, MITRE is
developing CCSIL (Command and Control
Simulation Interface Language), to be used to
communicate C2 commands and information
between DIS nodes (Salisbury, 1995).

Also under ARPA sponsorship, the CFOR project
(Command Forces) is addressing the problem of
high-level command for CGF entities. Proposals are
still being accepted for CFOR. The goal of CFOR is
to develop automated C2 and planning entities that fit
into the command hierarchy. These CFOR entities
would communicate with each other up and down the
hierarchy, using CCSIL (MITRE has used the Eagle
Management Language for the basis of this CCSIL
effort.) The Corps Level Computer Generated Forces
project (CLCGF) sponsored the Joint Precision Strike
Demonstration (JPSD) will send Eagle-based orders
to ModSAF companies where they will be acted on
by ModSAF simulated company commanders.
However there is no standard in this area. Further the
two efforts mentioned above are focused on purely
maneuver and indirect fire units. Little thought has
been given to C2 requiring sensor tasking, on call
support of fixed and rotary wing units, or support
from engineer and logistic units. AMIP/DMSO
support in this area is key if computer generated
forces are ever to grow beyond the Battalion
firefight.

4.4 Architecture for Distributed Computer
Generated Forces

I have saved the most pressing problem for last. In
1992 when STRICOM published the original paper
on the DIS architecture, they envisioned a system
where remote sites could join a battle through nodes
on the network. These sites represented users with
different interests. Some were simulators of new
weapon systems, others were CGF sites providing

554

forces for the network, still others were field
equipment with live crews training in the virtual
networked environment. The only requirement "to
play" was conformance to the DIS Protocol Data
Units. In short, if your site was sending and
receiving the right message formats, interaction was
possible.

Pursuing this vision, the DIS community has moved
the DIS PDUs to an IEEE standard. DIS nodes have
been established throughout the Army and Advanced
Technical Demonstrations have been conducted
placing more and more (up to 1000) virtual vehicles
on the network. In the beginning, it was believed
that the network bandwidth (the ability of the long
haul and local networks to transmit the massive
number of PDUs) would be the limiting factor on this
system. However, as a result of problems
encountered at recent ATDs and I/ITSEC
demonstrations many believe that the limiting
problem will stem from an inability of remote DIS
sites to filter PDUs not affecting their simulator,
simulation or live equipment.

To appreciate this problem, one must have an
understanding of the tenets under which the DIS
PDUs were developed. DIS has its ancestry in
SIMNET. As such, three fundamental architectural
features have governed development. When
simulating any DIS vehicle you must:

• Broadcast ground truth from your entity/CGF
simulation.

• Operate in an environment with distributed
processors.

• Expect to broadcast and receive updates for dead
reckoning algorithms to maintain locations of
other vehicles being simulated on other
processors.

Consider now the implication in terms of network
packets from 1, 2 and 3. Every virtual platform
(ground, air and sea) puts packets on the net
describing its position, updates as it moves or
performs other battle activities i.e. when a vehicle
stops, turns its turret to fire, a packet indicating the
stop goes onto the net and a packet indicating the
turning of the turret (followed by many more as the
turret rums and the gun lays) goes onto the net.
Further, consider the implications of this structure in
the environment of many participants in a large DIS
exercise. Suppose we are at a node processing a

CGF which is simulating the northern most Battalion
taskforce in a Corps. As virtual tanks simulated by
another CGF representing the southern most
Battalion move and fire our node is required to
examine each PDU from the south Battalion,
determine that it is outside the virtual geographical
area simulated by our node and discard it. In short,
each participant under the current DIS architecture is
globally broadcasting local information. The impact
on each DIS processing node of filtering the global
information from that information affecting the battle
locally being represented at that node has become the
major problem in DIS. This problem of "servicing
the node", as it is called by those in the ATDs and
L/ITEC experiencing it, will ultimately limit the
number of players and the size of the battle in any
exercise.

As this problem effects all DIS simulators, not just
CGF systems, it has been taken up by the
communications architecture group within the DIS
community. Currently, the solution receiving the
most attention is replacing broadcast with multicast.
The idea is to use a large number (hundreds) of
multicast groups created within a DIS exercise so that
only those nodes that need to receive another node's
PDUs are on its multicast group. This would allow a
given simulator to only handle those packets it needs
to, with the communications system filtering PDUs at
the multicast level. The multicast group structure
would be created and maintained automatically,
possibly by a network services controller node. It is
not yet clear what would be the best basis for creating
the multicast groups; geographical proximity, sensor
categories, and a data subscription request
mechanism have all been suggested. Several papers
discussing multicast in DIS were presented at the
12th DIS Workshop (e.g. (Calvin, 1995) and
(Pullen,1995)); an experimental test of applying
multicast grouping based on geographical proximity
to a CGF system is described in (Smith, 1995).

A second problem is that the message structures do
not address the integration of simulations and CGF
systems representing varying levels of resolution.
For example, suppose that a Corps level simulation
was "on line" in a DIS exercise broadcasting ground
truth locations of vehicles in Company units.
Further, suppose a J-STARS simulator was
displaying these vehicle traces. As the vehicles
approach, a bridge or terrain constriction represented
only as a "movement delay" in the Corps model, how
will the J-STARS simulator effectively display the
change in vehicular formation as the constriction is

555

negotiated? There must be an architecture structure
developed for hand-off of control of these units if a
consistent battle is to be represented to all
participants. We realize that this is an interface
problem but it clearly affects any standard developed
for a CGF. Work addressing these issues has almost
always depended heavily on CGF systems (Kraus,
1995).

The bottom line is that the overarching architecture
for DIS, as reflected by the current DIS PDUs, is
limited to the Brigade and lower battles. This
structure will not satisfy the Army DIS Master Plan
in either functionality or projected timelines. AMIP
and DMSO must support research
expanding/defining an architecture for a larger
(Corps to Theater) DIS battle.

5. Summary of Recommendations/Priorities

The previous sections have described the
requirements for developing a CGF system, related
particular parts of the CGF system to the Army's DIS
Master Plan, and summarized some problems with
the DIS architecture relative to CGF systems. This
section prioritizes the actions that should be taken to
move toward a standard CGF system that will
support all three application areas: training,
advanced technology demonstrations, and analysis.

/. Adept ModSAF as the standard CGF system for
the short term.

Considerable developmental effort has been invested
in ModSAF, it is widely distributed, and it has been
subjected (at least in part) to VV&A procedures.
Hence, it should be the standard CGF system, at least
for now. In this light, two efforts become critical:

• VV&A of MODSAF as both a Training and
Analytic CGF must be completed and given the
necessary resourcing priorities.

• Improvements in environmental, terrain, C2' and
DIS Architecture representation must be
compatible and integrated into the ModSAF
architecture.

2. Focus on the CCTTSAFOR for acceptance as the
Standard CGF for the long term.

Again, this recommendation is based on the
practicalities of resource consideration. The CCTT
project is expensive ($10 million for the CGF alone)

and the Army cannot afford to develop another
standard. Hence as it comes on line, it must sustain a
VV&A overhead that will make it acceptable for both
training and combat developments uses.

3. Solve the DIS Architectural Problem.

The problems described under the section on the DIS
architecture will ultimately affect all modeling
efforts. In particular, CGF systems will be limited to
Brigade and below. The WARSIM Project will not
have a virtual capability and the DIS Master Plan will
not extend beyond Brigade. While the DIS Master
Plan lists "DIS Architecture/Networks" as condition
green, the first author does not believe this to be the
case. At best it is amber with the current structure
not allowing robust expansion of the virtual battle
field.

4. Solve the Environmental Representation Problem
in CGF.

Advanced weapons technology is firmly based on
sensor technology operating in spectral regions
outside the visual. If we are unable to represent the
simple effects of environmental attenuation for these
sensors, how can we expect to train and test these
systems? Any practical use of CGF demands a
realistic representation of the battlefield environment
and platform signatures.

6. Final Note

While this report has pointed out many of the
problems currently being experienced by developers
and users of CGF systems, we would be remiss if I
did not close on a positive note. The Army software
community (both the Training, Testing and Combat
Developers) stands in the enviable position of leading
DoD in CGF development. WE have no doubt that
the technical problems listed above will be solved. It
is just a matter of priority and focus. Further, we
believe that the DIS and CGF structures will come
into common usage in Training, Testing and Combat
Developments Community within the next two years.
This opinion comes from the experience and
conservatism of one who has viewed the "blank
page" in the course of simulation model
development.

556

7. References

U. S. Army (1994). Distributed Interactive
Simulation Master Plan, Training and
Doctrine Command, Ft. Monroe, VA.

Booker, L., Brooks, P, Garrett, R., Giddings, V.,
Salisbury, M., and Worley, R. (1993).
"1993 DMSO Survey of Semi-Automated
Forces", Defense Modeling and Simulation
Cjfice Report, July 30 1993, 86 pages.

Calder, R. B., Smith, J. E., Courtemanche, A. J., Mar,
J. M. F., and Ceranowicz, A. Z. (1993).
"ModSAF Behavior Simulation and
Control", Proceedings cf the Third
Conference on Computer Generated Forces
and Behavioral Representation, Institute for
Simulation and Training, Orlando FL,
March 17-19 1993, pp. 347-356.

Calvin, J. O., Seger, J., Troxel, G. D., and Van Hook,
D. J. (1995). "STOW Realtime Information
Transfer and Networking System
Architecture", Proceedings cfthe 12th D1S
Workshop on Standards for the
Interoperability cf Defense Simulations,
Institute for Simulation and Training, IST-
CF-95-01.1, Orlando FL, March 13-17
1995, pp. 343-353.

Ceranowicz, A. (1994). "ModSAF Capabilities",
Proceedings cf the Fourth Conference on
Computer Generated Forces and Behavioral
Representation, Institute for Simulation and
Training, Orlando FL, May 4-6 1994, pp. 3-
8.

Franceschini, R. W. and Petty, M. D. (1995).
"Linking constructive and virtual simulation
in DIS", Proceedings cf the SPIE
International Symposium on
Aerospace/Defense Sensing & Control and
Dual-Use Photonics, Orlando FL, April 19-
20 1995.

Kilby, M., Lisle, C, Altman, M., and Sartor, M.
(1994). "Dynamic Environment Simulation
with DIS Technology", Proceedings cf the
16th Interservice/Industry Training Systems
and Education Conference, Orlando FL,
November 28-December 1 1994, pp. 4-18.

Kraus, M. K., Stober, D. R, Foss, W. F.,
Franceschini, R. W., and Petty, M. D.
(1995). "Survey of Constructive+Virtual
Models", Proceedings cf the F.fth
Conference on Computer Generated Forces
and Behavioral Representation, Institute for
Simulation and Training, Orlando FL, May
9-11 1995.

Marshall, H., Anderson, C, Baran, T., Berggren, P.,
Bimson, K., Blanchard, D., Braudaway, W.,
Burch, B., Colon, J., Cosby, J., Glover, G.,
King, J., Ourston, D., and Watson, J. (1994).
"Close Combat Tactical Trainer Semi-
Automated Forces (SAF) Design
Overview", Presentation Notes, Proceedings
cf the Fourth Conference on Computer
Generated Forces and Behavioral
Representation, Institute for Simulation and
Training, Orlando FL, May 4-6 1994.

Moshell, J. M., Blau, B. Li, X., and Lisle, C. (1994).
"Dynamic Terrain", Simulation, Vol. 62,
No. 1, January 1994, pp. 29-42.

Petty, M. D. (1992). "Computer Generated Forces in
Battlefield Simulation", Proceedings cf the
Southeastern Simulation Conference 1992,
Pensacola FL, October 22-23 1992, pp. 56-
71.

Petty, M. D. (1995). "Computer generated forces in
DIS", Proceedings cfthe SPIE International
Symposium on Aerospace/Defense Sensing
& Control and Dual-Use Photonics,
Orlando FL, April 19-20 1995.

Pullen, J. M. and White, E. L. (1995). "Dual-Mode
Multicast for DIS", Proceedings cfthe 12th
DIS Workshop on Standards for the
Interoperability cf Defense Simulations,
Institute for Simulation and Training, IST-
CF-95-01.1, Orlando FL, March 13-17
1995, pp. 505-510.

Salisbury, M. R. (1995). "Command and Control
Simulation Interface Language (CCSIL):
Status Update", Proceedings cfthe 12th DIS
Workshop on Standards for the
Interoperability cf Defense Simulations,
Institute for Simulation and Training, IST-
CF-95-01.1, Orlando FL, March 13-17
1995, pp. 639-649.

Smith, J. E., Russo, K. L.,and Schuette, L. C. (1995).
"Prototype Multicast IP Implementation in
ModSAF", Proceedings cf the 12th DIS
Workshop on Standards for the
Interoperability cf Defense Simulations,
Institute for Simulation and Training, IST-
CF-95-01.1, Orlando FL, March 13-17
1995, pp. 175-178.

Smith, S. H., and Petty, M. D. (1992). "Controlling
Autonomous Behavior in Real-Time
Simulation", Proceedings cf the
Southeastern Simulation Conference 1992,
The Society for Computer Simulation,
Pensacola FL, October 22-23 1992, pp. 27-
40.

557

Thomas, J. G. (1995). "Verification and Validation Science at UCF. His research interests are in
of Modular Semi-Automated Forces simulation and artificial intelligence.
(ModSAF) in Support of A2ATD
Experiment 1", Proceedings cfthe 12th D1S
Workshop on Standards for the
Interoperability cf Defense Simulations,
Institute for Simulation and Training, IST-
CF-95-01.1, Orlando FL, March 13-17
1995, pp. 359-367.

8. Acknowledgements

The second author's contribution to this paper was
supported by the U. S. Army Simulation, Training,
and Instrumentation Command under the Intelligent
Simulated Forces project, contract N61339-92-C-
0045. That support is gratefully acknowledged. The
opinions stated herein, however, are those of the
authors and do not necessarily reflect official
STRICOM positions.

The authors thank Cindi Slepow for technical writing
assistance with this paper

9. Authors' Biographies

H. Kent Pickett has over 20 years experience as an
Operations Research Analyst. He has served as
modeler and analyst at the Concepts Analysis
Agency, and has held progressively higher analysis
positions with the Department of Army at Fort
Leavenworth, to include: Chief of the Special
Studies Branch, TRADOC Analysis Operations
Research Activity (TORA); Acting Director,
Methodology and Quality Assurance Directorate,
TRADOC Analysis Command (TRAC), and
currently serves as Director, Modeling and Research
Directorate, TRAC. Additionally, Mr. Pickett has 20
years of experience teaching computer science at
Missouri Western State College, where he is an
Assistant Professor of Computer Science. He
received a B.S. degree in Mathematics and an M.S.
degree in Applied Mathematics from the Universitry
of Missouri-Rolla.

Mikel D. Petty is a Program Manager at the Institute
for Simulation and Training. He is currently
managing Plowshares, an emergency management
simulation project. Previously he led IST's Computer
Generated Forces research projects. Mr. Petty
received a M.S. in Computer Science from the
University of Central Florida and a B.S. in Computer
Science from California State University,
Sacramento. He is a Ph.D. student in Computer

558

Asynchronous Rule-Based Systems in CGF

Paul F. Reynolds, Jr. and Craig Williams
reynolds@virginia.edu and ccw4s@virginia.edu

Dept. of Computer Science,
University of Virginia

Charlottesville, VA 22903

1. Abstract

CGF systems face two important challenges: first,
behavioral and cognitive modeling must become
more viable and, second, a means for efficiently
implementing behavioral and cognitive models must
be found. The first issue is difficult, and must be
resolved by domain experts and modeling theoreti-
cians. The second is difficult as well: the common
implementation of behavioral and cognitive models is
production (rule-based) systems, which are notori-
ously slow. We describe an alternative approach to
parallel implementation of rule-based systems,
employing isotach networks. Performance studies of
isotach networks suggest they hold significant poten-
tial for order-of-magnitude speed-up for rule-based
systems and, therefore, for behavioral and cognitive
models for CGF.

2. Introduction

Currently, CGF systems (e.g. ModSAF, CCTT-SAF)
employ finite state machines (FSM's) for modeling
synthetic forces. As CGF requirements expand to
include behavioral and cognitive models, the limita-
tions of FSM's will force the consideration of more
powerful modeling techniques. The most likely alter-
native is rule-based systems. Unfortunately, tradi-
tional approaches to the execution of rule-based
systems have exhibited disappointing performance.
Attempts to achieve significant speed-ups through
parallel execution have been frustrated by synchroni-
zation overhead, in particular, by the match-recog-
nize-act (MRA) cycle. We describe a new approach
that eliminates the MRA cycle.

The first and most obvious improvement to a slow
rule-based system is to optimize the code that imple-
ments the Rete network, the principal data structure of
the rule-based system. However, optimization is only
a start. As the numbers of rules and entities modeled
increase, a point is quickly reached at which even an
optimized system is inadequate. At this point, the
hope for improving the performance of the rule-based
system lies with parallel execution.

A rule-based system is composed of a set of if-then
rules and a database of assertions called working
memory elements (WME). A rule is eligible to fire
(i.e., the actions in the "then" part of the rule can be
executed) if the WME's match, i.e., satisfy, the con-
junction of conditions that make up the "if part of the
rule. The most straightforward way to execute a rule-
based system in parallel is to give each rule (or set of
rules) its own processor. Each rule can then be evalu-
ated in parallel. Since rule evaluation (i.e. trying to
match rules against the WME's) accounts for about
90% of the execution time of a rule-based system,
executing rules in parallel should be a winning strat-
egy. However, parallel rule-based systems to date
remain disappointingly slow. The problem is that rule
firings must be coordinated in some way. Suppose two
rules, Rl and R2, are both eligible to fire. Since firing
a rule can change the WME's, firing Rl may make R2
ineligible and firing R2 may make Rl ineligible. Even
though the "if part of both rules is satisfied by the
WME's, firing both Rl and R2 would be incorrect
since the result would not be equivalent to any serial
execution.

The conventional way to coordinate rule firings in
parallel rule-based systems is the match-recognize-act
cycle: each processor evaluates its rule(s) in parallel;
the processors synchronize; a single rule is selected;
the selected rule fires; and the cycle repeats. If each
processor had roughly the same amount of work to do
in each cycle, the MRA cycle would be a good way to
coordinate rule firings. Unfortunately, firing a rule in a
rule-based system tends to affect only a small number
of other rules (Gupta et al. 1989). This phenomenon,
known as the small cycle problem, means that only a
small number of processors have any useful work to
do in any given cycle. Thus the MRA cycle severely
limits the number of processors that can be employed
usefully in executing a rule-based system.

We eliminate the MRA cycle. We have found an alter-
native that provides the coordination needed to exe-
cute parallel rule-based systems correctly. Our

559

approach is based on a logical time system called iso-
tach networks that can be implemented on arbitrary
topologies and in both tightly-coupled multiproces-
sors and clusters of workstations. Isotach networks
are characterized by the guarantee they provide about
the relative order in which operations within the sys-
tem appear to be delivered. The guarantees can be
enforced cheaply, using purely local knowledge, and
yet provide a sufficient basis for enforcing several
important properties of parallel and distributed com-
putations: causal message ordering, atomicity, and
sequential consistency. The last two properties, espe-
cially atomicity, are important in rule-based systems.
An atomic action is a group of operations that must
appear to be executed as an indivisible step, i.e. with-
out interleaving with operations by other processes.
Atomicity is important in a rule-based system because
correct execution requires that the "if part of the rule
be satisfied at the time the "then" side fires. In other
words, each rule in a rule-based system is an atomic
action. In an isotach rule-based system, rules fire
asynchronously, i.e., a rule can fire whenever it is eli-
gible. Processors with eligible rules do not need to
synchronize before firing and yet, because each rule is
executed atomically, the computation is correct: for
each execution, there is an equivalent execution in
which rules fire one at a time and no rule fires unless
eligible.

In the following sections we discuss related
approaches to logical time systems and parallel exe-
cution of rule-based systems. We describe isotach net-
works in more detail and results of performance
studies on isotach networks. Finally, we describe our
planned approach for applying isotach networks to
rule-based systems and we discuss the utility of iso-
tach technology to CGF.

need to identify a set of non-conflicting rules
increases the length of the sequential phase of the
cycle.

We are not the first to propose eliminating the MRA
cycle. Schmolze proposed an asynchronous system
(Schmolze et al. 1990) in which the coordination
among rules is handled by the same techniques used
to enforce atomicity in distributed databases: locking,
using a linear ordering among rules to prevent dead-
lock. Our approach differs from this proposal in that it
eliminates the MRA cycle without introducing lock-
ing. We expect the isotach system to perform signifi-
cantly better than this earlier asynchronous system
because isotach systems are more efficient than con-
ventional systems in providing synchronization.

By abandoning the MRA cycle, our approach employ-
ing isotach systems removes the imposition of
sequential control on an inherently parallel process.
Isotach systems are based on logical time. The semi-
nal paper by Lamport (Lamport 1978) established a
basis for isotach-like timing systems. Other systems
similar to isotach systems have been proposed for
other purposes by Awerbuch (Awerbuch 1985),
Ranade (Ranade 1987), and Birk (Birk et al. 1989).
Isotach systems are unique in providing guarantees of
atomicity, sequential consistency and causal message
ordering.

The performance of isotach systems has been studied
through extensive simulation (Reynolds, 1992). Order
of magnitude speed-ups have been observed for a
variety of workloads in which atomicity and the
opportunity to exploit pipelining (simultaneous issu-
ing of multiple memory references by the same pro-
cess) are present.

3. Background
Two approaches to reducing the impact of the MRA
cycle are being explored (Kuo, et al. 1992). One
approach is to reduce the granularity of the computa-
tion by partitioning the Rete network (Forgy, 1982)
among the processors. Reducing the granularity of the
computation makes it possible, with efficient schedul-
ing, to reduce the variance among processor work-
loads in each cycle, but it also increases
synchronization overhead. The other approach is to
select multiple rules to fire per cycle: each processor
evaluates its rule; the processors synchronize; and a
set of non-conflicting rules is selected for firing. This
approach allows more processors to do useful work
during the parallel match phase of the cycle, but the

4. Isotach Systems

4.1 Details of Isotach Technology

Isotach networks are characterized not by their topol-
ogy —they can be implemented on arbitrary topolo-
gies and on clusters of workstations as well as on
tightly-coupled multiprocessors— but by the guaran-
tee they provide about the relative order in which
operations appear to be delivered. The guarantee is
expressed in logical time (an extension of Lamport's
logical time), not physical time, i.e., the guarantee
concerns the relative order in which messages appear
to be delivered. Except in the case of messages deliv-
ered to the same place, the order in which messages
appear to be delivered is not necessarily the order in

560

which they are actually delivered. Physical time guar-
antees would be prohibitively expensive, whereas log-
ical time guarantees can be enforced cheaply, using
purely local knowledge, and yet provide a sufficient
basis for enforcing atomicity without locks and
sequential consistency without restricting pipelining
of operations.

In isotach networks, each message progresses towards
its destination at the same rate: one unit of logical dis-
tance (for our purposes here, one hop within the net-
work) per logical time unit. This property of isotach
networks, called the velocity invariant, implies that
the logical time at which an operation is emitted into
the network completely determines the logical time at
which it is received and executed. Thus a process can
control the logical times at which its operations are
executed by controlling the logical times at which
they are emitted. This control over logical execution
time allows each process to ensure that its accesses
are executed in an order consistent with the program's
atomicity and sequencing constraints without syn-
chronizing with other processes or waiting for
acknowledgments from memory.

In the remainder of this section we discuss details of
isotach networks. The reader may wish to proceed to
the section on applications and then return to this
point when a deeper understanding of the technology
underlying isotach networks is desired.

Assigning logical times to events is a way of ordering
events. A logical time system is a set of constraints
governing the way in which events of interest are
ordered, i.e. assigned logical times. Isotach logical
time is an extension of the logical time system defined
by Lamport in his classic paper on ordering events in
a distributed system (Lamport 1978). Lamport's time
system assigns times consistent with the happened
before relation, a relation over the events of sending
and receiving messages that captures the notion of
potential causality: event a happened before event b,
denoted a—>b, if 1) a and b occur at the same process
and a occurs before b; 2) a is the event of sending
message m and b is the event of receiving the same
message m; or 3) there exists some event c such that
a-*c and c-*b. In Lamport's system a->b => t(a) <
t(b), where for any event x, t(x) denotes the logical
time assigned to x.

Lamport gives a simple distributed algorithm that
maintains this time system. Each process has its own
logical clock, a variable that records the time assigned
to the last local event. When it sends a message, a

process increments its clock and timestamps the mes-
sage with the new time. When it receives a message, a
process sets its clock to one more than the maximum
of its current time and the timestamp of the incoming
message. This algorithm ensures a-^b =* t(a) < t(b).
Several researchers (Mattern 1988, Schmuck 1988,
Fidge 1988) have independently described a way to
maintain the more stringent constraint a->b <=> t(a) <
t(b) by using vectors of logical times. Each element in
a vector represents a logical time at one processor.
This stricter form of Lamport's logical time system
has been used to implement communication primi-
tives for distributed computation (Birman et al. 1991).

In an isotach logical time system, logical times are
lexicographically ordered n-tuples of integers of
which the first and most significant component is
called the pulse component. Unless otherwise stated,
assume logical times are 3-tuples in the form
(pulse,x,y). Isotach logical time extends Lamport's
logical time by imposing the additional constraint that
logical times be consistent with the velocity invariant:
each message m is received exactly d(m) pulses after
it is sent, where d(m) denotes the logical distance m
travels. For any message m, let ts(m) denote the logi-
cal time assigned to the send event for m and tr(m) the
logical time assigned to the receive event for m. Thus
for any message m, ts(m) = (ij.k) => tr(m) =
(i+d(m),j,k). Isotach networks are so named because
all messages travel at the same velocity in logical time
—one unit of logical distance per pulse. Unless other-
wise stated, logical distance, d(m), is simply the num-
ber of (possibly virtual) switches through which m is
routed.

The velocity invariant requires that the logical time
assigned to the receive event for a message that trav-
els zero distance be the same as the logical time
assigned to its send event. To accommodate this case
in which the source and destination of a message are
collocated, we have relaxed Lamport's requirement
that the time assigned to event a that potentially
causes event b be strictly less than the time assigned
to event b. In isotach logical time, a-^b => t(a) < t(b).

The number and interpretation of the components that
follow the pulse component can vary. In this paper,
each logical time is of the form (pulse, pid(m),
rank(m)), where for any message m, pid(m) is the
identifier of the process that issued m and rank(m) is
the issue rank of the message, i.e., rank(m) = i if m is
the ith message issued by pid(m). In a database system
the pid may be replaced by a transaction identifier. In
some isotach systems, for example in a system that

561

combines operations on the same shared variable
within the network, a 4-tuple isotach logical time sys-
tem is most appropriate. In a 4-tuple system each log-
ical time is in the form (pulse, destination, source,
rank), where the destination component names the
variable accessed (shared memory model) or the des-
tination process or object (message-based model).

4.2 APPLICATIONS

In a system that maintains isotach logical time, a pro-
cessor (PE) can control the logical time at which the
messages it sends are received and executed. (Note:
"sending messages" may be simple memory refer-
ences, for example, a single shared memory refer-
ence.) This ability to control the logical time of
remote events is the basis for new techniques for
enforcing atomicity and sequential consistency. This
section describes these techniques.

An atomic action is a group of one or more instruc-
tions issued by the same process that appears to be
executed indivisibly, i.e., without interleaving with
other instructions (Owicki et al. 1976, Lomet 1977).
In some contexts, in particular in databases, the
atomic action is also a unit of recovery from hardware
failure. We assume the system is fault-free or that
faults are handled below the application level. Con-
ventional systems enforce atomicity with some form
of locking. Drawbacks of locking include overhead
for lock maintenance in space, time, and communica-
tion bandwidth, unnecessarily restricted access to
shared variables, and the care that must be taken when
using locks to avoid deadlock and livelock. In an iso-
tach system, a process can execute flat atomic actions,
(atomic actions containing no internal data depen-
dences among shared variables) without synchroniz-
ing with other processes and can execute structured
atomic actions (atomic actions with such depen-
dences) without acquiring locks or otherwise obtain-
ing exclusive access rights to the variables accessed.

An execution is sequentially consistent if the order in
which operations are executed is consistent with the
order specified by each individual process's sequential
program (Lamport 1979). This ordering guarantee is
so basic it is easily taken for granted, yet it is expen-
sive to enforce. The problem is that the order in which
operations are received and executed may differ from
the order in which the operations were sent into the
network due to stochastic delays within the network.
The conventional solution is to prohibit pipelining,
meaning that each process must delay issuing an oper-
ation until it receives notice that its preceding opera-

tion has been executed. Since pipelining is an
important way to decrease effective memory latency,
this solution is expensive. The high cost of enforcing
sequential consistency has led to extensive explora-
tion of weaker memory consistency models, e.g.,
(Scheurich et al. 1987, Gharachorloo et al. 1991).
These weaker models are harder to reason about and
still impose significant restrictions on pipelining, but
they make sense given the cost of maintaining
sequential consistency in a conventional system. In
an isotach system, processes can pipeline memory
operations without violating sequential consistency.

The velocity invariant is the key to enforcing atomic-
ity and sequential consistency in an isotach system.
Given the velocity invariant, a PE that knows d(m) for
each operation m it sends can control the logical time
at which its operations are received and executed by
its choice of the logical time at which it sends the
operations. A PE can enforce atomicity and sequen-
tial consistency by following these rules:

ATOMICITY. Send operations from the same flat
atomic action so they are received in the same pulse.

SEQUENTIAL CONSISTENCY. Send each opera-
tion so it is received in a pulse no earlier than that of
the operation issued before it.

The rules are applicable to any topology, but are espe-
cially easy to apply in equidistant networks: a PE
sends all operations in the order in which they are
issued and all operations from the same flat atomic
action in the same pulse.

Example. Consider the n on-equidistant network in
Fig. 1, in which each oval represents a switch and
each rectangle a memory module (MM) or PE:

Fig. 1. A Non-Equidistant Network.

562

Suppose pi is required to read shared variables A and
B atomically and p2 to write A and B atomically. In
conventional systems, pi and p2 need to obtain locks,
either on the individual variables or on a section of
code (as in a critical section), to ensure its accesses
are executed atomically. In isotach systems, pi and
p2 can execute their accesses without synchronizing,
as follows: pi sends the operation on A one pulse after
it sends the operation on B and p2 sends the operation
on B one pulse after it sends the operation on A. By
the velocity invariant, both operations in each atomic
action are received in the same pulse. If all four oper-
ations happen to be received in the same pulse, opera-
tions on each shared variable will be received and
executed in order by pid. Thus each atomic action
will appear to be executed without interleaving with
other operations. It is possible that operations may be
executed in an interleaved order in physical time. For
example, the actual execution order may be pi's read
to A, p2's write to A, pi's read to B, and p2's write to
B. This execution is correct nonetheless because it is
equivalent to a serial execution in which operations in
each atomic action are executed without interleaving:
pi's read to A; pi's read to B; p2's write to A; and p2's
write to B.

We have also described isotach-based techniques for
executing structured atomic actions (Williams 1993).
Structured atomic actions cannot be executed in the
same way as flat atomic actions because data depen-
dences among operations make it impossible to issue
all the operations in a batch, but the techniques for
executing flat atomic actions together with a class of
operations called split operations support execution
of structured atomic actions.

A process executes a structured atomic action by issu-
ing a batch of split operations scheduling all the
accesses required for the atomic action, executing the
assignment steps for these accesses as it determines
the values to be assigned. Execution is atomic
because the set of operations used to schedule the
accesses reserves a consistent time slice across the
histories of the accessed variables. This technique
works for atomic actions with access sets that can be
determined at the beginning of execution of the
atomic action. We have proposed variations on the
technique for atomic actions with data dependent
access sets (Williams et al. 1989). Isotach based tech-
niques for executing flat and structured atomic actions
extend to systems with caches. In fact, extending the
techniques to systems with caches eliminates the need
for a separate type of memory otherwise required to
support structured atomic actions.

43 Performance

We have completed both analytical (Wagner 1993)
and empirical (Reynolds 1992) studies of isotach sys-
tems. We simulated conventional and isotach systems
under a variety of workloads. Our results show that
conventional systems have higher raw power, i.e.,
more throughput with less delay, than isotach net-
works, but that under workloads that include atomic-
ity and sequencing constraints, isotach networks
outperform conventional networks. The studies show
order of magnitude performance improvement under
realistic workloads. In extreme cases of high conten-
tion for shared objects, conventional systems cease to
perform acceptably, but isotach systems continue to
perform well.

We have proposed several techniques for executing
structured atomic actions using the isotach network in
combination with split operations. Split operations are
used to execute read and write accesses in two steps:
the first schedules the access and the second transfers
a value. The advantage of dividing accesses into two
steps is it allows a process that has incomplete knowl-
edge about an access due to an unsatisfied data depen-
dency to reserve a slot in the variable's history that
ensures it will appear to be executed at the same time
as the other operations in the atomic action. (Another
advantage is that it provides a mechanism for enforc-
ing inter-process sequencing constraints.) An unsub-
stantiated write (a write for which the first step, but
not the second has been executed) delays completion
of reads scheduled up to the next write until the write
is substantiated, but does not delay writes or other
reads to the same variable.

5. Isotach. Rules, and CGF

5.1 Isotach and Rule-Based Systems

Atomicity and sequential consistency, especially ato-
micity, are important in rule-based systems. An
atomic action is a group of operations that must
appear to be executed as an indivisible step, i.e. with-
out interleaving with operations by other processes.
Atomicity is important in a rule-based system because
correct execution requires that the "if part of the rule
be satisfied at the time the "then" side fires. In other
words, each rule in a rule-based system is an atomic
action. In an isotach rule-based system, rules fire
asynchronously, i.e., whenever eligible. Processors
with eligible rules do not need to synchronize before
firing and yet, because each rule is executed atomi-
cally, the computation is correct: for each execution,

563 J

there is an equivalent execution in which rules fire
one at a time and no rule fires unless eligible. Elimi-
nating the MRA cycle should make it possible to
exploit all or most of the rule-level parallelism avail-
able in the application.

Schmolze and Goel (Schmolze et al. 1990) proposed
an asynchronous system in which coordination among
rules is handled by the same techniques used to
enforce atomicity in distributed databases: locking,
using a linear ordering among rules to prevent dead-
lock. Our method differs in two respects:

• The method of coordinating rule firings. An
isotach rule-based system eliminates the
MRA cycle without introducing locking. We
expect the isotach system to perform signifi-
cantly better than asynchronous systems that
achieve atomic execution of rules through
locking because isotach systems are many
times (order of magnitude) more efficient
than conventional systems in enforcing ato-
micity (Reynolds et al. 1992).

• The granularity of the computation. We
intend to exploit fine-grained parallelism as
well as rule-based parallelism. Other
researchers have investigated distributing the
Rete network, the principal data structure
used in a rule-based system, over multiple
processors. The previous work on using fine-
grained parallelism has all taken place within
the context of the MRA cycle, so this is a
new challenge. It is important to consider
exploiting fine-grained parallelism in rule-
based systems because it increases available
parallelism and because relaxing the MRA
cycle alone is not of help with rule-based
systems in which the conditions for rules
implicitly require that they be fired serially.

We discussed split operations in section 4.2. A system
of rules could be executed concurrently, employing
split operations, in the manner described below. Each
process representing one or more rules would perform
the following steps asynchronously:

1. Read the WME's that potentially match the rule's
left-hand-side and schedule writes called for by
the rule's right-hand-side operations. All of these
reads and writes would be scheduled to occur at
the same logical time. Note, there is no require-
ment that components of the WME be resident on
a single processor. Using isotach-based timing,
accesses will occur at the same logical time even

on widely distributed networks.

2. Perform the match step for the rules. This step
would be highly parallel, with each process doing
its match independent of the activities of other
processes.

3. For each rule that can fire, the process can write
any WME's required by the right-hand-side of
the rule.

4. For each rule that can't fire, the process can can-
cel the writes it just scheduled for the right-hand-
side of the rule.

These four steps would be executed repeatedly by a
process as long as it had rules to evaluate. Note, there
is no direct, explicit synchronization among pro-
cesses. There are no locks. Rules fire as quickly as
they can be determined eligible to fire. The only form
of synchronization that occurs between processes is
when one rule causes writes to be scheduled for
WME's that need to be read by a second rule. Analy-
sis of the second rule would be delayed only until the
process for the first rule either substantiated the writes
or cancelled them. This is the only synchronization
that takes place in the analysis and firing of rules.

A pessimistic variation of steps 1 and 2 given above
would be:

1. Read the WME's for the match step, and perform
matching.

2. If a match occurs, re-read the left-hand-side data
and schedule writes called for by the rule's right-
hand-side operations (all at the same logical
time).

This pessimistic variation has the advantage of reduc-
ing contention by performing the match phases with-
out scheduled writes pending. Its primary
disadvantage is that it could force rule evaluation to
take longer. Choice of the two alternatives could be
adaptive depending on contention among rules for
reading and writing WME's.

Some production systems also use meta-rules (e.g.
SOAR (Laird, 1990)): rules to select among eligible
rules. Meta-rules are anathema to the isotach
approach because they assume an eligible set of rules
is identified and then an MRA-like process is applied
where one rule to fire is selected (using the meta rules
for guidance). We are exploring ideas for incorporat-

564

ing preferences and/or constraints expressed in meta-
rules within an isotach system. The pessimistic varia-
tion of steps 1 and 2 above is one example of how this
might be done: a low priority rule must use the pessi-
mistic approach while higher priority rules can use the
more aggressive approach.

52 Isotach and CGF

Eliminating the MRA cycle should make it possible to
exploit all or most of the parallelism available in the
application. In other words, we would expect to see
the speed of the system continue to improve as more
processors are added until a limit inherent in the
application is reached. Conventional parallel rule-
based systems, by contrast, are limited by synchroni-
zation overhead to a low level of parallelism. Isotach
rule-based systems should be well suited to CGF
because we expect such applications to be inherently
highly parallel due to the large number of entities pos-
sessing some scope for independent action.

For example, in a tank platoon, the independent
actions within the tank would include terrain reason-
ing, situational assessment and planning. Actions
coordinated at the platoon level would include activi-
ties both within the platoon itself and with echelons
above the platoon, including communication and
receiving and processing orders.

Within a C4I hierarchy we would expect significant
independent processing at individual nodes within the
hierarchy and occasional coordination among nodes
to carry out a common mission.

to distributed networks of workstations connected by
ATM's.

The traditional MRA-based approach to rule analysis
using parallel computation is severely flawed: there is
a sequential bottleneck in the middle of the MRA
cycle. Our approach using isotach networks abandons
the MRA cycle and bases rule analysis, selection and
firing on isotach-based logical timing. Performance
analysis of isotach networks is very encouraging, dis-
playing order of magnitude speed-up over networks
lacking isotach timing in cases where reasonable
amounts of atomicity and pipelining were present.
Rule-based systems have significant potential to
exploit isotach technology because they have an
abundance of atomic actions (multiple, concurrent
read-write sets from individual rules). CGF-oriented
rule sets should be particularly amenable to isotach
technology because we expect such applications to be
inherently highly parallel due to the large number of
entities possessing some scope for independent
action.

A simulation study is currently underway to study the
performance benefits isotach networks will bring to
CGF-oriented rule-based systems. We will report on
that study in a later paper.

7. Acknowledgments
We thank Janet Morrow of the National Ground Intel-
ligence Center for her support in this research effort.
This research has been supported in part by
DUSA(OR) funds in simulation technology.

Even if we are mistaken in our assessment of indepen-
dence, isotach technology is significantly better able
to manage contention than other existing concurrency
control techniques. Thus whether entities exhibit sig-
nificant independence or not, isotach technology
should outperform other approaches.

A simulation study of isotach-based production sys-
tems is underway employing synthetic workloads. As
good rule bases become available, we are considering
switching to trace-driven simulation.

6. Conclusion
Isotach networks offer an efficient approach to order-
ing rule analysis and firings without explicit synchro-
nization. Isotach networks are logical networks that
can be embedded in any physical network, ranging
from high performance parallel computer backplanes

8. References

Awerbuch, B. (1985) Complexity of Network Syn-
chronization, J. ACM, 32,4, 804-823.

Birk, Y., Gibbons, P.B., Sanz, J.L.C., and Soroker D.
(1989) A Simple Mechanism for Efficient Barrier
Synchronization in MIMD Machines, Tech. Rep.
RJ7078 (67141), IBM.

Birman, K.P., Schiper, A., and Stephenson, P. (1991)
Reliable Communication in the Presence of Fail-
ures, ACM Transactions on Computer Systems,
5,1,47-76.

Fidge, C. (1988) Timestamps in Message-Passing
Systems that Preserve the Partial Ordering, Proc.
11th Australian Computer Science Conference,
56-66.

Forgy, C.L. (1982) RETE: A Fast Algorithm for the
Many Pattern/ Many Object Pattern Match Prob-
lem, Artificial Intelligence, 19, 17-37.

Gharachorloo, et al. (1991) Performance Analysis of

565

Memory Consistency Models for Shared-Mem-
ory Multiprocessors, 4th Int. Conf. on Architec-
tural Support for Programming Languages and
Operating Systems, 245-257.

Gupta, A., Forgy, C, and Newell (1989) High-Speed
Implementations of Rule-Based Systems, ACM
Transactions on Computer Systems, 7,2,119-146.

Kuo, S. and Moldovan, D. (1992) The State of the Art
in Parallel Production Systems, Journal of Paral-
lel and Distributed Computing, 15, 1-26.

Laird, J., et al. (1990) Soar User's Manual Version
5.2, Tech. Report CMU-CS-90-179. Carnegie Mel-
lon Univ., Pittsburgh, PA, 1990.

Lamport, L. (1978) Time, Clocks, and the Ordering of
Events in a Distributed System, Communications
of the ACM, 21, 7, 558-565.

Lamport, L. (1979) How to Make a Multiprocessor
Computer that Correctly Executes Multiprocessor
Programs, IEEE Trans, on Computers, 28, 690-
691.

Lomet, D.B. (1977) Process Structuring, Synchroni-
zation, and Recovery Using Atomic Actions,
Proc. Conf. on Language Design for Reliable Soft-
ware, SIGPLAN Notices 12,3,128-137.

Mattern, F. (1988) Virtual Time and Global States of
Distributed Systems, Parallel and Distributed
Algorithms, 215-226.

Owicki, S. and Gries, D. (1976) An Axiomatic Proof
Technique for Multiprocessor Systems I, Acta
Informatica 6, 319-340.

Ranade, A.G. (1987) How to Emulate Shared Mem-
ory, IEEE Annual Symposium on Foundations of
Computer Science, Los Angeles, 185-194.

Reynolds, Jr., P.F, Williams, C. and Wagner, Jr., R.R.,
(1992) Empirical Analysis of Isotach Networks,
Tech. Rep. 92-19, University of Virginia, Depart-
ment of Computer Science.

Scheurich, C. and Dubois, M. (1987) Correct Memory
Operation of Cache-Based Multiprocessors, Proc
14th Int. Symp. Computer Architecture, 234-243.

Schmolze, G.H. and Goel, S. (1990) A Parallel Asyn-
chronous Distributed Production System, Eighth
National Conf. on Artificial Intelligence, 65-71.

Schmuck, F (1988) The Use of Efficient Broadcast in
Asynchronous Distributed Systems. Ph.D. Thesis,
Cornell University.

Wagner, Jr., R.R. (1993) On the Implementation of
Local Synchrony. Ph.D. Thesis, University of Vir-
ginia.

Williams, C.C. (1993) Concurrency Control in Asyn-
chronous Computations. Ph.D. Thesis, University
of Virginia.

9. Authors' Biographies
Paul F. Reynolds, JR., Ph.D., University of Texas at
Austin, '79, is an Associate Professor of Computer
Science at the University of Virginia. He has been a
member of the faculty at UVa since 1980. He has pub-
lished widely in the area of parallel computation, spe-
cifically in parallel simulation, and parallel language
and algorithm design. He has served on a number of
national committees and advisory groups as an expert
on parallel computation, and more specificality an
expert on parallel simulation. He has been a consult-
ant to numerous corporations and government agen-
cies in the systems and simulation areas.

Craig Williams received her B.A. degree in Econom-
ics from the College of William and Mary in 1973, a
J.D. from Columbia Law School in 1977, and her
Master's degree in Computer Science in 1987. Her
Ph.D. was awarded by the University of Virginia in
1993. She is now on the research staff in the Com-
puter Science Department at the University of Vir-
ginia. Her research interests include parallel data
structures and both the hardware and software aspects
of parallel computation.

566

Author's List

Alhers, Robert - 53
Anderson, Chuck
Berggren, Peter
Bimson, Dr. Kent - 203
Blanchard, David - 275
Booker, Lashon B. - 423
Bowden, Fred D.J. - 513
Braudaway, Dr. Wes
Breneman, Larry J. - 443
Buettner, Cedric - 399
Burch, Bob
Buller, Mark J. - 487
Calder, Robert B. -71,83
Campbell, Chuck - 233
Ceranowicz, Andy - 3, 135
Chamberlain, Forrest - 83, 399
Chandler, Edward - 275
Christenson, W. M. - 501
Cisneros, Jaime E. - 159, 245
Courtemanche, Anthony J. - 3, 267
Craft, Micheal A. - 245, 433, 451
Crowe, Mike - 329
Dahmann, Judith S. - 423
Davies, Mike- 15, 513
D'ErricoJohn- 501
Dunn, John M. -513
Evans, Dr. Alan - 399
Foss, William F. - 93
Franceschini, Robert W. -21, 93,
103,315,465
Fuller, J. Mark
Gabrisch, Carsten - 15
Gagne, Denis - 521
Ge, Xiaolin - 45
Geib, Christopher - 345
Gonzalez, Avelino - 53
Hamilton, Scott E. - 267
Hieb, Michael R. - 135, 355
Hille, David - 135, 355
Hoff, Bruce - 255, 479
Howard, Micheal D. - 255, 479
Hoyt, Reed W. - 487

Hull, Richard - 233
Jackson, Lance - 233
James, John - 45
Johnson, W. Lewis - 27
Johnson, Thomas E. - 71
Jones, Randolph M. - 27
Karr, Clark R. - 159, 245, 295,
443,451
Kelly,Joseph-385
Kendall, Gary - 149
Koc, Nazim - 63
Kocabas, Sakir - 63
Koss, Frank - 27
Kraus, Matthew K. - 93
Kwak, Se-hung - 529
Laird, John E. - 27
Lankester, Helen - 169
Lehman,JillFain-27, 115
Loh, Elsie - 275
Longtin, Michael - 305
Mall, Howard - 203
Marshall, Henry - 275
Mastroianni, George R. - 487
McAndrews, Gary - 219
McCormack, Jenifer - 203
McGhee, Robert-219, 287
Mclntyre, Robert T. - 391, 495
Megherbi, Dalila - 305
Meliza, Larry L. - 181
Mellies, Penny - 543
Metzler, Theodore - 385
Middleton, Victor E. - 495, 501
Mohn, Howard - 287
Monday, Paul - 193, 267
Moore, Michael B. - 345
Nee, Hai-Lin - 159
Nerode, Anil - 45
Nielsen, Paul E. - 27, 211
O'Keefe, IV, John A. -391
Ourston, Dirk - 203, 275
Oztemel, Ercan - 63
Page, Ian - 149

Panagos, James - 71, 83
Pandari, Ashok - 367
Peacock, Jr., Jeffrey C. - 71, 83
Pemeski, James - 193
Petty, Mikel D. -93, 103,315,
337,433,451,549
Pickett, H. Kent - 549
Pratt, David R. -219, 287
Pullen, J.Mark- 135,355
Rajput, Sumeet - 159, 295, 443, 451
Reich, Barry D. - 345
Reynolds, Paul F. Jr. - 559
Root, Eric - 233
Rosenbloom, Paul S. - 27, 39, 125
Rubinoff, Robert - 27, 115
Salisbury, Mamie R. - 423
Schaper, Gregory A. - 367
Schricker, Stephen A. - 315, 465
Schwamb, Karl - 27, 39
Seidel, David W. - 423
Shillcutt, Don - 329
Slepow, Mary P. - 337
Smith, Joshua E. - 375
Stanzione, Thomas - 83, 399
Stober, David R. - 93
Tambe, Milind - 27, 39, 125
Tecuci, Gheorghe - 135, 355
Thomas, John G. - 197
Tolley, Tracy R. - 315, 465
Tseng, David Y. - 255, 479
Uldudag, Mahmul - 63
Vaden, Eric A. - 181
VanDyke,Julie-27, 115
vanLent, Michael - 27
Warren, Richard - 329
Watkinsjon - 411
West, Paul D. - 337
Williams, Craig - 559
Wise, Ben P. - 83
Wray III, Robert E. - 27

567

