
DEFENSE TECHNICAL INFORMATION CENTER

InhrttLUioKfor tke, Deh*ve. Comnuouty

DTIC®has determined on QDl^ I£(?/&that this Technical Document has the
Distribution Statement checked below. The current distribution for this document can
be found in the DTIC® Technical Report Database.

]A] DISTRIBUTION STATEMENT A. Approved for public release; distribution is
unlimited.

• © COPYRIGHTED; U.S. Government or Federal Rights License. All other rights
and uses except those permitted by copyright law are reserved by the copyright owner.

• DISTRIBUTION STATEMENT B. Distribution authorized to U.S. Government
agencies only (fill in reason) (date of determination). Other requests for this document
shall be referred to (insert controlling DoD office)

• DISTRIBUTION STATEMENT C. Distribution authorized to U.S. Government
Agencies and their contractors (fill in reason) (date of determination). Other requests for
this document shall be referred to (insert controlling DoD office)

• DISTRIBUTION STATEMENT D. Distribution authorized to the Department of
Defense and U.S. DoD contractors only (fill in reason) (date of determination). Other
requests shall be referred to (insert controlling DoD office).

• DISTRIBUTION STATEMENT E. Distribution authorized to DoD Components only
(fill in reason) (date of determination). Other requests shall be referred to (insert
controlling DoD office).

• DISTRIBUTION STATEMENT F. Further dissemination only as directed by
(inserting controlling DoD office) (date of determination) or higher DoD authority.

Distribution Statement F is also used when a document does not contain a distribution
statement and no distribution statement can be determined.

• DISTRIBUTION STATEMENT X. Distribution authorized to U.S. Government
Agencies and private individuals or enterprises eligible to obtain export-controlled
technical data in accordance with DoDD 5230.25; (date of determination). DoD
Controlling Office is (insert controlling DoD office).

Proceedings of the
Sixth Conference on
Computer Generated Forces
and Behavioral Representation

July 23-25, 1996
Orlando, Florida
Sponsored by STR1COM-DMSO
Contract - N61339-92-C-0045

DMSO

>tE F

1
&_L *

IST-TR-96-18

INSTITUTE FOR SIMULATION AND TRAINING • TECHNICAL REPORT

Proceedings of the Sixth
Conference on

Computer Generated Forces
and Behavioral Representation

July 23-25, 1996
Orlando, Florida

Sponsored by:
Defense Modeling and Simulation Office

U.S. Army Simulation, Training, and Instrumentation Command

Organized by:
Institute for Simulation and Training

3280 Progress Drive
Orlando, Florida 32826

University of Central Florida, Division of Sponsored Research

Contract N61339-92-C-0045 CDRL A00D
IST-TR-96-18

Reviewed By

DMSO

CM
CM

CO
O

O
CM

PURPOSE

Preface

This report presents the proceedings of the Sixth
Conference on Computer Generated Forces (CGF)
and Behavioral Representation (BR). The
Conference is scheduled from 23 - 25 July in
Orlando, Florida and is hosted by the Institute for
Simulation and Training (1ST). 1ST is a component
of the Division of Sponsored Research at the
University of Central Florida.

OBJECTIVES

The objectives of this conference are to:
• Provide a forum for information exchange on

CGF and BR modeling research.
• Identify gaps in CGF and BR research.
• Present upcoming research programs and

opportunities.
• Present technology demonstrations to the CGF

and BR community.

Attendees will have an opportunity to participate in
discussions of Service User needs, CGF systems
issues, and technical presentations on the components
of a CGF.

BACKGROUND

Under the sponsorship of the Defense Modeling and
Simulation Office (DMSO, the U.S. Army,
Simulation, Training & Instrumentation Command
(STRICOM), and the Institute for Simulation and
Training of the University of Central Florida is
conducting this Sixth Conference on CGF and BR.

UCF/IST has hosted five previous CGF & BR
symposia. An indication of the success of these
interest group meetings is reflected in the steady
attendance, rising from 84 attendees in Oct. 1990 to
128 in May of 1991, to 310 in March of 1993, to 323
in May of 1994 and 281 in May of 1995.

Following the topics outlined in the Second BR
symposium, 1ST is tasked by DMSO and STRICOM
to host a continuing series of CGF and BR
conferences. These conferences will provide a
continuing ability to promote and focus research in
this important area. Most attendees at previous
conferences expressed an interest in continuing in a
dialogue with developers on future requirements in
order to justify their own internal research and
development participation and commitment to this
emerging technology.

Other conference topics which merit consideration
for resolution by the community of military, industry,
and academic researchers in BR include:
• Interoperability Standards for Behavioral

Representation in Defense Simulations;
• Validation, Verification and Accreditation of

Behavioral Representation models;
• Functional Spec ification rationale for Behavioral

Representation models in Design, Testing and
Training Simulations;

• Interoperability issues for classified modeling in
Behavioral Representation;

• Behavioral Representation in Virtual Reality.

GENERAL

This report is presented in one volume. Wherever
possible, the papers are arranged in the order of
presentation.

A list of attendees will be distributed to all registered
attendees at the conclusion of the conference.

Conference Committee

Conference Chair

Daniel E. MuUally, Jr.

Program Committee

Clark R. Kan-

Douglas A. Reece

Robert W. Franceschini

James Heusmann

Production Assistance

Doug Barrett

Vicki McGurk

Local Arrangements and
Registration

Vince Amico

Karen Gauvin

Linda Hayes

Deodith Mapas

Karen Staaf

11

Table of Contents

Preface i

Session 0: Plenary Presentations
Next Generation Computer Generated Forces 3
David R. Pratt
Technical Director, Joint Simulation System (JSIMS) Joint Program Office
Orlando, FL

Session la: Command Forces Simulation
Command Forces (CFOR) Status Report 11
Susan Hartzog
NRAD, NCCOSCRDT&E
San Diego, CA
MarnieR. Salisbury
The Mitre Corporation
McLean, VA

Architecture of a Command Forces Command Entity 19
Robert B. Calder, Richard L. Carreiro, James N. Panagos, Rob G. Vrablik, Ben Wise
Science Applications International Corp.
Burlington, MA
Forrest L. Chamberlain, Douglas P. Glasson
TASC
Reading, MA

Knowledge Acquisition and Delivery: Constructing Intelligent Software Command
Entities 31
Seth R. Goldman
Hughes Research Labs
Malibu, CA

Task-decomposition Planning for Command Decision Making 37
Jonathan Gratch
Information Sciences Institute, USC
Marina del Rey, CA

in

Session lb: Non-Military Uses of CGF
The CAEN Wargame for OOTW Applications 49
Janusz M. Adamson
Defence Evaluation Research Agency
Sevenoaks, Kent, England, UK

MedSAF: Prototyping a Vision for Medical Simulation in DIS 57
Anthony J. Courtemanche, Kent Bimson
Science Applications International Corp.
Orlando, EL

A Model of Large-Scale Citizen Evacuation for Emergency Management Simulation 67
Ross C. Creech, Mikel D. Petty
Institute for Simulation and Training
Orlando, EL

Application of Computer Generated Force Technology to Interagency Drug
Interdiction 79
John Miller, Greg Jackson
BMH Associates Inc.
Norfolk, VA
Will Miller
Joint Interagency Task Force East
Key West, EL

Session 2a: Reasoning
Intelligent Agents for Aircraft Combat Simulation 93
Silvia Coradeschi, Lars Karlsson, Anders Torne
Linkoping University, C&IS
Linkoping, Sweden

The Automated Wingman: An Intelligent Entity for Distributed Virtual
Environments 101
CPT Sheila B. Banks, USAF, Eugene Santos, LTC Martin R. Stytz, USAF
Air Force Institute of Technology
Wright-Patterson, AFB, OH

Moving Intelligent Automated Forces Into Theater-Level Scenarios 113
Randolph M. Jones, John E. Laird, Paul E. Nielsen
University of Michigan, AI & Robotics Lab
Ann Arbor, MI

IV

Design of a DIS Agent, the AlSim System: A Progress Report 119
Sakir Kocabas, Ercan Oztemel, Mahmut Uludag, Nazim Koc
Marmara Research Center
Gebze-Kocaeli, Turkey

Session 2b: Uses of CGF
Computer Generated Forces (CGF) Assessment 127
Wilbert J. Brooks, Marguerite M. Dymond
Director, USAMSAA
Aberdeen Proving Grd, MD

Considerations for the Use of Entity-based Simulations for Tactical Decision Making
Training 131
Jack Berkowitz
The Mitre Corporation
San Diego, CA

Testing Future Weapons Systems Using CGF Systems 141
Michael A. Craft, Clark R. Karr
Institute for Simulation and Training
Orlando, FL

Use of ModSAF in Development of an Automated Training Analysis and Feedback
System 151
Ted Metzler, John Nordyke
LB&M Associates, Inc.
Lawton, OK

Session 3a: Behavior Representation
CCTT SAF and ModSAF Behavior Integration Techniques 159
Matthew K. Kraus, Derrick J. Franceschini, Tracy R. Tolley, Lee J. Napravnik,
Daniel E. Mullally, Robert W. Franceschini
Institute for Simulation and Training
Orlando, FL

Semantic Arbitration of Behavior for the Interoperability of SAF Simulations 171
Frederic McKenzie, Christopher Dean
Science Applications International Corp.
Orlando, FL
Avelino Gonzalez
Dept. ofElec. and Compt. Engr., UCF
Orlando, FL

Generating Computer Generated Forces 181
Robert Balzer
Information Sciences Institute, USC
Marina del Rey, CA

A New Mechanism for Cooperative Behavior in ModSAF 189
Sumeet Rajput, Clark R. Karr
Institute for Simulation and Training
Orlando, FL

Session 3b: Exercise Planning - AAR
A Briefing-Based Graphical Interface for Exercise Specification 203
Karen J. Coulter, John E. Laird
University of Michigan, AI & Robotics Lab
Ann Arbor, MI

Scenario and Infrastructure Analysis to Measure Large-Scale CGF Exercise
Performance 209
Michael Juliano, Robert D'Urso, Ben Wise, Edward Powell
Science Applications International Corp.
Burlington, MA

Quickset: A Multimodal Interface for Military Simulation 217
James A. Pittman, Ira Smith, Phil Cohen, Sharon Oviatt, Tzu-Chieh Yang
Center for Human Computer Communication
Oregon Graduate Institute
Portland, OR

Soldier Station: Integrating Constructive and Virtual Models 225
David R. Pratt, Shirley Pratt
Naval Postgraduate School
Monterey, CA
David Ohman, John Galloway
TRAC
White Sands Missile Range, NM

Session 4a: Learning
Genetic Algorithms and Force Simulation 237
Janusz M. Adamson
Defence Evaluation Research Agency
Sevenoaks, Kent, England, UK
K. G. Joshi
EDS Defence Ltd
Centrum House, Fleet, Hampshire, England, UK

vi

Training a ModSAF Command Agent Through Demonstration 243
Michael R. Hieb, Gheorghe Tecuci, J. Mark Pullen
George Mason University, CS Dept.
Fairfax, VA

Learning the Selection of Reactive Behaviors 255
Sumeet Rajput, Clark R. Karr, Jaime Cisneros
Institute for Simulation and Training
Orlando, FL
Rebecca J. Parsons
University of Central Florida, CS Dept.
Orlando, FL

An Intelligently Interactive Non-Rule-Based Computer Generated Force 265
Lawrence J. Fogel, Bill Porto, Mark Owen
Natural Selection, Inc.
La Jolla, CA

Session 4b: Project Status Reports
LeatherNet: A Synthetic Forces Tactical Training System for the USMC
Commander 275
Jeff Clarkson
NOSC, NRaD
San Diego, CA
John Yi
KES
San Diego, CA

Computer Generation of Joint Theater Missile Defense (TMD) Assets 283
Donald E. Carver, George M. Parsons
US Army Missile Def. PEO: SFAE-MD-TSD-TS
Huntsville, AL
William T. Naff
BDM Federal, Inc.
Huntsville, AL

The JPSD Corps Level Computer Generated Forces (CLCGF) System Project
Update 1996 291
Jeffrey C. Peacock, Kevin C. Bombardier, James N. Panagos
Science Applications International Corp.
Burlington, MA
Thomas E. Johnson
Raytheon Company
Sudbury, MA

vii

A Strategic Plan for the Integration of ModSAF and CCTT SAF 303
MAJ John D. Norwood
STRICOM, Asst. PM CATT
Orlando, FL

Session 5a: Agent Architecture
Polling vs. Event-driven Computer Generated Forces (CGF) Architectures 313
Michael K. Adkins
USArmyTRAC
Ft. Leavenworth, KS

Broad Agents for Intelligent Simulation 319
Richard T. Hepplewhite, Jeremy W. Baxter
Defence Research Agency, Malvem
Great Malvern, Worcester, UK

Mission Planning and Coordinated Execution for Unmanned Vehicles 329
Patrick G. Kenny, Edmund H. Durfee, Karl C. Kluge
University of Michigan, AI & Robotics Lab
Ann Arbor, MI

An Architecture for Computer Generated Individual Combatants 337
Douglas A. Reece, Paul Kelly
Institute for Simulation and Training
Orlando, FL

Session 5b: W&A
ModSAF Credibility 347
Ben Paz
STRICOM, AMSTI-EC
Orlando, FL
Irwin L. Hudson
NATIONS, Inc.
Orlando, FL

vm

SAF and Manned Simulators Correlation Issues in CCTT 355
Henry Marshall
STRICOM, AMSTI-EE
Orlando, FL
Edward V. Chandler
Science Applications International Corp.
Orlando, FL
Brian R. McEnany
Science Applications International Corp.
McLean, VA
John G. Thomas, Jr.
Director, USAMSAA
Aberdeen Proving Grd, MD

Validation of Individual Combatant Simulation Using a Model-Test-Model
Approach 367
George R. Mastroianni
U.S. Army Natick RD&E Center
Natick, MA
Victor E. Middleton
Simulation Tech., Inc.
Dayton, OH

Using the Combat Instruction Set for Verification and Validation of Semi-Automated
Force Behaviors: High and Low Intensity Case Studies 373
Damon D. Baker, Charles (Chad) W. Mullis
U.S. Army TRAC
White Sands Missile Range, NM

Session 6a: Physical Modeling
Acoustics in Computer Generated Forces 381
Robert L. Albright
US Army TRAC
Ft. Leavenworth, KS

Creating a Synthetic Environment for Naval Applications 389
Peter B. Howells, G. Giguere
CAE Electronics Ltd.

IX

St. Laurent, Quebec, Canada

Phenomenology Behaviors in ModSAF 397
Se-Hung Kwak
Lockheed Martin, ADS
Cambridge, MA
MAJ Reba Lyons
PM DIS - STRICOM
Orlando, FL

Detection Models for Computer Generated Individual Combatants 409
Douglas A. Reece, Ralph Wirthlin
Institute for Simulation and Training
Orlando, FL

Session 6b: Systems Architecture
Indirect Fire Support on the ModSAF Virtual Battlefield 419
Martin D. Howard
Univ. of Texas at Austin, Applied Research Laboratories
Austin, TX

An Architecture for Linking Aggregate and Virtual Simulations 427
Stephen A. Schricker, Robert W. Franceschini, David R. Stober, Jonathan C. Nida
Institute for Simulation and Training
Orlando, FL

Using an Ordnance Server to Provide Validated Weapon Models to ModSAF 435
Lawrence Ullom
NAWC-AD, Code 5161, MS-3
Patuxent River NAS, MD
Pete Fischer
J. F. Taylor, Inc.
Lexington Park, MD

Interfacing External Decision Processes to DIS Applications 441
Elizabeth L. White, Ken Frosch, Vincent P. Laviano, Michael R. Hieb, J. Mark Pullen
George Mason University, CS Dept.
Fairfax, VA

Session 7a: Individual Combatant Behavior
Threat Analysis Using Fuzzy Set Theory 455
Jaime Cisneros, Clark R. Karr, Sumeet Rajput
Institute for Simulation and Training
Orlando, FL
Pamela McCauley-Bell
University of Central Florida, IE Dept.
Orlando, FL

Micro Resolution Terrain Processor (MRTP) 463
John A. O'Keefe
U.S. Army Natick RD&E Center
Natick, MA
Charles W. Howard, Paul Saucier
Raytheon Company
Tewksbury, MA

Control of a CGF Fireteam with Voice and Gesture Commands 471
Douglas A. Reece
Institute for Simulation and Training
Orlando, FL

Sensitizing Synthetic Forces to Suppression on the Virtual Battlefield 479
Michael L. Fineberg, Gene E. McClellan
Pacific-Sierra Research Corp.
Arlington, VA
Steven D. Peters
Micro Analysis & Design
Boulder, CO

Session 7b: Unit Control
Command Agent Technology in a War Game Simulation 493
Gary Preston
Logica, UK Ltd
London, NW1 2PL, England, UK
Janusz M. Adamson
Defence Evaluation Research Agency, Centre for Defence Analysis
Sevenoaks, Kent, England, UK

Representative Communications for the Purpose of Command and Control in
Computer Generated Forces 503
Jean Philippe Landry, S. Valade, Dave N. Siksik
CAE Electronics, Ltd
St. Laurent, Quebec, Canada

An Architecture for Integrating Command and Control Capabilities of Heterogeneous
Simulations 511
Frederic McKenzie, Gregory Shumaker, Pete E. Campbell
Science Applications International Corp.
Orlando, FL

XI

Drilling CGF Agents in METT-T: An Alternative Approach to Conventional AI 519
Richard W. Penney, M. J. Kirton
Defence Research Agency
Worcestershire, UK

Session 8a: Terrain Modeling
Multiple Elevation Structures in the Improved Computer Generated Forces
Terrain Database 533
Thomas Stanzione, Forrest Chamberlain, Larry Mabius, Mike Sousa
TASC
Reading, MA
Alan B. Evans, Cedric B. Buettner, Jonathan Fisher, Howard Lu
Science Applications International Corp.
Burlington, MA

Representations of Buildings for Individual Combatant CGF 545
Douglas A. Reece, Hsiao-Kun Tu
Institute for Simulation and Training
Orlando, FL

Ocean Representation in the Improved Computer Generated Forces Terrain
Database 555
Thomas Stanzione, Forrest Chamberlain
TASC
Reading, MA
Alan B. Evans, Cedric B. Buettner
Science Applications International Corp.
Burlington, MA

Global Coordinate System in the Improved Computer Generated Forces
Terrain Database 565
Thomas Stanzione, Forrest Chamberlain
TASC
Reading, MA
Alan B. Evans, Cedric B. Buettner, Howard Lu
Science Applications International, Corp.
Burlington, MA

Session 8b: Advanced Concepts
An Adaptive Environment Modeling Method Under Uncertainty 573
Richard A. Alo', Moshen Beheshti, Andre de Korvin, Chenyi Hu, Ongard Sirisaengtaksin
Dept of Compt. & Math Sci., College ofSci. & Tech.
Houston, TX

xii

Simulating a Battlefield Maneuver Using Reaction Diffusion Equations 583
Mary Anne Fields
US Army Research Lab
Aberdeen Prov Grd, MD

Flexible Teamwork for Intelligent Simulated Pilots 591
Milind Tambe
Information Sciences Institute, USC
Marina del Rey, CA

Distributed Modeling of Cooperative Behavior by Mobile Agents 599
Peter S. Sapaty
Dept. of Electronic & Electrical Engr., Univ. of Surrey
Guildford, Surrey GU2 5XH, UK

Authors List 614

xni

Session 0: Plenary Session

Pratt, (SIMS

Next Generation Computer Generated Forces

David R. Pratt
Joint Simulation System Joint Program Office

12249 Science Dr. Suite 260, Orlando, FL 32826
prattd@stricom.army.mil

1. Abstract

Computer Generated Forces (CGF) originated with
the advent of the computer wargames to support train-
ing and analysis. CGF really came into its own in
the late eighties as part of the Simulation Networking
(SIMNET) Semi-Automated Forces (SAF) program.
Since then CGF have been an integral part of almost
all Distributed Interactive Simulation (DIS) Exer-
cises. The next major evolutionary step occurred
when the Command Forces (CFOR) program incor-
porated Command and Control capabilities. The
CGF community is now ready for the next major step
forward. In this paper we will present a brief taxon-
omy of CGF and some of the inspirations and chal-
lenges for the next generation of CGF systems.

2. Disclaimer

This is an academic paper. The information and ideas
are not part of - or used in the evaluation of the
Joint Simulation System (JSIMS) Integration and
Development Contractor Request For Proposal
(RFP).

3. Introduction

As the computer matured and uses beyond straight
number crunching were found, the military developed
Computer Aided Training (CAT) war gaming. These
first wargames were the automated equivalent of the
"Risk" strategy game. This formed the basis of the
constructive combat models in the years to come.
More than anything else they kept track of the
strength and location of the forces and resolved the
engagements the users instigated. From these simple
games, the roots of Computer Generated Forces
emerged. The forces represented in these games
tended to be aggregated and useful only for high level
staff training due to the low resolution and fidelity of
the models. The resolution and fidelity were limited
by the available hardware resources and training audi-
ences needs.

The major advance in CGF came about with the ad-
vent of the microprocessor. This provided the founda-
tion for the development of the first virtual simulation
system. It was quickly realized that it was not cost
effective to build simulators for all the Battlefield

Operating Systems (BOS)1. To round out the simu-
lator units and add the Opposing Force (OPFOR),
the Semi-Automated Forces (SAF) systems were
developed. Currently, SAF represents the state of the
art in CGF. However, we are starting to see pushes
toward the next major evolutionary generation of
CGF, the Autonomous Forces.

It is important to realize some of the tradeoffs that
must be accomplished when developing a system.
As shown in Figure 1, the developer and, in turn, the
user must exercise tradeoffs between four important
parameters. Resources - the number and type of peo-
ple and equipment. Fidelity - How accurate are the
models used to represent the cognitive and physical
processes. Resolution - What level (platform, unit,
etc.) is the battle space modeled. Execution Time -
Speed of the model and execution of the model (fester
/ slower than real time). The determination of these
tradeoffs is dictated by the exercise. It is here where
the generations of CGF fit in, each has a niche on the
overall spectrum of CGF possibilities.

Execution Time

Resolution

Boundary of

Model Space
Fidelity

Resources held constant

Figure 1: Tradeoffs in the Model Space

We have organized this paper into roughly two parts.
In the first part we take a look back and develop a
taxonomy for CGF systems. The second part looks

1 More commonly called entities, but are sometimes
represented as functional units.

to the future and tries to characterize what the next
generation of CGF is going to be like. It is important
to note that when we look into the future we see what
might be, not what will be.

4. Generations of CGF

Like most taxonomies the categories can be parti-
tioned in various ways and called different things. For
the sake of this paper, we have chosen to develop a
taxonomy based upon the cognitive processes used in
the CGF systems. While this does not lend itself to a
strict hierarchical breakdown, the generations can be
seen in Table 1. This allows us to talk about general
characteristics of each of the generations. One of the
reasons why this is not a strict generational system is
the current generation has not replaced the previous
ones. This is due to the large number of requirements
that the CGF systems fill. As a result, the genera-
tions tend to fill a niche requirement even after they
have been supplanted technically.

Generation Cognitive Process
1 None
2 Detection and engagement
3 Task interruption and execution
4 Multilevel Command and Control
5 Goal Selection and Learning

Table I. The CGF Taxonomy

4.1 First Generation

The first generation of CGF is characterized by their
complete lack of any cognitive process. As such,
there is no deviation from the script that is laid down
for them. While this might seem like a useless gen-
eration of entities, in reality they are some of the
most instrumental and common CGF Systems. The
data logger playback and traffic generator systems are
typical of this generation. The data logger allows a
prerecorded exercise to be repeated, observed, and
analyzed over and over again. This provides the basic
functionality for an After Action Review system. The
exercise is recorded as it occurs, then it is analyzed
after it is over to provide insight into what happened.
More complex scenarios can be constructed by laying
down new track over the existing ones or splicing
pieces of existing tracks together. Likewise, the very
definitive tracks are used in analytic evaluations since
the paths and timing can be held constant over a large
number of runs.

The noise generation systems are used to populate
the battle field with a large number of low fidelity
entities. The use of such a system is the track gen-
erator for a J-STARS like system, or to test a net-
work's connectivity and throughput. At the Naval

Postgraduate School, we used a noise generator ex-
tensively when giving demonstrations to kids. The
entities provided ample simple targets for them to
shoot at.

The advantage to this generation of the CGF is that
they are simple to use and require a minimum of re-
sources to run. This allows a large number of enti-
ties to be placed on the battlefield with a minimum of
resources.

4.2 Second Generation

The second generation of CGF added the ability for
the entities to execute simple reactive behaviors that
do not interfere with the planned actions. These be-
haviors are normally limited to detection, targeting,
and engagement of hostile forces. The paths and
routes are laid out by a user before or during the exer-
cise; the reactive actions occur along these paths.
Typical of these actions are for a unit to follow the
route at all costs; the unit will charge on despite all
of its peers getting killed, until it is killed, or until it
reaches the end of the predetermined path. The com-
plete lack of behavior reprogramming requires that the
user pay close attention to the entities to ensure that
they do not do something counter to common sense
and doctrine.

The advantages of the second generation CGF are
exemplified in the majority of current constructive
models. These models are used for both training and
analytical purposes. They tend to be manpower in-
tensive to set up and run, but they are predictable.
Some of them, particularly those used for analytical
purposes, have a batch capability that allow multiple
runs without operator interaction to determine the
solution space for a given set of parameters. The
rigidness of the behaviors limits the number of vari-
ables and aids in the analytic process.

4.3 Third Generation

With the advent of the virtual training systems came
the realization that the aggregate Second Generation
CGF systems could not adequately portray the indi-
vidual entities on the battlefield. To satisfy this need
the next generation of CGF was developed. This gen-
eration, commonly called Semi-Automated Forces
(SAF), are the result of this work. These systems are
typically a collection of preprogrammed tasks. The
tasks themselves are made up of either a rule-based or
state machine-based systems. What makes these sim-
ple behaviors so powerful is the nesting of the behav-
iors into task frames. The task frames are in rum
nested within other task frames.

Missions are made up of a series of task hierarchies.
This was a major advancement in the state of the art.

The hierarchy of tasks allows for complex reactive
behaviors by creating a task queue. While not able to
do goal selection, the second generation of CGF is
capable of building complex missions with compli-
cated reactive behaviors. The creation of the task
frame sequences allows the user to create complex
missions for the entities and, in some cases, simple
units. More complex unit relationships can be built
by linking the frames together in parallel.

4.4 Fourth Generation

The Third Generation CGF was a great step forward
in the emulation of platform level entities. What is
lacking is a representation of the Command and Con-
trol (C2) process. At its most simplistic level, the
C2 process can be broken down in order to decide
what the unit and subordinate units are suppose to
do, and ensure it is carried out. While seemingly
simple, it is one of the hardest tasks on the battle-
field. The defining characteristic of the Fourth Genera-
tion CGF is the ability to replicate this process.

While there are many ways to insert C2 into an exer-
cise, we shall limit our discussion to systems that
represent the Headquarters unit in software. Even
with this limitation there is a further limitation that
we will make which is to ignore the majority, if not
all, of the staff functions outside of the combat opera-
tions. This is a very valid assumption since very few
of the CGF systems support any of the staff functions.
As a result, only the commander is represented. This
reduces the problem space to having to model the
decision, or cognitive, processes, and the communi-
cation, or information gathering and order dissemina-
tion, process.

Typical of the Fourth Generation of CGF is
DARPA's Command Forces (CFOR) program.
CFOR models the C2 process by representing it as a
series of interactions and behaviors of command enti-
ties. This results in the C2 process being primarily
an information flow process among command entities
problems. To address this, the Command and Con-
trol Simulation Interface Language (CCSIL) was cre-
ated to represent the information exchanges between
commanders. CCSIL messages are then passed
through the command's communication structure to
emulate the real battlefield information flow. This
limits the information to those commanders who
would really have it.

Even with a realistic information content and flow,
the decision making is done at the individual com-
mand entities. These are the originator and recipient
of the data. To simplify the generation of the orders
and taskings from the user developed behaviors,
CFOR uses a layered architecture where the develop-
ers only concern themselves with the top layer, the

Command Entity Application. The developer inter-
acts with the lower layers by means of a well defined
API. Once the orders are created and distributed they
are interpreted by a Third Generation CGF system. In
the case of the CFOR, Modular Semi-Automated
Forces (ModSAF) executes the orders.

5. Where are we now?

Roughly equal numbers of people cheer the success of
the various CGF programs and deride them. The
reason for this is quite simple, the systems are suffer-
ing from their success. By this, we mean that the
highly successful programs are being put in a situa-
tion to do something that they were never designed
to do, and are being criticized because they cannot
perform the tasks with ease. Starting at the entity
level, the state of CGF mirrors the current state cf
Distributed Interactive Simulation (DIS), both work
well at the company and below level. Once the entity
counts and command structures start getting above
that, they start to break down. From the aggregate
level, it is the opposite. The higher level units can be
reasonably portrayed, but the individual platforms
have problems. To compensate for these problems we
have seen a series of aggregate level models interfac-
ing with the platform level models with varying de-
grees of success. This is not necessarily a limitation
on part of the systems' developers, rather it is a com-
bination of modeling paradigms, resource limitations
and funding, and research and development profiles.

One of the major problems with the government fund-
ing system is that it is much easier to incrementally
add a capability to a system than it is to re-engineer
it. This results in systems that are large and mono-
lithic, since the funding agency "just wanted to add
one feature, not redesign the system." Due to the
growth pattern and architectural age, the current CGF
system have become resource intensive since almost,
if not all, of the capabilities are in every version of the
system.

One of the major problems of a system architecture
having a long life span is the clean interfaces and
modular nature of the first version erodes as features
are added. This makes it very difficult to find the core
features of the system and as a result the system be-
comes hard to maintain and adapt.

Those who have gotten us here have accomplished a
Herculean task. In doing so, they have overcome a
large number of hurdles. However, if we are to satisfy
the customers who have grown to expect miracles, it
is time to bring on the next generation.

6. Challenges for the Next Generations of CGF

Given all that it has taken to get to where we are
now, there is as much, if not more, to go before there
is a CGF system that can repeatedly pass a Turing
test. With that in mind, the remainder of this paper
deals with some of the critical technologies that will
have to define the next generation of the CGF.

6.1 Changing and Adding Behaviors

The true value of a CGF is the behaviors that are part
of the model. Likewise, these are some of the hardest
things to model. The reason for this is quite simple,
it is very hard to express any cognitive process in a
clear, unambiguous manner. Given that is the case,
we are presented with the first of the major challenges
- standardization and codification of processes and
cognitive models. There are currently several tasks
under way by the Joint Staff and the various services
to do this. The outcome of these efforts could then be
merged and encoded into a common conceptual
model. It is this encoding, expressed in terms that
the operators can understand and agree to, that could
then be compiled to generate the behaviors of the
entities on the battlefield. By compiling the behav-
iors straight from the operators' task list to a runtime
format, we can save significant time and resources in
the generation, modification, and validation of the
behaviors that make up the model.

The development of a common compatible specifica-
tion language resolves some of the needs of the be-
havior generation of the next generation of CGF;
however, it does not solve all the problems. The user
of the CGF systems needs to be able to generate new
behaviors to represent the unique training objectives
of the particular exercise. The behaviors and taskings
need to be tunable to represent the human conditions.
If the CGF entity has been in combat for the last
twenty-four hours, the decision cycle is going to be a
little longer and they might not be as aggressive.

6.2 Reduce Required Resources

With a few exceptions, the CGF have been developed
for use by dedicated operators or gaming cells. This
is roughly equivalent of fighting the war through an
interpreter. The next generation CGF system will
interact directly with the war fighter using their or-
ganic systems. This is a fairly broad statement that
most people interpret to mean that the CGF will be
controlled by the Command, Control, Communica-
tion, Computer, and Intelligence (C4I) systems.
That is a part of it, but there are many more means of
communication that are used. To explore the new
interface paradigms, the CGF developers are going to

have to interact to new communities. For example,
the use of speech as both an input and output mecha-
nism is starting to reach a point of maturity where it
is robust enough to be useful in a fielded system.
This opens up the possibilities of the synthetic radio
network where the software scout can send a spot
report back to the human commander and the com-
mander can give him a new tasking. In order for this
to happen, natural language processing will have to
evolve to a point where the messages can be parsed
and understood with some degree of reliability. The
new interfaces are not limited to speech; gestures and
image understanding also play a part. In a field exer-
cise, the commander or the operations staff will mark
up a map as they develop the plan. After this, an op-
erations order is developed and briefed. By under-
standing the meaning of the overlays, the text of the
order, and the gestures used in the briefing, the basis
of the CGF operations of the exercise has been cre-
ated. In small unit operations, the use of formal ges-
tures, such as hand and arm signals, can represent a
majority of the communication bandwidth between
entities. Since one of the major functions of the CGF
is to flesh out units, they should be able to take di-
rection in the same manner as their real life counter-
parts.

The reduction in resources is not just in the set up on
an exercise, the next generation runtime system has
fundamentally changed from the current monolithic
systems. The new systems take full advantage of the
network computing paradigm that allows the process-
ing of the data to migrate from one processor to an-
other. The user's concern with the CGF is primarily
- "is it doing what I want it to", not - "what is the
CGF computing model and where are process execut-
ing." This only becomes a concern when the CGF is
not providing the user with the responses in a timely
and realistic manner. Taking advantage of this, the
next generation CGF is based on the paradigm that
there are services that are available on the simulation
network, so use them. The existence of processing
modules allows the system to dynamically alter
where computations are done. The ability to do load
shedding and balancing is central to the systems abil-
ity to reduce the number and power of machines re-
quired for the system to operate efficiently. By
segmenting the CGF tasks into functional modules,
they can be optimized and parallelized to increase the
flexibility and scalability of the system. This way if
there are no ships in the scenario, that capability will
not have to have resources allocated to it even though
they will not be used. This takes the "Dial a War"
concept used in DIS down to the functional level.

6.3 Model Forces at a User Selected Level Of
Resolution / Fidelity

The current state of CGF lends itself to the large
monolithic systems geared to a particular level of
forces. The next generation system will be built
much more along the lines of the layered system
shown in Figure 2. The foundation of these systems
will be a common set of core Support Services.
These are the parts of a CGF system that are intro-
duced as simulation artifacts rather than models cf
real life processes. This includes such modules as the
computer communication network interface (i.e. Run
Time Infrastructure (RTI) interface), the process
scheduler, and persistent object storage and manage-
ment. This foundation is the most universal of the
three layers and, as such, the most reusable.

Corps
Level

Battalion
Le\el

Platform
Level

I | Simulated Representation

Common Services

| | Support Services

Figure 2: Interactions of Modules in a multifidelity
CGF System

The remaining two layers of the next generation CGF
system represent where the differentiation between
CGF systems exists. At these layers, the Common
Services and the Simulated Representation, the de-
veloper has to make the tradeoffs shown in Figure 1.
This leads to differing implementations of the same
military entity. For example, if a CGF system needs
to run on a single workstation much faster than real-
time, it will have lower fidelity and resolution than
one that runs across a network of machines in real-
time. However, if both systems had a consistent
interface to the object, it would then be possible to
replace one object with the other. This, in turn,
gives the user the ability to select the object that they
need for a particular exercise from a repository.

The next logical step is to have a single object that
has multiple fidelities and resolutions internal to it.
This would allow the ability of an object to be con-
sistent within itself regardless of the echelon it is
operating at. Using the terrain as an example, a plane
is flying high overhead, it can see a large area of ter-
rain, but at a fairly low level of resolution. As the
plane comes in for a close air support mission the
terrain changes resolution to match the fidelity needed
for the ground targets to operate in. As the plane rolls
out, the terrain is relaxed once again to allow the
large area visualization. While the scenario above is
done easily with level of detailing on a single station
visualization system, it is much harder to do in a
dynamic multiplayer system and in a system where
the CGF has to reason about the terrain.

The middle layer of Figure 2, Common Services, is
where the echelon modeling starts to make a differ-
ence in the types and the functionality of the modules
in the simulation system. At this level the common
services are those modules that help establish the
common operating environment for the CGF, or are
modules that apply across a wide range of CGF sys-
tems. This layer is comprised of such modules as
the Synthetic Environment, mobility models, Line of
Sight (LoS) processes, and the interconnections to
the user's organic equipment.

The top layer contains the Simulated Representa-
tions, or physical and cognitive processes, of the
CGF. As in the layer below it, the objects are repre-
sented by either a multifidelity object or a family of
objects having the same interfaces. Once again, this
allows the user to perform tradeoffs to compose the
CGF mix that is appropriate for the exercise. How-
ever, at this level of abstraction and encapsulation the
consistent interfaces also allows for the insertion of
the human player at various echelons. The big advan-
tage of the multi-resolution object representation is
that the units are internally consistent with them-
selves. As a result the need for external aggregation /
disaggregation no longer exists, since the object per-
forms it internally.

6.4 Goal and Mission Selection

Perhaps, one of the greatest differences between hu-
mans and the rest of the animal kingdom is our abil-
ity to set goals, rationalize them, and make plans to
achieve them. In order to reduce the number of con-
trollers, the next generation CGF needs to have this
capability as well. A goal, such as taking a hill, can
be assigned to an object by internal or external forces.
Externally, it can simply be told to take the hill.
Internally, it has to rationalize the larger context be-
fore it decides that taking the hill is to its advantage.
The reasoning process is the hard part. To determine
if the hill should be taken, several questions need to

be answered and tradeoffs need to be done in the an-
swer space. In many ways, this is what the battlefield
commander does as a matter of course, set the goals
of the unit in the context of the overall mission.

Once the goal has been set, the next step is to plot
out a mission, or how the goal is going to be
achieved. Once again tradeoffs will have to be done.
For example, the variables of expected number of
friendly / enemy / neutral casualties, amount of terrain
covered, types of equipment needed and available,
possibility of future actions, etc.. all have to be con-
sidered. The next generation of CGF will have to be
able to make these types of determinations if we ex-
pect them to represent forces at different levels while
reducing the amount of human controllers.

Perhaps the biggest challenge is the reprioritization of
the goals and mission. Current Third Generation
CGF Systems have the ability to interrupt what they
are doing to respond to external stimuli, such as
mine fields and air attacks. Once the stimuli induced
event is over, the mine field breached or the planes fly
off, the original mission resumes. What is lacking is
the ability to reprogram the goal based upon what
just happened. In the case of the air attack, the enemy
now knows where the CGF units are, so surprise is
lost. As a result, the mission parameters have
changed and the tasking and goals need to reevalu-
ated, and possibly altered, in light of the new infor-
mation.

6.5 Learning

The final of the characteristics of the next generation
of CGF system that we are going to discuss, know-
ing that there are others, is the ability of the CGF to
learn. If we take a look at the rationale for building
the majority of the CGF programs, we see that they
were used to support training. The training that has
been done has been completely on the human side.
At the end of the exercise, it is the same CGF as that
which started the evolution. The CGF should be
able to learn from the exercise as well. For example,
if one of its units runs into a minefield and gets hit
with artillery fire, it might be a coincidence. The
second time it happened, the CGF should see a pat-
tern developing. The third time the CGF hit a
minefield, it should be expecting the artillery fire and
react accordingly. The ability to find trends and ex-
ploit them is a characteristic of a good commander.
Likewise, repetitive actions and tactics allows the
enemy to predict what is going to happen next and
react to it. As the CGF assume the role of a battle-
field commander, it needs to learn how to fight the
war as well.

7. Conclusion

In this paper, we have presented three key topics: (1)
How we arrived at the current state of CGF; (2) The
fact that there are niches for many different kinds of
CGF and no one monolithic system can satisfy all
needs; and (3) There is still a lot of work to be ac-
complished, but we are poised to take the next great
step. The next generation will be one step closer to
the objective CGF system that is capable of plotting
goals, strategies to achieve them, taking advantage of
the opponent's mistakes, and exhibiting those human
traits that make us individuals. At this point in
time we will have a true Autonomous Force.

8. Author's Biographies

Dr. David R. Pratt is serving as the first Technical
Director of the Joint Simulation System (JSIMS)
Joint Project Office in Orlando, Florida. He holds
this position concurrently with an appointment as a
tenure track faculty member at the Department of
Computer Science, Naval Postgraduate School (NPS)
in Monterey, California. Prior to joining the faculty
at NPS, Dr. Pratt was a Data Processing Officer in the
United States Marine Corps. He holds a Ph.D. and
M.S. in Computer Science from NPS and a BSEE
from Duke University. He has an extensive publica-
tion record with over thirty published articles cover-
ing a wide range of computer topics.

Session la: Command Forces Simulation

Salisbury, The Mitre Corporation
Calder, SAIC

Goldman, Hughes Research Labs
Gratch, ISI/USC

Command Forces (CFOR) Program Status Report

Susie M. Hartzog
NCCOSC RDT&E Division, code 44205

53140 Systems Street
San Diego, CA 92152-7560

Mamie R. Salisbury
The MITRE Corporation

1820 Dolley Madison Blvd
McLean, VA 22102

1. Abstract

The command forces (CFOR) program is implement-
ing a new aspect of warfare simulation: explicit
modeling of command and control. The program
adds three major elements to the corpus of combat
simulation: (l)an architecture where software simu-
lation of command and control interacts with the
simulated battlefield through a set of common serv-
ices; (2) a common language for information between
and among command entities and human participants;
and (3) a development strategy that integrates the
efforts of multiple developers to produce a function-
ing multi-service command forces simulation.

The CFOR program has passed through the concept
and planning phases and is being implemented. This
paper presents a brief overview of the three major
elements along with a description of the current status
of the program and its near term objectives.

2. Background

The Command Forces (CFOR) project is a part of the
Synthetic Theater of War (STOW) program, an Ad-
vanced Concept Technology Demonstration (ACTD)
that is jointly sponsored by the United States Atlantic
Command (USACOM) and the Defense Advanced
Research Projects Agency (DARPA). The STOW
program is scheduled to support a USACOM exercise
in 1997 where entities from each US armed service
will interact with each other and with credible oppos-
ing force objects in a virtual simulation environment.
The STOW ACTD will be the first large-scale dem-
onstration of a High Level Architecture (HLA) simu-
lation Federation supported by the HLA's Run Time
Infrastructure.

The STOW ACTD requires the representation of
larger-scale and more diversified military operations
in virtual simulation. A key element in achieving this
goal is the ability to represent both fighting forces and
their commanders in software. CFOR extends the
current entity level simulation architecture to incorpo-

rate explicit, virtual representation of command
nodes, C2 information exchange, and command deci-
sion making.

3. CFOR History

The CFOR concept and program was born in the Fall
of 1993 in response to DARPA's concern with the
vertical scalability of entity-level simulations.
DARPA's goal in the Advanced Distribution Simula-
tion project was to provide a high resolution, high
fidelity battlefield simulation that would support Joint
Task Force level training. The modeling techniques
being applied at that time did not seem likely to
achieve realistic simulated behavior for larger and
more complex force structures. After studying the
problem we determined that the vertical scalability
problem might be solved by focusing on the com-
mand and control entities that synchronize and direct
the activities of the forces applied in a battle. Our
theory was that the basic actions of an individual tank
or airplane are fairly straightforward. Complexity
arises from the organization of platforms into units
that can execute temporally and spatially sophisti-
cated actions to accomplish goals. The key tasks of
organizing platforms into units and directing and
controlling their actions are accomplished in the real
world by battlefield commanders.

4. CFOR Contributions

The CFOR program adds three major elements to the
corpus of combat simulation. These three elements
are described here.

4.1 CFOR Architecture

The CFOR architecture was devised to allow for ex-
perimentation in the application of cognitive model-
ing techniques to the problem of simulating battle-
field commanders. The architecture is flexible in that
it allows multiple developer teams to explore differ-
ent technical approaches for developing sophisticated
models of battlefield commanders and necessary de-

11

Command Entity Application

Command Decision Processes

I t I- -API

CE Information Services and Utilities

Platform
Behavior

Sense
Perceive

Move

Shoot

Comms

C2 Utilities

Tactics,
Techniques,
Procedures Missions

& Tasks

Environment
Utilities

Unit Info

t t i
CGF/CE Baseline Infrastructure

Computer Generated Force Application

Figure 1: CFOR Technical Reference Model

cision-makers and to link those models to the existing
entity-level simulations. In the CFOR program, these
models of commanders and decision-makers are
called Command Entities.

The CFOR architecture is portrayed best by the tech-
nical reference model (TRM). This TRM (see Figure
1) promotes interoperability and coherent C2 activity
by providing a shared infrastructure, a common set of
information and computing services, accessible
through a well-defined applications interface.

The TRM is composed of three layers: Application
Layer, Information Services and Utilities Layer, and
Baseline Infrastructure Layer. This layered approach
provides three specific benefits: 1) it provides a
means of centralizing control over the baseline of
doctrinal knowledge needed by the command entity
applications; 2) it reduces command entity develop-
ers' efforts by providing common reusable software;
and 3) it shelters the command entity developers from
technology and functional enhancements in the base-
line applications (e.g., ModSAF) and allows them to
focus on command decision behavior.

• The Command Entity Application layer is where
the command decision-making processes reside.

Command Entity Applications may be fully auto-
mated software or C2 workstations operated by
human command entities. All details about the ac-
tual implementation of a software command entity
are under the purview of the simulation developer
organizations; they are free to implement their own
approach to making command decisions. Likewise,
the adaptation of C2 workstations to the CFOR ar-
chitecture is dependent only on the interface speci-
fication to selected modules with the Information
Services layer. Workstation developers are free to
decide how to display, massage, or augment the
simulation data available via the Information Serv-
ices layer.

The Information Services layer contains services
and utilities that provide the information needed to
support command decisions. These services im-
pose few restrictions on how to model the decision
process. They avoid making any inferences or
judgments that are the proper purview of command
entities.

Access to the services and utilities is specified by
an Application Programmer's Interface (API) writ-
ten in Interface Definition Language (IDL).

Services available include the following:

Platform Behaviors provide a generic interface
to a command entity's physical representation on
the battlefield. A command entity is associated
with a vehicle or a set of vehicles (e.g., a command
post). For example, an Army Company com-
mander may ride in a tank, a Bradley Fighting Ve-
hicle, a helicopter, or a HMMWV. Services pro-
vided mimic the commander's ability to sense from
his vehicle, move his vehicle around the battlefield,
and employ his weapons. In the past two years the
platform behaviors have been extended as the un-
derlying application responsible for modeling the
commander's vehicle has become more capable.
For example, a command entity can now request in-
formation about the atmospheric conditions ob-
servable or discernible from his vehicle.

Communications offer an application interface to
Command and Control Simulation Interface Lan-
guage (CCSIL) message utilities, (see below for a
discussion of CCSIL)

C2 Utilities represent the background knowledge
and rote reasoning capability of the commander—
"routine" knowledge, shared by every human com-

12

mander, that does not depend on subjective judg-
ments. This is important for several reasons:
• To prevent redundant and potentially inconsis-

tent knowledge acquisition and engineering ef-
forts by the command entity developers.

• To help focus the activities of the command en-
tity developers on addressing the difficult issues
in modeling subjective, context-sensitive judg-
ments and decisions.

• To localize the encoding of doctrinal information
within the CFOR family of application software
for two reasons: 1) to facilitate CFOR testing and
evaluation; and 2) to minimize the effort needed
for future enhancements or modifications for
particular exercises or scenarios.

Figure 2: Activity Relationships

Services include
Environmental Utilities which provide the ability
to compute mobility corridors, control measures,
reverse slopes, routes, travel time and speed.
(Environment includes terrain, ocean, and atmo-
sphere.)
Unit Info which provides access to static data
about units (own and enemy) and the ability to
make basic inferences (e.g., combat power) from
the raw data.
Missions and Tasks which provides doctrinal
decision templates to help interpret an ordered
mission and to devise a plan.
Tactics, Techniques, Procedures which provides
templates to help fill out orders and implement a
plan.

• The Baseline Infrastructure Layer contains the ba-
sic platform representation and general DIS inter-
face utilities. These capabilities are accessed by
command entity applications indirectly through the
Information Services layer. For the STOW ACTD
the baseline infrastructure layer includes the four
Synthetic Force applications: Army SF, Navy SF,
MC SAF, and AFSAF.

4.2 CCSIL

The Command and Control Simulation Interface Lan-
guage (CCSIL) is a special language for communicat-
ing between and among command entities and small
units of virtual platforms generated by computers for
the STOW ACTD environment. CCSIL includes a
set of messages and a vocabulary of military terms to
fill out those messages. It was developed to facilitate
interoperability between different implementations of
command entities and platform entities (vehicles) in
an HLA Federation.

A common language designed for interpretation by
software is needed to allow all three implementation
approaches (workstation, automated command entity,
and SAF) to work together in one environment. By
using the structured format of CCSIL messages, hu-
mans at real world command and control worksta-
tions can send orders and directives to software
command entities and expect them to react appropri-
ately. Likewise, software command entities can ex-
change messages with each other.

Without a common language and communications
services, every new element added to a Federation
would need to be iteratively retrofitted to interoperate
with every other existing element of the virtual simu-
lation Federation. CCSIL serves as a unifying thread
among diverse implementations of command entities,
computer generated forces, and command and control
workstations.

4.3 CFOR Development Process

The process for developing a fully operational CFOR
system is depicted in Figure 2 and described in the
following paragraphs.

The process is being applied to each of the Services
independently, although oversight over the entire
program is being applied by the program System En-
gineer.

• Requirements Definition. The first step in imple-
menting CFOR is deciding and documenting which
C2 elements will be represented in simulation,
which missions they should perform, and how each
of them will be implemented (human, automated

13

commander, or SAF). This concept is developed in
close coordination with Service representatives.

Knowledge Acquisition. Experts in each field and
for each military Service gather information about
the command process. Particular emphasis is
placed on planning, decision-making, monitoring,
and revising plans. After initial gathering and
documenting by contractors, the Services will as-
sume responsibility for maintenance of the knowl-
edge base.

CCSIL Development. CCSIL is based on the prod-
uct of knowledge acquisition—on the documented
C2 process and the identity, format, and content of
relevant message exchanges. The CCSIL devel-
opment team works closely with the knowledge ac-
quisition team to assure clarity and completeness.

C2 Workstation Adaptation. Selected C4I Systems
will be integrated with the Modular Reconfigurable
C4I Interface (MRCI) to enable the warfighter to
participate in the virtual simulation via their real
world system. To the extent possible, the MRCI
project is adopting the CCSIL message set as a
starting point for defining the standard for informa-
tion exchange between real world C4I devices and
simulations.

SAF Adaptation. ModSAF is being enhanced to
model new vehicles and small units and to model
new behaviors for entities and small units. This
version of ModSAF is then adapted to properly
carry out CCSIL orders and requests and to gener-
ate CCSIL reports. The CCSIL adaptation has
been integrated into the ModSAF 2.1 baseline.

Command Entity Development. The CFOR pro-
gram plan calls for multiple contractors, each de-
veloping a software implementation of a command
entity. For each command entity, the contractor
builds the required mission behaviors. After a suit-
able period of development, the implementations
are evaluated. Subsequently, the developers con-
tinue to deliver additional mission areas and new
command entities on an approximate schedule of
every three months until the 1997 demonstration.

Infrastructure Building. The CFOR infrastructure
software provides services to the command entity
simulation and the real world C2 systems based on
information provided by the knowledge acquisition
process. An initial delivery of this software was
made in January 1995; new versions are issued

every one to three months, accommodating new
CCSIL messages and modifications needed by
Command Entity developers.

• Testing and Integration. The nature of the CFOR
program dictates steps beyond the normal testing
process. Technical integration testing is needed to
assure that all components communicate correctly.
Also Command entity behavior must be evaluated
against reasonable behavior standards, initially by
the knowledge acquisition teams and ultimately by
Service experts.

5. CFOR Development Status

The majority of the CFOR development work ac-
complished to date has been in the Army domain.
However, some work has been completed for the
other military Services. Using the general outline
described in Section 3 for the CFOR Development
Process, the following paragraphs briefly describe
the status of the CFOR effort.

5.1 Army

Army requirements definition started in October
1993. Based on the requirement for the Army to
simulate a heavy brigade as part of the Joint Task
Force for STOW 97, we determined that the initial
command entity to be developed would be an Ar-
mor/Mech Company Team Commander. Additional
command entities to be developed include the Com-
pany FIST, the Company Trains Commander, the
Engineer Platoon Leader, and the Battalion Com-
mander. In order to support ground maneuver opera-
tions for a Mech Heavy or Armor Heavy Brigade
Task Force, the mission areas being developed are
Attack, Defend (including defense in sector, defense
of a battle position, and reserve unit in the defense),
and Movement to Contact. The overall goal is to
provide a combined arms capability with emphasis on
maneuver and fire support. To address Rotary Wing
Air (RWA) requirements, RWA Company and Battal-
ion Commanders are being developed that will be
capable of performing Attack, Reconnaissance, and
Security missions.

Logicon RDA has the responsibility of providing
Army CFOR knowledge acquisition (KA). Based on
the above requirements, Logicon's approach has been
to identify key elements in the decision process based
on Army doctrine. In particular, the KA team has
used the Army Training Evaluation Program
(ARTEP) collective tasks with particular attention to

14

1U»*

C2. These individual ARTEP tasks combined with
descriptions of higher order decision making to col-
lectively provide the basis of the knowledge for the
command entity development.

The current CCSIL Ground Operations message set
consists of about 39 messages that cover Orders and
Directives, Unit Situation and Status Reports, Fire
Support Messages, Engineer Messages, Air Defense
Messages, and Combat Service Support Messages.
Currently, the majority of messages being used fall
into the Orders and Directives and Unit Situation and
Status Reports categories.

Science Applications International Corporation
(SAIC) has the responsibility for developing Army
Ground Maneuver command entities. Initial devel-
opment started with the Company Team Commander
in January 1995. SAIC demonstrated the Company
Team Commander performing an Attack mission in
the STOW Engineering Demonstration 1 in October
1995. Since then, their focus has been on the Defend
mission area, enhancing the Attack mission area, and
on developing command entity to command entity
communications so that eventually all companies will
be able to operate and communicate effectively as
part of a battalion. SAIC is also building the FIST
command entity along with the interactions
(guidance) that occur between the Company Team
Commander and the FIST. SAIC initiated the Battal-
ion Commander effort in May 1996.

The SAIC team's approach to automated decision
making is based upon a Constraint Satisfaction Tool.
Planning and replanning is performed by a Combina-
torial Constraint Satisfaction (CCS) procedure which
acts as an interpreter for high-level behaviors ex-
pressed as Constraint Sets (CS). Execution and
monitoring is performed by Autonomous Control
Logic (ACL+).

Information Sciences Institute (ISI) has the respon-
sibility for developing RWA commanders. The ini-
tial effort to develop a RWA Company Commander
capable of performing an Attack mission is well un-
derway. Using the SOAR technology, ISI has built an
RWA Company Commander that can plan for and
direct a force of RWA pilots also built in SOAR.

The Army CFOR testing methodology has been to
test the command entities in several virtual Situa-
tional Test Exercises (vSTXs) and virtual Field
Training Exercises (vFTXs) which, collectively,
make up the unit level testing of the command enti-

ties. The main purpose of the vSTXs and vFTXs is to
assess the reasonableness of behaviors within the
ARTEP construct.

SAIC's and ISI's Army command entities will be
further tested in STOW's Combined Behaviors Test 1
in July 1996. The Army portion of this multi-Service
test will occur at the National Simulation Center
(NSC) at Fort Leavenworth, Kansas. Army Service
experts will be present to evaluate behaviors.

5.2 Navy

Navy CFOR requirements definition started in Febru-
ary 1995 and continues. The Navy CFOR effort has
focused on Navy CCSIL development in support of
both sea and air operations.

The current CCSIL Sea Operations message set con-
sists of about a dozen messages that cover Sea Mis-
sion Control, Anti-Air Warfare (AAW), and Anti-
Surface Warfare (ASuW) components of the Navy's
mission space. Additionally, Link 11, OTH Gold,
and ATP-1 message sets have been identified. The
Navy Synthetic Force entity development team has
adapted their simulation to send and receive CCSIL
messages and has developed an initial implementation
of Link 11.

The current CCSIL Air Operations message set,
which supports both Navy and Air Force air opera-
tions, consists of about 45 messages that cover Close
Air Support (CAS) Mission Control, Brevity Codes,
and Air Mission Control.

BMH Associates has the responsibility of providing
Navy KA. To provide a CCSIL capability within the
Navy, BMH has developed two storyboards that will
closely tie in sea assets being represented by Navy SF
and air assets being represented by Soar Fixed Wing
Air Intelligent Forces (IFOR). These two storyboards
will demonstrate Close Air Support (CAS) and Anti-
Air Warfare (AAW) missions.

The Link 11 message as well as the CAS storyboard
and its supporting messages will be tested in STOW's
Combined Behaviors Test 1 in July 1996. The Naval
sea component will be tested from NRaD in San Di-
ego, California and the Air component will be tested
from the WISSARD lab at NAS Oceana, Virginia.

15

5.3 Marine Corps

Marine Corps CFOR requirements definition started
in February 1995 and continues. Because a major
thrust of the Marine Corps Synthetic Force program
is to develop the Individual Combatant, we decided
that the first command entities to be developed would
be an Infantry Platoon Commander and an Infantry
Company Commander. To support the Marine Corps
role in STOW 97 in the areas of ground maneuver
and amphibious operations, the mission areas being
developed are attack, link-up, movement to contact,
and hasty defend. The overall goal is to provide a
combined arms capability with emphasis on being
able to flexibly task organize Marine Corps assets
into the force packages necessary for the mission.

BMH has the responsibility of providing Marine
Corps knowledge acquisition (KA). BMH's ap-
proach has been to provide KA based upon Marine
Corps doctrine. In particular, the Mission Perform-
ance Standards (MPS) from the Marine Corps Com-
bat Readiness Evaluation System (MCCRES) and the
Battle Drills established by Marine Corps Order have
been collectively used to provide a framework to
guide development and testing.

To support Dismounted Infantry, several of the mes-
sages in the CCSIL Ground Operations message set
were enhanced. New CCSIL tasks and enumerations
were provided to support Marine Corps lifeforms and
munitions. Currently, the majority of message types
being used fall into the Orders and Directives and
Unit and Status Reports categories.

Hughes Research Laboratories (HRL) has the re-
sponsibility for developing Marine Corps Infantry
Platoon and Company Commanders. HRL's initial
effort was in developing an Army Company Team
Commander in 1995. This was done simultaneously
with SAIC's Army Company Team Commander ef-
fort in order to mitigate risk. HRL demonstrated the
Company Team Commander performing an Attack
mission in December 1995. Since January 1996,
HRL has been entirely focused on developing the
Marine Corps Infantry Platoon Commander. An at-
tack mission capability will be provided first. HRL
will soon begin developing the platoon commander to
platoon commander interactions and communications
so that the Company command entity can be realized.

The HRL team calls their implementation the Ca-
nonical Commander Model (CCM). The CCM com-
prises several distinct modules: a mission ana-

lyzer/planner, a friendly and enemy situation
analyzer, and a terrain analyzer. A major technology
component of the CCM is an inference engine that
works over a set of fuzzy logic tables containing spe-
cific military decision making knowledge.

The unit level testing for the Marine Corps command
entities will follow the methodology used in the Army
program, namely to run through several virtual Situa-
tional Test Exercises (vSTXs) and virtual Field
Training Exercises (vFTXs) where reasonableness of
behaviors will be assessed in accordance with Mis-
sion Performance Standards (MPS) and the Battle
Drills framework.

HRL's Marine Corps command entities will be fur-
ther tested in STOW's Combined Behaviors Test 1 in
July 1996. The Marine Corps component of this test
will occur at NRaD in San Diego, CA. In the future
the Marine Corps CFOR work will be integrated into
the LeatherNet facility which is being used for train-
ing and mission rehearsal at 29 Palms, CA.

5.4 Air Force

Air Force CFOR requirements definition started in
December 1994. The initial concept was to build an
Airborne Control Element (ACE). However, this has
been superseded by a requirement to develop an
automated Wing Operations Center (aWOC). The
automated WOC will receive an Air Tasking Order
(ATO) in CCSIL and generate most of the necessary
data to launch simulated aircraft on missions. This
data will be forwarded to the Soar exercise editor and
stored in a database accessed by the Soar FWA pilot
entities. We expect that the aWOC will have a limited
capability and that a human will be required to pro-
vide the detailed routing information needed to exe-
cute a mission. However, this initial capability will
greatly ease the burden of the STOW operators in
sortie generation. This effort is expected to start in
July 1996.

Many of the existing CCSIL Air Operations messages
will be reused to support the exchange of C2 infor-
mation between Soar FWA pilots and other command
decision makers that may be represented in software
or played by humans, such as Forward Air Control-
lers.

6. Summary

CFOR is implementing explicit modeling of com-
mand and control by adding three major elements to

16

combat simulation: (l)an architecture where simula-
tion of command and control interacts through a set
of common services; (2) a common language for in-
formation among command entities and human par-
ticipants; and (3) a development strategy to integrate
the efforts of multiple developers to produce a multi-
service command forces simulation.

CFOR has completed the concept and planning
phases and is being implemented. This paper pre-
sented an overview of the three CFOR elements and a
description of the status of the program and its near
term objectives.

7. References

Dahmann, J. S., M. R. Salisbury, L. B. Booker, and
D. W. Seidel. 1994. Command forces: An ex-
tension of DIS virtual simulation. In Proceedings of
the Eleventh Workshop on Standards for the In-
teroperability of Defense Simulations, 113-117.
Orlando, Florida.

MITRE Corporation. 1995. Command and control
simulation interface language (CCSIL) message
content definitions, McLean Virginia.

MITRE Corporation. 1995. Command and control
simulation interface language (CCSIL) usage and
guidance, McLean Virginia.

MITRE Corporation. 1995. Command forces (CFOR)
environment utilities application programmer's
interface (API), McLean Virginia.

MITRE Corporation. 1995. Command forces (CFOR)
infrastructure interface definition, McLean Vir-
ginia.

Salisbury, M. R. 1995. Command and control simula-
tion interface language (CCSIL): status update. In
Proceedings of the Twelfth Workshop on Standards
for the Interoperability of Defense Simulations,

639-649. Orlando, Florida.
Salisbury, M. R. , L. B. Booker, D. W. Seidel, and J.

S. Dahmann. 1995. Implementation of command
forces (CFOR) simulation. In Proceedings of the
Fifth Conference on Computer Generated Forces
and Behavioral Representation, 423-430. Orlando
Florida.

Salisbury, M. R. , L. B. Booker, D. W. Seidel. 1995.
A Brief Review of the Command Forces (CFOR)
Program. Presented at The 1995 Winter Simulation
Conference, 3-6 December, Arlington VA.

Seidel, D. W., M. R. Salisbury, L. B. Booker, and J.
S. Dahmann. 1995. CFOR approach to simulation
scalability. In The Electronic Conference on Scal-
ability in Training Simulation. The Society for
Computer Simulation, Institute for Operations Re-
search and Management Science.

8. Authors' Biographies

Susie M. Hartzog is the Project Manager for the
Command Forces (CFOR) Program at NRaD in San
Diego, CA. She has a Bachelors Degree in Electrical
Engineering from the University of California, San
Diego. She has spent the last three years working in
the area of Advanced Distributed Simulation (ADS).
Ms. Hartzog is currently the head of the Advanced
Behavioral Representation team at NRaD.

Mamie R. Salisbury is a Lead Simulation Engineer
at the MITRE Corporation. For the past year, she has
served as project leader for the CFOR team at
MITRE. She is currently serving as the Technical
Director for the STOW ACTD. Ms. Salisbury has ten
years experience in military command and control
and battle simulation.

17

Architecture of a Command Forces Command Entity

Robert B. Calder, Richard L. Carreiro, James N. Panagos, G. Robert Vrablik, Dr. Ben P. Wise
SAIC

Suite 130
20 Burlington Mall Road
Burlington, MA 01803

rcalder@bos.saic.com, rcarreiro@bos.saic.com, jpanagos@bos.saic.com, rvrablik@bos.saic.com,
b wise @ bos.saic .com

Forrest L. Chamberlain, Douglas P. Glasson
TASC

55 Walkers Brook Drive
Reading, MA 01867

flchamberlain@tasc.com, dpglasson@tasc.com

Representing command and control decision-making
in software is a critical and challenging task
confronting the simulation community. As the focus
of Distributed Interactive Simulation shifts towards
larger-scale, higher-fidelity exercises, there is an
increased requirement for software implementations of
intelligent command entities at higher-level military
echelons. Current computer generated forces systems
have achieved the reasonable simulation of individual
platforms and small units. The Command Forces
project endeavors to realistically model the complex
command and control decision-making process of
higher-level unit (i.e. company and above)
commanders in the military hierarchy.

This paper presents the software architecture of a
CFOR command entity which has been designed and
implemented to achieve the goal of simulating this
high-level decision-making behavior. The first
application of this architecture is aimed at modeling
the behavior of various Army commanders at the
company and battalion levels. Descriptions of the
key components of the system and details of the
interactions which occur among these components are
presented.

2. CFOR Overview

The Command Forces (CFOR) project is a part of the
Synthetic Theater of War (STOW) program, an
Advanced Concept Technology Demonstration
(ACTD) that is jointly sponsored by the U.S.

Atlantic Command (USACOM) and the Defense
Advanced Research Projects Agency (DARPA). The
STOW ACTD is focused on training commanders at
multiple levels up to the joint task force level, and
therefore requires the ability to represent large-scale,
diversified military operations in simulation. A key
element in achieving this goal is the ability to
represent both fighting forces and their commanders
in software. Current computer generated forces
(CGF) systems provide the simulation of individual
platforms and small units. CFOR extends the basic
DIS architecture to incorporate explicit, virtual
representation of command nodes, command and
control (C2) information exchange, and command
decision-making.

The CFOR concept and technical reference model are
described in full detail in [Salisbury, et al, 1995].
This paper focuses on the software architecture of a
simulated commander, called a Command Entity
(CE), which is capable of performing the planning,
execution, tracking, and replanning of missions for
various military commanders.

3. CE Application Areas

The CE architecture presented below has been
designed to support the modeling of C2 decision-
making for commanders at various echelon levels in
multiple service areas. The initial application of this
architecture has been the modeling of an Army Armor
Company Team commander.

19

3.1 Army Armor Company
Command Entity Capabilities

Team

The Army CFOR program has devised a CE
capability assessment model in terms of Mission,
Enemy, Terrain, Troops, and Time Available (METT-
T). This model is used to define the behavioral
capabilities of the CFOR CE, and as a basis for
determining test plans for the CE. The missions and
behaviors which the CE can perform are based on
published Army doctrine, and are traceable back to the
Army Training and Evaluation Program (ARTEP)
tasks defined for a given unit type.

Using the METT-T model, the capabilities of the
Army Armor Company Team CE include:

Mission: The CE plans and executes offensive and
defensive missions as part of a battalion task force. It
plans and performs attack, defend, and reserve
missions utilizing the appropriate company-level
ARTEP tasks. It plans and performs explicit tasks
which were specified in the battalion operations order,
and also identifies, plans, and performs implicit tasks
which were not specified by the battalion, but are
required for successful execution of the mission. It
properly handles a variety of unplanned events, such
as encountering unexpected enemy ground or air units
and encountering obstacles.

Enemy: The CE incorporates expected and actual
enemy units and enemy force ratios into its planning
and execution.

Terrain: The CE operates on open, desert terrain and
rolling, wooded terrain. It incorporates expected
visibility and mobility into its planning process.

Troops: The CE constructs plans for an Armor
Company Team, which can consist of any mix of
tank and mechanized infantry platoons, ranging from
two to five platoons.

Time Available: The CE considers the time available
to perform its mission during the planning process.
This affects various factors of how the mission can be
accomplished, such as route selection.

4. Command Entity Architecture

A high-level block diagram of the required
components for a CFOR simulation is shown in
Figure 1. Within the context of this architecture, the

CE software exists as a separate process which
models the C2 decision-making of one or more
simulated commanders.

In addition to the CE simulation process, Figure 1
shows a higher echelon commander (either human or
simulated) which must be present to perform the role
of the commander to which the CE is responsible.
The role of this higher echelon commander may be
filled by a human at a C2 workstation or another
CFOR CE simulation process. Currently, this role
is filled by a human operating a menu-driven C2
interface. The primary function of this interface is to
allow the operator to send and receive messages on
simulated radio networks.

Figure 1 also shows a small unit forces simulation
which must be present to perform the simulation of
the subordinate units and entities which the CE is
commanding. The role of these units may be filled
by any CGF system which fully supports the CFOR
applications programmer interface (API). Currently,
this role is filled by a modified version of the
Modular Semi-Automated Forces (ModSAF)
program, called Adapted ModSAF, which fully
supports the CFOR API.

All communication between the CE, higher echelon
commander, and small unit forces is via the
Command and Control Simulation Interface Language
(CCSIL). CCSIL includes a set of messages and a
vocabulary of military terms for filling out those
messages. The definition and implementation of the
CCSIL message set allows different implementations
of CE's, C2 workstations, and CGF systems to
communicate via a common language. CCSIL
messages are sent in DIS signal PDUs over simulated
radio networks. Examples of Army CCSIL
messages are the Operations Order, Fragmentary
Order, Situation Report, and Status Report.

As shown in Figure 1, the CE application interfaces
with the CFOR infrastructure utilities via direct
function calls and Remote Procedure Calls (RPC).
The C2 Utilities and Environmental Utilities are
libraries which are linked directly into the CE
application and are therefore invoked via direct
function calls. The Communications and Platform
Behavior Services are libraries which are linked into
the Adapted ModSAF and are therefore invoked via
RPC.

20

Higher Echelon
Commander's C2

Workstation

COMMAND ENTITY

CFOR Infrastructure
"~T T~"

C2 | Environmental | RPC
Utilities Utilities Interface

RPC

RPC

Small Unit Forces
Simulation

Platform Behavior Services

Communications Services

CCSIL CCSIL

DIS NETWORK

Figure 1: CFOR Simulation Component Block-Diagram

The architecture of the CE software has been designed
to support the modeling of command and control
decision-making for software commanders at multiple
echelon levels in various service areas. It is organized
such that general knowledge is contained in generic
base classes and domain-specific knowledge is isolated
in well-defined derived classes. This provides for
maximum reuse of previously developed software,
while not prohibiting implementations where specific
knowledge is needed. The CE is designed utilizing an
object-oriented methodology, and the software is
implemented in C++. A high-level, object-oriented
component diagram of the CE is shown in Figure 2.
Figure 2 also shows critical data flows between the
key components.

The following sections describe each of the major CE
components in detail. These descriptions may have
an Army bias, as that is the first application area to
which this architecture has been applied, but the
components presented are applicable to a CE in any
service area.

4.1 Commander Class

A single CE process is capable of simulating
multiple commanders simultaneously. The
commanders simulated can be of similar or different
echelons and roles. For example, multiple armor
company team commanders, or a mix of armor

company team and fire support team commanders, can
be simulated in a single process.

This capability is facilitated by encapsulating all of
the components shown in Figure 2 inside of a
commander class, and instantiating a separate
commander object for each commander to be
simulated. A non-interruptible, round-robin
scheduling mechanism is used to give each
commander object its slice of processor time. In
order to ensure that each commander object gets its
slice of the processor in a timely fashion, the planner
class is constructed such that it returns control to the
main scheduling loop if it utilizes the processor for
more than a pre-specified amount of time. This is
essential since the construction of an initial plan can
take on the order of a few minutes. If the system
allowed a single commander's planning to proceed
uninterrupted for several minutes, it would cause all
of the commanders being simulated to lose touch
with the state of the simulated world. The approach
implemented ensures that each commander, including
the one which is performing the complex planning,
will have timely access to events occurring in the
simulated world.

The base commander class has derived classes for each
of the different types of commanders which the CE
application can simulate. Most components shown
in Figure 2 also have similar derived classes.

21

Comms

I
Event Processor

V
Message List Event

Expectations Callbacks

Operations Order

Situational Awareness

Constraint Sets

Terrain/Environment

Planner Comms

Plan Generator Replanner

Execution Matrix

Figure 2: Command Entity Components and Data Flows

22

4.2 External Communications

The CE does not have a direct connection to the DIS
network, and therefore does not read any DIS PDUs.
Instead, it has two mechanisms for effecting changes
in the simulated world and obtaining information
about the entities and environment in the simulated
world: 1) commands and queries of the platform,
weapons, and sensors of the commander's vehicle, and
2) transmission and receipt of CCSIL messages.
Both of these interfaces are implemented via RPC
from the CE application to the CFOR infrastructure
services.

The CE utilizes the Platform Behavior Service
component of the CFOR infrastructure to interface to
its own vehicle. The CE moves its vehicle, employs
its weapons, and controls its sensors via this
interface. This interface is also utilized by the CE to
find out its location, speed, weapon status, and sensor
status.

The CE communicates with other entities in the
simulation via CCSIL messages. It receives CCSIL
orders and intelligence messages from its higher
echelon commander, and sends CCSIL situation and
status reports to its higher echelon commander on a
simulated radio network. It sends CCSIL orders to its
subordinate units, and receives CCSIL situation and
status reports from its subordinate units on a separate
simulated radio network.

Each CCSIL message is a well-defined data structure.
However, many CCSIL messages are complex data
structures which contain sub-structures, optional
fields, and variable length lists. In order to ease
access to incoming CCSIL messages and
construction of outgoing CCSIL messages, all of the
CCSIL structures and messages have been
encapsulated into C++ classes in the CE software.
Each C++ CCSIL class has methods to access and set
all of the CCSIL structures and fields within that
CCSIL structure. Therefore, the CE components
which access and manipulate CCSIL information
never operate directly in the CCSIL message format.
Instead these components access and manipulate the
C++ CCSIL class objects. Each C++ CCSIL class
has a method which converts an incoming CCSIL
structure into its corresponding CCSIL C++ object.
Additionally, each C++ CCSIL class has a method
which converts it into its corresponding CCSIL
structure. This encapsulation approach provides the

advantages of object-oriented programming for the
entire CCSIL message set.

4.3 Event Processor

Each CE's execution thread is event-driven. The
individual components of a command entity are
responsible for identifying and registering all Events
(discussed below) that are potentially relevant to their
operation.

The Event Processor maintains a queue of all such
events, and is responsible for identifying when any
event on the queue has occurred, and triggering the
desired response.

4.3.1 Events

Events are objects that define something that can
occur in the system that requires that the system react
in some way. They are implemented as instances of
classes derived from the abstract Event base class.
The Event base class defines a generic interface for
each event, which includes three critical components:
how to determine whether the event has occurred;
what, if anything, is expected to be true about the
state of the world when it occurs; and what to do
when it has occurred.

Each subclass of Event defines its own Boolean
"Occurred" function, which returns true when the
conditions for the event have been met, and false
when they have not. This function can then be
queried by the Event Processor to determine when the
event has occurred. For example, the "CommEV"
event is considered to have occurred whenever a new
CCSIL communication is received.

4.3.1.1 Expectations

Each event has associated with it a list of zero or
more Expectations. Each expectation encodes the
desired set of values for some characteristic of the
world when an event occurs. For example, if the
event is "Unit A crossed phase line Alpha," an
expectation might be that this occurred before time T.
Expectations, which are primarily used by the
Tracker, are used to determine whether the mission is
progressing according to the plan, based on a
mission-specific set of parameters and tolerances.

23

4.3.1.2 Callbacks

Each event also contains a list of zero or more
Callbacks. Each callback object encapsulates an
action which should take place when the event occurs,
such as informing the Tracker when a subordinate has
crossed a phase line. As with events and
expectations, callbacks are implemented using a base
class which defines a generic interface, and subclasses
which define actual functionality. The Event
Processor is responsible for triggering each callback
of each event that occurs. Note, however, that the
functionality of each individual callback is completely
hidden from the Event Processor.

4.3.2 CCSIL Message List

Incoming communications, representing orders and
intelligence from the CE's superior, as well as status
and situation reports from the CE's subordinates,
account for many of the events handled within each
CE. In order to efficiently handle this message
traffic, the Event Processor is responsible for pulling
messages off of the incoming communications queue,
and storing them in a manner that renders them easily
accessible by interested events.

4.4 Situational Awareness

In order for the CE to perform its mission planning,
execution, and tracking, it must have a representation
of its perception of the current state of the world.
The Situational Awareness (SA) class provides this
representation. In the Army context, C2 decision-
making is performed based on the factors of Mission,
Enemy, Terrain, Troops, and Time Available (METT-
T). The SA class performs processing to build and
store data regarding mission, enemy, troops, and time
available. Due to the complexity of processing and
the volume of data required for terrain processing, the
CE architecture represents processing and knowledge
of the terrain as a separate class, which is described
below.

SA processes information from multiple sources,
including CCSIL orders and intelligence messages
from the higher echelon commander, CCSIL reports
from subordinate units, and sensory data from queries
via the platform behavior services. It uses this
reported and sensed information directly, and also
generates derived data from this information, to build
the picture of the commander's view of the world.

SA registers with the Event Processor to receive all
CCSIL messages which are sent on the commander's
radio nets. As it receives each message, it extracts
the information relevant to the commander and
updates the corresponding SA data. SA also
periodically queries the CFOR platform behavior
services to obtain sensory information from the
commander's vehicle and updates this data in the SA
state.

A difficult problem encountered when building up
state information from multiple sources is the proper
handling of repeated or contradictory data in reports.
SA handles this to some degree by performing simple
fusing of data from multiple reporting sources, such
as merging spot reports from multiple subordinates
which overlap on the same enemy units. SA does
not currently implement a sophisticated sensor data
fusion algorithm, but the CE architecture supports
the implementation of one.

In order to allow other CE component objects to
retrieve SA state data, SA provides accessor functions
to all of its information. To improve efficiency and
reduce the computational load, the calculation of
derived information in SA is mostly demand-driven;
that is, it is only computed when asked for.

Examples of the types of information contained in
SA include: the mission objective(s); location,
strength, and type of known and suspected enemy
units; location, strength, and composition of
subordinate and peer units; location and type of all
battalion and company control measures; location of
known obstacles; and time remaining to complete the
current mission.

4.5 Terrain and Environment

Terrain analysis is one of the most complex and
critical components involved in C2 decision-making.
In order for the CE to perform effective mission
planning, execution, and tracking, it must continually
evaluate the terrain and environment in which it is
operating. The Terrain classes provide services to aid
this evaluation and build the representation of the
commander's perception of the environment.

The services provided by the Terrain classes are built
on top of the CFOR Infrastructure's Environmental
Utilities (EU) library. This library contains a set of
basic terrain related services, and is based on a

24

tessellation of the underlying polygonal terrain. The
EU utilizes this terrain tessellation to provide services
which perform analysis of trafficability, fields of fire,
cover and concealment, and line of sight. In addition,
the EU provides services which allow access to the
basic terrain data such as elevation, soil type, feature
type, and coordinates.

The Terrain classes utilize the EU library to provide
services to other CE components for analyzing the
terrain at the individual vehicle and aggregate unit
level. These services are used primarily by the
constraint sets (described below) in the process of
constructing a plan.

The Terrain services utilize information from SA to
support their analysis. For example, known and
suspected enemy locations are needed to generate
covered and concealed routes, and a unit's
composition is needed to compute the size of a battle
position. In addition, the Terrain services utilize
information from the CFOR Infrastructure's C2
utilities to support their analysis. For example, the
range of a unit's weapons system is needed to
generate attack by fire positions.

The services provided by the Terrain classes adhere to
all control measures which have been specified in the
order by the commander's higher echelon. This
includes such control measures as unit boundaries,
axes of advance, routes, assembly areas, and battle
positions. In addition, known obstacles and other no-
go areas are considered by these services. For
example, if a unit is to defend in sector, then the
sector boundaries must be honored in the generation
of defensive battle positions and routes to subsequent
battle positions.

Examples of terrain analysis services provided by the
Terrain classes are the computation of: mobility
corridors, based upon a unit's composition; avenues
of approach, based upon an objective, a unit's
boundary lines, and a unit's composition; routes,
based upon enemy locations, a unit's composition,
and time available to traverse the route; overwatch
positions, based upon an objective location, enemy
locations, weapons ranges, and a unit's composition;
defensive battle positions, based upon an objective
location, enemy locations, weapons ranges, and a
unit's composition; assault positions, based upon an
objective location, enemy locations, and a unit's
composition; and attack positions, based upon a line
of departure, objective location, enemy locations, and
a unit's composition.

4.6 Planner

The Planner is the CE component which generates,
evaluates, and selects a course of action that satisfies
the mission objectives within the guidance specified
by the higher echelon commander. It is invoked
when a new order is received, or whenever the
situation warrants a change in the course of action.
The CE software uses an approach based upon
constraint satisfaction to perform its planning. The
following sections describe the critical components
which are involved in the planning process.

4.6.1 Constraint Sets

The objects in the CE software which encode all of
the knowledge required to plan a given task are called
Constraint Sets (CS). Each CS is a C++ class which
specifies how to make a coherent set of decisions.
For a given type of operation, a CS specifies the
relevant decisions to be made and generates options
for each. The decisions can be sequential or parallel,
and in any order. In contrast, finite state machines
specify how to perform a temporal sequence of
actions. The CE software utilizes two types of CSs:
component CSs and composite CSs.

A component CS is used to evaluate alternatives and
generate a feasible solution to an individual
component of an overall mission. Each component
CS contains specific knowledge to generate a plan for
a particular task. There are many component CSs
defined in the CE software, with each one typically
corresponding to a single ARTEP task. For instance,
there is a component CS which plans unit-level
tactical movements, and another component CS
which plans obstacle breaches. An instantiated
component CS is a plan for executing a specific
behavior given the current or expected tactical
situation.

A composite CS is a collection of component CSs
which are dynamically linked at run-time to form a
mission. There is only one composite CS defined in
the CE software, and it has no task-specific
knowledge associated with it. Each mission will
construct and generate a unique composite CS at run-
time, which is capable of planning the mission at
hand. The component CSs in the composite CS are
linked together spatially by each of their start and end
points. The composite CS also handles the
allocation of mission-critical resources, such as time

25

and forces, across the component CSs. An
instantiated composite CS is a plan for executing an
entire mission over the course of time and space.

Both component and composite CSs have a common
set of characteristics, as they are derived from a base
class CS. All CSs have four basic components: a
set of minimum input variables, a set of derived
variables, generator functions, and prioritizer
functions.

The set of minimum input variables are those pieces
of information which are required to construct a plan
for the given CS, and are supplied to the CS when it
is initially constructed. These typically include the
unit's name, the unit's composition, the known and
suspected enemy locations, the start and end points,
and the current order from the higher echelon
commander.

The derived variables are those pieces of information
which are computed by the constraint set. Each
derived variable corresponds to a tactical choice which
must be made by the CE. Once a set of consistent
values have been generated for all derived variables in
a CS, the CS represents a feasible plan for
accomplishing the task at hand and is said to be
instantiated. Examples of derived variables are the
allocation of subordinate forces, route selections,
tactical position selections, formation selections, and
speed selections. The derived variables are ordered
such that a given derived variable depends only on the
previous derived variables.

Each derived variable has a corresponding generator
function. A generator function produces a list of
candidate values for a given derived variable. The
values generated are consistent with the choices for
previous derived variables and with the current battle
state. Each value represents a different option for
satisfying that derived variable. A variable can be of
a simple type (such as a floating point number
representing a speed) or a complex type (such as
another constraint set). The generators invoke terrain
analysis and situational awareness services as needed
to support relevant decisions.

Each derived variable may also have a corresponding
prioritizer function. A prioritizer function orders the
values generated for a given derived variable in a best-
first or least-constraining order.

As mentioned above, in some CSs a derived variable
may be another CS, which returns different feasible

solutions to its parent CS. In this case, the CS is
itself a generator function since it is dynamically
generating multiple instances of itself as candidate
values for the current variable.

The process of instantiating a constraint set involves
exercising the generator and prioritizer functions until
a consistent set of values for all derived variables has
been found (e.g. a feasible set of firing positions,
routes, etc. for an assault; a set of formations, sub-
routes, and overwatch positions for a move). To
develop a CS, a software engineer must specify in
code the relevant variables, in what order they are to
be matched, on which previous variables they are to
depend, and how to generate candidate values for a
variable given the current values of previous variables
(if any).

4.6.2 Order to Constraint Set Decomposition

The CE software must examine the current order to
determine what component CSs are needed to fully
accomplish a given mission in accordance with the
higher echelon commander's guidance. This function
is performed in the CE by a class which decomposes
CCSIL orders into an appropriate composite CS.

This decomposition software is based on concepts
developed by Logicon RDA which break down Army
missions into categories of tasks which can be
performed to accomplish each mission type [Kleiner,
et al, 1995]. Each mission which the CE can
perform has a set of applicable ARTEP tasks which
fall into one of the following categories: Achieve
Tactical Disposition, Reduce Enemy Posture,
Achieve Culminating Task, Consolidate, and Perform
Situational Interrupt.

The CE software utilizes these concepts to decide
which tasks, both explicit in the order and implied by
the order, are to be performed to successfully execute
the mission. It then maps these tasks into their
corresponding component CSs and constructs a
composite CS which contains these component CSs.

4.6.3 Constraint Satisfaction Tool Planner

4.6.3.1.1 Combinatorial Constraint Satisfaction

The Combinatorial Constraint Satisfaction (CCS)
class is the CE component which invokes the
generator functions of the CSs during the

26

instantiation process. It acts as an interpreter for
CSs. handling the interactions between choices by
searching the implicit space of possible choices. It
successively calls the generator functions for each
variable of each CS in the mission. If no values can
be generated for a given variable which are consistent
with the values selected for previous variables, then
CCS backtracks to reconsider other values of the prior
variables. Once CCS successfully instantiates a
composite CS, the planning is complete.

The ability to embed CSs within one another, as
mentioned above, is facilitated by the fact that CCS
can recursively invoke itself. This, combined with
the capability to dynamically link CSs together at
run-time into a variable length composite CS, avoids
a combinatorial explosion of the number of CSs to
be developed. If this were not the case, pre-defined
CSs for all mission possibilities would be required.
Additionally, encoding the CSs as C++ classes
allows for inheritance among common behaviors at
multiple echelons, which lessens the number of
required CSs and the amount of code duplication.

4.6.4 Replanner

When replanning is needed, CCS is invoked to plan
reactions. When the reaction is complete, CCS is
invoked to replan the remainder of the mission from
the correct re-entry point. Reactive planning is
complete on the order of seconds because the search
space required for terrain analysis is small.

4.7 Plan

A plan in the CE is an object which consists of three
component objects: the set of instantiated constraint
sets, an execution matrix, and an operations order.

The plan will be followed by subordinates, and
progress will be measured against it by the Tracker.
It contains information which indicates the
constraints which were used to generate particular
nodes of the plan, for use in replanning and new
OPORD evaluation.

4.7.1 Instantiated Constraint Sets

Once the planning process has been successfully
completed as described above, a fully instantiated
composite CS with fully instantiated CSs results.
However, this representation of the plan as a set of

variables with corresponding values is not sufficient
to describe the entire mission which has been planned
for the commander's unit. It does not describe all
details of the tasks which need to be assigned to
subordinate units, only those characteristics which
needed complex planning due to dependencies upon
other values. Additional representations with more
detailed information are needed and are described
below.

However, these instantiated CSs contain the context
in which the choices for the derived variable were
made, and are therefore useful to save for future
reference. In particular, their primary use is to assist
the CE in performing partial replanning of the
mission as the situation warrants.

4.7.2 Execution Matrix

After the CSs are fully instantiated, each CS
generates its part of an object in the CE called the
Execution Matrix. The Execution Matrix is a time-
phased list of the company- and platoon-level tasks
which the unit will perform as it carries out the plan.

Information contained in the Execution Matrix is the
equivalent of that contained in an Army operations
order execution matrix, plus detailed segmenting
information needed for mission tracking and additional
information required for execution of the plan by the
CE. The Execution Matrix is designed to represent
the flow-down definition of the mission from the
form it takes in the instantiated CSs to a detailed,
quantitative sequence that can be easily monitored and
executed. As all tactical decisions were previously
made by the CSs, the primary function of the
Execution Matrix is to organize these decisions in
such a way that they can be easily communicated to
subordinate units and ensure synchronization.

The Execution Matrix representation is a hierarchy,
the root of which is the mission itself. Lower levels
of the hierarchy decompose the mission successively
into phases, tasks, and segments. A data structure is
also assembled in the Execution Matrix for the CE to
use in monitoring events and issuing commands to
subordinate units.

As each CS builds its part of the execution matrix, it
also creates the segments that are part of each phase
of the matrix. This segmentation scheme was
inspired by the Autonomous Control Logic system
[Glasson, 1992]. Segments are defined as portions of

27

a mission phase which have homogeneous attributes.
Phases can be segmented in any way desired, but are
typically segmented spatially or temporally. Each
segment contains one or more transition arcs to other
segments and may also contain expectations which
embody the attributes of the segment. Some example
segment attributes are: nominal times for beginning
and end of segment; exposure state; likelihood of
enemy contact; and unit formation.

4.7.3 Operations Order

After the Execution Matrix has been generated, it is
turned into a CCSIL C++ class operations order or
fragmentary order. This order is then converted into
CCSIL for transmission to the subordinate units.
This is the third and final component of the Plan. It
is useful to save in order to perform simple
replanning where the CE needs to make minor
modifications to the previous order, such as changing
a speed or formation. Having access to the order for
reference allows for easy composition of fragmentary
orders.

4.8 Mission Tracker

The Mission Tracker monitors the progress of the
commander's unit as it executes its planned mission.
It continuously compares actual states with expected
states and initiates requests for replanning when
corrective action is needed It is also responsible for
responding to or forwarding incoming messages from
the CE's superior; relatively simple orders, such as
Execute Directives, are handled by the Tracker
directly, while more complex ones, such as
Operations Orders, are forwarded to the Planner.

The Mission Tracker makes use of segments,
described previously, to measure the unit's progress
against the Plan. The Mission Tracker maintains the
current segment for each subordinate, the unit as a
whole, and the unit commander. Transitions between
segments are detected using events, described above.
When a segment transition event occurs, the Mission
Tracker first checks that all execution state
expectations (as described above, in the discussion on
events) have been met. If they have, the Mission
Tracker then queries the Plan for the next segment,
transition events, and expectations for the affected
unit(s). The new transition events are then registered
with the Event Processor. Note that some segment
transitions may require that the CE take specific
actions (e.g., sending an Execute Directive to a

subordinate). This is handled by attaching an
appropriate callback to the transition event. If all
execution state expectations have not been met, the
Mission Tracker invokes the Replanner to adjust the
plan accordingly.

5. Future Work

Army CFOR CE development is currently in
progress, and a variety of tasks are scheduled for the
near future. These include continued expansion of the
Army Armor Company Team CE, development of
additional Army CE's (with horizontal expansion at
the company level and vertical expansion to the
battalion level), and refining and improving the basic
CE architecture. In addition, the application of this
CE software and architecture to a non-Army command
entity is a mid-term goal.

5.1 Expansion of Army Armor Company
Team CE Capabilities

The following additional Army Armor Company
Team CE capabilities are planned to be developed in
support of the STOW 97 exercise:

-Expansion and improvement of capabilities in attack
and defend missions.

- Integration with an Army Fire Support Team
(FIST) CE to plan and execute indirect fires in the
offense and defense.

- Development of capabilities for planning and
executing movement to contact missions.

- Integration with an Army Company Trains CE to
plan and execute combat service support operations.

- Integration with an Army Rotary Wing Aircraft
Company CE to plan and execute combined arms
coordination.

- Development of capabilities for planning and
executing engineer operations.

5.2 Additional Army Command Entities

The following additional CE's are planned to be
developed in support of the STOW 97 exercise:

28

- Development of an Army Fire Support Team
(FIST) CE.

- Development of an Army Battalion Cdr/S2/S3 CE.

- Development of an Army Battalion Fire Support
Element (FSE) CE.

- Development of an Army Company Trains CE.

6. Conclusions

The architecture presented herein currently serves as
the basis for a successful implementation of the C2
decision-making of an Army Armor Company Team
Commander CE. This CE is capable of performing
mission planning, execution, monitoring, and
replanning. It has been successfully demonstrated at
various STOW program events, and continues to be
expanded and improved as software development
proceeds. As the CE's capabilities are increased, the
quality of its tactical decisions are also being
improved. This CE architecture is rich and flexible
enough to be applied to CE's at multiple echelons, as
well as CE's in other service areas.

7. Acknowledgments

This work is sponsored under contract N66001-95-C-
6006 from the Defense Advanced Research Projects
Agency (DARPA). The authors wish to thank the
members of the CFOR team at DARPA, NRaD,
MITRE, and Logicon RDA for their dedication,
support, and guidance.

Salisbury, Mamie R., Booker, L. B., Seidel, D. W.,
Dahmann, J. S., "Implementation of Command
Forces (CFOR) Simulation," Proceedings of the
Fifth Conference on Computer Generated Forces
and Behavioral Representation, Orlando, FL,
May 9-11, 1995, pp. 423-430.

Kleiner, Martin, Carey, S., "Company Team
Command Forces, An Introduction to Decision
Making," Version 1.0, Jan 5, 1995.

Glasson, Douglas P., "An Autonomous Control
Logic Concept for the Autonomous Undersea
Vehicle," American Institute of Aeronautics and
Astronautics, 1992.

9. Authors' Biographies

Rob Calder is a Senior Software Engineer in the
Technology Research Group at SAIC in Burlington,
MA. He has been involved in the development of
DIS CGF systems for over five years, and is the
principal investigator on the CFOR project. Prior to
joining SAIC, he was a software developer on
multiple generations of CGF systems and the
ModSAF project lead, at Bolt Beranek and
Newman/Loral Advanced Distributed Simulation.
His primary research interests are in the area of tactics
and behavior representation and generation for
computer generated forces. Mr. Calder holds a Master
of Science degree in Computer Science from Boston
University.

Rich Carreiro is a Software Engineer in the
Technology Research Group at SAIC in Burlington,
MA. He has been performing software design and
development on the CFOR project for the past year
and a half. Mr. Carreiro holds Bachelor of Science
degrees in Electrical Engineering and Physics, both
from the Massachusetts Institute of Technology.

Jim Panagos is a Consultant to SAIC in
Burlington, MA. He has been involved in the
development of DIS CGF systems for over 10 years,
and is currently performing design and development
on the CFOR project. His primary research interests
are in the areas of tactics, behavior representation, and
automated planning and generation for computer
generated forces. Mr. Panagos holds a Master of
Science degree in Computer Science from the
Massachusetts Institute of Technology.

Rob Vrablik is a Software Engineer in the
Technology Research Group at SAIC in Burlington,
MA. He has been involved in the development of
DIS CGF systems for over six years, and is currently
performing design and development on the CFOR
project. Mr. Vrablik holds a Bachelors degree from
Dartmouth College.

Ben Wise is a Senior Scientist at SAIC's
Technology Research Group in Burlington, MA. He
received a B.S. in Physics from MIT and a Ph.D. in
Engineering and Public Policy from CMU. He
taught graduate operations research, probability and
statistics, and artificial intelligence at Dartmouth
College before entering the commercial sector. He
worked on corps-level battle simulation and strike
planning tools while at McDonnell Douglas, before

29

moving to BBN and assisting the SIMNET, Odin,
ModSAF, and Warbreaker projects. He moved to
SAIC in 1993 and started a new office specializing in
advanced simulation and planning technologies. He
served SAIC as the initial lead in the Corps Level
Computer Generated Forces, Command Forces, and
SAT/IAT projects. He is currently involved in
several projects focusing on issues in the linkage of
constructive and virtual simulations. His research
interests focus on planning under competition and
uncertainty.

Forrest Chamberlain is a Member of the
Technical Staff in the Computer Generated Forces
section at TASC. Forrest has been involved in CGF
work since joining TASC in 1994. He is currently
responsible for the terrain reasoning and mission
tracking components of the CFOR project and is a
critical contributor to the ICTDB terrain
representation effort. Prior to joining TASC, he
participated in the hardware and software design of a
"wearable" computer system at Carnegie Mellon
University, where he earned his Masters degree in
Electrical and Computer Engineering. Mr.
Chamberlain also holds a Bachelor of Science degree
in Electrical Engineering from Cornell University.

Doug Glasson is a Department Research Analyst
at TASC, Reading, MA, and is TASC's principal
investigator on the CFOR project. His previous
work in autonomous systems included Lead Architect
for TASC's AUV Autonomous Control Logic
Concept, and Program Manager of the Adaptive
Tactical Navigator development. Mr. Glasson holds a
Bachelor of Science degree in Aeronautical
Engineering degree from RPI and an Engineer in
Aeronautics and Astronautics from MIT.

30

Knowledge Acquisition and Delivery:
Constructing Intelligent Software Command Entities

Seth R. Goldman
Hughes Research Laboratories

3011 Malibu Canyon Road, Malibu, CA 90265
seth@isl.hrl.hac.com

1. Abstract

In this paper, we discuss our general approach to
knowledge acquisition and delivery and how we have
applied it to the construction of intelligent software
command entities as embodied in our work on the
CFOR (Command Forces) and MC IC (Marine Corps
Individual Combatant) DARPA programs. There are
five key issues to address when integrating
knowledge products with traditional software models:
1) Modularity - we don't want to have to get all the
knowledge before the rest of the code can be
developed, 2) Validation - the expert must be able to
verify the acquired knowledge, 3) Scoping - we must
be able to specify default parameters as place holders
until the requisite knowledge can be acquired, 4)
Reusability - decisions should be captured at the
appropriate level of abstraction within and across
domains, 5) Deliverability - the knowledge must be
accessible to the software clients but independent.
Each of these issues will be discussed in detail,
together with examples of the knowledge bases
derived for these DARPA CFOR and MC IC
programs.

2. Introduction

For the past 18 months, we have been working on the
DARPA CFOR (Command Forces) and MC IC
(Marine Corps Individual Combatant) programs. In
1995, the CFOR team was tasked to develop a
software command entity to model an Army Tank
Company Team Commander. The MC IC team was
tasked to develop a smart Rifle Squad leader within
the ModSAF simulation environment. In 1996, the
MC IC work continues and the CFOR team is tasked
to develop a Marine Rifle Platoon Commander and a
Marine Rifle Company Commander. There are many
differences between the two programs but they share
a common need for intelligent decision making to
guide planning and behaviors. We have a great deal
of experience in building complex knowledge based
systems for a variety of applications (e.g., traveling
wave tube design, financial analysis and investment).
The current programs offered new challenges: to
acquire the knowledge from a variety of sources (e.g.,
interviews with a subject matter expert (SME),

military training documents, documents compiled by
the SME), and to make this knowledge available to a
decision making process embodied in either the
ModSAF simulation environment or our command
entity software.

To meet these challenges, we have developed a
mechanism called fuzzy tables, based upon our
Modular Knowledge Acquisition Toolkit (M-KAT)
methodology. The M-KAT methodology differs from
traditional expert system construction techniques by
emphasizing a very tight interview - implementation -
feedback cycle. The knowledge acquisition process
and supporting software environment facilitate rapid
prototyping of the expertise so that the SME can
quickly explore the knowledge within the overall
domain framework. Fuzzy tables are an abstraction of
some of the most commonly used parts of M-KAT.
We expect that with training in the construction of
fuzzy tables, domain experts will be able to
knowledge engineer themselves and produce
knowledge bases that can be integrated in a variety of
applications.

Fuzzy tables are used in a variety of ways: 1) they
direct the knowledge acquisition process and keep it
focused, 2) they provide a declarative representation
of the SME's decision making process, and 3) they
serve as input to the fuzzy table runtime engine
which provides client applications with access to the
SME's knowledge via a query/response interface.
Fuzzy tables are modular, verifiable, expandable,
reusable and deliverable. Each of these properties is
addressed below using examples from our CFOR and
MC IC work. All the examples are drawn from the
context of the appropriate military units conducting
an attack. At the conceptual level, the doctrine for
attack is not significantly different for an army tank
company versus a marine rifle squad. Both units are
concerned with finding good positions to launch the
attack, finding good support positions for suppressing
the objective, and responding to unexpected enemy
encounters or to obstacles such as minefields.

31

3. Modularity

Divide and conquer is a well known technique in
problem solving. Decomposing a problem into small,
manageable pieces and combining the results
produces a more robust solution which is easier to
validate and maintain. In addition, the smaller pieces
are potentially useful in solving other problems. We
have applied the same concepts in our development
of fuzzy tables. Each table documents a single
decision made by the SME. Table 1 depicts the
decision concerning the time constraints imposed by
linking up with the main force at a particular rally
point.

time-to-new-
rp

time-
remaining

new-rp-time-
constraint

lOmin <30min slightly-constrained
lOmin 2hr not-constrained

lOmin >5hr not-constrained
30min <30min not-possible
30min 2hr slightly-constrained
30min >5hr not-constrained

2hr <3Qmin not-possible
2hr 2hr not-possible
2hr >5hr slightly-constrained

Table 1: Rally Point Time Constraint

Fuzzy tables consist of a series of input columns
followed by a single output column. Each column
represents a factor that the SME considers in making
the decision represented in the final column. In this
example, the decision is called new-rp-time-
constraint and has one of the following values:
slightly-constrained, not-constrained, or not-possible.
The decision is based upon two factors: 1) how long
will it take to get to the new rally position and 2) how
much time is left in the mission. Based upon these
two factors, a decision is reached which will then be
used to make other decisions as we shall see below.

Where does the knowledge come from, how do we
map the absolute values to fuzzy values? The
knowledge is elicited from the SME through one or
more interviews. In our original implementation of
fuzzy tables, the mapping from absolute values to
fuzzy values was represented by a separate series of
rules. Maintaining a separate knowledge source was
cumbersome and led to inconsistencies over time.
Therefore, we augmented the fuzzy table
representation to include not only the knowledge of
how to map absolute values to fuzzy values but also
the enumeration of legal fuzzy values for each
column of the table. We still use rules to perform the
actual mapping but these are generated automatically
when the fuzzy tables are parsed. In this way, all the
knowledge required for a particular decision is
represented by a single fuzzy table. We shall see
examples of this below.

How do we combine fuzzy tables to make more
complex decisions? The output column for a fuzzy
table can be linked to an input column of other fuzzy
tables. Thus, decisions can be used as inputs for other
decisions. For example, the output from Table 1 is
used as input in deciding the method of attack for the
rifle squad.

The decision of how a rifle squad should attack an
enemy has the following possible outcomes: na -
cannot carry out the attack, ab - abort the mission (the
costs are too high), mv - move to a new location and
reconsider, fr - conduct a frontal assault, se - conduct
a single envelopment by establishing a suppressive
base of fire (BOF) position. Entries in the output
column separated by slashes indicate alternatives that
cannot be distinguished by this table. Additional
knowledge is required to choose one outcome over
the other.

A key feature of fuzzy tables is that both the inputs
and outputs need not be absolute values but can
instead be fuzzy values. For example, the time to the
new rally position might be one hour. In this case, the
one hour will get translated into a fuzzy value of 70%
30min and 30% 2hr. To paraphrase, one hour is
mostly like thirty minutes and a little bit like two
hours. If the time remaining is two hours then the
result from the table will be 70% slightly-constrained
and 30% not-possible.

32

fire-
tea ms-

left

bof-and-
assault-
position

bof-
ability

new-rp-
time-

constraint

method
-of-

attack
1 yes yes not-

possible
na

1 yes no slightly-
constrained

fr/ab

1 no no constrained ab
1 no no slightly-

constrained
ab/mv

2-or-3 yes yes constrained se
2-or-3 yes no not-

constrained
fr/ab

2-or-3 no yes not-
possible

fr/ab

2-or-3 no yes constrained mv/fr
2-or-3 no yes not-

constrained
mv

Table 2: Rifle Squad Method of Attack

We see in Table 2 that one of the input columns is the
output from Table 1: Rally Point Time Constraint.
Decisions can thus be decomposed into a sequence of
easier decisions. This modularity facilitates the
acquisition, testing, and maintenance of complex
decisions.

4. Validation

So where does the input come from when it is not
from other tables? The answer depends upon how the
tables are being used. Because the knowledge
engineer must write code to implement the answers to
questions relevant to the problem, this code generally
requires information from the client application.
When the tables are being used by the client
application, the code for a particular column is
executed, the result returned by the client is then used
as the input for the column. Returning to Table 1, the
first column is the time required to get to the new
rally point (RP) from base of fire position (BOF).

This datum must come from the client application.
The client application must supply a callback routine
which computes this value. The knowledge engineer
then writes a small piece of code (glue) to call this
routine with the appropriate parameters, in this case,
the parameters are the BOF and the RP.

If the tables are being used to debug the knowledge
acquisition process, then instead of calling back to the
client application, we want to ask the expert (SME) to
provide the required data. Our fuzzy table
implementation provides tools that support both
modes of operation. The knowledge engineer can
write glue routines that will either callback to the
client application or ask the expert depending upon
the context.

One of the drawbacks of our initial implementation
was that many of the details were hidden from the
expert; the tables did not contain sufficient
information by themselves. The knowledge engineer
had to do some programming to make the tables
operational. Since some of the knowledge was
embedded in the code, validation was more difficult.
We have addressed this issue by expanding the
column headers for the table so that they include all
the information necessary to operationalize the tables
without programmer intervention. This does not free
the knowledge engineer from writing the glue
routines; however, it does make explicit the
parameters to those routines and the legal values they
may return.

Table 3 shows the decision of what formation the
tank company should use. An asterisk in a cell
indicates that the answer doesn't because other
factors control the outcome. To provide better
information, the column headers have gotten a bit
more complicated. They now contain information
about permissible values and how they are to be
computed. Each header consists of three elements: a
name for the decision, the value specification, and the

(current-action
(movement assault flank-security)

(lcfor:current-actionl ->unit))

(enemy-contact
(likely possible unlikely)

(Icfor.enemy-contactl ->unit))

(company-formation
(line echelon column wedge vee)
(:movement-module :company-

formation ->unit))
assault * line

flank-security He echelon
movement likely vee
movement possible wedge
movement unlikely column

Table 3: Company Formation

3 3

path. The last column in Table 3, which provides the
outcome of the decision is:

name: company-formation
value spec: (line echelon column wedge vee)
path: (:movement-module

xompany-formation ->unit)

The value spec for company-formation limits the
output to be: line, echelon, column, wedge, or vee.
No other values are permitted. The path specifies how
this table is invoked and the parameters it requires.
Parameters are indicated by names beginning with "-
>". The company formation table requires only a
single parameter, the unit name of the company. For
the inputs of Table 3, the first column is:

name: current-action
value spec: (movement assault flank-security)
path: (Icfor.current-actionl ->unit)

When the first element of the path is enclosed in
vertical bars, that indicates a callback to the client
application. In this case, the fuzzy table determines
the current action of the unit by asking the client
application to compute the value and provides the
name of the unit as a parameter. During validation,
the user would be prompted to select one of the
possible values.

The second column is also a callback, asking the
client application to determine the likelihood of
enemy contact for the unit:

name: enemy-contact
value spec: (likely possible unlikely)
path: (Icfonenemy-contactl ->unit)

In most circumstances, this question probably
requires additional knowledge and more reasoning.
However, it can be initially implemented as a

callback to facilitate development of the client
application. When additional knowledge acquisition
yields more details concerning this decision, new
tables can be built and used in place of this callback.
This ability to incrementally expand the scope of the
reasoning capabilities of the knowledge base is
crucial, and is one of the features of M-KAT.

5. Scoping

In our experience, constructing a command entity
requires concurrent development of the knowledge
base and the client application. It is essential to
minimize the interdependence of these development
paths. We use a top-down knowledge acquisition
process to achieve this goal. When interviewing the
SME, we attempt to identify the major high-level
decision points that guide the planning process. With
these decisions in place, the client application can
continue testing and development while we work with
the SME to elicit the lower level decisions which feed
the high-level decisions.

This approach serves us well for two reasons: 1) as
stated above, the impact upon development of the
client application is minimized, and 2) access to the
SME is often restricted to discrete intervals. As the
SME becomes familiar with the fuzzy tables and our
methodology, we can perform knowledge acquisition
interviews over the phone in a short amount of time.
Fuzzy tables can be generated by the interview
process and then sent to the SME to be filled out.

Scoping also helps keep the SME focused on the
particular decision at hand instead of becoming
distracted by the details of the input parameters. For
example, if one of the columns deals with how far
away the unit is from the objective, we can simply
characterize the distance as: near, medium, or far.
Later on, we will ask the SME to specify how those
fuzzy values relate to actual distances.

34

(c+c (distance (add-sbf-sites? (ap-to-obj- (viability
((no 0.0 0.4) (yes ((very-close 0 200) (yes no) exposure (very-good good fan-

0.61.0)) (close 250 1200) (Icfonadd-sbf- ((small 040) poor unacceptable)
(Icfor.c+c-positionl - (far 1500 sites?! ->ap-loc - (medium 45 55) (rap-evaluation-
>ap-loc ->ep-loc)) :+infinity)) >ep-loc)) (large 60 100)) module :dismounted-

(Imodsaftdistancel - (icfonexposurel - viability->ap-loc -
>ap-loc ->ep-loc)) >ap-loc ->ep-loc)) >ep-loc))

yes very-close yes small very-good
yes close yes medium good
yes far no large poor
no very-close yes small poor
no close yes medium poor
no far no large unacceptable

Table 4: Dismounted Assault Position Viability

The mapping from absolute to fuzzy values
expressed in the value spec part of the header.

is

name: distance
value spec: ((very-close 0 200)

(close 250 1200)
(far 1500 :+infinity))

path: (lmodsaf:distancel ->ap-loc ->ep-loc)

For column 2, distance, very-close is anything
between 0 and 200 meters, close is between 250 and
1200 meters, and far is anything more than 1500
meters. Notice that the values don't fully cover the
range of numbers which raises the question of how is
225 meters going to be represented? The fuzzy table
software automatically interpolates and assumes that
the point halfway between two values will be half one
fuzzy value and half the other. Thus, 225 meters is
50% very-close and 50% close.

6. Reusability

At the lower echelons, such as tank companies and
rifle platoons, the doctrine for conducting an attack
on an objective is very similar. We would like to be
able to exploit this aspect and reuse some of the
tables developed for one application in another. If the
decisions and their inputs are indeed shareable, there
is still one aspect that will almost certainly be
different, the value specifications in the tables. These
specifications determine the mapping from absolute
values to fuzzy values. Using the example from Table
4. the values used to convert absolute distances to
fuzzy distances would be different for a rifle squad
compared to a tank company. Infantry traveling on
foot will consider 1000 meters to be much farther
than if they were mounted in a tank.

For now, we lack an elegant solution to this problem.

The simple solution is to copy the table and change
the values appropriately. At least the work of
validation and acquisition are capitalized upon. An
alternate solution would be to leave it up to the client
application to compute the fuzzy values. This places a
large burden on the application developer and
requires more knowledge to reside in the client
application. A more satisfactory solution is to
augment the value spec representation to include a
reference to the client for each mapping. This would
permit using the same tables for different clients and
have the values mapped properly. This is probably
the approach we will take when this issue gets
addressed.

7. Deliverabilitv

The current fuzzy table environment is implemented
in Common Lisp and runs on Macintoshes, Suns, and
SGIs. The Lisp environment provides easy interactive
debugging of the knowledge as it is acquired. Clients
connect to a knowledge server running in Lisp using
TCP/IP sockets. While the Lisp environment is
essential to the acquisition/development cycle, it is
too limiting during execution of the client application.

We have looked at various ways to deal with the issue
of providing the knowledge to the client application
in an efficient manner. Ideally, the client developer
should be able to link the knowledge base into the
application directly or communicate with a
knowledge server somewhere on the network. We are
building a version of the fuzzy table runtime engine in
C using a Common Lisp to C translator. In this
approach, the knowledge engineer acquires and
debugs the knowledge using the Lisp fuzzy table
development environment, translates the Lisp code to
C, and then compiles the C code into a library to be
linked with the client application or run as a

35

standalone server process. 9. Acknowledgments

The knowledge engineer
knowledge base along with
queries (fuzzy tables) that
with the required callback
the client application. The
access the knowledge base
the application or over the
server.

will deliver a compiled
the specification of all the
can be handled together
that must be supplied by
application developer can
directly by linking it with
network by running it as a

This solution still requires that the knowledge
engineer (fuzzy table developer) still have access to a
Lisp environment. While it is possible to develop a
complete user interface to the compiled knowledge
base, we feel it is important to maintain the flexibility
provided by the Lisp development environment. The
knowledge engineer can quickly write code to modify
the results of tables if necessary. For example, rather
than build a new table to disambiguate the
inconclusive outcomes from Table 2: Rifle Squad
Method of Attack (e.g., mv/fr, mv/ab), it is often
simpler to write a small piece of code to resolve the
ambiguity. This applies during the knowledge
acquisition and development process. In the final
version, the disambiguation should in fact be done
with a table.

8. Conclusions

Fuzzy tables provide a compact representation for
knowledge captured from a domain expert. Their
modularity makes it easy to break down the decision
making process into manageable parts. Our ability to
rapidly make the tables operational provides the SME
with quick feedback and facilitates the validation
process. In addition, the augmentation of the column
headers provides explicit documentation of all the
knowledge for a particular decision. Incremental
expandability enables us to model the decision
making process in a top-down manner, capturing the
big picture decisions at first and later on focusing in
on the details. This speeds up the development
process and keeps the SME focused on the decision at
hand. With some additional development work, we
should be able to reuse tables easily where the
decisions and their inputs are the same across
applications and the variations are restricted to the
mapping of absolute to fuzzy values. Finally, fuzzy
tables can be delivered as C code which can be either
compiled into an application or executed as a
standalone knowledge server providing a high degree
of portability and performance.

Portions of this work were supported by DARPA
under contract DAAE07-92-C-R007, administered
through TACOM, and N66001-95-C-6008
administered through NRaD. We would like to thank
Charles Dolan, the co-developer of and driving force
behind M-KAT, for his knowledge engineering
assistance. We would also like to thank our SMEs,
James Sinnot, Mack Brewer, and Scott Carey, without
whom we would have no expertise to capture. The
interest and support provided by CDR Peggy
Feldmann, DARPA Synthetic Forces PM; Susie
Hartzog and Jeff Clarkson, NRaD Project Managers,
is greatly appreciated.

10. Biography

Seth R. Goldman is a Member of the Research Staff
in the Information Sciences Laboratory at Hughes
Research Laboratories. Mr. Goldman is a Ph.D.
candidate in Artificial Intelligence at UCLA having
earned his M.S. in Artificial Intelligence from UCLA
in 1986 and his S.B. in Computer Science from MIT
in 1982. He is the principal investigator on an NGIC
contract to study methods of operationalizing OPFOR
knowledge. He is the co-developer of M-KAT
(Modular Knowledge Acquisition Toolkit). His
interests include making application software smarter
through knowledge integration, natural language
understanding, and human-machine interfaces.

36

Task-decomposition Planning for Command Decision Making

Jonathan Gratch
University of Southern California

Information Sciences Institute
4676 Admiralty Way, Marina del Rey, CA 90292

gratch@isi.edu

1. Abstract

Developing synthetic command entities requires
addressing a host of issues not normally faced by
more traditional unitlevel agent models.
Commanders must reason over a broader scope and
about events unfolding over long periods of time.
Key amongst this is the ability to reason about and
control unit interactions: coordinating the behavior
of subordinates, meshing with the intentions of ones
superiors, and managing the interactions with enemy
forces who are intent on disrupting the commander's
intentions. We describe the implementation of a
rotorwinged aircraft (RWA) company command
entity implemented in Soar and simulated within
DIS. The command entity adopts planning
techniques to manage the issues of coordination,
control, and replanning that arise in this domain.

2. Introduction

As work in computer generated forces has developed,
it has become more ambitious in its scope. A recent
important effort is the development of socalled
command forces or CFORs (Salisbury et al. 1995).
The goal of the command forces project is to
explicitly model command and control decisions in
simulation. In contrast to the issues faced by vehicle
or platoon level units, CFORs must model the
decision making from a broader perspective and over
longer time scales. Whereas vehiclelevel decision
making tends to be more reactive in nature,
higherechelon units must deliberate about
alternative courses of action, project effects into the
future, and detect harmful (or beneficial) interactions
between subordinate units and enemy forces.

In this paper, we describe the Soar/CFOR command
forces project currently under implementation as part
of the CFOR effort. Soar/CFOR extends the the
Soar/IFOR capabilities to higher echelons and
incorporates the communication and command

functions necessary to operate at these levels. The
project is associated with the Synthetic Theater of
War (STOW) program and is being developed in
conjunction with the Soar/IFOR project (Laird et al.,
1995, Rosenbloom, et al., 1995). Soar/IFOR is an
implemented system for controlling intelligent pilot
agents for participation in simulated battlefield
exercises. Soar/IFOR has already participated in
simulated combat exercises with expert human
pilots, including the STOWE and EDI exercise
and will participated in the upcoming STOW97.

The initial implementation of Soar/CFOR has
focused on the command functions of an AH-64
Apache attack helicopter company commander.
Subsequent work will extend this functionality to the
battalion level. Command behaviors include the
ability to receive orders from one's superiors (live or
simulated), plan missions for subordinate units,
develop a situational awareness of the battlefield,
monitor the execution of plans, and perform
replanning whenever the situation dictates.

Soar/CFOR is developed within the Soar architecture
which also serves as the system underlying
Soar/IFOR agents. The demands of command
decision making have led to considerable differences
in the higher_level organization of CFOR agents
when compared with Soar/IFOR agents. The greater
focus on temporal and interaction reasoning has led
us to draw substantially from the Al planning
literature in the course of the command entity
development. In particular, the Soar/IFOR entities,
though they do have deliberation capabilities, are
more focused on reaction than planning.
Vehiclelevel behavior is not guided by an explicit
representation of the situation, but is rather implicit
in rules that key off of the content of the current
situation. This makes Soar/IFOR efficient and
responsive to dynamic changes, but makes it more
difficult to reason about interactions and changes

37

FLOT
PL Creek

Figure ll Attack Helicopter Bn attacks to destroy the SOI MRR in EADULUTH

over time. In contrast, the command entity
incorporates a reasoning style known in the planning
community as hierarchical task-decomposition
planning (Stefik 1981, Erol, et al., 1994, Ambros-
Ingerson and Steel, 1988). Task-decomposition
planners view a plan as a sequence of tasks, with
dependency information that records the interactions
and causal connections between tasks. Planning
proceeds by taking individual tasks and
decomposing them into a partially ordered sequence
of more specific tasks, in response to the current
situation. Task-decomposition planning meshes well
with the hierarchical flavor of military decision
making as well as the hierarchical structure of the
Soar/IFOR agents which the Soar/CFOR entity
commands.

3. Command and Control Requirements

The responsibilities of a command entity differ
markedly from those of lower_echelon units. This
can be seen clearly by considering a typical mission
flown by an Apache attack helicopter company. This
example is based on the virtual Situational Training
Exercise (vSTX 2) provide by Logicon, which served
as the basis of a recent evaluation of our CFOR
effort. The exercise has been generalized slightly to
include capabilities we are expected to provide in
STOW97. Figure 1 illustrates the operation overlay
for a deep strike mission against enemy units.

In this mission, the helicopter company receives a
mission from its battalion commander. In this case,
the 1-155th Attack Helicopter Battalion is ordered to
destroy the 501st Motorized Rifle Regiment as it
passes through engagement area Duluth. This is a
phased attack with company A moving along axis
Mankato and company B moving along axis Anoka.
This is a deep operation, meaning it is well beyond
the forward line of our own troops (FLOT).
Company A must pass through a known group of
enemy forces and an artillery strike will be called to
create suppression of enemy air defense (SEAD).
Each company will proceed along their respective
axes to a holding area. On orders from the battalion
commander they will enter the battle position and
commence the attack. Company A will attack first,
and then coordinate a transfer of the engagement area
over to Company B. Companies should report the
crossing of all phase lines, bypass all enemy units,
and report units of company size or greater.

The battalion commander transmits this mission to
his company commanders. In our simulation,
missions are communicated using the Command and
Control Simulation Interface Language (CCSIL)
developed by Mitre (Salisbury et al. 1995). CCSIL
provides a structured language to facilitate all
communication between CFOR entities. The mission
includes information necessary for the company
commander to perform mission planning: the goal of
the mission (attack to destroy the 501 MRR); the
actions to be performed by the battalion and brigade;

38

expected actions of enemy forces, plans for each
company; and the operation overlay. Each
company's plan is specified by a sequence of tasks.
These are to be interpreted as highlevel guidance or
constraints on how the company commander
develops his course of action. In this case, Company
A is ordered to 1) move to and occupy battle position
Viking along axis Mankato; 2) on order, destroy
targets in engagement area Duluth, and 3) return to
FAA and prepare for future operations. The mission
also includes reporting requirements (e.g., report
crossing of all phase lines) and coordinating
instructions (e.g., coordinate SEAD).

3.1 Abstract and Implied Tasks

The tasks in the company orders are quite different in
character from those typically given to simulated
forces. The first difference is that the tasks are
specified too abstractly to be directly executed. For
example, moving to and occupying a battle position
involves multiple tasks. Since the axis crosses the
FLOT, the commander must coordinate a passage of
lines with friendly ground forces. Different
formations and speeds will be chosen for different
points along the axis. The axis itself is an abstract
construct and must be refined into a route based on
characteristics of the terrain. Firing positions must
be selected within the battle position, flanking
positions selected, etc.

A second key difference is that the mission may
contain many implied tasks. As a simple (but
common) example, the axis may not go completely
from the FAA to the holding area. The command
entity must recognize whatever gaps exist and plan
routes to fill in these missing pieces. More generally,
the commander must deal with a whole host of issues
involved in interpreting the mission statement and
that are resolved by the principles of METT-T, but
also involve considerable "common sense"
reasoning. As another brief example, in one of the
missions in which we participated, the axis of
advance was specified in the reverse direction from
what we were expected to fly. A human command
would easily recognize that the direction should be
reversed. Simulated command agents must be able to
handle similar complications.

3.2 Managing Interactions

A large portion of the commander's planning focuses
on managing interactions with other entities. With
friendly units, the commander must insure proper

coordination: in the above mission, the commander
of Company A must plan coordinate activities with
ones'superiors, with other friendly units and between
elements of his company. Coordinating with
superiors requires reasoning about activities of
higherechelon units. Other outside interactions
include the coordination of passage of lines with
ground forces, coordination of SEAD with division
artillery, and the transfer of the engagement over to
Company B. Each of these interactions places
constraints on his mission planning, particularly
timing constraints, which may influence how the plan
is developed (e.g., what formations and speeds to use
at different points of the mission).

Within his company, the commander coordinates
interactions between subordinates. Scouts must be
overwatched; rally points must be established if the
company becomes separated. During the attack,
several coordination issues arise. The commander
must insure that units distribute their fires across the
engagement area and adjust the company's position if
units are interfering with each other or are coming
under effective counterattack.

Perhaps the most complex interactions involve
enemy forces. At the very least the commander must
ensure his forces reach the battle position when the
enemy is in the engagement area. Beyond this, the
commander must recognize and manage potential
threats the successful completion of his mission.
This can be preplanned to some extent (e.g., planning
secondary battle positions, rally points, etc.) but also
may require replanning during mission execution
(e.g., developing a route to bypass unanticipated
enemy forces).

3.3 Replanning

As just alluded to, one of the most difficult
requirements on command entity behavior is the need
to handle unanticipated contingencies. The
battlefield is a dynamic environment. Unanticipated
contingences can be handled with local reactions
only to an extent. Often a plan has tight constraints
and avoiding an unexpected enemy force early in the
plan may have consequences for subsequent
execution. Changes might be as minor as changing
speed to as demanding as replanning the mission
from scratch based on new information enroute. A
command entity must recognized the
interdependencies of plan steps in order to respond to
such dynamic changes.

39

TitM-fat FAA) Destroys
MRR 501

rdestroyed(MRR)~V *m^*-

Figure 2: Hierarchical task network for (part of) the mission in Figure 1

4. Command and Control in Soar/CFOR

The above requirements place several constraints on
the development of a command entity. The company
commander must reason about interactions between
his subordinates as well as with other forces. Besides
constructing the initial plan, the commander must
track the interdependencies between tasks, recognize
how the changing situation effects these
dependencies, and repair the plan whenever these
dependencies are violated. To address these
requirements, we adopted a plan representation
known as hierarchical task_networks (HTN)
(Sacerdoti, 1977; Tate, 1977; Wilkins, 1988).
Planning in Soar/CFOR is accomplished through a
combination of techniques developed for HTNs and
techniques developed in the partial'order planning
paradigm (Chapman, 1987; McAIlester and
Rosenblit, 1991). First we will describe the plan
representation.

4.1 Plan Representation

Figure 2 illustrates a hierarchical task network for the
ingress part of the mission. The egress part of the
mission is left out for simplicity. The network
represents a hierarchy of tasks. At the top of the
hierarchy is the abstract task "destroy the 501st
MRR." This is broken down into a partial lyordered

sequence of subtasks, two of which are to be
performed by Company A and one of which
corresponds to the actions of the enemy regiment.
Subtasks may be further subdivided into more
subtasks. The intended interpretation of the network
is that subtasks represent a more detailed
specification of how a task is accomplished. A task
with subtasks is said to be an abstract task, and the
subtasks are said to be a decomposition of the
abstract task. Tasks that cannot be further
decomposed are referred to as primitive tasks. These
typically correspond to actions that can be directly
executed by the agent. (Note that a primitive task at
one echelon may be an abstract task at lower
echelons. Primitive tasks for the company
commander are converted into a set of task by the
Soar/IFOR entities.) In Figure 2, tasks are
represented as rectangles. Shaded rectangles
correspond to primitive tasks.

Much like other plan representations, tasks in a
hierarchical task network may have preconditions
and effects. Preconditions are facts which must be
true in the world to execute the task. Effects are
those facts that are added or deleted by executing the
action. In our plan representation, preconditions and
effects may be predicates with an arbitrary number of
variables. Currently, we do not implement variable
quantifies in.

40

IF <w> is a task of form:

(j^ED-
Task<w>,

Type: *Movep
Route: ..*<*>

-(a(<y>)]

AND o intersects the FLOT at <z>

THEN create subtasks:

(*W)-
Task<5l>j

T^pe: * Move p
Route :....> -^heao>;
Technique: Travel 2
Formation: Trail

~(«W)- •(Sw)-
Task<s3>,

Type: » Move?
Route:....» -<r.tai>?
Te ch rri qu e: Over Watch fc>
Formation: Trail

fe<z>))-

Task<s2>,
TVpe:>Linep
^Passage

-pt^T)

Figure 3: Task-decomposition operator

preconditions. In Figure 2, preconditions and effects
are represented as ovals.

Typically the network will include two "dummy"
tasks. The *init* task asserts all the facts of the
initial state as its effects. The *goal* task has the
overall purpose of the mission (destroy the 501st
MRR) as its preconditions.

Dependency information is represented as links
between preconditions and effects in the network,
which are represented as arrows in the network. For
example, for the enemy to be destroyed, the company
must perform the engage task at the same time that
the 501st is in the engagement area. This is indicated
by a dependency of the destroyed precondition and
the effects of these two tasks. Links between
preconditions and effects are a specialcase of a more
general concept of a protection constraint. If task 1
asserts fact A which is a precondition to task2, the
commander must ensure that fact A remains true
from the end of task 1 to the beginning of task2. This
can be stated as a constraint that A must remain true
from taskl to task2. Note that these protection
constraints also force orderings between tasks: the
asserting task must precede the the task whose
precondition it establishes. The planner may also
impose ordering constraints directly between tasks.
The hierarchical task network representation makes it

easy to express a variety of constraints on the plan
structure.

4.2 Plan Generation

Planning is accomplished in a fashion similar to the
IPEM architecture (Ambros-Ingerson and Steel,
1988). A final plan is developed though a process
called refinement search (Kambhampati et al, 1995).
Initially one will start with a partial task network
probably consisting of a few abstract tasks (in the
mission described above, the commander receives the
top node in the hierarchy and the first level of
subtasks in the operations order). Typically, the
initial plan cannot be executed. It may contain
non_primitive tasks or tasks may have unsatisfied
preconditions. The limitations in the initial plan are
addressed by applying operations that modify the
plan structure and, hopefully, result in a complete
sequence of primitive tasks that achieve the goals of
the mission. These planning operations are called
refinements and can be classified by the type of
limitations they address.

Taskdecomposition: Non_primitive tasks are
addressed by a refinement called taskdecomposition.
Task_decomposition operators specify how an
abstract task might be broken down into a partial
sequence of subtasks. Such an operator is illustrated

41

in Figure 3 (the syntax "<x>" denotes a variable
named x). This rule checks if a movement task goes
along a route that intersects the FLOT. If so, it
creates three subtasks, the first moves along the route
up to the FLOT, the second performs the passage of
lines, and the third moves along the remainder of the
route. This rule also augments the subtasks with
movement techniques and formations appropriate to
the crossing of a FLOT. Note that the decomposition
involves more than simply asserting a set of subtasks;
it may additionally assert ordering and protection
constraints to the plan structure.

Establishment: Unsatisfied preconditions are
addressed by two different refinements. The first is
called simple establishment. This operation looks for
some effect already in the plan structure that satisfies
the precondition. If such an effect exists, a
dependency link is created between this effect and
the precondition. The effect is said to establish the
precondition. This also enforces a protection
constraint on the plan - no other task may delete this
effect until after the task whose precondition is
established by it.

If no existing effect in the plan can establish the
precondition, an alternative method of establishment
can be used called stepjiddition. This operation
adds some task to the plan that has an effect which
unifies with the precondition. A link is then drawn
between the effect of this new task and the
unsatisfied precondition.

Protection Violation: A final class of refinements
addresses potential violations to the protection
constraints in the plan. For example, consider that
effect At(HoldingArea) is protected from taskl to
task2, that task3 deletes At(HoldingArea), and that
task3 can possibly occur between taskl and task2. In
this case, there are two ways to refine the plan to
remove this potential conflict. Promotion asserts an
ordering constraint which forces task3 to occur after
the protection interval (after task2). Demotion asserts
an ordering constraint which forces task3 to occur
before the protection interval (before taskl). Finally,
separation asserts a binding constraint which states
that <x> cannot equal <y>.

Planning proceeds by incrementally applying
refinements until a complete plan is discovered.
Alternative refinements can be explored by
depthfirst search. If no refinements can be applied
or there is an unresolvable flaw in the plan, the
planner is forced to backtrack. Multiple courses of

action can be entertained by exploring different
refinement sequences in parallel. Typically
taskdecomposition refinements are applied first, to
sketch out the basic structure of the plan. Next,
simple establishment, promotion, demotion, and
separation are considered, Finally one considers
stepaddition.

4.3 Plan Execution

In addition to refinements, we implemented two
other planning options. The command entity can
initiate the execution of a task or terminate the
execution of an executing task. Tasks may be
executed if their preconditions are satisfied and no
other unexecuted task precedes them. Tasks may be
terminated if some prespecified termination criteria
has been reached (e.g., a movement task terminates
when the movement objective has been attained).
The command entity may interleave execution and
termination with the other refinements and thus
achieve an interleaving of planning and execution.

4.4 Replanning

Replanning occurs in much the same way as the plan
was initially developed. During the course of plan
execution the current state may change in ways that
violate or potentially violate the dependencies in the
plan structure. For example, the execution of a task
may not have the expected effects, or some
unanticipated event may occur, such as a change in
the location of the target. When such situations arise
they are interpreted by the planner as limitations in
the current plan, and are addressed by the same
refinements used in plan generation. When
preconditions become unsatisfied the planner will try
to reestablish them through simple establishment or
step addition. When that fails the planner will be
forced to backtrack across the refinements that
introduced the unsatisfied preconditions. When all
else fails the commander can contact his superiors for
further instructions.

5. Company Organization

In our simulation, we have made a distinction
between the Soar/CFOR command entity, which does
mission planning/replanning and the Soar/IFOR
vehicle entity which implements the vehicle level
behaviors. A human company commander must play
both roles; he or she must plan the mission and
control the vehicle, often both at the same time. We

42

Bn Order n SitReport

77
CFOR Infrastructure

Company Commander (Soar/CFOR)

Mission Representation

Co Order
1V--H

Sitp
Report

SitReport Sensors
\
\ \

RWA1 (SoaMFOR)

Mission Representation

i-J

RWA2

V ^-vl l, Mis. Rep. I
Ml

Rep, ,1
jl

R
ModSAF

DIS Network

Figure 4: Company Organization

have addressed this problem by essentially dividing
the commander's brain in two. Although they are
separate processes, the Soar/CFOR entity is
associated with a particular Soar/IFOR vehicle and
has special information links to it.

Figure 4 illustrates the basic organization of a RWA
company as simulated within DIS. The command
entity is controlled by Soar/CFOR. Each RWA in
the company is controlled by Soar/IFOR. The
command entity is associated with a particular RWA
and gains access to that vehicle's sensors through the
CFOR infrastructure provided by Mitre.
Communication between the command entity and the
vehicles of the company (including his own) occurs
via CCSIL messages. Vehicles may communicate
directly to each other via CCSIL or simulated radio.
The commander mediates all communication with
units outside the company.

Initially the company commander receives a mission
in the form of a CCSIL operations order.

Soar/CFOR develops a plan, backbriefs it to the
battalion commander, and if approved, broadcasts the
plan, via CCSIL, to the company. At this point all
entities have a consistent representation of the
mission. As the mission progresses, new information
may become available: new information may arrive
in the form of new orders, vehicle sensors, or
situation reports (in CCSIL) from other units. It is
the responsibility of individual vehicles to inform the
command entity of relevant new information. If this
information invalidates the current plan, the
command entity will regenerate a new course of
action and broadcast the new mission to the
company.

An issue raised by this organization is how to model
transfers of command, as when the commander is
killed during the mission. The Soar/IFOR entities
model a chain of command: when it becomes know
that the commander is dead, the next vehicle in the
chain assumes the commander's role. What this
means in our company organization is that the new

43

commander acquires the interface to the command
entity. Currently, we are not planning on modeling
the loss of information and expertise that
accompanies such a change.

6. Project Status

As of the writing of this article the Soar/CFOR
command entity has been in development for eight
months. The basic plan generation capabilities are in
place and performed successfully during a recent
evaluation based on a reduced version of the scenario
described in Section 3: no SEAD was involved; only
one company flew at a time; and CCSIL
communications were strictly vertical (the company
commander only communicated with his battalion
commander and with his. company through the
medium of operations orders and situation reports.).
The planner currently considers only one course of
action and does not, as of yet, have to capability to
evaluate the strengths and weakness of alternative
courses of action. Another key limitation is that
replanning capabilities are not fully implemented. It
is likely that some details of execution and
replanning will change as we gain more experience
with these new capabilities.

We plan to expand the repertoire of behaviors
available to the command entity and broaden the
project to include higher levels of command.
Currently, the commander plans for attack missions.
We will soon broaden this to include missions of
security and reconnaissance. These tasks appear to
place more reliance on recognizing and adapting to
changes in the situation, and we expect the explicit
dependency information in our plan representation
will be invaluable in providing these capabilities. By
STOW97 we intend to have implemented a battalion
level command entity.

7. Acknowledgement

Jeff Rickel, Steve Chien, and Paul Rosenbloom
assisted this work through their knowledge and
valuable discussions. This research is supported
under contract N66001-95-C-6013 from the
Advanced Systems Technology Office (ASTO) of the
Advanced Research Projects Agency (ARPA) and the
Naval Command and Ocean Surveillance Center,
RDT&E division (NRAD).

8. References

Ambros-Ingerson, J. A. and Steel, S., "Integrating
Planning, Execution, and Monitoring,"
Proceedings of the National Conference on
Artificial Intelligence, 1988, pp 83-88.

, D.,"Planning for Conjunctive Goals," Artificial
Intelligence, 32(3), 1987, pp. 333-378.

Erol, K., Hendler, J., and Nau, D. S., "HTN
Planning: Complexity and Expressivity,"
Proceedings of the National Conference on
Artificial Intelligence, 1994, pp 1123-1128.

Kambhampati, S., Knoblock, C. A., Yang, Q,
"Planning as Refinement Search: A Unified
Framework for Evaluating Design Tradeoffs in
Partialorder Planning," Artificial Intelligence,
76(1-2), 1995, pp. 167-238.

, M. "Planning with Constraints," Artificial
Intelligence 16 (1981) pp 111-140.

Laird, J. E., Johnson, W. L., Jones, R. M., Ross, F.,
Lehman, J. F., Nielson, P. E, Rosenbloom, P.
S., Rubinoff, R., Schwamb, K., Tambe, M., van
Lent, M., and Wray, R., "Simulated Intelligent
Forces for Air: The Soar/IFOR project 1995,"
Proceedings of the Fifth Conference on
Computer Generated Forces and Behavior
Representation.

McAllester, D., and Rosenblitt, D., "Systematic
Nonlinear Planning," in Proceedings of the Ninth
National Conference on Artificial Intelligence,
1991, pp. 634-639.

, P., Johnson, W. L., Jones, R. M., Koss, F., Lehman,
J. F., Nielson, P. E., Rubinoff, R., Schwamb, K.,
Tambe, M., "Intelligent Automated Agents for
Tactical Air Simulation: A Progress Report,"
Proceedings of the Conference on Computer
Generated Forces and Behavioral
Representation, 1995.

Sacerdoti, E. D., A Structure for Plans and Behavior,
ElsevierNorth Holland, 1977.

M. R. Salisbury, M. R., Booker, L. B., Seidel, D. W.,
Dahman, J. S., "Implementation of Command
Forces (CFOR) Simulation," Proceedings of the
Conference on Computer Generated Forces and
Behavioral Representation, 1995, pp. 423-432.

, A., "Generating Project Networks," in Proceedings
of the International Joint Conference on
Artificial Intelligence, 1977.

, D., "Domainindependent Planning:
Representation and Plan Generation," in
Readings in Planning, J. Allen, J. Hendler, A.
Tate (eds.), Morgan Kaufman, 1990, pp. 319-
335.

44

9. Author's Biography

Jonathan Gratch is a research computer scientist at
the Information Sciences Institute, University of
Southern California (USC), and a research assistant
professor with the computer science department at
USC. He completed his undergraduate education in
computer science from the University of Texas at
Austin in 1986. He received his Ph.D. in 1995 from
the University of Illinois in Urbana_Champaign. His
research interests are in the areas of planning,
learning and decision theory.

45

Session lb: Non-Military Uses of CGF

Adamson, DERA
Courtemanche, SAIC

Petty, UCF/IST
Miller, BMH

The CAEN Wargame for OOTW Applications

Janusz Adamson
CDA Land Studies Department

DERA, Fort Halstead,
Sevenoaks, Kent, TN14 7BP

United Kingdom

1. Abstract

The end of the Cold War has led to major changes in
the world strategic environment which in turn have
led to major revisions of NATO defence policies.
Whilst the core role is still national defence, there is
now a greater emphasis on the capabilities needed for
regional conflict and on the requirement for
Operations Other Than War (OOTW).

Wargames and simulations, which have been
developed for defence applications, can provide
excellent environments for the examination of para-
military operations such as peace keeping and peace
making (i.e. Operations Other Than War).

By peace keeping and peace making operations we
mean such operations as operational planning, tactics,
training, mission rehearsal, resource management,
conflict resolution, crisis management and studying
the complex decisions required for long and short
term states of stability within the community.

2. Introduction

The Defence Evaluation and Research Agency
(DERA) is a government owned research and
technology organisation whose aim is to provide
independent, high-quality, cost-effective scientific
and technical services to its customers, primarily the
Ministry of Defence (MOD).

The Centre for Defence Analysis (CDA), a division
of DERA, provides advice and analysis of defence
systems, procedures and operations, primarily to
MOD. Operational Analysis (OA) forms a key
element in the underpinning role of CDA in the
decision making process for defence equipment
procurement, defence planning and formulation of
defence policy.

In order to meet these changing requirements, the
CDA Land Studies Department at DERA, Fort
Halstead, is enhancing a combination of wargames
and simulations ranging from one-on-one to
divisional and corps battles. One such development

is the Close Action ENvironment (CAEN), which can
be run as either a wargame or a simulation. At the
CDA, CAEN is used for operational analysis and
weapon system evaluation. The UK Police may use
CAEN for operational planning, tactics and training
of officers in law enforcement and small arms
situations.

3. CAEN

CAEN is a highly detailed model of the close combat
battle. It is both a means of simulating weapons
effects and an interactive wargame between opposing
forces of up to platoon level strength. The area
covered is typically 5-by-6 km and the terrain is
represented at 10m resolution. Both urban and rural
areas can be modelled with detailed representation of
buildings and ground cover. Up to 200 entities are
usually modelled and consist of either infantrymen
and their personal weapons or vehicles such as
armoured personnel carriers and main battle tanks.

CAEN can operate either as an automatically
replicated simulation with no user intervention, or as
an interactive game in which two or more
independent players control the actions of their own
forces.

The overall system comprises:
Terrain editor facility.
Interactive on-line gaming system.
Deployment system.
Game replay facility.
Replication system.

3.1 Terrain Features

Terrain features include roads, rivers, minefields and
obstacles. Vegetation can be represented as simple (a
height and density) or complex (density varies with
height) culture. CAEN represents complex culture as
a number of different layers of varying density
vegetation at different heights. Buildings are
represented in higher resolution than other culture
and include multiple storeys, sloping roofs and
windows.

49

3.2 Interactive Gaming

The interactive system enables players to issue orders
to allow them to change routes, arcs, activities etc.
during the course of play. In this way the player can
react to events in the game which are considered to be
of military significance. The player does not have to
control the actions of all the entities all of the time.
Instead each entity or group of entities will follow an
initial set of orders provided at the start of the game
unless overridden by an interactive command. The
wargame system also contains acquisition, movement,
engagement and tactical models which are processed
automatically.

The players can interrogate any entities under their
control for relevant information such as damage
status, ammunition remaining, etc.

The interactive gaming system is supported by a
sophisticated colour graphics facility which allows
each player a realistic view of the ongoing scenario,
but constrained by the knowledge available to his
own forces.

A save/restart facility allows players to save the state
of the game at any time during play.

3.3 Movement

Movement is between nodes. Routes can be specified
for groups or individual entities. Speed is limited by
terrain. Infantry can change posture which may
further limit speed (for example crawling). Infantry
can be carried by vehicles and debussed from them.

3.4 Tactical Model

A major feature of CAEN is the tactical model which
enables the player to set up tactics for entities or
groups of entities. Objectives, aim zones and triggers
can be set up to initiate or suspend activities (or
behaviours) by entities or groups. Some triggers (for
example suppression or cut wire) automatically
initiate certain activities while others are set up by the
player. Activities are either simple or complex. A
complex sequence of activities is made up of simple
activities which succeed or trigger one another.
Group members may carry out different activities (for
example fire and movement).

3.5 Detection

Detection occurs as follows:

• Random search detection methods use line-of-
sight and target acquisition calculations; the
models used depend upon whether the sight is
optical, thermal or image intensifier.

• Detection using weapon signature is based on
firing weapon, observer's sight and range.

• Detection is based on the noise made by the
weapon being fired; it is also range dependent.

3.6 Engagements

Engagements are carried out using:
• Aimed fire. This is the same as direct fire in

most models. Once a target(s) has been
acquired, the entity will select a target.

• Suppressive fire. This is also direct fire, but it is
directed at an area/object with the aim of
suppressing any entities/objects in that area. It
may incidentally cause casualties.

• Indirect fire. Missions are player directed or set
up using aim zones and triggers.

3.7 Engagement Models

Engagement models include:
• Small arms. This model calculates the

trajectories of rounds to determine casualties.
Any hit by a bullet on a person is considered to
have incapacitated the person.

• Fratricide. This models the accidental shooting
of own troops.

• Explosive munitions. The mean area of effect is
used to determine effects.

• Other munitions, for example armour piercing
rounds. Hit probability and lethality are used.

3.8 Other Modelling Capabilities

Other effects of rounds modelled include:
• Suppression. This varies depending upon both

the recipient and the incoming fire. Its effect is
to cause the recipient to take cover.

• Obscuration (smoke) uses the COMBIC model.
The smoke clouds drift across the map. They
vary in size and shape, and depend primarily
upon the type of round and meteorological
conditions.

• Illumination. This modifies the (night) ambient
luminance for a given area. The area will drift
with the wind, and depends upon the ammunition
type.

Minefields are defined by type and density of mine.

50

A "weapon sharing" model enables men to pick up
key weapons whose operators have become
casualties.

3.9 Fighting Within Buildings

Fighting within buildings, at the moment, is carried
out using look-up tables. Entities of opposing sides
enter combat once they are within a building and in
the same 10m square. The fighting in buildings
model then determines casualties with time. Entities
can be added during the combat. Combat will
continue until all of one side is killed or withdraws.

3.10 Other Faculties

A number of facilities are available to assist the
player during planning the deployment. The most
important of these is the ability to get a view of the
battlefield from any given location (during the game
the player can only get views from his entity's current
locations).

Day, night, and various meteorological conditions can
be modelled.

4. Virtual Reality

Virtual Reality (VR) offers the capability to model
and visualise 3-dimensional objects in real-time. A
natural application of this enabling technology has
been applied with great success to CAEN.

The VR facility within CAEN includes:
• A pre-game set-up facility. This allows players

to move to any position and mimic entity
viewpoints, thus helping validate line-of-sight
assumptions and permitting a reconnaissance of
the terrain.

• An interactive facility. This is achieved by
networking and synchronising both gaming and
VR environments. Thus, when a player displays
a sensor view, the viewpoint data are transferred
to the VR environment and the corresponding
view displayed in the virtual world.

• A post-run analysis facility. This makes use of
CAEN output to drive the virtual world. The
analyst is able to move around the battlefield,
view all static features, and monitor the
unfolding battle from different perspectives
without interacting with any of the entities.
Alternatively, the analyst can clamp the
viewpoint to a selected entity in order to check

for accuracy of modelling, orders and for desired
behaviour

5. Operations Other Than War

Events which threaten life, property, the community
or the environment, make particular demands, both
financial and human, on those responsible for
decision making when controlling and co-ordinating
resources in response to those events.

The most critical period following such an event can
be the time taken to respond, restore normality and
take control of the situation, especially when initially
there is incomplete information available.

This is especially the case where certain events have
increasing economic, as well as national impact on
the forces involved. Whilst organisational
procedures, skills and drills exist, those with
responsibility for decision making also need well
developed human skills and knowledge in order to
make them effective, even under stress. Operational
officers (i.e. commanders) need to manage their
doctrinal, organisational and leadership skills and
then plan, exercise and test their theories in order to
clearly see and understand how these situations
evolve from initiation through to a successful
achievement of the desired state.

To achieve this requires an approach which combines
theory with practice. The theory can be encapsulated
within products such as the Surrey Police Leadership
Evaluation Action and Development (LEAD) product
and the practice exercised and simulated within the
CAEN environment.

Leadership training of operational officers, who are
expected to take command and lead teams, is critical
for mission accomplishment in operations such as:

Terrorism.
Hostage/Siege.
Environmental disasters - fire, flood, etc.
Explosions - natural, accidental, deliberate.
Incidents - natural, accidental, deliberate.
Industrial hazards.
Public order, law enforcement, riot control.
Movement control.

5.1 Modelling Methodology

A key requirement for modelling these events is the
behavioural representation of neutral factions, non-
combatants and crowds. This can be achieved by

51

aggregating numbers of people and representing them
as single entities. For example, an entity may
represent an individual trouble-maker within a crowd,
whilst another entity may represent a group of people.
Then taking advantage of the multi-screen, multi-
sided capabilities within the wargame/simulation
environment, it is possible to model and game a
multi-national peace keeping force together with
neutrals and non-combatants consisting of agitators,
demonstrators, bystanders, the press, the police and
any other interested party.

Other important components which need to be
considered include how entities respond to noise, the
realistic modelling of command and control
(communications), the use of Command Agents, user
interface issues, visualisation and object based
(dynamic) terrain.

These components, when incorporated within a
wargame or simulation, will provide a powerful
generic environment for creating, testing and
exercising plans in order to achieve a more positive
outcome in the possible event of a major crisis or
incident.

5.2 Behavioural Representation

Non-combatants are those entities who are present in
the tactical area of interest but are not seeking to
influence events. From a military point of view, these
entities may represent refugees, evacuees, prisoners
of war or members of non-military organisations. For
non-military applications, they may represent the
utility services, elements of a crowd, casualties,
detainees, criminals, the news media or any other
interested party. The emergency services, who are
dealing with the crisis are the equivalent of
combatants in a war game.

The presence, attitudes, activities and requirements of
neutral factions, non-combatants and crowds can have
a significant effect on the outcome of a major crisis or
incident. If they are to be modelled, then the
gaming/simulation environment must provide entity
attributes such as:
• Disablement or injury, be it temporary or partial.

This may include bodily functions such as sight,
arms, legs, etc. The injury may affect mobility
and posture.

• An entity may die from the wounds if not treated
within a given time. Alternatively, the entity may
be treated and recover from the injury.

• Effects of non-lethal weapons such as CS gas.

• Fear and aggression could be triggered
dynamically by firearms, riot control equipment,
agitators, noise, injury, etc. and would make an
entity behave differently.

• Use of roman tactics during a scuffle, such as
kicking and punching. Weapons such as boots,
fists, batons and bricks would be made available.

• Dynamically changing clothing and weapons,
such as the police having to change into riot gear,
or the disarming of military personnel.

• The formation of wedges to break up crowds.
• Pushing activities such as aggregating individual

entity strengths to move a vehicle.
• Making arrests, causing injury, detaining,

removing or transferring injured entities from the
tactical area.

• Individual entities could be identified and tagged
for periods of time.

Within CAEN, these behavioural representations are
activated by rules, triggers and data.

5.3 Multi-Screen

A multiple screen environment allows more than one
player per side to participate in the interactive game
sessions at the same time. By having several players
per side, each side can be structured to represent
several levels of command and control. This will
allow investigations into communications problems
between different levels of command.

Within CAEN each side can be divided into
"command forces". A "commander" would be
nominated for each side. Each commander may have
additional players on his side so that more than one
command force is represented for each side. The
default would be one command force and one player
per side.

5.4 Multi-Sided

A multi-sided system will allow more than two sides
to participate in an engagement. This will allow non-
combatant sides to be present, sides of unknown
hostility, combat forces enforcing a cease fire or a
UN peace keeping/peace making force. The multi-
sided system will also allow for terrorists, criminal
elements or different crowd factions to be
represented.

CAEN allows each side to be deployed separately in
the same manner detailed for separate forces in the
multi-screen environment.

52

5.5 Noise

The modelling of noise and its effects on entities
(noise may cause crowds to panic) needs to be
considered. Noise may be broken down into
background and foreground. Background noise is
generally ignored, such as noise from lorries and cars,
but the ambient level is significant. Foreground noise
is generally sudden noise that may be heard above the
ambient background; typical examples include a
gunshot or a car backfiring.

5.6 Communications

Communications addresses the passing of information
gathered by deployed entities throughout the chain of
command. Current wargaming and simulation
environments tend to have a perfect communications
network. If communications are to be made more
realistic, it is necessary that information is delayed,
degraded or lost during the message passing process.
Decisions, orders and actions will then have to be
made upon imprecise information. Within CAEN,
the communications network will exhibit the
following characteristics:
• Errors in entity positions. The positions of

entities on the screen will represent the last
position at which a report was made to the
operations officer. As more entities acquire a
target, the target's position will tend towards its
actual position.

• Delays in communication. Existing out of date
information will be retained until an update is
successfully communicated.

• Failure to communicate information. There may
be situations where the information is not
considered important.

5.7 Command Agents

Command Agents are used to represent decision
making nodes within a command hierarchy. Each
Command Agent represents a command post which is
able to make decisions and interact with other
Command Agents and entities within a wargaming,
simulation environment. Command Agents therefore
control operations within the tactical area of interest.

At the heart of a Command Agent is a knowledge
based system containing explicit knowledge which
describes sets of tactics and behaviours required by a
command post to perform its particular role during
the operation.

Facilities need to be provided for a human controller
to take on the role of a Command Agent. This means
that the human controller will perform all the decision
making processes of that agent, thus replacing an
existing agent or work independently alongside other
agents within the command structure.

In a multi-screen, multi-sided environment, the use of
Command Agents will reduce manning levels and
hence the running cost of the simulated exercise.

Command Agents have been demonstrated with great
success during a game at divisional level. These
Command Agents are very sophisticated and
contained a large number of rules. Individual entity
Command Agents will not require very sophisticated
knowledge bases.

5.8 User Interface

A human computer interface is that combination of
physical components and software which combine to
allow the user to issue commands to the computer,
and allow the computer to present information to the
user.

A user friendly interface is an essential requirement to
ensure rapid acceptance of any system. A generic
user interface is therefore required with a consistent
look-and-feel for all application views. The user
interface has to be intuitive, easy to use,
reconfigurable and individually customised for
specific applications. A graded " help" facility,
which is activated by the user and based on the user's
familiarity with the system, is a useful additional
feature.

5.9 Visualisation

Virtual Reality (VR) provides an additional
dimension to visualisation. The rapid creation of new
terrain and objects, full immersive facilities for
training people in leadership qualities under
stressful/chaotic conditions, the smoothing out of
movement between frames during gaming and replay,
provide an important role in the decision making
process.

5.10 Object Based Terrain

The requirement is to develop an overlay terrain
structure so that terrain objects can be placed upon
the terrain without being restricted by the grid
structure of the current underlying terrain.

53

The proposed CAEN object terrain will allow a
higher degree of detail to be represented in selected
areas of interest. It will also provide a more realistic
modelling environment for general terrain areas. This
will provide the following benefits:
• Any size of terrain object will be possible, so a

more realistic representation of features such as
buildings, rubble, fox holes and trees can be
modelled.

• The defining of terrain objects in terms of
constituent elements will allow for a greater
variation in the shape of buildings, trees, etc.

• The enabling of objects to be positioned on the
terrain overlapping grid square boundaries will
remove the uniformity observed in the existing
terrain feature representation.

The current representation of a terrain area based on
regular squares will be replaced by irregular triangles.
This will provide a direct mapping to the VR
implementation which uses flat irregular triangles for
terrain representation. In the future, objects will be
created within the VR environment and mapped
directly into CAEN, thus considerably reducing the
gaming set-up time for new geographical locations.
However, additional processing may be required for
terrain areas with complex contour detail.

6. Applications

Wargames and simulations, such as CAEN, can be
customised to game and simulate threat management.
By threat management we. mean "the positive
management of any event which is a threat or
potential threat to a state of stability". Public order
operations, emergency planning operations and
mission planning are examples of threat management.

The rapid creation of specific terrain and culture is an
essential requirement for threat management. If data
is not readily available, then a generic environment,
such as a generic town, will suffice as an interim
solution. This town might contain a railway station,
town centre, county court, police station, sports town
by-pass.

A typical operation might address the tactics and
resources required to police elements of a crowd
moving from one part of a town to another. Police
cars would be used to shepherd people along main
roads whilst additional police cars and police officers
would also be allocated to strategic positions to
cordon off parts of the town. Potential application
areas include the control of football crowds, the

policing of the annual carnivals or the containment of
riots following an unpopular event or decision.

Another operation might be concerned with the co-
ordination of the emergency services following a
major incident in a built-up area.

A typical incident report may read as follows:

SCENARIO
Date:
Time:
Weather:
Wind direction:

20 June 1996
09.30 am
Overcast - outlook rain
NNE speed 5 mph

INCIDENT
At 09.30 am a fully laden tanker, travelling EAST
through the village of Copehill has overturned
whilst manoeuvring around a tight corner.
Immediately behind the tanker is a group of foreign
tourists in a car.

The tanker explodes and the tanker driver is killed.
The driver of the tourist car is killed and one of his
party is injured.

The person in the house next to where the tanker
explodes tries to help the driver, but is killed in the
attempt.

The remainder of the family in the house have
walking injuries and are able to move to a safe
location, but do require urgent medical assistance.
Wargames and simulations such as CAEN can be
used to create the above incident and encourage
operations officers to take control of the situation and
restore normality within a constructive, virtual
environment.
It has been observed that the most critical period
following any incident can be the time taken to
respond, restore normality and take control of the
situation at the scene of the incident, especially when
initially there is incomplete information available.
Typical questions that may need to be addressed are:
• How quickly can the emergency services arrive

at the scene of the incident?
• What is the quickest route to the incident?
• What resources are required to restore order and

take control of the situation?
• What measures are required to prevent

escalation?
• Where are the most suitable locations for

establishing command posts?

54

7. Safety Management

Analysis of the major incidents reported within the
European Community indicates that, in the majority
of cases, management error was the underlying cause.
This error can manifest itself as deficiencies of
organisation, inadequate training, or simply failing to
take into account the possibility of human error.

The cost of running live exercising in order to
minimise these errors is excessive. For example,
when Eurotunnel decides to close down one of their
railway tracks for such a live exercise, the loss of
revenue could be excessive especially when trains are
scheduled to run through the Channel Tunnel at 3
minute intervals.

The real business behind training and exercises is to
test the foundations of corporate, organisational and
personal responsibility. Distributed Interactive
Simulation (DIS) techniques and protocols would
provide a multi-agency approach to the planning,
exercising and testing of emergency plans. A
distributed system would consist of workstations
which are located at various sites and linked together
over a wide area network. This system architecture
would enable operational officers, who are sited at
various geographical locations, to communicate,
game, simulate and exercise their plans together in a
realistic virtual environment.

8. Conclusion

The cost of such live exercises, excluding manpower
costs, may range from £15K to in excess of £150K
(for example, a 3 hour exercise at a provincial airfield
costs in the region of £100K). When the Control Of
Major Accident Hazards (COMAH) legislation
becomes law, the number and frequency of running
different types of live exercises may increase.

7.1 COMAH

COMAH is a major European accident prevention
policy which will set out in writing an operator's aims
and principles for the control of major hazards in an
establishment, and in particular, the safety
management system which is controlled by that
operations officer.

Operations officers will have to prepare emergency
plans and explain how they will respond should a
major incident occur. They will have to provide
sufficient information to the authorities to enable
them to draw up off-site emergency plans. Part of
the plan will be the requirement to inform the public
within the vicinity of the incident what actions
should be taken.

Wargames and simulations such as CAEN could
help validate the quality risk assessment procedures
required when the COMAH legislation becomes
law.

7.2 Safety Exercises

The testing of an emergency plan may prove to be
pointless as it has been observed that these exercises
tend to be repetitive and may not necessarily test the
critical components of the plan. Existing wargames
and simulations could provide the solution.

Wargames and simulations, such as CAEN, provide
excellent environments for gaming and simulating
para-military operations such as:
• Operational Analysis (OA) on such topics as

Close Combat, Military Operations in Built-up
Areas (MOBA) and Key Point Defence.

• Operational planning and training.
• Reviewing command and control.
• Evaluating human performance.
• Training personnel for given emergencies.
The flexibility of CAEN and the very fine detail of its
modelling capability provide an excellent
environment for Operations Other Than War. Within
reason, anything that moves on land can be modelled
and gamed within CAEN. This is illustrated by the
ease with which CAEN has been used for creating a
variety of different scenarios for both defence and
non-defence applications.

There are many potential uses of CAEN for peace
keeping, peace making and paramilitary activities.
These include operational planning, tactics, training,
mission rehearsal, resource management, conflict
resolution, crisis management and studying the
complex decisions required for long and short term
states of stability within the community.

The benefits of using wargames such as CAEN
include:
• A distributed computer environment to visualise,

interact with and rapidly re-configure complex
events and disorder.

• The ability to plan, practice and test a variety of
responses to emergency and critical situations in
a tailored environment.

• A facility for pre-operational and post-
operational analysis on such topics as threat

55

analysis, vulnerability analysis and risk
assessment.

• A substantial reduction .in the costs incurred
when an organisation sets up "real" situations to
simulate complex events and disorder.

• Reduction in the costs and damage to reputation
which occur when organisations "get it wrong" in
an emergency and find that they are the victims
of damage litigation.

In summary, wargames like CAEN offer forums to
explore the synergy between the terrain, the
environment, and the man-in-the-loop for both
defence and non-defence applications.

9. Author's Biography

Janusz Adamson is a Senior Consultant at the Centre
for Defence Analysis, DERA Fort Halstead. Mr.
Adamson has a BSc(Hons) degree in Astronomy and
an Mphil. His project responsibilities include
(CASUM), the Close Action Environment wargame
(CAEN), Genetic Algorithms, Real-time Knowledge
base Systems and Command Agents. His technical
focus is on Synthetic Environments and Computer
Generated Forces.

56

MedSAF: Prototyping a Vision for Medical Simulation in DIS

Anthony J. Courtemanche and Kent Bimson, Ph.D.
Science Applications International Corporation

3045 Technology Parkway
Orlando, FL 32826-3299

Anthony_Courtemanche@cpqm.saic.com
KentJBimson @ cpqm .saic.com

1. Abstract

Dramatic improvements are needed to increase the
level of medical readiness in the Department of
Defense, FEMA, and other medical services. These
improvements can be achieved through innovative
application of simulation technology. We have
developed a vision for simulation support to medical
readiness based on medical extensions to, and linkages
among virtual and constructive combat simulations,
command and control systems, advanced patient MIS
systems, and medical training simulators.

As a first step in implementing our vision, we have
developed a prototype Medical Semi-Automated
Forces (MedSAF) system based on medical
extensions to the Modular Semi-Automated Forces
(ModSAF) combat simulation system. We have also
developed a modem-line linkage between MedSAF
and the Human Patient Simulator (HPS), a scenario-
based, parameter driven mannequin-style simulator
developed by the University of Florida School of
Medicine. We can demonstrate a fully integrated
medical scenario that includes combat, generation of
infantry casualties, simulation of first care treatment,
evacuation to higher echelons of care via combat
ambulances and evacuation helicopters, and models of
treatment at a Battalion Aid Station and Evacuation
Hospital. Casualty models have been developed that
change state over time, including vital sign
degradation (e.g. pulse, blood' pressure, blood loss)
based upon casualty type.

In this paper, we describe the design and
implementation of these MedSAF extensions to
ModSAF. This publication is a follow-on to our
previous report and it updates the status of our
development since that publication and provides more
detail relevant to the DIS and CGF communities.

2. Introduction: The Need to Improve
Medical Readiness

As we have reported in our previous paper
(Courtemanche et al. 1996), the tri-service medical
community is currently focused on meeting the
medical readiness challenges imposed upon it by the

digitized battlefield requirements, including training,
mission rehearsal, leadership development, doctrine
evaluation, materiel solutions, and the need to test
and evaluate a system's readiness for fielding. The
medical community is attempting to accomplish
these goals in the face of decreasing budgets and
increasing technical, personnel, medical, and threat
challenges.

In the past, many of these challenges have been met
through direct training on live systems and through
live simulation exercises, approaches that are
becoming increasingly expensive and which suffer
from the liability that they are non-repeatable,
uncontrollable, and, in many cases, medically
deficient. As has been amply demonstrated for
combat forces, simulation offers key technology to
help meet many of these challenges. Unfortunately
little has been done to date to support medical
readiness through the use of Advanced Distributed
Simulation (ADS), and this has prompted the
development of our vision for improving medical
readiness through simulation linkages.

3. Improved Medical Readiness Through
Simulation Linkages

SAIC's ASSET and Health Care Technology Group
organizations have put together a vision for how the
goals of medical readiness can be achieved by
extending current simulation systems to play medical
processes, and then linking them to live medical
equipment to support military medical training,
system evaluation, and procedure validation.

The key components of this vision are:
1. linking different types of simulations,
2. exploiting the synergy provided by such

linkages, and,
3. extending the systems with medical play.

Sections 3.1 through 3.5 describe the types of
simulations we envision linking together to provide a
superior solution to the challenges of medical
readiness.

57

3.1 Virtual Simulations

An example of virtual simulators are Semi-
Automated Forces (SAF) applications and the crewed
simulators that these applications interact with. One
such example is ModSAF (Courtemanche &
Ceranowicz 1995). ModSAF, or Modular Semi-
Automated Forces, is a Computer Generated Forces
(CGF) system that researchers can build upon and
extend. It is fully compatible with DIS network
protocols. Its development has been funded by the
Defense Advanced Research Projects Agency
(DARPA) and the Army's Simulation Training and
Instrumentation Command (STRICOM). The latest
version, ModSAF 2.1, was released in May 1996, and
it contains over 750 thousand lines of software
written in C.

One of the current users of ModSAF is DARPA's
Synthetic Theater of War (STOW) program. STOW
has the objective of demonstrating the use of ADS for
large scale exercises at the Joint Task Force level
distributed over many sites, including linkages to
constructive simulations and live players (Aronson
1996). The STOW program is currently enhancing
ModSAF in the areas of service-specific synthetic
forces, synthetic environments, and simulation
networking, leading to the STOW '97 training
exercise.

3.2 Command & Control Systems

An example of Command and Control (C2) systems
is the Army's Phoenix system, formerly know as the
Battle Command Decision Support System
(BCDSS). Phoenix, developed by Mystech
Associates, is a real world command and control
system that allows commanders to organize, analyze,
display, and manipulate information about their forces
on the battlefield. It is one of a group of systems
that are attempting to revolutionize the way in which
command decisions are made and combat data is
disseminated. Phoenix is not a simulation, but is
used extensively in training exercises and is integrated
with existing training simulations. The system
provides a relational database, tactical maps,
communications tools, decision support tools, and
command matrices on a computer. The computer
system increases the speed at which information can
be generated, exchanged, , and understood by
commanders. As such, it is a force multiplier,
making U.S. forces more responsive and effective
against their enemies.

3.3 Advanced MIS Systems

An example of an advanced medical MIS system is
the Trauma Care Information Management System
(TCIMS). Under sponsorship by DARPA, TCIMS

is being developed by various consortium members as
the next generation medical MIS system for the DoD.
It provides unprecedented levels of accurate patient
information to various echelons of care, starting at
level 1 (medics treating individual soldiers at incident
sites) up to levels 3 and 4 (military hospitals treating
large groups of casualties).

3.4 Patient Simulation

An example of patient simulation is the Medical
Education Technologies Inc./University of Florida
Human Patient Simulator (HPS). The HPS is a full
scale, life-like simulator that is model-driven and
script controlled (Lampotang et al. 1995 and van
Meurs et al. 1993). This hybrid system allows users
to optimally and creatively take advantage of both
types of control. The cardiovascular features of the
HPS include palpable radial and carotid artery
pulsations, heart sounds (normal and abnormal), 5-
lead electrocardiogram, non-invasive blood pressure
measurements, and invasive arterial, central venous,
pulmonary artery, and wedge blood pressure. All
these measurements are made using standard
monitoring equipment.

Simulation scenarios can be constructed for individual
patients. This allows for the implementation of
specific script driven events (e.g. a certain amount of
blood loss from an injury). The physiologic data will
respond to those events in a realistic manner as
dictated by the physiologic model.

Scenarios including combat casualties such as wounds
causing blood loss, pneumothorax, and insufficient
oxygen uptake caused by chemical weapons or smoke
inhalation are possible. Development of the HPS is
still ongoing and currently work is underway to add
brain, eye, and neurological features to the HPS. The
modular design of the HPS and the ability to program
different patients via the scenario editor makes the
HPS the ideal human model to be used in combat
simulation.

3.5 Simulation
Readiness

Linkages for Medical

Each of the above systems excels in its respective
domain. The ModSAF combat simulation provides
valid representations of combat activity and can
populate a virtual battlefield with large numbers of
simulated entities. Phoenix, as part of the Army's
Maneuver Control System (MCS), can receive,
manipulate, and send a wide variety of command and
control messages, including reports and orders.
TCIMS holds the promise of dramatic improvements
in collecting, maintaining and retrieving accurate
patient data. The HPS provides a simulation and
training environment that allows medical practitioners

58

to practice medical procedures using actual medical
equipment.

Our vision for linking the above simulations and
systems to improve medical readiness can be
summarized in Figure 1.

Orders

I
Reports

Far Forward
Care

Combat
Trainees

Medical
Evacuation

Medical
Evacuation

Trainees

Medicaf
Treatment

Care
Provider
Trainees

•rf.r.nk»ij/itJ •WSMBM.-EM

Vital Signs

Patient Simulator

Vital Signs

Patient Records Patient Records

Figure 1: Simulation Linkages

We propose development of a medical training system
that includes representation of the combat mission.
As casualties are generated in combat SAF
simulations such as ModSAF, these casualties can
populate patient MIS systems. Given a Medical SAF
capability that can accurately model the medical
logistics as well as maintain a suitable representation
of casualties and their treatment at the multiple
echelons of care, training of medical evacuation
logistics can be performed. When linked to patient
simulators such as the HPS, training for care
providers can be accomplished in the same scenario.
Properly linked to the advanced patient MIS as well
as actual command and control equipment, a seamless
training scenario that exercises all aspects of the
medical mission is possible.

The benefits of this proposed linkage are that it
allows multiple uses of individual simulations in a
combined fashion. Simultaneous training at varying
resolutions and levels of care becomes possible.

Since doctrine dictates that the medical mission must
support the combat mission, we stress that it is
crucial to extend accepted combat simulations with
medical play rather than to develop them in stand-
alone mode.

4. The MedSAF Prototype

As a first step in implementing our vision, we have
developed a prototype Medical Semi-Automated
Forces (MedSAF) system based on medical
extensions to ModSAF. MedSAF was then
integrated to interoperate with the HPS. We call the
combined MedSAF and its linkage to the HPS,
MedSIM (Medical Simulator).

The remainder of this paper describes the capabilities
and implementation of MedSAF and linkage to the
HPS. This integrated MedSIM capability can be used
to demonstrate a fully integrated medical scenario that
includes combat, generation of infantry casualties,
simulation of first care treatment, evacuation to
higher echelons of care via combat ambulances and
evacuation helicopters, and models of treatment at a
Battalion Aid Station and an evacuation hospital.
Casualty models have been developed that change
state over time, including vital sign degradation (e.g.
pulse, blood pressure, blood loss) based upon casualty
type.

A remote linkage to the Human Patient Simulator
allows substitution of a life-like simulator for
MedSAF casualties, just as tank simulators may be
substituted for ModSAF tank entities in a distributed
simulation. Much as virtual tank simulators allow
platoon leaders and tank crewmen to train in the
combat context represented by ModSAF, the HPS
allows medical professionals to train on a human-like
simulator in the combat context represented by
MedSAF. The HPS provides a powerful environment
for training in triage and treatment of casualties
throughout the course of the simulation. Our
prototype system can be made fully compatible with
existing DoD standards for DIS or DMSO's emerging
High Level Architecture (HLA).

4.1 Extensions
Simulation

to Support Medical

The extensions developed to produce a medically
credible MedSAF from the ModSAF combat
simulation system are described below. These
extensions were specifically developed to support the
execution of the demonstration scenario described in
section 5.1

4.1.1 Medical Support Vehicles
The first development task under the MedSAF project
was to ensure that the proper entities existed to
populate the synthetic battlefield in the demonstration
scenario. Refinement of the scenario revealed the
requirements for a M113 combat ambulance and an
evacuation helicopter, as described in the following

59

sections. In addition, a generic individual combatant,
enhanced to support casualty modeling was created.

4.1.1.1 M113 Combat Ambulance
ModSAF already contained a baseline version of a
Ml 13 ambulance; however no medical modeling
capabilities or patient transportation were available
for that vehicle. The MedSAF project enhanced the
baseline ModSAF Ml 13 ambulance by adding the
specific transportation behaviors described later in the
paper. This was easily accomplished by updating the
Ml 13 ambulance configuration files to include the
capabilities to execute the specific unit level task
described in section 4.1.2

4.1.1.2 UH-53 Evacuation Helicopter
To implement air evacuation from the Battalion Aid
Station (BAS) to the evacuation hospital, a specific
UH-53 air evacuation helicopter was created in
MedSAF. This was accomplished by creating a
parameter file for the UH-53. This helicopter was
extended with transportation behaviors in the same
manner as the Ml 13 combat ambulance.

4.1.1.3 Dismounted Infantry
A generic infantry entity was created (again using
ModSAF's ability to define new entities via data
files) to implement casualty generation and modeling
of wounded patients. For the purposes of the
demonstration, this infantry had no specific weapons.
This infantry entity was extended with the casualty
generation algorithm, casualty transportation and
casualty representation modeling described in the
following sections.

4.1.2 Casualty Transportation
To support the transportation of wounded casualties
across the battlefield, the ModSAF behaviors that
already allow dismounted infantry to mount vehicles
were investigated. An analysis of the existing
ModSAF mount and dismount behaviors revealed
serious limitations that would restrict the ability for
combat ambulances to transport arbitrary casualties to
and from arbitrary echelons. At the time, ModSAF's
capabilities to allow soldiers to mount and dismount
vehicles and to be transported across the battlefield
were limited to infantry that were task organized as
part of integrated vehicle/individual combatant combat
units. In this form, this implementation would
unacceptably limit the transportation of casualties.
For example, the ability to transport enemy or non-
aligned casualties would not be supported.

A design for flexible "mounting" and "dismounting"
of wounded from ambulance vehicles (both the Ml 13
combat ambulance and the UH-53 evacuation
helicopter) was developed to overcome the ModSAF
shortcomings. This design relies on message passing

between the ambulance vehicle and the patient to
coordinate the pickup and delivery of the wounded, as
shown in Figure 2. This message passing is
accomplished via encoded DIS Signal Protocol Data
Units (PDU's) that allow different entities in a
networked simulation to communicate with each
other.

The contents of the "Board Me" message indicate the
DIS entity ID of infantry being commanded to board
the ambulance, and the entity id of the ambulance to
board. The contents of the "Boarded' message
provides a positive acknowledgment that the boarding
occurred, also by indicating the respective entity ID's.
The implementation of the "DeBoard" and
"DeBoarded" messages are similar.

Ambulance Infantry Ambulance Infantry

Board Me

Boarded

. DeBoard Me

DeBoarded

Figure 2: Messages and Timelines for Casualty
Pickup and Delivery

This approach of using DIS messages to
communicate and acknowledge the boarding and
deboarding process allows potential future
interoperability with the boarding and deboarding of
non-CGF individual combatants onto non-CGF
vehicles.

The boarding capabilities were implemented by a pair
of ModSAF tasks, as described below.

4.1.2.1 Vehicle Board
A ModSAF vehicle level behavior called VBoard was
created for the wounded infantry to monitor requests
from ambulances to be picked up or dropped off. As
in all vehicle level ModSAF behaviors, this behavior
has direct access to the vehicle it supports. This
access enables the behavior to directly cause the entity
to deactivate (leave the DIS exercise) or reactive
(rejoin the DIS exercise).

Based loosely on the baseline behaviors for the
mounting and dismounting of DI Groups, VBoard
continually examines incoming radio messages for
requests to be picked up, or, if already boarded, to be

60

dropped off. If a request from an ambulance to board
is received, the infantry deactivates itself, leaving the
DIS exercise, and it becomes dormant. When a
request from the ambulance to deboard is received, the
infantry entity reactivates at a location near the
ambulance vehicle. This gives the appearance that as
the vehicle moves, the boarded infantry has moved
along with it.

4.1.2.2 Unit Evacuation
A unit level behavior, UEvac, was created for
transportation vehicles to initiate the request to
pickup or deliver wounded infantry. This behavior
was based loosely on the behavior to pick up DI
Groups. As a unit level behavior, it can be direcdy
assigned to a unit or vehicle from the ModSAF GUI.
The operator assigns an Evacuation mission to either
an ambulance or Medevac helicopter. The operator
must supply a location at which to perform the
evacuation or delivery. Depending on the type of
vehicle (ground or RWA), the UEvac behavior (task)
that is part of the Evacuation mission (taskframe)
spawns the appropriate movement sub-behaviors to
move the vehicle to the evacuation or delivery point.

Once the vehicle arrives at its destination, if the
operator has configured the mission for pickup, the
vehicle searches an operator-controlled search radius
for wounded infantry. Once located, "Board Me"
messages are sent to the wounded infantry. If the
mission has instead been configured for delivery of
the wounded, the behavior instead sends "DeBoard
Me" messages to all the infantry that have previously
boarded. Receipt of "Boarded" or "DeBoarded"
messages allows the unit behavior to positively track
the current number of infantry it is carrying.

The fact that the behavior is sensitive to whether it is
running on a ground vehicle or RWA vehicle (and
that it determines which particular movement sub-
behaviors to invoke based on vehicle type) is a unique
design in the domain of ModSAF behaviors. It is
possible and desirable in this case because evacuation
by air or ground is extremely similar at this
resolution of modeling.

4.1.3 Casualty Representation
The most significant development activity in the
MedSAF project was the development of credible
medical models. This was accomplished via the
development of a flexible modeling language, and the
use of subject matter experts to help develop models
within that language, as described in sections 4.1.3.1
through 4.1.3.3.

4.1.3.1 State Interpreter
In the MedSAF project, we developed a flexible
interpreted computer language called the State

Interpreter Language (SIL). The high level purpose
of SIL is to represent physical and behavioral models
in a data driven interpreted fashion to facilitate
development and debugging. SEL was specifically
used in this project to model the evolution of human
casualty states.

SEL allows the declaration of state variables of
integer, floating-point and string types. These
variables can be initialized and updated through the
actions of a full suite of mathematical operators.
Through the use of defined states and control-flow
statements, conditional expressions can be defined.
The basic SIL language is interpreted via a SIL
interpreter. The SIL interpreter can run a SIL
program stand-alone as well as imbedded within
MedSAF. The SIL interpreter has been designed to
allow easy extension of the SDL language through the
registration of named primitives. External
applications can interface with SIL through shared
variables or primitive extensions.

The advantage of the SIL language for the
implementation of medical models and behaviors is
that it allows the rapid addition of models and
behaviors into the MedSAF system without
recompilation. For example, we were able to easily
add new medical sub-models without code
compilation, such as a model of diastolic and systolic
blood pressure derived as a function of mean arterial
pressure (MAP). This facilitates development and
explorations into new behaviors or models.

4.1.3.2 Human Physiological Modeling
In MedSAF, we used SEL to implement several
prototype medical models to represent the time-
evolving state of human casualties. The use of SIL
in MedSAF was dictated by the requirements to easily
create MedSAF models. Given that the proper state
variables that define a human casualty were unknown
until late in the development cycle of the project, it
was essential to develop a system that facilitates
model development without compilation. As the
models become more refined and gain stability in
implementation, these models can be implemented in
ModSAF's compiled Finite State Machine (FSM)
language (Calder et al. 1993), for efficiency of
execution.

Our current medical model was created with medical
subject matter advice provided by medical modeling
experts from the University of Florida Department of
Anesthesiology. The model represents a human
patient via several coupled sub-models, which include
a cardiovascular model and a model of blood
oxygenation. A model of brain death based on blood-
pressure and blood oxygenation determines the health
of the patient.

61

4.1.3.3 Treatment Modeling
In order to feed medical treatment inputs to the
MedSAF human physiological models, the SIL
language had to be extended with primitives to
determine if the patient has a healthy buddy available
to treat wounds, whether the patient was in an
ambulance, whether the patient is at the Battalion Aid
Station, or whether the patient is at the evacuation
hospital. Because of SIL's ability to accept named
extensions via code registration, these extensions
were straightforward to implement. Each of the
primitives used ModSAF search primitives to
determine the nearness of other DIS entities (healthy
buddies) or certain graphical objects (BAS or
evacuation hospital). A primitive to determine
whether or not the infantryman is in an ambulance
was also added.

Based on the results returned from these primitive
extensions, the SIL-encoded casualty model will
dispatch to appropriate treatment logic, such as a
change in blood oxygenation due to intubation and
ventilation. In this manner, we have demonstrated
how to provide "echelons of care" to simulated
casualties within a DIS combat simulation.

4.1.4 Casualty Generation
Prior to the transportation and treatment of casualties
in MedSAF, casualties must be generated as a result
of combat. In support of the development of high-
resolution casualty generation -in MedSAF, a limited
survey of casualty generation data sources was
performed. The results of the limited survey were
disappointing, in that the only available documented
models deal with human injuries at a very high level,
consistent with the aggregate vehicle-level damage
states of mobility kill, firepower kill, and
catastrophic kill. Clearly this level of injury
representation was too coarse to be used in a medical
scenario. Recent contacts within the Army medical
community indicate that higher resolution human
injury models are available, and these will be
examined as part of follow-on MedSAF development.

As a result of the limited injury-modeling
information available at the time of development, a
new ModSAF damage library was created. This
library generates injury events as a result of direct or
indirect fire, according to the datafiles and algorithms
described in sections 4.1.4.1 and 4.1.4.2.

4.1.4.1 Direct Fire Casualty Generation
Taking ModSAF's direct fire model as an example
(Courtemanche & Monday 1994), the following data
structure was used in the casualty library to determine
whether an infantryman has sustained an injury due to
a small-arms direct fire event.

("No Injury" 0 05)
("Severed Limb" 0 05)
("Flesh Wound" 0 40)
("Chest Wound" 0 30)
("Head Wound" 0 10)
("Death" 0 10)
)

This data specifies that there is a 5% chance of "No
Injury", 40% chance of "Flesh Wound", etc. The
probabilities must add up to 1.0. A different set of
probabilities can be associated with different targets
and different weapons impacting the target. Being
data driven, the statistics can be easily changed to
correlate with empirical data.

The benefit of this data representation is that the
damage events are completely data-driven. For
example, a new damage event such as "Abdominal
Wound" can be added to the data file without
recompilation. As these damage events are routed
directly to the SEL-encoded human physiological
models, completely new damage events and resulting
human patient outcomes can be created just by
augmenting data files.

4.1.4.2 Indirect Fire Casualty Generation
For indirect fire (that is weapons impacts directed at a
location as opposed to a specific vehicle), a slightly
modified damage file is used:

(
(0.0 5.0 (
(5.0 10.0 (

(10.0 25.0 (

(25.0 50.0 (

(50.0 100.0

"Death"
"Head Wound"
"Death"
"Head Wound"
"Chest Wound"
"Death"
"Head Wound"
"Chest Wound"
"Flesh Wound"
"No Injury"
"Death"
("Chest Wound"
("Flesh Wound"
("No Injury"

1-0)))
0.1)
0.9)))
0.1)
0.1)
0.8)))
0.1)
0.1)
0.2)
0.1)
0.5)))
0.1)
0.2)
0.7)))

)

This data file contains damage probabilities as in the
direct fire case; however these probabilities are
associated with different range bands. For example,
between 0 and 5 meters away from the indirect fire
impact, this data file indicates 100% chance of
"Death".

62

4.2 Linkage to the HPS

MedSAF was envisioned not as a standalone system,
but as a system capable of being networked with
other simulations to provide multi-level medical
combat training. An example of this is the
demonstrated linkage of MedSAF with the HPS,
which was prototyped under the HPS Pilot Study, as
described below.

The overall concept of linking MedSAF and the HPS
is based on current ADS training environments, in
which manned combat simulators (i.e., tanks, APC's,
etc.) are linked to SAF combat forces. Likewise,
medical combat training requires a high resolution
manned simulation interface (the HPS), as well as
semi-automated forces (MedSAF). The simulator
portion (i.e., HPS) can be used to model certain
MedSAF casualties at a sufficiently high resolution
that effective "team training" (i.e., training of medical
practitioners) can take place.

Figure 3: MedSAF Display of HPS Data

4.2.1 Human Patient Simulator Pilot Study
In the HPS Pilot Study, we prototyped a linkage
between the HPS and MedSAF. Under the Pilot
Study, modem-based serial communications was used

to communicate patient data from the HPS in
Gainesville, Florida to MedSAF running in Orlando,
Florida. Due to the limited schedule for the Pilot
Study, a very rudimentary linkage was designed and
implemented. The HPS communicates scalar (non-
waveform) data, such as breath-rate, via the modem
link. A standalone communications program co-
located with the MedSAF system receives the data
from the HPS and displays it graphically over time,
as in Figure 3.

The current linkage is two-way in that a standalone
program communicates commands to the HPS to
initiate the linkage, load up the patient with a pre-
planned patient scenario, and receive vital sign data
back from the HPS. However, the linkage is limited
in that the particular patient configuration is pre-
planned and not a reflection of the particular state of a
particular casualty in MedSAF. This extension is
planned in the next version of MedSAF.

4.2.1.1 MedCOM Serial Communications
Serial modem communications between the HPS and
MedSAF was accomplished using a reliable
communications protocol specifically designed to
transmit physiologic data over modem connections.
This protocol, named MedCOM, uses data packets of
variable length, a checksum and a positive
acknowledge algorithm for reliability. This protocol
was tested with data generated by the HPS over a
telephone link between Gainesville, Florida and
Orlando, Florida. Link interruption tests show that
the protocol is reliable and that it has the ability to
resynchronize a connection when synchronization is
lost.

Although the normal linkage to the HPS is currently
over a modem line, we have demonstrated the ability
to maintain a direct serial line linkage in the case
where the HPS and the MedSAF workstations are co-
located. Also, we believe that the MedCOM protocol
can be easily adapted to DIS via the encapsulation
within Signal PDU's or the use of the Simulation
Management Protocol. In the future, as HLA
implementations become prevalent, the MedCOM
communications model can easily be converted to a
Run Time Infrastructure (RTI) which can
communicate changing attribute values (vital signs)
with specified reliability characteristics.

4.2.1.2 Remote Interface to HPS
To facilitate remote control and remote data collection
from the HPS, the HPS software has the ability to
run one or more remote controls that are connected to
one of the multiplexer serial ports contained within
the HPS. To connect the HPS to the MedSAF
communications program and data display, a gateway

63

was designed that communicates as a remote control
to the HPS and on the other side connects to a
modem and transmits the data that the MedSAF
communications program wants to receive. All
communication is via the MedCOM protocol. The
HPS-MedCOM gateway software requests
physiologic data from the HPS every five seconds and
sends it on via the modem with the MedCOM
protocol. Commands coming from the MedSAF
communications program are translated and validated
and sent on to the HPS. An example of a command
is "start patient", which will cause the HPS to start
loading a specific padent scenario.

4.2.1.3 Data Grapher
In order to display real-time remote patient state from
the HPS to the MedSAF operator, an X-Windows and
Motif based display subsystem was created to
graphically display time-changing MedSAF and HPS
data. This system, called Data Grapher, can plot
multiple synchronized waveforms, as in an
EKG/respiration monitor. This display system was
integrated with the standalone MedSAF HPS
communications program to plot returning HPS
variables, as in Figure 3. In the future, this display
system will be integrated directly into MedSAF to
plot the state variables of the low resolution MedSAF
medical models.

5. Project Status and Results

The MedSAF and HPS Pilot Study were sponsored
by SAIC's Independent Research and Development
program. Successful demonstration of the
capabilities described in this paper was given in the
first quarter of 1996. A fully integrated scenario
including combat, generation of casualties, treatment
of the casualties at different echelons of care,
transportation of casualties to different echelons of
care, and linkage to the HPS has been demonstrated
and briefed to several representatives of the
Department of Defense Simulation, Training, and
Medical communities. This demonstration scenario
is described below.

5.1 MedSAF Scenario

A mech infantry platoon, part of a Mech Infantry
Company Team, is attacked, and casualties are
sustained to a dismounted infantry squad. First care
to the wounded is provided by an M113A3 Combat
Ambulance, which had already been task organized to
the Company Team from the Battalion Medical
Platoon. The Combat Ambulance moves forward,
from its normal position with the Company trains
1000 meters behind the front line of the Company
team, to assist the wounded squad. The casualties are
transported by combat ambulance rearward to a patient
collection point behind the Company Team defenses.

Unable to treat all the casualties, the Company 1 st
sergeant requests ground evacuation of the wounded to
the Battalion Aid Station (BAS). The BAS
dispatches one of its un-tasked M113A3 ambulances
to retrieve and transport the wounded from the
Company to the BAS.

At the BAS, care is given to the retrieved wounded by
the Battalion surgeon. A critically wounded
infantryman with chest trauma is stabilized prior to
evacuation by air via UH-53 medical evacuation
helicopters. The infantryman is transported to the
Evacuation Hospital for treatment, including
intubation for general anesthesia during chest surgery.

Figure 4 below is a graphical representation of the
scenario.

r

Figure 4: MedSAF Scenario

5.2 MedSAF Scenario Execution

During the course of the execution of this scenario,
all of the capabilities of MedSAF and the linkage to
the HPS are exercised. This is graphically depicted in
Figure 5.

The basic capabilities of ModSAF are used to lay
down the forces for this scenario, including the
dismounted infantry, combat vehicles, medical
platoon, evacuation helicopters, and map annotations
(graphical Persistent Objects) to represent the
Battalion Aid Station and the evacuation hospital.

When the infantry come under indirect fire, the
MedSAF casualty generation algorithms dynamically
produce a statistical distribution of casualty types.
These casualties execute the MedSAF patient and
treatment models. For example, an injured

64

infantryman can receive positive treatment for certain
medical problems if a healthy infantryman is nearby
to provide aid.

/ ' D.t. '
Gr*ph*r

Combat
Casualties

Transportation

MedCOM
(Communications

HPS viui signs y ' Gainesville, FL
y /

y Medical Treatment

//
//?Fg

Orlando, FL y

t

HPS
Computer

Figure 5: MedSAF Architecture

The MedSAF operator chooses where and when to
dispatch the Company and Battalion ambulances to
evacuate casualties. Using the MedSAF patient
transportation capabilities, casualties are moved to
higher echelons of care, including the Battalion Aid
Station or the evacuation hospital. AH the while, the
MedSAF patient and treatment models execute,
reacting to the types of treatment available in the
different echelons of care. If the casualty is severe
enough, or if the operator fails to evacuate the
casualty fast enough, the patient may lapse into
unconsciousness, sustain irreversible brain damage,
and ultimately die.

In parallel with these MedSAF scenario activities, the
HPS may be remotely connected to MedSAF.
Commands over the modem connection can initiate
communications and initialize the HPS in a given
treatment scenario. Medical practitioners can provide
treatment to the HPS in the form of intubation,
anesthesia, and injection of drugs. In conjunction
with this, real-time vital sign data from the HPS is
transmitted over the modem connection and displayed
to the MedSAF operator via the Data Grapher.

6. Future Work

There are many applications of our medical
simulation capabilities. While our prototype is
directly applicable to the areas of combat medical
readiness for all services in the Department of
Defense, including combat medical training and
supporting a materiel development environment for
evaluation of different medical doctrines, other
applications are also possible. For example, training
for mass casualty triage and treatment could greatly
benefit from validated simulations that can generate
realistic casualties based on realistic scenarios. Other
examples of potential future applications are described
below.

6.1 2-Way HPS Linkage

A complete two-way linkage between MedSAF and
the HPS is the next logical developmental step.
Under this linkage, particular casualties generated in
MedSAF will be downloaded to the HPS over the
modem communications link. Sufficient medical
state must be forwarded to the HPS to load it with a
useful medical training scenario that correlates
between the MedSAF representation of the casualty
and the HPS. Also under this complete linkage, the
MedSAF DataGrapher should be integrated into
MedSAF so that the operator can direct the display of
MedSAF casualty vital-signs as well as HPS
communicated vital-signs. This facility would aid in
performing validation scenarios which would be used
to correlate the MedSAF and HPS medical models.
In addition, a continuous linkage concept could be
provided, which would allow one MedSAF scenario
to generate multiple casualties which are transported
to various treatment locations on the synthetic
battlefield. Certain casualties could be downloaded to
the HPS on demand by a scenario controller to
provide medical training to trainees co-located with
the HPS. As part of triage training, multiple HPS's
could be used to represent multiple casualties, with
medical personnel deciding whether to treat a high
priority patient immediately or to move on to the
next patient. This evolves naturally into a mass
casualty training and experimentation laboratory.

6.2 Enhanced Medical Scenarios

The MedSIM system provides opportunities for
enhanced medical scenarios. ModSAF supports
environmental modeling that includes battlefield
smoke and may ultimately include chemical and other
environmental agents (Schaffer 1994). Treating
casualties inflicted with injuries due to smoke or
chemical warfare is already possible using the HPS;
slight extensions are needed to MedSAF to play NBC
and smoke.

Another possible direction for new medical scenarios
include simulation of mass casualties due to man-
made accident (such as a passenger plane crash) or
natural disasters (such as earthquake). Appropriate
statistical distributions of casualty type could be
modeled, and MedSAF capabilities of dispatching care
and evacuation and HPS capabilities of simulating
triage and accepting clinical treatment can be used to
train coordinators, medics, and clinicians in a mass-
casualty scenario.

6.3 Other Linkages

As described in our previous report, a linkage to
TCIMS' Mobile Medical Monitor (MMM) is
possible. The MMM could be attached to the HPS to

65

monitor real-time vital-sign data. The combination
would be used by selected medical personnel to assess
and subsequently treat the HPS. This scenario would
provide a proof-of-concept "of several integrated
capabilities: (1) improved training, with real time
feedback and response; (2) algorithm validation; (3)
integration of medical teams into synthetic combat
exercises; and (4) real time testing and evaluation of
medical readiness using the HPS to supply realistic
test data.

7. Conclusions

We have presented our vision for using simulation
linkages to improve medical readiness, and discussed
the prototypes used to prove the viability of the
concept. We have described how these capabilities
can be implemented within the DIS and CGF
paradigm. The success of our work so far has
convinced us that this approach is sound. Although
many challenges still face us in the development of
synthetic medical environments, we believe this
work has helped to establish a clear roadmap to a
mass casualty training system using integration
approaches developed for the combat community.

8. References

Aronson, J. (1996). "The STOW97 System
Architecture and Implementation Design",
Proceedings of the 14th Workshop on Standards
for the Interoperability of Distributed
Simulations, Orlando, FL: Institute for
Simulation & Training, pp. 447-454.

Calder, R. B., Smith, J. E., Courtemanche, A. J.,
Mar, J. M. F., and Ceranowicz, A. Z. (1993).
"ModSAF Behavior Simulation and Control",
Proceedings of the Third Conference on
Computer Generated Forces and Behavioral
Representation, Orlando, FL: Institute for
Simulation & Training, pp. 347-356.

Courtemanche, A. J., Bimson, K., van Oostrom, J.,
and Lampotang, S. (1996). "A DIS-Compatible
Medical Simulation Environment for the
Battlefield", Proceedings of the MEDTEC
Conference, Orlando, FL.

Courtemanche, A. J., and Ceranowicz, A. (1995).
"ModSAF Development Status", Proceedings of
the Fifth Conference on Computer Generated
Forces and Behavioral Representation, Orlando,
FL: Institute for Simulation & Training, pp. 3-
13.

Courtemanche, A. J., and Monday, P. (1994). "The
Incorporation of Validated Combat Models into
ModSAF', Proceedings of the Fourth Conference
on Computer Generated Forces and Behavioral
Representation, Orlando, FL: Institute for
Simulation & Training, pp. 129-140.

Lampotang S, Good ML, van Meurs WL, Carovano
RG, Azukas J, Rueger EM, Gravenstein JS
(1995). "The University of Florida/Loral human
patient simulator, abstracted" J Anesthesia
9.SS1-5.

Schaffer, R. (1994). "Environmental Extensions to
ModSAF', Proceedings of the Fourth Conference
on Computer Generated Forces and Behavioral
Representation, Orlando, FL: Institute for
Simulation & Training, pp. 17-23.

van Meurs WL, Beneken JEW, Good ML,
Lampotang S, Carovano RG Jr., Gravenstein JS
(1993). "Physiologic model for an anesthesia
simulator, abstracted" Anesthesiology 79:A1114.

9. Biographies

Anthony J. Courtemanche has over eight years
of experience in software engineering for SIMNET
and DIS programs using SAF applications. His
software accomplishments include SAF architecture,
weapons systems simulation, targeting behaviors,
network simulation protocols, and user interfaces.
Mr. Courtemanche was one of the principal
contributors to the ModSAF architecture, including
the Persistent Object Protocol. At Loral ADS, he
was the Project Engineer for ADST ModSAF System
Development Delivery Order. Now at SAIC, Mr.
Courtemanche is a Senior Scientist in the Advanced
Distributed Simulation Research Team, and he
supports ADS IRAD projects and new business
development in the areas of Semi-Automated Forces
and medical simulation, as well as supporting the
ADST-II program as the Senior Systems Engineer of
the ModSAF Engineering Team. Mr. Courtemanche
received his Master of Science degree in Electrical
Engineering from M.I.T. in 1987.

Kent Bimson, Ph.D., is Chief Scientist at
Science Applications International Corporation
(SAIC) Orlando. Dr. Bimson is in charge of
coordinating Group research and for business
development in support of the group's research
efforts, including medical simulation. Dr. Bimson
formerly served Chief Scientist, Artificial Intelligence
for the Semi-Automated Forces (SAF) component of
the U.S. Army's Close Combat Tactical Trainer
(CCTT) program. Before joining SAIC, Dr. Bimson
served as a Research Scientist at Lockheed Software
Technology Center in Austin, Texas from 1985
through 1991, where his research focused on
knowledge based technologies. Dr. Bimson served as
Associate Professor of Computer Science at
California State University, Sacramento (CSUS)
from 1981 through 1985, where he taught courses in
artificial intelligence and natural language processing.
He holds a Ph.D. in Linguistics from UCLA (1978)
and a Masters in Computer Science from CSUS
(1983).

66

A Model of Large-Scale Citizen Evacuation
for Emergency Management Simulation

Ross C. Creech and Mikel D. Petty
Institute for Simulation and Training

3280 Progress Drive
Orlando FL 32826-0544 USA

mpetty@ist.ucf.edu

1. Abstract

The response to large-scale emergencies can involve
large numbers of personnel, vehicles, and other
resources. Such responses are controlled and managed
during and after an emergency by emergency managers.
The Plowshares project enhanced Janus, a military
constructive simulation, to produce TERRA, a
simulation that can be used to train emergency
managers in a command post exercise format. An
important activity during a large-scale emergency is the
evacuation of the civilian populace in the affected area.
This paper describes the design and implementation
status of the evacuation model designed for
Plowshares.

2. Introduction

This section provides background on the Plowshares
project, which was the context for the evacuation model
that is the subject of this paper, and briefly surveys
some previous research in evacuation modeling.

2.1 The Plowshares project

Large-scale emergencies, such as earthquakes and
hurricanes, require massive responses, involving large
numbers of personnel, vehicles, and other resources.
Emergency managers are charged with managing and
allocating resources and coordinating the many actions
taken in response to an emergency. The Plowshares
project applied military constructive simulation
technology to produce a simulation intended to train
emergency managers. In particular, the U. S. Army's
Janus entity-level constructive simulation model (Titan
1993) was enhanced with emergency management
features. The resulting simulation, called TERRA,
simulates an emergency and the actions taken in
response to it, allowing emergency managers to
practice their skills. TERRA is used in a command
post exercise mode, where the command hierarchy and
communications channels of emergency managers
remain unchanged, except at the lowest level, where
actual disaster events (such as fires) and response units
(such as fire trucks) are replaced with the computer

simulation. The initial version of TERRA simulated
the effects of hurricanes, fires, tornadoes, chemical
spills, and other hazards, and response actions such as
fire fighting and road clearing.

More information on the Plowshares project can be
found in any of the following:

1. Project overview (Petty 1996) (Petty 1995b)
2. CGF capabilities needed for emergency

management simulation (Petty 1995 a)
3. Emergency management training using

simulation (Slepow 1995)
4. Mathematical models of disaster events

(Wood 1995)

For many types of emergencies, the large-scale
evacuation of citizens is a major factor. Thousands of
people fleeing a hurricane completely occupy the
transportation network in the affected area. Controlling
and facilitating that evacuation requires communication
and coordination among all emergency response
agencies. Effective training of emergency managers
with a simulation requires that the large-scale
evacuation of citizens be modeled. This paper presents
the evacuation model designed for TERRA and reports
the status of its implementation.

2.2 Evacuation modeling

A number of models have been proposed and
developed to cover different types of evacuations,
employing a variety of different modeling methods.
References to some of that work are listed below:

1. Common characteristics of evacuation models
(Banz 1991)

2. Optimal egress modeling as a state dependent
finite closed queuing network (Bakuli 1991)

3. Building evacuation, based on network flow
(Choi 1991)

4. Regional evacuation on roads (Newsom 1991)
5. Evacuation decision support (Kisko 1991)
6. Evacuation around a nuclear power station,

based on network flow on roads (Hobeika 1991)
7. Survey of evacuation models and methods

(Lovas 1993)

67

8. Mine evacuation during a mine fire, based on
network flow (Unger 1993)

9. Evacuation of a geographical area in advance of
a hurricane, based on network flow on roads
(Tufecki 1993)

10. Improved calculation of travel speed along arcs
in network flow evacuation models
(Bakuli 1993)

11. Evacuation movement of human flow modeled
as particle systems (Bouvier 1995)

3. Evacuation model design

This section presents the evacuation model design.

3.1 Design overview

The Plowshares evacuation model does not represent
individual persons and their specific locations. Rather,
it represents the geographic area to be evacuated as a
two dimensional array of square cells, each 100x100
meters. An attribute of each cell is the number of
persons in that cell. During execution, persons flow
from cell to cell at discrete time intervals according to
the constraints of the underlying terrain, moving away
from hazards (such as fires or hazardous chemicals)
and towards safety (such as shelters). This familiar
finite element method for modeling continuous flows
has been widely used in applications as diverse as heat
flow (Jacoby 1980) and tornado winds (Davies-
Jones 1995).

3.2 Assumptions

The evacuation model design makes certain
assumptions, which are listed here. Essentially, each
assumption is a reflection of what information the
underlying emergency management simulation must
provide to the evacuation model.

1. Presence of hazards. The emergency
management simulation must set hazard flag(s) in
affected cells to note the presence of fire, obstacles, and
hazardous materials, and change those flags over time
as the extent and location of the hazards change.

2. Presence of shelters. The emergency
management simulation must note the presence and
capacity of a shelter in a given cell and its capacity.

3. Initial cell population. The emergency
management simulation must initialize each cell with an
initial population and maximum capacity.

4. Presence of roads. The emergency management
simulation must initialize each cell with or without the
presence of roads.

5. Casualty parameters. The probabilities of each
hazard causing casualties must be given as parameters.

6. Discrete cell updates. The state of all grid cells'
attributes are assumed constant during any given
evacuation time interval. Although an attribute could
change value many times during the time step; only its
final value is used for the evacuation model. This
assumption applies onlyif the evacuation model uses a
time step that is different from the underlying
emergency management simulation.

3.3 Terrain grid cell attributes

The citizen evacuation model relies heavily on the
database design of the Plowshares TERRA software.
In the TERRA, citizens are made an attribute of the
terrain. The terrain map is divided into cells of 100
square meters. The size of the terrain map determines
the number of cells; a 60 square kilometer map has a
600x600 grid of cells.

Each cell is one of three feature types: generic urban,
vegetation, or generic areas. Each area feature type has
seven classes. Each cell's value of type and class
determine an initial population for that cell. In addition
to the feature type/class and initial population, several
other attributes will be used in the citizen evacuation
model. They are listed in Table 1; the table also shows
how each attribute is initially set and whether the
attribute is dynamic or static.

3.4 Preprocessing

Preprocessing refers to all processing that takes place
before the evacuation model begins execution. Note
that the emergency management simulation execution
begins prior to the start of the evacuation model, during
which time the initial effects of the disaster (e.g.
hurricane) are calculated. The preprocessing steps are
as follows:

1. Initialize feature type and class.
2. Initialize presence of buildings, fences, rivers,

obstacles, roads, and shelters.
3. Initialize population and maximum capacity.
4. Hurricane enters the area.
5. Update presence of hazards (fire, obstacles,

hazardous materials) and shelters.
6. Assess casualties and update population.
7. Hurricane leaves the area (the hurricane can has

moved for enough away to begin the exercise;
however, it can still cause damage).

8. Initialize population for evacuation model with
each cell's current population

9. Initialize basic flow rate of citizens.

68

3.5 Feature type/class and roads

Each cell's feature type and the presence of roads are
established in the terrain database. These attributes are
predefined before the simulation ever begins and never
change. Global variables identify a cell's feature type
and the presence of primary or secondary roads. Bit
masks are used to determine the presence of roads and
the associated feature type.

3.6 Number of citizens

The initial number of citizens per cell is also
preprocessed; however, each cell's initial value to be
used by the citizen evacuation model is calculated after
the hurricane leaves the area and the training exercise
begins. As mentioned previously, each cell has an
initial population based on it's feature type and class.
As the hurricane moves through the population of
affected cells will decrease. Once the hurricane leaves
the area, the resulting population of each cell becomes
the initial value to be used by the evacuation model.
Casualties inflicted by the hurricane are tracked
separately from those resulting from the evacuation.

3.7 Hazards

Hazards are created by the hurricane and the state of
any hazard can change over time. Models will set/reset
flag(s) to note the presence of a hazard in a given cell;
bit masks are used to determine each hazard's presence.

3.8 Flow rate

Each cell will have an associated flow rate of citizens
across that cell. This flow rate determines how many
citizens can move across the cell in one time step. A
cell's basic flow rate is a function of its feature type;
the basic flow rate is dynamically modified by cell
attributes to calculate at each time step an adjusted
flow. Table 2 shows the basic flow rate for cells based
on their feature type. Table 3 shows the general effect
of each cell attribute on the cell's adjusted flow rate.
The adjusted flow rate will take into account the
presence of hazards, roads, and police, and will be the
rate that is used to move citizens. The number of
citizens to move is the adjusted flow rate times the
number of time steps since the last cell update.
However, the number of citizens to evacuate can not
exceed the cell's current population and can not exceed
the maximum population of the cell being evacuated to.

Cj = current cell's population (citizens)

c2 = cell to evacuate to's population (citizens)

m2 = cell to evacuate to's max population (citizens)

n = number of citizens to evacuate (citizens)

rb - cell's basic flow rate (citizens per minute)

ra = cell s adjusted flow rate (citizens per minute)

At = time since last cell update (minutes)

n=MIN[ra -At, c, nu c2l

3.9 Population capacity and shelters

The maximum population capacity attribute limits the
number of persons that may be present in a cell. A
cell's maximum population will be a function of the
cell's feature type, class, and the presence of a shelter.
The cell's feature type and class will determine a
maximum population assuming no shelter exists in the
cell. The presence of a shelter adds to the maximum
population capacity. It should be noted that since
shelters can be destroyed at any time during the
exercise, the cell's maximum population can change. If
the cell population exceeds the cell's maximum shelter
population, it is assumed that the shelter is full and the
others are unsheltered.

3.10 Attraction index

Each cell will have an associated attraction index which
determines its likelihood to attract citizens. Citizens
move towards cells with larger attraction indices.
Population to or from any area can be caused by a
variety of factors. (Banz 1991) lists some of those and
notes that some cause movement away from a location
(e.g. hazards) and others cause movement towards a
location (e.g. safety). This general idea is extended to
the concept of attractors and repellors. As previously
mentioned, each cell has an associated attraction index;
and citizens move toward cells with larger attraction
indices. Each cell's attraction index is a function of
nearby repellors and attractors. Citizens move away
from repellors and towards attractors; see Table 5.

Table 6 shows the effect of repellors on a cell's
attraction index, based on the current cell's distance
from the repellor source. The numbers 0 - 5 indicate
the number of cells (range) away from the repellor
source. A range of 0 indicates the effect of a repellor
located in that cell; a range of 5 indicates the effect of a
repellor located 5 cells away. Table 7 shows the effect
of attractors on a cell's attraction index, based on the
current cell's distance from the attractor source.

69

Grid Cell Attribute Initialization Dynamic?
Feature Type / Class

- Generic Urban
- Vegetation
- Generic Areas

Preprocess No

Road
- Primary
- Secondary

Preprocess No

Hazard(s)
- Fire
- Obstacle
- Hazardous materials

By hurricane Yes

Number of citizens Preprocess Yes
Maximum population capacity Preprocess Yes
Flow rate Preprocess Yes
Shelter capacity Preprocess Yes
Attraction index None Yes

Table 1. Grid cell attributes.

Feature Type Basic Flow Rate
Generic Urban 1000
Vegetation 2000
Generic Areas 1500

Table 2. Basic cell flow rate.

Attribute Effect Comment
Feature Type Positive Vegetation (relative to generic)

Negative Urban (relative to generic)
Number of Citizens Negative Crowded cells slow movement
Presence of Hazards Negative
Presence of Roads Positive
Presence of Police Positive Police assigned to traffic control

Negative Police cordon around hazard

Table 3. Effect of cell attributes onflow rate.

70

Attribute Presence Adjustment
Factor

Fire No 1.0
Yes 0.5

Obstacle No 1.0
Yes 0.7

HAZMAT No 1.0
Yes 0.5

Road None 1.0
Primary 1.8

Secondary 1.6
Police to
increase flow

0 1.0

1 -2 1.5
3-5 2.0
>=6 2.2

Police to
block flow

0 1.0

1 -2 .5
3-5 .3
>=6 .2

Citizens 0-1/4 Full 1.0
1/4-1/2 Full .8
1/2 - 3/4 Full .5

3/4 - Full .3

Repellors Attractors
Hazards Shelters
Crowded Cells Uncrowded Cells

Cells with Roads

Table 5. Repellors and attractors.

Repellors Range (in cells)
0 1 2 3 4 5

Fire -7 -4 -1 0 0 0
Rubble -6 -3 0 0 0 0
Obstacle -6 -3 0 0 0 0
HAZMAT -6 -4 -2 -1 0 0
Crowded cell -6 -3 0 0 0 0

Table 6. Repellors' effect on a cell attraction index.

Attractor Range in cells)
0 1 2 3 4 5

Shelter 2 1 0 0 0 0
Primary road 2 1 0 0 0 0
Secondary road 2 1 0 0 0 0
Uncrowded cell 2 1 0 0 0 0

Table 4. Flow rate adjustment factors (notional). Table 7. Attractors' effect on a cell attraction index.

71

Similar to Table 6, the numbers 0-5 indicate the
number of cells (range) away from the attractor source.
The parameter values chosen in Tables 4, 6, and 7 are
notional. The actual values of these parameters will be
determined with the aid of subject matter experts data
collected from actual disaster evacuations.

A cell's attraction index is the cumulative effect of all
attractors and repellors within range. The calculation
is:

/ = Attraction Index

na = Number of Attractors Within Range

np = Number of Repellors Within Range

a, = Value for Attractor i

Pj = Value ofRepellorj

np

t-i

3.11 Algorithm overview

During each time step of TERRA:

(1) As hazards are created/removed, update cell.
(2) For each cell, assess casualties.

(2.1) For each hazard present in the cell,
casualties = number of citizens *

probability of casualty
number of citizens = number of citizens -

casualties

During each time step of the evacuation model:

(1) For each cell, calculate its adjusted flow rate.
(2) For each cell, calculate its attraction index.
(3) For each cell, move citizens to adjacent cells

(if possible and necessary).
Rules for movement:
(3.1) Citizens will move to the cell with the

greatest attraction index.
(3.2) If all cells have the same attraction index,

the citizens will not move.
(3.3) Citizens can not move to a cell whose

maximum population capacity would be
exceeded.

(3.4) The number of citizens to move is the
minimum of the cell's current population,
the maximum number of citizens that could
move via the calculation of n, and the
available space in the cell to move to.

(3.5) If 2 or more cells have the same largest

attraction index,
If one of the cells under consideration is the
citizens' current location,
then the citizens will not move,
else the citizens will move to the least
crowded cell first, the second least crowded
cell next, and so forth until all citizens are
moved or all cells under consideration are
full. Any remaining citizens will not move.

3.12 Training characteristics

With this evacuation model, the emergency managers
are challenged to allocate police to control traffic and
optimize the evacuation flow. They must also reduce
casualties during the evacuation by eliminating the
hazards (e.g. using fire trucks to extinguish fires) and
using police to direct evacuation flow away from and
around hazards. The emergency managers can be
measured quantifiably based on the number of
casualties versus total population and the number of
sheltered versus unsheltered citizens.

4. Evacuation model implementation

This section details the initial implementation of the
evacuation model into the Plowshares TERRA
software. The initial implementation was completed
under tight time constraints and includes only limited
functionality; however, it serves as a basis for further
development. The design and implementation of the
initial evacuation model are discussed, as well as
suggested improvements for subsequent development
iterations.

4.1 Chemical cloud hazard

A single chemical cloud is the only hazard used in the
initial evacuation model implementation. The chemical
model incorporated within the TERRA software, which
was not modified from Janus, is used to update the
chemical cloud's location, radius, and toxicity. These
parameters are dynamic and can change with each
chemical model update.

4.2 Flow rate calculation

The evacuation model uses a cellular approach,
dividing the terrain into a grid of cells, each with an
associated feature type occupying 100 square meters.
The terrain editor is used to associate different terrain
feature types with the population density, measured in
citizens per square kilometer, basic flow rate of citizens
across the cell, measured in citizens per minute.

72

Terrain feature types include urban, vegetation, and
generic areas. As noted in Figure 1, all cells that lie
within 0.5 kilometers of the chemical cloud boundary
are evacuated. All other cells are assumed to be within
a safe distance and evacuation is unnecessary. The cell
center is used for all calculations. The distance of 0.5
kilometers is a notional number that can be revised as
deemed necessary. For those cells that lie within the
radius of the cloud, the flow rate of citizens increases
by 25% in order to allow for increased movement due
to citizen panic. This increase is also notional and can
be revised as necessary. Finally, the number of citizens
to evacuate can not exceed the cell's current
population.

Determining if a cell lies within the evacuation area is
done based on simple Euclidean distance. We begin
with the following variable definitions:

(xi,yl)= coordinate of cloud center

(x2,y2) = coordinate of cell center

r = radius of cloud

dx = distance from cell center to cloud center (km)

d2 = distance from cell center to cloud boundary (km)

c = cell's current population (citizens)

n = number of citizens of evacuate (citizens)

rb = cell's basic flow rate (citizens per minute)

ra = cell's adjusted flow rate (citizens per minute)

At = time since last cell update (minutes)

Using the diagram in Figure 2 as a reference, d} and d2

are calculated using Equations (1) and (2), respectively.

4.3 Evacuation movement direction

Each cell is examined in relation to the cloud center
and the wind direction. For analytic purposes, the cell
center and chemical cloud center are used for all
calculations. As shown in Figure 3, each cell and the
wind direction can lie in 1 of 8 regions. Each region
occupies a portion of the terrain spanning an arc of 45°
from the chemical cloud center with the size of each
region dependent on the location of the chemical cloud
within the terrain boundary. The direction in which the
citizens evacuate is determined by the cell's region and
the chemical cloud's region. Evacuation movement of
citizens is modeled as movement from cell to cell.
Citizens will evacuate to one of the surrounding cells to
the north, northeast, east, southeast, south, southwest,
west, or northwest. In certain circumstances (i.e. for a
cell in the corner), not all eight directions are available
for evacuation. See Table 8.

The chemical cloud's region is determined by the
direction of the wind. The direction is merely an angle
measured from the +x axis, referred to as qi in the
diagram in Figure 2. For example, a wind direction of
225° degrees places the chemical cloud in region 6.
The cell's region is also determined with a direction, q2

; but this direction is dynamic and varies from cell to
cell. Angle q2 is the angle measured from the cloud
center to the cell center (measured from the +x axis).
Using the diagram in Figure 2 as a reference, one can
calculate q2 using Equation (3). For instance, a cloud
center to cell center direction of 45° places the cell in
region 2. Assuming this cell lies within the evacuation
area and the chemical cloud is in region 6, citizens will
move to the cell to the northeast.

dl=^(x2-x]f + (y2-yl)
2

d2=dx — r

(1)

(2)

In summary, the pseudocode for calculating the
adjusted flow rate and number of citizens to evacuate
for each cell is:

if(d2 <05)

{
if(d2<0)ra=1.25rb

elseru = rb

n= MIN[ra At.cJ

}

e2=TAN' -if yi-y\
x-, -x I J

(3)

If the chemical cloud's region and the cell's region are
identical, the evacuation direction is determined by
noting which direction (angle) is larger. See Table 8.
It should be noted, however, that Table 8 provides only
one evacuation direction. If for some reason, this
direction is unavailable, the citizens can not evacuate.
In subsequent development iterations, the table should
be extended to allow for alternative directions if the
first choice is unavailable.

73

Cloud Boundary
(radius r)

Cloud Center
(*i. yi)

AH cells within this
area must evacuate

• +x axis

Figure 1. Evacuation area.

Terrain Boundary Cloud Center

157.5

202.5

22.5°

337.5°

Wind Direction L Cloud Boundary

Figure 3. Evacuation direction regions.

Wind Direction

Cell Center
-xt] (x2,y2)

Cloud Boundary
(radius r)

Cloud Center
(xi,yi)

Figure 2. Evacuation distance calculation.

19

17

27

15

11

25

13

31

23

29

21

Cells

20 28

16
12

26

14

10

32

24

30

22

Figure 4. Cell evaluation sequence.

74

CO CO

co

c
o
O)

a)
c
0) o

u

a) 2
c I o

•D
3
O
u
15
o

CD CO

LO

£
0)

o

co

CvJ

2 CO

T T
CT CT
Al V

"I, o CD

o 3
O

LU
CO

LU
CO

CO

LU
CO

cr
Al£
£2 d\ur

CM

LU
CO

CO

5
CO

5- LU

T t
& 61
Al V

CT CT

LU

CO

LU
CO

CO

5
CO

5
CO

?LU
CO 2

T t
cr CT|
Al V

cr al

UJ

LU

LU
CO

CO

CO

CO 2

T T
IT CT
Al V

eg cv cr en

LU

LU

in

UJ
co

LU
CO

LU
CO

T t
cr CT
M V>
CT CT2

5 z

UJ

CD

LU

t T
CT CT|
Al V

CT CT

LU

2 CO

t t
CT a
Al V
CT CT

CO

CO

LU

LU

CO

e
8
.0

g
U

I

3

75

4.4 Integrating the evacuation model into TERRA 4.5 Future improvements

The TERRA simulation software is organized around a
number of event queues. Event queues include events
for hurricane, fire, tornado, vehicle movement, etc.
Each event queue contains a series of events to occur in
the future, each with an associated time stamp, that
determines event.

The evacuation model is implemented as another event
queue, very similar to the design of hurricane disaster
model. The TERRA software is easily enhanced to
include an additional event queue within the main
simulation driver. The manner in which the initial
evacuation model implementation examines each cell is
identical to that of the hurricane model. The hurricane
model must assess damage for all cells. Due to the
large number of cells, the model can not update all cells
at each model update. Therefore, the hurricane model
uses an update interval which specifies the time is takes
to update all cells on the terrain.

Rather than evaluate the cells sequentially from bottom
to top, the terrain is divided into four quadrants. One
cell from each quadrant is evaluated for each hurricane
damage update iteration. The evaluated cells form a
grid across the terrain and evenly distribute the damage
evaluation for each iteration. The starting point
determines which cell in each quadrant is evaluated.
The starting point moves up and over alternatively,
generating a wave-like evaluation from lower left to
upper right in each quadrant. Figure 4 details the order
in which the first 32 cells are evaluated.

It should be noted, however, that in using this approach
for the initial evacuation model implementation, all
cells are analyzed, regardless of their proximity to the
chemical cloud. As previously mentioned, only those
cells with 0.5 kilometers of the cloud boundary require
evacuation, and much time is wasted checking those
cells outside of this area.

Several unimplemented features of the design and
possible improvements remain with the initial
evacuation model implementation. Some of those are
listed here:

1. Cell capacity. The current model allows for an
infinite cell capacity. The software should be enhanced
to give each cell a maximum capacity based on its
associated terrain feature type and the presence of
additional buildings and/or shelters.

2. Presence of hazards. The current model only
recognizes one hazard source, a single chemical cloud.
The model should be enhanced to recognize multiple
hazards.

3. Presence of attractors. The current model does
not recognize any attractors. The model should be
enhanced to recognize multiple attractors to attract
citizens. Attractors include the presence of shelters
and/or roads.

4. Presence of emergency response units. The
current model does not recognize the presence of
emergency response units and police. The model
should be affected by the presence of these units.

5. Attraction index calculation. The current model
does not incorporate the attraction index calculation.
After being able to recognize multiple hazards,
attractors and the presence of emergency response
vehicles, this calculation can be incorporated.

6. Cell evaluation algorithm. Rather than
implement the algorithm detailed in section 3.4, a more
sophisticated algorithm should be developed that uses
multiple hazard locations to determine which cell to
evacuate next. In addition, this algorithm should only
evaluate those cells that require evacuation.

7. Discrete events. Ideally, evacuation of multiple
cells would occur simultaneously; however, in a
discrete simulation, such events must occur
sequentially. Discrete, sequential calculation can cause
undesired artificial delays to movement when cell
populations are at or near the cell's capacity.

In subsequent development iterations, the same
interleaved cellular examination approach can be used;
but rather than examine all cells, only those cells within
the bounding box surrounding the chemical cloud need
to be checked. Given the location and radius of the
chemical cloud, one can easily calculate the corner cells
that bound the evacuation area.

5. Conclusions

Large scale civilian evacuation is an important part of
emergency managers' responsibilities, and must be
included in an emergency management simulation. A
relatively simple and elegant model can provide a
usefully realistic representation of evacuation.

76

6. Acknowledgments

This work was partially supported by the U. S. Army
Simulation, Training, and Instrumentation Command as
part of the Plowshares project, contract N61339-96-K-
0003, under the supervision of STRICOM Project
Director Jean H. Burmester. That support is gratefully
acknowledged.

7. References

Bakuli, D. L. and Smith, J. M. (1991). "Optimal
Routing and Resource Allocation within State
Dependent Evacuation Networks", Proceedings of
the SCS Multiconference on Simulation in
Emergency Management and Engineering and
Simulation in Health Care, Anaheim CA, January
23-25 1991, pp. 23-30.

Bakuli, D. L. and Smith, I M. (1993). "Optimal
Routing in State Dependent Evacuation Networks",
Proceedings of tthe 1993 International Emergency
Management and Engineering Conference,
Arlington VA, March 29 - April 1 1993, pp. 87-90.

Banz, George (1991). "Toward a Generic Evacuation
Simulation Technique", Proceedings of the SCS
Multiconference on Simulation in Emergency
Management and Engineering and Simulation in
Health Care, Anaheim CA, January 23-25 1991,
pp. 39-41.

Bouvier, E. and Cohen, E. (1995). "Simulation of
Human Flow with Particle Systems", Proceedings
of the 1995 Simulation MultiConference, Phoeniz
AZ, April 9-13 1995, pp. 349-354.

Choi, W. (1991). "A Simulation Model for Emergency
Building Evacuation", Proceedings of the SCS
Multiconference on Simulation in Emergency
Management and Engineering and Simulation in
Health Care, Anaheim CA, January 23-25 1991,
pp. 31-38.

Davies-Jones, R. (1995). "Tornadoes", Scientific
American, Vol. 273, No. 2, August 1995, pp. 48-57.

Hobeika, A. G. and Kim, S. (1991). "Emergency
Evacuation Around Nuclear Power Stations",
Proceedings of the SCS Multiconference on
Simulation in Emergency Management and
Engineering and Simulation in Health Care,
Anaheim CA, January 23-25 1991, pp. 54-61.

Jacoby, S. L. S. and Kowalik, J. S. (1980).
Mathematical Modeling with Computers, Prentice-
Hall, Englewood Cliffs NJ, 1980.

Kisko, T and Tufecki, S. (1991). "Design of a
Regional Evacuation Decision Support System:
Integrating Simulation and Optimization",
Proceedings of the SCS Multiconference on
Simulation in Emergency Management and

Engineering and Simulation in Health Care,
Anaheim CA, January 23-25 1991, pp. 48-53.

Lovas, G. G., Wilklund, J., and Drager, K. H. (1993).
"Evacuation Models and Objectives", Proceedings
of tthe 1993 International Emergency Management
and Engineering Conference, Arlington VA, March
29-April 1 1993, pp. 91-97.

Newsome, D. E. and Beriwal, M. (1991). "Regional
Evacuation Planning Using Computer Simulation:
Promise and Pitfalls", Proceedings of the SCS
Multiconference on Simulation in Emergency
Management and Engineering and Simulation in
Health Care, Anaheim CA, January 23-25 1991,
pp. 42-47.

Petty, M. D., Slepow, M. P., and West, P. D. (1995a).
"CGF Opportunities in Plowshares", Proceedings
of the Fifth Conference on Computer Generated
Forces and Behavioral Representation, Orlando
FL, May 9-11 1995, pp. 337-344.

Petty, M. D. and Slepow, M. P. (1995b). "Plowshares:
Emergency Management Training with a Military
Constructive Simulation", Proceedings of the 17th
Interservice/Industry Training Systems and
Education Conference, Albuquerque NM,
November 13-16 1995.

Petty, M. D. and Slepow, M. P. (1996). "Plowshares:
An Emergency Management Training Simulation",
Simulation, Vol. 66, No. 6, June 1996.

Slepow, M. P. and Kincaid, J. P. (1995). "Plowshares:
Effective Training Using an Emergency
Management Simulation", Proceedings of the 1995
Southeastern Simulation Conference, Orlando FL,
October 22-24 1995, pp. 141-149.

Titan, Inc. The Janus 3.X/UNIX Model User's Manual,
W800XRO-3125-0052, TRADOC Analysis Center.

Tufecki, S., Sandesh, J. J., Albusairi, A. (1993).
"Importance of REMS in the Aftermath of
Hurricane Andrew", Proceedings of tthe 1993
International Emergency Management and
Engineering Conference, Arlington VA, March 29 -
April 1 1993, pp. 81-86.

Unger, R. L., Glowacki, A. F., and Stein R. R. (1993).
"An Evacuation Simulation for Underground
Mining", Proceedings of tthe 1993 International
Emergency Management and Engineering
Conference, Arlington VA, March 29 - April 1
1993, pp. 75-80.

Wood, D. D., Farr, J. V., Horsley, M., and Petty, M. D.
(1995). "Plowshares: Hurricane, Tornado, and Fire
Modeling in TERRA", Proceedings of the 1995
Southeastern Simulation Conference, Orlando FL,
October 22-24 1995, pp. 159-166.

77

8. Authors' biographies

Ross C. Creech is a Research Assistant at the Institute
for Simulation and Training, working on the High
Level Architecture BDS-D project. Previously he
worked on the software engineering team for the
Plowshares project. Mr. Creech recently received a
M.S. at the University of Central Florida in Computer
Engineering, specializing in Software Engineering. He
also holds a B.S. in Industrial and Systems Engineering
from the University of Florida and has professional
experience in multi-chip microelectronics design and
manufacturing.

Mikel D. Petty is a Program Manager and Senior
Research Computer Scientist at the Institute for
Simulation and Training. He is currently leading IST's
HLA BDS-D project; previously he managed IST's
Emergency Management and Computer Generated
Forces research. Mr. Petty received a B.S. in Computer
Science from the California State University
Sacramento and a M.S. in Computer Science from the
University of Central Florida, and is a Ph.D. student in
Computer Science at UCF. His research interests are in
simulation and computational geometry.

78

Application of Computer Generated Force Technology
to Interagency Drug Interdiction

John Miller and Greg Jackson
BMH Associates, Inc

5425 Robin Hood Road, Suite 201
Norfolk, VA 23513-2441

miller@bmh.com jackson@bmh.com

Will Miller
Joint Interagency Task Force East

Key West, FL

1. Abstract

Over several years and administrations, the U.S.
government's drug interdiction strategy has evolved
to an approach that emphasizes the selective,
intelligence-cued, and carefully planned employment
of a constrained number of interdiction assets in the
transit zones (e.g. the Caribbean air and sea routes)
leading to the continental United States. Given their
limited resources, the three Joint Interagency Task
Forces (JIATF) East, South, and West, established
in 1994 would greatly benefit from the application of
Computer Generated Force (CGF) technology to the
training and operational tasks implicit in their
interdiction mission. In the training arena, the
JIATFs are responsible .for integrating law
enforcement and military personnel of varied expertise
and experience into cohesive command center teams
capable of smooth, effective action to counter detected
air and maritime trafficking events. Operationally, the
JIATFs continually face cost-benefit decisions in
determining the optimal force laydown, near term and
long range, to counter drug trafficking trends.
Moreover, with reliable pre-event intelligence, the
JIATFs conduct detailed planning and gaming to
ensure that limited assets are most effectively arrayed
against anticipated specific events. Adapting the CGF
capability to replicate air and maritime interdiction
operations for training, mission rehearsal and after
action analysis purposes could pay a substantial
dividend in this critical national and international
security issue.

2. Introduction

Simply put, our purpose is to overview U.S. drug
interdiction, particularly operations conducted in the
Caribbean drug transit zone, highlighting the features
most relevant to the potential application of
Computer Generated Force (CGF) technology. If the
issues are divided into two broad categories, those
relating to interdiction operations and those relating
to CGF development, our discussion is primarily in
the former. Much of our description of the mission is

conveyed via a representative drug trafficking event,
in this case an air transportation incident spanning
the Caribbean. We selected this discussion vehicle,
an actual event, to depict the complexity and
challenges of the daily situation; an interagency force
responding regionally within a very compressed
timeline under restrictive rules of engagement. The
foregoing statement alone implies the training and
event analysis requirements that we believe offer the
greatest payoff in the application of CGF technology
to this problem. We use the mission, command
relationships and infrastructure of Joint Interagency
Task Force East in Key West, Fl to represent the
potential for CGF application in drug interdiction.

3. Just Another Night at the Office

It's very late in the evening on a Saturday and the
atmosphere in the Joint Operations Command Center
(JOCC) of the Joint Interagency Task Force East
(JIATFE) in Key West, Florida is about to be
dramatically transformed. Manned 24 hours a day, the
JOCC is the focal point for coordinating the response
of the U.S. government and its regional allies to air
and maritime drug smuggling events as they occur in
the Caribbean. Linked to military and law
enforcement vessels, aircraft and radar installations
ashore, JIATFE quarterbacks a diverse and far flung
interagency and international team. Calling the play
in the JOCC is the Command Duty Officer (CDO),
on this particular evening an officer of the U.S.
Customs Service (USCS), one of three U.S. agencies
along with the Department of Defense (DoD) and the
U.S. Coast Guard (USCG) that provide most of the
180 personnel who staff JIATFE. Little in the
background of an officer from any of those three
agencies prepares them thoroughly, prior to their
assignment, for the challenge of orchestrating
operations of a complexity and scale routinely
experienced at JIATFE. Reflecting the interagency
composition of JIATFE, the JOCC is continuously
manned by a dozen personnel, specialists in both the
Intelligence and Operations fields. Approximately half

7 9

of the crew is DoD with the remainder divided
between the USCS and USCG.

The Caribbean area of responsibility (AOR)
encompasses a region comparable in size to a triangle
bounded by the cities of Miami-Seattle-New York
and includes the territorial air and sea space of
multiple nations whose cooperation with U.S.
counterdrug operations covers the full range from
strong to nonexistent. The assets coordinated by
JIATFE to cover the AOR, limited in number but
highly capable platforms, represent the principal
agencies and nations engaged in interdiction.
Constantly patrolling or on alert in the AOR is a
drug interdiction force that includes:

U.S. Navy vessels
British and Dutch Navy vessels and aircraft
Air Force fighter interceptors
Airborne Early Warning aircraft (USAF E-3,
USN E-2)
Maritime Patrol aircraft (P-3)
U.S. Coast Guard cutters and patrol boats
U.S. Customs Service tracker aircraft
Drug Enforcement Administration aircraft
U.S. Army and Coast Guard helicopters (UH-60)
DoD radar sites and associated command centers

And given the sensitivities of interagency operations
in international waters and airspace, the JIATFE
CDO is in a continual state of information exchange
in a wide network that includes DoD, law
enforcement and diplomatic agencies in places as
diverse as Washington, Norfolk, El Paso, Colorado
Springs, Puerto Rico, and American Embassies
throughout the Caribbean.

The sequence of related events unfolding for our CDO
actually began, fairly typically, long before his actual
watch in the JOCC. Given the size of the AOR and
the limited assets available, the difference between
interdiction success and failure is often the degree to
which pre-event intelligence from varied sources
provides cues to decision-makers who play an
educated guessing game in positioning the force to
disrupt the traffickers' plan. Our Saturday evening
operations can be traced back to the previous
Tuesday. The intelligence community produced the
indications of an impending transfer of some 400
kilograms of cocaine by a small, twin engine
(propeller) aircraft flying from a remote airstrip on the
north coast of South America to a rendezvous in
either the Eastern Caribbean or the Bahamas. Upon
reaching its destination the aircraft might land briefly
and offload at a small airstrip or might drop its load
in bundles to several small, "go fast" boats that will
immediately scatter at high speed to isolated beaches
and coves on the nearby islands. At cache sites ashore

the cocaine will be repackaged and later moved along
the transportation pipeline to U.S. and European
destinations for distribution. In moving contraband in
this leapfrog fashion, the exposure of the shipment to
interdiction is minimized and the drugs are
conveniently warehoused along the way until needed
at the distribution end of the chain.

While the intelligence preceding our Saturday
evening event is invaluable, it is not sufficiently
detailed for the JIATFE planners to commit assets to
a narrowly defined course of action. Moreover, when
the warning of the airdrop event was received,
JIATFE was also planning against a reported surface
transfer, potentially multi-ton in size, in the western
Caribbean. The intelligence only indicates that the air
event might possibly occur during a timeframe of
several days and the location remains vague. With
that level of foreknowledge, the interdiction plan
places vessels and aircraft in positions from which
they can flexibly respond to a number of potential
airdrop sites while maintaining a realistic state of
readiness for the projected period of time. Land based
radar assets are oriented to enhance their surveillance
of the projected flightpath. The interagency
intelligence effort is focused on refining the initial
warning. The JIATFE planners, their counterparts in
other command centers, and the key personnel who
will execute the operation, plan their roles in
anticipation of foreseeable events and
contingencies...and await developments.

Late Saturday the event begins to unfold with an
initial detection of the suspected aircraft by the
Remote Over The Horizon Radar (ROTHR) system
that provides surveillance of the Caribbean and South
America from bases in Virginia and Texas. The
suspect aircraft is in a flight profile that matches that
often used by drug traffickers. Thus begins the
process to sort and identify that contact from the
multitude of legitimate aircraft operating in the area.
The earliest possible confirmation that the contact is
the anticipated drug trafficker is necessary to give the
surface and air units directly involved in the endgame
the best opportunity to be in position to intercept the
shipment.

Shortly after the initial ROTHR contact, the USNS
Capable, a small specially equipped surveillance
vessel (see the MOD T-AGOS description in Section
6) operating off the north coast of Venezuela, also
detects the low flying, northbound aircraft and adds
its track data to the overall detection and monitoring
information flow into JIATFE. The CDO acts to
obtain visual identification of the aircraft, now an Air
Target of Interest (ATOI), and ensure that an airborne
monitoring platform is in position to maintain
contact with the ATOI for the duration of the event.

80

Two USAF F-16 fighters based in Puerto Rico are
launched to intercept and covertly identify the ATOI.
At about the same time a USN E-2C and USCS P-3
aircraft are launched to provide tracking and airborne
command and control of the air assets that will
converge on the scene. Following the F-16's
identification of the aircraft and their return to base, a
U.S. Customs Service tracker aircraft is integrated
into the monitoring of the ATOI. Meanwhile a
Surface Action Group consisting of a USCG Cutter
and two USN Patrol Coastal vessels, with USCG
boarding detachments aboard, is alerted to move to
the vicinity of a possible airdrop. These surface
assets, including the UH-60 helicopter aboard the
USCGC, will attempt to disrupt the airdrop, block
the escape of the high speed surface craft involved and
recover any contraband floating in the area.

Our CDO, assisted by the intelligence analysts and
operations specialists in the JOCC and in
coordination with other regional command centers, is
not only orchestrating the interdiction of the
northbound movement of the ATOI, but also is
acting to ensure that the aircraft is continually tracked
on its southbound return home. At that point
established information exchange procedures will be
exercised to assist the host nation law enforcement
agencies effect an arrest and seizure. The frigate USS
Sides will be repositioned to assist in the
monitoring.

"") HELOS ATOI LANDS, OFFLOADS TO TRUCKS
A TAKES OFF AGAJN

US CUSTOMS TRACKER

P-3

Figure 1. Eastern Caribbean Air Event

Meanwhile, instead of an airdrop our ATOI transits
through the Eastern Caribbean, then turns to the
northwest and ultimately lands on a small island in
the Bahamas archipelago (see figure 1). In less than 5
minutes of ground time the cocaine is offloaded and
the plane takes off again southbound. Minutes later
two U.S. Army Blackhawk helicopters airlifting a
joint arrest team of DEA agents and Bahamian police
officers, arrive on scene from their base in the eastern
Bahamas having been alerted and updated on the

developing event by JIATFE. The Blackhawks
swoop into the airstrip vicinity and debark the arrest
team while the narco ground crew is still present
loading their cargo onto a truck. The overwhelming
speed and force of their arrival discourages any
hostilities and results in the seizure of the cargo, the
vehicle and the arrest of three suspects. Unfortunately
contact with the southbound ATOI is lost soon after
its takeoff. Quite possibly it landed on another nearby
island.

Nevertheless, a trafficking event has been frustrated.
The shipment and some assets have been seized.
Some arrests made. And equally significant, valuable
investigative leads will be developed and followed up
for the more proactive targeting, by U.S. and foreign
law enforcement agencies, of the drug trafficking
organizations' transportation, command and control
and financial infrastructure. This event typifies transit
zone activity. Known air and surface transportation
events may exceed 100 during a given quarter. Any
operation offers lessons to be learned and applied in
the future. Our example is no exception. Although
busy preparing for the next event while maintaining
readiness, the participants consider the after-action
issues:

• In reconstructing the event, how were the actions
of the various elements integrated?

• How can the participating command centers and
subordinate elements better prepare (train) for the
event recognition, decision-making and
coordination tasks that must be accomplished
rapidly?

• Given the pre-event intelligence, was the
preparatory force laydown optimal? What are the
tradeoffs of alternative positioning schemes?
Other interdiction assets?

• How does the course of action selected during the
event compare with other alternatives?

These questions are constants for the interdiction
planners and executors. Computer Generated Force
(CGF) technology under development for the
Synthetic Theater of War (STOW) offers a training,
planning, and assessment tool, readily transferable
from its conventional application to the interdiction
aspect of the National Drug Control Strategy. An
overview of the threat, interdiction strategy, and the
supporting infrastructure will aid in understanding the
requirement, potential application, and payoff.

81

4. Threat Overview

Although the flow of drugs from source to
distribution can take several forms and routes, some
geographic and tactical trends are evident. The
principal air and maritime routes and the activity
levels are as shown in figure 2.

EUROPE
22%

EPAC38%

Figure 2. Principal Routes/Activity

Given their resources, drug traffickers have fielded an
impressive array of air and surface platforms.
Generally the vehicles of greatest interest
(vulnerability) to the interdiction force fall into four
categories:

• light twin-engine propeller or executive style jet
aircraft

• large commercial style jet aircraft
• small, high speed surface craft
• small commercial (e.g. fishing) vessels

Traffickers often employ one or a combination of
techniques to move their product through the transit
zone.

• transport large shipments aboard commercial
type jet aircraft (e.g. Boeing 727) non-stop from
South America to • remote airstrips in
central/northern Mexico, flying routes and
altitudes normally used by commercial air traffic
in an effort to blend in with that flow

• transport smaller shipments aboard low flying
propeller-driven aircraft from the northern coast of
South America to rendezvous sites in the
Caribbean islands where the aircraft either lands
at a remote airstrip briefly to offload its cargo or
drops the load in waterproofed bundles to
waiting surface craft that move the cargo to cache
sites ashore

• transport large shipments via surface platform
(e.g. fishing, merchant vessel) from the coast of
South America to an at sea rendezvous with
smaller, high-speed craft that move the cargo to
cache sites ashore

• transport smaller shipments via small, high
speed surface craft from the coast of South
America to at-sea rendezvous or cache sites in the
islands

• transport shipment, concealed among difficult to
search legitimate cargo, via surface merchant
vessel directly into commercial ports

5. The Command and Control Structure

The U.S. Government's command and control
system to combat the distribution of illegal drugs has
evolved through many stages from its origins soon
after the turn of the century. With each phase, the
problem gained recognition as one of increasing
severity and the number and diversity of agencies
engaged in the effort steadily grew. In 1988, the Office
of National Drug Control Policy (ONDCP) was
created to bring unity to the activities of the
numerous federal, state, and local counterdrug
agencies. By law, the Director, ONDCP develops the
annual National Drug Control Strategy (NDCS) that
includes goals for the international interdiction
program. The latest version of the NDCS (April
1996) places great emphasis on the interdiction
component.

During the late 1980's, countering the production,
trafficking, and use of drugs was declared to be a
"high priority national security mission". With the
passage of the FY 1989 National Defense
Authorization Act (NDAA), Congress imposed
specific new responsibilities upon the Department of
Defense (DoD). Prior to this action, the DoD role had
largely been to provide training and loan equipment
to Drug Law Enforcement Agencies (DLEA). The
1989 NDAA significantly expanded the DoD role.
The military was tasked to take the interagency lead
in the detection and monitoring (D&M) of illegal
drug shipments into the U.S., and was also tasked to
create an integrated command, control,
communications, and technical intelligence network
linking the military and civilian agencies (See Figure
3). These new responsibilities were subsequently
made part of permanent law in Title 10, USC.

INTERDICTION OPERATIONS

DETECTION k
MONITORING

INTERCEPTION*
COORDINATED

HANDOFF

APPREHENSION

DOO LEAD AGENCY DLEA LEADAGENCY I"

Figure 3. Interdiction Phases/Responsibilities

82

To accomplish this mission, DoD built upon the
existing Unified Command structure. The
Commanders-in-Chief of the Atlantic and Pacific
Commands established Joint Task Forces Four and
Five respectively in Key West, Florida and Alameda,
California as operational command centers controlling
D&M activity. Critical as they were, these two
centers were only two nodes in a complex array of
counterdrug operations and intelligence centers under
both military and law enforcement leadership.

In 1994, Presidential Decision Directive (PDD) 14
directed that ONDCP "review the multiplicity of
command and control and intelligence centers
involved in international counternarcotics and
recommend steps to streamline the structure". The
result was the National Interdiction Command and
Control Plan (NICCP). Figure 4 portrays the
consolidation and agency relationships with respect
to operations in the transit zone. The Commandant of
the Coast Guard was empowered as the U.S.
Interdiction Coordinator (USIC) with responsibility
for coordinating the interdiction effort in the Western
Hemisphere. The USIC is responsible for ensuring
that assets for interdiction are sufficient and that their
use is properly integrated. At the same time three
Joint Interagency Task Forces (East, South and
West) were established to provide command and
control for the military and law enforcement assets
assigned to interdiction. Though these command
centers were built upon existing DoD infrastructure

including the former counterdrug Joint Task Forces
Four and Five, the new concept integrated military
and civilian personnel and assets under unified
leadership to an unprecedented degree. The JIATF's
are true national task forces comprised of U.S.
Customs Service, U.S. Coast Guard, DoD and even
allied resources.

Even with this trend toward interagency integration,
the government's counterdrug program management
remains exceptionally complex. The growing pains
are not unfamiliar to those who've experienced
DoD's jointness evolution. Some thirty federal
agencies continue to exercise some form of drug law
enforcement jurisdiction. Their members bring the
diversity in policy, training, and procedures of their
parent organizations to the interagency task forces.
This coalition presents both opportunity and
challenge to the Director, ONDCP and the USIC.
The blend of the interagency ensures that the widest
range of government talent and resources are
continually engaged in the fight. The challenge,
efficiently focusing the assets on specific objectives
that contribute to the NDCS, is nowhere more
evident than in the interdiction arena. And nowhere
in the interdiction realm are the requirements,
advantages, and limitations of interagency jointness
better represented than in Joint Interagency Task
Force East.

TRANSCOM

SOUTHCOM |

SOCOM

NORAD

PACOM

SUPPORTING
CINCs

FORCES
RESOURCES
CAPABILITIES

DEFENSE
DEPARTMENT

OFFICE OF NATIONAL DRUG
CONTROL POLICY (ONDCP)

USACOM
LEAD AGENCY

U.S. INTERDICTION
COORDINATOR (USIC)

JOINT INTERAGENCY TASK FORCE
(TRANSIT ZONE)

DIRECTOR '

DEPUTY* DEPUTY*

KEY AGENCY REPRESENTATIVES |

WORKING LEVEL REPRESENTATIVES

DEA

USCG

|CUSTOMS

LAW
ENFORCEMENT

AGENCIES

FORCES
RESOURCES
CAPABILITIES

COORDINATION AND OVERSIGHT
• DIRECTION
. SUPPORT

* Director and Deputies assigned
from DoD. USCG and USCS

Figure 4. Command and Control Structure

8 3

6. Joint Interagency Task Force East

The scenario presented earlier illustrates the JIATFE
mission, task force composition, and the
interrelationships of the interdiction elements. Figure
5 depicts the task organized structure reflecting the
U.S and allied (Royal Netherlands Navy) elements.
Although it's conceivable that virtually any air or
maritime platform available in the DoD or drug law

enforcement inventories could be employed by
JIATFE for specific purposes and periods the
following descriptions highlight those most likely to
be found operating in the AOR on any given day.
The parent agencies are also indicated. Within DoD
the assets are sourced from both active and National
Guard forces and represent both the Atlantic and
Pacific Fleets.

CINCUSACOM

JIATF EAST

RNLN
ELEMENT

Figure 5. JIATFE Task Organization

Airborne Platforms. Airborne platforms provide
counterdrug forces several capabilities. They can
provide much greater height and range for electronic
and visual search, reconnaissance, or surveillance
missions. They provide a platform with equal or
better performance than the drug smuggling aircraft to
allow for interception and tracking, and they provide
the means for DLEA officers to be rapidly deployed.

E-3 Sentry (AWACS) - (USAF). This is an airborne
early warning, and command and control aircraft
based on the Boeing 707 airframe. It is used for air

and maritime radar surveillance detection and tracking
of suspected smuggler aircraft and vessels.

P-3 Orion - (USN, USCS). The Orion is a fixed-
wing, multi-engine turboprop, Maritime Patrol
Aircraft (MPA). It is used as a surveillance platform
in the counterdrug role.

E-2 Hawkeye - (USN). This is a carrier capable,
fixed-wing, twin turboprop, Airborne Early Warning
(AEW) aircraft capable of detecting air and maritime
targets.

84

F-15 Eagle / F-16 Fighting Falcon - (USAF/ANG).
Single-seat fighter aircraft. Operated by the Air Force
and the Air National Guard in the counterdrug role as
interceptors.

UH-60 Blackhawk / Seahawk / Jayhawk -
(USA/USN/USCG) This is a twin-turbine, combat
assault transport helicopter. Operated in different
variants by the Army, Navy, and Coast Guard, for
surface search, airborne tracking, and DLEA
apprehension.

Cessna Citation II - (USCS). The Citation is a
modified twin turbofan, fixed-wing general aviation
jet. It is equipped with an air search and tracking
radar and FLIR. It is used by the Customs Service
to intercept and track suspected smuggling aircraft.

Cheyenne III Customs High Endurance Tracker
(CHET) - (USCS). The CHET is a modified twin
turboprop, fixed-wing general aviation aircraft. It
is equipped with radar, FLIR and VHF
communications. It is used by the Customs Service
to intercept and track suspected smuggler aircraft.

Afloat Platforms. Sea-based platforms provide
counterdrug forces the advantages of mobility and
high endurance. They operate in air and maritime
D&M, interception, and apprehension roles.

High Endurance Cutters (WHEC) - (USCG). These
378 foot vessels are equipped with air and surface
search radars and are capable of supporting
a helicopter. They are used for air and maritime
surveillance, interception, and apprehension.

Medium Endurance Cutters (WMEC) - (USCG).
These 210 to 270 foot cutters are equipped with
surface search radars and are capable of supporting a
helicopter. They are used for maritime surveillance,
interception, and apprehension.

Picket Ships - (USN). US Navy cruisers, destroyers
and frigates are used as radar picket ships to provide
air and maritime search and surveillance.

Modified Ocean Surveillance Ships (MOD T-AGOS)
- (USNS). These are 224 foot ocean surveillance
vessels capable of speeds of 11 knots and modified for
counterdrug operations. They are equipped with an
air search radar and are deployed in lieu of USN
combatants. They are capable of data linking with
other platforms and have extensive communications
equipment.

Submarines - (USN). US nuclear powered
submarines can provide information on both sea and
air traffic while remaining completely covert.

Land Based Systems. Land based systems may be
either fixed or mobile, depending on size and mission
requirements.

Relocatable Over the Horizon Radar (ROTHR) -
(USN). This is a Navy sponsored over-the-horizon
backscatter radar system capable of providing wide
area detection and surveillance of air targets up to
2000 NM from the site with real-time reporting cf
targets of interest via the Anti-Drug Network
(ADNET) to appropriate agencies. There is currently
one ROTHR site operating in Chesapeake, VA, with
a second site in Texas. A third site is currently
planned for installation in Puerto Rico.

Ground Mobile Radars - (USAF, USMC, ANG).
These mobile radar sets provide primary or augment
existing radar coverage and are capable of long range
searches up to 240 nm, and height finding up to
95,000 ft.

Caribbean Basin Radar Network (CBRN). The
CBRN is a series of linked U.S. and host nation
radars throughout the Caribbean.

6.1 Concept of Operations

To tailor the concept of operations (CONOPS),
JIATFE uses a planning cycle which considers: the
threat, asset requirements, asset availability, and both
pre-planned and quick response operations. JIATFE
publishes periodic threat assessments that are sent to
all headquarters and agencies that provide D&M asset
support. With that as a basis, JIATFE hosts regional
planning conferences where a CONOPS for an
upcoming period is developed. JIATFE then
publishes the CONOPS for execution.

JIATFE's operational concept is built on defense in
depth to detect and monitor drug traffickers as close
to the source country as possible, followed by
continuous monitoring using a mixture of electronic
and visual means as the target transits across the
AOR, and finally handing off the target to DLEAs.
The process is extremely complex because it
frequently involves several military commands and
Federal agencies. To accomplish this, JIATFE
employs a mixture of DoD and DLEA assets and
sensors to conduct routine patrol operations and
respond to changing intelligence assessments. The
actual employment of ships and airborne assets is
determined on a daily basis in response to current
intelligence information concerning ongoing or
expected drug trafficking operations. Assets are
positioned to optimize time-on-station to cover threat
routes. Timely intelligence support enables JIATFE
to provide target alerts to law enforcement command
centers allowing cueing of assets for successful

85

apprehensions. Once an aircraft has been detected and
sorted by JIATFE, it is monitored in transit until a
positive handoff or other disposition is coordinated
for apprehension by the DLEAs. Maritime targets are
handled in much the same manner.

6.2 Connectivity

As touched upon previously, one of the principal
DoD counterdrug responsibilities under current law is
to integrate counterdrug "command, control,
communications, computers, and technical
intelligence (C4I) assets of the US" into a

communications network. The Defense Information
Systems Agency (DISA) is responsible for the
integration of the national telecommunications and
information systems master plan for the Federal
DLEAs. The backbone for counterdrug connectivity
is the Anti-Drug Network (ADNET). The ADNET
provides rapid, secure, and interoperable C4I
connectivity supporting the counterdrug missions for
both DoD and non-DoD agencies (Figure 6).
ADNET uses the Joint Visually Integrated Display
System (JVIDS) as the primary means to exchange
and display information over a primary framework
provided by Defense Data Network (DDN).

Primary ADNET Nodes (220 + sites)

Alaska AD

NWSOCC

JIATF-W
DAICC

SWSO

CINCPAC

NORAD Canada o

CINCSOUTH

O
vER

DIST8
JIATF-E
CARIBROC

ASV
IAC Mexico

NESOCC
CG COMLANT

D|ANTRS-1

LCINCUSACOM
CONUS NORAD

RSCOM
NSGA
ES0CCO

0PBAT

-IZGANTSEC

NSGA

Figure 6. The AntiDrug Network (ADNET)

ADNET nodes are subdivided into command,
operational, and intelligence sites. The command
sites exercise oversight responsibility for counterdrug
operations. Operational sites are charged with
command and control over intelligence gathering
assets, D&M and/or suspect target interdiction.
Intelligence sites are primarily involved with fusing,
analyzing, and dissemination of information within
ADNET. Figures 7-9 are an overview of counterdrug
connectivity in the Caribbean zone including the

circuits, integration of ADNET with tactical systems
i.e., Tactical Data Information Link (TADIL) and
Link 11, and the Officer in Tactical Command
Information Exchange System (OTCLXS).

86

Path Circuit To. Comment

Ti satellite ROTHH (data) Northwest 2400 Baud Raw Radar Data

ROTHR (vdCC) NVW CARIBROC Voice Voice Coordination

CASREP/SORTS CINCLANTFLT 2400 Baud

Phone (x 5) USCINCLANT Vote

JWICS (SCI data) Interagency 384K SCI Data

VTC Intoragency 384K SCI VTC

UHF satellite TRE NSGA Key West 2400 Baud EUNTData

OTCIXS TG 4.1/Otner 2400 Baud C2

101 Interagency Voice JIATF-E NECOS

401 TG4.1 Voice AdrmrVLogisrjcs

402 USCG Voice Able Manor Net

403 TG4.1 Voice AW NECOS

407 Cryptotogrsts SI Voice

409 Selected Voice Restricted Ops

Andean Ridge JIATF South Voice JIATF South C2 MM

SIPRNET AONET ADNET 56K Genser Data

NTRS NS6AKW 56K

INTEUNK-S Interagency 56K (AONETLINK)

Figure 7. JIATFE Circuits

6.3 Training

We've already seen that the interagency team-
building responsibility of the JIATFE Director is
significant. Task force members manning the
command center and other critical nodes bring their
diverse backgrounds to a process that must produce
and maintain the skills required to master the crisis
action essential to interdiction command and control.
CGF technology distributed via realistic force
representation to the key nodes of the counterdrug
command and control network (e.g. JIATFE, land
based radar command and control sites, ships) is a
vehicle for molding interagency teams in the same
way that DoD is pursuing training at the Joint Task
Force level. Analyzing the training needs of the
JIATFE level training audience and their counterparts
points to some general requirements:

DISN-ADNET

\ (\ CARIBROC Sf
V 7 \. JIATF-?

— ' "AW
-*<^ HFUnktl

HF Unk l£^^C

Figure 8. Tactical Data Information Link (TADIL)
A/Link 11 Integration

Monitoring the battlespace
Threat assessment
Developing plans/taskings for the JIATFE
elements
Managing information flow and reporting
Familiarity with platform and system capabilities

Strategic Theater
ST 8 Develop and Maintain Alliance and Regional
Relations
ST 8.4 Provide Theater Support to Other DoD and
Government Agencies
ST 8.4.1 Support Counterdrug Operations in Theater

Operational
OP2 Develop Operational Intelligence
OP2.2 Collect Operational Intelligence
OP2.2.2 Collect Information on Operational Targets
OP2.2.3 Provide Operational Reconnaissance and
Surveillance
OP2.3 Process Operational Information
OP2.3.2 Analyze and Evaluate Operational Areas
OP2.3.3 Integrate Operational Intelligence
OP1 Conduct Operational Movement and Maneuver
OP 1.2.2 Posture Joint Forces for Operational
Formations
OP1.2.4 Conduct Operations in Depth
OP1.5.4 Isolate Theater of Operations
OP5 Exercise Operational Command and Control
OP5.1.1 Communicate Operational Information
OP5.1.3 Maintain Operational Information and Force
Status
OP5.3.7 Select or Modify Course of Action
OP5.4.4 Synchronize/Integrate Operations
OP5.7 Coordinate and Integrate Joint/Multinational and
Interagency Support
OP5.7.4 Coordinate Plans with Non-DoD
Organizations

Figure 9. OTCIXS to ADNET Bridge Figure 10. Mission Essential Task List

87

Although it's not our intent to develop an all
inclusive counterdrug mission essential task list,
DoD's Universal Joint Task List (UJTL) provides a
useful framework. The UJTL is a comprehensive
hierarchical listing of the tasks that can be performed
by a joint force. It is organized by the level or
echelon of the activity, Strategic National (SN),
Strategic Theater (ST), Operational (OP) and Tactical
(TA). The Strategic Theater and Operational tasks in
figure 10 have been extracted from the UJTL as a
possible list of priorities for counterdrug purposes at
the JIATFE level.

6.4 Event Analysis

The interagency counterdrug community is in a
continual state of event analysis, dissecting
individual trafficking events and identifying trends fcr
the information that will refine interdiction tactics and
focus limited assets for the greatest payoff.
Considerable effort and expense is rightfully devoted
to this function. The analysis can be further
distinguished as either pre-event planning or post-
event assessment. As we saw in our introductory
scenario, pre-event intelligence cueing is the
foundation of an effective response. Situationally
dependent, the quality of intelligence and the time
remaining may allow for detailed planning,
comparison of courses of action and consultation with
all key participants. In that case, the capability to
distribute the anticipated event and alternative
responses to the principal counterdrug C2 elements
using representative CGFs would be an invaluable
planning and mission rehearsal enhancement This
"drawing of the play in the dirt" with realistic CGF
tools would not only strengthen common
understanding of the plan but would also identify
force deficiencies. Post-event assessments can range
from the relatively informal reconstruction in the
immediate aftermath to the more structured process cf
the Interagency Counterdrug Performance Assessment
Working Group (ICPAWG). The ICPAWG was
established in 1992 to develop a data base of known
drug smuggling activity and to measure interdiction
performance. The process consumes the effort of some
35 representatives of the principal U.S. counterdrug
and intelligence agencies as they review in great
detail the prosecution of each event. This necessary
review reduces duplicative agency reporting and
provides a current threat basis for future planning and
asset allocation.

7. Computer Generated Interdiction Forces

CGF technologies provide the opportunity fcr
interoperability of constructive simulation programs,
virtual forces, and instrumented live play facilities,
which can provide for an interdiction training

environment as good or better than "real-world" on-
the-job training. The U.S. Navy's experience and
program goals seem particularly appropriate for the
similarities between the Navy's conventional air and
maritime interdiction mission and the requirements of
JIATF-led drug interdiction operations. We've seen
that the Navy already contributes a substantial
portion of the DoD resources dedicated to transit zone
interdiction. The Navy has also amassed a talent pool
in the application of CGF simulating those same air
and surface platforms. Much of that experience is
fairly recent. Prominent milestones include the
Synthetic Theater of War-Europe (STOW-E)
Technical Demonstration, during November, 1994
and Exercise Kernel Blitz 95 (KB95), during March
and April, 1995.

STOW-E was significant in that it served to indicate
that modeling and simulation technologies had the
potential to contribute to operational training. The
demonstration showed that synthetic forces could be
integrated with live forces to permit exercise
participants to train in a seamless "theater of war"
that more accurately represents real-world operations.
KB95 was the Navy's first opportunity to integrate
synthetic forces into an operational exercise. KB95
presented an overall scenario that linked several
smaller exercises in the Southern California and Gulf
of Mexico Areas. The simulation support task in
KB95 was to enrich the exercise by simulating a
Carrier Battlegroup and opposition forces for the
"live" Amphibious Task Force engaged in the
exercise. The Navy tapped the capabilities of modem
simulation laboratories and training facilities for
KB95. Analysis of KB95 clearly showed that the
training accomplished in a STOW environment can
increase readiness by enriching the training
environment and present additional, more complex
training opportunities to exercise participants. KB95
showed that the use of CGFs offers a chance to
conduct training that otherwise may not be possible
because of budgetary or other restrictions.

The core simulation for KB95 relied on
geographically dispersed simulations linked via the
Defense Simulation Internet (DSI) communicating
among one another using 2.0.3 Institute of Electrical
and Electronics Engineers (IEEE) standard
Distributed Interactive Simulation (DIS) protocols.
The primary simulation engine was CGFs in the
form of Loral/Defense Advanced Research Projects
Agency (DARPA) Modular Semi-Automated Forces
(ModSAF) and the Battle Force Tactical Training
(BFTT) Program Operational Procedures Consoles.
The ModSAF used was a variant of the Loral
ModSAF Version 1.4 modified by DARPA for
generation of Navy, Air Force, and Opposition Force
(OPFOR) aircraft in the What If Simulation System

88

for Advanced Research and Development
(WISSARD) facility located at Naval Air Station
Oceana, VA. ModSAF blue air forces were generated
from Fleet Combat Training Center, Pacific, San
Diego, CA. and OPFOR air from WISSARD. Man-
in-the-loop tactical submarine simulators physically
located in San Diego, CA and Groton, CT were also
used. Man-in-the-loop mock-ups were configured
with Link 11 and OTCLXS capability. All
simulations were integrated using the DSI and
commercial lines.

A review of the technical accomplishments of KB95
showed that exercises can be signifigantly enhanced
through the use of CGFs and that distributed and
interactive CGF simulations can be effectively
interfaced with real-world C4I systems for training
purposes. Borrowing upon the practical experience
gained in supporting both STOW-E and KB95, a
series of demonstrations of CGF capabilities were
conducted for representatives of both the USACOM
Counterdrug Operations Division and the JIATFE
during the October 95-February 96 period at
WISSARD.

The demonstrations were conducted on an
independent (nonet) pocket system using a variant of
Loral ModSAF modified by DARPA. The ModSAF
platforms which were chosen to portray the various

aircraft and ships were already similar enough in
system and behavioral capabilities that minimal
modification was required (e.g. top end speed) to
replicate the drug-running ("Go-Fast") boats. For
presentation purposes the icons presented on the
Graphical User Interface (GUT) were changed to look
like the appropriate platforms. Following an initial
"canned" scenario a number of other typical
counterdrug events were initiated and the observers
were allowed to participate in order to "drive" the
outcome of events with decisions similar to what
might be expected of a CDO on watch in the JIATFE
JOCC. The demonstrations were typical of the kind
of event driven exercises which could run concurrent
with or independent of actual JIATFE operations, and
served to show that the complexity of the JIATFE
organization and operation lends well to a varied mix
of constructive, virtual, and live exercise
participation. The JIATFE JOCC is an outstanding
setting for an instrumented live play facility, as
would be select land-based radar sites at various
locations in the U.S. and the Caribbean. Aircraft
simulators i.e., an AWACS and/or E-2 simulator,
could provide "virtual" detection and monitoring
support of exercise operations. And, to further
enhance training, constructive CGFs (friendly and
opposition airborne and surface platforms generated at
sites like WISSARD) can play an active part in
interdiction exercises.

I- *W»*.iU>u> tdtMti 13
PH. MqiSoh rAi Local Fecr*

*

i"?
2.1
60
• • i

2 i
w ti

T
Alert Intercept Aircraft \ Fishing Vessel

USC G Cutter

Detection & Monitoring E-2

Go Fasts

Fishing Vessel
\

USNFFG

±8/

\
Unknovn

V) Air Drop Aircraft

Fishing Vessel

Cruise Ship

t'.-v* dhnwiMM

Figure 11. Interdiction Demo GUI Display (WISSARD Lab)

89

8. Summary

Not surprisingly this conceptual paper raises a
number of implementation issues that require further
investigation. We recognize the need to refine the
training and analysis applications, training audience
and objectives, network and other considerations.
Planning for the CGF distributed simulation
demonstrated in the Kernel Blitz exercise previously
cited was considerable. Clearly we believe that there
are sound reasons for continued study of the
counterdrug application of CGF concept. Prominent
among them are:

• The systems and behaviors of the most capable
air and surface platforms commonly found in the
interdiction force inventory match closely those
that are currently in development as CGF entities
(particularly Navy and Air Synthetic Forces).
Representative "OPFOR" are also within reach.

• The interagency interdiction task force mission
inherently lends itself to the use of CGF in
distributed interactive simulation. Implicit in the
mission is the need to continue operations on a
24 hour basis while training and integrating a
diverse interagency team.

• As components of the principal DoD counterdrug
commands (USACOM, SOUTHCOM and
PACOM), the JIATFs are well positioned to
transfer DoD expertise in the application of CGF
technology to the interagency. In particular,
JIATFE, a component of USACOM, is well
situated to reap the training and analysis benefits
of STOW technology and the emerging
capability of USACOM's Joint Training
Analysis and Simulation Center (JTASC).

• Conversely, the counterdrug arena represents a
ready operational forum providing feedback to the
CGF development process.

• The experience gained in air and maritime drug
interdiction can be applied in other missions
tasked in recent years (e.g., enforcement of
embargoes, no-fly zones, etc.).

• The counterdrug C4I network, also a DoD area of
expertise and responsibility, is in place as a
framework which can support the application of
distributed simulation for counterdrug
operations/exercises.

The current investment in drug interdiction is
substantial. At the federal level S1.4B of the annual
national counterdrug budget of $15B is aimed at

interdiction programs. Detection and monitoring
operations consume S226M of which S143M
supports the operations we've described in the
JIATFE AOR. This is a level of effort and a national
priority worthy of the readily available enhancement
resident in CGF technology.

9. Acknowledgment

We are deeply grateful for the assistance of the
military and civilian personnel who unselfishly gave
time from their already taxed schedules to guide this
work. Notable representatives include Cdr Faris
Farwell (USN), Maj Tony Crowder (USAF), Mr.
Shane Hoffman, and SSGT Ron Talley (USAF) of
the USACOM counterdrug operations and
intelligence divisions.

10. References

Chairman of the Joint Chiefs of Staff (1994)
Joint Pub 3-07.4. Joint Counterdrug Ops

Chairman of the Joint Chiefs of Staff (1995)
CJCS Manual 3500.04. UJTL

Commander Naval Doctrine Command (1995)
Kernel Blitz '95 M & S Final Report

11. Author Biographies

John Miller and Greg Jackson are Systems
Engineers employed by BMH Associates, Inc. They
perform Knowledge Acquisition / Engineering in
support of the development of USMC Ground and
Air Synthetic Forces for STOW under DARPA
sponsorship. Both have an operational background in
the U.S. Marine Corps and in the counterdrug
interagency.

Will Miller (no relation) is employed in the
Programs, Resources and Technology Office of the
Joint Interagency Task Force East. Mr. Miller has an
extensive background in counterdrug programs at the
national and regional levels.

90

Session 2a: Reasoning
Coradeschi, Linkoping University, Sweden

Stytr, USAF AFIT
Jones, University of Michigan, AI Lab

Kocabas, Marmara Research Center, Turkey

Intelligent Agents for Aircraft Combat Simulation

Silvia Coradeschi, Lars Karlsson, Anders TOrne
Department of Computer and Information Science

LinkOping University
581 83 Linkdping, Sweden

{silco larka andto}@ida. liu.se

1. Abstract

In this paper we give a first account of a project at
LinkOping University in collaboration with Saab
Military Aircraft AB, Sweden. The aim of the project
is to study the design and implementation of intel-
ligent agents for the air combat domain, especially for
beyond visual range combat. In particular users
should be able to construct such agents without
computer science expertise. Our main interest lies in
the decision process of the agent and in how the
behavior of the agent can be specified.

2. Introduction

Systems for simulation of beyond visual range
combat are currently used for evaluating aircraft,
missiles and tactics and also for training pilots and to
supply enemy aircraft in battlefield simulations.
These applications require that the behavior of the
automated pilots is almost indistinguishable from
human behavior in the specific air-combat domain.
This is especially relevant in training applications
where humans interact with automated pilots. It is, in
fact, important for the realism of the simulation that
humans interact with automated agents as they would
interact with other humans.

Human pilots are in general guided in their actions
by strategies and tactics, but are also able to react to
unexpected situations and to adapt general strategies
to specific cases. The challenge is then to develop the
capability in an intelligent agent to react in a flexible
way to uncertain and dynamic environments and still
follow strategies and tactics as a human pilot would.

Our interest is focused on the decision process of the
automated pilot. An approach to modeling the human
decision processes is proposed in TAC BRAWLER,
a simulation tool for providing a detailed
representation of air-to-air combat, both within and
beyond visual range (Decision-Science Application
1991). In TAC BRAWLER the deci-sions about
what actions to perform are made by the automated
pilots which evaluate, for each alternative

action, the situations that will result if the alternative
were to be executed.

The TacAir-Soar is also an interesting approach to
air-combat simulation (Tambe et. al. 1995a). TacAir-
Soar has been developed within Soar, a software
architecture created as a basis for general intel-ligence.
In this project several features that are required for an
intelligent agent have been con-sidered, for example
coordinated behavior (Laird et. al. 1994) and enemy
tracking (Tambe et. al. 1995b).

In both these systems air-combat experts can specify
the behavior of the agents, but it is then encoded by
system experts. In our approach the experts of the air-
combat domain are intended to specify the behavior of
each agent directly, without the aid of a system
expert. This has the advantage of letting the experts
give the directives that the agents should follow, test
the behavior and change the directives in case the
agents do not behave as expected. It also makes it
possible to tailor the behavior for testing specific
features of aircraft, missiles and tactics or to train
pilots for a particular situation. On the other hand
this puts special requirements on the user aspects of
the system, both with respect to learning it and
working with it. These aspects are considered in
TACSI (TACtical Simulation) (Saab Military Air-
craft 1995), a system developed by Saab Military
Aircraft for autonomous simulation of many vs. many
beyond visual range combat. This system is currently
used at Saab for evaluating and developing their
products. In parallel to the continued devel-opment of
TACSI, Saab and LinkOping University have
undertaken a collaborative project with the aim of
further investigating the design and imple-mentation
of automated agents for the air combat domain.

In our approach a scenario contains the specification
of the agents present in the scenario, a state for each
agent describing the information that is used for
making decisions, and a decision-tree for each agent.
So for we have implemented a prototype of the
decision-mechanism and we have interfaced it with a
simplified simulator, where the technical charac-
teristics of aircraft and missiles are described though
not yet on a high level of accuracy. The next step
will be to design a user-interface for specifying the
decision-trees, interface the decision system with the
simulator currently used at Saab Military Aircraft and
test the system with respect to both the performance
and the user issues.

93

In the next section we see how the requirement that
the user defines the decision-tree has influenced our
choices in building the system. We then examine
specification of the agents, state, decision-tree and
actions and finally we consider an example.

3. Requirement for user-defined decision-trees

The knowledge required by an agent to perform
realistically in complex and uncertain situations is in
general difficult to acquire and to code precisely by
the persons who implement the agents. Further-more
the user can require difFerent behaviors of the agents
for different purposes, for example a pilot's trainer
may want a very simple model of the behavior of the
agent in order to train an inexper-ienced pilot. It then
seems reasonable to give the user the possibility to
determine the behavior of the agents and to adapt it to
their particular context.

The challenge is to design a mechanism for speci-
fying the behavior of the agent that is powerful
enough for the user to specify the desired behavior
within reasonable limits, but at the same time is easy
to learn and to use.

3.1 Hierarchical structure and language of
conditions

Specifying the decision mechanism in the form of
rules is a natural way to represent behavior. How-
ever, the number of rules and conditions necessary for
specifying complex behaviors can be very large.
TacAir-Soar for example contains about 1700 rules.
Also several conditions can be common to more than
one rule. Therefore organizing the rules in a tree can
contribute to a more structured and compact
representation and this can facilitate the writing of the
rules and the understanding of the resulting behavior.
In our solution each node in the tree is associated
with a condition that has to be satisfied in order to
enter the node, and each "end node", or leaf, is in
addition associated with an action. A branch of the
tree represents a rule that has as conditions the
conjunction of all the conditions in the arcs of the
branch, and as action the action in the leaf. In this
way the conditions are structured from more general
to more specific and can be common to several
branches yielding a more compact representation.

It is also important to allow the user to write
complex conditions. For example a condition for
performing the action of moving toward an enemy in
order to intercept him can require that the enemy in
question has been explicitly selected for interception
and that the agent knows his position. A language
has been defined for writing conditions that allow the
use of and, or, not, there-is, for-all and functions.

3.2 Priorities and changes of priorities for
actions

Several branches of the tree can be visited in parallel.
If a leaf is reached, the corresponding action
is a candidate to be performed. All the candidate
actions form the candidate action set. From this set,
the actions that are actually performed are selected on
the basis of dynamically varying priorities. The user
specifies a priority value for die action in each leaf and
also specifies how this value can be changed during
the evaluation of the branch conditions in which the
action is a leaf. We have introduced the possibility of
dynamic change of priorities in order to simplify the
tree and to simulate the change of priority, in the
pilot's mind, of the actions that he should perform
depending on the situation.

The following example illustrates how dynamic
change of priorities is used. In figure 1 a part of a
decision-tree is presented. The whole tree is presented
and explained in section 7.

(selected-enemy x)-> 6
poesibD)-fire *• (do-fire x) turn 10

(< (no-of-missik) 2)-> -10

Figure 1: Example of dynamic change of priorities

The agent has the possibility to fire at an opposing
agent x and should decide whether to fire or not. If x
is the selected enemy, it should fire. If is not the
selected enemy, it should fire only if more than 1
missile is left. In the example, if x is the selected
enemy the priority of the sequential action (do-fire x)
turn is increased by 6, and if the number of missiles
is less than 2, the priority is decreased by 10. Given
that the priority of the action is 10 and that the action
is not performed if its priority is equal to or less than
0, the behavior is the desired one. In order to
implement the same behavior without a dynamic
change of priorities four action nodes would be
necessary (figure 2).

(and (< (no-of-missik) 2)
(not (selected -enemy xM]

(do-ttre x) turn 0

ponbOy-Gre

(and (>» (no-of-missik) 2)x

(not (selected-enemy x)))^

itnd (>» (no-of-missik) 2)
"(selected-enemyxir (do-Hl* *)«•»!<

(< (no-of-missik) 2)
.{selected-enemy x))

' (do-fire x) torn 6

* (do-fire x) torn 10

Figure 2: The same example as the previous figure
without dynamic change of priorities

94

*

The actions at the leaves of the decision-tree can also
be concurrent and sequential actions. Sequences of
actions are useful if the user wants an action to be
followed by other actions, for example firing and
turning in the previous example. Concurrent actions
are used when a number of actions should be started
at the same time, for example turning and releasing a
decoy in case a missile warning is received.

4. Specification of the agent

The specification of the agent contains the charac-
teristics specific to each agent. These characteristics
are specified by the user before starting the simu-
lation and are maintained in the state of the agent.
Examples of characteristics are:

• Physical characteristics, such as type of aircraft,
number and type of missiles and amount of fuel.

• The role of the agent in the simulation, for
example leader or wingman.

• A description of the mission that the agent should
perform.

• General criteria the agent should follow in
performing actions, for example commit criteria,
i.e., criteria for deciding whether to intercept an
enemy aircraft, and rules of engagement, i.e.,

about general conduct during the directives
mission

5. State

Each of the agents has a state where the information is
maintained that is necessary for deciding what actions
to perform. This information is of four types. First,
the state contains the characteristics of the agent that
the user has specified.

Secondly there is the information the agent receives
from the simulator position, velocity and direction of
other aircraft visible on the radar and missile
warnings. This is the same information that a pilot
would receive from on-board sensors.

Thirdly, there is the information about the present
status of the agent, the direction, velocity and
position of the aircraft, the number of missiles left,
friendly aircraft still present and the actions currently
being performed, for example the agent is following
the leader or moving toward a point.

Finally, one part of the state represents the "memory"
of the agent. In the memory are recorded, among
other things, important past events, for example at
whom the agent has fired and how long before, and
decisions previously taken, for example the decision

to select an enemy as main target or the decision to
intercept an enemy, and orders received via com-
munication channels.

6. The decision-tree

The decision-tree consists of a hierarchy of decisions
with one decision for each node. At every cycle in the
simulation the decision-tree is visited and a list

tMot •cttoao
to execute

1 u choioooT
compatible
•ctioo with
high.* priority

vh*
action

to tbc anaolator

State
mtarlicai

Figure 3: Phases of the decision mechanism

of possible actions is created (figure 3). The actions
in the list are the actions that the agent will consider
performing. To this list the actions still in progress
are added. The list is sorted in order of priority, and
the agent picks actions from the top and downwards,
testing that each action is compatible with the higher
prioritized actions already chosen.

6.1 Decision-tree structure

In a decision-tree, figure 4, a node is entered if the
entry condition associated with it is satisfied. In the
leaves there are actions with a basic priority value.
Modifier conditions can also be associated with a
node. Modifier conditions have the form (condition
-» number). If the condition is true, the number is
added to the priority of the actions associated with
the branches. If the priority of the action falls to 0 or
below, the action is not performed.

^_^w (action priority)
_node<TL

node<^-' - (action priority)

coodkioi^v ^^*> (action priority)
modifier conditions'' node^^

^""-^ (action priority)

Figure 4: Decision-tree structure

6.2 Conditions

The conditions are defined as follows:

• Primitive Conditions

Atomic Conditions

Atomic conditions are true if the information is
present in the state, for example the atomic condition

95

missile-warning is true if in the state the information
that the agent has received a missile warning is
present. Atomic conditions can also have the form
"(property agent)" and in this case a check is made in
the state to establish whether the property is satisfied
by the agent. For example (selected-enemy x) checks
if x is the selected enemy of the agent. The variables
can only refer to agents in the present imple-
mentation, but the system can be easily extended to
allow other type of variables too.

Relational Conditions

Relational conditions consist of relational operators
such as <, >, <, 2, *, = applied to numbers and
numerical functions. An example of a relational
condition is (< (distance-to x) 100) where (distance-
to x) is a function that returns the distance of the
agent to another agent x.

• Composite Conditions

Composite conditions are formed by applying the
operators and or, not, for-all and there-is to other
composite or primitive conditions. If the condition
associated with a node has the form "(for-all x
condition)" the condition is tested for each agent x
present in the simulation. The rest of the branch is
visited once for each of the agents for which the
condition is satisfied. All the actions selected are then
taken into account as candidate actions to be
performed. A "(there-is x condition)" finds the first
agent that satisfies the condition and continues to
evaluate the tree with x as this agent.

6.3 Actions

There are three kinds of actions: primitive actions,
concurrent actions and sequential actions. Primitive
actions are, for example, (do-fire x) i.e. fire a missile

at the agent x. They can also be internal actions, i.e.,
actions that update the state of the agent. For example
(selection-enemy x) records in the state the
information that x is the current selected enemy of the
agent. The actions sent to the simulator can be
instantaneous, for example (do-fire x), or can have a
duration such as turn. The agent keeps track of the
actions that he is currently performing in the state and
takes this information into account when deciding
what actions to perform next.

Concurrent actions consist of a collection of actions
that should be started at the same time. There is a
concurrence of actions inherent in the system as
actions in different branches can be selected and, if
they are compatible, started at the same time. As for
explicitly concurrent actions, however, we are sure
that either all the actions are performed or none of
them are. An example of a concurrent action of the
latter kind is the sending of a command from the
leader to the wingman to select a specific aircraft as
primary target and the internal action of recording that
the wingman now has a selected target.

Sequential actions are composed by actions that
should be performed one after another. When a
sequential action is started, the first action of the
sequence is started and an automatic record is made
in the state as to which are the following actions in
the sequence that should be performed. When the first
action of the sequence is completed, the second action
of the sequence becomes a candidate action to be
started and it competes for starting with the actions
currently being performed and the other actions
selected at the present cycle of the simulation. If the
second action is started, the same thing then done
with the third action and so on until the sequence is
completed.

96

(and winemaa
leader-alive

normal

root

(for-allx

raissUc-^w

do-folkw 7

W>-u>-mission-points 6

increase speed release-decoy 11

^ (scIccted^ncmyx;)->6 , (do_firex) ,„ 10

« (no-of-missile) 2)-> -10
-to x) 100) (and«(,

>(iinie-since—fired-at x) 5)
^X^-crf-tniaaac) 0))

XindfreTected-^ncanyx)) .
\ leader) ^~~* interception

(set-intercept x) 5
(not (intercept x))

(and (not (selected-enemy x») \ (^S£n^»s1non x))^
leader)

* select-enemy -
(and (there-is y (selected-enemy y

(not selected -for-wing))

(go-tow ard x) 10

(selection-enemy x) 10
(not (meie-is y (selected-enemy y)))

(send-command
wingman selection-enemy x)
(update selected-for-wing)

10

If an action that is in turn is not started, the sequence
is aborted. When a sequential action is started, the
priority of the following actions in the sequence is
increased with a value decided by the user depending
on how important it is to complete the sequence once
it has been started.

Finally actions can be a composition of both con-
current and sequential actions. For example, in the
case of a missile warning the aircraft turns and at the
same time releases a decoy and then it increases its
speed.

6.4 Compatibility of actions

The test to check if two actions are compatible is
made on the basis of the physical resources they use.
Two primitive actions are compatible if they do not
use the same resources. For example the action cf
firing is compatible with the action of turning left as
they use different resources. A concurrent action is
compatible with another action if all the actions that
form the concurrent action are compatible with the
other action. A sequential action is compatible with
another action if all the actions that are present in the
sequence are compatible with the other action. In this
way we consider incompatible actions that could be
performed at the same time. For example, the action
of firing can be performed at the same time of the
sequence of actions of turning and firing, but in order
to build a compatibility criterion that would

Figure 5: Example of decision-tree
take these cases into consideration, it would be
necessary to predefine the duration of the actions and
this is not in general possible.

7. Example

In this section we present an example of a decision-
tree (figure 5). The user will not need to write the
decision-tree in this form; instead there will be a user-
interface that will support the construction of the tree.
The example is mostly constructed with the aim cf
showing the capability of the system and does not
claim to be correct in terms of military tactics. Parts
of this decision-tree have already been used in
previous sections. Here we present a few brief
comments:

• (do-fire x) turn is a sequential action, turn and
release-decoy together constitute a concurrent
action;

• if the condition (selected-enemy x) is true then
(selected-enemy x) —> 6 adds 6 to the priority cf
the action at the end of the branch;

• if an action has priority less then or equal to 0, it
is not performed;

» f> (time-since-fired-at x) 5) means that the agent
that is making the decisions has fired at the
aircraft x more than 5 time units before or has
never fired at it;

• The condition (< (distance-to x) 100) means that
the agent that is making the decisions is at a

97

distance less than 100 spatial units from the agent
x;

• The condition selected-for-wing is true if an
enemy has already been selected for the wing-man;

• (set-intercept x) records the decision cf
intercepting x. (intercept x) is true if x is the
enemy that the agent has previously decided to
intercept;

• (go-to ward x) makes the agent go toward the last
recorded position of x;

• (send-command agent command) means that the
agent that receives the command updates the state.
The value can then be tested in the context of the
updated state and may influence the behavior of
the agent. For example (send-command
wingman (selection-enemy x)) will make the
wingman add to the state that the selected-enemy
is x.

We have tested this decision-tree in a scenario with
two opposing sections. Let us consider step by step
some of the decisions that the leader of one of the
sections makes. First, the action go-to-mission-
points is performed and the agent starts moving
toward the first of these points. When the first aircraft
of the enemy section is detected, the agent selects this
enemy as primary target, (selection-enemy x), and
decides to intercept it, (set-intercept x). In the next
cycle the interception is started (go-toward x). When
the second enemy is detected a command is sent to
the wingman to select this enemy as primary target
and it is recorded that the wingman has now a
selected enemy. When one of the enemies is close
enough, a missile is fired. However in the meantime
one of the enemies has also fired a missile and our
agent receives a missile warning. So it rums and it
releases a decoy. When the turning action is
completed, the speed is increased. The scenario
continues then to evolve with several interceptions,
firings and avoiding of missiles until just aircraft of
the same side are left.

8. Conclusions and future work

In this paper, we have presented preliminary results of
a project on the design and implementation cf
intelligent agents for air combat simulation. In
particular, we want to permit air combat experts to
implement such agents without the aid of computer
expertise. In order to achieve this, we are attempting
to find a good balance between simplicity and
expressiveness in the means given to the user to
specify the behavior of the agent. We intend to
continue the development of the system and to

evaluate it both with respect to performance and user
issues.

Our approach has the advantage of flexibility in
responding to situations, as the priority of the actions
is changed dynamically depending on the actual
situation. At the same time describing complex
situations is made easier by the fact that decisions are
taken at several levels, from general decisions to
specific ones, and also by the fact that the decisions
do not need to be exclusive. In fact, several
branchesof the decision-tree can be visited at the same
time and several alternative actions can be taken into
consideration. Dynamically changing pri-orities
establish which actions are the ones that are
performed. Decisions are reconsidered at each step of
the simulation and this allows a quick reaction to
changes in the situation. At the same time the agent
can also follow strategies performing sequences cf
actions.

In this paper we have mainly considered the decision
mechanism in itself. In the future we also intend to
consider issues such as communication, coordination
and tracking of enemies. Further it seems important
to implement a more sophisticated handling of the
interruption of sequential actions which, for example,
would make it possible to continue an interrupted
sequence of actions. It would also be of interest to
consider a change in the priorities of the actions due
to an assessment of the resulting sit-uation after
performing the action.

9. Acknowledgment

We would like to thank M. Tambe, G. Frisk, Johan
G6rsj6, Jenny Andersson, and Patrick Lambrix for
their helpful comments. This work is partly
supported by the Center for Industrial Information
Technology, Linkoping University (CENIIT), and
the Swedish National Board for Industrial and
Technical Development (NUTEK).

10. References

Decision-Science Application Inc. (1991) "The TAC
BRAWLER air combat simulation management
summary", Technical Report 907, DSA, Virginia,
Usa.

Laird, J. E., Jones, R. M., and Nielsen, P. E. (1994)
"Coordinated Behavior of Computer Generated
Forces in TacAir-Soar", in Proceedings of the
Fourth Conference on Computer Forces and
Behavioral Representation, Orlando, FL.

Saab Military Aircraft (1995) "User Guide TACSI",
Technical Report TUCU-MI- 95:103, Saab
Military Aircraft, edition 3.1.

Tambe, M., Johnson, W. L., Jones, R. M., Koss,
F., Laird, J. E., Rosenbloom, P. S., and

98

Schwamb, K. (1995a). "Intelligent Agents fcr
Interactive Sim-ulation Environments", Al
Magazine 16(1).

Tambe, M., and Rosenbloom, P. S. (1995b). "Resc:
An Approach for Dynamic Real-time Agent
Tracking", in Proc. IJCAJ'95.

11. Authors' Biographies

Silvia Coradeschi is currently doing research at the
Department of Computer and Information Science at
Linkoping University. Her interests are in the areas of
artificial intelligence and computer generated forces.

Lars Karlsson is a graduate student at the Depart-
ment of Computer and Information Science at
LinkOping University. His interests are in the area of
artificial intelligence, in particular planning and
autonomous agents.

Anders Torne is associate professor at Linkoping
University and director of the real-time system labor-
atory. His interests are in the area of specification,
design, and verification of complex real-time sys-
tems.

99

The Automated Wingman: An Intelligent Entity For Distributed Virtual
Environments

Capt. Sheila B. Banks, Ph.D., Professor Eugene Santos, Ph.D., Lt. Col. Martin R. Stytz, Ph.D.
Virtual Environments, 3D Medical Imaging, and Computer Graphics Laboratory

Artificial Intelligence Laboratory
Department of Electrical and Computer Engineering

Air Force Institute of Technology
Wright-Patterson AFB, OH 45433

sbanks@afit.af.mil, esantos@afit.af.mil, mstytz@afit.af.mil

1. Abstract

Research in Computer-Generated Forces (CGFs) has
developed the ability to create a variety of human and
computer-controlled entities that can operate within a
distributed virtual battlespace. Unfortunately, it is
often easy to distinguish between human-controlled
and computer-controlled entities because of the
predictable nature with which the computer-controlled
entities behave. This defect may allow training
subjects to identify the CGFs, predict their behavior,
and defeat them using methods that would fail against
human-controlled entities. Consequently, we
undertook the Automated Wingman research project.
The Automated Wingman is implementing a
computer generated aircraft system that exhibits
correct human behaviors without mimicking the
human reasoning process by relying upon fuzzy logic
as its primary reasoning mechanism. In this paper,
we present the current state of the Automated
Wingman's development as a realistically behaving
computer generated aircraft system. In our view, in
light of continually developing requirements, the
knowledge base and system architectures are
keystones to the success of the research. Therefore,
we discuss the system architecture and knowledge
architecture methods we use to maintain independent
system components and to enable rapid evolutionary
and exploratory prototyping for both of these aspects
of the Automated Wingman. We conclude with
requirements for future work on this project.

2. Introduction

Within the modern battlespace, the air component is
a decisive factor in determining the outcome of an
engagement. To date, however, there has been under-
representation of aircraft entities within Distributed
Interactive Simulation (DIS)-based distributed virtual
environments (DVE). This is partially due to the
expense of developing aircraft simulators that are DIS-
compliant and partially due to the difficulty in
developing aircraft computer generated forces (CGFs).
To address this problem, we are developing a CGF
that can be used to realistically increase the number of
aircraft within the DVE while minimizing the cost of
achieving a higher aircraft entity count. Our research

is aimed at developing aircraft CGFs that exhibit the
complex characteristics of human decision making
and behavior. Rather than initially attempting to
develop an entity with a complete set of pilot tactical
skills, we chose to begin with a simpler problem,
that of modeling a wingman's behavior. This project
is called the Automated Wingman. During
operation, the Automated Wingman flies at the
wingman's station in support of a lead, manned
simulator but with enough intelligence to be
indistinguishable from human controlled entities.

Because of the requirement for intelligent behavior
apart from the lead and the need to deal with
uncertainty, ambiguity, and approximation to model
human behavior, we chose to use fuzzy logic as the
basis of the AW's decision making capabilities.
Fuzzy logic is an artificial intelligence technique that
enables the entity to mimic human behaviors by
dealing with ambiguity and uncertainty in a way that
traditional logic cannot. The Automated Wingman
uses a fuzzy expert system to select a tactical
maneuver or set of maneuvers and control their
execution. To use this approach, we require
appropriate knowledge bases and linguistic variables,
and the production rules to manipulate them. The
Automated Wingman fuzzy expert system uses a
hierarchy of knowledge bases for decision making and
knowledge storage. The fuzzy expert system
provides the AW with a reasoning capability while
the knowledge bases provide the information required
to select appropriate tactics, determine the required
maneuvers to implement those tactics, and fly the
maneuvers.

Current work on the Automated Wingman requires
that we concurrently develop several AW capabilities.
The knowledge engineering tasks for this year are to
develop the knowledge bases defining tactical
situations that must be processed by the AW and to
refine the fuzzy logic-based decision-making
capability (including fuzzy sets, fuzzy variables, and
fuzzy variable hierarchy) for assessing tactical
situations. We are also extending the knowledge
bases to support 1) two airframes operating within
four mission types, 2) complex inter-entity behaviors
for cooperative formation flying between multiple
AWs, and 3) an improved on-board planning

101

capability. A final important requirement is
development of a capability to model pilot skill
levels ranging from novice pilot to the expert pilot
level. This final capability affects all the knowledge
bases in the AW. Because we are attempting to
address these requirements simultaneously, we
require a methodology to guide us in managing both
the knowledge base development process and the AW
software architecture.

This developmental approach places severe strain on
the software architecture and the structure of the
knowledge base. The strain arises from the need to
accommodate changing implementation and
performance requirements as well as continual
improvement in the AW's reasoning capability. To
accommodate the instability of requirements and the
accelerating change of pace in the underlying
technologies, we use a software architecture suitable
for implementing and maintaining applications
developed using a modified rapid prototyping
approach. A key aspect of this architecture is the
Common Object Database (CODB) (Stytz, et. al.,
1996). To accommodate the need for continual
improvement in the AW knowledge base, we use the
Rapid Exploratory and Evolutionary Prototyping
(REEP) methodology.

The next section presents background information
concerning the Automated Wingman project.
Section Three presents a description of the
Automated Wingman's software architecture.
Section Four presents our rapid prototyping approach
to developing and refining the AW's knowledge
bases. In section Five we describe the current status
of the Automated Wingman and Section Six contains
expectations for future work.

3. Background

The Automated Wingman seeks to improve the state
of the art for CGFs by using fuzzy logic as its core
reasoning mechanism. Because its use is central to
the capabilities of the Automated Wingman and to
our approach to developing its knowledge bases, in
this section we will present a brief introduction to
fuzzy logic and provide an example of its use.

Fuzzy logic provides the Automated Wingman with
a means to represent and reason with uncertain data,
ambiguous terms, and approximations. Therefore, a
fuzzy logic system is potentially capable of dealing
with situations that cause difficulty for systems that
use traditional Boolean logic. Because humans
continuously deal with uncertainty, ambiguity, and
approximation, we believe that any CGF required to
exhibit human behaviors must also be able to deal
with uncertainty, ambiguity and approximation.
Fuzzy logic provides this ability.

The strength of fuzzy logic is its evasion of
Aristotle's Law of the Excluded Middle (Kosko).
Aristotle stated in his "Laws of Thought" that an
assertion can be either true or false, but not both.
Therefore, the middle (partially true and partially
false) is excluded. The Law of the Excluded Middle
is a central concept behind traditional logic systems,
such as Boolean logic. However, there are many
commonplace situations where traditional logic fails.
These situations are called paradoxes. Although
paradoxes are often dismissed as trivial and
meaningless by mathematicians, these paradoxes lie
at the core of the real world problems faced by
computer scientists and expert system designers who
have to contend with the lack of expressability of
traditional logic systems.

In a fuzzy-logic system of reasoning, an assertion may
have a degree of both truth and falseness. While this
may seem contradictory, it is a common way of
representing situations. For example, consider a
piece of teal matte board and the assertions "the
board is blue" and "the board is green". Depending
upon the shading, we may say that the assertion that
the board is blue is true to degree 0.6 (out of 1) and
the assertion that the board is green is true to degree
0.4. We now have two assertions, both of which are
true to a degree. We can reason with these assertions
by factoring in the degree of truth of each assertion to
arrive at a conclusion that considers all of the
available information.

The concept within fuzzy logic relied upon by the
Automated Wingman is that of a linguistic variable.
A linguistic variable, such as temperature, describes a
quantity or an idea that is best represented by fuzzy
sets, called term sets. For example, fuzzy sets for
temperature could be hot, warm, and cold. The value
of the linguistic variable can be assigned to one of
these term sets. For example, if we agree that 100° C
is hot, then we can say that the temperature of boiling
water is hot. A more powerful technique is to
"fuzzify" a crisp value and determine the term set(s)
to which the crisp value belongs, allowing the
linguistic variable to be evaluated as the union of its
fuzzy sets. The linguistic variable then takes on the
value of all the term sets that apply, not the crisp
value itself (Zadeh, Schwartz). To better illustrate
the use of fuzzy logic within the Automated
Wingman, we will discuss it within the context of
the knowledge base design for its flight control
system.

The flight control knowledge base must provide the
AW with three independent axis of control. These
are altitude, heading, and thrust. Using the
linguistic variables in Table 1, we developed
production rule graphs for each of these axes of
control. These rule graphs show how the linguistic
variables combine to describe the state of the

102

Automated Wingman along each axis and the correct
action that the Wingman should take in response to
the state. As a result, the Automated Wingman can
control its own airplane entity.

Table 1: Linguistic Variables in the Automated
Wingman

LINGUISTIC VARIABLES

Current Relative Altitude
Projected Relative Altitude

Vertical Velocity
Vertical Velocity Difference

Desired Vertical Velocity Difference
Projected Vertical Velocity Difference

Vertical Acceleration
Total Acceleration

Current Relative Airspeed
Projected Relative Airspeed
Projected Airspeed Difference

Relative Heading
Range

Lead Bearing
Bank Angle

Although Flight Control consists of three axes, space
limitations permit us to describe only the Altitude
axis. Altitude is assessed using the ClimbRate
linguistic variable and term sets. The ClimbRate
variable assesses the climb rate of the aircraft that is
required to achieve the desired altitude. This variable
considers the current altitude relative to the desired
altitude and the altitude difference at some time in the

future given the current velocities and accelerations.
This linguistic variable relies, in turn, on other
linguistic variables to determine the appropriate
value.

Figure 1 presents the Climb Rate Rule Graph for the
Automated Wingman. Each of the bubbles in the
decision tree represents a term set that describes a
quantity relevant to climb rate. The Flight Controls
module determines values for all these term sets and
then navigates this graph to determine the value for
ClimbRate. For example, at the top of the graph the
current value of AttachMode is checked. K"
AttachMode is "Attached" then the term set
"CurrentRelativeAltitude" is examined. If that is
"Nil" then the VerticalVelocityDifference variable is
checked. If that is also "Nil," then the
ProjectedRelativeAltitude variable is tested. A "Nil"
for that variable indicates that the Wingman should
maintain the current vertical velocity (climb rate).
However, because the term sets are fuzzy, the other
paths through the graph may also apply but with less
weight. To determine which term sets apply, each
path through a term set evaluated as greater than 0.0
is examined. The other paths' weights will "spread"
the value of ClimbRate out so that it can encompass
all five term sets, Decrease, Dip, Maintain, Bump,
and Increase, to a degree. In general, all the term sets
apply to some degree in every situation but most will
apply to a near-zero degree. The variability in the
degree with which each term set applies to the
linguistic variable is the foundation for the power of
this form of reasoning.

C Attach "*
^ Mode A

Attache i

[Current Relative]
^ Altitude j

I
^^^^^ Lower Same H ighcr ^^"N^^

Vertical
Velocity Delta

Vertical Velocity
Difference

f Vertical
I Velocity Delta

Faster^w Faster f Same \ Slower ^r Slower^v

Not

Projected Relative
^ Altitude A Not

Projected Relative

L Altitude j
/

Projected Relative
Altitude Faster Lower X Slower Higher/

/
Not

Lower /
Not

Higher

Desired Vertical Lower/ VHigher
1

Desired Vertical
Velocity Difference

/

^ J

\
Vertical

Velocity Bump
Vertical

Velocity Dip / \
/ \ / \

Same

SLower Higher^V^ /Lower Higher^w

Vertical Velocity
Increase

Vertical Velocity
Maintain

Vertical Velocity
Decrease

Vertical Velocity
Maintain

Vertical Velocity
Decrease

Vertical Velocity
Maintain

Vertical Velocity
Increase

Figure 1. Climb Rate Rule Graph for the Automated Wingman

103

The Automated Wingman is not the first attempt at
creating a realistic CGF that exhibits human
behaviors. Several others have tried with varying
degrees of success such as Tac-Air Soar (Laird, et.al.
and Tambe, et.al.). Tac-Air Soar builds upon the
Soar architecture for general intelligence and
reasoning. Tac-Air Soar is the most successful of the
current aircraft CGFs and it has participated in several
exercises, including the STOW-E (Europe) exercise.
During STOW-E the Tac-Air Soar team was able to
field aircraft entities, conduct independent force type
missions, and fight against manned simulators in a
limited fashion. Unlike the Automated Wingman,
Tac-Air Soar does not handle uncertainty in its
decision making process.

There are several requirements driving our AW
design decisions. These are DIS compatibility,
autonomous flight control, automatic route planning,
within visual range combat, beyond visual range
combat, and route planning. The Automated
Wingman must be DIS compliant to perform its
mission as a CGF. Like any pilot, the Automated
Wingman must be able to fly its own plane, know
where it is going, and know how to get there using
maneuvers available to human pilots. The AW must
also, at times, operate as an intelligent entity
independent from its lead aircraft simulator.
Therefore, the AW must have the ability to
independently plan within the context of a mission
plan and commands from the lead aircraft. The
requirements for autonomous route planning and
flight control support these capabilities. The
Automated Wingman must also select a suitable
tactic or maneuver based on the current situation in
light of its mission and near term goals. Assessment
of the current situation requires the ability to orient
sensors in the appropriate direction, then fuse and
interpret the incoming raw sensor data. The
interpretation and assessment of incoming sensor data
forms the basis of situational awareness for a CGF.
Using its knowledge about the current world
situation, along with knowledge concerning tactics
and doctrine, weapon employment capabilities, and
voice commands from the lead pilot, the Automated
Wingman then selects an appropriate pilot behavior
that will be indistinguishable from that of a human
controlled entity. Satisfying these requirements led
to the development of the software architecture
presented in the next section.

4. Automated Wingman Software Architecture

Our motivation for the development of a general
architecture to support the AW was to provide a basis
for the design of broad classes of CGFs. While each
class of CGF has its own unique characteristics and
performance requirements, we contend that there are
many factors common to all classes and that these can

be successfully reused across all classes of CGFs.
We have noted that simply crafting CGFs primarily
from the viewpoint of emphasizing differences often
results in only a few highly specialized types of
CGFs. This is typically due to the amount cf
knowledge engineering necessary to effect intelligence
and the focus on guaranteeing the unique behaviors of
the CGF. Without a general approach to constructing
CGFs, it is likely that little or no information will be
transferable from class to class, or even between entity
types in the same class of CGF.

Aside from the Soar projects, little work has been
done to address the following issues of CGF
construction: 1) approximation of human behaviors,
2) computational efficiency, 3) ease of knowledge-
engineering, and 4) scaleable performance. Our goal
is to provide a general architecture for CGFs which
naturally accounts for "variety" in a given type of
CGF as well as detail a general approach for
organizing and building vastly different CGFs such as
tanks versus aircraft. Given the continuous changing
nature of CGF requirements as we learn more about
them, an evolutionary and exploratory approach to
knowledge engineering, such as the REEP
methodology, discussed in the next section, is also
required. Our architecture consists of highly modular
components where interdependencies are well-defined
and minimized.

The architecture we developed is based on several
precepts. The first is that future architectures should
focus on reducing programmer costs, even at the
possible expense of marginal processing inefficiencies.
We believe that this tradeoff is wise because the
growth in CPU power that will occur over the period
of system development will offset the minor
processing inefficiency costs that are introduced by
minimizing programming costs. Note, however, that
this strategy only allows for marginal inefficiencies.
We contend that code within an object should be
clean and tight, however we believe that inter-object
communication should be open and clear with a
minimum of coupling.

The second precept is that the development cycle for
the Automated Wingman, as in most research and
development projects, will include a series of
revisions to the requirements and additions to its
desired capabilities because the basic system
requirements continue to evolve. These changes
range from changing protocol data unit (PDU) formats
to introduction of new behaviors, such as infrared
sensor management, close-air support, or smart
bombs delivery, into the system. As a result, a
formal requirements analysis process is not a
worthwhile undertaking because end-users will
generally not be aware of defects and shortcomings in
the system until the system is in operation and
operational tests reveal new requirements. As a

104

result, the architecture should be developed to
support both exploratory and evolutionary rapid
prototyping in order to reveal new requirements and
to test solutions.

A third precept is that the push to attain improved
performance and the strain of meeting delivery
deadlines increases the entropy of any design, until
the design concept becomes blurred. The most
obvious symptoms of this occurrence are the use of
global variables, global functions, and the
disappearance of private data items. The architecture
should, therefore, address the problem of increasing
entropy by erecting entropy firebreaks between the
major objects in the system and mechanisms that
encourage the programmer to remain within the
architecture rather than circumvent it. As a result, the
architecture relies upon an object-oriented design of
its major system components, containerization, and a
common object database to manage public data.

A fourth precept is that the components of the
airframe (aerodynamics model, avionics systems, and
weapons packages) should be rapidly modifiable.
Therefore, these components should be realized as
separate objects that have a clean, robust interface to
the remainder of the system. In addition, the airframe
components should be built upon validated models.
The reasoning components that use the outputs from
the airframe CGF components should be separate.

A final precept is that expanding system requirements
will cause the knowledge base and reasoning system
to be modified and adapted to new requirements
throughout the life of the project and the subsequent
fielded system. For example, impending
requirements for CGFs are the capability for multiple
skill levels within the CGF, a capability for the CGF
to direct its attention to specific environment
components, a capability to control smart weapons, a
capability to change its reasoning pattern to adapt to
new avionics capabilities, and a capability for sensor
management. As a result, we concluded that these
knowledge and reasoning components should be
structured so that the knowledge base and reasoning
system are separate. Additionally, the analysis and
action components of the reasoning system should be
separate components as well. Furthermore, since we
are using fuzzy logic, we should implement each cf
these components as a hierarchy of objects that serve
to aggregate information and dynamically limit the
search space.

Our system architecture, see Figure 2, used these five
precepts to guide the architectural definition. Within
the architecture we use containers, which are data

structures used to move large amounts of structured
data between system components, to manage and
control inter-component communication. The main
AW components are specified as objects. These
objects are the Pilot Skills Component (PSC), the
Active Decisions Component (ADC), the Physical
Dynamics Component (PDC), the Common Object
Database (CODB), the World State Manager (WSM),
and the Environment Database. Each of these objects
are, in turn, hierarchically defined as a set of objects
that use the containers to communicate with the other
components of the AW via the Common Object
Database. The CODB holds all public data for the
AW and all system components may access the
CODB for data from other system components. The
World State Manager is responsible for maintaining a
complete description of the state of distributed virtual
environment as communicated using DIS-formatted
PDUs. The Pilot Skills Component, the Active
Decisions Component, and the Physical Dynamics
Component are discussed in detail later in this
section. In our system, component development is
accomplished using a rapid prototyping approach that
uses both exploratory and evolutionary prototyping
to extract system requirements and refine
requirements solutions.

Figure 2 also presents the basic CGF architecture and
its relationship to the other system components. In
its most abstract form, a CGF consists of three
components: a PDC, a PSC, and an ADC. The PDC
encapsulates all the physical attributes and properties
of the CGF. For example, in the AW, this
component includes the aerodynamics model, entity-
specific properties, aircraft capabilities, weapons load,
sensors, damage assessment, and physical status. In
addition, the PDC contains the processes for
computing physical state changes such as updating
object position in the virtual environment. The PSC
consists of those portions of the CGF that need to
vary between individual entities within a type and
class. This component serves to model the skills
and ability of the pilot of the entity. For an aircraft
entity, the components of the PSC consist of the
pilot's ability to maintain situation awareness and to
execute tactical and flight skills. These PSC
components play an integral part in the decision
making ability within the ADC. The ADC
encompasses the intelligent decision making
processes and the knowledge necessary to properly
drive them. This includes the overall mission, goals
and objectives, plan generation, reaction time, and
crisis management ability, etc. Clearly, the ADC
must accomplish many of its activities in real-time.

105

Active
Declsioi

F>ilot Skills
Component

Environment
Database

World State
Container n

World State HSa.xxa.gex>

I
Entity Data

 w

Send
Daemon

Broadcast PDUs

c I
Receive
Daemon

1

Entity State
Updates

Dead
Reckoning

Engine

Received PDUs

Network Interface and Network

Figure 2. Automated Wingman System

We use this tri-fold separation of the components cf
the CGF in order to insure that changes are isolated
and do not propagate throughout the system. The
PDC is only responsible for the basic entity
maneuver information, and operates completely
unaware of the status of the other system components.
Likewise, the ADC is solely responsible for decision
making and only knows about the physical

Architecture Incorporating the Common Object Database

component's status based upon the data placed in the
CODB. The PSC is more closely tied to the ADC
than the PDC because the ADC is responsible for
computing control outputs for the entity based upon
the modeled pilot's skills. The PSC supplies a
description of the pilot's ability to the decision
making component so that the decision can be
appropriately constrained by the pilot's abilities.

106

The division of capabilities between these basic
components lessens the system level impact of any
requirements changes in the PDC, PSC, or ADC.

The PSC and PDC contain all the information and
status required to portray an aircraft model and model
its pilot's ability. The PDC encapsulates the entity
state information and the PSC contains a
representation for all the pilot skill variables. The
key aspect of these two components is that these
subsystems are completely parameterizable, and hence
rapidly reconfigured and reused. We isolate entity
control skills into the PSC because this separates the
ability to parameterize the operator's capabilities from
the decision making mechanisms used by the
operator. Through this parameterization, any number
of CGFs of a given type may be generated using a
given ADC so that each entity has its own unique set
of operator skills. The PSC models the pilot's skills
as a hierarchy of capabilities. The lowest level of the
hierarchy contains the atomic skills for the pilot, such
as ability to perform a bank, highest sustainable g-
force level, ability to acquire a target, ability to
operate a weapon system, etc. Subsequent levels of
the hierarchy are web-like interconnections between
these skills. This scheme allows us to compose
more complex skills from elementary skills and to
compose the higher level skills using a careful
weighting of the appropriate elementary skills. The
drawback to this approach is that the atomic skills
must be carefully chosen and crafted so that high level
skills have the desired performance. The PDC and
PSC do not, however, perform decision making
based upon the information they store. The decision
making task is solely the responsibility of the ADC.

Decision making in the ADC is not based on a
traditional goal-driven planning approach. Instead,
the ADC contains the fuzzy goal-planner that allows
certain subgoals to remain unsatisfied but still have
the supergoal satisfied. This decision making
flexibility permits for a much wider variety of
possible behaviors and provides additional decision-
making elasticity to allow the CGF to achieve its
mission in the face of uncertainty. That is, the system
can tolerate uncertain satisfaction of subgoals and then
use it as a measure. Also, the fuzzy approach
provides a method for optimization when various
subgoals are applicable but only one is desired. This
use of fuzzy logic adds another behavioral distinction
that can be exploited to create a diverse mix of
entities.

The ADC is the heart of the Automated Wingman,
and holds the fuzzy logic decision engines. There are
four primary reasoning modules of interest: the
strategic decision engine (SDE), the tactical decision
engine (TDE), the critical decision engine (CDE),
and the basic control module (BCM). The ADC also
contains relevant knowledge-bases specific to these

reasoning modules. The SDE handles strategic
matters related to accomplishing mission goals by
continuously re-evaluating the completion status of
mission objectives and re-planning to achieve the
objectives in a deliberative fashion. To execute its
plans, the SDE then requests the TDE to carry out
the near term (tactical) objectives. The TDE operates
under the direction of the SDE to manage near-term
situations and determine a fine-grain course of action
for imminent tactical situations. It then implements
those actions as requests to the BCM. For example,
for an aircraft, the TDE transmits stick and throttle
settings to the BCM. The TDE is less deliberative
than the SDE and must perform its functions in real-
time. The CDE is a purely reactive reasoning system
that deals with critical situations the AW might
encounter. Its purpose is to enable the AW to survive
a life-threatening situation, and it operates
independently of mission goals and objectives. For
example, pilots are trained to respond in a certain
fashion when presented with a threat such as an
approaching surface-to-air missile. To operate
effectively, the CDE monitors the world state (in the
container passed from the CODB) passively until a
critical situation is detected. The CDE then assumes
control of the AW until the crisis has passed. During
the crisis, the SDE and TDE monitor the AW's state
so that they may resume control after the crisis has
passed. Lastly, the BCM processes the requests of
the TDE and CDE to pass as flight control inputs fir
the AW. Processing the requests takes into account
the state of the PDC and PSC most relevant to the
requests. For example, the BCM filters its flight
control decision outputs using parameterized pilot
ability ratings to execute a maneuver before it is
applied to the aircraft's control inputs. The ADC
could initially operate with only the BCM.

The above decomposition of the ADC maintains
component independence. Furthermore, knowledge-
base decomposition mirrors that of the decision
engines, allowing the various knowledge-bases to be
constructed and tested independently. By
modularizing our decision engines and the
knowledge-bases in this fashion, traceability and
validation of the CGF behaviors can be much more
easily achieved than previous approaches to
knowledge engineering CGFs. This improves our
prospects for correctly revising and identifying new
behaviors during our development life-cycle. Finally,
within each sub-module or knowledge-base,
additional hierarchies can be imposed to further
increase the possibility of re-use when constructing
other similar CGFs.

107

5. Rapid Evolutionary Prototyping Of The
Knowledge Architecture

To facilitate progress in our research projects, we use
a modified rapid evolutionary exploratory prototyping
(REEP) approach in conjunction with exploratory
prototyping for developing and improving the AW
knowledge architecture and implementation. Rapid
evolutionary prototyping is the use of prototyping
techniques to achieve incremental improvements in
knowledge base implementation and design. The
approach arose from the realization that users need an
operational system to measure against their

expectations and needs. By combining exploratory
and rapid evolutionary prototyping, users can use
functional systems to uncover and validate
requirements and facilitate implementation solutions.
Just as important, these techniques allow us to make
progress on the system in the face of continually
uncovered requirements and simultaneous
modification of multiple system components. The
combination of exploratory and rapid evolutionary
prototyping also allows us to manage the prototyping
process and to incorporate prototyping results into
the AW.

Figure 3: Process Flow in System Development.

108

Figure 3 shows the general process flow from
exploratory prototype to evolutionary prototype. To
provide a starting point for knowledge base
development, we construct a system that satisfies the
known baseline requirements at the beginning of the
project. Using feedback from users in our laboratory
and demonstrations of the systems, we determine
requirements that were unknown when we established
the baseline requirements and refine and expand upon
the requirements that the baseline addressed. As a
result of this continual feedback and experimentation
process, we arrive at a revised set of requirements,
design solutions to the requirements, and implement
them.

When we discover new requirements, we use
exploratory, or partial, prototypes to examine specific
means for addressing the requirements because
complete prototypes are expensive to build.
Exploratory prototyping is the use of a prototype to
refine a requirements definition or to examine an
implementation solution within the context of an
operational system. We do not require that the
exploratory prototype be fully functional. The
prototype may be retained in the system for further
development or discarded. If we discard the
prototype, then subsequent evolutionary systems
incorporate the lessons learned from the exploratory
system. We learned that the exploratory prototyping
approach is valuable when the main question to be
answered is implementation related and there is little
experience in building the desired software solution.
We have used exploratory prototypes to address both
small and large requirements, thereby allowing us to
implement and assess potential solutions in a few
days or weeks.

Because we use rapid evolutionary prototyping and
object-oriented programming, we reuse software
components of the baseline evolutionary architectures
whenever possible. Our intent is that successive
revisions to the design do not require major
reworking of the software components or of the
software architecture, although this certainly can
happen. The evolutionary systems themselves
evolve over time, but are always complete systems.
Each new system tends to bring to light new
requirements. These new requirements determine the
experiments we perform with the next set of
exploratory prototypes. We then incorporate the
solutions developed via the exploratory prototypes
into the next evolutionary prototype. The solutions
typically take the form of new objects or revisions to
existing objects.

This combination of prototyping techniques allows
us to manage the process of defining and refining
requirements and implementation approaches within
components of the system even as system

requirements, design, and implementation evolve and
develop.

6. Current Status

At the heart of the Automated Wingman is a fuzzy
expert system that uses a hierarchy of knowledge
bases for decision making and knowledge storage.
The fuzzy expert system provides the Automated
Wingman with a reasoning capability while the
knowledge bases provide the information required to
select appropriate tactics, to determine the required
maneuvers to implement those tactics, and to fly the
maneuvers.

The PDC has completed the modifications necessary
to incorporate a new, accurate aerodynamics model.
With this model in place we are able to rapidly
change the dynamics behavior of the aircraft CGF by
simply changing a parameter file. We use this
capability to implement a variety of aircraft entities.
The PSC is under development at this time. The
key aspects of this development project are
continuation of an assessment of the key components
of pilot skills and assessment of the knowledge
domain.

The ADC is the main focus of our current work. All
four components within the ADC are in begin
developed simultaneously; however, the TDE and
BCM are key to our progress this year. Current
development efforts for the TDE include incorporation
of defensive counter air and close air support tactical
decision making capabilities. The current BCM
flight control capability exhibits improved
capabilities over last year's prototype (Edwards,
1996).

The current implementation of the Automated
Wingman operates on a Silicon Graphics
workstation. The Automated Wingman achieves an
update rate of approximately 15 cycles per second.
All application software, except for Fuzzy CLIPS, is
written in C++.

To date, the Automated Wingman project has
demonstrated the viability and feasibility of a fuzzy
logic based CGF. We have a fundamental design
that is flexible and ready to serve as the foundation of
future efforts on this project. Our implementation has
shown that a hierarchy of fuzzy linguistic variables
can be used to control a dynamic process in an
airplane. However, the AW is far from complete.
The next section presents our ideas as to future
development.

7. Future Work

Further developmental work will address the need to
incorporate the Command and Control Simulation
Interface Language (CCSIL) to provide a means for

109

the lead aircraft to verbally issue commands to the
AW. The SDE strategic planning capability must be
further enhanced and knowledge added to allow the
AW to transition to autonomous operation. The
PSC knowledge bases must be expanded to include
multiple pilot skill levels that degrade under pilot
stress and fatigue factors.

Necessary future work must also address developing a
sensor fusion and sensor management capability
using fuzzy logic within the AW. The AW sensor
package needs to be augmented and the pilot skills
should be modified so that the AW exhibits different
behaviors and capabilities based on time of day and
weather conditions. The AW will be given an
updated weapons store and the ability to chose these
weapons based upon different situations that can occur
during a mission. Therefore, an updated weapons
selection knowledge base is required.

On a broader scale, a methodology to take a model of
a subject and create a computer generated entity that
exhibits the behaviors of that subject is needed. On a
fundamental level, this requires a formal design
technique for the linguistic variables and term sets to
be used by the automated entity. The current state-
of-the-art for their design is merely trial and error,
which is both time consuming and error prone. A set
of techniques that would identify the of linguistic
variables and their definitions would dramatically
reduce the time required to implement and validate
the system. Finally, a rigorous test methodology for
validation of linguistic variables that ties required
behavior to the associated variables and term sets is
needed. Using our progress on the Automated
Wingman as a guide, we have begun to address these
issues.

8. References

CLIPS Users Guide, (1993) National Aeronautics and
Space Administration, Cape Canaveral, FL.

Edwards, M. and Stytz, M. R. (1996) "The Fuzzy
Wingman: An Intelligent Companion for
DIS-Compatible Flight Simulators", The
SPIE/SCS Joint 1996 SMC Simulation
Multiconference: 1996 Military,
Government, & Aerospace Simulation
Conference, vol. 28, no. 3, New Orleans,
Louisiana, 77 - 82.

Giarratano, J. and Riley, G. (1994) Expert Systems:
Principles and Programming, PWS Kent,
Boston.

Knowledge Systems Laboratory. (1994) Fuzzy
CLIPS Version 6.02A User's Guide,
Institute for Information Technology,
National Research Council Canada, Ottawa,
Ontario, Canada.

Kosko, B. (1993) Fuzzy Thinking: The New Science
of Fuzzy Logic, Hyperion, New York, NY.

Laird, J. E., et. al.. (May 1995) "Simulated
Intelligent Forces for Air: The Soar/IFOR
Project 1995," Proceedings of the Fifth
Conference on Computer Generated Forces
and Behavioral Representation, Orlando,
FL.

Schwartz, D. G. (1991) "A System for Reasoning
with Imprecise Linguistic Information,"
International Journal of Approximate
Reasoning, Vol 8, 463-468.

Stytz, M. R., Adams, T., Garcia, B., Sheasby, S.
M., and Zurita, B. (1996) "Developments
in Rapid Prototyping and Software
Architecture for Distributed Virtual
Environments," IEEE Software, vol. 12, to
appear.

Tambe, M, Johnson, W. L., Jones, R. M., Koss,
F., Laird, J. E., Rosenbloom, P.S., and
Schwamb, K. (Spring 1995) "Intelligent
Agents for Interactive Simulation
Environments," Al Magazine, vol. 16, no.
1, 15-40.

Zadeh, L. A. (1975) "The Concept of a Linguistic
Variable and its Application to Approximate
Reasoning," Information Sciences, Vol 8,
199-249 and 301-357.

9. Author's Biographies

Sheila B. Banks is an active duty Captain in the
U.S. Air Force serving as an Assistant Professor of
Computer Engineering at the Air Force Institute of
Technology, Department of Electrical and Computer
Engineering, Air Force Institute of Technology,
Wright-Patterson AFB, OH. She received a Bachelor
of Science in Geology, Magna Cum Laude from
University of Miami, Coral Gables, FL in 1984 and a
Bachelor of Science in Electrical Engineering,
Summa Cum Laude from North Carolina State
University, Raleigh, NC in 1986. Also from North
Carolina State University, Raleigh, NC, she received
a Master of Science in Electrical and Computer
Engineering in 1987 and her Doctor of Philosophy in
Computer Engineering (Artificial Intelligence) from
Clemson University, Clemson, SC in 1995. Her
research interests include artificial intelligence,
intelligent computer generated forces, associate
systems, distributed virtual environments, intelligent
human computer interaction, and man-machine
interfaces.

Eugene Santos Jr. is an assistant professor of
computer science at the Air Force Institute of
Technology. He received his B.S. in Mathematics
and Computer Science (1985) and M.S. in
Mathematics — Numerical Analysis (1986) from
Youngstown State University (1985) and
subsequently completed a Sc.M. (1987) and Ph.D. in

110

Computer Science -- Artificial Intelligence (1992)
from Brown University. His research interests
include automated reasoning, neural networks, natural
language understanding, expert systems, machine
learning, operations research, probabilistic reasoning,
robotic planning, temporal reasoning, combinatorial
optimization, numerical analysis and parallel
processing. Member, IEEE, ACM, Sigma Xi and
AAAI.

Martin R. Stytz is an active duty Lieutenant Colonel
in the U.S. Air Force serving as an Associate
Professor of Computer Science and Engineering at the
Air Force Institute of Technology. He received a
Bachelor of Science degree from the U.S. Air Force
Academy in 1975, a Master of Arts degree from
Central Missouri State University in 1979, a Master
of Science degree from the University of Michigan in
1983, and his PhD in Computer Science and
Engineering from the University of Michigan in
1989. He is a member of the ACM, SIGGRAPH,
SIGCHI, the IEEE, the IEEE Computer Society, the
Engineering in Medicine and Biology Society, the
IMAGE Society, the Virtual Reality Society, and the
Society for Computer Simulation. His research
interests include virtual environments, distributed
interactive simulation, modeling and simulation,
user-interface design, software architecture, and
computer generated forces.

Ill

Moving Intelligent Automated Forces Into
Theater-Level Scenarios

Randolph M. Jones, John E. Laird, and Paul E. Nielsen
Artificial Intelligence Laboratory

University of Michigan
1101 Beal Avenue

Ann Arbor, MI 48109-2110
{rjones,laird,nielsen}9eecs.umich.edu

1. Abstract

Intelligent synthetic agents have participated suc-
cessfully in a series of military simulation exer-
cises. However, their participation has been lim-
ited mostly to rather simple missions and situa-
tions, and they have been less successful in terms
of participating in, and reasoning about, missions
that require paying attention to an entire theater
of operations and the concerns that come with
such a global picture. From our experiences with
theater-level exercises, we have identified a small
number of categories for improvement of intelli-
gent synthetic agents in this regard. In addition,
we have devoted significant effort to implementing
solutions to these concerns, and have successfully
demonstrated synthetic agents that behave intel-
ligently and flexibly in simulated theater-level op-
erations.

2. Introduction

Intelligent automated forces have successfully im-
plemented a subset of the behaviors required to
model individual agents in combat engagements
(Tambe et al., 1995). The goal of such forces is to
increase the fidelity of training simulations by gen-
erating human-like behavior. Building such forces
involves creating agent models that incorporate
the knowledge and capabilities that humans use
to achieve their missions.

The first implemented IFOR's successfully gener-
ated human-like performance for relatively simple
missions and constrained situations. For example,
Jones, Tambe, Laird, and Rosenbloom (1993) de-
scribe intelligent agents that participate in limited
one-on-one air-to-air engagements. Rosenbloom et
al. (1994) expanded the abilities of the agents to
perform a small number of specific air missions,
such as combat air patrols and sweeps. This work
also implemented em initial capability for groups of
agents to communicate and coordinate with each

other (e.g., flying in section).

We had the opportunity to evaluate these agents
by participating in the STOW-E exercise. In gen-
eral, the participation of IFOR's in their first op-
erational military exercise met with success. How-
ever, participating in such an exercise made it ob-
vious that there is really no such thing as an iso-
lated mission that is independent of a larger the-
ater of activity. Intelligent forces were able to ful-
fill their specific, limited roles in the theater-level
exercise, but we were also able to identify a num-
ber of ways that we could increase the flexibility of
the forces, so they would be more useful in theater-
level simulation exercises.

The remainder of this paper first identifies three
general categories of requirements for bringing in-
telligent forces into full-blown theater-level exer-
cises. We then present a number of specific so-
lutions we have developed to meet these require-
ments. These solutions enable the deployment of
intelligent forces in theater-level exercises, and cul-
minating with their participation in STOW-97.

3. Desired Capabilities

Our experiences in STOW-E highlighted a num-
ber of desired capabilities that would have made
deployment of the intelligent forces much easier
and more robust. These capabilities fall into three
general categories, which we present here.

3.1 Agent Knowledge

The first category of capabilities involves enrich-
ing the knowledge base of individual intelligent
agents, so they take theater-level goals and con-
straints into account while executing their partic-
ular missions. This helps the agents generate more
appropriate and human-like behaviors when faced
with a wide range of choices.

113

At the theater level, the agents must incorporate
knowledge of the overall exercise into many of their
local decisions. For example, for a BARCAP mis-
sion, it is not enough for an agent to know that
it is must fly a racetrack at a particular waypoint,
oriented in a specific direction, and intercept any
enemy aircraft that come close enough. In ad-
dition, the agent must know about the following
types of things:

• How long to remain on station.
• Who the air traffic controller is, and how to

interact with it.
• When and where to refuel.
• Specific, possibly complex commit criteria to

begin an intercept.
• Keeping track of where friendly aircraft are,

and who they may be intercepting.
• Which direction to force the intercept, based

on what is being protected.
• Levels of acceptable risk, for deciding which

tactics should be used during an intercept.

Another example of theater-level concerns for in-
dividual agent knowledge involves the ability to fly
in packages for strike or close-air support missions.
Strike packages consist of a number of individual
missions, such as sweeps, suppression of enemy
air defense, escorts, tankers, and the strike itself.
However, all the agents executing these missions
must have the capability to coordinate and com-
municate with each other. In addition, they must
have knowledge of how to execute proper ingress
and egress profiles, as well as the ability to interact
with various command and control entities.

These capabilities represent a significant increase
over those required to carry out specific missions
(which are themselves non-trivial). In an intelli-
gent synthetic agent, these capabilities translate
directly into requirements for new knowledge. For
the agents to operate successfully in a theater of
war, they must incorporate a large amount of new
knowledge that specifically addresses the theater-
level concerns.

3.2 Intelligent Support Agents

The second category involves expanding the in-
frastructure for supporting intelligent agent roles
in theater-level exercises. For our purposes, this
includes building intelligent forces to model all the
entities involved in the air combat portion of a the-
ater of operations. Examples of agent behaviors
that support theater-level activities are airborne

early warning, forward air control, refueling, and
escorting strike packages. Each of these jobs can
be performed by a human or an intelligent force,
and they all contribute to the quality of decision-
making by individuals in the theater.

As we hinted above, the core capabilities for in-
telligent agents enable agents to fly relatively au-
tonomous missions, such as executing an intercept,
or delivering ordnance to a ground target. In real-
ity, however, these missions require many different
types of support in order to be successful. At the
very least, support can be provided by humans in
simulators or real vehicles, but even in this case
the intelligent synthetic agent must have knowl-
edge of what these support roles are, and how to
interact with them. At the other end of the spec-
trum, however, we would like all of the support
missions to be implemented by synthetic agents
as well. In order for these agents to be intelligent,
they must incorporate complete knowledge of how
to fulfill each support role.

3.3 Tools and Interfaces

The third category of capabilities involves devel-
oping tools and interfaces that support the use
of intelligent forces in theater-level simulations.
These tools should allow humans to specify sce-
narios and control agents as easily and flexibly as
possible. Facilities exist for specifying the missions
of semi-automated forces, and manipulating them
during the course of an exercise in response to new
demands for the training scenario. However, the
existing interfaces do not apply well to groups of
intelligent agents, which require interactions that
are much more similar to those for human partic-
ipants in the theater of operations.

The participation of our agents in the STOW-E
exercise revealed two fundamental weaknesses in
the tools we had to interface with intelligent syn-
thetic agents. The first involved the interface for
specifying mission and situation briefings for the
agents. The basic interface allows us to specify
scenario and mission parameters to each individ-
ual agent, but the process must be repeated for
each agent. This is fine when agents are execut-
ing separate missions, and do not need to share
much information. However, when theater-level
concerns are introduced, there is much necessary
information that should be shared among different
groups of agents.

114

For example, waypoint names and locations gen-
erally hold across an entire exercise. A particular
Airborne Early Warning aircraft will be assigned
to interact with a number of flights of aircraft. All
the members of a division of aircraft will share call
signs and other information. Thus, when all the
information for an exercise needs to be conveyed to
all of the agents, there can be an enormous amount
of redundancy. To address this problem requires
a shift away from "agent-centered" mission inter-
faces, moving instead to an "exercise-centered" in-
terface, which reflects a more flexible organization
for mission information, and shares information
among appropriate groups of agents.

The second interface weakness arose toward the
end of the STOW-E exercise. Most of the exercise
missions were scripted weeks in advance, and we
were able to specify the appropriate missions for
all of our agents so they could execute them on de-
mand. However, toward the end of the exercise, it
became clear that the administrators running the
exercise wanted to change the script dynamically
in response to changes in the training situation, or
to explore variations of the initial exercise.

With standard synthetic forces, it is no problem
to "pick up" the aircraft, move it to a different
location, and assign it a new mission. However,
with intelligent agents this is not so simple, largely
because intelligent agents maintain a memory of
events in the current mission, as well as knowledge
structures representing their current awareness of
the overall situation. If you try to "pick up" and
move an intelligent agent, you will get a similar
type of confusion that might arise if you suddenly
teleported a human pilot to a different portion of
the world. The agent will not know where it is or
why. It will no longer have an accurate picture
of its situation, because the situation will have
changed. In addition, it will not necessarily be
a simple matter for the agent simply to abandon
its old mission and pick up a new one from some
arbitrary starting point.

In order to address this situation, we require an
interface that allows exercise administrators to in-
teract with intelligent synthetic agents in a man-
ner similar to how they interact with human par-
ticipants in the exercise. When a human needs to
be assigned a new mission—for example, to exe-
cute a BARCAP at a new waypoint—a controller
must instruct the pilot by radio to knock off the
current mission and fly to the new waypoint. Then

the pilot must fly there; the aircraft cannot mag-
ically transport. There are similar requirements
for interacting with an intelligent synthetic agent.
The agent must be instructed by a simulated radio
with new orders, and then it must carry them out
itself, in order to maintain a reasonable awareness
of the world around it.

4. Progress and Results

We do not yet have fully autonomous, intelligent,
synthetic agents participating in theater-level ex-
ercises. However, we have completed significant
amounts of research and development in each of
these three categories.

4.1 New Agents and Capabilities

The first two categories have not so much required
the creation of new tools as they have a redoubling
of our effort to acquire and engineer knowledge to
make the intelligence of our agents as rich as pos-
sible. To begin with, we have built agents that
fulfill a number of new roles to fill out the sim-
ulated theater of war. These include agents that
perform the following functions:

• Tanking.
• Strike escort.
• Suppression of enemy air defense.
• Airborne Early Warning.
• Reconnaissance.

In addition, we have developed limited agent ca-
pabilities to provide a number of command and
control functions:

• Land/Launch control.
• Strike control
• Tactical air control center.
• Direct air support center.
• Fire support coordination center.
• Forward Air Control (airborne and ground-

based).

These command and control agents come nowhere
near providing the full capabilities for each of their
missions, but they provide enough support that
they can fulfill simulated roles to enable our other
air agents to execute their missions in a realistic
manner.

Finally, we have enriched our basic agents with
the knowledge that allows them to interact ap-
propriately with each of these new agents. In ad-
dition, knowledge has been incorporated to allow

115

the agents to coordinate in packages for large-scale
strike, interdiction, and close-air support missions.
Finally, the knowledge for defensive missions has
been updated so that agents can provide a more in-
tegrated defense, taking into account theater-level
concerns, as well as coordinating intercepts and
defensive assignments between different groups of
aircraft.

4.2 New Mission and Command Interfaces

In order to address the need for improved inter-
faces to our agents, we have developed two new
graphical interfaces, both of which greatly improve
the flexibility and ease of interacting with the in-
telligent synthetic agents.

The first tool is an exercise editor for specifying all
the information relevant to a theater-level exercise
and translating it to parameters used by our in-
telligent agents. The editor organizes mission and
scenario specifications into multiple levels: exer-
cise, event, mission, and entity. Entity-specific
information is tailored to the smallest groups of
agents (divisions, sections, or individual vehicles).
However, information common to a single mission
or a single event (for example, an integrated strike)
only needs to be entered once, even though it is
then passed on as parameters to a number of indi-
vidual agents. The highest level of the hierarchy
contains information common to all agents over
the entire course of the exercise. Coulter and Laird
(1996) provide more complete details on this ed-
itor. Experience with the editor has shown that
it is relatively easy to learn, and that it greatly
improves the efficiency of specifying new exercises
involving our synthetic agents.

The second tool we have developed is a graphical
interface panel to allow simulated radio commu-
nication with the intelligent agents. The inter-
face provides templates for semi-natural language
phrases that the intelligent agents can understand
and know how to obey. This allows an exercise ad-
ministrator to give orders to the intelligent agents
in a relatively natural style of discourse. Because
the agents communicate with each other using the
same language and the same simulated radio inter-
face, they do not care whether they are receiving
orders from a human or from another appropri-
ate synthetic agent. When an intelligent synthetic
agent receives such an order (for example, to as-
sume a new CAP station or to vector to a partic-
ular bogey group), it can parse the message, obey

it, and begin executing the appropriate maneuvers
(and changes in mission specification and situa-
tional awareness) to implement the order. This
tool allows a measure of flexibility for administer-
ing synthetic agents in a simulated exercise, while
maintaining their ability to fulfill the role of a
human-like participant in the theater of war.

5. Conclusion

As discussed in this paper, we have approached the
problem of bringing intelligent synthetic agents to
theater-level exercises from a variety of directions.
In October of 1995, we were able to participate
in an ARPA-sponsored simulation exercise, called
ED-1. This exercise provided an opportunity for
us to evaluate our progress and compare it with
our participation in STOW-E. Our experiences in-
dicate that we have made strides in the right di-
rection. It was much easier to develop the scenar-
ios for the exercise, using the exercise editor. We
were able to demonstrate a number of new capabil-
ities in the intelligent synthetic agents. Finally, we
have demonstrated the capability to change sce-
narios by giving agents new orders via the graph-
ical communications panel. We plan to continue
our efforts in these directions, eventually providing
robust interfaces and intelligent synthetic agents
for STOW-97.

6. Acknowledgements

This research was supported at the University of
Michigan as part of contract N66001-95-C-6013
from the Advanced Systems Technology Office of
the Advanced Research Projects Agency and the
Naval Command and Ocean Surveillance Center,
RDT&E division. The research presented here has
benefited greatly from the efforts of Paul Rosen-
bloom, Milind Tambe, Karen Coulter, Frank Koss,
BMH Associates, Inc., and the other members of
the Soar/IFOR project.

7. References

Coulter, K. J., & Laird, J. E. (1996). A briefing-
based graphical interface for exercise specifica-
tion. In Proceedings of the Sixth Conference on
Computer Generated Forces and Behavioral
Representation. Orlando, FL.

Jones, R. M., Tambe, M., Laird, J. E., & Rosen-
bloom, P. S. (1993). Intelligent automated
agents for flight training simulators. In Proceed-

116

ings of the Third Conference on Computer Gen-
erated Forces and Behavioral Representation,
(pp. 33-42). Orlando, FL.

Rosenbloom, P. S., Johnson, W. L., Jones, R. M.,
Koss, F., Laird, J. E., Lehman, J. F., Rubinoff,
R., Schwamb, K. B., & Tambe, M. (1994). In-
telligent automated agents for tactical air sim-
ulation: A progress report. In Proceedings of
the Fourth Conference on Computer Generated
Forces and Behavioral Representation, (pp. 69-
78). Orlando, FL.

Tambe, M., Johnson, W. L., Jones, R. M., Koss,
F., Laird, J. E., Rosenbloom, P. S., & Schwamb,
K. B. (1995). Intelligent agents for interactive
simulation environments. AI Magazine, 16(1),
15-39.

8. Biographies

Randolph M. Jones received his B.S. in Mathe-
matics and Computer Science from the University
of California, Los Angeles, in 1984. In 1987 and
1989, respectively, he received M.S. and Ph.D. de-
grees in Information and Computer Science from
the University of California, Irvine. Subsequently,
he served as a postdoctoral research associate in
the Department of Psychology at Carnegie Mellon
University and the Learning Research and Devel-
opment Center at the University of Pittsburgh.
He is currently an assistant research scientist in
the Artificial Intelligence Laboratory at the Uni-
versity of Michigan. His research interests lie in
the areas of intelligent agents, problem solving,
machine learning, and psychological modeling.

John E. Laird is an associate professor of Elec-
trical Engineering and Computer Science and the
director of the Artificial Intelligence Laboratory at
the University of Michigan. He received his B.S.
degree in Computer and Communication Sciences
from the University of Michigan in 1975 and his
M.S. and Ph.D. degrees in Computer Science from
Carnegie Mellon University in 1978 and 1983, re-
spectively. His interests are centered on creating
integrated intelligent agents (using the Soar archi-
tecture), leading to research in problem solving,
complex behavior representation, machine learn-
ing, and cognitive modeling.

Paul E. Nielsen is an assistant research scientist at
the Artificial Intelligence Laboratory of the Uni-
versity of Michigan. He received his Ph.D. from

the University of Illinois in 1988- Prior to joining
the University of Michigan, he worked at the GE
Corporate Research and Development Center. His
research interests include intelligent agent mod-
eling, qualitative physics, machine learning, and
time-constrained reasoning.

117

Design of A DIS Agent, the AlSim System: A progress report

Sakir Kocabas1, Ercan Oztemel2, Mahmut Uludag
and Nazim Koc

Marmara Research Center, Department of AI
PK 21, Gebze, 41470 Kocaeli, Turkey

email: (skoca,eomaml ,mahmut,nazim)@yunus.mam.tubitak.gov.tr

1. Abstract

An intelligent system, AlSim is being developed by
the AI gToup at MRC, within the framework of
multinational battlefield simulation project (EUCLID
RTP 11.3). AlSim is being developed to enable a
simulated air target (an F16 plane) to behave
intelligently in cooperation with other computer
generated and man controlled air targets, in tasks and
activities in CAP and Escort missions in defensive
and offensive scenarios. The system's tasks include
Navigation, Patrol, Escort, BVR and WVR
Engagement, Air-to-Air Refueling, Disengage and
Retum-to-Base.

2. Introduction

The study of intelligent agents in real-time simulation
systems has been one of the most challenging
research topics in artificial intelligence (see, e.g.,
Jones, et. al. 1994). The primary purpose of such
studies is to examine agent behavior in real-time
environments and scenarios, and to prepare more
realistic systems for training human operators for
certain skills. Recently, extensive research is being
carried out on intelligent agents operating in
distributed interactive simulation (DIS) environments.
The DIS environments enable to use a number of
agents with different goals and behavior patterns in
real-time scenarios (see, e.g., Oztemel & Kocabas,
1996; Laird, et al., 1995; Tambe, et al., 1995). DIS is
mainly concerned with time and space-coherent,
synthetic representation of real-world environments
and interactions of operational entities in them.

The synthetic environment is created through real-
time exchange of data units between distributed, and
computationally autonomous simulation applications
in the form of simulations, simulators and
instrumented equipment interconnected through
standard computer communicative services. The
computational entities can be in one location or
distributed geographically. A DIS system has the
following characteristics:

• No central computer is used for event scheduling
or conflict resolution.
• Autonomous simulation stations are responsible
for maintaining the state of one or more simulation
elements.
• There is a standard protocol for communicating
ground-truth data.
• Receiving stations are responsible for determining
what is to be perceived.
• Simulation stations communicate only changes in
their state.
• "Dead-reckoning" algorithms are used to reduce
overloads in processing communication data.

An intelligent agent consists mainly of three
components: perception, cognition and action.
Memory, reasoning, learning, understanding,
planning, scheduling, and control are some of the
basic characteristics of intelligent behavior. An agent
equipped with these capabilities can receive
information from its environment, organize its
knowledge about the environment, evaluate
situations, deduce conclusions, solve problems, and
generate actions.

1 Also affiliated with: Department of Space Sciences and Technology, ITU, Maslak, Istanbul, Turkey.

2 Also affiliated with: Department of Industrial Engineering, SAU, Adapazari, Turkey.

119

The cooperation of DIS agents depends on the kind
of tasks and activities they are expected to do, and the
environment in which they operate. There may be
three different types of tasks: 1) Agents may perform
problem solving in a common domain, 2) agents may
be working together to improve their individual
performance, and 3) agents may be working together
to improve the performance of the overall system they
are designed for. In DIS systems the third type of
cooperation is important as it concerns the question of
dependency between agents. If an agent needs to
communicate with other agents, it has to know the
underlying model of these agents. Additionally, there
has to be a standard data communication accessible
by every entity within the overall system. Some data
communication problems are solved by "dead
reckoning" algorithms. Such algorithms estimate the
future situations in the temporary absence of
situational data, ensuring that the system is somewhat
fault tolerant with respect to temporary
communication failures. In a complex environment,
knowledge used by an agent can be incomplete, and
the goals of the agents might be conflicting (Jones, et.
al., 1994). If an agent has conflicting goals, a set of
heuristics or a classifier can be used to deal with the
conflict. However, if different agents have conflicting
goals, then there is a need for a negotiator to deal
with this problem. The negotiator is an agent which
defines the authority of information.

This paper describes the design of an intelligent
agent, AlSim, operating in a DIS environment. Our
study focuses on the following problems in designing
such agents:

- Rationality of agent behavior
- Agent cooperation and coordination
- Resolution of conflicts in agent goals and tasks
- Agent situation and behavior explanations
- Agent reusability.

The design history of AlSim goes back to the design
of its prototype RSIM (Kocabas, et. al., 1995). RSIM
was a simple model operating in a 2-d space, with
capabilities of learning its rules of behavior and
explaining its behavior. AlSim is a much more
developed version with the capabilities of detailed
situation assessment, action management and
behavior explanation. In the following sections, first a
summary of the design history of AlSim is provided.
Then the system is described in terms of its hardware
and software structure. Next, AlSim's methods and
capabilities are discussed in comparison with other
related systems. Finally, the paper concludes with a
summary of the results.

3. System Development

The following procedure is employed in the
development of AlSim:

- Domain analysis to define the activities to be
simulated in the application.

- Requirements analysis, to define the system's
goals and functions.

- Global design analysis, to ensure that each
specified goal is achieved by a set of functions.

- Detailed design, to guide the software engineers
to code the system in accordance with the specified
requirements.

- Software development which is the actual code
generation process.

- Testing, verification and integration to DIS
system.

Currently, this work has passed the prototype and
design stages, and is now in the software development
stage, in which AlSim has been integrated with the
underlying simulation system.

Al
station

Simulation
station

AlSim simulation
system

interface interface

pdus —
n DIS Network

Figure 1. Hardware structure of the DIS system on
which AlSim runs.

4. System Description

The hardware structure of the DIS system on which
AlSim runs is shown in Figure 1. The system operates
as networked to the simulation system in a DIS
environment, where AlSim runs on the Al station,
and control its agent(s) on a simulation station
connected to the same DIS system. The simulation
station runs ITEMS1 simulation system. The
communication between the workstations is carried
out by exchanging standard data units in the network,
under InterSIM2 a DIS network software.

1 ITEMS is the product of CAE Electronics.
2 InterSIM is the product of TTS.

120

As to the software architecture of the system, we have
selected a hierarchical approach for the design of
AlSim, in which the system has four levels of goals:

1) Mission goals
2) Task goals
3) Subtask goals
4) Activity and action goals.

CAP missions. The total number of sub operators in
these task operators is 52, which in turn have a small
set of action rules and procedures. Figure 2 shows a
section of AlSim's mission, task, subtask and activity
hierarchy. In this hierarchic control structure AlSim
supports the following intelligent agent character-
istics: Situation assessment, action management and
explanation.

DIS scenarios require the definition of mission goals
such as air interception and tactical air support.
AlSim has been designed for two different mission
goals: Combat Air Patrol (CAP), and Escort to
bombers. When the system's mission goal is defined
as CAP, it is divided into a set of task goals such as
navigation, patrol, and BVR combat. These task goals
are further divided into a set of subtask goals such as
trajectory guidance, weapons management, and
evasion. The subtask goals in turn, are divided into
activities such as firing and guiding a missile,
performing an evasion maneuver, and turning towards
a target. Activities are also divided into a set of
simple actions such as changing heading, speed and
altitude.

AlSim's control structure supports the goal hierarchy
described above. The system has two modules:
Situation Assessment (SA) and Action Management
(AM). The SA module monitors the situational
parameters 10 times a second on average, by first
selecting a set of situational parameters, calculates the
situation, and sends a reduced set of situational
indicators in the form of signals to the AM module.

The AM module itself consists of a set of operators
in a hierarchy. On the top of this hierarchy is the Task
Control Operator (TCO), which controls a set of task
operators by deciding which task operator is to be
activated under the current situation. Once a task
operator is activated, this in turn, fires subtask and
activity operators and rules. In this way, AlSim
directs its agent in the scenario in accordance with its
assessment of the current situation.
AlSim's TCO has the following operators which can

become active in a CAP mission: Takeoff, Navigate,
Patrol, BVR Engage, WVR Engage, Disengage, Air-
to-Air Refueling (AAR), Return to Base (RTB), and
Land. Each of these operators have a set of subtask
operators which in turn have a set of activity
operators, and finally each activity operator has a set
of action rules. The task control operator of AlSim
currently has 23 rules for selecting task operators for

Missions

Tasks

CAP
Escort

CAP

Navigate
Patrol
BVR Engage
WVR Engage
Disengage

Subtasks BVR Engage

BVR Approach
BVR Attack
BVR Evade
BVR Escape

Activities BVR Attack

Maintain Angle of Attack
Check Missile Envelope
Missile Launch

Actions Missile Launch

Launch Missile
Perform f-pole
Guide Missile

Figure 2. AlSim's hierarchy of operators for mission
tasks, subtasks, activities and actions.

5. Discussion

In this section AlSim is discussed and compared with
other related systems in terms of:

- Domain tasks
- System architecture (knowledge organization)
- Intelligent agent features

. Situation assessment (perception, cognition)

. Action management (cognition, action)

121

. Robustness

. Timeliness

. Flexibility (e.g. reusability)

. Learning,

. Explanation.
- Performance in mission scenarios.

AlSim has been tested in controlling an F 16 against
ITEMS and man controlled Mig 29's and F 16s in
various CAP scenarios. Tests on the system in escort
scenarios are continuing. In CAP scenarios, the
AlSim agent (ATT) takes off, navigates to a patrol
waypoint in a predefined desired engagement zone
(DEZ), performs patrol in an elliptical orbit towards a
given threat direction. When a threat approaches a
certain distance, AlSim's TCO passes control to BVR
Engagement operator, and this in turn, to BVR
Approach sub-operator, and so AIT leaves patrol and
approaches its target in a certain angle. Within a
certain range, BVR Attack sub-operator takes control
of AIT, guiding it through to own missile envelope,
while securing and maintaining radar lock until a
certain range. This sub operator is also responsible
for launching and guiding BVR missiles. Meanwhile,
if a radar lock comes from the opponent in a certain
range, control passes the BVR Evade sub-operator,
which in turn, guides AIT into evasive maneuvers.
Chaff throws and radar jams can automatically be
taken care of by the simulation system ITEMS.
During BVR Attack or BVR Evade, if AIT has
entered WVR engagement range, then TCO passes
control to WVR Engage operator which directs AIT
in WVR attack, evade and escape maneuvers.

At all times, TCO checks the fuel and missile stocks
of AIT. When AIT runs out of BVR and/or WVR
missiles, control passes to Disengage and RTB
operators depending on the tactical situation. When
the fuel level of AIT is below a predefined level, and
the mission is still on, TCO passes control to Escape
and/or AAR operators, and AIT is directed towards
an AAR point where it refuels.

The above is a brief description of AIT's behavior in
which a good deal of details are omitted for reasons
of the limitations of this paper.

The knowledge organization and control structure of
AlSim is based on the hierarchic homuncular control
(HH) architecture (Kocabas, 1991). Unlike the
sequences of operators of Soar-IFOR, in this
architecture, AlSim's operators are systematically
divided into mission, task, subtask and activity
operators as shown in Figure 2. This architecture
provides effective search control in real-time

behavior. Accordingly, at any moment in its activity,
the AlSim agent can pass from one task (such as BVR
Engage) to another task (e.g. Disengage).

The number of operators and rules of AlSim are
small, compared to the variety of tasks and activities
performed by its agents in a scenario. There are two
reasons for this:

1) AlSim's HH control architecture has proved to be
effective in partitioning the control of agent activities.

2) Many of the low level activities such as
navigation to a waypoint and radar lock are carried
out by the ITEMS simulation system.

Like Air-IFOR agents (Laird, et. al. 1995), AlSim
agents are isolated from the details of the underlying
simulation environment, such as missile and plane
dynamics, and sensor simulation. However, unlike
Air-IFOR agents, AlSim controls its agents created in
a simulation station in the DIS environment, from a
separate workstation connected to the same
environment, using the data protocols of the DIS
network software InterSIM. In other words, as
opposed to Air-Soar systems which run in direct
communication with its simulation system ModSAF
on the same workstation, AlSim runs independently
on a separate workstation. Therefore its configuration
is more general in terms of data communication and
control than that of Air-Soar.

As to the intelligent agent features of the system,
AlSim's SA module reads the set of data on the
dynamic and static simulation elements, and
computes the parameters of the tactical situtation
from some of these data, and sends the relevant
attribute-values to a message list to be read by the
system's TCO operator. AlSim reads about 60
different types of data (which are grouped in
themselves), and sends about 15 types of data to the
DIS network. The simulation system's clock cycle is
20 Hz. AlSim's action management operators, as have
been described above, are capable of guiding its agent
in different tasks and activities. The current version
performs well in 1-v-l engagements, and has a simple
set of prime opponent selection rules to deal with
more than one opponent at a time. However, unlike
Air-IFOR agents the system has not yet been
developed for 1 -v-2 and 2-v-2 air combat scenarios.

AlSim tests shows that the system is robust in the
sense that the system shows reasonable performance
in different scenarios in 1-v-l and l-v-2 engagements.
The system has also passed the timeliness criterion in
its current form.

122

As to the flexibility criterion, AlSim architecture has
proved to be flexible enough in adapting to other
missions (e.g., from CAP to Escort missions) simply
by adding new task operators and a small set of task
control rules in TCO. Unlike Air-Soar's procedure, in
which this system uses a decision procedure to select
operators according to the current situation by using a
rule set for operator selection, in AlSim task selection
is done by its task control operator. One advantage of
this architecture is that it enables to change the
doctrines of the AIT more easily.

We had tested learning methods on our earlier model
RSIM (Kocabas, et al, 1995) which learns action
rules to perform meaningful maneuvers in 1-v-l
engagements. Learning methods have been applied in
limited activities such as learning pure pursuit
(Hommertzheim, et. al., 1991) and certain close
combat maneuvers (Crowe, 1990). AlSim's
architecture allows it to learn task control and activity
rules, but the system's search space is too large for
effective control and action rules. For this reason, we
have postponed the implementation of learning
methods in AlSim. On the other hand, many military
missions and tasks are taught by instruction. Air
combat maneuvers are also well defined both in
tactics and geometrical paths and trajectories.
However, this does not mean that learning is not
feasible in such systems, particularly because of the
use of new technologies in missiles and planes.

Behavior explanations is an important feature for
computer generated agents, as it is useful to know
both for development and training purposes, what the
agent has been doing at a particular moment during
its activities. Behavior explanations can be in the
form of post-mission explanations (Johnson, 1994) or
in real-time (Kocabas, et al.,1995). Like its
predecessor RSIM, AlSim explains its agent's
behavior in real-time. The system's knowledge
organization, particularly its task based hierarchy of
operators into tasks, subtasks, activities and actions,
facilitates the detailed explanation of its agent's
behavior in real-time. Air-Soar agents also have
explanation capability, but as post-flight explanations
(Johnson, 1994).

The same knowledge organization also facilitates to
include the description of agent goals and intentions
beside simple behavior explanations. Goal directed
explanations can be useful in monitoring the agent
behavior more closely, particularly the agent's
situation assessment capabilities. We intend to
implement this feature in AlSim. Under these

considerations, we believe that AlSim has a more
flexible knowledge organization scheme and control
architecture than that of Soar which provides the
basic knowledge organization scheme to Air-Soar
systems.

As opposed to TacAir-Soar (Tambe, et al. 1995),
AlSim can in principle deal with multiple
independent goals simultaneously. We are in the
process of implementing this feature in the system.
AlSim can control more than one Al targets in a
scenario from one station, although we have tried and
tested only one so far.

Like Air-IFOR agents of Air-Soar, the AlSim
provides the following capabilities to AIT: situation
assessment, following flight plans, performing patrol
in reference to a certain waypoint and opponent
direction, prime opponent selection, attack and
missile management, evasion and escape, escort
behavior and tactics, fuel management,
disengagement, and coordinating with other agents in
escort tasks. To these capabilities, own behavioral
explanation and target behavior interpretation must be
added.

On the other hand, compared with Air-IFOR agents,
AlSim agents have a limited range of mission
simulations, as confined to CAP and Escort.

6. Summary

In this paper we have described the design of an
intelligent system AlSim, capable of performing tasks
and activities in CAP and Escort missions. We have
also discussed the system's knowledge organization
and control architecture comparing with other related
systems. AlSim's architecture supports intelligent
agent requirements such as situation assessment,
action management, timeliness, flexibility and
behavior explanation.

7. Acknowledgment

This work is supported by Marmara Research Center
under the EUCLID RTP 11.3 complex air warfare
simulation demonstration project.

8. References

Crowe, M.X. (1990). "The application of artificial
neural systems to the training of air combat
decision-making skills". In Proceedings of the
12th ITSC, pp. 302-312.

123

Hommertzheim, D., Huffman, J., and Sabuncuoglu, I.
(1991). "Training and artificial neural network the
pure pursuit maneuver", Computer Ops Res. 18
No.4, pp. 343-353.

Kocabas, S. (1991). "Homuncular learning and rule
parallelism: An application to BACON", In
proceedings of International Conference on
Control - 91, pp. 950-954.

Kocabas, S., Oztemel, E., Uludag, M., and Koc, N.
(1995). "Automated agents that learn and explain
their own actions: A progress report", In
Proceedings of the 5th Conference on Computer
Generated Forces and Behavioral
Representation, pp. 63-68.

Laird, J.E., Johnson, W.L., Jones, R.M., Koss, F.,
Lehman, J.F., Nielsen, P.E., Rosenbloom, P.S.,
Rubinoff, R., Schwamb, K.B. Tambe, M., Van
Dyke, J. van Lent, E., and Wray, R.E. (1995).
"Simulated intelligent forces for air: The
Soar/IFOR project 1995", In Proceedings of the
5th Conference on Computer Generated Forces
and Behavioral Representation, pp. 27-36.

Oztemel, E. and Kocabas, S. (1996). "Design
principles for intelligent agents in distributed
interactive simulation", In Proceedings of
SimTect-96, 25-26 March 1996, pp. 103-106.

Tambe, M., Johnson, W.L., Jones, R.M., Koss, F.,
Laird, J.E., Rosenbloom, P.S. and Schwamb, K.B.
(1995). "Intelligent agents for interactive
simulation environments", AI Magazine. Springs
1995, pp. 15-39.

Johnson, W.L. (1994). "Agents that explain their own
actions", In Proceedings of the 4th Conference on
Computer Generated Forces. May 1994,
Orlando, Florida, pp 87-95

Jones, R.M., Laird, J.E., Tambe, M. & Rosenbloom,
P.S. (1994). "Generating behavior in response to
interacting goals", In Proceedings of the 4th
Conference on Computer Generated Forces and
Behavioral Representation, pp 317-324

Mahmut Uludag is a researcher at the AI
Department of MRC. Mr. Uludag has a Masters of
Science degree in Mechanical Engineering, and is a
PhD student at ITU. His research interests are AI
Applications in Real-Time Simulation.

Nazim Koc is a researcher at the AI Department of
MRC. He has a Masters of Science degree in
Symbolic Computation, and is a PhD student at ITU.
His research interests are Symbolic Computation,
Parallel Logic Programming and Machine Learning.

9. Authors' Biographies

Sakir Kocabas is the head of the AI Department at
MRC and the project manager for EUCLID RTP 11.3
WP2. Dr. Kocabas has a PhD degree in Information
Engineering. His research interests are in the areas of
Real-Time Simulation, Machine Learning and
Discovery.

Ercan Oztemel is a researcher at the AI Department
of MRC. Dr. Oztemel has a PhD degree in Artificial
Intelligence. His research interests are Simulation,
Real-Time Knowledge Based Systems, Inductive
Learning and Neural Networks.

124

Session 2b: Uses of CGF

Brooks, U. S. Army, AMSAA
Berkowitz, The Mitre Corporation

Craft, UCF/IST
Metzler, LBfiJVl

Computer Generated Forces (CGF) Assessment

Wilbert J. Brooks and Marguerite M. Dymond
U.S. Army Materiel Systems Analysis Activity

Aberdeen Proving Ground, Maryland 21005-5071
e-mail: wbrooks@arl.mil

1. Abstract

Computer Generated Forces (CGFs) are software
driven forces whose tactical behaviors/decisions are
made by human commanders (semi automated
forces) or automated algorithms (automated forces).
CGFs were developed to support Army applications
in three modeling and simulation domains.
Distributed Interactive Simulation (DIS) applications
have been demonstrated in all three domains. CGF
developments to support DIS fall into two categories:
new developments and modifications to existing
CGFs.

The CGF Assessment evaluated seven CGFs to
provide a basis for an Army investment strategy. The
CGF Assessment addressed four questions:
1. What are the current and planned CGFcapabilities?
2. What are the CGF characteristics?
3. Is the CGF credible?
4. Which DIS domain applications can be satisfied?

This paper presents the CGF Assessment approach
and summary of results and the Army's CGF
investment strategy.

2. Introduction

Computer Generated Forces are software driven
forces whose tactical behaviors/decisions are made by
human commanders (semi-automated forces) or
automated algorithms (automated forces). CGFs
were developed to support Army applications in the
three modeling and simulation domains: Advanced
Concepts and Requirements (ACR); Research,
Development, and Acquisition (RDA); and Training,
Exercises, and Military Operations (TEMO).

3. DIS CGF Development History

Distributed Interactive Simulation (DIS) proof of
concept was demonstrated for unit training by the
Simulation Network (SIMNET). SIMNET linked
simulators together in a virtual environment with a
semi-automated force (SAF) developed to represent
both the threat and friendly units. Since SIMNET

proof of concept for unit training, DIS applications in
all three modeling and simulation domains were
demonstrated using variants of the SIMNET SAF.
As a result of the SIMNET proof of concept for
training the Army initiated the Combined Arms
Tactical Trainer (CATT) program to develop the next
generation of Army training systems to support
combined arms training for units at the team through
battalion task force level. The first phase of the
CATT program is the Close Combat Tactical Trainer
(CCTT) development. CCTT supports training for
armor and mechanized infantry units. Manned
simulators support the primary training audience.
CCTT SAF fills out the battlefield with Opposing
Forces (OPFOR) units and adjacent, supporting, or
tethered Blue Forces (BLUFOR) units. CCTT is
scheduled for fielding in 1997.

Modular SAF (ModSAF) development was initiated
by the Advanced Research Project Agency (ARPA)
in 1992 as a replacement for SIMNET SAF for DIS
RDA and ACR applications and to support SAF
advanced distributed simulation research. ARPA and
the Simulation, Training, and Instrumentation
Command (STRICOM) continue to sponsor its
development and application in ACR, RDA, and
TEMO domains. STRICOM's Battlefield Distributed
Simulation-Developmental (BDS-D) Advanced
Technology Demonstration (ATD) is enhancing
entry-level representation for Army systems and
verification and validation through the Anti Armor
(A2) ATD. ARPA is sponsoring the development of
an Air Force, Navy, and Marine Corps ModSAF as
part of the Synthetic Theater of War (STOW)
program. Due to the accessibility of the source code,
ModSAF provides the foundation for the advanced
distributed simulation research in the following areas:
Intelligent Forces (IFOR), Command Forces (CFOR)
SAF, synthetic environment phenomenology (e.g.,
clouds, smoke), real-time information transfer,
networks, development of a High-Level Architecture
(HLA), Synthetic Environment Data Requirements
Information System (SEDRIS), and the next
generation of DIS protocols.

127

CCTT SAF and ModSAP were designed to run in
real-time, be DIS compatible (DIS compliant (send
and receive DIS protocol data units) and coherent in
time and space with respect to other simulations).
STRICOM, PM CATT, and ARPA initiated planning
to develop an interoperable (DIS compatible with
consistent physical and behavior models that ensure a
fair fight) CCTT and ModSAF capability.

Several existing CGFs are being modified to run in
real-time and be DIS compliant and compatible:

a. Interactive Distributed Early Entry Analysis
Simulation (IDEEAS) variant of Battlefield
Environment Weapon System Simulation (BEWSS).
BEWSS is a high fidelity engineering simulation that
models critical performance characteristics for
precision guided weapons in a realistic battlefield
environment. It was developed by the Missile
Command (MICOM) for trade-off analyses
comparing different sensors, guidance, and missile
designs in a degraded environment; performance
comparisons of different terminally guided and smart
weapons in a degraded environment; small unit smart
weapon force mix analyses; and optimum
employment studies for smart weapons. IDEEAS has
two main objectives: 1) to create a DIS compatible
version of BEWSS, and 2) to make BEWSS an
interactive tool.

b. Interactive Tactical Environment Management
System (ITEMS). ITEMS was developed by CAE
Electronics, Montreal, Canada, for the Army
Research Institute as an outgrowth of CAE's in-house
capability as a simulator developer. Since ITEMS
was designed to run in real-time to provide a virtual
environment for simulators, its architecture supported
making it DIS compliant and compatible. ITEMS is
designed to support engineering analyses of rotor and
fixed wing aircraft, including mission equipment and
sensor systems in a realistic environment (including
countermeasures). Today, ITEMS is also used by the
Research, Development, and Engineering Centers
(RDEC) for aviation, armaments, and tanks; industry;
and foreign military facilities around the world.
c. Janus linked to DIS (JLINK). JLINK is a recently
completed research project that developed a DIS
compatible version of Janus (i.e., linked through an
interface called World Modeler (WM)). It has been
demonstrated with manned simulators and ModSAF.
Janus was developed by Lawrence Livermore
National Laboratory (LLNL) in the early 1970s. In
1983, LLNL transferred the source code and system
design of Janus 1.0 to the Training and Doctrine
Command (TRADOC) Analysis Center (TRAC).

TRAC has improved Janus through enhanced
functional representations and a more robust
operating systems (UNIX). Janus 5.1 is installed at
over 50 sites worldwide where it is primarily used for
training, combat development analyses, and research
and development. TRAC is planning to continue
research with JLINK with formal configuration
management planned in FY98.

d. Joint Conflict Model (JCM). JCM was developed
by LLNL as a derivative of the Janus simulation to
support joint staff training exercises. Janus was
expanded to represent a brigade task force supported
by air and naval operations. Subsequently, JCM was
re-designed using an object-oriented approach for its
data structures and added a DIS protocol interface.

e. Joint Tactical Simulation (JTS). JTS is also a
Janus derivative developed by LLNL. The current
JTS is a re-engineered and significantly enhanced
merger of Urban Combat Computer Assisted Training
System (UCCATS) and the Security Exercise
Evaluation System (SEES). JTS is a unique high
fidelity simulation of dismounted combat in an urban
environment. JTS is currently used for officer
training and operational planning by U.S. Army
Europe (USAREUR) and U.S. Army Special
Operations Command (SOCOM), site security
training and analysis by U.S. Army Southern
Command (SOUTHCOM), and security training,
analysis, and evaluation by Department of Energy
(DOE) National Laboratories. Joint Warfighting
Center (JWC) plans to merge JTS and JCM into a
single simulation.

At a briefing for the Army senior leadership (charged
with oversight responsibility for modeling and
simulation to support acquisition) on ModSAF
development status in October 1994, the need to
assess these seven CGFs to provide a basis for
developing an optimum Army CGF investment
strategy for DIS was identified. The Army Material
Systems Analysis Activity (AMSAA) was tasked to
develop a plan to evaluate alternative CGFs because
MSAA was managing the A2ATD and participating
in the development and verification and validation of
all CGFs except JCM and JTS. AMSAA formed a
CGF Assessment Working Group composed of
knowledge people within the Army (Army Materiel
Command, TRAC, and National Simulation Center),
Institute for Defense Analysis, the Mitre Corporation,
Carmel Applied Technologies, and Illgen Simulation
Technologies, Inc.

128

4. Purpose and Approach

The purpose of the CGF assessment was to evaluate
the alternative CGFs for all Army DIS domains:
ACR, RDA, and TEMO.

The CGF Assessment addressed four questions:
1. What are the current and planned CGFcapabilities?
2. What are the CGF characteristics?
3. Is the CGF credible?
4. Which DIS domain applications can be satisfied?

Current and planned CGF capabilities were
evaluated on the basis of two evaluation criteria:
battle force representation and simulation modeling
features. Battle force representation assesses the
ability of the CGF to represent different types of
weapon systems/military equipment for all services
(Air Force, Army, Navy, Marine Corps); levels of
military organizations (platoon through Division);
Command, Control, Communications, and
Intelligence (C3I); behaviors of entities and units;
tactics and doctrine. Command entities and their
ability to communicate with crews through the
Command and Control Simulation Interface
Language (CCSIL) were also assessed. Simulation
modeling features characterize simulation models and
data bases used to represent system performance and
the environment.

CGF characteristics were evaluated on the basis of
system architecture; simulation execution; system
ergonomics; operation, maintenance, and
expandability; and scenario development. System
architecture addresses both hardware and software
architecture. Hardware requirements were assessed
for several scenarios. Software architecture addresses
run-time architecture, software development
environment and standards, system update rate and
load balancing, hardware platforms that run the
software, and DIS network interface.
CGF credibility was evaluated based upon
verification, validation, and accreditation completed
and planned. Long term configuration management
was also considered.

5. CGF Requirements

While the CGF Assessment developed
comprehensive evaluation criteria to assess
capabilities, characteristics, and credibility, there are
key criteria in each area that can be considered as
discriminators among CGF alternatives to meet future
CGF requirements. Required capabilities include
flexibility in modeling unit behavior (i.e., semi

automated (player control) or validated automated),
physical algorithm fidelity (using standard
performance models for most applications and
engineering models for unique applications requiring
this level of detail), ability to represent the joint
battlefield, and a high resolution environment (time of
day, atmosphere, countermeasure for the entire
electromagnetic spectrum).

Required characteristics include the ability to run in
real-time, DIS compatibility, compliance with the
High Level Architecture (HLA)-interfaces and object
model templates for linking of simulation
environments, and using an object management
approach. Credibility requires verification,
validation, and accreditation of the CGF for
applications and a government controlled
configuration management process and access to the
source code.

6. Objective CGF Architecture

Before presenting summary comparisons of the seven
CGFs capabilities, characteristics, and credibility, an
objective CGF architecture that uses an object
management approach (OMA) is described. OMA
describes a software architecture for composing
CGFs to meet applications from interworking
component objects. Objects are defined in terms of
attribute data and operations they make public. All
objects require some services. Two or more (but not
all) objects share facilities. Some objects have
unique attributes and operations they make public
(not common with any other object). Examples of
services required by all objects are time and exercise
management. Examples of facilities shared by two or
more objects are physical models. An example of a
unique object may be a weapon on one system (e.g.
laser). Objects in a CGF (unique, shared, and
required) are connected by an object request broker
using an interface definition language.

7. Comparison of CGF Capabilities,
Characteristics, Credibility

Comparison of required capabilities indicates that
only three CGFs offer flexibility in modeling unit
behaviors (semi automated or automated): CCTT
SAF, ITEMS, and ModSAF. A higher level of unit
behavior automation (CFOR) is also being developed
in ModSAF as part of the STOW program. BEWSS
uses scripted battles and is developing a semi-
automated capability. All the Janus model
derivatives (JCM, JLINK, and JTS) are only capable
of modeling unit behavior through human

129

intervention (semi automated) or replay of scripts
from previous Janus battles. All CGFs use standard
performance models (or derivatives). BEWSS has
implemented engineering models for missiles and
smart artillery, and ITEMS has implemented
engineering models for aviation systems (including
weapons). JCM is the only CGF that has a joint
battlefield representation. ModSAF is developing a
joint battlefield representation as part of the STOW
program. BEWSS and ITEMS have implemented a
higher resolution environment representation for the
systems engineering models. CCTT SAF plays
terrain interactions and their impact on mobility at the
highest level of resolution. JTS has a unique
representation of urban terrain. Finally, a dynamic
environment is being developed in ModSAF as part
of the STOW program.

Comparisons of CGF characteristics indicate that
only CCTT SAF, ITEMS, and ModSAF were
designed to run in real-time and be DIS compatible.
Only CCTT SAF and ModSAF are being developed
and will demonstrate HLA compliance. In addition,
ModSAF will be modified as part of the STOW
program to demonstrate an initial object management
approach.

CGF credibility depends upon verification,
validation, and accreditation. CCTT SAF has the
most comprehensive VV&A plans and configuration
management process. The government owns or
currently has unlimited rights to the source code for
all CGFs excepts ITEMS. Although ITEMS is a
proprietary code CAE is willing to negotiate sale of
the code to the U.S. government.

8. Conclusions

The CGF Assessment concluded that:

1. BEWSS, JCM, JUNK, and JTS are not robust
CGF solutions for DIS because they do not have
automated behaviors, and they were not designed to
run in real-time or be DIS compatible.

2. CCTT SAF, ITEMS, and ModSAF have the
potential to meet all domain applications with
additional investments. Integration of interoperable
ModSAF and CCTT SAF functionality into a
flexible, extensible SAF architecture that exploits
distributed object management approaches and is
HLA compliant should meet all future Army CGF
requirements with the least additional investments.

3. BEWSS, ITEMS, JCM, and JTS will continue to
meet unique CGF requirements (engineering trade-off
analyses, joint operations staff training, and
dismounted infantry in an urban environment) until
integrated ModSAF and CCTT SAF are available
with these capabilities. Unique functional capabilities
in these CGFs should be identified and incorporated
into the ModSAF and CCTT SAF architecture (if
necessary).

4. The Army needs a ModSAF configuration
management process that institutionalizes ModSAF
V&V implemented by BDS-D/A2ATD. STRICOM
(DIS Program Manager) has the lead for developing
this process.

9. Army CGF Investment Strategy

The Army investment strategy is to integrate
interoperable ModSAF and CCTT SAF functionality
into a flexible, extensible SAF architecture that
exploits distributed object management approaches
and is compliant with the High Level Architecture
being developed by DMSO. The short term ModSAF
and CCTT SAF integration goal is to develop and
demonstrate an interoperable ModSAF and CCTT
SAF capability in STOW 97. This strategy leverages
Army, ARPA, and DMSO investments in ModSAF,
CCTT SAF, STOW, HLA, and Advanced Distributed
Simulation research. The ModSAF and CCTT SAF
integration will be managed by the CATT Program
Manager.

The CCTT SAF and ModSAF integration program is
built around a series of experiments and technical
assessments, which progressively assess key issues in
interoperability and integration of capability. The
major issues affecting SAF integration are terrain
interoperability, command and control, network
communication, and architectural design.

10. Biography

Mr. Brooks is Chief of the Simulation Branch at the
Army Materiel Systems Analysis Activity and the
Army's A2ATD Program Manager.

Ms. Dymond is an Operations Research Analyst at
the Army Materiel Systems Analysis Activity.

130

Considerations for the Use of Entity-based Simulations for Tactical
Decision Making Training

Jack P. Berkowitz
The MITRE Corporation

49185 Transmitter Road, Bldg. 626, San Diego, CA 92152
jack@mitre.org

1. Abstract

The LeatherNet system provides a unique opportunity
for the use of CGF by operational commanders. In
this article, the development of the LeatherNet
training system is reviewed, highlighting the training
and human computer interaction principles which
have guided development. The system incorporates
modules that perfrom synthetic force simulation,
speech recognition, visualization, and decision
aiding. Next, the beginning efforts at performing
structured training effectiveness evaluations are
reviewed, along with the shortcomings of this
evaluation.

Two critical elements are highlighted in connection
with using Computer Generated Forces (CGF) for
decision making training. First, the fidelity of the
CGF behaviors must be relatively high, despite the
relative abstractness of some of the trained concepts.
Second, although often tacked on last, the user
interface to the CGF must be considered up front
when designing CGF applications, including the
design of the actual simulated forces.

2. Introduction

As part of the agreements reached between the
Defense Advanced Research Projects Agency
(DARPA) and the United States Marine Corps, a
development was initiated that would benefit both
DARPA's ongoing Synthetic Theater of War
(STOW) program and the Marine Corps Air Ground
Combat Center (MCAGGC) Twentynine Palms'
training mission. This cooperative development
would result in a capability that could be used to
actively train Marine Corps users for a specific series
of exercises at MCAGCC.

The development is being conducted by the Naval
Command Control Ocean Surveillance Center,
Research Development Test and Evaluation Division
(NRaD) on behalf of the DARPA Synthetic Forces
Program Manager. NRaD is assisted in the
development by a series of contractors located
throughout the country. MITRE supports the
development by running the integration and training
site at MCAGCC Twentynine Palms and through
other engineering in San Diego and other sites.

The LeatherNet system was devised for two purposes:
1) to provide a mechanism for subject matter expert
feedback regarding synthetic force behavior for the
Marine Corps component of STOW; and 2) to
provide a real-use exploratory system for the Marines
cycling through MCAGCC for Combined Arms
Exercise (CAX) training. Included in this
development was the implementation of a research
laboratory and test bed at MCAGCC for the
development of the training system.

This paper is organized in three sections. First, a
recap of the system requirements and design is
presented. Next, the preliminary efforts at evaluation
of training system effectiveness, and efforts to
improve these results, are presented. Last, a
discussion of needed training concepts and
components is provided.

Note that the specifics of the LeatherNet
implementation are available from other sources
(Osga and Murray, 1994; Berkowitz, 1995a;
Berkowitz, 1995b). The focus on this paper will be
on the rational for developments and not specifically
on implementation considerations; however, some
references the prototype implementation are
provided.

3. Development of the Training Concept

The LeatherNet system is a group of computerized
tools for the primary purpose of performing
command decision training and tactical mission pre-
and post briefs. Central to the LeatherNet system is
the concept of wargaming, in which users can
establish scenarios and conduct battles using friendly
forces against unfriendly forces. Essentially,
LeatherNet provides tools to allow a Marine Corps
user to perform wargaming using simulated
individual, mechanized, and airborne forces, and to
manipulate the ongoing simulated battle through a
series of visualization tools.

3.1 User

The intended user of LeatherNet is a Marine
commander at the company commander or battalion
level of command (0-3+). The Marine can perform
multiple tasks using the system, including plan

131

assault and defense missions on a simulated
battlefield, run these planned missions using
simulated troop behaviors, and review/critique
previous simulated and real battles using the
assembled computer tools.

3.2 System Requirements

The system is designed around a series of basic
training and human computer interaction
requirements, all focused on the central development
concept presented above. In the next few paragraphs,
the essential system requirements are presented. The
first few requirements are major driving functions for
the system design and are expanded here, with the
additional requirements presented in a reduced format
for brevity.

3.2.1 Knowledge of Results.

Essential to the positive transfer of training is the
effective use of Knowledge of Results within the
system (Jacobs, et al,; 1993). Including adequate
methodologies for experimentation of tactics (so-
called "bands and sequels") and arranging the system
to rapidly track and analyze results can aid in the
trainee understanding what went wrong with his plan
as well as what was correct. The timely presentation
of results can be beneficial both for recalling
information not readily evident, as well as indicating
changes that might be easily implemented. If
presented within the same session, the trainee might
be able to continue to work using his adapted
strategy, and thus successfully complete the
simulated mission.

Included in this concept is the proper application of
multimedia tools to provide adequate and appropriate
knowledge of results to the Marine Corps user. This
is an important concept to ensure positive training
transfer as opposed to null or negative training. For
example, if the concept being trained involves the
three-dimensional relationship between a
commander's ground units and supporting indirect
fire, then it might be best to present this information
in a three-dimensional format, as opposed to text
tables or scores.

3.2.2 Training Needs

A primary goal of this guideline is to select and
prioritize information and design techniques towards
providing meaningful training (Goldstein, 1986;
Hays and Singer, 1989). For example, a range of
informational items may be displayed describing the
status of an individual SAF entity. The selection of
which information should be selected is determined
by what is more meaningful to the Marine
commander being trained. Given that systems have
limited display space and techniques, an appropriate

trade-off would be to display the current and intended
orders for the entity, as opposed to the DIS protocol
entity number. In addition, information can be
prioritized according to the importance at the specific
time in the simulation, as this may also prove useful
for training.

3.2.3 Unified User Interface

Despite the array of computer tools and hardware
systems employed, the user must see a unified view
of the LeatherNet system. The central component of
this view is provided by the human computer
interface (HCI) of the CommandVu system.
Essentially, CommandVu provides a three
dimensional representation of the simulated
environment, and provides method for the user to
interact with the CGF entities. This view is
augmented by two dimensional map and information
displays to provide additional tactical and planning
information The interaction of the user will be
restricted to the CommandVu system, with necessary
interaction to other LeatherNet components,
including Marine Corps Synthetic Forces (MCSF),
performed using the CommandVu Input Manager.

The reason for this restriction is two-fold. First, the
users of this system are Marine Corps commanders
who, although undoubtedly proficient in several
computer systems, are using LeatherNet for command
training. This training is provided once or twice a
year at the Marine Corps Air Ground Combat Center
(MCAGCC), 29 Palms. The various tools for the
command training, including MCSF, each have
unique user interfaces, and are undoubtedly different
than the common user interfaces the Marines will
have on their personal computers. Therefore, using a
common user interface for all LeatherNet tools will
simplify the process of learning a computer system
for the Marines — the purpose of the system is to
produce better trained military commanders, not
better trained computer users.

Second, conventional command training takes place
in the field; at 29 Palms, two sample maneuver
ranges are Range 400 for troops and Delta Corridor
for mechanized units. In the field, the commander
can visually acquire both friendly and enemy targets,
as well as use other sensors for detection.
Commands are largely verbal, with responses from
units provided back via radio. The LeatherNet
system mimics this relationship through three
dimensional representation and voice input and
feedback. There are a series of complex cognitive
skills combined for command decision making, and
by maintaining some of the environmental constants
for the commander, hopefully negative training
transfer effects due to using an "artificial" system can
be minimized.

132

3.2.4 Synthetic versus Real Environment

The environment created for LeatherNet is a synthetic
environment which provides representations of the
real-world using computer generated imagery and
sound. However, the intent of the system is not to
create an absolute replica of the real world. The level
of environmental fidelity reproduced by the system
should be determined in reference to the identified
training needs of the Marine Corps user community.

The distinction allows for a range of possibilities in
terms of interface design. A primary implication is
the ability to add decision aiding overlays in the
graphical environment. For example, an graphical
enveloped may be added to the display which
represents the fly-out patterns for weapons. This
representation is not available on a real training
range; however, the knowledge of the weapon ranges
may assist in overall decision training, and therefore
can contribute valuable information. Similarly, the
visual detail provided on entities appearance, the
environment, and other information can be
manipulated to reach an optimal level between the
absolute reality and the needs of the trainee.

3.2.5 Natural Input Methods and Language

Driven from the training needs requirement is the
selection of input and output methods which will not
interfere with the intent of the training mission. The
techniques used to control entities, and for that
matter the training environment, should match those
that are used in the real world to the degree possible.
If not, it is possible that negative training effects
could be encountered, with commanders getting very
good at manipulating a computer, but actually
learning bad or incorrect troop movements due to
using the computer.

3.2.6 Timing of Events

Command decision making, particularly in combat,
is an extremely time critical process. The
information received from the field must be relayed
quickly and clearly, and subsequent orders must be
transmitted and received efficiently. The LeatherNet
system must similarly provide a realistic response
relationship in terms of processing orders and
providing feedback to the Marine using the system.

3.2.7 Dynamics of Combat Environment

The battlefield is a very dynamic environment.
Despite the best planning and strategy, the
commander must constantly change and alter orders
in response to developments, both positive and
negative, in the battle. One key to executing the
strategies is knowing that the changed orders have
been received and are being followed by the
subordinate troops. Similarly, the LeatherNet user

interface must incorporate adequate flexibility and
feedback cues so as to enable the commander to direct
the battle as he/she would in the real world.

3.3 System Description

Given the adoption of the requirements above, a
series of design activities were initiated, including
limited training needs assessments, projective task
analyses, story boarding, and paper user interface
prototypes. Based on the preliminary design work, a
system was designed and is currently being
implemented geared towards the MCAGCC CAX
user. The major components of the LeatherNet
system are described briefly in the next sections.

3.3.1 Synthetic Forces

For each mode of operation, the heart of the
LeatherNet system is the Marine Corps Synthetic
Forces (MCSF) that are depicted on various displays.
These forces are computer simulations of actual troop
and vehicle behavior, termed entities in the computer
modeling field. The behavior of entities is based on
extensive knowledge acquisition on actual troop and
vehicle movements, and the translation of this
knowledge into computer models of the specific
component. The focus of the MCSF project is the
development of infantry or individual combatants for
STOW, although additional vehicles and weapons
platforms which are Marine Corps specific are also
being developed (for example, the Amphibious
Assault Vehicle).

MCSF is a computer program which can be used to
manipulate and control the behavior of entities on a
simulated battlefield. In this respect, MCSF is the
heart of the LeatherNet system, as it is the tool that
drives the balance of the simulation system. MCSF
is built on top of an existing military simulation
program, ModSAF, which allows for the control of
tactics, troop response, environment, enemy position,
and many other aspects of the simulated battlefield.
Again, the additions for MCSF include enriching the
capabilities for inidividual combatant entities to
fight, receive commands, and react to various
stimuli, including MCSF is capable of being run in
a stand-alone configuration; however, LeatherNet
provides a series of visualization tools and decision
aids which can greatly enhance the training and
simulation environment for the user.

3.3.2 Visualization

The primary tool provided is the CommandVu
visualization environment. CommandVu provides a
three-dimensional representation of the entities on the
simulated battlefield, and allows the user to move
throughout the battlefield to view and control
movements from different vantage points. In

133

addition, CommandVu provides a series of graphical,
auditory, and intelligent decision aids to assist the
user in planning troop movements, in learning and
predicting troop response, and in following
maneuvers and decisions post hoc. Most
importantly, all user interaction with the LeatherNet
system, including the ModSAF simulation engine, is
provided through CommandVu.

3.3.3 Terrain Analysis

What this feature allows for is the combining of
additional tools with ModSAF in order to strengthen
the training potential of the system. The Terrain
Evaluation Model (TEM) can provide quick analyses
of terrain data for use in the system. Operating off
of military terrain data bases, TEM provides Iine-of-
sight and weapons coverage analysis capabilities.
The eventual goal is to have the outputs of the terrain
analysis displayed in both two and three-dimensions.

3.3.4 Natural Input Methods

Additionally, DARPA sponsored Voice Recognition
tools can be used to pass messages to ModSAF to
allow the Marine user a more natural method of
interaction with the simulated entities. These tools
allow for speech recognition and natural language
understanding of verbal commands issued from
commanders and commands for controlling the
simulated environment. Essentially, the speech
recognition system allows the user to use "radio-
speak" for command and control of the simulated
forces.

In additon, methods for combining pen-based gesture
and voice recognition for transmitting graphical plans
to the simulated forces are being developed. The
method of interaction for these tools include the
drawing of attack positions and avenues of approach
onto a tactical map display, and then transmitting
these "pictures" to the forces. This method attempts
to replicate the use of paper maps and acetate overlays
commonly used for small unit planning.

To effect these inputs, several techniques are
employed. Display devices include:

• Helmet mounted displays
• Large projection displays arranged as a

walk through environment.
• Three dimensional sound
• Speech generation.

Input devices include:
• Speech recognition
• Keyboards and virtual on-screen

buttons.
• On screen controls (tape displays)
• Joysticks and other tracking devices.

4. Evaluation of the Training Concept

The initial implementation of the LeatherNet system
proceed based on several iterations of design analyses
and reviews. However, throughout the entire
development process, essential questions regarding
the effectiveness of the system to prepare company
commanders for CAX exercises continued to surface.

These questions were complicated due the relatively
long development cycle required of the system.
Although portions of the system had been in
existence separately in various forms, the
combination of the systems for training had not been
tried previously. In addition, the complexity of the
software system required long lead times for
translating requirements into stable and somewhat
functional platforms.

In the fall of 1995, it was decided to perform a semi-
controlled experiment using actual CAX participants
as subjects. This test would occur approximately 14
months after the initiation of the development effort,
and a full two years before the scheduled completion
date of the system.

The focus of the testing for the development team
was to identify if the training concept was feasible
given the constraints of the CAX schedule and
requirements that was administered at MCAGCC.

The emphasis from the Marine Corps was to identify
those parts of the system that were useable to the
CAX process immediately, and begin to phase these
developments into the on-base training cycle as they
made sense. It should be noted that at no time was
the initial testing construed to be an evaluation of the
work being produces, i.e., this was not an acceptance
test for modeling and simulation by the Marine
Corps.

4.1 Test Conduct

The initial focus of the use of LeatherNet was for the
mission analysis and briefing of the Range 400
exercise which occurs during the CAX. The R400
exercise is an infantry company dismounted attack on
a series of lightly fortified positions "manned" by
fictional enemy within a box canyon. It is a live-fire
exercise for the Marine Corps, and includes the use of
indirect fire weapons (mortars), heavy machine guns,
and shoulder launched missiles (DRAGON).

For a Marine company commander, this exercise
represents several of the critical decision making
tasks which he must employ in combat. Included in
these decisions are the use of suppressive fire to
support movement, the employment of supporting
forces such as engineers, to augment regular assets,

134

and the management of resources such as ammunition
and personnel. Successful execution of the mission
resembles a well executed football play, with a
continuous flow of troops up the canyon.
Unsuccessful execution is marked by a lack of
movement, the running out of ammunition, and
generally disrupted performance. It should be noted
that the development team members, many of whom
had no experience with Marine Corps land
maneuvers, quickly learned to spot successful and
poor R400 performances.

The exercise is administered by the Tactical Exercise
Evaluation and Control Group (TEECG), a
permanent resource at MCAGCC who operate the
CAX process. This group had been functioning as
the subject matter experts for the MCSF
developments, and would function as the eventual
administrators of the LeatherNet system. The choice
of the R400 scenario was also beneficial as it was one
of the major development scenarios for the MCSF
individual combatant development to date.

Breaking down the R400 exercise further, the
execution consists of six distinct elements, including
two obstacle breaches, the movement of indirect and
supporting fires, and the clearing of three different
trench systems. The execution of each of these
elements in sequence provided a framework for the
employment of the LeatherNet system.

4.2 Test Implementation

Soon after initiating the test planning, it became
obvious to both the Marine Corps and development
team representatives that a complete use of the
LeatherNet system would not be possible, nor would
complete use of the synthetic forces by achievable.
In terms of CIF, several of the behaviors needed to
complete an entire company-level mission sequence
were judged to be relatively immature. Furthermore,
the visualizations to support some aspects of
planning, including the linkage to terrain analysis,
were not complete. This situation was not surprising
considering the development schedule and the thrust
for early evaluation, but it did impact the use of
different tools in the evaluation.

It was decided to approach the use of the system in a
lecture format course with a TEECG representative
acting as an instructor for a course in basic infantry
operations. The course would focus on several
elements from the METT-TS-L concept (Mission,
Enemy, Terrain, Tactics, Time, Space, Logistics),
and particularly the Intelligence Preparation of the
Battlefield (IPB) (U.S. Army, 1994). Due the
maturity of the different tool sets, the initial course
would emphasize the use of the TEM and

CommandVu systems for terrain analysis, with the
use of CGF limited at first.

The Marine Corps desired to employ some method of
using a control and experimental group for the test,
sending half of company commanders into the
LeatherNet system for a lecture course, with the
control group receiving a similar briefing, but only
using the 1:50K resolution maps that are standard
issue. For the two CAX rotations used for the
evaluation, this represented three company
commanders in each group. The exposure for both
groups would be two hours, with similarly topics
covered.

It should be noted that this was far from a structured
training effectiveness experiment. Due to the
logistics of units participating in the CAX process, it
is difficult if not impossible to get equivalently
balanced performers assigned to different study
groups. Similarly, as part of existing range
orientation practices at MCAGCC, all commanders
are allowed to walk the actual terrain with safety
officers, and the Marine Corps was understandably
hesitant to suspend this practice for an initial system
test.

The other major difficulty was in the quantification
of results from the training. In a classical training
effectiveness study, a series of transfer measures are
collected from both objective and subjective data to
derive some indication of transfer and corresponding
transfer effectiveness (i.e., dollar spent for amount of
incremental improvement). Collect measures from
both the control and experimental group and
essentially a rough measure of transfer can be
deduced.

Although seemingly straightforward for the R400
problem, the difficulty lay in the fact that company
commanders do not actually "fail" on R400. This
situation does not constitute a grade inflation for the
commanders, it is just a more subjective assessment
between the TEECG, the superior officers in the unit,
and the commander himself. There are a multitude of
factors that are uncontrollable in the exercise,
including weather, the state of readiness of the unit,
basic experience level, and so on which complicate
any evaluation. However, attempts were made to
formulate some qualitative measures centered around
the six R400 phases, and used in the subsequent
analysis.

4.3 Test Results

The test results break into two elements, those
concerning LeatherNet system use, and those
concerning specific CGF use and interaction. Note
that the collection of data did not follow a strict

135

evaluation prototcol. Although a more rigorous
evaluation procedure was proposed, the Marine Corps
chose to use a questionnaire approach, again in
reference to the relative early stage of system
development (Berkowitz, 1996). Further transfer
studies are planned as development continues.

4.3.1 System Use

The results of the initial testing indicated that the
system, although limited in its application, did have
some benefits to the user population. Subjective
comments included the improved selection of
approach and target points, the use of intelligent
terrain analysis tools, and the improved use of the
lecture/classroom tools by the instructor (an
unintentional improvement was the perceived
improvement in the curriculum that the entire CAX
process underwent). TEECG subjective assessments
of the student's performance did not differ between
the control and experimental group, however, given
the nature of the software status and the constraints
on the evaluation, this result was not unexpected.

Most important for the LeatherNet development was
the feeling within the TEECG that the system did
have some usable components even in the current
state, and that the TEECG subsequently decided to
phase in all aspects of the system into regular CAX
training rotations. This resulted in the development
of a revised R400 curriculum featuring the LeatherNet
system's use during the preparation for mission
stages. LeatherNet use continued into the 1996 CAX
schedule, with additional features introduced into the
system as of the April, 1996 CAX rotations.

4.3.2 UseofCGF

This latest development is most critical to the
concept of entity based CGF used for training. As
noted previously, the use of CGF in the Fall 1995
evaluations was limited. This was primarily due to
the limited maturity of the CGF behaviors.
Although these behaviors were considered sufficiently
developed for successful demonstration in the STOW
Engineering Demonstration I activities conducted in
the Fall of 1995, the TEECG felt that they were not
to the level required for active student use.

Specifically, the TEECG felt that the CGF should be
able to conduct elements of all six required phases
(breaching, machine gun set-up, etc.) for the use by
students for their active training. Anything short of
complete and reasonably accurate behaviors could
prove disrupting to the student's ability to grasp
concepts that needed to be expressed. For example, a
critical concept in the R400 training is the use and
control of machine guns as a base of fire for
maneuvering troops. It would be necessary for the
student to be able to accurately control the machine

guns produced by CGF, and to have the squads
behave according to standard operating procedures for
the exercise, so as not to distract the student from
learning to control the fires as part of an overall
movement. The concern was that if a student had
to focus in on a specific piece of CGF that was
not acceptably functioning, then he would be
distracted from the overall situation of the
exercise. Interacting with the behavior of the CGF
was the method of controlling the CGF — if the
interaction was not a natural method, then the
trainee would similarly be drawn into an
artificial mode and away from the actual
intended training situation. These two concerns
form the basis of the training concepts and issues to
be presented in section 5.

It should be noted that as more mature CGF
behaviors are coming on line within MCSF, they are
being phased into the training program at MCAGCC.
For example, as of the April CAX, the use of cover
and concealment by CGF infantry squads is of
sufficient "fidelity" that the TEECG is allowing
some limited use of their behaviors for students to
time movements

5. Entity-Based Training Concepts and Issues

Based on the experiences from LeatherNet
developments to date, and specifically the use of
LeatherNet tools for company commander training at
MCAGCC, several issues can be put forth concerning
the use of entity-based simulated forces for training.
These issues are somewhat complex and have several
layers of variables associated with them, however, an
attempt is made to constrain them to the low level
commander use being experienced at Twentynine
Palms. Several additional concerns may be more or
less important with the increasing echelon levels of
the training audience.

For the LeatherNet system, two areas of concern
arise: 1) the functionality of the CGF behaviors, and
2) the methods for human interaction with the CGF.
Although discussed separately below, both factors are
inextricably linked when considering system
implementation. Also discussed will be a more
structured method of training evaluation and
assessment that would prove useful in improving
system design.

5.1 Functionality of CGF behaviors

MCSF behaviors are being developed to support the
missions of the Marine Corps component for the
STOW exercise. The R400 exercise is almost a
perfect match to these requirements because the six
mission phases executed are also present in the

136

preliminary mission assignments for infantry in the
STOW scenarios.

However, at the levels of the STOW training
audience (JTF and Component commanders), small
problems with CGF performance will not
significantly affect commander decision making. The
same is not true at a lower echelon level, and in fact,
can effectively render the training useless. The
critical point is that at lower echelon levels, CGF
behaviors to support decision making must be
exact and precise, even if the decision making
concepts are relatively abstract such as resource
management.

For example, the situation where the CGF do not
adequately employ machine guns means that the
balance of the mission can not be executed. For
illustration, suppose that the CGF expend
ammunition at a rate 10% faster than the company
commander desires, simply due to a slightly differing
standard operating procedure. To most CGF
development teams, this rate of fire problem would
not seem extreme, and although it could be fixed in
time, would probably not prevent the system from
falling outside of some acceptable bounds. However,
in response, the company commander must make
alterations to his plan during the scenario to account
for these events. This presents the situation where
the simulation no longer adequately represents the
real world to the trainee, thereby preventing positive
transfer of training. An argument can be made that
these situations happen in the real world and that the
commander should be able to adjust to these constant
management demands, but this fails to be sustainable
across all possible situations.

Similarly, CGF behaviors must be inclusive of all
missions that might be encountered during a specific
exercise. The key to decision making training in the
R400 scenario is the successful stringing together of
actions or phases that are usually practiced in
solitary. One Marine Corps advisor likens these
CAX exercises to the "big game" as opposed to
"blocking and tackling drills". Thus, successful
completion of the complete exercise requires all
aspects of the complete system to be functioning to
some degree of adequacy. The execution of a
mission without the capability to perform an obstacle
breach would be similar to attempting to forward
pass without blocking in the backfield.

5.2 User Interface to Support CGF Interaction

Whereas the first observation on CGF functionality is
probably not novel to experienced developers, it is
probable that the second observation has not received
enough attention by developers. Specifically, no
matter how sophisticated the CGF behaviors, the

system is limited by the relative efficiency of the
user interface to the CGFs.

A shortcoming of the system implementation as of
the date of testing was the degree of CGF control
allowed via natural user interaction modes. Despite
the fact that the CommandVu system was designed
around the Marine Corps user, and has been
constructed on the base with constant input, the jump
between normal operation methods and the level of
interface to CGF entities is large. The most
significant change is the degree to which Standard
Operating Procedures must be specified directly to
CGFs, where as operational forces would have pre-
knowledge or comfort with these concepts. Users
easily became involved in the intricacies in
specifying engineer level parameters and behavior
sequences. Therefore, subsequent development efforts
in the user interface are featuring the use of standard
operating procedures, natural language processing,
and other "regular" interaction methods.

This concept is also extendible to higher echelon
training exercises. Complex behavior assignments
are sometimes necessary for the completion of
taskings that can be expected from higher echelon
commanders. For example, in MCSF, a commonly
expected order that should occur in STOW is to have
infantry embarked on helicopters that would in rum
take off from an amphibious carrier. Once
disembarked from the aircraft, that infantry would
then be tasked with a series of missions appropriate
to their echelon. In terms of simulation, this
sequence represents a series of complex mission
assignments and procedures. Failures in the user
interaction with this system would affect the eventual
training audience either through incomplete execution
of simulated entity behaviors, incorrect execution, or
poor timing.

The LeatherNet system attemps to counter these
problems through the use of natural interaction
methods for CGF, including visualization, speech
recognition, natural language understanding, and
gesture technologies. Together, these methods seems
to be effective in minimizing some learning of the
systems, but more importantly, help to lower the
apprehension of users to CGF. This is an important
point as CGF continues to mature and become
accessable to different types of users.

However, despite adoption of novel interfaces and
methodologies by the LeatherNet project onto an
existing CGF architecture, the system will probably
continue to be limited and require expert "assistance"
from LeatherNet workers. The root of the solution to
these problems lies in the development of the CGF
entities themselves. The CGF entities have been

137

designed for performance to exacting performance
specifications, but not to specifications for then-
control by human operators. Just as C4I systems are
now being designed with the user interaction as a
central focus (for example, dynamic automation
assignments based on user mode), the simulations
which stimulate these C4I systems must consider the
human user before coding can begin (for example,
should there be a SOP file such that the user can rely
on it?)

This methodology is starting to be adopted within
the MCSF development strategy. As new behavioral
developments are initiated, so are the language and
gesture developments to support these behaviors. As
MCSF incorporates speech interaction, efforts are
made to keep speech capabilities in pace with
ongoing behavioral developments. Although there is
admittedly some lag in such developments, this
methodology has had some success, such that
baseline versions of MCSF for distribution are
speech, and in the future gesture, enabled.

The beginnings of such user-centered design is also
evident in the Command Forces (CFOR) project for
STOW, through which the infantry platoon and
company commander entities are being constructed.
In the design and analysis stage, the actual
communication processes between echelons are being
documented and implemented in the form of
Command and Control Simulation Interface
Language (CCSIL) messages.

A suggested improvement to CGF development
would be the completion of a user system interface
section during the Knowledge Acquisition and
Engineering phases of the development process.
Similar methods have been used successfully in the
development of complex decision aiding systems
(such as flight management systems in aircraft) and
in other complex system developments. Such a
section would not only contain the specific
messaging intended for CGF commands, but also a
notion of user specification of behaviors and
parameters.

5.3 Methods to Assess Training Effectiveness

A major difficulty in the work to date has been the
adoption of a standard methodology for the
evaluation of training effectiveness for LeatherNet.
Although standards of commander performance do
exist, these are only loosely applied within the R400
evaluation, as the collection of objective parameters
during the live fire exercises is difficult, and as noted
previously, the evaluation of performance is highly
individualized for each commander.

Two developments should improve this situation.
First, under separate programs, the Marine Corps is
beginning the development of a range
instrumentation system at R400. This
instrumentation system could allow for the collection
of objective data including direct measures of
performance such as ammunition expenditure, and
more indirect measures, such as time to complete
certain mission phases.

A second effort is the development of rating scales
for use in evaluating company performance on R400.
These scales have been developed in reference to the
specific battle drills and phases executed in the R400
mission, and are targeted in answering whether
positive transfer of training has occurred through
LeatherNet system use. However, as these are not
current operational evaluation matrices used by the
TEECG in the field, their active use for CAX
participants remains questionable. The hope is that
other units stationed at MCAGCC or visiting to
execute R400 outside of the normal CAX schedule
could be used as participants in such evaluations.

6. Acknowledgment

This work was performed under contract DAAB07-
96-C-E601. The work presented here represents the
efforts of many government and contractor personnel
working on the STOW program and LeatherNet. In
particular, the author would like to thank Mr. Frank
Carr of MITRE for his critical review.

7. References

Berkowitz, J. (1995a) Technical and Scientific
Report: Human Computer Interaction (HCI)
Design Guidelines and Concepts for LeatherNet.
San Diego, CA: Galaxy Scientific Corporation
for the Naval Command Control and Ocean
Surveillance Center.

Berkowitz, J. (1995b) Technical and Scientific
Report: LeatherNet Human Computer Interaction
(HCI) Functional Design. San Diego, CA:
Galaxy Scientific Corporation for the Naval
Command Control and Ocean Surveillance
Center.

Berkowitz, J. (1996) Test Report: LeatherNet
Human Systems Interface Design. San Diego,
CA: Galaxy Scientific Corporation for the Naval
Command Control and Ocean Surveillance
Center.

Goldstein, I. (1986) Training in Organizations:
Needs Assessment, Development, and Evaluation.
Pacific Grove, CA: Brooks/Cole Publishing Co..

Hays, R. and Singer, M. (1989) Simulator Fidelity
in Training System Design. Springer-Verlag.

138

Jacobs, R., Crooks, W., Crooks, J., Colburn, E.,
Fraser, R., Gorman, F., Madden, J., Furness, T.,
andTice, S. (1993) Behavioral Requirements for
Training and Rehearsal in Virtual Environments
(ARI-TR-9130-000-03-93). Orlando, FL: Army
Research Institute.

Osga, G. and Murray, S. (1994). Preliminary
Design Document. Concept of Operations:
CyberView Human Computer-Interface. San
Diego, CA: Naval Command, Control and Ocean
Surveillance Center, RDT&E Division.

United States Army. (1994) Intelligence
Preparation of the Battlefield (FM 34-130).

8. Author's Biography

Jack P. Berkowitz is a Senior Human Systems
Interface Engineer with the MITRE Corporation. His
current responsibilities include the design of the user
interface and training protocols for the LeatherNet
training systems, as well as issues related to the
usability of systems in the STOW exercise.
Previously, he was involved in the design and
evaluation of aviation security systems, flight deck
communications, and aviation fire and rescue
platforms for both the FAA and airline industry. Mr.
Berkowitz has a M.S. degree in Industrial
Engineering and Operations Research (Human
Factors) from Virginia Tech. His research interests
are in the areas of Complex Automation Systems and
Virtual Environments.

139

Testing Future Weapons Systems
Using CGF Systems

Michael A. Craft and Clark R. Kan-
Institute for Simulation and Training

3280 Progress Dr., Orlando FL 32826
mcraft@ist.ucf.edu, ckarr@ist.ucf.edu

1. Abstract

Techniques developed to use virtual simulations to
evaluate new or proposed systems (vehicles or weap-
ons) are discussed. An experimental application of the
techniques is described. Some of the practical prob-
lems encountered are discussed.

The techniques described are suitable for evaluating
proposed systems, system modifications, and, possibly,
tactics.

Many important decisions can be made by using virtual
simulation based evaluations early in the acquisition
process without endangering people, disturbing the
environment, or huge expenditures.

2. Evaluation Techniques

The evaluation of a weapons system (or a simple vehi-
cle or a tactic) using the techniques described requires
a suitable CGF system along with people who know
how to use it and software engineers capable of enhanc-
ing it. Experts are required to develop test scenarios
and evaluation metrics for the experiments. Project
members are needed to examine the statistical signifi-
cance of the experiments.

The Vehicle Under Test (VUT)1 must be compared
with some baseline, either an existing vehicle or a
competing variant. For the purposes of discussion, this
paper is couched in terms of two competing variants.

2.1 Personnel Requirements

The work described is more than just the development
of software. Scenarios used to test vehicles should be
designed by people who understand military scenarios.

' For simplicity, the remaining discussion refers to ve-
hicle tests and the Vehicle Under Test (VUT) although
the technique has much wider application.

Similarly, it is inappropriate to have software engineers
"invent" metrics for determining the outcome of the
experimental scenarios. It may be that "off-the-shelf
scenarios or metrics are available and can be employed,
but such plans should be reviewed by Subject Matter
Experts (SMEs).

2.2 CGF System Requirements

Many, perhaps most, virtual simulation packages that
comply with the Distributed Interactive Simulation
(DIS) protocol are suitable for this technique. Non-
DIS systems can also be used, providing they are ca-
pable of generating the needed (externally visible) in-
formation. The discussion here is in terms of the
analysis of DIS traffic.

The CGF system will almost certainly require modifi-
cations to support the variants to be evaluated.
Whether this is done by adding a new vehicle type for
each variant or by building a distinct system for each
variant is irrelevant. Other modifications may be re-
quired to support test scenarios. These matters (and the
difficulty of implementing them) are in part a function
of the quality and completeness of the CGF system
selected. Modification may also be necessary to sup-
port the evaluation scenarios.

A primitive CGF system or a vehicle implementation
without accurate vehicle characteristics (speed, correct
weapons modeling, valid damage information and
modeling, etc.) will yield untrustworthy results.

2.3 Scenario Development

A series of scenarios must be developed to exercise the
VUT in a manner consistent with its expected use.
Many scenarios may be required to represent a suffi-
ciently rich test environment. Scenario selection is a
substantial determinant of the quality of the outcome.

Each scenario should be customized for each VUT
since vehicles with different capabilities will almost
certainly use different tactics. It is unfair to use
"generic" tactics if the VUTs should use different tac-
tics.

141

2.4 Evaluation Metrics

A set of Measures Of Effectiveness (MOEs) must be
established, preferably before any scenarios are run. It
is probably necessary for the MOEs to be scenario de-
pendent, although this makes the evaluation phase
somewhat more complex.

In order to automate the evaluation process the MOEs
need to be in terms of quantities that are visible through
the (DIS) protocol. Many entity properties can be seen
or deduced from network traffic, including the entity's
health, location, velocity, and heading.

2.5 Experimental Variation

Although it would seem that all that is left is to run
each variant through (its version of) each scenario and
to compare the results, the situation is not that simple.
For one thing, a scenario may not (and should not for
these purposes) play-out the same from run to run: any
single test run is just one battle in a family of possible
battles for a fixed scenario.

Unless the scenarios are very simple, there is no way to
be sure that a given run is representative of the family
of possible outcomes. Many runs must be done and the
MOEs applied to each in the hope of finding the mean
MOE for a scenario-variant pair. It may be necessary
to have some automated perturbation of the scenarios
or CGF system2.

Perturbation can be accomplished by re-seeding the
random number generator (if one is used), moving ve-
hicle's start points (slightly) from run to run, or chang-
ing other factors that do not distort the scenario design,
but which might affect its modeling.

2.5.1 Sample Size

Statistical techniques (analysis of variance to compare
two means of independent samples) can be applied to
find the "superior" vehicle. However, the experimenter
must be aware of, or control, the precision of the re-
sult.

The first set of runs should be used to estimate the
mean and standard deviation for the MOEs (or the
overall metric). Using these results the number of runs

required to distinguish the versions (for a given confi-
dence) can be estimated.

2.6 Data Collection and Analysis

For each scenario, a number of trials are carried out for
each variant. Statistical techniques are applied to the
resulting MOEs to determine which variant is superior
for the given scenario. This paper discusses an appli-
cation of the techniques required.

Because results are likely to be mixed (some MOEs in
some scenarios indicate variant-1 is superior but other
combinations indicate variant-2 is superior) decisions
will have to be made as to which scenarios and which
MOEs are more important. Weights for each scenario
and each MOE should be determined before experi-
mentation is begun, and then a "decision" will be made
by building a weighted average based on all the MOE
results.

Whether such a mechanistic determination is accept-
able is up to the experimenters. If many MOEs are
used with many scenarios and a mixed result appears,
endless debates are possible as to which VUT is supe-
rior.

In any case, these techniques are suitable to generate
one or a raft of MOE results. If experiments are to give
"an answer" scenarios and individual MOEs need to be
combined.

3. Experiment Overview

The test case described here compared two variants of
a proposed Advanced Amphibious Assault Vehicle (the
Marine's AAAV) running under ModSAF, a computer
generated forces product developed by Loral3. A com-
plete experiment design was done, and an analysis of
the comparative value of the variants completed.

It is impractical and unnecessary to present the full
experimental details here. Rather, examples in key
areas are outlined. For a full description, refer to
[Craft, 1995].

The process is analogous to selecting one element of a
family of solutions to a differential equation by select-
ing an initial condition and then finding neighboring
solutions by perturbing the initial condition.

ModSAF is used for a variety of applications. It is
used for experiments by BDS-D, A2ATD, and
LOSAT. The National Guard uses ModSAF to support
training exercises with manned simulators. It is used as
an architectural prototype for the design for the Close
Combat Tactical Trainer (CCTT) SAF system
[Vrablik, R. and Richardson. W. 1994].

142

3.1 AAAV Variants

The only modeled difference is that the model of Vari-
ant AAAV-X has no Javelin mounted while the second
variant, AAAV-J, has a Javelin mounted on 1/3 of the
vehicles. Other differences were not modeled, but this
variation is by far the most important distinguishing
characteristic between the two AAAVs.

3.2 Accommodating the CGF

A daylight setting was specified for each mission with
no clock time specified. This allowed the use of exist-
ing ModSAF behaviors. No weather or environmental
conditions were created or supported. The scenarios
were designed to avoid firing weapons over the surf
zone since the Surf Zone is not a recognized ModSAF
terrain type.

ModSAF uses Line-of-Sight (LOS) triggering as a fun-
damental mechanism; the system constandy checks
LOS to determine if it has the ability to engage, report,
etc. The scenarios were laid out to avoid immediate
LOS between opposing forces. Scenario play allowed
forward movement (Movement to Contact) and LOS
acquisition (Enemy Contact); after that the ModSAF
modeled behavior determined the sequence of interac-
tion.

3.3 Terrain Selection

The terrain selected must be rich enough to support
meaningful scenarios, it must be available in a sup-
ported (computer) format, and other conditions may
come into play (such as the availability of military
standard maps). The details of selection will vary from
experiment to experiment. As a matter of information,
the AAAV experiment was carried out using two data-
bases; one for Hunter-Liggett and the other a Korean
TDB.

AAAVs are to take out a SCUD. Reconnais-
sance indicates an OPFOR force to the North
and South of the expected SCUD location. The
AAAVs leave a Mortar team on the beach while
the remaining forces split North, East, and South
(the N and S forces intending to set up blocks to
protect the Eastern forces). OPFOR forces are
encountered in the North and South, and battles
ensue. The Eastern force climbs through
switch-backs, encounters OPFOR forces, fights,
and destroys the SCUD.

Complete scenario design rationales were developed,
and a simplified Operations Order was written. A no-
tional Marine Expeditionary Unit (MEU) was created
along with an Amphibious Readiness Group (ARG) to
support the operations order. AAAV DRPM SMEs
assisted with the scenario details.

In the Raid scenario the transition from the plan to the
simulation in ModSAF required additional manipula-
tion to replicate the human control measures found in a
"live" exercise.

Many compromises were made to allow for the limita-
tions in the CGF system and, in some cases, the CGF
system was modified to accommodate the scenarios.

For example, the AAAVs, once ashore, followed routes
laid out to reach target positions, or move to contact.
Initially movements were controlled based on time.
This proved troublesome as changes in route caused
changes in timing (leading to frequent scenario re-
design and re-entry). A scenario modification was
made to allow the use of military 'Tactical Control
Measures" similar to those used on operations overlays.
This caused problems because the control measures
had to be in LOS of the units for them to effect their
control. A ModSAF modification was made to allow
the control measures to be non-LOS based.

3.4 Scenarios

Two scenarios were developed by an SME to provide
realistic and doctrinally correct interaction between the
modeled players.

For the sake of illustration, one part of one scenario is
briefly outlined here (each scenario contains various
"sub-scenarios").

3.4.1 Sample Scenario Design

The "raid mission," in brief:

Cooperative behaviors embedded in ModSAF some-
times performed erratically. Vehicles would apply a
higher priority to maintaining vehicle intervals (as they
traveled) rather than returning fire. Modifications were
made to the scenario, the ModSAF priorities, or the
control measures to assure that the planned behavior
was exhibited.

This table shows the timing, vehicles involved, and
events modeled in the AAAV Raid mission's east bat-
Ue. The scenario recorded for analysis omits the ocean
run-in and initial maneuvers. Adding these elements
would offset times but has no significant impact on the

143

experiment proper (the run in was accounted for by the
analysis tool).

East Battle at the SCUD Position
Time Vehicle Event
-2:15 All Resume ModSAF
0:00 EastAAAV

Platoon
Start moving in column for-
mation along the East road at
a maximum speed of 40 kph

0:07 EastAAAV
Platoon
SCUDBMP2
Platoon

See OPFOR vehicles at the
SCUD site and begin Hasty
Occupy Position
See East AAAVs and begin to
move to line formation for
Attack bv Fire

0:20 SCUDBMP2
Platoon

In line formation along their
battle line

0:26 AAAV's or
BMP2s

First shot of this battle fired
(exact time and vehicle var-
ies)

1:05 EastAAAV
Platoon

In line formation along their
battle line

1:35 EastAAAV
Platoon

Destroy the SCUD (exact
time varies)

6:45 All End

3.5 Measures of Effectiveness

The measures of effectiveness (MOEs) used are based
on information gleaned from DIS traffic. Work done in
this area is independent of ModSAF code and imple-
mentation. Methods developed in this experiment can
be used with any DIS compliant CGF system.

Further, the software for gathering information and
analyzing results was built in parallel with other work
(serial development dependencies were greatly de-
layed).

3.5.1 Marine MOEs

The MOEs were built using section 3 (Measures and
Methodology) of Advanced Amphibious Assault Ve-
hicle (AAAV) Supplemental Analysis, Volume 1, Final
Report (dated May 2, 1995). While the measures out-
lined there are not suitable as written, they yielded in-
sight into what the Marine's consider when defining
MOEs. The paper identifies 4 general, high level,
MOEs:

1. Win Quickly
2. Win Decisively
3. Dominate the battlespace
4. Minimize casualties

3.5.1.1 Win Quickly

Win quickly is defined in terms of defeating orange
breakout (time at which the last Orange battalion es-
caped) and the task force arriving at its objective
(establishing blocking positions).

These are not suitable for the experimental scenarios,
so "victory" is approximated. In one case, the destruc-
tion of a key entity is used as an indication of victory
(denoted as "entity based victory" or EBV). In the
other scenario victory is deemed to have been achieved
when the last entity damage takes place (deemed
"damage based victory" or DBV). DBV would be dif-
ficult to recognize in a live scenario, but it is not a
problem for a logged scenario.

EBV is well suited to scenario-1 (the objective is the
destruction of the SCUD) and this MOE is given con-
siderable weight in scenario-1. The situation is not as
clear cut in scenario-2 and so this MOE was not given a
large weight for scenario-2.

3.5.1.2 Dominate the Battlespace

1. Seven quantities are listed for this MOE in
the reference. The measurements are
specified to be taken when combat intensity
is "at a reasonably static state." This is far
too vague for a computer analysis, but the
scenarios used are simply allowed to run to
completion and the measures are applied
then. The MOEs include such things as
Loss-exchange ratio (battalions), Or-
ange/Blue and Orange battalions lost.

3.5.2 Experimental MOEs

An examination of the Marine MOEs shows only a few
key quantities need to be tracked to allow computation
of the experiment's MOEs. These building blocks are
used to build key MOEs which are then normalized (re-
mapped to a range of 0 to 1) and combined as a
weighted average to produce a single MOE.

3.5.2.1 MOE Building Blocks

This table shows key quantities gleaned from the data
logs by the analysis tool. These are the basis of build-
ing the experiment's MOEs. These quantities are given
mnemonics to simplify their use in equations.

To illustrate the complexities involved in automating
the MOEs the rational used for "win quickly" and
"dominate the battlespace" are outlined here.

144

Description Blue Orange
Time until the key EBV N/A
entity is destroyed
Time to last damage DBV N/A
Initial personnel count B_IPC OJPC
Initial vehicle count B rvc o rvc
Initial force value B IFV O IFV
Final personnel count B_FPC 0_FPC
Final vehicle count B FVC 0 FVC
(Neutralized vehicles
are not counted.)
Final force value B FFV 0 FFV

Based on the MOE building blocks key ratios are com-
puted which tie directly to the Marine's MOEs. Here
are the ratios used:

Description Name Computation MOE
Reference

0 neutralized OVN <o_rvc-o_Fvc)/ Win
o_rvc decisively

Initial IFR B_IFV/0_IFV Win
force ratio decisively
Residual RFR B_FFV/0_FFV Win
force ratio decisively
Final Force FFR RFR/IFR Win deci-
Ratio sively
Loss-exchange LXV <o_rvc-o_Fvc)/ Dominate
ratio (B_rvc-B_FVC) Battle
(vehicles)
Loss-exchange LXF (0_IFV-O_FFV) / Dominate
ratio (B_IFV-B_FFV) Battle
(force)
Loss-exchange LXP (0_IPC-0_FPC) / Dominate
ratio (B_IPC-B_FPC) Batde
(personnel)
Blue casualties CAS (B_IPC-B_FPC) / Minimize

B_IPC Casualties
Surviving SSTR B_FFV/B_IFV Minimize
Blue strength Casualties

Only four of the denominators can be zero under the
assumption that all scenarios begin with at least 1 ve-
hicle, which carries at least 1 person. Zero denomina-
tors may cause RFR, or any of the loss-exchange ratios,
to be undefined. These special cases are handled as
part of normalization.

Not shown is time to victory (EBV or DBV depending
on the scenario) as that is not a ratio. The name "VIC"
is used for the time to victory. In scenario-1 VIC rep-
resents EBV, whereas in scenario-2 VIC represents
DBV.

3.5.2.2 Normalized MOE Ratios

It is problematic to build an MOE average using
quantities with different ranges and so the values
should be normalized. A typical technique is to map

the worst value observed (for a scenario using both
variants) to 0 and the best value to 1.

It is possible that the time to victory between the vari-
ants will prove to be only a few seconds apart in the
worst case and yet, with normalization, this could be
artificially magnified. In some sense the normalization
should map "poor" values to 0 and "good" values to 1.

The normalized form of X is spelled "N_X."

The eight individual MOEs are combined using a sce-
nario dependent weighted average.

4. Experiment Implementation

The two scenarios designed for this experiment are
intended to present the VUT in roles consistent with its
expected use. They were created with the benefits and
within the limitations of the CGF testing environment,
ModSAF. Two variants of a new vehicle were added
to the testing environment to study the feasibility of
using virtual simulation for test, evaluation, and com-
parison of new or proposed vehicles.

4.1 ModSAF Modifications

Significant modifications to ModSAF were needed to
support the vehicles under test and the test scenarios.

No amphibious vehicles exist in ModSAF 1.5.1 or DIS
2.0.3. The addition of this type required a ModSAF
vehicle hull type capable of moving on both land and
water and a definition for the amphibious domain (plus
specific vehicle instances) in DIS protocol terms.

Along with a standard set of vehicle capabilities (e.g.,
routing, sighting and enemy vehicle engagement) the
vehicle models need other distinguishing functionality
such as the ability to rise in the water during accelera-
tion and plane.

Some more details of problems encountered with the
CGF system are covered in section 6.1, but for illustra-
tion, consider submergence.

ModSAF models the water surface but not the land on
which the water sits. This is common to many, and
probably most, CGF systems and is a function of the
terrain representations in general use. The popular
terrain representations are polygon based, and the ter-
rain polygons have no thickness and consequently wa-
ter has no depth.

145

To overcome this, a configurable beach inclination
angle was added to the amphibious hull definition.
When an amphibious vehicle crosses from a land poly-
gon to a water polygon, the vehicle descends into the
water polygon at this angle, until a maximum depth is
reached. Similarly, when an amphibious vehicle is in
water and approaches land, it climbs back onto land
using the same slope.

4.2 Data Analysis

The scenario analysis is based on DIS traffic. An in-
house data logger was chosen as the DIS data collec-
tion tool. The analysis tool used the data logs as input.

Entities were partitioned into 3 groups; high-force
(tanks, AAAVs), medium-force (infantry teams), and
low-force (trucks). With a few exceptions, the force
values used are:

Force Existence Mobility Firepower

High 3
ledium 2
Low 1

4
3
0

The low-force entities are given no firepower forces as
any firepower they might carry is incidental.

5.2 Raw data

The analysis is composed of two executables. The first
condenses raw binary scenario log files into a sum-
mary file which captures the significant scenario times
and events. The second phase processes the summary
file, based on a configuration file, and generates vari-
ous statistics, including the aggregate MOE. The tool's
configuration file specifies, for example, the weights
associated with measures of effectiveness and vehicles
that were not represented in the DIS traffic but should
be reflected in the MOEs.

5. Experimental Results

It must be re-emphasized that the goal of this experi-
ment was to test the feasibility of using virtual simula-
tions for vehicle and weapon evaluation. The AAAV
results are useful to test and illustrate the analysis
techniques. However, various simplifications were
made and the AAAV results, per se, should not be
taken seriously.

5.1 Force Values

Entities are given three "force values" used to compute
a side's force. A side's "force" is the sum of the forces
for the side's entities, and the analysis tool's configura-
tion file specifies the force represented by each entity.
The force is a function of the entity's type and its
health. Without more expertise, the assignments are
somewhat arbitrary (in a full analysis, considerable care
in this area would be necessary).

The force for an entity is denoted by three values: exis-
tence-force, mobility-force, and firepower-force. A
healthy entity is given a force as the sum of these three.
A destroyed entity has force zero. A healthy entity has
at least its existence-force; it may also have its mobility
or firepower force depending on its health. The DIS
stream is rich enough to determine an entity's force.

This is the raw MOE measures as generated by the
analysis tool for scenario-1. The various quantities are
computed as already described. All results are based
on 80 runs.

MOE U a
N VIC 0.7352 0.1275
N_OVN 0.7722 0.1261
N RFR 0.7022 0.1476
N LXV 0.5658 0.0971
N LXF 0.4456 0.1322
N LXP 0.3883 0.1518
N CAS 0.3580 0.1599
N_SSTR 0.6211 0.1499
W_MOE 0.5736 0.0805

Variant-1
MOE " a
N_VIC 0.7452 0.1196
N OVN 0.7639 0.1316
N_RFR 0.7102 0.1473
N LXV 0.5593 0.0969
N LXF 0.4492 0.1175
N_LXP 0.3945 0.1295
N CAS 0.3383 0.1346
N SSTR 0.6348 0.1282
W_MOE 0.5744 0.0795

Variant-2

5.3 Statistical Analysis

The individual MOEs are used to produce a combined
MOE, as already described. In this table, each cell
shows, for a given scenario/variant pair, the mean, and
the standard deviation for the combination. The num-
ber of runs is all cases is 80.

146

AAAV-X AAAV-J
Scenario-1

Scenario-2

u=0.5736
0=0.0805
|i=0.6725
a=0.0743

|i=0.5744
a=0.0795
u=0.6722
0=0.0704

The samples are treated as independent samples drawn
from a normal distribution. The object is to estimate
the difference in the means for the variants for each
scenario.

(^-/i5/)±(0.3099)cT,

5.3.1 Analysis for Scenario-1

From the above equations, the confidence interval for
(Hix.|iij)is:

(0.5736 - 0.5744) ± (0.3099)(0.0800)
or

(-0.0256,0.0240)

Symbolic representations in this analysis use subscripts
to denote scenarios and variants. For scenario-s, vari-
ant-v, the mean, standard deviation, and number of
trials for an experiment are denoted n.sv, asv. and Nsv

respectively.

The maximum likelihood estimate for the difference in
means for the scenario-s MOE is u« . p.Sj. A positive
value indicates an advantage for the AAAV-X, a nega-
tive value indicates an advantage for AAAV-J. This
raw figure cannot be taken seriously in light of the
variation in sampling (as indicated by the standard de-
viation).

A pooled sample variance for jis

used for the overall deviation:
Us,, denoted as, is

(JV„ - \)o)x + (Nsj - \)a'sj

N„ + N,

Because N„ = Nsj (= 80),

os
2 = (Osx2 + osj

2)/2

(the combined variance is the mean of the sampled
variances).

Using this, a confidence interval for |i„. fJ-aj is easily
computed. Enough data is available for all of the ex-
periments (NSI + NSj - 2 > 30) to use a large-sample
confidence interval.

(M,-^)±(42Xa,)U+i

Since this interval includes zero, no conclusion can be
drawn as to which variant is superior based on this
data. With additional information (increasing Nsx and
NSj) the confidence interval can be reduced to the point
where a conclusion can be reached.

5.4 Hypothesis Testing

A hypothesis test may also be used. There is a duality
of confidence intervals and hypothesis testing, and ei-
ther may be applied to the case at hand. Earlier compu-
tations, such as the pooled sample variances, are used
here.

The obvious hypothesis is that the variants have differ-
ent MOEs, but the likelihood of a type II error (3) if
that is used as the null hypothesis is unclear. So, as is
often done, we reverse roles use u.» = \iai as the null
hypothesis. This way we can know the likelihood of
incorrectly deciding that Hax*u,aj when they are actually
equal (this is a type I error and we can control its value,
a).

Ho:^-M^j = 0
Ha:U.sx-Hsj*0

Our sample sizes are large enough for approximate
normality of our sample means to hold. Our test statis-
tic, Z, is

For both scenarios, the radical reduces to approxi-
mately 0.158.

For a 95% confidence interval, Zan - 1.960. Nsx = Nsj

= 80. Thus, our interval, to four significant digits, re-
duces to:

We have a two sided alternative, and so IZI will have to
exceed Z(a/2) for Ho to be rejected. Seeking 95%
confidence, a=0.05 and Z(cc/2) = 1.960.

147

For scenario 1,

Z = l0.5736-0.5744l/((0.205)(0.158)) - 0.025

not within the rejection region. For scenario 2,

Z = I0.6725-0.6722I/((0.07235)(0.158)) = 0.026

also outside of the rejection region.

Thus, in both cases, Ho cannot be rejected, so we can-
not conclude \ii% - u.Sj * 0. This is consistent with the
confidence interval result.

5.5 Additional Trials

and NSj and so will reduce More trials will increase N,
the size of the confidence intervals. With enough trials,
we should be able to distinguish between the variants,
if they are different. The results are far too close to
trust this additional analysis; it is included here for
demonstration purposes only.

For scenario-1, the means differ by (only) -0.0008.
Assuming we continue to use the same number of trials
for each variant (call this Ns), for the confidence inter-
val to exclude zero:

Zan0ijy<

or, for scenario-1 and a 95% confidence interval:

(1.96X0.08)^4=—< 00008
IN.

or

277.1 <
which indicates that over 76,000 more runs are needed
for each variant (for a total of over 150,000 more trials;
this would take over 11 weeks of continuous logging).

5.6 Variant Conclusions

Based on these experiments, there is no difference be-
tween the variants. This conclusion says more about
simplifications in the experiments than the variants
themselves.

5.6.1 Problematic Simplifications

Among the simplifications that may have lead to the
negative conclusion:

AAAV-X and AAAV-J are identical except that
1/3 of the AAAV-J's carry Javelin ammo. Any dif-
ferences must come about from this one differ-
ence.

Both variants used the same tactics (in fact, used
the same scenario). A full blown test should use
tactics appropriate to the available weapons.

Only two scenarios were tried. A richer scenario
mix may uncover important differences even for
these variants.

The underlying CGF system forced many com-
promises, some of which may have hidden variant
differences.

6. Overview of Experimental Problems

Several flaws are obvious when the methods applied
are compared with the recommendations. These flaws
reflect the nature of the experiments and a reduced
emphasis on attempting to actually reach conclusions
regarding the AAAV variants. The experimental work
did not require a greater emphasis in these areas to
yield the techniques sought. Highlights of flaws in
applying the recommendations include:

• the scenarios were not customized for the
AAAV variant being tested,

• the scenario selection list was far too short,
• the MOEs reflect best guesses (they are not

in any way validated),
• the AAAV implementation lacks details

(such as armor modifications), and
• vehicle and weapon data is not accurate (as

far as practical it does reflect supplied in-
formation).

6.1 Problems with the CGF

Other experimenters are likely to encounter problems
of the sort encountered with ModSAF. All such sys-
tems are likely to be inadequate in some areas. To give
a notion of what to expect, and to clarify the nature of
the experimental work, the most striking problems en-
countered are mentioned here; there were many more.

Variable Platoons: The vehicle count in ModSAF
platoons is tied to the vehicle type (T72 platoons uni-

148

formly consist of three vehicles),
needed to be of variable size.

AAAV platoons

Entity Counts: The size of the execution matrix ,
which is unaccounted for in ModSAF's maximum en-
tity benchmark, appears to have a dramatic impact on
the maximum vehicle count. This dilemma placed
constraints on scenario design; as scenarios became
more complicated (manifested as larger execution ma-
trices) the number of vehicles that could be modeled
dropped.

Performance: ModSAF monitors its performance and
announces overloading as "gasping." When the system
is past the gasping threshold, behaviors break down.
Gasping was a serious problem throughout this project.

Sound Modeling: No sound modeling exists in Mod-
SAF but the experimental scenarios required control
measure triggers on the sound of approaching vehicles
and weapons fire. To mimic this, a line of sight re-
quirement was relaxed for a specialized ModSAF task
transition mechanism.

Radio Control Measures: Task transition based on
inter-vehicle communication is a realistic, and neces-
sary, missing feature. Without knowledge of task
completion, timers and transition lines were used to
trigger transitions although this technique is, at best,
imprecise.

Indefinite Holds: An observed unit crossing a control
measure before the observing unit is in position causes
an indefinite hold on the current task of the observing
unit.

Infantry Mounting Restrictions: An infantry team
that is intended to mount must be created in tandem
with the vehicle to be mounted. The infantry team is
then restricted to mounting its partner vehicle
(ModSAF does not allow the substitution of one Per-
sonnel Carrier for another).

Mounted Infantry Immortality: ModSAF does not
kill mounted infantry when the vehicle they are on ex-
periences a catastrophic kill; they simply are not al-
lowed to dismount. This would yield underestimates of
the casualties in the MOEs. Workarounds were im-
plemented in the analysis tool.

Close Air Support: No reaction is available to call for
close air support. To explain the lack of air support in
the scenarios, bad weather conditions were hypothe-
sized.

Javelin Targeting: On those occasions that a AAAV
fires a second Javelin while one is in flight, the second
always uses the same target as the first (this is very
unrealistic).

Poor Reload Behaviors: reload is immediate, leaving
the AAAVs vulnerable for about one minute during
reload. Reload should be done under cover.

Locked Target Priorities: a Javelin equipped AAAV
should not seek tanks to kill but it should defend itself.
As ModSAF stands, tanks are targets (on the priority
list) or not (off the priority list).

Weapon Targets: appropriate weapons selection is
not available; in order to have AAAV-J attack tanks at
all, the tanks had to be on the priority list. However, in
that case AAAVs attacked whether they had a Javelin
on board or not.

Nominal Entities: In some cases ModSAF developers
have made compromises by modeling one entity by
simply mapping it to another (e.g., the underlying
Javelin model is a TOW missile model). The names
used ("Javelin") can give false confidence in results.

PO Database: multi-station ModSAF runs experi-
enced packet losses under PO database5 bursts. Such
losses jeopardize experimental results and were
avoided by performing the experiments on a "Pocket
Simulator" (a single station), which eliminated the need
for PO network traffic. To accomplish this, the number
of entities had to be minimized.

Shut Down: During scenario shut-down, DIS traffic
appears to be suspended, then, after a considerable
delay (sometimes over a minute), more DIS traffic is
transmitted. The analysis tool uses inter-traffic gaps to
recognize scenario breaks and so this was a real prob-
lem. Adjustments to the tool (ignoring "short" scenar-
ios) compensated for the problem.

Hasty Occupy & Attack by Fire: While executing
either Hasty Occupy Position or Attack by Fire, entities
try to close up ranks when a vehicle is destroyed along

4 ModSAF tasks are assigned to entities (including
units) via an "execution matrix." This is a sequential
list of entity's tasks and task transition specifications.

ModSAF uses version-dependent, non-standardized,
"Persistent Object" database network traffic (possibly
too free-wheeling to be properly called a "protocol") to
keep its stations synchronized.

149

the occupied battle line. This stops fire until the ranks
close, causing some vehicles to expose their side armor
while the ranks close (and is generally unrealistic).

Force Confrontation: Opposing forces often begin a
battle with heavy firing, followed by a period with a
lone surviving vehicle actively fighting on one side and
one or more (apparently) idle vehicles on the opposing
side. Eventually, the isolated vehicle is killed, but not
before it had time to inflict damage.

Fire Permission: Fire permission cannot be changed
from task to task, although it is automatically changed
during reactions. Positions and routes had to be se-
lected to avoid LOS and so avoid unintended firing.

Command Line Options: ModSAF crashes when the
"sourcefile" option is specified in conjunction with the
nogui6" option. The sourcefile option was essential to
automate the experiments. The system was run with a
GUI in spite of the performance costs.

Scenario Editing: There is no way to insert new tasks
into the execution matrix other than at the end of the
matrix. This resulted in terrific overhead for scenario
generation. Seemingly small changes, requiring inser-
tion of a new task, required a complete re-build of the
scenario. Old scenarios could not be loaded into new
AAAV versions of ModSAF when a change in the
AAAV PO Database definition was introduced.

7. Conclusion

CGF systems can be used for evaluating future systems
but it is a complex process. A CGF must be altered to
support the system to be tested, a variety of appropriate
scenarios must be developed and implemented, MOEs
are needed for the scenarios and should be instantiated
in software, and enough experimental runs are needed
to determine statistically significant results.

Each step requires personnel with special expertise.
For example, it is unlikely that the people who carry
out software development will also have the knowledge
to develop appropriate scenarios for the experiment.

It is recommended that the MOEs be based on network
traffic (e.g., DIS) as this breaks a key binding between
result analysis tools and the CGF work (development
of analysis software and scenarios support work can be

done in parallel, and different versions of each may be
developed without impacting the other).

An experimental use of the technique, in spite of se-
vere simplifications (making the results of the system
analysis valueless), turned out to be a large project
which uncovered many problems in the CGF system
used. To carry out the experiment to the point where
the results would be trustworthy, using the same CGF
system, would be a more complex and difficult prob-
lem. Given a mature, verified, and validated CGF ap-
propriate for the system under test the experimental
development's complexity could be reduced tremen-
dously.

8. Author's Biographies

Michael A. Craft is a Senior Computer Scientist at the
Institute for Simulation and Training. Mr. Craft has an
M.S. in Computer Science and an M.S. in Mathemat-
ics. His major interests include computer protocols,
software engineering, and systems development.

Clark R. Karr is the Program Manager of the Com-
puter Generated Forces projects at the Institute for
Simulation and Training. Mr. Karr has a Master of
Science degree in Computer Science. His research
interests are in the areas of Artificial Intelligence and
Computer Generated Forces.

9. References

Courtemanche, A. J., and Ceranowicz, A. (1995).
"ModSAF Development Status," Proceedings on the
Fifth Conference on Computer Generated Forces and
Behavioral Representation, Orlando, FL, Institute for
Simulation and Training, May 9-11 1995. pp. 3-13.

Craft, Michael A., Kraus, Matthew K., Mullally, Daniel
E., Adkins, Michael K., Albright, Robert L, Nida,
Jonathan C, Napravnik, Lee J. (1995) "AAAV: Dem-
onstrating the Feasibility of Using Virtual Simulation
for Test and Evaluation," Technical Report IST-CR-
95-32, Institute for Simulation and Training, University
of Centra] Florida, 90 pages.

6 This option disables ModSAFs Graphical User Inter-
face freeing up machine resources. With "nogui" it is
possible to support more complex scenarios.

150

Use of ModSAF in Development of an Automated Training
Analysis and Feedback System

Theodore Metzler and John Nordyke
LB&M Associates, Inc.

211SWAAve
Lawton,OK 73501-4051

metzlert@lbm.com nordykej@lbm.com

1. Abstract

This paper describes a use of simulations with
Computer Generated Forces (CGF) in which
ModSAF supported the testing of rule-based
Artificial Intelligence (AT) modules in an
Automated Training Analysis and Feedback
System (ATAFS). A brief overview of the
ATAFS tool is presented with accompanying
figures to explain the developmental context of
the testing. Testing methodology is then
described and illustrated with a number of
specific examples of how ModSAF was used.
Results of testing are reported and evaluated,
identifying certain advantages offered by the
CGF tool for applications of this kind. Synergy
of interacting CGF simulation and AI reasoning
demonstrated in this testing may also benefit
other development efforts—a possibility
addressed in our concluding review of Anther
ModSAF applications suggested by the work we
describe.

2. System Background

ATAFS constitutes one application of a more
general technology-based capability to
"eavesdrop" on selected data streams, collecting,
analyzing and displaying information. The
ATAFS workstation is an expert system-based
after action review (AAR) tool that
automatically produces AAR aids for simulation
networking (SIMNET) exercises, with potential
to support other virtual, constructive and live
simulations. The AAR aids generated by
ATAFS include discussion points, animated
plan views of the battlefield, displays showing
shotlines and artillery impacts with traces of
unit movement, graphs, tables and replays of
voice communications produced synchronously
with top-down views of the player unit's
activities. A composite illustration of some of
these features is shown in Figure 1.

Operated interactively by an Observer/Controller
(O/C), ATAFS records and monitors SIMNET
messages, using its rule-based AI components to
identify automatically the occurrence of certain
battlefield events. ATAFS prepares AAR aids
without assistance from the O/C for those
tactical events the system is able to recognize.
For example, ATAFS can detect direct and
indirect fires, vehicle kills and vehicles crossing
control measures such as the Line of Departure
(LD). Control measures of this kind are
graphically designated for the system on a
digitizing tablet by the O/C, according to
operating instructions in the ATAFS user's
manual (LB&M 1996). Simulation events that
mark the start or end of an AAR aid are
recognized by ATAFS software in terms of
"triggers." A sample of these events and
triggers is shown in Figure 2. Comparison of
Figure 2 with Figure 1 will help clarify the
foregoing description for the illustrative
battlefield event, "Movement from LD to First
Enemy Contact." AI modules of ATAFS,
implemented in CLIPS v6.0, monitor and
interpret SIMNET messages to detect the
"triggers" using rules of the type illustrated in
Figure 3.

To ensure the rule sets correctly and reliably
recognize selected battlefield events in the
network traffic, we employed ModSAF v 1.2.2 as
a testing tool, generating developer-controlled
network activity that the AI components of
ATAFS could monitor and interpret.

3. ModSAF Application

A prototype ATAFS workstation played a
passive role in the testing configuration,
eavesdropping on an ethernet network carrying
SIMNET messages. The messages were
generated by a ModSAF simulator, which

151

developers successively set up to produce
selected test scenarios. Unlike some other
ModSAF development applications involving
interaction of prototype AI objects with CGF
entities (Laird 1995, Tambe 1995), our tests
challenged the rule-based modules of ATAFS
only to "observe" and correctly interpret the

assembled them allowed detection of
deficiencies in rule sets. Figure 4 depicts the
simple configuration used for this iterative
procedure of testing and rule refinement.

Battlefield scenarios employed in the procedure
involved "Force on Force" activity of CGF

Figure 1.
unfolding CGF scenarios. For each test scenario
members of the development team functioned as
O/Cs, operating the ATAFS workstation to
capture desired AAR aids. Subsequent
comparison of the AAR aids actually produced
with the test scenarios from which ATAFS

AktStiht: 2

Exercrse Phase: Movement from LD to Fast Enemy Contact

Aid Nurnber, Title and Type Possible Starting Everts and
Trigger.

PossMe finding Events and
Triggers

21 PMocn Cranes ID (PVA) EVENT 1st vet** crosses LD EVENT Corted report sent

TRIGGER: Lrve Trigger used so
ATAFS cm sense the urn's orostrvg
of Hie ID

TRIGGER: OC scutate* Corned
Report ijrcrnpL.

EVENT: BlUFOR flres first (fired
fir* round.

TRIGGER: ATAFS senses first
B1.UFOR rand fired using the
Fling Trigger

EVENT: OPFOR flres lYst dred

TRIGGER: ATAFS senses first
OPFOR round fired using the
Faring Trigger

Figure 2. Events and Triggers

ATAFS Features
entities-for example, pitting one BLUFOR
armor platoon against one or more OPFOR
armor and/or motorized infantry platoons.
Defensive, offensive and tactical road march
scenarios were simulated by ModSAF in the
testing.

4. Results

The testing with ModSAF
proved to be a valuable
developmental procedure,
disclosing a number of needed
corrections in the prototype rule
sets of ATAFS. For example, it
was discovered that when
vehicles entered an objective
and remained there, the rules
initially generated spurious
training aids indicating exit of
the vehicles from the objective.
Repaired versions of these
defective rules were tested with

152

additional ModSAF scenarios, readily correcting
the behavior.

and precise incremental changes for this part of
the testing.

?>5?JJ»5»5J>)J»>»>M»»9»>>>»5>MM>JJ>»5?>J»»>»J>

;;;These are the rules for watching BLUFOR entering and exiting objectives.

(defrule recheck-position-objective-in
(Start Exercise TTrigger)
(Current Time 7TT&: (=0 (mod?TT 5000)))
(object (is-a VEHICLE)

(force blue)
(type ?VehType&: (eq ?VehType Tank))
(status alive)
(vehicle-id ?x)
(location ?vloc))

(object (is-a FEATURE) (title ?ST) (type objective) (location ?floc))
?cur<-<VEHICLE 7x is OUT FEATURE objective ?ST)
(not (VEHICLE ?x has entered ?ST)

=>
(bind ?RL (OBJCHECK Tfloc ?vloc))
(if(neg?RLOUT)
then
(printout t "WE ENTERED" ?ST ":" ?x crlf)
(retract ?cur)
(assert (VEHICLE ?x is ?RL FEATURE objective ?ST))
(assert (VEHICLE ?x has entered ?ST))))

Figure 3. Sample Rule

Testing also helped remove an undesirable
limitation in ATAFS capability. The expert
system rules of ATAFS originally were
formulated to monitor a single platoon of
manned simulators. Accordingly, when ATAFS
encountered more than a single platoon of
BLUFOR—which frequently occurred in
practice, as users added CGF entities for more
realistic exercises—the rules failed to produce
the correct AAR aids. Therefore, we modified
the appropriate ATAFS AI module and
graphical user interface, permitting the O/C to
designate specific platoons for the rules to
monitor. Testing with ModSAF was then used
to confirm that these modifications produced the
intended improvement.

In addition, ModSAF allowed progressive stress
testing to determine system failure thresholds.
Successive scenarios, involving increasing
numbers of CGF entities, were set up and
executed until symptoms of system overload
were encountered. The user interface features of
ModSAF permitted our Analysts to set up rapid

Moreover, the use of ModSAF
offered important advantages over
employment of manned simulator
exercises for this testing. In
contrast with the relatively
unpredictable nature of manned
simulator data, ModSAF allowed
developers to tailor and isolate
specific battlefield events to ensure
systematic testing of the ATAFS
rule sets. Rapid setup and "what-
if" capability furnished by
ModSAF also facilitated minor
modifications of battlefield
scenarios to test the operational
implications of specific expert
system rule changes.

For example, one ATAFS rule
initiates an AAR aid when the
BLUFOR crosses the LD and
terminates the aid by one of three
system recognized events: first
BLUFOR direct fire, first OPFOR
direct fire, or first indirect fire
from either BLUFOR or OPFOR.

The flexibility of ModSAF allowed us to set the
desired parameters (i.e., OPFOR weapons on
hold, BLUFOR weapons free, and no operator
controlled indirect fire) and conduct successive
tests in which the event we desired to test was
the only one that occurred. With this versatility
we could develop a master event list with
specific rule event parameters that we desired to

521§c> igEmk)

Figure 4. Test Configuration

153

check for each test run to ensure that all rule
triggering events were thoroughly exercised. In
general, the flexible ModSAF support for
creating a wide range of custom scenarios
permitted our analysts to confirm rule sets that
work (versus "should work").

S. Future Directions

Enhancements of the ATAFS workstation are
expected to include an "authoring tool,"
allowing users who are not programmers to
extend the set of AAR aids ATAFS produces.
Extensions created with this tool will also
occasionally need to be tested. To satisfy this
need, we may reasonably consider a lesson from
the developmental experience just described and
make a subset of ModSAF capability available
for use with the authoring tool.

In actual simulation exercises, we have also
observed that the ATAFS workstation is often
operated concurrently with a separate
workstation from which ModSAF generation of
CGF entities is controlled. This practice
introduces redundancy, since ATAFS and
ModSAF share some common representations
for input of control measures, overlays, etc.
Accordingly, future versions of ATAFS may be
more immediately connected with ModSAF,
allowing one operator at a single workstation to
direct CGF parts of a simulation while building
AAR aids with ATAFS.

Finally, it may be possible for ModSAF to assist
the development of AAR systems such as
ATAFS in ways somewhat different from the
direct testing we have described. In particular,
work previously reported at this conference
regarding the automated knowledge acquisition
system known as "Captain" (Hieb 1995, Hille
1994) suggests an interesting potential linkage
of ATAFS, Captain and ModSAF. As a tool for
building intelligent (CGF) command agents,
Captain may offer useful resources to
development of future ATAFS workstations,
since much of the situation awareness and
reasoning required of the battlefield
commanders modeled by Captain is also
employed by O/Cs in production of AAR aids.
In turn, ModSAF supports Captain's adaptive
modeling of such behavior in several interactive
learning modes. Hence, ModSAF may continue
to benefit future ATAFS development through a

training role as well as the more immediate
testing role reported in this paper.

6. Acknowledgment

Technical contributions to preparation of this
paper by Joseph Kelly, LB&M Systems Analyst,
are greatly appreciated.

7. References

Hieb, MR; Tecuci, J.; Pullen, J.M.;
Ceranowicz, A.; and Hille, D. "A
Methodology and Tool for Constructing
Adaptive Command Agents for Computer
Generated Forces." In Proceedings of the
Fifth Conference on Computer Generated
Forces and Behavioral Representation, pp.
135-146. Orlando. Florida: Institute for
Simulation and Training, 1995.

Hille, D.; Hieb, MR; and Tecuci, G. "Captain:
Building Agents that Plan and Learn." In
Proceedings of the Fourth Conference on
Computer Generated Forces and
Behavioral Representation. Orlando,
Florida: Institute for Simulation and
Training, 1994.

Laird, John E.; Johnson, W. Lewis; Jones,
Randolph M.; Koss, Frank; Lehman, Jill
F.; Neilson. Paul E.; Rosenbloom, Paul S.;
Rubinoff, Robert; Schwamb, Karl; Tambe,
Milind; Van Dyke, Julie; van Lent,
Michael; and Wray III, Robert E.
"Simulated Intelligent Forces For Air:
The Soar/IFOR Project 1995" In
Proceedings of the Fifth Conference on
Computer Generated Forces and
Behavioral Representation, pp. 27-36.
Orlando, Florida: Institute for Simulation
and Training, 1995.

LB&M Associates, Inc. Software User's
Manual for the Automated Training
Analysis and Feedback System. Lawton,
Oklahoma: LB&M Associates, 1996.

Tambe, Milind; Schwamb, Karl; and
Rosenbloom, Paul S. "Building Intelligent
Pilots for Simulated Rotary Wing
Aircraft." In Proceedings of the Fifth
Conference on Computer Generated Forces
and Behavioral Representation, pp. 39-44.
Orlando, Florida: Institute for Simulation
and Training, 1995.

154

8. Authors' Biographies

Theodore Metzler is a Senior Systems
Engineer at LB&M Associates, Inc. Mr.
Metzler has an M.S. degree in Computer and
Communication Sciences and a Ph.D. in
Philosophy. His research interests are in the
areas of Hybrid Artificial Intelligence and
Artificial Neural Networks.

John Nordyke is a Systems Analyst at LB&M
Associates, Inc. He has a B.S. degree in
Mathematics and an M.A. in Management and
Human Relations. His research interests are in
the areas of Graphical User Interfaces. Artificial
Intelligence/Expert Systems and Simulation
Training Systems.

155

Session 3a: Behavior Representation

Kraus, UCF/IST
McKenzie, SAIC

Balzer, USC/ISI
Rajput, UCF/IST

CCTT SAF and ModSAF Behavior Integration Techniques

Matthew K. Kraus, Derrick J. Franceschini, Tracy R. Tolley, Lee J. Napravnik,
Daniel E. Mullally and Robert W. Franceschini

Institute for Simulation and Training
3280 Progress Drive, Orlando, FL 32826

mkraus@ist.ucf.edu

1. Abstract

As CGF systems have matured over the last ten years,
they have been applied to solving increasingly
difficult problems. The analysis community would
like to use CGF systems that portray battlefield
effects at the individual vehicle level. For credible
analysis, it is desirable that CGF behaviors be derived
from military doctrine and be traceable back to that
doctrine.

The CCTT SAF program has undertaken a large
knowledge engineering effort to produce realistic
CGF behaviors. Part of this effort transforms military
doctrine into Combat Instruction Sets (CISs), a
natural language description of tactical behavior.
Because they are based on CISs, CCTT SAF
behaviors are traceable to military doctrine.

This project's goal is to research methods of
incorporating these CISs into ModSAF1. This has
consisted of several phases of work. The first phase
was to research CISs to understand their structure and
complexity. Next, 1ST enumerated differences
between CCTT SAF and ModSAF that could affect
CIS integration. Then CCTT SAF code and
corresponding documents were used to provide more
insight into the CCTT SAF environment and its
implementation of selected CISs. Lastly, two
prototype CISs were implemented in ModSAF. This
proof of concept successfully illustrated the
feasibility of incorporating traceable behaviors in
ModSAF.

2. Background

CIS behaviors bring obvious realism and credibility
benefits to the research and training communities.
Reusing CCTT SAF technology leverages the
investment the US government has made in
simulation and training. 1ST leveraged the CCTT
SAF software development effort to help implement
CISs in ModSAF.

IST's research first focused on several behavior
integration issues. 1ST researched CISs to understand
their structure and complexity. 1ST then found
differences between CCTT SAF and ModSAF that
could influence behavior interoperability. Finally
1ST developed a process for implementing CISs in
ModSAF. Two prototype CISs were implemented in
ModSAF as a proof of concept.

3. CIS General Information

1ST studied Combat Instruction Sets (CISs) before
implementing a prototype behavior. CISs are
designed to allow someone unfamiliar with military
doctrine to understand the actions taken by a unit
executing a behavior. CCTT SAF uses CIS
descriptions found in the CATT-Task Database to
produce doctrinally correct actions for each behavior.
The CATT-Task database combines training data
from task manuals, soldier manuals, subject matter
experts, and training studies into one source (Wright
1994).

3.1 Sources

BLUFOR2 CISs are derived from U.S. Army Training
and Evaluation Program (ARTEP) Mission Training
Plans (MTPs). Because they were derived from U.S.
doctrine, BLUFOR CISs contain more detailed
information than their OPFOR counterparts. They
are denoted by Bxxxx where the number xxxx
corresponds to the unit type.

3.2 Elements of a CIS

A CIS contains a behavior description, a sequence of
actions to be taken in the behavior, initial conditions,
input data, terminating conditions, and situational
interrupts. In the Actions to be Taken section of the
CIS, each action in a BLUFOR behavior is grouped
into move, shoot, observe, or communicate based on
the nature of the action. OPFOR CISs only list the
actions in their order of execution. Initial conditions
detail necessary information for the behavior to

1 All unqualified references to ModSAF are to
version 2.0.

- BLUFOR refers to U.S. Forces and OPFOR refers
to Opposing Forces.

159

execute. Terminating conditions outline reasons for
behavior completion and what actions to take when
the behavior has finished. Situational interrupts
describe reactive behaviors that could interrupt the
behavior.

3.3 Complexity

One measure of implementation complexity is the
relationship between CISs. In general, 1ST
determined that each CIS requires other CISs as part
of its specification. Therefore, the complete
implementation of one CIS requires implementation
of many other CISs. For the purposes of this project,
1ST has limited the problem by substituting existing
ModSAF behaviors for the supporting CISs.

4. Differences Between CCTT SAF and ModSAF

1ST investigated the feasibility of implementing CISs
in ModSAF. Because CCTT SAF uses CISs for their
behaviors, adding CISs to ModSAF would improve
the interoperability between these two CGF systems.
Differences between the underlying architecture of
these two systems could impact the behavioral
interoperability between CCTT SAF and ModSAF.
Over one hundred issues were found that could
impact behavior interoperability. Due to space
limitations, only a few of the issues are discussed
here. These issues can be grouped into the following
categories:

• Command and Control Hierarchy
• CGF Services
• Task Management
• Reactive Behaviors
• CCTT SAF FSMs vs. ModSAF AAFSMs
• Environment and Terrain
• Code Sharing
• Crew Level Behaviors

This section examines some differences between
CCTT SAF and ModSAF that affects behavior
integration.

4.1 Command and Control Hierarchy

CCTT SAF uses a "ghost" controller associated with
a platoon as the platoon leader. The ghost controller
is associated with a simulated entity, but it is not a
simulated entity itself: it does not have a physical
model, take damage, or interact with other entities in
the battlefield. When its associated vehicle is
destroyed, the ghost controller is assigned to another
vehicle. All information gathered is maintained and

the task continues (Marshall 1996). A platoon leader
in ModSAF is assigned to a particular vehicle in the
platoon. If this vehicle is destroyed, ModSAF restarts
the entire task with the role of platoon leader assigned
to a new vehicle. All previous knowledge that this
task has acquired since the task was initialized is lost
(Rajput and Karr 1995). Note that neither system
completely reflects what occurs in real life. In the
real world, the new platoon leader should have some
of the knowledge that the previous one had, but it
would take time to assimilate information that the
previous platoon leader gathered.

The two systems also handle communication between
subordinates and commanders differently. In CCTT
SAF, superiors send orders to subordinates in the
SAF Entity Object Database (SEOD) (Horan 1994).
ModSAF does not have the concept of orders, rather
it has superiors start tasks for subordinates using
procedure calls.

4.2 CGF Services

Even with identical behavioral logic and supporting
data at a given echelon level, behaviors can produce
different results because of dissimilar underlying
services. Some examples of these underlying CGF
Services are terrain reasoning, weapon system
modeling (e.g., assessing, enemy detection, and
targeting), physical modeling (e.g., hull and turret),
and sensor modeling (e.g., visual, infrared, radar).

Routing and searching for covered and concealed
positions requires terrain analysis. While CCTT
SAF's dynamic and static obstacle avoidance
algorithms are based on existing ModSAF algorithms,
there are differences. For example, IDA* was used in
CCTT SAF for planning road routes instead of A*,
which is used in ModSAF (Campbell et al. 1995).
Further research is necessary to determine the extent
of the differences between the CGFs in other CGF
services (e.g., other areas of terrain reasoning,
weapons system modeling, physical modeling, and
sensor modeling).

Differences in these underlying behaviors could be
perceived as the distinct methods individual soldiers
would use were they executing one of these tasks
(e.g., two drivers may choose two different routes
through the same forest to reach the same
destination).

160

4.3 Task Management

Execution of a scenario consists of coordinating and
executing a series of behaviors. Given that a set of
behaviors from two CGF systems are identical,
differences in task management can affect overall
behavior and scenario outcome. Currently, 1ST lacks
information about CCTT SAF's task management
methodology. Because of this, only general issues
that affect behavior interoperability of two CGF
systems will be addressed here.

4.3.1 Task Scheduling (Priorities and Hierarchy)
For two CGFs to have interoperable behaviors, their
task scheduling mechanisms must be similar. CCTT
SAF and ModSAF use ring queues to manage time
based and priority based task scheduling. Tasks in
CGF Services, among other things, are grouped into
schedule rings based on the number of times per
second that they need to be executed, e.g., all tasks
that need to be executed 15 times per second are
assigned to the 67 millisecond ring. As vehicles and
units are created, several CGF Service tasks (e.g.,
routing, assessing) associated with vehicles or units
are initialized and assigned to their proper rings. The
rate at which all CGF Service tasks are executed in
both CGF systems should be similar for behavioral
interoperability between the CGF systems.

4.3.2 Task Execution (Ticking and Task Transitions)
Execution of a scenario involves the coordination and
execution of a sequence of behaviors. Transitions
between behaviors can be automatic, triggered by a
Control Measure, or require operator intervention.
There are ModSAF behaviors that do not
automatically transition to a subsequent behavior
when they complete (e.g., Hasty Occupy Position),
while other behaviors do automatically transition
(e.g., Road March). Knowledge of CCTT SAF's
handling of task transitions would allow more insight
into how interoperable a sequence of behaviors could
be in comparison to a similar sequence in ModSAF.

A 'wrapper' is code that executes before or after a
user specified behavior. Any wrapper placed around
behaviors in CCTT SAF must be identical to those in
ModSAF for a sequence of behaviors to act similarly.
ModSAF requires a preparatory task, a preliminary
task executed before the actual behavior, for each
behavior (HALT is most commonly used). The
advantage to using a preparatory task is that each
behavior starts from a known condition. The
disadvantage is that certain sequences of tasks exhibit
odd behavior. For example, sequential move tasks
will not keep a vehicle in continuous movement. The

second move (as well as the first) starts from a halted
state, i.e., the vehicles stop between each move task.
If CCTT SAF handles this differently, a behavior in
CCTT SAF would act differently than its equivalent
in ModSAF.

The tick rate is the maximum frequency that a task is
executed. As a simulation becomes busy, the time
required to execute tasks in a ring queue can exceed
the assigned time for the ring, compromising
simulation fidelity and the "real-timeness" of the
system (Smith and Swarts 1990). Symptoms of a
busy simulation are movement and behavior
degradation (Vrablik and Richardson 1994).
Behavioral inconsistencies may arise because CGF
system A may assign more items to a given ring than
system B. As the number of items on a ring
increases, it will become more difficult for those
items scheduled on a ring to complete on time.

4.4 Reactive Behaviors

ModSAF behaviors do not correspond to CIS
definitions. Consequently, the full implementation of
a CIS will require the addition of CIS reactive
behaviors in ModSAF.

For some behaviors, CCTT SAF incorporates the
code for a reactive task into the code for a non-
reactive task. For example, in the OPFOR Assault
an Enemy Position, CCTT SAF will execute code
to breach an obstacle inside the Assault an Enemy
Position task instead of calling a standard Breach
Obstacle task. ModSAF transitions to a reactive task
by starting the appropriate task. The limitation of
CCTT SAF's approach is that every behavior needing
Breach Obstacle must incorporate all the code for
Breach Obstacle again. An advantage to doing this is
that Breach Obstacle could be tailored to a specific
behavior, i.e. an assault Breach Obstacle may need to
be different from a traveling Breach Obstacle.
Although this presents no behavioral interoperability
difficulties, having redundant code presents software
maintenance problems.

161

Reactive Behavior ModSAF
(2.0)

CCTT
SAF

Ambush (OPFOR) No Yes

Consolidate and Reorganize No Yes

Execute Appropriate Action
Drill

No Yes

Execute Contact Drill Yes3 Yes

React to Indirect Fire Yes3 Yes

React to Terrain Yes3 Yes

Recon Drills (OPFOR) No Yes

Take Actions At Obstacle No Yes

Take Active Air Defense
while Moving/Stationary

Yes3 Yes

Table 1 - Reactive Behaviors

Table 1 illustrates some sample reactive behaviors
and whether they are supported in the two CGF
systems.

4.5 CCTT SAF FSM and ModSAF AAFSM

Finite State Machines (FSMs) are often used to
describe behaviors. An FSM consists of states and
transitions. Each state in an FSM corresponds to
either a function or a low-level FSM. Transition
conditions associated with each state make up the
criteria for entering another state (Smith and Petty
1992). Note that CCTT SAF and ModSAF
implement different variations of FSM structures.
CCTT SAF and ModSAF have several
implementation differences in their FSM structures
that could affect either the way that a behavior is
executed or the ease of implementing a behavior.
These differences are exhibited in the implementation
language, preprocessing steps, and task parameter
changes.

CCTT SAF's FSMs, written in Ada, contain all the
details that link FSMs into the CCTT SAF. On the
other hand, ModSAF FSMs, written in C-like syntax
(Asynchronous Augmented Finite State Machine or
AAFSM format), must go through a preprocessing
stage before they become C code. This abstracts out
details of FSM linkage to the system and thereby
accelerates behavior development.

CCTT SAF does not respond to changes in an input
to a behavior once the task is running, restricting the
operator from responding to changes in orders.
ModSAF's AAFSM format explicitly allows this
change of parameters. For example, if a frag order
updates a phase line's position, then the operator may
move it and the task will respond to this change,
instead of having the operator reissue the task with
the new parameters.

4.6 Environment and Terrain

Environmental elements may affect behaviors (e.g.,
smoke, rain, fog, snow, etc.). These will cause a
degradation in various behaviors due to reduced
sensory input, reduced traction, and reduced
trafficability. A CGF system's behavior is limited by
the fidelity of its terrain. High fidelity terrain
provides more covered and concealed positions and
objects for entities to interact with (e.g. log cribs, tank
ditches, DI berms. etc.) than lower fidelity terrain.

Because they represent the operating environment for
entities, environment and terrain differences can play
an important role in affecting unit behaviors. In
general, CCTT SAF has more detailed environment
features and terrain than ModSAF.

4.6.1 Environment
Deviations in support for environmental factors will
cause two CGFs to act and react differently. This
affects behaviors by increasing sensor degradation
and reducing trafficability.

CCTT SAF and ModSAF support sensor degradation
due to rain, fog, and haze. Trafficability in CCTT
SAF is reduced due to rain soaking the ground (if the
rain floods an area, vehicles will route around it, and
traction is reduced on rained soaked terrain).
ModSAF does not currently support rain soaked
terrain. By ModSAF ignoring the impact of weather
on routing (e.g., avoiding muddy terrain), its
behaviors will not be interoperable with CCTT SAF.

1 Modifications necessary for CCTT SAF compatibility

162

4,6.2 Terrain
The terrain database representation in CCTT SAF has
varying polygonal facets of 60, 120, and 240 meters.
This is multi-level terrain, providing trafficability
both over a bridge and through the water beneath it
(Pope et al. 1995). ModSAF's terrain database can
have different polygonal facets and there are no
multi-level terrain features (Braudaway et al. 1995).
Forests in CCTT SAF are represented as tree
aggregates, each of which can be broken up into its
respective trees (Pope et al. 1995). Forests are
represented as canopies in ModSAF with no
information about individual trees contained inside
the forest (Braudaway et al. 1995). CCTT SAF's
terrain database contains up to 10,000 destroyable 3D
features. The terrain also contains many relocatable
objects (those that can be moved around the terrain)
in the form of log cribs, tank ditches, DI berms, etc.
(Pope et al. 1995). There are few destroyable or
relocatable objects in ModSAF (e.g., ModSAF has
A VLB vehicles) (Braudaway et al. 1995).

CCTT SAF's varying polygonal facets and support of
closer grid posts allow for more accurate terrain
representation. This terrain format allows vehicles in
high traffic areas to have more terrain objects (trees,
buildings, water, etc.) to interact with than ModSAF's
terrain format provides. The CCTT SAF's use of tree
aggregates allows an entity or unit routing through a
forest to be able to use the trees for concealed
positions and to have its route affected by more
obstacles (in the form of trees). Relocatable and
destroyable objects provide a more realistic
environment for the entity. An entity may take
advantage of a relocatable object for concealed
positions or face obstacles because of destroyed
objects.

4.7 Code Sharing

CCTT SAF has separate behaviors for each force for
a majority of the CISs (see Figure 1), but it also has
common behaviors for both forces (e.g., Platoon
Execute Traveling). This represents a trade-off
between code maintainability and the need for
separate behaviors. ModSAF uses the same
behaviors for BLUFOR and OPFOR vehicles. This
is a problem for behaviors that execute a given
behavior differently. For example. Assault an
Enemy Position for a Tank Platoon is executed
differently for each force. The BLUFOR CIS for
Assault an Enemy Position specifies CGF operator
intervention and calls for moving to the Objective
using covered and concealed routes. Conversely, the

OPFOR behavior requires neither operator
intervention nor moving to the Objective using
covered and concealed routes. Because a CIS is
tailored to either BLUFOR or OPFOR behaviors, a
mechanism must be introduced to provide separate
behaviors for BLUFOR and OPFOR in ModSAF.
One solution to this problem is to augment
ModSAF's task filtering mechanism to distinguish

Two other similar areas of concern for code sharing
are sharing behaviors across unit types and across
echelons. In CCTT SAF two units of different types
but at the same echelon level may use the same body
of code. For example, in OPFOR Assault an

CCTT SAF
Behaviors

BLUFOR

Shared

OPFOR ModSAF
Behaviors

Figure 1 - BLUFOR/OPFOR Code Sharing

Enemy Position both a tank platoon and a motorized
rifle platoon will execute the same body of code, but
a tank company executes different code. In ModSAF,
behavior code is shared between unit types, and to
some extent, between echelons.

4.8 Crew-level behaviors

CCTT SAF has implemented behaviors down to the
crew level. This is largely a naming convention for
low-level vehicle responsibilities consisting of the
Weapons Crew (e.g., target assessment), Maintenance
Crew, Driver (e.g., routing), and Resupply Crew.
The Crew-level behaviors in CCTT SAF order the
Driver to move to a certain location, while ModSAF
starts a task for a subordinate vehicle to travel to a
certain location. Consequently, for implementation of
behaviors in ModSAF, a design decision to either
implement Crew-level behavior or use existing
ModSAF functionality must be made.

163

4.9 Conclusions of CCTT SAF and ModSAF
Differences

Although important, many of the differences between
the two systems were disregarded for this project to
allow implementations of CISs in ModSAF.
Supporting behaviors and CGF services were similar
enough to support implementation of CISs. Future
interoperability enhancements to supporting
behaviors and CGF services will only support more
realistic behaviors.

5. Prototype Implementation

After a survey of the CATT-Task database, 1ST chose
eight CISs to implement in ModSAF (see Table 2).
These were chosen to get a sampling of behaviors that
are simple, complex, BLUFOR, OPFOR, in
ModSAF, not in ModSAF, for a Company, and for a
Platoon.

BLUFOR Status
Conduct Hasty Occupation of
Battle Position (B0025)

Done

React to Air Attack (B0113)
Execute Traveling Overwatch
(B0017)
Emplace Hasty Protective
Minefield (B0137)
OPFOR Status
Conduct Fire Engagement
(HVY-0324)
Assault an Enemy Position
(HVY-0022)

Done

Execute Evasive Actions
(HVY-0029)
Company Assault an Enemy
Position (HVY-0113)

Table 2 - Selected CISs
As part of this research, 1ST
manually added two CISs to
ModSAF (shown in gray in

Table 2). This process began by analyzing the CIS
definition in the CATT-Task database and
constructing flow diagrams and a list of inputs and
outputs required by the CIS. The CCTT SAF code
was then analyzed and compared to the CIS
definition. Necessary components for the CIS were
sought in ModSAF. A ModSAF implementation was
designed using this gathered information. Necessary
underlying code in ModSAF was used in the design.
The design was then implemented and tested.

5.1 B0025 Conduct Hasty Occupation of a Battle
Position

This section presents a description of Conduct Hasty
Occupation of a Battle Position, outlines IST's
approach to implementing Conduct Hasty
Occupation of a Battle Position in ModSAF, and
evaluates IST's CIS implementation.

5.1.1 CIS Description
In Conduct Hasty Occupation of a Battle
Position, a U.S. Platoon moves toward and occupies
a Battle Position (CATT-Task Database). A
description of this CIS as given in the CATT-Task
database appears in Figure 2.

Figure 2 - Conduct Hasty Occupation of a Battle

The platoon is conducting offensive or
defensive operations and has received an order
to conduct a hasty occupation of a battle
position (BP). The platoon moves to and
occupies the BP, orients itself properly on the
likely direction/avenue of enemy attack and/or
assigned engagement area (EA), ensures
survivability of the platoon and its fighting
position, and is prepared to defend the BP by
the time specified in the order (ARTEP 17-237-
10-MTP, pp. 5-112 to 5-114; FM 17-15, pp. 4-
20, 4-4 and 4-5, 4-10 to 4-16).

BP

EA

An advantageous location, selected on
the basis of terrain and weapon
systems, from which a unit defends or
attacks. Platoon BPs and their direct-
fire orientation are designated in the
Operations Order(FM 17-15, p. 2-8).
An area designated along enemy
avenue(s) of approach in which the
commander intends to destroy the
enemy force with massed fires. It can
be identified by prominent terrain
features or by Target Reference Points
at the comers (FM 71-2. p. 4-22).

Figure 2 - Conduct Hasty Occupation of a Battle
Position

Position shows the sequence of actions that a Tank
Platoon should follow in the Conduct Hasty
Occupation of a Battle Position:

1. Routes to the center of the Battle Position.
2. Locates covered and concealed positions.
3. Moves to and occupies the Battle Position.

164

5.1.1.1 Supporting CISs for B0025
Conduct Hasty Occupy Battle Position uses other
CISs for situational interrupts. The situational
interrupts required for this CIS are listed below.

Situational Interrupts:
B0013 React to Indirect Fires
B0020 Take Active Air Defense While

Stationary
B0022 Execute Actions on Contact

These three CISs represent actions to be taken by the
Platoon executing a Hasty Occupy. React to
Indirect Fires occurs when the Platoon encounters
indirect fire. Take Active Air Defense While
Stationary is used to respond to air threats. Execute
Actions on Contact provides instructions to follow
when opposing ground forces are encountered.

5.1.2 1ST Approach

For this prototype, 1ST explored the CIS, examined
the corresponding CCTT SAF code, looked at the
existing ModSAF code for a similar behavior, and
constructed a diagram for the 1ST implementation.

5.1.2.1 CIS Task Description
1ST first reviewed the CIS definition. The Actions to

Hasty Occupy Battle Position (CIS B0025)

Enters BP from
flank or rear

Keeps all weapons
-»1 oriented in "enemy

direction"

Platoon moves into
a turret-down pos.

Points out each
tank's primary
fighting pos.

Points out limits
of company team

EA
Points out TRPs

_J
T

Indicates sectors of
fire

»-
Designates routes

out of BP to
subsequent BPs or

AA

»-
Each tank moves
into hull-down

pos. on
PL's order

PL reports
establishment

of BP to Company
team cmdr 1

Effective direct
fires are placed

into the appropriate
sectors) of fire

Each tank moves to
turret-down position

& scans sectors of
fire

Each TC moves
his tank back to

turret-down

TCs and gunners
scan for threat

targets & alert the
platoon to threats

••
Platoon com

to improve position

START

Calculate center of BP.
Stan Traveling task to center of BP.

Transition to Moving

T
Moving

If distance from platoon to center of BP
is less then 500m, then

Transition to Halt_Position

Halt_Position
Search for C&C positions.

When all vehicles have found their C&C positions,
then send orders for individual vehicles
to travel to their turret down position.
Transition to Execute_Orders.

V , ,

Execut e_Orders
If all the vehicles have reported reaching

their turret down positions, then wait
5 minutes and transition to

TurretDown.

Turret_Down
Distribute orders to move to hull down position

Transition to Hull_Down

Hull_Down
If all vehicles have reported

reaching their hull down position,
then issue progress report
stating that the position is

occupied. Transition to End.

Figure 4 - CCTT SAF Implementation of B0025

be Taken section of the CIS definition outlines the
procedure a unit follows when executing a CIS. 1ST
researchers created a flow diagram from the high
level actions in this section (Figure 3).

Figure 3 - CIS Description of B0025

165

START

I

Preparing_for_searoh
Initialize search for C&C positions.

Transition to Searching_for_positions..

Searching_for_pos it ions
If searchs for C&C positions are complete,

start vehicles moving to primary fighting positions.
Transition to Moving_to_postions.

Moving_to_pos it ions
If all of the vehicles are in their primary positions,

transition to At_positions.

At positions
Wait here until operator intervension.

^

Figure 5 - ModSAFs Hasty Occupy Position

Actions from top to bottom represent the sequential
order of actions that occur in the task. From the
description, a platoon executing B0025 would arrive
at the Battle Position. Individual vehicles of the
platoon would move into a turret down position,
move into primary fighting positions, move into
turret-down positions, and then continue to improve
their positions.

5.1.2.2 CCTTSAFCode
1ST researchers created FSM state diagrams from
CCTT SAF behavior code. The state diagram
provides an overview of the sequence of actions in
the CCTT SAF implementation of B0025, including
transition timing. Figure 4 for the state diagram for
CIS B0025.

r~ ~~^
Init_state

Calculate BP center. Start Unit Traveling.
Transition to Moving_to_bp_center

Moving_t o_bp_c enter
Calculate distance

between unit center and BP center.
If distance is within threshold,

stop the traveling task, and transition to
Preparing for search.

Preparing_for_s earch
Break up the BP line into

segments and determine which vehicles will
occupy which segment.

Initialize the search for C&C positions.
Transition Searching_for_positions

Searching for positions
Confirm that all vehicles are done

searching for C&C positions.
If done, start moving to hidden positions and

transition to Moving_to_positions.

Moving to positions
If all vehicles are done

moving to hidden positions,
start move tasks to

primary fighting positions.
Transition to At_positions.

At positions
Wait for orders

Figure 6 - Implemented Conduct Hasty Occupation of
Battle Position

Figure 4 shows the actions of the CCTT SAF Hasty
Occupation of a Battle Position. Each of the boxes
represents a state in the CCTT SAF code. Transitions
between states are represented with arrows.

166

5.1.2.3 Similar Existing ModSAF Behavior
A similar behavior to Conduct a Hasty Occupation
of a Battle Position existing in ModSAF is Hasty
Occupy Position. A state diagram for Hasty Occupy
Position appears in Figure 5.

Figure 5 shows the actions of the Hasty Occupy
Position. Each of the boxes represents a state in the
ModSAF code. Transitions between states are
represented with arrows. This ModSAF behavior was
analyzed to determine the modifications necessary to
implement CIS B0025 in ModSAF. Note that in
Figure 4 the platoon moves as a unit to the center of
the Battle Position, the vehicles move independent to
their hidden positions, and then the individual
vehicles move their primary fighting positions. In
Figure 5 however, vehicles of the platoon move
independently to their primary fighting positions.

5.1.2.4 1ST Implementation
Using the information gathered in Figure 3, Figure 4,
and Figure 5, 1ST developed an implementation plan
for adding Conduct Hasty Occupation of a Battle
Position to ModSAF. These three diagrams were
merged into a final implementation guide, Figure 6.

5.1.3 Implementation Evaluation
1ST evaluated its implementation of Conduct Hasty
Occupation of a Battle Position against CCTT
SAF's implementation to determine the differences
between the two. 1ST enumerated difficulties that
were encountered in implementing this CIS in
ModSAF. Finally, 1ST compared its CIS implemen-
tation to a similar behavior in ModSAF (Hasty
Occupy Position).

5.1.3.1 Differences Between CCTT SAF and
ModSAF Implementations
CCTT SAF uses supporting CGF Services from
CCTT SAF (e.g., CCTT SAF's target acquisition,
CCTT SAF's covered and concealed location search).
IST's implementation uses ModSAF's supporting
CGF Services (e.g., ModSAF's target acquisition,
ModSAF's covered and concealed location search).

CCTT SAF's CIS implementations are built using
supporting CIS implementations (e.g., Execute
Traveling, React to Indirect Fires). IST's
implementation of the CIS uses ModSAF supporting
behaviors (e.g., unit traveling, react to indirect fire).

5.1.3.2 ModSAF Implementation Difficulties
ModSAF's supporting tasks occasionally do not
behave as expected. Periodically, vehicles traveling
in the unit would get out of formation, occasionally
stopping to let the rear platoon vehicle pass the third
vehicle. Although some amount of flexibility is
expected in formation maintenance, our SME deemed
this inappropriate.

5.1.3.3 Difference From Existing ModSAF Behavior
The CIS was built using ModSAF's Hasty Occupy
Position task as a base. Obviously if the original task
followed the CIS definition, no work would have
been necessary. It should be noted that much of
ModSAF's original task was similar to the CIS
definition. Main differences between the CIS
prototype and the existing ModSAF behavior are the
use of the CIS for only one unit type, movement to
Battle Position and use of hidden positions.

ModSAF's Hasty Occupy task can be used by both
homogeneous and mixed units (e.g., DI-IFV
platoons). This CIS is specifically written for a
BLUFOR tank platoon. All references to mixed unit
tasks were removed and replaced with non-mixed unit
equivalent tasks. Although the mixed tasks would
have accomplished the same result, they were
essentially wrappers for non-mixed tasks, and
therefore unneeded for these purposes.

At the beginning of ModSAF's Hasty Occupy
Position (right side Figure 7), each vehicle finds a
primary fighting position, an alternate fighting
position, and hidden positions. The vehicles then
move individually to their primary fighting positions.
In IST's CIS implementation, the center of the Battle
Position is calculated. The platoon moves in column
formation to this location (on left in Figure 7). After
the platoon arrives, individual vehicles search for
C&C positions. When all vehicles have located their
positions, the vehicles individually move to their
hidden positions. After waiting in their hidden
positions (delay period is specified in the CIS), the
vehicles move to their primary fighting positions.

When enemy vehicles are spotted,
1. the engagement area is updated,
2. new C&C positions are calculated,
3. the entire platoon moves first to new hidden

positions (typically using reverse gear),
4. waits a specific amount of time and
5. moves to the new primary firing positions

(typically using forward gear).

167

Figure 7 - CIS and ModSAF Hasty Occupy Position

Use of a hidden position is significant in that it allows
better use of the vehicles front armor. The sequence
of backing into a hidden position and driving forward
to a new fighting position (vehicles move from P to
H' to P' in Figure 8) keeps a vehicles front armor
facing the engagement area. The ModSAF behavior
skips steps 3 and 4 (vehicles move directly from P to
P') ignoring hidden position. Consequently vehicles
often expose weaker side armor while moving to a
new fighting position.

6. Lessons Learned

Engagement Jk^
Area •

^1
Ix

Figure 8 - Use of Hidden Position

Many of the issues uncovered initially in this project
have been addressed with the implementation of these
CISs. Some of these key issues include:

• Can behaviors for specific alignments be
implemented in ModSAF?

• How different are ModSAF behaviors and
CCTT SAF CIS based behaviors?

• Can CISs be implemented in ModSAF?
• Can the knowledge engineering and software

development effort of CCTT SAF program
be leveraged to help implement CISs in
ModSAF?

• Can this process be automated?

Behaviors for specific alignments (OPFOR Hasty
Occupation of a Battle Position, and a different
BLUFOR Hasty Occupation of a Battle Position) can
be incorporated into ModSAF. Behaviors for
separate alignments were added to ModSAF in
separate libraries. Each behavior was then restricted
in use to members of the alignment for whom the task
was designed (i.e., only BLUFOR vehicles could
execute a BLUFOR defined CIS).

ModSAF behaviors seem to have much of the
functionality required by CISs, but seem to lack many
of the CIS details. This is probably due to ModSAF's
use of one behavior for many types of units and

168

 ,

vehicles (e.g., tank platoons use the same behavior as
mixed Dismounted Infantry/Infantry Fighting Vehicle
platoons).

CISs can be implemented in ModSAF. 1ST
implemented two CISs in ModSAF based on the CIS
definition and the CCTT SAF code. These CISs rely
on ModSAF behaviors such as unit traveling, but do
perform the tasks called for in the definition.

Reusing CCTT SAF technology leverages the
investment the US government has made in
simulation and training. 1ST leveraged the CCTT
SAF software development effort to help implement
CISs in ModSAF.

Much of the process to implement a CIS (at least for
the first prototypes) is repetitive and can be
automated. For example, creating state diagrams
from CIS definitions and CCTT SAF code, library
duplication, and inserting CIS definitions in source
code to closely tie the definition to the code could be
automated. Methods to automate this process will be
examined further by 1ST.

7. Future Work

In addition to further study of behavioral integration
techniques, there are a number of important problems
to be solved that are of value to the simulation
community.

• Measuring Behavioral Interoperability- Methods
are needed to measure the impact of integration
issues identified above and the overall execution of
specific behaviors. Behavioral interoperability
needs to be clearly defined and methods developed
for measuring it.

• CGF Independent Behaviors- CGF systems
currently have unique behavior implementations.
The same behavior implementations could be used
in different CGF systems. One approach to this is
to develop a behavior interface library. One side of
the library interfaces to a CGF system and the other
side interfaces to CGF independent behavior code.
Two CGF systems could then execute the exact
same behavior code and share in the benefits of
interoperability, code re-use and validation.

• Flexible Behavior Sequencing- The Execution
Matrix used in ModSAF and CCTT SAF utilizes a
spreadsheet type form that executes a single stream
of behaviors from beginning to end. Realism is
compromised because it is not possible to plan out
contingencies in advance and execute different
behaviors without operator intervention. Research

is necessary on development of a behavioral
organization that supports decision making on the
fly, possibly based on METT, with execution of
multiple behavioral streams.

8. Conclusion

This project has demonstrated the feasibility of
adding CISs to ModSAF. This paper has illustrated
the process that was used to add a CIS to ModSAF
and has documented some of the general issues that
impact behaviors. 1ST determined that many of the
enumerated issues can be overcome (by 1ST or the
CGF community). CIS prototype implementations
helped reveal processes used in CIS implementation
that could be automated. By examining the CATT-
Task database, 1ST found that a core group of CISs
are frequently used by other CISs. More examination
of the CATT-Task database is necessary to fully
enumerate this list, but this core group of CISs
represents a starting point for CIS integration.

9. Acknowledgment

This research was sponsored by the U.S. Army
Simulation, Training, and Instrumentation Command
and by the U.S. Army TRADOC Analysis Center as
part of the Integrated Eagle/BDS-D Project, contract
number N61339-92-K-0O02. That support is
gratefully acknowledged.

10. References

Braudaway, W., Buettner, C, Chamberlain, F.,
Evans, A., Smith, J., and Stanzione, T. (1995).
LibCTDB - Compact Terrain DataBase Library-
User Manual and Report, ModSAF
documentation.

Campbell, C, Hull, R., Root, E., and Jackson, L.
(1995). "Route Planning in CCTT',
Proceedings of the Fifth Conference on
Computer Generated Forces and Behavioral
Representation, Orlando, FL, Institute for
Simulation and Training, May 9-11, 1995, pp.
233-243.

CATT-Task Database. Phase II Version 2.0.
Resource Consultants Inc.

Courtemanche, A. and Ceranowicz, A. (1995).
"ModSAF Development Status", Proceedings on
the Fifth Conference on Computer Generated
Forces and Behavioral Representation, Orlando,
FL, Institute for Simulation and Training, May 9-
11, 1995, pp. 3-13.

Horan, B. (1994). "A SEOD Sneak Preview (Coming
Soon to a Simulator Near You)", 11th D1S
Workshop of Standards for the Interoperability

169

of Distributed Simulations, Sept. 26-30, 1994,
Orlando FL, Institute for Simulation and
Training, pp. 379-388.

Marshall, H. (1996). Personal Communication,
March 8, 1996.

Mastaglio T. and Goodwin III, E. (1994).
"Integrating Users into System Development:
User Exercises in CCTT", Proceedings of the
16th Interservice/Industry Training Systems and
Education Conference, Nov. 28 - Dec. 1 1994,
Orlando FL, Section 1 -9.

Pope, C, Vuong, M., Moore, R., and Cowser, S.
(1995). "A Whole New CCTT World", Military
Simulation & Training, Issue 6, pp. 6-19.

Rajput, S. and Karr, C. (1995). Cooperative
Behavior in ModSAF, 1ST Technical Report,
IST-CR-95-35.

Smith, J. and Swarts, S. (1990). LibSched - LibSched,
Programmer's Reference Manual, ModSAF
documentation.

Smith, S. and Petty, M. (1992). "Controlling
Autonomous Behavior in Real-Time
Simulation", Proceedings of the Southeastern
Simulation Conference 1992, The Society for
Computer Simulation, Pensacola, FL, October
22-23, 1992, pp. 56-71.

Vrablik, R. and Richardson, W. (1994).
"Benchmarking and Optimization of ModSAF',
Proceedings of the Fourth Conference on
Computer Generated Forces and Behavioral
Representation, Orlando, FL, Institute for
Simulation and Training, May 4-6, 1994, pp. 25-
33.

Wright. (1994). "Source Data Acquisition for the
Close Combat Tactical Training Systems and
Education Conference", Proceedings of the 16th
Interservice/Industry Training Systems and
Education Conference, Nov. 28 - Dec. 1 1994,
Orlando FL, Section 1-12.

Engineering from the University of Central Florida.
His research interests are in the area of simulation.

Tracy R. Tolley is a Research Consultant on the
Integrated Eagle/BDS-D Project at the Institute for
Simulation and Training. She has earned a B. S. in
Mathematics from the University of Central Florida,
and is currently pursuing an M. S. in Computer
Science from UCF. Her research interests are in the
areas of simulation, graph theory, and parallel
programming.

Lee Napravnik is a Software Engineer in the
Integrated Eagle/BDS-D Project at the Institute for
Simulation and Training. Mr. Napravnik has earned a
B.S. in Mathematics and B.S. in Computer Science
from Missouri Western State College, and is currently
a M.S. student in Computer Science at the University
of Central Florida. His research and publications are
in the areas of simulation and WWW software
development.

Daniel E. Mullally is a Research Associate for the
Institute of Simulation and Training with over twenty
years of military experience followed by over 18
years of training-related experience. Mr. Mullally
holds a M.A. in Human Resources Management from
Pepperdine University and a B.S. in Business
Administration from Western Carolina University.

Robert W. Franceschini is a Computer Scientist at
the Institute for Simulation and Training. He
currently leads the Integrated Eagle/BDS-D project at
1ST. Mr. Franceschini has earned a Bachelor of
Science in Computer Science from the University of
Central Florida; he is currently pursuing a Master of
Science in Computer Science from UCF. His
research interests are in the areas of simulation, graph
theory, and computational geometry.

11. Authors' Biographies

Matthew K. Kraus is an Associate in Simulation at
the Institute for Simulation and Training. He has a
Bachelor of Science degree in Computer Science
from Western Michigan University. He is currently
pursuing a Master of Science degree in Simulation
Systems at UCF. His research interests are in the
areas of distributed computing, artificial intelligence,
and computer graphics.

Derrick J. Franceschini is a Research Consultant at
the Institute for Simulation and Training. He earned
a Bachelor of Science degree in Computer

170

Semantic Arbitration of Behavior for the Interoperability of
SAF Simulations

Frederic McKenzie
Rick_McKenzie@cpqm.saic.com

Science Applications International Corporation
3045 Technology Parkway

Orlando, FL 32826

Christopher Dean
deanc@orl.saic.com

Science Applications International Corporation

Avelino Gonzalez
ajg@engr.ucf.edu

Dept. of Electrical and Computer Engineering
University of Central Florida

1. Abstract

The Advanced Distributed Simulation Research
Team (ADS RT) at SAIC-Orlando has been
conducting experiments with the interoperability of
simulations. One of these experiments focuses on a
generic approach for sharing behaviors between
Modular Semi-Automated Forces (ModSAF) and
Close Combat Tactical Trainer Semi-Automated
Forces (CCTT-SAF). One goal of military
simulation training is to provide large scale or joint
exercises to train personnel at higher echelons. To
help meet this goal a research experiment was
designed to investigate how lower echelon
combatants may consist of computer generated forces
with units composed of entities represented by
different simulations and different SAF
operators/facilitators. This research explores a method
of reducing operator work load by allowing units of
one simulation to be task organized with high
echelon units of a different type of simulation. In this
way, the simulation that owns the higher echelon
unit would be able to impose behaviors on unfamiliar
subordinate units without the aid of an operator. The
result is a unit composed of different simulations that
behave as one unit. This is accomplished through the
correlation of the behaviors of entities in different
simulations so that they can cooperate with one
another while performing unit tasks. Specific
behaviors from the simulation with the upper echelon
unit (source behaviors) can be translated to a form in
terms of general behaviors which can then be
correlated to the behaviors of any desired subordinate
unit owned by a different simulation (destination
behaviors) without prior knowledge of the pairing.
The approach is to develop an ontology of general
behaviors and behavior parameters, a database of
behaviors written in terms of these general behaviors,

and heuristic metrics which are used to compare
source behaviors with destination behaviors.

The results of this research has shown that heuristic
metrics, in conjunction with a corresponding
behavior and parameter ontology, are sufficient for the
correlation of heterogeneous simulation behavior.
These metrics successfully correlated known pairings
provided by experts. In addition, the metrics also
provided reasonable correlations for behaviors that
have no corresponding destination behavior. For an
environment composed of a variety of SAF
participants, these metrics show greate promise to
serve as a foundation for more complex methods of
arbitration. A description of the generic arbitration
algorithm and the results of the experiments are
contained in this paper.

2. Introduction

The initial focus of Distributed Interactive Simulation
(DIS) application development has been on training
of large, joint, or combined forces which is lacking in
traditional training. (DIS Steering Committee, 1994).
Since no single simulation can meet all the training
needs required for large or joint exercises, multiple
simulations must be used that can interoperate with
one another seamlessly in a common environment.
The DIS protocol was developed to promote
interoperability in a heterogeneous simulation
environment. Experience has shown that the DIS
standards do not address all of the issues associated
with interoperability. Although DIS provides
standards and guidance for interface definition,
communication, environment representation,
management, security, field instrumentation, and
performance measurement, it does not specify entity
representation standards, behavior standards,
synchronization standards, or spatial coherence

171

(correlation of terrain, resolution correlation and
environment correlation such as ambient
illumination, buildings, weather, etc.) standards and
database standards. This research specifically
addresses the behavior standards problem and the
behavior interoperability of SAF simulations.

I
CCTT o

1 • • 1 • • 1 •

CCTT

O
CCTT o

ModSAF

o
Figure 1: Task Organized Heterogeneous Simulation

Units

3. Behavior Interoperability

Because of the military's desire to conduct large-scale
theater of war training exercises and joint force
operations, there is a growing interest in the use of
SAF in the generation of simulated forces.
Coordination between different services employing
different SAF systems requires that the SAF systems
be capable of coordinated actions. To help alleviate
SAF operator workload in such an environment,
CGF units must be able to be composed of entities
that are owned and simulated by different simulations
(Figure 1). The units must perform their actions
properly under the specified task organization, i.e.
each unit must coordinate with every other unit even
if simulated by different simulations. This can be a
problem since the behavior of the simulations may be
of a different fidelity or functionality. Also, different
simulations may not even possess corresponding
behaviors. Behavior interoperability addresses these
interactions in an attempt to achieve the same
performance from the different simulations, i.e.
behavior correlation. Using this approach, entire
missions need to be arbitrated regardless of the
method used (reactive, intelligent agents, CBR, etc.).

To address the problem of behavior interoperability, a
common framework is necessary to provide a basis for
correlating SAF behaviors (Smith, 1995). In object-
oriented terms, simulation entities, events, etc. can
be converted from their specific form to a general form
and then to the specific form required by the
destination simulation. The extra step of converting
to the general common model provides flexibility in
that it allows interoperability between different
combinations of simulations without having to know
the exact combination beforehand. For the correlation
of behavior, not only is a common behavior

framework necessary but some degree of correlation of
the behavior is required that can allow a simulation
to execute the behavior specified by a another
simulation. This requires that all the necessary
attributes of a behavior must be imitated by both
simulations. However, due to the differences in
simulation behaviors, the behavior correlated for the
destination simulation may not be exactly the same
as that of the source simulation, i.e. they do not share
a common framework. Thus, the best match or
correlation must be arbitrated. Only major changes
to the destination simulation's architecture (to
support a common framework) would allow the total
correlation specified by the above definition. For this
research, arbitration will be defined as the
discrimination of behaviors based on an evaluation of
semantically correlated tactical procedures between
two heterogeneous simulations. A discriminated
behavior will be the best fit tactical maneuvers for a
subordinate unit based on the requirements of its
commanding unit. Semantic arbitration for behavior
needs to not only arbitrate the best "match" between
simulation behaviors, but also correlate the
parameters associated with the behaviors. If the
parameters of the commanding unit's behavior cannot
be correlated with the target simulation behavior then
the behavior cannot be executed.

As part of the subject research, a methodology was
developed that promotes interoperability of behavior
among simulations using a common behavior
framework, along with heurisitc metrics to correlate
behavior. A set of closeness heuristic metrics has
been defined for both behaviors and their parameters.
These metrics will use the general behavior and
parameter ontologies to determine the destination
behavior with the best "semantic closeness" to the
given source behavior.

To satisfy the problem of interoperable SAF
simulations, this research involves the development
of a general framework for behavior and behavior
parameters that facilitates the correlation between
tactical procedures. The structure of this framework
is domain independent which enables the system to
be used with other applications outside Department of
Defense training. Additionally, the system may be
used to perform off-line arbitration between known
simulations and parameter correlation during run-time
or the system can perform arbitration at run-time to
allow any combination of simulations to interoperate.

172

4. Semantic Correlation

HOVE SHOOT

/ \ /\
HALT TRAVEL / ATTACK BY FIRE

\y J
OCCUPY ASSAULT
POSITION

ROAD MARCH

OCCUPY BP

/ \
DISPLACE HASTY

TO SUBSEQUENT OCCUPY BP

BP

Figure 2: Partial Hierarchy for Tank Platoon
Behaviors

Any combination of these metrics can be used at the
various levels of decomposition to determine the
semantic closeness of two behaviors. In this context,
semantic closeness is defined as the percentage that
the destination behavior will perform the desired
behavior. There is no guarantee that the chosen
behavior will execute the same behavior as the
source, only that it will be the best match possible
among the available destination behaviors. Many
times, behaviors may be essentially the same but are
organized differently. There are five major cases that
illustrate the various ways differently structured
behaviors can be correlated. The five cases use
contrived examples of behavior from the military
domain for the sole purpose of illustrating the
possible metrics. The behaviors of interest in each
case are represented in italics.

4.1 Behavior Correlation Metrics

Behaviors are usually represented in an aggregate
fashion. Higher level behaviors are represented in
terms of lower level behaviors until the primitive
level is reached. Behaviors may be represented in
terms of more general behaviors or the aggregate of
lower echelon behaviors. In the case of aggregate
lower echelon behaviors, different behaviors may be
assigned to different units. This is not a problem
since the higher echelon behavior can still be
considered to exhibit these behaviors even though not
all lower echelon units exhibit all the behavior.
Because there is an infinite number of ways the same
behavior can be represented a simple comparison is
not sufficient. When trying to compare and correlate
behaviors several metrics can be used to determine
how similar they are:

• A source behavior can be found at a lower or
higher level of decomposition of a behavior than
in the destination behavior. This is defined as
the WHERE-IS metric.

• A source behavior can be decomposed into its
sub-behaviors which can then be correlated.
This is defined as the HAS-A metric.

• A source behavior can be related to a more
general or more specific behavior present in the
destination behavior. This is defined as the IS-A
metric. Note that an ontology such as that
shown in Figure 2 is necessary for this
determination.

The first case illustrates a source behavior that is
found one deeper level of decomposition on the
destination side. If the behavior is not found, then its
subcomponents can be used as a means of correlation.
An example of the first case is:

CASE 1: Lower Level WHERE-IS

Behavior A:

TRAVEL
MOVE

OCCUPY-POSITION

Behavior B:

CAUTIOUS-MOVE
TRAVEL
OCCUPY-

POSITION

Case 2 illustrates a similar situation but in reverse,
the behavior is found two levels of decomposition
higher:

CASE 2: Upper Level WHERE-IS

Behavior A: Behavior B:

ASSAULT
TRAVEL
OCCUPY-BP

TRAVEL
TARGETER

OCCUPY-
POSITION

CONSOLIDATE

ATTACK-BY-FIRE
TARGETER
TRAVEL

OCCUPY-
POSITION

CONSOLIDATE

A source behavior can be related to a similar
behavior of the destination. This is defined as
the SIBLING-OF metric.

173

Case 3 illustrates the situation where the behavior is
decomposed into its sub-behaviors and correlated:

CASE 3: HAS-A

Behavior A:

ASSAULT
TRAVEL
OCCUPY_BP

TARGETER
TRAVEL
OCCUPY-
POSITION

CONSOLIDATE

Behavior B:

TRAVEL
OCCUPY_BP

TARGETER
TRAVEL
OCCUPY-
POSITION

CONSOLIDATE

destination behavior do not affect the closeness as it has
been defined. Extra behaviors only mean that the
destination behavior does more than needed which is
acceptable. Only if the extra behaviors drastically cause
the behavior to conflict with the source behavior will there
be a problem. There may also be some ambiguity if more
than one destination behavior share the same subset cf
behaviors that match the source behavior. As far as the
semantic closeness is concerned the behaviors are equal.
A modification to the algorithm could be made that
would choose the behavior will the least amount of extra
behavior but that is no guarantee that behaviors will not
be ambiguous. Extra behaviors on the source behavior do
decrease the closeness since the destination behavior may
be missing some important functionality.

Case 4 illustrates both the general-to-specific and
specific-to-general IS-A correlation. When correlating
from behavior A to behavior B the more specific
HASTY_OCCUPY_BP can be used in place of
OCCUPY_BP. When correlating from behavior B to
behavior A, the more general OCCUPYBP can be
used in place of HASTY_OCCUPY_BP. Case 4 is
as follows:

LOCATION

CASE 4: IS-A

Behavior A:

ASSAULT
TRAVEL
OCCUPY_BP

TRAVEL
MOVE

SHOOT
CONSOLIDATE

Behavior B:

ASSAULT
TRAVEL

MOVE
TARGETER

HASTY_OCCUPY_BP
OCCUPY-POSITION
CONSOLIDATE

Case 5 illustrates the SIBLING-OF correlation. Here
BOUNDING_OVERWATCH is correlated with
TRAVELING_OVERWATCH since they are
inherited from the same parents, and hence similar:

CASE 5: SIBLING-OF

Behavior A:

ASSAULT
BOUNDING-
OVERWATCH

TRAVEL
OCCUPY-
POSITION

OCCUPY-
POSITION

CONSOLIDATE

Behavior B:

ASSAULT
TRAVELING-
OVERWATCH

TRAVEL
OCCUPY-
POSITION

OCCUPY-
POSITION
CONSOLIDATE

Extra behaviors may also be present on either the source
behavior or destination behavior. Extra behaviors on the

AREA

/
SECTOR

\
OBJ

POSITION

/\
ASSAULT

POSITION

POINT

/ \ /
START END PHASE

PT PT LINE

I
RELEASE

PT
ROUTE

TOAP

OVERWATCH

POSITION

LINE

ROUTE

ASSAULT

ROUTE

Figure 3: Partial Hierarchy for Behavior Parameters

4.3 Parameter Correlation Metrics

In addition to performing metrics when correlating
behaviors, metrics must also be calculated for
correlating the parameters associated with that
behavior. Parameters either are necessary for the
corresponding behavior to perform its function or
modify how the behavior is executed. Common
parameters for military behaviors include speed,
formation, platform, route, etc. The metrics define
how close the parameters between the two behaviors
match. Parameter correlation is only performed for
the top level source and destination behavior. The
parameters of sub-behaviors are not really significant
since as long as the initial parameters correlate, the
behavior can be executed. In addition, many times
the sub-behavior parameters will be derived internally
and have no explicit relationship to the top level
parameters.

There are three metrics that apply to parameter
correlation, the IS-A, PARENT-OF and HAS-A
metrics. The IS-A and PARENT-OF metrics both
determine the closeness along an inference path
between a source parameter and destination parameter
using information shown in Figure 3. The IS-A
metric determines if a destination parameter is a child
of one of the source parameters. The metric
determines the inferential distance between the two.

174

Similarly, the PARENT-OF metric determines if a
destination parameter is a parent of one of the source
parameters. Unmatched (Additional) parents in a
PARENT-OF metric also do not affect the closeness
for the parameter. This just means that the parameter
is more complex than the source parameter being
correlated which is satisfactory. These two metrics
can be combined to generate a correlation path from a
specific source parameter to a more general parameter
and then back to a more specific destination
parameter. For example, an ASSAULTPOSITION
can be correlated to an OBJECTIVE by following the
inference path from ASSAULT_POSITION to
POSITION to AREA to OBJECTIVE, where
OBJECTIVE is a specific type of AREA. The HAS-
A metric determines the closeness along a
decomposition path between a source parameter and
destination parameter. For example, suppose a
ROUTE can be decomposed into a STARTPOINT
and END_POINT. Then, a source ROUTE
parameter can be correlated with STARTPOINT
and ENDPOINT parameters of the destination
behavior. The IS-A and PARENT-OF metrics can
be combined with the HAS-A metric so that the sub-
parameters of parameter may also be matched with
destination parameters.

4.4 Incremental Decomposition And Abstraction

The correlation algorithm uses incremental
decomposition and abstraction of behaviors to
determine the closeness. Each source behavior is
recursed into and is compared (via recursion again) to
the levels of the destination behavior. Each behavior
is decomposed into its sub-behaviors which are also
correlated down to the primitive level. The
correlation algorithm uses the following high level
steps when correlating a source behavior:

1) Check for the presence of the sourcebehavior at
the given level of decomposition in the
destination behavior.

2) If the behavior is not present, apply the
WHERE-IS, IS-A, HAS-A, and SIBLING-OF
metrics, using the maximum closeness result.

3) Recurse into the source behavior, performing
these steps on each sub-behavior. Combine the
results of the sub-behavior correlations and
multiply the result by the closeness value
determined in one of the two previous steps.

4) Repeat steps 1-3 on the next behavior at this
same level of decomposition.

The parameter correlation algorithm follows the same
basic steps, with the parameter metrics being applied
instead. It is important to note that behaviors can

increase the closeness if they match, but behaviors
that match in name are not necessarily equal. The
closeness must be determined down to the primitive
level to determine an accurate correlation (hence the
presence of step 3 above). The correlation algorithm
uses the semantic closeness metrics defined earlier to
determine the behavior closeness value. This value
is calculated using closeness factors (decreases in
closeness) for each metric along with a few others.
These factors may need to be adjusted for a specific
destination system to guarantee proper correlation.

As each source behavior is correlated, the metric that
produces the best closeness value is combined with
the aggregate closeness value of its sub-behaviors.
The value is then combined with the other behaviors
at the same level of decomposition and filtered up to
the upper levels of decomposition. At the top-level,
the correlation of the behaviors is combined with the
parameter correlation to obtain a final correlation for
the behavior in the range between 0 and 1. Each sub-
behavior (except reactive behaviors) are equally
important in the closeness determination. Reactive
behaviors count for less since they do not define the
behavior, only their presence helps determine the
closeness. The algorithm makes sure that it does not
recurse into reactive behaviors when looking non-
reactive source behaviors since this would drastically
throw off the correlation. Also, a destination sub-
behavior can be correlated against a source behavior
more than once. In some cases this makes sense and
is useful if a destination behavior encapsulates more
of the source behavior. However, in some cases this
is not true. The uncertainty is captured by the
decrease in closeness factor for the correlation but no
decrease in correlation is currently implemented for
multiple destination matches.

The parameter correlation mechanism is a simpler
form of the behavior correlation algorithm. As
mentioned previously, this is primarily because it is
focused on a conversion path not just similarity. The
WHERE-IS metric is not used since sub-parameters
on the destination side are never recursed into.
Source parameters are broken up into their
constituents if necessary and these are matched
against the top-level destination parameters only.
Missing parameters contribute a portion of the
closeness if they are default. Unmatched required
parameters on the destination side will set the entire
behavior closeness to zero, because even if the
behaviors are similar, if the parameters cannot be
correlated then the behavior cannot be executed.
Unmatched required source parameters only decrease
the closeness determination by setting their closeness
contribution to zero. Both source and destination
parameters that are default and cannot be correlated are
not set to zero only the closeness is reduced by a

175

specified amount. Default parameters are defined as
those which have preset values within their
appropriate simulations and are not required to be set
for the behavior to be executed.

This research focused on the correlation of CCTT
tank platoon behaviors with that of ModSAF tank
platoon behaviors so they could interoperate under
one task organization. Only those behaviors that
could be assigned to tank platoons via their
respective GUIs were considered for source and
destination correlation. Each CCTT behavior
assigned to a ModSAF platoon would be correlated

with the best matching ModSAF behavior and its
parameters converted and the behavior assigned.

5.1 Proof Of Principle

As a proof of principle, twelve CCTT behaviors will
be correlated with one of twenty ModSAF behaviors.
Seven of these behaviors will have expected pairings
provided by subject matter experts. The remaining
five will have no corresponding ModSAF behavior.
The unknown correlation results are subject to
interpretation since no agreed correlation already
exists. Table 1 presents the correlations that will be
tested via the experiments.

CCTT-MODSAF CORRELATIONS

CCTT BEHAVIOR MODSAF BEHAVIOR
Assault an Enemy Position
Attack by Fire
Bounding Overwatch
Tactical Road March
Travel
Hasty Occupy Position
Traveling Overwatch
Occupy Bp
Passage of Lines
Platoon Defensive Mission
Platoon Fire and Movement
Consolidate and Reorganize

Assault
Attack by Fire
Overwatch Movement
Tactical Road March
Travel
Hasty Occupy Position
Traveling Overwatch
unknown
unknown
unknown
unknown
unknown

Table 1

5 Experimental Results

Testing ASSAULT and ATTACK BY FIRE will
test the algorithms ability to discriminate between
similar offensive actions. Testing BOUNDING
OVERWATCH will test the algorithms ability to
discriminate between several ModSAF forms of
movement, namely TRAVEL, TACTICAL ROAD
MARCH, OVERWATCH MOVEMENT, and
TRAVELING OVERWATCH. A similar reason

applies to TACTICAL ROAD MARCH. The
ModSAF TACTICAL ROAD MARCH is not as
robust and thus may not be determined to be the best
correlation. Testing TRAVEL will set the lower
bound for the test since this behavior exhibits a
strong correlation to the ModSAF TRAVEL
behavior.

5.2 An Experiment

One experiment involves correlating the CCTT
Assault An Enemy Position behavior. A typical tank
platoon assault behavior is concerned with issuing
movement and firing commands to its vehicles.
These commands instruct the vehicles to perform an
on-line attack and occupy the position attacked.
More specifically, the tank platoon closes with and
destroys the enemy by overrunning and seizing the
occupied enemy position. The tanks move rapidly in
line formation under the cover from direct and indirect
fire to the far side of the objective. Figure 4 shows
the CCTT Assault An Enemy Position behavior.
CCTT is more robust than ModSAF in this case
because it provides for an initial travel to the assault
position, allows for the breach of obstacles along the
way, and a consolidation and reorganization of forces
after the assault has been completed.

176

CCTT ASSAULT ENEMY POSITION:

TRAVEL
vehic!e_MOVE

BOUNDINGJDVER WATCH
TRAVEL

vehicle_MOVE
vehicle_OCCUPY_POSITION

vehicle_MOVE
vehicle_SEARCH
vehicle_HIDE

vehicleHALT
vehicleMOVE
vehicle_SEARCH

SEEK_COVER_AND_CONCEALMENT
vehicle_SEARCH

vehicle OCCUPY POSITION

The semantic closeness values of zero represent cases
where required ModSAF parameters could not be
correlated. Figure 5 shows the ModSAF Assault
behavior. The common primitives of vehicleMOVE
and vehicleSEARCH (common to
OCCUPY_POSITION) and the TRAVEL behavior
are the primary reasons for the correct correlation.
For similar reasons, the second and third choices
(TRAVELING_OVERWATCH and
OVERWATCHMOVEMENT, respectively)
exhibited high semantic closeness values. The
presence of these primitives in several
OCCUPYPOSITION behaviors offset some of the
missing behaviors even though the positions being
occupied are very different. The different positions are
captured by the parameter correlation but their effect
on the overall closeness is much smaller.

GENERATE_R£QUEST_FOR_IFIRE
CONSOLIDATE_AND_REORGANIZE

SEEK_COVER_AND_CONCEALMENT
vehicleSEARCH

vehicle_OCCUPY_POSITION

GENERA TE_SITREP

Figure 4: CCTT Assault An Enemy Position

For the CCTT Assault An Enemy Position behavior,
the following semantic closeness values were
calculated for the ModSAF behaviors:

ASSAULT 0.522923
ASSEMBLE 0.264287
ATTACH 0.425562
ATTACK BY FIRE 0.39817
BREACH 0.431557
CHANGE FORMATION 0.265716
CONCEALMENT 0.401982
DELAY 0.419041
DETACH 0.425562
FOLLOW VEHICLE 0.0
HALT 0.264287
HASTY OCCUPY POSITION 0.377462
OVERWATCH MOVEMENT 0.43608
PLOW BREACH 0.431557
PURSUE 0.0
ROAD MARCH 0.422094
SUPPLY 0.400714
TRAVEL 0.422094
TRAVELING OVERWATCH 0.488249
WITHDRAW 0.409559

The highest correlation is with the ModSAF assault
behavior with a semantic closeness of 52%. The
actual closeness value is not so important as is the
relative values between the different ModSAF
behaviors. This pairing is the expected correlation.

MODSAF ASSAULT:

EXECUTE_ASSAULT
ASSAULT

TRAVEL
vehicleMOVE
vehicleSEARCH
vehicle_ENEMY
FOLLOWUNIT

vehicleMOVE
vehicle_SEARCH
vehicle_ENEMY

TARGETER
vehide_SHOOT
vehicle_ASSESS
vehicleSEARCH

OCCUPY_POSITION
vehicle_ALTERNATE

vehicle_MOVE
vehicleTERRAIN
vehicle_SEARCH

Figure 5: ModSAF Assault Behavior

The CCTT parameters were correlated with the
ModSAF parameters in the following fashion with
their corresponding closeness values:

CCTT UNITJD to ModSAF UNITJD
(SC= 1.0)

CCTT PLATFORM to ModSAF
PLATFORM (SC = 1.0)
CCTT ROUTE_TO_AP to ModSAF
ROUTE (SC = 0.9)
CCTT ASSAULT_ROUTE to ModSAF
ROUTE (SC = 0.9)
CCTT ENEMYPOSITION to POSITION to
AREA to ModSAF OBJECTIVE

(SC = 0.729)

177

CCTT TRIGGER LINE to LINE to ModSAF
ROUTE (SC = 0.81)
CCTT ASSAULT_POSITION to POSITION
to AREA to ModSAF OBJECTIVE

(SC = 0.729)
CCTT DEPARTUREJTIME to NO MATCH
(SC = 0.0)
CCTT OBSTACLE defaulted (SC = 0.9)
CCTT BREACH_ROUTE to ModSAF
ROUTE (SC = 0.9)
CCTT PRE-BREACH_ROUTE to ModSAF
ROUTE (SC = 0.9)
CCTT POST-BREACH ROUTE to
ModSAF ROUTE (SC = 0.9)
CCTT ALPHA_SECTION ignored

(SC = 0.75)
CCTT BRAVO_SECTION ignored

(SC = 0.75)
ModSAF LEFTTACTICALBOUNDARY
defaulted (SC - 0.75)
ModSAF RIGHT TACTICAL BOUNDARY
defaulted (SC = 0.75)
ModSAF SPEED defaulted (SC = 0.75)
ModSAF DISMOUNTEDSPEED defaulted
(SC = 0.75)
ModSAF
STOPPING_ASSAULT_CRITERIA
defaulted (SC = 0.75)
ModSAF SECURE_OBJECTIVE_FLAG
defaulted (SC = 0.75)
ModSAF FORMATION defaulted

(SC - 0.75)
ModSAF SPACING defaulted (SC - 0.75)
ModSAF X_DI_OFFSET defaulted

(SC = 0.75)
ModSAF Y_DI_OFFSET defaulted

(SC = 0.75)
ModSAF ASSAULTREASON defaulted

(SC = 0.75)
ModSAF DI_FORMATION defaulted

(SC = 0.75)

The results agree with the predictions with one
exception that illustrates one inherent problem with
the parameter correlation. Destination parameters that
are equally related to more than one source parameter

cause an ambiguity as to which parameter correlation
is the correct one. In this experiment there are five
equally related source routes and only one destination
route. We know that the ASSAULTROUTE is the
best correlation but it is unclear as to how the
algorithm can determine this automatically.
Correlating in the other direction, a single source
behavior can be matched against more than one
destination behavior. In some cases this may be
satisfactory but in other cases it may cause
unexpected results and thus the destination
parameters should have been allowed to default.
Some a priori knowledge code may need to be used
to modify the parameter correlation for known
problems before assigning the behavior. As an
example, code can be used that will check to see if all
the routes are the same and if they are, default all the
routes except the assault route. Also, the best
correlations should take precedence over lesser
correlations such as the TRIGGERLINE in this
case. The CCTT TRIGGER_LINE should be
ignored since there are better ROUTE correlations.
This is a trivial task that can be done when the actual
parameter conversions are done. The ordering of the
parameters may also be used to specify a priority as a
conflict resolution scheme. However this may not
always be correct when the simulations being
correlated is determined at run time.

5.3 Experiment Conclusions

Based upon the results of the experiments, it has been
shown that the use of heuristic metrics in conjunction
with a corresponding behavior and parameter
ontology is sufficient for correlating CCTT and
ModSAF behaviors. Table 2 summarizes the results
of the experiments. Out of seven expected
correlations, six were correlated correctly with the one
exception due to a deficiency in ModSAF. The
remaining five unknown correlations were deemed
acceptable by subject matter experts under the given
constraints. Most of the correlations resulted in
closeness values around 50% thus demonstrating the
dramatic differences that can be present in externally
similar systems.

178

SUMMARY OF EXPERIMENTAL RESULTS

CCTT MODSAF MODSAF SEMANTIC ACCEPT-
SOURCE RESULT EXPECTED CLOSENESS ABLE

1 ASSAULT
ENEMY
POSITION

ASSAULT ASSAULT 0.522923 YES

2 ATTACK BY ATTACK BY ATTACK BY 0.607225 YES
FIRE FIRE FIRE

3 BOUNDING OVERWATCH OVERWATCH 0.554897 YES
OVERWATCH MOVEMENT MOVEMENT

4 TRAVELING TRAVELING TRAVELING 0.744768 YES
OVERWATCH OVERWATCH OVERWATCH

5 TACTICAL
ROAD MRCH

BREACH TACTICAL
ROAD MRCH

0.51583 NO

6 TRAVEL TRAVEL TRAVEL 0.899357 YES
7 CONSOLIDAT

REORGANIZE
DELAY <NONE> 0.489362 YES

8 OCCUPY BP ASSAULT <NONE> 0.589559 YES
9 PASSAGE OF

LINES
TRAVELING
OVERWATCH

<NONE> 0.39317 YES

10 PLATOON
DEFENSIVE
MISSION

ASSAULT <NONE> 0.540253 YES

11 PLATOON
FIRE AND
MOVEMENT

ASSAULT <NONE> 0.528677 YES

12 HASTY HASTY HASTY 0.594519 YES
OCCUPY OCCUPY OCCUPY
POSITION POSITION POSITION

6. Conclusion results. Even though the correct ModSAF behaviors

This research has shown that SAF behaviors can be
correlated with behaviors from different simulations
so they can interoperate with one another to support
simulation training. Specific source behaviors are
translated to a form in terms of general behaviors
which are then correlated to any desired specific
Table 2

destination simulation behavior without prior
knowledge of the pairing. As the experiments show,
the correlation may not be 100% since the
simulations may have different semantics. The
experiments do show that the use of heuristic metrics
in conjunction with a corresponding behavior and
parameter ontology is sufficient for correlating
heterogeneous simulation behavior.
This research has shown that using a database of
CCTT behaviors and ModSAF behaviors written in
a general form, a common ontology of behavior
parameters, and a set of heuristic metrics, that CCTT
and ModSAF tank platoons can interoperate (to a
degree) under one task organization. Of the seven
known pairings experiments, six showed the expected

were selected, however, many of the closeness values
were quite low. This is further proof of how
simulations that appear similar externally can actually
be very different in their internal semantics. As
mentioned previously, the one failed experiment was
not due to an error in the correlation algorithm but
due to the drastic difference in robustness of the
supposedly the same behavior. The five unknown
pairings produced acceptable results (as determined
by experts) when considering that there was no
corresponding ModSAF behaviors for these CCTT
behaviors. The ModSAF and CCTT units are still
interoperating but not to the degree desired. Often
100% interoperability of like simulations (same class
such as virtual or constructive) requires complete
reengineering of one of the simulations to the extent
that it is no longer beneficial to use two different
simulations at all.

This research has shown that a less sophisticated
form of correlation with a simple behavior
representation can indeed correlate behavior correctly
and satisfactorily in most cases. This has the
potential to reduce the SAF operator workload in

179

large-scale exercises. It also demonstrates the
promise of using heuristic metrics and knowledge
frameworks to solve semantic interoperability
problems. As the state of the art in CGF increases,
these semantic interoperability issues will become the
dominant factor in the pursuit of large-scale and joint
exercises. This research is but the first step towards
the heterogeneous simulations of the future.

7. Future Work

The focus of this research has been on the arbitration
algorithm and its supporting components. The
actual run-time interfaces and parameter conversion
routines have yet to be developed. There were also
were several issues addressed in the arbitration
algorithm. Specifically, how to handle source
parameters that correlate to more than one destination
parameter equally, and destination parameters that
correlate to more than one source behavior. Both can
cause unexpected behavior when the behavior is
executed with these parameter conversions. Also,
more research is required to study when to allow
parameters default instead of being correlated. Of
course, if 100% correlation is desired than an
extention of this work is needed that allows
simulations to be data driven and share behavior
primitives.

8. Acknowledgements

The authors would like to thank Christina Bouwens
for her support on this paper.

9. References

Dean, Christopher, The Semantic Correlation of
Behavior for the Interoperability of Heterogeneous
Simulations, Masters Thesis, University of Central
Florida, May 1996.

DIS Steering Committee, The DIS Vision: A Map to
the Future of Distributed Simulation Version 1,
Institute for Simulation and Training, May 1994.

Smith, Roger D., "The Conflict Between
Heterogenous Simulations and Interoperability,"
Proceedings of the 17th Interservice/Industry
Training Systems and Education Conference (CD-
ROM), The American Defense and Prepardness
Association, Albuquerque, NM, November 13-16,
1995.

10. Authors' Biographies

Dr. Frederic (Rick) McKenzie has been a member of
the Advanced Distributed Simulation Research Team
(ADS RT) since April 1995 serving as P.I. for two
interoperability IRAD projects. He holds a Senior
Scientist position at SAIC Orlando and is currently

technical lead on an ARPA sponsored advanced
interoperability project. For two years prior to
joining the ADS RT, he had been a member of the
knowledge engineering team for the SAF component
of the Close Combat Tactical Trainer (CCTT)
project. Dr. McKenzie has had two years teaching
experience in software languages and data structures.
He obtained a Master of Science in Computer
Engineering in 1990 and a Ph.D. in Engineering in
1994 from the University of Central Florida. Both his
Masters and Ph.D. work have been in AI research,
focusing on knowledge representation and model-
based diagnostic reasoning.

Christopher Dean has been a member of the
Advanced Distributed Simulation Research Team
(ADS RT) since January 1995. He has been
involved with several R&D efforts and is currently
supporting an ARPA sponsored advanced
interoperability project involving the verification and
validation of SAF behaviors. Christopher has seven
years of prior development experience creating
commercial educational software using various
software engineering techniques including
OOA/OOD, process improvement, and
documentation. Christopher has a Bachelors of
Science in Computer Engineering from the University
of Florida in 1994 a Masters in Computer
Engineering from the University of Central Florida in
1996. His Masters work has focused on knowledge
based systems and object oriented techniques and
their application to simulation training.

Dr. Avelino J. Gonzalez received his Bachelor's and
Master's degrees in Electrical Engineering from the
University of Miami, in 1973 and 1974 respectively.
He obtained his Ph.D. from the University of
Pittsburgh in 1979 also in Electrical Engineering. He
spent nearly 12 years with Westinghouse Electric
Corp. in Pittsburgh, PA and Orlando, FL working in
computer applications to electrical power engineering.
One of his most significant efforts was the
development of the Westinghouse generator
diagnostic expert system GenAID for which he
received the Westinghouse Award of Excellence in
Engineering.

In 1986, Dr. Gonzalez joined the Computer
Engineering Department at the University of Central
Florida (UCF) in Orlando, where he has focused his
research and teaching in Artificial Intelligence and
knowledge-based systems.

Dr. Gonzalez is a registered Professional Engineer in
the State of Florida, and was the founding president
of the Florida Artificial Intelligence Research Society.
He presently serves as the Treasurer of that
organization.

180

Generating Computer Generated Forces

Robert Balzer
Information Sciences Institute

4676 Admiralty Way, Marina Del Rey, CA 90292
balzer@isi.edu

1. Abstract

There is nothing special about our Computer
Generated Forces, except that they are automatically
generated from high level descriptions in a formal
specification language.

We have designed a high level graphical language
for specifying military doctrine concerning the
makeup and behavior of military forces and a
synthetic force generator which translates these
specifications into simulation modules that fit into
the ModSAF architecture and simulate the behavior
of those military forces. Central to this specification
language is the definition of formations describing
the coordinated movement and behavior of a
disaggregated military group.

This language is intended to eventually cover the full
range of military doctrines found in the four services
and was inspired by the Combat Instructions Sets
developed by the Army for the CCTT simulator.
Those validated doctrines are stated in natural
language. Our specification language attempts to
cover the same space and require little semantic
restructuring to formally specify those doctrines.

The initial version of this language has focused on
the definition of military formations and the
movement and maneuvers of the individual units in
that formation. It has been used to formally specify
the naval doctrine for how convoys are refueled and
resupplied at sea and to automatically generate the
ModSAF code from this specification.

2. Introduction

The objective of our effort is to design a formal
specification language for describing synthetic force
behavior which is semantically close to the
information contained in the Army's Combat
Instruction Sets (CISs) [McEnany & Marshall 1994]
and a generator for that language which
automatically converts those formal specifications
into operational ModSAF code.

2.1 Maneuver Specification Language

We have developed an initial prototype of such a
language, called Maneuver, which allows formations
to be graphically defined. These formations identify
the participants in the formation, specify their
locations relative to one another, and indicate the
movements or other actions they should perform in
the formation together with any synchronization or
other constraints on those actions.

A specification consists of a set of such formations
and rules for switching between them including the
reassignment of roles between those formations.
These rules specify for each participant what role it
plays in the new formation and what maneuvers or
other actions it must undertake to reach its assigned
position in that formation.

Bounding Overwatch can thus be specified through
two formations which respectively switch the
(stationary) "overwatch" and (advancing)
"bounding" roles between two squads.

2.2 Maneuver Generator

We have also built a generator which translates
Maneuver specifications into operational ModSAF
code in two stages. In the first stage, these
specifications are translated into a high level general
purpose specification language called Relational
Abstraction [Goldman & Naraswamy 1992]. This
high level general purpose specification language
was designed to facilitate the definition of the formal
semantics of domain specific languages (such as
Maneuver) while delaying decisions about how that
semantics would be implemented.

Those implementation decisions are addressed in the
second stage of translation which occurs in
alternative back-ends that produce operational code
hi a particular programming language. We have
previously developed Relational Abstraction back-
ends for Lisp, C++, and Ada, and have utilized the
first two in this effort.

181

3. Replenishment At Sea Example

3.1 Informal Specification

To illustrate the scope of the existing language, we
(informally) summarize the naval doctrine for
refueling a naval convoy at sea:

A formation is described (see Figure 1) in which the
convoy ships are arrayed in a circle around the
supply ship (shown in black) and rotate from
position to position to eventually take up a refueling
position along side the supply ship (on either its left
or right side). The left and right hand semi-circles
(as seen from the heading of the convoy) rotate
independently of each other. This rotation is
triggered by the pulling away of the refueled ship on
that side of the supply ship. The length of time it
takes for a ship to refuel is determined by the amount
of fuel that it needs and the number of supply hoses
that it has for the refueling (only a single size hose is
used). In addition, the ship must hook-up those hoses
before refueling can begin, and break those
connections before pulling away.

When carrier is refueled,
it departs the RAS vicinity

This long movement
avoids crossing in front of supply ship.

Figure 1: Ship Layout and Movement

Eventually, all of the ships in one of the semi-circles
will be all be refueled. At that point, the ships from
the other side will begin to rotate into both refueling
positions (rather than just the single one on then-
side of the supply ship). This is accomplished as a
change in formation. The two formations share most
of their roles. The formation change is specified by
naming the target formation and specifying the
target roles for those ships which are changing roles.
Each formation has its own rules for when synthetic
entities switch roles, how those role switches are
synchronized with others, and how the synthetic
entities move from one position to another. (In the

Replenishment at Sea task ships move from one
position in a semicircle to another by pulling forward
and turning to the outside of the formation,
proceeding to the rear until they pass their intended
position, and then turning back to the inside and
pulling up into their new assigned position. During
these maneuvers they are forbidden from crossing in
front of the supply ship).

Variant formations are defined for describing how
the carrier of the convoy takes up a special position
outside the rotation once it has been refueled.
Additional, formations are used to describe the
optional use of helicopters to ferry containerized
packets of material from the supply ship to convoy
ships abeam of the supply ship (but not those
currently refueling). These ships move closer to the
supply ship to facilitate this helicopter resupply

3.2 Formal Specification

All the information contained in the previous section
- except for the details of the path taken in moving
from one position to another - is formally specified
in the Maneuver language through a set of annotated
diagrams and a small number of non-graphical
textual declarations. The Replenishment At Sea task
without helicopters is defined by 5 formations (one
of which is terminal) and 10 textual declarations.
Specifying the behavior of the helicopters requires an
additional 2 formations (one of which is terminal).
In addition, to specify the behavior when an
(unpredictable) emergency breakdown occurs, 4
more formations are required.

One diagram (see Figure 2) specifies the layout of
the initial formation of the ships in the convoy
around the supply ship and defines all of the
positions in that formation that can be occupied by
ships during the Replenishment At Sea task. Besides
the circle of positions at a 1 to 2 mile radius around
the supply ship these positions include the refueling
positions on either side of the ship (LF and RF), the
waiting positions (LW and RW) 500 yards aft of
these refueling positions (in which ships are
prepositioned as the refueling of the ship on that side
is nearing completion so that when that ship pulls
away the next ship to be refueled can quickly pull
into position), and the carrier position (C) several
miles ahead of the convoy where the carrier goes
after being refueled (to get itself out of the way of all
the movement and maneuvering occurring during
this task).

182

NOT TO SCALE

angles:
radii:...

Layout RAS_C_L4_R4

5 rrute1350 degrees

I angles: ...

' radii:...

' radii:...

angles: ..
radii:...

s: 40 -60 degrees

1.1 mites -2-2 mile*

"200ftet . "~*
kfl I **

 Hi•
Kfr&**K9i9m

ugles: 60 -120 degrees
radii: 1.1 miles - 2.2 tales

ingles: 120 -150 degrees

radii 1.1 rules - 2.2 nates

angles: 150 -170 degrees
radii-1.1 rales - 2.2 rales

•t *:•$ "rfess sivfti

Figure 2: Initial Formation Layout

Each of the other diagrams specifies the behavior
for a single formation including the rules, if any, for
switching to another formation (specified by another
diagram). Figure 3 specifies the behavior of the
initial formation. It is initialized with the carrier and
one ship at the left and right waiting stations (LW &
RW), with the rest of the convoy ships in the circle
of positions arrayed around the supply ship (L1-L4,
R1-R4, and G). The refueling positions (LF and RF)
and the carrier refueled position (C) are unassigned.

Each of the arrows in a behavior diagram specifies a
role switch (and movement) that can occur within
the specification. These role switches are governed
by the predicates, if any, that appear on the arrow,
but can only occur when the role at the arrow's tail
has an assigned ship. In Figure 3 the LW and RW
roles are occupied in the initial state, and the
predicate on their outward-bound arrows ("not asgT
meaning "not assigned") is true. Therefore, these
two role switches can occur. However, there is

© Diagram RAS_C_L4_R4 ,

' If not left-side-iU-fuekd?
i then switch-to-focmation RASJL3JM «
! else switch-to-formation RAS JAJM II

! swKch-to-rorm»tionRAS_C_L4Ju!
• »-<^*-->Rl IR1->R2UR2->R3l

IIR3->R4HR4->R5

~$&»-

Figure 3: Initial Formation Behavior

183

another constraint ("depart-approach") on these
transitions (indicated by the wavy line that connects
the transitions into and out of the refueling positions
LF and RF).

This synchronizing constraint prevents arrivals and
departures alongside the supply ships from
overlapping each other, so the navigator of the
supply ship can focus on a single arriving or
departing ship. It is defined textually in Figure 5.
The numbered boxes on the constraint connectors
indicate preference among the possibilities. Here
those preferences allow the carrier in LW to be
reassigned to LF and move into the left refueling
position and block the reassignment of the ship in
RW to RF until one minute after the arrival of the
carrier at the left refueling position.

Once a ship has arrived at the left or right fueling
stations it hooks up its fueling hose(s), fuels, and
then disconnects (breaksdown) those hose(s). This
triggered sequence and the definitions of these three
actions are textually specified in Figure 5.

The completion of the breakdown for one of the
refueling ships triggers (via the "breakdown
complete?" predicate) the reassignment of that ship
to one of the positions emanating from the arrow out
of that fueling position. As with the arrival arrows
into the fueling positions, these departure arrows are
synchronized by the "depart-approach" constraint
which will delay this reassignment as necessary to
prevent its overlap with other arrivals or departures.

For the right fueling station (RF) the choice of which
of the three positions to transit to from the refueling
position is governed by the priorities specified in the
numbered boxes attached to the arrows leading to the
three possible targets. Each of these is tried in turn
until a true predicate is found. Since the "right side
has room" (i.e. as defined in Figure 5, not all the
right hand positions are occupied — which will be
true until all the right hand side ships have been
refueled and rotated out of the refueling station), the
highest priority choice will be available and the
refueled ship departing RF will be reassigned to Rl.

The dashed arrows emanating from roles Rl, R2,
and R3 indicate that these transitions are
synchronized with the reassignment to the role at the
start of the arrow. Thus, when a ship assigned to RF
is reassigned to Rl, Rl's ship is reassigned to R2,
R2's ship is reassigned to R3, and R3's ship is
reassigned to R4. The rotation on the left hand side

(LI to L4) is similarly synchronized (by the dashed
arrows) with the reassignment of a ship to LI.
The reassignment of a ship to the lifeguard position
(G) is not synchronized with the reassignments from
Rl to R4. Rather it is governed by the predicate
attached to its transition arrow ("not asg? G"). Thus,
whenever G is unassigned and R4 is assigned, the
ship assigned to R4 will be reassigned to G.
(Reassignment may occur even before a ship arrives
at a destination, so a ship in transit from R3 to R4
may be reassigned to G if G is vacated before that
ship arrives at R4.)

As long as the ship at the lifeguard position (G) is
not refueled, that ship will be reassigned to the left
or right waiting position (LW or RW) when the ship
at the corresponding refueling station is nearing
completion of its refueling (formally it will be
reassigned in anticipation of that completion so that
the waiting ship will be in position at the waiting
station 7 minutes before the refueling ship's
breakdown is complete). The right hand waiting
station is the preferred choice but ships can also be
reassigned to the left hand waiting station once all
the ships on the left side have been fueled. The
reassignments into and out of L4 are defined
similarly to those into and out of the lifeguard
position.

All of the transitions in Figure 3 have been
explained except for the transition from LF and the
second and third choices from RF. Let's start with
the transition from LF. It specifies a switch of
formations to formation RASJL3JR4 (see Figure 4)
or formation RAS_L4_R4 (not shown) depending on
whether the left side still has room. In the unusual
case when it doesn't (because the refueling of the
carrier took so long that the right hand side was
completely refueled and all the left hand side ships
were refueled on the right hand side of the supply
ship), the convoy switches to the terminal
RAS_L4_R4 formation. Normally, when the rest of
the convoy has not yet been completely refueled, it
switches to the RAS_L3_R4 formation.

This formation is very similar to the starting
formation, except that it has one fewer left hand side
position (LI through L3 instead of LI through L4) to
account for the fact that the carrier has been
reassigned to position C and is not participating in
the left hand side rotation. The reassignment of the
carrier (the ship icon denotes the ship assigned to the
role at the start of the reassignment arrow) to
position C is explicidy stated. By default all the

184

Diagram RAS_L3_R4

swicci-io-fonnatioo RASJL4 JM
»--> LI II LI ->L2 II L2->L3 IL3-H4 !

«witch-to-fomutioo RAS_L4_R4 II

>L1_IL1->L2IL2->L3 n L3->L4 |

ootasg?G

Figure 4: Left Side Short Formation

remaining (unmentioned) roles are carried forward
to the new formation However, the relative
positions of those roles in the new formation may be
(and in this case, some are) different, so the ships
may have to maneuver to satisfy the specification.

Returning to the second and third choices from RF,

the second choice will be selected when room
remains on the left side but not on the right (that is,
when all the ships on the right hand side have been
refueled and reassigned away from the refueling
position, but some on the left remain to be refueled).
In these cases, RF is reassigned to LI and the left
hand side rotates in synchronization with this

further activities not specified in the diagram:
on arrival at RF fueling station, hookup, fuel, and then breakdown

upon @?RFdo {hookup[@RF];fuel[@RF];breakdown[@RF]}
abort emergency? do emergency-breakdown[@RF]

upon @?LFdo {hookup[@LF];fuel[@LF];breakdown[@LF]}
abort emergency? do emergency-breakdown[@LF]

prevent undesirable overlaps:
these events must not overlap; reassignments will be delayed to assure this
1st minute of departures approaches and 1st minute thereafter

overlap depart-approach (Sl,S2,S3,S4:ship) =
{ from Sl:LF-> to Sl:LF-> + 1 minute, from S2:RF-> to S2:RF-> + 1 minute,

from S3:LW-> to S3@LF + 1 minute, from S4:RW-> to S4@RF + 1 minute }
action definitions:

simulate hookup of a ship at a station by waiting 20 minutes.
definition hookup[ship] = wait 20 minutes
definition fuel(ship) = wait (0.95 * (fuel-capacity(ship) - fuel-remaining(ship))

/fuel-rate(ship));
assert fueled?(ship) simulate filling to 95% of capacity

definition breakdown[ship] = wait 15 minutes; assert breakdown-completed?(ship)
definition emergency-breakdown[ship] = wait 5 minutes;

assert breakdown-completed?(ship)
predicate definitions:
definition left-side-all-fueled? =(every left-side-stations, s, is fueled?(asg(s)))
definition right-side-all-fueled? =(every right-side-stations, s, is fueled?(asg(s)))

True if every ship assigned to a left (or right) side station is fueled.
definition right-side-has-room? = not (every right-side-stations, s, is asg?(s))

Figure 5: Textual Declarations

185

reassignment. Finally, if all ships on both sides have
been refueled except the carrier, the third choice
from RF is selected and a switch is made to a
formation which creates a new right hand position
for the refueled ship and rotates the ships on that
side into their final positions.

The operation of the RAS_L3_R4 formation in
Figure 4 is very similar to the RAS_C_L4_R4
formation that we have just described, except that it
leads to a slightly different terminal formation as the
third choice for the LF and RF transitions.

Although we haven't mentioned it previously, an
emergency breakdown (caused by an enemy attack,
an accident, or an impending collision of the supply
ship) can occur at any time. If this occurs, refueling
stops immediately, the refueling hoses are
explosively disconnected and the refueling ships
immediately depart from the resupply ship. Many of
the remaining formations, which we have not shown,
result from the unpredictable timing of this
exceptional event.

4. Architectural Issues

4.1 Synthetic Force Commanders

This task operates as a commander for the synthetic
force (convoy) which controls and coordinates the
actions of the entity level units (ships) within that
synthetic force. It monitors the activity occurring
within the synthetic force, determines what actions
should be performed by each entity level unit, and
assigns the appropriate task to that unit to
accomplish the required action. Thus, when
breakdown is completed at one of the fueling
stations, the commander task determines which
option should be selected by the departing ship and
assigns it a movement task that corresponds to its
new role in the (current or new) formation. The
commander also assigns movement tasks to any
other ships whose rotation (movement) is
synchronized with the ship departing the fueling
station.

Thus, the commander is the only task that
understands and effects the synchronization and
coordination defined in the specification. The
commanded units merely get a succession of
primitive actions they are capable of performing
individually. The coordination of the synthetic force
arises from the commander's determination of the

timing and duration of those individual tasks for
each of the entity level units it controls.

4.2 Abstract Target Architecture

As an interface between the Synthetic Force
Commander and the entity level units that compose
that synthetic force there must be a set of behaviors
that those entity level synthetic forces can perform.
These behaviors provide the means by which the
commander can control and coordinate the actions of
the entity level units that comprise the synthetic
force.

This formulation of the interface between a synthetic
force commander and the entity level units that
comprise that synthetic force allows us to restate the
generation task more precisely: given a specification
that describes the desired behavior of an aggregated
synthetic force, the generator must translate that
specification into sets of commands to be issued by a
synthetic force commander to the entity level units of
that synthetic force which ensure the coordination of
their behavior in performing the specified task.

Thus, the generator must understand the semantics
of the behaviors that the entity level units can
perform and how sequences of those behaviors can
be used to accomplish the specified task. Rephrasing
this in conventional compiler terminology, these
behaviors are the operations of the abstract virtual
machine for which programs must be generated.

We believe that the definition of that abstract virtual
machine will be one of the major results of this
effort. By defining a full compliment of platform
specific actions (e.g. move, turn, follow, aim, shoot,
reload, refuel) an operational infrastructure will be
developed that supports many different synthetic
force tasks (i.e. Combat Instruction Sets).

Although the code for the platform specific actions
in this abstract virtual machine could theoretically be
automatically generated from a specification, we
have chosen not to do so, but rather to use the
existing manually developed implementations
produced by the military services or then-
contractors.

This abstract virtual machine thus forms the
boundary between the automatically generated
commander code and the platform specific actions
that the entity level units can perform.

186

4.2.1 Incomplete Abstract Virtual Machine

Not surprisingly, we found mismatches between our
conceptualization of a suitable abstract virtual
machine and the set of available manually coded
platform specific actions.

Some of these mismatches arose because our efforts
were concurrent with the creation of the platform
specific actions and while they eventually would be
produced, they weren't ready when we needed them.
Others arose from the task oriented nature of the
development which limited each contractor to only
produce those platform specific actions required for
the SAF tasks it was assigned to implement. This
resulted both in overly specific tasks and the absence
of required actions. One example of the former is the
inability to turn a ship to a specified heading, and an
example of the latter is the absence of a following
action for helicopters.

We resolved these mismatches by manually
constructing code which realized the idealized
abstract virtual machine operations in terms of the
available implementations. Thus, to achieve a
smooth "outside" turn to shift positions in the
semicircle, our command task issued a sequence of
course/speed adjustment commands. After each
command, the command task would monitor the
ships progress to decide when to issue the next
course adjustment. Similarly, the absence of a
following task for helicopters was resolved by
regularly updating the destination location that the
helicopter is moving toward (but never reaching).

A second example of an overly specific action is ship
collision avoidance. It used an implementation
developed for tanks. Collision avoidance is defined
as maintaining a separation of x units between the
boundaries of the entities. Those boundaries are
calculated as one half of the entity's longest
dimension. For relatively square platforms, such as
tanks, this approximation works quite well.
However, for long narrow platforms, like ships, it
prevents them from pulling up along side of one
another — a maneuver required for refueling.
Without rewriting this platform specific algorithm,
our only resolution was to specify the refueling
positions (LF,RF) at distances that would require
unrealistically long hoses to transfer the fuel.

4.2.2 Command and Simulation
Within ModSAF, there are two possible target
implementations for a "command" task like RAS.

One is to actually simulate communications between
the commander and the ships - e.g., by transmitting
radio messages, a concept supported by the
simulator. This, requires that the ships be executing
suitable tasks to monitor for radio messages, and that
a message protocol exist whereby the content of the
radio messages is properly interpreted by the ships to
alter their behavior.

If one's goal is not to simulate the communication
itself, but only the synchronized movements of the
ships, a simpler mechanism is available (which we
used). That mechanism allows the commander task
to directly add tasks (or modify the parameters of
existing tasks) in the task lists of the ships being
commanded.

5. Status

There are two implementations of our generator. The
first was a feasibility prototype that illustrated the
possibility of automatically generating synthetic
forces from a high level domain specific formal
language. This generator produced Lisp code that
operated outside of ModSAF in a separate process
and communicated with it via network sockets.

Our second version produces C code that operates
within ModSAF and eliminates the need for any run-
time Lisp code. This version has been completely
implemented and is being debugged. We expect to
deliver shortly an operational C-based
Replenishment At Sea module to NRaD's Navy SAF
project.

Currently the graphic specifications must be hand
translated into a set of assertions (in our Relational
Abstraction language) which describe the topology of
the diagrams and the labels attached to the nodes
and lines. A graduate student is building a graphic
editor and translator which will allow these
diagrams to be interactively created and modified
and will automatically construct the assertions
required by the Maneuver generator.

6. Future Work

Starting this summer, we will be testing the breadth
of this language and its program generator by
developing formal specifications and synthesized
ModSAF Computer Generated Forces for 10 CCTT
Combat Instruction Sets for Scout and Mechanized
Infantry Platoons that were selected by STRICOM as

187

being representative of a spectrum of complexity and
difficulty in implementation.

7. Acknowledgment

This work was jointly funded by DARPA's ISO and
ITO offices under contract DABT63-91-K-0006.

8. References

McEnany, B.R. and Marshall, R (1994) "CCTT
SAF Functional Analysis" Fourth Conference on
Computer Generated Forces and Behavioral
Representation. May 1994

Goldman, Neil and Narayanaswamy N. (1992)
"Software Evolution through Iterative
Prototyping" Proceedings of the 14th International
Conference on Software Engineering, Melbourne,
Australia, May 1992

9. Author's Biography

Robert Balzer received his B.S., M.S., and Ph.D.
degrees in Electrical Engineering from the Carnegie
Institute of Technology in 1964, 1965, and 1966.
After several years at the Rand Corporation, he left
to help form the University of Southern California's
Information Sciences Institute (USC-ISI). He is
currently Professor of Computer Science at USC and
Director of ISI's Software Sciences Division. The
Division combines Artificial Intelligence, Database,
and Software Engineering techniques to automate
the software development process. Current research
includes program generators, architecture
description and refinement, domain specific systems,
transformation-based development, computing
environments, constraint-based systems, and
executable specification languages.

A New Mechanism for Cooperative Behavior in ModSAF

Sumeet Rajput and Clark R. Kan-
Institute for Simulation and Training

3280 Progress Dr., Orlando, FL 32826
srajput@ist.ucf.edu

1. Abstract

Like vehicles in a real battlefield, CGF vehicles must
cooperate with each other to achieve battlefield
objectives. Traditional CGF systems, such as
Modular Semi-Automated Forces (ModSAF), contain
a Centralized Control Architecture (CCA) to control
the behavior of simulated entities. In this approach,
an entity (sometimes invisible) controls the behavior
of other entities. CCAs are easy to implement but do
not mirror cooperation of vehicles in the real world.
A more realistic way to control the cooperative
behavior of entities is through a Decentralized
Control Architecture (DCA). In this approach entities
cooperate with each other directly; there is no
supervisory control. DCA's have several advantages
and reflect real world cooperation. This paper
describes a DCA developed within the ModSAF CGF
system. The core of the DCA is a Finite State
Machine (FSM) Engine. Cooperative behaviors are
expressed as formal FSMs to obtain an unambiguous
control process.

2. Cooperative Behavior

2.1 Real World Cooperation

In a real battlefield, soldiers and vehicles (actually
soldiers inside the vehicles) cooperate in most
situations. They may cooperate:

• by coordinating movement and fire,
• by understanding the unit's plan and their

role within it,
• by reacting to unexpected events in

acceptable ways,
• through information passing, and
• by following commander's directives.

A unit in the battlefield has a hierarchy of command
which reflects the information flow from the top to
the bottom levels.

In a real battlefield, entities cooperate in a
decentralized fashion as opposed to using a
centralized approach. Decentralized means that

entities cooperate with each other directly without
being directly controlled by a supervisor. This does
not mean they are unsupervised but rather the
supervisor (commander) controls his subordinates
through orders and signals and not through direct
immediate control of the subordinate's behaviors.

Soldiers and vehicles cooperate either explicitly or
implicitly. Explicit cooperation involves transmission
of signals. Platoons transmit signals using:
messenger, wire, visual, sound, and radio (US Army
[1990]). Implicit cooperation does not involve any
transmission of signals. Entities observe other
entities and change their behavior accordingly; for
example, entities do formation-keeping by observing
the behavior of other entities.

2.2 Statement of the problem

The goal of the research described in this paper is to
implement a CA architecture that:

• mirrors real life cooperation between
vehicles,

• uses explicit and implicit cooperation
between vehicles,

• allows new cooperative behaviors to be
created easily and with little coding, and
can be verified and validated easily.

3. Cooperative Behavior Control Architecture

The cooperative behavior control architecture
controls the behavior of subordinate entities. There
are two ways to control subordinate entities:
Centralized control and Decentralized control.

3.1 Centralized Control Architectures (CCA)

In a Centralized Control Architecture (CCA), a
centralized controller makes behavioral decisions for
subordinate entities and conveys these decisions to
the subordinates. CCAs resemble the real world
because, like the real world, the unit is controlled
from a centralized location. However, there are
important distinctions. The first distinction is in the

189

granularity of control relative to that of the real
world. CCAs exercise unrealistically fine control.

For example, CCAs may do formation-keeping for a
platoon by monitoring each entity and making sure
that entities maintain appropriate distances between
them. In the real world, formation-keeping is done by
entities; proper entity-to-entity distances are
determined and maintained by entities themselves.
The second distinction is in reasoning and decision
making. In CCAs, the centralized controller reasons
and makes decisions on the entities' behalf whereas in
the real world entities reason and make decisions
themselves. For example, CCAs plan routes for the
entities whereas real world entities plan their own
routes.

The entity exercising centralized control may be
either a simulated entity (e.g., a tank) or an invisible
"ghost" entity (or process). Furthermore, the
centralized controller may control subordinate entities
either explicitly or implicitly. Explicit control
requires the transmission of messages (orders) from
the centralized controller to the subordinates. These
orders, unlike real world orders, contain specific
information which otherwise would have been
computed by the subordinates themselves. For
example, an order to move may contain the route
information. In the real world, a subordinate will
only be told to move to a destination and it will
compute the route itself. Implicit control is more
direct. In this case, the centralized controller
executes code on or on behalf of subordinate entities.
Code execution directly affects a subordinate's
behavior.

The centralized controller in ModSAF is an invisible
process representing the unit which "knows" the
identity of the vehicle responsible for the unit, e.g., a
Platoon Commander. When the Platoon Commander
is disabled, ModSAF restarts the cooperative
behavior on the platoon. The responsible entity is
updated, i.e., another entity becomes the Platoon
Commander. The centralized ModSAF controller
controls the subordinates implicitly by executing code
on their behalf.

CCAs are suitable for implementing simple
cooperative behaviors but have several disadvantages.
First, implementing a CCA results in loss of realism.
For example, with a "ghost" centralized controller,
the unit's collective behavior can be unaffected by the
loss of the simulated commander. On the other hand,
if a simulated centralized controller is destroyed, the
collective behavior of the unit is disrupted. Of

course, both problems can be addressed by
introducing provisions in the software for transfer of
command. But the complexity required to centrally
resolve all the conflicts between centrally controlling
a real world decentralized control process forces
compromises and simplifications. To make up for
these losses would entail increasing the complexity of
the software. Second, generating the behaviors of all
entities from a single source results in inefficient use
of resources; more time is spent in the controller
causing it to be overworked. Finally, modeling larger
units, such as companies or battalions, becomes
increasingly complex because the centralized
controller has to control more vehicles.

3.2 Decentralized Control Architectures (DCA)

In a Decentralized Control Architecture (DCA),
subordinate entities follow the unit's plan and
commander's orders but make their own behavior
decisions. Unlike a CCA, there is no unseen
controller that makes decisions on their behalf; this
approach mirrors cooperation in the real world. A
DCA commander functions like a real world
commander by giving and receiving orders from other
entities. For example, a DCA commander may order
an entity to move to a destination. Like the real
world, the commander may only supply the entity
with the location of the destination and not a precise
route. In this case, the entity computes its route to
reach the destination.

DCAs have several advantages. First, unit or group
cooperative behavior emerges as a result of direct
cooperation between entities potentially resulting in
realistic cooperative behavior in complex situations.
Second, because behavior generation is distributed
across entities, which can be distributed across
computers, limited hardware resources can be used
efficiently. Finally, DCAs give rise to modular
implementations; e.g., a Platoon Commander's
cooperative behavior can be housed in a module
separate from modules containing behaviors of other
commanders. Each module's behavior can be verified
and validated independently. On the other hand,
CCA implementations combine the behaviors of
different levels in a unit into one module making
verification and validation more difficult.

When discussing DCAs two questions need to be
answered. First, how do entities cooperate with each
other? Second, how do entities know what task to do
and when to do it?

Entities can cooperate in a number of ways:

190

• Message Passing: Noreils [1993]), (Noreils
[1992a]), (Noreils [1992b]), (Noreils [1992c]),
(Parker [1994]), (Shin and Epstein [1990]),
(Lefebvre and Saridis [1992]), (Smith and Davis
[1981]), (Fisher and Woodridge [1994]), (Decker
[1987]), (Ohko et. al. [1993]), and (Parker
[1994]).

• Shared Memory: (Laengle and Lueth [1994a]),
(Laengle and Lueth [1994b]), (Corkill [1991]),
(Occello and Demazeau [1994]), and (Dai et. al.
[1993]).

• Combination of Message Passing and Shared
Memory: (Lun and Macleod [1992]), (Wang
[1994]), and (Harmon et. al. [1986]).

• Implicit Cooperation: (Payton and Dolan
[1991]).

Entities can be allocated tasks by:

• Negotiation: (Noreils [1993]), (Noreils [1992a]),
(Noreils [1992b]), (Noreils [1992c]), (Lun and
Macleod [1992]), (Smith and Davis [1981]),
(Fisher and Woodridge [1994]), (Decker [1987]),
and (Ohko et. al. [1993]).

• Self-contribution: (Corkill [1991]) and (Parker
[1994]).

A survey of DCAs and the above two questions are
discussed in Rajput and Kan- [1995].

4. A Decentralized Control Architecture using
Finite State Machines

4.1 Approach

To model cooperative behavior, 1ST chose to
implement a DCA within the ModSAF CGF system.
Traditional CGF systems have used CCAs for
controlling cooperative behavior. The work described
in this report is the first time a DCA has been
implemented within a CGF system for controlling
cooperative behavior.

The DCA chosen is based on Finite State Machines
(FSMs). FSMs were used as building blocks for the
architecture; FSMs are a well understood formal
process control mechanism (Sudkamp [1988]).

Entities cooperate explicitly by exchanging simulated
radio messages (Signal PDUs) and implicitly by
observing other entities. Observation is implemented
by an Observation Module, a software module that
observes the battlefield situation and sends
observation messages to the entity.

The implementation is data driven and allows new
behaviors to be defined quickly and easily through
data files. In current CGF systems, considerable
coding effort is required to create new cooperative
behaviors. This increases development and
prototyping time for new cooperative behaviors.

4.2 Formal FSMs

A formal FSM is defined as:

1. A set of states: An FSM is in one of its
states. The state of an FSM is also the state
of the process being controlled by the FSM.

2. Events: Only events cause an FSM to change
states.

3. State Transition Procedures (STPs): These
are procedures (i.e., code) which are called
to do work. STPs are used only during state
transitions.

FSMs have been defined formally (Sudkamp [1988])
but implemented to various degrees of formality.
FSMs are an excellent process control technique.
FSMs, as their name implies, track the state of a
process, handling events which may cause the process
to change state.

Formal FSMs are often represented as diagrams.
Consider the example of a coin-operated candy
dispenser whose FSM is shown in Figure 1.

Start

{DispenseCandy}

Figure I: FSM for a coin-operated candy dispenser.

This machine accepts only nickels and dimes and
dispenses candy worth $0.15. In Figure 1, the circles
represent states and arrows represent state transitions.
Above the state transition line, in angle brackets
(< >), is the event causing the transition. Square
brackets ([]) represent any events that are generated
as part of the transition. Braces ((}) represent calls
to STPs.

191

A formal FSM does not poll for events to change
states; rather, events are generated and their arrival
causes state transitions. This feature of formal FSMs
is especially attractive because it eliminates
inefficiencies introduced in polling.

1ST considered implementing the DCA using
ModSAF FSMs. In ModSAF, FSMs are not
implemented formally: code is executed within states
rather than by STPs during state transitions, and many
state transitions are not event driven. Because formal
FSMs provide an unambiguous way to control a
process, they were used for the implementation

4.3 FSM Communication

An entity's cooperative behavior is implemented as an
FSM. To cooperate, entities need to communicate
and they do so via FSM communication. FSMs may
communicate with each other (inter-FSM
communication) or an FSM may communicate with
itself (intra-FSM communication).

4.3.1 Inter-FSM communication

In inter-FSM communication, FSMs send events to
each other. These events, called external events,
often take the form of simulated "Radio Messages."

An entity may generate external events to itself.
These events are generated from an Observation
Module and are called Observation Events.
Observation Events are generated in response to
battlefield conditions.

4.3.2 Intra-FSM communication

Using a common queue for external and internal
events can lead to synchronization problems. State
machine actions are non-preemptive; processing an
internal event is done completely and, possibly, new
internal events are generated in one execution thread.
While internal events are being processed new
external events may continue to arrive. If the external
and internal events are processed in an interleaved
manner unexpected situations can develop. Handling
all possible interleaving of internal and external
events is needlessly complicated.

The solution is to queue external and internal events
in separate queues. External events are put into one
or more external event queues while internal events
are put into an internal event queue. No external
event is dispatched until the internal event queue is
empty. This allows all intra-machine communication
(spawned by an external event) to complete without
interference from new external events. The approach
also allows a single external event to be re-mapped
into several internal events. This reduces machine
complexity and breaks complex external events into
simpler requests.

4.4 FSM Engine

Because formal FSMs do not exist in ModSAF, an
FSM Engine (Figure 2) was developed to run formal
FSMs. The FSM Engine contains an FSM's
description in a State-Event Table. The State-Event
Table is created by reading a data file FSM
description (Section 5.3). The table is indexed by a
state/event pair that determines the new state of the
FSM; the indices are the current state of the FSM and
the internal event to be processed.

FSMs communicate with themselves by sending
internal events to themselves. Consider the FSM for
the coin-operated candy dispenser shown in Figure 1.
Assume that the FSM is in state "$0.05." When a
dime is deposited, the machine generates an internal
event, dispense, to itself and transitions to the
state "$0.15." The receipt of the dispense
internal event signals the FSM to transition to another
state and execute an STP (DispenseCandy).

4.3.3 Event Queues

FSMs communicate by generating external events
between themselves. When external events arrive,
they are first mapped to internal events and then put
into an event queue for processing. There are two
approaches for handling external and internal events:
use one or two event queues.

During the transition, external and internal events
may be generated and STPs called.

The FSM Engine receives input from two sources:
Signal PDUs and Observation Events. Signal PDUs
contain radio messages and simulate radio
communication. Observation Events are generated by
the Observation Module in response to battlefield
situations. Radio messages and Observation Events
are external events which are queued on two separate
queues: Radio Message Queue and Observation
Event Queue.

192

FSM Engine

Internal Event Queue

State-Event Table

External Event h—I Radio Message Queue |»
to

Internal Event
Mapper Observation Event Queue

Internal Event

New State
Radio Message (External Events)
State Transition Procedures

Observation
Module Observation

Events

Figure 2: FSM Engine.

Simulated Battlefield (TDB, DIS Traffic)

Signal PDUs

Periodically, the external event queues are checked to
see if any external event is waiting to be processed.

The external event is removed from the queue,
mapped into an internal event, and queued on the
internal event queue. Then, internal events from the
internal event queue are removed and processed.

To process events, the FSM Engine needs to be called
periodically. This is done by calling the FSM Engine
from a non-transitioning ModSAF FSM. Each time
the ModSAF FSM becomes active, it calls the FSM
Engine; the FSM Engine can be thought of as
embedded within the ModSAF FSM. Note that the
ModSAF FSM does not do anything. Its sole purpose
is to ensure that the FSM Engine is called
periodically; all the work required in processing
events and changing the behaviors of entities is done
by the FSM Engine.

5. Implementation

5.1 Hierarchy of Commanders

A vehicle can execute behaviors on many levels.
Consider Vehicle 1 in Figure 3. The commander of
this vehicle has three responsibilities, those of the
Platoon Commander (PC), Section Commander (SC),
and Vehicle Commander (VC). One way to represent
the cooperative behavior of this commander would be
to create a large and complex FSM that merges the
platoon, section, and vehicle commander behaviors.
This process can become arbitrarily complex as the
hierarchy grows and commanders with more
responsibilities are modeled.

For example, for the hierarchy shown in Figure 3,
Platoon-Section-Vehicle Commander, Section-
Vehicle Commander, and Vehicle Commander FSMs
would be needed to encapsulate all classes of
cooperative behaviors.

A h
Vehicle 1 Vehicle 2

PC FSM PC

SC FSM SC SC

VCFSM vc vc

h &
Vehicle 3 Vehicle 4

; PC

SC SC

vc vc

Section 1 Section 2

Figure 3: Hierarchy of Commanders.

Instead, 1ST established a hierarchy of commanders
like the one shown in Figure 3. Each box in the
figure represents a ModSAF FSM. Embedded inside
each ModSAF FSM is the FSM Engine (Section 4.4).

This approach allows complex behaviors to be split
into fundamental behaviors that are implemented as
separate FSMs; complex FSMs containing merged
behaviors are thus avoided. For example, Vehicle 1
(Figure 3) has three FSMs (Platoon, Section, and
Vehicle Commander FSMs) controlling its behavior.
Each FSM communicates with others.

193

The command hierarchy is created by higher level
commander FSMs spawning lower level commander
FSMs; for example, the Platoon Commander FSM
spawns the Section Commander FSMs which in turn
spawn Vehicle Commander FSMs.

In addition, there are next in command (deputy)
commanders, shown by dotted boxes in Figure 3.
Deputy commanders assume command when the
original commanders are disabled so that the unit's
mission can continue unhindered (Section 5.4). They
model the behavior of the original commander but do
not communicate with other entities. This allows
them to continuously track the original commanders
behavior and assume command in case the original
commander is disabled. In Figure 3, Vehicle 3 is a
deputy Platoon Commander (i.e., Platoon Sergeant),
and Vehicles 2 and 4 are deputy Section Commanders
for Vehicles 1 and 3 respectively.

To start, a user assigns a mission to the unit. As part
of initialization, a data structure known as a Role
Matrix is created. The Role Matrix is a two
dimensional array of vehicle IDs and roles such as
Platoon Commander, Section Commander, Vehicle
Commander, and deputy commanders.

Vehicle ID 1 2 3 4
PC 1 0 0 0
PC deputy 0 0 1 0
SC 1 0 1 0
SC deputy 0 1 0 1
VC 1 1 1 1

Figure 4: Simplified Role Matrix.

Figure 4 shows a simplified Role Matrix for the
commander hierarchy in Figure 3. The vehicles in the
unit have IDs from 1 to 4. A "1" in a cell at the
intersection of a vehicle ID column and role row
means the vehicle is playing that role; for example,
Vehicle 1 is the Platoon Commander, Section
Commander, and Vehicle Commander. A "0" in a
cell at the intersection of a vehicle ID column and
role row means that the vehicle is not playing that
role; for example, Vehicle 3 is not the Platoon
Commander. Note that Vehicle 3 is a deputy Platoon
Commander and Vehicles 2 and 4 are deputy Section
Commanders. Because a Vehicle Commander's
responsibility is limited to his vehicle's domain and
another Vehicle Commander cannot assume his
functions, there are no deputy Vehicle Commanders.

This is represented by the absence of a deputy
Vehicle Commanders row in the Role Matrix.

A vehicle's Role Matrix is accessible from the
vehicle's FSMs. Using the Role Matrix a vehicle can
easily determine the role of other vehicles. In a real
battlefield, a vehicle is designated roles before an
exercise begins. The Role Matrix is a manifestation
of this information in the computer.

5.2 Bounding Overwatch

The FSM architecture was tested on a platoon
executing a Bounding Overwatch. Bounding
Overwatch provides a simple and elegant way to test
the architecture. In this behavior, a platoon advances
by having its sections alternately move and overwatch
the movement of the other section. The sections
move until the platoon reaches an objective or enemy
contact is made. By moving in this fashion, the
platoon reduces the risk of being ambushed by enemy
forces. The section that moves is called the Bounding
Section while the section that keeps watch is called
the Overwatch Section.

Sections 5.2.1 through 5.2.3 show FSMs for the
Platoon, Section, and Vehicle Commanders for
Bounding Overwatch. These FSMs communicate via
radio messages (explicit cooperation). Note that in
the following discussion overwatch is also called
"Cover."

5.2.1 Platoon Commander FSM

Start

Start
t sCart_overwatch) "*(Wait)

<plc_bound_done>

(Done)

Figure 5: Bounding Overwatch Platoon Commander
FSM.

To start the process, the Platoon Commander FSM
sends a radio message, [start_overwatch], and
transitions to the Wait state (Figure 5). It then stays
there until it is informed (via event
<plt_bound_done>) the platoon is at the
objective, when it goes to the Done state.

194

5.2.2 Section Commander FSM

Figure 6 shows the Section Commander FSM for
Bounding Overwatch. Initially the FSM is in the
Waiting state. When a Section Commander
receives the order to move (via event
<start_move>), it sends a radio message,
[start_move], to its Vehicle Commanders and
transitions to the Move state. In this state the section
moves toward an intermediate destination.

When a Section Commander receives the order to

The moving section may arrive at the intermediate
destination in two ways. Either the Section
Commander arrives first (event
<my_bound_done> arrives) followed by the
Wingman (event <wingman_complete> arrives)
or vice versa. If the Section Commander arrives first,
the FSM transitions to the I_arrive state. When
the Wingman arrives (event
<wingman_complete> arrives) the FSM
transitions to the Cover state and as part of the
transition does this: First, the Section Commander
issues a radio message to its Vehicle Commanders to

Figure 6: Bounding Overwatch Section Commander FSM.

cover (via event <start_cover>), it sends a radio
message, [start_cover], to its Vehicle
Commanders and transitions to the Cover state
where it overwatches the moving section.

start cover and second, checks if the intermediate
destination is the objective. If the section is at the
objective it sends a radio message, [sec_at_obj]
(section at objective), otherwise the section is at an
intermediate destination and a radio message,
[sec_bound_done] (section bound done), is sent.

195

The section now overwatches the movement of the
other section, which has transitioned from overwatch
to move.

5.2.3 Vehicle Commander FSM
Stan

<move_f inishei
[veh_bound-done]

(if (move_£inished)

(move_finished]

Figure 7: Bounding Overwatch Vehicle Commander
FSM.

Figure 7 shows the Bounding Overwatch Vehicle
Commander FSM. Initially, the FSM is in the Wait
state. The order to start a move (via event
<start_move>) takes the FSM to the Move state.
As part of the transition the FSM spawns a ModSAF
Move task (via STP {SPAWN Move}). This is a
low level ModSAP behavior that a vehicle uses to
travel.

Periodically, the Vehicle Commander checks if it has
finished traveling. This check is made every time the
FSM receives a <tick> event. When the move is
finished the Vehicle Commander sends a radio
message, [veh_bound_done] (vehicle bound
done), and transitions to the Wait state to receive
further orders from its Section Commander.

5.3 Describing Commander FSMs in Data Files

FSMs describing the cooperative behavior of
commanders are written in data files. This approach
allows quick behavior specification; a user only needs
to change a data file to create a new behavior, code
changes are not required.

5.3.1 FSM Grammar Production Rules

To describe FSMs, production rules were developed.
These production rules specify the structure of an
FSM description. FSM descriptions are "parsed"

based on production rules and a representation of the
FSM is created inside the computer.
The production rules for the FSM grammar are:

FSM => (State)
State => (state_name (Event)) II

(state_name (Event)) State
Event => (event_name next_state

(STP)) II
(event_name next_state (STP))
Event

STP => (TRUE (Actions)) STP II
(PRED (Actions)
(Actions)) STP II (FUNC) II e

Actions => MSG string Actions II
EVENT string Actions II
SPAWN string Actions II
STOP string Actions II e

PRED => string
FUNC => string

where:
e is the symbol for a NULL string.

An operator (TRUE, PRED, and FUNC) specifies
how Actions are to be treated. TRUE means execute
unconditionally the Actions that follow. PRED is a
user specified predicate function. Based on the result
of the predicate function, true or false, the first or the
second list of Actions is executed. FUNC is a user
defined function. The Actions specify what is to be
done. MSG means to broadcast the string that
follows as a radio message. EVENT means to put an
internal event, string, on the internal event queue for
processing. SPAWN means to spawn a ModSAF task
specified by string. STOP means to stop a ModSAF
task, specified by string, which was spawned earlier.

5.4 Change in Command

In the real world, when a commander becomes
disabled, the next in command (deputy) commander
takes charge. Shifting command enable units to
continue their missions with minimal disruption. This
important real world feature was implemented in this
project.

In the simulated battlefield, a deputy commander
models his commander's cooperative behavior via an
FSM similar to the commander's FSM. This model
(FSM) is constantly updated through receipt of
observation and radio messages. This information
keeps the model synchronized with the original
commander's cooperative behavior. A deputy

196

commander "knows" what his commander is doing
because the deputy's commander's FSM goes through
the same transitions as his commander's FSM. (An
important characteristic of the model is that
information flow is unidirectional; i.e., information
contained in observation and radio messages flows
into the model but does not flow out, e.g., a deputy
commander does not transmit radio messages which
are intended for transmission by the original
commander). If required, a deputy commander can
assume command and continue the mission from the
last executed command of the original commander.

In the simulated battlefield, all entities watch out for
each other and respond when someone is disabled.
When an entity is disabled, such as by a firepower
kill, another Vehicle Commander is notified by a
"vehicle destroyed" observation message from its
Observation Module. The observation message
contains the Vehicle ID of the disabled vehicle.
Upon receipt of the Observation Message, the
Vehicle Commander sends a "vehicle destroyed"
radio message containing the disabled vehicle's
Vehicle ID. This message is sent only once.

A deputy commander runs a ModSAF FSM, called a
Monitor FSM, to process vehicle-destroyed
messages. Because deputy commanders are present
at different levels in the command hierarchy, such as
deputy commanders for Platoon and Section
Commanders (Section 5.1), Monitor FSMs are also
present at different levels. When a Monitor FSM
receives a vehicle-destroyed message it checks the
vehicle. ID in the message with the vehicle ID of the
original commander. If they are different, the
message is discarded. Otherwise, the Monitor FSM
changes the Role Matrix (Section 5.1) to reflect the
change of command.

When a commander is disabled, ModSAF designates
another entity as the commander and restarts the unit's
mission. ModSAF developers believe that restarting
the mission reflects the change in command; another
entity is "promoted" to the commander. ModSAF's
internal architecture imposed a barrier to
implementing this change of command process. The
new commander plans and executes the task using the
current vehicles and positions.

Because changes to the ModSAF software, to disable
automatic mission restart, involve a fundamental
change to the ModSAF architecture, 1ST did not
pursue this approach. However, to test the transfer of
command, 1ST designated an entity to be the Platoon
Commander which is different than the ModSAF-

designated Platoon Commander. When the IST-
designated Platoon Commander is destroyed, control
is transferred to the Platoon Sergeant.

6. Results

The formal FSM DCA was implemented in ModSAF
version 1.5.1. Bounding Overwatch with explicit and
implicit cooperation was implemented and tested.

When the Bounding Overwatch order was given to a
platoon using explicit cooperation, both vehicles in
the Bounding Section started simultaneously because
they each received the order via a radio message.
When they reached the first overwatch position, the
vehicles stopped and the Overwatch Section started
moving. The sections repeated this process until the
platoon was at the objective.

When the Bounding Overwatch order was given to a
platoon using implicit cooperation, the Section
Commander of the Bounding Section started first.
His Wingman remained stationary for a while until he
noticed the Section Commander's movement. The
Wingman then followed the Section Commander to
the first overwatch position. When the Bounding
Section stopped, the Overwatch Section started its
bound. 1ST noted that the vehicles in the Bounding
Section did not maintain as tight a formation, as
compared to the formation of the vehicles in the
Bounding Section in the explicit cooperation
Bounding Overwatch, because of observation delays.

7. Conclusions

This project has implemented a Decentralized
Control Architecture (DCA) within the ModSAF
CGF system. In addition to mirroring cooperation in
the real world, DCAs allow cooperation within larger
units (companies, battalions, etc.) to be modeled with
little increase in complexity. Explicit and implicit
cooperation between entities has been demonstrated
within a platoon engaged in a Bounding Overwatch.

The cooperative behavior of an entity is implemented
through FSMs. An entity's cooperative behavior is
described in data files. These descriptions are read
and converted into FSM representations inside the
computer. Communication between entities is
implemented by FSM communication. FSMs
communicate by sending each other external events
implemented as radio messages. An FSM
communicates with itself by sending internal events.
An FSM Engine, embedded within ModSAF, "reads"
the description and executes the defined behavior.

197

The FSM Engine is general purpose and can be used
by other ModSAF code; ModSAF has been extended.

The FSMs use low level ModSAF behaviors. For
example, a ModSAF task is used for vehicle travel as
the underlying fundamental behavior. This attempts
to reuse code as much as possible. Thus, in addition
to being extendible, the approach is built on top of
ModSAF.

Simpler implementations result as a consequence of
the FSM approach. Instead of modeling various
responsibilities of a commander as a large and
complex FSM, responsibilities corresponding to
different levels in the command hierarchy are
modeled as separate FSMs which communicate with
each other.

8. References

Corkill, Daniel (1991). "Blackboard Systems". AI
Expert 6(9):40-47, September 1991.

Dai, H., Hughes, J. G. and Bell, D. A. (1993). "A
Distributed Real-Time Knowledge-Based System
and its Implementation using Object-Oriented
Techniques". Proceedings of the International
Conference on Intelligent and Cooperative
Information Systems, May 1993, pp. 23-30.

Decker, K. S. (1987). "Distributed Problem-Solving
Techniques: A Survey". Proceedings of the
IEEE Transactions on Systems, Man, and
Cybernetics, Vol. SMC-17, No. 5,
September/October 1987.

Fisher, M. and Woodridge, M. (1994). "Specifying
and Executing Protocols for Cooperative
Action". CKBS-94, Proceedings of the Second
International Working Conference on
Cooperating Knowledge Systems, Springer-
Verlag, 1994.

Harmon, S. Y., Aviles, W. A., and Gage, D. E.
(1986). "A Technique for Coordinating
Autonomous Robots." IEEE International
Conference on Robotics and Animation, 1986,
Vol. 1, page 666.

Laird, John E., Jones, Randolph M., and Nielsen,
Paul E (1994). "Coordinated Behavior of
Computer Generated Forces in TacAir-Soar",
Proceedings of the Fourth Conference on
Computer Generated Forces and Behavioral
Representation, University of Central Florida,
Orlando, Florida, pp. 325-332.

Laengle, T. and Lueth, T.C. (1994a). "Decentralized
Control of Distributed Intelligent Robots and
Subsystems". Proceedings of the IFAC

Symposium on Artificial Intelligence in Real
Time Control (AIRTC '94).

Laengle, T. and Lueth, T.C. (1994b). "Task
Description, Decomposition, and Allocation in a
Distributed Autonomous Multi-Agent Robot
System". Proceedings of the 1994 IEEE/RSJ
International Conference on Intelligent Robots
and Systems.

Lefebvre, D. R. and Saridis, G. N. (1992). "A
Computer Architecture for Intelligent Machines".
Proceedings of the 1992 IEEE International
Conference on Robotics and Automation.

Loral (1995a). "Libuoverwatchmove Online
Documentation", Loral Advanced Distribution
Simulation, Cambridge, Massachusetts, April 28,
1995.

Lun, V. and MacLeod, I. M. (1992). "Strategies for
Real-Time Dialogue and Interaction in
Multiagent Systems". Proceedings of the IEEE
Transactions on Systems, Man and Cybernetics,
Vol. 22, No. 4, July/August 1992.

Noreils, Fabrice R. (1992a). "An Architecture for
Cooperative and Autonomous Mobile Robots".
Proceedings of the 1992 IEEE International
Conference on Robotics and Automation, Nice,
France, May 1992, pp. 2703-2710.

Noreils, Fabrice R. (1992b). "Multi-Robot
Coordination for Battlefield Strategies".
Proceedings of the 1992 IEEE/RSJ International
Conference on Intelligent Robots and Systems,
Raleigh, NC, July 7-10, 1992, pp. 1777-1784.

Noreils, Fabrice R. (1992c). "Coordinated Protocols:
An Approach to Formalize Coordination
Between Mobile Robots". Proceedings of the
1992 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Raleigh, NC,
July 7-10, 1992, pp. 717-724.

Noreils, Fabrice R. (1993). "Toward a Robot
Architecture Integrating Cooperation between
Mobile Robots". The International Journal of
Robotics Research, vol. 12, no. 1, February
1993.

Occello, M. and Demazeau, Y. (1994). "Building
Real Time Agents using Parallel Blackboards
and its use for Mobile Robotics". Proceedings of
the 1994 IEEE International Conference on
Systems, Man and Cybernetics, San Antonio,
October 1994.

Ohko, T., Hiraki, K, and Anzai, Y. (1993).
"LEMMING: A Learning System for Multi-
Robot Environments". Proceedings of the 1993
IEEE/RSJ International Conference on
Intelligent Robots and Systems, Vol. 2, July
1993, pp. 1141-1146.

198

Parker, Lynne E. (1994). "ALLIANCE: An
Architecture for Fault Tolerant, Cooperative
Control of Heterogeneous Mobile Robots".
Proceedings of the IEEE/RSG/GI International
Conference on Intelligent Robots and Systems
(IROS '94) Vol. 2, 1994, pp. 776-783.

Payton, David W. and Dolan, Charles P. (1991).
"Cooperative Control". Seminars on Robotics in
the Air/Land Battlefield, NATO Defense Group,
1991.

Rajput, S. and Karr C. R. (1995). "Cooperative
Behavior in ModSAF," Contract Report IST-
CR-95-35, Institute for Simulation and Training,
University of Central Florida.

Shin, Kang G. and Epstein, Mark E. (1990).
"Intertask Communications in an Integrated
Multirobot System". Multirobot Systems, IEEE
Computer Society Press, Los Alamitos,
California, 1990.

Shoham Y., and Tennenholtz M (1992). "On The
Synthesis Of Useful Social Laws For Artificial
Agents Societies", (preliminary report),
Proceedings of AAAl-92, Morgan Kaufmann,
1992.

Smith, R. G. and Davis, R. (1981). "Framework for
Cooperation in Distributed Problem Solving".
Proceedings of the IEEE Transactions on
System, Man and Cybernetics, Vol. SMC-11,
No. 1, January 1981, pp. 61-70.

Sudkamp, Thomas A. (1988). Languages and
Machines: An Introduction to the Theory of
Computer Science. Addison-Wesley Publishing
Company Inc., 1988.

Tambe. Milind, and Rosenbloom, Paul S (1995).
"Agent Tracking in Complex Multi-agent
Environments: New Results", Proceedings of the
Fifth Conference on Computer Generated
Forces and Behavioral Representation,
University of Central Florida, Orlando, Florida,
pp. 125-133.

US Army (1990). "FM 7-7J: The Mechanized
Infantry Platoon And Squad (Bradley)",
Coordinating Draft, Department of the Army,
United States Army Infantry School, Fort
Benning, Georgia 31905.

Wang, J. (1994). "On Sign-board Based Inter-Robot
Communication in Distributed Robotic Systems".
Proceedings of the 1994 IEEE International
Conference on Robotics and Automation, Vol. 2,
May 1994, pp. 1045-1050.

as part of the Intelligent Simulated Forces project,
contract N61339-92-C-0O45. That support is
gratefully acknowledged.

10. Authors' biographies

Sumeet Rajput is an Associate Computer Scientist in
the Intelligent Simulated Forces project at the
Institute for Simulation and Training. Mr. Rajput has
a Master of Science degree in Computer Science from
the University of Central Florida and is an MBA
student at the University of Central Florida. His
research interests are in the areas of Computational
Geometry, Physical Modeling, and Computer
Generated Forces.

Clark R. Karr is a Program Manager and the
Principal Investigator of the Intelligent Simulated
Forces project at the Institute for Simulation and
Training. Mr. Karr has a Master of Science degree in
Computer Science. His research interests are in the
areas of Artificial Intelligence and Computer
Generated Forces.

9. Acknowledgment

This research was sponsored by the US Army
Simulation, Training, and Instrumentation Command

199

Session 3b: Exercise Planning - AAR

Coulter, University of Michigan
Juliano, SAIC

Pitt man, Oregon Graduate Inst.
Pratt, NPGS

A Briefing-Based Graphical Interface
for Exercise Specification

Karen J. Coulter and John E. Laird
Artificial Intelligence Laboratory

The University of Michigan
1101 Beal Ave.

Ann Arbor, MI 48109-2110
{kcoulter,laird}Qumich.edu

1. Abstract

One of the most time-consuming aspects of using
computer generated forces (CGF's) is specifying
their missions. At best, current tools organize in-
formation around the individual entity or small
groups of entities. At worst, current tools orga-
nize information around the simulator code im-
plementation. It is left to the user to translate
between actual military command structure and
current mission specification formats for CGF's,
and to create higher levels of organization, possi-
bly duplicating information shared at lower com-
mand levels. As we attempt to include more and
more entities within a scenario, mission specifica-
tion can become the most difficult part of running
an exercise. To ease the burden on the user, we
have created a graphical tool that allows users to
specify complete exercises for Navy fixed-wing air-
craft missions in a manner consistent with military
command structure. This tool was used success-
fully to configure agents for a simulation exercise
in October 1995, and more recently was used to
great extent by novices during a week-long tuto-
rial on our TacAir-Soar synthetic agents.

2. Introduction

In order to achieve human-like performance in sim-
ulations, intelligent synthetic agents require the
same input parameters that are briefed to actual
pilots for their missions. Depending on the scope
of the exercise and the mission type, the number
of input parameters which must be specified for
each agent can range from 50 to 100 or more. Of
these, often less than 10 parameters are unique to
an individual agent. The rest of the input data
is common to other agents in the same mission
or event. However, existing tools for generating
synthetic forces require users to specify parame-

ters on an agent by agent basis, requiring a huge
duplication of effort when more than one agent is
defined. These tools also present the user with
the list of all parameters required for all possible
mission types, leaving it up to the user to deter-
mine which are relevant to the particular mission
type currently selected. Because these tools sup-
port the configuration of so many different types
of synthetic forces in a very generic way, there is
very little error checking available, leaving the user
to track down problems at simulation time rather
than during data entry.

In developing a new tool for configuring our pi-
lot agents, our goals were to reduce the time and
effort required to configure the agents for large ex-
ercises, and to allow domain experts to create mis-
sions without having to understand the underly-
ing implementation of the simulation. In order to
achieve these goals and avoid the problems of ex-
isting tools, the TacAir-Soar Exercise Editor was
developed according to the following design crite-
ria:

• The Exercise Editor should be organized in a hi-
erarchical fashion, following the briefing struc-
ture used by the Navy. Agents defined at the
lowest level inherit all data values entered at
higher levels.

• The information presented on the screen should
be data-driven, so that the value of certain pa-
rameters will affect whether or not the user will
be prompted to enter values for other parame-
ters.

• The potential for user-input error should be re-
duced by giving the user lists of possible set-
tings from which to choose, by providing reason-
able default values, and by implementing error-
checking of data as it is being entered by the
user.

203

The remainder of this paper describes the orga-
nization and implementation of the Exercise Edi-
tor and discusses the progress and results to date,
and the future work planned. The Exercise Editor
has been implemented primarily to support intel-
ligent forces implemented in the TacAir-Soar sys-
tem (Tambe et al., 1995 and Laird et al., 1995),
although we expect it to be easily adaptable to
many types of synthetic forces.

3. Organization

3.1 Briefing Structure

The TacAir-Soar Exercise Editor organizational
structure is based on actual pilot briefing hierar-
chy as described to us by former Navy pilots dur-
ing knowledge acquisition sessions (Petersen, 1995
and Checchio, 1995-96). There are four briefing
levels in the editor hierarchy: the Exercise level,
Event level, Mission level and Element level. The
Exercise level includes general information that is
expected to be relevant to all pilot agents during
the whole exercise, for instance rules of engage-
ment, climatology, and terrain data. An Exercise
consists of one or more Events, and each Event in-
cludes information relevant to all activities which
occur during a specific time period, for instance
launch and recovery information and weather re-
ports. Each Event consists of one or more Mis-
sions, a coordinated activity designed around a
specific target or objective. At the Mission level,
items such as the specific mission type are identi-
fied, route and target parameters are defined, the
likelihood of ground and air threats are indicated
and controller agencies are identified. Finally, at
the Element level, individual aircraft are assigned,
and call-signs, radio frequencies and formations
are determined. Individual pilot agents defined
at the Element level have knowledge of all data
within their own Mission specification and at the
Event and Exercise levels above it.

The Exercise Editor is used to define one exer-
cise at a time. Below the Exercise level, there
can be any number of Events, Missions and Ele-
ments. Events and Missions are identified by their
respective Event and Mission numbers. Agents at
the Element Level are identified by call-sign. The
only order imposed on the lower levels is that the
Events are numbered sequentially as they are cre-
ated. This is done mainly to support the directory
structure for the editor input and output files, but
also follows the protocol of the Navy briefing hier-

archy. Mission numbers are assigned by the user
as are agent call-signs. At the Element level, the
user can create an individual vehicle, a section (2
aircraft) or a division (3 or 4 aircraft) to carry out
the mission.

Much of the information briefed to pilots is de-
pendent on the type of mission being carried out
and by the number and type of aircraft constitut-
ing an element. Parameters required by a single
agent flying a barrier combat air patrol are quite
different from the parameters required by a divi-
sion of aircraft conducting a strategic attack. The
Exercise Editor prompts the user for only the pa-
rameters required for a particular mission type and
element configuration. All parameters related to
a specific mission type are organized into a form
which, whenever possible, follows the same format
used by Navy pilots. When the user selects a mis-
sion type, the corresponding form is presented for
input. Likewise, if an element consists of only a
single vehicle, the user will not be asked to define
the formation type; and the list of possible forma-
tion types displayed will be different for a section
than for a division of aircraft. Users are not re-
quired to decide which parameters must be defined
for correct mission performance, since those that
are not required will not be presented to the user
for input.

3.2 Graphical Structure
The graphical structure of the Exercise Editor par-
allels the briefing structure, resembling an inverted
tree, with the Exercise level at the top and the El-
ements making up the terminal leaf nodes. Each
level has its own distinct screen format identify-
ing the current level, and providing pushbuttons
to move up or down to the next level. The user
interacts with only one node at a time.

At each level, the user is presented with a simple
and consistent set of widgets for specifying param-
eters. An example of the Exercise level screen is
shown in Figure 1. The five basic widgets used
are:

• Buttons: Used to navigate from one level to
another and to pop up/down related screens.

• OptionMenus: Displays the current setting
for a parameter. Options which are not cur-
rently selected are only displayed when the
menu is activated.

• PulldownMenus: Used for various functions,
such as selecting a particular mission to dis-

204

_. ExardsaEdKor.tci «Z I- _
File Edit Find Paraieter VIan Help

View Briefing Tree| Exercise Level

Minimum and Maximum Altitudes in 1000's of feet

Minimum Maximum

1

Load Exercise... | ExerciseName : led!

Save Exercise... j Commander CallSign : |<sipha-travo

ROE-Kind Electronic Positive III -t]

Clearance-tc—Fire-From E2C -t j

Ingress: j3 (25

Save Agent Files | Egress : 110 126

Terrain Data (file loaded: a2-ocean.c4b)

Minimum Maximum

Latitude : +320026.15 +342036.17

Latitude : 1135556.17 -1154458.88

Terrain Type: Mountains _< |

Climatology : (fair and dry

Radio Color-Freq Chart ...

Waypoints...

Edit Events

Figure 1: Sample Exercise Level Screen

play, as indicated by the label on each Pulldown-
Menu.

• TextEntry: Used to enter free-form text val-
ues.

• RadioButtons: Displays the current setting
for a parameter, but also displays all values not
currently selected.

Wherever possible, the user is presented with a
list of possible choices to select from, rather than
being forced to enter a new value at the keyboard,
which is more time-consuming and more prone to
user error. Free-form text entry widgets are used
only when necessary, such as for specifying mission
numbers and agent call-signs.

In order to simplify the amount of information
the user must interact with at one time, sets of
related input parameters are grouped into forms,
which are displayed by activating buttons on the
main screen. For example, at the Exercise level,
there are usually more than a dozen waypoints
specified, with the name, latitude and longitude
required for each point. Rather than try to display
them all with the rest of the Exercise level data,
the waypoints are grouped into a single form that
is popped up by pressing the "Waypoints..." but-
ton at the Exercise level (see Figure 1). Having
a separate form for the waypoints also allows for
the waypoint data to remain visible while the user
traverses Event, Mission and Element levels. The
grouping of related parameters is used through-
out the Editor, and allows for simple, consistent

Ft— BHetfng Status Tree ! 3|
;E2

1

ffff^T
,

j

-/.
p •:

: 1 BESOM [

Figure 2: Briefing Status Tree

screens through the four main levels.

Several features have been built in to aid the user
in navigating and reviewing the events and mis-
sions which constitute an exercise. The Briefing
Status Tree shown in Figure 2 is a separate window
that provides a summary view of all Events, Mis-
sions and Elements defined in the Exercise. The

205

Event and Mission numbers are identified, and
call-signs and the number of vehicles are displayed
for each Element. Each object in the Briefing Sta-
tus Tree is represented by a pushbutton, which
when activated will cause that object to be dis-
played in the main window. The Briefing Status
Tree allows users to quickly traverse the nodes in
the exercise in any order; users are not limited to
moving up and down the connected nodes of the
tree. At the Event level, a more detailed summary
of all missions defined in that event is presented
in a format used by the Navy, listing aircraft type,
mission type, number of aircraft per mission, sta-
tion name and controller call-sign.

A limited amount of error checking has been im-
plemented, which alerts the user to inconsisten-
cies at data entry, rather than forcing the user to
track them down at execution time. Users are im-
mediately alerted at the Mission level when con-
troller call-signs are specified for which no con-
troller agent has been defined, and are never per-
mitted to enter non-numeric values where integers
are required.

4. Implementation

The Exercise Editor is implemented in Tel, the
Tool Command Language, developed by John
Ousterhout, currently with Sun Microsystems.
Tel is an interpreted scripting language with sev-
eral hundred extensions, available in the public do-
main. Two of these extensions were used in cre-
ating the Exercise Editor to enhance its capabil-
ities. The [incr Tel] extension package, written
by Michael McLennan at AT&T Bell Laboratories,
adds object-oriented facilities to Tel, and provides
a means of supporting inheritance and encapsu-
lating data in the Exercise Editor. Each level of
the Editor has its own associated object type and
methods for handling the data and propagating
dependencies. Functionality at each level is easily
expanded by changing the definition of the object
and its methods, without compromising the in-
tegrity of the other levels. The other extension
package used for the Exercise Editor is tclMotif,
developed by Jan Newmarch at the University of
Canberra, which allows Tel programs to use the
Motif set of widgets to create a graphical inter-
face. tclMotif does not duplicate the Motif widget
set — it uses the resident Tm library to create and
manipulate the widgets. Thus the Exercise Editor
graphical interface is consistent with all Motif ap-

plications on a user's system and does not require
the user to learn an additional set of graphical be-
haviors.

The battlefield simulation and aircraft used in
TacAir-Soar are provided by ModSAF (Calder et
al., 1993). In order for the Exercise Editor to
generate ModSAF scenario files for running the
simulations, several ModSAF libraries are linked
into the Editor. The Editor then makes calls to
ModSAF routines to read terrain database infor-
mation, and to create the vehicles and waypoints
in the persistent object database and save the
database out to a scenario file. No modification to
the ModSAF libraries is necessary and the func-
tion calls are straightforward.

In addition to generating ModSAF scenario files
and reading terrain database files, the Exercise
Editor generates agent mission files and exercise
data files. Each agent mission file contains all data
required by a particular agent to carry out its mis-
sion; they are read by TacAir-Soar at startup. The
exercise data files store the complete data for the
entire exercise and are used only by the Exercise
Editor for saving and restoring exercises.

5. Progress and Results

Our goal in creating the TacAir-Soar Exercise Ed-
itor is to reduce significantly the time and exper-
tise required to configure exercises for TacAir-Soar
agents. A prototype of the Exercise Editor was
used to configure agents for a simulation exercise
called ED-1 in October 1995. Although the proto-
type required several intermediate steps in order to
start the simulation, the amount of time required
to configure all of the agents was reduced from
days to hours. The current version of the Exer-
cise Editor generates the simulation scenario files
directly, allowing a user to create complex events
with many missions in just a few hours. Using
the Exercise Editor makes it much easier to make
changes to the exercise parameters and propagate
those changes to all agents. It is now being used
to generate all new missions for simulation exer-
cises. In April, during a week-long tutorial on the
TacAir-Soar system, novices were given a one-hour
presentation on the Exercise Editor, followed by a
short, hands-on working session. The users were
able to modify existing exercises with few errors,
and were confident that they would be able to gen-
erate an entire exercise on their own with little dif-

206

ficulty. The Exercise Editor was used throughout
the week to generate scenarios for testing various
aspects of the TacAir-Soar system, allowing users
to spend more time learning about the capabilities
of the synthetic agents and less time figuring out
how to specify missions.

6. Future Work

As we continue to expand the capabilities of our
synthetic agents, the Exercise Editor must be
modified to support new agent input requirements,
which will consume most of our development ef-
forts for the near term. Work is currently under-
way to investigate adding a map-based interface
to the Editor to allow users to specify flight plans
and waypoints graphically, rather than through
text input. Other proposed enhancements to the
Editor include adding a copy feature to duplicate
missions within an exercise, implementing better
help facilities, providing a mechanism to specify
which agents should run on which workstations,
and adding a graphical capability for configuring
weapons loadouts on individual aircraft.

7. Acknowledgements

This research was supported at the University of
Michigan as part of contract N00014-92-K-2015
from the Advanced Systems Technology Office of
the Defense Advanced Research Projects Agency
and the Naval Research Laboratory. The research
presented here has benefited greatly from the ef-
forts of Randy Jones, Frank Koss, Paul Nielsen,
BMH Associates, Inc., and the other members of
the Soar/IFOR project.

8. References

E. (1995). Simulated Intelligent Forces for Air:
The Soar/IFOR Project 1995. In Proceedings
of the Fifth Conference on Computer-Generated
Forces and Behavioral Representation, (pp. 27-
36). Orlando, FL.

Petersen, C, BMH, Associates, Inc., personal
communications, March 1995.

Tambe, M., Johnson, W. L., Jones, R. M., Koss,
F., Laird, J. E., Rosenbloom, P. S., & Schwamb,
K. B. (1995). Intelligent agents for interactive
simulation environments. AI Magazine, 16(1),
15-39.

9. Biographies

Karen J. Coulter received her B.S. in Physics
from the University of Michigan in 1984 and her
M.S. in Computer Science from the Illinois Insti-
tute of Technology in 1993. She is currently a sys-
tems research programmer in the Artificial Intel-
ligence Laboratory at the University of Michigan,
where she is enhancing the Soar infrastructure and
developing tools for the Soar/IFOR project. Her
main areas of interest are in human-computer in-
teractions.

John E. Laird is an associate professor of Elec-
trical Engineering and Computer Science and the
director of the Artificial Intelligence Laboratory at
the University of Michigan. He received his B.S.
degree in Computer and Communication Sciences
from the University of Michigan in 1975 and his
M.S. and Ph.D. degrees in Computer Science from
Carnegie Mellon University in 1978 and 1983, re-
spectively. His interests are centered on creating
integrated intelligent agents (using the Soar archi-
tecture), leading to research in problem solving,
complex behavior representation, machine learn-
ing, and cognitive modeling.

Calder, R.B., Smith, J.E., Courtemanche, A.J.,
Mar, J.M.F, and Ceranowicz, A.Z. (1993).
ModSAF Behavior Simulation and Control.
In Proceedings of the Third Conference on
Computer-Generated Forces and Behavioral
Representation, (pp. 347-356). Orlando, FL.

Checchio, M., BMH, Associates, Inc., personal
communications, 1995-96.

Laird, J. E., Johnson, W. L., Jones, R. M., Koss,
F., Lehman, J. F., Nielsen, P. E., Rosenbloom,
P. S., Rubinoff, R., Schwamb, K. B., Tambe,
M., Van Dyke, J., van Lent, M., & Wray, R.

207

Scenario and Infrastructure Analysis to Measure Large-Scale CGF Exercise
Performance

Michael Juliano, Robert D'Urso, Dr. Ben Wise
SAIC

20 Burlington Mall Rd
Burlington MA. 01803

mjuliano@bos.saic.com, rdurso@bos.saic.com, bwise@bos.saic.com

Dr. Edward Powell
SAIC

Suite 1100
1100 N. Glebe Road

Arlington VA. 22201
epowell@stow.std.saic.com

1. Abstract

The Scenario Analysis and Infrastructure Analysis
tools (SAT/IAT) are currently being developed by
SAIC under the SEID contract to support the STOW
(Synthetic Theater of War) Exercise Implementation
(XI) system. The simulation is responsible for aiding
in the exercise generation, management, and
infrastructure design and testing for Computer
Generated Forces (CGF). Since future CGF
exercises, including STOW, are required to support a
distributed exercise of a large number of entities, a
pre-exercise faster than real-time determination of
scenario, network and computational validity is
necessary. The SAT/IAT simulation executes at a
rate of hundreds to one real-time. The modeling of
an entire week's exercise in less than an hour allows a
user to try different configurations with a quick
turnaround time.

One area in which the SAT/IAT is useful is in
generating performance numbers for CGF
applications before execution of a full scale exercise.
The IAT can predict loads based upon simple models
of host processor capabilities. Each CGF
application's computational resources are calculated
as the exercise unfolds. Predictions of network traffic
at both the Wide Area Network (WAN) and Local
Area Network (LAN) are provided. Therefore, for a
given scenario, the IAT can generate information
such as the number of entities that can be modeled
per simulation process per host. Also, it is possible to
provide the number of remote packets received per
host, the number of packets received per LAN, and

the number of packets transmitted over the WAN as a
function of time.

Another area where the SAT/IAT is useful is in
predicting entity migration via dynamic load
balancing. Using host processor loads over time, the
IAT can predict when CGF applications are most
likely to migrate entities to other CGF applications.
The effects of entity migration upon the network
infrastructure will be provided. Various algorithms
that implement load balancing and entity migration
can be modeled in order to determine the optimal
computational and network performance.

The major objective of the SAT/IAT is to simulate a
given scenario at a very coarse level and provide
processing and network loads upon a given
infrastructure and network topology based upon the
SAT output. The goals of the SAT are to 1). validate
laydown information of an exercise's units on a
synthetic environment (SE) database, 2). provide unit
location, strength, logistical consumption, attrition,
rate of sensor detection's and losses during execution
of the scenario, 3). generate a profile of the units'
processing and network requirements based upon
their activity, and 4). provide coarse level network
traffic to the IAT. The goals of the IAT are to 1).
map the respective units and their entities to
simulation processes to computers and the network
topology, 2). calculate the processing and network
loads on the infrastructure based upon the SAT
output, and 3). supply the user with time-based
predictions of network and computationally
utilization. This includes an indication of
overloading of resources to allow the user to

209

reconfigure the hosts, network, and mapping units to
nodes and simulation sites.

The current process for Infrastructure and Scenario
analysis involves a great deal of manual data
manipulation. This process tends to be time
consuming and less accurate. The SAT/IAT tool
functionality will greatly reduce the time for analysis
and increase the validity of the resultant analysis data.

2. Scenario Analysis Tool

2.1 SAT Functionality

The goal of the Scenario Analysis Tool is to provide
exercise planners with the capability to design,
execute and refine a given exercise scenario. The
SAT allows the user to initialize, save, load and
perform analysis of a given scenario at a faster than
real time execution rate. The quick turnaround allows
the user to define a scenario at a very high level and
refine it to a level of detail to be used as a starting
point to plan an exercise. The SAT simulation
performs analysis of a scenario at a coarse level of
execution and is not intended to provide or predict
battle outcomes. Instead it is used to determine if a
given scenario is realistic in the sense of scenario
planning and to interface with the IAT to predict and
optimize network loading for a selected topology.

The user begins by creating an exercise to analyze.
The Corps Level Computer Generated Forces
(CLCGF) Simulation Interface Unit (SIU) is utilized
by the user for exercise laydown, initialization and
visualization. Once the user defines the exercise that
is under analysis, the data is saved in the SIU format
and loaded to the SAT. Units represented at various
echelons are placed on the SE database. The units are
assigned routes and activities. The activities
currently simulated are moves, attacks, and radar
scans. The data is reformatted and sent to the SAT
for analysis. The unit is assigned missions and is
assigned to a simulation process. An algorithm will
be used to optimally assign the unit to the process
based on force type, unit size and LAN assignment
constraints. The mission data which consists of a set
of activities, time durations and waypoint locations
are utilized to drive the discrete event scheduler
controlling the SAT simulation. The SAT simulates
each of the missions for each of the units defined.
Currently the SAT will not simulate resupply units
but includes automatic resupply when the units
supplies are depleted and a saved message to the user
will occur. After the scenario is executed the user

has the ability to look at the resulting data and refine
or change the given scenario. The SIU can be
enabled so that the user can visualize the scenario as
it unfolds. The user will have the capability to stop
the scenario at a given point to save and analyze the
data to determine whether or not to proceed. The
SAT allows the planner to quickly determine scenario
viability while providing the necessary network data
to the IAT for network and infrastructure analysis.
The following paragraphs will detail some of the
outlined functionality described above.

2.2 SAT Scenario Initialization / Creation

The planner can create, load and edit exercise
scenarios using the CLCGF SIU. The SIU runs as a
separate process connecting to the SAT using sockets.
Transmission Control Protocol / Internet Protocol
(TCP/IP) datagrams are used by the SAT to send
information updates to the SIU. The SIU enables the
user to create unit representations of any type of force
and entity type. Once the unit representation is
defined it is added to the SIU and Table of
Organization and Equipment (TOE) database. The
databases are utilized by the planner to laydown the
appropriate units for the specific exercise. When the
desired units of a given scenario are placed on the
terrain database the planner can save the SIU
representation. This allows the capability to reload a
particular scenario and make adjustments if
necessary. When the planner is satisfied with the unit
laydown it is saved and reformatted into data files to
be read by the SAT. The data files which include the
exercise, missions, units, processes and TOE files are
used to initialize the SAT simulation. The exercise
data file is used to initialize the scenario parameters
such as data files to read in, database representation
and parameters used to set simulation variables. The
unit data file defines each of the units used in the
scenario and their initial position. These units can be
of any echelon, size, role and force. The missions file
specifies the units movement, attack or scan activity
each with an attached duration. The duration is based
on the vehicles speed and distance between
waypoints. The discrete event scheduler uses the
mission data to execute the simulation. The processes
data file specifies each of the units attached to each
process. This will be created using the rule based
algorithm mentioned earlier. During the initialization
process of the SAT execution the unit data is sent to
the SIU to place the units on the simulated terrain.
The icons and colors signify the units' representation
and strength. The user can then execute the
simulation with the IAT enabled or disabled. If the

210

IAT is not selected an output file is generated to save
the SAT data so that the IAT can run at a later time.

2.3 SAT Simulation Execution

The user starts by defining an exercise using the SIU
or using a predefined scenario, the SAT reads in the
necessary data files to execute the simulation. A
mission process is executed for each unit. The units'
waypoint, activity, and time duration of activity
initiate the SAT process. The SAT schedules events
based upon the activity's type and duration. Each of
the waypoint route legs are divided into scheduled
subevents. A full update of each of the units updates
its location, velocity and interaction with other units.
The units are currently divided into two categories ,
direct fire and indirect fire. The SAT also uses a TOE
database lookup to provide relevant data to each of
the unit types. This data includes entity composition,
sensor range, engagement range, weapon impact
range, and supplies. The direct fire unit's sensor
range is utilized to determine if any units are within
range. This is used to generate network traffic as well
as to determine if an engagement can occur. For all
units detected within sensor range, an update is
performed. If this unit is an opposing force and within
engage range an engagement is scheduled. During an
engagement attrition is applied to each unit
uniformly using Lanchester equations. Attrition is
applied to supplies and entity counts based upon
programmable parameters of defensive resistance and
offensive power of each of the engaged units.
Logistical consumption for petroleum, oil and
lubricants (POL) as well as ammunition is also
defined by the planner. During this engage activity,
fire and detonate traffic is produced for infrastructure
analysis. For indirect fire units an attack activity is
scheduled and the weapon impact range is used to
determine if and engagement of units within range are
scheduled. The relevant network data is generated
based on the interactions. The SAT simulation for
each of the represented units occurs until one of the
following events occurs : the unit is destroyed ,
missions complete or the planner stops the simulation.

2.4 Direct / Indirect Fire , Radar Units

Currently the SAT simulates three types of units
based on the mission assigned. This includes direct
fire, indirect fire and radar scanning units. Each unit
is comprised of a combination of entity types. This
data is stored in the TOE database. The ground unit
types are divided into tanks, trucks, infantry fighting
vehicles, dismounted infantry, and artillery vehicles.

Air units consist of fixed wing aircraft, unmanned
aerial vehicles and rotary winged aircraft . This will
be expanded to include other types. The SIU provides
tools to create any unit type at any echelon level.
These tools will eventually be integrated with the
SAT software. A unit defined as indirect fire behaves
differently than a direct fire. Some of the units can
take on different missions. For example a FWA can
be on a bombing mission in which case it is defined
to be an indirect fire classification. An FWA can also
be defined as flying against a defined ground target in
which case it becomes a direct fire class.
Radar scan units include AWACs, JSTARS and any
other intelligence gathering type unit.

2.5 Unit Movement

A simple algorithm is implemented for a units
movement. A user defined route is used by defining a
set of waypoints. Interpolation is used to move the
unit from waypoint to waypoint. The units initial
position in the units data file and the subsequent
mission waypoints are used to simulate the units
movement. Movements are currently limited by
supplies, combat intensity and live/dead status.
Attrition is applied to fuel consumption of a unit and
is automatically resupplied when reaching a
predefined resupply point. When a unit engages in
combat with an opposing unit an attrition value is
used to decrease the amount of supplies and strength.
Once the unit has reached a user defined attrition
percentage the unit stops its movement and a
message is generated for the planner. Eventually the
SAT will be integrated with a terrain module to use
terrain factors to influence the units route planning
and movement.

2.6 Unit Engagement

An engagement process links two units in the case of
direct fire or a unit and an indirect fire position. An
engagement occurs if the unit is within engage range
and has strength and supplies. The process is initiated
from full update. The duration of an engagement is
estimated and a faster update rate is set. The duration
is estimated as the minimum of the time for either unit
to be destroyed ,pass out of engagement range or the
completion of an indirect fire activity. Engagement
range is specified in the TOE data file for each type
of unit. A weapon impact point range is used to
simulate indirect fire units. The engagement will
update the strength and logistical status of each unit
(ammo and fuel consumed and destroyed). Attrition
is modeled at very low fidelity, but follows the

211

standard service modeling practices. The losses are
equal percentage losses based on relative fire power
and time since last update. The next engagement is
scheduled at the end of the interval. If a one sided
engagement occurs , it continues as in the case of
FWA attacking an undefended column of logistical
trucks.

2.7 SAT Network Flow Data

The SAT produces network flow data based on the
unit's activity and its interaction with relevant units.
The data is in the form of process source, data type,
flow rate, and process destination. The flow rate is
based on Engineering Demonstration #1 (EDI)
network traffic results. Currently the SAT generates
the significant types of Distributed Interactive
Simulation (DIS) Protocol Data Units (PDU). These
include entity state, emission, transmitter,
environmental, data collection, signal, fire and
detonate PDUs. This data was used to validate the
existing software.

2.8 SAT Analysis Data

As the initialized exercise progresses, SAT
information is collected to provide information to the
planner. The SAT can measure combat activity,
losses, resupply points for each of the units
participating in the exercise. The SAT saves
scoreboard data which displays attrition for each of
the units by alignment and its entities. The SAT
produces diagnostic data if enabled for each of the
runs. This data is in Excel spreadsheet format and
tools will be developed to extract, reformat and
analyze the data in order to be utilized efficiently by
the planner.

2.9 SAT Visualization

The SAT utilizes the simulation created by the
CLCGF effort. The SIU is used by the planner for
exercise planning and initialization and also for the
plan view display (PVD). Once a scenario is
constructed the data is sent by the SIU to the SAT.
The SAT simulation is started and the scenario is
executed. As the SAT is executing the units' data is
sent back to the SIU for display. The units are placed
onto the SE database and tagged with the appropriate
information (call sign, speed, location). As the move
activities are executed for each of the units the
position , velocity and strength of the unit is updated
to the SIU PVD. This allows the planner to visualize
the exercise as it executes. Once an engagement

occurs the strength is also updated. Color codes are
used to signify the percentage of strength remaining
for a unit. The unit turns black when all of its entities
have been destroyed. The planner can use this data to
determine the integrity of the scenario and replan if
necessary.
The SAT also provides the user with a graphical user
interface that provides status of the units including
position, velocity, alignment, simulation process
assigned, number of entities and supplies. This data
is dynamically updated as the scenario progresses.

3. Infrastructure Analysis Tool

3.1 Functionality

The IAT has been designed to execute in conjunction
with the SAT or in standalone mode, accepting as
input the generated output of a previous SAT
execution. The IAT accepts packet flow data and
applies it to the network infrastructure. In order to
model the packet flow data, the IAT requires a
network topology and a list of simulation processes.
Regardless of how the IAT is invoked, each IAT
invocation is associated with a specific SAT scenario,
consisting of one or more unit/mission pairs which
are associated with one or more simulation processes.

3.1.1 Network Representation
The network infrastructure is specified by the user.
Currently, this is done using data files. The network
infrastructure consists of one or more LANs
connected over a WAN. The two WAN
configurations supported by the IAT are the Defense
Simulation Internet (DSI) and the Advance
Technology Demonstration (ATD) network / ACTS
ATM network (AAI). Once a WAN is selected, the
user can create sites with one or more LANs and
connect each site to the WAN. The link connection
types, such as Tl, T3, etc., are configurable by the
user. The three LAN configurations currently
supported by the IAT are Ethernet, Switched
Ethernet, and Fiber Distributed Data Interface
(FDDI). For each LAN, the user specifies the number
of nodes and the type of each node. The nodes can be
routers or simulation hosts, such as Sun, Silicon
Graphics (SGI), Hewlett-Packard (HP), and Digital
(DEC) workstations or Network Personal Computers
(PC).

3.1.2 Network Initialization
The IAT accepts the user-specified network topology
and creates an aggregate network, which consists of
nodes and links. The characteristics of the nodes and

212

links are initialized via a table lookup, based upon
type. This information, which currently consists of
commercially available data, is critical for the proper
determination of processor and network loading. For
nodes, this data includes the number of processors per
node, the processor type, and the ratings per
processor. For links, this data is the bandwidth of the
link.

3.1.3 Assignment of Processes to Hosts
Given the network topology and the list of simulation
processes, the user specifies the assignment of
processes to simulation hosts' processors. The IAT
provides the capability to save the current
process/host assignments in order to be recalled for
future executions of the selected SAT scenario.

3.1.4 Network and Host Loading
As the IAT executes, it computes the loading across
the entire aggregate network of simulation nodes and
links. The SAT provides the IAT packet flow rates
from source to destination simulation processes.
There are two types of packet flows: those which are
added across the network, known as "Insertion"
flows, and those which are removed from the
network, known as "Deletion" flows. Using the user-
specified process/host assignments (section 3.1.3), the
IAT determines the "best" path from the source host
to the destination host. The "best" path algorithm
currently is based upon the fewest number of hops,
but can easily be modified to include other variables
such as current network traffic and cost. The IAT
then applies the "Insertion" or "Deletion" packet flow
to all nodes and links along the resultant path.

The network link calculation is simply specified as
the data rate (bits per second). The simulation host
loading calculation is based upon the number of
entities simulated on the host and the remote packets
received/processed by the host. The host loading
equation was provided by MIT Lincoln Laboratories,
based upon the results of ED #1.

3.1 Visualization

During the execution of a SAT scenario, the IAT
displays the scenario's effect upon the specified
network topology. The IAT provides a GUI which
shows the network and host loading. For simulation
hosts, the GUI displays their type, the assigned
simulation process, and CPU loading. For links, the
GUI displays the hosts connected by the link, their
type, the bandwidth, and the current data rate in bits
per second (bps). As the IAT executes and calculates

the CPU and network loading, it updates the GUI
with the new load values. To signal to the user
potential problems, the background color of the load
entries changes between green, yellow, and red.
These colors respectively represent less than 50%
capacity, greater than 50% but not full capacity, and
full capacity or overload.

3.1 Analysis

In the end, it is the IAT analysis data which is most
important to the user. While the IAT provides a
visualization capability which gives the user an idea
of the network effects, it is the statistics it gathers
and outputs which are crucial. Statistics currently
gathered by the IAT include average flow rate
between simulation hosts, average flow rate between
all nodes, and peak flow rate between simulation
hosts. Additional statistics to be gathered include the
number of remote packets received per host, the
number of packets received per LAN, and the number
of packets transmitted over the WAN as a function of
time. The analysis output can easily be input to an
Excel spreadsheet. It should be noted that this type of
analysis and output is time-consuming as it is
routinely done by hand.

Another important statistic which the IAT will gather
is simulation host processor loads over time. The
IAT will use this to predict when simulation
processes, such as ModSAF, are most likely to
migrate entities to other simulation processes in order
to balance the CPU load throughout the network.

3.2 Optimal Process/Host Assignment

The selected assignments of simulation processes to
hosts can be a key determinant as to whether an
exercise plan is or is not feasible. Different
assignments can stress the infrastructure in different
ways, and the user may wish to re-run the same SAT
scenario with different process/host assignments so as
to examine the type and level of stresses on the
infrastructure. Since the user of the IAT is
attempting to support large distributed exercises,
exploring the alternative assignments of processes to
hosts can be a laborious task.

In order to ease this process, the IAT will provide a
utility which will suggest good process-to-host
assignment for a given SAT scenario and network
topology, for various different measures of stress on
the infrastructure. The current design develops the
initial assignment based on grouping units of similar

213

echelon and service that are close to each other in the
initial scenario laydown. This is based on the two
heuristics that the units are likely to share simulation
support software and are likely to be close to each
other in the simulated command hierarchy, sharing
support software, or a common controller for several
simulations makes it desirable that they be co-located
for cost reasons. If they are closely linked in the
command structure, it is likely that the units will stay
close throughout the exercise. This means that they
would be kept on the LAN to minimize traffic across
the WAN.
After the SAT has been executed and a matrix of
process-to-process flows over time is available, this
assignment can be improved.
For example, individual processes can be swapped
until no further reduction in stress is found. As the
SAT provides data over time, it is now possible to
modify assignments so as to reduce the peak loads on
different LANs, even though they occur at different
times, without having to consider only the average
flows, or only the peak flows. In the first case, peaks
would be ignored. In the second case, the user is
forced to work under the false assumption that all
inter-process flows peak simultaneously. We plan to
include real-world constraints on swaps, such as
required matching of specific process to specialized
hosts, keeping simulators and simulations near their
controllers, etc.

4. Planned Capabilities

The SAT/IAT is currently in BETA release. The
following items outlines some of the major planned
capabilities.

The SAT will have the capability to test and
analyze various multicast schemes
developed under the STOW contract.
SAT/IAT will have the capability to
simulate the effects of
aggregation/disaggregration and its impact
on the network.
The SAT/IAT will simulate the High Level
Architecture (HLA) including insertion of
the Federation object model for Interest
management and support of data object
passing.
The SAT will be capable of simulating the
effects of the Run-Time-Infrastructure (RTI)
as well as the Simulation Support
Framework (SSF) used for the STOW
contract.
Replace the IAT network topology data files
with a GUI which provides the user with the
ability to create, modify, and save network
configurations. It will provide the user with
the choices of WAN and LAN types as well
as node types (routers, workstations, etc.).
Future IAT visualization GUI enhancements
will replace the network and host entry list
with a connected network of nodes and
links. The size of the nodes and links will
increase or decrease based upon its
corresponding load and data rate values. In
addition, the colors of the nodes and links
will change similar to the way the GUI
currently does this for load entries.
Enhance capability of SAT/IAT simulation
based on STOW contract scheduled
software release / task schedule.

214

Data Files
Interactive GUI
Terrain Models
Mission Planning

Scenario TCL/Tk GUI Display
Scenario Statistics

Data Files
Interactive GUI

SIU

ModSAFPVD
Scenario creation
Visualization
Color coded
Unit representation
Socket connection

Scenario
Placement
Unit movement
Sensing
Engagement
Attrition
Information Reporting

Data Flow
(PTAP)

Insertion / Deletion
Objects
Attribute Data

Network Topology
Interest Management
Map Units to Nodes
Path determination
Update Path Loading
Information Reporting

Figure 1 : SAT/IAT/SIU High Level Diagram

5. SAT/IAT Functionality

The illustration in Figure 1 shows the partitioning of
the high level functions of the SAT, the IAT, and the
CLCGF SIU as well as the data flow among these
components. As mentioned earlier, the SAT and the
SIU communicate using datagrams to create,
initialize, and update a scenario. The SAT
communicates with the IAT using packet flow rates,
which are called PTAPs (source Process, data Type,
flow Amount, and destination Process). This diagram
also indicates the use of data files between the SAT
and the IAT to allow either of these tools to run
standalone.

6. Other related efforts

The SAT simulation is being utilized to support the
JPSD DIS PDU to HLA translation effort. The SAT
has been integrated with the translator and it will be
used for testing the software by creating different
scenarios to drive the Common software and the RTI.

7. Acknowledgment

This work is being done as part of ARPA's Synthetic
Theater of War contract. STOW is intended to be the
next great stride in Distributed Interactive Simulation.

STOW is focused on creating a large scale distributed
simulation including detailed synthetic forces
behaviors and detailed synthetic environment effects.

8. References

Peacock, Jeffrey Jr., Bombardier Kevin C, Panagos
Jim, and Johnson Tom, (1996) "The JPSD Corps
Level Computer Generated Forces CLCGF System
Project Update", 6th Conference on Computer
Generated Forces and Behavioral Representation.

9. Authors' Biographies

Robert D'Urso is a senior software engineer at
Science Applications International Corporation's
Technology Research Group (TRG) in Burlington,
MA. He has been a key software developer for the
SAT/IAT, as well as its predecessor SimTool, an
SAIC IRAD that provided the basis for the SAT/IAT.
He has also worked on the Fixed-Wing Aircraft
behavior modeling for ModSAF 2.0. Prior to joining
SAIC, Robert worked at Raytheon developing real-
time embedded software for the PATRIOT Ground
and Missile software. He is a graduate of Merrimack
College in North Andover, MA., with a B.S. degree

215

in Computer Science. He also holds an M.S. degree
in Computer Science from Boston University.

Michael Juliano is a senior software engineer in
Science Applications International Corporation
Technology Research Group (TRG) Burlington MA.
Michael is the software lead for the SAT/IAT
software development effort under the ARPA
Synthetic Theater of War Program. He has been
appointed as lead since joining SAIC in May of 1995.
He is responsible for the management and software
development of the SAT/IAT software. Prior to
joining SAIC he has worked at Raytheon and Norden
Systems developing and managing software through
all phases on various radar and IR based signal
processing real-time embedded software systems. He
is a graduate from the University of New Haven,
West Haven, CT. with a B.S. in Computer Science
and is currently attending Boston University towards
a Master s Degree in Computer Science.

Dr. Edward Powell received his Bachelors of
Science degree from Carnegie-Mellon University and
his Ph.D. in Astrophysics from Princeton University.
He has previously worked at Lawrence Livermore
National Laboratory's Conflict Simulation Laboratory
where he was involved in analytic and distributed
simulation research using the Joint Conflict Model.
He is currently a senior scientist with Science
Applications International Corporation, where he led
the Joint Precision Strike Demonstration Run-Time
Infrastructure effort and is now a lead architect on the
Synthetic Theater of War Program.

Dr. Ben Wise is a Senior Scientist at SAIC's TRG
group in Burlington MA. He received a B.S. in
Physics from MIT and a Ph.D. in Engineering and
Public Policy from CMU. He taught graduate
operations research, probability and statistics, and
artificial intelligence at Dartmouth College before
entering the commercial sector. He worked on corps-
level battle simulation and strike planning tools while
at McDonnell Douglas, before moving to BBN and
assisting the SimNet, Odin, ModSAF, and
Warbreaker projects. He moved to SAIC in 1993 and
started a new office specializing in advanced
simulation and planning technologies. He designed
the Patriot and scud simulations for BBN's
Warbreaker effort, the fixed and rotary wing aircraft
dynamics for LORAL's ModSAF, prototyped the
tactics representation language for Warbreaker. He
served SAIC as the initial lead in the Corps Level
Computer Generated Forces, Command Forces, and
SAT/IAT projects. He is currently involved in several
projects focusing on issues in the linkage of

constructive and virtual simulations. His research
interests focus on planning under competition and
uncertainty.

216

QuickSet: A Multimodal Interface for Military Simulation
James A. Pittman, Ira Smith, Phil Cohen, Sharon Oviatt, Tzu-Chieh Yang

Center for Human Computer Communication
Oregon Graduate Institute

P.O.Box 91000, Portland, OR 97291-1000
jay@cse.ogi.edu

1. Abstract

We are developing a hand-held system to control
ModSAF and its 3D visualization. The interface,
called QuickSet, combines speech and pen-based
gesture input, and allows the user to set up training
exercises by creating forces and control measures,
and to control the exercise by assigning tasks to the
forces. The interface consists of a PDA (a hand-held
PC weighing roughly 3 lbs) employing wireless LAN
communications, color screen, microphone, pen
stylus, on-board speech recognition, and on-board
gesture recognition. Communication between the
military simulation system and the PDA is brokered
by the Open Agent Architecture.

The design of speech commands and the pen gestures
is driven by observations of real users using a
simulated interface. These observations occur in
Wizard-of-Oz experiments in which a human
collaborator plays the role of the speech and gesture
recognizers. This methodology allows us to tailor
the interface to the users, and to do so before the
system is built. Subsequently, the system is built and
tried by real users.

2. Introduction

The STOW-97 exercise anticipates substantial
expansion in the number and types of entities to be
created and simulated. However, the graphical user
interface paradigm employed in the core simulator
(ModSAF (Courtemanche and Ceranowicz, 1995))
will not scale easily to larger exercises. For example,
the following (Figure 1) is the entity creation menu
for MCSAF (USMC ModSAF). Note that for
company-level training with LeatherNet the menu
fills a 21" SGI screen.

Clearly the ModSAF GUI as currently formulated
has exceeded the design parameters for effective GUI
interaction. Given that users also express a desire for
a small portable device for simulation set-up, a new
user interface paradigm needs to be employed. We
propose use of multimodal interaction—employing

speech, pen, and GUI technologies as best fits the
problem at hand.

Figure 1: One menu from the MCSAF unit editor.

Our goal is to build a hand-held system that can be
used to control LeatherNet, the USMC training
simulation facility developed at NRaD (Clarkson,
1996), which employs ModSAF for combat
simulation and CommandVu, an NRaD-enhanced
version of NPSNET (Zyda, Pratt, Monahan, and
Wilson, 1992), for 3D terrain visualization. Recently
SRI International added the CommandTalk system
(Moore, 1995), which provides speech input based
on Marine Corps radio communication.

CommandVu is controlled by a special GUI called
VABS. VABS attempts to make available the
extensive functionality of CommandVu with a small
numerical keyboard, and thus users must rely on a
labyrinth of modes and mode-switching keys. In
addition, some CommandVu commands require the
selection of a vehicle by mouse click. Fast moving
vehicles have proven difficult to select.

QuickSet combines speech and pen-based gesture
input, and allows the user to set up LeatherNet
training exercises by creating forces and control
measures, and to control the exercise by assigning
tasks to the forces (Cohen, Pittman, Smith, and

217

Yang, 1996). It also allows the user to control the
viewpoint of the CommandVu terrain visualization,
along with its many features (radar, HUD, tethered
modes, etc.), and also provides control of video
switching for large-screen displays. The system
consists of a PDA (a hand-held PC weighing roughly
3 lbs) employing wireless LAN communications,
color screen, microphone, pen stylus, on-board
speech recognition, and on-board gesture
recognition. Communication between ModSAF and
the PDA is brokered by the Open Agent Architecture
(Cohen, Cheyer, Wang, and Baeg, 1994). Figure 2
shows an artist's rendition of QuickSet controlling
the LeatherNet "Cave" display, and Figure 3 shows
collaborative use of the system for creating units,
areas, lines, and a minefield breach.

Figure 2: Artist's rendition of multimodal
interaction with 3D simulation, 2D maps on
PDAs, and a "deployable unit."

Figure 3: Using QuickSet for multimodal,
collaborative simulation set-up.

Speech input and pen input each have advantages and
disadvantages. Speech enables naming things not

currently visible on the screen, such as platoons just
out of view on a map, or tasks, procedures, rules, or
situations that do not have an iconic presentation.
Speech is also faster for issuing commands. Pen
input is often more convenient (and more accurate)
for indicating objects that are currently in view on the
screen. Pen input also allows specification of
irregular lines that might indicate routes, or
boundaries of areas such as minefields, swamps,
landing zones, assembly areas, etc. Moreover pen
input has the advantage of being usable in public
places, where one might not want to verbalize
commands because of privacy or secrecy, and also is
usable where the noise of weapons, aircraft, and
ground vehicles can prevent use of a speech

Our multimodal input system gives the user the
ability to capitalize on both sets of advantages, using
whichever modality meets the need of the moment.
In addition, experimental subjects often switch
modes to deal with error correction, writing a word
that the speech system just cannot recognize, or
uttering a word that the pen system fails to recognize.

3. High-Fidelity User Interface Simulations

We have investigated the use of speech-only, pen-
only, and combined speech-pen input modalities in a
variety of tasks, using high-fidelity Wizard-of-Oz
simulations (Oviatt, 1996; Oviatt, Cohen, Fong, and
Frank, 1992; Oviatt, Cohen, and Wang, 1994). In
these experiments, subjects perform tasks such as
making airline reservations, checking bank accounts,
or updating maps and locating houses on maps for
real estate clients. The subjects use what they believe
to be a speech recognizer and a pen gesture
recognizer to enter commands. In fact, the
recognition is performed by a collaborator hiding in
an adjacent room.

These studies demonstrate that combined speech-pen
interfaces, as compared to speech-only or pen-only
interfaces, reduce user's wordiness, utterance length,
lexical variability, disfluencies, bigram perplexity,
and syntactic ambiguity (i.e., number of parses
generated). This yields significantly faster task
performance, and significantly fewer user errors. Not
surprisingly, experiment subjects show a strong
preference for the multimodal interface, as can be
seen in Figure 4.

218

Self-Reported 1st-Choice Modality
Preference

«

n »

1-
to

o *
>

10

10

DW
• s
DB

— • • •
r-1 1—1

Verbal Numeric Mop

IMMtan

Figure 4: Self-reported preference for multimodal
versus unimodal interaction in verbal,
quantitative, and map-based simulations.

4. The Open Agent Architecture

The Open Agent Architecture (OAA) (Cohen,
Cheyer, Wang, and Baeg, 1994) is based on
FLiPSiDE (Schwartz, 1993), an enhanced blackboard
architecture. In the traditional blackboard model
individual knowledge sources (agents) communicate
by posting and reading messages on a common
blackboard. An agent will periodically poll the board
to see if there are any posted goals (from other
agents) it can solve; when an agent needs help, it can
post a goal to be solved, then retrieve the answer
when it appears on the board. The OAA model
enhances this with a facilitator agent resident on the
blackboard. This facilitator stores the blackboard
data, identifies agents that can solve particular posted
goals and routes requests to the appropriate agents.

In the Open Agent architecture all communication
among the agents takes place through the blackboard
and its facilitator agent. In addition to the standard
blackboard operations of posting and reading, agents
in an OAA can send general and specific queries to
the blackboard's facilitator agent and they can have
the facilitator set triggers. A general query asks the
facilitator agent to route the goal to be solved to any
or all agents that can solve it, a specific query tells
the facilitator to route the query to a specified agent,
and by setting a trigger an agent is asking the
facilitator to notify it when a specific event has
occurred. The OAA uses an interagent
communication language (ICL) that consists of hom
clauses. The language is a standard prolog enhanced
with certain temporal operators.

Under the Open Agent Architecture, when an agent
joins a blackboard, it registers with the blackboard,
and with the facilitator agent, by providing a list of
goals it can solve, and (optionally) with a list of goals
to which the agent wishes to subscribe; the facilitator
will add the agent to its list of available knowledge
sources. Whenever a goal to be solved is posted to
the blackboard, the facilitator routes the goal to a
subset of those registered agents that have claimed to
be able to solve it. When a message is posted to the
blackboard by an agent, the facilitator will route the
message to all the agents that have subscribed to
messages of that type. The OAA's facilitated
architecture allows blackboard communication to be
more efficient than in a standard blackboard
architecture-agents no longer have to continually
poll the board, their help will be requested when a
goal for them to solve is posted, and they will be
notified when messages for them, either requested
solutions or predicates they have subscribed to, are
posted to the blackboard. Agents only need to initiate
communication with the blackboard when they have
a request to make of another agent, or when they
need a predicate they do not subscribe to.

The Open Agent Architecture is a flexible system
that provides a means for "agentifying" previously
written programs through a library containing the
basic features of the OAA's ICL. This library can be
linked with existing programs, allowing a legacy
program to function as an OAA agent. Libraries
currently exist for programs written in Prolog, C,
C++, Visual Basic, and Java.

In its QuickSet implementation, the OAA uses ten
primary agents to control the simulation and to
provide windows into the simulation via the world
wide web and CommandVu. The QuickSet agent
configuration is illustrated in Figure 5. The natural
language agent (Gemini (Dowding et. al. 1993)), the
multimodal interpretation agent, an agent to execute
the logical forms produced by the natural language
agent, the agentified ModSAF, and the PDA-based
agents (the user interface agent (UI agent), gesture
recognizer and the speech recognizer) are used to
control the ModSAF simulation. The other agents
(video controller, web agent, and CommandVu
agent) are used to control the various user interfaces
that are displaying the simulation. The blackboard,
Gemini, the logical form agent, and the agentified
version of ModSAF are all provided by SRJ
International.

219

Other user
interfaces

Java-enabled
Web Browsers

3 1
| ICL (Horn clauseiff

Facilitator with blackboard
routing,dispatching, metadata, shared state,
triggering

Natural
Language
(Gemini)

Prolog
(on Unix)

Icil Horn clauses)

I
Multimodal

Interpretation

Map
Interfaces

Prolog
(on Unix)

VB/VC++
(on PC)

CommandVu
VR Interface

C
(on Unix)

Figure 5: The blackboard serves as a facilitator, channeling queries to agents who claim they can solve them.

The QuickSet system is run in a multi-platform,
multi-os environment; the PDA agents are in a
Windows95 environment, ModSAF and
CommandVu run on SGI platforms under IRIX, and
the other agents can run in either the SGI
environment or on SparcStations under SunOS.

An agent's ability to subscribe to one or more
predicates provides the basis for an initial
collaboration facility among users. When a user
enters the QuickSet system, the PDA's UI agent
subscribes to the ink predicate. Whenever any PDA
in the system produces ink, the blackboard's
facilitator agent will route the ink to every other
PDA. In this way, all user input appears on every
PDA; every user is made aware of the totality of
input in the system.

4.1 World Wide Web Access to ModSAF

The web agent allows an interested observer to watch
the simulation from any workstation supporting a
Java-enabled World Wide Web browser, as seen in

Figure 6. The web agent is an agentified Java applet
embedded in a web page. Because NetScape
constrains Java applets to interact only with their
home domain, a web server is run on the same host
as the QuickSet blackboard. Communicating through
the server, the web agent queries the blackboard for
information (e.g. unit positions, objectives, lines of
departure). The blackboard routes the request to the
ModSAF agent, then routes the answer back to the
web agent. By repeatedly querying for current
information, the web agent is able to maintain an up-
to-date display of the status of the simulation. Our
future plans include enhancing this agent to enable it
to update the simulation through pen/voice
interaction.

220

neucjpe: ntfbt* internet uispiay Hgent

m tot nw u* BooKmarRs upnuu ivKwy WMW **
* Si •• & fm * m

UOMK[m
M»fs HBW| VKat'lCMJ Itolml | NiH»u| HMUractoryf Sa<t»an|

Line: Tvpg: Fortification
j£aSl Appttt Agtrrt running ^H

Figure 6: The Java applet shows the ModSAF
map, units, lines, and objectives.

4.2 Using the QuickSet PDA

Under the QuickSet system, the ModSAF simulation
is controlled using the PDA. After the user interface
agent (UI agent) has connected to the blackboard, an
image of the current exercise's terrain appears on the
PDA screen (Figure 6). The PDA user can control the
ModSAF simulation by a combination of gesture and
speech directed at the PDA. For instance, to create a
new unit a user might click the pen on the map (at the
spot the unit is to be placed) and utter "m one a one
platoon". The UI agent directs the speech stream to
the speech agent for conversion to a list of
recognized words; at the same time, the pen click is
directed to the gesture agent. The information in the
two streams are combined (the integration process is
described in detail in the sequel), and the resultant
command is sent to the ModSAF simulation.

In addition to controlling the simulation, a PDA user
can effect other simulation visualization tools.
Speech commands issued through the PDA (e.g.
"commandvu world view on", "commandvu go to
one thousand") are routed to the CommandVu agent,
controlling the CommandVu display. A video
switching agent controls the video signal reaching a
large display monitor in our demonstration room.

Currently the video switching agent can choose
between the ModSAF display, the web agent,
CommandVu, and one PDA screen.

5. The QuickSet Gesture Recognizer

The QuickSet gesture recognizer consists of a neural
network and a set of hidden Markov models. For the
neural network recognizer the gesture is size
normalized, centered in a 2D image, and fed into the
neural network as pixels (Pittman, 1991). For the
HMM recognizer the ink is smoothed, resampled,
and converted to deltas, and fed to the HMM
recognizer.

Both recognizers provide the same coverage (they
recognize the same set of gestures). These gestures,
some of which are illustrated in Figure 7, include
various military map symbols (platoon, mortar,
fortified line, etc.), editing gestures (deletion,
grouping), route indications, area indications, taps,
lassos, etc. The probability estimates from the two
recognizers are combined to yield probabilities for
each of the possible interpretations.

X <
deletion grouping

letter "c" mortar

platoon mechanized
company

fortified line

-
obstacle line

phase line

line of movement

Figure 7: Some of the symbols and gestures used
in QuickSet.

The inclusion of route and area indications creates a
special problem for the recognizers. Both
recognizers recognize shape (although they see the
shape in different data formats). But as Figure 8
shows, route and area indications may have a variety
of shapes. This problem is further compounded by
the fact that we want the recognizer to be robust in
the face of sloppy writing. More typical, sloppy
forms of various map symbols, such as are illustrated
in Figure 9, will often take the same shape as some
route and area indications. A solution for this
problem can be found by combining the outputs from
the gesture recognizer with the outputs from the

221

speech recognizer, as is described in the following
section.

logical forms to represent various interpretations of
the speech recognizer, along with their probabilities.

O
Figure 8: Pen drawings of routes and areas.
Routes and areas do not have signature shapes that
can be used to identify them.

2 Sb ex- O
mortar platoon deletion letter "c'

Figure 9: Typical pen input from real users. The
recognizer must be robust in the face of sloppy
input.

6. Integrating Speech And Gesture Recognizers

Multimodal input allows error correction by users by
switching modes. But it also enables another type of
error correction, an automatic form of error
correction in which the system combines roughly
concurrent pen gestures and speech utterances to
form a single multimodal command.

For instance, the user might speak the command:
"M1A1 platoon follow this route" while
concurrently drawing a route with the pen from the
platoon to some objective. This is illustrated in
Figure 10. Depending on the shape of the route, the
gesture recognizer might have (mis)recognized this
gesture as a route, an area, a tap, a letter or digit, a
map symbol, or an editing gesture. The
interpretation with the highest probability is shown
on the PDA. But as seen in Figure 11, the gesture
recognizer also issues a logical form to the
blackboard that indicates the probabilities of each of
the interpretations. Those interpretations that involve
objects on the screen (such as taps and group
encirclings, called "lassos") include the object IDs of
those objects. In the future we will add similar

Figure 10: The user enters a multimodal
command. The ink and its interpretation are
shown in place on the map. In this example the
ink was misrecognized as an area. The user's
speech (as recognized) is displayed at the bottom
The user can correct speech misrecognitions with
the pen.

gesture(area(0.65, [...coords...]),
objects(0.65, [...EDs...]),
line(0.50, [...coords....]),
grouping(0.45, [...IDs...]),
letter(0.25, 'c'),
unit(0.21, mortar),
letter(0.21, V),
digit(0.21, 0),
delctioiM0.il, ID).
tap(0.01, ID)).

Figure 11: Logical form issued to the blackboard
by the gesture recognizer. Each interpretation has
a probability. Note that the probabilities do not
sum to 1.0, as they are not mutually exclusive
interpretations from the viewpoint of the gesture
recognizer.

7. Summary

Our multimodal interface has been implemented on a
wireless hand-held PDA, and interfaced to the United
States Marine Corps version of ModSAF and
CommandVu, called LeatherNet, as well as the
United States Army version of ModSAF. The
interface supports the creation of units and control
measures, the issuing of tasks, the maneuvering and
control of CommandVu's stealth viewpoint, and the
control of the video feed to a large display screen.

222

The Open Agent Architecture enables collaborative
interactions among users. In addition, we have
created a Java-enabled web page connected via the
agent architecture that allows users to view the
simulation via a web browser.

Our research continues, focusing on improving and
integrating speech recognition, pen gesture
recognition, and natural language understanding, and
on improving and clarifying the use of agent
architectures as a foundation for this integration.

The project will be demonstrating the value of the
research by delivering a working system to the
USMC training facility at 29 Palms, California for
actual use in training. We have already demonstrated
the system at the Royal Dragon exercise at Ft. Bragg.
In addition we will deliver our multimodal interface
to other DARPA-supported research projects
involved in military training exercises. To support
this we will continue to collect more gesture data
from real users, to add gestures to the gesture
vocabulary, and to add more commands to the speech
system.

8. Acknowledgments

This work is supported by the Information
Technology and Information Systems offices of
DARPA under contract number DABT63-95-C-007,
and has been done in collaboration with the US
Navy's NCCOSC RDT&E Division (NRaD) and SRI
International. Thanks are extended to Richard
Wesson and Ed Stuber for implementing the Java-
OAA connection.

9. References

Clarkson, J. (1996) LeatherNet: A synthetic forces
tactical training system for the USMC
commander. Proceedings of the Sixth
Conference on Computer Generated Forces and
Behavioral Representation. University of
Central Florida.

Cohen, P.R., Cheyer, A., Wang, M., and Baeg, S.C.
(1994) An Open Agent Architecture.
Proceedings of the AAAI Spring Symposium
Series on Software. Stanford University, CA, 1 -
8.

Cohen, P. R., Pittman, J. A., Smith, I., and Yang, T.
C. (1996) Multimodal interaction for distributed
interactive simulation. In submission.

Courtemanche, A. J. and Ceranowicz, A. (1995)
ModSAF development status. Proceedings of

the Fifth Conference on Computer Generated
Forces and Behavioral Representation.
University of Central Florida, 3-13.

Dowding, J., Gawron, J. M., Applet, D., Bear, J.,
Cherny, L., Moore, R., Moran, D. (1993)
Gemini: A natural language system for spoken
language understanding. Proceedings of the 31st
Annual Meeting of the ACL.

Moore, R. C. (1995) CommandTalk: Spoken
language interface to the LeatherNet system.
ARPA Software Technology and Intelligent
Systems Symposium, Chantilly, Virginia, 28-31
August.

Oviatt, S.L. (1996) Multimodal interfaces for
dynamic interactive maps. Proceedings of
CHI'96 Human Factors in Computing Systems,
ACM Press, NY, 95-102.

Oviatt, S. L., Cohen, P. R., Fong, M. W., and Frank,
M. P. (1992) A rapid semi-automatic
simulation technique for interactive speech and
handwriting. Proceedings of the 1992
International Conference on Spoken Language
Processing, vol 2. J. Ohala(ed.), 1351-1354.

Oviatt, S.L., Cohen, P.R., and Wang, M. (1994)
Toward interface design for human language
technology: Modality and structure as
determinants of linguistic complexity. Speech
Communication 15, 3-4, 283-300.

Pittman, J. A. (1991) Recognizing handwritten text.
In Proceedings of CHI'91 Human Factors in
Computing Systems, ACM/SIGCHI, NY, 271-
275.

Schwartz, D. G. (1993) Cooperating heterogeneous
systems: A blackboard-based meta approach.
Technical report 93-112, Center for Automation
and Intelligent Systems Research, Case Western
Reserve University, Cleveland, Ohio, Ph.D.
thesis.

Zyda, M. J., Pratt, D. R., Monahan, J. G., and
Wilson, K. P. (1992) NPSNET: Constructing a
3-D virtual world. Proceedings of the 1992
Symposium on Interactive 3-D Graphics.

10. Authors' Biographies

James A. Pittman is a Senior Research Associate at
the Oregon Graduate Institute. He has a Ph.D. in
human-computer interface. His research interests
include gesture recognition, character recognition,
and pen-based interfaces.

Ira Smith is a Ph.D. candidate at the Oregon
Graduate Institute. He has a Masters of Science
degree in computer science. His research interests

223

include agent architectures,
communication languages, dynamic logics,
distributed objects, and multimodal interfaces.

Phil Cohen is Professor and Director of the Center
for Human-Computer Communication. He has a
Ph.D. in computer science. His research interests
include multimodal interfaces, human-computer
interaction, intelligent agents, dialogue, natural
language processing, collaboration theory and
technology, speech act theory, delegation technology,
knowledge-based simulation applications to mobile
computing, information management, and
manufacturing.

Sharon Oviatt is Associate Professor at the Oregon

Graduate Institute. She has a Ph.D. in experimental
psychology. Her research interests include human
language technology and multimodal systems,
modality effects in communication (speech, writing,
keyboards, etc.), communication models,
telecommunications and technology-mediated
communication, interactive systems, human-
computer interaction, empirically-based design and
evaluation of human-computer interfaces, cognitive
science, and research methodology.

Tzu-Chieh Yang has just received his Masters
degree in computer science from the Oregon
Graduate Institute. His research interests include
integration of speech and pen interfaces.

224

Soldier Station:
Integrating Constructive and Virtual Models

Shirley Pratt and David Pratt
Department of Computer Science, Naval Postgraduate School, Monterey, CA 93943

pratts@cs.nps.navy.mil pratt@cs.nps.navy.mil

David Ohman and John Galloway
TRADOC Analysis Center, ATRC-WAC, White Sands Missile Range, NM 88002

ohman@trac.wsmr.army.mil gallowaj@trac.wsmr.army.mil

1. Abstract

Soldier Station is a unique simulation system which
bridges the gap between two distinct realms of mod-
eling: constructive and virtual. The Soldier Station
operator controls a simulated dismounted infantry
soldier in a 3D virtual environment with rules of
movement, engagement and tactics provided from a
constructive model. This paper describes the Soldier
Station system, its design, and the integration of two
separate simulations with radically different modeling
philosophies. The features of the resulting system,
its limitations, and plans for future work are pre-
sented.

2. Introduction

Traditional US Army simulations generally fall into
one of two distinct modeling realms: constructive or
virtual. Constructive simulations allow a user the
ability to control one or more battlefield entities sub-
ject to software rules, data and procedures. Entities
are indirectly controlled through the user's interac-
tions with a 2D plan view display and a Graphical
User Interface (GUI). In contrast, virtual simulations
strive to immerse a user into a 3D synthetic envi-
ronment as the entity itself. The user interacts with
various input devices which provide direct control
over the entity. Currently, systems of both types of
simulations are in popular use. Major efforts have
been expended to allow these disparate systems the
ability to participate together in joint Distributed
Interactive Simulation (DIS) exercises. Soldier Sta-
tion is a unique effort which brings the two modeling
realms together within a single DIS-compatible sys-
tem.

Soldier Station bridges the gap between the two
modeling realms by integrating together the US
Army's constructive Janus model algorithms and the
Naval Postgraduate School's NPSNET virtual envi-

ronment system. It allows for visual realism and user
interactivity that is currently not available in standard
US Army constructive models. It utilizes realistic
movement, detection and engagement algorithms not
present in most virtual simulators. The integration of
two well established simulations represents a signifi-
cant reduction in project risk while offering signifi-
cant advantages over building either system
independently. The primary purpose of Soldier Sta-
tion is to serve as an analytic tool for TRADOC
Analysis Center (TRAC) to address Land Warrior
program issues concerning Dismounted Infantry (DI)
command and control, situational awareness, tactics,
techniques and procedures.

Soldier Station is DIS-compatible and able to in-
teroperate with other constructive and virtual systems
which use DIS Version 2.0.3 or 2.0.4 network pro-
tocols. The availability of a particular terrain data-
base format required by an application, however, can
be another limiting factor to this interoperatilibity.
As part of this project, a terrain tool was developed to
convert the gridded Janus terrain data into a polygo-
nal database format appropriate for many visual simu-
lations including NPSNET and Soldier Station.
Generally speaking, terrain format incompatibilities
are a major problem in the DIS simulation commu-
nity which exceeds the scope of this paper.

3. System Overview

Soldier Station is actually a system of systems. It is
designed to run on two separate Silicon Graphics
(SGI) workstations, a multiple processor SGI Onyx
Reality Engine2 and a SGI Indy. Two machines are
used to accommodate the large graphics and CPU
processing requirements of the main simulation sys-
tem and to meet substantial user interface system
demands. One SGI Onyx with a multi-channel op-
tion (MCO) is actually more expensive and more
likely to become overloaded resulting in poor system
performance than a two machine system.

225

3.1 User Interface Components

Figure 1 shows the various user interface components
of Soldier Station. The visual display is a 3D per-
spective view of the synthetic environment. This
view depends on the DI entity's posture, head and
body orientation and the current sensor. From two
nearby speakers the user can hear DIS networked bat-
tlefield sounds. Verbal communication with other
DIS participants is possible using a telephone or ra-
dio headset.

has three degrees of freedom allowing body and
head/weapon orientation (heading and pitch). It also
has a trigger for weapon firing capabilities. From the
touch screen GUI the user may easily select different
types of weapons, sensors or instruct the DI entity to
execute one of numerous different types of hand sig-
nals. To orient himself on the battlefield, there is a
2D map which can show various information over-
lays and the relative position of other detected or dead
entities. The GUI also has a compass which indi-
cates the current body and head/weapon orientation,
and various textual feedback information (i.e. location
coordinates, actual speed of travel, ammunition
rounds left, movement/injury status). Table 1 sum-

o Communications
/

Figure 1: User Interface Components of Soldier Station

The operator controls the input speed and the sol-
dier's posture using levers and switches on the BG
Systems Flybox input device. The Flybox joystick

marizes some of the various options which the Sol-
dier Station operator may select while controlling the
DI.

226

3.2 Software Components

The software components of Soldier Station are
shown in Figure 2. The main system runs on the
SGI Onyx and is comprised of two tightly coupled
modules, a Visualization Module (VM) and a Com-
bat Module (CM). The User Interface System (UIS)
runs on the SGI Indy and consists of two separate

the FORTRAN algorithms for Soldier Station sys-
tem initialization, DI movement, detection, weapon
firing and damage assessment. These routines, which
were originally part of Verified and Validated (V&V)
Janus Version 4.2 code, were modified to allow en-
hanced user control over the DI entity. Later they
were upgraded to Janus Version 6.0 which most no-
tably supports multiple sides of forces and fratricide.
Although the modified routines are still subject to the

SGI Onyx RE2

Main System

NPSNET
Visualization

Module

1
Janus

Combat
Module_

r * I ,
L Network jnteate^ n

SGI Indy

User Interface System

u ai e>
RGJlyhn*

GUI

a
Touch Screen

Multicast Network J

^>590
Speaker

A

C

Speaker

B

Sound Server

t ,
DIS Network

Figure 2: Software Components of Soldier Station

applications, a GUI and a sound server.

The VM is responsible for overall Soldier Station
program control. It is a modified version of Naval
Postgraduate School's NPSNET Version IV. 8 system
(Pratt et al., 1996b). NPSNET is an object oriented
C++ application which uses the SGI Performer visual
simulation toolkit (Rohlf and Helman, 1994) to cre-
ate 3D graphical representations of terrain, objects,
entities and environmental effects. The VM also pro-
vides DIS network management, remote entity dead
reckoning (DR) and simulation of the local DI entity.
Soldiers are generally represented using a medium
resolution, fully-articulated soldier model and a li-
brary of real-time animations from University of
Pennsylvania's Jack system (Granieri and Badler,
1995).

V&V process, they provide realistic feedbacks for
maneuvering over terrain and obstacles, for weapons
firing outcomes and injury determinations which were
not previously present in NPSNET.

The GUI application acts a central collection point for
all of the user input made via the BG Flybox and
touch screen devices. It packages the inputs into
Interface Data Units (IDU) protocols and sends them
to the main system via multicasting. The VM proc-
esses the inputs, makes the appropriate calls to the
CM routines and then sends back feedback data in
IDUs for the GUI to display. Thus, it is possible for
the operator to request unrealistic speeds, postures or
weapon firing given certain situations and be limited
by the CM which allows, in theory, only reasonable
outcomes to occur.

The Combat Module (CM) is based on the US
Army's Janus system (US Army, 1996). It contains

In addition to the feedback data displayed on the
GUI, the user hears various battlefield sounds from an

227

NPSNET sound server application running on the
SGI Indy. The sound server listens for certain DIS
PDUs which it recognizes as having a sound associ-
ated with them (primarily Fire and Detonation PDUs
and also some of the local entity's Entity State
PDUs). Upon receiving such PDUs, the distance
between the DI entity and the source of the sound is
computed as the sound wave propagates in the virtual
environment. When the distance is zero, the sound
is played over the speakers adding considerable real-
ism to the simulation.

3.3 System Design Considerations

The Soldier Station system is designed to host the
VM and CM together as a single integrated applica-
tion running on the SGI Onyx. The modules interact
extensively during the simulation and pass consider-
able amounts of information between them. In order
to minimize the communication latency between the
two modules, the CM routines are bundled into a
library and linked to the VM.

4. System Development

The integration of two distinct simulation systems,
Janus and NPSNET, was much easier said (and
drawn) than done. The integrated system was envi-
sioned to work together seamlessly, however, the two
component systems are based on radically different
modeling philosophies, are written in different com-
puter languages, and utilize different terrain file for-
mats. The integration was primarily carried out in an
stepwise manner with often multiple iterations occur-
ring at each step:

do
merge code
test results
do

debug problems
test results

until CORRECT
until DONE

4.1 Integrating Janus and NPSNET

Substantial user interface requirements for the Soldier
Station system justify the use of a second low-end
SGI workstation. A separate monitor is needed for a
touch screen. The GUI application manages inputs
from both the touch screen and the BG Flybox de-
vices, passes user input information to the main sys-
tem, and receives and displays feedback information
from the main system. In addition, the sound server
application requires a minimum of 32 MB memory
to be able to play sounds instantaneously upon re-
ceiving the appropriate PDUs. These demands and
the high cost of a new SGI MCO display drove the
decision to run the UIS system on a separate SGI
Indy workstation. This two machine configuration
frees valuable computational resources for the main
system which has substantial demands for graphics,
entity simulation and networking.

As shown in Figure 2, the main system on the SGI
Onyx interacts with the GUI application on the SGI
Indy via multicast networking protocols. Although
multicasting is inherently an unreliable means of
network communication, it provides some attractive
features. Namely, it allows multiple Soldier Station
suites to co-exist on the same physical network by
partitioning the network traffic into separate multicast
groups which each suite can subscribe to (Pratt et al.,
1996a). The ability to subscribe to multiple multi-
cast groups, if desired, also allows the future devel-
opment of a logger application which can record
multicast network traffic for user analysis purposes.

Integration of the two modules which comprise the
main Soldier Station system required careful coordi-
nation and consideration between the VM and CM
developers. The first step was to identify exactly
what the types of interactions were sought between
the VM and CM. This step produced five main CM
driver routines as listed in Table 2 (Ohman, 1996).

4.1.1 Modifications to Janus

The appropriate constructive model algorithms for
DIs were isolated from the original Janus code. The
CM continues to use the exact same input data files
as Janus (i.e. FORCE, DEPLOY, JSCRN, and
SYSTEM) and has complete knowledge of all entity
attributes and system characteristics. These CM rou-
tines control one interactive DI entity so at least one
system type in the FORCE file must be the same as
the Soldier Station system type specified during pro-
gram startup. The CM must inform the VM of the
DI entity system type's capabilities in order for the
user to be able to effectively control the entity. Thus,
SSsetup passes back the names of the weapons and
sensors along with the starting number of ammuni-
tion rounds available for each program run.

Some modifications to the Janus routines were intro-
duced to resolve time and space incompatibilities and
to provide enhanced user control. Since Janus is an
event driven simulation, changes were made to allow
the CM algorithms to be called in real-time and re-

228

gardless of the frame rate. Built-in time delays for the
soldier's movements due to obstacles and suppression
by fire were shortened from minutes to seconds in
order to allow the user to respond in a realistic
amount of time to such situations. All references to
nodes for routes and movement control were removed
with input now being provided by the Soldier Sta-
tion operator via the Flybox. The DI entity may
move in one direction and look in another by having
his head turned. He may also now move backwards
so that the soldier can remain facing forward while
retracing his last steps instead of having to rum
around. He can also now enter any infantry foxhole
or vehicle prepared fighting position regardless cf
which Janus side it belongs to.

Unlike traditional Janus DIs, the Soldier Station en-
tity can fire his weapon on command at no specific
targets (e.g. generate suppressive fire), and also fire in
a non-horizontal plane. He can detect up to twenty-
five targets (instead of just ten as for Janus DIs) pro-
vided he is alive and does not have a major wound
which might impact his ability to detect targets. If
targets are detected, the CM allows the Soldier Sta-
tion to fire at them regardless of side assuming that
other firing criteria have been met. Thus, the Soldier
Station entity can always possibly commit fratricide
if he does not exercise good judgment in the syn-
thetic battlefield. As in Janus, the firing criteria
which must simultaneously be met include meeting
minimum safe range requirements for firing a weapon,
and meeting weapon jam/clearing times and ammuni-
tion reloading times. Short firing delays are intro-
duced if any of these criteria are not met.

Along with added control the user is also faced with
more potential simulation hazards. For example, the
entity is now also able to step on and detonate de-
tected mines whereas Janus entities can not detonate
mines previously detected. Automatic defilade
status changes have also been removed so that the DI
entity no longer changes from fully exposed to partial
defilade when he stops moving unless directed by the
user to do so. In fact, the DI entity may remain fully
exposed while being fired upon if the user does not
take any action.

For demonstration purposes, the DI entity is also
allowed to be resurrected if killed. In addition to
possibly being killed or suppressed, the soldier may
also now be wounded. For determining a wound
status, the body is divided into six parts, each having
a probability of being wounded depending upon the
current posture. The damage assessment routine
processes direct fire, indirect fire or mine explosion
events.

4.1.2 Modifications to NPSNET

To integrate the CM with the VM, NPSNET pro-
gram flow was examined to determine where and how
the CM driver routines should be called. Since Sol-
dier Station was designed to use the NPSNET visual
simulation framework, the relatively minor modifica-
tions were needed to be able to interact with them.
These included making coordinate conversions
to/from NPS coordinates to Janus UTM coordinates
and transferring information from C++ dynamic data
structures into static arrays to pass to the CM. Code
was also added to map internal NPSNET vehicle
numbers of remote entities to Janus unit numbers.
These Janus unit numbers are pre-defined in the Janus
FORCE file which is read when SSsetup is called
during system startup. Remote DIS entities must
pass an appropriate Janus unit number in DIS Entity
State PDU markings fields to the VM in order to be
recognized by the CM as valid units (a requirement
which will hopefully be removed in the near future).

Strict interfaces for each of the CM driver routines
were defined, e.g. function name and the number,
type and order of the arguments. C++ wrappers
(which account for the C++ name mangling of func-
tion names and facilitate correct argument type pass-
ing) were then created so that the CM functions could
be called directly from the VM. The five main CM
driver routines and numerous other supporting rou-
tines are archived together in a library object and
linked to the VM.

There were several features added to NPSNET to
comply with the additional capabilities required for
Soldier Station. To allow the Soldier Station entity
the ability to select between up to five different weap-
ons, additional weapon models (besides the existing
M16 rifle) were added with only one showing at any
given time. Additional sensor views for the binocu-
lar and gun sights sensors were added as 2D overlays
over the 3D view along with concurrent changes in
the field of view. To receive the user's inputs from
the UIS, multicast IDUs were defined.

Support for up to six different sides of DIs was pro-
vided. This involved creating DI models with nu-
merous different colored uniforms and one model
which carried no weapon (to be used as a civilian).
Low resolution soldier models were also incorporated
for low level detections which assume that features
such as uniform patterns, faces, objects carried and
even limbs are not visible. Presently, only DIs have
multiple levels of detail models available.

229

4.2 Conversion of Janus Terrain

The terrain data formats used by Janus and visual
systems such as NPSNET are completely different.
The terrain elevations in Janus are gridded and as-
sumed to be constant within each grid square (or
pixel based). If represented in 3D graphics, the ter-
rain would appear as a collection of cubes with differ-
ent heights. On the other hand, in NPSNET the
terrain file format is polygonal in nature and its repre-
sentation consists of triangles connecting each grid
point to the next grid point forming a relatively
smooth terrain surface when compared to Janus' ter-
rain representation.

The relatively small size of the DI entities demands
smooth 3D terrain representations in order to avoid
large visual abnormalities in the terrain database at
the edge of each Janus grid square. However, the CM
routines still represent the terrain as gridded cells
internally. Thus, there is a mismatch in the internal
terrain representation for each module which some-
times causes the DI entity to appear either above or
below the actual polygonal ground surface. Some
detection mismatches would also likely occur causing
entities to disappear/appear although the VM may not
actually show terrain blocking/not blocking the line
of sight. Both of these problems are more predomi-
nant in terrain areas where steep and/or rapidly vary-
ing gradients exist.

As part of the NPSNET-Janus integration, a SGI-
based software tool was developed to convert the
Janus terrain into a MultiGen Flight format for the
VM. The terrain tool reads in the Janus gridded ter-
rain elevations and the separate polygonal Janus fea-
ture data (vegetation, roads, rivers, buildings, etc.)
and converts them into the required polygonal Mul-
tiGen format. Since the CM uses the Janus terrain
format while the VM uses the polygonal database
format, the Soldier Station system relies on this abil-
ity to convert various Janus terrain databases. With
the availability of MultiGen terrain databases, other
DIS-compatible simulations which also use the for-
mat are also be able to interoperate with Soldier Sta-
tion. So far, Soldier Station has successfully
participated in numerous exercises with remote DIS
entities generated from Janus linked to DIS (JLINK)
(Pate and Roussos, 1996), NPSNET, and another
Soldier Station system.

The terrain tool is capable of automatically handling
most types of Janus terrain databases with minimal
user intervention. Because of the very large number
of grid points present in most Janus terrain data-
bases, the tool subsamples the points, using every

other grid point, in an effort to reduce the number of
polygons. The time it takes to convert a terrain da-
tabase depends strongly on the number of Janus po-
lygonal terrain features as well as on the number of
elevation grid points present. A medium sized ter-
rain database (say, 10 km by 10 km) with an average
number of polygonal features takes about ten minutes
to convert. Currently, small tree areas with relatively
large concave edges can cause some conversion prob-
lems.

4.3 Main Program Flow

Figure 3 is a simplified program flow chart of the
integrated NPSNET-Janus main system. Essentially,
various initializations are carried out and then several
major tasks are carried out continuously as long as
the simulation continues. These tasks include the
handling of DIS network PDUs, handling user input
IDUs, simulation of the local DI entity, updating the
position and statuses of the remote entities and finally
drawing the scene. It is noted, however, that usually
network management and drawing would be handled
asynchronously in a multiprocessing mode.

During program startup, the VM calls SSsetup
once. Various Janus data files are read and, if desired,
post processor data files are started to log data from
the Soldier Station during the simulation. In the
simulation loop, PDUs from other remote entities on
the DIS network are processed. User input IDUs
from the GUI are processed similarly, and given the
current inputs, SSmove is called to determine the
soldier's next position and his movement status.
Remote entities are updated using dead reckoning,
and once a second SSsearch is called to determine
what live entities the Soldier Station entity can de-
tect. Dead entities are not detected by Janus and are
not passed to SSsearch. However, they are still dis-
played on the GUI 2D map as black icons and appear
visibly damaged on the synthetic battlefield.

When an IDU packet contains data about a trigger
pull effected, SSreload is called to determine the
outcome of the firing event. If the weapon was suc-
cessfully fired, a fire PDU is sent out over the DIS
network. If a close proximity detonation PDU is re-
ceived from another remote site, SSassess is called
to determine the extent of an injury, if any. If the
soldier is uninjured, the simulation proceeds as be-
fore. If the soldier is killed, he can be resurrected by
the user in demo mode, or the user can elect to exit
the simulation. If the soldier is killed or wounded,
movement, detection and/or firing capabilities will be
impaired depending on the injury. For simplicity,
Figure 3 assumes that the DI entity is uninjured.

230

InitialiTSdon 1 Process. PDUs_

Draw Scene

H SS assess

SS ljeloari

Send Det PDU
I

Sjft mnve
Articulate DI

Send feedback to User Interface

DR Entities

SS search I

Handle
DIS tnffic

Handle
User inputs

Update
Local Entity

Update
Remote
Entities

Figure 3: Simplified Main Program Flow

During each frame, feedback data about the current
status of the DI entity and what entities have been
detected at what detection level (aimpoint, recogni-
tion and identification) is sent back to the GUI. This
feedback information is then displayed on the GUI
and could affect the user's next inputs. Table 3 lists
some of the possible outcomes from making function
calls to the CM driver routines.

The program flow shown in Figure 3 is actually
nearly the same as the normal program flow of
NPSNET with the exception of the calls to CM rou-
tines. Without the CM driver routines, NPSNET
assumes that the DI entity can always move regard-
less of terrain characteristics, can detect anything that
is drawn, can fire upon anything when the trigger is
pulled, and is always fatally wounded by any close
proximity detonation. Clearly, the integration of the
Janus algorithms brings much needed realism into
the visual simulation.

5. Conclusions

The decision to merge Janus and NPSNET together
to form one seamless Soldier Station system was, to
a large extent, governed by practical reasons. Namely,
the analysis needs of the Soldier Station project could

be met while significantly reducing project develop-
ment time and costs by integrating two existing sys-
tems rather than developing either one independently.
By reusing code from NPSNET, Soldier Station ac-
quired a major head start on underlying 3D graphics,
basic entity simulation, DIS networking and sound
requirements. New development efforts could be fo-
cused on the integration with Janus, adding necessary
features which were not currently available in
NPSNET and the development of the UIS. By merg-
ing Janus algorithms, the virtual simulation acquired
robust mobility characteristics and target detections
as well as realistic weapon firing outcomes and injury
assessments. These features replaced non-existent or
very simplistic (and generally unrealistic) graphics
based capabilities which were previously available in
NPSNET.

The combined system, represents a significant im-
provement over either of its component parts, but it
does have some limitations. Currently the representa-
tion of terrain, soldier movements and engagements,
and visual parameters are at moderate levels of detail.
These are subject to change according to the resolu-
tion needed by the simulation, but large, high resolu-
tion terrain databases with many entities (say, more
than fifty) present will degrade the system perform-
ance without further optimizations (as mentioned
below). The inherently different VM and CM inter-

231

nal terrain representations causes some visual incon-
sistencies which need to be resolved. For improved
DIS-compatibility, unit numbers should be able to be
created or assigned dynamically within the CM. The
transfer of data from VM's dynamic data structures to
static arrays for the CM routines is unavoidable with-
out major code changes to the VM data structures.
However, this could impact performance otherwise
and requires some in-depth system performance
analyses beforehand. Some data transfers are simply
unavoidable due to C++ and FORTRAN language
differences.

For increased system performance, we plan to spawn
a separate process to obtain the computationally ex-
pensive CM detection routine output asynchronously
via shared memory buffers. Optimizations to the vis-
ual simulation include an upgrade to SGI Performer
2.x which supports terrain database paging and in-
creased use of level of detail modeling techniques.
To significantly lower hardware system costs, we
plan to tune the main system to run on the new,
much less expensive SGI Maximum Impact worksta-
tions. Enhancements for Soldier Station to partici-
pate in night time and urban environment
simulations are also planned in the near future.

6. Acknowledgments

1, 12-15.
Pratt, D., Barham, P., Barker, R., and McMillan, S.

(1996a) AUSA 95 DI Demonstration. 14th DIS
Workshop Proceedings, 1165 - 1170.

Pratt, S., Pratt, D., Waldrop, M., Barham, P.,
Ehlert, J., and Chrislip, C. (1996b) Humans in
Large-scale, Real-time, Networked Virtual Envi-
ronments. Submitted for publication in Presence.

Rohlf, J., and Helmann, J. (1994). IRIS Performer:
A High Performance Multiprocessing Toolkit for
Real-Time 3D Graphics. S1GGRAPH '94 Pro-
ceedings in Computer Graphics, 381-394.

U.S. Army TRADOC Analysis Center, White Sands
Missile Range, NM (1996) Janus Version 6.0
Documentation.

8. Authors' Biographies

Shirley Pratt is a Computer Scientist in the Com-
puter Science Department at Naval Postgraduate
School (NPS). She is the lead developer of the
NPSNET visualization module for the Soldier Sta-
tion system. Ms. Pratt has a M.S. in Ocean Physics
from the U.C. San Diego and a B.A. in Applied
Mathematics from U.C. Berkeley. Her research inter-
ests include real-time modeling of the environment,
virtual simulations of dismounted infantry, and the
use of efficient DIS aggregation protocols.

The authors would like to thank Mr. David Ward,
CPT Steve Brown, CPT Bill Smith, MAJ Glen
Roussos, Mr. David Hastings, LTC Ralph Wood,
COL Carl Baxley (Ret) and Mr. Roy Reynolds for
their help and valuable inputs to the system. Devel-
opment and demonstrations of the system would not
have been possible without the support of TRAC-
WSMR, TRAC-MTRY and NPS computer systems
personnel and students.

7. References

Granieri, J. and Badler, N. (1995). Simulating Hu-
mans in VR. To appear in R. Earnshaw, J.
Vince, and H. Jones, editors. Applications of
Virtual Reality, Academic Press.

Naval Postgraduate School, Computer Science De-
partment (1996). NPSNET Research Group In-
ternet Home Page http://www-
npsnet. cs. nps. navy, mil/npsnet.

Ohman, D. (1996) Soldier Station Combat Module
Documentation. Prepared for TRAC-WSMR by
Nations, Inc.

Pate, M., and Roussos, G. (1996) JLINK - A Dis-
tributed Interactive Janus. Phalanx, Vol. 29, No.

CW4 David Ohman (Ret) is an Operations Re-
search/Systems Analyst working for Nations, Inc. in
support of the Soldier Station project for TRADOC
Analysis Center, White Sands Missile Range
(TRAC-WSMR). Prior to joining Nations, he was
the only military member assigned as a Software De-
veloper for the Janus Interactive Simulation Devel-
opment Division at TRAC-WSMR. He has an M.S.
in Industrial Engineering from the University of
Texas, El Paso, an M.A. in Management from
Webster University, and a B.S. in Business and
Management from the University of Maryland. He is
also a graduate of the US Army Operations Re-
search/Systems Analysis Military Applications
course.

David Pratt is serving as the first Technical Director
of the Joint Simulation System (JSIMS) Joint Proj-
ect Office in Orlando, Florida. He holds this position
concurrently with an appointment as a tenure track
faculty member at the Department of Computer Sci-
ence, NPS. Prior to joining the faculty at NPS, Dr.
Pratt was a Data Processing Officer in the United
States Marine Corps. He holds a Ph.D. and a M.S.
in Computer Science from NPS and a B.S. in Elec-
trical Engineering from Duke University. His re-
search interests include distributed simulation and

232

architectures to support scalability in real-time 3D
computer graphics.

John Galloway is an Operations Research Analyst
for TRAC-WSMR. Since joining TRAC-WSMR in
1986, he has been involved with Combined Arms
Support Task Force Evaluation Model
(CASTFOREM), Janus and Soldier Station. He is
the Program Leader for the Soldier Station project
and has worked within the dismounted infantry arena

for constructive models for the past four years. He
has a B.S. in Civil Engineering from New Mexico
State University.

Control Item Available Options User Interface

Posture Upright, Crouching, Kneeling, Prone, Fox hole, Deploy weapon, Align
head and body orientation, Lase target

Flybox Buttons

Sensor Eye balls, Binoculars, Gun Sights (Thermal in future) GUI Radio Buttons

Weapon M16A2 Rifle, M203 grenade launcher, M60 machine gun, M249 semi-
automatic weapon, M72 light anti-tank weapon (Object Individual
Combat Weapon in future)

GUI Radio Buttons

Hand Signals Various signals for movement control, formations, fire control, emer-
gency alerts, echelon designation, and other miscellaneous signals

GUI Push Buttons

Map Display Map displayed, not displayed
Zoom in, zoom out
Show topographical contour shading, grid lines, terrain features, build-

ings, obstacles
Detected entity icons shown, not shown

GUI Push Buttons

Table 1: User Selectable Options for Soldier Station

CM Routine Purpose Example Considerations

SS_setup Reads Janus data. Passes DI capabilities back to
VM

Scenario, run, system number inputs

SSmove Determines current location, actual speed, move-
ment status

Soldier posture / orientation, terrain
characteristics, requested speed,
suppression status, wound status

SS_detect Determines what live entities are visible at what
detection level

Soldier posture / wound status, ac-
tive sensor, target defilade
status/speed. LOS probability

SSreload Determines firing result, impact point, rounds
remaining

Soldier posture / orientation, target
type, active weapon, rounds left,
time last fired

SSassess Determines injury, if any, due to a close proxim-
ity detonation

Soldier posture, munition type, im-
pact location, firing entity, luck

Table 2: Description of the Five CM Driver Routines

233

CM Routine Basic Outputs Specific Information

SS_move Movement status

Speed status

Delay status

Posture status

Moving on a road, in vegetation, in an urban area, in a river

Moving at requested speed, slowed by terrain, moving at maximum
speed allowed, not moving because soldier is kneeling or in a fox hole

Obstructed by a building, fence, another unit, by a river, an abatii, a
smoke pot, a mine

In the requested posture, not in a fox hole because none nearby

SS_detect No entities detected

Entities detected

None

For each entity, detection at level: aim point = 1, recognition = 2, iden-
tification = 3

SS_reload Successfully fired

Unsuccessfully fired

Fired at a target, or generated suppressive fire
Impact point is XYZ

Unable to fire because:
Soldier is wounded, moving too fast, being suppressed, not ready to fire
Range is too far, too close
Weapon is out of ammunition, pointed at too large of a pitch angle
Target is a non-combatant, is dead, a low probability hit, a bad target,

an identified friendly target

SSassess Injury status

Wound type

Suppression status

Not injured, dead, wounded

Hit in the head, chest, stomach, pelvis, leg, arm

Not suppressed, suppressed by fire

Table 3: Example Feedback Data from theCM

234

Session 4a: Learning

Adamson, DERA, UK
Hieb, GMU

Rajput, UCF/IST
Fogel, Natural Selection, Inc.

Genetic Algorithms and Force Simulation

J. Adamson
Centre for Defence Analysis (Land)

DERA Fort Halstead
Sevenoaks

KentTN14 7BP
United Kingdom

Dr K. G. Joshi
EDS Defence Ltd
Centrum House

101 - 103 Fleet Road
Fleet, Hampshire GUI3 8NZ

United Kingdom

1. Abstract 2. Background

Realistic modelling of force behaviour in a combat
simulation or wargame increases in difficulty and
importance with the complexity of the simulation.
Where there are many activities available to the
modelled entities and a large quantity of information
on which decisions will be based, the need for
realistic modelled behaviour without the need for
excessive user intervention is at its greatest.

The Centre for Defence Analysis (CDA) and EDS
have explored the possibility of using Genetic
Algorithms (GAs) as a means of developing realistic
tactical behaviour within a detailed combat
simulation, CDA's Close Action Environment
(CAEN).

CAEN is a highly detailed model of the close combat
battle. It is both a means of simulating weapons
effects and an interactive wargame between opposing
forces of up to platoon level strength. Up to 200
entities are usually modelled and consist of either
infantrymen and their personal weapons or vehicles
such as armoured personnel carriers and main battle
tanks. The representation of tactical activities within
CAEN makes it possible to apply the GA mechanisms
of evolution and selection to entity behaviour in an
effective manner.

The study work undertaken shows that GAs can
succeed in developing feasible behaviour as a
consequence of straightforward primary goals such as
individual survival and the achievement of tactical
objectives. The results also show that the
effectiveness of the GA method is closely linked to
the fidelity of the underlying combat model, and is
likely to produce increasingly realistic behaviour as
the simulation environment itself becomes more
complex.

2.1 Modelling Realistic Behaviour

Complex computer simulations of the battlefield
require not only the details of the military hardware,
but also the tactics and behaviour of the entities
involved. The problem of the detailed modelling of
realistic tactics is the subject of current research by
the Centre for Defence Analysis, DERA Fort
Halstead.

A major limitation of existing simulations is the
inability of models to represent subjective decisions
and to provide common-sense, realistic behaviour in a
range of situations. This limitation applies both to
fully autonomous simulations and to wargames which
are driven by interactive commands from users. It is
particularly evident in high-resolution models, since
the greater the detail and realism of the underlying
simulation, the more complex is the decision making
faced by the simulated entities. For example, a high
fidelity model such as CAEN provides a large number
of activities which an entity may choose and a large
quantity of information on which the entity may base
its decision.

2.1 Involvement of the User

A problem often encountered with wargames is the
high level of user effort required to drive them. To
avoid overloading the players with detail, wargames
are usually equipped to enable commands to be
issued to groups of entities which then move and
engage in the same way. This is broadly realistic
except in situations when the success of the group
depends upon the differences between its entities
rather than their similarities. For example, in
advancing under fire, it is advantageous for some
entities to supply covering fire while their comrades
advance.

237

2.3 Intelligent Entities

For detailed aspects of wargames such as the above,
adequate realism can only be achieved by intensive
user involvement. If a method can be found to define
a degree of intelligent response by computer
generated entities to general instructions, then the
user is freed to control the overall picture or to
observe and analyse. In addition, the level or
expertise required by the user can be reduced, the
potential complexity of the behaviour can be
increased and the realism of the behaviour can be
matched to the underlying model.

The last point is particularly important. As models
increase in complexity, more intelligent decisions
must be made, and more of these will have to be
taken by the system rather than the user.

3. Use of Genetic Algorithms

3.1 Optimisation

Intelligent computer generated entities must be able
to respond to general instructions in a manner which
is both effective and realistic.

In combat models, if we can represent the elements of
entity behaviour in a suitable manner, we may hope to
obtain realistic responsive behaviour as a result of
optimising these elements with respect to the
achievement of military goals.

The effectiveness of this approach will depend on the
selection of a suitable optimisation technique.
Genetic Algorithms (GAs) provide a robust approach
to optimisation with a number of features relevant to
this application.

3.2 Genetic Algorithms

Genetic Algorithms (Goldberg 1989) have been
applied to a number of optimisation problems in
complex domains. The GA uses principles based on
genetic processes in nature. It operates by
maintaining a population of diverse solutions to a
problem, combining elements from members of this
population, and selecting the fittest from which to
form the next generation. In this way it iteratively
seeks stable optimal solutions, with inefficient paths
being rejected at each iteration.

The method is effectively a parallel one in that the
variety of the paths provide a greater chance of
overcoming obstacles to the optimisation, and the

discarding of unsuitable candidates at each stage
narrows the search. The advantages of this approach
include:

• The population domain need not be continuous.
• Wide coverage of the domain of possible

behaviours is maintained at all times.
• The solution will not converge to a local

maximum with poor global performance.

3.3 Principal Features

The principal features of GAs are:

• The features of the system to be optimised are
encoded in a data series, called a chromosome.
The encoded features are referred to as genes.

• Fitness is defined by means of an objective
function defined on each chromosome.

• A population of chromosomes, or candidate
solutions, is maintained and modified in a series
of iterations, or "generations".

This leads to an iterative process which should
eventually converge to a population of highly
performing individuals. The algorithm will then be
terminated by a suitable criterion.

The iteration is governed by three operations:

• Reproduction.
• Recombination.
• Mutation.

3.3.1 Reproduction
The fitness of each chromosome determines its
probability of selection for the next generation,
causing the better chromosomes to dominate. In this
study, a weighting based on fitness ranking was used
to discard the worst individuals in favour of the same
number of newly created individuals.

3.3.2 Recombination
Pairs of chromosomes may "mate" and reproduce by
exchanging genes, enabling the creation of
individuals combining the best features of both. The
techniques used in this study were:

• "Uniform crossover", where the values of the
gene in each location for two randomly selected
parents may be exchanged according to a
probability test.

• "Average crossover", where the selected gene
pairs are replaced by their average value.

238

3.3.3 Mutation
Random changes may cause particular genes in a
child chromosome to differ from those of its parent.
A variant (random creep) was also used, in which
random increments were added to the (real number)
values of randomly chosen genes.

4. CAEN

4.1 Summary of CAEN

The CAEN model was chosen to investigate the use
of GAs in force simulation.

CAEN is a two-sided close combat model
representing entities down to the resolution of
individual infantrymen with their personal weapons
or armoured vehicles. It can be used either as an
automatically replicated simulation with no user
intervention, or as an interactive wargame in which
players create and control their own forces within a
terrain database, supported by graphical displays. At
the CDA, CAEN is used for operational analysis and
weapon system evaluation.

CAEN provides a highly suitable environment for the
assessment of GAs (or other tactical optimisation
methods), on at least two counts:

• The level of modelling resolution is detailed
enough to represent the tactical options available
to individual entities in complex scenarios.

• The parametric method used to specify tactical
behaviour provides an appropriate basis for the
application of the GA mechanism.

4.2 Tactical Behaviour

The tactical behaviour available to entities in CAEN
is very flexible. It is defined in terms of simple base
activities such as changes in posture and speed,
surveillance, target acquisition, direct fire or
suppressive fire. Each entity has access to a variety
of information about its current situation and it can
use this data to make decisions about which activity
to perform next.

A key feature of CAEN is the control of this
behaviour by input data files set up by the user prior
to the game. The files, known as Activity Sequences,
consist of a sequence of predefined activities together
with test conditions to allow branching to different
points in the sequence. Activity sequences thus
provide tactical algorithm templates parametrised by

quantities such as the time spent performing an
activity and the conditions for entering and leaving
the activity. Random elements are provided to avoid
the behaviour of an entity becoming too predictable.

Changes to entity behaviour in the simulation are
effected by editing one or more activity sequences.
Group tactics, executed by all entities within a group,
are contained in Tactics files which reference a set of
activity sequences. In this way, hard-coded rules of
behaviour are replaced by data files allowing
behaviours to be easily created and modified by
setting parameters.

Although the mechanics of tactical definition are
easy, the creation of an effective and realistic activity
sequence for even a simple scenario is a complex and
time consuming problem. Considerable care must be
taken to ensure that the resulting behaviour is as
desired. This is where the use of Genetic Algorithms
provides a potentially valuable means of improving
fidelity and automating the process of tactical
definition.

5. Application of Genetic Algorithms to CAEN

5.1 General Approach

The application of GAs to CAEN is based on
representing Activity Sequences as chromosomes.
Several sets of parameters are randomly generated
and used to define tactical algorithms. These are then
used as input data by the CAEN simulation, using a
scenario suited to the tactical template. For example,
if a minefield is specified in the scenario, then the
tactical template should include a mine clearing
activity.

The results of the CAEN simulation are then
processed to determine the effectiveness of each
activity sequence, using a suitable measure of
effectiveness (MOE). In the studies to be described,
the MOE is based on a combination of simple
military criteria, namely the proportion of Blue forces
killed and the time taken to reach the objective. A
number of CAEN replications are carried out with
each chromosome/activity sequence in order to build
up a significant MOE. A new generation is then
formed by the procedures of Section 3.3, and the
process iterated until a reasonably stable tactical
algorithm is established.

5.2 The Study Environment
The study environment made use of an existing GA
harness previously developed by EDS for the

239

optimisation of target recognition rules. The GA
harness was linked to CAEN by an interface program
which translated parametric data between the CAEN
activity sequence format and the GA manipulations.
A main control program scheduled the repeated runs
of the GA harness and the CAEN replications.

5.3 Modifications to CAEN

The CAEN functionality was augmented to allow
entities to develop behaviour based on two new areas
of information, namely:

The sequence thus consists of two phases of different
durations:

• Direct fire only.
• Suppressive and direct fire.

On entering one of these phases, the entity will make
a posture/speed decision, randomly selecting one of
run, walk, crawl or remain in the same speed/posture
as before. This activity sequence can therefore be
parameterised by allowing the variation of the
following data items:

• Awareness of own forces.
• Awareness of surroundings (terrain and culture).

These features had not been needed in previous uses
of CAEN where the tactics of advancing troops were
preordained by the user. This is in contrast to
awareness of enemy forces, and the effect of terrain
and culture on detection and engagement, which are
fully represented and used in executing these tactics.

6. Studies and Results

The use of Genetic Algorithms for tactical
development within CAEN was assessed by carrying
out a series of three studies using tactical activity
sequences of increasing complexity. These were:

1. An undetected advance.
2. An advance under fire.
3. A "generic" advance in which the tactical

sequence is largely unspecified.

6.1 Undetected Advance

6.1.1 Activity Sequence
In this first study, a simple tactical activity was
chosen to enable the GA principle itself to be
assessed. The main objects were:

• To verify that tactical optimisation was
achievable.

• To assess the effects of the parameters governing
the optimisation process.

An Undetected Advance activity sequence was
defined to represent a group of infantry moving
towards an objective in a straight line. While moving
forward the infantry may or may not engage in
suppressive fire, and may change speed and posture.
If an entity acquires a target, it engages in direct fire.

• The duration of each phase.
• The probability of selecting each posture/speed on

starting the phase.

This results in eight numbers: one time and three
probabilities for each phase. These eight numbers are
the values to be optimised.

6.1.2 Scenario
A simple scenario was defined with a small number
of Blue and Red infantrymen armed with rifles. The
Blue objective was defined as a particular building
occupied by Red forces. The distance to the objective
was defined such that the Blue entities would need to
repeat their tactical activities several times. This
helped to ensure that the optimised parameters were
not too closely tailored to the specifics of the
scenario.

6.1.3 Measure of Effectiveness
The success S of a run was defined by the formula:

S = (1 - L) exp(-f/r0)

where L is the proportion of Blue forces killed, t is
the time taken to reach the objective, and tQ a time
constant of the order of a typical value of t. This
fitness function was used in all three studies.

6.1.4 Results
The study used a population of ten chromosomes,
initially selected at random. The progress of the
optimisation between generations was monitored
though a 10 generation moving average of the fitness
measure 5 for the most successful chromosome.

The study runs were broadly successful. The fitness
values of the chromosomes used were found to
increase as the evolution progressed, and the
individual genes were found to converge.

240

One outcome was to highlight the effect of the
stochastic nature of the CAEN simulation on the
optimisation process. As stated earlier, CAEN
performs a number of statistical replications to
estimate the mean fitness value for each chromosome.
It is more difficult for the GA system to distinguish
the fittest chromosomes for the next generation when
this estimate is inaccurate due to random effects.
Increasing the number of replications had the twofold
effect of speeding the GA optimisation and making
the results more precisely defined. About ten
replications per chromosome were necessary to
produce effective optimisation in this case.

Despite these limitations, the resulting activity
sequence showed an improvement on a priori
parameter estimates of the type that would be adopted
in a normal use and a large improvement on randomly
chosen parameter values.

6.2 Advance under Fire

6.2.1 Activity Sequence
This study aimed to optimise a more complex activity
sequence, where the Blue entities come under
significant suppressive fire. The previous activity
sequence was enhanced to enable entities to make the
decision, when encountering suppressive fire, to
either engage immediately or to attempt to avoid
hostile entities by moving to another position. In
order to design an activity sequence with this degree
of flexibility, a much larger number of parameters,
which included times, probabilities, search ranges and
speeds, needed to be fixed. A suitable subset of these
was chosen for genetic evolution, giving a
chromosome length of 17.

6.2.2 Scenario
The previous scenario was enhanced by providing the
Red infantry with heavy suppressive fire. The Blue
attacking force was much larger. This was intended
to represent overwhelming force, so that even fairly
poor activity sequences would be capable of
completing the mission. This allowed non-zero
fitness values to be associated with all sequences,
which in turn allowed the ranking of all chromosomes
within a generation.

6.2.3 Results
Considerable difficulty was found in optimising this
activity sequence. Many adjustments had to be made
by the sequence designer to obtain any success in the
scenario. The optimised sequence was observed to be
inferior to the Undetected Advance.

The lesson learnt from this study was the importance
of correct design of the tactical template on which the
GA operates. For example, the design assumption of
attempting to avoid enemy fire is preferable to simply
returning fire, appeared to be flawed. More
generally, the GA system was unable to make
progress with a complex sequence where it had little
control over the ordering of activities. The GA
system was unable to improve what transpired to be
essentially a poor design.

6.3 A Generic Sequence

6.3.1 Activity Sequence
This study had the objective of taking a very general
structure for the activity sequence which effectively
allowed the GA to determine which activities should
be used in the scenario.

In defining a generic sequence, it was noted that any
activity sequence could be divided into three types of
component, namely:

• Base activities.
• Fixed subsequences of base activities.
• Decision tests.

Following execution of any of these activities, the
generic sequence will jump to a chromosome defined
successor, which may be another decision test or the
entry point to another fixed subsequence.

In this way, each chromosome defines a pattern of
execution of activity subsequences and decision tests.

As many possible decision tests and activity
subsequences were made available. Contrary to the
previous studies, every effort was made to ensure that
the activity parameters were not chromosome driven.
This was done to avoid unnecessarily long
chromosomes as increasing the chromosome length
would increase the run time required to perform the
optimisation.

The chromosome eventually used had 44 genes.

6.3.2 Scenario
The underlying scenario was similar to that in the
previous studies. No fixed route was pre-defined for
the Blue entities; the Blue entities would have "Entity
Routes" defined dynamically by the optimised
activity sequence.

241

6.3.3 Results
The generic sequence was successfully optimised
with virtually no need for modification to the initial
sequence design. The optimisation was more
straightforward than for either of the earlier sequence
types. This was a clear consequence of deliberately
avoiding tactical assumptions at the design stage.

The GA process was allowed to shape the tactics.
The resulting activity sequence did not exploit all the
potential decision tests and activities. Instead, it
concentrated on the two fundamental activities of
moving towards the objective and engaging the
enemy.

The Blue entities evolved the tactic of destroying Red
entities as a means of achieving the primary goals of
low casualty rate and speed of reaching the objective.

7. Conclusions

The studies reported in this paper have successfully
demonstrated the feasibility of using Genetic
Algorithms for the automatic generation of tactical
behaviour in detailed combat simulations such as
CAEN. It has been shown that using the GA process
to optimise effectiveness in terms of clear primary
objectives can result in the evolution of tactical
behaviour that helps to achieve those goals.

It has been seen that the method is potentially most
powerful when given the most scope in evolving
tactical sequences. Attempting to constrain the
algorithm a priori to a poorly designed tactical
template may be worse than useless. But given freer
range, the method is capable of converging quickly to
an effective tactical sequence.

The study has also shown how the efficiency of the
method is closely linked to the accuracy of the
underlying simulation. For example, using larger
simulation runs to improving statistical accuracy
benefits the convergence of the GA and may improve
overall efficiency.

Future enhancements to the fidelity of CAEN, such as
improvements in terrain modelling and psychological
factors, may help to demonstrate a corresponding
improvement in tactical realism.

It is precisely in the context of increasing model
complexity, where the demands on the user become
most severe, that the Genetic Algorithm approach
seems to offer the most potential.

8. Acknowledgements

The investigation which is the subject of this paper
was initiated by Land Studies Department, Centre for
Defence Analysis, DERA Fort Halstead, Sevenoaks,
Kent, TN14 7BP, and was carried out under the
Terms of Contract No. CDA/H/131.

9. References

Goldberg, David E. (1989). Genetic Algorithms in
Search, Optimisation and Machine Learning,
Addison-Wesley.

10. Authors' Biographies

Janusz Adamson is a Senior Consultant at the Centre
for Defence Analysis, DERA Fort Halstead. Mr.
Adamson has a BSc(Hons) degree in Astronomy and
an MPhil. His project responsibilities include
Command Agent Support for Unit Movement
(CASUM), the Close Action ENvironment wargame
(CAEN), Genetic Algorithms, Real-time Knowledge
base Systems and Command Agents. His technical
focus is on Synthetic Environments and Computer
Generated Forces.

Dr Keith Joshi was employed for three years by EDS
Defence Ltd's Research and Studies Group as a
Systems Engineer. A Mathematical Physicist with a
doctorate in Theoretical Physics Dr Joshi specialised
in combat modelling during his career with EDS.

Achieving the goal of tactical realism for computer
generated forces through this approach will depend
ultimately on the fidelity of the combat simulation
itself. The nature of the evolutionary process is such
that the evolved behaviour will adapt closely to its
environment, and the Genetic Algorithm can only
work within the constraints imposed by the model
itself.

242

Training a ModSAF Command Agent Through Demonstration

Michael R. Hieb, Gheorghe Tecuci, J. Mark Pullen
Department of Computer Science

George Mason University,
Fairfax, VA 22030

{hieb, tecuci, mpullen}@cs.gmu.edu

1. Abstract

As Computer Generated Forces (CGF) technology
advances to where Command Forces (CFORs) are
constructed and deployed, automated knowledge
acquisition tools will become increasingly important.
Since CFORs are expected to emulate human
behavior, their development will require more
knowledge acquisition than previous CGF efforts,
however knowledge acquisition has traditionally
constrained the development of knowledge-based
systems. This paper presents a ModSAF command
agent called Virtual Commander (VCDR) that the
Subject Matter Expert (SME) can "teach" using
ModSAF editors. VCDR is built upon Agent-
Disciple, a multistrategy apprenticeship learning
system that provides machine learning and
knowledge acquisition methods in a "toolkit". With
VCDR, an SME gives the CGF command agent
specific examples of problems and solutions,
explanations of these solutions, and supervises the
agent as it solves new problems, all through the
ModSAF interface. We have prototyped this training
approach with the Captain system, that allowed an
SME to teach a ModSAF company commander how
to defend its assigned area of responsibility. In this
paper we describe the design of VCDR, the learning
and problem solving algorithms it utilizes, and novel
prototype implementations of both a distributed
interface that integrates learning functions (Agent-
Disciple) to CGF (ModSAF), as well as graphical
ModSAF editors for VCDR.

2. Introduction

The ability to build intelligent command agents for
CGF is significantly constrained by the knowledge
acquisition effort required. Many iterations by SMEs,
programmers and knowledge engineers are required
to develop acceptable behavior even for a narrow
range of situations. Moreover, once built the agents
cannot adapt themselves to changes. Various
automated knowledge acquisition tools have been
proposed and utilized for this problem, but there is no
standard acquisition methodology for CGF that has
gained acceptance. The existing approaches primar-
ily utilize programmers and knowledge engineers to
encode the expertise of a SME. Our goal is to have
the SME use a familiar simulation interface to

instruct a CFOR agent directly. This direct
instruction reduces the involvement of programmers
and knowledge engineers, increasing the efficiency of
the acquisition process and improving the quality of
the acquired knowledge.

VCDR agents are instructable ModSAF agents,
providing a new approach to solving the knowledge
acquisition problem for CFORs. VCDR follows a
general methodology for developing instructable
agents for existing applications given in Hieb (1996).
VCDR utilizes Programming by Demonstration
(PDB) (Cypher, 1993) and Machine Learning
techniques to allow instruction by an SME.
Programming by Demonstration systems give an end
user the ability to create programs by demonstrating
their actions thorough a graphical user interface. This
is a new research area that is concerned with interac-
tive learning of user tasks from a limited number of
examples and explanations given by the user.
Machine Learning uses more formal, domain-
independent autonomous learning methods. Often
the input to machine learning programs are either
large numbers of examples, extensive background
knowledge, or, for multistrategy learning systems,
both.

In our approach, an SME teaches a VCDR agent
through the ModSAF Graphical User Interface rather
than using a different interface for the learning
system. The SME initially demonstrates to the
VCDR agent how to perform a new mission. The
SME uses the existing ModSAF task editors to
"program" the agent, as the SME normally would,
creating a sequence of specific tasks. This is given as
an initial example of the mission to the learning
system. The SME then explains the relevant features
of the mission. The learning system will then attempt
to perform a different instance of the mission (e.g. on
a different piece of terrain) under the supervision of
the SME, asking the SME to classify its solution of
the mission as a correct or incorrect example. The
SME uses ModSAF's graphical user interface to
correct the agent if it does not perform the mission as
required by the SME. After this teaching session, the
VCDR agent will have learned how to perform this
type of mission (i.e., create a rule specifying how to
select tasks and instantiate task parameters for a
specific mission) and be able to perform this new

243

Workstation A

ModSAF

Workstation B

Agent-Disciple

Problem
Solving
Functions

Learning
Functions)

Interface
Functions I

Figure 1: VCDR Design

mission when asked to do so by the SME, without
requiring the SME to program the behavior.

We have prototyped this approach with the Captain
system (Hieb, 1996; Hieb & Tecuci, 1996; Hieb et.
al. 1995) which consisted of an integration of the
apprenticeship learning system, Disciple (Tecuci
1988), and ModSAF. In Captain, a ModSAF
company commander can be taught how to place its
platoons to defend its assigned area of responsibility.
This process involves eliciting an initial example
from the SME, eliciting 5 to 10 explanations and
showing the SME 5 to 10 examples of solutions that
the system generates. Experiments with Captain
indicate that the system will scale up as it is applied
to learning other tasks in this domain. Captain
utilized the ModSAF terrain map to show examples
to the SME for classification, but did not fully
integrate other learning interactions (specifying
examples and explanations) into the ModSAF
interface.

Figure 1 shows the system design of VCDR. An
SME uses editors within ModSAF to teach a
command agent new tasks. The machine learning is
performed on a separate workstation running Agent-
Disciple software (Agent-Disciple provides the
learning functions of Disciple in a modular toolkit).
The gray modules indicate modules that are being
modified or created for VCDR.

In order to fully integrate VCDR with ModSAF we
are expanding upon the Captain interface in two
areas. We are developing a series of ModSAF editors

that will provide an integrated interface for the
instruction process, rather than using the interface of
the learning system. For instance, the new ModSAF
VCDR editors allow the SME to use the terrain map
interface during the explanation process, rather than
requiring the use of a textual interface. Also we are
interfacing the learning functions (which are Lisp-
based) to ModSAF using experimental protocol data
units (PDUs).

The remainder of this paper is organized as follows.
Section 3 presents an extended discussion of related
work. Section 4 presents the special format of VCDR
rules. Section 5 describes the implementation of
VCDR, including a prototype interface between
Disciple and ModSAF, and the design of ModSAF
editors designed for agent training. Finally, Section 6
concludes the paper with a discussion of our agent-
building approach.

3. Related Work

We first review some of the related research on
learning, particularly Apprenticeship Learning and the
new field of Programming by Demonstration. Then
we describe how this research applies to agents.

3.1 Learning

Apprenticeship Learning systems are at the
intersection of the fields of Machine Learning and
Knowledge Acquisition. An Apprentice Learning
System can be defined as an interactive knowledge-
based consultant that is provided with an initial

244

domain theory and is able to assimilate new problem-
solving knowledge by observing and analyzing the
problem-solving steps of its users through their
normal use of the system (Tecuci and Kodratoff
1990).

Apprenticeship Learning systems involve the user in
the learning process, where Machine Learning sys-
tems generally are not interactive. In Apprenticeship
Learning systems the user provides the learning
system's input in a representation that is natural to the
user. The learning system has an interaction with the
user during the learning process, where the user may
be asked to give other examples, confirm a hypothe-
sis, or give explanations. The output of this learning
is generally presented to the user prior to being
translated into a form usable by a performance ele-
ment (e.g., a rule-based production system) (Tecuci
& Hieb, 1994). Most Machine Learning systems re-
quire their learning input to be put into a special for-
mat. The user may not be able to understand the in-
put (which may be in the form of data) or the output
(which is often in the form of rules) unless the user is
quite familiar with the learning method.

Knowledge Acquisition systems and Apprenticeship
Learning systems are closely related. However, the
emphasis of most Knowledge Acquisition systems is
on modeling the initial knowledge base and eliciting
knowledge. The emphasis in Apprenticeship
Learning systems is on refining knowledge that has
already been elicited or created, using machine
learning techniques that learn from a user.

PBD systems give an end user the ability to create
programs by demonstrating their actions. Machine
learning covers an overlapping area of research
concerned with methods that learn concepts from
example or domain theories, including such
instruction from a teacher. An example of a PBD
system is the Metamouse system (Maulsby & Witten,
1993) gives the user the ability to automate drawing
tasks. The user instructs an agent (a turtle named
Basil) on how to manipulate objects through an
innovative graphical interface. Basil learns from
specification of graphical constraints to construct a
program that automates graphical editing. The
program can have loops and conditionals.

PBD systems are significant because their goal is to
empower the end user by assuming that, if a user
knows how to perform a task on the computer, then
that knowledge should be sufficient to create a pro-
gram to perform the task. Rather than learn a pro-
gramming language, the user should be able to in-
struct the computer to watch as the task is demon-
strated (Cypher, 1993). A common concern among
these systems is interface design. The graphical (and

verbal) user interface of these systems is generally
very sophisticated, and the inferencing techniques are
usually more specific to the task domain than ma-
chine learning methods (Maulsby, 1994).

PBD systems generally deal with the automation of
simple tasks. They generally do not deal with
automating complex tasks or behaviors, such as
concerns the ModSAF agents. The systems do not
provide facilities for the end user to specify domain
knowledge to the system, as is done with knowledge
elicitation or knowledge acquisition methods.

3.2 Instructable Agents

Software agents are programs that can execute with
their own identity within an application, either
autonomously or semi-autonomously. The agents
that currently are being developed either have fixed
(non-adaptive) behavior or can exhibit some limited
forms of learning. Agent-Disciple can be thought of
as an agent development environment either for
training existing agents or for building entirely new
agents.

ModSAF agents use a task-level architecture similar
to a subsumption architecture. This allows a user to
give orders to an agent, who then attempts to carry
out the orders, unless it reacts to a condition for
which it was programmed (e.g., a threat). Since this
is a reactive architecture, the agents must be
supervised closely by the SME.

Other approaches have been used to develop entirely
new ModSAF agents using the SOAR problem-
solving model (Tambe et. al, 1995). These agents
currently operate primarily in air environments. The
Soar-based agents have the potential to significantly
improve the behavior of ModSAF entities, but
conducting the knowledge acquisition to build such
agents remains a difficult problem.

Soar (Laird, Newell & Rosenbloom, 1987) is a
general problem-solving architecture that addresses
the problem of agent learning. SOAR has a learning
mechanism that is integral to its architecture-
chunking. In contrast, Agent-Disciple integrates
many learning methods for agent instruction. Soar
has a very elaborate model of problem solving - the
Problem Space Computational Method (PSCM) -
that uses deductive rules. By Contrast Agent-
Disciple uses rules with plausible conditions and is
able to reason with incomplete knowledge, although
its problem solving model is also more complicated
than most expert systems.

Huffman (1994) used Soar in his system Instructo-
Soar, where an instructable agent, learns from tutorial

245

instruction. Instructo-Soar learns general knowledge
from specific instructions, using rote learning and a
type of inductive learning (situated explanation) in
addition to the chunking of SOAR. Huffman
deliniates the type of knowledge that must be learned
to build an agent in SOAR's computational model,
and demonstrates the ability of Instructo-Soar to
acquire the majority of knowledge types necessary.
Instructo-Soar has been demonstrated in a small
domain, a blocks world with a small number of
operators, properties and relationships (less than 10 of
each).

4. Plausible Version Space Rules in VCDR

We first describe the novel structure of rules in
VCDR and then give examples of how VCDR uses
such plausible version space rules.

4.1 Plausible Version Space Rules

VCDR uses a hybrid knowledge representation
integrating semantic networks and rules. Semantic
networks represent information from a terrain
database at a conceptual level, as well as knowledge
about forces and weapon systems. In order to
facilitate learning, the objects and the rules both use
the following representation unit:

(concept-i concept-k (FEATURE-1 value-1)

(FEATURE-n value-n))

This expression defines 'concept-k' as being a
subclass of 'concept-i' (from which it inherits

features) with additional features. The value of a
feature may be a constant or another concept.

In VCDR, rules are procedures that consist of a
PROBLEM statement, CONDITIONS and a SOLUTION
statement. Each condition (also called a clause)
consists of a plausible upper bound and plausible
lower bound which are in the format of the
representation unit described above. The plausible
upper bound is a conjunctive expression that is
supposed to be more general than the exact condition,
and the plausible lower bound is a conjunctive
expression that is supposed to be less general than the
exact condition. The two bounds define a plausible
version space (PVS) for the condition to be learned
by Disciple (Tecuci, 1992). The bounds and the
version space are called plausible because the
learning process takes place in an incomplete
representation language that may cause them to be
inconsistent (a lower bound that covers some
negative examples or an upper bound that does not
cover all positive examples).

Figure 2 shows the general form of a PVS procedure
in VCDR. A procedure is learned from specific
problem solving episodes indicated by a user. Once
learned, a procedure can be selected to be performed
by an SME. A mission is a goal specification given
to the agent (the agent in the military simulation is
given an order). A task is an action that the agent can
take in the simulation.

The terms pj through pn and pn through pjv

represent parameter names, mn through mn represent
mission parameters, tji through tjv represent task

PROBLEM:
to accomplish

MISSION pi mi ... pn m„

CONDITIONS:
plausible lower bound

verify
(umi mi emu ... cmio)&

plausible upper bound

(lmi mi cmji ... cmi0)&

(umn mn cmni ... cmnp)
find

(utn tn etui ... ctiir)&

(lmn m„ cmni ... cmnp)

(lti tn etui ... ctiir)&

(Utjy tjv ctjvi ... Ctivs) (lti tjv ctjvi ...ctivs)

SOLUTION:
perform

TASK] pn tn Plw tlu

TASKj pji tji ••• Piv tjv

Figure 2: PVS Procedure

246

parameters, urn and ut represent the upper bound
class, lm and It represent the lower bound class, and
cm through ct represent constraints upon the
parameters. The plausible upper bound and plausible
lower bound are both conjunctive expressions. The
plausible upper bound is more general than the
plausible lower bound. The upper bound represents a
set of possible solutions, while the lower bound
represents the least general generalization of the set

of solutions actually encountered.

4.1 Examples of Using PVS Rules

Figure 3 contains simple procedures for an agent
corresponding to Figure 4. Procedure PI specifies
how to OBSERVE an object tl: verify that it meets
the constraint in the lower bound - that it is a terrain-
element (both the upper and lower bounds are the

PI:
to accomplish
OBSERVE TERRAIN tl

plausible lower bound plausible upper bound
verify

(terrain-element tl) (terrain-element tl)

find
(hill t2 (OPPOSITE tl)) (hill t2 (OPPOSITE tl))
(armored-platoon u) (platoon u)

perform
MARCH UNIT-ID u LOCATION t2

with the positive examples
(tl " hill-60-70, t2 • hill-44-91, u " platoon -a2)
(tl " lake-57-82, t2 " hill-60-70, u " platoon- a2)

with the negative examples
(tl " hill-44-91, t2 - lake-57-82, u " platoon- a2)
(tl " hill-60-70, t2" hill-44-91, u company -a)

P2:
to accomplish
MOVE UNIT-ID c LOCATION t

plausible lower bound plausible upper bound
verify

(company c (COMMANDS pi)
(COMMANDS p2)
(COMMANDS p3))

(hill t)

(company c (COMMANDS pi)
(COMMANDS pi)
(COMMANDS p3))

(terrain-element t)

find
(armored-platoon pi) (platoon pi)
(armored-platoon p2) (platoon p2)
(infantry-platoon p3) (platoon p3)

perform
MARCH UNIT-ID pi LOCATION t
MARCH UNIT-ID p2 LOCATION t
MARCH UNIT-ID p3 LOCATION t

with the positive examples
(t " hill-60-70, c"company-a, pi platoon-al, p2 ' platoon-a2, p3 " platoon-a3)
(t" hill-44-91, c"company-h, pi" platoon-h7, p2 platoon-h8, p3 platoon-h4)

Figure 3: PVS Procedures

247

Figure 4: Terrain Map

same in this case); if it is, then find objects for the
task parameters t2 and u subject to the constraints in
the lower bound - that t2 is a hill opposite from tl
and that u is an armored-platoon; if there are no
armored platoons, then use the upper bound and
attempt to find a platoon; if objects for the task
parameters are found, then perform the march task.

Procedure PI has been learned from the following
initial example.'

to accomplish
OBSERVE

TERRAIN hill-60-70
perform

MARCH
UNIT-ID platoon-al LOCATION hill-44-91

The initial example is expressed as a tuple,

(tl " hill-60-70, t2 " hill-44-91, u " platoon-a2)

A detailed description of how the upper and lower
bounds are formulated and modified to obtain PI is
given in (Hieb, 1996). The second example,

(tl " lake-57-82, t2 " hill-60-70, u " platoon-a2)

is positive and indicates that the lake in Figure 3.1
can be observed from hill-60-70 by a platoon. The
example

(tl - hill-44-91, t2 " lake-57-82, u " platoon-a2)

' An instructor gives the initial example and
classifies the subsequent examples in this scenario as
positive or negative. This scenario focuses on the
learning method rather than interaction.

is negative since the platoon cannot move onto the
lake (the platoon is a motorized unit with tracked
vehicles and cannot drive on the lake). The example

(tl " hill-60-70, t2 " hill-44-91, u " company-a)

is negative since a company cannot be utilized as the
observing unit (it is too large to perform the
observation mission).

After the procedure is learned, it can be used by the
agent as follows:

1) SELECT - The agent selects a procedure to
accomplish a specific mission and binds the
variables in the problem to the mission
parameters.

2) VERIFY - Verify that the mission parameters
meet the constraints imposed by the
corresponding verify lower bound conditions.

3) FIND - Find a set of objects corresponding to the
task parameters that meet the constraints in the
find lower bound conditions.

4) EXECUTE - Instantiate the task(s) in the
solution with the set of objects from steps 2 & 3
corresponding to the parameters of the task(s),
and invoke the task(s).

If the agent cannot find a procedure in step 1 to
accomplish the mission, or the mission parameters do
not meet the constraints imposed by the verify lower
bound conditions in step 2, or the agent is unable to
find a solution in step 3 (a set of objects meeting the
constraints in the find lower bound conditions), then
the agent will be unable to accomplish the mission.
To simplify the problem solving, only the lower
bound is used. The upper bound is manipulated
during learning and is kept so that the rule can be
modified later.

For example, the user of the simulation may wish to
have the agent monitor for enemy activity in the area
depicted by Figure 4. The user selects the agent and
orders it to OBSERVE forest-55-87.

1) SELECT - The agent selects PI to OBSERVE
forest-55-87 and binds the variable tl to the
object forest-55-87.

2) VERIFY - The agent checks that the object
represented by parameter tl meets the constraints
imposed by the verify lower bound condition in
PI:

(terrain-element tl)

248

Since forest-55-87 is a terrain-element, tl is
verified.

3) FIND - Find the objects corresponding to t2 and
u that meet the constraints in the find lower
bound in PI:

(hill t2 (OPPOSITE tl))
(armored-platoon u)

tl was bound to the object forest-55-87 in step
one. The object found for t2 must be a hill
opposite from the object represented by tl. This
must be hill-60-70 according to the knowledge in
the agent's semantic network. Then the object
found for u must be an armored platoon, platoon-
a2 is found, but could be any other armored
platoon.

4) EXECUTE - The agent orders platoon-a2 to
execute the march task to hill-60-70.

Similarly, procedure P2 has been learned from the
following initial example:

to accomplish
MOVE

UNIT-ID company-a LOCATION hill-60-70

perform
MARCH

UNIT-ID platoon-al LOCATION hill-60-70
MARCH

UNIT-ID platoon-a2 LOCATION hill-60-70
MARCH

UNIT-ID platoon-a3 LOCATION hill-60-70

This procedure specifies how to move a company to a
position - by moving each of the platoons associated
with that company using the appropriate movement
task for a platoon (MARCH). The relationship
COMMANDS must hold since otherwise a company
could "take" another company's platoons. There are
two positive examples, and the procedure is less
completely learned than procedure PI. For example,
the variables representing the platoons in the lower
bound could be further generalized from armored-
platoon and infantry-platoon to platoon, since it does
not matter what type the platoons are.

When performing procedure P2, there is an additional
complication since the constraints on mission
parameter c involve other variables representing task
parameters from the solution. In this case a least
commitment strategy is used, where it is merely
verified that the object represented by c has the
relationship COMMANDS to three other objects in the
VERIFY step. These objects are then found in the
FIND step.

5. Implementation of VCDR

The design of VCDR follows the Agent-Disciple
methodology of creating an Agent Training
Environment from (Hieb, 1996). The basic learning
and problem-solving functions were taken from the
Agent-Disciple toolkit. In addition to using the core
methods in Agent-Disciple's toolkit the following are
required: 1) translators between ModSAF's data
structures and the semantic network; 2)
implementation of an interface between the learning
functions written in Lisp and the ModSAF libraries
written in C; 3) constructing ModSAF training
editors; 4) integrating the new tasks learned into the
existing task-level architecture; and 5) modifying the
task editor so that the new tasks can be selected. The
overall implementation is depicted in Figure 5.

We discuss our approach to 2) and 3) below.

5.1 Distributed Interface to Learning System

As researchers in the field of Programming by
Demonstration have found, it is very difficult to
interface learning systems to existing applications.
We have designed a distributed interface, since the
two systems are quite different. This also has the
advantage of allowing the use of a separate CPU
(from that running ModSAF) to run the learning
functions. To convey the data from the ModSAF
training editors, we are interfacing the learning
functions of Disciple to ModSAF using an
experimental Distributed Interactive Simulation
protocol data unit (PDU).

In designing this interface, we distributed control of
learning between ModSAF and the learning functions
in Lisp. ModSAF is in control of sending PDUs to
Disciple. The Lisp process blocks while waiting to
receive PDUs. When Disciple receives a PDU, it
processes the message part, then sends a PDU back to
ModSAF in reply (either carrying data or sending an
acknowledgment) and blocks.

Table 1 shows the interface protocol created for the
interface. The phases correspond to distinct sets of
learning functions as in Hieb (1996). Within the
phases, types are discrete events, triggering actions
(PDUs sent activating the learning functions in Lisp).
Even types indicate ModSAF sending PDUs to
Disciple, while odd types indicate Disciple sending
PDU to ModSAF.

249

Agent-Disciple Toolkit

Learning -^

Knowledge
Representation "^

Problem Solving

Customization
ModSAF Company

Commander

(ModSAF Plan View Display^)

Figure 5: Constructing VCDR Using the Agent-Disciple Toolkit

Specification of Initial Scenario Phases
Phase 4 - Generate Experimentation Example

Phase 0 - Give Initial Example Type 0 - Request Example to be Generated
Type 0 - Select Example Template Type 1 - Send Example
Type 1 - Send Acknowledgement of Template
Type 2 - Select Initial Example Phase 5 - Give Experimentation Example
Type 3 - Send Acknowledgement of Initial Type 0 - Specify Example

Example Type 0 - Send Acknowledgement of Example

Phase 1 - Give Initial Explanations Phase 6 - Classify Experimentation Example
Type 0 - Select Variable to Generate Type 0 - Classify Example

Explanations from Type 1 - Send Acknowledgement of
Type 1 - Send List of Explanations Classification
Type 2 - Select Explanation(s)
Type 3 - Send Acknowledgement of Phase 7 - Explain Mistake in Experimentation

Explanations Type 0 - Select Variable to Generate
Explanations from

Phase 2 - Quit Initial Signal Phases Type 1 - Send List of Explanations
Type 0 - Quit Specification of initial Type 2 - Select Explanation(s)
Type 1 - Send Acknowledgement of Quit Type 3 - Send Acknowledgement of Explanations

Type 4 - Select Variable to Blame
Learning through Experimentation Phases Type 5 - Send Acknowledgement

Type 101 - Quit Explanation Phase
Phase 3 - Experimentation Search Parameters Type 102 - Send Acknowledgement

Type 0 - Select Variable(s) to Fix
Type 1 - Send Acknowledgement Fixed Phase 8 - Quit Experimentation Signal Phases
Type 101 - Quit Search Phase Type 0 - Quit Experimentation
Type 102 - Send Acknowledgement of Quit Type 1 - Send Acknowledgement of Quit

Table 1: Protocol for Agent-Disciple/ModSAF Interface

250

The specific implementation of the PDU interface
functions in both ModSAF and Disciple is covered in
much greater detail in (White et. al. 1996).

5.2 VCDR ModSAF Editors

A major part of building a VCDR instructable agent
is developing the graphical user interface for the
SME instructor. We have designed a series of
ModSAF editors to act as the agent instruction
interface. A ModSAF editor is a GUI that allows the
user to directly manipulate ModSAF data structures.
The VCDR editors allow an SME to give both
examples of how to perform a mission and also
explanations to the VCDR agent, using the existing
ModSAF interface. During the teaching session the
VCDR agent will learn the mission and later, be able
to perform it when asked to do so.

A challenge for the interface designer of a new
ModSAF editor is to use as much of the existing
ModSAF interface as possible, including both the
terrain map (or plan view display) and the editables
within the existing ModSAF editors. For VCDR we
are designing an interface within ModSAF that both
utilizes elements of the plan view display (such as the
command and control graphics) and new text
editables to allow a user to specify examples and
explanations during learning.

An analysis of existing interactive learning systems
shows that there are at least four main classes of
interaction necessary to teach an instructable agent
(Hieb, 1996): knowledge specification, specification
of training examples, specification of explanations,
and classification of examples. We have designed
and are implementing editors that support these
interactions.

Knowledge specification is mainly performed during
the construction of the agent, prior to the phase when
the SME instructs the agent. However, the SME will
specify different terrain areas to utilize as training
and testing data to the learning system. Thus a
VCDR terrain editor will allow the SME to both draw
boundaries around the terrain area and also guide the
learning system in performing semantic terrain
transformations (Hille et. al. 1995), a form of semi-
automated knowledge acquisition.

MITRE is developing a Command and Control
Simulation Interface Language (CCSIL) to provide
CFORs a common language for command and
control, utilizing military terms and message formats
(Salisbury et. al. 1995). Since an agent instruction
interface must utilize predefined knowledge about the
mission and terrain, some CCSIL language constructs
can be used as standardized terms during instruction.

The remaining classes of interactions are
implemented in the VCDR instruction editors, which
provide the capability to select command and control
graphics from the plan view display. Figure 6 shows
the Main VCDR editor, which allows an SME to
specify the initial task to be learned ("Start"), to
begin the training process ("Train"), to verify the task
taught ("Verify") and to assign an agent the new task
("Use"). Figure 7 shows the Training Editor, which
is invoked when the "Train" button is pressed in the
Main Editor. The Training Editor allows the SME to
construct training examples for the system ("Give
Examples") or to have VCDR generate examples
(through experimentation) for the user to classify.
Classification of training examples is provided via a
yes/no/unknown menu option button. Figure 7 shows
the Verification Editor, which is invoked when the
"verify button is pressed from the Main Editor. This
editor allows the user to verify a rule by selecting
another terrain area and specify variable assignments
of a task.

All of the editors also provide a history of past
examples and explanations via buttons on a common
utility pane, as well as providing the user to directly
examine the rule and variable assignments.

7. Conclusions and Future Research

Systems for automating complex tasks must be
designed so that they can be general enough to be
adapted to different domains. For example,
considerable effort was expended in modifying both
the ModSAF application (which contains over 450
source libraries written in C) and Agent-Disciple to
create Captain. The next goal, in VCDR, is to use the
existing editor interface of ModSAF, as opposed to a
separate learning system interface. Lieberman (1994)
points out that the interface between an end user and
the agent training system is a crucial issue not
addressed in most of the machine learning research.
The VCDR approach is to use as much of the existing
ModSAF interface as possible, on the assumption that
this is easier for the SME.

The VCDR instruction method requires a pre-existing
knowledge base and the creation of customized
methods to translate the application's current state to
the learning function's semantic network. To address
this drawback in the ModSAF domain, terrain
transformation techniques have been developed and
are being implemented to automatically create a
substantial portion of our semantic network from the
digital terrain databases (Hille et al 1995). Also,
facilities are provided for the SME to specify
additional terms in the representation language during
the training process, as in Dybala & Tecuci (1995).

251

3RAIM -i|[VtelPY-ilj USE -i ij hi«ri Example

ExacppleEbtgy

•E»ptoB>tifli> History)

VtriaMts

Figure 6: VCDR Main Editor

JC
Training;

Done

Ahttrt

Give Example Generate Example Classify
ExampleEtor ^J f Generate -> | I -wVes

Don't know
Eicaniple Hirtary

EgplaiqfiaB History}

Variatto

Messages

Figure 7: VCDR Training Editor

Dams

Seiecr Terrain to Verijy Verify a Scenario Gtntrau a Scenario Ckssify toijii "xarafic (

SpccCy Terrto _i | 3£ _> | OE. _i | mi I

Abort

'

Example History j

BrofcuuBair Hirtnry)

V«i«Hej ';'i

Mestagtt

1

/
H

Figure 8: VCDR Verification Editor

From our experience we have concluded that it is
difficult to give the user the flexibility to define
completely new complex tasks such as missions in
the ModSAF domain. The missions that a ModSAF
agent can perform are quite complicated because the
environment is complex and non-deterministic. In
VCDR we provide the SME a task template
corresponding to the basic missions available to the
SME. The user can then specialize or modify this
template to create the task structure necessary for
learning a procedure.

Much of the power of the agent instruction approach
presented comes from the multiple types of
interaction between the SME and the agent being
taught. Such rich interaction is rare among Machine
Learning systems, and is closer to the interaction
found in Programming By Demonstration systems
(Maulsby, 1994). Such interaction is necessary,
however, to develop more powerful agents. These
interactions include: specifying new terms in the
representation language of the agent; giving the agent
an example of a solution to a task for which the agent

252

luiimmiMi m^ffrrw^*^

is to learn a general procedure; validating analogical
instances of solutions proposed by the agent;
explaining to the agent reasons for the validation; and
being guided to provide new terms in the
representation during interaction (Tecuci & Hieb,
1994).

VCDR addresses the basic requirements for an ideal
Programming By Demonstration learner, as identified
by Maulsby and Witten (1995). First, the learning
agent is under the user's control, who specifies the
actions and features relevant to the task to be taught,
gives hints and explanations to the agent, and guides
its learning actions. Second, the learning agent uses
various knowledge-based heuristics for performing
plausible generalizations and specializations that are
understandable, including plausible generalization of
a single example. It also learns from a small set of
examples. Third, the agent learns a task in terms of
all the parameters necessary for task execution.

VCDR does not currently address autonomous
learning, where the agent would learn without the
guidance of an SME, but the same learning methods
that are being developed for instruction should be
applicable (Hieb, Hille & Tecuci, 1994; Hille, Hieb,
& Tecuci, 1993; Tecuci et. al., 1994).

Verification and validation is a difficult problem with
CFORs, because of the complexity of the agent
reasoning process. Our approach addresses this
problem by allowing the user to test the agent with
additional examples after the agent has successfully
learned how to perform a mission. The SME can
select the testing examples or the testing examples
can be automatically generated. If the agent performs
the mission incorrectly, the user can correct the agent
through the same instruction techniques that were
originally used to teach the agent (i.e., by giving
additional examples or explanations). If the agent
performs the mission selected by the SME correctly,
then confidence in the learned behavior increases.

VCDR offers an efficient approach for teaching
complex behavior to an agent through demonstration.
This approach was illustrated by our investigations
with the Captain system (Hieb, 1996). This approach
to training ModSAF agents appears to be more
natural and significantly simpler than the currently
process, where the SME manually specifies the
mission of the ModSAF agents in great detail to
achieve reasonable behavior in a simulation. The
learning efficiency in VCDR is achieved through the
use of plausible version spaces and a human guided
heuristic search of these spaces.

8. Acknowledgments

This research was conducted in the Center for
Excellence in Command, Control, Communications
and Intelligence and the Computer Science
Department at George Mason University. Work on
ModSAF was sponsored in part by DMSO under
DISA contract DCA100-91-C-0033 and work on
Disciple was sponsored in part by Advanced
Research Projects Agency Contract No. N66001-95-
D-8653. The authors thank Ken Frosch of the C3I
Center for designing/implementing the
Disciple/ModSAF PDU interface, Jeffrey Sullivan of
the U.S. Army Topographic Engineering Center for
developing the prototype VCDR editors, and Vince
Laviano of the C3I Center for ModSAF
programming.

9. References

Ceranowicz A., (1994). ModSAF Capabilities. 4th
Conference on Computer Generated Forces and
Behavior Representation, May, Orlando, Florida.

Cypher, A. (Ed.). (1993). "Watch What I Do:
Programming by Demonstration," MIT Press,
Cambridge, MA.

Dybala T. and Tecuci G. (1995). Shared Expertise
Space: A Learning Oriented Model for
Cooperative Engineering Design. In Proc.
IJCAI-95 Workshop on Machine Learning in
Engineering. August. Montreal, Canada.

Hieb, M.R. (1996). Training Instructable Agents
Through Plausible Version Space Learning,
PhD Dissertation, School of Information
Technology and Engineering, George Mason
University, Fairfax VA. (http://cne.gmu.edu
/-hieb).

Hieb, M.R. and Tecuci, G. (1996). Training an Agent
through Demonstration: A Plausible Version
Spaces Approach. Proceedings of the 1996 AAAI
Spring Symposium on Acquisition, Learning and
Demonstration: Automating Tasks for Users.
AAAI Press Technical Report, Menlo Park, CA.

Hieb, M.R., Tecuci, G., Pullen J.M., Ceranowicz A.,
& Hille D. (1995). A Methodology and Tool for
Constructing Adaptive Command Agents for
Computer Generated Forces. Proceedings of the
5th Conference on Computer Generated Forces
and Behavioral Representation. May. Orlando,
Florida.

Hieb, M.R., Hille D. and Tecuci, G. (1993).
Designing a Computer Opponent for War
Games: Integrating Planning, Learning and
Knowledge Acquisition in WARGLES. In
Proceedings of the 1993 AAAI Fall Symposium

253

on Games: Learning and Planning, AAAI Press
Technical Report FS-93-02, Menlo Park, CA.

Hille D., Hieb M.R., Puller. J.M. & Tecuci G. (1995).
Abstracting Terrain Data through Semantic
Terrain Transformations. 5th Conference on
Computer Generated Forces and Behavioral
Representation. Orlando, Florida.

Hille D., Hieb, M.R. & Tecuci, G. (1994). Captain:
Building Agents that Plan and Learn. In
Proceedings of the 4th Conference on Computer
Generated Forces and Behavioral
Representation.

Huffman, S.B. (1994). Instructable Autonomous
Agents. PhD Thesis. Department of Computer
Science and Engineering. University of
Michigan.

Laird, J.E., Newell, A. & Rosenbloom P.S. (1987).
SOAR: An Architecture for General Intelligence.
Artificial Intelligence. Vol. 33.

Lieberman, H. (1994). A User Interface for
Knowledge Acquisition From Video. In Proc.
Eleventh Conference on Artificial Intelligence,
Morgan Kaufman n.

Maulsby, D. (1994). Instructable Agents. PhD Thesis.
Department of Computer Science. University of
Calgary.

Maulsby, D. and Witten, I.H. (1995). Learning to
Describe Data in Actions. Proc of ICML-95
Workshop on Learning from Examples vs.
Programming by Demonstration, CA.

Salisbury, M.R., et al. (1995). "Implementation of
Command Forces (CFOR) Simulation," 5**
Conference on Computer Generated Forces and
Behavioral Representation.

Tambe, M., Johnson, W.L., Jones, R.M., Koss, F.,
Laird, J.E., Rosenbloom, P.S. & Schwamb, K.
(1995). Intelligent Agents for Interactive
Simulation Environments. AI Magazine. 16(1),
Spring.

Tecuci, G. (1988). DISCIPLE: A Theory,
Methodology and System for Learning Expert
Knowledge, Ph.D. Thesis, University of Paris
South.

Tecuci G. (1992). "Automating Knowledge
Acquisition as Extending, Updating and
Improving a Knowledge Base," IEEE
Transactions of SMC. 22(6).

Tecuci, G. & Hieb, M.R. (1994). Consistency-driven
Knowledge Elicitation: Using a Machine
Learning-oriented Knowledge Representation to
Integrate Learning and Knowledge Elicitation in
NeoDISCIPLE. Knowledge Acquisition, 6(1).

Tecuci, G., Hieb M.R., Hille D. & Pullen J.M.
(1994). Building Adaptive Autonomous Agents
for Adversarial Domains, Proceedings of the

AAAI 94 Fall Symposium - Planning and
Learning: On To Real Applications.

Tecuci, G. & Kodratoff Y. (1990). Apprenticeship
learning in imperfect theory domains. In Y.
Kodratoff & R. S. Michalski, Eds. Machine
Learning: An Artificial Intelligence Approach.
Vol. HI, Morgan Kaufmann.

White, E.L., Frosch K.E., Laviano, V.P., Hieb, M.R.,
Pullen, J.M. (1996). "Interfacing External
Decision Processes to DIS Applications," 6'h

Conference on Computer Generated Forces and
Behavioral Representation.

10. Authors' Biographies

Michael Hieb received his PhD in Information
Technology at George Mason University in 1996. Dr.
Hieb is currently working for SAIC on the Multiple
Reconfigurable C4I Interface (MRCI) project. He is
developing VCDR, an instructable ModSAF agent, at
the Center for Excellence in Command, Control,
Communications and Intelligence at GMU. He has
published over 20 papers in the areas of learning
agents, knowledge acquisition and multistrategy
learning. When working for IntelliTek, Dr. Hieb
implemented a distributed problem-solving testbed at
the Goddard Space Flight Center. Previously, he
worked as a Nuclear Engineer for General Electric.

Gheorghe Tecuci is Professor of Computer Science
at George Mason University. He has published over
70 scientific papers, mostly in the area of artificial
intelligence. Gheorghe Tecuci is a member of the
Romanian Academy and is known for his pioneering
work on multistrategy machine learning and its
integration with knowledge acquisition. He
developed Disciple, which is one of the first
multistrategy learning systems, and co-edited the first
books on multistrategy learning and on the
integration of machine learning and knowledge
acquisition. He was the program chairman of the first
workshops in these areas (MSL-91, MSL-93, IJCAI-
93: ML & KA).

J. Mark Pullen is Associate Professor of Computer
Science at George Mason University and a member
of the Center for Excellence in Command, Control,
Communications and Intelligence. Dr. Pullen was
with the Defense Advanced Research Projects
Agency (DARPA) from 1986 to 1992, where he was
Program Manager for Advanced Computing,
Networking and Distributed Simulation. His research
interests include networking and distributed
computing systems, and their applications to
educational and military simulations.

254

Learning the Selection of Reactive Behaviors
Sumeet Rajput, Clark R. Karr, Jaime E. Cisneros, and Rebecca J. Parsons

Institute for Simulation and Training
3280 Progress Dr., Orlando, FL 32826

srajput@ist.ucf.edu

1. Abstract

Computer Generated Forces (CGF) systems are
typically rule-based systems in one form or another.
The behaviors of vehicles and units are implemented
by a set of unchangeable rules. It may not be possible
to consider all the nuances of a situation to develop a
complete set. Research demonstrates a mechanism
whereby the Subject Matter Expert (SME) can
directly teach a CGF system a set of rules without an
intermediary knowledge engineer (to develop
production rules) or computer programmer (to write
computer code). Machine learning is a research area
in the Artificial Intelligence domain whose focus is
on making machines "learn." In the CGF domain,
machine learning can be used to teach simulated
commanders new rules for responding to situations
resulting in intelligent behavior selection; thus,
"canned" responses are eliminated. A product of
IST's research is a Learning Testbed which provides
an environment for machine learning in the CGF
domain. This testbed has been implemented in the
Modular Semi Automated Forces (ModSAF) CGF
system. The focus of this research is teaching
ModSAF company commanders how to select
appropriate reactive behaviors.

2. Introduction

2.1 Objective of this Research

CGF systems are typically rule-based systems. The
behaviors of vehicles and units are implemented by a
set of unchangeable rules. Although, rule designers
spend significant effort in developing an "adequate"
set of rules, the rule set is rarely, if ever, sufficient to
address all possible situations. Rule-based systems
suffer from suggesting similar responses to situations
which may be significantly different.

Machine learning is a research area in Artificial
Intelligence (AI) whose focus is on making machines
"learn." After learning, the machine is expected to
"solve" problems presented to it. In the CGF domain,
machine learning can be used to teach simulated
commanders new rules for responding to situations
resulting in better or more intelligent behavior.

The primary objective of IST's research was to create
a Learning Testbed. This testbed has been
implemented in the ModSAF CGF system and has
been used for "teaching" simulated company
commanders how to choose a reactive behavior to a
situation. The learning target was feasible and
provided an opportunity whereby the existing reactive
behavior mechanism could be improved. Further, the
improved reactive behavior mechanism could be
compared and contrasted with ModSAF's original
reactive behavior mechanism.

3. Machine Learning

3.1 Supervised and Unsupervised
Learning

Machine

Learning is an important aspect of human cognition.
Humans have the ability to acquire new knowledge,
to learn new skills, and to improve with practice.
One method to improve computer system
performance is for the system to "learn;" i.e., acquire
knowledge and change the performance based in a
manner similar to human learning. Research into
machine learning has revealed methods whereby
computer systems can "learn," such as: instruction,
analogy, examples, failure, observation, and
discovery (Charniak et al. [1987]). These methods
can be grouped into two disjoint categories:
supervised and unsupervised machine learning
methods (Hertz et al. [1992]).

In supervised machine learning, a teacher guides the
student (i.e., the learning system) to a solution, or
gives the solution to the student, along with an
explanation. In unsupervised machine learning,
students do not have a "teacher" or an "oracle" for
guidance. Section 3.2 lists general machine learning
approaches. These approaches are a mixture of
supervised and unsupervised machine learning
methods. In the remainder of the text the term
"learning" will mean "machine learning" and the two
terms will be used interchangeably.

255

3.2 General Machine Learning Methods

Learning methods are:

• Connectionist: Neural networks and their
relatives (Adeli et al. [1995]) and (Hertz et
al. [1992]).

• Genetic/Evolutionary: Genetic algorithms
(Holland [1975] and Goldberg [1989]),
classifier systems, and genetic programming
(Adeli et al. [1995]), Koza [1992], and
(Winston [1992]).

• Inductive methods: Decision tree systems
and learning by example (Winston [1992]).

• State Operator And Result (SOAR)
Chunking (Winston [1992]) and (Michalski
etal. [1994]).

• Case-based and other analytical methods:
Explanation-based learning (Winston
[1992]), case-based learning (Kolodner
[1993]), and exemplar-based learning
(Bareiss[1989]).

Rajput and Karr [1995] presents a survey of the
general learning methods and methods specific to
learning reactive behaviors.

3.3 Learning Reactive Behaviors using Exemplar-
based Learning

Exemplar-based learning is based on classification
and problem solving (Bareiss [1989]). It combines
learning with problem solving to learn new concepts
and to refine existing concepts based on experience.
From a simple classification point of view, common
concepts are collected into categories. However, the
basis for category membership of a concept is poorly
understood. Creating a category, and classifying new
cases as members of that category, depends on
determining commonalities between new cases and
existing members of the category.

Exemplar-based learning represents a category by a
set of retained cases, called exemplars. Every
exemplar in a category has an explanation associated
with it to explain its degree of relevancy in that
category. To classify a new case, an exemplar is
retrieved to serve as a model for interpreting features
of the new case. The model exemplar provides
information as to which features the new case should

possess and their importance to the category's
membership. Because there are several exemplars
defining a category, a wide range of models is
available to help classify typical as well as atypical
cases that belong a given category.

For acquiring knowledge about when to use reactive
behaviors, a classification hierarchy was created
where each category represents a ModSAF reactive
behavior. No problem solving is required to classify
the reactive behavior exemplars because the SMEs
classify the reactive behavior for a given situation.

4. The Learning Architecture

4.1 Introduction

Traditional Al has generally interpreted the organized
nature of everyday activity in terms of plans and plan-
following (Agre [1988]). Chapman [1987] has shown
planning to be computationally intractable in all but
simple descriptions. This poses a severe restriction
for real time simulation. Because of the situated and
interactive nature of units in the simulation
environment, traditional planning is unsuitable to the
realtime selection of reactive behaviors..

Agre [1988] takes a different approach in his
computational theory of action. The principal idea is
that continually redeciding what to do is more flexible
and computationally feasible than executing a plan
because it is more responsive to opportunities and
contingencies. It is possible to approximate the ideal
of continual redecision because life is almost entirely
routine. The routine portion of the reasoning leading
to each moment's action can be implemented
efficiently by recording the reasons behind any novel
bits of reasoning (Agre [1988]).

For learning reactive behaviors, the situation
assessment provides the novel bits of reasoning to
help a unit decide what to do. The situation
assessment serves as an index to the appropriate
reactive behavior stored as exemplars (Section 3.3).
The bit patterns describing the situation are
independent, so a rule will not invalidate another rule
unless there is an attempt to map one situation to two
different reactions. In this case the SME is asked to
choose between two contending rules or to better
qualify the situation, to prevent inconsistensies in the
acquired knowledge.

256

4.2 Overview of the Approach

Machine learning begins with the detection of events
that trigger reactive behaviors, such as presence of
enemy ground and air units, minefields, and indirect
fire. The company commander then analyzes the
situation and consults a Knowledge Base (KB) for a
reactive behavior to apply to the situation. If the KB
cannot provide an answer, an SME is consulted. The
SME selects a reactive behavior and then justifies his
or her choice by selecting one or more pre-conditions
or "justifications" through an editor. These
justifications are considered:

1.

2.

3.

5.

6.
7.

9.
10.
11.
12.
13.
14.

Availability of cover and concealment in the
situation.
Ratio of unit strength to enemy strength at
the objective.
Ratio of total friendly strength to enemy
strength at the objective.
Ratio of unit strength to total enemy
strength.
Ratio of total friendly strength to total
enemy strength.
Presence of dangerous threat.
Presence of friendly support.
Ratio of enemy strength on left, front, right,
and rear to unit strength.
Inadequacy of unit strength to the mission.
Enemy operational activity.
Direct and indirect fire,
Distance to the objective.
Attacking aircraft.
Presence of minefield.

The justifications form the bit pattern described in
Section 4.1 and together with the reactive behavior
constitute a rule. The rule is then stored in the KB
and the systems "learns." Thus, at any time a
company commander's knowledge consists of the set
of rules in the KB.

4.3 The Learning Algorithm

The Learning Algorithm (Figure 1) is implemented as
a ModSAF task or Finite State Machine (FSM)
running on behalf of a unit commander.

The algorithm begins in the "Monitor" stage. In this
stage the algorithm checks for events that trigger
reactive behaviors: establishment of Line-of-Sight to
an enemy, air attack, detection of minefield, and
indirect fire. After an event is detected, the algorithm
goes to "Situation Analysis" where the unit
commander does situation assessment (Section 4.4).

The algorithm checks the KB (Section 4.5.4) for a
rule that matches the situation. If a rule is found it is
presented to the SMEs. The SMEs have two choices:
they can either accept the rule, in which case the
reaction associated with the rule is executed, or they
can modify it. If the SME modifies a matched rule
the system "learns." The newly created rule is
merged into the KB. This entails creating a new rule
and possibly modifying the matched rule. In any
case, after SMEs have provided their input, the
chosen reaction is executed. If no rule is found that
matches the situation, SMEs are asked to create one.
This new rule is stored in the KB and its associated
reaction is executed. After the reaction is over the
algorithm returns to the "Monitor" stage.

Start

Display matched
rule and accept
SME input

Accept SME
input /

Figure 1: The Learning Algorithm.

257

4.4 The Situation Analyzer

Situation Analysis (or Situation Assessment)
quantifies the situation with respect to certain
parameters discussed in the following sections. Using
the quantified situation assessment parameters, the
system matches a rule with the situation. The
Situation Analyzer (SA) is a software module
developed for this purpose. It provides the simulated
company commander with information about:

• itself (self assessment),
• enemies (enemy assessment), and
• the terrain (terrain assessment).

4.4.1 Self Assessment

This includes information about the unit and other
friendly forces:

1. Operational activity: This is the unit's
operational activity including halt, march,
assembly area, hasty occupy position, attack,
and others.

2. Original strength: Strength of the unit when
it was created. Each vehicle is assigned a
strength value representing its strength
relative to another vehicle (Rajput and Karr
[1995]). The unit's strength is the sum of
vehicles' strengths in the unit.

3. Current strength: This equals orginal
strength less the strength of vehicles
damaged or destroyed.

4. Type: Type of unit including armor,
artillery, mechanized infantry, and others.

5. Speed: The average speed of all vehicles in
the unit.

6. Receiving Indirect Fire (IF): Is the unit
under indirect fire?

7. Presence of friendly forces: Are there
visible friendly forces?

8. Friendly forces strength: If there are visible
friendly forces, their strength is computed.
Two value are computed: the average
friendly forces strength and the strength of
the strongest friendly group.

9. Importance to mission: Whether the unit is
a main, support, or diversionary unit.

10. Distance to objective.
11. Attacking aircraft: Is the unit under attack

from enemy aircraft?
12. Receiving Direct Fire (DF): Has the unit

received direct fire from enemy units within

a set time interval prior to the
determination?

13. Minefield detected: Has the unit
encountered a minefield?

4.4.2 Enemy Assessment

Visible enemy vehicles are separated into groups
using a technique discussed in Cisneros et al. [1995].
Then, for each enemy group this information is
deduced:

1. Enemy strength: Sum of the strengths of the
vehicles in the group.

2. Position: The position of the group, whether
left, front, right, or rear, with respect to the
center of mass and heading of the analyzing
unit.

3. Distance: Distance to the analyzing unit.
4. Type: The type of the group is the type of

the vehicles that are similar and a majority in
the group. For example, if the majority of
vehicles in a group are T80s (an armored
vehicle), the group is classified as an armor
unit.

5. Speed: The average speed of the vehicles in
the group.

6. Operational activity: Formation, speed, and
vehicle headings are used to give clues to the
enemy's operational activity. Vehicles in a
platoon exhibiting high variance in heading
are in defense. Vehicles in a platoon moving
in line formations are assaulting whereas
vehicles moving in other formations are
traveling. Vehicles in a platoon that are not
moving and are not in a defensive posture
are holding.

7. Enemy at or near the objective: Is the
enemy at or within a threshold distance from
the objective?

4.4.3 Terrain Assessment

Terrain assessment computes covered and concealed
positions within an area using available ModSAF
routines.

4.5 Knowledge Representation

The system's knowledge is stored in a data structure
called a KB. The fundamental unit of knowledge is a
rule containing a bit pattern and a reactive behavior.
The KB is used for:

258

• matching a rule's bit pattern to a situation,
• storing new rules, and
• modifying matched rules.

4,5,1 Situation Pattern, Justifications, and Rules

The SME "teaches" the simulated company
commander which reactive behavior to execute in
response to a situation. After SMEs have selected a
reactive behavior, they justify their choice by
selecting one or more justifications. The set of
justifications encode a bit pattern which indicates
why a reactive behavior was selected and details the
necessary preconditions for the execution of a
reactive behavior. Some justifications are more
important than others and a measure of their
importance is given by a degree of importance. This
is an integer value, in the range 1 to 10, 1 being the
least important and 10 being the most important. In
the Learning Testbed, all justifications have the same
degree of importance, namely 10. However, the
system provides support for replacing the default
value by one determined by the SME.

In many AJ systems, rules are predefined and
unchangeable. A rule's "if" part must be satisfied
before the "then" part is executed (Winston [1992]).
In IST's approach, rules can be modified during run
time and new rules can be created from existing ones.
As the system's repertoire of rules grows, so does its
knowledge.

There are three types of justifications:

• Binary: A binary justification becomes part
of a bit pattern when selected by the SME,
otherwise it does not. For example, when
the SME selects the justification,
"Availability of cover and concealment in
the situation," it means that the SME
considers the availability of cover and
concealment a precondition for selecting the
reactive behavior. No other data is stored
with the justification.

• Enumeration: The justification consists of a
set of values. If any value is chosen, the
justification becomes part of the bit pattern
and the value is stored with the bit pattern.
For example, the justification, "Enemy
Operational Activities," has values
Holding," "Move," "Assault," and "Hasty

Defense." The SME picks one value, such

as Move, from the set which is stored with
the bit pattern.

• Range: Two numbers are associated with
the justification which define the lower and
upper bounds of a range. The justification
becomes part of the bit pattern when
selected by the SME and the range bounds
are determined from situation variables
(Section 0).

Based on consultations with IST's SME, these
justifications were considered:

1. Availability of cover and concealment in the
situation (Binary): Important if selected.

2. Ratio of unit strength to OPFOR strength at
objective Favorable (Range):

ratio =
Su

SoPFOR(obj)

where Su is the strength of the analyzing unit
and SopFomobj) is the OPFOR's strength at the
objective.

3. Ratio of unit strength to OPFOR strength at
objective unfavorable (Range):

ratio =
SoPFOKobj)

4. Ratio of total friendly strength to OPFOR
strength at objective favorable (Range):

ratio =
S,

SoPFOR(obj)

where Sf is the total friendly strength.

5. Ratio of total friendly strength to OPFOR
strength at objective unfavorable (Range):

ratio =
SoPFOR(obj)

St

6. Ratio of unit strength to total OPFOR
strength favorable (Range):

259

ratio =
SoPFOR

where SOPFOR is the total OPFOR strength.

7. Ratio of unit strength to total OPFOR
strength unfavorable (Range):

SOPFOR
ratio =

8. Ratio of total friendly strength to total
OPFOR strength favorable (Range):

ratio =
Sj

SOPFOR

9. Ratio of total friendly strength to total
OPFOR strength unfavorable (Range):

ratio =
SOPFOR

~sT
10. Presence of dangerous threat (Range): Two

ranges are stored: The average strength and
the average distance to all enemies.

11. Presence of friendly support (Range): Two
ranges are stored: The average strength and
the average distance to all friendly forces.

12. Enemy on right flank (Range): Ratio of
OPFOR strength on the right flank to unit
strength.

SoPFOK(r)
ratio =

where S0pFOR(r> is the OPFOR strength on the
right flank.

13. Enemy on left flank (Range): Ratio of
OPFOR strength on left flank to unit
strength.

ratio =
SorFOK(l)

~s7~

where S0PFORW is Ae OPFOR strength on the
left flank.

14. Enemy in the front (Range): Ratio of
OPFOR strength in the front to unit strength.

ratio =
}OPFOH(f)

Su

where S0PFOR(/) is the OPFOR strength in the
front.

15. Enemy in the rear (Range): Ratio of enemy
strength in the rear to unit strength.

ratio =
Su

where S0PFOR<rtar) is the OPFOR strength in
the rear.

16. Force inadequate due to losses (Range):
Ratio of current unit strength to original unit
strength.

ratio = Su I Sorigiml

where Sorigirui, is the original unit strength.

17. Enemy operational activity (Enumeration):
The enemy operational activity chosen by
the SME is stored in the justification.

18. Direct fire (Binary): Important if selected.

19. Indirect fire (Binary): Important if selected.

20. Far from objective (Range): Distance to the
objective is stored as a lower bound in the
justification.

21. Close to objective (Range): Distance to the
objective is stored as an upper bound in the
justification.

22. Attacking aircraft (Binary): Important if
selected.

23. Minefield detected (Binary): Important if
selected.

4.5.2 Matching Rules To A Situation

After rules have been created and stored, they have to
be searched to find one that matches the situation.
Two types of matches are determined: perfect
matches and near matches.

260

A rule is a perfect match if the situation satisfies all
the justifications. A binary justification is satisfied if
the situation has the same property as the
justification. For example, if the justification Cover
and Concealment is selected and the situation also
has cover and concealment, the justification is
satisfied. An enumeration justification is satisfied if
the enumeration value in the justification is present in
the situation. For example, if the justification
Enemies Operational Activity has the value "move"
and the enemy in the situation is also moving, the
justification is satisfied. A range justification is
satisfied if the situation variable falls within the
specified range. For example, if the justification Unit
to OPFOR has the range 5.09 to «> and the ratio of
unit strength to OPFOR strength in the situation is
10.0:1.0, the justification is satisfied because 10.0
falls within the range 5.09 to °°. On the other hand, a
rule is a near match if some justifications are true and
the sum of the degree of importance (score) of true
justifications exceeds a threshold.

Of the perfect and near matched rules the best-fit rule
is returned to the SME. This could either be a perfect
match rule or a near match with the highest score.

creating a new rule from a best-fit rule. Overlapping
ranges may lead to multiple matched rules in a future
situation, the matched rules differing only in their
range bounds. This leads to ambiguous results. For
example, assume two rules, R; and Rj. R, is the best-
fit rule and R; is derived from it. The only difference
between /?, and Rj is in the difference in their range
bounds of a justification x. Let r, and r, be the ranges
of x in R, and Rj respectively.

Now, if the corresponding situation variable has value
v which lies in both r, and rp rules R, and Rj will be
perfect matches. The solution is to split the ranges as
shown by this example:

Let r,= [10.0, «], Tj=- [20.0, «], and v = 25.0; i.e., v
lies in both r, and r;. The ranges are split such that r,
= [10.0, 20.0] while r, remains unchanged. Now, the
ranges do not overlap and ambiguous situations are
avoided.

4.5.4 The Knowledge Base Organization

To match rules efficiently, the KB is organized
hierarchically (Figure 2).

4.5.3 Creating Rules and Modifying the Best-fit Rule

If the system cannot find a rule that matches the
situation, the SME can create and insert a new rule in
the KB. On the other hand, if the system determines
a match and presents the best-fit rule to the SME, the
SME can modify it. There are three cases:

• SME chooses new justifications (Case I):
This results in a new rule which is inserted
in the KB. The best-fit rule remains
unchanged.

• The ranges change (Case 2): A new rule is
inserted into the KB. The new rule has the
same justifications as the best-fit rule but
differs in the ranges of those justifications.
The best-fit rule is modified.

The rules are organized for indexing and retrieval
with respect to unit type; for example, UNIT_TYPEi
might be an armor company and UNTTJTYPEi might
be a mechanized infantry company.

Within each unit type the rules are further organized
based on the unit's operational activity (oa); for
example, oa, might be a "march" and oa2 might be an
"assault." Each operational activity node has a list of
rules; for example, rulesi.„ in the figure. The broken
arrows represent the continuation of the KB for other
unit types. This organization is in addition to the
exemplar-based hierarchy discussed in Section 3.3.2.

In a given situation, only the branch of the hierarchy
containing the unit's type and operational activity is
searched. This avoids searching the entire KB and
constrains the search to a narrow area.

• Only the reaction changes (Case 3): The
SME selects a new reaction to the situation
for which a different reaction was chosen
previously. The reaction in the best-fit rule
is overwritten by the SME's selection.

Consider Case 2 which requires that the best-fit rule
be modified. The modification is in terms of
eliminating range overlap occurring as a result of

261

KB UNITJTYPEi

OA

Ml

RULES

rule i

reaction!

UNIT_TYPE2

OA

UN1T_TYPE„

OA

RULES

oa„

RULES

ruk2

reaction

Figure 2: The Knowledge Base.

5. Results

The learning testbed was implemented in ModSAF
version 1.5.1 and used for "teaching" company
commanders the reactive behaviors for different
situations. To test the learning testbed, 1ST devised
an experiment. The experiment was implemented in
two parts: training the company commanders and
using the learned reactive behaviors.

In the first phase of the experiment, four sets of
scenarios were developed that resembled typical
battlefield conditions. These sets comprise the
training set (Section 5.1). Using these sets of
scenarios, IST's SME trained the company
commanders with different reactive behaviors for
different situations. This information was input to the
KB (Section 4.5.4).

In the second phase of the experiment, the KB created
for each scenario set was used in each of the other
three scenario sets. The applicability of the reactive
behavior, recommended by the KB, to the situation
was judged by ISTs SME (Section 5.2).

5.1 The Training Set

1ST developed four sets of scenarios for the training
set (Rajput and Karr [1995]). Each set had a base
scenario which was varied to develop the entire set.
The variations resulted in a richer training set
allowing more justifications to be used. The four
scenarios were executed on different machines and

four KBs were created and saved as four output files.
Table 1 shows the justifications used by all scenarios.

Justification A B c D
Cover and Concealment V V V V
St/SopFORfobi)

Sf/SopFOR(obi)

S„/SopFOR V V V V
Sf/SoPFOR V V V V
Dangerous threat V V V
Friendly Support
SoPFORfl. r. f. rear/Su V V V
^t/^original

Enemy operational activity V V
Direct or indirect fire V
Distance to the objective
Attacking aircraft
Presence of minefield V

Table 1: Justifications used in the scenarios.

5.2 Using Learned Reactive Behaviors

After the scenarios were executed, four KBs were
created. To test the learned knowledge, each KB was
applied to all scenarios which did not originally
create it; a KB, KB,, was applied to all scenarios, Sj,
such that (' i*/, For IST's experiment, this yielded 12
combinations. The performance of KB, in a scenario
Sj was judged subjectively by IST's SME. The SME
felt that the recommended reactive behaviors were

262

correct in 75% of the cases within the constraints of
the ModSAF system.

6. Conclusions

In traditional CGF systems, such as ModSAF, two
situations, which may require different responses,
elicit the same reactive behavior from a company.
Improving the choice of a reactive behavior provided
an interesting topic for research. This project
implemented a learning testbed that was successfully
used to learn reactive behaviors.

IST's approach uses supervised learning (exemplar-
based learning), allowing a company commander the
ability to learn how to react to different situations.
An SME decides which reactive behavior to use
under certain conditions. This information is stored
in a KB, in the form of a bit pattern and semantic
information. (This is referred to as a "rule.") Future
simulation situations may yield a rule that matches the
situation, in which case the rule's reactive behavior is
used as a response to the situation.

7. References

Adeli, Hojjat and Hung, Shin-Lin (1995). Machine
Learning - Neural Networks. Genetic Algorihms,
and Fuzzy Systems. John Wiley & Sons, 1995.

Agre P (1988). The Dynamic Structures of Everyday
Life, Ph.D. dissertation AI-TR 1085,
Massachusetts Institute of Technology, October
12, 1988, Cambridge MA.

Bareiss, R (1989). Exemplar-Based Knowledge
Acquisition: A Unified Approach to Concept
Representation, Classification, and Learning,
Academic Press, Inc., San Diego, CA.

Chapman, D. (1987). "Planning for Conjunctive
Goals," Artificial Intelligence, 32(3), pages 333-
378.

Charniak, E., and McDermott, D. (1987).
Introduction to Artificial Intelligence. Addison
Wesley Publishing Company, Inc., Reading, MA.

Cisneros, J. E., Karr, C. R., and McCauley-Bell, P.
(1995). "Intelligent Targeting in ModSAF,"
Contract Report IST-CR-95-36, Institute for
Simulation and Training, University of Central
Florida.

Goldberg, David E. (1989). Genetic Algorithms in
Search. Optimization, and Machine Learning,
Addison Wesley Publishing Company.

Hertz, J„ Krogh, A., and Palmer, R. G. (1992).
Introduction To The Theory of Neural

Holland, John H. (1975). Adaptation in Natural and
Artificial Systems. The University of Michigan
Press, Ann Arbor, MI.

Kolodner, J. (1993). Cased-Based Reasoning.
Morgan Kaufmann, 1993.

Koza, J. R. (1992). Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press.

Koza, J. R. (1994). Genetic Programming II:
Automatic Discovery of Reusable Programs.
MIT Press.

Michalski, R. and Tecuci, Gheorghe (1994).
Machine Learning - A Multistrategv Approach.
Volume IV, Morgan Kaufmann Publishers, San
Francisco, California.

Winston, P. H. (1992). Artificial Intelligence. Third
Edition, Addison-Wesley Publishing Company,
Inc., Redwood City, CA.

8. Acknowledgment

This research was sponsored by the US Army
Simulation, Training, and Instrumentation Command
as part of the Intelligent Simulated Forces project,
contract N61339-92-C-0045. That support is
gratefully acknowledged.

9. Authors' biographies

Sumeet Rajput is an Associate Computer Scientist in
the Intelligent Simulated Forces project at the
Institute for Simulation and Training. Mr. Rajput has
a Master of Science degree in Computer Science from
the University of Central Florida and is an MBA
student at the University of Central Florida. His
research interests are in the areas of Computational
Geometry, Physical Modeling, and Computer
Generated Forces.

Clark R. Karr is a Program Manager and the
Principal Investigator of the Intelligent Simulated
Forces project at the Institute for Simulation and
Training. Mr. Karr has a Master of Science degree in
Computer Science. His research interests are in the
areas of Artificial Intelligence and Computer
Generated Forces.

Jaime E. Cisneros was an Associate Computer
Scientist in the Intelligent Simulated Forces project at
the Institute for Simulation and Training. Mr.
Cisneros has a Master of Science degree in Computer
Science from the University of Central Florida. His
research interests are in the areas of Natural

Computation, Addison Wesley
Company, Inc., Redwood City, CA.

Publishing

263

Language Understanding, Machine Learning, and
Computer Generated Forces.

Rebecca J. Parsons is an Assistant Professor of
Computer Science at the University of Central
Florida. Dr. Parsons received her Bachelors of
Science in Computer Science and in Economics from
Bradley University and her Masters of Science and
Doctor of Philosophy in Computer Science from Rice
University. Her research interests are Programming
Language Semantics applied to Distributed and
Parallel Computation, Computataional Biology,
Genetic Algorithms and Machine Learning.

264

An Intelligently Interactive Non-Rule-Based
Computer Generated Force

Lawrence J. Fogel, V. William Porto, and Mark Owen
Natural Selection, Inc.

3333 N. Torrey Pines Court, Suite 200
LaJolla, CA 92037

(619) 455-6449
(619) 455-1560 fax

1. Abstract

Attempts to optimize behaviors are often realized
through the imposition of heuristics in an artificial
intelligence program. A set of if-then-else rules are
derived and applied to the problem at hand. This
approach, while mimicking the previously discovered
decisions of humans, does not really allow for true,
dynamic learning. In this paper we discuss the use of
evolutionary programming to optimize computer
generated forces (CGF) behaviors which actually
learn courses of action adaptively, as opposed to
relying on a preset rule base. Actions of computer
generated forces are created on-the-fly by iterative
evolution through the state space topography.
Possible courses of action at each time step in the
scenario are scored with respect to a payoff matrix
(Valuated State Space) which is goal specific. This
methodology is inherently self-adaptive to the
dynamic environment of the CGF.

2. Introduction

Effective training requires realistic simulation of the
combat environment including the enemy force, its
decision-making ability, and mission. Having
qualified individuals simulate the OPFOR command
presumes we understand their doctrine and can
adequately reflect their culture. Both these
assumptions are false. In addition, such simulations
are non-repeatable and cannot be calibrated.

It is equally dangerous to train against an enemy that
follows any set of rules derived from prior combat
experience. Particular rules may have been effective
at that time in that setting, but it is dangerous to re-
fight the old war. Small changes in behavior may
have a major effect on the outcome. Tomorrow's
enemy may be more intelligent and have a new
mission.

Indeed, training against an enemy that follows of any
set of fixed rules is inappropriate, for the real enemy
learns, may demonstrate initiative, and thus behave in
a generally unpredictable manner. The computer
generated force must be adaptive for, in the words of
Charles Darwin, "It is not the strongest of species
that survive . . . but rather the one most responsive to
change." Facing an expert system, we learn how to
defeat the game rather than an intelligently
interactive foe.

What is needed is an arbitrary-culture, intelligently-
interactive computer-generated adversary that can
operate at any specified level of intelligence from,
say, inept to ingenious. It must be able to take full
advantage of the available sensors,
communication/computation capabilities, and
weapons/platforms or, for the sake of planning future
missions, those of an other time and place. This
capability can be realized through the use of the
Valuated State Space (VSS) approach and
evolutionary programming. The former provides a
convenient way to express the enemy's mission in
measurable terms. The latter discovers increasingly
appropriate courses of action in light of that mission
until one of sufficient worth is found, or the assigned
computation has been expended.

2.1 Discussion

Proper assignment of forces begins with a clear
understanding of what must be achieved, by when.
But what if that outcome is not realized? Surely,
some value is found in lesser degrees of achievement.
There are even times when our primary concern is to
avoid some particularly undesirable outcome. In
other words, to be meaningful, the mission must be
stated in terms of the significantly different futures
and their relative worth, all the way from Utopia to
catastrophe, for only then can we measure the overall

265

worth of any situation and properly identify the
remaining problems.

Unfortunately, it is difficult to envision these
significantly different futures, no less their relative
worth. The Valuated State Space (VSS) approach
provides a way to overcome this difficulty. Those
responsible for defining the mission indicate
preferentially independent aspects of their concern.
Each of these parameters is weighted in relative
importance and made measurable in terms of those
differences that make a difference in degree of
achievement. Each of these defined class intervals is
then attributed some value. Thus each line item is a
multiple-choice question concerning the current or
any projected situation. A normalizing function that
expresses the relationship among the parameters
translates the answers to the individual questions into
the overall worth of that situation. In many situations
it is appropriate to use the weighted arithmetic mean.
If, however, all the parameters are critical the
weighted geometric mean is appropriate, and there
are various degrees of criticality. Clearly, Measures
of Effectiveness (MOEs) and Measures of
Performance (MOPs) alone do not tell the whole
story.

In practice, the mission takes the form of a hierarchy
of measurable parameters and subparameters together
with an appropriate normalizing function across the
various levels. Briefly stated, the Valuated State
Space and normalizing function indicate what to
measure, with what specificity, and how to fuse these
data into the overall worth of any situation. It
identifies the remaining deficiencies/problems by
priority, as well as the overall worth of any
prospective solution.

But our best supposed move may not truly be best if
it significantly injures an ally and/or greatly benefits
a foe. The Valuated State Space approach can be
expanded to include the presumed purpose of each of
the other players. We can then find our best move
(and, if we choose, their best moves) in light of the
mutual attitudes and the current state of the game.
With the mission well defined it becomes appropriate
to evaluate prospective "what ifs," Courses of
Action (COAs), tactics, for these are simply
alternative temporal commitment of the allocable
resources, combinations of the available personnel
and equipment, modes of deployment, within the
related dynamics, constraints, and doctrine. But the
number of possible tactics is immense, a number so
great as to forbid exhaustive analysis. The number of

those considered by the assigned personnel is, in
comparison, minute. It is reasonable to believe that
there are much better ways to accomplish the mission
than any of those "on the table." What is needed is a
way to efficiently search the space of possible tactics
to find one of sufficient value in time for it to be
useful.

When exhaustive analysis is clearly impossible, we
ordinarily turn to heuristics. But these prove useful
only under certain circumstance. For example,
steepest descent is prone to failure if there are a
multitude of minima points. Linear programming is
often used even when the constraints are known to be
nonlinear. Complex problems are decomposed into
simple ones so that these can be treated separately.
But the aggregate of these local optimizations leads
to a global optimum only if the component problems
are independent, and they rarely are. Statistical
procedures generally presume stationarity, but the
real-world is nonstationary. In fact, these and other
heuristics are rules. If the rules that always solve the
problem at hand are known a priori, the optimal
approach is to use them. If they are not known, it is
dangerous to guess, for the rules chosen may often
stand in the way of finding a better solution.

In contrast, the evolutionary programming algorithm
(Fogel et al., 1962, Fogel 1995) is a most general
optimization technique. The only "rules" are
problem-independent iterative mutation and
selection. Those components of randomness which
are found to be of value are retained to benefit in
further generations of solutions. Evolutionary
programming is an inherently elegant and potent
technique simulating the mechanisms of natural
evolution and selection to generate organisms which
exhibit optimal behavior with regard to an
environment and desired payoff function.

Evolutionary programming operates by iteratively
generating successive populations of finite state
machine organisms. A population of "parent"
machines is exposed to the observed environment
and measured with respect to their ability to predict
the next event (e.g., course of action) in light of a
prescribed payoff function.

Offspring machines are created by randomly
mutating each parent machine. For convenience, each
parent is often made to produce a single offspring,
but generating multiple offspring per parent is also
possible. Mutations are chosen with respect to a
probability distribution, typically uniform. The

266

number of mutations per offspring is also chosen
with respect to a probability distribution or it may be
fixed a priori. These offspring are then evaluated
over the existing environment in the same manner as
their parents.

It is interesting to note that, in direct contrast,
advocates of genetic algorithms adopt exactly the
opposite position. They traditionally presume it's "a
good idea" to code every problem into a string of bits
(simulating chromosomes).

Genetic algorithms construct solutions bottom-up.
Crossover operators are used to exchange hopefully
useful building blocks of subcode between candidate

solutions. In contrast, evolutionary programming
discovers solutions top-down. It only scores entire
individuals in terms of their expressed behavior.
Evolutionary programming maintains the
interrelationships between the sections of subcode
and the manner in which they fit together as a whole.

Those machines that provide a sufficient payoff are
retained to become parents of the next generation.
Typically, half of the total machines are saved so that
the parent population remains the same. This process
is iterated until it is required to make an actual
prediction, i.e., create a plan of action for the next
time step. The "best" machine is chosen to generate
this prediction. Figure 1 diagrams this process
pictorially.

Evolutionary Programming Algorithm

t:=0;
initialize P(0):= {a'i(0),a'40) a'^0)}

evaluate P(0): {<D(^(O)),O(a'2(O)),...,O>(0VO))}
iterate

{
mutate: F(t):= rm«(P(t))

evaluate: Pit): {®(a'i(t)),®(a'2(t)),...,&(a'x(t))}

select: P(t +1) := Ses(F(t) u Q)
t := t + 1;

where
a' is an individual member in the population
(X > I is the size of the parent population
A > 1 is the size of the offspring population
P{t) := {a'i(t),a2(t),...,a'n(t)} is the population at time t

O: I —> 9? is the fitness mapping
met is the mutation operator with controlling parameters &*

ses is the selection operator 9 Se* I ul*1* I —> I

Q € {0, P(t)} is a set of individuals additionally accounted for in the selection step,

i.e. parent solutions.

Figure 1: The evolutionary programming paradigm

267

Note that evolution is most properly simulated at the
phenotypic rather than genotypic level, for natural
selection acts only on expressed behavior, not on the
individual organs or the genes. In the words of the
famous biologist Ernst Mayr (1988), "The genes are
not the units of evolution nor are they, as such, the
targets of natural selection."

Genetic algorithms (Holland, 1975) are suitable when
a problem can be successfully partitioned into
subproblems that can be dealt with independently.
Unfortunately, most real-world problems
encountered rarely exhibit such simplicity.
Evolutionary programming, because it acts top-down,
is particularly appropriate when a problem is not
easily separable, and each potential subproblem is
affected by the solutions to other subproblems. That
evolutionary programming outperforms the genetic
algorithm on such problems (and often by orders of
magnitude) has been repeatedly demonstrated in the
scientific literature.

3. Implementation

Application of evolutionary programming involves
consideration of several key aspects of a problem.
These include problem representation, data flow,
parameterization, and generating a function for
measuring the relative worth of solutions in the
population.

For our application of evolutionary programming to
generating intelligently interactive CGF entities, the
decision was made to utilize as many existing low-
level MODSAF finite state machine behaviors as
possible. Thus we utilized a state space which created
a parameterized task list for each member of the
population. An evolutionary programming task was
scheduled to run periodically using the MODSAF
scheduler. Figure 2 shows the overall system
procedure in a block diagram format. This task first
executed a temporary 'freeze scenario' command' in
order to prevent data synchronization problems. Data
flow to and from MODSAF was implemented in the
following manner. First, the current state of the world
(e.g. entities, positions, actions, status) was obtained
through querying the database directly.

Next, these state parameters were used to create a set
of parent plans for each entity in the population.
Offspring plans of action were created through
mutation of the current task(s) and parameters within

Interactive Evolution of
Task Plans using MODSAF

Freeze
Scenario

I
Access Current

World Status

J
Create N Parent
Plans using full
set of MODSAF

Entities

I
Create M

Offspring for each
Parent Plan

through Mutation
Operators

I
Score Plans
using VSS

I
Select N Top
Scoring Plans

I
Transfer Best Plans

to MODSAF
Simulation Entities

T
Restart

Scenario

Figure 2: Block diagram of behavioral optimization
through evolutionary programming.

268

the task(s). A copy of the parent plan was first made,
and both the number and type of mutations were
randomly chosen from a Poisson and uniform
distribution, respectively.

The achievement of the specified goal by each plan
in the population was measured by calculating the
probabilities of being killed, killing opposing forces,
and other pertinent features (attainment of positions,
etc.). This scoring function is defined for each player
in the scenario, and is not necessarily symmetric due
to potential alliances and relative worths of achieving
parts of a goal. Since execution of a task or course of
action most often occurs over time, a kinematic state
prediction mechanism was implemented. Current
states were projected in discrete steps throughout the
time of the evolved plan by using velocity and
acceleration estimates. This allowed both
cumulatively assessing the state through the discrete
time steps, as well as allowing for multiple
(temporally sequential) tasks.

After the desired number of iterations were
processed, the final plans of action for each entity
were taken from the 'best' (highest scoring) evolved
population member. By implementing the process
with this approach, we were able to realize not just
single player (evolving side A versus a side B
generated by a human or AI system) games, but also
multiple player scenarios (evolved side A versus an
evolved side B, C, ...). Other than by memory
limitations, there is no inherent limit on the number
of entities on each side nor of the number of sides
playing against each other.

For multi-player games, a payoff function is
generated which defines the specific goal (or
purpose) of each side in the scenario. This
methodology also allows for the inclusion of allied or
even neutral sides.

Finally, after the iterative process is finished, the
resulting plans for the desired number of sides are
transferred back to MODSAF by affecting the current
task state stack and parameterization of the new
task(s). This is accomplished through modification of
objects within the persistent object database. After all
of the proposed changes have been performed, the
scenario is 'unfrozen' so that it may perform normal
MODSAF updates to the states until the next periodic
call to the evolutionary program. No loss of
generality is incurred by starting and stopping
MODSAF for these optimization updates other than a
slight degradation in visual performance of the

system. Typically, the program is executed on
periodic 5 to 10 second intervals, and by governing
the number of desired iterations, the optimization
process produces very little apparent visual change in
the MODSAF update rates. As faster computers are
available, this will eventually be completely invisible
to the operator. In fact, the optimization process can
be implemented on a separate processor on an
interrupt basis, with the only impact to MODSAF
being the small time necessary to access and transfer
parameters back and forth between computers.

All code was developed using the standard ANSI C
processing language for maximum flexibility.

4. Experiments

A series of experiments ere conducted to treat generic
military situations using the combination of
MODSAF and evolutionary programming for
behavioral optimization. For the sake of simplicity,
these initial experiments pitted two MODSAF entities
against each other. The initial experiment concerns
defensive movement. Here an entity (vehicle or
platoon) is required to take minimum risk in moving
to another location. For example, a single tank is
required to run a gauntlet by moving along a road to
reach the desired endpoint by a given time, taking
minimum risk of being observed (attacked, damaged,
or destroyed). The road is, say, ten miles long. The
required time of transit is less than 30 minutes. The
acceptable risk is less than one chance in 10 of being
observed by the enemy.

More specifically, the purpose of the friendly tank is
to complete the following mission:

6 Estimated time of transit
10 > 30 minutes
9 < 30 but > 40 minutes
6 < 40 but > 70 minutes
3 < 70 but > 110 minutes
1 < 110 but >180 minutes
0 > 180 minutes, and

Probability of being observed
10 >0.1
8 <0.1 but > 0.3
5 < 0.3 but > 0.5
2 < 0.5 but > 0.7
1 < 0.7 but > 0.9
0 >0.9

269

Note that, the relative important weights are arbitrary
so that the mission can range from "transit without
concern for risk" all the way to "only transit if there
is no risk." Both parameters are critical so that the
overall worth of any situation is the geometric mean
of the contributions in each regard.

In this initial experiment the location of enemy
observers is given, together with the likelihood of
their observing the tank as a function of range. The
required solution is the speed of the tank as a
function of position during the transit.

A second experiment involves including the
possibility of moving off road in the preceding
scenario. This demonstrates the capability to generate
plans which alter both the route and velocity of the
entities. Additional experiments encompass the
capability of attacking specified unit entities on the
opposing side. Each unit entity in the scenario is
given a priority of which the scoring function weighs
outcomes. These priorities are not necessarily equal
as this set of experiments is designed to test the
capability for evolving behaviors which achieve are
capable of attacking specific goals while minimizing
risk encountered through the simulation.

Initial results of these tests have indicated the definite
capability of the evolutionary program to generate
interactively intelligent behaviors. The resultant paths
and parameterizations thereof indicated learning of
increasingly better and adaptive plans in light of the
specified goals. Results of these experiments will be
demonstrated at the conference as the behaviors are
best presented graphically.

5. Future Directions

Future experiments will be conducted which stress
increasingly complex goals. In addition, allocation of
multiple units on a side will be tested, as well as two
and three player games. Most of the improvements
to the code will focus on implementing a more
detailed state space (with additional MODSAF
options) and subsequent mutations which can operate
on these states.

Additional efforts will also focus on making the
graphical interface more user friendly, with access to
more parameters in the scenarios. A graphical
presentation of the performance through time will
also be developed. This will allow the user to view
performance of the algorithm and make dynamic
adjustments of the population size, mutation

strategies, and number of iterations per periodic
update. Automatic adjustment of mutation parameters
through self-adaptation will also be added to our
program. This meta-level implementation of
evolutionary programming holds great promise as the
parameterization is self-adaptive, and leaves one less
item of concern for the operator.

6. Acknowledgement

This work was funded by the Naval Air Warfare
Center, Training Systems Division, Code N61339
under contract N61339-95-C-0088

7. References

Fogel, D.B., 1995, Evolutionary Computation,
Piscataway, NJ: IEEE Press.

Fogel, L.J., Owens, A.J., and Walsh, M.J., 1966,
Artificial Intelligence through Simulated
Evolution, New York, NY: John Wiley.

Holland, J.H., 1975, Adaptation in Natural and
Artificial Systems, Ann Arbor, MI: University of
Michigan Press.

Mayr, E., 1988, Toward a New Philosophy of
Biology, Harvard, MA, Belknap Press.

8. Authors' Biographies

Lawrence Fogel received his Ph.D in engineering
from UCLA in 1964. Dr. Fogel is currently president
of Natural Selection, Inc. and has pioneered much of
the first reasearch in evolutionary programming in
the early 1960s. He is co-author of Artificial
Intelligence Through Simulated Evolution, published
by John Wiley, 1966. Dr. Fogel holds six patents and
has over 100 publications in journals, conferences,
and edited volumes. His research interests include the
engineering potential of evolutionary programming
as well as the evolution of human intelligence and
consciousness.

V. William Porto received his B.A. in mathematics
and is currently completing his M.A. in applied
mathematics from the University of California as San
Diego. He is currently Vice President of Natural
Selection, Inc., and is the program manager for the
STRICOM project at NSI. Mr. Porto is on the
editorial boards of the IEEE Journal of Evolutionary
Computation, IOP/Oxford Press Handbooks for
Neural Computation and Evolutionary Computation,
and serves on the ONR advisory panel for neural
networks. Current research interests include

270

optimization theory, neural networks, digital signal
and image processing, and cryptography.

Mark Owen received his B.S. in electrical
engineering at California State University at Long
Beach, and is finishing his masters in E.E. He is
currently a staff scientist with Natural Selection, Inc.,
and is active in the local chapter of the Control
Systems Society of the IEEE. He has also worked
previously in the areas of ocean surveillance and
real-time control. Mr. Owen's interests include
control systems, signal processing, neural networks
and optimization theory.

271

Session 4b: Project Status Reports

Clarkson, NOSC NRaD
Naff, BDM Federal

Peacock, SAIC
Norwood, STRICOM, PM CATT

LeatherNet:
A Synthetic Forces Tactical Training System For the USMC

Commander

Jeffrey D. Clarkson
Naval Command Control and Ocean Surveillance Center, RDT&E Division (NRaD)

53570 Silvergate Avenue San Diego, CA 92152-5246
clarkson@nosc.mil

John Yi
KES

7790 Roan Road, San Diego, CA 92129
jyi@nosc.mil

1. Abstract

This paper presents a progress report on the
LeatherNet Project and includes a description of the
LeatherNet concept of operation, development
concepts & approach, and system description &
products to date. LeatherNet provides the interface for
United States Marine Corps (USMC) commanders
into the environment of the Defense Research Projects
Agency (DARPA) Synthetic Theater of War '97
(STOW-97) exercise. Capabilities of LeatherNet
facilitate the training of Marine commanders in
tactical battlefield management techniques.

Computer tools currently implemented in LeatherNet
include: Marine Corps Synthetic Forces (MCSF),
Terrain Evaluation Module (TEM), CommandVu
and CommandTalk Human Computer Interfaces
(HCI). MCSF is developing the entities necessary to
conduct Marine Corps operation in a Virtual Joint
Task Force with emphasis on the development of
individual combatants. TEM is a tool for terrain
evaluation including weapons fans, line-of-sight
analysis, and so forth. CommandVu provides an
enhanced synthetic environment to display Marine
Corps command decision tools and MCSF
behaviors. CommandTalk is a natural language,
speech recognition and gesture system that provides
users with the ability to communicate to
CommandVu and MCSF simulation through natural
means. These tools when used together provide the
means to conduct enhanced tactics preparation,
simulation, rehearsal and after action review for the
USMC.

2. Introduction

In the Fall of 1993 representatives from the Defense
Advanced Research Projects Agency (DARPA) met

with the Commanding General of the Marine Corps
Air Ground Combat Center (MCAGCC),
Twentynine Palms, CA and reached a cooperative set
of agreements. As part of the Synthetic Theater of
War (STOW) program, DARPA would invest
hardware and software resources at MCAGCC in
order to develop the amphibious component of a
virtual Joint Task Force for the Synthetic Theater of
War '97, with specific emphasis on the development
of highly complex individual combatant synthetic
forces. In exchange for research facilities and access to
subject matter experts (SME) located on the Combat
Center, DARPA agreed to make the emerging
STOW technologies available to the Combat Center
for training. DARPA further agreed to explore
advanced user interface concepts at this research
facility and focus the effort, to be known as
CommandVu, on the live fire training conducted at
the Combat Center.

The LeatherNet system is an integration of existing
and developing computer tools being combined to
create a dynamic, user-centered environment for
Marine Corps training, mission rehearsal, and
analysis at (MCAGCC. The computer tools
currently implemented in LeatherNet include: Marine
Corps Synthetic Forces (MCSF), a computer
simulation tool that can simulate the USMC
individual combatants, vehicles and behaviors;
Terrain Evaluation Module (TEM), a planning tool
developed by the US Army used for terrain evaluation
and includes tools for line-of-sight and weapons
coverage analyses of targets in terrain; CommandVu,
an enhanced synthetic environment which provides
three-dimensional representations of MCSF
behaviors, the display of control measures, for the
training of Marine Corps commanders at MCAGCC;
and CommandTalk, a speech recognition and natural
language understanding system that provides Marine
Corps commanders with the ability to communicate

275

to the simulation software and MCSF entity through
spoken language and pen based gestures.

The development and project management is being
conducted by the Naval Command Control and
Ocean Surveillance Center, Research Development
Test & Evaluation Division (NRaD) on behalf of the
Defense Advanced Research Projects Agency
Synthetic Forces Program Manager. There is a
diverse group of government agencies, academic
institutions, and private industries all collaborating
to develop the LeatherNet System.

This paper is organized in four main sections. First,
a summary of the concept of operation of the
LeatherNet; second, discussion on the development
approach; finally, a description of the sytem and
products of the LeatherNet.

3. Concept of Operation

The LeatherNet system provides Marine Corps
commander with a set of tools that aid in the tactics
development, briefing, simulation/rehearsal and
debrief (After Action Review-AAR) of two live fire
training ranges at MCAGCC. In order to enhance
training and improve live fire range safety several
DARPA advanced technologies are being developed
in cooperation with MCAGCC. It must also be
pointed out the missions and resources available to
the Marine Corps make LeatherNet a microcosm for
STOW-97 given the fact it includes infantry, special
operations capabilities, mech/armor, air and an
amphibious capability.

The intended user of LeatherNet is a Marine Corps
commander at the company or battalion level of
command and the immediate subordinates. The
concepts and human computer interface toolkit
provided in LeatherNet should be able to scale up or
down the echelon of command from Platoon Leader
all the way to Regimental Commander or above. It
is apparent to the developers that there will need to
be specific tools tailored for each different echelon of
command, yet, it is believed that the basic concepts
and approach will apply throughout.

Figure 3-1 depicts a Marine Corps commander using
the system to formulate and develop tactics and plans
by using a walk-in-synthetic-environment (WISE) as
an interactive tool. Commanders can: create and
issues orders to MCSF (ModSAF) enties with
speech, create ModSAF commnad and control
measure with speech, enter the simulation as a tank,
helo, etc... or as a Stealth. Commanders can also
access the TEM tools through window on the WISE
for group planning and briefing. Subordinates are
inmersed in Helmet Mounted Display (only one is

currently functioning) to allow individual freedom of
movement through the terrain.

Figure 3-1 Concept of Operation

Typically, 3D "stealth" viewers in the STOW
community have only been used for AAR as a "video
tape" type tool. Users have only been able to
passively see what has transpired. In the
CommandVu concept, the environment is the tool
set. 3D objects are "buttons". Click on a 3D M1A1
tank model and information about the tank will be
displayed attached to the model and will move in the
environment with tank. Command and Control
measures have 3D representation and can be used in
planning, briefing, rehearsal, or debrief to augment
the user's view of the situation. By providing an
augmented environment users may be able to
reinforce decision-making skills before they go the
field.

In order to limit the amount of training required to
learn how to use the system and to provide the user
with a "natural" user interface, the system was
designed with the user's normal methods of data
input and output in mind. User commands are
normally issued verbally and responses are auditory.
Therefore, the LeatherNet system implemented speech
and gesture as a primary input method into the
synthetic training environment. Additionally, a
common user interface for LeatherNet tools will
simplify the use of the computer system for the
Marines Corps Commanders.

276

4. Development Concepts and Approach

4.1 Development

USMC SF Capabilities are provided as enhancements
to an existing Modeling and Simulation (M&S)
system called Modular Semi-Automated Forces
(ModSAF). These enhancements are defined as
Problem/Change Requests (PCRs) related to the
USMC domain for Battalion-level entities and their
tactical behaviors for Amphibious Operations. To
implement these USMC capabilities, a spiral,
concurrent development methodology is employed,
beginning with an analysis of the M&S requirements
to the validated software (see Figure 4-1.)

Figure 4-1 Development Process

In compliance with the principles of DoD and USN
Verification, Validation, and Accreditation (VV&A),
a Conceptual Model (CM) *s formulated through
systematic Knowledge Acquisition (KA) and
Knowledge Engineering (KE) processes so that the
USMC M&S Management Office (MCMSMO) can
evaluate and approve the use of the capabilities for the
envisioned training application and its inclusion in
an M&S CM repository. To ensure adequate
information is collected and analyzed for the required
capabilities, the development process incrementally
produces knowledge and prototypes (PT). The
prototypes confirm the level of fidelity and
functionality with requisite Subject Matter Experts
(SMEs), thereby helping to identify missing
information and the long-lead design tradeoffs
(preliminary design - PT).

An integrated Development Engineering Team
(DET), comprising SMEs, engineers, programmers,
and testers, works together toward a validated
software product on assigned domain entities
throughout the development process. Acquisition

and engineering of knowledge on USMC echelons
and operational doctrine continues until the prototype
confirms acceptable simulated performance to
cognizant SMEs (KA1 - KAn, KE1 - KEn). A
preliminary design for the capability is generated
(PD1) and prototyped (PT1) based on the initial KA;
depending on the prototypes general acceptability,
detailed design data is collected (DD1), and coding
and testing activities begin. Software verification is
performed by the DETs to ensure the coded and
tested software product satisfies the preliminary
design.

Integration testing is performed on sets of PCRs in
scenarios established to exercise capabilities in a
typical operational scenario and to regressively test
legacy code. These activities incrementally validate
the integration of capabilities developed for scheduled
DARPA Combined Tests (CTs) held throughout the
year. These CTs are conducted in large multi-force,
multi-service scenarios, with SMEs as test operators,
monitors, and evaluators. The results of these tests
are then submitted to MCMSMO for accreditation of
use in DoD training systems employing USMC
amphibious operations.

4.2 Integration and Test

The goal of this integration effort is to ensure the
MCSF/CFOR, CommandVu, CommandTalk and
Synthetic Environment are integrated into a seamless
training environment that will be a successful tool to
train JTF Commanders and USMC Commanders.
Concurrent with this goal is the intent of LeatherNet
to provide MCAGCC with a virtual synthetic
environment system capable of augmenting and
enhancing the existing MCAGCC Combined Arms
Exercise (CAX) training syllabus.

Integration and test team (ITT), comprising SMEs,
programmers, systems administrators, systems
integrators, and testers combine verified software from
individual DETs for milestone-driven integration
tests, and configuration management. The milestone-
phased testing approach of the integration strategy
emphasizes the operational, technical, and systems
operations of each subsystem integration and
test/demonstration. This strategy also allows
scheduling control to accommodate STOW-97- and
MCAGCC-driven mission-based MCSF/CFOR
requirements throughout the LeatherNet development
period. Each integration milestones maps directly to
specific MCSF/CFOR mission capabilities. Once
the integration test is successfully completed,
integrated software is then baselined and labeled by
the local configuration manager as a formal
LeatherNet baseline. Then MCSF software is
checked into the Synthetic Forces configuration
management system called Version Integration

277

Control System Semi-Automated Forces / Open
Semi-Automated Forces (VICS SAF/Open SAF).

LeatherNet is integrated at MCAGCC on a monthly
basis. A developmental integration suit is setup at
NRaD so preliminary integration and testing may be
performed. The LeatherNet development suit is
designed and developed for various rapid prototypes
as well as experiments. This integration suit is used
to debug and improve the final MCAGCC target
system. NRaD utilizes a commercially available
revision control tool (CVS) to streamline integration
and upgrade to new versions of the software and
system. The ITT is responsible for integration and
installation of integrated LeatherNet system at the
MCAGCC LeatherNet Lab.

5. LeatherNet System Description and Products

The major components of the LeatherNet system are
briefly described in the next sections.

5.1 Marine Corps Synthetic Forces (MCSF)

The Marine Corps Synthetic Forces (MCSF)
component of the LeartherNet project, will provide a
representation of Marine Corps platforms and
behaviors operating in a realistic synthetic
environment for STOW-97 and beyond. MCSF is
based on ModSAF. The desired resultant
capabilities of this system are the integrated system
functions and behaviors to accurately represent a
Marine Expeditionary Force (MEF) Forward
composed of a Ground Combat Element (GCE), an
Air Combat Elements (ACE), and a limited Combat
Service Support Element (CSSE), to operate in a
joint synthetic theater of war. It will also provide
accurate, concise behavioral representation of
specialized teams, functions, and specific mission
areas, including an amphibious assault, movement-
to-contact, attack, consolidation, defense, and
patrolling. LeatherNet will also be capable of
representing in software a platoon leader, company
commander, and command staff that can provide
command and control of the integrated system
functions and mission areas through the DARPA
sponsored Command Forces (CFOR) project.

MCSF individual combatants entities are modeled
down to the individual combatant, with unit tasking
down to the Fire Team composed of four synthetic
Marines. Other individual combatant entities include
the Rifle Squad, Machine Gun Teams, Assault
Teams, and Mortar Teams. Vehicles include variants
of the Amphibious Assault Vehicle (AAV), Light
Armored Vehicle (LAV), and the High-Mobility,
Multi-purpose Wheeled Vehicle (HMMWV), and the

Ml Al main battle tank. Aircraft include the CH46E,
CH53E, AH-1W, AV-8B and F/A-18.

MCSF will continue the development and refinement
of individual combatants, ground and air vehicles,
systems, and related behaviors for MEF-(Forward).
The main focus of this effort will be the development
of advanced behaviors to accomplish the Marine
Corps amphibious assault and attack missions in a
realistic environment. This will include Marine
Corps CFOR representation in software of a Rifle
Platoon Leader, Rifle Company Commander, and
various command assets to enable command and
control of synthetic Marine Corps forces in
performing the desired missions.

Also a more realistic, dynamic synthetic environment
will be developed to meet the requirements of
MCSF. Current high resolution triangulated
irregular networked terrain efforts will need to be
expanded to include other terrain databases in which
individual combatant involvement is required.
MCSF will investigate the need to be able to react
and represent the effects of this environment within
the behavior of its vehicles, individual combatants,
their systems, and the command and control
elements. Representation may include effects caused
by the environment resulting in changes to
performance of individual combatants, sensors,
communications, weapons systems, and vehicle
operations. MCSF is especially in need of a
representation of the littoral area for Amphibious
operations in the surf zone.

5.2 Terrain Evaluation Module (TEM)

The current version of TEM installed at the
LeatherNet Lab is TEM 7.2. Current TEM is use in
a standalone configuration, but ability to take TEM
data, such as weapons fan coverage's and line-of-site
calculations into the 3D CommandVu environment
in underway. This would be an example of a
prototype of a 3D-C4I device for planning in a
simulated training environment.

5.3 CommandVu

As the Human-Computer Interface (HCI) development
effort of LeatherNet, CommandVu must support four
closely related tasks. The first task is to support the
development of tactical expertise among USMC field
officers in the context of live fire exercises at
MCAGCC. The second task is to support the
development and validation of MCSF algorithms.
The third task is to provide an interface that will
allow Marine Corps commanders to interact with the
MCSF units by using natural inputs including
speech and gesture commands. And the last task is

278

/

to serve as the Marine Corps interface for participation
in STOW-97.

These applications require a robust, easy-to-use
interface which can support both individual decision-
making behavior and team coordination in a
simulated outdoor environment, where both real and
computer-generated forces are led through tactical
battle problems. This HCI design combines a
variety of diverse technologies and performance
improvement concepts in novel ways, called a
"concurrent" virtual environment. Such an
environment is typified by:

Simultaneous use of head-mounted displays
(HMD), multiple large-screen (CAVE) displays,
and conventional CRT displays, which are
selected as a function of the user role or a
performance improvement objective, and which
may be changed repeatedly during a single
simulator session.
Support of multi-mode input technologies,
including gesture, speech, physical control
panels and virtual control panels, and pointers.
Input methods will be highly redundant, to
support user preference and to enhance system
recognition of user intent (e.g., through
simultaneous voice and gesture combinations).
Support of individual and coordinated activity
between several live participants interacting with
intelligent computer-generated agents (both
vehicles and humans controlled by ModSAF and
MCSF) , involving both vehicle operation and
dismounted tasks (including navigation through
the environment on foot). Participants may work
at different levels of representation, from different
perspectives in the environment, and for different
specialized goals.

Development of CommandVu involves essentially all
of the analysis, design, and evaluation tasks of most
complex system programs, however some issues have
proven unique for both the application and the user.
As a result, some of the design approaches taken for
this program have required specialized supporting
research in human factors and performance
measurement which deserve discussion. In particular,
efforts include:

an iterative design and review program is being
pursued with prospective users for task domain
guidance but, more importantly, to foster an
understanding of the potential utility of state-of-
the-art technologies for solving current problems
in new ways.
a series of studies concerning perceptual
problems in navigating rapidly through large
expanses of simulated terrain, especially when

one individual controls the perspective for other
participants, in real time.
a research program in perceptual and cognitive
integration of multiple visual perspectives,
supported by the CommandVu system, and of
orientation problems associated with rapid
perceptual or display changes (e.g. HMD to
CAVE and back).
a research effort to develop "augmented
visualization," or artificial cues which can
enhance decision-making and which can
encourage effective team collaborations in real
time.
an examination of adaptive performance
improvement methods for gradually removing
artificial cues from displays until the
environment matches that experienced in the real
world, with performance maintained at the
desired level.
an empirical study of display resolution
requirements, to minimize computational loads
while retaining task-relevant realism and user
confidence.
design and evaluation of optimal system
configuration and control tools - including
efficient allocation of functions to physical and
virtual control devices — to support rapid
realization of desired scenes and actions. This
work is focused on requirements to set up and
demonstrate scenarios quickly, to expedite
training, and to examine the nature of team
collaborations by observing how these tools are
used.
efforts to exploit the potential of comprehensive
performance measurement in complex scenarios,
to provide real time performance feedback and to
conduct long term "trend" analysis and decision
modeling through examination of cumulative
databases.

CommandVu display devices include, helmet
mounted displays, large projection displays arranged
as a walk through environment with three
dimensional sound.

Multi-modal input devices include, speech
recognition, traditional keyboards and mouse, virtual
on-screen buttons, wireless three 3D gyro mouse, on
screen controls (tape displays), joysticks and tracking
devices.

CommandVu includes the use of selectable 3D
command and control measure, including: vehicle
trails (blue for friendly, red for enemy), lines,
polygons and text. Figure 5-1 depicts a USMC
mechanized movement to contact.

279

ability to control individual combatants, ability to
set control measures, issue "op-orders", and
orders".

'frag-

Figure 5-1 Command and Control Measures

Phase lines, an assemble area, a blocking position,
checkpoints and boundary lines are all represented in
the CommandVu environment. These 3D control
measures are linked to their counterparts in MCSF.
If a checkpoint is selected and moved in the 3D
environment, the checkpoint on the MCSF Plan
View Display (PVD) will move simultaneously.

Weapons fan can be represented in CommandVu in a
similar manner to the 3D command and control
measures. Figure 5-2 shows an M1A1 weapons &i
on R400 terrain at MCAGCC.

Figure 5-2 Weapons Fan

5.4 CommandTalk

Initial efforts were focused on the development of
speech to MCSF, with current work focused on the
development of speech, the Command Control
Simulation Interfaced Language (CCSIL) developed
by MITRE, improved user feedback, increased
vocabulary for the Platoon Leader, Company
Commanders, and Battalion Commanders, speech to
CommandVu, and the addition of the ability to
speech and gesture to the system at the same time.

Technical Capabilities include a 500+ word
vocabulary, featuring "radio-speak" phraseology (use
of entity call-signs), ability to control vehicles keyed
by unit call signs (regardless of unit composition),

There are four benefits of adding human language
capabilities to the LeatherNet system. First is the
ability to create forces and control measures. Second,
is the ability to assign missions and task frames to
synthetic forces. Third is the he ability to control
and modify missions during program execution. And
forth, is the ability to control system functions (such
as fundamental PVD controls).

6. Conclusions

LeatherNet has made significant progress in its two
years of existence and withstood intense scrutiny by
the Office of the Secretary of Defense, Marine Corp
Flag officers including the Commandant of the
Marine Corps as well as the Defense Director of
Research and Engineering.

The ability of the LeatherNet Team to produce rapid
result is directly attributable to several factors briefly
explained below.

Do not hold a "not invented here" attitude.
LeatherNet built MCSF based on DARPA's
ModSAF and applied the systems and behaviors of
the other DARPA service Synthetic Forces
development effort to build MCSF ground vehicles
and Aircraft. CommandVu built its Human
Computer Interface concept on top of the existing
NPSNET software developed by the Naval
Postgraduate School, Monterey, CA. The addition
of other DARPA-sponsored effort in speech and
gesture technologies were evaluated and integrated
into the core system.

Adopt a flexible development approach that could
be adapted to the changing STOW requirements as
well as the MCAGCC user evolving requirement.
When LeatherNet was first introduced to the Marine
Corps, MCAGCC did not have operation
requirement nor an accepting attitude. But within the
first 6 months the USMC and MCAGCC leadership
recognized the value of the DARPA relationship and
the potential benefits for MCAGCC training. As the
Marine Corp interest and training needs grew, so did
the use of the LeatherNet Lab, and the need for
specific user define requirements.

Set a clearly defined vision. The specifics of what
features, entities and behaviors were added to the
system to date were constantly being refined, but the
core vision remains virtually untouched from the
LeatherNet kickoff. LeatherNet also challenge some
of the brightest developers in the community (NRaD,

280

HRL, MITRE, ATI, NPS, SRI, OGI, KES, GSC
and BMH) to pull together and achieve a common
vision.

User-centered development. Another key factor in
the success of the LeartherNet project was fact that the
Lab was placed on a Marine Corps Training Base
that supports the Fleet Marine Force, vice in a
research environment. LeatherNet followed the lead
of another DARPA-sponsored project call WISSARD
(What If Simulation System for Advanced Research
and Development) and funded strong site manager
support to interface with the Marine Corps and the
DARPA developers. Additionally, the ability to
work closely the users and understand their needs as
it applies to the mission accomplishment has proven
to be invaluable.

7. Acknowledgment

The authors would like to thank our DARPA
sponsor, CDR P. A. Feldmann, USN, Synthetic
Forces Program Manager, for guidance and support.

8. References

Osga, Glenn and Murray, Steven (1994).
Preliminary Design Document. Concept of
Operations: Cyber View Human Computer-
Interface. San Diego, CA: Naval Command,
Control and Ocean Surveillance Center, RDT&E
Division.

Berkowitz, J. (1995a) Technical and Scientific
Reporf.Human Computer Interaction (HCI)
Design Guidelines and Concepts for LeatherNet.
San Diego, CA: Galaxy Scientific Corporation
for the Naval Command Control and Ocean
Surveillance Center.

Berkowitz, J. (1995b) Technical and Scientific
Report: LeatherNet Human Computer Interaction
(HCI) Functional Design. San Diego, CA:
Galaxy Scientific Corporation for the Naval
Command Control and Ocean Surveillance
Center.

Berkowitz, J. (1996) "Considerations for the Use of
Entity-based Simulation for Tactical Decision-
Making Training", the 6th Computer Generated
Forces and Behavioral Representation Conference
Proceedings.

CommandVu and CommandTalk in support of the
DARPA STOW-97. Previously, he was a Naval
Aviator flying CH-46 Helicopters out of NAS North
Island, San Diego, and NAS Norfolk, VA. Mr.
Clarkson has an Engineer's Degree in Aerospace
Engineering and a M.S. degree in Aerospace
Engineering from the Naval Postgraduate School. He
did his undergraduate work at Georgia Tech. His
interests are in the areas of Individual Combatant
Computer Generated Forces, Human System
Interaction and the application of 3D Environments
towards Human Computer Interfaces.

John Yi is a Senior Systems Engineer/Integrator
with Koam Engineering Systems (KES). His current
responsibilities include the design, development,
integration and testing of LeatherNet System.
Previously, he was involved in the design and
development of Intelligence Analysis System (IAS) at
MCTSSA, and Real-time simulation of Advanced
Air Traffic Control at Naval Research and
Development. Mr. Yi has a B.S. degree in computer
science from UC San Diego, and is currently working
on his graduate degree in Information Management
from UC Irvine. His interests are in the areas of real-
time, and faster than real-time simulations, and
common operating/data environments.

9. Author's Biography

Jeff Clarkson is a project manager and engineer with
NCCOSC RDTE DIV, San Diego. His current
responsibilities include the project management and
development of the LeatherNet System, MCSF,

281

Computer Generation of
Joint Theater Missile Defense (TMD) Assets

Donald E. Carver and George M. Parsons

Missile Defense Battle Integration Center

U.S. Army Space and Strategic Defense Command

P. O. Box 1500

Huntsville, Alabama 35807-3801

Dr. William T. Naff

BDM Federal, Inc.

950 Explorer Boulevard

Huntsville, Alabama 35806-2808

1. Abstract

The Missile Defense Battle Integration Center
(MDBIC) will provide computer generation of the
complete set of joint TMD assets via the Extended
Air Defense Testbed (EADTB) augmented by Modular
Semi-Automated Forces (ModSAF). The MDBIC has
demonstrated the capability of the EADTB and
ModSAF, operating in tandem through distributed
interactive simulation (DIS), to model all elements of
the TMD "pillars" in real time.

The EADTB is a state-of-the art constructive
simulation with DIS compliance demonstrated at the
prototype level and scheduled for delivery in
September 1996. A High Level Architecture (HLA)
translator is also under development. The rapidly
expanding EADTB capability allows simulated
entities such as weapon systems to be modeled
independently as objects on the gameboard. These
"models within the model" can be selected, modified,
or developed by the user.

The MDBIC manages a master library that currently
contains a complete set of extended air defense system
models. All three services have initiated development
of TMD active-defense models to be validated and
certified by the system proponent offices for specific
ranges of applications. The MDBIC will thus
augment any DIS or HLA exercise with a full suite of
computer-generated joint TMD assets including
proponent-certified active-defense system entities.

2. Introduction

The Missile Defense Battle Integration Center
(MDBIC) will provide computer generation of the
complete set of joint Theater Missile Defense (TMD)
assets via the Extended Air Defense Testbed (EADTB)
augmented by Modular Semi-Automated Forces
(ModSAF). TMD active defense assets will be based
on validated models, certified by the Army, Navy, and
Air Force system-proponent offices. The MDBIC has
demonstrated the capability of the EADTB and
ModSAF, operating in tandem through distributed
interactive simulation (DIS), to model all elements of
the TMD "pillars" in real time.

3. The Pillars of Theater Missile Defense

The theater missile threat includes both tactical
ballistic missiles and cruise missiles. TMD includes
contributions from four "pillars": active defense;
passive defense; attack operations; and battle
management/command, control, communication,
computers, and intelligence (BM/C4!). While active
defense includes all means for killing theater ballistic
missiles (TBMs) in flight, passive defense comprises
all measures to make TBM targets harder to find and
harder to kill. Attack operations are the offensive
actions taken to kill TBMs and their supporting
infrastructure on the ground. BM/C4!, which
supports all of the activities associated with the other
three pillars, is often represented as a foundation
rather than a pillar, as shown in Figure 1.

283

TMD MISSION
-PROTECT U.S. FORCES, ALLIES, AND OTHER
IMPORTANT COUNTRIES... FROM TACTICAL

MISSILE (TM) ATTACKS," JCS MNS
•••••••••••SET : , ...i.;i..ri.i»iw,...i. mni~y'mffg«

PASSIVE DEFENSE

JR-R1-6190-B01

Figure 1. The Pillars of TMD.

While most new system acquisitions, such as THAAD,
and major system upgrades, such as PATRIOT PAC-3,
are associated with active defense, the requirements on
these systems and the total success of TMD depend on the
integrated performance of all four pillars.

4. The Extended Air Defense Testbed (EADTB)

4.1 EADTB Functions

SSRs include the representation of rule-set-based
"thinkers," both human and machine, that react to
perceived data. The "thinker" portion of each model is
formally restricted from access to truth data. The analyst
has full access to the rule sets controlling "thinker"
behavior through the SSR code, allowing "what ifs" on
rule set logic. However, any change of a PEO-approved
model requires renaming, thus ensuring the integrity of
certified models.

The EADTB, a state-of-the-art constructive simulation,
will use DIS [and later, High Level Architecture (HLA)]
to provide active defense elements including THAAD,
PATRIOT, Corps SAM, and AEGIS. As required, the
EADTB can generate theater missile threats as well.

The EADTB allows simulated entities, such as weapon
systems, to be modeled independently as objects on a
gameboard (Figure 2). These "models-within-the-model,"
which are referred to as Specific System Representations
(SSRs), can be selected, modified, or developed by
EADTB users. Thus, the EADTB serves as a model-
development environment as well as a model in itself.

The EADTB gameboard environment includes elevation
based on Digital Terrain Elevation Data (DTED), features
based on Digital Feature Analysis Data (DFAD), time-
varying weather (with clouds), and both infrared (IR) and
radio frequency (RF) backgrounds. The gameboard
reference coordinate system for DIS entity-state
specification is Earth-centered rotating (WGS-84).

The EADTB has been recognized as an ideal framework for
joint-service and international creation, certification, and
sharing of models. The MDBIC maintains a master
library of SSRs for joint system studies. Efforts are

284

SPECIFIC SYSTEM REPRESENTATIONS (SSRs)
CREATE "OBJECTS" ON AN EADTB GAME BOARD

PATRIOT/
ERINT SSR

BATTALION
SSR

I I

• VARIABLE DETAIL SSRs
• VARIABLE GAME BOARD SIZE

F-14SSR

AEGIS SSR

Figure 2. The Specific System Representation (SSR)
JR-R1-6190-B02

currently underway by Army, Navy, and Air Force
participants to certify models of key systems. Figure
3 illustrates this concept in which proponents develop
experimental models for their own use while
preparing and certifying models for use by the
community.

A key part of this "sharing-of-models" concept is the
documentation of certification. The documentation
will specify how verification and validation were
accomplished and will state the limits of model
validity. Thus, the certifying agency can bound the
applicability of the models and protect itself from
model misuse.

4.2 EADTB History and Siting

From its beginning in 1989, EADTB development
has been managed by the Testbed Product Office
(TPO) within the U.S. Army Space and Strategic
Defense Command (USASSDC). Funded by the
Ballistic Missile Defense Organization (BMDO), the
EADTB is intended for joint-service, international
use, with the primary goal of serving the extended air
defense community. Initial EADTB sites (see

Figure 4), which are sometimes referred to as nodes,
were located at the USASSDC Advanced Research
Center (ARC) in Huntsville, Alabama; the NATO
Strategic Headquarters Allied Powers Europe
(SHAPE) Technical Centre (STC) in the Netherlands;
and the U.S. Army Air Defense Artillery School
(USAADASCH) at Fort Bliss, Texas. Since the first
incremental capability delivery in 1994, sites have
been added at the Joint National Test Facility (JNTF)
in Colorado; the Naval Surface Warfare Center
(NSWC) at Dahlgren, Virginia; the Tactical Air
Command and Control Simulation Facility
(TACCSF) at Albuquerque, New Mexico; and the
Ballistic Missile Defense Organization (BMDO) and
the Warfighter Analysis and Integration Center
(WAIC), both in the Washington, D.C., area
Memoranda of Agreement (MOAs) are currently under
negotiation for the addition of sites in France and
Germany.

5. DIS/HLA Compliance

As illustrated in Figure 5, the EADTB adapts
naturally to the DIS environment. Ghost SSRs

285

SYSTEM DEVELOPER
SSR DEVELOPMENT

JR-R1-6190-B03

Figure 3. The EADTB Library

WAFC

• INITIAL SITES

4 NEWSTTES

• MOA. UNDER NEGOTIATION

JR-R1-6190-B04

Figure 4. EADTB Sites

simply replace standard SSRs to allow external
control of simulated entities. Users can create their
own ghost SSRs in order to introduce new externally
controlled entities into the paradigm.

A prototype Distributed Interactive Simulation (DIS)
compliance capability was delivered and successfully
demonstrated in September 1995.

Figure 6 shows the prototype DIS demo scenario,
which has been frequently run at the MDBIC.
ModSAF, the Extended Air Defense Simulation
(EADSIM), and the Target Acquisition Fire Support
Model (TAFSM), along with the EADTB, were
housed at the MDBIC s Advanced Research Center
(ARC). The Reconfigurable Tactical Operations
Simulator (RTOS), an operator-in-the-loop virtual
simulator, was configured to represent a PATRIOT
battery, sited at Fort Bliss and linked to the ARC via
the Defense Simulation Internet (DSI). (A video
teleconferencing link between the ARC and Fort Bliss
was maintained simultaneously over the DSI to view
live operator and on-screen activity.)

TAFSM supplied field artillery attack operations
assets including ATACMS and an artillery tactical
operations center (TOC). ModSAF supplied Army
aviation attack operations assets consisting of attack
helicopters and an aviation TOC. EADSIM provided
the TBM threats and their transporter erector launchers
(TELs). The EADTB generated the cruise missile

286

THE EADTB ADAPTS NATURALLY TO DIS THROUGH GHOST
SSRs REPRESENTING EXTERNALLY CONTROLLED ENTITIES.

DIS NETWORK

EADTB

USERS CAN WRITE THEIR
OWN GHOST SSRs.

RB-R1-619O-H01

Figure 5. The EADTB Natural Interface with Other DIS Participants.

EADSIM EADTB

^^•*

TAFSM

OIS NETWORK

RTOS VIRTUAL
SIMULATOR
(FT. BLISS)

JS-R1-6190-E01

Figure 6. EADTB DIS Demonstration in September 1995

287

threats and the bombers that launched them; the
Defense Satellite Program (DSP) space-based sensors
and Joint Tactical Ground Station (JTAGS); the
THAAD radar, launcher, and missiles; and an Air
Defense TOC (ADTOC). The exercise, which
included a total of 165 simulated entities, was
intended to demonstrate the EADTB potential for
populating DIS exercises with constructive TMD-
asset entities.

The first delivered, DIS-compliant version of the
EADTB will be capable of simulating 80 types of
entities and will send and receive entity-state, signal,
transmit, start/resume, and stop/freeze PDUs.

6. Capability for TMD Computer
Generated Forces (CGF)

with high-fidelity land-combat models. Thus, the
land-combat simulator can control the movement of
the launcher and the generation of the launch event.
The EADTB constrains the missile to move with the
launcher until the launch event occurs, after which the
EADTB controls missile movement.

The concept for EADTB support to exercises is
illustrated in Figure 7. The EADTB can support a
federation of live, virtual, and/or constructive
simulations by populating the scenario with
computer-generated TMD assets. The EADTB SSR
library will be the source of individual entity models
comprising simulations validated by system
proponent offices.

7. Summary

The EADTB will have its first delivery of a DIS-
compliant version (Version 4) in late September
1996. A DIS-to-HLA translator is also under
development to provide a near-term, limited HLA
capability to support STOW 97.

The Version 4 delivery will allow entity-state PDU
generation for all of the approximately 80 different
distinct types of entities represented by the existing
set of EADTB SSRs. (The total number of entities
instantiated and played simultaneously in the EADTB
is constrained only by computer power.) Users can,
as stated above, create new SSRs for internally
controlled and/or externally controlled (i.e., ghost)
entities.

Simulated entities include sensor, missile, and
launcher components of PAC-2, PAC-3, and THAAD
systems; fighters and bombers; airborne, space-based,
and surface-based sensors; jammers; cruise missiles,
ballistic missiles, and ARMs; and TMD-capable
cruisers. As stated previously, the EADTB maintains
a formal partition between perceived data and truth
data. CGF entities contributed by the EADTB will
react to three classes of perceived data:

• Information received via signal PDUs
• Information received via messages from

EADTB-controlled entities
• Information from on-board sensing

capability

Special capabilities include the launch of an internally
controlled TBM by an externally controlled launcher.
This capability was added to support interoperability

The mission of the MDBIC includes support of
training, mission rehearsal, operations analysis,
combat development, and materiel acquisition.
Computer generation of TMD assets via the EADTB
and other models is a key means of supporting these
activities. The EADTB library of proponent-validated
entity simulations will provide a quality capability
for computer generation of joint, four-pillar TMD
assets. For information on the level of detail of
specific models available, please contact the authors.

8. Authors' Biographies

Don Carver has 12 years experience in defense-
related systems simulation including serving as
chairman of the CROSSBOW-S Digital Simulation
Steering Group, chairman of the Hardware Committee
of the BMDO Computer Resources Working Group,
and lead engineer for development of the USASSDC's
Advanced Research Center computer resource
requirements for support of missile defense analysis.
Mr. Carver's recent interests and activities include
application of simulations for training and analysis to
serve the warfighter. As general engineer for the
MDBIC, he currently leads an effort to link the
EADTB with the Corps Battle Simulator (CBS). Mr.
Carver has an M.S. degree in Chemical Engineering.

Moody Parsons is Acting Chief Engineer for the
Testbed Product Office of the USASSDC Missile
Defense Battle Integration Center (MDBIC) in
Huntsville, Alabama. He is responsible for program
management activities for EADTB software
development. Previous assignments include program
management for Directed Energy Weapons Space

288

Experimentation at USASSDC; Supervisor of
Modifications/Special Projects, Tennessee Valley
Authority Sequoyah Nuclear Plant; and other
assignments dealing with nuclear and solar power
generation. Mr. Parson's current interests include
development of advanced simulation tools and
networking strategies for integration into federations
to serve modern warfighter needs. He has a B.S.E.
degree in Engineering with Electrical Option.

Tim Naff has 25 years experience in defense
modeling and simulation ranging from technology
and phenomenology modeling to military operations

research at the raid, battle, and campaign levels. His
model development and application experience
includes live, virtual, and constructive simulations
comprising test-range activities, laboratory hardware-
in-the-loop, and man-in-the-loop as well as all-
digital simulations. Dr. Naff, who is Director for
Systems Analysis at BDM, recently developed and
applied a campaign-level model of TMD attack
operations supporting an Army COEA effort. His
current interests and activities also include DIS and
HLA model confederation planning and development.
Dr. Naff has a Ph.D. in Physics.

COCKPIT
SIMULATOR

VIRTUAL
SIMULATOR LIVE ENTITY

JS-R1-6190-A01

Figure 7. CGF Representing TMD Assets Drawn from EADTB Library of Validated Models.

289

The JPSD Corps Level Computer Generated Forces (CLCGF) System
Project Update 1996

Jeffrey C. Peacock, Jr. Kevin C. Bombardier, James Panagos
SAIC

20 Burlington Mall Rd
Burlington MA. 01803

jpeacock@bos.saic.com, kbombard@bos.saic.com, jpanagos@bos.saic.com

Thomas E. Johnson
Raytheon Company
528 Boston Post Rd
Sudbury, MA 01776
tej@swl.msd.ray.com

1. Abstract

The Corps Level Computer Generated Forces
(CLCGF) system is being jointly developed by
SAIC and Raytheon for the Joint Precision Strike
Demonstration Program (JPSD). CLCGF is a
system that is centered on the linkage of the
constructive, aggregate-level simulation Eagle, with
the virtual, entity-level simulation ModSAF. The
purpose of this paper is to update the community on
enhancements that have been made to the CLCGF
system over the last year. The following topics will
be covered; resolution management, proxy,
Distributed Eagle, tactical message processing, new
SIU (Simulation Interface Unit) client applications,
and the development of a North Korean rocket
launcher threat.

As with any constructive - virtual linkage,
Aggregation/Disaggregation is the main reason for
creating the system. Until now CLCGF has
supported two methods for controlling
Aggregation/Disaggregation: Operator selection from
the GUI, and Call For Fire events. While these two
techniques supported the initial needs of JPSD they
are clearly limited. As a result we have designed a
Resolution Management library (libresman) which
extends the Aggregation / Disaggregation Triggers
available. The idea is to provide a framework for
supporting any number of user defined triggers.
These triggers are then monitored by the resolution
manager and resolution changes are effected
automatically. The application of
aggregation/disaggregation triggers are performed in
two ways: via a data file specific to a given scenario,
or by dynamic events which occur during a given
simulation (ex. Call For Fire).

In preparation for the 1995 JPSD exercise CLCGF
was enhanced with the capability to update Eagle
with status information on disaggregated units
controlled by non ModSAF based simulations. This

new capability, called "proxy" was implemented as a
new state of disaggregation whereby a linkage
between an aggregate unit and remotely reported non
ModSAF based entities was made. A second more
interesting capability was also added. Through the
proxy technique the capability to attach sensor
components to remote vehicles was also developed.
This allowed the JPSD program to represent a live
UAV in the simulation environment which was
capable of producing Reconnaissance Exploitation
Report (ReccExRep) reports based on the state of
Aggregate units

Distributed Eagle was developed by TRAC Ft.
Leavenworth as an extension to the existing Eagle
model. Distributed Eagle's main purpose is to
increase the size of the aggregate battle being
simulated by the CLCGF system. During the JPSD
95 demonstration CLCGF ran over 300 aggregate
units which began to push the limits of Eagle, and
the Eagle <-> SIU linkage. As a result TRAC
developed the concept of Distributed Eagle which
sought to increase the size of the Aggregate battle by
distributing the battle across multiple platforms.

One of JPSD's many thrusts has been the integration
of constructive, virtual and live systems. JPSD's
version of ModSAF 2.0 has been modified to allow
the simulation to process a subset of the "tactical
messages" which are produced by live/simulated
systems used by JPSD. To accomplish this we have
added new libraries to ModSAF which support
tactical message processing. The following tactical
messages are currently processed; Reconnaissance
Exploitation Report (ReccExRep), JPSD Sensor
Control messages, and Fire Mission Call For Fire
(FM;CFF) messages.

In addition to Eagle, the current SIU has been used to
support 2 other programs; the STOW exercise
generation effort and the Rapid Battlefield
Visualization (RBV) program.

291

2. Introduction

2.1 The JPSD Program

One of the Joint Precision Strike Demonstration
(JPSD) program's goal is to introduce and implement
new technologies into the defense arena that can
address and correct precision strike deficiencies. To
facilitate this goal, the JPSD program has created a
simulation environment which is used to evaluate
technologies, train users, and perform experiments
necessary to reduce sensor-to-shooter timelines. As
part of this environment, the JPSD program has
sponsored the construction of the Corps Level
Computer Generated Forces (CLCGF) system.

The primary purpose of CLCGF is to provide the
corps level simulation environment for DIS exercises
in which the above mentioned program goals can be
met. CLCGF is used during the JPSD exercises to
simulate maneuver and artillery units contained in an
Army corps. The simulated units provide stimulus
for and interact with tactical hardware systems and
their operators.

2.1.1 JPSD 1996

The simulation being developed for JPSD 1996 is
based on a North Korean Multiple Rocket Launcher
threat. CLCGF will portray the North Korean
OPFOR, as well as friendly airborne sensor platforms
at the entity level. In addition, CLCGF will also
play over 600 aggregate units to fill out the
battlefield. The aggregate units will provide
additional targets for sensor systems and will be
available for disaggregation based on fire missions
executed during the scenario.

2.2 The CLCGF System

Entity-level simulations represent each entity which
exists on the virtual battlefield at the individual
platform level. They typically represent entities from
the individual platform level up to the company
level. They use the DIS protocol to interact with
other entity-level simulations, and simulate the
physical characteristics of each entity to determine
battlefield outcomes. On the other hand, constructive
simulations represent groups of entities as single,
aggregate unit objects. They typically represent units
at the company or battalion level up to the division
or corps level. They are typically not designed to
interact with other simulations, but instead simulate
the entire battlefield internally, and use Monte-Carlo
techniques to determine battlefield results.

The DIS environment has traditionally included only
entity-level simulations. It has provided a sound
environment for small-scale, tactical troop training,
as well as a potential testbed for evaluating new
vehicles and weapon systems. However, simulating
the effects of entity-level simulations in corps level
operations has remained beyond the reach of the DIS
environment, due to network bandwidth and
computer resource constraints. Using current network
and computer technology, a traditional DIS exercise
is simply not capable of supporting a corps level
operation. This was the primary motivation for
creating a CLCGF which utilizes both constructive
and entity-level simulations. Transmission of unit
state data at the aggregate level is a key factor which
decreases network load by significantly decreasing the
number of PDUs transmitted in a large-scale exercise.
If DIS is to support a 100,000 entity exercise,
representation of some units on the battlefield as
aggregates is likely.

The simulation engine of the CLCGF has been built
by integrating the constructive, aggregate-level
simulation Eagle, with the virtual, entity-level
simulation ModSAF. This simulation engine
interacts with various live, tactical hardware systems,
including: the Reconfigurable Workstation (RCW),
the Maneuver Control System / Phoenix (MCS/P),
and the Automated Deep Operations Coordination
System (ADOCS).

In order to allow military training and analysis of
scenarios of interest to JPSD, the CLCGF must
generate a full corps-level exercise. To accomplish
this goal, many technical challenges need to be
addressed. These involve issues such as efficient
incorporation of aggregate units into DIS, effective
incorporation of DIS entity-level information into
constructive simulations, development of a dynamic
aggregation/disaggregation protocol, interaction
between constructive and entity-level simulations,
and interaction between a constructive/virtual
simulation, live systems, and engineering-level
simulations. The work performed on the CLCGF to
date has focused on these fundamental goals.

292

2.3 CLCGF Interaction with other JPSD Systems

In order to create a test and evaluation environment in
which to conduct JPSD experiments and studies, the
requisite constructive, virtual, and engineering-level
simulations must inter-operate with one another, as
well as with current and future fielded, tactical
systems used in Army Corps operations. A block
diagram of the CLCGF system and the non-DIS
systems with which it interfaces is shown in Figure
1.

The CLCGF system consists of the linkage between
Eagle, the SIU (Simulation Interface Unit - whose
primary function is to link Eagle to the DIS
network), and ModSAF. It is responsible for
simulating the entities and aggregate units on the
corps battlefield, presenting a plan view display,

with other DIS simulations, and
interfacing with the other non-DIS systems shown in
the block diagram. The RCW and MCS/P systems
are used to present a picture of the tactical battlefield
situation to an operator (via intelligence feeds), and
to initiate precision strike target nominations. The
ADOCS system is used to create, monitor, and
assign fire missions to corps artillery assets. The
STRIKE simulation is used to simulate the
deployment, fly-out, and impact of smart sub-
munitions. The Tactical Gateway (TGW) is
responsible for routing tactical messages to other
platforms which have registered for specific types of
tactical messages. For details on the interactions of
the systems described in Figure 1 see (Calder et. al
1995).

Stealth

nr.<?

Logger

nrs

EAfiT.F.
ALSP
4—* •«T.W

socket
ModSAF

SITJ

socket 4--
ModSAF

SIU

£OE>
ASPDU

T.Pgpnd

m.C; = V,>rginn 9 C\ A

Ohjfict, Protnml

Figure 1: CLCGF Interface Block Diagram

293

3.1 Resolution Management

3.1.1 Motivation

CLCGF uses a variety of mechanisms to implement
resolution change. However, a more general approach
is desirable, where resolution decisions are made by
the software. It should be possible for the operator to
define rules that would allow the system to
aggregate/disaggregate automatically. In order to be
effective this module must allow the resolution
change rules to be modified at any time during the
exercise so that aggregation/disaggregation can be
based on the evolution of the scenario. Such a
module would allow designers to create complex
logic for controlling resolution change. In addition,
such a module would centralize resolution
management and reduce code duplication.

In response, a resolution management library has
been created (libresman). Libresman provides a
general "clearinghouse" for all aggregation and
disaggregation decisions in CLCGF. The motivation
for this library is to:

• Centralize the aggregation/disaggregation
decision logic.

• Provide a basic discipline of resolution change
(which can be automated) so that more
sophisticated behaviors can be created.

• Define a precision in the semantics of
aggregation and disaggregation that uses a wider
range of properties to calculate resolution change,
(i.e. disaggregate units that are not only within
range-as is typical of current technology, but that
may have a particular weapon system etc.)

The last two factors impart a control over resolution
change which is offered as a tool to counter the
dreaded "spreading disaggregation" problem that can
plague systems of varying simulation fidelity.

3.1.2 Implementation

Libresman determines whether an entity, vehicle or
unit, should change its resolution state. It
is designed to abstract the aggregation or
disaggregation decision as a boolean outcome; as
such, complex boolean algebra can be built into
the decision-making process. The domain of the
resolution change decision is defined at run-time and
its range is determined by the designer but can be
potentially the entire ModSAF address space (i.e. any
library - subject to the usual C compile and link
restrictions).

An entity must be registered with libresman via the
function resman_register_aggregate. With this
simple call to resman_register_aggregate, an entity
acquires a basic set of rules which govern its
resolution. Libresman will automatically define a
"negation" rule for any rule defined. This negation
rule will undo the effect of a rule when its predicate
is no longer applicable. Libresman maintains its
own VTAB of entities which have rules associated
with them. Each of these are ticked with respect to
all entities known to ModSAF, local and remote.
Upon each tick, the appropriate list of resolution
rules (based on the entity's current resolution state) is
evaluated. If any rule is found to be true, a
resolution change will be implemented for the
entity.

Defining an entity's resolution change behavior is
controlled by defining its resolution change rules. A
resolution change rule contains the following:
1) A pre-defined predicate.

2) Information on whether to use the rule to re-
aggregate or disaggregate; this information is
maintained by the system and is transparent to
the user.

3) Information on the types of rules to "respond
to". Using this information, a rule can be defined
to be fired if and only if another rule has
previously been fired. This allows for fine-
tuning pairs or groups of rules so that they can
work together.

In general, there are two ways to associate a rule to
an entity: by reader file or by function call. Reader
file association allows resolution management to be
defined on a per scenario basis. Reader rules are read
once, (at startup) and thus are very useful in defining
blanket (i.e. global) rules. On the contrary, function
call association can be made at any time during the
execution of the code thus enabling registration of
rules in response to changing scenario events.

Currently, resolution change predicates include:
• unitinarea. If the aggregate enters a

specific area, disaggregate.
• duration. If the aggregate has been

disaggregated for some period of time, re-
aggregate.

• spherejofjnfluence. If another type of vehicle
comes in proximity to us, disaggregate.(currently
not implemented).

These are but a few of the predicates that could be
defined, the above mentioned serve as test cases. The
definition of additional predicates is left to the user
and will be driven by new requirements as they
develop.

294

3.1.3 Adding new predicates

Predicates can be chosen from a pre-defined set or can
be defined at compile time. A newly defined
predicate must be a new boolean function with 2
arguments: the vehicle id of the owning entity, and a
parameter structure defining private (to the predicate)
information. The predicate then has to be declared in
libresman's list of predicates. Once defined, the new
predicate can be used via reader file or function call.

3.2 Proxy

3.2.1 Motivation

In a typical CLCGF scenario, Eagle maintains
control of aggregated units until a request for
disaggregation is received by the SIU. Upon receipt
of the disaggregation request, Eagle relinquishes
control of the aggregate to the SIU, and then
periodically polls the SIU for updates, such that
Eagle can maintain current positional and
compositional data for the disaggregated unit. The
SIU initiates the disaggregation and subsequent
creation of the entities comprising the aggregated
unit. To accomplish a successful disaggregation,
ModSAFs operating on the same exercise id and PO
database as the SIU assume the responsibility of
simulating the entities. Entity state information is
then summarized and used to update Eagle as to the
state of the aggregate. This method posed a
limitation that all entities comprising an aggregate
must be simulated within ModSAF, thus limiting
the potential sources of entity level simulation for
Eagle aggregates.

Libproxy was developed to allow non-ModSAF
based entities to influence the outcome of the
aggregate battle being played in Eagle. Eagle was
originally designed to run as a stand-alone
application without a DIS interface. The linkage
with the SIU has indirectly given Eagle a limited
DIS interface. The interface required to allow Eagle to
utilize entities reported from remote sources on the
DIS network must utilize information common to
both the ESPDU and the Eagle-SIU interface. To
accomplish this the proxy interface was designed to
utilize the unit designation within Eagle and the
marking contained within the 'entity-marking' field of
the ESPDU.

An additional capability which extends the proxy
interface, provides CLCGF ModSAF with the
capability to attach sensor components to remote
vehicles. This capability allowed for the
representation of a live UAV in the simulation
environment, which was capable of generating

Reconnaissance Exploitation Reports(ReccExrep) for
aggregate units. The need for this capability was two
fold; one the UAV platforms were not being played
by ModSAF and two, the CLCGF ModSAF is the
only system that understands how to generate the
entity level representation for an aggregate unit.

3.2.2 Implementation

Initialization of libproxy occurs for all CLCGF
ModSAF's during startup. Libproxy is initialized
with a ModSAF reader file, in which a mapping
between the Eagle unit designation is made with the
expected 'base' marking of the entities being reported
via the ESPDU. During initialization, a proxy table
is created, storing the aggregate marking with the
expected base marking for each entry in the reader
file. If the proxied unit is to simulate a sensor, the
sensor name must also be included within the reader
file. This table provides a means by which either the
SIU or the proxy machine may query libproxy to
ascertain the status of a proxied unit.

As with a disaggregation command, when a unit is
commanded to be proxied, the SIU assumes
responsibility for providing the information necessary
to keep Eagle updated as to the status of the proxied
unit. However, unlike the process of disaggregation,
the SIU does not initiate the creation of the entities
comprising the aggregate, but instead the SIU utilizes
the data received from remote entities being reported
via the ESPDU to provide the inputs required to
update Eagle. The SIU commences the proxy process
by querying libproxy to determine if this unit was
specified as a proxy unit in the reader file. If this unit
was identified as a proxy, the SIU extracts the 'base'
marking for the remote entities, and begins a search
of the main vehicle table (VTAB), looking for
REMOTE_VEHICLES which contain the specified
'base' marking. Upon finding a match, the SIU
updates the proxy table with the vehicle id and
entity-marking of the received remote. Since
aggregates typically are defined to contain more than
one vehicle, the SIU does not consider a unit proxied
until remote entities representing each constituent of
the aggregate have been found in the vehicle table,
i.e. if the Eagle aggregate is composed of 10 entities,
the SIU must find 10 remote vehicles, each having a
unique marking comprised of the base marking, to
complete the proxy of this unit. If Eagle requests a
status update on a unit, for which not all constituents
have been remotely simulated, the SIU reports back
to Eagle the last state of the aggregate. Upon
completion of the proxy, i.e. all constituents of the
aggregate are represented as remote entities, the SIU
creates an average representation of the positions and
velocities of the remote entities, and reports this
average back to Eagle upon request. Each time Eagle

295

requests a status update on a proxied unit a check is
made to insure that all remote entities comprising the
proxied unit are still active. If any constituent is not
currently being simulated the SIU reverts to reporting
the last state of the aggregate, and begins the search
for the constituents of the aggregate again.

A goal of the JPSD program is to integrate live
tactical forces into the simulation environment. For
the JPSD 95 demonstration, a live UAV was
introduced into the exercise by means of telemetry
data transmitted to a ground station. The ground
stations translated the coordinates of the UAV from
CONUS coordinates to the simulated battlefield in
Korea and generated Entity State PDU's, providing a
method whereby the live UAV was incorporated into
the exercise. Use of the proxy technique allowed the
attachment of a sensor component to the remote
entity.

To accomplish this task a dedicated ModSAF was
initialized with a new command line argument, -
proxy', which permitted tagging remote entities as
proxy vehicles within libremote. On the machine
performing the proxy, libremote queries libproxy to
determine if the received entity is a proxy vehicle.
This check occurs only on the initial reporting of an
entity to libremote i.e., the entity has not yet been
assigned a vehicle id. If the vehicle is identified as a
proxy, libremote tags the entity as
VTAB_REMOTE_PROXY and adds the vehicle to a
proxy tick list, allowing us to tick the vehicle similar
to a remote but with the additional sensor
components added.

Upon determination that a remote is to perform a
proxy mission, a check is made to retrieve the sensor
component to tick from the proxy table. As with
local vehicle processing, proxy utilizes the parameters
files defined for the simulation of each vehicle.
Within these files, more than one sensor component
may be specified for the vehicle. To insure that only
the desired sensor was activated, all defined sensor
components are initially deactivated, then based on
the specified component in the proxy table, the
specific sensor is activated

3.3 Distributed Eagle

Eagle was initially designed to simulate units at the
battalion-level and higher. CLCGF requires that
units which are candidates for disaggregation be
simulated at the company/battery level. Eagle
scenario developers have made the necessary
accommodations to support the CLCGF effort.
However in doing so they have increased the unit
count in Eagle to the point where run speed has
become an issue. During JPSD 1995 the Eagle

scenario consisted of approximately 300 units. In
order for Eagle to maintain real-time while connected
to the SIU, the Eagle time step was changed to 3
minutes. Clearly a performance improvement was
necessary for the FY 1996 demonstration, which was
planning a 600+ unit Eagle scenario. The solution
was to develop 'Distributed Eagle'.

Distributed Eagle seeks to increase the size of
scenarios it can support by dividing up its scenario
among multiple platforms. Distributed Eagle
communicates over a local area network, through the
use of ALSP. Distributed Eagle was developed by
TRAC Fort Leavenworth as an enhancement to the
existing model. Its main purpose has been to
increase the size of the Aggregate battle.

The Aggregate Level Simulation Protocol (ALSP)
was designed to permit multiple, pre-existing warfare
simulations to interact with each other over local or
wide area networks. In concept it was patterned after
SIMNET (now Distributed Interactive Simulation -
DIS) where each simulation controls its own objects
and shares information about them with other
simulations. The advantage to this type of protocol is
that aggregate level constructive simulations which
represent distinct segments of a battlefield can be
connected and thus effectively provide a common
environment to support major training exercises.

For the JPSD 1996 Demonstration the planned Eagle
scenario has 600+ units which will be simulated by
two Eagle <-> SIU combinations running in parallel.
Up to four Eagles can be connected via ALSP. The
CLCGF system has been designed such that various
combinations of Eagles and SIUs can be supported.

3.4 Tactical Message Processing

CLCGF's version of ModSAF 2.0 has been modified
to process a subset of the "tactical messages" which
are produced by live/simulated systems used by
JPSD. To accomplish the tactical message
processing two new libraries have been added to
ModSAF. These new libraries support processing for
the following tactical messages; Reconnaissance
Exploitation Report (ReccExRep), JPSD Sensor
Control messages, and Fire Mission Call For Fire
(FM;CFF) messages.

All tactical messages used by JPSD are sent wrapped
within a Signal PDU. The new libraries added to
ModSAF to support control of and processing for
tactical messages are libtactmsgcntrl and libtactmsg.
Libtactmsgcntrl provides the user with a GUI that
allows processing of the supported messages to be
enabled/disabled. In addition, the operator is able to
select which radio nets should be listened to.

296

Libtactmsg is responsible for registering a callback
with libpduproc to catch all Signal PDUs. The
callback function consults libtactmsgcntrl to
determine which types of messages and which radio
nets are to be processed. Given that a message passes
these tests it is then dispatched to a parser to
determine message type and contents.

The ReccExrep message contains a sensor report
being transmitted by one of the UAVs. Each UAV is
assigned it's own PO overlay in which to store PO
PointClass objects. A new PointClass object is
created for each ReccExrep received. The operator is
free to show/hide or even delete any overlay using the
ModSAF overlay editor. This capability will allow
JPSD to capture where each UAV is reporting targets
and determine how accurate the intelligence reports
are with respect to ground truth. Having the ability
to view ground truth and perceived truth (intelligence
picture) on a single system is a very valuable tool
which should provide additional insight into how the
scenario is unfolding.

The JPSD Sensor Control message was developed to
provide an operator with a mechanism for controlling
the flight path of simulated UAVs with out having to
use the ModSAF PVD. This capability provides the
operators at a tactical workstation with the capability
to, for example, task a UAV to fly over a specific
area for Bomb Damage Assessment (BDA) or to
confirm an enemy location prior to generating a call
for fire message. As Sensor Control messages are
received the designated UAV is given a new route by
creating a new PO LineClass object using the given
waypoints. Once the new route has been created the
PO object id for the current route is replaced with the
new object id. The existing ModSAF fly route
behavior continuously monitors the route and
automatically re-directs the UAV based on the new
route information. In addition to route modification
the Sensor Control PDU is also used to
enable/disable the UAVs sensor.

The JPSD FM;CFF is issued by the ADOCS to
initiate a fire mission. The SIU is responsible for
taking the following actions when an FM;CFF is
received. Disaggregation of the target area, and
disaggregationofthe shooter if the mission is being
issued to an aggregate unit under CLCGFs control.
Note that disaggregation of the shooter is optional
and in fact TAFSM will be responsible for all MLRS
firings during JPSD 1996.

3.5 New SIU Client Applications

The original interface between the SIU and Eagle
consisted of approximately 6 commands which
utilized RPC and shared memory as the
communication mechanism. During JPSD 1995 we
found that the RPC/shared memory interface was
unreliable during periods of heavy network traffic.
As a result a decision was made to use TCP/IP
sockets to interface the two systems. The socket
interface has worked very well to date and given us
the reliability that was lacking during 1995.

During 1996 two additional SIU clients have been
developed in addition to Eagle; the Simulation
Planning Agent(SPA), and the Scenario and
Infrastructure Analysis Tool (SAT/IAT). The SPA is
being developed under the Rapid Battlefield
Visualization program, while the SAT/IAT is being
developed under the STOW Exercise Implementation
(XI) effort. (Juliano et. al. 1996)

3.5.1 Simulation Planning Agent (SPA)

The purpose of the SPA is to interface the SIU with
MCS/P. (See Figure 2) The current system is utilized
in 2 modes; as a wargaming tool, and as a
visualization tool.

As a war gaming tool the SPA extracts a snap shot of
the MCS/P database, parses it and forwards the
relevant information to the SIU via the socket
interface. The SIU then instantiates each of the
aggregate units and begins transmitting Aggregate
State PDUs. (ASPDU) At this point a user sitting in
front of a ModSAF PVD can disaggregate units of
his/her choosing and run "what if type scenarios
using ModSAF. As the scenario is executing the
SPA is probing the SIU for the status of each
disaggregated unit. The SPA then updates the
MCS/P overlay with the status of the war game.

As a visualization tool the SPA continuously extracts
unit information from the MCS/P and forwards it to
the SIU. The SIU in turn creates the given units and
begins transmitting ASPDUs. This capability will
allow the commander to visualize the current state of
both friendly and enemy troops based on current
intelligence information. The current system utilizes
the ModStealth to render the 3D view.

The ability to run what if scenarios and to visualize
the current state of the troops is sure to provide the
commander with a powerful decision aid.

297

Simulation
Planning
Agent (SPA)

socket

>

1

1
RPC

MCS/P

ModSAF-SIU

Version 2.0

DIS

3.5.2 Scenario Analysis Tool / Infrastructure
Analysis Tool (SAT/IAT)

The Scenario and Infrastructure Analysis tools
(SAT/IAT) are currently being developed by SAIC
under the SEID contract to support STOW (Synthetic
Theater of War) Exercise Implementation (XI)
system. The simulation is responsible for aiding in
the exercise generation, management and analysis
process for Computer Generated Forces (CGF).
Since future CGF exercises, including STOW, are
required to support a distributed exercise of a large
number of entities, a pre-exercise faster than real-time
determination of scenario, network and computational
validity is necessary. The SAT/IAT simulation
executes at a rate on the order of several hundred
times faster than real-time.

The current system consists of the SAT/IAT
application with an optional interface to the CLCGF
SIU. (See Figure 3) Again the socket interface
originally developed to allow ModSAF and Eagle to
communicate has been reused. The SIU has two uses
under the exercise generation effort; as a PVD to
visualize the status of a SAT/IAT scenario, and as
GUI for creating SAT/IAT scenarios.

Figure 2: SPA Interface Block Diagram
As a PVD the SAT/IAT simply requests that the SIU
create each unit in its scenario so a visual
representation of the scenario will appear on the
ModSAF PVD. Once the units have been created by
the SIU the SAT/IAT scenario is executed. During
the execution phase the SAT/IAT continuously
updates the SIU with the latest unit information.
The ModSAF PVD gives the user the ability to
visualize how the forces are positioned as well as an
indication of each units strength.

As a GUI for creating SAT/IAT scenarios the
ModSAF PVD is used to lay down forces and assign
behaviors for Aggregate units (currently move is the
only supported behavior). The operator uses the
current ModSAF unit editor and execution matrix to
create and task aggregate units. Once the operator has
completed development of a SAT scenario he/she
selects the "SAT/IAT Load Scenario" option under
the "File" pulldown on the ModSAF PVD. The
"SAT/IAT Load Scenario" feature then cycles through
the PO database extracting all relevant scenario
information. The relevant scenario information is
then output as ASCII text in the format required to
be used as input to the SAT/IAT application.

By interfacing the SAT/IAT with the SIU the
Exercise Implementation effort has obtained several
significant capabilities; a PVD for visualization, and
a planning GUI for scenario generation.

298

SAT

socket
-K > ModSAF-SIU

Versbn2.0

SAT/IAT Scenario Inp ut

Figure 3: SAT/IAT Interface Block Diagram

3.6 North Korean Rocket Launcher threat

For the JPSD 1996 demonstration, the CLCGF
ModSAF will be used to portray a North Korean
Multiple Rocket Launcher (MRL) threat. The new
threat behavior is being developed as a company level
task which reused a significant portions of several
existing ModSAF tasks. A key area of investigation
for JPSD 96 is the effect of the destruction of
logistics support on the overall tempo of the battle.
The new MRL task will permit an in-depth analysis
of the affects of eliminating the capability to re-
supply shooters. The new behaviors, modeled at the
company level, provide enhanced capabilities over the
existing MLRS and service station behaviors
currently incorporated within ModSAF. These new
capabilities include:

• Ability to conceal MRL and re-supply
vehicles in caves to avoid detection by
airborne sensors or other intelligence
gathering assets.

• Automatic route generation utilizing the
defined road network if available.

• Modeling of company level re-supply
behaviors.

As experience in the Gulf War proved, tracking and
ultimately destroying the SCUD launchers proved to
be a very difficult task. The tactics of hide, shoot,
and hide proved to be a very effective technique in
eluding the enemy and subsequently surviving to
fight again. The MRL task currently being developed
provides the same basic ability. The MRL task is
designed to search an area around the initial unit
placement for caves, which are reported via Entity
State PDUs. At initialization of the MRL task, a
determination of unit placement is made. This
determination compares the locations of the vehicles
comprising the unit, with the reported caves. For

units located within the confines of a cave, the task
sets the concealment bit (bit 19) for each vehicle in
the unit, thereby hiding the unit from airborne
sensors and protecting the vehicles from the effects of
the majority of weapon systems which would be
employed. While in a concealed state, the only way a
vehicle can be damaged is for the cave to sustain
damage, thereby trapping the concealed vehicles in
the cave.

Once the determination of concealment and possible
damage has been made, vehicle level movement is
utilized to move the undamaged vehicles from the
cave which causes them to become visible. Once all
vehicles have exited the cave, a route is computed to
move the company from the current unit location to
the designated fire location, using the road networks
defined in the terrain database. A company march
task is assigned to the unit, tasking it to follow the
generated route. When the unit arrives at the fire
location, the unit aligns along a user defined firing
azimuth. Set-up timers, defined for the type of
shooters are used to simulate the time necessary to
prepare the unit to fire. Upon termination of the set-
up timers, the unit performs a coordinated barrage
attack against the target area, firing a user specified
number of rounds. Upon conclusion of the fire
mission, the unit begins a tear-down process, where
tear-down timers simulate the time required to
prepare the unit to travel. At the expiration of these
timers, a new route, generated as before, takes the
unit from the current location to the defined re-supply
point, utilizing the road network if possible. The unit
is tasked again with a company march and proceeds
to the re-supply point.

Upon arrival at the re-supply point, the MRL task
determines if re-supply is possible. Re-supply is
defined as possible if the following conditions are
true:

• The re-supply unit is not damaged.

299

• The re-supply unit is not moving, i.e.
the designated re-supply vehicles are at
the re-supply point.

• The re-supply unit is within range of
the re-supply point, i.e. the re-supply
vehicles have not been stopped due to
damage.

If any of the conditions for re-supply fail, the MRL
task will not attempt to perform the re-supply. In the
case where all the re-supply vehicles for a battery are
damaged, the MLR task will compute a route back to
the initial starting location of the unit and the
behavior will terminate. In the other cases, i.e. the
re-supply vehicles are moving, or the re-supply
vehicles are not within range, the MRL task will wait
at the re-supply point for a user defined period.
During this wait cycle, the MRL task will check the
conditions for re-supply, and if the conditions are
met for re-supply, the company service station task
will be spawned. If after the expiration of the wait
timer, the re-supply vehicles still have not reached
the re-supply point, the MRL task will compute a
route back to the initial start location of the unit and
terminate the behavior for the company.

The MRL task makes several coarse level checks of
the current situation prior to spawning the company
level service station task. These checks are in place
to determine if the conditions are such that a re-
supply is even possible. If re-supply is deemed
impossible due to a missed rendezvous or damage to
re-supply vehicles the company service station task is
not spawned and the scenario continues without a re-
supply cycle. As stated earlier, the effects of
removing the logistical supply lines are very
important considerations under study for the 1996
demonstration. By removing the enemies ability to
re-supply you remove or severely impair his ability
to fight.

When the base conditions for re-supply have been
met, the MRL task spawns the company level service
station and re-supply of the shooters is attempted.
The re-supply behavior was implemented at both the
company and platoon level. The company level task
was developed from scratch while the platoon level
task leveraged previous ModSAF development. At
the company level multiple supply vehicles are used
to facilitate re-supply under the following situations.

• The first situation is re-supply of an
MRL company in the open. Each
platoon in the company is tasked to re-
supply from the closest, first available,
undamaged supply vehicle. Each vehicle
in the platoon receives supplies until
the entire unit has been completely
supplied. If there are more platoons than

supply vehicles, upon completion of a
platoon re-supply, the waiting platoon
would then be assigned to the available
re-supply vehicle. If at any point
during the execution of the re-supply
task a supply vehicle is damaged the
platoon terminates the current re-supply
behavior and returns to its starting
position. If any receiving vehicles are
damaged while re-supplying then the
next vehicle to receive supplies would
begin re-supplying.

• The second situation is re-supply of an
MRL company within a cave. The
company level task determines the
number of undamaged caves available,
the number of platoons to receive
supplies and how to distribute the
platoons such that re-supplying them
would be efficient. It then tasks the
platoon(s) to travel to the cave to be
supplied. Once the platoon enters the
cave it is deemed concealed and the re-
supply process begins. If the cave is
damaged while the vehicles are re-
supplying then the re-supply task
terminates to reflect the damage to the
cave, and any vehicles in the cave are
considered trapped and unusable.

Upon completion of the re-supply mission, the MRL
task will re-execute the same steps as described
above, moving the unit to the next fire location and
performing a new fire mission.

4. Future Work

Our future development will be guided by the needs
of the JPSD program and other CLCGF users.
Possible future development areas include the
following:

- integration with other fielded or prototype tactical
equipment.
- continued support of both the Rapid Battlefield
Visualization and the STOW Exercise
Implementation efforts.
- enhancements to the existing JSTARS capability
- summarizing and reporting DIS indirect fire to
Eagle so units played within the constructive model
can be attritted by DIS indirect fire
- full parsing of Eagle OPORDs and the utilization of
CCSIL to task disaggregated units.
- Work with LADS on the integration of a core
aggregate capability into the ModSAF baseline.

5. Acknowledgment

300

This work is being sponsored by STRICOM, the
Topographic Engineering Center (TEC), and the
Depth and Simultaneous Attack Battle Lab at Ft.
Sill, under the Joint Precision Strike Demonstration
program, contract number DACA76-93-D-0007. We
would also like to thank TRAC Ft. Leavenworth for
their efforts in the development of Eagle scenarios,
and the development of the Eagle <=> SIU socket
interface.

6. References

Calder, R., Peacock Jr., J., Panagos, J., , Johnson,
T., "Integration of Constructive, Virtual, and
Engineering Simulations in the JPSD CLCGF",
Proceedings of the Fifth
Generated Forces and
Orlando, FL, May 9-
Calder, R., Peacock Jr., J.

Conference on Computer
Behavioral Representation,
11, 1995.
Wise, B., Stanzione, T.,

Chamberlain, F., Panagos, J. , "Implementation of
a Dynamic Aggregation/Deaggregation Process in
the JPSD CLCGF", Proceedings of the Fifth
Conference on Computer Generated Forces and
Behavioral Representation, Orlando, FL, May 9-
11, 1995.

Mitre Corporation, "Aggregate Level Simulation
Protocol (ALSP) Program Status and History",
March 1993.

of Science degree in Computer Science
Massachusetts Institute of Technology.

from

Thomas E. Johnson is a Senior Software Engineer
in the Electronic Systems Division at Raytheon
Company. He has been involved in the development
of real-time simulation models and manned flight
simulators over the past fourteen years. His primary
interests are in the area of man-machine interface and
the development of tactical simulation models. Mr.
Johnson has a Bachelor of Science degree in
Aerospace Engineering from the Virginia Polytechnic
Institute and State University, Blacksburg, VA.

7. Authors' Biographies

Jeffrey C. Peacock, Jr. is a Senior Software
Engineer in the Technology Research Group at
Science Applications International Corporation. He
has been involved in the development of DIS CGF
systems for past two years. Prior to entering the DIS
CGF arena Mr. Peacock spent 7 years developing
real-time embedded software systems. Mr. Peacock
holds a Bachelors of Science degree in Computer
Science from Merrimack College, Andover, MA.

Kevin C. Bombardier, is a Software Engineer in the
Technology Research Group at Science Applications
International Corporation. He has been involved in
the development of DIS CGF systems for the past
year. Mr. Bombardier holds a Bachelors of Science
degree in Computer Science from Merrimack College,
Andover, MA.

James Panagos is a Consultant for SAIC. He has
been involved in the development of DIS CGF
systems for over 10 years, and is currently performing
design and development on the ARPA Command
Forces (CFOR) project. His primary research
interests are in the area of tactics, behavior
representation, automated planning and generation for
computer generated forces. Mr. Panagos has a Master

301

A Strategic Plan For The Integration Of
ModSAF And CCTT SAF

Major John D. Norwood, Ph.D.
Simulation, Training, and Instrumentation Command
12350 Research Parkway, Orlando, FL 32826-3276

norwoodj@stricom.army.mil

1. Abstract

In recent months, there has been increasing
interest in the potential for integrating the
functionality of two separate Semi-Automated
Forces (SAF) products ~ Modular Semi-
Automated Forces and Close Combat Tactical
Trainer SAF (CCTT SAF). The overarching
concept is to develop and test an underlying SAF
architecture that can be used to combine or
integrate the features and functionality of these
products. This concept originally grew out of
meetings between the Project Manager for
Combined Arms Tactical Trainer (PM CATT)
and the Defense Advanced Research Projects
Agency (DARPA), as a concept for technology
transfer. SAF Integration has been subsequently
incorporated into the Computer Generated
Forces (CGF) Assessment conducted by the
Army Materiel Systems Analysis Activity
(AMSAA). Additionally, both the Deputy Under
Secretary of the Army for Operations Research
(DUSA(OR)) and the Army Acquisition
Executive have endorsed the program as the
Army strategy for its potential in eliminating
duplication of effort in SAF development and
potentially facilitating the migration to a single
SAF product. This paper presents an overall
strategy consisting of a series of experiments and
technical assessments which address key issues
in achieving an integrated SAF for the Army.

2. Background

Semi-Automated Forces (SAF) is an area of
considerable interest to the modeling and
simulation (M&S) community. SAF allows one
to represent multiple, unmanned entities in the
synthetic environment with some measure of
intelligent behavior and human-like functionality.
SAF first began as an outgrowth of the Defense
Advanced Research Projects Agency (DARPA)
Simulation Networking
(SIMNET) program. Early on, it was understood
that the cost of fieldina large numbers of manned

simulators was prohibitive, and that a method of
fleshing out the forces with tactically meaningful
numbers of entities must be found. A second
motivation for developing SAF was that an
intelligent enemy force was needed for training
in the synthetic environment. The eventual
solution was a SAF system, in which multiple
entities were controlled from a single, low-cost
computer platform. While SIMNET was well
received in the training community, it was fielded
with limited functionality and documentation and
was not easily modifiable to include new or
enhanced capabilities.

ModSAF (Modular Semi-Automated Forces)
traces its lineage to the SIMNET program. As its
name implies, ModSAF modularized the
software code associated with both SIMNET
SAF and ODIN (73 Easting) SAF. In 1993,
DARPA began building ModSAF by developing
an open architecture, which could be used to
create synthetic agents for a variety of
Distributed Interactive Simulation (DIS)
applications. The initial effort fielded a system
in December 1993 to support the What-if
Simulation System for Advanced Research and
Development (WISSARD) program, which had a
requirement for beyond-visual-range, air-to-air
engagement scenarios. After the initial release,
additionally Battlefield Operating Systems
(BOS) and behaviors were added to ModSAF in
order to fill out the synthetic battlefield.
Concurrently, the Simulation, Training, and
Instrumentation Command (STRICOM) agreed
to fund an effort to document this revised code.
ModSAF 1.2 was released in June 1994 and
included the majority of systems that had been
represented in the previous SIMNET SAF
version.

Close Combat Tactical Trainer (CCTT) SAF is
being developed and fielded as an integral part of
the CCTT program. When CCTT was awarded
in November 1992, SAF development was
considered the highest risk area of the CCTT

303

program, potentially having significant
performance, schedule and cost risks. Initially,
the CCTT program focused on developing a new
SAF product; however, after identifying several
major design deficiencies with the chosen design
approach, a SAF Trade Study was initiated to
determine the best way to proceed. The Trade
Study recommended that ModSAF be re-
engineered to accommodate the CCTT software
environment, while incorporating many new
functional, system, and visual requirements
specific to CCTT. To facilitate this re-
engineering effort, CCTT developers were
placed at the ModSAF development facility in
Cambridge, Massachusetts, and a ModSAF
engineer was hired for CCTT. Thus, while
CCTT SAF was an evolution of the ModSAF
baseline; significant changes were made which
caused it to diverge from the ModSAF 1.2
baseline. This divergence hinders compatibility,
data interchange, and software reuse between the
two products.

While ModSAF and CCTT SAF evolved from a
similar backgrounds, they are in fact very
different products. Key reasons for this
disparity are that they were developed for
different simulation domains, are intended for
use by different simulation communities, and
have differing needs in terms of differing
verification, validation, and accreditation
(W&A). ModSAF, built by DARPA has been
used primarily as a research tool and has found
wide-spread support in the research and
development community. On the other hand,
CCTT SAF is focused primarily on training
issues and must be verified, validated, and
accredited (W&A'ed) by the training
community. This situation springs from the
necessary dichotomy in modes of operation
between DARPA, a technology developer, and a
program management office, like PM CATT.
DARPA develops technology with sufficient
representative functionality to demonstrates the
utility of the approach to an operational user.
Conversely, a PM office focuses on providing the
required functionality with sufficient technology
to meet a user's set of approved operational
requirements. Key to this effort is a
demonstrated commitment between DARPA and
PM CATT to transition technology as it is
developed to provide the operational user with
increased capability and functionality. This
commitment is most evident in the Command
Forces Memorandum of Agreement, which

stresses a cooperative effort in development and
transition of CCSIL. A similar agreement is
appropriate for SAF Integration.

In January 1995, Mr. Walter Hollis, Deputy
Under Secretary of the Army for Operations
Research, commissioned the Army Materiel
Systems Analysis Activity (AMSAA) to assess
the status of the major SAF systems currently in
use throughout the Army. The specific purpose
of the CGF Assessment was to evaluate
alternative CGFs for all Army DIS Domains:
Advanced Concepts and Requirements (ACR);
Training, Exercises, and Military Operations
(TEMO); and Research, Development, and
Acquisition (RDA). A key conclusion of the
CGF Assessment was that no CGF assessed
meets or will meet all M&S domain application
requirements. This point is also clear from the
discussion presented above. SAF design
decisions are driven by the requirements of the
simulation domain for which they are built. A
second and complementary conclusion is that
while pursuing one CGF to meet the needs of the
entire community is conceptually feasible, it may
not make optimal use of existing resources and
investments. In fact, the leap from
conceptualization to implementation may be
daunting in terms of the technology and
investment required to be all things to all users.
Finally, managing the development of a single
SAF system is highly dependent upon the ability
to bring together the right people and funds in a
management structure that can both develop the
system and meet the requirements and milestones
of the user community.

This document formally describes the SAF
Integration program and presents an overall
strategy for executing the program.

3. Program Goals and Objectives

The overall goal of the SAF Integration program
is to develop and prototype an objective SAF
architecture, which integrates or combines the
functionality of both ModSAF and CCTT SAF.
To accomplish this goal, it is necessary to
identify and assess several intermediate
objectives.

• Establish a greater degree of
interoperability between ModSAF and
CCTT SAF to facilitate experimentation and
evaluation of technical issues.

304

• Identify and assess the technical
barriers/challenges to integrating ModSAF
and CCTT SAF.

• Crosswalk the synthetic environment terrain
representation requirements for ModSAF
and CCTT SAF and integrate these with the
DARPA Integrated CGF Terrain Data Base
(ICTDB) program.

• Propose a flexible and extensible SAF arch-

• Build community consensus for migrating to
the objective system.

4. Experiments

The SAF Integration program is built around a
series of experiments, which progressively assess
key issues in interoperability and integration of
capability. These experiments are shown
graphically in Figure 1. The major issues
affecting SAF integration are: synthetic

SAF Integration Strategy

Experiment 1 ObjectiveSAF
y/ Common

/ Environment

(Full Integration
using Objective
Architecture)

Experiment 4

(Partial Integration)

Figure 1: SAF Integration Strategy

itecture for integrating ModSAF and CCTT
SAF, which considers (and incorporates, as
appropriate) the on-going developments in
the DMSO High Level Architecture,
Distributed Interactive Simulation, and the
Synthetic Theater of War (STOW) 97
programs.

environment interoperability, command and
control, distributed network communications,
and SAF architectural design. The experiments
presented below attack these issues and draw
conclusions, which become important in
assessing and implementing the re-architecture of
the two systems.

4.1. Synthetic Environment Interoperability

305

This experiment addresses the idea of a common
synthetic environment representation for
ModSAF and CCTT SAF. Currently, ModSAF
uses a terrain representation known as Compact
Terrain Data Base (CTDB) and CCTT SAF the
Model Reference Terrain Data Base (MRTDB).
These terrain databases differ significantly in
their capability. To increase compatibility,
CTDB should be enhanced to represent new
MRTDB features, including: additional soils
types, forest templates or basis sets, variable grid
diagonalization, etc. In fact, recent releases of
ModSAF (versions 2.0 and 2.1) incorporated
many of these improvements into the CTDB
format 4. The focus of this first experiment is to
evaluate selected terrain functionality into a
CTDB format 5 and assess performance and
capability tradeoffs and provide this feedback
into both CCTT and the ICTDB program. This
will provide a measure of interoperability to the
two SAF products and provide a basis for future
enhancements and technology transfer between
systems.

4.2. Higher Level Command and Control

This experiment builds on the first experiment by
assessing the ability of a command entity to
simultaneously control both ModSAF and CCTT
SAF in the execution of a common mission. The
command entity will be represented by
leveraging the Command Forces (CFOR)
program and the Command and Control
Simulation Interface Language (CCSIL) being
developed for DARPA by the Mitre Corporation.
This experiment requires that both ModSAF and
CCTT SAF implement CCSIL. In fact, a
ModSAF CCSIL interface has already been
developed and is being extended by the STOW
97 program. This experiment proposes to
integrate CCSIL with CCTT SAF and to
communicate commands to both several
ModSAF and CCTT SAF units from a higher
command entity hosted on either system. A
secondary goal is to integrate this work with the
High Level Architecture (HLA) and the runtime
Infrastructure (RTI). This experiment
accomplishes several objectives. First, it
exercises the CCSIL interface by using it to
control entities separate of ModSAF — its
development environment. Secondly, it provides
valuable insight into the issues associated with
command and control of the two independent
SAF systems. Third, it demonstrates an ability to

task organize using different simulation assets
within an overall simulation exercise.

4.3. High Level Architecture

This experiment identifies and assesses issues
associated with ModSAF and CCTT SAF
interoperating through the HLA RTI. Since
CCTT SAF is participating in the HLA Platform
Proto-Federation (PPF), this experiment
leverages the already planned (and funded) HLA
PPF demonstration for integration of the RTI
into CCTT SAF. Additionally, the STOW 97
program is integrating the RTI into ModSAF.
Both systems will be HLA compliant and
available for experimentation by late summer
1996. Experiments in the PPF and between the
SAF systems will stress the RTI and provide
valuable feedback to DMSO for improving and
streamlining the RTI for entity-level, real-time
simulation systems. It should be noted that
neither SAF is fully integrating the HLA RTI
fully within the systems. This experiment will
focus on providing data as to the long-term utility
of this integration effort.

4.4. Common Services

This experiment uses the results of the three
previous experiments, the output of the Technical
Assessments (described below), and ongoing
work and products developed in STOW 97 to
specify, develop, and implement a prototype
objective architecture for SAF. The DARPA
STOW program has recently been designated as
the developer of simulation technology for the
Joint Simulation (JSIMS) program. In this role,
it is anticipated that a new simulation
infrastructure will be developed suitable for
entity- and aggregate-level simulation. These
plans are currently under development and will
be finalized in July 1996. It is anticipated that
this infrastructure will provide common
simulation services and be applied across the
services in next generation simulation systems.
The Army must maintain awareness of these
developments and evaluate their utility to entity-
based, platform-level simulation systems, like
ModSAF and CCTT SAF and assess their
applicability in integrating the two products.
This experiment will give insight into the
viability of the new architectures for an objective
SAF and serve as a decision point for continuing
the SAF Integration program.

306

4.5. Objective SAF Architecture

The final experiment builds upon all previous
experiments by further decomposing ModSAF
and CCTT SAF on an objective SAF
architecture. The primary objective of this
experiment is to determine the level to which
both SAFs can be decomposed and to what
extent the component parts can be shared. This
experiment addresses how various component
(models, algorithms, behaviors, etc.) can be
shared as common services, to what extent they
can be interchanged for a given application, and
what composition relationships must exist in
configuring a SAF application. This experiment
pushes the state-of-the-art in architectural
developments and will provide insight into entity
level simulations in a global sense. This
experiment leverages STOW architectural
development and improves upon it where
appropriate. The results and conclusion may be
useful to such ongoing programs as CATT,
WARSIM, andJSIMS.

5. Technical Assessments

A key premise of the SAF Integration program is
that much of the ModSAF and CCTT SAF
functionality can be shared and/or migrated from
one system to the other. It is important to
evaluate many key technical areas to assess
implementation issues, degrees of software reuse,
impacts of new technologies, and the ability to
migrate functionality to an objective SAF system.
These assessments will generate insight into the
issues associated with developing an objective
SAF architecture and reusing components and
features of both ModSAF and CCTT. The
following technical assessments have been
identified to date:

Assess the implementation issues associated with
incorporating the CCTT SAF Hulls Computer
Software Component (CSC) into ModSAF. The
Hulls CSC contains the CCTT SAF mobility
codes, which provide enhanced functionality to
ModSAF. This assessment provides insight into
the ease of software reuse and the ability of the
ModSAF Generic Model Interface (GMI) to
accept CCTT SAF code.

5.3 Global Coordinate System (GCS)

Assess the impact of the Global Coordinate
System (GCS) on CCTT SAF and the objective
SAF architecture. GCS provides a significant
enhancement over coordinate projection systems
currently used in SAF. GCS provides curvature
of the earth information to local coordinate
systems. A key issue will be the system impacts
of implementing GCS on both SAF Systems.

5.4 Behaviors

Assess implementation issues associated with
migrating and/or sharing entity behaviors
between ModSAF and CCTT SAF. CCTT SAF
has developed a library of verified, validated,
and accredited (VV&A'ed) behaviors using a
methodology of developing and implementing
Combat Instruction Sets (CIS). Additionally,
many ModSAF behaviors have been W&A'ed
for the Anti-Armor Advanced Technology
Demonstration (A2ATD) and other programs.
Since both systems use a Finite State Machine
(FSM) architecture for implementing behaviors,
it seems plausible that behaviors could be
migrated from one system to the other and
certainly to the objective system.

5.1. Software Languages 5.5 Private Protocols

Assess the ability of Ada 95 and Common Object
Request Broker Architecture (CORBA) to
overcome computer software language
differences between ModSAF and CCTT SAF.
Both Ada 95 and CORBA have the potential to
incorporate existing software without a
significant recoding effort.

5.2 Reuse

Assess the ModSAF Persistent Object Protocol
(POP) and the CCTT SAF Synthetic
Environment Object Database (SEOD) for
commonality and applicability to an objective
SAF architecture. Currently, both ModSAF and
CCTT SAF provide command and control
communications using private protocols. It is
important to understand the POP and SEOD
implementations in structuring the objective
architecture.

307

5.6 Synthetic Environments

Assess the DARPA Synthetic Environments (SE)
work currently on-going in Dynamic Virtual
Worlds (DVW), Weather in DIS/Total
Atmosphere and Ocean Server (WINDS/TAOS),
and Dynamic Terrain and Objects (DTO) for
implementation in CCTT SAF and in the
objective architecture. STOW SE is developing
and integrating significant SE enhancements to
ModSAF, these improvements should be
evaluated for applicability and use in the
integrated SAF system.

5.7 Terrain Format

Assess the ICTDB representation for
implementation in the integrated SAF. ICTDB
is already supplying a synthetic environment for
ModSAF. An important part of this assessment
will be to provide a complete set of requirements
to support both SAFs. Any gaps or missing
functionality must evaluated with respect to its
future impact on both systems. Also, key issues,
such as the use of integrated triangulated
irregular network (mN) must be assessed.

6. Key Issues

Several key issues have been identified that
impact on an eventual SAF integration. These
issues must be resolved over time and determine
to a large extent the form of the objective SAF
architecture.

6.1 Monolithic System versus Software
Repository

The concept of a single SAF system may be
outmoded. One can envision a SAF that serves
multiple users and applications by linking
together software modules retrieved from a
central software repository. However, this
concept presupposes a flexible and highly
extensible SAF architecture that can dynamically
link diverse software components to form a SAF
construct for a specific application.

6.2 Common Services

There is much discussion currently concerning
the idea of providing common services via a
distributed architecture. An important product of
this effort will be to identify these common
services and confirm that they can indeed be

distributed in some fashion in a real application.
Identification of these services will impact
directly on development of the objective
architecture. This issue is being addressed
partially by the HLA.

6.3 Common Terrain

The DARPA ICTDB effort is being incorporated
directly into ModSAF. It is important to
understand the structure and implementation of
ICTDB and ensure that future development
incorporates the requirements of CCTT SAF. To
better understand this issue a capability matrix
must be developed which crosswalks the
capabilities of ICTDB, MRTDB, and CTDB.
This matrix will highlight commonality and
identify gaps and shortfalls with respect to the
various formats.

7. Program Management

7.1 Participating Agencies

Several DoD programs are developing
technology which is crucial to the SAF
Integration program, several of whom are
identified above. Additionally, this program has
received high level attention throughout the
DoD. While SAF Integration will be
principally managed in PM CATT, an Integrated
Product Team (IPT) will also be formed to guide
the overall development effort. The IPT will
initially consist of participants from the following
agencies: STRICOM, AMSAA, the National
Simulation Center, the TRADOC Analysis
Agency, and DARPA. The IPT will be chartered
and chaired by PM CATT.

7.2 Related Programs

Several programs are currently underway, which
potentially have interest in the interoperability
and eventual integration on ModSAF and CCTT
SAF. These programs may be leveraged directly
by focusing experiments and/or technical
assessments to produce results of particular
interest. However, the concept of leveraging for
SAF Integration, while necessary to the success
of the effort, does not appear to be sufficient to
ensure overall program success. Programs with
direct interest in SAF Integration include but are
not limited to: STOW 97, JSIMS, WARSIM,

308

ModSAF developers, CCTT, and the High Level
Architecture.

8. References

DMSO Survey of Semi-Automated Forces, July
30, 1993.

A Self-Assessment of CCTT SAF, March 1, 1995.
Modular Semi-Automated Forces (ModSAF)

Review by the Computer Generated
Forces (CGF) Evaluation Team, June
30, 1995.

Minutes of SAF Merge Meeting, June 25, 1995.
Minutes of SAF Merge Meeting, July 20, 1995.
Minutes of SAF Merge In-Process Review, Sept.

19, 1995.
Memorandum of Agreement between DARPA

and PM CATT on Interoperability of
DARPA Command Forces and
STRICOM CCTT Semi-Automated
Forces (CCTT-SAF), 2 June 1994.

9. Biography

Major John D. Norwood is assigned to the
Simulation, Training, and Instrumentation
Command (STRICOM) as an Assistant Project
Manager for the Combined Arms Tactical
Trainer program. He holds Master of Science
and Doctor of Philosophy degrees in Mechanical
Engineering from Rice University, concentrating
in the field of robotic control. He has been
selected for promotion to the rank of Lieutenant
Colonel.

309

Session 5a: Agent Architecture

Adkins, U. S. Army, TRAC, Ft. Leavenworth
Hepplewhite, DRA, UK

Kenny, University of Michigan, AI Lab
Reece, UCF/IST

Polling vs. Event-driven Computer Generated Forces (CGF) Architectures

FT

Michael K. Adkins
TRAC-OAC-MRD

Attn: ATRC-FM Mr Adkins
255 SEDGEWICK AVE

LEAVENWORTH KS 66027-2345
adkinsm@trac.anny.mil

1. Abstract

This paper presents a study using a control flow
model of the ModSAF scheduler. The model
consists of two parts: a representation of a polling
architecture like that used in ModSAF and one that
accomplishes the same tasks under an event-driven
architecture. The purpose of this study was to
compare the two approaches as they relate to a CGF
system and analyze the results to see which, if either,
is more efficient. The main focus was on the
scheduler, because it is an important efficiency area in
CGF systems.

The experimental part of the study included
collecting data from runs of ModSAF. The number
of ticks that were recorded for one specific function in
the loop was used for input for the two experimental
models. Results show the differences in efficiency of
the two architectures.

2. Introduction

CGF systems depend on the management of many
simultaneous tasks. This is accomplished using
scheduling methods. The two most common
methods are polling and event-driven.

In a polling architecture, each task in the system is
processed either at regular time intervals or each time
the system makes its way through its list of tasks.
The tasks are "checked on" at these intervals in order
to see if they have a current need for processing, ff
there is something to do, then control is given to the
task, otherwise, the next task in the list is invoked.

An event driven architecture is one in which each task
in the system receives processing time upon the
occurrence of an event. The system does not spend
any time with a task until something occurs which
indicates that it requires processing. This ensures
that a task is not invoked unless it needs to be.

As simulation technology advances, users expect to
run larger applications with higher fidelity.
Demanding simulations impede performance of even
the fastest systems. Small improvements in
efficiency can return significant gains in performance.
In a CGF system, increasing demands due to the

growing size and complexity of simulations require
efficient software designs to ensure maximum
performance. Some implementation methods are
more efficient than others.

In a CGF system, function calls are used to achieve a
specific goal through transitions from one state to
another. For example, the goal of a vehicle may be
to move to a location. It might begin by
transitioning from a state of "stationary" to a state of
"moving in the direction of the desired location".
Other state changes occur as necessary until the goal
is achieved.

ModSAF handles this process by polling or
"ticking" function calls at specified time intervals.
This is accomplished by placing them into a "ring".
Each process, in this case function call, in the ring is
periodically "ticked" to see whether it requires
processing time. If it does, then the appropriate
action is taken. Otherwise control is bypassed to the
next process. It is possible that an event-driven
process would be more efficient, since time would not
be spent checking to see if a specific function needs to
be called. Instead, it would be given control only
when needed.

One purpose for this project was to compare the two
scheduling architectures as they relate to a CGF
system and to analyze the results to see which
method, if either, is more efficient Another reason
was to determine a method for measuring
inefficiencies related to scheduling. ModSAF was the
CGF system used in this comparison.

3. Scheduler

The ModSAF scheduler orchestrates the entire
simulation process by scheduling function calls based
on time priorities and then invoking those functions
as timely as possible in an attempt to keep all
entities and tasks updated throughout the course of
the simulation.

3.1 Relevant Definitions

ring - A ring is a data structure used by the
scheduler to keep track of functions that need to be
invoked at a specific time interval. ModSAF creates

313

two rings by default. One ring contains functions
that need to be invoked every 67 milliseconds and
the other calls them every 29000 milliseconds. More
rings can be added for different time intervals.

tick - A function that gets called periodically is
referred to as having been "ticked" every time it is
invoked by the polling mechanism (i.e. scheduler),
so each call to a function is referred to as a tick.

3.2 Overview

In a CGF system, entities achieve specific goals
through a series of transitions from one state to
another. One method of accomplishing this is by
calling specific functions which perform the steps
required for the desired change to take place. An
example would be a vehicle with a goal of moving
from one location to another. If the vehicle were
sitting still and then set into motion toward its
intended destination, it could be seen as having
changed from a state of "stationary" to one of
"moving in the direction of the desired location".
The appropriate function or sequence of functions
would be called to accomplish this move.

ModSAF handles this process by polling or
"ticking" function calls at specified time intervals.
Each function is first placed onto a priority queue. Its
position (i.e. priority) in the queue is determined by
the time in which it is scheduled to execute. If a
function is to be called only once, then it is removed
from the queue, executed, and then removed from the
system. If it is to be called periodically, then it is
removed from the queue, executed, and then
scheduled onto a ring with other functions that need
to be invoked at that same time interval. Each
function call in a ring is then periodically "ticked" or
invoked to see if it needs to update the status of a
specific entity or process. If updating is required,
then the appropriate action is taken. Otherwise the
next function in line is invoked to see if it has work
to do.

Since the functions have to check to see if there is
work to be done, it is possible that an event-driven
process would be more efficient, since time would not
be used checking for work. Instead, functions would
be invoked only when they need to be.

Priority Queue

function function
• function

function function

.•-runction -v

nctiot

function

67 ms ring

r \
nction funci

function

29000 ms ring

Figure 1 : Basic Structure of the ModSAF scheduler

4. Project Description

The first step was to study the ModSAF scheduler in
order to learn which scheduling method it employs
(polling or event driven). As stated earlier, the
scheduler uses a polling architecture.

Two experimental models representing the polling
and event driven architectures were developed. The

number of productive and non-productive function
calls were recorded from a run of ModSAF and used
to formulate input. In order to keep the amount of
time spent on productive function calls the same, a
delay function is called using the same amount of
delay (delay_time) in both models. The polling
program also allows the user to dictate the maximum
number of passes (maxpasses) that can be made
through the "tick loop", the number of processes

314

i miniber of processes) in the tick loop and the ratio
of good to bad ticks, which is controlled by the
(process_intervaI). If the processinterval = n, then
every "nth tick" would be counted as a good tick.

The models helped to discover some differences
between the two architectures. One of the most
noticeable differences is that a polling architecture
keeps querying the system to see if there is work,
while an event driven one waits for the appropriate
event to occur. When there are only a few tasks in
the system, the polling method may out perform the
event driven, but when the number of tasks becomes
large enough, the overhead in polling may be enough
to allow the performance of the event driven system
to prevail. A variety of different numbers of tasks
were used as input for the two models. Results
support polling as the quicker method with a small
number of tasks, but the event driven surpasses it
once the number of tasks grows large enough.

5. Models

The polling and event driven models represent
straightforward implementations which simulate the
bare essence of each architecture, in order to compare
the differences in efficiency of the two methods.

5.1 Input Data

A function call is considered to be productive if it
performs or invokes a task which is needed by the
simulation at the time the call is made. If a function
call is made when there is no task to be performed,
then it is considered non-productive.

For example, if a run resulted in a case where one-half
of a total of 1000 "functions ticked" were during
times in which the ticked process had something to
do, then those 500 ticks would be considered
productive, leaving the remaining 500 as non-
productive.

The number of productive and non-productive ticks
were recorded from runs of ModSAF and used to
formulate input for the two models.

The ModSAF library Libtracked handles the
changing of states of all tracked vehicles running in a
ModSAF scenario. This library was selected as the
one to gather data from because all that had to be
done to ensure that it was placed into the scheduler
and repeatedly invoked was to create tracked vehicles.
The file trktick.c was modified to count the number
of ticks in which something productive was
accomplished and the number in which there was no
reason to have made the call. The amount of time
which elapsed in each of the instances of non-

productivity was recorded and the average time spent
in each was calculated.

5.1.1 Input for the polling model

The following four variables were used as input for
the polling model.

delay_time = The amount of time in milliseconds to
delay on a productive tick. This time is always the
same for all ticks. This helps ensure that the amount
of productive time spent processing can be easily
accounted for and duplicated in both models.

max_passes = The total number of times to pass
through the tick loop.

number_of_processes = The total number of
processes in the tick loop.

The product of (max_passes * numberofprocesses)
must be equal to the total number of ticks from a
ModSAF run. This gives the option of ticking a lot
of processes a few times or ticking a few processes a
lot of times, while still having the desired number of
total ticks.

process_interval =
number_of_total_ticks/number_of_good_ticks. Th i s
number allows the user to dictate the number of good
and bad ticks. For example, if we let (n =
processinterval), then we can count every "nth tick"
as a good tick.

5.1.2 Input for the event driven model

The following two variables were used as input for
the event driven model.

delaytime = The amount of time in milliseconds to
delay on the occurrence of each event. In an event
driven system, all events are productive, so the delay
is called for each one.

number_of_events = The number of good ticks from
a ModSAF run.

5.2 Implementation

In the example from section 4.1 above, the polling
program would cycle 1000 times, invoking a delay
function every time there was supposed to be
something productive done by the task or process.
To determine when a tick is supposed to be
productive, the total number of ticks is divided by
the number of productive ticks. The result (n), is
how often a tick should be productive (i.e. every nth
tick). During the non-productive cycles, the program

315

would just pass through, not calling the delay
function. It is the overhead of passing through
without doing any productive work that is being
questioned as far as its effect on the overall efficiency
of the process.

The event driven program would invoke the total
number of productive ticks, 500 in this case, taking
one right after the other from a queue and calling the
delay function for the same amount of "delay time" as
in the polling process. The difference is that there
wouldn't be the overhead of passing through without
doing any work that was experienced with polling. It
is important that the amount of productive processing
time spent in both models is the same, so that the
only time difference is in what happens during times
when no productive processing occurs. It is the
amount of time spent on non-productive activities
such as polling that must be minimized so that more
time is available to processes that need it.
The overhead in polling as opposed to the lack of it
in an event driven system is what prompts the
question of differences in efficiency between the two
methods.

6. Results

6.1 ModSAF

The results of the ModSAF efficiency portion of this
study are based on information gathered from the
ticking of the trackedtick function in Libtracked.
This is the only function that was observed in
determining the number of productive and non-
productive function calls made by the scheduler, as
well as in calculating the amount of time used on
non-productive function calls.

If productive work was done somewhere in the
function, a flag was set to true to denote a "good
tick". Otherwise, the flag would be returned from the
function with a false value and be considered a non-
productive tick.

Any function that is placed into the tick loop process
of the scheduler could be used, as well. In fact, this
information would have to be collected from all of the
functions ticked during a run to obtain accurate
results from the entire simulation.

The average time spent on non-productive ticks
ranged between .02 and .05 milliseconds for each
tick. If most of the tracked entities were moving or
engaged in some type of activity, then the number of
non-productive ticks and wasted time was minimal.
As the entities stopped because their task had ended
or due to damage from enemy fire, the number of non-
productive ticks and the amount of time wasted
would rise. The amount of time spent and the

number of non-productive ticks is scenario dependent
due to the fact that there are usually different numbers
of entities engaged in different types of activities.
Different runs of the same scenario can also result in
different outcomes due to the randomness of some
elements, therefore the percentages of productive and
non-productive ticks and time wasted will vary here
as well.

If there are a lot of vehicles destroyed early in a run,
then the number of bad ticks accumulated due to
ticking dead vehicles will be higher than on a run
when most vehicles survived until near the end. The
reason for this is because the tracked_tick function is
still ticked, even when the tracked vehicle it is
checking has been destroyed. This means that as the
number of destroyed tracked vehicles increases, so
will the amount of non-productive time spent ticking
them. In a scenario with multiple engagement areas,
once the tasks are finished or a lot of kills occur in
one area, then more time will be spent ticking these
vehicles instead of being used elsewhere in the
scenario.

The same can be said for scenarios in which entities
are halted in one position while waiting for a specific
event or period of time to elapse before moving or
executing a task. During the waiting period, very
little productive work occurs in the trackedtick
function.

In order to compensate for the variability of different
scenarios, a series of scenarios could be created, with
each one representing different levels of activity. The
resulting data would then be compiled together to
find an average to represent the entire variability
spectrum.

6.2 Models

The amount of time it takes for a model to perform
all of its ticks (polling) or invoke all of its events
(event driven) was used as the measure of efficiency.
The total time it took for the polling model to
perform the designated number of "productive and
non-productive ticks" was compared to the amount of
time it took for the event driven model to invoke a
number of events equal to the number of productive
ticks performed by the polling model. Each time a
model encountered a "productive tick" or an "event",
a delay function was called so that each tick or event
lasted the same amount of time in both models.
Therefore the only difference in the amount of elapsed
time should be the overhead required by the nature cf
the architectures themselves plus the time spent on
non-productive ticks in the polling model.

316

In each instance of testing with actual data from a
ModSAF run, the polling and event driven models
gave similar results for the amount of time each one
required to complete the same percentage of tasks,
with each task completed taking the same amount of
time. Even when the number of non-productive ticks
was extremely high, the overhead in polling them
was not enough to make the event driven system
noticeably more efficient

A comparison of the two models was performed with
a series of tests. The process interval was set at 20
for each test. This means that in all of the tests, only
5% of the total number of ticks were productive ticks

in which the delay function was called. These
numbers would be a rare occurrence in actual runs,
but having a situation bad enough that its occurrence
would be uncommon in actual ModSAF runs would
be a good measure for a "worst case" scenario to
judge results against.

Polling proved to be the faster method when only a
few tasks were used. As the number of tasks
increased, the event driven became faster.

The following table shows the results from the
different numbers of tasks used as input.

Polling Event Driven

Number of Tasks Elapsed Time Number of Tasks Elapsed Time
500 2000 25 2,500
1000 5000 50 5000
25,000 125,200 1,250 125,000
50,000 250,400 2.500 250,200
100,000 500,900 5,000 500,200
1,000,000 5,006,900 50,000 5,003,800

Table 1 : Polling and Event Driven Comparisons

A ModSAF scenario consisting of only tracked
vehicles was run for 100,000 ticks of the tracked_tick
function. The number of productive ticks in this
instance was approximately 50%. Representing this
data as input for the polling model consisted of
100,000 total tasks, with a process interval of 2.
This allows every other task invoked to be a
"productive tick". The event driven model had to
process 50,000 events, which represents 50% of the
total number of tasks used as input to the polling
model. The results showed that the event driven
model completed all of the tasks in 83.414 minutes,
which was approximately 1.6 seconds faster than the
83.440 minute time period used by the polling
method.

7. Conclusions

Results suggest that there are areas in CGF systems
where an increase in efficiency could be beneficial. In
particular, during times of lesser activity, a significant
amount of processing time can be spent on non-
productive polling in the updating of tracked
vehicles. To provide a more accurate result, other
areas handled by the scheduler could be checked
using the same method.

Results from the comparison of the polling and event
driven architectures do not lead one to believe that
one method would be significantly better than the

other with regard to the ModSAF scheduler's
handling of tracked vehicles. However, that does not
necessarily mean that the same conclusion would be
drawn in other areas of ModSAF. All areas that are
handled by the scheduler would have to be tested to
lead to that conclusion.

This project provided valuable insight into
simulation architectures and some of the factors that
influence their performance. Further investigation
would provide more in-depth information and
possibly lead to other conclusions.

8. Future Work

The methods described in this paper could be used
by others to perform similar tests in other areas of
ModSAF, or in other simulation models.

The level of sophistication of the experimental
polling model could be increased by varying the
duration, frequency and types of tasks used in the
model. These changes would provide a more
accurate representation of the polling architecture used
by the ModSAF scheduler.

The mechanism used to time the functions and
models returned results in milliseconds. It is
possible that the execution time of some functions
may be less than one millisecond. Therefore,

317

fractions of time that need to be recorded are being
lost. Getting the results in microseconds may
provide more accurate results.

9. Acknowledgment

The author would like to thank those individuals at
the Institute for Simulation and Training for their
support and assistance in this project which began
while at 1ST for technical training as part of the
TRAC internship development program. Thanks is
also given to Mr. Kent Pickett of the TRADOC
Analysis Center at Fort Leavenworth who provided
editorial assistance.

10. References

Dumpleton, G. "Event Driven Systems", OSE-
C++ Library User Guide, Dumpleton Software

Consulting, Ply Limited, N.S.W. Australia.
Evans, J.B. (1988). Structures of Discreet Event

Simulation. Halstead Press: a division of John
Wiley & Sons, 1988, pp 77-101.

Johnson, M. "Interrupts vs. Polling", Linux
Kernel Hackers Guide Version 0.5, Linux
Documentation Project, subsection 2.3.3.4.

Levy, H. (1990). "Polling Systems: Applications,
Modeling, and Optimization", IEEE
Transactions on Communications, vol. 38,
No. 10, October 1990, pp. 1750.

Silberschatz, A. and Galvin P.B. (1994).
Operating Systems Concepts. Addison-

Westley Publishing Company, Inc., June 1994.

11. Author's Biography

Michael K. Adkins is a Computer Scientist for the
Modeling and Research Directorate of the TRADOC
Analysis Center at Fort Leavenworth, Kansas. He
has earned a Bachelor of Science degree in Computer
Science and in Mathematics. He is currently
pursuing a Master of Science degree in Operations
Research. His research interests are in the areas of
simulation, distributed computing and artificial
intelligence.

318

Broad Agents for Intelligent Simulation

R. T. Hepplewhite and J. W. Baxter

Defence Research Agency,
St. Andrews Road, Malvern, Worcs, UK.
EMAIL {rth,jbaxter}@ signal.dra.hmg.gb

1. Abstract

Computer Generated Forces (CGF) are becoming
increasingly important for controlling entities within
Synthetic Battlefields. The thrust of CGF
development is reducing the large number of
operators required to control battlefield units when
training only a few military commanders.

These automated forces must operate in a spatially
and temporally continuous domain, react to any
situation in a realistic but non-deterministic manner,
using potentially uncertain information about the
world.

This paper describes a "broad agent" approach to
implementing intelligent entities for battlefield CGF
systems, which attempts to avoid using detailed rules
covering every possible contingency but instead uses
more fundamental principles for deriving plans to
achieve objectives. These agents are linked in a
command and control (C2) hierarchy. The agent's
behaviour is implemented as rule sets executed by a
tool-kit, developed to support generic agent
architectures. The tool-kit supports multiple objects
and mechanisms enabling the agents to interact in
synthetic environments.

When the command agent receives an objective it
generates a plan by considering possible sequences of
actions selecting the most appropriate plan for the
current situation. These actions are then acted upon,
and may include giving orders to subordinate
command agents.

Initial results have shown that by considering only a
few actions the agents are capable of generating
complex plans.

2. Introduction

The cost of performing live military exercises to
provide training for future commanders is becoming
increasingly prohibitive. The complexity of training
higher ranking officers in strategic thinking in battle

could require an exercise involving thousands of
troops, which except occasionally is infeasible.

Hence, synthetic environments, (or a virtual
battlefield) are increasingly being used to simulate
battlefield entities and their interactions to provide
commanders with their training experience. Here the
trainee commanders control their forces as in a real
exercise, by issuing orders, but the behaviour of the
units and/or entities are computer generated. The
opposing forces are similarly controlled by an
operator controlling a number of Computer Generated
Force (CGF) units.

These simulators inter-operate (for example using the
Distributed Interactive Simulation, DIS, protocols) to
give the appearance that the commander is competing
against a real adversary. Although this training
method may be more cost effective than live
exercises, it still requires many more operators than
trainees. Additionally the intelligence level of entities
in many systems is such that the operator frequently
has to intervene to correct inappropriate actions of the
units.

It is therefore desirable to increase the level of
automation and intelligence of the CGF systems to
reduce the number of operators and the amount of
operator intervention required. This has lead to a
large number of CGF research activities (see
Ceranowicz 1994; Courtemanche and Ceranowicz
1995; McEnany & Marshall 1994).

Clearly a CGF system should represent realistic
behaviour with minimal operator intervention. In the
complexity of the battlefield the use of reactive
systems or drill procedures is not ideal because it
does not:

1. account for enemy positions or intentions,

2. utilise the environment to its best effect (e.g.
considering the GROUND).

319

Hence, a more general planning system which can
consider the outcome of its actions is seen as a more
appropriate solution to aim at. To achieve this aim,
we are investigating the use of "broad agents" (Bates,
Loyall, & Reilly, 1991) for implementing intelligent
battlefield entities.

This approach aims to remove the need for detailed
doctrinal Combat Instruction Sets (CISs) by raising
the level of decision making. Instead the agent would
have knowledge of the principles of manoeuvres and
constraints about the world allowing orders to be
issued in the form of objectives to be attained thus
endowing the agent with a measure of initiative. This
methodology is in keeping with the current British
Army doctrine of mission command.

This paper examines some important issues in
developing an effective CGF system. An outline is
given of the approach adopted at DRA Malvern to
provide plausible agent behaviour, and some results
are presented.

3. Characterising the Problem

The physical properties of entities (such as
movement, fire rates, ballistics, etc.) can be modelled
correctly using appropriate mathematical models.
However, modelling human behaviour is much more
difficult because representative models are difficult to
specify and are computationally too expensive to
operate within the usual time constraints of a CGF
system. However in mitigation more than one course
of actions may be acceptable in a given situation, and
it is generally sufficient that the CGF chooses a
plausible course of action. Hence, a heuristic
methodology of planning is suited to modelling
behaviour (see Meliza and Varden 1995).
The process of planning within the battlefield is a
complex process. The agent has to take account of
many factors, including:

• Movement of enemy forces.

• The Intention of the enemy force.

• Uncertain, incomplete and out of date
information ("Fog of War").

• Terrain features.

Conventional game theory is inadequate because the
number of possible actions is unbounded.

We have identified five principles which a CGF
should exhibit if it is to realistically represent the real
world:

3.1 Appropriate Actions

The agent should be capable of acting in any situation
it may encounter. A CGF system based on CIS or
drill procedures could easily find situations for which
is does not have a procedure for, in which case it may
not perform any action. Worse is a combination of
situations (such as encountering a minefield while
under air attack) where a procedure must exist for the
combined situation otherwise an inappropriate action
could be executed (such as scatter).

Our approach overcomes these problems by
considering the environment and the effects different
courses of actions would produce and so chooses the
most appropriate plan.

3.2 Act at Tempo

One of the most important considerations in military
operations is that of Tempo. Tempo is where a force
executes sequences of events, or performs several
activities at once, more quickly than the opposition is
able to keep pace with, and hence becomes
overwhelmed. Therefore, to prevent being outpaced
(or out manoeuvred), the commander must be capable
of quick responses to situations whilst maintaining an
overall scheme, so maintaining purpose.

Our implementation has the facility for the agents to
respond to a situation quickly by invoking a reactive
behaviour, but still developing (in the background) an
overall plan of action.

3.3 Co-operative/ Co-ordinated Behaviour

In any operation or activity it is essential that the
agents act co-operatively (or mutually support one
another) for greater effectiveness of the unit. This
holds whether on an offensive manoeuvre (e.g.
covering fire) or a movement operation, which
generally requires good co-ordination of the agents.
For example, only one entity can cross a bridge at a
time.

Effective co-operation results from a hierarchical
command and control structure which includes the re-
allocation of roles following attrition.

320

For this reason and because it corresponds to real C
systems, we have chosen to use a hierarchy of
command agents.

3.4 Operator Interaction

Ultimately the CGF system must interact with a
human operator who provides the overall battle plan,
and can intervene to modify the actions of a unit if
required (e.g. to create a situation to test the trainee).
Therefore, the method of communicating information
between the operator and the entities must be in a
form which is clearly understandable, and in a
familiar format (e.g. see Ceranowicz, Coffin, Smith,
Gonzalex and Ladd).

The tool-kit developed enables any communications
method to occur between the agents and the outside
world. This is achieved by a "plug in module" which
translates messages between the outside world format
and that required by the particular agent message
handling implementation.

3.5 Plausible but not Predictable

4.1 Requirement

In order to support the complex internal information
processing and the casual interactions of agents (or
objects) both external and internal behaviour is
required. In general a general idea of the desired
architecture is known before hand, however it was
unclear at the start of the project which particular
architecture would support the functionality of a
broad agent.

The tool-kit therefore needed the facility to support
different architectures between the agents, but also
the agent itself may require a number of sub-
architectures to support all its functionality. Thus the
ontology space imposed by the tool-kit should not be
restricted.

Also, the agents need to interact with each other, but
also (especially in a DIS environment) interact with
other agents (or entities) in the world. Therefore, the
agents must perform some simulation (physical). This
can be achieved using internal modules to the tool-kit,
or by enabling the agents actions to control a separate
simulation system.

In order for the trainee to be convinced they are
battling against a real opponent, the behaviour of the
entities must be plausible, both in the short term
(short term behaviour) but also in the long term
(overall strategy). The more cunning the opponent is,
the more intelligence and initiative is required of the
trainee to triumph.

However, the CGF entities must not be predictable,
and always do the same action between similar
situations. If this were the case, the trainee could
learn what action to expect from their opponent,
which is obviously undesirable.

Our approach intends to overcome these problems, by
considering different courses of actions and selecting
either the best, or one from the 'n' best plans and
thereby introducing uncertainty.

4. Tool-Kit Implementation

The framework for the agents has been developed in
collaboration with Birmingham University as a tool-
kit "SimAgent", written in Poplog (Sloman and Poli
1995). The SimAgent tool-kit allows multiple agents
to run, controls the message passing between them
and allows either simple internal simulation, or
control of a remote simulation.

The tool-kit is based on the POPRULEBASE library
provided within the POPLOG development
environment, and which also provides rapid proto-
typing capability.

4.2 Scheduling

The tool-kit scheduler is responsible for the correct
running of each agent (or object). The top-level
scheduler procedure is presented with the list of
agents, and the maximum number of time slices for
each agent.

The scheduler runs in a two pass operation. Firstly, it
allows the agents to perform any sensor operations,
read messages from other agents, and perform
internal processing (behavioural modelling).
Secondly, it passes any messages between the agents,
and runs any external actions, such as move, turn, etc.

This ensures the behaviour is generally independent
of the order of the agents, because all agents get to
perform sensor and thinking activities before the
actual state of any entity is changed.

321

4.3 Agent Mechanisms

Each agent has an associated collection of rule sets,
each rule set is a collection of condition-action rules,
that interact via one or more databases. Hence, one
rule set might be concerned with sensory perceptions,
another rule set may be involved in planning
activities, and so on. The rules can switch between
databases, push them on a stack, restore them, etc.
(c.f. with SOAR, see Laird, Clave, Erik and Roberts
1993). Rules also can invoke other rule sets.

The addition of the facility to enable the agent to
control remote entities has obviated the need to
redevelop the physical simulation part of the entities
(e.g. motion dynamics, sensors, etc.) by using our
existing simulation software. This also enables the
entities to interact with other simulated entities by
using the DIS protocol.

Figure 1 shows the relationship between the agent
objects, the rule sets, the tool-kit and remote
simulation.

Although learning is not included in our
implementation, it is supported in the tool kit. A rule
can introduce new rule sets, or create new rules
within a rule set. The rules are not limited to a
particular style, they could invoke a theorem prover,
such as Prolog, also since the rules can invoke Pop-
11, it is (with Poplog Popl 1) possible to invoke other
languages such as C or C++.

The tool-kit also has the ability of simulating
constrained thinking time (or resource limited
planning) by constraining the amount of processing
any one agent can perform on a cycle.

4.4 Actions

Inevitably the agents will want to perform some
actions based on their motivations, thus the agents
ultimately need to perform physical actions. The tool-
kit scheduler allows the objects to execute actions
during its second pass either by updating entries
within its database, or its object slots.

However, the tool-kit has been extended to enable the
agents to control the physical operation of entities
running on a remote simulation using simple
command and control messages. These messages also
allow information from the entities sensors to pass
back to the agents. Thus the mental and physical
modelling of the entities is entirely separated.

4.5 Conclusions

The tool-kit provided enables a general approach to
be adopted for the implementation of the agents. It
does not present undue restrictions on the architecture
employed to achieve the desired behavioural
representation. By providing the facility to execute a
number of agents together enables the modelling and
execution of small military groups, such as troop (or
platoon) and squadron (or company) on a single
workstation.

SimAgent (Tool-Kit)

Scheduler Pass I

I Scheduler Pass 21

Sensors/
Message:

Actions

Actions 1 j Sensors/messages

An Agent

I RuIeSetMRuleSet |

Actions RuleSet

Network Remote
Simulation

Figure 1. Tool-Kit Overview.

The first pass of the scheduler allows all the agents to
process sensory information and incoming messages,
and run their behavioural methods. This could
generate a number of actions in a number of agents.
Only when the scheduler does its second pass are the
actions executed, using a (user defined) API to the
simulation methods.

If required a different remote simulation could be
used by simply replacing the Simulation Methods
Module. Since the actions and sensors use a (user)
defined structure, provided the new module
communicates with the tool-kit using the same
format, no changes are required to the agent's rules.
Similarly the physical simulation could be entirely
contained within the simulation methods module.

5. Agent Implementation

As mentioned the entity intelligence is based on a
"broad agent" implementation within a military
Command and Control (C2) hierarchy modelling the
structure of military units. A broad agent (Bates,
Loyall, & Reilly, 1991) is designed to have a broad
but shallow range of capabilities, instead of a limited
but very detailed set of behaviours. Our intention is to
implement a planning framework based on the
military doctrine of Mission Command and avoid
detailed CIS for every situation. This enables the

322

agents to create plans of action taking into
consideration their objective and their estimation of
the ground. The C2 hierarchy enables commands to be
devolved from high level commanders to
subordinates and so each agent only considers the
appropriate level of detail.

The scenario being developed to demonstrate the
agents' behaviours is based on a battle group
formation, shown in Figure 2.

SI
"3

JSJfgg nijrijr^
SI
SI

SIS)
ca
is
^ \m

so
Q^ ^

S3 lS3

HBg=l

Figure 2. Example of a BattleGroup Hierarchy.

A broad scenario was adopted because it encourages
a broader approach to implementing the intelligence
because the units will have to think about different
types of friendly or enemy units on the battlefield,
and their associated roles. The aim is to implement
simpler intelligence initially which can think more
generically about the battlefield, rather than highly
intelligent units which can only reason about a
specific type of unit and limited number of situations.
Additionally using an existing C2 hierarchy directly
relates units at each point to the real world, making it
easier to extract the behaviours from subject matter
experts (SMEs). This also helps with validation of the
behaviours, because a military officer can watch the
actions of units and by using their experience evaluate
the realism. Because the units are simulated
separately, the force can be distributed across a
number of computers and a larger number of entities
can be simulated. Physical interaction can be
achieved using DIS protocols for instance, and a
separate Command and Control language (which
could be the Command and Control Simulation
Interlace Language, CCSIL) used for instructions and
messages.

We have not embodied learning behaviour into the
agent in the present implementation because it was
felt that a lot of behavioural principals could be
extracted from Army Field Manuals, and Doctrine
Manuals.

The current implementation extends to one tank
squadron of the Battlegroup of Figure 2., shown in
Figure 3.

Squadron Commander

Troop

ITank! |Tank| [Tank

Troop

Tank Tank Tank Tank

I Troop I

Tank Tank

Figure 3. Squadron Composition.

Each agent within the hierarchy is based on a broad
agent, the basic design is shown in Figure 4:

Orders, Messages

Planner
BBSESBI Plans
Evaluate Plans
Safe! Plan

Planner Monitor
QOat AccooipastlsvJ?
Re-Plan Raqulnxl?

Sensing
Datacl
LOOM

Actions
Own Actons
Instruct
Subonjlnafs

Messages
Sighting Raports
Status Information

Orders, Messages

Figure 4. Broad Agent Design Concept.

The fundamental properties of this design are:

1. It contains a central database, through which all
the modules communicate. This database can be
partitioned into a number of sub-databases each
holding a set of related data, allowing searching
within the database to be performed much more
quickly, and potentially to distribute the database
across processes (locally or over a network).

2. Individual modules can be identified to perform
fundamental tasks. Although these can be
separated their operation may be related to
another module, for example, plan monitor which

323

monitors the progress of a plan relies on sensory
information. However, separating functionality
enables parallelism of the modules.

3. The modules only simulate the agent's intelligence
and do not perform any actual physical modelling.
If the agent wishes to perform an action, for
example change the heading, it sends an
instruction to the physical simulator with the
request. The intelligence gets confirmation back
about the action via its sensors. The advantage of
this approach is the intelligence modelling can be
separated from the physical simulation, and so
allows the re-use of existing physical simulators.
The control is replaced with our intelligence. It
also allows the two parts to be run on separate
processors (locally or over a network).

4. The design of the intelligence is then generic to
any position in the C2 hierarchy.

It should be noted that a single battlefield entity (such
as a tank) is modelled as a single agent (i.e. the
commander, gunner and driver are aggregated). The
overall operation of the unit seen externally appears
as a single intelligence, hence the need for separate
modelling of the individuals within the tank is not
necessary. Taking the next command level, the troop
commander, also resides in a tank. This tank performs
the same functions as a subordinate tank except it is
also able to command other tanks, and so has extra
functionality. This is emulated within the broad agent
design by additional modules which performs troop
command thinking. This can be visualised in Figure
5.

If during a battle the troop commander is destroyed,
the second in command of the unit takes charge of the
unit. This is achieved by the new troop commander
gaining the troop commander capabilities (i.e. by
adopting the extra rule sets) and continues the
campaign. Note, the new troop commander does not
obtain the database from the previous commander,
but, in accordance with military doctrine already
knows the objective in hand.

Initially all agent functions ran internally to the Tool-
Kit, which obviated the need for real time constraints.
However, when the link to the external physical
simulation was established, it became important that
the agents ran in real time. This is achieved by
constraining the amount of processing an agent can
perform on a cycle. However, the consequence is that

plans may take longer to generate. In situations where
Orders, Messages

h /

| Tank Sensing
Tank Planner | Troop

Perceptions Tank Plan
Monitor

V

; y ...

Troop Plannerf / \ | Tank Messages
Troop Plan
Monitor

\[roop Messages!

Actions

1
Orders, Messages

Figure 5. Example Troop Commander
Architecture.

immediate action is required this would not be
acceptable, hence, the agent would need to fire either
a reactive behaviour, or a very simple planning action
to deal with the immediate problem.

The behaviour of the tank agents is observed by using
them to control tanks inside a simple simulation
linked with the agent Tool-Kit in a small tank battle
scenario.

Currently only the tank agents are able to perform
planning (Baxter and Hepplewhite 1996); the troop
and squadron commanders currently follow
prescriptive decomposition of commands. For
instance, the Squadron Commander can accept an
order to occupy an area of terrain, which is devolved
to orders for each troop commander to occupy a
different part of that area. The troop commander
determines the heading and speed for the troop and
informs each tank individually.

6. Agent Planning

Individual agents are responsible for choosing targets
for their weapons and controlling their own motion
within the framework set out by the troop
commander. To do this they take orders from the
troop command agent as a set of guidelines and
constraints. Plans have to be constructed which fulfil
the goals set by the troop commander as far as
possible without violating any constraints. An
example of a constraint could be a boundary line that
the agent must not cross, perhaps because this area
has been assigned to a different troop. The desired

324

speed and heading of the troop as a whole is taken by
the tank agent as a guideline to derive goals in space
and time for the tank agent.

6.1 Planning Framework

The guidelines and constraints supplied by the troop
commander are used to derive a short term positional
goal, a planning horizon (the maximum time to which
plans should extend), and a target time by which the
positional goal should be reached. Without the
presence of obstacles or opposing agents these
settings cause tank commanders to move together as a
group in a formation dictated by the troop
commander.

The method which has been adopted uses the present
state of the battlefield to suggest a number of discrete
actions for a tank agent to consider. Each of these
actions has an associated cost in distance, time and
risk which are combined together to give an overall
cost by use of a weighting function. Actions may be
rejected because they violate one or more of the
constraints set down by the troop commander.
Combinations of actions with their cumulative costs
are made into plans and an optimal plan selected by
an A* search (see Russell and Norvig 1995). This
enables the search space to be restricted to actions
which, in general, seem applicable to the agent's
present situation. By basing the cost on a detailed
consideration of the effects of the action, situations in
which the action is inappropriate can be identified.
The generation of multiple actions also provides for
the possibility that a slightly sub-optimal choice could
be made to prevent the agent's actions being too
predictable.

6.2 Generating Actions.

Five actions are currently available to a tank
commander agent. They can be described as advance,
assault, retreat, run away, and face. The advance
action involves moving toward the goal with a speed
and heading to ensure the agent is within its assigned
formation position at the end of the motion.

The other actions are more complicated. They are
based upon the fact that a tank's frontal armour is
much stronger than its side or rear armour so the best
approach to an opposing tank is to face it, thereby
reducing the probability that a hit will be destructive.
The actions therefore try to combine facing the enemy
with progress towards the goal.

To help in generating actions from this knowledge the
agent first makes a "threat map" which identifies
threat with respect to heading based on the proximity
of hostile tanks. Using this threat map two potential
actions can be directly generated; facing the
maximum threat and remaining stationary, the "face"
action, or reversing, the "run away" action. The
assault and retreat actions try to find a "safe"
direction which also lead towards the goal. This is
done by multiplying the ratings of the threat map by a
value proportional to the difference between the
heading and the heading direct to the goal (for
advance) or directly away (for retreat). Selecting the
headings with the maximum values after this process
(so long as there is a non-zero value present) gives
two suggested actions which should give motion
towards the goal but on a heading so that the risks to
the tank agent can be minimised. Presently each
action is considered to last for ten seconds, after
which new actions will be considered.

6.3 Costing Actions

For use in the A* search the cost of selecting an
action as part of the plan must be evaluated along
with an estimate of the cost to reach the goal after the
action has been completed. The distance and time
costs are simple to derive but an accurate
measurement of the risk to which an entity is exposed
is much harder to evaluate. At its most extreme this
would require a statistically significant number of
simulations of the execution of the plan to be carried
out and the proportion of instances in which the agent
was destroyed to be found.

Instead an estimate of the risk is found by making
several assumptions about the course of events. The
vehicle is assumed to make the move to the end point
of the action in a straight line and assumes all other
agents continue in straight lines. The risk involved is
calculated by assuming all hostile agents within range
may fire upon the agent with a probability based upon
the relative strengths of the two sides involved in an
engagement. The risk is therefore a combination of
the probabilities that each enemy agent will choose
(or be able) to fire on the planning agent, that the shot
or shots will hit and that a hit will penetrate the
armour and destroy the tank. This gives an overall
probability of destruction during an action.

The estimate of the risk in reaching the goal after the
action is taken to be zero, thus ensuring it is an
underestimate and guaranteeing the optimal set of
actions will be selected by A* search.

325

7. Results

Initial tests have been carried out using two opposing
troops of three tanks whose starting positions and
final goals are such that they move into view of each
other with intersecting paths if no avoiding action is
taken. By altering the relative weights attached to
time taken, distance and exposure to risk, different
behaviour patterns occur. Thus a "personality" can be
attributed to a commander in terms of their
cautiousness or risk taking behaviour.

In the risky vs. risky scenario shown in Figure 6 the
two groups come into sight of each other when they
reach A. When they come within range at B both
groups launch into an immediate assault and a fight
ensues. Neither group is prepared to postpone its
actions in order to avoid a fight but do alter their
approach to the goal to face the enemy. By the time
the groups have closed to C all the red tanks and one
blue tank have been destroyed. The remaining blue
tanks continue to their goal.

simply delays its advance and moves towards the goal
when the red troop has retreated out of range.

visual range 2 km

firing range 1 km

•a
Red stan

m- jV"-«i

Blue goal position Red goal position

Figure 6 Combat between two groups of 'risky'
tanks.

In the risky on cautious scenarios after a brief initial
engagement the cautious group retreats out of range
and stays clear of the more aggressive troop, even
though this delays them considerably.

Two cautious troops, shown in Figure 7, tend to
hover around the limits of the maximum firing range
trying to work their way around each other and
occasionally exchange shots. Neither group is willing
to expose itself to the opposite side's fire in order to
achieve the goal. When the groups come into firing
range at B both retreat but the red force has to take a
large detour since the tanks cannot move directly to
their goal without exposing their flanks to fire from
the blue troop. The blue troop on the other hand

visual range 2 km

firing range 1 km

-S3

Red stan

[3-
6-^-a]

K^s
-^& Blue stan

BS-

Blue goal position

Red goal position

Figure 7 Combat between two 'cautious'
groups.

These scenarios demonstrate that appropriately
different behaviours can be achieved by simply
changing the risk parameter the agents find
acceptable. This shows that different command styles
(ranging between cautious and the reckless) can be
easily emulated.

The behaviour of the agents have been viewed by a
military advisor and agent responses to enemy tanks
accepted as plausible. The main deficiency was
recognised as the lack of terrain utilisation by the
agents.

The planning speed of the agents varies considerably
depending on the level of activity. When a group is
isolated from any opponents, planning is relatively
simple and fast. However, when an opposing unit
comes into range, the planning process becomes more
complex as the agent searches through sequences of
alternative moves, to optimise its cost over the next
few seconds of the scenario. Consequently the
planning becomes much slower.

8. Conclusions

The results we have obtained show that our approach
has promise. The generation of actions, based on the
current situation allow the potentially infinite search
space to be restricted to considering only a few,
promising, actions. The costing of these actions by

326

the use of a mini "simulation within a simulation"
enables agents to identify when an action is
inappropriate due to the specific conditions under
which it would be executed.

We have also seen that the time for agents to plan can
vary dramatically as the situation of the battlefield
changes. For training and inter-operation with other
systems it is essential to operate at a consistent rate,
usually at real time. To ensure this real time AI
techniques must be used.

9. Further Work

Immediate enhancements are aimed at incorporating
more intelligence into the troop and squadron
commanders to develop longer term tactical plans.
These are intended to be based upon the same
framework as the planning for individual entities. It
will include simulation of battlefield activity at a
more abstract level including simulation of enemy
responses. The actions available to individual tanks
will be increased to include terrain based activities,
such as hiding and seeking cover.

10. Acknowledgement

We would like to acknowledge the support of D/ISIS,
UK Ministry of Defence.

11. References

Bates J, Loyall A B, & Reilly W S, "Broad Agents",
1991, Sigart Bulletin , pgs 38-40.

Baxter J W, Hepplewhite R T, "Broad Agents for
Intelligent Battlefield Simulation", Proceedings
of the 6th AI, Simulation and Planning in High
Autonomy Systems, La Jolla California March
1996: Univeristy of Arizona, pp 199-205.

Ceranowicz A, "ModSAF Capabilities", Proceedings
of the 4th Conference on Computer Generated
Forces and Behavioural Representation,
Orlando Florida May 4-6 1994: Institute for
Simulation and Training, pp 3-8.

Ceranowicz A, Coffin D, Smith J, Gonzalex R and
Ladd C, "Operator Control of Behaviour in
ModSAF', Proceedings of the 4th Conference
on Computer Generated Forces and Behavioural
Representation, Orlando Florida May 4-6 1994:
Institute for Simulation and Training, pp 9-16.

Courtemanche A J and Ceranowicz A: "ModSAF
Development Status", Proceedings of the 5th
Conference on Computer Generated Forces and

Behavioural Representation, Orlando Florida
May 9-11 1995: Institute for Simulation and
Training, pp 3-13.

Laird J E, Clave B L, Erik A and Roberts D, "Soar
User's Manual (V6)'\ 1993, University of
Michigan, Carnegie Mellon University.

McEnany B R & Marshall H, "CCTT SAF Functional
Analysis", Proceedings of the 4th Conference on
Computer Generated Forces and Behavioural
Representation, Orlando Florida May 4-6 1994:
Institute for Simulation and Training, pp 195-
207.

Meliza L L and Varden E A: "Measuring Entity and
Group Behaviours of Semi-Automated Forces",
Proceedings of the 5th Conference on Computer
Generated Forces and Behavioural
Representation, Orlando Florida May 9-11
1995: Institute for Simulation and Training, pp
181-192

Russell S J and Norvig P, "Artificial Intelligence: A
Modern Approach", 1995, Prentice-Hall,
Englewood Cliffs New Jersey.

Sloman A and Poli R: "SIM_AGENT: A toolkit for
exploring agent designs", August 1995, ATAL-
95 Workshop on Agent Theories, Architectures,
and Languages, UCAI-95 Montreal.

12. Authors' Biography

Richard Hepplewhite read Engineering and
Computer Science at Oxford University. After
graduating he took employment at the U.K. Defence
Research Agency on Autonomous Command Agents.
His research interests include command and control
hierarchy, and terrain reasoning methodologies.

Jeremy Baxter gained an Engineering Science
degree from Durham University and then completed a
PhD in Robotics, also at Durham. He has worked at
DRA Malvern since 1994 on AI for CGF. His
research interests include Fuzzy Logic, planning and
search algorithms and real time plan execution and
monitoring.

© British Crown Copyright 1996/DERA

Reproduced with the permission of the controller of
Her Britannic Majesty's Stationary Office.

327

Mission Planning and Coordinated Execution for Unmanned
Vehicles

Patrick G. Kenny, Edmund H. Durfee and Karl C. Kluge
Artificial Intelligence Laboratory

The University of Michigan
1101 Beal Ave

Ann Arbor, MI 48109-2110
{pkenny,durfee,kckluge} @umich.edu

1. Abstract

The battlefield of the future will be comprised of both
human- and computer-controlled entities, where the
hope is that unmanned systems will increasingly take
on the higher-risk missions. Realizing this vision
involves the construction of entities such as
unmanned ground vehicles (UGVs), and the
development of mechanisms by which human
commanders can convey the intent and parameters of a
mission to UGVs and can monitor/correct the
performance of UGVs. At the same time, the
commander cannot be expected to hand-hold the
UGVs. so the UGVs need the capability to replan and
improvise (in a doctrinally-appropriate way) so as to
fulfill the mission goals in a coordinated manner,
with minimal human intervention.

Our research has been focusing on the development of
tools for planning, execution, and coordination of
multiple UGVs at a strategic mission level. The
interface to a human commander permits the
specification of a mission at an appropriately strategic
level. Our underlying tools work with the
commander to elaborate the mission sufficiently to
begin its execution, and then during mission
execution our mechanisms allow the flexible
achievement of various objectives based on the details
of circumstances encountered.

We have developed a system that is comprised of
multiple instances of a procedural reasoning system,
an interface for the specification of high level military
missions, tools to help plan routes, formations, and
observations, and to assimilate various kinds of
information and monitor plan execution.

2. Introduction

The ability for users to generate multi-vehicle plans
which perform realistic behavior and coordinated
control of unmanned vehicles without specifying the

low-level detail that is required to control the robotic
vehicle is and will be of great importance in the
usefulness to deploy and use robots. The ability for a
robot to process and carry out the goals in the plan in
a reactive manner will also be crucial for the robot to
accomplish it's mission.

This paper describes a system that was developed for
the Unmanned Ground Vehicle (UGV) project to
initially add mission planning and reactive re-
planning for the UGV vehicles, then later as a
alternate design approach for the control and
coordination of robotic vehicles in a simulated
environment. The system is composed of a high-
level mission planner which aids the user in
composing a mission plan by placing militarily
significant information on a Graphical User Interface.
The objectives so specified are then decomposed into
a set of plans for multiple vehicles. The second part
of the system is a set of vehicle processes which
execute and monitor the generated plans in a
simulated environment, ModSAF.

The underlying architecture that is used to control
each of the components is a procedural reasoning
system called UMPRS (Lee et al, 1994). UMPRS
allows for the system to generate realistic behavior by
encoding military doctrinal knowledge inside the
reasoning system which is called upon when the
appropriate context arises.

This paper starts out by describing the overall system
architecture and all the components of the system. It
then describes the mission planner functionality,
where the user enters the mission and the planner
decomposes it into a set of vehicle plans. Following
that the paper then describes the agent architecture
processes and related tools. The last section describes
the execution and reactive re-planning that can be
performed by the agents in the system. We then
conclude with an analysis of the architecture and how

329

and where it can be applied in the computer generated
forces arena.

3. System Architecture

The system we have designed and built is composed
of many modules interconnected and communicating
amongst each other. A the top of the system is a
mission planner connected to a GUI, the middle of the
system is composed of the vehicle process and tools
and the bottom is the vehicle simulator, ModSAF.
See Figure 1 for a view of the system architecture.

OWS GUI (HSTX)

A
MODSAF

GUI J ROUTE PLANNER

OWS
UMPRS

MISSION
PLANNER

A* FORMATION EXPER

ft- fr

MODSAF
SIMULATOI

VEHICLE 0

fc T

M

D
S

UMPRS REACTIVE
EXECUTION SYSTEV VEHICLE l£J

VEHICLE 2 it

VEHICLE 3 L

TERRAIN
RFASONFI

INFO ASSIMILATION
DATABASE

S OBSERVATION
POINT PLANNER

F

Figure 1. System Architecture

Following is a brief description of each of the
modules in the system.

3.1. UMPRS

In order to perform realisticly in a real or simulated
environment a vehicle should execute tasks in a real
time and reactive manner. We have developed a Real
Time Planning and Control Procedural Reasoning
System, UMPRS (Lee et al, 1994). UMPRS is based
on SRI Procedural Reasoning System (PRS)
developed by Georgeff et al, (Georgeff & Lansky,
1986). UMPRS is a general purpose reasoning
system, integrating traditional goal-directed reasoning
and reactive behavior.

UMPRS is well suited for use in robotic applications
because it allows the robots to pursue long term
goals by adopting pre-determined procedures based on
context and not blindly following a prearranged plan.
It is also well suited for use by robots in a reactive
environment where it can switch out of it's currently
executing procedure and invoke another apporiate
procedure when the situational context changes. For
example if a vehicle is traveling down a road
executing a move-to procedure that has context that

states that there are no enemies in sight, and then it
spots an un-friendly vehicle, the context for the
current world state will be changed the current
procedure will be switched out and another procedure
will be invoked to deal with this new change in
context.

UMPRS is composed of five components, see Figure
2:

Database -
A database called a world model that contains the
beliefs and facts about the world. Initial facts are
asserted at the beginning of a UMPRS program, other
facts and beliefs can be either asserted or retracted by
KA's, which is explained below.

Knowledge Area's -
A set of declarative procedure specifications that
describe how to achieve a system goal or query. A
KA consists of a purpose (a goal, test or query or
action) for executing the KA. The context in which
the KA is applicable and a body which is viewed as a
directed graph in which nodes represent states in the
world and arcs represent actions or subgoals. The
body may consist of goals to achieve or maintain,
goals to test , subgoals, branches, assertion or
retraction of beliefs or primitive function to be
executed, this is just a partial set of action, for full
set refer to the UMPRS User Documentation (Huber
et al). A primitive function can be a function to
control a robot, send communications or perform
some calculation, primitive functions are the low-
level interface to the real world and are generated by
the user.

Goals -
UMPRS maintains a set of current goals to be
realized, KAs may place additional goals or subgoals
into the system by attempting to achieve some
action. A top level goal is different from a subgoal
in that the system will continue to pursue the top
level goal until it is satisfied, but goals within KA
bodies are not persistent.

Intention Structure -
The intention structure acts as the run-time stack of
the system. It keeps track of the progress of each
high-level goal and all of the subgoals. The intention
structure suspends, resumes, cancels and proceeds
with the execution of goals in much the same way as
an operating system. The intention structure
maintains information about what KAs are currently

330

active, as well as what actions in each KA are to be
executed next.
Interpreter -
The interpreter is what controls the execution of the
entire system. Whenever there is new or changed
information in the world model or goal list, the
interpreter determines a new set of applicable KA's,
called a SOAK set, to pick the next appropriate KA
to be placed in the intention structure. When there is
no new SOAK being generated, the interpreter checks
the intention structure for the currently active KAs
and executes the next action. If this action changes
the goal list, by creating a subgoal or satisfying a
goal, a new SOAK is created and the cycle starts over.
If a new SOAK is not created then the next arc in a
KA is executed.

(SENSORI 1
I RECEIVER J

Figure 2. UMPRS Architecture

In the system that we have developed, UMPRS is
used both as a mission planner and as a vehicle plan
execution, re-planning and monitoring process, both
of which are described in later sections of the paper.
For a UGV application, the plans, beliefs, contexts,
and goals are based on standard operating procedures
as defined in military doctrine.

3.2. Mission Planner

At the top of the system is a mission planner
composed of UMPRS and a KA library that describes
how to decompose the mission into a set of goals for
the vehicles to achieve. The mission planner is
connected to a Graphical User Interface where the user
enters military significant icons and mission data.
The mission planner has tools available for the
decomposition of the plans; these include a route
planner, a formation expert and an observation points

planner. The mission planning process is described in
detail in a later section.

3.3. Operator Work Station (OWS)

The OWS GUI was designed and built specifically for
the UGV project. The OWS consists of a map
interface able to read in various formats of DMA
terrain data. Tools to display and analyze map data,
get distances, perform line of sight calculations, plan
routes, add military measure icons and perform other
various UGV specific planning and execution
monitoring. For our purposes, we are using the
OWS as a graphical interface to the mission planning
processes.

3.4. Vehicle Processes

The vehicle processes in the system execute and
monitor the plans and goals generated from the
Mission Planning process. There is a separate vehicle
process for each vehicle used in the mission plan.
Each vehicle process consists of a UMPRS process
and KA library that describes how to accomplish
goals, an information assimilation database and an
observation points planning process. The vehicle
process and execution are described in more detail in a
later section of the paper.

3.5. ModSAF Vehicle Simulator

The ModSAF vehicle and forces level simulator is
used as a testbed for the execution of the vehicle
processes. Although in the UGV project we have
access to multiple Hummer robots, the cost and time
it takes to run missions on the vehicles is
prohibitively large compared to that of running
scenarios on a simulator. Since the actual UGV
vehicles are limited in their sensing and what they can
do, we are able to run more complex behaviors and
missions with the simulator. We can set the
simulator and system up to be run as a friendly or
enemy force and have them each perform exercises
against each other.

3.6. TCX Communications Package

The last part of the system is the communications
package that ties all of the processes together. We
used a communications package, developed at CMU
called TCX [Fedor]. Through TCX we are able to
send reliably data structures over the internet.

331

4. Mission Planning

The process of describing the low level details of
robotic plans can be an enormous task, especially if
there are multiple vehicles used in a mission.
Military planners like to think in high level terms
when planning missions, not low-level robouc
details. The gap that exists between the military
planners and the detailed plans needed to be executed
on a robotic vehicle are filled in by the mission
planning capabilities of the system.

The mission planning part of the system is composed
of a UMPRS process and a set of KA libraries, an
OWS Graphical Interface process, a route planner tool
process, a formation tool process, and an observation
points planner tool.

The user starts a planning cycle by entering on the
graphical interface the military specification of the
mission and the associated military measure icons.
For example to plan a reconnaissance mission for two
vehicles the user would enter an assembly area
measure for the vehicles to start, a few checkpoints
that the vehicles need to pass through and an
observation post where the vehicles would perform a
recon. See Figure 3 for a planning example.

"A.

•'r-=§.

'iii^i awr-jLiTfrtj • H***^"°*l

Figure 3. Mission Planning Example

The icons and associated data would then be sent off
to the mission planning process to be elaborated. The
icons could have been entered in any arbitrary order,
and the sequence and strategies for pursuing the
measures might not be obvious purely from the map.
As a result, in order to resolve ambiguities the
mission planner draws on its library of templates or
KAs for operations, or can call on the user to provide
such a template. By matching military symbolgy to
the template, the mission planner formulates the

sequence of action and goals that must be carried out
by the robotic vehicles.

As it elaborates the mission, the planner can call on
more specialized tools to formulate portions of the
robotic plan. These include tools for planning routes,
planning apporiate reconnaissance points along a
route, and planning formations for vehicles to travel
in when necessary.

The detailed steps of how to elaborate the data from
the mission specification are defined in the UMPRS
KA library that the mission planner uses. For
example these can be simple steps such as move from
one checkpoint to another, to complex steps such as a
planning a set of bounding overwatch points, where
one vehicle watches as another moves along a route,
then they reverse roles. As more KA sets are added to
the library, the system will be able to plan more and
complex behaviors and missions. The degree of
autonomy does not necessarily have to be at the
vehicle level. Since UMPRS KA's are a set of
procedures for accomplishing a certain goal, the goal
may be a high level goal such as plan for an assault
on a position with many groups of vehicles, where
the reconnaissance task is just a small part of the
overall goal.

The elaboration of the plan does not stop at the
mission planning level; indeed, once the plan is sent
to the vehicle process it may elaborate the plan farther
to develop more detailed control. Our architecture
makes no commitment to which degree of autonomy
is instantiated at any given time; rather it will depend
on the particular knowledge and procedures provided
to the various agents.

The military missions that we have developed are
centered around reconnaissance tasks executed by a
team of two or four vehicles. Some of the subtasks
may include bounding overwatch, deep range recon,
cooperative vehicle sensor observations and reacting
to unknown or enemy threats by replanning. Reactive
tasks can be replanned by the vehicle, such as when a
vehicle needs to find an alternate route to a goal
point, or in some cases it may require the assistance
of the operator or mission planner, depending on the
level of autonomy in the system, to issue a new plan
when the team cannot achieve a goal or mission. The
missions are based closely on military doctrine for
executing reconnaissance operations. This
information is explicitly inserted into the mission
planning system or vehicle process as procedures and
goals, in the form of KAs to be achieved. As added

332

knowledge is stored in the system, the vehicles will
be capable of performing more detailed and complex
missions.

5. Agent Architecture

Once the plans are generated for each of the vehicles
in the system, they must be run on an actual robot or
agent. This section describes the agent architecture
that we have developed to control each autonomous
vehicle. Like the mission planning process, the heart
of the autonomous vehicle agent is a UMPRS
process and a KA library. In the current system the
mission planner creates the vehicle process, or
processes if there are several vehicles, after it has
elaborated the plans for each vehicle. When each
vehicle process is invoked it opens a connection to
any other vehicles also present, opens a connection to
the mission planner and a connection to the vehicle
simulator. It also runs a vehicle level information
database, and an observation points planning tool.
The information assimilation database is used as a
blackboard where it can make requests for certain
types of information and once that information
becomes true, the process will send that information
to the vehicle. The observation points planning tool
is run afterward as a reactive behavior when the
vehicle detects an enemy.

UMPRS is well suited as a device to control
autonomous agents because of it's ability to
reacuvely switch behaviors based on environmental
context. In the system we have developed, vehicles
are given a plan of goals that need to be executed, and
a set of reactive behaviors when they detect changes
in the environment. The reactive behaviors are called
survival behaviors and have a higher priority than any
of the goals in the plan. Currently in the system, the
only context that will invoke the reactive behavior is
when a vehicle detects an enemy vehicle. In that case
the vehicle retreats to it's last safe position it knows
about. If there are a group of friendly vehicles and one
detects an enemy, then that one communicates to the
other vehicles that it has detected an enemy and they
should retreat, while it plans for further observations
with the observation points planning tool.

5.1 Information Assimilation Database

Groups of cooperating processes or agents need a
method to communicate partial results to each other
and a shared model of various aspects of the
environment. The blackboard model (Nii, 1986) is a
common method used in AI research to achieve these

ends. The blackboard is a database which is connected
to all the cooperating processes, allowing them to
share information and coordinate their problem
solving efforts towards common goals. The
CODGER system (Stentz, 1990) was a variant on the
blackboard architecture developed for use in the ALV
project research at Carnegie Mellon. While traditional
blackboards explicitly scheduled which process would
be active next based on the contents of the blackboard
database, CODGER did not perform active process
scheduling. Instead, synchronization primitives
available through CODGER permitted process
synchronization.

The system described in this paper uses a CODGER-
like blackboard to store the shared information about
the world used by the different processes in the
system. Our goal in future work is to extend the
blackboard formalism in two significant ways. First,
the types of military missions which UGV-like
vehicles are expected to perform may cover large areas
of terrain (100 or more square kilometers). As a
result, efficient spatial indexing of objects with
geometric attributes will be crucial to efficient
database access. Second, there is an important
distinction between an area of the blackboard's "map"
not having a certain type of object in it and the
corresponding area in the world not having such an
object in it. Representing the distinction between
absence of data and absence of enemy vehicles (for
example) is crucial for task performance. This requires
keeping track of which sensors have examined which
patches of terrain (and how recently the examination
was performed), which again involves choosing
appropriate spatial representations for efficient
database operation.

5.2. Observation Points Planner.

Intelligent autonomous or semi-autonomous agents,
whether in a synthetic environment or the real world,
need to be able to actively plan deliberate
observations of their environment. This is an area
which has generated work in the areas of computer
generated forces (Van Brackle, 1993), robotic semi-
autonomous vehicles (Cook et al, to appear; Kluge
et al, 1994), and planning tools to assist humans
(Musman et al, 1994), with the same concepts
potentially applicable across all three domains. Our
work has focused on the problem of planning
sequences of observations to achieve a specified level
of certainty with respect to some hypothesis. The
initial domain studied was the problem of planning a
sequence of observations of a stationary target in order

333

to achieve a specified accuracy of localization of the
target's position. The path the observing vehicle was
to follow was preplanned and given as an input to the
observation point planning (OPP) module. The goal
of the OPP module is to find a set of observation
points which should maximally shrink the target
position uncertainty given the number of
observations made.

Planning such a sequence of observations can be
posed as search in a state space which consists of the
hypothesis uncertainty space crossed with the
observing vehicle's configuration space. In the 2-D
stationary target localization problem, the hypothesis
uncertainty space is three dimensional (the orientation
of the long axis of the two sigma position
uncertainty ellipse, and the lengths of the long and
short axes). The observer's configuration space is one
dimensional (position along the prespecified vehicle
path). By using a simple heuristic (given two sets of
observations which achieve the same degree of
localization, pick the set which does so after a shorter
distance along the observer's path), the state space can
be kept to the three dimensions of the target position
uncertainty space. The Kalman filter defines the new
target position uncertainty state given a current target
position uncertainty state, an observation location,
and a model of the sensor observation uncertainty.
Conventional A* search can be used to generate the
set of observations which will maximally shrink the
target location uncertainty for the number of
observauons made.

Plans for future work include incorporating models of
target detectability (Shaham, 1988) exploring
domains with temporal constraints (stationary target,
multiple possible observing vehicles), and exploring
domains which involve balancing tactical
considerations with the improvement in hypothesis
certainty (merging OPP into path planning).

6. Mission Execution

The capabilities of our mechanisms currently
outstrips those of real UGVs. Thus, while our work
is compatible (and has been partially integrated into) a
real UGV system developed as part of the DARPA
UGV project, much of our development and
experimentation has revolved around simulation. The
capabilities that we have implemented on top of the
simulator allow us to automatically generate a small
collection of forces, good and/or bad, and
automatically assign tasks to the vehicles, based on

the high level mission specified by the operator. The
simulator that we have chosen to integrate into the
system is the ModSAF, modular forces simulator.

After the vehicle plans are generated and sent down to
each vehicle process, that process creates an entity on
the ModSAF simulator. Currently we use a standard
Hummer model for the entity; in the future we would
like to be able to make a model of an actual UGV
Autonomous Hummer with the same sensor
characteristics and movement behaviors. This will
help in field testing and running through scenarios
with combined UGV and human forces. As each
entity is set up in ModSAF, they communicate their
status to each other. We currently do not use the
communications ability with the simulated radios in
the simulator, but instead choose to perform all
communications from UMPRS process to UMPRS
process. Using the radios in ModSAF would be more
realistic, but would also involve more detailed
planning to make sure that each vehicle was in line-
of-sight or that the radio information was received
correcdy. Next, the vehicles are assigned tasks
according to the goals of the mission: they may move
to designated positions, perform RSTA observations,
perform RSTA on the fly while moving to a
location, or observe the movement of friendly
vehicles as they move to a bounding point.

The scenarios that we have run on the simulator
consist of simple one vehicle recon missions to four
vehicle cooperative recon missions. A typical
scenario involving two vehicles performing a
cooperative recon as follows. See Figure 4 for an
example of a two vehicle recon mission being
performed in ModSAF. Each vehicle gathers in an
assembly area, and they communicate to each other
their status. They wait for the mission planner to
elaborate the mission entered by the user. Once that is
done, the mission planner sends the plan to each
vehicle. Each vehicle processes the plan and finds the
first goal point to move to, and the UMPRS process
assigns move-to tasks for the vehicles to move to
their first points. If they arrive there without detecting
an enemy, then UMPRS assigns the next move-to
task to the vehicles. During the execution of the
move-to tasks if a vehicle encounters the presence of
an enemy vehicle, then a reactive behavior will be
invoked. In this case, the first vehicle to see the
enemy communicates to the other vehicle that it has
found an enemy and to go find cover. The vehicle that
gets the communication returns to the last safe point
along its route. The vehicle that saw the enemy now
calls upon it's observation points planning tool to

334

find a better point along its route to observe the
enemy vehicle. When the observation points planning
tool returns the best set of positions along the route,
the vehicle stores away it's original vehicle plan and
creates a new plan with these new observation points
as it's new set of goals. The vehicle then executes the
new plan, moves to the new positions and performs
some observations of where it detected the enemy.
See Figure 5 for a picture of the mission after the
vehicles have detected the enemy and planned new
observations.

commanders who can task these systems in very
much the same way as they might task human
subordinates, and who can expect from these systems
some degree of flexible mission execution rather than
having to teleoperate the vehicles. The current
implementation of our system is running under the
ModSAP (DIS) environment, allowing us to
experiment with the capabilities of our techniques,
and more broadly providing another suite of
computer-generated forces (simulating UGVs) for
training and evaluation

Figure 4. Two Vehicle Recon Mission

Figure 5. Replanning New Observations

7. Conclusion

An agent-based approach to bridging the gap between
operators and robotic vehicles provides significant
advantages by embedding knowledge and initiative
within a semi-automated mission planning and
execution system. In conclusion, the system
developed at the University of Michigan explores the
possibilities for controlling and coordinating the
behaviors of multiple UGVs. The ultimate goal is to
put such vehicles at the disposal of military

8. Acknowledgment

This research was sponsored by DARPA under
contract DAAE-07-92-C-R012.

9. References

[Cook et al] Cook, Diane; Gmytrasiewicz, Piotr; and
Holder, Lawrence. Decision-Theoretic Cooperative
Sensor Planning. To appear in IEEE Transactions
on Pattern Analysis and Machine Intelligence.

[Ingrand and Georgeff] Francois. F. Ingrand and
Michael P. Georgeff. Managing Deliberation and
Reasoning in Real-Time AI Systems, In
Proceedings of the 1990 DARPA Workshop on
Innovative Approaches to Planning, Scheduling,
and Control, pages 284-291, Santa Diego, CA,
Nov 1990.

[Kluge et al] Kluge, Karl; Weymouth, Terry; and
Smith, Ryan. Information Assimilation Research
at the University of Michigan for the ARPA
Unmanned Ground Vehicle Project. Sensor Fusion
VII (SPIE vol. 2355), pp. 2-13, 1994.

[Lee et al] Jaeho Lee, Marcus J. Huber, Edmund H.
Durfee, and Patrick G. Kenny, UM-PRS: an
implementation of the procedural reasoning
system for multirobot applications. In Conference
on Intelligent Robotics in Field, Factory,
Service, and Space (CIRFFSS '94), pages 842-
849, Huston, Texas, March 1994.

[Huber et al] Marcus J. Huber, Jaeho Lee, Patrick G.
Kenny, and Edmund H. Durfee, UM-PRS V3.0
Programmer and Refemece Guide, University of
Michigan AI Lab Document, 1994

[Fedor] Christopher Fedor, TCX; Task
Communications V8.6 Robotics Institute,
Carnegie Mellon University, Pittsburg, PA, 1993

[Musman et al] Musman, S.; Lehner, P.; Elsaesser,
C. Sensor planning for moving targets. Sensor
Fusion VII (SPIE vol, 2355), pp. 86-96, 1994.

335

[Nii] Nii, H. Penny. Blackboard Systems: The
Blackboard Model of Problem Solving and the
Evolution of Blackboard Architectures. AI
Magazine 7(2):38-53, Summer 1986.

[Nii] Nii, H. Penny. Blackboard Systems: Blackboard
Application Systems, Blackboard Systems From
a Knowledge Engineering Perspective. AI
Magazine 7(3):82-106.

[Shaham] Shaham, Y. J. Two-dimensional
recognition range model. Infrared Systems and
Components II (SPIE vol. 890), pp. 92-94, 1988.

[Stentz] Stentz, Anthony. The CODGER System for
Mobile Robot Navigation. Vision and Navigation:
The Carnegie Mellon Navlab. Charles E. Thorpe
(editor), Kluwer Academic Publishers, 1990, Chapter
9.
[Stentz] Stentz, Anthony. The NAVLAB System for

Mobile Robot Navigation. PhD thesis, Carnegie
Mellon University, 1990.

[Van Brackle] Van Brackle, David; et al. Terrain
Reasoning for Reconnaissance Planning in
Polygonal Terrain. Proceedings, Computer
Generated Forces '93.

10. Authors' Biographies

Patrick G. Kenny is a staff research programmer
at the University of Michigan where he is currently
working on the Unmanned Ground Vehicle project
developing the system and architecture described in
this paper. He received his Bachelor Degree from the
University of Minnesota. His interests are in
Autonomous Agent Architecture's and Minirobotics.

Edmund H. Durfee is an Associate Professor in
the Department of Electrical Engineering and
Computer Science at the University of Michigan,
where he conducts research in multiagent systems,
real-time intelligent control, and cooperative problem
solving for applications ranging from interacting
unmanned vehicles to supporting human
collaboration. He received a PhD in Computer
Science from the University of Massachusetts in
1987, and was named a Presidential Young
Investigator in 1991.

Karl Kluge is an Assistant Research Scientist in
the Department of Electrical Engineering and
Computer Science at the University of Michigan. He
received his PhD from Carnegie Mellon University,
where he developed the YARF road follower. His
interests are in mobile robots, vision, and intelligent
vehicles.

336

An Architecture for Computer Generated Individual Combatants

Douglas A. Reece and Paul Kelly
Institute for Simulation and Training

3280 Progress Dr., Orlando, FL 32826
dreece@ ist.ucf.edu

1. Abstract

The Institute for Simulation and Training is
developing Computer Controlled Hostiles and
Neutrals (CCH/N) to support an individual combatant
trainer being developed by the USMC. The CCH/N
system requires simulation of all aspects of human
soldiers from physical actions to problem solving. At
the physical level we have implemented visual and
audio detection models, an action model, and "stubs"
for aiming, wound effects, and fatigue. The control
level implements continuous actions such as
movement control. The action selection level
determines the immediate focus of activity; this level
contains the knowledge about what actions or
subtasks are appropriate to accomplish a task in the
current situation. Probabilistic selections at this level
allow the system to simulate different behavior for
different types of soldiers. Finally, the problem
solving level performs long-term computations that
cannot be completed in the time available to select
the next action. These computations, such as route
planning or terrain analysis, are started in response to
requests from the action selection process. This
paper describes the CCH/N entity architecture.

2. Introduction

2.1 TTES

1ST is developing autonomous individual computer
controlled hostiles and neutrals (CCH/N) to populate
a virtual battlefield as part of the Team Target
Engagement Simulator (TTES) project. This project,
which is sponsored by the Naval Air Warfare Center
Training Systems Division in Orlando, will develop a
system to train small infantry units to fight in urban
terrain. The users will initially be Marine Corps
squads, but the system could potentially be expanded
to other services, Special Forces operations, hostage
rescue missions, etc. The system is designed to
operate as a distributed virtual environment
simulation using Distributed Interactive Simulation
(DIS) protocols to link simulator nodes.

Simulating humans requires modeling all aspects of
human behavior from physical actions to problem
solving. In this paper we present the overall
architecture of our artificial human agents and
describe the models used at different behavior levels.
We then focus on action selection behavior in more
detail.

2.2 CCH/N
Constraints

Design Requirements and

Several requirements and goals directed the design of
the CCH/Ns.
• In the distributed simulation environment, the

public representation of the IC is currently
constrained by available DIS entity state
variables. Thus besides location and velocity,
the only configuration state available is stance
(standing, kneeling, prone) and weapon readiness
(stowed, deployed, in firing position). The
transitions between stances, gaits and weapon
readiness states are animated at the image
generator of the TTES trainee stations to avoid
requiring entities to generate and broadcast body
part information.

• The motions and state changes of the CCH/N
must be realistic. Trainees do not just view the
CCH/Ns from long range but can literally come
face to face with them. For the CCH/Ns to look
realistic, their speeds, accelerations, facing
changes, and timings for stance and weapon
readiness changes must be as accurate as
possible.

• The domain of TTES is fireteam or squad level
engagements in urban terrain. The scenarios
usually put the CCHs on the defensive, although
the engagements are more like meeting
engagements than set battles. Meetings can be
surprising and can occur at close range. Thus it
has been more important to model individual
perception and individual responses to new
threats and changing situations than it has to
encode unit tasks.

337

• The TIES CCH system is modeling different
kinds of hostile soldiers—regulars, untrained
militia, etc. Subject matter experts have
provided opinions as to the differences in soldier
behavior in terms of probabilities of different
responses to certain situations. For example, the
probability of engaging vs. seeking cover when
first detecting a threat. Thus the CCH must not
simply find the best action for the situation, but
must identify a number of actions and choose one
probabilistically. Most existing computer
generated forces systems do not do this.

• The TTES CCH system simulates multiple
entities on one host computer. The simulation is,
of course, in real time. Thus the CCH
architecture must provide a way to keep the
CCHs responsive even when their reasoning
process requires long computations.

3. Overall Architecture

The CCH/N system is divided into several distinct
levels, as shown in Figure 1. At the bottom is the

may either be physical actions or computation
processes at the next higher level. Action selection
takes place repeatedly in a "decision cycle" of about a
second. The highest level is the problem solving
level where long computations are performed.

3.1 Physical level

The physical level of the CCH contains all of the data
and procedures that define the characteristics of the
entity. The first aspect of the physical level that must
be defined for ICs is a model of action. While there is
no man-made hull to simulate, there is an analogous
body to model with similar physical parameters—
maximum speeds, accelerations, etc. Unlike most
vehicles, humans can easily move in a direction other
than the one they are facing. The human body also
has a great many moving parts which potentially
increase the complexity of its movement
characteristics. Although in TTES body parts are not
separately modeled, even the few DIS lifeform
(soldier) states make the physical model fairly
complex.

Problem Solving

Z
Action Selection

"sT
Feedback Control

Physical Model

Simulation support
(terrain, entity dead reckoning,

network)

Figure 1. Levels of the CCH architecture.

physical level which describes the physical
interaction of the CCH with the virtual world.
Above that is the control level where behavior
requiring continuous feedback control is
implemented. In these two levels, continuous
phenomena are simulated in time steps. The next
level is the action selection level where knowledge is
applied to select immediate actions. These actions

State
Variables:

Values and
COMMANDS:

JATE

THRUST ANGLE

Standing_to_prone
.Prone_to_standing

Prone

Kneeling_to_prone
Prone_to_kneeling

Stowed_to_firing
Rring_to_stowed

PON^ posjtion

•*\ Deployed_to_firing
Firing_to_stowed

AD
•-True

Figure 2. Interacting state variables in the CCH
action model.

338

Figure 2 shows some of the necessary state variables
and their values. The complexity arises from the
interaction of the state variables. For example, what
are the constraints on speed while holding the weapon
in the firing position? Is it possible to fall prone
while running? Is it possible to reload a weapon
while rising to a standing position? The action model
must specify how long it takes to perform various
actions, and various combinations of actions. We are
developing a model of human action (within DIS) that
explicitly describes the state variable interactions, and
are making much of it configurable with data files.

A second important aspect of the physical level is the
perception model. Our perception model includes
both vision and hearing. The vision component
includes primary and peripheral fields of view with
instant "pop-up" target detection in the peripheral
field and search-based target identification in the
primary field. The hearing component, which
includes a simple sound generation and propagation
model, allows CCHs to detect and sometimes identify
other entities when they move or fire. Loud sounds
mask softer sounds. A more detailed description of
the perception model can be found in (Reece 1996).

We have incorporated weapon control into the CCH
physical level. In a more detailed model of a soldier,
aiming and firing a weapon would properly be part of
the control level; however, we do not model the
control of the position of body parts but treat aiming
and firing as primitive physical actions. The result of
firing is currently a hit probability rather than a
ballistic round trajectory. Hit probability is based on
a nominal maximum error radius for the soldier-
weapon combination at 100 meters. The resulting hit
area is compared with the visible target area projected
at 100 meters. Target and firer motion and firer
stance are factored in to the error radius. In the future
we will also modify the error radius for aim time,
wounds, suppression effects, and other factors that
affect aim.

The fourth component of our physical level is fatigue.
We currently use a simple fatigue model that reduces
the CCH's "energy" as it moves; faster movement
uses energy faster. Remaining stationary allows the
CCH to regain energy. Reduced energy levels cause
the CCH's movement capability to be reduced. This
model is called from the dynamics routine in one
place and could be replaced in the future by a higher
fidelity model such as IUSS (Okeefe 1994).

The final aspect of the physical level is modeling
wounds. Wound effects are difficult to simulate
because they introduce further complications into the
action model. We do not currently simulate wounds.
This has not been an important requirement in TTES,
partly because there are no visual effects to
accompany wounds and partly because the human
trainees suffer no wound effects.

3.2 Control level

The control level implements those behaviors that
require continuous feedback control. In our CCH
system this currently includes only movement
activities. Tracking (facing) moving entities or
avoiding moving obstacles requires constant sensing
and motion correction to perform the task accurately.
When movement along a path can be modified by
moving entities or other disturbances, or when
desired motion is not possible due to acceleration or
turning limits, the path following task also requires
feedback control to stay on track. Path following may
include moving toward a point, movement along a
road, movement along a wall, etc.

The control level in our CCH system is composed of
a controller manager and a number of control
modules. The controller manager receives commands
from the level above and activates and connects the
appropriate control modules together. Figure 3 shows
these components implementing a simple route point
following activity. The control modules take data
from the physical level, the environment data base,
and from other control modules via input "ports."
The data produced by the modules are sent out of an
output "port," which may be connected to another
control module or to the physical level.

When the controller manager connects together a set
of control modules, it forms a network through which
data flows from sense input to control output. This
concept has been used in the low levels of numerous
autonomous agent designs (e.g. Brooks 1976 and
Becket 1993). In our system the activated control
modules are put on an execution list and executed in
order every time step. The controller manager's
implementation of the command functions must place
the modules on the list in the correct order so that
they are executed in the desired order. Generally, the
desired order is from input to output so that there is
no latency. The modules could be connected in
loops, and the single pass execution would prevent
race conditions from occurring.

339

Active control
modules

Controller Manager

\ Control
[modules
'.defined for
.entity

- Location
-Speed
- Heading

Physical Level
-Turn rate
- Acceleration

Simulation Support Terrain features
Entity positions

Figure 3. Controller manager and control modules for simple route following with obstacle avoidance.

3.3 Action selection

The action selection level is the center of cognitive
activity for the CCH. Decisions at this level initiate
all physical and problem solving activities. Outputs
can go directly to the physical level to perform
actions, to the control level to start physical activities,
or to the problem solving level to start long
computations. This system organization is similar to
other that of other intelligent agent architectures such
as (Becket 1993, Gat 1992, Mettala 1992, and Reece
1993).

The action selection layer runs periodically like the
control modules but with a longer period. In
addition, significant events can trigger action
selection to run before its scheduled time—for
example, near misses from weapons or new, nearby
threat sightings. The action selection computation is
intended to be fast so that it (as well as control,
physical model, and computations for other entities)
may be run frequently and without situation-
dependent delays. Long computations are performed
at the problem solving level so that the CCH always
remains responsive even while thinking. It is
desirable to set an upper bound on action selection
computation time in order to guarantee real time
responsiveness in all situations; however, we cannot

yet guarantee an upper bound on the CCH action
selection process because the CCH's simulated
perception requires some searching of a database
instead of indexing directly to interesting objects (see
Section 4.2 below).

3.4 Problem solving

The top level performs mental actions that take a long
or unbounded amount of time to finish. Typically
these are route planning, terrain analysis or mission
planning tasks. The expense of the tasks comes from
a search through a large space of alternatives or from
expensive numerical calculations, or both.

The functions in the problem solving level are run in
separate processes from the action selection and other
levels. The CCH system multitasks between the
entity's processes (and between processes of different
entities) using cooperative multitasking; i.e. the
processes have to give up control of the processor
voluntarily. Functions at the problem solving level are
written to allow cooperative multitasking. Processes
implementing the lower levels can continue to run
while long problems are being solved; thus the entity
stays responsive to the environment. The problem
solving processes may be run at a lower priority than

340

etc.

Figure 4. Partial hierarchy of tasks and subtasks known to a CCH. The solid boxes show an example of
what subtasks a CCH might be performing at a moment in time.

others to ensure that the entity moves and reacts
properly even under higher processor load.

When the action selection level determines that a long
computation is needed, it starts a problem solving
process and remembers that it did so. While the
computation is being undertaken, the action selection
level chooses the appropriate action given its lack of
information. Action selection does not restart the
process every time it runs, but may update data
provided to the process. If this invalidates the
problem process' work so far, it might have to start
again. If the problem solving process is written in
such a way that it can provide partial results (e.g., the
first part of a route plan) before it is done, the action
selection level can take advantage of these results.

4. Action Selection

The action selection level consists of a hierarchy of
subtasks that allow the entity to decompose its tasks
into primitive activities; knowledge of what subtasks
can accomplish a task in a given situation; and an
inference engine that applies the knowledge to start
subtasks and activities.

4.1 Tasks

The CCH system encodes domain-specific knowledge
about action in an object called a task. Each task
contains a list of subtasks which can help, in some
situation, the entity accomplish the task. In addition
the task has a set of rules that describe how to select
subtasks. The subtasks can themselves describe

subtasks, so that the entity's knowledge about a task
is a hierarchy of tasks and possible subtasks. A
number of intelligent agent designs described in the
literature use task hierarchies, but they often have a
strong flavor of finite state machines that follow
limited sequences of states (e.g. Ahmad 1994, Calder
1993). Our task hierarchy is more like (Tambe 1995)
in that it is intended to provide a set of subtasks that
may be freely chosen to best accomplish the task in
the current situation.

At the bottom of this hierarchy, tasks may start
physical or mental actions. In terms of our CCH
architecture, the tasks may request an action from the
physical level, start a controlled activity at the control
level, or start a mental process at the problem solving
level. The current focus of attention of the CCH at
any time is describe by the stack listing the active
task, subtask, sub-subtask, etc. Figure 4 shows part
of the task hierarchy of a CCH with the current state
indicated; this entity is currently seeking cover in
response to a new threat.

4.2 Rules For Selecting Subtasks

Knowledge about how to accomplish tasks is encoded
in rules. Rules examine facts in the CCH's
"memory" to assess the internal and external situation
and then either propose subtasks to start or reject
subtasks. A rule may, for example, reject
Immediately_Engage if the entity's weapon is not
loaded or if the entity is out of ammunition. The
proposals have a coarse priority assigned to them so
that important or default proposals may be indicated.

341

if
(Received_close_fire)
(Range_to_highest_threat >
CLOSE_QUARTERS_RANGE)

then
(propose_action

((name Seek_cover)
(priority VERY_HIGH)))

if
(Threat_with_LOS)
(Range_to_closest_threat <
CLOSE_QUARTERS_RANGE)

(Weapon_loaded)
then

(propose_action
((name Immediate_engage)
(priority HIGH)))

if
(Threat_wi th_LOS)
(Have_ammo)

then
(propose_action

((name Immediate_engage)
(priority MEDIUM)
(weight 20)))

if
(Threat_with_LOS)

then
(propose_action

((name Seek_cover)
(priority MEDIUM)
(weight 80)))

Figure 5. Sample rules for selecting subtask of
Respond_to_threat_as_individual task.

For example, a suppression response to a nearby
bullet impact might have a high priority, while a
proposal to look around might be the default action.
Figure 5 gives some sample rules for selecting actions
in the Respond_to_threats_as_individual task from
Figure 4. In the future we plan to allow rules to
specify preferences for one subtask over another as a
more situation dependent way of expressing the
importance of subtasks.

Rules provide a "probability weight" with each
proposal. This weight is intended to indicate the
relative probability of selecting the given subtask
from among the subtasks proposed with the same
priority. This mechanism is necessary to implement
behavior variations between different types of CCHs.
Subject matter experts have reported, in studies for
TIES, the probability distribution of different
behaviors in different situations for different types of
soldiers (Lind 1995). Our action selection

mechanism is thus required not to find the best
subtask to accomplish a task, but to propose a set of
potential subtasks and select among them randomly.
This requirement is generally not addressed by
intelligent agent architectures in the literature.

The CCH memory for action selection rules is an
object with slots pre-assigned for all facts that are
used by all of the rules. These facts are objects with a
value and an evaluation function. The evaluation
function can call simulator access functions to get
terrain or other entity information, or use
"perception" functions to access state variables in its
own entity or otherwise find data.

Our rule mechanism does not have the expressibility
of traditional rule-based inference systems. In
particular, the rules have very limited use of
variables. Generally, facts and expressions in rules
have only one attribute or parameter. There are two
reasons that we have chosen this design. First, the
inference mechanism is simple, small, and fast; it
was easy to integrate the mechanism as a module into
the existing body of simulation code. The CCH
memory described above, combined with the simple
rules, avoids the need for memory management
support such as garbage collection. The rule based
action selection is run on a different CCH memory
and potentially a different rule set for each CCH
simulated in the program.

The second reason for designing our rule system this
way is to try to make the action selection process
more directed by a focus of attention. A traditional
rule system must examine all combinations of facts
that might match the logical expressions in the left
hand sides of the rules. Consider the problem of
finding the closest visible threat entity; a logical rule
would have to describe this entity A as

Me(£) A

Threat (A)

Threat (B) A

Visible (A, £) A

V B, Range{A) < Range(B)

There is no explicit control over how the system goes
through the entities checking visibility (a relatively
expensive operation) and threat and comparing ranges
pairwise. Our goal is to create the "perception"
functions mentioned above so that they identify facts
relevant to the entity as directly as possible, and then
to write rules using these salient facts. For example,

342

our rule would not use the above expressions in the
left hand side, but would refer to
"the_closest_visible_threat_entity." This approach
was described by (Agre, 1987). Their Pengi system
used action proposers in a combinatorial decision
whose inputs were "indexed" to the entity. The
inputs were generated by "visual routines" that found
important inputs directly. In our case we cannot
always find inputs without searching short lists of
entities or terrain features, but we at least have
explicit control over the search mechanism.

4.3 Action Selection Process

The action selection process is run repeatedly about
once a second. It can also be run immediately in
response to a significant event such as an activity
completion, a new sighting, or a fire event. Each time
action selection is run, the top level task is examined.
Its rules are evaluated and a subtask is selected. If it
is the same as the currently active subtask, the action
selection process drops down the task stack to this
subtask an repeats the task evaluation process. If a
new task was selected, the old subtask and,
recursively, its subtasks, are stopped; the new
subtask is then started and its rules evaluated
immediately.

When the rules of a task are evaluated, they create a
list of proposed subtasks with priorities and
probability weights. An arbitration function throws
away all but the highest priority tasks. If the current
task has been proposed again, it is selected
immediately. This prevents the CCH from randomly
selecting a new task each cycle and "dithering"
between tasks. If the current task has not been
proposed, the weights of the proposed subtasks are
normalized to the total weight of those proposed and
a random number is generated to select a subtask.

4.4 Minimizing the Computation of Facts

One persistent challenge of developing computer
generated forces is computing quickly the information
that is immediately available to humans. For
example, a human can look at a region of terrain and
immediately identify a rise behind which he can hide
from a threat; for a computer to find this location, it
generally has to sample points on the terrain and
make intervisibility tests. Many of the rules that we
might create to control CCH behavior could test such
facts in their left-hand-sides. For example, a rule

might test something about a nearby cover location,
thus requiring the above intervisibility computations.

Given that many facts are expensive to compute, it is
highly desirable to avoid doing this unless it is
necessary. We have implemented three simple
mechanisms to help avoid unnecessary computation
of facts. The first is simply a lazy evaluation
procedure; no facts evaluation functions are run until
needed to evaluate a rule. The second mechanism is
a cache. Fact objects contain a flag that indicates
whether the fact has been updated during this
decision cycle. When a rule requests a fact, the flag is
consulted to see if the evaluation function must run.
When the fact is evaluated, the result is stored for the
next time and the flag is set. Thus fact evaluation
functions are only run once even if more than one rule
uses the same fact.

The third mechanism we use to avoid fact evaluation
is rule ordering and incremental arbitration. We
deliberately avoid the traditional forward-chaining
inference mechanism because it must check all facts
to see if any rules can fire. The rules are grouped
according to priority and only one group is activated
at a time. The groups are activated from highest to
lowest priority. Rather than waiting until all groups
have been considered, the arbitration mechanism is
invoked after each group is evaluated. Thus if a rule
proposes a subtask with a high priority, none of the
rules that propose lower priority subtasks need to be
considered—i.e., need to evaluate their facts.
Currently the rules are grouped by hand, but this
would be straightforward to do automatically.

5. Conclusion

We have developed an architecture for computer
controlled individual combatants that defines
modeling levels for physical characteristics, activity
controlled by feedback, responsive action selection,
and problem solving. Within this architecture we have
developed new models for ICs at several levels. At
the action selection level, we have defined domain
knowledge representation using a task hierarchy and
rules to select subtasks in different situations. Our
action selection mechanism can select behavior
probabilistically, and avoids unnecessary evaluation
of computationally expensive facts in the rules.

343

6. Acknowledgement

This work is been supported by contract N61339-94-
C-0006 from the Naval Air Warfare Center Training
Systems Division.

7. References

Agre, P. and Chapman, D. (1987) "Pengi: An
Implementation of a Theory of Activity."
Proceedings ofAAAl-87, pp 268-272.

Ahmad, O. et al (1994) "Hierarchical, Concurrent
State Machines for Behavior Modeling and
Scenario Control", in Proceedings of the Fifth
Annual Conference on AI, Simulation, and
Planning in High Autonomy Systems, IEEE
Computer Society Press.

Becket, W. and Badler, N. (1993) "Integrated
Behavioral Agent Architecture", In Proceedings
of the Third Conference on Computer Generated
Forces and Behavioral Representation. University
of Central Florida.

Brooks, R. (1986) "A Robust Layerd Control System
for a Mobile Robot," IEEE Journal of Robotics
and Automation, Vol RA-2, No. 1.

Calder, R., Smith, J., Mar, J. and Ceranowicz, A.
(1993) "ModSAF Behavior Simulation and
Control", in Proceedings of the Third Conference
on Computer Generated Forces and Behavioral
Representation. University of Central Florida.

Gat, E. (1992) "Integrating Planning and Reacting in
a Heterogeneous Asynchronous Architecture for
Controlling Real-World Mobile Robots," In
Proceedings ofAAAI-92, pp. 809-815.

Lind, J.(1995) Behavior Representation for the Team
Tactical Engagement Simulator (TTES), Naval
Air Warfare Center Weapons Division.

Mettala, E. (1992) "The OSD Tactical Unmanned
Ground Vehicle Program," In Proceedings of the
DARPA Image Understanding Workshop.

O'Keefe, J. (1994) Factors Governing Dismounted
Human Movement in a Synthetic Environment.
U.S. Army Natick Research, Development and
Engineering Center.

Reece, D. (1993) "Execution Control for CPU-
Sharing Agents," In Proceedings of the Third
Conference on Computer Generated Forces and
Behavioral Representation. University of Central
Florida.

Reece, D. and R. Wirthlin, (1996). "Detection
Models for Computer Generated Individual
Combatants", In Proceedings of the Sixth
Conference on Computer Generated Forces and
Behavioral Representation, University of Central
Florida.

Tambe, M. et al (1995) "Intelligent Agents for
Interactive Simulation Environments," AI
Magazine, Spring 1995.

8. Authors' Biographies

Douglas A. Reece is a Computer Scientist at the
Institute for Simulation and Training. He is the
Principal Investigator of the TTES Computer
Controlled Hostiles project. His research interests are
in artificial intelligence, specifically intelligent agent
design and computer vision. He has a Ph.D. in
Computer Science from Carnegie Mellon University
and B.S. and M.S. degrees in Electrical Engineering
from Case Western Reserve University.

Paul Kelly is a graduate student in Computer Science
at the University of Central Florida. He has worked
on the TTES CCH project for two years and is using
it to study and develop action selection methods for
intelligent soldier agents. He received a B.S. degree
in Computer Science from the University of Central
Florida.

344

Session 5b: WSJV

Paz, U. S. Army, STRICOM
Marshall, U. S. Army, STRICOM

Mastroianni, U. S. Army Natick RD&JE Center
Mullis, U. S. Army, TRAC-WSMR

ModSAF Credibility

Benjamin D. Paz
U.S. Army Simulation Training and Instrumentation Command

Orlando, Florida 32826-3276
pazb@stricom.army.mil

Irwin L. Hudson
NATIONS, Inc.

Orlando, Florida 32826
hudsoni ©stricom.army .mil

1. Abstract

The precise alignment of the Software Development
Process to the implementation of Verification and
Validation (V&V) has been proven to be critical in
determining the credibility of models and simulations
(M&S). Since ModSAF is an M&S which has
unanticipated requirements to meet the needs of
various programs, its development strategy has to be
unique and versatile. There has to be a standard
process in place to enable the community to develop
new and robust capabilities for integration into the
ModSAF baseline. In order to ensure credibility, this
development process must be paired with an equally
standardized V&V plan. Hence, the ultimate goal is
to leverage from various programs and produce
credible releases of ModSAF.

2. Introduction

extend with ease compared to the previous SAF
systems. In mid 1993 the Battlefield Distributed
Simulation - Development (BDS-D) program began
the process of identifying legacy capabilities to
integrate with ModSAF. These capabilities were
often no more than demonstration quality in order to
provide proof of concept for SAF development.

Early in 1994 the Ami-Armor Advanced Technology
Demonstration (A2 ATD) embarked on the effort for
Verification, Validation, and Accreditation of the
BDS-D environment. During the course of the A2
ATD, weaknesses of the software development and
configuration management processes became
apparent as obtaining and developing data and then
controlling the data in the baseline were very complex
to manage.

2.1 ModSAF Overview

Modular Semi-Automated Forces (ModSAF) is a
widely used Computer Generated Force simulation
for use in Distributed Interactive Simulation
exercises. ModSAF provides simulated forces and
environmental effects on the virtual battlefield.
Only elements which are externally visible or
significant are simulated. A heuristic approach is
used to simulate behaviors. This approach lends
itself well to computational efficiency but does not
provide for complete automation. An operator is
required to plan the orders for units and intervene in
situations where the automated behavior lacks an
appropriate response.

In 1995, the Computer Generated Forces Assessment
Working Group (CGFAWG) was formed for the
Deputy Under Secretary for the Army for Operations
Research (DUSA-OR) to conduct a study of CGF for
use in DIS. The study identified ModSAF as being
capable to support Distributed Interactive Simulation
(DIS) needs for the Advanced Concepts and
Requirements (ACR), Research Development and
Acquisition (RDA), and Training Exercises and
Military Operations (TEMO) domains. This finding
resulted in the perception across the Army community
that ModSAF actually possesses these capabilities
(not just the potential). However, ModSAF did not
possess all the capabilities (and certainly not the
domain specific V&V).

2.2 Background

ModSAF development began in the spring of 1992
with the objective of providing an open, modular
architecture which researchers could enhance and

By late 1995 the results of the CGFAWG (Brooks et
al. 1996) spread throughout the Department of the
Army. Throughout 1995 ModSAF was in a
transitional phase from the BDS-D program manager
to the Program Manager for Distributed Interactive

347

Simulation (PM DIS). Many new ModSAF users
were unaware of the origin of the ModSAF program
ignoring the transition status and expected a
operational system with the V&V that robust
Configuration Management (CM) supports for
exercises or training scenarios. Under the technology
based BDS-D Program, although capabilities were
developed from military doctrine, V&V traceability
was not sustained due to the lack of CM.

Today ModSAF Simulation of military doctrine and
platforms does not perform as expected and as a
result user confidence in the system has fallen.

2.3 Objective

The DUSA-OR requires PM DIS to develop and
implement a ModSAF CM process which
institutionalizes ModSAF V&V as implemented in
the A2 ATD and the BDS-D program (Hollis 1995).
A standard configuration managed process aligning
software development and verification and validation
is needed to provide the required traceability.

2.4 Mission Statement

The objective for this paper is to inform the ModSAF
user and developer communities on the enhanced
development process. This new process provides
CM for the entire system, links V&V to software
development, and provides a plan for V&V of legacy
capabilities.

process and must be published in a manner readily
accessible by all users and developers.

3.1 Development Process

To begin the process of making ModSAF more
credible, PM DIS established a Configuration Control
Board (CCB) for the ModSAF program (PM DIS
1996c). The CCB is chartered to systematically
control changes and maintain the integrity and
traceability of the functional requirements. Under the
umbrella of Integrated Process and Product
Management (IPPM), two working arms of the CCB
have been established: the Integrated Product Team
(IPT) and the Integrated Development Team (IDT).
The teams include membership and participation
from government and industry. The IPT conducts the
management of program activities while the IDT
performs technical assessments for developments and
problems. The hierarchy of the CCB structure is
represented in Figure 1 below.

CCB

IPT

IDT

3. Configuration Management

An extended software development approach now
exists which includes V&V from the onset. A robust
CM process must be in place to support the
development (PM DIS 1996a). Existing and future
capabilities for ModSAF must conform to this

Figure 1 : CCB Structure

The IPT meets on a regular basis approximately once
every two months. The IDT is organized into a series
of working groups which report progress to the IPT.
Methods for improving a particular process may
invoke a temporary IDT working group while the
process of reviewing

348

Form V&V team
Identify deliverables

Develop V&V
Plan

O Product

C^ Process

Validate Model
Performance issues
Conceptual Defect

V&V
* as required

Per Development Line

Per Baseline Release

Figure 2 : Software Development and Verification and Validation Cycles

Problem/Trouble Reports (PTR) is conducted in
ongoing working group.

The ACR, RDA, and TEMO domains each have
representation at all levels of the CCB. The CCB
representatives provide the requirements for their
respective domain. At the IPT and IDTlevels the
domain representatives are primarily concerned with
V&V of new capabilities. ModSAF software
development remains as it was defined for version 1.2
(Courtemanche and Ceranowicz 1995); however, the
process is extended to link V&V with software
development as shown in Figure 2 (PM DIS 1996b).
The spiral shows the development process along with
the V&V activities. The traditional feedback loop is
not represented in the diagram to reduce the
complexity. Products are enclosed by ovals and
processes are enclosed by rectangles with V&V
activities linked via bent lines.

The four basic phases to ModSAF development are
(1) Knowledge acquisition (KA) and Knowledge
Engineering (KE), (2) designing, (3) programming,

and (4) integration and test. After successful
completion of the these four phases a new capability
exists in the ModSAF baseline. The enhanced
software development cycle now starts with a V&V
plan. When new system requirements are established
for development the generic ModSAF V&V plan may
be augmented with some unique extensions for that
development.

At the end of the KA and KE processes a conceptual
model and software requirements are prepared. The
conceptual model is a description of the functional
area to be developed.

In cases involving complex tactical conditions, a
story board approach will be used to show the
capability being automated in ModSAF. This model
will be reviewed with the user and the developer.

The V&V team will be responsible for validating the
conceptual model and for citing deficiencies. The
model is intended to foster an understanding between
the user and the developer of the functionality to be
modeled in ModSAF. Also at this phase, software

349

requirements are verified against system
requirements. This level of V&V up front is designed
to reduce the risk of developing the wrong
functionality.

Government representatives to the IDT can close
PTRs that only require technical expertise. Those
PTRs requiring tactical expertise will be referred to
the appropriate user site for closure.

The subsequent phases of software development are
typical to what has been performed since ModSAF
version 1.0. Based on the KA/KE products, the
design phase begins. Once a design is complete the
V&V team will have planned what elements of the
design to review such as user interface, timing and
sizing, and training issues. A design report will be
produced.

Of course, following design, programming begins and
culminates in new code. The V&V team will review
the code for integrity, compare the code to the design
and evaluate interfaces as necessary. A code review
report will be produced. Following completion of a
capability, tests will be developed against the
software requirements.

The phases of designing, programming and testing are
typically incremental which means capability will be
ready for integration prior to completion of the entire
functional area under development. Incremental
integrations will provide the user with the opportunity
to check the new functionality and provide feedback.
This feedback should be positive in that the up front
V&V will have minimized invalid KA and KE. The
feedback will provide input for future enhancements
in place of corrections and fixes.

Immediately following the integration of new
capability regression tests are performed
(Courtemanche and Ceranowicz 1995). When the
baseline planned freeze date is reached all the
incremental integrations of capabilities and its
associated regression test is complete, the release
testing process begins. In Figure 2, the inner curve of
the spiral represents the release testing process which
starts with the frozen baseline.

During this time, release and acceptance testing are
performed. The Beta version is released to user sites
and other developer sites. User sites are responsible
to find problems based on ModSAF capabilities and
submit Problem/Trouble Reports (PTR) in their
functional areas. Developers will submit PTRs based
on stressing the system to find anomalies and
problems in their functional area. The IDT is
responsible for tracking and correcting PTRs.

3.2 Proliferation

A key element is the exposure of this process to the
entire community. One method for achieving this is
to use the world wide web. The web site is located at
http://www.modsaf.org. Access to the web site is via
user and developer accounts. To obtain an account a
ModSAF Distribution Agreement must be in place
with PM DIS. CM maintains the ModSAF program
status on the web. Information to be published
includes the status of PTRs, changes and additions to
software libraries, development schedules, future
plans, and user help. This system will provide a
means for users and developers to enter new PTRs
and obtain help from the Frequently Asked Questions
pages.

The ModSAF Configuration Status Accounting
(CSA) system will be a means for users and
developers to check the development process.
References to documentation including V&V reports
will be available on line. The traceability from
requirements through test will be available.

Documentation developed for the system will be
written according to the new ModSAF Software
Development Plan (SDP). This new documentation
will support traceability by mapping test procedures
back to the initial system requirements. The SDP will
be made available for the user community to
understand what is required for integrating externally
developed capabilities and how to successfully
accomplish it.

As new configuration managed versions of ModSAF
are released the spiral process of obtaining feedback
from the ModSAF user and developer community.
This feedback is tied into the process not only with
PTRs but also with user enhancement requests which
can be entered into the web system. After review by
the IDT and IPT, the requests will be presented to the
CCB

3.3 CM Database

The documentation and code of the ModSAF system
will be stored in the CM database. This database is

350

not accessible through the web. The database will
possess the links between the various documents and
also to code. Change information will be stored as it
is approved.

3.4 Legacy Capabilities

Legacy capabilities in ModSAF typically did not have
CM to a satisfactory level for V&V. In performance
of a ModSAF development effort legacy capabilities
may be impacted. In this case, this extended
development process will V&V the legacy
capabilities in building the new functionality.

The remainder of the ModSAF system that has not
been developed with V&V will require a plan to be
completed. The plan must include transforming the
legacy documentation into the new format for V&V
review of the documents and code. As part of the
transformation, a reverse engineering effort on code
may reveal dead code which will subsequently be
deleted. Other code may require rework. For each
case involving rework the CCB will make the
decision on repairing an implementation or removing
its invalid representation.

3.5 Future Objectives

ModSAF is a system built with legacy components
and structures. The architecture needs enhancements
to ease maintainability. For example, standardizing
data formats and adding tools for novice users to be
able to enter and change military information,
including tactics, would greatly enhance system
usability.

Creation of mission statements for the ACR, RDA
and TEMO domains will determine how ModSAF
must be adapted for each domain. The adaptations
needed will cause further changes to maximize
leveraging between the domains. The differences
between the domain requirements may include
substitution of new physical models with greater
detail while the behavioral characteristics remain the
same. All of these changes will lead to more
confidence in ModSAF by the user community.

4. Verification and Validation

4.1 Objectives

The V&V methodology for ModSAF is derived with
this premise in mind: The main purpose for
conducting V&V for ModSAF is to provide an
"Accrediting" authority with sufficient information
for determining whether ModSAF adheres to its
intended purpose and use, as prescribed by the given
requirements.

The Verification process applies to the functionality
of the software as it relates to the requirements,
conceptual model, and design. The Verification
process determines whether or not the software
development functions according to the requirements
and accurately represents the user's conceptual
descriptions and specifications.

The Validation process determines the manner and
degree to which the behavior of a M&S is an accurate
representation of the real world. Validation addresses
the credibility of the requirements, by analyzing the
conceptual model and testing the behaviors and
physical models of the M&S.

V&V provides several benefits to software
development. When implemented properly, it
identifies deficiencies early in the development cycle,
which allows for early corrective actions that reduce
impacts to the program's cost and schedule. It also
provides technical monitoring of developer's efforts,
which consequently helps to ensure that the
development complies with requirements.

V&V gives the user a concurrent look into the
performance of the software. It provides necessary
input which improves the quality of the software
documentation (i.e. data, models, requirements,
design, code, and test material). Furthermore,
Verification, Validation, and Accreditation is
required for all M&S products that are developed
under the Army Model and Simulation Management
Program (AMSMP). Guidance is provided by Army
Regulation 5-11 and the Department of the Army
Pamphlet (DA 1992, 1993)

4.2 ModSAF V&V

The basis for ModSAF V&V will be centered around
a team approach to ensure a successful product. The
ModSAF V&V Team shall be responsible for
coordinating and conducting the required V&V
activities on the specific components that comprise
each individual ModSAF development effort. The
team shall include various organizational participants

351

in the V&V field for the components or modules
being tested, along with independent evaluators.

As mentioned earlier in this paper a specific V&V
plan will be prepared for each ModSAF development
effort by the assigned V&V Team . This plan will be
tailored from the V&V Methodology for ModSAF
Software Production (PM DIS 1996d) in accordance
to the ModSAF Software Development Plan.

Verification analysis will be performed on the
Software Requirements Specification to ensure that
the developers requirements map back to initial
system requirements produced by the user. Software
design will begin only after the conceptual models for
the development effort have been validated by
government representation. A V&V report will be
generated to show the results of the verification and
validation analysis performed on the SRS and
Conceptual Model. There will also be a Verification
report produced for the analysis performed on the
software design. Another Verification report will be
generated for the analysis performed on the code and
test documentation.

Individual Validation reports will be generated for
the testing performed on the Behaviors and Physical
Models of ModSAF. After final testing, the V&V
Team will perform an overall assessment of the final
product. A final V&V report containing results,
conclusions and recommendations will be generated
and made available to the accrediting authority.

The above process plays a critical role in producing a
"credible" ModSAF development product.

5. Summary

This paper summarizes the current status of V&V in
the ModSAF Program Plan, ModSAF Configuration
Plan, ModSAF Software Development Plan, and the
Verification and Validation Methodology for
ModSAF Software Production. The overall guidance
for this paper is from the ModSAF Program Plan.
The content of this paper is abstracted from the these
plans.

Throughout this paper the emphasis is on
maintenance of V&V traceability and not the
individual activities supporting V&V. CM is the key
element that links software development to V&V.

6. Acknowledgments

The ModSAF Program was supported by
STRICOM's Technology Base Program Manager,
Mr. Stanley Goodman, from 1992 to 1996. Now the
program is supported by PM DIS, Colonel James
Etchechury and run by the ModSAF Project Director,
Major Reba Lyons. Mr. Goodman is the new deputy
for PM DIS.

7. References

Brooks, W., Dymond, P., and Sandmeyer R. (1996)
"Computer Generated Forces (CGF)
Assessment", Special Publication No. 72.
AMSAA, 190 Pages.

Courtemanche, A.J., and Ceranowicz, A. (1995).
"ModSAF Development Status", Proceedings of
the Fifth Conference on Computer Generated
Forces and Behavioral Representation, Orlando,
FL: Institute for Simulation and Training, pp. 3-
13.

DA, (1992) "Army Model and Simulation
Management Program", AR 5-11, Headquarters
Department of the Army (DA).

DA, (1993) "Verification, Validation, and
Accreditation of Army Models and Simulations",
Pamphlet 5-11, Headquarters DA.

Hollis, W.W. (1995). "Computer Generated Forces
(CGF) Assessment", Memorandum SAUS-OR 28
November 1995. Deputy Undersecretary of the
Army for Operations Research.

PM DIS (1996a) "ModSAF Configuration
Management Plan", STRICOM

PM DIS (1996b) "ModSAF Software Development
Plan", STRICOM

PM DIS (1996c) "ModSAF Program Plan",
STRICOM

PM DIS (1996d) "Validation & Verification
Methodology for ModSAF Software
Production", STRICOM

8. Bibliographies

Benjamin D. Paz is a Systems Engineer for the U.S.
Army Simulation Training and Instrumentation
Command (STRICOM). At STRICOM, Mr. Paz is
the Lead Systems Engineer for the ModSAF
simulation. He holds Master and Bachelor degrees in
Computer Engineering from the University of
Louisville, Speed Scientific School. His interests
include CGF simulation and software engineering.

352

Irwin L. Hudson is a Software Engineer with
NATIONS, Inc. Mr. Hudson is supporting
STRICOM's efforts in ModSAF V&V. He has a
Bachelor's of Engineering degree. His interests
include V&V and human factors engineering.

353

SAF and Manned Simulators Correlation Issues in CCTT

Henry Marshall
Simulation Training and Instrumentation Command

marshalh@stricom.army.mil

Edward V. Chandler, Brian R. McEnany
Science Applications International Corporation

echandle @ greatwall.cctt.com
brian_mcenany@cpqm.saic.com

John G. Thomas
U.S. Army Materiel Systems Analysis Activity

jgthomas@arl.mil

1. Abstract

This paper attempts to define issues relating to the
correlation between the Semi Automated Forces
(SAF) and the manned SIMulators (SIMs) in the
Close Combat Tactical Trainer (CCTT) Distributed
Interactive Simulation (DIS) domain. The correlation
or what is sometimes termed 'Fair Fight' is critical to
the acceptance of the CCTT system as an accredited
training simulation system. If left uncorrected, many
of these issues will create negative training
environment for the crews of the simulators.

2. Introduction

The development of CCTT mandates the use of
validated data and models which have been provided
by Army Materiel Systems Analysis Activity
(AMSAA) and other sources. Some data and model
sets where not available from approved providers and
had to be synthesized during the development. These
models have been developed based on real world
empirical and engineering data and typically have
problems correlating to the limitations and
performance of current visual system designs. The
CCTT visual system is constrained by a 4000 meter
magnified range and a 2400 meter unity vision

Correlation issues have been identified in a wide
number of areas including; damage assessment,
mobility/trafficability, behaviors, rate of fire, delivery
accuracy, and target acquisition. For example,
during the User exercises the most common concern
expressed by the SIM operators was how easily the
Opposing FORce (OPFOR) SAF acquired and
engaged the SIMs, despite the fact they where moving
and/or the simulators where positioned in a well
concealed area. The target acquisition problem is the
most difficult and critical fair fight issue. As part of

our discussion, we will explore the ACQUIRE model
which is the validated target acquisition methodology,
its limitations, rational, as well as limitations of the
CCTT simulators visual environment and behavioral
aspects of acquiring and engaging targets.

Other correlation issues such as damage assessment
and mobility stem from, providing a maximum
fidelity model for the simulators, and a limited
fidelity model for the SAF. This strategy reduces
computational and data storage overhead for SAF
processors while ideally allowing minimal correlation
differences.

The paper will also show current testing and action
plans to address these issues in the development of
CCTT. The contractual requirements to correlate SAF
and modules are part of Baseline Change Request
(BCR) 174. The purpose of BCR 174 stemmed from
experience gained in observing differences between
SIMs and SAF entities in SIMulation NETwork
(SIMNET) and Modular Semi-Automated Forces
(ModSAF). A four month investigative effort began
last year to examine what legacy differences existed,
what was the current state of similar development
areas in CCTT, determine if specific experiments to
test the significance of differences were needed and
finally, were modifications to ongoing CCTT
development warranted to correct any correlation
issues. The results of this investigation provided
several recommendations, of which, performing
experiments on target acquisition capabilities between
SAF and SIMs was the most significant. Currently
CCTT is in the process of integrating and testing
functionality in four separate blocks designed to grow
the overall system functionality. This effort will be
going on through the end of this year. An important
part of each block will be to perform new
experiments and integrate new data and findings of

355

the BCR 174 effort. Currently, the CCTT system has
matured to the point where experiments to derive
useful data can occur. However, as of the writing of
this paper, the progress of BCR 174 is limited to
requirements definition and preliminary testing.
Detailed implementation finding will be discussed in
future papers and be added to future versions of the
AMSAA CCTT Data Compendium.

3. Correlation Issues

3.1 Damage Assessment

The principal determinants of damage assessment are
combat damage, stochastic failures, and deterministic
failures. The damage assessment process will identify
the component or system that was damaged or failed,
the organization that can repair the damage or failure
(either crew or Unit Maintenance Collection Point
[UMCP]), and the time to repair the damage or failure.

Under combat damage, once it has been determined
that a target has been hit, an assessment of whether the
target is killed needs to be made. Probabilities of kill
given a hit are based on impact conditions on the target,
such as damage, location of hit on the vehicle, range
from the firer to the target, attack angle, and type of
ammunition used. Kill criteria are as follows: mobility
(M) kill - an armored vehicle suffers M kill if it is
incapable of executing controlled movement within a
short time after being hit and is not repairable by the
crew; firepower (F) kill - an armored vehicle suffers F
kill if it becomes incapable of delivering controlled fire
within a short time after being hit and is not repairable
by the crew; M or F kill - an armored vehicle suffers M
or F kill if it suffers a mobility or firepower kill; and
catastrophic (K) kill - an armored vehicle suffers a K
kill if it is destroyed or suffers both mobility and
firepower kills and is not economically repairable.

A stochastic failure occurs when the vehicle or
equipment fails on its own, not through crew error or
combat damage. The frequency of failure is
determined by the Mean Time Between Failure
(MTBF) for the particular vehicle, based on AMSAA
provided reliability data. The current design does not
support OPFOR SAF stochastic failure. This is desired
because there is no training value in having a OPFOR
operator, which is a contractor, recover a OPFOR
vehicle that failed in a stochastic manner.

A deterministic failure is a failure that occurs due to
resource depletion or improper action. These type
failures include mismanagement of fuel and
ammunition, collisions, thrown tracks from high speed,

and warnings ignored by the crew. SAF entities avoid
situations that lead to deterministic failures, with
exception of running out of fuel and ammo.

For combat damage, SIMs and SAF use essentially the
same data provided by AMSAA. However, SIMs use
component level damage data; whereas SAF uses a
distribution to ascertain mobility kills, firepower kills,
and catastrophic kills. The components that SAF can
damage is limited to; engine, tracks, weapons, turret,
sensors, fuel transfer pump, computers and
transmission. For stochastic failures, SIMs use
component level failure data as provided by AMSAA;
whereas SAF uses mobility, firepower, and
electrical/sensor subsystem failure data.

AMSAA did not provide deterministic failure data for
SIMs or SAF. Data was generated by Integrated
Development Team (IDT) for SIMs and SAF. SIMs
will simulate more deterministic type failures than SAF
and will include starter motor and laser range finder
failures, rollover, drowning, and thrown tracks;
whereas SAF will only simulate thrown tracks,
collision, out of fuel and out of ammo . Note, in the
current baseline, SAF will receive collision damage
where as the SIMs react to collisions dynamically only.
The SIMs that drowns will receive engine damage and
get stuck. The SAF entity will get stuck and halt.

Findings and Concerns - The main difference in all
damage assessment between the SAF and SIMs, is that
SIMs uses component level failure data while SAF uses
mobility, firepower, and electrical/sensor subsystem
failure data. As a result, SIMs can randomly degrade
some mobility and firepower failures and continue its
mission while SAF either stops moving or stops firing.
The current methodology used by SAF does not lend
itself to modeling degradation in mobility or firepower.
Since a typical SAF Computer Generated Forces
(CGF) processor is targeted to control upwards of fifty
entities, verses one for the SIMs. SAF can not support
the higher fidelity component and subcomponet
modeling the SIMs can.

For deterministic failures, the difference between SIMs
and SAF is the number of type failures that can occur.
The ability of SAF to receive collision damage which
the SIMs do not may produce a disadvantage for SAF.

Despite the data differences in the levels of damage and
failure and the man-in-the-loop, damage assessment is
not a major problem for SIMs and SAF. Currently the
major problem in testing, is that some vehicle types are
very difficult to damage with certain types of
ammunition providing non logical results. The SAF

356

damage assesment method does not provide for
cummulative damage effects, making situations where
a vechicle will be hit numerous times and only receive
numerous mobility kills.

3.2 Mobility

Differences exist between SAF and SIMs in terms of
hull motion dynamics. SIMs use manufacturer's
engineering data combined with algorithms based on
dynamic Newtonian models. When combined with
crew actions, they achieve realistic, interactive
movement across the terrain. The SAF system is based
on Newtonian models, enhanced legacy algorithms,
data-driven models, or modified SIMs algorithms.
They provide generically realistic SAF behaviors.
Validated vehicle mobility data from Waterways
Experiment Station (WES) is used to approximate the
interactions between vehicle and terrain for both SAF
and to test and validate the SIMS overall automotive
performance.

SIMs have a high level of detail and fidelity. For the
SIMs, each roadwheel is independently modeled. There
is full engine and drivetrain simulation that provides
the crew with all needed visual, aural, and motion cues.
WES-supplied terrain characteristic coefficients are
combined with vehicle system simulation and operator
input to result in dynamically varying behavior. The
level of fidelity approximates that of classical flight
simulators. The SIMs were originally based on the Ml
driver trainer, and there was no comparable legacy
system in terms of capability. For SAF, vehicle/crew
mobility is approximated by the crew behavior model,
which inputs appropriate behaviors to allow the vehicle
to perform in an automated manner.

For both SIMs and SAF, WES-provided mobility data
permits a range of different types of paved surface, soil
type, season and vegetation, and both dry and wet
conditions. SIMs combine terrain coefficients with
other inputs, while SAF uses tables with 30 specified
terrain types. With SAF propulsion force is calculated
using the vehicles velocity curves during acceleration.
These velocity profiles are generated by the NATO
Reference Mobility Model (NRMM), and are a
function of vehicle type, terrain type, terrain slope,
throttle position, and gear position.

SIMs account for terrain slope using weight vector
resolution in 3 dimensional space. Model processing
combines weight components and other simulation
aspects in horizontal degrees of freedom to get the
effects of slope, without use of traction or other terrain
interactions. The SIM includes the M2/M3 slope

indicator which provides a check that he vehicle is on a
sufficiently flat surface for TOW firing. SAF uses WES
mobility data tables with 6 gradients of slope. Velocity
for SIMs takes into account the vehicle engineering
data, terrain coefficients, and operator inputs. In
addition, dynamics such as power loss during steering
is taken into account. For SAF, velocity is based on
WES data curves/profiles.

The turn rate for SIMs is based on terrain coefficients,
transmission engineering data, combined with the
vehicle simulation and operator inputs. It is sensitive to
terrain, velocity, load, power losses, and operator
control. By integrating these factors, damage such as
thrown track, rollover, or collisions can realistically
occur, normally as a result of operator error. Thrown
tracks are determined by track side-forces resulting
from the interactions between terrain, soil type,
velocity, operator error, and similar conditions. Similar
input determines roll-over and vehicle drowning.
Collision reactions are based on a Newtonian
momentum model providing full reactions in
longitudinal, lateral, and yaw directions, and can
account for multiple collisions and angular momentum
effects.

Turn rate and collisions are simplified in SAF. The
behavioral inputs or the crew behavior model precludes
errors or accidents from occurring by automatically
slowing the vehicle to a safe but high speed (around
turns) or by avoiding obstacles (steep slopes, non-
fordable water, no-go terrain, terrain features with
collision volumes, etc.). When a SAF vehicle collides
with any of the above obstacles, the vehicle will come
to a stop.

For towing, SIMs add additional resistance in the
longitudinal direction based on towed vehicle mass and
towing vehicle longitudinal velocity. All normal model
processing is still fully active. For towed SIMs,
Newtonian spring-damper forces are added based on
towing vehicle position, and its effect is calculated.
For dust trails, 1 of 3 sizes/types (or none) is generated
using synthesized factors including vehicle velocity.

For SAF, thrown tracks are not a function of mobility,
but may occur as discussed in damage assessment.
Roll-over and drowning are also not used as part of
mobility. In general, SAF avoids No-Go locations such
as steep terrain and drowning-depth water. SAF
vehicles are placed on the terrain with three contact
points (two in front and one in the center rear). SAF
collision and towing use modified versions of SIMs
algorithms.

357

Findings and Concerns - Factors impacting mobility
are reflected in the components of the system or its
behaviors. Differences between SAF and SIMs are that
SIMs have interactive crew/operator input, while SAF
uses software to model operator decision logic. Also,
SAF has no discrete physical model for vehicle
components, but uses empirical output data and
algorithms to describe how the vehicles move. SAF
interaction with the terrain is an approximation of the
many factors that impact mobility.

The main terrain difference between SAF and SIMs is
that the visual and the SAF correlated database are
designed for different purposes. SAF uses the SAF
correlated database to determine areas of no-go or
restricted terrain types. The SIM must rely on visual
cues such as terrain skin texture and cut & fill slope
and make their own determinations on mobility
suitability. In several experiments the SAF halted or
avoided areas of no-go terrain while the SIMs
occasionally had problems cueing on the visual scene
causing the vehicle to flip or get stuck. Terrain types
dry peat (no-go) and river fordableity determination
have been identified as major issues in this area for the
SIMs being able to cue on the terrain. Much of this
problem comes from the design decision, to make the
skin texture and features in the visual database match
with the vegetation defined in the raw source data
instead of the underlying soil type. Often the same
vegetation type will have several different types of
underling soil. The visual systems design also provides
different texture patterns to different areas of the same
terrain to avoid the synthetic appearance of having a
common texture for every terrain type. Being able to
cue off the soil type is turning into a big issue for the
SIMs.

Most vehicle components do not cause differences
between SAF and SIMs. Engine, drivetrain, and fuel
availability are important to mobility, but no significant
differences are expected in their representation. The
track and suspension interacts with the terrain and has
the potential to create discernible differences between
SAF and SIMs. SIMs account for most suspension
system components, and outputs vehicle bounce, pitch,
and roll, whereas SAF will not show these actions.
SIMs also display the results of artificial undulation
(rocking) in the pitch direction even over unvarying
terrain. SIMs track and suspension effects will be
visible (and will be even more drastic for braking).

The turning rate and radius is derived from AMSAA
data. However, SIMs respond realistically to operator
input including mistakes, and models problems such as
fantailing, sliding out of a turn, or even overturning.

SAF does not model these actions; when a SAF vehicle
reaches maximum turn conditions, the crew behavior
model either causes the vehicle to slow, or use a wider
turn radius (but still conduct a controlled turn). SIMs
also take into account the large horsepower losses
experience during turns, due to sideways dragging of
the tracks. SAF does not account for this (it has no
requirement to simulate engine functions), and is able
to conduct turns at higher speeds without losing
control. It is possible that during movement on winding
roads, SIMs may have difficulty keeping up with like
SAF tracked vehicles.

Along similar lines, the velocity/acceleration of SAF
may differ from SIMs, in that the crew behavior model
may cause SAF to move at an acceptable, but rapid
pace (as defined in WES-supplied vehicle velocity
curves), while the SIMs may move slower due to
human operator uncertainties in terms of cues,
command and control, or other factors. SIMs driving
cues include visual effects, vehicle controllability, seat
sub-woofers, artificial undulation, and terrain-induced
bouncing, pitching, and rolling. These cues are likely to
result in lower speeds. Similar factors pertain to
braking/deceleration, again resulting in differences
between SAF and SIMs. Suspension reactions exhibit
visual differences as SIMs move using several degrees
of freedom including pitching while moving over
undulating terrain or during braking or turning
operations.

Other effects such as towing, collisions, damage, and
recoil also display differences between SAF and SIMs.
A full range of reactions are provided for SIMs towing
and collisions. Collisions can have effects in the
longitudinal, lateral, and yaw directions, including
glancing, rebounding, rotation, and slowing reactions,
and can respond to multiple simultaneous collisions.
SAF reactions will be simplified, producing reactions
only in the longitudinal direction. For mobility-related
damage such as thrown track or roll-over, SIMs
synthesize terrain coefficients and vehicle velocity to
determine the actual reaction under various conditions.
Damage such as drowning can also result if operator
error results in placing all road wheels in drowning
water depth. SAF has much lower level of detail with
regard to these actions. The SAF control mechanism in
vehicle simulation (see behaviors section below for
more details on the SAF architecture) is ideally
operated at a 15 hertz rate to synronize with the visual
systems refresh rate. However the framework
mechanism within the design degrades this rate when
the processor becomes loaded and unable to maintain
the 15 hertz rate. Typically the large numbers of
vehicles (upwards of 50) and varying computational

358

loads, causes SAF to frequently operate in a degraded
mode. As the frequency is reduced the ability of the
entities to maintain stable vehicle control is reduced. In
areas such as forests with numerous high density
collision volumes, and steep turns the SAF entities may
collide with the obstacles before the entities direction
can be adjusted. This may cause the SAF designers to
review the possibility of ignoring collisions under
certain circumstances.

3.3 Target Acquisition

Of all correlation issues, target acquisition is widely
viewed as the most significant, based on experiences
with legacy systems such as SIMNET and CCTT user
exercises. Typically the acquisition abilities of the
SAF and SIMs are greatly mismatched. In SIMNET
exercises, the SAF operators would typically limit the
opening ranges of the SAF to avoid the SAF
destroying the SIMs before they could detect the
SAF.

The target acquisition ability supported by the SIMs
is primarily dictated by the fidelity level provided by
their Computer Image Generation (CIG) and display
system. This fidelity is established somewhat by the
state of the art in visual technology but more so by
cost considerations. The contrast and resolution of
the visual systems used in these moderately priced
SIMs fall noticeably short of real world capabilities.
The CIG is operated at a 15HZ update rate as a
design compromise which enables the rendition of
higher density imagery. The performance penalties of
15HZ, e.g., image stepping and multiple imaging, are
experienced and degrade target acquisition
performance. Additionally the CIGs overload
management system sometimes compounds this
degradation by modifying or eliminating scene
elements critical to acquisition performance. This
reduces resolution of the image while a sensor is
scanning and forces SIMs into a reduced scan rate.
The commander's popped hatch (CPH) visual system
uses an area of interest scheme whereby only about
forty percent of the field of view is presented at the
CCTl's highest resolution. The rest of the CPH area
has degraded resolution, creating some limits for the
commander's view and scanning abilities. Finally,
many of the SIMs vision assets have fields of view
which are smaller than the design basis vehicle.

The SAF simulation uses the Night Vision Electronic
Sensors Directorate (NVESD) target acquisition
methodology (herein referred to as ACQUIRE
methodology) to represent target acquisition sensor
performance for Direct View Optics (DVO), Image

Intensifies (12), and thermal InfraRed (IR) systems.
ACQUIRE methodology is currently used in
constructive Army combat simulation models.

The ACQUIRE methodology, adopted by the Army
in 1993, utilizes the same equations as the obsolete
Night Vision Laboratory (NVL) methodology but
requires modified input data. The ACQUIRE
methodology differs from the NVL methodology in
its use of a modified (line pair) criteria for the various
level of target acquisition, in its use of a two
dimensional representation of target size, and in its
use of a two dimensional Minimum Resolvable
Contrast (MRC) or Minimum Resolvable
Temperature (MRT) curve. This methodology and
associated assumptions are presented in the following
sections.

Basic Definitions, Assumptions and Limitations: The
ability to acquire a target in a particular environment
is a complex function of not only the observer's
visual perception of an image, but the object's size,
shape, color and the background's scene luminance
and thermal characteristics. Factors such as clutter,
motion, camouflage, obscurants, etc., either enhance
or degrade an observer's ability to detect, classify,
recognize and identify objects. Training is a basic
requirement to enhance an individual's target
acquisition capability.

Definitions: Associated with ACQUIRE methodology
are distinct factors that affect how, when, and where a
target will be detected and ultimately upon by SAF.
The AMSAA definitions of these factors are shown
below. It was shown during BCR 174 that minor
differences in terminology between the US Army
Gunnery Manual definitions of similar terms and the
ACQUIRE definitions do exist. These have been
mapped to the ACQUIRE definitions below;

Field of Regard: The field of regard is the angular
portion (horizontal and vertical) of the surrounding
environment over which a sensor is moved to search
for targets.

Field of View: The field of view is the angular
portion (horizontal and vertical) of the surrounding
environment visible through a sensor at any given
instant of time.

Target Acquisition Levels: The following military
definitions that comprise target acquisition levels are
defined as follows:

359

Detection: The ability to distinguish an object of
military interest in the field of view (FOV).

Classification: The ability to distinguish a target by
class, e.g., tracked vehicle, a helicopter, or a wheeled
vehicle.

Recognition: The ability to distinguish between
different categories of targets within a class, i.e.,
tanks versus armored personnel carriers (APCs) in the
tracked vehicle class.

Identification: The ability to distinguish between
specific models of targets, i.e., a T72 tank versus a
Ml tank.

Acquisition Criteria: The Johnson Criteria is the
methodology used for the basis of target acquisition
in the ACQUIRE methodology. The criteria equates
the number of cycles per milliradian (cy/mr) or line
pairs (LP), using a standard target board, with an
acquisition task in which half of all observers can
resolve the target. The acquisition levels and criteria
are provided in Table 1 below.

Table 1. Target Acquisition Line Pair Criteria.

Acquisition CRITERIA (cy/mr)
Detection Level 0.75
Classification 1.5
Recognition 3.0
Identification 6.0

Assumptions and Limitations of the ACQUIRE
Methodology. Verification, Validation and
Accreditation tests conducted on the ACQUIRE
methodology indicate that, for FOV only search, the
model can accurately predict, to within 20 percent,
the range at which given values of target acquisition
probability are achieved. These results are restricted
to those conditions that can be accurately represented
by the methodology. There are a number conditions
of interest that cannot be represented or accurately
modeled by the ACQUIRE methodology. These
limitations are discussed below as follows; Modeling
of Moving Targets, The ACQUIRE methodology is
not designed to model the effects of target motion on
target acquisition. A moving target's motion acts as a
visual cue in the target detection process; therefore,
the probability of detecting a moving target can be
significantly greater than the probability of detecting
an otherwise identical stationary target under the
same set of conditions. AMSAA uses a line pair
criteria of 0.5 for modeling detection of targets with a
significant radial velocity component across the line-
of-sight. This line pair criteria was chosen because
earlier research suggested that a line pair criteria of
0.5 could be used to model detection for a zero clutter
condition. In addition ground clutter, pinpoint effect
such as muzzle flash or dust trails, and multi-target
acquisition and not modeled by the ACQUIRE
methodology.

360

TARGET ACQUISITION
(PRIMARY COMPUTATIONS)

Compute Cycles
Across Target

F*CD

Figure 1. Target Acquisition Computation Overview

Figure 1 provides an overview of the primary inputs
and computations employed by the ACQUIRE model
for a visual sensor. The top part of the main factors
which are target, sensor type and intervening
atmosphere. The target is described in the model by
input values such as inherent contrast (Cl) and
characteristic dimension (CD). The sensor is
described in terms of a sensor resolution curve, MRT.
The MRC/MRT curve is unique to each sensor and is
a function of spatial frequency. The atmosphere is
depicted in terms of atmospheric attenuation,
visibility range, ambient light level and sky to ground
ration. The lower portion of the figure provides the
computational steps used to compute the acquisition
probability given an infinite amount of time. This
quantity is known as "P infinity" and is used to
compute the average acquisition time and acquisition
probability given a finite time P(t).

Findings and Concerns - For the search process and
the rate at which targets are detected, recognized, and
identified, SIMs are dependent on crew skill. For the
search process, SAF uses AMSAA data and a scan rate.
For the rate to detect, recognize, and identify targets,
SAF uses AMSAA's ACQUIRE algorithm. Basically,

the difference is that SIMs use a crew and SAF uses
AMSAA and other data.

Currently the SAF disregards targets that are less than
30% exposed. This makes detecting targets that are in
defilade or hull down positions difficult to acquire and
may provide a unfair advantage to the SIMs. The
CCTT design treats constructed defilade positions as a
relocateable object on the terrain skin. These object
tend to stand out from the color and texture of the
surrounding skin making them more noticeable to the
SIMs. Thus the defilade positions or other relocatable
harboring SAF entities may be unfairly acquired by the
SIMs.

Visual representation of terrain has an impact on target
acquisition for SIMs and SAF. At ranges beyond 2,400
meters, terrain objects can fade, particularly at more
distant range, such as 3,500 to 4,000 meters. This
fading is due to the image generator's "load
management" of the number of polygons used to
represent terrain objects while maintaining an
appropriate level of visual fidelity. For example, if
there is a building in front of a potential target, the
image generator can fade the building due to "load
management". With the building faded, SIMs now

361

have line of sight to the target behind the object that
was faded. However, SAP will continue to see the
building and would not have line of sight to any
potential targets.

There may be a difference in the rate in which SAF and
SIMs detect, recognize, and identify targets. Using the
sensors in SIMs, detection, recognition and
identification of targets is dependent upon crew skill.
SAF knows the location and identity of all targets in a
sensor's field of view and may detect movement
quicker than SIMs because it uses the ACQUIRE
model while SIMs depend on its crew. Currently, SAF
will not detect muzzle flash, smoke, or dust clouds.
Given the data (AMSAA does not have muzzle flash
data), physical models can develop the code for these
signatures; behaviors cannot use these signatures to
detect line of sight to actual targets because muzzle
flash, smoke, and dust are not considered targets by
SAF. The search process itself is discussed under
behaviors below.

Target contrast is a major issue with the ACQUIRE
model. The SAF performs contrast in a relatively
simplistic manner by determining the terrain type (e.g.,
forest) the target is located on. A adjustment factor is
provided for that type which is used in the model. The
SAF does not have processing time to search the
background behind the target to do a detailed analysis
of the target contrast. For example a tank has the same
contrast factors being well positioned in a tree line as
opposed to being in the open just outside the tree line
assuming it is located in the same terrain area. As of the
writing of this paper, the SIMs where just finishing
tuning the thermal sensors. The correlation of thermal
abilities will likely raise a number of issues.

3.4 Behavioral Aspects

The Behaviors Computer System Component (CSC)
provides the basic decision logic and control for the
SAF entities. Table 2 shows the structured layers of
dependency within the CGF design. The components
higher in the Table 2 list can "with" or directly call
components lower in the list. For components lower
in the list to send information to components higher
in the list they must use a callback, which is similar to
leaving a message in a data file to get back to you.
This structure provides for a well organized
dependencies structure and avoids complications such
as cyclical dependencies. Within the CGF design,
behaviors includes sub-elements such as; Crew
Behaviors, Small Unit Tactics, large unit tactics, and
order decomposition. Vehicle simulation includes;
hulls, sensor, turret, weapon, resource, special effects

and damage assessment functionality. Environment
includes; line of sight determination, munitions
impact detection, route generation and verification,
obstacle avoidance, relocatable and preposition
object management, collision detection, height of
terrain/surface type, cover and concealed position
location and environmental effects.

Table 2. Layered Structure of the CGF CSCI

Simulation Manager CSC
Behaviors CSC

Vehicle Simulation CSC
Framework CSC

Environment CSC

A typical target engagement scenario has the
following flow of events;. Sensors determines which
targets are in the sensors field of regard (scan area)
and passes them off to the environment. The
environment line of site function uses a 20 point
raster to determine the amount of the target which is
visible by performing a intersection search between
the 20 points on the target and the sensor. If the target
is blocked by a partial transparent object such as a
tree, the visibility is adjusted according to the objects
opacity factor. A percent visibility is returned to
sensors, which uses the ACQUIRE model to add in
factors such as time of day. weather effects ,target
size, and sectors the sensor is scanning, to determine
to what level the target is visible (e.g. identified,
detected .classified). Sensors builds a spot list and
passes it back to crew behaviors, which generates a
spot report (for new sightings). The crew behaviors
may move the gunners sensor over to a detected
target to magnify it and try to get a identification. If a
number of targets are identified, unit behaviors will
identify the "most dangerous target" for the vehicles
weapon(s) to engage. This criteria is defined by
current doctrine which looks at factors like; does the
target have the ability to destroy the vehicle, how
close is the target to the vehicle, and is the targets
weapon systems (articulated parts) pointed at the
vehicle. This provides a simplified example of one of
many complex interactions between behaviors and
the CGF primitive functions that occur. The
behaviors provide a number of correlation issues

Findings and Concerns - Behaviors define the rules
of engagement for the SAF entities. Current doctrine
specifies that targets will note be engaged unless
identified and is the primary rule of engagement
represented in SAF. This policy and the knowledge
of where all targets and entities are on the battlefield

3 62

prohibit fratricide by SAF. However, a SIM,
depending on situational awareness received by the
human crew, may fire on a lesser visible target (e.g.
not identified) which may cause fratricide to occur.
Although initial setup of CCTT attempts to match
rules of engagement between SAF and SIMs,
difference due to human interaction should be
expected to occur. In the sense of a "fair fight", the
SIMs would have an unfair advantage if the rules of
engagement differ between SAF and SIMs.

In the current experiments the SIMs typically
searched , based on situational awareness, and
concentrated on known hiding areas such as tree
lines. SAF gunner and tank commander search sectors
are predefined by doctrine and may miss less obvious
targets. To eliminate some of these differences
between SAF and SIMs, the current target tracking
methodology is being modified to account for target
persistence. If a detected target were to move into a
hiding position, the SAF process would drop it from
the target list and the vehicle would resume searching
for targets. This may provide a major advantage to
the SIMs which could briefly hide, until the SAF
vehicle started to scan again and then pop out and
engage the SAF. Currently, fixes which have SAF
concentrate on the last known location of a object for
a limited duration of time are being implemented.,
thereby recognizing target persistence in a manner
similar to that represented in some constructive
models and simulations.

3.5 Rate of Fire

The Rate of fire methodology for SAF is based on a
series of variables for which data has been provided
to SAF. The variables are: the weapons slew rate to
point the weapon at the target; the weapons load time
which is static for automatic loading vehicles such as
a T-80 and stochastic for breach loaded vehicles as a
M1A1; the lay time for the first round which is
stochastic based on a table which provides different
median time values based on range and weapon
system; the time of flight for each round to the target;
the subsequent round lay time which is stochastic
based on a table that provides the median time based
on the weapon system. Adjustment factors are
suggested for target motion and firing while moving.
The data provided is based on average combat
conditions, average crew proficiency, stationary firing
weapon and a stationary target. CCTT requires that
the SAF operator be able to adjust crew proficiency.
This is performed by adjusting the rate of fire factors
and the delivery accuracy to reflect the crew
competency. The combination of data allows SAF to

generate simulated events which may be used as
checkpoints for crew proficiency. Again, it must be
noted that SIMs performance is greatly affected by
the human interactions within the vehicle platform.

Findings and Concerns - Some question exists as to
what factors should be adjusted to reflect crew
competency. The rate of fire methodology has created
some concern based on the fact that during some tests
, crew members felt that the SAF fired at a unrealistic
rate. As with all data provided, the various
combinations involve some risk of providing credible
results when implemented. In tests conducted with
master gunners acquiring, detecting and identifying
targets, ModSAF results were very comparable,
indicating that the data sets used may be
representative of average or expert crews. While this
area is not viewed with the most urgency, future
correlation experiments involving master gunners
may be planned to check rates of fire combinations.

3.6 Delivery Accuracy

SAF computes the delivery accuracy based on firing
at the center of a target (direct fire) or at a location
(indirect fire). The direct fire methodology is based
on having the weapons system aim at the center of
mass of the target. The intended aimpoint is adjusted
based on data tables which provide variable and
random bias adjustment factors based on weapon
system and range. Additional variance is added for
either moving targets or moving while firing. If the
target is moving, the new adjusted aimpoint is
projected in front of the target based on it's velocity
and heading. The "fire at location" is adjusted based
on the variances alone. Typically the variances for
indirect fire weapons and much larger than direct fire
weapons. In addition the SAF Weapons code
multiplies the adjusted bias based on the crew
competency, to decrease variance for expert crews
and increase variance for novice crews..

Findings and Concerns - Since SAF fires at the
center of mass instead of the center of the exposed
target area, concern exists now to handle unique
situations such as targets in defilade positions. The
method that SAF uses to project munitions flight
based on target velocity projections has shown that in
situations where the target is moving on irregular
terrain (up and down Z values) it may increase the
odds of missing the target. During several exercises
SAF seemed to have exceptional accuracy compared
to the SIMs on fully exposed targets. This area will
likely be reviewed in future BCR 174 testing.

363

4. Test Results

The first BCR 174 test scenario was designed to be a
daytime run with unrestricted visibility. Both SAF
and SIMs (M1A1 & M1A2) used only Direct Vision
Optics (DVO), no thermal capabilities. A
combination of T80, BMPs and DI targets where all
emplaced in tree lines, out in the open and on the sky
line. Several targets where emplaced so they only had
a limited window of opportunity from a fixed
direction to be detected. All targets where stationary.
The detecting vehicle went down a 8 Kilometer
course at a search speed of 25 kms per hour. All
targets where emplaced to be acquired between 500
and 4000 meters from the course. A total of 3 targets
sets where developed of 4 targets each for the course.
The crews ran all 3 target sets as one run, a total of 10
runs where performed for both SAF and SIMs(with
different crews).

Findings and Concerns- The SAF proved to be
slightly to significantly better in target acquisitions
then SIMs in most circumstances. SAF was
significantly better in acquiring DI targets even at
extended ranges. The SIMs had great difficulty
acquiring DI targets in tree lines because of their
small size and the ease they where mistaken for tree

trunks. The feeling among the SIM operators was that
DI were thermal targets. In future test runs when the
SIMs use thermal sensors the DI should be easier to
acquire. To fix this problem from a SAF perspective,
the contrast factors will be lowered in the ACQUIRE
model for DI targets to make them less detectable.

SAF proved to be able to detect all targets even if
they only had a limited window of opportunity, or
required rear or side vision to detect. This likely
comes from the fact that the M1A1 is modeled with a
driver with 120 degrees of forward unity vision, a
loader with 360 degrees of unity vision ,a commander
with 360 degrees of unity vision and a gunner with a
magnified site. The 3 unity sensors increased the odds
of getting a detection on the target, regardless of its
direction with respect to the searching vehicle. Once a
detection was made the SAF vehicle would bring its
gunner's magnification sensor on the target and
identify it. In the SIMs the loader and driver sites
proved to be no where near as effective in detecting
targets. To fix this problem we are having AMSAA
look into the effectiveness of commanders and
loaders in acquiring targets. Future test will look into
the effectiveness of each searcher in acquiring targets
for both SAF and SIMs.

Target Number MODULE ACQUIRED DISTANCES (Meters) SAF ACQUIRED DISTANCES (Meters)
1 2 3 4 5 1 2 3 4 5

1 BMP 1587 1537 2055 1846 1415 1943 1944 1943 1943 1939
2 DI NA NA NA NA NA 1561 1821 1829 1862 1820
3 BMP PLT 1917 NA 1922 NA 1757 1922 1905 1910 1924 1923
4 T-80 3706 1586 2636 1923 1711 3704 3862 3989 3974 3960
5 BMP 2994 2217 2343 2250 2278 2638 2389 2974 2937 2767
6 T-80 NA 604 566 NA NA 612 613 613 613 610
7 DI 195 840 844 290 1161 2264 917 2098 2177 2007
8 BMP 1666 1702 1750 NA 1757 1736 1730 3436 1732 1731
9 T-80 1214 1194 1369 1221 1306 1404 1396 1374 1402 1405
10 T-80 763 1400 1013 NA 1016 3976 3992 3699 3984 3993
11 T-80 NA NA 2375 1943 NA 3141 3154 3317 3303 3308
12 T-80 3796 3097 3720 3320 2057 3938 2590 3844 3646 3595

Table 3 - Provides a sampling of data from 5 of the 10 SAF & SIM runs. Acquired distances
when the vehicle running the course engages the target Which is an identified target in the
ACQUIRE model for SAF. NA- Not Acquired

are

5. Conclusions

The specification for SAF contains the statement,
"The SAF software shall provide the SAF units
behavior based on the operator's inputs from the
workstations and will be indistinguishable from the
manned simulators". Meeting this requirement via the
COT BCR 174 effort has many challenges. Without
correlation, CCTT will be difficult to accredit as a
training system, in the ongoing W&A process. The
correlation effort also offers challenges to data

providers such as AMSAA to develop data sets that
are modifiable based on the limitation and
capabilities of the systems synthetic environment.
One of the by products of the BCR 174 effort will be
test cases that could be used in the future to gather
data for analysis. The immediate test plans include;
test cases with BLUFOR targets mixed among
OPFOR that look into the level of detection and rules
of engagement, moving targets, different target types,
thermal detection , weather, obscurants and time of
day.

364

6. References

AMSAA (1995) The 1995 Compendium Of Close
Combat Tactical Trainer Algorithms, Data,
Data Structures and Generic Systems
Mappings

IDT CGF Physical Model Team (Feb. 22,1996)
CCTT CGF Dynamic Behavior Design Synthesis
Report

7. Authors' Biographies

Edward V. Chandler is the on-site Subject Matter
Expert (SME) for CCTT SAF. He has developed,
written/reviewed extensive natural language CISs and
is involved with systems testing for SAF. He has 30
years experience in the Army's joint tactical
operation planning and execution, and has
commanded from platoon through Brigade.

Henry Marshall is the government lead on the
CCTT .SAF integration team. Most of his duties have
been in software and CGF acquisition support for
STRICOM and NTSC. He received a BSE in
Electrical Engineering and an MS in Systems
Simulation from the University of Central Florida.

Brian R. McEnany, a 1962 graduate of the US
Military Academy, received his MS in Operations
Research and Statistics and an MS in Management
Science from the Rennesselaer Polytechnic Institute
in 1970. He led the knowledge acquisition and
combat instruction sets effort as lead subject matter
expert for the development of OPFOR and BLUFOR
combat behaviors in CCTT.

John G. Thomas is an Operations Research Analyst
in the simulations Branch, Combat Integration
Division AMSAA. Mr. Thomas is AMSAA's lead
analyst for the CCTT and ModSAF VV&A efforts.
Mr. Thomas has a Master of Arts degree in
Mathematics.

365

Validation of Individual Combatant Simulation Using a Model-Test-
Model Approach

George R. Mastroianni
Natick Research, Development, and Engineering Center

Natick, MA 01760

Victor E. Middleton
Simulation Technologies, Inc.

Dayton, OH 45402

1. Abstract

We conducted a field study to validate the energy
expenditure prediction algorithms of cross-country
dismounted movement in our small-unit simulation
system (the Integrated Unit Simulation System -
IUSS). March rate, terrain grade, and individual
energy expenditure were estimated for a lengthy route
(approximately 70 miles) over mountainous terrain.
While energy expenditure predictions from the model
appear to be valid, the accuracy of these predictions
is heavily dependent on knowledge of march rate. We
explored several methods for generating valid march
rate predictions. A fuzzy-logic approach appears
promising especially in that it may have wider
application in the representation of human behavior.

2. Introduction

Figue 1

The IUSS is a comprehensive computer simulation
environment emphasizing dismounted infantry
operations. It employs a sophisticated suite of
physiological, ballistic and chemical models to relate
soldier capabilities to mission demands,
environmental conditions, and combat outcome. The
IUSS contains physiological models that relate work
intensity and energy expenditure to the combined
effects of load, terrain conditions, environmental
conditions, soldier march rate, and clothing. The
models consider the heat transfer properties of the

clothing and equipment associated with each
simulated individual and compute predicted heart
rate, skin temperature, core temperature, and other
indices of soldier physiological state at frequent
intervals. Figure 1 shows that observed energy
expenditure values bear a close relationship to field
observations, suggesting that this component of our
system is valid.

An important long-term goal of ours is to improve our
understanding of the relationship between terrain
characteristics and voluntary march parameters such
as speed. Knowledge of soldier speed and other
mobility parameters is crucial to realistic simulation
of dismounted movement. Overestimating speed in
our simulation leads to unrealistically high energy
expenditure and body temperature predictions;
underestimating speed has opposite effects.

At present, prediction of soldier speed relies heavily
on the terrain grade; on steep uphills, we expect
soldiers to slow down; on downhill grades, we expect
them to walk faster. There is no generally accepted
method for predicting march rate across complex
terrain. We used our field obserations to develop a
first approximation to a method of generating these
predictions, at least in the context of cross-country
movement without anticipated enemy contact. We
have not yet addressed the problem of dismounted
movement under more tactically demanding
conditions, which presents a much more complex
problem.

3. Initial Findings

We expected to see a strong relationship between
terrain grade and march rate in our field observations

367

Figuc 2

" V:"/V. <

-40 -30 -20 -10 0 10 20 »

Figure 3

oos aio ou 020
T«r«n tiw Qr coat Oca/nd

As Figure 2 illustrates, however, there is considerable
variability in march rate observed for segments with
very similar grade.

In laboratory research, grade is generally fixed on a
treadmill, and other factors potentially contributing to
workload held constant. In the field, though, soldier
choice of grade is heavily influenced by factors other
than grade. Examples of these are substrate type, soil
condition, and terrain smoothness, or the consistency
of grade. This last factor is important because our
method of grade measurement in the field provides
only an average grade over the segment distance, and
is insensitive to frequent shifts or reversals of grade
that characterize some terrain. Under these
conditions, our measure of grade does not faithfully
reflect the workload experienced by a soldier. A
further complication in proceeding from laboratory or
field data to simulation is that terrain data files
available to us do not support higher resolution
analysis of grade.

To overcome some of the shortcomings of our grade
measurement method, we defined another measure of
workload: energy expended per meter. We estimated
the energy expended over a segment using the
average heart rate for that segment, and divided by
the distance. This measure confounds grade and
speed, because workload is partially determined by
the speed chosen, but it implicitly includes the
contributions of other (as yet unspecified) factors.
Our data, as shown in Figure 3, illustrate that energy
expended per meter (kcal/m) is more systematically
related to speed than is grade.

Because the definition of speed is so important to
achieving good simulation results, we attempted to
explore the use of energy expenditure measures from
our field study to test some alternative methods of
predicting soldier speed. We tried (1) predicting
speed based solely on grade and (2) predicting speed
by assuming that soldiers tend to maintain a relatively
constant work intensity. We tested these approaches
and compared the accuracy of resulting speed
predictions. Predicting speed directly from terrain
grade was accomplished using the equations of the
regression lines relating grade and speed. (Separate
regressions were used for uphill and downhill
segments). This method produced a correlation of .55
between predicted and observed speeds; grade
accounted for 30.25% of the variance in speed.

After inspecting the speed prediction residuals plotted
against energy cost per meter, we selected segments
with relatively extreme values. We adjusted the
predicted speed of segments with very low terrain-
related energy cost (z<-.5) upward by .85 m/s, and the
speed of segments with very high terrain-related
energy cost (z>.5) down by .25 m/s. This arbitrary
adjustment increased the correlation between
predicted and observed speeds to .81, and accounted
for 65.6%. of the variance in speed.

To predict speeds based on an assumed constant work
intensity, we computed speeds for our segments that
would produce a work intensity of 466 watts (the
overall mean) Energy expenditure prediction for
downhill locomotion is not as well understood as is
prediction on level or uphill terrain. The equations
that form the core of our physiological model do not
apply to downhill grades; speeds computed in this
way for downhill segments are unrealistically high.
The correlation between these speeds and observed
speeds is -.11. We adjusted these predictions by
substituting speeds computed for corresponding
uphill grades on downhill segments. These values
work better than those computed using negative

368

grades, correlating .51 with the observed speeds. We
adjusted these predicted speeds for energy cost per
meter using the same method described above for the
grade-based speed predictions. The adjusted
predictions correlated .77 with observed values,
accounting for 59.3% of the variance in speed. Both
methods show promise as methods for generating
useful speed predictions. While the first method
requires specific knowledge of the grade-speed
regression for these data, and the second requires an
estimate of the overall work intensity sought by
soldiers, both methods produce much more realistic
speed predictions than the practice of using a constant
speed for all segments.

4. A Fuzzy Logic Analysis

While some of the variability in speed is undoubtedly
related to measurable terrain factors, we suspect that
speed regulation, like many other aspects of human
behavior, will never yield completely to deterministic
schemes. Humans are organisms of such staggering
complexity that even apparently simple functions
such as speed regulation may be influenced by a host
of variables and considerations, such as past
experience, knowledge of future demands, cumulative
fatigue effects, expectations of imminent rest, and the
like.

It is unlikely that quantitative data will ever be
available for more than a small fraction of the human
behaviors we need to represent in combat simulation
systems. This assessment prompts us to look for a
method that permits us to use both the empirical data
available and the insights provided by subject matter
experts to produce valid representations of complex
human response as an improvement over strictly data-
based or insight-based approaches. For this effort, we
explored the use of fuzzy logic concepts to provide a
method of integrating insight and data, and in
particular to develop a model of speed/terrain
relationships.

We concentrated on energy expended per meter as the
primary determinant of speed. Clearly, additional
research is needed to permit us to decompose this
global measure of terrain difficulty into constituent
factors, including grade, frequency and magnitude of
grade changes, substrate type and condition, and the
like. Our use of this measure is predicated on the
assumption that at some future time, we will be able
to account for the same variance in speed that is now
related to energy expended per meter using a larger
set of factors. The analysis presented here is meant to

explore the potential utility of the methods, not to
accomplish a definitive treatment of the problem.

4.1 Data Clustering

We included speed and energy cost per meter as input
variables to a popular commercially available fuzzy
logic software system. Five clusters of points were
identified. Adjective sets were chosen as descriptors
of these clusters for both energy

Figure 4

Energy cost (Kcal/m) vs Speed (m/s)
20

1.S

3
Speed (m/s)

3
0.5

%o %°

0.063 0.125 0.188
Energy cost (Kcal/m)

0.250

cost and speed. Energy cost was assigned five
descriptors: Very Low, Low, Moderate, High, Very
High. Speed was assigned Very Slow, Slow, March,
Fast, Very Fast. A simple set of five rules was
defined, relating energy cost to speed. (Higher energy
costs produce slower speeds). Figure 4 shows the data
as clustered.

Membership curves were constructed for each
variable for the five clusters. These curves were
produced by plotting the points against the
probability of membership in each cluster; a function
was then "eyeballed" in to

Fieure 5

Enaro M» (Kcatm) v* Pro6tt»Hv m CAJUW 1

0.063 0.125 0.188
Energy cost (KcaYm)

establish a continuous probability of membership
function over the range of energy cost and speed
observed. An example of the construction of one of
these membership curves is shown in Figure 5.

369

4.2 Fuzzy Prediction

These membership curves and the five simple
inference rules were used to produce a set of
predicted speeds based on the observed energy cost
values. (The "centroid" method was used to de-
fuzzify the speed predictions.) As expected,

Figure 6

! Correlation of
Observed with
"Fuzzy" Speeds
is 0.91

en in 01 a.

Erargy Cart (Kctfftrt

the predicted "fuzzy" speeds correlated quite well
with the actual speeds - the Pearson correlation was
approximately .91. Figure 6 illustrates these data.

Because this process essentially amounted to
providing a curve fit to the available data, this result
is unsurprising; however, it is encouraging to note
that the prediction performance of this method is
superior to other techniques that have been attempted.
The constant work intensity method used earlier
produces a correlation between predicted and actual
speeds of approximately .77. The fuzzy method, then,
does as good or better a job at predicting speed from
energy cost than other methods we have tried.

4.3 Current Limitations and Potential

The fuzzy analysis we performed was limited by our
data. As discussed above, we chose to work with the
single variable most related to speed, energy cost, and
our results amounted to a curve fit expressing speed
as a function of energy cost. In this particular
instance, as also illustrated in Figure 5, the data can
be described about as well using a simple exponential
curve fit. The value of this analysis to us, however, is
not the demonstration of a new curve fitting
technique, especially given that existing techniques
serve as well or better for the data at hand. Rather,
we have explored the viability of a technique that we
believe holds the best promise for extending our
results into domains where current methodologies
will not serve.

This belief (in the potential of rule-based inference
schemes based on fuzzy logic) is driven by several
factors. Human behavior is fundamentally fuzzy.
Soldiers do not march across country at constant
speeds, and they don't adjust speed in terms of fixed
increments - they go a little faster, or a lot faster
based on their perception of their environment and
their psycho-physiological state. That state is another
example of fuzzy: tired, afraid, hot, do not lend
themselves to precise measurement.

Fuzzy inference rules are intuitive. They make sense
to soldiers, and can be developed in conjunction with
soldier inputs without the need for intense training or
understanding of the formal algorithms involved.
"Go slow if you are using a lot of energy to cross the
terrain, go fast if it is easy" is more acceptable to the
average individual than y=2.444e"7'3826

Fuzzy inference rule sets can accommodate
inconsistent or even contradictory rules. Human
behaviors are frequently driven by complex and
often contradictory impulses. Fuzzy inference engines
resolve such conflicts by assessing the relative
weights by which different rules fire, and by adjusting
behaviors by corresponding degrees.

Fuzzy inference rule sets easily incorporate multi-
modal distributions. In the example above, a simple
plot of the bivariate data involved suggests an
exponential fit, and these data support a regression fit
to such an equation. In many cases, however, field
data are not so suggestive, and often group about
distribution modes or otherwise are more amenable to
a piecewise fit to regression curves. The cluster
analysis we used to derive fuzzy adjective
membership sets is easily applied to such data, and in
fact is actually more valid in such cases than it is for
our current data

Fuzzy inference rule sets can accommodate new
variables relatively easily. The complexity of curve
fit techniques grows rapidly with the number of
variables involved. Bivariate relationships result in
two-dimensional curves, adding additional variables
leads to multi-dimensional surfaces, and
corresponding computational complexity. Fuzzy
inference rule sets, on the other hand, integrate new
information with the addition of new rules. If rules
are based on variables about which soldiers have
knowledge, sparse data can be supplemented with
soldier-generated insights to produce realistic
behaviors.

370

In the example presented here, the use of energy
expenditure to predict speed is of limited use to our
simulation because energy cost is not directly related
to any of our current terrain base variables. If,
however, we can establish that speed is well
explained by a combination of grade, substrate type,
and perhaps one or two other variables, we believe it
will be much easier to encapsulate this relationship
through modifications to our current rule set than to
develop the complex surfaces defined by multi-
variable regression relationships.

5. Summary

A key advantage of the fuzzy logic approach
is that it facilitates the integration of insight and
information. The development of rules and adjective
sets is a kind of knowledge acquisition, in which
information is combined with individual insight to
produce a computational model that weights the
relative contribution of various factors in determining
an outcome. This process is ideally suited to the
development of better simulations of human behavior,
where empirical data is often sparse. The approach
contains the possibility for continuous improvement,
because rules can be deleted, added, or modified as
new data become available.

6. Authors' Biographies

George R. Mastroianni is a research psychologist at
Natick Research, Development and Engineering
Center. He is interested in human performance
measurement and the representation of human
behavior in simulations.

Victor E. Middleton is a mathematician and
consultant working for Simulation Technologies, Inc
under a contract to Natick Research, Development
and Engineering Center. Mr. Middleton is one of the
principal architects of Natick's Integrated Unit
Simulation System (IUSS). His recent interests
include the development of advanced computational
approaches for representing human behavior in
simulations.

371

Using the Combat Instruction Set for
Verification and Validation of

Semi-Automated Force Behaviors:
High and Low Intensity Case Studies

Damon D. Baker
Charles W. (Chad) Mullis

U.S. Army TRADOC Analysis Center - White Sands Missile Range
ATTN: ATRC-WE

WSMR, NM 88002-5502
baker@trac.wsmr.army.mil
mullis@trac.wsmr.army.mil

1. Abstract

Identifying a process both credible and efficient
for evaluating semi-automated force (SAF)
behaviors within the context of performing
verification and validation (V&V) functions in
computer generated forces (CGF) is not a trivial
matter. This paper presents one approach
employing the combat instruction set (CIS) in
evaluating the behaviors of SAFs. A brief
synopsis of the CIS precedes a presentation the
general flow of the process necessary to first
verify adequate behavioral functional coverage
and then validate model performance against a
real-world standard. This description of the
method is punctuated with examples of its
application in V&V for both the Army Modular
SAF (ModSAF) and the Close Combat Tactical
Trainer (CCTT) SAF. The behavioral V&V
efforts for ModSAF and CCTT SAF are
compared and contrasted to show similarity of
the method in light of the great diversity in
resource availability and allocation on the two
evaluation efforts. Utility of the CIS in
developmental efforts such as tracking software
as it progresses to maturity is also explored.

2. Introduction

Evaluating semi-automated force (SAF)
behaviors in modem simulations is not a trivial
matter. The evaluation must first verify adequate
behavioral functional coverage and then validate
model performance against a real-world
standard. There exist a nearly infinite set of
combinations of conditions and terrain spaces in
which the behaviors set may be assessed, and
there are often severe limitations regarding both
time and resources which are available to be
applied to the verification and validation (V&V)
process. Also, run-time complexity can mean
that combinations of perfectly good code lead to

an unrealistic performance of the model at the
applications layer. Thus, the task of designing
an evaluation which is credible, yet remains
capable of being completed on time and within
budget, can be somewhat daunting.

One approach to performing V&V evaluations of
SAFs which can be designed to meet even very
limited resource availability entails application
of the Combat Instruction Set (CIS) as the
yardstick by which the behaviors are measured.
In this paper we present a method which has
been successful in using the CIS to conduct
V&V of two emergent computer generated force
(CGF) SAF simulations. But first you may ask,
what exactly is a CIS, and why should I care
about it?

2.1 Combat Instruction Sets

A combat instruction set is defined as a computer
generated representation of a tactical combat
behavior at a unit and platform level (McEnany
and Marshall, 1994). While the units may
include organizational levels of Battalion,
Company, Platoon, Squad, Section, and Fire
Team, the platform is defined as a representation
of an air or ground vehicle, or a dismounted
infantry, engineer, or scout entity at some
organizational level. A platform object has
modeling attributes which include a physical
body (hull), the ability to mount a weapon
system and sensor, carry supplies and
ammunition, a cross-country maneuver
capability, and the potential to house one or more
crew members.

As an adjunct to the CCTT development effort,
the U.S. Army Program Manager - Combined
Arms Tactical Trainer (PM CATT) sponsored
work to collate combat behavior source
information into a single repository~the CATT

373

Task Data Base. Information on unit behaviors
was gleaned from various Army regulations,
field and technical manuals, Army Training and
Evaluation Plans (ARTEP), Mission Training
Plans (MTP), and Russian-Heavy doctrine
source materials. This data set comprises in
excess of 700 separate CIS, and is maintained,
updated, and distributed under contract with the
U.S. Army by Resource Consultants Inc., 3051
Technology Parkway, Orlando, FL.

The CIS describes the tasks, conditions and
standards by which Army units and their
subordinate platforms are required to perform
various combat behaviors. Examples of these
collective tasks for a BLUFOR tank platoon
include Execute a Wedge Formation (B0004),
Action Drill Left (B0009), React to Indirect
Fires Drill (B0013), and Assault an Enemy
Position (B0031). There are an additional 43
named CIS available for the BLUFOR tank
platoon with similar CIS coverage for other unit
types (infantry, scout, etc.) and sizes (company,
battalion, etc.) in the CATT Task Data Base.

The process of including a behavior in the
CATT Task Data Base includes receipt of a
signature affirming validation of the behavior as
described, thus obviating any need for verifying
or validating the CIS itself. In short, the CIS is a
natural language description of the doctrinally
sound combat behavior set, and it is an excellent
starting point for initiating the process of
modeling and simulating the modern battlefield.

2.2 Verification and Validation

Verification and validation are required for all
models, simulators, and simulations developed
under the Army Model and Simulation
Management Program (AMSMP). Guidance is
provided by Army Regulation (AR) 5-11 and
DA Pamphlet (DA Pam) 5-11. Verification is
the process of determining that the model,
simulation (MS), or simulator (S) accurately
represents the developer's conceptual description
and specifications. Validation is the process of
determining the extent that the MS or S
represents the real world entity.

In short, verification entails ensuring that a
model is doing things right while validation
comprises ensuring that it is doing right things.
When applied to the SAF behaviors arena, a
V&V effort can be as detailed (and costly) as
examining individual lines of code, or as high
level (and theoretically inexpensive) as saying
"looks good to me." Most program managers

would prefer to pay for the latter while receiving
the benefits of the former.

3. V&V Metodologies

The problem of matching an affordable level of
effort with the regulatory requirements for V&V
is faced by all CGF/SAF development programs.
Analysts at TRAC-WSMR have been
performing V&V evaluations of SAF behaviors
which encompass both ends of the detail
spectrum; at the very detailed low-end we have
been assessing ModSAF; and at the limited
detail high-end we have been evaluating CCTT
SAF. However, the design process for both
levels of intensity have been sourced from the
CIS.

3.1 ModSAF Behaviors V&V

The very detailed low-end of the SAF V&V
spectrum is represented by our work with the
V&V of ModSAF. The purpose of the the effort
was to verify, validate and accredit (VV&A)
ModSAF as required in the Anti-Armor
Advanced Technology Demonstration (A2 ATD)
Technology Demonstration Plan (TDP). The
purpose of the A2 ATD was to develop and
demonstrate a verified, validated, and accredited
DIS capability to support anti-armor weapon
system virtual prototyping, concept formulation,
requirements definition, effectiveness evaluation,
and mission area analysis on a combined arms
battlefield at the Battalion Task Force or Brigade
level.

3.1.1 Verification Plan

The overall approach for verification of
ModSAF entailed assessing the individual code
libraries, and specific details including which
libraries can be found in Denney (1994). In
performing verification of the ModSAF libraries
as well as the overall model the following
subtasks were completed.

3.1.1.1 Documentation Review. Documentation
for ModSAF 1.0 was supplied to TRAC-WSMR
and detailed reviews were conducted regarding:
adequacy of documentation (determined by
compliance to TRADOC 5-11 standards),
clearness, completeness, and sufficiency to meet
the intended purposes. As a part of the
documentation review, the contractor acceptance
test procedures were reviewed for compliance to
the requirements document for ModSAF 1.0.

3.1.1.2. Algorithmic and Methodology Review.

374

Algorithmic and methodology review were done
both by TRAC-WSMR and AMSAA.
Standardized Army algorithms as delineated in
AMSAA's compendium of algorithms were the
primary standard for weapon systems
performance and effectiveness.

3.1.1.3. Verification Software Testing fVSTl
Stylized tests were conducted to insure: that the
software would perform within the design limits
and was adequate to meet performance needs;
that, in the case of data voids, default values
were used; and that the performance degraded in
a graceful manner when operating near or
outside of the designed limits.

3.1.1.4. Top Level Tests (TLTl The goal of
TLT was to assure that the libraries worked
together as a unit. An integrity check of the
overall model structure was necessary to assure
that the model cycled correctly (i.e. all of the
units were serviced for all applicable functions).
The model was evaluated in a stand-alone mode
as well as send and receive information mode
which affects other simulations (i.e. simulators,
AFORs, etc..) as well as its own simulation. The
SAFsim is the primary tool to setup and run a
ModSAF simulation while the SAFstation is the
primary link to the DIS. The primary function of
the SAFlogger is to record and playback
simulation sessions. Each of these modules were
tested separately, in as much as it was feasible,
and they were also be tested as a modular unit.

3.1.1.5. Parametric Analysis. Wherever
necessary, and as time permitted, individual
libraries were tested, using parameter values
which fell within the normal range of
distributions for the selected variables under
question. The aim of this exercise was to
measure the affects on the simulation throughout
a range of selected test values. While the library
itself may function for all the selected test
values, it may well be that some values for some
variables would cause anomalies in the overall
simulation or else cause unacceptable run times
(times causing unrealistic responses).

3.1.1.6. Peer Review. A critical and detailed
analysis of the model's internal representations
and outputs by functional area experts was as
much a validation effort as it was a verification
effort. The emphasis of the peer review for
verification purposes was to assure that the
actual software code faithfully represented the
intended methodology for the phenomena being
modeled.

3.1.1.7. Model Interactions. ModSAF is a hybrid
type of model in that it has characteristics of both
an interactive war game as well as a fully
automated combat simulation. In the DIS world
interoperability is a necessary requirement for all
models used in a "Simworld". ModSAF must
interact with simulators, treating the simulator as
if it were an entity within and belonging to its
own set of automated entities. Initial verification
tested model operability by simulating the
simulator through a local network. Correct
Protocol Data Units (PDU's) must pass both in
and out of ModSAF. The emphasis was in
testing the results of those PDU's received in the
ModSAF. The interactive screens on the
ModSAF equipment were used to visually verify
correctness of responses.

3.1.1.8. User Interfaces. The presentation to the
user is an important aspect of a SAFOR. Ease of
operation, intuitive actions, readable icons,
reduced steps to accomplish an action and other
human behavior issues are all things that deserve
an expert review by a human factors expert.
TRAC-WSMR included user interface as a
verification item.

3.1.1.9. Model Responsiveness. It is imperative
that the model be able to respond in a real-time
mode in order to effect a realistic simulation
which involves man-in-the-loop actions. This is
a function of both network responsiveness as
well as model design, Since the network was
fixed and not available during initial V&V,
timing tests involved only turn around response
time from message receipt until message
response (i.e. only internal model actions were
considered).

3.1.2 Validation Plan

The validation plan read much shorter than its
verification counterpart. Wherever practical,
extant Field test data, were utilized. No field
exercises were conducted to compare ModSAF
with the "real world." Theoretical evaluation
was conducted using available literature and/or
computer code. Subject matter experts were
consulted regarding inputs and in face-to-face
observation with model developers while
conducting structured walk-throughs of the code.

Comparison of ModSAF results against the
results of similar scenario runs in the Combined
Arms and Support Troops Force-on-Force
Evaluation Model (CASTFOREM~the Army's
only accredited high resolution force-on-force
model) were the primary evaluation by

375

comparison. ModSAF results were considered
"correct" if they compared in a statistical sense.
Acceptable bounds for correctness were
established, and anomalies were explained or if
considered incorrect by a consensus of functional
area experts, code was modified to correct.

3.1.3 Implementation

Verification and validation required access to the
ModSAF system, and a suite was installed on-
site at TRAC-WSMR. This physical access to
the system greatly facilitated both the breadth
and depth with which evaluations were
conducted. A total of six professional staff years
were programmed over two fiscal years for the
entire ModSAF V&V effort.

3.2 CCTT SAF Behaviors V&V

This limited detail, high-end SAF behaviors
V&V effort is being conducted in concert with
other V&V work as a contribution to the overall
verification, validation, and accreditation of the
CCTT for use as a training device in support of
training exercises. The CCTT is a group of
interactively networked simulators and
command, control, and communication work
stations replicating the vehicles and weapons
systems of a mechanized infantry or armor
battalion task force and its supporting Combat,
Combat Support and Combat Service Support
elements. It was designed to provide training to
individual crew and unit personnel covering the
skills and knowledge of crew through company
task force level doctrine for the implementation
of combat missions. As a training simulation
system, the CCTT is expected to contribute by
providing a realistic environment in which the
necessary enhancement and maintenance of
soldier skills may be obtained. This implies that
the terrain correlation, system latencies, SAF
behaviors and interactions, and the overall
fidelity are required to be at such levels that
negative training, cartoonish effects, and
unrealistic situations are eliminated.

3.2.1 Verification Plan

The process of verifying the SAF behaviors for
CCTT regarded making a determination that the
model accurately represents the developer's
conceptual description and specifications. The
main thrust of the developer's concept for SAF
behaviors in CCTT concerned implementation of
the CISs, that is, the tactics or behaviors
exhibited by the SAF were to be those outlined
by the CIS.

A critical subset of 276 CISs from the total list of
over 700 CISs had been selected by PM CCTT
to serve as the baseline for implementation in
CCTT. The verification process for CCTT SAF
behaviors comprised two interrelated functions
regarding this baseline CIS subset. The first of
these functions was a determination that the
selected CIS subset was in fact available for
execution in the final CCTT configuration
delivered to the government, and the second
comprised activities necessary to assess
adequacy of the exhibited behaviors in light of
the CIS description.

The methodology necessary to support the first
CIS verification function entailed comparing the
prioritized baseline subset of the overall CIS list
to the CIS available for execution in an exercise.
The second CIS verification function entailed
scripting a set of scenarios for execution with the
SAF and CGF workstations. A sample of
behaviors from the baseline CIS subset were
selected for assessment, and small vignettes or
scenarios requiring execution of each sampled
CIS were built and run. Sampling criteria
included CISs which enabled assessment of the
four measures of effectiveness 1) move, 2) shoot,
3) see, and 4) communicate, and those CISs with
disconnect and discrepancy attributes identified
as described in the validation section which
follows (3.2.2).

Vignettes were prepared to evaluate the CIS-
based behaviors in isolation as well as in more
complex scenarios which required execution of
one or more situational interrupts to other CIS
behaviors. Scenarios which were developed
encompassed a wide variety of environmental
conditions addressing maneuvers and
engagements under both day and night
conditions. The actual evaluation process for
each selected CIS comprised rating each subtask
within the CIS on a four-point nominal scale of
Approved (A), Needs Improvement (NI),
Unacceptable (U), and Not Tested (NT). A log
of these isolated and combined scenario
executions was maintained, along with the final
state of nominal evaluation for each tested CIS
subtask, and these results were then documented
for inclusion in the final report.

3.2.2 Validation Plan

The process of validating the SAF behaviors for
CCTT regarded making a determination of the
extent to which the CCTT represents the real
world. The unit behaviors in CCTT are

376

generated from the CISs, and each of the
elements of each CIS are validated by the
responsible U.S. Army authority before they are
accepted for posting into the list. Since the CIS
are validated as adequate models for SAF
behavior, the only remaining step toward
validating CIS-based SAF behavior was
assurance that the CIS had been faithfully
implemented.

The CIS validation issue necessitated a detailed
analysis of each CIS to be implemented in search
of situational interrupt target behaviors. Since
the CIS themselves have been validated, the
validation function served by this effort was to
validate the process of turning CIS into software
coded behaviors. The methodology entailed
tracing each of the 276 baseline CISs in search of
the branching destinations on situational
interrupts. Each CIS in the baseline subset was
analyzed to identify both the conditions requiring
a branch to some other CIS, and which specific
CIS was the destination for the interrupt.
Potential disconnects and discrepancies (such as
a closed loop or a branch to a nonimplemented
CIS) in the baseline CIS subset were
documented and a log of these disconnects and
discrepancies and their resolutions were included
in the final report.

3.2.3 Implementation

Validation under this methodology was a
paperwork exercise, and was completed at
TRAC-WSMR with only a copy of the CATT
Task Data Base and a listing of the 276 baseline
CISs. Verification required access to the CCTT
SAF system, and since this could only be
accomplished on-site at the development facility
in Orlando, it was. A total of three professional
staff years were programmed for this entire V&V
effort, with 2 people on intermittent TDY over a
period of 6 months for the on-site verification
segment.

4. Additional CIS Applications

That the CIS is a doctrinally sound description of
the necessary combat behaviors make it an
invaluable tool for the software developer. The
process of turning the natural language CIS into
software code has been summarized in an
excellent paper by Ourston, et.aL (1995).

In addition to its use as a blueprint for the code
development process, the CISs consolidated in
the CATT Task Data Base can serve as a tool to
scope the overall SAF behaviors development

effort. As described under CCTT validation
above, identification of all of the necessary
behavioral branches early on in a developmental
effort can be of significant value in terms of
determining the level of effort necessary to
achieve a desired level of functionality.

The CIS subtasks may also serve to function as a
sort of managerial checklist. After breaking each
CIS into its subtasks, a list of the primitive
function calls and code segments begins to
emerge. These subtasks may then be cross
referenced to parent CIS, and development
prioritized in accordance with current
management objectives. Thus, the CIS can serve
as both the technical breakdown of the work to
be performed, and as the ordering plan by which
the primitive segments are built up into a fully
functional SAF.

5. References

Denney, Carrol R. (1994). "Modular Semi-
Automated Forces (ModSAF) Verification,
Validation, and Accreditation Plan," TRAC-
WSMR-TR-94-009(R), White Sands Missile
Range, NM, 12 pages.

LORAL/Army Integrated Development Team
(1995). "Development of Combat
Instruction Sets (CIS) in Support of
Doctrine-Based Software," 12461 Research
Parkway, Orlando, FL, 34 pages.

McEnany, Brian R. and Marshall, Henry (1994).
"CCTT SAF Functional Analysis," White
Paper #178, U.S. Army Program Manager -
Combined Arms Tactical Trainer, 12350
Research Parkway, Orlando, FL, 13 pages.

Mullis, Charles W. (1996). "Close Combat
Tactical Trainer (CCTT) Semi Automated
Force (SAF) Behavior Verification and
Validation (V&V) Plan," TRAC-WSMR-
TR-95-036(R), White Sands Missile Range,
NM, 12 pages.

Ourston, Dirk, Blanchard, David, Chandler,
Edward, Loh, Elsie, and Marshall, Henry
(1995). "From CIS to Software,"
Proceedings of the Fifth Conference on
Computer Generated Forces and Behavioral
Representation, IST-TR-95-04, Institute for
Simulation and Training, Orlando, FL,
Pages 275-285.

U.S. Army (1993). "Verification, Validation,
and Accreditation of Army Models and

377

Simulations," DA Pamphlet 5-11,
Headquarters, Department of the Army,
Washington, DC, 27 pages.

6. Authors' Biographies

Damon D. Baker is an Electrical Engineer in the
Model Support Division of the Brigade
Modeling Directorate at the U.S. Army
TRADOC Analysis Center - White Sands
Missile Range. Mr. Baker has a Bachelor of
Engineering degree in Electrical Engineering
from New Mexico State University. His
research interests include semi-automated forces,
analysis of distributed simulations, and digital
communication network performance.

Charles W. (Chad) Mullis is an Operations
Research Analyst in the Model Support Division
of the Brigade Modeling Directorate at the U.S.
Army TRADOC Analysis Center - White Sands
Missile Range. Mr. Mullis holds a Master of
Science degree in Geography from the
University of North Dakota. His research
interests include semi-automated forces, analysis
of distributed simulations, and digital
communication network performance.

378

Session 6a: Physical Modeling

Albright, U. S. Army, TRAC, Ft. Leavenworth
Howells, CAE, Canada

Kwak, SAIC
Reece, UCF/IST

Acoustics in Computer Generated Forces

Robert L Albright
TRAC-OAC

ATTN ATRC FM MR ALBRIGHT
255 SEDGEWICK AVENUE

FORT LEAVENWORTH KS 66027-2345
albrighr@trac.army.mil

1. Abstract

Existing systems of Computer Generated Forces
(CGF) do not model sound. The need for sound
representation became evident in a scenario for
demonstration of a research project (Craft 1995)
conducted by the Institute of Simulation and Training
(1ST). An opposing force of a BMP-2 platoon with
dismounted infantry are atop a hill occupying defilade
positions. They are placed as a strategic road block
defending route access to a SCUD launcher. The
opposing force should have moved into a hasty
defensive position in preparation for an ambush upon
hearing sound cues from an approaching United
States Marine Corps Advanced Amphibious Assault
Vehicle platoon on the other side of the hill. Since
Modular Semi-Automated Forces (ModSAF) did not
model sound, 1ST constructed a work-around to
simulate the situational awareness cues which would
trigger the reaction from the opposing force.

This paper presents a CGF sound model. It addresses
production, propagation, and detection of sound
waves. Production is the creation of a sound wave,
propagation is its spreading, and detection is its
reception and perception. Sound waves emitted from
vehicles and aircraft are supported.

The model is a physical model with components
allowing linkage of behavioral models. Sound
production and propagation are the physical models
using equations. Detection is the opening where
behavioral models can be plugged in. Examples are
reactive behaviors to sound cues and the effects of
battle sounds on infantry. A reactive behavior to
sound cues is exhibited in the scenario above where
sound triggers a task transition.

Implementation is in ModSAF and uses the technique
of "line-of-sound" to demonstrate linkage of the
behavioral to the physical. This modeling process
answers "Can this entity be heard?" much like "line-
of-sight" for the engagement process answers "Can
this entity be seen?" A scenario is played using

sound cues as a trigger for task transition. Two Blue
Infantry Javelin teams are hiding behind a tree line in
enemy territory awaiting orders for their next move.
Meanwhile, a platoon of Red T72M tanks on patrol
are moving towards the tree line. A terrain feature
blocks line-of-sight. Upon hearing the sound of the
approaching vehicles, the BLUEFOR move into a
hasty defensive position. They fire upon the tanks
after identifying them as enemy.

2. Introduction

The need for sound representation in CGF became
evident in a feasibility experiment conducted for the
Marine Corps by 1ST. A scenario created for
experimentation showed an opposing force of a
BMP-2 platoon with dismounted infantry atop a hill
occupying defilade positions. They were placed as a
strategic road block defending route access to a
SCUD launcher. The opposing force should have
moved into a hasty defensive position in preparation
for an ambush upon hearing sound cues from an
approaching United States Marine Corps Advanced
Amphibious Assault Vehicle platoon on the other side
of the hill. Since ModSAF, the virtual simulation
used for experimentation, did not model sound, 1ST
constructed a work-around that simulated the
situational awareness cues to trigger the reaction of
the opposing force (Craft et. al. 1995).

The CGF community is faced with the challenge of
modeling behaviors as they occur in reality, because
behavioral replication of the real-world battlefield is
required in CGF (Crooks et. al. 1995). Acoustics, the
science of sound (Blitz et. al. 1964), can be modeled
and offers progress towards meeting this challenge.

3. Sculpturing Acoustics into CGF

Sequential steps taken to build an acoustics model
into CGF were the following: researching the
physics of sound, researching how soldiers react to
sound cues, linking the behavioral to the physical,
choosing a reactive behavior for demonstration of its

381

2. Design

In order to support Navy and Marine Synthetic
Forces simulations (Tracor, 1996), the Compact
Terrain Database (CTDB) used by ModSAF has been
expanded to include a representation of the ocean
floor along with a more complete representation of
the ocean surface. Table 1 shows the various ocean
characteristics that are represented.

where this is not the case is dry (or perhaps moist)
land, as shown in Figure 1. The bounding polygons
for water bodies are defined by high tide position, so
that the surface elevation can be decreased to
represent lower tide levels. In order to allow for
changing tides in real-time, all water polygons
reference a tidal zone. Each zone stores an offset,
which is added to the surface elevation stored for the
polygon. Thus, changing the tide in a region is
simply a matter of changing that region's tidal offset.

The ocean bottom is represented using the existing
terrain representation (i.e., grids, TINs, and
microterrain) (Stanzione, et. al. 1996), and additional
supported soil types. Many ocean "features" are
really abstractions describing pieces of the terrain. As
such, the physical representation of such features can
be adequately handled by incorporating their
structure into the polygonal representation of the
ocean bottom. Abstract notions such as "this area of
the terrain is a reef can be explicitly stored as
abstract features using existing CTDB mechanisms.

The representation supports tidal variation of the
ocean surface. In the coastal regions, the absolute
elevation of the water's surface is specified, subject
to some maximum x-y bounds. Within the specified
region, any area where the water elevation exceeds
the land elevation is covered by water, and any area

In most areas, the ocean surface is represented by
single square polygons that correspond to the size of
a CTDB terrain patch. The representation can not be
too coarse because in databases that use the Global
Coordinate System (GCS) (Evans, 1995) the ocean
surface is curved. On the other hand, the
representation can not be too fine or it will use much
more memory. The patch size is the largest size at
which integration into existing intervisibility
algorithms is straight forward, since the intervisibility
code already performs a patch traversal. The
representation consists of a single elevation value for
water in the patch, and a reference to additional
surface characteristic data. It is assumed that there
will be few unique sets of surface characteristics
relative to the number of patches.

Table 1: Ocean Representation Characteristics

Multiple Elevation Surfaces Advanced Features
and Attributes

Dynamic Terrain

Ocean Floor • Bathymetry data

• Extended soil types
infrastructure to include
bottom characteristics

Ocean Surface • Patch and Wet TIN surface

• Sea State attributes (primary
and secondary wave height,
period, speed, direction)

• Surface Temperature

• Dynamic sea state
and surface
temperature

Surf Zone • Tidal Zone with offset for
surf height

• Man made features
(wharves, piers,
etc.)

• Variable tidal zone
offset

Rivers • Wet TIN surface

382

y=sin(x)

amplitude

5
2

amplitude

one wavelength

Graph 4.1

linkage to the physical, implementing the model in a
CGF system, and testing its validity.

4. Background

4.1 Physical Research

A disturbance generated from a physical, as opposed
to chemical, change by means of applied force will
input energy into the medium surrounding it. This
causes the immediate surrounding particles to
undergo back and forth motions about their
equilibrium positions. These particles influence their
neighboring particles to behave likewise as the energy
carries the disturbance particle to particle, away from
its source. The disturbance travels in the form of a
wave and has a distinct wave motion (Blatt et. al.
1989, Bolemanet. al. 1989).

Graphically, a wave is described by the sine function
(Boleman et. al. 1989). Graph 4.1 illustrates y as a
function of the sine of x. The sine curve this function
produces represents the behavior of one particle in
the medium when it encounters the passing
disturbance (Whitten et. al. 1996).

One wavelength is an observed single back and forth
motion of the individual particle. One complete up-

and-back (makes one "hill"), then down-and-back
(makes one "valley") motion is an oscillation. The
number of oscillations a particle will undertake is a
function of the amount of energy given off by the
disturbance. A greater amount of energy produces
more oscillations. The number of oscillations per
second is the frequency of the wave (Boleman et. al.
1989).

Amplitude is the maximum distance an individual
particle in the medium will move about its
equilibrium position as the disturbance passes. This
wave characteristic is used to gain a measure of the
amount of energy given off by the disturbance (Sears
et. al. 1987).

A sound wave originates from a vibrating source
producing compressional wave motion in the
surrounding medium. The vibrations shove the
particles in its way closer to their surrounding
particles, leaving a partial vacuum in the wake of
their movement. The medium around the partial
vacuum rushes in from all sides due to pressure from

383

the compression pushing them back. Alternating
regions of particles compressed together and spread
apart occur along the distance the disturbance travels.
These pressure fluctuations spread in all directions
away from the source. As the distance from the
source increases, the flow rate of the disturbance
diminishes because the amount of energy carrying the
disturbance becomes less, and the amount of energy
given off as heat, due to friction, increases. This is
the property of attenuation (Blatt et. al. 1989, Blitz et.
al. 1964, Boleman et. al. 1989).

4.1.1 Acoustical Phenomenon
Inspecting a wave's life cycle unveils three
credentials of acoustics. They are a sound wave's
production, propagation, and detection. Production is
the sound wave's creation, propagation is its
spreading through a medium, and detection is its
reception and perception (Blitz et. al. 1964).

4.2 Behavioral Research

Detection provides the opportunity for a sound
stimulus to trigger a reaction when the stimulus is
processed (Boleman et. al. 1989). A reaction of
interest to a researcher may be internal or external.
Internally, the heart rate of a soldier may increase at
extreme sounds that suddenly occur from ammunition
detonation in combat. Externally, a sound cue will
alert a soldier and establish situational awareness
(Mullally et. al. 1995). For example, a soldier at rest
may become hastily defensive upon hearing a sound
cue in the distance.
Psychoacoustics is the study of psychological
interactions between humans and the world of sound.
The primary perceptual attributes of sound are
loudness and pitch (Parker et. al. 1988). The
information describing them are transmitted in a
propagating sound wave. Loudness, or a sound's
intensity level, is a measure of how much energy per
second the wave brings next to the detection device
(Blatt et. al. 1989). It depends on a sound's physical

intensity, amplitude, and frequency. Pitch is the
highness or lowness of a sound and depends on a
sound's frequency (Parker et. al. 1988).

5. Linkage of Behavioral to the Physical

The three credentials of acoustical phenomena
suggest three platforms in the acoustics model which
aid in tying all the credentials together to produce an
acoustics model which can be implemented. The
platforms are the physical, behavioral, and linkage.
The physical platform scientifically represents sound
and addresses its production and propagation. The
behavioral platform addresses reactivity to sound
cues in the environment. Finally, the linkage
platform connects the behavioral to the physical with
sound detection being the opening where behavioral
models plug in. The three platforms are wound
together in a shape that gives a form the acoustics
model can be implemented.

6. Implementation

The acoustics model is implemented in the CGF
simulation ModSAF, version 2.0. Five physical
models, one behavioral model, and one linkage model
are implemented. The physical models are sound
velocity, intensity, intensity level, power level, and
pressure level. The behavioral model is task
transition upon hearing sound cues. The linkage
model is line-of-sound.

6.1 Sound Velocity Model

The sound velocity model returns the speed of sound
in a gas. Sound velocity is a function of air mass,
humidity, and temperature.

384

Gas % Composition
Nitrogen (N2) 78.09
Oxygen (02) 20.95
Water vapor (H20) 0-4
Argon (Ar) 0.93
Carbon dioxide (C02) 0.03
Neon (Ne) 0.0018
Helium (He) 0.000524
Krypton (Kr) 0.0001
Radon (Rn) 6x10-18

Table 6.1.1.1

Equation 6.1.1 drives this model and gives the
velocity of a sound wave in meters per second (Blatt
et. al. 1989).

V =

Equation 6.1.1

T is the temperature of the gas expressed in Kelvins.
K is Boltzmann's constant. Gamma is the ratio of
specific heat (Blatt et. al. 1989).

Specific heat is the amount of heat that must be
supplied to an object to effect a temperature change.
The ratio of specific heat is the ratio of the specific
heat of a gas at constant pressure to its specific heat at
constant volume (Blatt et. al. 1989).

M is the molecular mass of the gas serving as the
medium for the traveling sound wave. The
experiment used for demonstration of the acoustics
model propagates sound through air. Air is a mixture
of gases and does not exist as a single molecular
structure, therefore its mass cannot be measured
(Boleman et. al. 1989).

6.1.1 Virtual Air
Virtual air was created to resolve this conflict. It
portrays air as having a single molecular structure
while maintaining its percent composition as a
mixture. The percentage of the gas that occurs in air
is the percentage of gas characteristic in one virtual
air molecule. Consider a volume of one-hundred
molecules. This volume is a mixture of four gases.
Ten molecules are carbon, twenty argon, thirty
oxygen, and forty nitrogen. The volume of gas is
then 10% carbon, 20% argon, 30% oxygen, and 40%
nitrogen. The virtual molecule representation also

maintains these percentages. One virtual molecule
would be comprised of 1/10 carbon, 1/5 argon, 3/10
oxygen, and 2/5 nitrogen. One hundred virtual
molecules placed in the same volume will maintain
the same percentages. 1/10 carbon multiplied by 100
virtual molecules is 10% carbon, 1/5 argon multiplied
by 100 virtual molecules is 20% argon, 3/10 oxygen
multiplied by 100 virtual molecules is 30% oxygen,
and 2/5 nitrogen multiplied by 100 virtual molecules
is 40% nitrogen. Table 6.1.1.1 shows the gases that
comprise air and their percentage of occurrence
(Boleman et. al. 1989).

6.2 Sound Intensity Model

The sound intensity model returns a measure of the
sound energy radiating from a source in all directions.
Sound intensity is a function of sound power emitted
from a source.

The intensity of a sound wave is defined by the
energy it brings into a unit of area each second. It is
calculated using equation 6.2.1 (Blatt et. al. 1989).

Ir =
P

4nR2

Equation 6.2.1

I subscript r is expressed in watts per meter squared,
P is the sound power expressed in watts, R is the
range (in meters) between source and listener, and
4*PI*R accounts for the source radiating sound
energy uniformly in all directions (Blatt et. al. 1989).

6.3 Sound Intensity Level Model

The sound intensity level model returns the loudness
of a sound source at the listener. Sound intensity

385

level is a function of the source's sound intensity. It
is calculated using equation 6.3.1 (Blatt et. al. 1989).

P=Wlog10|
^0

Equation 6.3.1

Beta is expressed in decibels (dB). Sound intensities
are naturally compared by humans logarithmically,
therefore their levels are specified on a logarithmic
scale. Two sounds differ in intensity by one bel if the
ratio of their intensities is ten. The decibel, one-tenth
of a bell, is a more common expression used (Blatt et.
al. 1989).

I subscript r is the sound intensity of a source
perceived by a listener at a given range. I subscript
zero is the sound intensity at the threshold of
audibility (Blatt et. al. 1989).

6.4 Sound Power Level Model

The sound power level model returns the sound
strength of a source. Sound power level is a function
of the sound power emitted from a source. Sound
power is the rate at which sound energy is spread.
Sound power level is calculated using equation 6.4.1
(Besancon et. al. 1966).

PWL = 101og w
10^ ref

Equation 6.4.1

W is the sound power expressed in watts. W
subscript ref is the sound power at the threshold of
audibility (Besancon et. al. 1966).

6.5 Sound Pressure Level Model

The sound pressure level model also returns the
sound strength of a source. Sound pressure level is a
function of the density of the gaseous medium a
sound wave is propagating through. It is calculated
using equation 6.5.1 (Besancon et. al. 1966).

SPL = 201og10p^

Equation 6.5.1

Rho is the density of air. Rho subscript ref is the
density of air at the threshold of audibility (Besancon
et. al. 1966).

6.6 Task Transition Upon Hearing Sound Cues

This behavioral model supports alertness and
situational awareness. It exists in ModSAF as an
enabling task (Iibesound) and is easily detached when
the level of sophistication this behavior model offers
is not needed.

6.7 Line-Of-Sound

Line-Of-Sound propagates a sound wave between a
source and listener to answer "Can this entity be
heard?" The listener has an intensity level of
background noise occurring around him or her. A
sound source in the distance will be heard if the
intensity level of its sound wave is greater than the
intensity level of the background noise.

Four combinations of source to listener can occur.
They are individual to individual, individual to group,
group to individual, and group to group, with the first
two being supported, respectively.

6.8 Libsound

ModSAF's libsound was created to contain the
physical and linkage models. It can be easily
detached when the sophistication an acoustics model
offers is not needed.

7. Experimentation

A scenario was created to demonstrate the acoustics
model. Two Blue Infantry Javelin teams are hiding
behind a tree line in enemy territory awaiting orders
for their next move. Meanwhile, a platoon of Red
T72M tanks on patrol are moving towards the tree
line. A terrain feature blocks line-of-sight. Upon
hearing the sound of the approaching vehicles, the
BLUEFOR should move into a hasty defensive
position and fire upon the tanks after identifying them
as enemy.

8. Results

The Blue Infantry Javelin team moved from a state of
rest to hasty defensive position upon hearing the
sound cues of approaching vehicles. After identifying
the approaching vehicles as enemy, they fired upon
the REDFOR.

386

9. Conclusion

Sound is represented in a CGF system. Its
representation demonstrates progress towards realism
in behaviors by entities on the virtual battlefield.
Acoustics in a CGF simulation adds the sophistication
to behaviors that the CGF community assumes to be
present.

10. Future Work

Behaviorally, the acoustics model could be used to
study effects of battle sounds on infantry. Support for
sounds of weapons fire and ammunition detonation
would need to be included to support this. Vehicle
identification by sound signature could also be
incorporated. Pitch would need to be modeled to
support this.

Physically, the acoustics model could be extended.
Solid mediums could be included in sound
propagation. Phenomenons affecting sound
propagation, such as reflection, absorption,
interference, turbulence, and refraction (turning)
could be incorporated.

This acoustics model only supports sounds emitted
from an individual vehicle. Sound blending caused
by units of more than one vehicle is also needed.

The concept of "virtual air" assumes that the
dispersion of the gases comprising air is evenly
distributed and no concentration of one gas hovers
nap of the earth. Validation is needed that compares
sound velocity calculated in "virtual air" against
sound velocities recorded in air.

11. Acknowledgments

The author thanks Robert Franceschini, Dan Mullally,
Kent Pickett, Derrick Franceschini, Matt Kraus, Jimi
Whitten, 1ST, TACOM and AMSAA for their
technical support on this experiment conducted at 1ST
during development training as an intern. An
additional thank you is extended to Robert
Franceschini and Kent Pickett for editorial support.

Blitz, J. (1964). Elements of Acoustics. Butterworth
& Co. (Publishers) Ltd., p. 1.

Bolemon, Jay (1989). Physics An Introduction,
Second Edition, Prentice-Hall, Inc., pp. 299-319,
340-359.

Craft, Michael A., Franceschini, Derrick J., Kraus,
Matthew K., Mullally, Daniel E., Adkins, Michael
K., Albright, Robert L., Nida, Jonathan C, and
Napravnik, Lee J. (1995). AAAV: Demonstrating
the Feasibility of Usinp Virtual Simulation for
Test and Evaluation. Contact Number
#N61339-92-K-0007 A0003, Institute for
Simulation and Training, University of Central
Florida.

Crooks, William H., Ph.D. (1993). "A Command and
Control Metaphor For Computer-Generated
Forces", Proceedings of the Third Conference on
Computer Generated Forces and Behavioral
Representation, Institute for Simulation and
Training, Orlando, Florida, p. 395.

Mullally, Daniel (Subject Matter Expert). (1995).
Personal interviews. Orlando, Florida: Institute
for Simulation and Training.

Parker, Sybil P. (1988). Acoustics Source Book,
McGraw-Hill, Inc., pp. 1-23, 270-330.

Pickett, H. Kent (Director of Modeling and
Research). (1995). Telephone interview. Fort
Leavenworth, Kansas: TRADOC Analysis
Center.

Sears, Zemansky, Young. (1987). University
Physics, Seventh Edition, Addison-Wesley
Publishing Company.

Whitten, Jimi (Operations Research Analyst).
(1996). Personal interview. Fort Leavenworth,
Kansas: TRADOC Analysis Center.

13. Author's Biography

Robert L. Albright is a Computer Scientist for the
Modeling and Research Directorate at TRADOC
Analysis Center in Fort Leavenworth, Kansas. Mr.
Albright has a Bachelor's of Science Degree in
Computer Science and is working towards a Master's
of Science in Operations Research. His interests are
modeling CGF at the virtual level and computer
graphics.

12. References

Besancon, Robert M. (1966). The Encyclopedia of
Physics. Reinhold Publishing Corporation, New
York, pp. 31-32.

Blatt, Frank J. (1989). Principles of Physics. Third
Edition. University of Vermont, Allyn and
Bacon, pp. 269, 291-313, 338-414.

387

Creating a Synthetic Environment for Naval Applications

P.B. Howells, Ph.D, G. Giguere, Eng
CAE Electronics Ltd.

St-Laurent, Quebec, Canada

1. Abstract

The use of synthetic environments in the areas of
training, research and development, and equipment
evaluation is becoming common practice. This paper
will describe an existing simulation package
developed for air force and army applications that has
been expanded to cater for Anti-submarine Warfare
(ASW), Anti-surface Warfare (ASuW), Search and
Rescue, and Naval Gunfire Support. It will give an
overview of the existing simulation package and a
description of the models that have been developed to
support a naval environment. A scenario in which a
helicopter prosecutes a submarine is presented as an
example problem to illustrate the application of the
new software.

2. Introduction

The generation of synthetic environments for naval
applications is concerned with the simulation of
entities such as submarines, surface ships, aircraft and
helicopters. Typical weapons and sensors carried by
these platforms may include missiles, rockets, bombs,
torpedoes, mines, radars, passive sonars, and active
sonars. The scenarios that can be created using these
elements encompass Anti-submarine Warfare (ASW),
Anti-surface Warfare (ASuW), Search and Rescue
and Naval Gunfire Support.

CAE's Interactive Tactical Environment Management
System (ITEMS) has been expanded to include the
above platform types, weapons and sensors. The
models developed are physical models that consider
the essential parameters that affect performance.
ITEMS uses an off-line Database Management
System (DBMS) for the player definition and
scenario creation. The DBMS user interface provides
the user with the flexibility to modify and create new
platform types and new training scenarios.
This paper gives details of the models used to

describe the above platform types, weapons and
sensors. Details are also given of manoeuvres such as

zig-zag patterns for ships and dip manoeuvres for

helicopters. A scenario in which a torpedo armed
helicopter prosecutes a submarine is presented as an
application problem. Such a scenario could be created
to support a training exercise, or an equipment
evaluation process where ITEMS acts as the target
generator.

ITEMS includes many more platform types, weapons
and sensors than those mentioned above for army and
air force applications. The present paper however will
be confined to the naval elements. Since all three
services are supported, ITEMS lends itself to
combined operations.

3. ITEMS Overview

CAE's Interactive Tactical Environment Management
System (ITEMS) provides the synthetic environment
for air, land and sea environments. ITEMS is used in
a number of research and training facilities world-
wide to support training and equipment evaluation.

The basic element within ITEMS is the Player. A
Player is defined as anything of tactical importance:
an aircraft, a tank, a ship, a submarine, a surface to air
missile installation are just a few examples. Each
Player may be assigned a range of weapons and
sensors.

Scenarios are defined off-line using the DataBase
Management System (DBMS) which use low-level
databases that define the weapons, sensors, platform
dynamics, and behaviour. Figure. 1 illustrates the
setup. DBMS comprises a specialised set of editors
based on the X-windowing system.

An important part of Player definition is the
modelling of behaviour. ITEMS uses a rule based
system that allows Players to determine their
opponent and how to react. In the case of a ship
moving through hostile waters, the knowledge based
rule set could, for example, control the ship to

389

perform a zig-zag pattern and set all sonars to passive
mode. The same rule set could force the ship to

deploy countermeasures if it detects an incoming
torpedo.

As an aid to scenario creation and scenario execution,
ITEMS uses a map display and a stealth view.

COUNTER ffy*fi
MEASURES V

WEAPONS

IDENTIFY MISSION ROUTE.
ASSIGIN RULES, INITIAL
INVENTORY, POSITION

DYNAMICS,
SIGNATURES

SENSORS

COMMUNICATIONS

DOCTRINE

LOW LEVEL
LIBRARIES

PLAYER
LIBRARIES

TACTICAL
SCENARIO

Figure 1: ITEMS Architecture

4. System Models

The following section gives an overview of the
mathematical models developed to describe the above
mentioned platform types, weapons and sensors.

Active Sonar:

Illustrated in Figure.2, are the principal factors that
affect the target detection process in the case of an
active sonar: the source level (SL), transmission loss
(TL), target strength (TS), the noise level (NL),
directivity index (DI), reverberation level (RL), and
the signal processing gain (PG).

Figure 2: Active Sonar model

Each of the variables are related according to the
expression:

S/N = SL - 2TL + TS - max(RL, NL-DI) + PG

where the ratio (S/N) is the signal to noise ratio.

The noise level is calculated from the noise sources
defined at the scenario creation time and include
ambient and shipping noise. The transmission loss is
an important parameter in the underwater detection
process and this is calculated from look-up tables
entered at the DBMS level. The tables require the

390

user to define the sound channel which provides for
increased detection ranges under certain conditions.
The input variables to the look-up tables include
range, sonar operating frequency, and whether the
sonar platform, or target lie within the sound channel.

The parameter PG is the signal processing gain. This
parameter is defined by the user and represents the
increase in the signal to noise ratio that is achievable
using advanced signal processing.

A target is detected using either a deterministic
model, or a probabilistic model. In the case of the
deterministic model, a target is detected if the signal-
to-noise ratio exceeds a fixed threshold value. In the
case of the probabilistic model the signal-to-noise
ratio is used to compute the probability of detection
from a probability of detection versus signal-to-noise
ratio curve entered via DBMS. A random number is
then drawn from a gaussian distribution and
compared with the probability of detection value. If
the random number is less than or equal to the
probability value, then the target is detected. The two
models allow the user to define either a deterministic
or probabilistic scenario. For example, while training
the sonar operator it may be advantageous that target
detection be random, where for the equipment
evaluation process fixed detection ranges may be
desirable to keep the problem tractable.

The active sonar model is used to represent hull
mounted sonars for ships and submarines, sonobuoys,
and torpedo acoustic homing heads.

Passive Sonar:

The passive sonar model is illustrated in Figure .3
below.

SL

TL

transmission signal, however, means that the signal-
to-noise ratio is given by a slightly modified equation:

S/N = SL - TL - NL + DI + PG

The sources of the different noise terms is the same as
for the active sonar.

The passive sonar model is used to model such
entities as towed arrays, sonobuoys, passive listening
hull mounted sonars and torpedoes.

Acoustic Decoys:

The acoustic decoy model simulates acoustic
countermeasures that may be deployed from sea
platforms, or towed behind a surface ship. The nixie
is an example of the latter. The countermeasure
model generates an additional noise term that appears
in the sonar equations. The noise level that is
calculated takes into account the attenuation of the
noise signal as it propagates through the water.

Surface Ships:

Surface ships are represented as linearized dynamic
models with an autopilot for speed and course
control. A simple model is available to represent the
sea state based on four sinusoids generated from the
sea spectrum appropriate to the sea state for the
scenario. The four sinusoids give rise to the wave
height which is calculated at four locations around the
ships hull which are then used to generate buoyancy
forces and moments that give rise to ship pitch, roll
and heave motions

Submarines:

Submarines, like the ships, are modelled as linear
dynamic models. An autopilot system is available for
speed, course and depth control.

Figure 3: Passive Sonar model

As shown in Figure.3, The variables affecting the
passive target detection process are the same as those
for the active sonar. The absence of the active

Anti-Ship Missiles:

ITEMS already supports the simulation of a range of
Proportional Navigation and Command to Line-of-
Sight Missile Systems. For the Naval environment,
provision is made for the definition of height and
azimuth inertial steering to simulate anti-ship missiles
like Harpoon and Sea Eagle. A range of terminal

391

homing modes from pop-up and dive to terminal
homing at sea skimming height are also available.
Provision is available for defining a an inertial
navigation course so that the missile can fly an off-set
way point from the target to create a dog-leg
trajectory.

Torpedoes:

The torpedo model is a full five-degree (roll
stabilised) freedom model that considers the
principal factors that affect performance: thrust
developed by the propulsion system, drag and weight.
The torpedo may be launched from either submarines,
ships, helicopters, or aircraft. A range of search
patterns may be defined via DBMS which the torpedo
executes to search for the target. The acoustic sensor
assigned to the torpedo may operate in either a
passive or active mode. Once the torpedo has locked
on to the target it is steered on the target using a
proportional navigation law. The torpedo remains
locked on to the target unless there is a drop in the
signal to noise ratio, brought about, say, by the
deployment of countermeasures.

Depth Charges:

Depth charges may be deployed from helicopters,
surface ships, or aircraft. The model considers the
mass of the depth charge, drag coefficient, and initial
launch conditions, such as velocity and attitude.
When in air, the depth charge follows a parabolic
trajectory up to the point where it broaches the waters
surface, at which point it sinks at a user specified sink
rate. Detonation occurs based on a depth setting
entered via DBMS.

manoeuvres for units involved in a screening pattern
and generic fixed wing and rotary wing search
patterns for submarine detection and prosecution.

5. Example Problem

The purpose of this example is to demonstrate how
the ITEMS system makes use of the above entities to
create a naval scenario. Space does not allow for a
full description of each player and player rule sets, so
only a sub-set will be presented here.

5.1 Scenario Description

In Figure.4 are presented details of the scenario. The
figure shows a airborne early warning radar equipped
aircraft which detects submarine periscope at the
surface. The aircraft send a tactical message to a
nearby surface ship which dispatches a helicopter
equipped with a dipping sonar and torpedo to
prosecute the submarine. The submarine detects the
incoming helicopter on its radar, and submerges. The
helicopter looses contact with the submarine and
proceeds to dip its sonar at the last known reference
point. The helicopter is successful in locating the
submarine and deploys a torpedo. The submarine
detects the incoming torpedo and takes evasive action
by manoeuvring and deploying counter measures.

Sonobuoys:

Sonobuoys may be deployed from any air platform.
Their dynamic characteristic are much the same as the
depth charge for the in-air phase. Sonobuoys may be
deployed in varied patterns, and may be set to operate
in either a passive or active mode.

Manoeuvres:

In order to complement the naval environment
entities, automatic manoeuvres have been developed
to enhance realism. Such manoeuvres include zig-zag
patterns for ships, an auto dip pattern for naval
helicopters equipped with a dipping sonar,

Figure 4:Scenario Overview

5.2 Player Definition

When creating the above scenario, the first step is to
define the Player types; in this case the aircraft, ship,
helicopter and submarine. The definition of these
players requires the user to specify details of the
weapons and sensors, typically the radar carried by

392

the aircraft and the sonar and torpedo carried by the
helicopter.

In Figure 5. is illustrated a sample DBMS page for
the definition of the dipping sonar. The data fields are
shown commensurate with the parameters that appear

in the sonar equation defined above. The table that
defines the probability of detection versus range
curve is also shown. Similarly pages are available for
defining the player characteristics (dimensions and
maximum speed for example) and weapon system

Scnar Mode Database Record Edit Record Name • [MCOTtANSOS 50S(CPF Omnidrr. search)): RecordKty: [14]

R«:ordN»a»e..

SootrMtxkRamd&M

Rucord Function Options.

DEBUG : Dipping sonar OmnlcHr. search

i HuQ mounted active sonar::Search, mode.

Re ;ord Description

So jar Mode Type

Data Extraction Imprecision..

; 1 Bi aring Information Available . f YES Bearing Extraction Imprecision J 3.00

£1 .-varlon Wi>nn«lon Available , YES |. Elevation Extraction Imprecision |SHO

Riinge Information Available ;VE5 j Range Extraction Imprecision 15.00

\\ Sonar Mode : Sonar Scanning Record Name : I DEBUG : dipping sonar Omnldlr

nAWfflraVlffl

Figure 5: Active Sonar Mode definition

393

Figure 6: Active Sonar definition

5.3 Rule Sets

As mentioned in section.2 above, player behaviour is
represented using an rule based system. A sample rule
set for the submarine player is shown in Figure. 5.
The rules require the submarine to submerge if it
detects an air or surface contact. Further, if the
submarine detects an incoming torpedo it is to
manoeuvre and deploy countermeasures. As Figure
.5. shows, the rules are based on "IP, "THEN"
statements that make use of condition and response
parameters.

MIMMM 'LATER DOCTKiNE RULEtfT MUXES LMT *«.••* *••» [H»n«| 0.|] ».,.D i„ [M]

B
B

<«t—i *•— I RED »Uf ACTION R

IF UNDER »TI*C«

If »0 PLATEOM • AKIOOll

IMF" TURN AU KA0AR on CHANGE RELATIVE HCKJtir ro OfrtH . »•

IF UNDER TOA»E0O ATTACK

THER EXECUTE RE»»ON3E
EXECUTE IMIUVII TRMCCTOMT
MANEUVER TAAJECTORT NAME TORPEDO EVAtlVf MANEUVER

• ET OLOftAl VAftlAllE - IMOER ATTACK

if UNDER IMMN ATTACK
AMD CLOlm VANIAtlE UNDER ATTACK1 TRUE
AKO CLOiiL VARIABLE TIME ITAMR UNDER ATTACK > 'JO 1EC

THEN EXECUTE «£i»ON»E • CO TO PERISCOPE DEPTH

It '0 RLATT-OR* TTPE . SU"f A=E

TMtN EXECUTE NE1PON1E
»'f POACH PRIME QPPCNtNT
m MO c • DE«

THE" EXECUTE RESPONSE HRE WEAPON TORPEDO

Figure 7: Red Sub Action ruleset

394

5.4 Scenario Execution

In Figure.6 is shown a snapshot of the Tactical

Situation Display (TSD) that is available for the
monitoring the scenario during run time. The Forward
View Display (FVD) although available is not shown.

Figure 8: ITEMS Tactical Situation Display

6. Conclusion

Details have been presented of extensions to the
ITEMS synthetic environment simulation package to
support naval applications. Key to the new
development is the use of physical models that
consider the principal factors that affect performance.
In the case of the acoustic environment, the sonar
equation is used in both its active and passive form to
simulate the target detection process.

An example problem involving an attack on
a submarine was presented to illustrated the use of
some of the naval elements that had been developed,

as well as the concept of player definition and the
creation of rule sets for the control of players.

7. Acknowledgements

Acknowledgement must be given to members of the
Virtual Environment Development team of CAE
Electronics whose hard work and vision have made
the naval environment possible.

395

8. Author's Biographies

Dr Peter. B. Howells is the manager of the Virtual
Environment Development Department at CAE
Electronics, Montreal. He has been involved in the
modelling and simulation of physical systems for a
number of years while working at various reaseach
establishments. His current interest lies in the
modelling of computer generated forces for naval
applications.

Ghislain. Giguere holds a Bachelor's degree in
engineering and is a principal member of the Virtual
Environment Development team at CAE Electronics
working on the modelling and simulation of naval
elements.

396

Phenomenology Behaviors in ModSAF

Se-Hung Kwak
Lockheed Martin Advanced Distributed Simulation

50 Moulton St., Cambridge, MA 02138
skwak @ camb-lads.loral.com

Reba Lyons
US-Army, STRICOM

AMCPM-DIS
12350 Research Parkway, Orlando, FL 32826-3276

lyons@stricom.army.mil

1. Abstract

Phenomenology sensitive behaviors are key
components for constructing a realistic CGF.
However, research and development of these behaviors
have been much delayed because of complex and yet
fuzzy nature of the behaviors and because of scarce
mathematical models and data. This paper described a
new development in ModSAF for phenomenology
sensitive behaviors. Behavioral scaling, a novel
approach, is taken for the phenomenology behaviors
project, which allows infinitive numbers of
behavioral variations of a single base behavior by
scaling the base behavior depending on environmental
conditions. To support this concept, a
phenomenology behavior architecture is introduced.
It is based on a behavioral taxonomy; passive,
reflexive, reactive, and reflective behaviors. In order
to facilitate the behavioral upgrade process as well as
to improve modularity of the process, environment
assessment and reasoning libraries (modules) are also
newly built. The behavioral scaling concept,
phenomenology behavioral architecture, and
environmental assessment and reasoning libraries
significantly saved development time and efforts.
Moreover, they provide a generic framework for
adding new phenomenology sensitive behaviors.
This paper also discusses phenomenology
(environment) models implemented in ModSAF.

2. Introduction

ModSAF is one of the most widely-used
constructive/virtual CGF programs. Since its
inception in 1993, it has grown rapidly with the
continuous addition of new functionality, facilitated
by its modular architecture. One of the recent major
advances in ModSAF is the inclusion of
phenomenological effects transforming ModSAFs
simple, constant, high-noon, clear-day environment
to a dynamic environment. Currently, ModSAF
supports rain, fog, smoke, dust, and illumination
variations due to the locations of the sun and the
moon < time-of-day effects). Even though the dynamic
nature of phenomenology is supported in ModSAF,

most ModSAF behaviors used to assume the high-
noon, clear-day environment that was present at their
creation.

Thus, LADS phenomenology behavior (LPB) group
started to work to eliminate the limitation. First, the
group surveyed to identify the impacts of these
phenomenological effects for all behavior libraries in
ModSAF. Based on the observations, an architecture
extension for encoding local and global obscurant and
night related behaviors is developed. This extension
is not only efficient enough to handle dynamically-
changing smoke effects, but also generic enough to
handle other environmental effects such as fog, rain,
night, etc. Using the architecture, the LPB group
eliminates the above mentioned behavioral
limitations and transforms the existing ModSAF
behaviors to phenomenology sensitive behaviors.

This paper starts with the brief discussion of the
current ModSAF phenomenology. It is followed by
approaches taken for phenomenology behavioral
implementation. This includes the phenomenology
behavior architecture, behavioral classification
concept, and actual phenomenology behavioral
implementation.

3. Current ModSAF Phenomenology

The DVW (Dynamic Virtual Worlds) group of LADS
has introduced environmental effects within ModSAF.
Their contributions include an environmental
architecture and associated environmental models
(Anon, 1995).

3.1 Environmental Architecture

The environmental architecture in ModSAF was
designed to allow software modules that simulate
environmental phenomena to easily be plugged into
ModSAF. A well-defined API isolates the
implementation details of the environmental models
from the user. This approach is advantageous in that
it allows models to be switched in and out easily,
facilitating multi-resolution modeling, and making

397

ModSAF more adaptable to different applications
requiring different models.

The API is implemented in a library called
libenvironment. Each environmental model is
contained in its own library. Each model registers its
capabilities with libenvironment. Some models
provide information and can only be queried, while
other models can carry out requests for man-made
environmental effects such as smoke clouds and
illumination flares.

When the API is asked for a piece of information
about the environment, such as a query for
temperature at a given location or a query for
transmissivity between two locations, it dispatches
the request to the model(s) that know how to handle
it. If several models know how to handle a given
request, a resolver model is used to merge the
information into one response. This way, several
models which provide the same type of information
can work together. For example, consider model A, a
simple, constant ambient model, and model B, a
model that simulates the smoke effects of a burning
tank. Both transmissivity values of the ambient and
the smoke of the burning tank will contribute to the
transmissivity of near the tank. If the user makes a
query for the transmissivity of near the tank, it is up
to the resolver model to calculate the resultant
transmissivity based on the inputs of the two models.
Specifically, the resolver model multiplies the two
transmissivity values from the two model to compute
the resultant transmissivity. The way of merging
values from multiple models varies depending on the
nature of a parameter (roughly equivalent to
environmental effect) activated by a query.

3.2 Environmental Phenomena Currently
Modeled in ModSAF

This section describes the environmental phenomena
which are part of the 2.1 version of ModSAF (Anon,
1995).

3.2.1 Constant Environment

There is a simple constant environmental model
which is capable of providing answers to all possible
queries supported by libenvironment. Running
ModSAF with this model simulates running an
exercise on a clear sunny day at high noon. This
basically simulates SIMNET environment. However,
it can be used for DIS if computationally expensive
dynamic environment is not required for a specific
DIS exercise. Or some environmental factors (called
parameters) can be selectively registered to this
constant model, but others are assigned to more
complex environmental model. For example, the

constant model provides constant temperature, wind,
and transmissivity, but a smoke model can provide
detailed transmissivity.

3.2.2 Simple Environment

A collection of simple, low-fidelity models
constitutes the simple environment model. Although
this model supports time varying parameter values,
most of parameters remain constant throughout the
exercise. Those parameters are individually
initialized. Once they are set, all parameter values are
assumed horizontally and vertically constant. This
model always checks legality of those values; such as
range check and cross validity check with related
values. Again, parameters are individually
registerable to any environmental model.

3.2.3 Natural Illumination

The natural illumination model takes the sun
position, moon position, and moon phase into
consideration when calculating illumination. This
model determines the value for illumination. This is
based on the U.S. Army Research Laboratory
Battlefield Environment Directorate's (ARL-BED)
ILUMA model, as driven by commonly available
model of the ephemeris.

3.2.4 Smoke and Dust Clouds

The COMBIC (Combined Obscuration Model for
Battlefield-Induced Contaminants) model is used to
calculate transmissivity through smoke and dust
clouds. It was developed by the U.S. Army Research
Laboratory Battlefield Environment Directorate, and
consists of the following:

• smoke sources description
• diffusion model (simulates the expansion of the

cloud)
• buoyant rise model (simulates the rising of warm

clouds)
• boundary layer model (considers wind,

temperature, and cloud density)

The COMBIC model is used both in preprocessing
and at run-time. During preprocessing, the model is
used to produce data for specific munitions types and
environmental conditions. Smoke-history tables are
also computed off-line. During run-time, once the
actual ammunition type and environmental conditions
are known, the actual smoke characteristics
information is obtained from the tables. This
information is then used to calculate the
transmissivity.

3.2.5 Atmospheric Extinction

398

The LOWTRN model is used to compute uniform
atmospheric extinction (or transmission). The output
from LOWTRN is a table that provides
transmissivity at various ranges given a particular set
of input atmospheric conditions. Tables of extinction
coefficients for useful sets of atmospheric conditions
are precomputed and accessed at run time, since the
LOWTRN model is too slow to run in real time.
The LOWTRN model is developed by the U.S. Air
Force Geophysics Lab.

3.2.6 Signal Smoke and Hares

Signal smoke and flares are intentionally-generated
man-made environmental phenomena used for
signaling. An enabling task that monitors for these
signals can be used to enable the signals to act as
conditions for units transitioning from one phase of
the execution matrix to the next.

4. Behaviors

Behaviors are entities capable of producing
interactions between systems (Kwak, 1995).
Behaviors also interact with each other at the system
boundaries, and these interactions are often considered
as interactions between systems. Therefore,
behaviors define observable characteristics and
capabilities of a system. However, behaviors cannot
exist by themselves. They need embodiment. A
system is such an embodiment or a container of the
behaviors.

Two or more behaviors can be composed to create a
composite (or complex) behavior, and this
compositional relationship can be recursive.
Therefore, depending on our point (or level) of
interest, some behavior can be viewed as a composite
behavior, while the same behavior can be seen as a
primitive (or atomic) behavior for other behaviors.

A composite behavior is not a simple collection of
primitive behaviors. When the primitive behaviors
are aggregated for a composite behavior, extra
behavioral characteristics are added. The extra could
be additional memories (or states) and state transition
logic1. Obviously, the way of aggregation using
operators, such as AND, OR, etc., greatly influences
the characteristics of the composed behavior.

For our research and development of Phenomenology
behaviors in ModSAF, unit behaviors (or platoon
behaviors) are treated as composite behaviors.

'States and state transition logic approach is a finite
state machine based behavioral implementation.
Many other approaches are available (Kwak, 1995).

Individual vehicular behaviors are treated as primitive
behaviors for the unit behaviors. Because the unit
behaviors have directly observable and controllable
from the outside of ModSAF, they should be
meaningful and useful as they are to the external
world (or a human operator). That is, they should be
able to perform desired, identifiable, and meaningful
tasks; such as road march, occupy position, etc.
Therefore, when such a task is assigned to a tank
platoon, using internal behavior logic and memories
it controls vehicles in the platoon through activating
vehicle-level behaviors; such as a vehicle movement
behavior. This type of a behavioral organization
constitutes a behavioral hierarchy in ModSAF.

The ModSAF behavioral hierarchy is mapped into
four classes of behaviors: i.e., Reflective (or Active)
behaviors, Reactive behaviors, Reflexive behaviors,
and Passive behaviors. The reflective behaviors
correspond to the composite behaviors described
above. The reflexive behaviors are primitive (or
atomic) behaviors for the unit behaviors. The
reactive behaviors are unit-level exception handlers
that are activated when the unit confronts an
unexpected situation. They also temporarily suspend
the unit behavior currently executed when they are
activated. If such situation is not persistent any
longer, then the reactive behavior becomes inactive
and the suspended unit behavior becomes active again.
The passive behaviors are encapsulated in ModSAF
physical components. They are not regular ModSAF
behaviors but needed to simulate behaviors of
physical components.

In fact, categorization of behaviors into the four
classes is based on time planning horizon, degree of
deliberation, and degree of coordination. Obviously,
reflective behaviors, such as ModSAF unit level
behaviors need much higher degree of planning.
Thus, they are associated with long time planning
horizon, high degree of deliberation, and high degree
of coordination between vehicles, while characteristics
of reflexive behaviors such as ModSAF vehicle level
behaviors are represented with shorter planning
horizon, little deliberation, and no coordination
crossing the vehicle boundary.

Four categories of phenomenology behaviors
classification with descriptions are listed as
following:

• Passive Behaviors
Performance of tasks not directly related to
environmental effects is either degraded (in
most cases) or improved. These are related
to sensors and hulls (ModSAF physical
libraries), and degradation of weapon-system

399

effectiveness (ModSAF weapon delivery
libraries).

• Reflexive Behaviors
Default vehicle-level reflexive behavior. No
coordination with other vehicles is needed or
required. Slowdowns and heading changes
are examples.

• Reactive Behaviors
Unit-level behavior which is initiated by any
unexpected environmental change. Loosely
speaking, this is a unit-level reactive
phenomenology behavior. It includes units
moving to alternative positions, changing
the direction of travel, unit formation
change, or employing protective smoke
under a sudden enemy attack.

• Reflective (or Active) Behaviors
Unit-level behavior which coordinates with
deliberation. Tactical maneuvering to take
advantage of deliberately-deployed smoke can
be an example.

The above four classes of behaviors are inter-related
each other, and in most of cases they run
concurrently. (Reactive behaviors are only exception.
They are usually dormant until a proper condition is
arrived.) They are usually cooperative for a common
objective that is given to a reflective behavior for
execution. However, a conflict can be arisen:
sometimes planned behaviors from a unit cannot be
executed by the subordinate individual vehicles
because of constraints imposed on individual vehicles.
Even though a unit plans out a unit behavior with
consideration of the constraints of its subordinates, it
is only able to consider the average environmental
effect. Each vehicle might confront a totally different
environmental condition from the averaged condition
used in the planning. Thus an unit level
phenomenology behavior, such as smoke sensitive
phenomenology behavior, cannot satisfy all
constraints of the individual vehicles in the unit. The
requested unit behavior should be reevaluated by the
individual vehicles before executing it. In the worst
case, the planned unit behavior can threaten the safety
of an individual vehicle. This type of localized
behavioral reevaluation and modification is expected
to be performed by reflexive behaviors at the vehicle
level. Therefore, the reflexive behaviors have the
highest priority among them. (Passive behaviors are
always executing to simulate physical components.
Thus, they are not included for discussing behavioral
priorities.) The second highest priority is given to
reactive behaviors. They are allowed to interrupt the
unit behaviors (reflective behaviors) assigned to the

unit in order to handle unexpected situation. Thus,
the reflective behaviors have the lowest priority.

The highest priority of reflexive behaviors allows
individualistic behavioral modification by deviating
from a command given from an unit level behavior.
For example, if smoke blocks the movement of only
one vehicle in an unit, then the blocked vehicle
should adjust behavior to overcome the newly
confronted environmental condition. It might change
speed and/or heading depending on the location and
density of smoke blocking its movement while others
are moving as commanded. Thus, the blocked vehicle
acts differently from the rest of the vehicles. This
uncoordinated individualistic vehicle behavior with
respect to other vehicles in the unit will increase
disorder in the unit. Thus, the group behavior of the
unit will be automatically degraded. This type of
behavioral disturbance influencing at the unit level
implements an emergent (unit) behavior that is not
explicitly programmed but surfaces up from the
interactions of many entities that are capable of
responding individualistically to local environment2.

5. Behavioral Scaling

Under phenomenological effect, a behavior of a
vehicle or a group of them tends to perform poorly.
For example, the density of smoke is increased, the
behavioral performance is degraded. That is, thicker
smoke makes a vehicle move slower. If the vehicle
is relieved from the smoke, then it has to restore the
original traveling speed. A general relationship
between environment and perception and
environmentally sensitive behavior is shown in
Figure 1. Because of standard terminology of the
military perception levels, finer description is made
for the perception performance as the smoke density
is thicker. However, the behavioral performance scale
is very coarsely described because of lack of such
terminology. In either case, there is no crisp
boundary in such behavior performance descriptions.
Even though this discussion is made based on smoke,
this concept can be applicable to any environmental
effect that reduces perception performance. Fog,
night, rain, snow, dust, and etc. are such
environmental effects (Kwak et. at. 1995).

2Pure subsumption architecture is solely based on
emergent behaviors (Brooks, 1986), which is an
optimistic behavioral implementation. Thus, there is
no guarantee to achieve a global objective. In this
paper, usage of emergent behaviors are limited to
perturbation of a globally coordinated behavior to
properly respond environmental irregularities so that
the unit (or group) can still be able to achieve the
given global objective.

400

Smoke
Densm _^.Dcnsa

Foil Shorter identification Recotnwon Classification Deteaion Toul

A * Capability Capability Capability Capability Cap.

Perfect Partial Lot Lou Lou Loss Lou
viii- visi-
hlily Mnv

Speed Fall Speed

Posuori
Accuracy: No Error

Obstacle

Avoidance No Collision

DVTCI

Ftre

Accuracy Good

Very
Poor

Figure 1: Perception and Behavior
Performance under Smoke Environment

One of the noble approach developed for this project
is behavioral scaling. In stead of creating discrete,
multiple, and specialized behaviors for various cases
of environmental effects, a single behavior based on
assumption of a high noon clear day is created, which
is called a base behavior. Then the base behavior is
dynamically modified (or specialized) to match with
the given environment. Thus, a wide (or whole)
degree of a given environmental effect can be covered
by one base behavior by scaling the behavior. This
approach eliminates an enumeration of multiple
behaviors, which are similar but vary depending on a
degree of the given environmental effect. Economy
of behavioral implementation is obviously a big
advantage of this approach.

However, significance of this approach comes from a
paradigm match between the behavioral
implementation and human behavior. We, human
beings, continuously monitor environment
surrounding us and dynamically adjust our behaviors
based on perceived information about the world. If
we cannot perceive anything because of a very poor
environmental condition, then we have to stop a
currently executing a task - a goal directed behavior -
for our safety (or self-survival). If we are able to start
to perceive the world again, we can resume our task
within the limit that the environmental condition
permits. For example, obscuration and/or lower light
level limits our perception capability. Thus, under
such an environmental condition we move slowly
with caution. If such a condition is removed, then we

can move freely as we intended. This type of
dynamic behavioral adjustment based on perception
(or in general environmental assessment) is
behavioral scaling. In ModSAF, like ourselves,
phenomenology behaviors are scaled based on an
environmental assessment level (or perception level).
This adjustment continues until the behavioral
performance is scaled to a proper level.

Finally, the behavioral scaling approach provides a
big relief for knowledge acquisition process for
phenomenology behaviors. First, quantitative
behavioral descriptions related to a certain
phenomenology are very scarce. Even through some
of them are available, the description is hardly
complete. For example, a formation interval for a
tank platoon is described as following: "During clear
day, the formation interval is 100 meters, but if
visibility is limited, the interval should be half of the
clear day interval." This is one of the best
descriptions we can get from SME input. However,
this statement already has two issues to be
implemented in ModSAF. First, how much degree of
visibility degradation really means "limited". Second,
even though we can know the exact degree of the
degradation, the description covers only one case.
There are whole spectrum of visibility degradation.
Therefore, the captured knowledge conveys very
minimal information. If this statement were literally
adopted for writing a behavior in ModSAF, then the
spacing adjustment would be binary; for example
either 100 meters or 50 meters intervals, not in
between. This would be hardly realistic neither. If
non-binary behavioral adjustment is needed, then
obviously many entries for formation spacing
depending on varying degree of visibility degradation
are required. This is practically impossible because of
lack of availability of such amount of data.
Therefore, behavioral scaling is seemingly only
option to implement realistic phenomenology
sensitive behaviors. However, the captured
knowledge by SME's is still useful. The knowledge,
instead, was used to verify the behavioral scaling
scheme by making observation of the implemented
behavioral output; i.e., measuring intervals under a
typical degree of an environment effect (for example,
by a medium level of fog density) during
development. If the observed result was not
satisfactory, the behavioral scaling scheme was tuned.
This process continued until the result was
satisfactory. SME's was involved in this process.

Consequently, the behavioral scaling approach is an
innovative methodology. It allowed to create realistic
phenomenlogy behaviors in ModSAF by overcoming
lack or vagueness of data. This approach provides
following advantages: implementation economy with
dynamic specialization, high realism due to paradigm

401

match with that of human perception-based behaviors,
and a seemingly only practical means of
implementing efficient and realistic phenomenology
behaviors.

6. Phenomenology Behavior Architecture

Introducing phenomenology behaviors into ModSAF
was first seen as a formidable task. It was initially
estimated that all existing ModSAF behaviors should
have been examined and possibly modified to
implement the phenomenology behaviors case-by-
case. Because of the large number of ModSAF
behavior libraries - far more than 100, such a task
would have required significant amount of engineering
efforts. However, we developed an approach for the
implementation of the phenomenology behaviors
which is complementary to the existing ModSAF
behaviors and maintains the hierarchical behavioral
structure.

As discussed before, the current ModSAF implement
behaviors as following: physical component libraries
implement passive behaviors. Vehicle level task
libraries realize reflexive behaviors. Reactive task
libraries construct reactive behaviors, and finally unit
level task libraries implement reflective (active)
behaviors (Kwak et. al. 1995). This behavioral
organizational structure exactly matches with the
phenomenology behavior implementation architecture
developed and shown in Figure 2. This architectural
match has significandy reduced the development time
required to incorporate the phenomenology behaviors
into ModSAF.

Reflective Behaviors Libraries
(Unit level task libraries)

1
Environment
Assessment
&
Reasoning

Libraries

Reactive Behaviors Libraries
(Unit level reactive task libraries)

Reflexive Behavior Libraries
(Vehicle level task libraries)

\ '
Passive Behavior Libraries

(Physica libraries)

Figure 2. Interactions between
environmental libraries and other libraries.

ModSAF behavior libraries can consult
environmental impacts on ModSAF behaviors with
the assessment and reasoning libraries. Then the
libraries return behavioral modification information to
the ModSAF behavior libraries. Based on the
information, the ModSAF libraries adjust their
behaviors. The relationships of two libraries are
shown in Figure 3.

query

smoke assess

boolean
+ augmented value

night_assess

ATM_assess

combined_assess J

libenvreason

6.1 Environmental
Reasoning

Assessment and

Figure 3: Environmental Assessment and
Reasoning Architecture

Libenvassess is an environment perception library.
When there is a query about the environment from
other libraries, it utilizes libenvironment and all
available sensor libraries if needed. Then, it processes
numeric values received from such libraries and
returns a symbolic value in response to a query as
shown in Figure 3. It usually answers a query with a
Boolean value and augmented values if applicable.
Thus, it can be considered as an abstract symbolic
sensor. In other words, libenvassess is an interface
library translating numerically measured sensory
information to symbolic values for behavioral
libraries. Because of the modular approach, each
environment factor can be added piece by piece when
available. Currently, three different classes of
environmental effects are considered. They are
smoke, night, and uniform atmospheric effects.
These effects are independently computed in
ModSAF. That is, smoke is represented as
obscuration, night is as a low illumination level, and
uniform atmospheric effects are as poor
transmissivity. Not all behaviors are expected to be
simultaneously influenced by all of these
environmental effects. Some might be susceptible to
only one specific environmental effect, while others
might be influenced by all of them. Therefore,
libenvassess currently concerns four different cases;
i.e., smoke only effect, night only effect, atmospheric
only effect, and finally combination of all three
effects3.

ModSAF phenomenology behaviors are built upon
two core libraries; i.e., libenvassess and libenvreason.
Whenever there is an environmental change, the

3The current architecture is able to support any
combination of smoke, night, and atmospheric

402

Specifically, those individual effects are separately
computed by assessing obscuration, illumination, and
transmissivity values, which are retrievable through
libenvironment's public interfaces and processed
individually. However, in order to combine all three
effects, spatial frequency (SF) approach is chosen
(Mackey et. al. 1992). That is, for the given sensor,
libenvassess computes SF based on apparent contrast
and illumination level. The block diagram for SF
computation is shown in Figure 4.

TRANSM
(obscuration)

ACON
(apparent
contrast)
equation

Sensor
Type

i ATTN
(atmospheric

effects)
MRC table

RANGE

t SOG

Illumination
Level

(day/night) SD

SF

Figure 4: SF computation block diagram

In order to compute SF, apparent contrast(ACON) is
calculated based on five different aspects. First,
obscuration effect(TRANSM) is calculated. This
value is affected by existence of smoke and dust. If
smoke or dust is presented transmissivity is degraded.
Second, uniform atmospheric effect or extinction
coefficient(ATTN) is calculated based on current
environmental conditions given from libenvironment.
This value is affected by fog, rain, snow, etc. Third,
range(RANGE) is the sensor to target distance in
kilometers. Fourth, it gets sky_over_ground
ratio(SOG) from libenvironment. Fifth,
suppression_degradation(SD) is currently set to 1.0.

After these five values are computed, the following
equations are used to calculate apparent
contrast(ACON):

DVO. NVO:
ACON = (SD * TRANSM) / (1.0 + (SOG

*(exp(ATTN * RANGE) -1.0)))

IR:
ACON = SD * TRANSM * (exp(-1.0 * ATTN *

RANGE))

where
DVO: Daytime View Optics
NVO: Nighttime View Optics

effects. However, not all of external interfaces are
currently provided.

IR: Infrared or Thermal Sensor.

Illumination level is computed by ILUMA model that
takes the sun position, moon position, and moon
phase into consideration.

When the illumination level is computed, it allows to
pick a MRC (Minimum Resolvable Contrast) curve
as shown in Figure 5. Then simply read Y axis value
corresponding to the apparent contrast represented in
X axis.

Contrast

Figure 5: MRC Curve

After SF is computed, it is compared with a
prescribed value. If it is greater than the prescribed
value, then there is no behavioral degradation. If it is
smaller, then there is a behavioral degradation. The
degree of the degradation is computed based on the
magnitude of SF. Our implementation for
computing the degree is to normalize SF - a
behavioral scaling value, so that it can have a range
of zero to one. That is, if the environment becomes
very unfavorable, such as a dark night-time dense fog,
then the normalized value becomes very close to zero.
However, the value becomes one under a high noon
clear day. If the environment is in between the two
extremes, the value lies anywhere between zero and
one. Details can be found in ModSAF libenvassess
Texinfo which is distributed with ModSAF source
code distribution.

Libenvreason is a reasoning library for environment.
It mainly makes queries to libenvassess and performs
reasoning functions to take environmental effects into
account. The outcome of this reasoning is a
behavioral scaling value to be used to modify
behaviors under consideration. Most of ModSAF
behavior libraries communicate with this library to
get the behavioral scaling values.

403

6.2 Phenomenology
Implementation

Behavior

Passive and reflexive behaviors, which are
fundamental behaviors, are strongly influenced by
phenomenology effects because they are very closely
tied to physical models and physical phenomena.
These libraries interface environment through
libenvassess and libenvreason. Thus, the
libenvassess and libenvreason form the basis upon
which all passive and reflexive behaviors have been
developed. In turn, the passive and reflexive behavior
libraries in ModSAF provide a foundation for other
behaviors, such as reactive and reflective behaviors.
That is, many reactive and reflective ModSAF
behavior libraries use the passive and reflexive
behaviors to complete their behaviors.

In order to facilitate further discussion, behavior
libraries in ModSAF are grouped into two:

• Passive and Reflexive Behavior libraries, and
• Reactive and Reflective Behavior libraries.

Each of the libraries of the latter group, especially the
reflective behavior libraries, are individually created
for implementing specific tasks. The libraries in the
former group are generic libraries that implement
fundamental behaviors, such as sensing, snooting,
and simple movements. These libraries are not fully
specialized for performing any specific and stand alone
tasks. Instead they provide atomic behaviors for the
latter group so that the construction of the
specifically tailored reactive and reflective behaviors
can be facilitated. This generality and commonalty
reduces the number of separate libraries which is
required for passive and reflexive behaviors.

The common environmental assessment and
reasoning libraries, the small number of passive and
reflexive behavior libraries, and the utilization of
these libraries in the construction of reactive and
reflective behaviors have significantly reduced the size
of the required development efforts. First, the
approach developed for the phenomenology project
encourages the solution of generic problems rather
than specialized problems. For example, the concept
of behavioral scaling was used. Rather than tailoring
behaviors on a case-by-case basis, the existing
behaviors4 were scaled to transform them to
environmentally sensitive behaviors. Thus, the
behavioral scaling was effectively used for a means of
specialization. Therefore, by modifying the small
number of generic passive and reflexive behavior

4The existing behaviors become the base behaviors
that phenomenology sensitive behaviors can be
derived from.

libraries, the environmental sensitivity of these
libraries became immediately effective to the large
number of behaviors represented by the reactive and
reflective behavior libraries too.

Moreover, the generality of environmental assessment
and reasoning can handle many distinct classes of
environmental conditions which are being developed
by LADS in DARPA's Synthetic Environments
initiative (Dynamic Virtual Worlds and Dynamic
Terrain & Objects). Thus, when a new
environmental effect was introduced, the existing
assessment and reasoning could properly function
with virtually no modification. If not, a very
minimal upgrade process was needed to provide new
interfaces to the libraries to handle a newly required
functionality.

In the phenomenology behaviors project, we chose to
use generic interfaces provided by the environmental
assessment and reasoning libraries for most of cases.
Thus, the passive and reflexive libraries that use these
environmental interfaces were generic enough to be
equally applicable to the three currently implemented
classes of environmental conditions: smoke, night,
and uniform atmospheric conditions.

The reactive and reflective behavior libraries have
structured relationships - not totally hierarchical, but
logically organized. This characteristic facilitates the
inclusion of phenomenology sensitive behaviors.
That is, if one common library is modified, then
many libraries automatically take advantage of this
modification. However, these libraries have been
individually examined, unless excluded because of a
total detachment from phenomenology. If a library
was determined to require modification, it was
modified to call common libraries that had been
modified to be environmental sensitive. This type of
modification is recursive, and usually terminated at
the most complex behavior libraries that are usually
directly used by human ModSAF operators through
ModSAF GUI or by CCSIL commands.

7. Current Status of Phenomenology
Behaviors

In ModSAF currently three categories of behaviors -
sensing, movement, and shooting behaviors -
properly respond to under various phenomenology
effects; such as smoke, day/night, and fog, etc. These
behaviors are fundamental to any combatant in a
battle field. If there is an environmental effect, then
performance of sensing, movement, and shooting
behaviors are degraded. On top of these fundamental
behaviors, two smoke specific behaviors; smoke
reaction and smoke deployment are added to ModSAF.
When one of these reactive behaviors executes, the

404

above fundamental behaviors also run background
while matching up their performance level to a given
environment condition. Currently, all of the
phenomenology behaviors are mainly optimized for
both Army ground vehicles and Army combat
echelons; such as a M1 tank platoon.

7.1. Sensing

The primary sensor of a ModSAF ground vehicle is a
vision sensor. Thus, enemy vehicle information is
collected mainly through the vision sensor. Thus, if
vision sensor's performance is degraded by an
environmental effect, then ModSAF vehicle's ability
to acquire a target is automatically degraded. The
performance degradation is based on the upper
mentioned SF. A ModSAF vehicle has an ability to
incorporate multiple crew member sights in order to
simulate multiple human crew members. Each crew
member's sight also has multiple sensors with
different types, but only one sensor is allowed to be
used at a time by each crew member in ModSAF.
ModSAF also automatically chooses the best
performing sensor among the given sensors to each
crew member to match with an environmental
condition.

When a specific sensor is chosen, a target spatial
frequency is calculated and compared with the
minimum cycles required for detection, classification,
recognition, and identification - four target acquisition
levels in order. For example, if the spatial frequency
is higher than the minimum detection cycle and lower
than the minimum classification cycle, then the target
is classified as a detected target. That is, a smaller SF
results in a lower target acquisition level.

Target acquisition process in ModSAF is a
cooperative task among the crew members in a
vehicle. If enemy targets are spotted, then the enemy
target information observed from the multiple crew
members are merged into one unified enemy list.
Then the list is processed to assign threat levels to
the targets, and a target with the highest threat level
is chosen for an engagement.

7.2. Movement

ModSAF vehicle movement is influenced by
environmental effects. For example, if there is fog,
then our common sense reasoning tells to slow down
traveling speed, and it continuously adjusts traveling
speed until the traveling speed is slow enough for our
safety under the environmental condition. The degree
of slowness is also roughly proportional to the
density of smoke. That is, the denser fog is, the
slower the traveling speed is. In ModSAF, the denser
fog in ModSAF leads to a lower spatial frequency,

and then the lower frequency is translated into a
behavioral scaling value (or a behavioral degradation
value). Finally, it causes to slow down the vehicle
speed.

Whenever there exist environmental effects, the
movement behavior does not always need to be
degraded. If a commended speed is slow enough so
that a vehicle can maintain the speed, no speed
reduction is applied. That is, no behavioral
degradation value is generated. This feature is built in
ModSAF libenvassess and libenvreason. Because of
the feature, if a proper speed is given to a ModSAF
vehicle, then there is no speed reduction even under an
environmental effect. However, if an excessive speed
is commanded, then a ModSAF vehicle refuses to
follow the commanded speed. The speed is
automatically adjusted to a proper speed. Therefore,
no matter whatever speed is commanded, the
ModSAF phenomenology movement behavior
maintains a proper speed corresponding to the given
environment.

Currently, ModSAF environmental effects are
globally uniform except the smoke effect. Thus,
while most of environmental effects only cause speed
reduction, the smoke effect, which is localized, opens
up another option to respond - a heading change.
Rather than going through the smoke with a slower
speed, a ModSAF vehicle is allowed to go around the
smoke cloud. Thus, it can deviate from the planned
path. Because deviating from the given path
introduces a greater surprise to the plan/commander of
the ModSAF vehicle than a simple speed reduction,
ModSAF has a GUI-based switch to enable or disable
the heading change behavioral option during
execution. When this switch is disabled, a ModSAF
vehicle simply responds smoke with a slower speed.
If this switch is enabled, then a ModSAF vehicle tries
to avoid the smoke by modifying its heading.
Sometimes, a ModSAF vehicle briefly travels
through a smoke cloud while it tries to avoid the
smoke cloud by following the perimeter of the cloud.
Because of the dynamic nature of smoke cloud
formation, this situation cannot be totally avoidable.
However, if a ModSAF vehicle is caught in a smoke
cloud while avoiding, it automatically reduces its
traveling speed. Thus, two behaviors are
superimposed.

Movement behavior is only affected by a driver's
sensing ability unlike the cooperative target
acquisition behavior described above. Therefore,
driver's sensor ability is the sole source for
determining the movement performance. If a driver
has no night vision device, such as a night vision
goggle, then the driving performance at night will be
significantly poor; i.e., moving very slowly. If a

405

driver has a night vision device, then its movement is
greatly improved but cannot match with the daytime
performance.

7.3. Shooting

Shooting behavior of ModSAF vehicles is affected by
environmental effects, too. Specifically, two sub-
behaviors of the ModSAF shooting behavior are
influenced. First, delivery accuracy of a direct weapon
is affected. If there is an environmental effect; i.e.,
other than a high noon clear day, then the delivery
accuracy is degraded. The degree of degradation is
again computed based on the spatial frequency. That
is, the low spatial frequency is translated into a
behavioral degradation value, and this value is used to
magnify a shooting error - dispersions and biases
(Topper, 1993). This scheme simulates less accurate
delivery performance of a direct firing weapon. The
behavioral degradation value, as discussed before, is
computed by libenvreason using the assessment from
libenvassess. Second, targeting behavior is also
affected by environmental effects. Targeting difficulty
is simulated with a longer time required to track a
target before shooting with a direct firing weapon.
The behavioral degradation factor is again used to
lengthen the tracking time longer.

Performance of the above shooting sub-behaviors is
only determined by gunner's sensing ability in
ModSAF. For example, an US tank gunner has a
thermal sensor. Thus, the gunner has little
difficulties to look out to aim and shoot an enemy
target at night or through a smoke cloud if the smoke
is not IR blocking smoke. However, if a gunner had
no thermal sensor, then his ability to engage a target
would be significantly degraded under such
environment.

7.4 Smoke Reaction Behavior

This is a specialized behavior for an US Army tank
platoon. When a smoke screen blocks an intended
traveling path, a tank platoon changes its formation
to a line formation and reduces its formation spacing
distance. This smoke reaction behavior is activated
only when this reaction behavior is enabled. This
option can be switched on or off through ModSAF
GUI. However, the smoke reaction behavior is
coupled with the smoke avoidance behavior option.
That is, if the smoke avoidance option is enabled,
then the platoon will go around smoke rather than
going through the smoke. The smoke reaction
behavior is effective when the smoke avoidance
option is disabled. If neither options are enabled,
then the platoon will go through the smoke screen
without platoon level coordination. They will neither
going around the smoke nor switch the formation

with a reduced formation spacing distance between
vehicles.

When the platoon emerges from the smoke screen, it
starts to travel in a dash mode - a faster speed with a
fully alert state. If any enemy is encountered, then
the platoon immediately attacks the sighted enemy
with the tank main guns. Then it will continuously
attack the spotted enemy until the enemy is destroyed.
If no enemy is spotted after emerging from the smoke
screen, then it will keep traveling in the dash mode
until a prescribed time limit is met without
encountering any enemy vehicle. If so, the smoke
reaction task is terminated and the platoon starts to
execute a suspended task due to the smoke reaction
behavior.

7.5 Smoke Deploy Behavior

This is also a specialized behavior for an US Army
tank platoon that carries on-board smoke grenades. If
any one of the tanks in a platoon is attacked by an
enemy anti-tank guided missile (ATGM), then the
tanks of the platoon start to deploy its smoke
grenades to hide themselves from further observation
from the enemy ATGM gunner, and shoot HE rounds
back to the enemy ATGM site while covering or
concealing them against the enemy. If the enemy
ATGM site is completely destroyed from this
engagement, then the platoon resumes its temporarily
suspended task due to the enemy ATGM attack.

This behavior actively deploys smoke between the
tank platoon and the enemy ATGM site. Thus,
accuracy of ammunitions from the tank main guns as
well as visually guided missiles exchanged is degraded
when they fly through the deployed smoke clouds.
The performance of vehicle movement is also
degraded by the deployed smoke. Finally, target
acquisition and detection of both parties also become
less effective. Sensing, movement, and shooting are
equally affected by the deployed smoke even when a
smoke deploy behavior is executed.

7.6 Summary of Available Behaviors by
Categories

The following list provides a synopsis of the
phenomenology behaviors capabilities implemented:

• Environmental assessment and reasoning:
- Libenvassess: assessment of

environmental effect
- Libenreason: computation of

behavioral degradation value based on
environment assessment

• Complete set of passive and reflexive
behaviors for all types of Army ground
vehicles:

406

- Passive sensing: target acquisition
- Passive shooting: weapon delivery

accuracy
- Reflexive sensing: automatic sensor

switching
- Reflexive shooting: tracking
- Reflexive movement: speed reduction,

heading change, active formation
keeping

• Two reactive tasks:
- Libureactsmoke: smoke cloud crossing

with formation and speed changes
- Libusmoke: smoke deployment against

enemy anti-tank missile attack
- Visibility based dynamic formation

spacing adjustment
• Movement related reflective tasks for Army

ground vehicles
- Phenomenology influenced hiding

positions for hasty occupy position

8. Summary and Conclusions

The phenomenology behavioral architecture with
libenvassess and libenvreason provides a generic
means to interface to ModSAF phenomenology.
This approach facilitates inclusion of phenomenology
behaviors in ModSAF. Rather than creating specially
tailored ModSAF behavior libraries, the existing
behaviors are transformed to phenomenology-
sensitive behaviors by simply scaling the behaviors
using values from libenvassess and libenvreason.
This novel approach was found to be applicable to a
wide range of ModSAF behaviors.

Not all behaviors are scalable. Some behaviors are
very specific and only valid to a certain environmental
condition. For example, reaction to smoke screen is
not a scaled behavior from a general movement
behavior. This behavior must be specifically created.

Sensing, movement, shooting behaviors for Army
ground vehicles in ModSAF are successfully
implemented with the behavioral scaling concept.
However, development of the phenomenology
behavioral architecture is still under way. As the
project continues, the architecture will progressively
cover more behavioral concepts. However,
phenomenology behavior project is already mature
enough to find applications to other services, such as
Marine Corps, Navy, and Air Force utilizing the
generic means of phenomenology behavior
architecture,, and the behavioral scaling concept The
success on Army phenomenology behaviors can be
easily duplicable for other services.

Finally, all of the discussion done in this document is
based on ModSAF 2.1.1. Libenvassess and

libenvreason as well as all of environment sensitive
libraries discussed can be found in ModSAF 2.1.1.

9. Acknowledgment

This work is being supported by the USA Army
STRICOM ADST program under contract number
N61339-91-D-0001.

10. References

Anon (1995). Environmental Stealth/ModSAF User's
Guide, Lockheed Martin, Cambridge, Masss,
Nov, 1995.

Anon (1996). ModSAF Software Architecture Design
and Overview Document (SADOD), Lockheed
Martin, Cambridge, Mass, Jan, 1996.

Brooks, R. (1986). "A Robust Layered Control
System for a Mobile Robot", IEEE Journal of
Robotics and Automation, Vol. RA-2, No. 1,
pp. 14-23.

Kwak, S. H. (1995). "A Comparison Study of
Behavioral Representation Alternatives", Proc.
of the Fifth Conference on Computer
Generated Forces and Behavioral
Representation, University of Central Florida,
Orlando, Florida, May 9-11, 1995.

Kwak, S., Longtin, M., Patel, B. (1995). Initial
Study on an Implementation of
Phenomenology Behaviors in ModSAF,
Technical Report, Loral, Cambridge, Mass,
Aug, 1995.

Mackey, D, Dixon, D., Jensen, K., Loncarich, T.,
Swaim, J. (1992). CASTFOREM (Combined
Arms and Support Task Force Evaluation
Model) Update: Methodologies, TRAC-
WSRM-TD-92-011, US Army TRADOC
Analysis Command-White Sands Missile
Range, April, 1992.

Topper, P. (1993). A Compendium of Close Combat
Tactical Trainer Data Structures, Algorithms,
and Generic System Mappings, US Army
Materiel Systems Analysis Activity, May
1993.

11. Authors' Biographies

Se-Hung Kwak is Principal Software Engineer at
Lockheed Martin Federal System Advanced
Distributed Simulation, where he has led development
and application of software architecture and behavioral
representation for Computer Generated Forces since
1993. Currently, he is leading the phenomenology
behaviors project for ModSAF. He received his
Ph.D. and M.S. from Ohio State University in
Electrical Engineering in 1986 and 1984 respectively,
and his B.S. from Seoul National University in
Electronics Engineering in 1979. Before joining

407

Lockheed Martin, he was Research Associate
Professor of Computer Science at Naval Postgraduate
School. His research has focused on intelligent robot
control and control architecture. He is the originator
of the Rational Behavior Model(RBM). His research
interests also include Artificial Intelligence, Robotics,
Mission Planning Expert Systems, Object-Oriented
Distributed Systems, Software Engineering, and
GPS/INS Navigation Systems.

MAJ Reba M. Lyons is currently assigned as the
ModSAF Project Director at the U. S. Army
Simulation and Instrumentation Command,
(STRICOM). She received a BS in Special Education
from the University of Tenneessee at Knoxville and
an MGA in Management Information Systems from
the University of Maryland. Major Lyons is
responsible fior ModSAF Progrqm Managentment
and baseline version releases.

408

Detection Models for Computer Generated Individual Combatants

Douglas A. Reece and Ralph Wirthlin
Institute for Simulation and Training

3280 Progress Dr., Orlando, FL 32826
dreece@ist.ucf.edu

1. Abstract

Computer Generated Forces (CGF) systems that
simulate individual combatants require a much more
sophisticated detection model than do systems that
simulate platforms. Platform-level CGF systems can
simplify detection for several reasons: there are often
several people on the platform whose observations
can be aggregated; the observers may have a limited
view of the world through windows or optical
devices; visual search may be less important than
other searches using instruments; and the platform
may make enough noise so that audio detection is
irrelevant. These factors are not true for individual
combatants, so simulators must model the visual
search and audio detection processes in more detail.
Furthermore, typical CGF platform entities maintain
a simple world model based on entities that they can
currently detect; for individual-level simulations in
which entities rapidly move in and out of line of sight
or field of view, a more sophisticated world model is
required. In this paper we describe our visual and
audio detection models, an internal world model for
individual combatant CGF, and some typical
behaviors that result from these models.

2. Introduction

As part of our work in simulating individual
combatants (ICs) we have developed a computational
model of human detection. The IC simulation is part
of our effort to build computer generated forces
(CGF) for the Team Tactical Engagement Simulator
(TTES). TTES is a training system being developed
by the US Marine Corps using distributed interactive
simulation technology.

2.1 Detection in platform entities

IC CGF systems require much more sophisticated
visual and audio detection models than do systems
that simulate platforms. Platform-level CGF systems
can simplify visual and audio detection for several
reasons:

• There are often several people on the platform
whose observations can be aggregated.

• The observers on the platform may have a
limited view of the world through windows or
optical devices. This situation makes entity
facing more important, but eliminates the need to
model variations across the field of view of the
human observers.

• Visual search may be less important than other
searches using instruments. For example, a
platform crewman may perform search by
looking at a radar display.

• The platform may make enough noise or shield
sound so much that audio detection is irrelevant

• The scale of time and space is generally larger in
platform level engagements. When targets
appear and move they are likely to stay in the
same part of the field of view.

2.2 Urban IC detection requirements

At the IC level, the sensing characteristics of an entity
must reflect the capabilities and limitations of one
human. For visual detection, this means modeling
multiple, limited fields of view with different acuities
and directing visual search with one field based on
objects visible in the second field. Hearing also plays
an important part in the soldier's awareness of the
situation. Sounds such as weapons fire or footsteps
indicate the presence of friendly and enemy troops.
Typically, the IC recognizes that other soldiers are
around him from movement in his peripheral vision
or from sound, and turns his gaze to identify the
entity. These multiple sensing modes also require
that the ICs mental model of sensed entities be more
than just a list of visible objects; the IC must remain
aware of threats even as they quickly disappear from
his field of view.

Some examples of the interactions with trainees that
IC CGF must be able to support include the
following."

409

• Soldier A shifts his gaze from one direction to
another. Soldier B is lying prone in the direction
A is looking. After some time, A detects B.

• Soldier A shifts his gaze from one direction to
another. Soldier B is standing off to the side of
A. A does not detect B. B moves, and A detects
B. A cannot identify B, but turns toward him and
identifies him.

• Soldier A is in a room. Soldier B is outside in
the hallway. A and B cannot see one another. A
hears B as B walks down the hallway toward A's
room.

• Soldier A and B are in a room and hallway as
above. A is firing its weapon out the window. A
does not hear B walk down the hallway.

• Soldier A is outside facing some direction.
Soldier B walks very slowly up behind A. A
does not detect B.

• Soldier A moves around the corner of a building
and sees soldier B in the street. A moves back
behind the corner but prepares to fire at B
coming around the corner. When nothing
happens, A ventures around the corner to fire at
B. B is no longer there. A continues down the
street but watches for a nearby threat.

This paper describes the visual and audio detection
models, the mental situation model, and some of the
related behavior of the IC CGF in TIES.

3. Visual Detection

Ultimately, it would be desirable to model all aspects
of human vision, including low level eye movement
control, detailed eye characteristics, eye movement
attention control, and low level visual processing
(feature and motion detection, perceptual memory,
etc.). Such detail would provide for accurate
simulation of the effects of camouflage, target-
background contrast, background clutter, motion
detection, light levels, etc. and their effect on combat.
However, for now we attempt to capture only some of
the vision characteristics and thus some of the tactical
effects.

3.1 Vision characteristics modeled

Human vision has been described in various texts
such as (Haber, 1980). It is characterized by a high
acuity, small angle primary field of view (foveal
vision) and a lower acuity, peripheral field of view.
The foveal field of view is only about 1 °. The fovea is
used for shape, pattern, and color discrimination, and

thus is the primary means of identifying targets. We
do not model the visual processing in detail but
compare the resolution of the foveal vision (a
parameter) with the apparent size of an object and
probabilistically determine if the object can be
identified according to a published formula.

Human vision also has a peripheral area that extends
to about 95° from the vision center. Visual acuity
falls off rapidly in the peripheral area, dropping to
50% just 1° from center, 15% 8° from center, and
finally to zero at the edge of vision. We currently
model peripheral vision with a constant acuity value
over all angles that is 10% of the foveal acuity.
Peripheral vision is sensitive to motion, somewhat
less sensitive than the fovea to color, but more
sensitive to light. Our model incorporates acuity in
comparison to target size and target motion to
determine detection probability according to a
published equation. We do not consider color
contrast, and illumination levels do not currently vary
in our synthetic environment.

Since the peripheral field of view is so much bigger
than the foveal field of view, it is the primary means
of detecting targets. In fact, the near-foveal area is
used for identifying all visual features of interest and
directing the fovea to new directions. The fovea
moves in jumps of 2 - 6° several times a second to
new fixation points. We do not model the individual
fixations, but instead simulate visual search over an
area extending 30° from center (see Figure 1). This is
an area in which people can recognize coarse patterns
(and direct the foveal vision effectively). Detections

Figure 1. Visual Melds of view. Shaded area is
primary field of view, in which detailed visual

searches are performed.

410

in the peripheral field of view are effectively
immediate; in this 30° area, however, we compute an
acquisition time for detecting objects because the
fovea has to search the area. This model also
assumes that identification is immediate once the
fovea fixates on the object.

The above description mentioned a few
characteristics of human vision that we have not
simulated; others that might be useful in a higher-
fidelity simulation include the following:
• Other differences in capability between primary

and secondary: color sensitivity, low light
sensitivity.

• Effects of low light levels on acuity; effects of
high light levels on dynamic range (and thus
contrast); adaptation to low or high light levels.

• Effects of observer motion on detection and
identification.

• Effect of contrast—brightness, color, and texture.
Partly due to computational limitations—
sampling background along line of sight to
determine its characteristics. A contrast
parameter is present in our model, but a default
constant is used in all situations. Texture is hard
to characterize.

• Effects of clutter in scene on search and
detection speed.

• Specific direction of gaze during search and
other tasks. However, in the future, search will
be limited during specific tasks such as aiming a
weapon, moving, or identifying an already
detected object, because during these tasks vision
is occupied by a specific object in a small
angular area and search over the larger primary
field of view does not take place.

3.2 Discrete simulation of continuous sensing

There is a modeling problem caused by the discrete
nature of our computer simulation. The continuous
sensing processes are approximated by discrete
sampling. All events in the world and vision system
that occurred in the last sampling interval dt are
aggregated into the current sample. This sampling
causes potential problems with short duration events,
with rapid observer orientation change, and with
simulation of dynamic processes. First, if the
sampling period is longer than duration of just-
noticeable events, then these events may be missed.
For example, enemy entity peeks head around wall,
then pulls it back quickly. Since in our simulations
these events are not produced by an easily

recognizable action (unlike weapon firing events), the
only solution is to sample frequently. Heuristics may
be used to guess when samples can be skipped or the
sample period can be stretched (e.g., Rajput, 1995).

Second, if the entity is moving its field of view
quickly, e.g. by rotating, then some angles—and thus
areas of the world—may be skipped by the (enlarged)
foveal field of view. For rapid movements this may
be realistic; it corresponds to reduced acuity during
observer movement. However, in a slower "sweep,"
it is unrealistic to prevent an entity from identifying
an object that his vision passed over. We avoid this
problem by using a suitably high sampling rate so that
the new foveal field overlaps the old one. If this is
not possible, then the foveal field is extended to cover
the entire swept angle if the angular rate of change is
less than 90° per second.

We do not model low-level dynamic vision processes
such as light level adaptation, eye movement control,
etc. If these were modeled, then sampling must be
frequent enough to avoid aliasing or instability.

3.3 Algorithm

The IC sighting algorithm is based on the Army's
CECOM Night Vision and Electronic Systems
Directorate (NVESD) sighting model as reported in
(Lind, 1995). Versions of this model are used in the
Janus and ModSAF simulations. This model has
been extended to reflect the visual characteristics
described in section 3.1 above.

The output of the algorithm is a sighting status, which
is one of the following:
• INVISIBLE - The target is not in the observer's

field of view or the observer doesn't have a clear
line of sight to the target.

• VISIBLE - The target is in the observer's field of
view of sight and the observer has at least a
partial line of sight to the target.

• DETECTED - The observer has detected an
entity.

• RECOGNIZED - The observer knows the class
of the target.

• IDENTIFIED - The observer knows the specific
type of the target, and whether it is friend or foe.

The input parameters to the algorithm include the
following environmental factors:
• Light level. Since, as mentioned above, we do

not consider light level, a default value is used.

411

• Atmospheric attenuation. We do not currently
model this environmental factor. Since the
ranges in our application are all under 250 meters
anyway, this factor currently has little effect.

• Brightness contrast with background. We do not
yet examine the background to determine
contrast, so a default value is used here.

The following observer parameters are also inputs to
the algorithm. The first two use values from (Lind,
1995); the second two are set to correspond to the
description in section 3.1.
• Spatial frequency (acuity) of foveal vision, in

cycles per unit angle of the visual field.
• The number of sensor elements (e.g, pixels) that

must cover the target in order to have a 50%
chance of detecting, recognizing or identifying
the target.

• Size of primary and peripheral (secondary) fields
of view, horizontally (30° and 95°) and
vertically.

• The spatial frequency of peripheral vision (10%
of foveal acuity).

• A random number indicating the observation
ability of the observer relative to the average of
the population. This is a "normally" distributed
number with m = 0.5 and cutoff of [0,1].

Finally, the calculation depends on the particular
situation:
• Range to target.
• Visibility of target. This depends on the target

aspect, target posture, and occluding obstacles.
Multiple observer-to-target visibility checks
allow arbitrarily fine determination of occlusion.
We currently use three parts for IC targets—
head, torso, and legs.

The algorithm proceeds as follows:

I. Determine the range to target (RANGE).

II. Calculate the target's critical dimension (CD).
This is a linear, rather than areal, measure of size
used in the NVESD model.
A. If no part of the target is visible, acquisition

status is INVISIBLE and the algorithm ends.
B. Target_Visible_Area = area of projection of

visible portion of target against a plane
perpendicular to the line of sight between the
observer and target. This step makes prone
ICs more visible from the side than from in
front, etc.

C. CD is taken to be the square root of the
Target_Visible_Area. (Lind 1995, p.15)
defines characteristic dimension as the target's
"smallest" size in meters. However, since we
characterize the human figure in different
postures in terms of areas rather than
dimensions, our model generates a linear
measurement from area.

III. Determine if the target is in the primary and
secondary (peripheral) fields of view:
A. Primary field of view—target is within a

horizontal angle (PFOV_HORIZ_ANGLE) and
vertical angle (PFOV_VERT_ANGLE) of
observer.

B. Secondary field of view—target is within a
horizontal angle (SFOV_HORIZ_ANGLE) and
vertical angle (SFOV_VERT_ANGLE) of
observer.

C. If the target is not in either field of view,
acquisition status is INVISIBLE and the
algorithm ends.

IV. Calculate the target's angular size (TAS). This is
an approximation based on the fact that

tan (6) B 9

when 8 is small. For recognition and
identification, and for detection in the primary
field of view,

TAS = CD /RANGE

For detection in the secondary field of view, also
consider target motion:
A. Calculate Axial Motion Factor (AMF), which

is movement along observer's line of sight—
"looming."

AMF = Cy X | (Current size - last size) | Idt

where C/ is a sensitivity constant. Note that if
a target suddenly becomes visible ("blinks
on") in the field of view, the AMF will be non-
zero for the next sighting check.

B. Calculate Perpendicular Motion Factor
(PMF) which is movement perpendicular to
observer's line of sight:

PMF = C2 x [CD x VPy I dt

where C2 is a sensitivity constant and VP is the
speed perpendicular to the line of sight.

412

C. TAS = (CD + AMF + PMF) /RANGE

V. Calculate the number of cycles (i.e., sensor
elements in the eye) that overlap the critical
dimension of the target.
A. Determine the spatial frequency (SF) of the

sensor. The NVESD model accounts for
target-background contrast, sky-to-ground
brightness, atmospheric attenuation, and scene
brightness by modifying the effective spatial
frequency of the sensor. Our model ignores
these factors for now and uses the spatial
frequency that corresponds to optimal
conditions. From (Lind 1995, p.24),

While the NVESD uses a new random
number in this expression for each sighting
attempt; we use the ABILITY which is
constant for the observer.
If the target has been in the primary field
of view for Tir, time, then the acquisition
status is DETECTED; otherwise it is just
VISIBLE and the algorithm ends. The
NVESD model also makes sure that Td„ is
less than the time it takes to search the
entire field of view. We have chosen not
to do this, but in the future we plan to
reformulate the detection time equation to
account for field of view size.

SFpriman = 2.299 cycles/milliradian

SFsccondan = 0.10 X (SFprima0)

B. Calculate cycles on the target for primary and
secondary field of view:

N=TASxSF

been VI. Detection. If the target has already
detected, skip to Recognition. Otherwise:
A. Calculate the probability of detection given

infinite time (P,n!) for each applicable field of
view. The function, from (Lind, 1995, p. 15),
is based on the ratio between the number of
cycles on the target (N) and the number of
cycles required for an average observer to
have a 50% probability of acquisition (Nso).

P^iN/Nsof/ll+iN/Nsof)

where /V5o = 1.0 (Lind, 1995, p. 11) and £ is
given by

£ = 2.7 + 0.7xAWV. 50

B. Compare Pmf to the observer's acquisition
ability (ABILITY). Unlike the NVESD model,
which generates a random number for each
observer-target pair, we use one number per
observer. If the test fails, this target will never
be detected under current conditions, and the
check ends. If the target is in the secondary
field of view, detection is instantaneous and
the algorithm proceeds to Recognition.
Otherwise calculate the time required to detect
in the primary field of view (Tdet) in seconds:

1. Tde, = (-3.4 / Pinf) x In (1.0 - ABILITY)

VII. Recognition. If the target has already been
recognized, skip to Identification. Otherwise,
calculate Pinf for recognition for each applicable
field of view and compare it to ABILITY. /V5o for
recognition is taken to be 3.5 (again, Lind, 1995).
If the test succeeds, then this target's acquisition
status is immediately set to RECOGNIZED.

VIII. Identification. Calculate Pmf for identification
for each applicable field of view and compare it to
ABILITY. Nso for identification is taken to be 6.4.
If the test is successful then this target's
acquisition status is immediately set to
IDENTIFIED.

Figure 2 illustrates typical values generated by this
model for an IC application. The bottom and top

"* Identification - Primary FOV
- Detection-Secondary FOV - Stationary

"°- Detection - Secondary FOV - Movement at 3 m/sec

Figure 2. Probabilities of detection and
identification of a standing human, vs. range.

413

curves show the probabilities of detecting a human
when it is in the secondary field of view. The top
curve is for a moving person. The center curve shows
the probability of subsequently identifying the human
when the primary field of view is turned toward it.
Intuitively, these probabilities seem too high to us,
even for excellent lighting conditions; it is possible
that the probabilities should be reduced to account for
visual clutter in the scene.

4. Sound

4.1 Sound Generation and Propagation

As with visual stimulus generation, sound generation
and propagation is complex and dependent on many
physical phenomena. A first order model of sound is
actually more difficult to create than a simple
visibility model. The simple visibility model assumes
all objects reflect a lot of light to the observer, and
thus the object can be seen if there is a clear line of
sight to it. Object size, which is information easily
obtained, can be the dominant factor affecting
detection probability. In typical battlefield
environments, sound dissipates over much smaller
ranges than does light, so the intensity of the source
and the effects of propagation are much more
important. The sound generation characteristics of an
entity are complex and not readily derivable from
visual models. Entity sound characteristics depend
on what the entity is currently doing. Sound
propagation depends not just on the line of sight, but
on reflections over many paths.

We have not attempted to build a high fidelity sound
generation and propagation model. Not only would a
high fidelity model be computationally expensive, but
it would depend on experimental data that we do not
have. Instead, we have attempted to build a simple
model that captures—at least qualitatively—some
tactically significant phenomena.

Our sound generation model assumes that the primary
source of sound for humans is the foot hitting the
ground, and that the sound generated by footfalls is
proportional to running speed. In addition, the sound
level is reduced for ground types that are not hard
(dirt, grass, etc.). The maximum sound level while
running, heard at 1 meter, is a configurable
parameter. For vehicles, we assume that the primary
source of sound is the engine, and that engine noise is
proportional to engine load. We estimate engine
load by comparing the vehicle's current acceleration
value with the maximum acceleration allowed:

Sound_Level = Vehicle _Max_Sound x
Acceleration I Max_Available_Accel

where Vehicle_Max_Sound (sound level at 1 m) is a
configurable parameter for the vehicle.
Max_Available_Accel is a function of speed in our
vehicle dynamics model, e.g.

Max_Available_Accel = Max_Accel X
(1 - Speed I Max_Speed))

Weapon fire is also important. Each entity generates
sound at a certain level when it fires its weapons.
This level is also configurable. For all sound sources,
we assume that the sound level is equal in all
directions from the source.

Our sound propagation model is currently very
simple: sound is attenuated with increasing distance
and absorbing and reflecting surfaces are ignored.
Attenuation is 20 x log(Di stance) in dB, which was
estimated from (Woodson, 1981). In addition, we
reduce the sound level 10 dB if there is no clear line
of sight from source to listener. We do not currently
model propagation time, as sound can cross our
terrain database in about a half a second.

4.2 Sound Detection

Once sound reaches the listener, audio detection
phenomena must be modeled. Characteristics of
human hearing include a limited active dynamic range
and the masking effect of louder sounds, adaptation to
different sound levels, ability to discriminate
frequencies, ability to discern the direction of the
sound, and aftereffects of loud sounds. We are
chiefly concerned with masking effects and direction
determination in our model. At any moment, we
compute the loudest sound reaching the listener and
allow him or her to detect that sound and any others
within 30 dB. This range was estimated from the
results of masking experiments, described for
example in (Geldard, 1953). We allow the listener to
determine the location of the sound source exactly.
This is perhaps the biggest weakness of our model.
However, this simplification avoids a great deal of
computation and it matches the current localization
capability of the manned TTES trainee platforms. In
some cases it may not even be unrealistic, as humans
in the real world may be able to use other cues to
localize sound.

414

As with visual detection, we model continuous audio
phenomenon with discrete sampling. Since weapons
fire is truly asynchronous in DIS, we accumulate fire
events between samples.

5. Internal Situation Model

5.1 Partial Identification

As indicated in the sections above, our CGF uses the
fairly standard (e.g. Lind 1995) entity identification
levels "detected" (entity presence known, but nothing
known about it), "recognized" (class of entity-
vehicle, lifeform, etc. is known), and "identified"
(everything about the entity is known). In our sound
detection model, footsteps and engine noise provide
recognition; small arms weapons fire provides
identification.

These identification levels are coarse aggregations of
facts known about a target and do not really represent
knowledge well. For example, it is not clear how
useful the distinction between detected and
recognized is for ICs. "Identification" is not really
identification of a specific individual, which could be
useful at the IC level. Ideally, all bits of information
about an entity could be determined from inference as
well as observation. Information includes all publicly
observable facts present in an Entity State PDU plus
other information such as whether the entity is a unit
leader, whether it is damaged, what it is carrying,
what its age is, how well trained it is, etc. Various
observations could fill in different facts about the
entity. For example, the behavior of a soldier could
indicate that it was a unit leader; the motion of a
soldier could indicate what load it was carrying; or
the path of a vehicle across rough ground could
indicate that the vehicle is tracked. This is an area for
future work.

5.2 Situation Memory

ICs in particular must remember entities that they no
longer see. Their field of view is limited and entities
disappear if the observer turns around; in addition,
most threats may be out of sight behind cover most of
the time.

We have developed a representation for an entity's
mental model of the entities it has seen. When
entities are currently visible and detected (to some
level), they are "real." Entities that have been
detected with sight or sound but are not still visible

are given a status of "figment." A complete record of
information known about them when last seen is
recorded. The positions of figments can be tracked by
sound if they continue to make noise. If an observer
looks at a location thought to contain a figment but
the figment is not observed there or elsewhere, the
figment becomes a "ghost." This ghost is known to
exist but the observer does not know exactly where it
is. (Possible locations may be inferred.)

When an entity is detected, goes out of sight, and then
reappears, the observer must determine if it saw the
same or different entities. On one hand, there are
many details of appearance, equipment and weapons
carried, and motion that might allow an observer in
the real world to distinguish between individuals. On
the other hand, if such discrimination is not possible
in the real or virtual world, it could be arbitrarily
difficult to determine how many individuals were
seen. Sophisticated constraint reasoning would be
required to estimate the true situation (e.g., how many
individuals were seen at once? Could one individual
have moved between the observed locations in the
time observed?).

6. Conclusion

Individual combatant simulations involve a great deal
of detail and require relatively high fidelity models,
especially in urban environments. It is common in
such environments for trainees to interact with CGF
entities at ranges under 10 m, unlike in armored
combat environments. Behavior in the IC
environment from moment to moment often depends
on visual and audio sensing. This sensing is primarily
natural human vision and hearing. We have adapted
existing CGF detection models and created new ones
to provide our IC CGF with realistic visual and audio
sensing abilities and mental situation models. This
has allowed us to create much more realistic IC
behavior.

7. Acknowledgment

This work is being supported by contract N61339-94-
C-0006 from the Naval Air Warfare Center Training
Systems Division.

8. References

Geldard, F. (1953) The Human Senses, 2nd Edition,
John Wiley and Sons, Inc.

415

Haber, R. N., and Hershenson, M. (1980) The
Psychology of Visual Perception, 2nd edition,
Holt, Rinehart and Winston.

Lind, J. (1995) Target Acquisition Models for Janus
(A), NAWCWPNS TM 7811, Naval Air
Warfare Center Weapons Division.

Rajput, S., Karr, C, Petty, M. and Craft, M. (1995)
"Intervisibility Heuristics for Computer
Generated Forces," in Proceedings of the Fifth
Conference on Computer Generated Forces and
Behavioral Representation, University of
Central Florida.

Woodson, W. (1981) Human Factors Design
Handbook, McGraw-Hill, Inc.

9. Authors' Biographies

Douglas A. Reece is a Computer Scientist at the
Institute for Simulation and Training. He is the
Principal Investigator of the TTES Computer
Controlled Hostiles project. His research interests are
in artificial intelligence, specifically intelligent agent
design and computer vision. He has a Ph.D. in
Computer Science from Carnegie Mellon University
and B.S. and M.S. degrees in Electrical Engineering
from Case Western Reserve University.

Ralph Wirthlin is an Associate Computer Scientist
at 1ST. He has worked on individual combatant
simulation for about a year and a half. Before coming
to 1ST Mr. Wirthlin was a Research Associate at the
Institute for Defense Analyses.

416

Session 6b: Systems Architecture

Howard, UT, Austin
Schricker, UCF/IST

Ullom, NAWC AD, Patuxent River, MD
White, GMU, CS Dept

Indirect Fire Support Simulation on the ModSAF Virtual Battlefield

Martin D. Howard
Applied Research Laboratories, The University of Texas at Austin

Post Office Box 8029
Austin, Texas 78713-8029

1. Abstract

The Modular Semi-Automated Forces (ModSAF)
simulation has historically placed heavy emphasis on
platoon and company level maneuver entities
operating in a close battle environment. These
behavioral representations are supported by
observation, enemy detection, terrain recognition,
tactical movement, and direct fire engagements, all of
which are suitable behaviors to operate in the task
frame environment on which ModSAF is based.
However, the introduction of entity-based indirect
fires into the virtual battle has required significant
conceptual changes in the manner by which combat
simulations are employed and driven.

Current ModSAF functionality incorporates fire
support through a series of graphical user tools to
plan and implement indirect fires. Application of
these tools require highly skilled operators to
effectively utilize these tools to create indirect fires
effects on the virtual battlefield, which supports the
reality of the maneuver scenario being executed.
While this may lend a degree of realism to the
maneuver personnel using ModSAF, it lends little
training benefit to the fire support personnel
employed in support of the operation. In fact, it
presupposes a high level of expertise, since this fire
support operator must effectively simulate the
resultant behavior of all echelons of fire support
personnel who would normally be supporting the
maneuver force in the exercise, as well as simulating
the responsiveness of the fire units.

Effective simulation of indirect fire support must take
into account the dissimilarities by which these assets
conduct themselves in support of a tactical operation.
The tactics employed by fire support assets differ
greatly from their maneuver counterparts, since they
do not engage in close combat operations. Hence, the
maneuver task frame and action drill behaviors so
prevalent in ModSAF lends little application to fire
support entities. The actual engagement of maneuver
units in close combat relies on direct observation and
reaction to enemy deployments and activities, and is
largely conducted by individual entities. However,
indirect fire support relies upon information exchange
(tactical messaging) between stationary elements of a
structured command and control organization to

provide target acquisition, fire support coordination,
and supporting fires. Also, fire support missions are
short in duration and event driven, which does not
lend itself to the time-driven simulation world found
in ModSAF.

The Applied Research Laboratories, the University of
Texas at Austin (ARL:UT), together with the Defense
Advanced Research Projects Agency (DARPA) and
the U.S. Army Simulation, Training, and
Instrumentation Command (STRICOM), have been
developing an entity-based fire support simulation in
ModSAF in conjunction with the Command Forces
(CFOR) program. This effort necessitated significant
design changes to allow the event-driven fire support
simulation to work within the ModSAF environment
and allow the leveraging of existing tactical rulesets
required to simulate fire support entity behavior.
Recent integration of the initial phases of this work
into the ModSAF baseline shows that this design
approach is feasible, and may be explored as an
avenue to support other event-driven behaviors. This
paper will present an overview of this simulation
concept, and introduce the design approach selected to
serve as the infrastructure for future development of
tactical mission behaviors.

2. Current Virtual Fire Support Capabilities

Recent years have brought an explosive growth in the
application of computer simulation technology to
provide high-quality, cost-effective training to
military combat personnel. These applications range
from combat crew trainers to extensive "man-in-the-
loop" wargaming systems, which create a virtual
battlespace in which entity models may exist and
intemperate within a defined framework. Although
other virtual battle simulations exist, ModSAF
essentially may be viewed as the standard virtual
simulation envisioned for use in training command
and staff groups in battlefield operations and tactical
control measures.

The virtual battlefield currently defined within
ModSAF consists of representations of terrain and
combat entities, and a suite of tools used to establish
the guidelines within which the entity models
operate. These tools are used to refine the basic
(default) behaviors of virtual entities and to create/link

419

task frames for the entities which define the tactical
operations each shall conduct. Using these tools, the
user may create tactical scenarios in which created
entities maneuver according to a derived plan, detect
opposing entities, and engage them with direct fires
within the limits imposed by the system user. These
limits consist (basically) of the ability to control
whether a particular entity will engage a target on
acquisition (freeing weapons to fire) and specifying a
level of proficiency.

Hence, the current system supports the visual (line of
sight) requirements of the close maneuver battle and
possesses a fairly mature ability to control the tactical
disposition and displacement of combat entities.
However, this represents only one facet of a tactical
operation. Success depends every bit as much on the
incorporation of other assets into the overall scheme
of battle. Maneuver forces cannot hope to succeed
without indirect fire, air defense, engineering, signal,
and logistical support. Some tools do exist within
ModSAF to provide a limited functionality in some
of these areas, but they are derived from a maneuver
perspective and do little to train ModSAF users either
in the unique missions of these supporting arms, or
more critically, in the coordination of efforts between
the combat and support elements essential to overall
success. Effective operational coordination (both in
planning and execution) should be the cornerstone of
any command and staff training objectives.

Although shortcomings may be noted in several
areas, as indicated above, this paper focuses on the
necessity of incorporating indirect fire support
capabilities into the virtual battlefield environment.
In general, the task frames and behaviors provided in
existing ModSAF baseline releases are not suitable
for fire support entities. Existing behaviors were
developed to simulate the direct fire battle and do not
address the combat operations and tactical behaviors
of the Field Artillery units and sections supporting
the indirect fire battle. Some behaviors have limited
similarity, but only through very careful and constant
manipulation can a highly skilled fire support
individual use ModSAF to approximate a simulation
of integrated fire support. The level of skill required
to affect this indirect fire behavior tends to suggest
that no fire support training benefit would be derived
by using the system in this fashion.

For example, given a tactical scenario running on the
current ModSAF where a friendly Field Artillery unit
is sustaining damage, a skilled operator could
represent a hasty displacement of a Field Artillery

unit by quickly creating a unit movement task frame
for the selected unit, defining a route to another
location, and immediately initiating the move.
However, if properly implemented, a hasty
displacement to an alternate position should be a
reactive measure that a Field Artillery unit should
initiate in response to receiving a significant volume
of incoming indirect fires on their position. This
reactive behavior should occur without operator
intervention or direction.

ModSAF does provide some fire support tools which
may be used to simulate indirect fire support. These
tools do have benefit in that they may effectively be
used to provide pseudo-indirect fire effects in the
virtual environment to enhance the realism of training
maneuver command and staff personnel. The Fire
Support Editor can be used to simulate fire missions,
but the tool is operator intensive, and again requires
significant, pre-existing skills to use the tool
properly, thus precluding a need to use ModSAF to
train the operator. There is also a munitions
implementation button, affectionately known as the
"finger of God", which allows instantaneous
detonation of any pre-selected munition load. This
tool is unrealistic in that it allows instantaneous
response with unrealistic effects.

Section 4 will introduce the specific capabilities that
need to be considered to make a suitable virtual
environment to support the indirect fire battle. Before
considering these needs, a brief description of the
concept of fire support (the tactical activity which
provides indirect fires) is useful.

3. Overview of Fire Support

3.1 General

During combat operations, maneuver forces cannot be
expected to deal with all targets which present
themselves. The threats present to maneuver forces
range far beyond those opposing maneuver elements
which are within range of visual capabilities. Other
threats include opposing indirect fire systems,
observation locations, command and control centers,
assembly point for reserve forces, and logistical
centers. All these classes of threat are ideal targets for
indirect fires. Also, maneuver commanders in
defensive operation may elect to engage targets with
indirect fires to preclude giving away the location of a
friendly unit prematurely.

420

All maneuver brigades are employed in battle with
indirect fire assets (cannon artillery) which are in
direct support of the brigade. These systems augment
the organic mortar assets included with the maneuver
forces. Additional, longer-range artillery assets [e.g.,
Multiple Launch Rocket System (MLRS)] are
available in general support to division and corps
elements. Additionally, maneuver elements (brigade
and higher) may be supported by air assets (rotary
and/or fixed wing) and Naval Gunfire.

Potential targets are identified by intelligence sources
or by sensor systems. This information is forwarded
to Fire Support Elements (FSE), which are attached
to each maneuver echelon from company to corps.
The FSEs determine which potential targets are
attackable, and prioritize that list for consideration.
These targets are then scheduled for attack and a
determination is made with respect to what type
indirect fire system will be used in the attack. Targets
may be scheduled for attack immediately, or, in the
case of preplanned targets, scheduled in accordance
with a time sequence or as "on call" missions. Those
targets scheduled for attack by cannon and rocket units
are forwarded to a Field Artillery Command Post
(CPs), where specific units to engage the targets are
determined.

3.3 Fire Support Coordination and Control
(FSCC)

Although two distinct functional areas, Fire Support
Coordination and Fire Support Control are combined
for ease of discussion and understanding. FSCC deals
with those tasks associated with the delivery of fires
during the execution phase of the operation, and is
commonly referred to as fire mission processing.
There is a tendency to view the tasks of Fire Support
Coordination as being performed by Fire Support
Elements (FSEs), while Fire Support Control tasks
are performed by Field Artillery units. However, it is
better to view Fire Support Coordination as a process
that produces a target and determines a suitable means
to attack it, while Fire Support Control is the process
by which the mission is conducted after those
selections are made. The sequential performance of the
tasks associated with FSCC is what lends the process
flavor to these functional areas. FSCC tasks are also
often logically grouped in terms of these sequential
events for a single class or category of fire mission,
which are commonly referred to as fire mission
threads.

3.4 Movement Control (MC)

Fire support is conducted in two distinct phases;
planning and execution. Planning encompasses those
activities that are performed prior to the actual
conduct of a tactical operation. At that point, the
execution phase begins. Planning functions are
grouped logically and tend to be viewed as process-
oriented, while execution functions are more task-
oriented, in keeping with the precepts of the U.S.
Army's Training Evaluation Program (ARTEP). Five
functional areas have been defined which comprise
indirect fire support.

3.2 Fire Support Planning (FSP)

This functional area is the heart and soul of fire
support, and consists of those processes which are
used to determine the suitability of a maneuver plan
in terms of fire support's ability to support the
maneuver forces by fires, to determine the guidance
by which subordinate units will conduct the execution
phase of the plan, and to determine a schedule of
indirect fires against planned targets which will pose
an immediate threat to the maneuver forces during
execution. The products of this process is the Fire
Support Plan, the Field Artillery Support Plan, and
the Fire Support Execution Matrix.

This functional area comprises those tasks that are
required to position and emplace fire support assets in
positions to support the initial execution phase of the
operation and to control the movement of those assets
after inception of the operations. Movement during
execution consist of both planned and reactive
movement. Unlike maneuver elements, fire support
assets normally travel in column formations from one
stationary position to another, and do not normally
require provisions for individual maneuvering in
reaction to contact. This may change as the Paladin
and Crusader systems assume the principal place in
the definition of movement doctrine, but the standard
maneuvering schemes used by mechanized and armor
assets will still not be applicable to fire support
formations.

3.5 Tactical Operations (TACOPS)

This functional area is a repository for a collection of
miscellaneous tasks performed in support of the
execution phase of an operation. These tasks are
normally performed by support elements rather than
the indirect fire units themselves. Missions performed
within this area include ammunition resupply.

421

meteorological operations, survey operations and
status reporting.

4. Requirements of the Indirect Fire Battle

Conceptually, there are fundamental differences in the
direct fire and indirect fire battles, which must be
addressed within the virtual training environment. The
close maneuver battle is more execution intensive,
allowing individual combatants the ability to react to
the immediate threats identified (line of sight
acquisition) within their environment. As discussed
previously, ModSAF was largely developed to
provide a suitable virtual environment to support
this. Within the fire support community, there is a
limited need to observe the enemy directly, with the
exception of those observation elements which are
attached to forward maneuver forces and who are
responsible for identifying targets of opportunity and
responding to requests for fire support from the
supported maneuver commanders.

In contrast, indirect fire support strives to provide
adequate and responsive fires in a target-rich
environment in the face of a highly lethal counterfire
threat. Hence, effective analysis of target intelligence
and appropriate planning to support maneuver forces
with indirect fires during execution of their operation
is the goal of those persons responsible for indirect
fires. To accomplish this, the fire support community
relies heavily on automated command and control
measures, using a structured, data-intensive
communications network, to move targeting
information efficiently about the battlefield and to
provide the fires necessary to defeat identified targets.

The current ModSAF environment provides very
limited support for structured command and control
decision making during either the planning or the
execution phases of an operation. Existing entity
behaviors are very reactive in nature, and do not
exhibit more than a rudimentary ability to assess
information and to make intelligent choices during
execution. Maneuver elements, when confronted with
an opposing entity, engages the target with a selected
organic weapon, and does not even consider indirect
fires or air support as a means to defeat the target.

In contrast, indirect fire support entities, at all
echelons, rely on the ability to collect and analyze
information to determine the most effective and
efficient means to service targets and maneuver
requests for fire. The indirect fire environment is
target rich and asset poor, so selection criteria must

be clearly defined and logically checked to maintain
tactically realistic results. Each mission considered
will, at each echelon, result in numerous available
options.

The current ModSAF is essentially a time-driven
simulation, with state transitions and activities
occurring within specific time slices which recur
steadily. This environment suits the reactive nature of
the maneuver entities, which display rapidly change
states, such as changing locations during movement,
tube orientation, and ballistic flyouts. Although an
implementation of indirect fire simulation could be
designed to operate in a like manner, an event-driven
simulation is more appropriate to model the processes
by which fire support is accomplished. Fire support
assets normally operate in stationary positions, until
forced to move by the tactical situation. This move is
then conducted in a deliberate fashion, and existing
ModSAF functionality will probably be suitable to
support this.

Fire support assets react to trigger events which
instantiate sequential steps in the overall fire support
mission processes which define the fire support
tactical mission. Normally, but not always, these
trigger events are in the form of a tactical message
received via the communication network. Although
the current ModSAF does include provision to send
messages between entities, often the interaction
between entities is determined by shared access to a
common database and special utilities coded to
represent verbal or visual communications.

In summary, it should be clear that an effective
virtual simulation of the indirect fire support battle
should allow for intelligent entities reacting to events
which trigger a logically structured decision process.
To support this, the entities should be capable of
routing data between them via a structured
communication network. Although not present in the
ModSAF baseline, work has been accomplished to
establish a working prototype event-driven simulation
and structure communications network within the
ModSAF environment in support of the Synthetic
Theater of War (STOW) Command Forces (CFOR)
effort.

5. FS CFOR Implementation Overview

5.1 General

422

The Fire Support Command Forces (FS CFOR)
project was initiated to begin providing enhanced
indirect fire support capabilities to maneuver forces
operating in the ModSAF virtual environment. FS
CFOR seeks to create intelligent command entities
(CE) that can apply interpretive logic to situations
and operational orders to make tactical decisions and
plan, direct, and influence the behavior of subordinate
semi-automated forces within the virtual
environment. In order to accomplish this, CEs receive
information through both traditional ModSAF
techniques and the transmission and receipt of
Command and Control Simulation Interface Language
(CCSIL) messages. CCSIL messages are intended to
simulate, in the virtual battlefield, the voice and data
message traffic present on the live battlefield.

This basic simulation concept and generic model was
leveraged directly into the FS CFOR effort. The
simulation engine which was designed for the FS
CFOR effort is known as the Decision Manager, and
versions of this functionality run currently both in
ModSAF and FS CFOR software.

Output Message #1

1. Receive Input
2. Assess State
3. Determine Path
4. Update State
5. Compose Output
6. Transmit (Delay)
7. Timeout Actions

Input
Message

lOutput
Message
#2

5.2 Decision Support Logic

The FS CFOR effort grew out of existing fire
support simulation technology and the behavioral
representations which were completed for the Fire
Support Automated Test System (FSATS) program.
FSATS is an ongoing test instrumentation effort by
ARL:UT which incorporates an event-driven,
message-based simulation which has proven highly
effective in support of operational testing of the
Advanced Field Artillery Tactical Data System
(AFATDS). This program has invested a great deal of
time and resources to define the logical behavior, in
the form of tactical rulesets, associated with the
various fire support command and control players to
support the processing of routine fire missions.

In the FSATS simulation, software objects are created
which represent simulated players, or operational
facilities (OPFACs) in the test environment. Each
object maintains an independent suite of tactical state
information, which is used in determining appropriate
courses of action. The objects communicate via actual
tactical networks using appropriate protocols and data
formats. On receipt of a tactical message, the
receiving model determines a course of action based
on its internal state and the information contained in
this triggering event. Once the appropriate pathway is
determined, the resultant activities dictated by that
pathway (normally updating state, building and
transmitting an output response message, and
entering a "wait for" state) is accomplished. The
generic process by which this occurs is graphically
depicted in the following figure.

Output Message #3

Figure 1: The OPFAC Logic Model

5.3 Abstract Message Formats

Inherent in this simulation approach is the knowledge
that a sound inter-object communications network
must exist. In the FSATS system, live tactical
networks, which supported the wide array of fire
support messages was used. The resulting FSATS
simulation remains effective, but the numerous
differing representation of the four major messaging
schemes supported by FSATS [AFATDS Variable
Message Format (VMF), TACFIRE Bit-Oriented
Messages (BOM), TACFIRE Character-oriented
Messages (COM), and TACFIRE Fixed Format] led
to an implementation where decisions were based in
large part on the system with which the simulation
was interfacing. This has proven cumbersome to
maintain, as changes to decision logic and utiltiy
software must be made to accommodate routine
changes to tactical messages.

In the FS CFOR effort, it was determined that this
approach should not be used, and that the impacts of
external message formats and data representation
should be isolated away from the Decision Manager.
Happily, the overall CFOR effort had already
implemented the CCSIL concept to emulate tactical
messaging. This gave ARL:UT the ability to define
the Fire Support Abstract Message Set (FSAMS).
This internal data representation forms the basis for
the fire support CCSIL messages (implemented by
the MITRE Corporation) and maps to messages used

423

FIRE REQUEST

FR;GRID/POLAR/LASER/SfflFT
FR;MOVl/MOV2
PTGT;RPT (Firefinder FM;CFF)
FM;CFF
MM_FSE_FR RO
MM_CP_FR RO
MM_OTFRO
MM_CP_FO RO
MM_FO RO

FM INFO/CONTROL

FR;QUICK
FOCMD
MTO;TGT
EOM;SURV
FM;FOCMD
FM;MTO
FM;EOM
FM;MFR
MM Commands RO
MM_In_Progress RO
MM_EOM RO
MM_MFR RO
MM_Coord_Request RO
MM_Coord_Response RO
MM_Status RO

INTELLIGENCE REPORT

ATI;GRID/POLAR/LASER/SHIFT
SHELREP
ATI;CDR
ATI;AZR
ATI;SHELREP
MM_ATI RO

UNIT DATA

OBSR;LOC
RDR;LOC
AFU;UPDATE
UM_Basic_Unit
UM-Unit_Detailed

AMMO DATA

AFU;AMMO
AFU;CSR
AFU;AMOL
UM_Ammo_Summary
UM_Ammo_Detailed
UM_Cn_Mtr_MunUons
UM_Rocket_Missile_Munitions
UM_Propellaiit
UM.Fuze
MM EOM RO

MOVE RECORD

AFU;UPDATE
AFU;SR
UM_Move

Figure 2: Fire Support Abstract Message Set (FSAMS)

by the live devices to ensure a complete translation
(when required). A summary chart of the current
FSAMS messages, and their equivalent tactical
messages is shown in Figure 2. At the current time,
only the Fire Request and the Fire Mission
Information/Control messages have been
implemented.

5.4 Integration of Live Elements

When defining the FSAMS message contents, care
was taken to ensure that each message contained a
sufficient amount of data elements to allow a
mapping of the data contained in the CCSIL
messages to the various formats used by the live
devices in the fire support community. Then using a
modified version of FSATS, which has been adapted
to be compatible with the Distributed Interactive
Simulation (DIS) environment, ARL:UT was able to
create a prototype interface box which will allow
integration of live fire support players with simulated
entities existing in the CFOR virtual world. This
effort, known as the AFATDS-DIS bridge, is

operational in prototype form, and contains sufficient
functionality to allow the incorporation of a live
Brigade FSE, using AFATDS, to interact with
CFOR players in conducting an end-to-end fire
mission.

6. Current State of FS CFOR

The FS CFOR development has completed its initial
prototype phase. At the current time, five fire support
entities have been developed which support basic fire
mission processing (fire for effect mission thread).
These entities are the Forward Observer (FO), the Fire
Support Team (FIST), the Battalion (BN) FSE, the
Mortar Platoon, and the Field Artillery Direct
Support Cannon Platoon.

The FO surveys its area of reference in the virtual
environment and determines whether opposing force
entities entering into that area are to be classified as
targets, according to its guidance tables. If so, a fire
request is prepared and forwarded through the FIST to
the BN FSE. This entity determines whether the

424

target should be engaged with mortars or cannon
assets and forwards the fire request to the selected
entity The fire mission then runs to completion,
with the entities creating appropriate message traffic
and transmitting these via the CCSIL network.

Continuation of this work should receive a high
priority, if FS CFOR is to become an effective tool
to train key fire support command and staff elements.
Additionally, a complete, entity-based fire support
virtual simulation should be considered as a strong
candidate to drive collective training exercises in the
near future.

7. Author's Biography

Martin D. Howard is a 1979 graduate of the United
States Military Academy and a past U.S. Army Field
Artillery officer with several years experience in
automated command and control systems. Currently,
Mr. Howard is the Program Manager of the Fire
Support Automated Test System (FSATS) for
Applied Research Laboratories, The University of
Texas at Austin. Additionally, he acts as a domain
engineer, defining simulation architectures and the
tactical behaviors used to model Fire Support
command and control processes.

425

An Architecture for Linking Aggregate and Virtual Simulations

Stephen A. Schricker, Robert W. Franceschini, David R. Stober, Jonathan C. Nida
Institute for Simulation and Training

3280 Progress Drive, Orlando, FL 32826
sschrick@ist.ucf.edu

1. Abstract

Computing power has often been the primary factor
limiting the number of entities that a stand-alone,
virtual-level Computer Generated Forces (CGF)
system can support. By connecting several CGF
systems to a network, using a communications
protocol such as Distributed Interactive Simulation
(DIS), CGF developers have been able to increase
exercise capacity. However, the capacity of virtual
exercises is still relatively small; networked CGF
systems that use DIS are currently restricted to
exercises on the scale of hundreds of entities. Yet
large-scale exercises, consisting of perhaps tens of
thousands of entities, are desirable both for their
ability to teach cooperative techniques to large groups
of soldiers and for their potential to visualize analysis
scenarios at the entity level.

One way to extend such exercise limitations is to
integrate one or more aggregate-level wargame
simulations into the virtual environment; the
wargames provide the context for a large-scale
exercise, while smaller conflicts are played out in the
virtual environment. In addition, CGF entities can
supplement manned simulators-and even live
equipment-to populate the virtual battlefield.

1ST has developed an interface architecture that links
multiple aggregate-level wargame simulations to
multiple virtual components in DIS. In this
architecture, each aggregate and virtual component
uses a Simulation Interface (SI)-a set of functionality
that allows interaction across the Aggregate+Virtual
(A+V) boundary-to manage the communications
between the linkage components.

This paper presents IST's architecture for linking
multiple aggregate-level wargame simulations to
multiple virtual components. It discusses the issues
that make such a linkage difficult, and the
communications required to support the architecture.
This paper also presents details of the architecture's
implementation as part of two projects: Integrated
Eagle/BDS-D, which links the Eagle aggregate
simulation to the 1ST CGF Testbed; and

Eagle/TTEMS, which links Eagle to ModSAF and
ITEMS-hoth CGF systems.

2. Background

Computer-based battlefield simulations may be
classified into two broad categories: aggregate and
virtual. In aggregate simulations, the typical atomic
simulation object is the military unit; the simulation
abstracts the soldier- and vehicle-level details of the
battlefield so that it can model higher-level issues.
For example, an aggregate simulation would
represent a mechanized infantry company as a single
object rather than as a group of battlefield entities
consisting of dismounted infantry, armored personnel
carriers, and tanks. The aggregate simulation
maintains all of the characteristics for the unit as a
whole and performs statistical analyses on the unit's
actions to determine its overall state. In contrast, the
typical atomic simulation object in a virtual
simulation is the battlefield entity. Given the example
above, a virtual simulation would represent the
mechanized infantry company as several instances of
dismounted infantry, armored personnel carriers, and
tanks. To gather any unit-level details regarding the
company, the virtual simulation must make inferences
based on the actions of the individual entities that
belong to the unit.

In addition, aggregate and virtual simulations often
treat the passage of time differently. Virtual
simulations are typically used for battlefield training,
which requires strict adherence to the passage of
time; the realism of the virtual simulation depends
upon the exercise's events occurring at a rate that
corresponds to that of real-world events. Thus virtual
simulations are considered real-time simulations.
Aggregate simulations, on the other hand, are
typically used for analytic purposes, such as tactical
situational evaluation. The time that it takes for the
aggregate simulation to process the events for a
particular time interval is not necessarily related to
the amount of actual time that the interval represents
(were those events to occur in reality). Thus, most
aggregate simulations may be considered non-real-
time; they may run faster or slower than real-time,

427

depending on the resolution of the events that they
model.

The differences in entity and time representation
between aggregate and virtual simulations creates
difficulties in simulation interoperability. For
example, in the virtual environment, it is difficult for
the individual battlefield entities of a virtual
simulation to detect and react to aggregate units.
Similarly, units in aggregate-level wargame
simulations do not typically detect and react to
individual battlefield entities. The problems
associated with differing time representations are
obvious; the simulations need to operate on the same
time scale in order for their interactions to make sense
(Karr 1994).

The architecture presented in this paper addresses
many of these interoperability issues.

3. The Aggregate+Viitual (A+V) Architecture

Aggregate
Component

Virtual
Component

Simu
Inter

(A

lation
tace
Si)

, Simulation
interface

(VS!)

A+V Network

Figure 1: Conceptual A+V Architecture

Figure 1 shows a conceptual diagram of the A+V
linkage architecture developed by 1ST. A typical
A+V linkage would consist of one or more aggregate
components in combination with one or more virtual
components. An aggregate component is an
aggregate-level wargame simulation, such as the
Eagle simulation developed by the TRADOC
Analysis Center (TRAC). A virtual component is a
CGF system possibly networked with manned
simulators or live simulations (Stober 1995b). For
example, a single virtual component might consist of
a ModSAF suite along with several manned simulator
or live simulation resources; the manned/live
simulations provide a training environment for
soldiers, while the ModSAF suite supplies additional
friendly- and opposing-force entities.

Each aggregate and virtual component uses
Simulation Interface (SI) to manage

a
the

communications among the linkage components. The
SI provides the functionality that allows interaction
across the A+V boundary.

3.1 Simulation Interface (SI)

The Simulation Interface (SI) coordinates
communications across the A+V boundary (Karr
1994). Each aggregate and virtual component in the
linkage has its own specialized SI that is responsible
only for the assets of its linkage component.
Although it would be possible to construct a single,
integrated SI that supports all of the components in
the linkage, a distributed SI properly separates and
isolates the details of each component's specific
requirements. Thus, each SI services only the
communication to a single linkage component. This
gives SI implementers considerable flexibility-the SI
can be a distinct node on the network, a
complementary process on its linkage component's
node, or a program module integrated into its linkage
component's software (Stober 1995b).

Though this architecture will support multiple
aggregate and virtual components, the remainder of
this discussion will assume an A+V linkage
consisting of only one aggregate component and one
virtual component.

3.1.1 Functional Architecture
Perhaps the most important concept regarding this
architecture is that it describes a functional rather
than a physical design. In other words, it is the role
of the Sis to provide a certain set of functionality to
the system in order to maintain the A+V linkage.
Where this functionality resides and how it is
implemented are issues that are beyond the scope of
this paper.

3.1.2 Aggregate SI (ASP
The ASI provides the interface between the aggregate
simulation and the virtual environment. It has two
functions: it incorporates virtual-level data into the
aggregate simulation, and it provides aggregate-level
data to the virtual environment. The ASI gathers
virtual-level data, such as entity status information
and requests for action, and forwards this data to the
aggregate simulation for processing. The ASI also
receives unit-level updates from the aggregate
simulation and places this data onto the A+V network
for the Virtual SI(s) to process.

3.1.3 Virtual SI (VST)
The VSI provides the interface between the virtual
simulation and the aggregate environment. It, too,

428

has two functions: it incorporates aggregate-level
data into the virtual component and it provides
virtual-level data to the aggregate environment. The
VSI gathers aggregate-level data, such as unit status
information and requests for action, and forwards this
data to the virtual component for processing. The
VSI also receives entity-level updates from the virtual
component and places this data onto the A+V
network for the ASI(s) to process.

3.2 Unit States

In an A+V exercise, only one component may control
a particular unit or entity at any one time. If an
aggregate component controls a unit, the unit is said
to be aggregated. If a virtual component controls a
unit's entities, the unit is said to be disaggregated
(Stober 1996). A+V researchers have defined several
other unit states, such as icon (Franceschini 1995),
fully-disaggregated, pseudo-disaggregated, partially-
disaggregated, (Foss 1996), gradually-disaggregated
(Cox 1995), and locally-disaggregated (Calder
1995), but they are essentially special cases of
aggregated and disaggregated. (The exception is
partially-disaggregated, in which more than one
component may simultaneously control a unit and/or
its entities. The circumstances surrounding units in
this state, however, are beyond the scope of this
paper. See Foss (1996) for a more complete
discussion.)

when the aggregate and virtual environments must
interact directly. When a unit is disaggregated, the
virtual component requires information describing the
unit's current operations. Otherwise the unit's
entities would not know what actions to perform
while the unit is disaggregated. Likewise, a
disaggregated unit may request indirect fire from
nearby artillery. The aggregate simulations are
responsible for allocating the indirect fire to the
appropriate artillery units.

3.3.1 Operations Orders
When a unit is disaggregated, the VSI receives from
the ASI operations-order data for the unit, which it
distributes to the unit's entities in an appropriate
manner. In addition, the ASI receives updates from
the VSI regarding the intentions of disaggregated
units in response to changes in environmental
conditions. This dialog persists while the unit is
disaggregated.

3.3.2 Indirect Fire
The ASI receives requests for indirect fire from
virtual components, which it forwards to the
aggregate simulation. When the aggregate simulation
allocates the indirect fire to an appropriate artillery
unit, the ASI sends the resulting indirect-fire volley
data to the VSI, which converts it into fire and
detonation data for introduction into the virtual
environment

3.2.1 Disaggregation
When the disaggregation of a unit is triggered, the
ASI instructs the aggregate simulation to temporarily
stop simulating the unit; unit updates will come from
the ASI (via the virtual component and the VSI)
while the unit is disaggregated. The VSI then
instantiates the unit's entities on the virtual
component. When the disaggregation process is
complete, the ASI receives entity updates from the
VSI, compiles this data, and forwards it to the
aggregate simulation.

3.2.2 Aggregation
When a unit no longer needs to be disaggregated, the
VSI instructs the virtual component to remove the
unit's entities from the virtual environment. The ASI
informs the aggregate simulation that it can resume
simulating the unit, and begins providing the virtual
environment with aggregate data regarding the unit.

3.3 A+V Interactions

Most interactions in an A+V exercise occur at the
virtual level. There are a few instances, however,

4. A+V Interoperability Protocol (IOP)

The A+V Interoperability Protocol (IOP) is the
communications mechanism that transfers command
and control information, as well as information
detailing aggregate- and virtual-level unit activities,
across the A+V boundary (Karr 1994). Although the
functionality of the IOP is well established, the
implementation of the IOP is an issue that is beyond
the scope of this paper.

The IOP provides five primary message types:
initialization messages establish communications
pathways when components begin participating in an
exercise; unit status messages allow the exchange of
aggregate- and virtual-level information; state-
transition messages allow units to request aggregation
or disaggregation; operational details messages
provide a means of communicating a unit's
operations and intentions; and indirect-fire messages
allow aggregated and disaggregated units to exchange
indirect fire.

429

4.1 Initialization Messages

Every SI transmits an initialization message to inform
the linkage of its presence in the exercise. The other
Sis respond accordingly to acknowledge the message.

4.2 Unit Status

Unit Status messages provide the means by which the
aggregate and virtual components update their local
records for remotely-controlled units. The ASI
receives virtual-level data from the VSI and
incorporates it into the aggregate simulation, while
transmitting aggregate-level data to the VSI.
Likewise, the VSI receives aggregate-level data from
the ASI and incorporates it into the virtual
component, while transmitting virtual-level data to
the ASI.

4.3 State Transition

State Transition messages allow a simulation operator
or unit commander to request that a unit change its
state. This permits a transfer-of-control over units
across the A+V boundary.

4.3.1 Disaggregation
When the ASI receives a request to disaggregate a
unit, it instructs the aggregate simulation to suspend
the simulation of the specified unit and informs the
VSI that it can proceed with the disaggregation. The
VSI then instantiates the proper entities on the virtual
component Once the disaggregation is complete, the
VSI transmits virtual-level data regarding the unit to
the ASI, which incorporates the data into the
aggregate simulation.

4.3.2 Aggregation
When the VSI receives a request to aggregate a unit,
it instructs the virtual component to remove the unit's
entities from the virtual environment. The ASI then
informs the aggregate simulation that it may resume
the simulation of the unit. Once the aggregation is
complete, the ASI resumes transmitting aggregate-
level data regarding the unit to the VSI, which
incorporates the data into the virtual component.

4.4 Operational Details

Operational Details messages provide a means of
communicating a unit's instructions and intentions
across the A+V boundary. When a unit is first
disaggregated, the aggregate simulation transmits the
unit's operations orders to the ASI. The ASI sends
this information to the VSI, which forwards it to the

unit commander for interpretation. As operations
change or orders are completed, the aggregate
simulation will transmit fragmentary orders in the
same manner. In addition, the unit commander can
transmit commander's intent messages to the
aggregate simulation, via the VSI and ASI, in
response to environmental conditions.

4.5 Indirect Fire

Indirect Fire messages allow for indirect-fire
interactions across the A+V boundary. A unit
commander may request indirect fire from nearby
artillery. The VSI receives the request and forwards
it to the aggregate simulation via the ASI. The
aggregate simulation receives the request, allocates
the indirect fire to an appropriate unit, and computes
the details of the ensuing indirect-fire volleys. The
ASI receives the volley data and forwards it to the
VSI, which converts the indirect-fire volley data into
fire and detonation data, and introduces it into the
virtual environment at the appropriate times.

5. Difficulty Issues

There are a number of issues that make the
implementation of an A+V linkage difficult. Among
these are the size of the IOP messages, the
implementation of direct fire across the A+V
boundary, and a side effect of automatic
disaggregation triggers-spreading disaggregation.

5.1 IOP Message Size

Since aggregate unit-state messages can carry data
regarding perhaps hundreds of individual battlefield
entities, the messages themselves can become
enormous. It is important to take this into
consideration during implementation. These
messages may need to be separated into several
smaller messages in order to satisfy message size
requirements.

5.2 Direct Fire

Direct fire between aggregate units and virtual
entities is much more difficult to address than is
indirect fire. Current research has failed to provide
not only a solution, but also an adequate definition of
the problem itself. Attempts have been made to
remedy the problem of A+V direct fire by ensuring
that direct-fire confrontations occur in the same
environment (usually virtual), but a true solution has
yet to be found (Stober 1996).

430

5.3 Spreading Disaggregation

One benefit of A+V is that the linkage software itself
can monitor the exercise and aggregate or
disaggregate units as it deems necessary. For
example, as a unit enters a "high-resolution" area
(Karr 1994), where any action inside occurs at the
virtual level, the system can automatically
disaggregate the unit without human interaction. In
addition, as two opposing-force units approach one
another, the system can trigger their disaggregation in
order to resolve any ensuing conflict at the virtual
level.

An anomalous result of automatic disaggregations,
though, is "spreading disaggregation," in which one
disaggregation triggers a series of disaggregations
(Petty 1995). This could produce a windfall effect
that would eventually overload the resources of the
virtual environment. This issue will need to be
addressed as research into automatic disaggregation
triggers progresses.

6. Implementation Details

1ST has been involved in the implementation of two
A+V linkages: Integrated Eagle/BDS-D, which links
the Eagle aggregate simulation with the 1ST CGF
Testbed and manned simulators; and Eagle/ITEMS,
which links Eagle with ModSAF and ITEMS-both
CGF systems. The following sections discuss
implementation details for these two projects.

6.1 Integrated Eagle/BDS-D

The Integrated Eagle/BDS-D Project, which serves as
a proof-of-concept for the interoperability of
aggregate and virtual simulations, links the Eagle
aggregate simulation with the 1ST CGF Testbed
(along with manned simulators), and can operate in
either SIMNET or DIS. Eagle is a UNIX process that
can run on Sun or Hewlett-Packard workstations.
The Testbed is a CGF system that runs on several
networked IBM-compatible personal computers and
consists of at least two nodes: a Simulator, which
performs the entity simulation; and an Operator
Interface, which provides a graphical user interface
for the CGF operator.

6.1.1 Process Architecture and Message Pathways
Figure 2 shows the process architecture and message
pathways for the Integrated Eagle/BDS-D system.
The Eagle Simulation Interface Unit (SIU) provides
the functionality of the ASI and communicates with
Eagle using UMX Remote Procedure Calls (RPC).

RPC

1ST CGF
Testbed +

Manned Sim,

1ST Messages

Eagle CGF
Manager

IOP +
SIMNET/DIS

A+V Network

Figure 2: Integrated Eagle/BDS-D Process
Architecture and Message Pathways

The Eagle CGF Manager provides the functionality of
the VSI and communicates with the Testbed via
special TCP/IP network packets called 1ST Messages.

Eagle Node

Eagle
Testbed

SIU Eagle CGF
Manager

i
i
i Ol SIM

1
1
1

Manned
Simulator

SIMNET/DIS Network

Figure 3: Integrated Eagle/BDS-D Network
Configuration and Implementation

6.1.2 Network Configuration and Implementation
Figure 3 shows the network configuration and
implementation for the Integrated Eagle/BDS-D
system. The SIU is implemented as a distinct process
that runs on the same node as the Eagle simulation.
The Eagle CGF Manager is a modified 1ST CGF
Simulator with its entity simulation capability
disabled.

6.1.3 Interoperability Protocol (IOP)
The Integrated Eagle/BDS-D IOP is implemented
differently for the SIMNET and DIS versions of the
system. For SIMNET, the IOP consists of a
combination of pre-defined SIMNET PDUs and new
IOP PDUs. The SIU gathers virtual-level entity data
by monitoring the SIMNET network for Vehicle
Appearance PDUs; the remaining IOP messages are
carried inside SIMNET Association PDUs with a
special value identifying those PDUs as Integrated
Eagle/BDS-D IOP messages.

431

For DIS, the SIU gathers virtual-level entity data by
listening to DIS Entity State PDUs. The remaining
IOP messages are carried inside 1ST Messages.

For more information regarding the Integrated
Eagle/BDS-D architecture and network configuration,
see Karr (1994).

6.2 Eagle/TTEMS

The Eagle/TTEMS linkage, which is part of the
ongoing development of the Aviation Digitization
Laboratory at Fort Rucker, Alabama, links the Eagle
aggregate simulation with ModSAF and ITEMS, and
operates in DIS. ModSAF is a UNTX process that
can run on Silicon Graphics, Sun, or Hewlett-Packard
workstations. ITEMS is also a UNTX process that
can run on Silicon Graphics workstations.

Eagle ModSAF
Suite ITEMS

! 01
PC

L
3, TCP
IDP

/IP,
A

ip<) tin emal
notions

CSIU ModSAF
VSIU

ITEMS
VSIU

A

j 1 OP+DIS

A A

•-'

A+V Network

Figure 4: Eagle/TTEMS Process Architecture and
Message Pathways

6.2.1 Process Architecture and Message Pathways
Figure 4 shows the process architecture and message
pathways for the Eagle/TTEMS linkage. The Eagle
Constructive Simulation Interface Unit (CSIU)
provides the functionality of the ASI. Early versions
of the CSIU communicated with Eagle via UNIX
RPCs. However, more recent versions are
configurable to use TCP/IP or UDP network packets-
an example of the flexibility that this architecture
affords its implemented.

The ModSAF Virtual Simulation Interface Unit
(VSIU) provides the functionality of the VSI for
ModSAF and communicates with ModSAF using the
Persistent Object (PO) protocol.

The ITEMS VSIU provides the functionality of the
VSI for ITEMS and, since it is implemented as a
program module integrated directly into the ITEMS
software, communicates with ITEMS simply via
function calls.

ModSAF Suite

Eagle

CSIU

ModSAF

ModSAF
(VSIU)

DIS Network

Figure 5: Eagle/TTEMS Network Configuration and
Implementation

6.2.2 Network Configuration and Implementation
Figure 5 shows the network configuration and
implementation for the Eagle/TTEMS linkage. The
CSIU is implemented as a ModSAF Simulator that
has undergone extensive modification (including the
elimination of its entity simulation capability) so that
it can communicate with Eagle. Thus it is a distinct
process that runs on its own network node.

The ModSAF VSIU, like the CSIU, is implemented
as a ModSAF Simulator, and is also a distinct process
that runs on its own network node. Unlike the CSIU,
however, the ModSAF VSIU retains its functionality
to simulate virtual entities.

The ITEMS VSIU, as stated previously, is
implemented as a program module integrated directly
into the ITEMS software.

6.2.3 Interoperability Protocol
The Eagle/TTEMS IOP is implemented as a
combination of pre-defined DIS PDUs and new IOP
PDUs. The CSIU gathers virtual-level entity data by
monitoring the DIS network for Entity State PDUs.
In addition, the CSIU provides aggregate-level unit
data to both VSIUs by broadcasting both DIS
Aggregate State PDUs and specially developed IOP
Unit Detail PDUs. This was necessary because the
prototype Aggregate State PDU used during
development did not meet all of this particular
system's requirements.

The remaining IOP messages developed specifically
for the Eagle/TTEMS linkage are carried inside DIS
Message PDUs with a special value identifying those
Message PDUs as Eagle/TTEMS IOP messages.

432

7. Conclusions

Aggregate+Virtual linkages are viewed as a solution
to the current limitation of virtual exercises: the
virtual network is incapable of supporting very large
scale exercises. A+V is also viewed as a new and
powerful tool for conducting analytic studies and as a
way to bring legacy systems into the virtual
environment. The architecture presented in this paper
seeks to standardize the methodology for linking
aggregate and virtual simulations in order to facilitate
the development of similar systems in the future.

The architecture presented in this paper discusses
only the functionality that an Aggregate or Virtual SI
must provide to the A+V linkage. Implementation
details are left to developers, giving them the freedom
to tailor future A+V implementations that use this
architecture to the specific requirements of the
linkage components that they intend to incorporate.

8. Acknowledgment

This research was sponsored by the U.S. Army
Simulation, Training, and Instrumentation Command
as part of the Integrated Eagle/BDS-D project,
contract number N61339-92-K-0002. That support is
gratefully acknowledged.

9. References

Calder, R.B., Peacock, J.C., Panagos, J., and Johnson,
T.E. (1995). "Integration of Constructive,
Virtual, Live, and Engineering Simulations in the
JPSD CLCGF', Proceedings of the Fifth
Conference on Computer Generated Forces and
Behavioral Representation, Institute for
Simulation and Training, Orlando FL, May 9-11,
1995, pp. 71-82.

Cox, A.. Maybury, J., and Weeden, N. (1995).
"Aggregation Disaggregation Research-A UK
Approach", Proceedings of the 13th Workshop
for the Standards for the Interoperability of
Defense Simulations, Institute for Simulation and
Training, Orlando FL, September 18-22, 1995,
pp. 449-464.

Foss, W.R. and Franceschini, R.W. (1996). "A
Further Revision of the Aggregate Protocol",
Proceedings of the 14th Workshop for the
Standards for the Interoperability of Defense
Simulations, Institute for Simulation and
Training, Orlando FL, March 11-15, 1996, pp.
727-738.

Karr, C.R. and Root, E.D. (1994). "Integrating
Constructive and Virtual Simulations",

Proceedings of the 16th Interservice/Industry
Training Systems and Education Conference,
Orlando FL, November 28 - December 1, 1994,
section 4-5.

Petty, M.D. and Franceschini, R.W. (1995).
"Disaggregation Overload and Spreading
Disaggregation in Constructive+Virtual
Linkages", Proceedings of the Fifth Conference
on Computer Generated Forces and Behavioral
Representation, Institute for Simulation and
Training, Orlando FL, May 9-11, 1995, pp. 103-
111.

Root, E.D. and Karr, C.R. (1994). "Displaying
Aggregate Units in a Virtual Environment",
Proceedings of the Fourth Conference on
Computer Generated Forces and Behavioral
Representation, Institute for Simulation and
Training, Orlando FL, May 4-6, 1994, pp. 497-
502.

Stober, D.R., Kraus, M.K., Foss, W.F., Franceschini,
R.W., and Petty, M.D. (1995a). "Survey of
Constructive + Virtual Linkages", Proceedings
of the Fifth Conference on Computer Generated
Forces and Behavioral Representation, Institute
for Simulation and Training, Orlando FL, May 9-
11, 1995, pp. 93-102.

Stober, D.R. and Franceschini, R.W. (1995b).
"Simulation Interface Designs for the Aviation
Digitization Laboratory", Technical Report IST-
TR-95-13, Institute for Simulation and Training,
July 14, 1995.

Stober, D.R., Schricker, S.A., Tolley, T.R., and
Franceschini, R.W. (1996). "Lessons Learned on
Incorporating Aggregate Simulations Into DIS
Exercises", Proceedings of the 14th Workshop
for the Standards for the Interoperability of
Defense Simulations, Institute for Simulation and
Training, Orlando FL, March 11-15, 1996, pp.
391-396.

10. Authors' Biographies

Stephen A. Schricker is an Associate Computer
Scientist at the Institute for Simulation and Training,
and currently leads the software engineering effort for
IST's participation in the development of the
Aviation Digitization Laboratory at Fort Rucker, AL.
He has earned a B.S. in Computer Science from the
University of Central Florida, and is currently
pursuing an M.S. in Computer Science at UCF. His
research interests include simulation, networking, and
fuzzy logic.

Robert W. Franceschini is a Computer Scientist at
the Institute for Simulation and Training. He

433

currently leads the Integrated Eagle/BDS-D Project at
1ST. Mr. Franceschini has earned a B.S. in Computer
Science from the University of Central Florida and is
currendy pursuing an M.S. in Computer Science at
UCF. His research interests are in the areas of
simulation, graph theory, and computational
geometry.

David R. Stober is a Research Consultant on the
Integrated Eagle/BDS-D Project at the Institute for
Simulation and Training. He has earned a B.S. in
Computer Science from the University of Central
Florida, and is currently pursuing an M.S. in
Computer Science at UCF. His research interests are
in the areas of simulation and artificial intelligence.

Jonathan C. Nida is a Graduate Research Assistant
at the Institute for Simulation and Training. He has
earned a B.S. in Computer Science from the
University of Central Florida and is currendy
pursuing an M.S. in Applied Mathematics at UCF.
Mr. Nida's research interests include simulation,
parallel computation for mathematics, and dry
nanotechnology.

434

Using An Ordnance Server to Provide Validated Weapon Models to
ModSAF+

Larry Ullom
Aircraft Simulation Branch

Naval Air Warfare Center Aircraft Division
48140 Standley Road

Patuxent River, MD 20670-5304
lullom@msis.dmso.mil

Peter Fischer
J.F. Taylor Inc.
P.O. Box 760

Lexington Park, MD 20653
pfischer@jfti.com

1. Abstract

The Modular Semi-Automated Forces
(ModSAF) simulation tool traditionally models a
weapon's physical and behavioral characteristics
by loading simplistic algorithms that are derived
from generic data into the main simulation
application. This causes inherent problems. The
processor load of the weapon models must
remain relatively low to maximize the entity
count per workstation. This is often the leading
cost driver in an exercise. In addition, using
sensitive weapon data imposes security issues on
the ModSAF application.

The operational requirements for certain training
exercises dictate that weapon models must
perform as a functionally valid replica of the
actual system. This ensures the training
performed would enhance the trainee's
performance in a similar situation. Given the
current approach, it is too computationally
expensive to add validated models to the actual
ModSAF application. The use of an Ordnance
Server (OS), as demonstrated by the Air Combat
Environment Test and Evaluation Facilities'
Manned Flight Simulator (ACETEF7MFS),
provides a better solution.

The Ordnance Server is an external host that
models weapons surrogates. Validated weapon
models are incorporated into the Ordnance
Server and the corresponding ModSAF models
are disabled. This approach improves scalability,

provides a more level playing field between
interacting entities, and segregates sensitive or
classified modeling and data.

This paper will discuss the origin of the
Ordnance Server concept and the process of
integrating an Ordnance Server with ModSAF.
An analysis of the test implementations will show
the benefits of this approach. The paper will also
include a discussion of open issues such as in
flight guidance input from the launching entity.
Finally a conclusion that looks ahead to future
implementations will be provided.

2. Introduction

Traditionally the modeling of a weapon's
physical and behavior characteristics was done in
the model that was responsible for launching the
weapon. This arrangement was the natural
environment in systems that were designed to
execute as a monolithic simulation on a single
host. This type of system is highly limited in a
number of important areas including scalability
and multiplicity of reuse.

The ModSAF system was designed to address
some of the problems in monolithic computer
generated forces (CGF) systems. It uses
distributed interactive simulation (DIS) protocols
to allow multiple simulation hosts to
cooperatively interact in a unified synthetic
battlespace. However the concept of retaining

' This paper is declared a work of the US Government and is not subject to copyright protection in the
United States.

435

ownership of all simulation attributes spawned by
the ModSAF application was retained.

To further enhance the capabilities of CGF
systems such as ModSAF, it is necessary to allow
hand-off of simulation entities and attributes to
other more specialized simulators. While this is
explicitly addressed in the new Department of
Defense (DoD) High Level Architecture (HLA),
it is also possible to gain the benefits of using
validated munition models with ModSAF in a
DIS environment. The use of an Ordnance
Server can provide this capability.

3. Technical Overview

The Ordnance Server extends the idea of
distributed simulation by separating the
simulation of the launching vehicle from the
munition simulation. The concept could be
applied to any pairing of munition and launch
vehicle simulations. However this paper shall

consider the ModSAF launcher only. In order to
understand how the Ordnance Server can be used
with ModSAF it is necessary to first discuss it's
internal workings.

The Ordnance Server operates using only
standard DIS protocol data units (PDUs). When
a cooperating launch vehicle simulation wishes
to fire a munition, it issues a fire PDU as it
normally would. The Ordnance Server, having
been previously configured to look for fire PDUs
from a specific (site, application, entity), will try
to match the weapon type and fusing data to a
weapon it is configured to simulate. If a match is
found, the Ordnance Server will instantiate a
simulation of that weapon using target data from
the fire PDU. The Ordnance Server issues entity
state PDUs for the instantiated munition during
it's delivery to the target. When the fuse model
indicates the termination of the munition, the
Ordnance Server generates a detonation PDU.

Ordnance Server

Figure 1: Ordnance Server Interfaces

3.1 Special Interfaces

The Ordnance Server supports two interfaces to
external objects. These interfaces and there
relationship to the rest of the Ordnance Server is
illustrated in figure 1. The first is a Model

Interface Adapter (MIA). This is a code wrapper
that goes around an external weapon model and
provides all the translation services needed to
make the model look like an internal simulation
to the server executive. At the same time, the
MIA simulates the environment the external
model was designed to operate in. This

436

architecture provides a mechanism for interfacing
nearly any legacy model. In particular, validated
models from accepted training systems can be
used to support a DIS exercise.

The second interface is the ground truth database
interpreter. This provides the OS with a
consistent representation of ground truth
regardless of the actual format used in the
underlying terrain database. The only parameter
that is important to most weapon models is the
height above the terrain at the point where the
munition is currently flying. Other parameters
could be included in this interface if a particular
model required them for normal operation.

3.2 Configuration Parameters

The Ordnance Server must be configured to
operate with a "parent" launch entity. The parent
entity is denoted by the (site, application, entity)
triplet. The Ordnance Server can serve multiple
hosts by allowing the entity or entity/application
identifiers to be wild cards. The entity type of
any munitions to be surrogated must also be
specified and mapped to a specific weapon
model. Any weapon model loaded can be
mapped to any munition type. Other
configuration information that must be supplied
includes the terrain database file name, DIS
exercise and IP numbers, and types of runtime
feedback desired. There are model specific
parameters associated with each weapon
simulation as well.

4.0 Integrating ModSAF with the OS

Integration with the Ordnance Server first
required that the ModSAF internal weapon
dynamics models be disabled. This resulted in
relatively simple modifications because of
ModSAF's highly modular design. To suppress
entity state and detonation PDUs, libmissile was
modified so ModSAF would only issue the Fire
PDU. This allows the Ordnance Server to
describe the trajectory and detonation event of
the munition. A command line switch "Generate
Missiles" was added to the ModSAF executable.
When "-nomissiles" is specified, ModSAF's
missile simulations are suppressed. Also,
libmlauncher was modified to removed the
munitions ID number from an internal list of
local entities in ModSAF. Without the id
number in it's local list, ModSAF will recognize
the Ordnance Server's missile as a viable remote

entity. Otherwise ModSAF would still act as if
the entity were local, resulting in no icon display
for the munition on the Plan View Display.

Another problem was that the designated target
id was not originally specified in the Fire PDUs
produced by ModSAF. This information is
needed for the Ordnance Server to work
correctly. The intended target was originally
kept internally in ModSAF, so the change
consisted of simply passing this data to the
routine used to broadcast ModSAFs Fire PDUs.

Next a ground truth database interpreter based on
the ModSAF libctdb services was added to the
Ordnance Server. This allows both applications
to share identical representations of ground truth.

4.1 Ordnance Server Advantages

The ordnance server can be used to provide
models, that are accepted by the subject mater
experts in a given exercise, with no penalty to the
ModSAF application's processor load. These
accredited models can be classified (if required)
without affecting ModSAF's unclassified status.
Maintaining multiple models for a particular
munition at different levels of detail or different
classification levels is also facilitated by this
approach. Additionally a well designed network
topology can reduce latency impacts on entity
interactions, by collocating ordnance servers with
the targets they are likely to engage.

The ordnance server has successfully been used
to complement CGF systems in many large scale
exercises. These exercises include the Strategic
Theater of War (STOW) Engineering Demos,
Navy Kernel Blitz fleet training event, and
I/TTSEC 95 DIS Demo. In its earliest use, a
single ordnance server was used by one site to
simulate only Air-to-Air missiles initiated by a
single man in the loop system. Since then, many
additional validated models have been added to
the ordnance server and CGF systems have been
modified to allow the ordnance server to simulate
their munitions. As more applications use the
ordnance server to simulate their munitions, the
benefits to the goal of a fair fight become more
apparent. Simulations that use the ordnance
server will not create munition simulations with
unrealistic flight or guidance attributes.

Due to the large number of entities simulated in a
STOW exercise, the ordnance server's ability to

437

further distribute processing load is especially
useful and even necessary if high fidelity, real
time munition models are an exercise
requirement. The flexibility of the manner in
which the ordnance server can be used to do this
has been demonstrated. A local ordnance server
has been used to simulate munitions launched by
an application located at a remote site. Multiple
ordnance servers have been used by one
application, each one simulating different types
of munitions for the same set of entities. This
characteristic of being flexible to the needs of a
particular exercise scenario or hardware
configuration has proven to be especially useful
due to the variant nature of DIS exercises.

4.2 Open Issues

There are still open issues to be resolved with
this approach. One of the major concerns
regards tightly coupled systems, where the
launch platform and the munition depend on
either a one way or bi-directional link to function
properly. An example is the Navy's SM-2 which
receives steering input throughout flight from the
launcher based on the launcher's radar track.

One solution to this would be to implement the
link data via signal PDUs. This would increase
the fidelity of the simulation. However it would
also cost network bandwidth. Another solution
would be to locate the sensor model on the
Ordnance server. It is not clear how this could
be facilitated under current DIS protocols, but
the HLA fully supports this method.

Another issue is the loading of prelaunch data
from the launching platform into the weapon
model. Currently this is accomplished via the
graphical user interface (GUI). The signal PDU
is not a natural choice for this data as it would be
passed via internal busses on the actual platform.
One possible solution is the set data simulation
management PDU. It could be used to initialize
a weapon that requires this type of data prior to
launch then the weapon would simply be
attached to the launch platform until the fire
PDU. This would require more extensive
modification of ModSAF to support.

5. Conclusions

The ordnance server approach answers the
problem of providing validated models for
ModSAF by using an external host to take over

the flyout of weapons launched by the
application to the intended target. This allows
ModSAF to use appropriate weapon models for
the exercise event with no additional
configuration management or piecemeal code
integration. The models integrated in this
manner do not have to be reengineered to fit
within the ModSAF architecture, and multiple
models of the same munition can be substituted
easily.

The concept of the use of an ordnance server to
supplement CGF applications has evolved into a
tested, working product. The benefits of such an
approach have been demonstrated through
multiple DIS exercises. As more munition
models are added to the ordnance server and the
existing models capabilities are further refined,
the munition simulations for all applications that
use the ordnance server are improved.

Further research should provide answers to the
open issues discussed in this paper. It is apparent
that the advantages of this solution warrant
continued development.

6. Acknowledgment

The authors wish to thank the following people
for their contributions to this effort: CDR. Peggy
Feldmann, Brett Dufault, John DiCola,
Alexandra Wachter, and David Mutschler.

7. References

DiCola, J, Fischer, P, Mutschler, D, Ullom, L
(1996) "Improving Munition Simulation
Fidelity Through Use Of An Ordnance
Server", Proceedings of the AIAA Flight
Simulation Technologies Conference (to be
published)

DiCola, J, Mutschler, D, Ullom, L, Wachter, A
(1996) "Providing Common Munitions
Models Via an Ordnance Server"
Proceedings of the 18'h Inter service Industry
Training Systems and Education Conference
(to be published)

Foster, L, Feldmann, P (1995) "The Limitations
of Behavior for Valid Distributed Interactive
Simulation" 95-13-027 Position Papers of
the 13th DIS Workshop on Standards for the
Interoperability of Distributed Simulations

8. Biographies

438

Lawrence C. Ullom is a Senior Electronics
Engineer with the US Navy's Naval Air Warfare
Center Aircraft Division. He holds a BSEE from
West Virginia Institute of Technology. He has
been involved in numerous DIS working groups
and demonstration projects. His interests are
Networking, Simulation, and Distributed
Processing.

Peter Fischer is an Electrical Engineer
employed by J.F. Taylor, Inc. and working on
site at the ACETEF/Manned Flight Simulator in
the Naval Air Warfare Center at Patuxent River,
MD. He received his bachelor's degree from
George Mason University and is currently
pursuing a master's degree in Computer Science
from the Florida Institute of Technology. His
interests include simulation, artificial
intelligence, and computer graphics.

439

Interfacing External Decision Processes to DIS Applications

Elizabeth L. White, Kenneth E. Frosch, Vincent P. Laviano, Michael R. Hieb, J. Mark Pullen
Department of Computer Science and C3I Center

George Mason University
4400 University Drive, Fairfax, VA 22030

white@cs.gmu.edu

1. Abstract

The Distributed Interactive Simulation (DIS)
protocols (IEEE 1995) allow heterogeneous
applications to share exercise information. As DIS
applications mature and transition to the High Level
Architecture (HLA), their utility can be increased by
integrating them with external decision processes.
External decision processes comprise a wide range of
applications such as inference methods, learning
algorithms, and collaborative planning tools. There
are several possible approaches to accomplishing
such an integration. We analyze various criteria to
identify the best architectural approach for a specific
set of requirements. The criteria discussed are
distribution of processes, data representation,
interprocess communication, and quality of service.
This paper describes three approaches and presents
two case studies in constructing interfaces to the
Modular Semi-Automated Forces (ModSAF) CGF
simulation. By conducting a more formal analysis of
the interface design process, we provide system
designers with the basis to make a more informed
choice when designing an interface.

2. Introduction

DIS-compliant simulations have been extensively
utilized in recent automated warfighting exercises.
Interfacing external decision processes to these
simulations can improve their behavior and make
them more widely applicable. The interface of an
external decision process to a DIS-compliant
simulation may take one of several forms. We have
identified several criteria for designing such an
interface of non-DIS applications to DIS
simulations:

1) distribution of processes — describes the degree
to which the processes are distributed, ranging
from a single centralized executable to processes
distributed over a network.

2) data representation — determines the format the
processes use to communicate information.

3) interprocess communication — the method that
the processes use to communicate, for example,
shared memory or message passing.

4) quality of service factors — describe
requirements for distributed system latency,
security and robustness.

Section 3 covers these issues in detail. From these
criteria we identify three general approaches to
interfacing external decision processes to a DIS
application. Sections 4 describes two case studies as
examples of two of the approaches. In these case
studies, the DIS application with which we
integrated our external processes was ModSAF.
Further details about ModSAF are given in Section
4.1. We compare our approaches with related work
in Section 5 and analyze the impact of the HLA on
our integration methods. Conclusions are presented
in Section 6.

3. Interface Design Issues

Several issues must be considered when interfacing
an external process to a DIS application. Among
those are the four criteria enumerated above. In
addition to these technical factors, another factor
that may influence design decisions is the existence
of components, such as libraries implementing an
Application Program Interface (API). Such
components constrain the choices available for the
architecture, however their use can also save
considerable time and effort. For example,
COMPASS provides libraries for performing a
Remote Procedure Call (RPC) between a client
application (ModSAF in our case) and the
COMPASS server.

Table 1 lists the issues that need to be addressed with
possible options based on the quality of service
factors.

441

Issue Option
f Degree of Process Single process

Distribution Multiple processes, single
host
Multiple hosts, single subnet
Multiple hosts, multiple
subnets

Data Representation Standard format
Ad hoc format

IPC Shared Memory
Remote Procedure Call
Message Passing

Table 1: Design Issues and Options

3.1 Degree of Process Distribution

One of the most fundamental decisions that must be
made when designing the software architecture for
an integrated application is the degree of distribution
of the constituent processes. The level of
distribution will have a great effect on the other
issues of the design, particularly the IPC mechanism.

The two applications can be integrated into a single
process (Figure 1), eliminating the need for
interprocess communication, or the integrated
application can be split into multiple processes
(Figure 2), providing additional flexibility, but
necessitating interprocess communication. If these
processes reside on a single host, then this additional
flexibility is limited, but there is a wide selection of
interprocess communication mechanisms and several

data representation issues can be avoided because a
homogeneous environment is guaranteed.

If the processes reside on multiple hosts, then the
characteristics of the intervening network become an
issue (Figure 3). The network may be a local area
network (LAN) in which case there will be high
reliability and little latency, but the geographic scope
of any DIS exercise run using the integrated
software will be severely limited. On the other hand,
the application may be distributed across a wide area
network (WAN), in which case there will be less
reliability and increased latency, but the geographic
scope of an exercise will be virtually unlimited.
These characteristics may vary depending on
whether the WAN is private (and can be dedicated to
the DIS exercise in question at the time it is running)
or public (and having to support a great deal of
unrelated traffic at the same time the exercise is
running).

3.2 Data Representation

Data representation is an important issue because the
external process and the DIS application need to
share information. Given the fact that these
applications may reside on different types of
hardware, any solution should accommodate
heterogeneous environments. There are two ways to
allow information sharing: 1) converting one of the
applications to the other's data representation or 2)
using a standard format as an intermediate language.

Single Host

\
Single Process

process #1 Single Host

Process #2

Figure 1: Single Process on a Single Host Figure 2: Multiple Processes on a Single Host

442

Figure 3: Processes on Multiple Hosts on a
Network

The first option is often taken. The process of
converting one application's data representation is
often tedious and error-prone. Using a standardized
format, such as the DIS protocols, does require
changes to both applications and additional encoding
and decoding effort at runtime. However, once an
application has been modified to allow it to use the
standard format, it can interoperate with any other
application conforming to the standard as well.

With both options, the data must either be initially
represented in both applications in some common
format, or translated into a common format that both
applications can interpret and manipulate. The
common data format may be either a standardized
format (e.g. the DIS protocols or the External Data
Representation (XDR) standard used to transfer data
between different machine architectures (Sun,
1987)), or an ad hoc format.

3.3 Interprocess Communication

As noted above, if the integrated application is
composed of multiple processes, some form of
interprocess communication (IPC) will be necessary
in order to allow the processes to share data. The
choice of an interprocess communication mechanism
will follow largely from the choice of a process
architecture (single process vs. multiple processes,
distributed over a network, etc.). The need for IPC
presents a design challenge because of the real-time
requirement imposed by the DIS component of the
integrated application. This requirement usually

necessitates the use of either non-blocking IPC or a
timeout mechanism. A non-blocking IPC would
allow the DIS application to continue executing
while the external process services the request.

The two fundamental forms of IPC are shared
memory and message passing. Shared memory is
known to be faster in most circumstances (Stevens
1990), but its use is limited to applications running
on a single host. Therefore, message passing will
often have to be used. A popular paradigm for
message passing is the Remote Procedure Call
(Birrell and Nelson, 1984), in which the message
passing primitives are hidden from an application
programmer in linkable libraries, allowing the
programmer to call both local and remote functions
using the same semantics. A case study of an RPC
interface is given in section 4.1.

Another possibility for interprocess communication
is the distributed object technology embodied in the
Object Management Architecture (OMA). Central
to the OMA is the Common Object Request Broker
Architecture (CORBA), which provides for
transparent communication between distributed
application objects (Yang and Duddy, 1996). The
prototype implementation of the HLA's Run Time
Infrastructure (RTI) uses CORBA. The RTI's API is
specified in CORBA's Interface Definition Language
(IDL) (Calvin and Weatherly, 1996).

3.4 Quality of Service

Integrated applications with a DIS component are
likely to have special requirements in one or more of
the following areas:

Latency. The integration of an external decision
process with a DIS application implies a real-time
requirement for the composite application. Meeting
this requirement may be a challenge, because the
external process may not have been designed with
real-time performance in mind. However, if the DIS
application is utilized in a mode where it is not
operating in real-time, such as generation of
simulation scenarios, then latency does not need to
be considered. Examples are given in Section 4.

Correctness. In order to maintain the consistency of
a distributed simulation it is necessary that all
participants receive similar data about the simulated
virtual world. This implies a requirement that some
simulation data be transmitted reliably. In general,

443

DIS applications are designed to handle the loss or
corruption of an entity state PDU, because they are
sent with great frequency and each new entity state
PDU supersedes previous ones. However, there are
other, individual PDUs which represent important
events such as collisions and must therefore be
received reliably in order to ensure the consistency of
the distributed simulation. Since reliable
transmission of data contributes to latency, a balance
needs to be struck between correctness and latency.

Robustness. Unlike a traditional centralized
application, a distributed application can continue to
exist after the failure of a host on which parts of the
application are executing. This may entail the
relocation of simulated entities (or an external
decision process) to other hosts, or it may be
sufficient for the simulation to continue without the
entities in question and without interaction with the
decision process.

Security Issues. When an application is distributed
across multiple hosts, the intervening network
increases vulnerability, especially if the constituent
processes reside on multiple subnets separated by a
wide-area network that is outside the administrative
domain of those organizations conducting the
exercise. Encryption and/or other forms of security
may be required. The interface will need to be
designed with this and other administrative concerns
in mind.

Concurrent Access. It may be necessary or desirable
for multiple clients to access resources managed by
the integrated application concurrently. This is
especially likely to be true for the external decision
process portion of the application if it is
implemented as a separate process. A need for
concurrent access to resources will impose additional
design constraints on the interface.

4. Case Studies

In this section, we first describe three basic
approaches to interfacing an external decision
process to a DIS application and then present
detailed case studies of two of these approaches. The
three basic interface approaches that we have
identified are to 1) create a single executable, 2)
utilize existing IPC mechanisms for distributed
processes, and 3) use DIS PDUs to implement the
interface.

The first approach requires integrating the DIS
application and the decision process into a single
executable. The Soar/Intelligent Forces (IFOR)
architecture is an example of this approach. Soar
provides the reasoning capabilities of intelligent
automated agents for ModSAF (Laird et al, 1995,
Soar/IFOR, 1996). The advantage of this approach
is that no DPC is required between the two
components, resulting in minimal latency. However,
the disadvantages of this approach are 1) the lack of
concurrency between the two components may result
in an application with unacceptable performance due
to the real-time demands of the DIS component, and
2) the complexity resulting from the combination of
two control flows into a single flow.

The second approach is to use system-provided
communication facilities for the required
interactions. One of the most common interprocess
communication paradigms, RPC, is supported by
many underlying systems, meaning that special non-
standard interfaces to the external applications need
not be constructed. The advantage of this method is
that the application components can be distributed
across multiple heterogeneous platforms. The
disadvantages of this method include additional
latency introduced by local-area or wide-area
network connections between the application
components and the possible degradation of
performance in the face of network or host failures.
In addition, distributed approaches require greater
attention to security.

An example of this architectural style is our interface
between ModSAF and the COMPASS system (SAIC,
1995, SAIC 1996). COMPASS is the Common
Operational Modeling, Planning and Simulation
Strategy. The ModSAF-COMPASS interface allows
planners to evaluate collaborative mission plans by
using ModSAF simulation capabilities.
Implementing this interface involved creating a new
ModSAF library that uses the API provided by the
COMPASS client library. This client library
encapsulates the application-level protocol that
enables the exchange of overlay and route
information between the COMPASS server and
ModSAF via RPC. Additional details are given in
Section 4.1.

The third integration approach is to utilize DIS
protocol data units (PDUs) to exchange information
between application components. To do this, new
PDU types must be defined and additional software
to generate and process these new PDUs must be

444

TAMPS

SOFPARS

Virtual
Simualtions

Live
Simulations Constructive

Simulations

Figure 4: Mission Planning and Evaluation with
COMPASS

written for both systems. In the HLA, this approach
would use the RTI to communicate between the two
processes. The advantages of this approach are that
the application components can be distributed and
that the DIS application's basic flow of control need
not be disrupted. Some disadvantages of this method
are that the integration is more complex than the
first two approaches, and that additional software is
required to make it reliable.

The DIS PDU approach is the one we have taken in
interfacing the Virtual Commander (VCDR)
learning functions to ModSAF. VCDR is a Lisp
program that uses Disciple to perform learning for a
ModSAF instructable agent (Hieb, Tecuci & Pullen
1996). In this case, we constructed an interface using
experimental PDUs that transport the data necessary
for the instruction process. Existing ModSAF library
functions are used to send/receive the new PDU and
register the appropriate callback. A DIS front end
was implemented in Lisp for Disciple. The front end
call functions to send and receive PDUs during the
instruction process. Additional details of this
integration are given in Section 4.2.

4.1 ModSAF-COMPASS Interface

In this section, we discuss the interface developed
between COMPASS and ModSAF. COMPASS is a
collection of distributed collaborative planning

(DCP) services that allow legacy mission planning
systems to interoperate with other COMPASS-
compliant mission planning systems and DIS
simulation systems. COMPASS is implemented as
a collection of servers providing DCP session
management, shared map overlay exchange,
composite route preview, and DIS-based composite
mission preview. COMPASS currently supports
several air operations planning systems, such as the
Coordinated Adaptive Planning System (CAPS), the
Special Operations Force Planning and Rehearsal
System (SOFPARS), and the Tactical Air Mission
Planning System (TAMPS).

ModSAF is a DIS-compliant simulation system
consisting of a graphical user interface, one or more
simulators, and an optional logger (Ceranowitz,
1994). ModSAF simulates entity-level actions and
provides realistic terrain reasoning capabilities.
ModSAF uses the DIS protocols to share
information with other DIS-compliant simulation
systems (Loral, 1995).

The interface constructed illustrates the potential for
linking virtual simulations such as ModSAF to the
COMPASS architecture. This linkage allows a
collection of heterogeneous mission planning
systems to access ModSAF (through COMPASS) in
order to evaluate collaborative mission plans. Figure
4 shows the iterative mission planning and
evaluation process using heterogeneous mission
planners, the COMPASS servers, and simulators.
Users of heterogeneous mission planning systems
can collaborate, each using a system that is familiar
to them, and create composite missions. These
missions are then exported to the COMPASS servers
and retrieved and executed by a variety of simulation
systems. The simulation results can be fed back in
the form of DIS PDUs and viewed by the
participants in the DCP session. The results can be
evaluated and the mission restructured to take
advantage of the feedback obtained from the
simulation.

4.1.1 Design Issues

We will now consider the design of the COMPASS-
ModSAF interface in the context of the issues raised
in section 3: data representation, degree of process
distribution, interprocess communication, and
quality of service requirements.

445

COMPASS SERVERS /\ MODELING, PLANNING, & SIMULATION SYSTEMS

O
CO

00

<

M 0
2 3

o 5 £
co ^ c&
"• O SQ

n

* Shared ' .<-
Overlay

(SOM) Server

Session *•
Management

(SMGT) Server

CRP Library <

SOM Library -4-

SMGT Library-*
-•

COMPASS Client
Libraries

C
O
M
P
A

S

A
^P

I

C„
o
M
P
A
S
S

c
p
\

TCP/IP Network

GUI

Database

Figure 5: COMPASS Interface Architecture

As stated above in section 3.3, the choice of
interprocess communication mechanism is very
much based on the prior choice of the degree of
process distribution. In this case, binaries for
linkable libraries that implement the API function
described in the COMPASS ICD were made
available to us. The API functions provide an RPC
facility, allowing interaction with the COMPASS
servers without explicit use of message passing
primitives.

The Interface Control Document (ICD) for the
COMPASS Architecture (SAIC 1995) provides a
detailed description of a data structure and
representation to be used by COMPASS-compliant
applications when communicating with the
COMPASS servers. This document also describes
the API through which application programs must
communicate with the COMPASS servers. As these
API functions expect arguments in a specific data
format, the choice of data representation was
predetermined. Similarly, the document describes

Figure 6: Remote Procedure Call in COMPASS

446

an interface architecture, shown in Figure 5, in
which the COMPASS servers are separate processes
and the collaborative planning applications
communicate with them through the COMPASS
libraries. Therefore, we chose the architectural
approach in which ModSAF and COMPASS reside
on separate hosts and communicate via a network.

An example of RPC as used in COMPASS is shown
in Figure 6. Two of the COMPASS libraries, libsom
and libsmgt, are linked with ModSAF at compilation
time. When a ModSAF user invokes a libcompass
function requiring a remote function be executed on
one of the COMPASS servers, e.g. the SOM server,
(1) libcompass calls a function in libsom. This
function (2) is responsible for packaging the
arguments for the server routine into one or more
RPC messages along with a code indicating which
remote function is to be executed and sending the
message to the SOM server. When the server
receives the RPC message (3), it unpacks it and
determines which function to call based on the
aforementioned code. The function is called with the
arguments received in the message. When the server
function has completed (4), the results are passed
back to the dispatch function in the SOM server. (5)
The results are packed into a reply message and sent
back to libsom. (6) Upon receiving the reply
message, libsom unpacks the results and returns
them to its caller, a function in libcompass. Thus,

from the perspective of libcompass, the remote
procedure has been invoked through a simple
function call without the explicit use of message-
passing primitives. As shown Figure 6, the same
process occurs when remote functions are executed
on the SMGT server.

In the absence of multiple threads of execution
clients block or poll for results after sending an RPC
request to the server. This makes RPC difficult to
integrate into a real-time application's existing
control flow, especially if the application needs to
perform other tasks (such as simulating entities) and
is instead waiting for data, effectively freezing the
entire simulation. To address this problem, the
client stub may timeout after not receiving a reply in
a specified period of time, causing the RPC to fail.
Still, although RPC serves to abstract away message
passing primitives, it cannot be said that the message
passing is truly transparent to the client application,
as new forms of failure are now possible beyond
those that could occur if the server procedure were
being called locally.

Our interface design addresses the quality of service
issues described in section 3.4. Since ModSAF is a
DIS application, low latency is a very important
requirement. Communication between ModSAF and
the COMPASS servers takes time, especially if the
COMPASS servers are located on a remote subnet.

~. A6»£V Sfm/kstt %/a>r#*>tt /.£, / OP OAVtf-tC.]

FQo Map Scute Map feature* Show As Locul Force Force Ctafti&ttaUon HHour* Special Frtv0e$r |] 7.40:46

JJ©J

±P
i£J.5J

siiJJ

xr~x—f ~~?* >jr- T

I

9

MOAJH-47 1. a00,012

Z1\ iifl &iv Wl ^ .XT

 —
1

. . , h x •a*

1
"

"5 r \s3 ————

e
t
6
•i
4
*
2

J.

7

j

| | 0

»

—IS

*A K 12SI1

i !
»t** 11- 1 i 1

.1 ,; .< !. 6 V n » O 1 2 3 * S 6 * 0 -1 O 1 i. 5 4 S &
."worn tii.-Ji ml^dic la «MJCI tr. • rejncpelrM. cAi-fc rtg>u i««am «u< Kuvndf*ni,

i ock »nt' ti «f m^d.' ic *r
'<•"*"•"•

Overlay Manager

•>
Connection Mar r

laviano<$davinei.Kmu Service*: SMCT SC

Object Manual*

K')i I'I Am !ji

roo
..———, JYJ!*j

a
itua

impui« Interface " : Select an overlay

Figure 7: COMPASS Interface Tool

447

Because the interaction between ModSAF and
COMPASS is used to establish a ModSAF
simulation scenario, it takes place before any
simulation activity occurs. In this case, additional
latency is not a consideration because the system
need not meet real-time latency requirements.

In this interface, we did not consider communication
reliability or security issues because all message
passing was encapsulated within the COMPASS
libraries that were provided to us. Both the
COMPASS servers and ModSAF are robust.
ModSAF has facilities to shift entities from host to
host if a host goes down via the PO database, and
COMPASS maintains similar databases from which
servers can recover if they crash.

4.1.2 Architecture

COMPASS Interface Editor
A

v
Iibcompass

A

f
libsom libsmgt

f
ModSAF
Libraries

Network

Figure 8: ModSAF-COMPASS Interface
Architecture

We now describe the architecture of the COMPASS-
ModSAF interface as pictured in Figure 8. ModSAF
has been designed with modularity and ease of
expansion in mind, and for this reason, it consists of
over 450 libraries. We decided that the best way to
add to the ModSAF architecture without disrupting
existing components was to create a new COMPASS
interface library, Iibcompass, to isolate changes
within this library

The ModSAF GUI provides several editors that
allow the user to perform various tasks such as
creating new entities, and adding graphical images
to the map overlay. Among the additions to
ModSAF found in Iibcompass is a new ModSAF
editor, developed in Motif, that is accessed by
pressing a new COMPASS button on the ModSAF
GUI, as shown in Figure 7. The editor provides a list
of users who are currently participating in the DCP
session and a list of other COMPASS services these
users are currently subscribed to. The editor also
provides a list of shared overlays that currently
reside in the COMPASS Shared Overlay
Management (SOM) server's database. This
information is obtained by Iibcompass through the
COMPASS API functions provided in the
COMPASS libraries, libsmgt and libsom, compiled
with ModSAF. The editor allows a user to select an
overlay. This causes Iibcompass to obtain a list of
route objects contained within the selected overlay
from the SOM server. The user can then click on
the route object corresponding to the route to be
simulated.

A COMPASS route consists of an entity description,
a set of waypoints comprising the route, flight
characteristics which indicate when the entity arrives
at each waypoint, and a set of events (each of which
is associated with a waypoint).

Once a route is selected, Iibcompass maps the
COMPASS entity described in the route to the most
appropriate available ModSAF entity. This is done
via a mapping function that makes use of an
extensible mapping file that can be modified without
recompilation of ModSAF. After the mapping is
complete, the coordinates of the entity's starting
location are converted from latitude/longitude format
to topocentric coordinates (TCC) for use by
ModSAF. The ModSAF entity is then created at the
initial waypoint though the utility functions in
libunitutil, another ModSAF library.

Then, all other waypoints are converted to TCC
format and placed in ModSAF's persistent object
(PO) database by using the functions in libpo, a
ModSAF library relating to the PO database. A chain
of tasks is then created, by using the utility functions
in libtaskutil along with some additional code,
tasking the entity to fly from waypoint to waypoint,
one after another. This task is placed "On Order",
meaning that simulation of the route does not begin
immediately, but is pending and will begin at the
time the user invokes the task.

448

4.2 Virtual Commander Interface

The second case study we present is an
implementation of an interface between ModSAF
and Disciple (Tecuci, 1988) for the Virtual
Commander System. Disciple is a machine learning
system written in Lisp that runs on a typical Unix
workstation. It employs multistrategy learning,
combining explanation-based, analogical, and
example-based methods with knowledge acquisition
to learn from a subject matter expert (SME).

VCDR Editor

libdisciple

ModSAF

Network
DIS PDUs

Disciple

VCDR API

DIS Front-end

DIS PDUs

As CGF technology advances sufficiently to allow
CFORs to be created and deployed, knowledge
acquisition will become a critical issue. The Virtual
Commander system is an approach to solving the
problem of knowledge acquisition for CFORs.
VCDR is an instructable agent which utilizes
Programming by Demonstration (Cypher, 1993) and
Machine Learning techniques to allow a SME to
teach an agent. Programming by Demonstration
systems give an end user the ability to create
programs by demonstrating their action.

We have prototyped this approach with the Captain
system (Hieb et. al. 1995) which consisted of a file-
level integration of the apprenticeship learning
system Disciple and ModSAF. In order to integrate
Disciple fully with ModSAF we expanded upon the
Captain interface in two areas. Rather than utilizing
a textual interface for the training/learning process,
we are developing VCDR ModSAF editors that
allow the use of the terrain map interface (plan view
display) in ModSAF. To convey the data from the
ModSAF editors, we are interfacing the learning
functions of Disciple to ModSAF using an
experimental DIS protocol data unit (PDU).

4.2.1 Design Issues

Our design and implementation is driven by three
significant factors: real-time performance, data
representation, and control of the learning cycle.
The initial concern addressed in this implementation
was the difficulty of integrating an application that
relies on real-time delivery of data (ModSAF) and
one that does not (Disciple).

The performance or latency issue was important
since ModSAF, a DIS application, typically requires
real-time transmission of data. The
ModSAF/Disciple interface does not require this type
of service. In fact, due to the algorithms involved in

Figure 9: Virtual Commander Architecture

the various learning phases of Disciple, it would be
difficult to achieve real-time response from Disciple.
Therefore, the concern about real-time performance
is how to construct a non-real-time communication
that does not cause perceptible delay in ModSAF.
We implemented this non-real-time communication
by distributing the processes over a network allowing
each process to utilize the full resources of their
respective workstations, since both applications are
very computationally intensive.

To construct this interface we delivered messages via
DIS PDUs. Integrating this message passing scheme
into ModSAF was done using the extensive libraries
that ModSAF makes available, namely the PDU API
and PDU Processing libraries. By using these
libraries our messaging was integrated into the
ModSAF control structure such that ModSAF
executed normally. In other words, ModSAF does
not block while waiting for our message, which
would disrupt the flow of ModSAF's execution.
This was achieved by using functionality provided by
the ModSAF library, libpduproc, to register a
callback to handle the message upon ModSAF
receiving it. When ModSAF receives one of these
messages it will call the registered handler function.
Integrating a message passing facility into Disciple
required implementing a front-end to Disciple in C
that was callable from Lisp via its foreign function
interface (Harlequin, 1994).

A second issue was the format in which the data
would be communicated between the applications.
While ModSAF stores its data in a Persistent Object
(PO) database, Disciple represents its data in the
form of a semantic network. In order for the two
systems to communicate, a common format was
constructed, described in the PDU in Table 2. The

449

Description Size
(bits)

DIS 2.03 header 96
Message ID 32
Fragment number 32
Learning phase 32
Message type 32
Message length 32
Message 8*length

Table 2: Virtual Commander
Experimental DIS 2.03 PDU Format

message within the PDU is data extracted from
either the PO database or from Disciple's semantic
network. The experimental PDU format was
developed and introduced into ModSAF. By
utilizing DIS PDUs to perform the messaging for the
VCDR system, we can use a messaging
infrastructure already established for DIS.

The final issue was the need to move the control
interface from Disciple to ModSAF. Originally, the
Steps taken by the SME to teach Disciple were
selected from a menu presented by the Disciple
software in Lisp, based on which phase of the
learning process was being executed. When
introducing the GUI editor into ModSAF, the control
mechanism was transferred to ModSAF. A new
library, libdisciple, was built into ModSAF to
implement the control features needed. The resulting
interface is much more natural to its intended user.

4.2.2 Architecture

Figure 9 depicts the architecture of Virtual
Commander consisting of ModSAF, Disciple, a new
library for ModSAF called libdisciple, a DIS front-
end for Disciple, and an API for Disciple.

The front-end developed for Disciple to send and
receive DIS PDUs implements three API functions:
vcdr_init(), GetVCDRPDUf), and SendVCDRPDU()
as shown in Figure 10. The initialize function is
called once when Disciple is started. It creates a
socket with a well-known port to receive incoming
messages. The GetVCDRPDUf) function performs a
blocking read of the socket. This is the state
Disciple is usually in, waiting for the next request
from the SME via ModSAF. Upon receiving a PDU
the message contents are returned to Disciple. The
SendVCDRPDU() function, on the other hand,
packages and sends a message as a VCDR PDU to
ModSAF.

In the newly created ModSAF library, libdisciple,
several functions were added to perform the VCDR
functions. These components and their interaction is
shown in Figure 11. An editor was created, and is
initialized in discip_init_gui(), for the GUI to accept
commands from the SME. The learning data and
phase of the learning cycle is packaged in the PDU
and sent directly to Disciple's socket as a unicast
message by discip_done(). (This is a departure from
the use of ModSAF-provided functionality of
broadcasting or multicasting.)

Disciple Control Loop

VCDR
API

vcdr_init()

Encoded
VCDR

Message

Decoded
VCDR
Message

Send VCDRPDU()

GetVCDRPDUQ

Foreign Function Interface

VCDR PDU

DIS Front-end

Network

VCDR PDU

DIS PDUs

Figure 10: Disciple VCDR Components

VCDR Editor

libdisciple

discip_init_gui()

Encoded
VCDR

Message

Decoded
VCDR
Message

vcdr_pdu_handler()

discip_done()

f
VCDR PDU

ModSAF Libraries

Network

VCDR PDU
A

DIS PDUs

Figure 11: ModSAF VCDR Components

450

When the VCDR PDU is received by ModSAF it
passes it to the callback function,
vcdr_pdu_handler(), that was registered earlier.
From this point, one of several procedures is called
based on the value of the phase field in the PDU. If
appropriate, the plan view display or the Disciple
editor in ModSAF will be updated to reflect the
message in the last VCDR PDU received.

Although we have considered the fact that the
messages between ModSAF and Disciple need to be
delivered reliably, the current implementation does
not guarantee that. It is common in situations like
this for the application to take on the responsibility
of ensuring successful transmissions where the
network protocol is unreliable, such as with UDP. In
the future, the use of a protocol such as the proposed
Selectively Reliable Transport Protocol (SRTP)
(Pullen and Laviano, 1995), which provides varying
levels of reliability would allow the application to
choose the degree of reliability necessary.

5. Related Work

With the advent of Command Forces (CFORs) and
Intelligent Forces (IFORs) it has become necessary
to add many more external reasoning and learning
processes to their agent architectures. Some of these
methods are already under development

MITRE is developing a Command and Control
Simulation Interface Language (CCSIL) to provide
a common language for CFORs (Salisbury et. al.
1995). CCSIL represents a language, a set of
vocabulary and terminology, that is used to
communicate between command entities and
subordinate entities or vehicles. The interface is
implemented by transporting the CCSIL messages
within a DIS Signal PDU. This corresponds to the
third approach that was described earlier.
Additional effort is necessary to interface existing
applications to DIS Simulations.

The Soar/IFOR research group also is developing an
architecture to provide intelligent forces. The
interface of Soar and ModSAF represents the first
approach we described earlier. Soar is a general
cognitive architecture that provides intelligent
agents. The Soar architecture combines with the
graphical interface, network interface, and scenario
creation and execution tools of ModSAF to provide
an architecture for intelligent forces. Currently, the

group is integrating the CCSIL command language
(Hill 1996).

The RTI of the HLA presents another integration
approach. The RTI will provide a set of services
which facilitates integration of simulations, C*I
systems, and engineering models. The RTI will
utilize a more reliable transport mechanism than
DIS and the RTI APIs will be more standardized,
which will eliminate some of the disadvantages of a
DIS interface, which lacks a standardized API.

6. Conclusions

The choice of interface approach may be determined
partially by external factors (as with COMPASS,
where a client library was provided that facilitated
RPC calls). However, there is always latitude in
some aspects of the implementation. The crucial
factors that will determine the best choice are 1)
Data Representation; 2) Distribution of Processes
and Associated Communication Issues; and 3)
Transport Mechanism. Consideration of the issues
raised above will allow a more informed design
when constructing the interface between a DIS
application and an external process as demonstrated
in the case studies above.

7. Acknowledgments

This research was conducted in the Center for
Excellence in Command, Control, Communications
and Intelligence and the Computer Science
Department at George Mason University. Work on
ModSAF-COMPASS was sponsored in part by the
Defense Modeling and Simulation Office (DMSO)
under DISA contract DCA100-91-C-0033. The
authors thank Dr. Gheorghe Tecuci for his assistance
with the Disciple Learning System and the
COMPASS group at SAIC, Inc. for their cooperation
and assistance.

8. References

Birrell, A., and Nelson, B. (1984). "Implementing
remote procedure calls," A CM Transactions on
Computer Systems, Vol. 2, pp. 39-59.

Calvin, J. and Weatherly, R. (1996). "An
Introduction to the High Level Architecture
(HLA) Runtime Infrastructure (RTI)," 14'h

Workshop on Standards for the Interoperability

451

of Distributed Simulations, paper 96-14-103,
May 1996.

Ceranowicz A. (1994). "ModSAF Capabilities," 4,h

Conference on Computer Generated Forces and
Behavior Representation, May, Orlando,
Florida.

Cypher, A. (Ed.). (1993). "Watch What I Do:
Programming by Demonstration," MIT Press,
Cambridge, MA.

Harlequin Group Limited, The (1994). LispWorks
User's Guide.

Hieb, M.R., Tecuci, G., Pullen, J.M., Ceranowicz,
A., Hille, D. (1995). "A Methodology and Tool
for Constructing Adaptive Command Agents for
Computer Generated Forces," 5'h Conference on
Computer Generated Forces and Behavioral
Representation.

Hieb, M.R., Tecuci, G, Pullen, J.M. (1996). "Virtual
Commander - An Instructable ModSAF Agent,"
6th Conference on Computer Generated Forces
and Behavioral Representation.

Hill, Jr., R. (1996). Intelligent Forces for Simulated
Environments: Contractor's Progress Status &
Management Report, May, 1996 <URL:
http://www.isi.edu/soar/ifor/reports/monthly/ma
y96.html>

IEEE Standard 1278.2 (1995). Standard for
Distributed Interactive Simulation -
Communication Services and Profiles, Institute
of Electrical and Electronics Engineers, Inc.

Laird, J. E., et al. (1995). "Simulated Intelligent
Forces for Air: The SOAR/IFOR Project 1995,"
5'h Conference on Computer Generated Forces
and Behavioral Representation.

Loral Advanced Distributed Simulation (1995).
ModSAF 2.0 Developer's Kit.

Pullen, J.M., and Laviano, V.P. (1995). "A
Selectively Reliable Transport Protocol for
Distributed Interactive Simulation," 13'h DIS
Workshop on Standards for the Interoperability
of Distributed Simulations, Paper 95-13-102.

SAIC (1995), Interface Control Document (ICD)for
the COMPASS Architecture, for NRaD.

SAIC (1996), Common Operational Modeling,
Planning and Simulation Strategy.
<URL: http://prw7.saic.com>

Salisbury, M.R., Booker, L.B., Seidel, D.W. and
Dahmann, J.S. (1995). "Implementation of
Command Forces (CFOR) Simulation," 5'h

Conference on Computer Generated Forces and
Behavioral Representation.

Soar/IFOR Research Group (1996). Soar/IFOR
Documentation.
<URL: http://krusty.eecs.umich.edu/ifor>

Sun Microsystems. (1987). "XDR: External Data
Representation Standard," RFC 1014, June,
1987.

Tecuci, G. (1988). "DISCIPLE: A Theory,
Methodology and System for Learning Expert
Knowledge," Ph.D. Thesis, University of Paris
South.

Tecuci, G, Hieb M.R., Hille D. & Pullen
J.M.(1994). "Building Adaptive Autonomous
Agents for Adversarial Domains," Proceedings
of the AAAI94 Fall Symposium — Planning and
Learning: On To Real Applications.

Yang, Z. and Duddy, K. (1996) "CORBA: A
Platform for Distributed Object Computing,"
Operating Systems Review, Vol. 30, No. 2, pp.
4-31.

9. Authors' Biographies

Elizabeth White is an Assistant Professor at George
Mason University (GMU). She received M.S. and
Ph.D. degrees in Computer Science from the
University of Maryland in 1990 and 1996,
respectively, and a B.S. degree from the College of
William and Mary in 1985.

Ken Frosch is a Graduate Research Assistant in the
C3I Center at GMU. He is currently on leave of
absence from Lockheed Martin Federal Systems
where he has been a Systems Engineer since 1991.
He received his B.S. in Computer Science and
Mathematics from the University of Wisconsin -
Madison in 1991.

Vince Laviano is a Graduate Research Assistant in
the C3I Center at GMU. He received his B.S. in
Computer Science from GMU in 1995. He has
published papers in the area of distributed
simulations.

Michael Hieb received a Ph.D. in Information
Technology at GMU in 1996. Dr. Hieb is currently
working for SAIC on the Multiple Reconfigurable
C*I Interface (MRCI) project. He has published over
20 papers in the areas of learning agents,
multistrategy learning and knowledge acquisition.

J. Mark Pullen is Associate Professor of Computer
Science and member of the C3I Center at GMU. Dr.
Pullen was with the Defense Advanced Research
Projects Agency (DARPA) from 1986 to 1992, where
he was Program Manager for Advanced Computing,
Networking and Distributed Simulation.

452

Session 7a: Individual Combatant Behavior

Karr, UCF/IST
O'Keefe, U. S. Army Natick RD&E Center

Reece, UCF/IST
Fineberg, Pacific Sierra Research

Threat Analysis using Fuzzy Set Theory
Jaime E. Cisneros1, Clark R. Karr1, Dr. Pamela R. McCauley-Bell", and Sumeet Rajput1

Institute for Simulation and Training
3280 Progress Dr., Orlando, FL 32826
ckarr@ist.ucf.edu

2Dept. of Industrial Engineering
University of Central Florida, Orlando, FL 32816
bell@iems.engr.ucf.edu

1. Abstract

One of the facets of realistically representing
individual vehicles within Computer Generated
Forces (CGF) systems is the targeting behavior of
vehicles in the battlefield. Target analysis and
selection involve several components, such as target
detection and identification, as well as, threat analysis
and selection. This paper describes a threat analysis
algorithm based on Fuzzy Set Theory developed
within the Modular Semi-Automated Forces
(ModSAF) CGF system. Fuzzy Set Theory expresses
ambiguous and complex situations, such as those that
arise in real life threat analysis. IST's threat analysis
algonthm produces, for each target, a membership
value in the Threatening set by calculating and
aggregating the membership values of the sets
representing nine threat factors.

2. Threat Analysis

The target selection process is one of the many
entity/vehicle behaviors that are challenging to
simulate realistically. It consists of several facets:
line of sight determination, target detection and
identification, threat analysis, and target selection.
This research concentrates on one facet of the
targeting process: threat analysis. Threat analysis in
CGF systems determines the threat level of an entity's
detected targets. It features factors modeled after real
life factors considered by soldiers in the battlefield.
For the remainder of the report, "platform" means the
entity doing the threat analysis, while target means
the entity being analyzed.

The simplicity of the rule-based system allows for
ease of modification and maintenance. However, this
simplicity doesn't account for many complex
situations. The factors considered by this approach
are:

• Vehicle type: Infantry Fighting Vehicle
(JPV), main battle tank, etc.

• Target status: alive, damaged, flaming, or
destroyed.

• Target actions: moving or stationary.
• Target type: IFV, main battle tank, etc.
• Vehicle's weapons' ranges.

All these factors, in rule form, are combined to obtain
a threat value for a given target (Smith et. al. 1992a).

2.1.2 ModSAF

ModSAF's approach is more elaborate. It combines
rules encoded in C-code and multipliers to scale a
target's initial threat value. The initial threat value is
based on the distance from the platform to the target
and the target's acquisition level1 (Loral 1994a).

2.1.3 CCTTSAF

From information that has been obtained, it appears
that the CCTT SAF uses an approach similar to
ModSAF's.

2.1 Threat Analysis Background

Although threat analysis has complex and ambiguous
situations in real life, it is simulated simplisticly in
CGF systems. Some of the better known CGF
systems are: the 1ST CGF Tested, ModSAF, and
CCTT SAF.

2.1.1 The 1ST CGF Testbed

The 1ST CGF Testbed performs threat analysis by
using a simple rule-based system encoded in C-code.

ModSAF uses the NVEOL (Night Vision and Electronic Optical
Laboratory) model to perform target acquisition. This model
establishes that each sensor has a list of vehicles that are or could
be detected. Each entry in the sensor's sensed list is coded by the
acquisition level. Levels include: [N_FOV (target in sensor's field
of view [FOV], but not detected), DETECTED (observer knows
target has some military significance). CLASSIFIED (observer
can distinguish general type, i.e. tracked vs. wheeled),
RECOGNIZED (observer can distinguish function, i.e. APC vs.
tank), IDENTIFIED (observer can distinguish model, i.e. T72 vs.
T80).

455

2.2 Other Approaches To Perform Threat
Analysis

There are other approaches that can be used to
perform threat analysis such as Rule-based Systems,
Neural Networks, and Fuzzy Set Theory.

2.2.1 Rule-based Systems

The 1ST CGF Tested and to some extent ModSAF
use a simplistic rule-based system encoded in C-code.
This approach is attractive because it is a natural way
to express decision making, but these rules do not
handle ambiguity well because they have to check
hard boundaries. Rule-based systems can become
complex and hard to maintain as factors and
situations are analyzed in finer details (Charniak et.
al. 1987). The analysis of finer details prompts the
creation of more rules, increasing the complexity of
the rule-based system. As additional factors are
considered, the rule base tends to grow exponentially.

2.2.2 Neural Networks

Neural networks (NN) are typically organized in
layers. Layers are made up of a number of
interconnected nodes, which contain an activation
function. Patterns are presented to the network via the
input layer, which communicates to one or more
hidden layers, where the actual processing is done via
a system of weighted connections. The hidden layers,
then, link to an output layer where the answer is
produced (Hertz et. al. 1992).

Neural networks are in a sense the ultimate "black
boxes." Apart from defining the network architecture,
designing the training set, and seeding the
interconnection weights with random numbers, the
user has no other role than to input the training set,
and wait for the NN to become trained (i.e. learn the
training set). The learning itself progresses on its
own. The final product is a trained network that
provides no equations or coefficients defining a
relationship (as in regression) beyond its own internal
mathematics. The network is the final equation of the
relationship. To this date, there is no obvious way to
understand the meaning or even verify the correctness
of the interconnection weights that come from the
training.

2.2.3 Fuzzy Set Theory

Fuzzy Set Theory (FST) has provided a consistent
and proven means to model many real world
environments (King (1988) and Gupta (1988)).

FST does not sharply define sets as traditionally done
in set theory. Set theory is governed by binary
principles, such that a variable either belongs to a set
(membership equals 1), or it does not belong to the
set (membership equals 0). FST does not restrict set
membership to complete (1) or none (0). Instead, it
permits membership to be defined over the interval
[0,1]. Membership expresses the degree an element
belongs to a fuzzy set, and expresses the imprecision
of many real world situations.

Membership functions are a characteristic of the data
set under analysis, and can take on many forms.
Several geometric mapping functions have been
developed, including S, n, trapezoidal, triangular, and
wedge shaped functions. Most of the membership
functions that will be used in this experiment will be
trapezoidal-shaped functions. The trapezoidal
membership function is used to represent a set that is
expected to exhibit a linear relationship. In this
instance, there is not an optimal point or value which
has complete membership. Rather, there is a range of
values which have complete membership in the set.

The nature of FST makes it useful for handling a
variety of imprecise or inexact cognitive conditions.
"Inexactness" in cognitive information may arise due
to a number of situations. To differentiate between
these situations, or classes of problems associated
with the use of FST, Kandel (King 1988) has
subdivided the categories within which most
problems assessed by FST fall. These include:
generality, ambiguity, and vagueness.

1. Generality is the use of FST for specifying a
general condition which can apply to a
number of different states. A variety of
situations can be characterized in this
manner where the defined universe is not
just a point (Gupta, Knopf, and Nikiforuk
1988).

2. Ambiguity is the use of FST to describe a
condition where more than one
distinguishable sub-concept can
simultaneously exist.

3. Vagueness is the use of FST to present those
cases whose precise boundaries are not well-
defined. The boundaries in this case may be
described as non-precise or non-crisp.

All of these types of fuzziness (i.e., generality,
ambiguity, and vagueness) are present in real world
applications, and can be represented mathematically

456

by a fuzzy set. This capability of FST prompted its
use in IST's approach to threat analysis.

3. Threat Analysis using Fuzzy Set Theory

The perceived threat posed by various targets, in real
life scenarios, is situation dependent, and a function
of a variety of circumstances or factors, such as,
emotional state, fatigue, attention, perceived
operational activity of target, commander's intent,
etc. For this project, IST's Subject Matter Expert
(SME) isolated nine factors involved in threat
analysis. These nine factors correspond to a mixture
of high and low importance factors. The nine factors
are:

1. Aggregate Threat Assessment.
2. Near Counter Threat.
3. Target's Effective Range.
4. Target Firing Status.
5. Aspect Angle.
6. Relative Elevation of Target.
7. Target Movement.
8. Target Type.
9. Sector of Fire.

3.1 Aggregate Threat Assessment

Ignoring other factors, a target in a threatening unit is
more threatening than one in a non-threatening unit.
For example, a target in an assaulting unit is more
threatening than one in a unit doing a road march.
The factors considered in the aggregate threat
assessment are:

3.1.1 Formation

A visible target and the visible targets within a "unit
radius" of the first target are considered to be a
"unit." The position and spacing of the targets in the
"unit" relative to the platform are analyzed to
determine one of six formations: none, wedge,
staggered line, column, line, and vee (Cisneros et al.
1995). Formation "none" has a value of 0; the others
have a value of 1.0.

3.1.2 Distance

The distance from the platform to the target's unit has
obvious importance; if the platform is within
weapons' range of the unit, the target poses a threat.
The weapons' range has been divided into 4 threat
levels to indicate the threat level of the target's unit:
minimal, marginal, lethal, and deadly.

• Formation.
• Distance.
• Heading.
• Aiming status.
• Closing speed.
• Percentage of stationary targets.

The effect of the six unit factors is brought together to
estimate the unit's level of threat. This is
accomplished by performing an union operation of
the factors, and is given by the equation:

Aggregate Threat Assessment =

V unit facton
;=i

Number of unit factors

The value of each unit factor is in [0,1].

Figure 1: Lethality Areas.

The value of the distance factor is the degree of
membership in (Figure 2).

Membership degree

2.0 - (distincc/FER)'

LM * (2.0 - (dlsuncc/ER)')

MM • (2.0 -(disuncc/MR)')

Minimal

Figure 2: Weapon's Range of the Unit Fuzzy Set
divided into four Fuzzy Sets.

457

where:
FER: Fraction of the weapon's effectiveness

range.
EF: The weapon's effective range.
MR: The weapon's maximum range.
LM: The lethal area membership (parametric

data).
MM: The marginal area membership

(parametric data).
S: Exponent to select the steepness of the

line (parametric data).

3.1.3 Heading

The target's unit direction of travel is used to estimate
its threatening behavior. An enemy unit traveling
towards a platform is considered more threatening
than one moving away. A trapezoidal membership
function centered on the line connecting the target
and the platform with a parametric width supplies the
membership value.

1.0-

0

Unit Bearing

Figure 3: Membership function for Unit Heading

3.1.4 Aiming Status

The aiming status expresses the aiming behavior of
the target's unit. A trapezoidal membership function
centered on the line connecting the aggregate bearing
of the guns in the target's unit and the platform with a
parametric width supplies the membership value.

3.1.5 Closing Speed

The speed at which the unit is approaching the
platform determines this factor's membership value.
A wedge membership function centered on the target-
platform line determines the threat value (Figure 4).

Membership degree

1.0--

(unit's average speed / unit's maximum speed)

o Maximum speed of the unit

Unit Speed

Figure 4: Speed Fuzzy Set.

3.1.6 Percentage of Stationary Targets

The percentage of stationary targets determines the
number of unstabilized weapons that can be fired.
The greater percentage of stationary targets, the
greater the threat.

This completes the discussion of aggregate threat
assessment. The remaining factors call for pairwise
target-platform threat assessment.

3.2 Near Counter Threat

The threat level of a target decreases if there are
friendly vehicles nearby that can destroy the target.
This factor is modeled by:

H(x) = 1.0-0.1 l/x

where:
x: number of near counter threats.

Notice that as the number of nearby counter threats
grows very large, the membership value does not go
down to zero. Having many counter threats around
does not mean that the target stops being a threat to
the platform.

3.3 Target's Effective Range

A platform is in danger when it is within weapons'
range of a target. To measure the threat level and
model this factor, the weapons' maximum and
effective ranges are used to create a set of ranges,
corresponding to four threat levels: minimal,
marginal, lethal, and deadly (see Section 3.1.2).

458

3.4 Target Firing Status

A target's firing behavior effects its threat level. A
target that is engaging or preparing to engage the
platform is quite threatening. A target that has fired
at a friendly vehicle is less threatening, while a target
that is scanning for vehicles is even less threatening.
This factor considers four sub-factors, two crisp and
two fuzzy factors, organized in decreasing threat
order. The sub-factors are:

• Target has fired at the platform.
• Target is aiming at the platform.
• Target has simply fired.
• Target is scanning.

3.4.1 Target has fired at the platform

A target that has fired at the platform represents an
enormous threat to the platform's survival. Direct
fire at the platform, then, gives the highest
membership value in the fuzzy set to the target.
LibVEnemy (a ModSAF library) implements a task
which accumulates incoming impacts near a vehicle,
in order to determine whether the vehicle is under
attack. Information about the number of rounds and
the targets shooting those rounds is maintained.
Query interface functions are provided to ask whether
the platform thinks it is under attack, and if so, by
whom (Loral 1994b). To avoid using ground truth,
IST's threat analysis is performed only on targets that
have been identified, that is, targets that can be found
in the list of Spotted Targets. Therefore, determining
if a target has fired at a platform can only be made if
the platform "crew members" have seen the target fire
at them. This is a crisp factor (the value is 0 or 1.0)
represents no ambiguity about whether a target is
attacking the platform.

3.4.2 Target is aiming at the platform

A target aiming at a platform is indicative of a target
preparing to fire at the platform. Thus, a target
aiming at a platform is more threatening than one that
is aiming its main gun in some other direction. A
trapezoidal membership function, based on the
bearing of the gun relative to the platform, determines
the value.

3.4.3 Target has simply fired

If a target has fired, it is presumably attacking
friendly forces. This behavior increases the threat
level of the target. LibVEnemy provides a way to

determine whether a local target has fired within a
specified time. The limitation exists because fire
PDUs are not monitored for non-local vehicles. To
avoid misusing ground truth, only spotted targets are
considered. The nature of the information provided
by LibVEnemy is factual, so this factor is a crisp
factor.

3.4.4 Target is scanning

A target demonstrates a threatening behavior if it is
actively searching for vehicles to engage. Thus, a
target that is estimated to be scanning for vehicles
poses an obvious threat. This fuzzy factor is based on
the degree of membership of the target's approximate
scanning rate in the Scanning fuzzy set.

3.5 Aspect Angle

The aspect angle is the direction an aircraft is aiming
its weapons. This factor is considered for aircraft
only because aircraft don't have turrets or "main-
guns" as ground vehicles do. The threat value of a
target aircraft increases if it is lined up to perform an
attack. To determine if a target aircraft is in position
to carry out an attack, the bearing of the target aircraft
is calculated. Then, the degree of membership is
determined by a trapezoidal membership function:

3.6 Relative Elevation of Target

The relative elevation of a target is of importance
because high ground gives an advantage to a target.
This factor has less importance than others and was
introduced to have a mixture of low and high
importance factors, which is a reflection of real
combat scenarios. The degree of membership in the
Relative Elevation of Target fuzzy set is determined
by a set of trapezoidal membership functions
representing "below," "level," "above," and
"definitely above."

3.7 Target Movement

This factor attempts to predict whether a target is
becoming more threatening by moving closer to the
platform. To make such prediction, the target's
direction of movement is determined. Then, based on
the direction of movement, the lethality area (see
Figure 1) in which the target is attempting to move is
estimated. The prediction is only good at the time of
the analysis because this is a dynamic environment.

459

3.8 Target Type

The target type plays an obvious role in threat
analysis. One way of organizing target types is by
using an ordered list, as seen in ModSAFs Rules of
Engagement Editor. However, this approach does not
capture the fact that some target types are equally
threatening. For example, a T80 may be as
threatening as a BMP-2 carrying anti-tank missiles.
IST's approach organizes targets types in three sets,
corresponding to high, medium, low, and no priority
sets. The target types in the same set share the same
priority. This factor is modeled by giving full
membership in the Threatening fuzzy set to targets in
the High Priority Set, while giving partial
membership to targets in the Medium and Low
Priority Sets.

3.9 Sector of Fire

Typically, a unit commander assigns a portion of the
battlefield to every vehicle in a unit. This portion of
the battlefield is a vehicle's sector of fire. Vehicles
use their sectors to scan and engage targets in an
attempt to cover the unit's combat area. If a platform
can estimate that it is within a target's sector of fire,
the target's threat level increases because the platform
will be engaged by the target.

the significance of every factor with respect to the
others. This process starts by filling in a comparison
matrix or AHP matrix, similar to the one given in
Table 1 (F, means Factor^:

Fl F2 F3 F4 F5 F6 F7 F8 F9
Fl 1 3 1 5 5 5 3 5 5
F2 1 3 3 7 7 5 3 3
F3 1 5 5 5 3 5 5
F4 1 9 9 7 1 3
F5 1 1 3 9 3
F6 1 3 9 3
F7 1 9 3
F8 1 3
F9 1

Table 1: Comparison (AHP) matrix.

The meaning of the numeric values, the AHP ratings,
assigned to each factor with respect to the others is
explained below:

• Equally important: 1.
• Weakly more important: 3.
• Strongly more important: 5.
• Very strongly more important: 7.
• Absolutely more important: 9.

The degree of membership within the Sector of Fire
fuzzy set is determined by using a trapezoidal
membership function with full membership for being
in a pie-shaped area centered on the target's heading.

3.10 Determination of Threat Value

Fuzzy Set Theory provides a way to bring together
the effects of different fuzzy sets. This operation is
known as an aggregate operation on fuzzy sets. The
aggregate operation that was selected to bring
together the effect of all nine factors is:

Threat Value = V weights *facton
i =1

Every factor, has a weight, associated with it. A
weight, is used to determine the relative significance
of each factor, within a mission, and to understand the
interdependencies among the factors. Previous
research has shown that this aggregation function is
effective in simulation because it accounts for the
contribution of every factor in the final result. In
order to obtain the weights, Analytic Hierarchy
Processing (AHP) (Saaty (1980)) was used to identify

Once the AHP matrix is filled by a Subject Matter
Expert (SME), the AHP Analysis is performed with
the Expert Choice Software (Saaty 1980). This tool
enhances the ability of the SME to consider how
various alternatives of weighting would affect the
outcome. This process produces weights for all the
factors considered in the threat analysis (Table 2).

Factor Weight
Aggregate threat assessment 0.079
Near counter threat 0.079
Target's effective range 0.158
Enemy firing status 0.301
Aspect angle 0.301
Relative elevation of target 0.021
Target movement 0.301
Target type 0.301
Sector of Fire 0.158

Table 2: Resulting weights.

The weights can be mission dependent, and they are
specified prior to an exercise as parametric data.

460

4. Results

The threat analysis algorithm was implemented and
tested in ModSAF version 1.5.1. Several scenarios
were used to test the algorithm and the different
factors. The scenario set included scenarios that
were pathological to ModSAF's threat analysis.
Based on SME evaluation, the FST threat analysis
showed consistently realistic threat analysis. Cisneros
(1995) describes a scenario used to test the threat
analysis algorithm.

The platform was an M1A2 main battle tank. Four
enemy targets and units were used:

• being able to change, dynamically, the
relative importance of the factors, as changes
take place in the battlefield, and

• using cooperative behavior and doctrinal
tactics in the target selection process so that
BLUEFOR and OPFOR forces perform
differently in their targeting processes.

This research has shown FST to be a powerful
technique for efficiently expressing ambiguous and
complex battlefield situations. FST can be used in
modeling many of the vehicle/unit behaviors,
especially those that involve ambiguous and complex
situation awareness.

• stationary BTR-80 facing the M1A2,
• retreating T72,
• a T72 platoon assaulting the M1A2 but

starting much further than the above two
vehicles, and

• a stationary T80 facing the M1A2 and
located the farthest from the M1A2.

Even though the T72 platoon was farther than the
BTR-80 and the retreating T72, it was considered the
most threatening and was fired upon by the M1A2.
After the platoon was destroyed, the farthest T80 was
selected as the highest threat because it was stationary
and aiming at the M1A2. Of the remaining capable
targets in the scenario, the M1A2 picked the
retreating T72 as the most threatening. After it was
destroyed, the BTR-80 was selected and destroyed.

5. Conclusions

Threat analysis is an essential component of the
targeting process. The Fuzzy Set Theory approach
described in this report mirrors the human decision
process, by taking into account the ambiguities and
complexity of real life threat analysis. This approach
performs threat analysis by considering nine factors,
derived from information that was provided by a
Subject Matter Expert (SME). This FST threat
analysis approach provides an easily extendible and
flexible mechanism for representing the complex
threat analysis process in CGF systems.

There are several opportunities for future work within
this area. It is possible to increase the realism of the
threat analysis by:

• adding more factors,
• improving the analysis of some factors, e.g.

unit formation,

6. References

Charniak, E. and McDermott D. (1987). Introduction
To Artificial Intelligence, Addison-Wesley
Publishing Company, Inc., Reading, MA.

Cisneros, J. E., Karr, C. R., and McCauley-Bell, P.
(1995). "Intelligent Targeting in ModSAF,"
Contract report IST-CR-95-36, Institute for
Simulation and Training, University of Central
Florida.

Gupta, M., Knopf, G., and Nikiforuk, P. (1988).
Sinusoidal-based cognitive mapping functions,
Fuzzy Logic in Knowledge-Based System,
Decision and Control. Amsterdam: Elsevier
Science Publishers, 69-92.

Hertz, J., Krogh, A., Palmer, R.G. (1992).
Introduction To The Theory Of Neural
Computation, Addison-Wesley Publishing
Company, Inc., Redwood City, CA.

King, H. (1988). An expert adaptive fuzzy logic
control system, Unpublished Doctoral
Dissertation. Louisiana Tech University, pp. 1-
57.

Loral (1994a). "Libvassess documentation", Loral
Advanced Distributed Simulation, Cambridge,
Massachusetts, 1994.

Loral (1994b). "LibVEnemy documentation", Loral
Advanced Distributed Simulation, Cambridge,
Massachusetts, 1994.

Saaty, T. (1980). The Analytic Hierarchy Process,
McGraw-Hill, New York, NY.

7. Acknowledgment

This research was sponsored by the US Army
Simulation, Training, and Instrumentation Command
as part of the Intelligent Simulated Forces project,
contract N61339-92-C-0045. That support is
gratefully acknowledged.

461

8. Authors' biographies

Jaime E. Cisneros was an Associate Computer
Scientist in the Intelligent Simulated Forces project at
the Institute for Simulation and Training. Mr.
Cisneros has a Master of Science degree in Computer
Science from the University of Central Florida. His
research interests are in the areas of Natural
Language Understanding, Machine Learning, and
Computer Generated Forces.

Clark R. Karr is a Program Manager and the
Principal Investigator of the Intelligent Simulated
Forces project at the Institute for Simulation and
Training. Mr. Karr has a Master of Science degree in
Computer Science. His research interests are in the
areas of Artificial Intelligence and Computer
Generated Forces.

Dr. Pamela R. McCauIey-Bell is an Assistant
Professor in the Industrial Engineering department at
the University of Central Florida. Her research
interests are in Fuzzy Set Theory.

Sumeet Rajput is an Associate Computer Scientist in
the Intelligent Simulated Forces project at the
Institute for Simulation and Training. Mr. Rajput has
a Master of Science degree in Computer Science from
the University of Central Florida and is an MBA
student at the University of Central Florida. His
research interests are in the areas of Computational
Geometry, Physical Modeling, and Computer
Generated Forces.

462

Micro Resolution Terrain Processor (MRTP)

John A. O'Keefe IV
U.S. Army Soldier Systems Command

A1TN: SSCNC-AAM
Kansas Street

Natick, MA 01760-5015

Charles W. Howard, Ph.D.
and

Paul Saucier
Raytheon Company

Missile Systems Division
50 Apple Hill Drive

Tewksbury, MA 01876

1. Abstract

Micro Resolution Terrain Processor (MRTP) is
computer program being developed by Raytheon
Company under the US Army Soldier Systems
Command's (SSCOM) Dismounted Infantry Support
System (DISS) contract. This program is designed to
be a terrain processor that can be incorporated into
simulations such as the Integrated Unit Simulation
System (IUSS) to provide extremely high resolution
simulation of individual soldier visual search, target
detection, and target tracking. It is designed to use
0.3 meter resolution terrain and feature data, plus
simulate the effects of a full range of obscurants and
battlefield illumination. MRTP has been designed to
accept Defense Mapping Agency (DMA) formatted
data for at least a 5 kilometer by 5 kilometer area and
perform its calculations at faster than real time speed
to support analytic Distributed Interactive Simulation
(DIS) exercises.

2. Introduction

The US Army Soldier Systems Command's
(SSCOM) mission is to develop, integrate, acquire
and sustain soldier and related support systems in
order to modernize, balance and improve the soldier's
warfighting capabilities, performance and quality of
life. SSCOM also performs similar functions for other
services and customers. In developing equipment and
clothing, SSCOM is taking a revolutionary approach
to the oldest and most basic item of warfare by
looking at the individual soldier as a complete
weapons platform.

In order to assess the potential worth and
contributions of proposed items on the soldier's
performance and survivability, SSCOM has turned to

extremely high resolution modeling and simulation
tools. These tools are applied early in the
development cycle prior the construction of the first
prototype. Initially, these tools use theoretical
descriptions of proposed items in tools using first
principle math and physics models combined in an
integrated simulation architecture.

As prototype items are designed, built and tested the
results of the early analytic simulations are reviewed
and, where necessary, corrected and reanalyzed.

Recent use of simulation approach to support the
design of the Force XXI Land Warrior has
highlighted a requirement for a model that can
recreate the individual soldier's visual search, target
detection, and target tracking. Historical target
detection models have demonstrated an inability to
differentiate between the various individual vision
devices and the soldier's unaided vision. This
problem is further compounded by the fact that an
individual human can be effectively obscured by
terrain features as small as one foot in elevation, or
horizontal width.

Members of the Soldier System user community have
postulated that such a model must have the ability to
use terrain databases having a 0.3 horizontal and
vertical resolution.

MRTP was developed to meet these user and analytic
needs.

3. Background

Analytic simulation of the incremental effects of
addition/modification of individual soldier equipment
on soldier performance and survivability requires

463

simulation of terrain at a level that replicates terrain
and its uses by soldier in the real world. Terrain
variations as small as those occurring in a 0.3 meter
block of terrain will frequently have significant
impact on the performance and survivability of
individual soldiers. Therefore, terrain data and
simulation at this level of fidelity are required to
support analysis of proposed soldier system
equipment.

The Integrated Unit Simulation System (IUSS) has
been designed to model the effects of terrain,
environment, load, battlefield challenges, and mission
on the soldier's and small unit's mission performance
and survivability. It uses available SIMNET
Maneuver Control Console (MCC) or Janus format
terrain data bases to accomplish this simulation and
runs on Personal Computers (PCs) under Windows
3.11, Windows 95, and Windows NT operating
systems.

The best currently available MCC or Janus format
terrain data bases have a resolution of one meter grid
spacing, the longitude and latitude distance between
the elevation measurements. There are few readily
available MCC or Janus format terrain data bases
with this one meter resolution. One of these data
bases, the Interservice/Industry Training Systems and
Education Conference (I/ITSEC) terrain database of
Ft Hunter Ligett, requires over 32 megabytes (MB) to
store the 10 kilometer by 10 kilometer 1 meter
resolution area. Increasing the resolution of this 10
kilometer by 10 kilometer area to 0.3 meter resolution
would result in the 1.8 billion bytes of data just for
the elevation data.

The addition of vegetation, roads, rivers, and other
man made structures significantly increases the data
that the computer must store and manipulate. For
instance, during the development of the MRTP
system software specification the number of trees in a
500 meter by 500 meter area located in Chelmsford,
Massachusetts was surveyed. The area was selected
due to its accessibility (it is the backyard of the
Raytheon Company DISS Project Manager). The
survey was accomplished by dividing the area into 10
meter squares and the trees within each square were
counted. Approximately 11,400 trees of varying sizes
were found in the surveyed area.

4. MRTP Functional Overview

MRTP has been designed to address the following
general requirements.

• Load and use 0.3 meter Defense Mapping
Agency (DMA) format terrain data bases,

• Load and use feature data bases,

• Operate at faster than real-time,

• Interoperate with IUSS, and

• Perform search, detection and tracking
simulation for dismounted soldiers

MRTP has been designed to be a module that runs on
a workstation connected to a network. It
communicates with IUSS or other simulations
connected to the network using UNIX socket
communications protocols. The prototype provides
the capability to provide simulation of the vision,
search, tracking and target detection for a friendly
and opposing dismounted infantry squad and
seventeen other DIS entities. The interface to DIS is
provided by IUSS or other DIS application.

Figure 1 provides an overview of a simulation's
DETECT process. Initialization includes loading
scenario data, processing command line arguments,

f "*v j^"^ Sun Time < ^ ""s. N

I
iiw EndTiwc -**

V Y w
Initialize Data

Gel Control
Clou: Lot File

• • •
Open

Commanication
Socket

Gel Enliiy SOLE
Ctote

Communication
Socket

• • •
Open Log Flic

Send Emily
Stale Data to

MRTP ©
•

"i \ Perform Detect
Procemne

•
Send Staiai (o

Control Procei*

•
Update Statistic*

* Lof File*

1
Figure 1: Host Simulation DETECT Process

opening log files, and establishing socket connections
MRTP.

On each iteration of the main loop, the simulation
time is advanced by 1 second, DETECT gets
command, control and updated entity state data for all

464

simulated entities. DETECT sends a subset of the
entity state data (time stamp, entity type, position,
velocity, orientation) to MRTP. DETECT performs
its own detection function while MRTP operates in
parallel. At the end of each iteration, detection
statistics are updated and results written to the output
log files. When the detection function is finished, a
status report is sent and the detection results are
factored into subsequent command and control
decisions, weapon assignment and engagement logic.

When the simulation time advances to the user
specified scenario end time the simulation is finished
and the main loop is exited, the log files and
communication sockets are closed, and the DETECT
process terminates.

Figure 2 illustrates a host simulation's detection
function which is invoked from the DETECT main
routine. As shown, this function iterates over the set
of all simulated entities. If an entity is not "active" it
is skipped and the next entity is processed.

For each "active" entity, detection processing is
performed to determine if the sensors attached to the
entity can detect the other simulated entities. While
this is being performed MRTP does its own detection
processing in parallel and sends the results to
DETECT. Note, MRTP only performs detection
processing for dismounted infantry soldier entities.

Figure 3 is an overview of the MRTP process. As
shown, initialization includes reading a specification
file which specifies the socket and host identification
for MRTP to use when communicating with the
DETECT process. It also specifies pathnames for the
0.3m resolution terrain database and the optional
feature database. After reading the file, MRTP
connects to the host simulation's DETECT process
via a network protocol socket and then opens the
terrain and (optional) features databases.

i
For Each

Entity

Do Detection
Processing

Get MRTP
Detect Results

I
Integrate

Dectect Results

N

Figure 2: The Host Simulation's Detection Function

MRTP then enters its main processing loop where it
gets current entity state information for each active
simulated entity from the DETECT process. This
occurs once for every simulation interval or 1 second.

The entity state data transmitted to MRTP at the start
of each simulation time step is a stream of bytes of
sufficient length to represent the state of all currently
active simulated entities. First in the bytes stream is a
header which is defined as follows.

typedef struct {
PacketSize Size;
PacketType Type;
} MRTP_PacketHeader;

465

The Type field contains the enumeration value
EntityState=2 indicating the data is entity state
information. The Size field specifies the number of
bytes to follow and should be a multiple of size
of (MRTP_EntityState). The rest of the byte
stream is a sequence of bytes formatted as
MRTP_EntityState structures which are defined
as follows.

typedef struct {
Entity_ID
LONG
LONG
XYZ_Vector
XYZJVector
XYZ_Vector

} MRTP_EntityState;

ID;
Kind;
Time;
Velocity;
Position;
Orientation;

Close Socket to

Host Simulation

Perform LOS
Processing

Figure 3: Overview of MRTP Process

ID is an identification number assigned by the host
simulation system. It is assumed this number is
unique and will not be reassigned to another entity or
that the entity will not be assigned a different number
during the simulation. It is not required that an entity
be assigned the same identification number from one
simulation run to another. The Kind field is a bit
vector indicating whether the entity is a SOLDIER or
NON-SOLDIER, FRIENDLY or HOSTILE. The
Time field is the current simulation time. The
Velocity, Position and Orientation fields
are Earth Centered Inertial (ECI) vectors with double
precision X, Y and Z coordinate values.

MRTP organizes entity state data into a linked list of
MRTP_Entity structures. These are similar to the
previous structures and are defined as follows.

typedef struct {
Entity_ID ID;
LONG Kind;
LONG Time;
LONG Step;
XYZ_Vector Velocity;
XYZJVector Position;
XYZ.Vector Orientation;
DOUBLE Rotation[9];
struct MRTP Track TrackList;
struct MRTP_Entity *Next;
} MRTP_Entity;

There are several new fields in this structure. The
Step field counts how many time steps the entity has
been active. This is not necessarily identical to the
current simulation time since an entity does not have
to be active at the beginning of a simulation. The
Rotation[9]field is a double precision array
used to rotate target vectors from ECI to body frame
coordinates. The *Next field points to the next
MRTP_Entity record in the list. The
*TrackList field is a pointer to a (possibly NULL)
list of track records. Track records model a soldier's
ability to remember previously detected entities and
are defined as follows.

typedef struct {
Entity_ID
LONG
struct MRP_Track
} MRTP_Track;

ID;
LastSeen;
*Next;

The ID field is the number of the entity being
tracked. The LastSeen field is the simulation time
when the entity was last detected. The Next field is
a pointer to the next record in the list.

An important performance requirement of MRTP is
being able to perform Line Of Sight (LOS)
processing in less than 1 second of real time for each
simulation time interval. This will enable MRTP to
participate successfully in DIS.

466

MRTP is designed to handle a maximum of 18
dismounted infantry soldiers (in any combination of
enemy or friendly) and up to 17 other entities,
simultaneously. The collection of entities do not have
to be identical from one simulation time step to the
next. Entities may appear and disappear dynamically.
Entities for which state data appeared in the previous
step but not in the current step are "inactive" and are
purged from the list while new entities are added to
the list. Track records for targets that have not been
seen for a specified period of time are also purged.
These list maintenance actions are performed at the
start of each simulated time step prior to performing
LOS processing.

Figure 4 illustrates MRTP LOS processing. For each
soldier entity, MRTP performs LOS processing with
respect to every other entity. A non-soldier entity can
only be a target viewed by a soldier in LOS
processing. The non-soldier is never the viewing
entity in MRTP. Of course, soldier entities don't
attempt to detect themselves.

The first step in LOS processing is to compute the
distance to the target. If the target is beyond the
soldier's maximum viewing range it is classified as
out of range and no further processing is done with
respect to that target. If the target is within range, the
target vector is computed and converted from ECI to
body frame coordinates. This target vector is then
used to compute the azimuth and elevation angles
from the soldier to the target.

The next step is to select the soldier's field of view
(FOV). This defines the viewing area in terms of
minimum azimuth, maximum azimuth and elevation
angles relative to the soldier. The FOV depends on
target distance, the soldier's search pattern and
whether the target is being tracked.

A narrow FOV (34 degrees or user input) is used to
search for targets at distances of 25m to the maximum
viewing range. The FOV shifts left and right over
time through the 8 step search pattern depicted in
Figure 5. The completed search pattern covers a total
of 170 degrees and is repeated every 8 seconds.

A wide FOV (3 x 34 = 102 degrees) is used to search
for targets at less than 25m. The search pattern is the
same as for the narrow FOV except the FOV is wider.
The complete search pattern with the wide FOV
covers a total of 238 degrees every 8 seconds. The
rationale for the wide FOV is that entities at close
range are hard to miss and can be seen in the viewer's
peripheral vision. The wide FOV is also used for

0

Next Target

Y X

^>m

Compute Diiunct:

andFOV

N W

•""laTargei"^, Y fc

s^ Of Rangc^*^ r

Log Out Of

Range Stanti

N W

***^ 1* Target ^*Ss,N^J-^fc
w OW Of K)V ^^^ ^

Log Azimuth or

EkrvaiKNi Staiui

N ¥

^ Muted ^^^

Log Feature

Maakcd Siaiui

N ¥

""^i LOS Twill ^*>^ ^

•w^ Matkod -^^

Log Terrain

M<Ued Statui

N T

Log Succeaa

Suiui

Figure 4: MRTP Line of Sight Processing

targets up to 100m distance that are being tracked.
This reflects the fact that targets are more likely to be
detected when the viewer knows where they are.

Figure 5: Field of View Scanning Pattern

If the range and FOV tests are passed then MRTP
determines if the LOS is masked either by features or
by the terrain itself. If the optional features database
is present then MRTP determines if trees or other
features block the LOS from soldier to target. If this
test is passed, then MRTP goes on to determine if the
terrain itself blocks the LOS.

To determine if a LOS is feature masked, the ECI
positions of the two entity are first converted to
latitude / longitude. The LOS from one entity to the
other is then walked at approximately 0.3 meter

467

intervals. Whenever another 10m x 10m square is
entered the linked list of trees in that square is
traversed. For each tree, the point along the LOS
closest to the tree is found and the terrain database
consulted for the elevation of that point. If the
elevation of the point on the LOS falls between the
Max and Min elevations of the tree's cylinders and
the distance from the tree to the LOS is less than the
radius of the tree cylinder, the LOS is considered to
be feature masked. Figure 6: Current Tree Model

When LOS processing for a soldier is complete,
MRTP sends detection status for that soldier to the
host simulation. The detect status is a stream of bytes
of sufficient length to represent all the current targets.
As with entity state data, the detection status is
preceded by a header in which the Type field
contains the enumeration value DetectStatus=3
indicating the data is detection status data. The Size
field specifies the number of bytes to follow and is a
multiple of size of (MRTP_DetectStatus) .
The rest of the byte stream is a sequence of bytes
formatted as MRTP_DetectStatus structures
which are defined as follows.

typedef struct {
EntityJD Source;
Entity_ID Target;
LONG Time;
SHORT Status;

} MRTP_DetectStatus »

5. MRTP Feature Database

A simple template based algorithm is used to
populate the database. It uses four template types;
heavy (12 trees per 10m square), medium (10 trees
per 10m square), light (4 trees per 10m square) or
none (0 trees per 10m square). Although different
size trees are supported in the design, the prototype
implementation uses only a single type of tree.

The feature database is organized as a 500 x 500 grid
overlaid on the 5km x 5km terrain. Each cell in the
grid corresponds to a 10m x 10m area. Trees are
planted in each square using one of the above
templates. The database generator can be easily
modified so trees are planted in any desired patterns.

The database has a 500 x 500 element header
followed by an varying array of tree records. Each
500 x 500 header element corresponds to a 10m x
10m square and contains an index into the tree array
to the first in a list of trees planted in that square. All
the trees planted in the same square are linked
together in a linked list.

At the present time the feature database only contains
trees. Each tree is modeled as three stacked cylinders
which are referred to as elevation bands. As shown in
Figure 6, each elevation band has a height, radius and
density attribute. The height is the height in meters
from the base of the cylinder. The base of the lowest
cylinder is sitting on the surface of the earth. The
radius is the radius of the cylinder in meters. The
density is not yet used but is intended to represent the
density of foliage. It can be used to represent trees in
different seasons and as a LOS masking probability
factor when the LOS intersects the cylinder.

AUTHOR BIOGRAPHY

JOHN A. O'KEEFE IV, a graduate of Norwich
University (BA 1975), American Technological
University (MA 1981), the U.S. Army Infantry
Officer Basic Course, the U.S. Army Infantry Mortar

6. Summary

A prototype terrain processor has been developed
which supports simulation of individual soldier visual
search, target detection and target tracking. This
terrain processor is capable of supporting DIS
applications such as IUSS using extremely high
resolution terrain elevation and feature data.

Platoon Course, The U.S. Army Ordnance Officer
Advanced Course, the U.S. Army Combined Arms
Service Staff School, the U.S. Army Inspector
General Course, the U.S. Army Command and
General Staff Course, and the U.S. Army Materiel
Acquisition Management Course, and a disable
Regular Army Major, is a senior operations research
analyst with the Advanced Concepts Division,

468

Advanced Systems Concepts Directorate, U.S. Army
Natick Research, Development and Engineering
Center. He is the project officer in charge of the
development of the Integrated Unit Simulation
System (FUSS) and the Soldier Protective Equipment
Computer Aided Design (SPE CAD) system and is
the Chairman of the Modeling Working Group of the
U.S. Army Soldier System Technology Base
Executive Steering Committee. He has been active in
the application of modeling and simulation
technologies to support materiel development since
1988.

Charles W. Howard is a senior analyst at the
Raytheon Electronic Systems, System Design
Laboratory. Dr. Howard has worked in research and
design and development since 1978. Dr. Howard has
managed many high level projects for the US Army in
the areas of operations research and systems analysis,
conducted numerous COEA's for the US Army and
designed and managed these multi-team multi- year
efforts for Air Defense, the future close combat
vehicle man machine interface system. Dr. Howard
has also managed major simulation models for
Raytheon and the US Army during his career. Dr.
Howard designed and managed multiple terrain and
visualization workstations for the US Army Air
Defense School during his employment at Fort Bliss
as a Department of the Army civilian with the
Directorate of Combat Development. His email
address is charles=howard@sdl.msd.ray.com

Paul Saucier is a Senior Engineer at the Raytheon
Electronic Systems, System Design Laboratory.
Mr. Saucier has worked as a software engineer for
over 18 years and has a MSCS degree from
Worcester Polytechnic Institute.

469

Control of a CGF Fireteam with Voice and Gesture Commands

Douglas A. Reece
Institute for Simulation and Training

3280 Progress Dr., Orlando, FL 32826
dreece@ist.ucf.edu

1. Abstract

We have developed an experimental system that
allows a human fireteam leader to direct a CGF
fireteam using voice and gesture commands. This
capability allows a small unit leader to be a
participant in a simulation exercise rather than just an
operator who controls CGF. This paper describes the
interpretation of a simple set of voice commands and
gestures by simulated individual soldiers. It briefly
presents the recognition and encoding of commands
into symbols. It next describes the architecture of the
CGF system and the behaviors that implement the
commands. The paper concludes by discussing the
challenges posed in interpreting commands:
understanding them in terms of the current situation
and using common sense to fill in unstated
information.

2. Introduction

We have developed an experimental system that
allows a human fireteam leader to direct a computer
generated forces (CGF) fireteam using voice and
gesture commands. Such an interface to simulated
entities addresses two shortcomings in existing CGF
systems. First, command and control of CGF has
generally focused on formatted orders, maps, and
military symbols (e.g. Salisbury 1995). At the level of
individual combatants, leaders do not generally
collect radio reports and issue battle plans; instead
they perceive the situation directly and give
commands for immediate execution. Leaders point to
objectives, locations, enemy forces, etc. that both the
leader and his squad can see, rather than refer to
named objects on a map. The language in which
soldiers are trained uses spoken words and arm
signals rather than text and graphical symbols on
maps and overlays.

The second shortcoming of existing infantry CGF is
that they are semi-automated: they must be
controlled by a human operator with a computer
keyboard and mouse (e.g. Franceschini 1994). The
operator thus has an unnatural interface to the virtual

battlefield and cannot really participate in an exercise
as a trainee. From the point of view of other trainees
an opposing forces, the operator is an invisible leader
who issues orders via an undetectable radio. The
leader should be both visible and audible to friendly
and enemy forces and vulnerable to destruction.

The experimental system constructed at 1ST consists
of a leader interface component and a CGF
component connected with a DIS interface. Gestures
and sounds are encoded into symbols in the leader
component. This paper describes how the encoded
commands are interpreted by the CGF in the context
of the current tactical situation. It does not describe
the gesture or sound recognition in detail. After an
overview of the entire system, the paper describes the
CGF architecture, the command implementing
behaviors, and the challenges posed in interpreting
commands that may be ambiguous or incomplete.

3. System Overview

3.1 Requirements

The goal of this project was to build a prototype
simulation system that would allow an individual in
the role of a small unit leader to control a CGF squad
and helicopter with gestures and spoken commands.
The system was to use a limited set of standard
military gestures. The voice commands were to use a
natural set of sentences—avoiding any artificial use
of coordinate systems or other artifacts of the CGF
system—but use only a simple grammar to avoid the
complexities of natural language understanding.
Communication between the leader and the CGF
system was to use the DIS (2.0.3) protocol as far as
possible. By using this standard protocol, the system
could function correctly if either the sender or
receiver of commands were a trainee or CGF.

3.2 Command Set

The voice commands were composed from seven
words using the following grammar:

471

START => "move" WHERE |
"shoot" WHERE

WHERE => WHEN | "there" WHEN

WHEN => "now" | "when_he" COND

COND => "moves" "shoots"

In the above production rules the capitalized words
are symbols that must be expanded and the quoted
words are terminals that are actually spoken ("when
he" is treated as a single word). The phrases
separated by "I" are alternate definitions of the name
on the left. For example, grammar can produce the
following phrases:

move now

shoot there when he shoots

move when he shoots

This grammar can produce 12 valid phrases.

Fourteen gestures are recognized the system.
Thirteen of these are commands which are recognized
and encoded as symbols, and one is simple an arm
azimuth angle which is encoded as a numerical value.
The arm azimuth is used in conjunction with voice
commands and the Change Direction command to
indicate locations, targets, etc. The command
gestures include the following:

FORM_COLUMN
FORM_WEDGE
OPENJJP
INCREASE_SPEED
ADVANCE
CEASE_FIRE
CHANGE_DIRECTION

FORM_LINE
DISPERSE
CLOSE_UP
DECREASE_SPEED
HALT
COMMENCE_FIRE

Helicopter landing signals were also implemented,
but they will not be discussed here.

3.3 System Architecture

Figure 1 shows the overall architecture of the system.
The trainee station includes everything except the
CGF component. A personal computer running
DragonSpeak software accepts voice input and
recognizes words. These are encoded and sent over a
serial line to the workstation. Position information
from three sensors (one on each hand and the back) is
also sent to the workstation, where gestures are
recognized from the data. The workstation hosts a
DIS simulation which maintains the trainee's position
in the virtual world (movement is directed with a
joystick) and produces the visual output for a head
mounted display. Encoded gestures and words are
added to the DIS Entity State packet and broadcast on
the network. Arm azimuth can also be added to the
Entity State packet as an articulated part parameter.

The CGF system receives Entity State PDUs and
extracts the gesture and voice information just as with
all other state information. The CGF soldiers can
observe the leader and see that he is making a gesture,
and hear the leader's spoken words. Each CGF
soldier must parse the spoken words to determine if
the leader gave a valid command.

3.4 Gesture Recognition

Gestures are represented as a network of static poses.
A pose is one hand's orientation and position relative
to the body. Inputs to the network are "sensors"
which detect when the hand moves to the position
defining a pose. The network specifies sequences of
poses, combinations of poses, and rates of pose
changes that must be detected to recognize the
gesture. As the hands are moved, all gesture
networks are updated until one produces a

Netwak- augmented EXS 20.3

GCF
(PQ

ESS Simulation
(SQWcdstaticn)

EtagonSpeak

voice recognition

(PQ \
rfead mounted

display
Hock of Birds

tracking device

Figure l.S ystem architecture for expei imental voice and gest ure input system.

472

"recognized" output. Further detail on the gesture
recognition system can be found in (Abel 1995).

4. The CGF System

4.1 Basic Functions

The CGF used in this experiment is based on the 1ST
CGF system. This system is a complete DIS simulator
node that covers functions from network interface to
behavior generation. Basic functions in the CGF
system include the following:

Distributed Simulation Support—interface to the
terrain database, including derived representations of
buildings; dead reckoning of ground truth for all
entities; translation between internal and DIS
representations of entities. For voice and gesture
recognition, the representation of human entities was
extended to include the gesture currently being made
and the word currently being spoken.

World Physical Model—line of sight calculations;
probability of kill lookups for munition impacts; and
movement updates with terrain surface and obstacle
collision constraints.

Entity Physical Model—sighting (detection) model;
hearing model; probability of hit calculation; fuel or
energy expenditure model; control of weapon firing;
and feedback controlled movement. For this voice
and gesture project we deliberately simplified the
problem by not requiring CGF soldiers to be looking
at the leader in order to see gestures; thus the
physical model was not extended.

Internal World Model—maintenance of list of
detected, visible, and previously detected but
currently invisible entities; local map of movement
obstacles.

Behavior—situation assessment and action selection;
selection of precomputed cover locations; movement
route planning; formation movement; target selection
(based on threat, mission priority, and fire
distribution); environment scanning. Behavior is
generally encoded in hierarchies of tasks. Within
each task, current internal and external conditions
determine what subtask should be performed to
accomplish the task. All levels of task are
reexamined every second or so in order to respond to
changing situations. The words and gestures of a
commander are observable phenomena in the
environment just as the terrain and other aspects of

entities are. As part of the periodic situation
assessment, the CGF soldier considers what word is
being spoken or gesture given. He also considers
what commands he is currently obeying. These
inputs, along with threats, terrain, etc., help determine
what action is to be taken.

While the 1ST CGF system can act as a semi-
automated force (SAF), for this and other projects
the entities are completely autonomous. When an
individual combatant entity is created it begins a
general behavior which includes following a mission,
responding to threats, etc.

4.2 Incorporating Leader Commands

While the general concept of initiating a CGF
behavior in response to a command is simple, the
actual implementation requires specific details of
timing and information sharing to be considered.
Such details include the initial information given to
CGF entities, the timing of commands, and the use of
pointing gestures with certain commands to provide
command parameters.

The CGF entities must be initialized before
commands are given. This initialization parallels the
unit knowledge that a soldier would receive in
training. The steps are as follows:
1. Designate commander for each soldier. Use DIS

entity ID.
2. Assign soldiers to a role in a unit. The role

determines their position in a formation.
3. Give the soldiers their mission, which causes

them to respond to their commander, react to
threats, etc.

DIS and computer simulations in general model
continuous phenomena with periodic updates. This
fact forces us to define rules for the timing of
commands:
• Commands must be held for about a second to

guarantee that they are recognized. This is
because the CGF soldier only checks the
commander's appearance about once a second.
For this project the trainee station continues to
send out the last recognized command forever so
this requirement is always met.

• "No command" must be used between repeated
commands to separate them.

Several commands use parameters. When giving the
"change formation direction" command, the
commander must point to the direction of desired

473

movement. Voice commands also use pointing
gestures, as follows:
• When speaking the first word, the commander

must face soldier who is to receive command. If
more than one soldier is aligned, then both will
receive the command.

• When saying "there," the commander must point
to a location or target with his arm.

• When saying "when he," the commander must
point to the trigger entity, who must be friendly.

4.3 Parsing Voice Commands

A voice command has several components: a type, a
target or location, a condition, and a trigger entity.
The target and condition/trigger are optional. Figure
2 shows the states of the parser that interprets
commands and fills in command components. This
parser corresponds to the grammar given in Section
Error! Reference source not found..

4.4 CGF Behavior

In order to understand what to do when after
command is received, a CGF soldier must maintain
several pieces of state information. These include the
active commands, the subtask, the rules of

engagement, and the formation movement
parameters.

We found that for the command set used in this
project, it was necessary for the CGF soldier to
remember two simultaneously active commands: a
"movement" command and a 'Tire" command. For
example, a soldier might be following 'Tire there
when he fires," and at the same time executing a
number of different movement commands. New
movement or fire command always supersede the
current ones. For a more extensive command set, it
might be necessary to remember more than two active
commands, or a history of recent commands; in
addition, the developing situation might determine
which commands remained active. In the present
case conditional commands expired when the
conditions were met.

CGF soldiers start the exercise in a top level task that
has them follow orders and respond to threats. They
begin in a subtask called "Wait." Commands and
threats cause them to transition to other subtasks in
which they move to cover, move in formation, move
to a commanded position, or engage the enemy. The
conditions that cause the transitions between these
subtasks are shown in Figure 3..

A number of assumptions were made during the

START

"Fire", "M ove"

Set COMMAND
TYPE

"When he"
Get arm azim uth;
compute and set
TRIGG Efl man.

"The X "When he" /

Get arm azimuth;
compute and set

TABG BT/LOCATIO N.

"Now " "Now"
/

"Fire", "M ove"

Set CONDITION to
"none" Sei CONDITION TYPE

Return com plete
command

Figure 2. Voice parser states and actions. In all states, a "no word" input keeps the parser in the same state; a
timeout or any word not listed returns the parser to the Start state.

474

Form col", line
or wedge

^ At destination

"Fire there now" OR
"Fire there when he" and

condition met

"Form col",
wedge, or line

"Move there now" OR
"Disperse"

Move in
formation

Move by
command

Wait

"Fire there now" OR
"Fire there when he" and

condition met OR
Threats visible and weapon free

Cease fire OR
No targets OR
Weapon tight OR
No ammo...

In formation

Not in formation

"Move there now" OR
"Disperse" OR
"Move there when he" and

condition met

"Move now" OR
"Move when he" and

condition met

"Move there now" OR
"Disperse"

Seek cover

Engage target

"Fire there now" OR
"Fire there when he" and

condition met OR
New threat visible and

weapon free

"Move there now" OR
"Move there when he" and

condition met

 "Form col",
At chosen covered wedge, or line
location

'Fire there now" OR
"Fire there when he" and condition met
OR
Threats visible and weapon free

Figure 3. CGF Soldier subtasks. Commands containing "...when he..." are conditional; in this figure, "condition
met" means that the "when he" condition has be satisfied.

design of the subtask selection conditions described
in the figure. For example, when the CGF soldier is
in formation movement, and there is an opportunity
for it. to fire at a threat, it is not obvious whether the
soldier should stop formation movement and engage
the threat. As the figure shows, we decided to allow a
soldier in such a condition to engage the threat. On
the other hand, if the soldier is moving in response to
a "move..." voice command, it is not allowed to
engage the target until the destination is reached.

The third important aspect of the CGF soldier's state
is rules of engagement. Various commands and
conditions change the rules from "tight" to "free"

(allowed to fire) and back. When the exercise starts,
the soldier is in "weapon tight" state. "Commence
fire," 'Tire now" and 'Tire there now" free the soldier
to fire. "Fire there when he..." frees the soldier to fire
when the condition is met. These commands free the
weapon even if the soldier does not fire because there
are no targets. The soldier only transitions to weapon-
tight again if a cease fire command is given. Thus
after the soldier is told to fire at one target, he may
later engage other threats without a specific command
if the opportunity presents itself.

The fourth piece of state information is the formation
status. The CGF soldiers know whether they are

475

currently moving in formation, and know the current
parameters of the formation including type (wedge,
column, or line), scale (how spread out it is), and
speed. These parameters are adjusted by commands.
In order to move in formation, CGF soldiers also
must remember information given to them about their
unit. At the beginning of the exercise, a CGF
operator must list the identity numbers of all soldiers
in the fireteam. The operator also designates a role
for each soldier in the fireteam. Each CGF soldier
remembers this information..

A CGF soldier recognizes the following formation
commands:
FORM_COLUMN FORM_LINE
FORM_WEDGE DISPERSE
OPEN_UP CLOSE_UP
INCREASE_SPEED DECREASE_SPEED
ADVANCE HALT
CHANGE_DIRECTION

The "Form_X" commands cause the CGF soldier to
start formation movement activity. The other
commands are ignored if the soldier is not in
formation. Only a "Disperse" command or an
individual movement command by voice breaks the
soldier out of formation (although soldiers may
temporarily break formation to engage threats).

One of the roles in the formation is always designated
"point." Generally, the other fireteam members key
their movement off of the point man. The "Change
direction," "Advance," and "Halt" commands are
only acted on directly by the point man; other
fireteam members react to the point man's action.

4.5 Inferring Target Points

Several commands, especially voice commands, leave
exact target locations or entities unspecified or
indicated only with a pointing direction. The exact
location or target entity must be inferred by the CGF
soldier. This is done as follows:

MOVE THERE... The commander indicates "there"
by pointing with his arm. If there is a feature
providing cover (in our scenarios, a building) in the
indicated direction and within 100 meters, the soldier
moves to the building. Otherwise, the soldier moves
to a point 20 meters from the commander in the
indicated direction.

FIRE THERE.... The CGF soldier identifies the
nearest hostile entity within 5 degrees of the angle in
which the commander is pointing.

MOVE NOW. When no destination is indicated, the
soldier finds the nearest covered location and moves
there.

FIRE NOW. When no target is indicated, the CGF
soldier fires at the highest priority target.

WHEN HE... The CGF soldier identifies the nearest
friendly entity within 5 degrees of the angle in which
the commander is pointing.

DISPERSE. When told to disperse, the soldier finds
the direction directly away from the center of the fire
team formation. If there is a covered position in this
direction, that is chosen as the destination. Otherwise
the soldier moves to a point 25 meters away from the
fire team center.

5. Discussion

One of the important system lessons learned was that
while commands may seem simple, their exact
meaning in all circumstances is not obvious. For
example, if a fireteam is moving by command and
receives a fire command, can it stop and fire? If a
soldier stops to fire, what do the other soldiers in the
formation do? If a soldier receives a command to
move here and then immediately after a command to
move there, does it move here first and then there, or
just ignore the first move command? If a fireteam
moving in formation receives an order to change
direction 180 degrees, how do the soldiers move to
reorient the formation? Some of these questions can
be answered with a little explanation from a subject
matter expert; others require more extensive
descriptions of behavior in different tactical
situations; others require identifying and encoding
common sense knowledge or common doctrine and
incorporating it into the CGF soldier; and others
require establishing constraints on the sequence of
commands or the parameters for certain commands.
In our behavior implementation we created active
rule, subtask, engagement rule, and formation
parameter states (that were not part of the gesture
descriptions) to help define CGF soldier reactions to
commands. In general system designers must be
aware of the complexity of specifying command
semantics.

The second lesson concerning the CGF system is that
CGF soldiers must have adequate common sense,
tactical skills, doctrinal and unit knowledge in order
to execute commands properly. As mentioned above,
doctrinal knowledge may be required to understand

476

the semantics of a command—e.g., how to change the
formation direction. Tactical skills such as use of
cover and concealment while moving, selection of a
firing position, or direction of cover fire are necessary
to act as a trained soldier. Common sense is
necessary along with the tactical knowledge to
understand the leader's intent and thus identify
unstated or imprecisely indicated movement and fire
targets. Unit knowledge is necessary so that the
soldier knows who his commander is, who is in his
unit, what his own role in the unit is, what the chain
of command is, and who his parent unit is.
Knowledge of the mission and unit tasks may be
necessary to carry out orders according to the
commander's intent. These requirements can lead to
an extensive initialization process; for example, for a
10-man squad, each of 10 men must be told the
identity and role of all 10 members of the squad—
100 items of squad-role information. It is this body
of knowledge that allows the squad to be controlled
with a small set of simple commands.

Representation. Institute for Simulation and
Training.

Salisbury, M. (1995) "Command and Control
Simulations Interface Language (CCSIL): Status
Update, in Proceedings of the 12th Workshop on
Standards for the Interoperability of Distributed
Simulations, Institute for Simulation and Training.

9. Author's Biography

Douglas A. Keece is a Computer Scientist at the
Institute for Simulation and Training. He is the
Principal Investigator of the TTES Computer
Controlled Hostiles project. His research interests are
in artificial intelligence, specifically intelligent agent
design and computer vision. He has a Ph.D. in
Computer Science from Carnegie Mellon University
and B.S. and M.S. degrees in Electrical Engineering
from Case Western Reserve University.

6. Conclusions

Voice and gesture based communication are
important for inserting individual combatants into
virtual battlefields. We have describe an experimental
system in which a small set of squad level command
gestures and natural voice commands were used to
control a CGF fireteam. While the commands all
seemed simple, implementing realistic behaviors was
challenging because the operational semantics of the
commands had to be defined for the many command
combinations and a variety of situations.

7. Acknowledgment

I would like to acknowledge the work of Kimberly
Abel Parsons, who was the co-Principal Investigator
on this project. Mike Smith, Kevin Meuller, and Paul
Kelly implemented much of the software. The
project was sponsored by the Army Research Institute
under contract N61339-95-K-0001.

8. References

Abel, K, Reece, D. and Smith, M. (1995) Voice and
Gesture Input for Computer Generated Forces:
Final Report, Institute for Simulation and
Training, University of Central Florida.

Franceschini, R. Petty, M. (1994) "Dismounted
Infantry in DIS-Style Scenarios: A SAFDI Project
Overview." In Proceedings of the 4th Conference
on Computer Generated Forces and Behavioral

ill

Sensitizing Synthetic Forces to Suppression on the Virtual Battlefield

Michael L. Fineberg, Ph.D.
Pacific-Sierra Research Corporation

1400 Key Boulevard, Suite 700.
Arlington, VA 22209

Steven D. Peters
Micro Analysis and Design, Inc.

4900 Pearl East Circle, Suite 201E
Boulder CO 80301

Gene E. McClellan
Pacific-Sierra Research Corporation

1400 Key Boulevard, Suite 700
Arlington, VA 22209

1. Abstract

A major requirement for conducting effective
command group training, tactical analyses, or
weapon system evaluation within advanced
distributed simulation (ADS) is the ability to
exercise against realistic opposing forces
(OPFORs). When soldiers are not available to
command these opposing forces, we must rely on
synthetic forces (SFs) to play their role.
However, today's SFs do not always act with
the variety and credibility of behavior associated
with soldiers operating under the stress of battle.
Consequently, the results of an exercise may not
be completely valid for real world application.
This situation is aggravated further by another
fact: While the virtual environment and other
conditions in an ADS exercise are becoming
more and more representative of actual battlefield
trauma, current SFs remain "insensitive" to
these developing virtual battlefield conditions.
This paper reviews a general theory of human
performance under stress, efforts to use that
theory as a basis for a taxonomy of human
behavior, and an application of the theory and
taxonomy to model the effects of suppressive fire
on the behavior of virtual infantry teams.

2. Introduction

To further the integration of combatant behaviors
into SFs and to make them more "sensitive" to
simulated battle trauma, Objective 4 of the
Department of Defense (DoD) Modeling and
Simulation Master Plan (MSMP) requires the
development of authoritative representations of
the typical behaviors of combatants and teams
engaged in hostilities and operations other than
war (OOTW). This paper reports on the
development of a unified theory of human
behavior (UTB) and the behavioral taxonomy
called out by Objective 4 of the MSMP. In
addition, this paper describes an application of
the model and taxonomy to the development of
SFs that are sensitive to the effects of suppressive
fires. As with other efforts described in the

MSMP, the overall purpose of this work was to
enhance interoperability and reuse of the human
behavior models and data developed to populate
the behavioral taxonomy. In support of the
objective of interoperability, the UTB allows the
developer to "store" his human behavior model
in its appropriate place relative to other
contributions and to understand how his efforts
relate to other models.

3. Toward a Unified Theory and Taxonomy
of Behavior

The research team conducted a search of the
literature on behavior theory, behavioral/task
taxonomies, and the effects of suppressive fire on
dismounted infantry that was published from
1960 through 1995. We identified 75 journal
articles, books, and corporate reports and selected
60 studies for in-depth analysis, adding eight
citations from other sources along the way. The
American Heritage Dictionary of the English
Language, 1992 edition, defines taxonomy as
"the science, laws, or principles of classification;
systematics." Within the behavioral sciences,
the definition has been vague. DeGreene (1970)
defined a taxonomy entry as a "verbal
description using an object-verb format." In his
view, taxonomies are essentially lists of verbs in
hierarchical order that reduce behavior from
higher level—observable and measurable
behaviors—down to a fine level of "meaningless
abstraction from the real world." Other authors
(e.g., Levine 1971 and Meister 1985) have
expanded the definition to include another idea:
In formulating the structure of a taxonomy, it is
crucial to understand and make explicit the
model or theory of behavior underlying that
structure. A taxonomy then, is not merely a list
of labels with semantic definitions, it also must
have syntactic structure.

The need to develop a unified behavioral theory
and taxonomy that can be used across
individuals and groups for multiple analytical
purposes is a common thread that runs through

479

much of the research reviewed for this project.
Such a taxonomy would allow behavioral
scientists, computer scientists, engineers,
trainers, and operational users to exchange data
within a common framework and would
eliminate the need to develop a new taxonomy
for each new situation. Meister (1985) states that
such a behavioral theory and taxonomy are
required to analyze behavior to determine its
constituent elements, to compare or relate two
sets of tasks by their common underlying
characteristics and behaviors, and to serve as the
common basis for managing behavioral data.

3.1. The Theory

In response to this need, the first step in the
construction of our taxonomy was to synthesize a
unified theory of behavior (UTB) from past
attempts to understand the relationships among
the factors that underlie behavior under stress.
The UTB shown in Figure 1 provides a context
for the operation of the human behaviors to be
classified and operationally defined in the
taxonomy discussed later. It links the behaviors
to their antecedents—through individual and
team preparation for combat—and to their
consequences in terms of battle performance
measures.

The UTB is based on the work of several authors
in the fields of human performance measurement

Antecedents

and stress research beginning with Cannon
(1932) and Selye (1952, 1955, 1956) through the
more recent efforts of Alluisi (1982), Lazarus and
Folkman (1984), Gal (1985), Fineberg et. al.
(1991), Conroy et. al. (1992), and Deitchman
and Fineberg (1994 and 1995). The UTB
bridges the gap between battlefield stress such as
suppressive fire; the sensory, psychomotor,
cognitive, social, and emotional responses to
such trauma (stress symptoms); and the
performance decrements as manifested in
individual or team tasks associated with
dismounted infantry operations and command
and control (C^).

The UTB suggests that the antecedent
conditions of generic battle stress (Dl) and the
specific combat tasks associated with particular
scenarios (D2) interact to create an environmental
demand on the individual soldier or team.
Battle stress is influenced by variables such as
combat intensity, weather, terrain, threat
characteristics, force ratio, environmental toxins,
wounds, and disease. The combat tasks to be
accomplished influence demand through
attributes such as number and duration of outputs
required, continuous workload, difficulty of goal
attainment, precision required, response rate, and
procedural complexity (Fleishman and
Quaintance 1984).

Mediating Variables Consequences

Solder/
Squad KSA's

(R1)

Sensation of
Environmental

Stimuli

General and
Specific Stress

(D1)

Mission/Task
Requirements

(D2)

Time

Rumors,
"Fog and
Friction"

Mediation:

Situation
Appraisal

COA
Alternatives

Probabi lity of
Success
Survival

Hi Lo

Development
of Stress
Symptoms

Effective COA

Return Fire
Seek Cover

Retreat

Selection
of Behaviors:

Actions
Interactions

Implement COA

Effective

Not Effective

Ineffective COA

Erratic Fire
Freeze
Panic

Figure 1: A Unified Theory of Combatant Behavior Under Stress

480

This resulting demand is met by another
antecedent condition: the level of readiness to
perform. Readiness is a complex function of an
individual's knowledge, skills, abilities (KSA)
and experience (Rl) and interpersonal factors
resident in his team and unit (R2). Abilities and
traits include comprehension, expression, fluency
of ideas, originality, memory, problem
sensitivity, math reasoning, induction and
deduction, and flexibility (Fleishman and
Quaintance 1984). Interpersonal factors resident
in the team include leadership, cohesion
(horizontal bonding among personnel),
commitment (vertical bonding to some ideal),
role in the organization, and personal well-being
(Blades 1986).

Demand and readiness are compared (either
consciously or unconsciously) and the result
yields an initial estimate of one's own ability to
meet the perceived demand. For example, if
readiness greatly exceeds demand, no negative
effects on performance are perceived. As time
passes, readiness may degrade, while demand
may remain steady or grow. In any case, when
the demand begins to approach the remaining
readiness level, individuals use reserve capacity
to meet the demand as predicted by the General
Adaptation Syndrome (Selye 1956). At this
stage, additional demands may cause the system
to break down. The size of the readiness deficit
and the individual's predisposition determine the
character, prevalence, and magnitude of the
performance decrement. This perception or
estimate of one's ability to meet further
demands, together with knowledge of the tactical
situation on the ground and prevailing rumors
and confusion, feeds into the mediation process
in which appraisal of the situation and
formulation of a course of action occur.

During mediation, the soldier forms a subjective
estimate of his chances of survival and success.
This estimate is based not on the situation per
se, but on what the combatant tells himself about
that situation. One is tempted to conclude that a
low probability of perceived success will inhibit
behavior, but risk-seeking behavior cannot be
discounted. Perceived probability of survival
and success, combined with adherence to
appropriate tactics and doctrine, influence the
selection and implementation of effective
behaviors. If the perceived probability of
survival and success is high, the soldier or team
will use its training to select and employ the
most appropriate behaviors in a course of action
designed to resolve the situation. If this
probability is perceived as low, selection of

behaviors will be "detoured" through a set of
stress symptoms that tend to reduce the
appropriateness and effectiveness of the behaviors
and interactions selected relative to the task at
hand.

The effect of the decrements in behavior modifies
the initial capability of the individual or team by
some percentage, leaving a residual capacity to
perform. This residual capacity, as influenced by
stress responses, translates to performances that
are adaptive (advance or retreat) so long as they
are not overly influenced by the stresses that
drive them. Performance becomes maladaptive
(panic and decisional paralysis) when the stress
level exceeds some internal, idiosyncratic
threshold.

3.2. The Taxonomy

The taxonomy is described in detail in Fineberg
(1995). It is based on the behavior description
and requirements approach described by
Fleishman and Quaintance (1984) and on an
information processing paradigm. The
taxonomy contains four major taxons or classes
of behaviors labeled Sensation, Mediation,
Reaction, and Interaction. These major classes
are analyzed further into 11 lower level categories
that are populated by 188 action verbs. These
action verbs are seen by the authors as building
blocks of human behavior.

Taxon A, Sensation, contains the first two sub
classes, that is, automatic and volitional
behaviors that serve to collect, filter, condition,
and retain data from the outside world for short
periods. These data are passed on to Taxon B,
Mediation, whose behaviors are sub-divided into
three categories; preparing information fir
assessment, solving problems, and making
decisions. Taxon B also includes the capability
to revise decisions based on of knowledge of
results. Taxon C, Reaction, implements the
selected course of action by way of three
additional categories of behavior; physical,
psychomotor, and conceptual responses. It also
keeps track of the results of these responses
relative to task accomplishment. The behaviors
in Taxon D, Interaction, communicate,
coordinate, and advocate the selected course of
action to superiors and implement this course of
action by accessing three sub-categories of
behavior designated; controlling, organizing, and
leading. After developing the taxonomy,
Fineberg (1995) constructed operational
definitions for each behavior that specify the

481

meaning of a behavior by denoting its measuring
operations.

4. Applying the UTB to Predicting the
Effects of Suppressive Fires

Dupuy (1987) observed that "There is probably
no obscurity of combat requiring clarification and
understanding more urgently than that of
suppression." This is supported by battlefield
data and anecdotal reports suggesting that the
attrition aspect (casualties typically < 10%) of
combat power alone does not determine battle
outcome (Hughes 1995). Rather, the
psychological and spiritual effects of combat
power, the most measurable of which is
suppression, will often have a far greater effect.

The phenomenon of suppression has been most
recently defined (Hughes 1995) as "a non-lethal
decrement in enemy combat performance from
firepower that disappears when the battle is
over." Similarly, Dupuy (1984) saw suppression
as the effect of fire on the behavior of hostile
personnel, reducing, limiting, or inhibiting their
performance of combat duties. The US Army
Field Artillery School (1980) viewed
suppression as the temporary degradation in
combat effectiveness due to the terminal effects of
explosive munitions. Finally, JCS PUB-1
defines suppression as a temporary or transient
degradation of the performance of a weapons
system below the level needed to fulfill its
mission objectives. Rarely has there been so

much agreement on the definition of a
psychological construct. This agreement,
together with the acknowledged importance of
suppression, reinforced our choice of suppression
as the object of our current modeling effort.

4.1. Results from the state-of-the-art review

The effects of suppression have long been noted.
Sun Tsu implied that the best battle is the one
you don't fight. Napoleon asserted that "the
moral is to the physical as three is to one."
Clausewitz likened battle to walking upstream,
that is, "action in war is like movement in a
resistant element." An unnamed Union general,
when told that his artillery bombardment was off
target, was quoted as saying, "Damn the effect'
It's the sound I want!" Throughout the history
of warfare, the greatest military tacticians have
been victorious by domination and control, not
bloodshed and destruction. Perhaps the
"smartest" weapons and tactics are those that
most disrupt the morale and effectiveness of the
enemy. If we can quantify the relationship
between the parameters of suppressive fires and
the behaviors of the troops at "ground zero,"
suppression indeed may be "a good bargain at
the price" (USAFAS 1980).

Our first step in quantifying those relationships
was to characterize and operationally define the
phenomenon of suppressive fire (see Table 1).

Table 1: Sources and Signatures of Suppressive Fire

Suppressive Fire Sources

Direct Fire Weapons
Small arms
Machine guns
Tank mounted
Antitank weapons
Characteristics

Small area effect
HI or miss
Point accuracy
Lower fear factor

Indirect Fire Weapons
Artilery
Air Strike
Characteristics

Wide area effect
Collateral damage
Higher fear factor

Suppressive Fire Signatures

Stimuli

Visual:
Flash
Smoke
Debris
Wounds

Aural:
Bang
Whine
Whiz
Ricochet
Screams

Tactile:
Heat
Pressure
Debris
Wind

Variables

Duration

Magnitude

Nurrber

Frequency

Proximity

Uncertainty

Pattem

482

The stimuli and associated variables of
suppression manifest themselves in changes in
the behavior of combatants. These changes are
mediated by constructs including radius of effect,
troop deployment and posture, intensity of
bombardment, and several miscellaneous
variables (USAFAS 1980). Radius of effect can
be expressed as: R = 69.3(W

Table 3: Rounds per Minute for Two Levels
of Suppression

)]n where R m hekg
is the radius in meters, 69.3 is a constant
determined by a least squares regression, and W
is the weight of high explosive in kilograms.
This equation can be used to calculate equivalent
areas for a given level of suppression. The area in
which half of those under fire will not return fire
(Ps=5) is 2160 m2 for 5 rounds of 50-caliber
shells, 35,300 m2 for one 155-mm shell, and
211,800 m2 for one 8-inch shell.

With respect to deployment and posture on area
of suppression, we find that troops in the open
are suppressed by an artillery shell landing
within a circle of 1000 to 2000 m2 around their
position. Troops in emplacements are not
affected by suppression unless a shell lands
within a circle of 300 to 500 m2, and troops in
armored personnel carriers (APCs) are not
suppressed until the fire is within a circle of 120
to 140 m2. Suppression also can be measured in
terms of simple proximity of the burst to one's
own position. Table 2 shows proximity in
meters for several types of weapons relative to a
desired level of suppression.

Table 2: Proximity Necessary to Result in
Two Levels of Suppression

^-r^supp 5 .9
Weaoon^v

M-16 1-3

M-2 24-26 5-8

105 How 51-118 21-55

155 How 104-144 63-77

8 in How 257-392 126-169

Another predictor of suppression is the volume
or intensity of fire. Table 3 indicates the number
of shells per minute for various weapons
necessary to achieve suppression at two
probabilities.

N. p
.5 .9

Weaponx,

M-16 88-128 293-413

M-2 23-25 75-100

105 How 5-10 15-25

155 How 4-10 12-25

8 in How 2-5 5-10

The delay in return fire resulting from
suppression lasts either about 10 seconds or from
30 to 100 seconds, depending on whose data one
accepts. Similarly a defender's return fire appears
to be reduced by 80 to 90 percent for 15 to 30
minutes after heavy artillery bombardment. M-
60 machine gun fire results in a 61 percent
increase in tracking time of ATM gunners, and
an interval of 4 seconds between M-60 bursts
appears to cause the most suppressive
eflfect.(USAFAS 1980)

Many other intervening variables have been
noted in the studies we reviewed. Random
distribution of fire throughout the target area is
more suppressive than systematic patterns of fire.
Those who are knowledgeable about the lethality
of weapons are 40% more suppressed than those
who are not. Soldiers operating alone are from
43% to 115% more suppressed than those who
are with others. Those in a frontal parapet
foxhole are 62% less suppressed than those in a
conventional foxhole. The most suppressive
fires occurred directly in front of the soldier, the
least suppressive occurs directly behind him
(USAFAS 1980).

4.2. Constructing a suppression-sensitive
dismounted infantry(DI) team

Using the UTB to derive mathematical
relationships and the parameters of suppressive
fires from the literature as source terms, we began
the process of representing the psychological
phenomenon of suppression in Modular Semi-
Automated Forces (ModSAF). We chose
ModSAF 2.1 as the developmental tool for
suppression-sensitive DI because of its capability

483

to create and control unmanned entities in the
Distributed Interactive Simulation (DIS)
environment. The suppression-sensitive infantry
team is being constructed within a version of
ModSAF 2.1 modified with indirect fire
routines. This version was developed by the
Leathernet support group at NRaD. Through the
use of the DIS network, combat scenarios that
include fire suppression effects will be played out
and analyzed. The DIS environment allows
manned and unmanned simulators to interact on
a virtual battlefield through a network of
computers. Our intention here is to describe the
underlying principles that we used to implement
suppression-sensitive performance into ModSAF,
specifically for DI entities.

Computerized battlefield simulation exercises
typically consist of combatants operated and
controlled by manned and unmanned systems.
To recreate accurate and realistic scenarios within
the computer-generated environment, algorithms
are required that model the effects present in live
and actual battle situations. Extensive time and
effort are spent on modeling the weapon
characteristics and their performance capabilities.
Military tactics and doctrine also are modeled to
determine autonomously what actions will take
place under various conditions that may be
presented to the entity. Modeling how the
human performs, however, has proven to be quite
difficult

4.2.1 ModSAF Characteristics

ModSAF contains synthetic entities designed to
appear as though they are being maneuvered by
human crews rather than computers. These
entities can interact with each other and with
manned individual entity simulators to support
training, combat development experiments, and
test or evaluation studies. Improving how each
entity emulates the performance characteristics of
its simulated human operator results in improved
realism added to ModSAF. This improved
realism results in an improved training
capability. As implied in the UTB, ModSAF's
computer generated forces will be modeled in a
manner consistent with humans performing the
identical task. DIs that encounter suppressive
fire, while incorporating proper doctrine and
tactics, will emulate appropriate (not necessarily
perfect) human performance. That is, their
selection of which tasks to perform next and their
response time and accuracy in performing those
tasks will be degraded in a manner consistent
with known effects of suppressive fire on real
troops.

Implementing suppressive fire phenomenology
into ModSAF requires an understanding of its
architecture. Today's ModSAF models all
weapons, vehicles, and DIs as entities. That is,
a common library of constructs is used to model
a dismounted soldier and an Ml tank. Each
entity has a set of parameters that describe its
structure and they each use the same set of
algorithms to describe their performance. In
other words, both the tank and the DI use the
same software routines to "know" how fast they
can travel and how to follow a road. Although
not all entities use and follow all the same
algorithms, the current architecture does allow
several different types to exhibit the same
behaviors. Thus, modification of a behavior fa-
one entity will affect other entities using that
behavior.

Therefore, similar to an M1 tank, a ModSAF DI
can move and turn in place, and each virtual
soldier can carry and fire a weapon whenever a
line-of-sight exists. Each DI can assume three
postures: standing (in place or moving),
kneeling, or prone with orientation determined
by the terrain under him. A DI can mount
appropriate vehicles (such as IFVs), ride to
another location, and dismount. While
mounted, DIs are not visible. In ModSAF 2.1,
DI teams can consist of two or more individual
DI entities. One member of a team may be
configured with an anti-tank (AT) missile that
can fire at tanks or aircraft (STINGER, SA-16).
In addition, teams can move and/or "keep
station" with each other. Indirect fire simulation
currently includes the proper orientation of the
gun and/or vehicle for particular fire missions.

When the ModSAF DI makes contact with an
enemy entity, it executes a unit level reactive
task that monitors enemy activity and reacts to
the contact. A DI constantly checks to see if
enemy entities are spotted. If so, the ModSAF
DI reacts by executing an appropriate set of
responses. The response sets that are currently
supported are: Contact Drill, Assault, Withdraw,
Occupy Position, and No Action.

If Contact Drill is chosen, the unit continues to
execute its primary task while shooting at the
enemy. If Assault is executed, the ModSAF DI
creates an assault objective at the computed
enemy location. If Withdraw is executed,
ModSAF creates a point far from the enemy in
the opposite direction where the unit can go. If
Occupy Position is executed, ModSAF creates
an objective facing the enemy and chooses
logical target reference points with the

484

engagement area at the enemy location. All of
these programmed sets of behaviors are
predicated on the nature of the contact with the
enemy and the predispositions input at the
beginning of the engagement. They are not now
subject to any intermediate influence of simulated
battlefield trauma.

422 Developing the Suppression Sensitive
ModSAF Dismounted Infantry CDT) Team

We used a proof-of-concept approach to
implement into ModSAF the effects of
suppressive fire. For subject variables, we
assumed two levels of readiness. Level one is
high in which the troops are well trained, have
good leaders, and are fully equipped with the
latest gear. Level two is low in which the troops
are not so well trained, are plagued with poor
leadership and low morale, and have older,
poorly maintained equipment. To scope the
effort, we chose three independent suppression
variables to represent soldier interaction with
suppressive fire: intensity of bombardment in
terms of rounds per minute, proximity of
detonation, and the location of the detonation
(i.e., in front, to the side, or in back of the
troops). The caliber of the round remained
constant at 155 mm. The first step in the
modeling process was to hypothesize a logical,
defensible relationship among these variables. A
multiplicative function was selected as a
plausible first approximation. We know that as
explosions get nearer, happen more frequently,
and last longer (up to a half hour) the effects of
suppression increase and the probability of
selecting the best set of actions declines.
Therefore, if a ModSAF DI is to emulate a
soldier responding to suppressive fire, we believe
the first effect to model is the decrement in the
probability of selecting the best course of action
(COA) for a particular set of conditions.

Assume for this discussion that the ModSAF
entity experiencing suppressive fire is executing
one and only one of a set ofN CO As, such as an
assault or withdrawal. In the baseline case, that
is, without suppressive fire, the ModSAF entity
periodically comes to a decision point and either
continues its present COA or switches to one of
the alternate COAs. At each of these decision
points, the entity makes a rule-based choice that
is always doctrinally correct. That is, at a
decision point, the entity chooses the rule-based
COA with probability 1 and chooses each of the
alternate COAs with probability 0 when there is
no suppressive fire.

The following approximate model of the effect of
suppressive fire on the "appropriateness" of the
choice of COA is based on the concept of a
suppression index S that ranges from 0 to 1.
The index S is calculated from the combined
characteristics of the suppressive fire as perceived
by the entity. The baseline value of S in the
absence of suppressive fire is 0. Under this
condition, the entity makes the correct rule-based
choice at all times as above. When 5 = 1, the
entity makes a random choice among COAs,
thereby choosing the doctrinally correct COA
with a probability of only \/N. All COAs are
equally likely. This phenomenon may be
represented mathematically as follows.

Let Pcor(S) be the probability that the entity
makes the doctrinally correct choice of COA.
The following formula for Pca^S) is based on the
assumption that Pcor depends linearly on S when
S is between 0 and 1:

fcW „,_(£=!),.
The overall probability of an incorrect choice is
Pi«(S) = 1 - P«*(S). Let p be the individual
probability of each incorrect COA. Then

To improve the model in the future, either data
or the judgment of subject matter experts could
be used to weight the alternate COAs when S is
large.

The independent variables that determine the
suppression index S are the intensity / of the
suppressive fire in rounds per minute, the radial
distance R from the entity to the impact point of
the rounds in meters, and the azimuthal angle <p
of the impact point relative to the entity's
forward direction.

The suppression index S is assumed to be the
product of individual functions of I, R, and <p:

S = j(I)g(R)K<t>).
The functions j, g, and h each range from 0 to 1.
With this choice, any one of the independent
variables can reduce the effectiveness of fire
suppression, as is reasonable. For example, if
the distance to the point of impact of the
suppressive round(s) is very large, then g(R) will
be 0 and the suppressive index S will be 0 no
matter how intense the bombardment The three
functions are defined in the following subsections
for the case of 155 mm artillery fire.

485

Intensity of Fir?

The influence of intensity of fire on the
suppression index is given by the function

y(/)=min[0.20V/,L0].
As / increases,j increases as the square root of/
until it reaches its maximum value of 1.

Proximity of Fire

The effect of the proximity of fire on the
suppression index is given by the function

63
8 = min[Wmyl0]-

The function g varies inversely with R until it
maximizes at the limit 1.0 when R is less than
63 m. (The increment of .01 is added to R to
prevent calculational difficulty if R is set to 0. It
has little effect when R is greater than 63 m.)

Pearine of Fire

The bearing or direction of round impact relative
to the forward direction of the unit afreets the
suppression index through the function

/i(0) = O.75+O.25cos(j).

With this choice of the function h, suppressive
fire is most effective in front of the entity and
least effective behind, with equal effectiveness on
left and right. Note that direction alone cannot
reduce the suppressive index to 0. The largest
effect is a 25% reduction in the index. The
coefficients in these equations will be different for
weapons other than 155-mm artillery.

Due to the modular architecture of ModSAF, the
capability exists to remove one module and
replace it with a modified one. For this project,
two modules or libraries received most of the
attention, libwreactif and libuactcontact.
Libureactif deals with unit level reactions to
indirect fire tasks, and libuactcontact focuses on
unit level actions on contact tasks. Both deal
with behaviors of entities when fired upon by
weapon systems. Modification of the logic that a
DI entity takes when fired upon by indirect fire is
represented in these libraries. Further

development and integration of the methodology
and equations produced in this effort will allow
known deficiencies in ModSAF's representation
of soldier performance to be corrected. Dealing
with these shortcomings using this methodology
will provide increased realism and appropriate
uncertainty in DI performance prediction.

4.3 ModSAF Dismounted Infantry Team
Operations on the DIS Battlefield

To understand how the suppression-sensitive
synthetic infantry team would operate on the DIS
battlefield, we produced the operations model in
Figure 2 that illustrates how a DI might respond
to suppressive fires given the mathematical
argument above.

The first step in exercising the suppression
sensitive ModSAF is to initialize various
parameters of the simulation. These parameters
are extracted from a scenario and include the
mission to be accomplished, the enemy
disposition, threat characteristics, the terrain, the
weather conditions, and the critical mission
times. As an example, consider the following
scenario:

The action takes place on rolling
wooded hills, on an overcast day with
intermittent rain. The time is dusk. A
Red company size force moves along the
route of passage. Red scouts detect a
Blue infantry platoon encamped on
high ground commanding the route of
passage. Red opens fire on the
unsuspecting Blue force. Blue first
localizes the Red position 2000 m off
and begins a hasty defense calling in
artillery on Red position. Red comes
under direct and indirect fire from Blue
artillery and small arms. The
engagement lasts for 10 to 15 minutes
and ends when the Red force breaks off
contact.

Variations on this scenario could be
developed based on the duration,
accuracy, and intensity of Blue indirect
and direct fires.

486

Entity State 0 Set:

Select capability (=
readiness-

genric demand)
Set clocks

Entity <criteria

Compares:
fire PDU data

to internal
threat criteria
>criteria

Suppressive Fires
Begin

Direct/Indirect

Suppresive Fire
PDU's Appear

Proximity
Magnitude
Duration

Entity Senses Fires:

Proximity
Magnitude
Duration

EBO=f(RC) Behavior Selection and Modification

Entity adds suppression
effects to task demand
and subtracts readiness

to compute residual
capability (ResCap)

Readiness

1 State T

Entity
Implements
Behaviors

and compares
them to task
requirements

in terns of

Dl MOE's:

Lethality
Survivabiiity

Mobility
Command/Control

Sustainability

Entity Revises
State

Sends PDU's

Figure 2: ModSAF DI Response to Suppressive Fires

The combination of parameters in the scenario
establishes the initial generic "demand" on the
ModSAF DI entity that corresponds to the
demand in the UTB. The critical mission times
are then input by setting the various clocks in
the ModSAF entity. These times include
mission start, beginning of suppressive fires,
duration of fires, rate of fires, time of cessation of
fire, and the time of residual suppressive effects
(dependent on the rate and volume of fire).

The initial state of readiness of the ModSAF DI
would also be set before the exercise begins.
Readiness, as discussed earlier, is a product of
individual and unit factors including level of
training, role in combat, personal well being,
cohesion, commitment, and leadership. Some of
these factors are seen as "dials or gauges" on the
ModSAF graphical user interface (GUI). Their
values, or intensities, can be set in any number
of possible combinations. Once the initial state
of our suppression-sensitive ModSAF infantry
team is set, the simulated suppressive fire can
begin. Suppressive fires are initiated by a
ModSAF artillery battery that sends out protocol
data units (PDU) containing code that represents

the shell characteristics, initial
trajectory, and ending coordinates.

coordinates,

The latest development in ModSAF, made by
the Leathemet support team at NRaD, represents
suppressive fires by allowing virtual artillery to
fire at predetermined points on the ground rather
than only at targeted entities. These PDUs,
which contain information on the point of impact
relative to target position and the burst radius of
the round are read by the sensitive ModSAF
infantry team (SMIT). From these characteristics
the SMIT calculates a figure of merit (FOM) that
combines the intensity, duration, and proximity
of the barrage and compares this FOM to a set of
criteria that describe the minimal threat to the
SMIT given its disposition, cover, and
concealment. If the SMIT does not register the
barrage as a threat, it goes back into its
observation mode waiting for other stimuli. If it
does register a threat, the SMIT calculates its
own residual capability to continue its mission,
given the level of the initial demand and the
level of suppressive fire added to the initial
demand. This calculation is made by comparing
the combined demand on the SMIT to its initial

487

readiness. Demand is defined as the sum of all
generic stress (environmental stress, mission
workload, and specific stress from suppressive
fires), and readiness is the total of all individual
and social factors that make up a unit's
capability.

The difference between readiness and demand
defines residual capability (RC). If the demand
is extremely high (mission impossible, bitter
cold, high winds, mountainous terrain, and
withering direct fire combined with intermittent
artillery) it will exceed readiness no matter how
well prepared troops are. This results in the
development of "stress responses" in the SMIT
whose analogues in real soldiers include such
symptoms as inability to make decisions,
stomach distress, panic reaction, etc. These
"virtual symptoms" interfere with, disrupt, or
impede the selection of behaviors that are
appropriate to the task at hand. In the case of
suppressive fires, behaving effectively, could
mean taking protective cover until the barrage is
over. The extremely high demand increases the
probability that the behaviors chosen by the
SMIT will npj be appropriate to the task, may
be carried out inaccurately if at all, and may take
so long that they are ineffective. The outcome of
this interference with the selection and
implementation of combat behaviors will be to
decrease mission performance in terms of
lethality and survivability of the SMIT. On the
other hand, if the demand is very low, there will
be no noticeable decrement in performance with
regard to implementing the proper course of
action as dictated by the level of suppressive fire.

5. Conclusions

We developed a conceptual model of human
behavior to explain relationships among
behaviors in support of a taxonomy for synthetic
entities. The taxonomy provides not only a
classification scheme for abilities, tasks, and
behavior descriptions but also a common
language and syntax for representation of human
behavior in synthetic forces within ADS. This
taxonomy is compatible with DMSO's
Conceptual Model of the Mission Space,
STRICOM's combat instruction sets, the
Integrated Unit Simulation System, and other
ongoing behavior representation efforts. As a
proof-of-concept, some of the behaviors of the
phenomenon of suppression are being
implemented in ModSAF DI. When completed,
the suppression-sensitive ModSAF DI will
provide the distributed interactive simulation

environment with the first synthetic entities that
are responsive to the effects of weapons other than
kinetic and blast injury. This accomplishment
will open the door to representing other
psychological phenomena such as fatigue and
combat stress, in addition to the impact of
radiological, chemical, and biological weapons.

6. Acknowledgments

This work is supported by the Defense Nuclear
Agency and the Defense Modeling and
Simulation Office.

7. References

Blades, J.W. (1986). Rules for Leadership.
National Defense University Press.

Cannon, W.B. (1932). The Wisdom of the
Body. Second Edition, New York, Norton.

DeGreene, K.B. (1970). System Psychology.
McGraw Hill, pp. 106-112.

Directorate of Combat Developments (1979)
The Fort Sill Fire Suppression Symposium
Report. USA Field Artillery School, Fort Sill
Oklahoma 73503.

Dupuy, Col. T.N. (1987). Understanding War:
History and Theory of Combat. Paragon
House.

Fineberg, Michael L. (1995). A Comprehensive
Taxonomy of Human Behaviors for Synthetic
Forces. Institute for Defense Analyses.

Fleishman, E.A., and Quaintance, M.K. (1984).
Taxonomies of Human Performance.
Academic Press Inc.

Hughes, Wayne P. Jr. (1995). Two Effects of
Firepower: Attrition and Suppression.
Department of Operations Research, Naval
Postgraduate School, Monterey, Ca 93943.

Levine J.M., and Teichner, W.H. (1971).
Development of a Taxonomy of Human
Performance: An Information Theoretic
Approach. American Institutes for Research,
Washington DC, AIR Technical Report TR-9.

Meister, D. (1985). Behavioral Analysis and
Measurement Methods. Wiley, New York.

488

Selye, H. (1956). The Stress of Life. McGraw
Hill, New York.

 (1955). Stress and Disease. Science,
Vol. 122 pp. 625-631.

 (1952). The Storv of the Adaptation
Svndrown. Acta, Inc., Montreal.

Dr. McClellan previously served as a staff
physicist at Lawrence Livermore Laboratory and
as a physics faculty member at the University cf
Maryland.

8. Biographies

Michael Fineberg is manager of Human
Performance Technology Programs at Pacific-
Sierra. He holds a Ph.D. in applied experiential
psychology and a M.A. in Human Factors firm
the Catholic University of America. He has over
29 years of experience in the analysis,
measurement, and enhancement of human
behavior under stress. Dr. Fineberg can be
reached at (703) 516-6251, fax (703) 524-2420,
and e-mail atjineberg@sedpsrw.com.

Steven Peters, a Systems Engineer at Micro
Analysis & Design, received his Bachelors cf
Science in Electrical and Computer Engineering
from California State University at Northridge in
1981. He has over 15 years experience in
software simulation involving Monte Carlo and
discrete event simulations. He has simulated
degraded soldier performance due to
environmental stressors and integrated these
human degraded performance algorithms into
ModSAF, a Distributed Interactive Simulation
(DIS) compliant combat simulation training and
analysis tool. He has also developed and
integrated a radar simulator into SIMNET-D, an
earlier version of DIS. Steve can be reached at
(303) 442-6947, fax (303) 442-8274, and e-mail
at steve@madbotdder.com.

Gene McClellan holds a Ph.D. in experimental
physics from Cornell University. He is Manager
of the Applied Physics Group at Pacific-Sierra
Research, actively supporting the Nuclear
Phenomenology Division of the Defense Nuclear
Agency (DNA) from basic modeling techniques
through the design of final products for the
defense community. He directs software
production for the assessment of human
performance effects of ionizing radiation and
biologic agent exposure. Dr. McClellan has
directed a program for DNA to determine
radiation doses to personnel involved in the
Chernobyl nuclear accident and to learn from the
Soviet experience of handling emergency
operations in a high radiation environment.

489

Session 7b: Unit Control

Preston, Logica, UK
Landry, CAE Canada

McKenzie, SAIC
Penney, DRA, UK

Command Agent Technology in a War Game Simulation

Gary Preston
Technical Manager

Logica UK Ltd
Stephenson House

75 Hampstead Road
London NW1 2PL

Janusz Adamson
Project Manager

Centre for Defence Analysis
Fort Halstead

Sevenoaks
Kent

L_ Abstract

The Centre for Defence Analysis, a division of the
Defence Evaluation and Research Agency, has been
researching the potential benefits of using Computer
Generated Force (CGF) techniques within War
Games and simulations, using its Divisional War
Game (DWG) and the DRA's Generic knowledge-
based Flexible Enemy (GEKNOFLEXE).

The DWG is a large scale, Divisional level, War
Game running on VAX hardware. During a study, it
is operated by approximately thirty military and
civilian staff.

GEKNOFLEXE is an autonomous simulation running
on Sun hardware which has achieved widespread
recognition for its ability to credibly model
Command and Control up to Divisional level using
cooperating knowledge-bases.

The product of this research is the Command Agent
Support for Unit Movement Facility (CASUM)
which currently supports the DWG in all aspects of
unit movement. Its principal function is to 'form up'
a column of units from dispersed starting locations
and then move them in single file to a specified
destination while maintaining the order of march and
unit spacing.

The aim of this paper is to provide an exposition of
the following project issues:

• Aim & Objectives.
• Approach.
• Specification of Role.
• System Functionality.
• Benefits & Effectiveness.
• Potential Future Development.

2s. Aim and Objectives

The overall aim of the Project may be concisely
stated as

"To investigate and report on the potential benefits of
applying Computer Generated Force techniques
within War Games and simulations."

This aim has been fulfilled by successfully
completing a number of phased objectives. The
Project has progressed from a simple demonstrator
through to a CGF Facility supporting the DWG:

Phase 1 Simulation Interaction

Demonstrated a bi-directional interface between the
two simulations including run-time consistency and
reactive control of DWG units by GEKNOFLEXE.

Phase 2 Credible Control in Complex Task

Developed a Red Divisional Recce knowledge-base
for GEKNOFLEXE and demonstrated credible control
of Divisional Recce withdrawal within the DWG.

Phase 3 Capability in the Selected Role

Developed a unit movement knowledge-base and
demonstrated credible movement of large groups of
units within the DWG by GEKNOFLEXE under actual
game conditions.

Phase 4 Release Version

Enhanced the unit movement knowledge-base to
incorporate additional functionality and produced a
release version of the CASUM Facility.

Phase 5 Game Support

Successfully provided game support for the 1996
game series.

The success of the Project was assisted greatly by
building functionality incrementally, and by
establishing confidence in the system through the
series of demonstrators.

i_ Approach

The technical approach was formulated to meet two
basic requirements:

493

• Construction of a general framework to support the
reliable interaction of the two simulations.

• Development of a CGF Facility capable of
supporting the DWG across a broad range of tasks
at all levels of command.

3.1 Framework

The general design was developed from a
consideration of the constraints to be applied to the
framework and its desirable features.

3.1.1 Constraints

Discussion with all interested parties resulted in a
number of design constraints for the framework:

• The DWG should not rely on the CGF Facility to
fulfil its task.

• Failure of the CGF Facility should not disrupt the
operation of the DWG.

• Modifications to the DWG functionality should be
avoided if possible.

• The CGF Facility should be linked to the DWG
using existing interfaces.

3.1.2 Features

Consideration of the design constraints and the
functionality of both systems led to a number of
design decisions:

• A file based communications system should be
adopted to preserve data integrity and support
recoverability after a failure.

• Terrain and unit updates should be obtained from
the DWG output files.

• Orders to be issued to the DWG should be sent via
the same interface as for the existing DWG player
terminals

• The level of representation of terrain and units
within GeKnoFlexE should be made consistent
with those of the DWG, to enable credible
command of units and consistent route planning.

3.1.3 Design

Figure 1 shows the generic framework for the CGF
Facility. It is based on the use of two Sun
SPARCstations and the DWG VAX Mainframe.
Discussion of the exact purpose of each process
within the framework is given below.

Sun Sun

Figure 1 Data Flows and Processes

Communications within the system are supported by
a number of distinct file types:

• Player Orders - contains each order issued at the
CASUM screen by the DWG Player.

• GEKNOFLEXE Orders - contains each order issued
by GEKNOFLEXE.

• Occurrences - contains a record of all DWG update
events.

• DWG Updates - contains each relevant DWG
update event.

The functionality of the system is effected by a
number of distinct processes:

• DWG Player - validates move orders, and writes
them to the Player Orders file on the VAX.

• Command Repeater - translates each Player Order,
writing it to the Player Orders file on the Sun.

• GEKNOFLEXE - processes updates from the DWG
Updates file, processes orders from the Player
Orders file, and writes any orders to the
GEKNOFLEXE Orders file.

• Orders Translator - translates each order in the
GEKNOFLEXE Orders file and writes it to the
GEKNOFLEXE Orders file on the VAX.

• DWG Player - reads each order in the
GEKNOFLEXE Orders file and sends it to the
DWG.

• Occurrence Translator - translates each Occurrence
in the Occurrence file writing the relevant ones to
the DWG Updates file.

3.2 CGF Facility

A consideration of the nature of the two simulations
and their supporting technologies led to the

494

formulation of a simple development philosophy for
the construction of a CGF Facility for the DWG. The
relevant issues are presented in the following sub-
sections.

i2J_ GEKNOFLEXE

The original purpose of GEKNOFLEXE was to
provide a generic system for the representation of a
two-sided ground-based conflict at Divisional level
and below. The intention was to develop a library of
knowledge-bases which would enable efficient
response to C3I study questions against the
background of a conflict anywhere in the world and
involving any two military forces.

Thus the emphasis of GEKNOFLEXE development
was focused on the realistic representation and
interaction of higher and intermediate level
Command Cells. The level of unit aggregation, the
degree of interaction modelling and the resolution of
the terrain were all defined to serve this purpose and
were fairly rudimentary.

For GEKNOFLEXE, the general approach to the
development of a set of knowledge-bases would
necessarily be top down. Representation would start
with the highest level of command and be extended
in depth and breadth until sufficient C3I modelling
detail was incorporated into the system. Interactions
between forces would be approximated
algorithmically.

It is important to note that GEKNOFLEXE

developments have always made full use of
Command Agent Technology and, at lower levels
where partial use of the technology would be valid,
algorithmic approximations have tended to be used.

3.2.2 Command Agent Technology

Command Agent Technology is founded on the
object oriented approach to the decomposition of a
problem domain and supports an explicit
representation of military command and control
structures. It allows individual perceptions of the
battlefield to be developed by each Command Cell
modelled within a scenario. Systems employing
Command Agent Technology can achieve high
degrees of realism in the execution of the Command
Cell function, and the interaction between Command
Cells.

It must be stressed that the purpose of Command
Agent Technology is to provide an appropriate
framework within which to model C3I structures, and
that, at the lower levels of command, the modelling
of such structures may not require all the
functionality provided by the technology. Hence a
system may employ Command Agent Technology
without fully exploiting its functionality. Further,
within the paradigm of this technology, every entity
on the battlefield is capable of being an 'agent of
command' whether it is employed as one or not.

There is therefore, a distinction between the concept
of Command Cells and Command Agents. Any
entity modelled within a scenario can be a Command
Agent - not all are Command Cells. The functional
advantages provided by Command Agent
Technology become more important as the level of
command to be represented becomes higher. This
does not however preclude lower levels of command
(even sections) being developed using the same
technology. In fact it is of advantage to do this since
it facilitates extension and development of a system
to include higher levels of command subsequently.

3.2.3 DWG

The DWG software is a single process simulation
written in C which runs on VAX hardware. At the
core of the DWG is the Simulator process which
performs all the modelling and evaluation during the
execution of a game. Game data are held in a DEC
RDB database.

DWG players interact with the Game via individual
player processes, separate from the Simulator
process, which also run on VAX hardware. The
player processes transmit orders to the DWG via
Global Sections.

While the DWG and GEKNOFLEXE both address
questions at the Divisional level, the DWG is not
autonomous and supports a very low level of
modelling detail. Further, this level of modelling
detail is invariant and effectively defines the level of
interaction with the system. In effect there is very
little 'intelligence' built into the system and almost
every task executed in the game needs to be micro-
managed by the DWG players.

3.2.4 Development Approach

Given these issues it is clear that development of a
CGF Facility must begin by applying control at the

495

lower levels of representation within the DWG.
Successful implementation at this level has several
potential advantages:

• Reduction of DWG manpower requirements
through the removal of low level data-processing
tasks.

• More efficient use of available manpower by
allowing them to concentrate on higher level
issues.

• Increasing confidence in the applicability of the
approach to address higher level control functions.

• Subsequent, more sophisticated knowledge-bases
will be able to utilise the work already done.

Consideration of these advantages led to a simple
development approach for the CGF Facility, namely:

• Build the system and confidence incrementally.

• Address the simplest most time consuming tasks
first.

• Provide 'Assistance' before 'Control'

4_ Specification of Role

Promoting military enthusiasm for a CGF Facility to
support the DWG was key to the success of the
programme. It was therefore considered appropriate
in the first trial to demonstrate the ability of CGF
techniques to undertake a relatively complex task in
addition to providing low level assistance. For the
first demonstration of capability therefore, a Red
Recce withdrawal was chosen and the military staff
of the game were used to specify the knowledge
base.

4.1 Extent of Support

During the initial trial the military staff quickly
recognised the potential of the system, but observed
that most benefit would be obtained by addressing
the more tedious and time consuming tasks first.
This view was consistent with the development
approach and it was agreed that the correct course of
action was to initially limit the role of the Facility to
that of an 'Assistant' to the DWG players.

In addition to meeting the development requirements
this approach has some additional advantages:

• As an 'Assistant', the CGF Facility would have less
responsibility and hence be less likely to adversely
affect a game in the event of a serious failure.

• 'Assistant' level functionality would not require the
representation of cognitive processes, hence
making it easier to develop. Further, higher level
'Command' functionality would need to make use
of'Assistant' level functionality anyway.

• The DWG players would be free to address the
more strategic and tactical aspects of their work.

4.2 Application Area

During the initial trial it became clear that the
demonstrator was able to effect unit movement in a
much more credible fashion than the DWG could by
itself. Further investigation of the associated
problems indicated that the most appropriate, initial
role for the CGF Facility should be to
comprehensively support the DWG in the execution
of unit movement.

This decision was consistent with the general
development approach because fairly low level
reactive functions are undertaken during a recce
withdrawal. Additionally, the need for recce to
maintain maximum coverage of potential lines of
enemy advance during withdrawal presented the
opportunity to demonstrate higher level capability.
The subsequent trial proved to be very successful and
revealed a number of areas where a CGF Facility
could provide valuable support to the DWG.

As a result, discussion with the military staff then
focused on the most appropriate, initial application of
the Facility. The rationale for the subsequent
decision is developed in the following sub-sections.

The background and rationale for this decision are
presented in the following sub-sections.

4.2.1 DWG Movement

Within the DWG, a unit is moved from its current
position to a specified destination using a DWG
move order. This order allows the user to specify the
required destination of the unit, whether or not to use
available roads, a method for breaching minefields
met, and a method for crossing rivers met, etc.

There is also a facility within the DWG for
requesting a unit to follow a predefined route. A unit
can be ordered to follow a particular route, but can
only join or leave the route at a specified 'node'. The
advantage of routes is that a number of them can be

496

identified and created before the game begins,
removing the need for entering large numbers of
move orders for units travelling along the routes.

However there are several inherent limitations within
the DWG connected with unit movement, namely:

• Naive Route Planning

The DWG plots a straight line route between
specified points. This takes no account of the
intermediate terrain, so the route is not necessarily
the fastest available, and it can pass through
difficult terrain, possibly causing the unit to suffer
casualties or halt. To get around this problem, the
DWG player may nominate a number of
waypoints, but this is a time-consuming and
tedious process, especially in areas of inhospitable
terrain.

• Preparation of Predefined Routes

Specific nodes along the routes must be identified
prior to game start, and paths between these nodes
must be planned. Routes are sometimes created
during the game, incurring a further overhead in
terms of data preparation time. There is also the
chance that routes created during the game will
accidentally pass through unfriendly terrain,
leading to further time wastage.

• Lack of Simple Movement Coordination

If a DWG player wishes to make use of a
predefined route, he still has to move all the units
he requires in the convoy to appropriate entry
nodes. These moves can encounter problems due
to naive route planning. Once the convoy is in
place, maintaining its momentum and Order of
March is difficult due to units queuing.

• Harsh Queuing Model

If a unit attempts to move into a quadrant already
occupied by another unit, then the moving unit
may queue if the capacity of the quadrant is not
sufficient to contain both units. If the obstructing
unit does not move on, then the queuing unit will
queue indefinitely. The DWG does not allow
'obstructing' units to be 'bulldozed' out of the way
or simply bypassed.

• Boomeranging

This is a random effect in which a unit that has
been 'magic moved' by an umpire may return to a
previous location later in the game.

4.3-2 Rationale

Given the problems outlined above, and their effect
on game realism and manpower requirements, it is
clear why unit movement was chosen as the area to
be addressed. A Facility to assist with unit
movement would significantly reduce the workload
of both players and umpires, and would lead to a
greater emphasis on strategic and tactical thinking
during the game.

5i_ Functionality

The primary function of CASUM is to provide a
simple mechanism for DWG players to move large
numbers of units around the battlefield in a
coordinated manner. The overall functionality of the
Facility however is much more comprehensive.

CASUM enables DWG players to move groups of
units of any level in a coordinated fashion, with the
minimum of effort. Movement orders given to a
commander will automatically include all of his
subordinates (not just immediate ones). Units that
are not wanted on the move can be exempted from
the move, and units that would not normally be
amongst the commander's subordinates can be added
to it. The single file convoy created from these units
has a doctrinally correct Order of March (OOM) and
units in the convoy are spaced appropriately
depending on their size. A terrain-safe route planner
that can accept a number of waypoints ensures that
the movement of all units is not jeopardised by transit
through difficult terrain.

Dispersal criteria can be specified that determine the
circumstances under which the convoy should
disperse when attacked. Units that disperse will head
for cover and then camouflage. If an unexpected
obstacle (e.g. a minefield or uncrossable river) is
encountered, the convoy will halt and pass command
back to the DWG player. If the convoy disperses or
encounters an obstacle, it becomes suspended, and
the DWG player can take any action necessary to
resolve the problem (e.g. eliminate the enemy threat,
or bring up an engineering unit to clear the
minefield). The convoy move can then be resumed,
and coordinated movement continues as before.
DWG players also have the option to suspend the
convoy voluntarily.

When a convoy has reached the end of its route, each
of its constituent units deploys to cover in a
formation that reflects the structure of the OOM.

497

When the whole convoy has deployed, command is
passed back to the DWG player. The entire convoy
move, or individual units on it, can be cancelled at
any time.

The progression of the convoy from the initial
forming up stage to the final deployment is
conducted without the need for further involvement
from the DWG player, unless an exception occurs.
The amount of supervision required during the move
is therefore minimal.

fL Benefits and Effectiveness

This section presents an evaluation of the
effectiveness of CASUM in supporting the DWG
task. Evaluation has included an assessment of DWG
permanent staff comments, performance measures,
and the overall effect on the DWG model.

6.2 DWG Player Workload

The DWG players benefit from CASUM because
they are now able to move large numbers of units
easily without having to engage in extensive terrain
analysis to determine suitable routes. As a result,
they now have more time to deal with the tactical
aspects of their roles rather than acting as traffic
policemen.

The extra elements of realism introduced into the
DWG by CASUM are of great benefit to the DWG
players in that they replicate more closely the
movement procedures on a real battlefield. The unit
aggregations used in the DWG now resemble the unit
aggregations used in real life. This helps to make the
whole gaming environment appear less artificial, and
enables the DWG players to apply familiar doctrines
within the DWG.

6.1 Umpire Workload

Prior to the introduction of CASUM, the umpires'
most time consuming task was solving queuing
problems. With the introduction of CASUM umpires
now have little to do bar monitoring of the game and
providing advice to the DWG players.

It is clear from the games played so far that the role
of the umpire has been significantly reduced by the
use of CASUM. This reduction in role is sufficiently
great to reduced the number of umpires.

Figure 2 shows the workload associated with the
movement of a Brigade before and after the
introduction of CASUM.

Umpire Day
| Player Day
DWG Day

CASUM DWG

Figure 2 Effort Comparison

Convoys can now be assumed to be moving correctly
until such time as the convoy commander reports
back to the DWG player reporting otherwise. A
convoy coming under fire can now be relied upon to
disperse to cover if the dispersal criteria are met.
Consequently, units will not suffer excessively if an
attack goes unnoticed. It is this extra 'intelligence'
that helps alleviate the DWG players' workload.

6.3 Movement Realism

As well as removing much of the burden that the
unassisted DWG previously imposed on the DWG
players, the CASUM system has improved the
realism of the movement model in the DWG. This
improvement in realism is due to several aspects of
CASUM functionality. These essentially provide
default behaviour for units that in real life would do
something sensible, but in the DWG do nothing.

6.3.1 Queuing Units

The solution of queuing problems was a major issue
in the pre-CASUM DWG, and indeed constituted the
primary part of the work of the umpires. CASUM
deals with queuing in the DWG in a credible fashion
- this is especially beneficial for units that are moving
in convoy, which are particularly prone to queuing.

The existing queuing model is clearly at odds with
reality, as a blocking unit would either move to the
side of the road or be bulldozed out of the way.
CASUM deals with this problem by forcing the unit
into the next quadrant on receipt of a queuing

498

occurrence. This removes the requirement for
umpire intervention.

6.3.2 Military Realism

CASUM also adds military realism to the DWG by
allowing movement orders to be given to a
commander only - his subordinates are automatically
included in the move. This contrasts sharply with the
previous state of the DWG where, say, a Brigade
movement entailed the issuing of move orders to
even' unit in the Brigade individually.

The inclusion of different types of units (e.g. recce,
armour, etc.) in convoy entities is more
representative of the situation in reality, in that on the
battlefield there are Brigade commanders, Battle-
group commanders, and so on, not an artillery
commander who deals with all artillery, or an
engineer commander who deals with all engineers.
Though the DWG is still based on this 'desk'
approach, CASUM is forcing the various desks to
cooperate in such a way that aggregated moves that
would occur in reality are possible (and indeed
encouraged) in the game.

The CASUM route planner prevents units moving
into unfavourable terrain. This eliminates casualties
due to going, which are extremely rare in real life but
were common in the DWG previously because of the
DWG route planner's penchant for moving units in
straight lines, irrespective of the terrain.

6.4 Performance

Care is needed when trying to assess the impact of
CASUM on the DWG. For example, when
considering the efficiency of the system as a whole it
is not sufficient to compare the amount of game time
played with and without CASUM - if you moved one
unit around the battlefield for an entire game, you
would achieve a vast amount of game time but
nothing in the way of useful results. In assessing the
impact of CASUM more subtle measures of the
effectiveness must be used. For instance, the total
amount of ground covered during a game or the total
number of events processed is a more appropriate
measure of efficiency of the system. In the final
analysis the important factor is whether CASUM
adds military credibility to the development of a
scenario and provides a more realistic environment
for the DWG players.

6.4.1 Credibility

The introduction of CASUM has made the movement
of all groups of units a much simpler exercise, and
one which is more intuitive to the DWG players.
This has freed up more of the DWG players' time for
tactical thinking, with the result that the equipment
being modelled in the DWG is being deployed and
operated in a more realistic manner. This inevitably
leads to more credible results being extracted from
the system. Umpire intervention has been reduced
drastically, which again improves the integrity of the
system.

6.4.2 Movement Quality and Quantity

The quality of the movement conducted under
CASUM is unarguably better than that conducted
previously in the DWG. Units under CASUM
control will never voluntarily go into terrain in which
they may take casualties, and queuing will not bring
numbers of units to a halt. Convoys will adopt a
doctrinally correct OOM, and units will head for
cover when under significant attack or when
deploying.

The quantity of the movement conducted under
CASUM is also unarguably greater than that
conducted previously in the DWG. Comparisons
with the last series reveal that approximately the
same number of units have been moved but these
units have covered twice the distance under CASUM.

LL. Potential Future Development

The CASUM Facility is consistent with the approach
to the development of an entry level CGF Facility for
the DWG. Subsequent development must build
incrementally on this. As stated previously, in its
current form CASUM is considered to provide
'assistance' to the DWG player by undertaking his
more mundane activities. For this reason CASUM is
said to adopt the role of 'Commander Assistant', i.e. it
assists the Commander in the execution of his task,
but does not execute it for him.

It should be noted that to increase the level of
CASUM functionality to that of a Command Cell, a
great deal of lower level functionality must first be
provided. It is therefore asserted that a wide range of
'Commander Assistants' should be available before
the system is developed to support the more
sophisticated aspects of command and control.

499

Consequently the recommended approach is to
continue to develop 'Commander Assistants' for the
DWG until enough have been implemented to
warrant a shift to the development of Command
Cells. At this point the Command Agent Technology
will begin to be used to its fullest extent.

7.1 Commander Assistant Roles

Commander Assistant roles could address the
following tasks:

• Artillery

The selection of deployment areas, allocation of
guns to targets, specification of targets, and
movement to new deployment locations.

• Engineering

Minefield laying/clearing, crater filling, and bridge
building/blowing.

• Reconnaissance

In defence, coverage of all potential routes of the
enemy advance until the main ones are established,
withdrawal whilst monitoring these routes,
suppression of the enemy at choke points by calls
for artillery fire, RDM falls, and air strikes. In the
advance, coordination of the movement of
Reconnaissance forces to provide the optimal
coverage of the enemy.

• Air Defence

Provision of an air defence screen around the front
and flanks of a convoy and selection of suitable
weapon states for the air defence units.

• Aviation

Plotting of routes that avoid enemy forces, radar
searches at key points on a route, and identification
and engagement of appropriate targets.

7.2 Unit Movement

Manoeuvre warfare is currently viewed as key to the
achievement of military objectives, and hence
development of the unit movement knowledge-base
should be considered as an ongoing activity. Specific
areas for development are:

• Route Congestion

Coordinate route usage to avoid congestion caused
by a number of independent convoys reaching a
river crossing point at the same time, or where
terrain forces the canalisation of routes.

• Dynamic Route Planning

Re-assess the viability of routes as a result of
bridge-blowing or cratering, constructing an
alternative if necessary.

• Selection of Start-point

Select the start point for a convoy from a
consideration of terrain, convoy length and
position of constituent units.

• Response to Obstacles

Clear obstacles encountered by a convoy using
convoy resources if possible.

• Deployment

Provide additional deployment pattern options to
the DWG player at move specification.

• Orders of March

Provide additional OOM options to the DWG
player at move specification.

7.3 Command Cells

Previous areas of suggested development are limited
primarily to the role of 'Commander Assistant'. At
some point however the sophistication of these
'Assistants' becomes sufficient that the C3I function
of Command Cells themselves may be represented.
Command Agents would be used to explicitly
represent Command Cells, drawing on the
Commander Assistant functions present within
CASUM. At this level it is expected that the
permanent Commanders would have the ability to
specify sophisticated operations orders. The precise
functionality that could be offered by such Command
Cells would draw heavily on the experience gained
from the Command Agent Research (CARE) project
and GEKNOFLEXE work already undertaken by
DERA.

&_ Conclusions

In its current form the CASUM Facility is
contributing considerably to the execution of the
DWG task. There is significant potential for
broadening the scope of the assistance provided and
in the long term there is every reason to believe that
the facility could be extended to fully automate
divisional C3I functions. Further, the system has
been received with much enthusiasm by the DWG
military staff and is considered to have improved the
credibility of gaming significantly.

500

In conclusion, the results achieved to date are
considered to confirm that CGF techniques,
particularly Command Agent Technology, have great
potential to assist War Game simulations.

SL Authors' Biography

Gary Preston is the Technical Manager of the
CASUM project. Mr Preston has a BSc(Hons) of
Science degree in Mathematics. His previous
projects include the Combined Arms Tactical Trainer
Study and the Area Weapons Effects System Study
for UK MoD. His research interests are in the areas
of Simulation and Computer Generated Forces.

Janusz Adamson is a Senior Consultant at the
Centre for Defence Analysis, DERA Fort Halstead.
Mr Adamson has a BSc(Hons) degree in Astronomy
and an MPhil. His project responsibilities include
CASUM, the Close Action ENvironment wargame,
Generic Algorithms, Real-time Knowledge Base
Systems and Command Agents. His Technical focus
is on Synthetic Environments and Computer
Generated Forces.

501

Representative Communications for the Purpose of Command and Control in
Computer Generated Forces

J. P. Landry, Eng., S. Valade, Eng., D. N. Siksik, Eng.
CAE Electronics Ltd.

St-Laurent, Quebec, Canada

1. Abstract

Communications is an essential factor of command
and control. The effective representation of the
communications process is therefore key to achieving
a realistic command and control model for Computer
Generated Forces (CGFs).

Experiment number five of the Aviation Warfighting
Cell (AWC) program (U.S. Army Program Executive
Office Aviation, Ft. Rucker, Alabama, February
1996) provided a vehicle to develop and integrate
representative command and control communications
into CAE's Interactive Tactical Environment
Management System (ITEMS•).

2. Introduction

The involvement of CAE Electronics Ltd. in the U.S.
Army Aviation Warfighting Cell (AWC) program
provided a vehicle in which to integrate
representative command and control communications
into CAE's Interactive Tactical Environment
Management System (ITEMS•).

This paper describes the design issues involved in
generating this communications capability through
ITEMS• Computer Generated Forces (CGF) support
of the AWC experiment.

A description of the AWC program is provided and is
followed by a description of ITEMS•.

Emphasis is placed on the representation of
communications networks within conceptual
organizations such as teams, zones and commands.
These organizations overlay one another in order to
allow for: 1) individual players to talk to each other
within a team; 2) teams of players to talk to other
teams; as well as 3) commanders to talk to specific
team leaders. This approach is aimed at providing a
more representative model of the communications
flow between command hierarchies on the CGF
battlefield.
A discussion considering the characterization of

specific messages follows.

Basic messages such as spot and free-text reports
provide an ability for CGF players to report threats
detected by their sensors and to send, receive and act
upon fixed message sequences.

The ability to implement command and control is
supported by various status request messages such as
position reports, fuel/ammunition inventories and
"shot-at" reports. Other basic messages include move-
to commands as well as target/control measure
handoffs.

Control of CGFs is taken a step further with fire
mission messages. These request/command based
messages provide for coordination between players or
between players and a manned simulator cockpit in
order to establish laser designation and missile firing
sequences.

Issues encountered which are particular to the
simulation of communications in CGFs are described.
They include the handling and correlation of threats
reported by a manned cockpit, the acquisition of
threats and the interaction, through free-text
messages, of a pilot with his CGF counterparts.

Finally, applications of this technology are presented
which include more robust training as well as an
ITEMS TM CGF simulation with increased
effectiveness in representing
command and control.

communications in

3. Aviation Warfighting Cell

The Aviation Warfighting Cell (AWC) (Holmes et.
al. 1996, Larkin et. al. 1996) program is run by the
U.S. Army Program Executive Office, Aviation. Its
goal is to provide high fidelity distributed simulation
of army aviation forces. The level of simulation will
help to identify and study aviation issues into the next
century.

To this end, the program focuses upon the creation of

503

Longbow Player
Station

Comanche Player
Station

DIS Network

A
Cell Manager

(Items'")

z.
A2C2

(Items•)

Figure 1: AWC Architecture

two full flight simulators: An Apache Longbow and a
Comanche. The program studies interoperability
issues affecting the communications between the two
platforms. Experiment five of the Anti-Armor
Advanced Technology Demonstration (A2ATD)
experiments is referred to in this paper.

AWC consists of the two aforementioned simulators
which are referred to as the Longbow Player Station
(LPS) and the Comanche Player Station (CPS),
respectively (see figure 1). ITEMS• provides Cell
Management functions including overall control of
the exercise and the provision of virtual forces to
interact with the manned cockpits. Finally the Army
Airborne Command and Control Vehicle (A2C2V)
station introduces a man-in-the-loop command and
control capability. All elements are networked via
Distributed Interactive Simulation (DIS).

The simulation fidelity achieved on both the LPS and
CPS is concentrated on several aspects of military
aviation. These include flight dynamics, weapons
procedures and performance as well as digital
communications.

As the Cell Manager, the principal role of ITEMS•
is to provide the AWC tactical environment.
ITEMS• seamlessly integrates manned cockpits to
its environment of computer generated forces.
ITEMS• also provides session control allowing for
data recording functions, after-action reviews and
stealth view capability.

vehicle simulation is A command and control
supported by the A2C2V. This ITEMS'M based
station acts as a battalion commander and is capable
of communicating with the rest of the tactical

environment via digital messages. A2C2V visibility
of the battle area is not global but is based upon
information which it has gathered using its sensors
and intelligence.

4. ITEMS• Overview

CAE's Interactive Tactical Environment Management
System (ITEMS•) (Siksik et. al. 1994) provides
simulations with an environment in which entities are
closely modeled with respect to both systems and
intelligence, allowing them to interact with each other
and with their environment in a realistic manner.

The tactical environment provided by ITEMS• is
both controlled and created by the user. Through the
use of a database management system (DBMS),
scenario files, each of which represent a complete
tactical environment, may be individually created,
modified or downloaded to the host-simulation
computer to be run in real-time.

The scenario design function of ITEMS• is an off-
line process involving the ITEMS• Database
Management System (DBMS). During scenario
design, the user provides the DBMS with the
information required to simulate the tactical scenario.
In order to hold large amounts of data efficiently, the
DBMS is divided into individual libraries.
Information about scenarios, players, systems,
intelligence, etc. is stored in respective libraries as
individual records. The libraries are organized in a
hierarchical format so that high level libraries can
reference the lower level ones. For example, the
specifications defined for a Hellfire missile in the
missile library may be referenced by an AH-64
helicopter within the Player Library. The helicopter
may then be referenced by a scenario within the
Scenario Library. Any scenario in this library may be
executed.

Players represent the basic elements of a tactical
scenario and are defined as any entity which has
tactical importance. A player could represent
elements such as tanks, trucks, installations, SAM
sites, infantry, fixed wing, rotary wing, stealth craft,
ships, submersibles, etc.

The ITEMS• scenario combines players within a
terrain and visual database in which they may interact
realistically with each other as well as with such
environmental elements as weather or ground
features.

In order to achieve realistic player interaction,

504

ITEMS• implements representative modeling of: 5. Communications Networks

Dynamics
Navigation
Ballistics
Systems
Intelligence

This modeling is based upon detailed knowledge of
physical player data. For its definition, a player
references numerous low level library records within
DBMS. These represent its platform and various
systems. Platform definition is made with respect to
physical characteristics, dynamic envelope and
vulnerability. Systems libraries provide specification
data for modeling and include: active and passive
sensors (radar, FLIR, RWR, LWR, etc.), weapons
(guns, rockets, missiles, bombs, etc.),
countermeasures (flares, smoke, jammers, etc.),
communications (voice, data, visual, etc.) and laser
(designator, range finder). By combining platform
and systems references, a large variety of computer
generated players are created.

The creation of lifelike player behavior and reaction,
however, requires the modeling of player intelligence
and this, in turn, is based upon knowledge of player
tactics (military doctrine). Tactics, whether used in
air, ground or naval applications, require a
specialized range of expertise. ITEMS• exploits the
ability of expert systems to carry out tasks of an
expert nature thereby providing tactical capability to
players.

Within the ITEMS• expert systems, such tactical
knowledge as mission, opponent selection,
coordination and specialized combat is represented.
This knowledge is represented by rules and provides
control over the actions of individual players as well
as over the summary actions of groups, such as a
change of formation. Doctrines, like player data, are
organized into libraries within the DBMS and are
referenced by players within the scenario. This
organization allows the user to assign different
behaviors to players which share similar physical
characteristics.

With the use of ITEMS•, a tactical environment in
which players interact realistically is provided. It is
desirable, via DIS, to network the tactical
environment to both manned simulators and to other
tactical environments.

Simulation of tactical communications in a virtual
environment is a complex problem. The model has to
be physically correct by respecting the physical laws
inherent to the communications medium (RF, optical,
written, acoustic, etc.). Conversely, it must be
tactically correct. Tactical organization of military
communications is such that messages must only be
received by the relevant military entities.

Directability of tactical messages is desirable for
efficiency and for operational reasons. It reduces the
communications traffic going through the onboard
communications devices of the military vehicles and
provides a basis to perform command and control as
well as coordination.

By contrast, untargeted messages produce intense
communications traffic which may result in mingled
unintelligible messages, information overload or
disruptive information analysis and the requirement
of filtering by recipients.

Untargeted messages also introduce responsibility
ambiguity which is antagonistic to military command
and control. Recipients of a message cannot take
direct responsibility for it, given that many other
equally qualified entities may have received it as well.
A targeted message, however, may be tailored to the
abilities of the recipient. This facilitates the
expedition of message interpretation by the CGF in
the same way as it does in the real battlefield.

All ITEMS• messages are transmitted and received
through the simulation of the vehicle's RF onboard
communications suite. Communications apparatus
include analog/digital radios and direct links. These
systems may be defined with encryption and
eavesdropping capabilities. The models representing
these devices take into account such factors as the
emitter power, the antenna gain, the presence of
jamming and the range between the transmitter and
the receiver. This simulation is therefore physically
representative and meets the first requirement of a
tactical communications model.

The AWC program introduced an additional
simulation layer to the ITEMS• model by
introducing the concept of tactical radio networks.
Prior to AWC, ITEMS• radio broadcasting was
rendered directional via specific frequency selection
on the radios of the entities that were meant to
communicate together. Given physical radio
connectivity, an entity could listen to the messages

505

Figure 2: Communications Networks

transmitted on specific frequencies as assigned by its
mission. The AWC experiment required ITEMS• to
expand on this functionality by providing for tactical
networks. Messages were transmitted through Team,
Command and Zone networks (see figure 2).

5.1 Team Network

The Team network is used to broadcast messages
within a team eg. a vehicle unit, a formation or a
platoon. The main application of this network is to
facilitate intra-team cohesion and coordination. A
team leader typically uses it for point to point
communications with his subordinates in order to
resolve the specifics of their mission. In turn, the
subordinates use this network to report to their
superior and to help him gather tactical intelligence.

5.2 Zone Network

The Zone network is used to transmit information to
all teams within a contained geographical area. This
network typically channels general broadcasts whose
goal is to maintain uniform tactical awareness
amongst the entire force in the zone.

5.3 Command Network

The Command network is used to network the team
commanders so they can coordinate themselves for

specific inter-team tasks (eg: time on target fire,
maneuver and support team coordination, observation
and attack, etc.).

The integration of these networks within ITEMS•
makes it possible to simulate the real world
communications methods that the A2ATD
experiments required in order to study the
interoperability between the AH-64 and the RAH-66.
The networks map themselves to actual military chain
of command. By doing so, they provide a
communications infrastructure that allows
information to flow to the proper entities or groups of
entities.

From a CGF perspective, the simulation of networks
enhances realism, directability and interpretability of
messages. All of these qualities are required in order
to have realistic CGF interoperability with manned
cockpits. Moreover they help to represent more
accurately the decision making process taking place
on the battlefield. It is one thing to have virtual
players take the appropriate action by performing
good situational reasoning. It is another to achieve
the same effect through the coordination of their
subordinate counterparts.

The simulation of communications flow and of the
decision centers is important to interoperability
experiments such as A2ATD. It is likely to be more

506

important to future experiments that would analyze it
at run time for intelligence gathering purposes.
Command posts and observation posts can be
recognized based on the volume of communications
they generate and thus can be targeted first.

6. Communications Messages

AWC not only introduced the simulation of networks
to ITEMS• but also increased the number and
variety of messages that ITEMS• can handle.

6.1 Pre-AWC Messages

Prior to AWC, ITEMS• radio messages were used
to communicate battlefield information whose content
facilitated uniform tactical awareness among the
forces. From a content point of view, the messages
are grouped into two categories: variable situational
content messages and fixed tactical content messages.

Variable situational information content messages
contain information about detected threats. These
type of messages communicate such information as
positions, velocities, level of acquisition, friend/foe
status, etc.

Fixed tactical content messages typically report
tactical events that other players can respond to. The
nature of the event is not explicit in the message and
must be interpreted in the behavior rules of the
players receiving the message. These messages may
be considered as coded since the receiver must have a
prior knowledge of what to expect. Fixed tactical
content messages do not include variable fields for
the purpose of parametrization.

A sender of the types of messages described above
has no control over how they will be interpreted by
the receivers. A contact report details potential
targets. It is not explicit about what should be done
with them. A fixed tactical message is functional if
both the sender and the receiver have the exact same
understanding of what is implied.

The more explicit a message is on how to interpret
the information it conveys, the better its chances of
achieving efficient inter-player coordination. AWC
experiment five was in many ways a coordination
experiment. It had to demonstrate, given the
communications bandwidth of the AWC digital
messages, how well two helicopters with different
missions and of separate manufacture (one of them a
prototype) could coordinate between themselves and
with their ITEMS• generated virtual counterparts.

6.2 AWC Messages

Among the AWC messages used for experiment five
are messages very similar to the ITEMS• messages
described above.

Spot reports are equivalent to the ITEMS• contact
report, with the exception that groups of vehicles
(spots) are reported rather than a list of individual
vehicles.

Free text messages are the equivalent of the
ITEMS• fixed tactical messages. As indicated by its
name, free text message content is left to the sender to
formulate as the specific need for communications
arises. Its format is free and it therefore cannot be
parametrized. It consists of a character string that a
pilot can type in and transmit to other pilots or
players. It is typically used to signal very specific
mission events such as reaching a position or flagging
the beginning of an action.

Usage of the free text messages, implies that both
pilots and virtual players must have briefing
knowledge about which free text messages to use
under specific circumstances. As with the ITEMS•
tactical messages, interpretation of free text messages
by virtual players is described by their behavior rules.

Message introduced to ITEMS• by AWC convey
information required for the command and control of
virtual players from the manned cockpits.

Information query messages are used to obtain
information from virtual players about their own
state. Players respond automatically to these
messages. Query messages include status reports (fuel
level, ammunition), present position reports and shot-
at reports (list of weapons fired to date along with the
targets).

Since query messages are explicit about the action to
perform, an automatic response can be formulated.

Newly developed messages included requests for
which automatic behaviors were modeled. An
example is the move command which requests a route
change from ITEMS• players.

An additional message capability integrated to
ITEMS• provides for the interpretation of control
measures. The fire / no fire zones messages are
examples. Based upon their opponent selection rules,
the receptivity of virtual players towards selecting
opponents inside or outside of specific areas may be

507

Designator Initial* Fir* Mission

- . iRAI-
i Designator

Request
Shootef 2.Shooter

y Acknowledge

3 Shooter Ready

RAH?

4. Designator Request
Launch

T

5. UitkiU Launched^. _'"^ar-j

BhOOtejj Initiate Fut Mimon

1 Shooter am
Request

Designation 2. Designator

Acknowledge

3 Shooter >t ready

s \
* 4 Designate* Ready

**nse—-^

5 Mititt* Launched ^r — ~~ "*

Figure 3: Coordination of Laser Designation and Missile Launch for Fire Mission Message

varied.

A level of complexity above those already mentioned,
is a family of partially automatic interpretation
messages. Partially automatic messages imply that the
receiver is subjected to a bias towards acknowledging
the request. This bias is introduced via the opponent
selection process. In this way, a designated target,
provided via communications, may be selected or
rejected, based upon the bias.

ITEMS• players can therefore base their receptivity
to these messages upon tactical context. Once
selected, however, the actions to perform with respect
to the target are fully automatic. These actions do not
need to be described within the player's rules since
they are explicitly detailed in the message. The target
handover and fire mission messages are messages in
this category.

The target handover message describes which target
to engage and which weapon to fire. Automated
responses include the maneuvering (approaches,
unmasks, etc.) required to attain a firing position as
well as the request for fire itself.

target in the last seconds of missile flight only (see
figure 3). Provision was made for this message to be
used as an artillery request when required. It should
be noted that because of a lack of time, the fire
mission and artillery request messages were only
integrated within ITEMS• and not to the AWC
cockpits.

In order to consider communications failures and the
uncertainty they may cause, an automatic
acknowledge message has been implemented. The
user may select a mode that will enable all players to
expect an acknowledge when they send a message. A
player will re-issue a message up to three times to
players that did not acknowledge reception of his
message.

7. Integration Issues

The integration of manned simulators with any CGF
always raises correlation issues. These are typically
related to such considerations as the difference in
fidelity for sensors and weapons, inconsistencies
between different scoring models, the lack of
correlation between separate terrain databases, etc.

The fire mission message is a multi-step
communications protocol which permits the
coordination of laser designation and missile launch
between two helicopters. This protocol addresses the
time delay problems, the maneuvering, the laser code
transmission and target reporting in order to lase the

During the AWC experiment, the use of U.S. Army
approved algorithms addressed most typical
correlation issues. This section will focus on the
correlation issues related to communications and their
impact on the simulation of command and control.

508

The correlation issues discussed pertain to message
data, effects and interpretation, the use of
acknowledge messages in order to achieve better
situational correlation for pilots and the necessity of
using free text messages to address mission details
which ;ire too specific to parametrize.

In order to achieve interoperability with manned
cockpits, ITEMS• was required to be able to
correlate the data received by players via messages
with data that players had collected individually, via
their sensors. As an example of a possible lack of
correlation, a spot report might report one too many
vehicles or may contain errors in the attributes of the
reported threats.

In order to solve this problem, ITEMS players
associate reported entities with their closest currently
detected threats via a weighting mechanism that
would increase in certainty based upon the amount of
data that could be matched (ie: positions, speeds,
player types, level of acquisition, etc.). Entities that
cannot not be matched with already detected threats
will then be matched to possible yet undetected
threats. If ITEMS• determined that no matches were
possible (eg: an impossible position is reported), the
information is discarded. In all cases, the receiving
player preserves the most recent information about
the reported threat.

An example considers a player receiving information
about a threat it does not yet detect with its own
sensors. This player will use the message data in
order to build its own internal image of the threat. As
soon as the player detects the threat with its onboard
sensors it refreshes this image with its own data. For
specific data, if the message information proves to be
more accurate, it will be retained.

Another data correlation issue arises as data
contained in messages starts to age. Players reported
some time ago may have been killed or simply
changed location. A solution to this kind of problem
is to extend the life of the data by extrapolating it
over time. ITEMS• extrapolates the location of the
threats based upon the speed at which they were last
reported or detected. This solution is valid for a
limited time, however, and for this reason, ITEMS•
also tags the information with a validity timer
(specific to the player type) beyond which the
reported data is discarded. Data describing a slow
moving threat such as a tank will be extrapolated for
a longer period of time than data representing a
fighter aircraft since magnitude of the potential
extrapolation errors increases dramatically over time

for the latter.

The network discussion in section 5 highlighted the
effect of the directability of messages on their
interpretation. For the sake of both command and
control simulation as well as interoperability with
manned simulators, the correlation of the meaning of
the messages themselves is also very important.

A distinction must be drawn between the effect that a
message will have on the battle and the reason for
which it was sent. The variability of the effect of a
message depends upon the design of a player's
mission.

A player having a very precise mission can operate on
its own and although it could accept command and
control messages it may not require them in order to
achieve its goals. A simple threat report may be the
only triggering event required for its mission actions
to begin.

Conversely a player with no precise mission will
essentially do as it is instructed. This situation is far
more demanding from the command and control point
of view as it implies that explicit requests are required
from command.

Integration of players with both high and low levels
of mission detail is a delicate task which depends
upon the command and control abilities of the
scenario builders as well as their coordination with
the pilots of the manned cockpits. The pilots require a
clear understanding of how to inter-operate with the
virtual players during missions just as they must know
how to inter-operate with real forces in real life.

One focus of an ITEMS• mission description is the
opponent selection and mission rules associated to
players. These rules automate the reactions of players
based on events. Consequently, for the case of
messages that are fully explicit about the nature and
sequence of actions to undertake, it became evident
that correlation errors could be avoided by removing
their interpretation from the rules. The concept of
macro rules was introduced in order to fully automate
message responses, thus relieving the rule creator
from having to repeatedly enter rules to handle the
event of message reception. In order to deal with
cases for which the correlation of the message and the
action required is not as straightforward and must be
resolved differently depending on the tactical context,
the interpretation was left in the rules.

There exists a need for virtual players to correlate the

509

content of the messages they receive with their vision
of the battlefield and with the way they intend to
achieve their mission. This needs exists equally for
pilots of manned cockpits. The pilots' sole link to
their virtual partners is the family of digital messages
they can exchange. During the integration of the
cockpits to the ITEMS•, it was apparent that the
pilots required confirmation that their messages had
been received by their virtual partners. For this
reason, the acknowledge message was implemented.
This message gives tactical confidence to the pilots
that everything was under control on the virtual side.
The pilots could even assess casualties in their team
when a subordinate player would fail to acknowledge
the reception of its messages.

As mentioned earlier, the use of the AWC free text
messages implies that both the pilots and the virtual
players must be briefed about which free text
messages to use under specific circumstances prior
the exercise. The potential for correlation problems is
therefore very large. A simple typing error from a
pilot would result in virtual players failing to decode
the message. For this reason, it was decided at the
early stage of AWC integration that ITEMS• would
not support the reception nor the expedition of free
text messages both to and from the manned cockpit. It
soon became evident, however, that in order to
handle very specific scenario details, the use of these
messages was indispensable. Virtual players
transmitted free text messages to signal their leader (a
manned cockpit) that they had reached their fire
position. They then received free text messages from
the pilot as final confirmation before firing.

8. Conclusions

Through the use of ITEMS•, the AWC experiments
have provided for significant improvement in the
ability of man-in-the-loop simulators to interact with
computer generated forces through command and
control communications.

The implementation of networks, such as team, zone
and command, allows for better directability of
battlefield data.

Although issues involving correlation of message data
and interpretation remain, the work achieved for
AWC experiment five provides a strong foundation
for an increased representation of command and
control in ITEMS• as well as for an improved
training capability for man-in-the-loop simulators.

9. Acknowledgment

The authors would like to acknowledge the dedication
and hard work of the entire ITEMS•/AWC team,
without whom this paper could not have been written.

10. References

Holmes, R., Representative CGF Behavior in a DIS
Environment Through Digital Communications,
SimTecT96, Melbourne, Australia, March 1996.

Larkin, M., Ferranti, M., Obear, P., U.S. Army
Aviation Warfighting Cell Anti-Armor Advanced
Technology Demonstration Experiment 5.

Siksik, D., Beauchesne, G., Holmes, R., The
Integration of Distributed Interactive Simulation
Protocol Within an Interactive Tactical
Environment, Royal Aeronautical Society,
London, 1994.

11. Authors' Biographies

Jean-Philippe Landry is a Systems Engineer at CAE
Electronics Ltd. and is primarily involved in CGF
behavior simulation. Mr. Landry holds a Bachelor's
degree in Engineering from McGill University.

Stephane Valade is a Systems Engineer at CAE
Electronics Ltd. and is involved in tactical equipment
simulation. Mr. Valade holds a Bachelor's degree in

Engineering from Ecole Polythechnique de Montreal.

David N. Siksik is a Group Leader at CAE
Electronics Ltd. and is responsible for ITEMS•
behavior simulation. Mr. Siksik holds a Master's
degree in Engineering from Concordia University.

Automatic specific action messages, such as "move-
to" as well as coordinated messages such as "target
handover" allow for improved control of subordinate
forces during a mission.

Free-text messages provide the flexibility to increase
the scope of interaction between manned cockpits and
the CGF.

510

An Architecture for Integrating Command and Control
Capabilities of Heterogeneous Simulations

Frederic McKenzie
Science Applications International Corporation

3045 Technology Parkway
Orlando, FL 32826

Rick_McKenzie@cpqm.saic.com

Gregory Shumaker
Science Applications International Corporation

shumaker@nefarious.orl.saic.com

Pete Campbell
Science Applications International Corporation

campbelp@vorlon.orl.saic.com

1. Abstract

The Advanced Distributed Simulation Research
Team (ADS RT) at SAIC-Orlando has been
conducting experiments with the interoperability of
simulations. Two of these experiments and their
common architecture are discussed in this paper. The
first of the experiments involves a linkage between
Command Forces/Command & Control Simulation
Interface Language (CFOR/CCSIL) and Combined
Arms Tactical Trainer - Semi-Automated Forces
(CATT-SAF).

Close Combat Tactical Trainer (CCTT) SAF and
CFOR Command Entities communicate using CCSIL
messages making CATT-SAF a player in CFOR
activities and allowing a wide variety of doctrinal
CATT-SAF behaviors to be available to CFOR. The
focus here was to employ commanders using CCSIL
to command and control CATT SAF entities. The
proof-of-concept implemented consisted of a
translation of the CCSIL Execute Directive message
and the actions it could elicit as of version 3.1.1. A
full mapping of CCSIL messages to CATT-SAF
behaviors and a capability of sending reports from
CATT-SAF to CFOR is the next step in this research

The second experiment explored interoperability
between SAF simulations and live Command,
Control, Communications, Computers and
Intelligence (C4I) systems, such as Phoenix. The
proof-of-concept implemented shows CATT-SAF
units commanded from Phoenix via US Message

Text Format (USMTF) messages. This capability
allows a common Command and control (C2)
interface employed in the Army's Battle Labs
(Phoenix) to be utilized as a front-end to CATT-SAF.
The version of Phoenix used did not have the
command order capability that is present in Phoenix
version 1.1 which will need to be examined before a
proper mapping of Phoenix messages to CATT-SAF
behaviors can be completed. Also a capability of
transmitting reports from CATT-SAF to Phoenix
should also be pursued.

The architecture used CORBA technology to provide
common services for command language
communications among the simulations. This paper
provides an explanation of the experiments and a
description of the architecture involved.

2. Introduction and Background

The ADS RT at SAIC-Orlando has been conducting
experiments involving the interoperability of
simulations. For each of these experiments in
interoperability, an approach was taken based upon a
common architecture. The experiments discussed in
this paper involved the integration of additional C2
capabilities into dissimilar simulations. The
integration of these capabilities involved the
development of a common architecture through
which the command and control information is sent,
received, and translated into the format used by a
given simulation.

511

The common architecture for each of these
experiments is based upon the Seamless
Interoperable Simulation Environment (SISE). SISE
was developed for our interoperability experiments in
order to provide the object-oriented plug-&-play
environment necessary for the interoperability and
reuse of legacy simulation components. The use of
SISE also provides insight into interoperability issues
leading to a roadmap for the interoperability of future
simulations. Each interoperability experiment uses
some subset of SISE. Although portions of SISE
have been implemented, it is currently a paper
concept.

Interoperability in simulation can be achieved by
adhering to common industry standards. Standards
which encourage or require object oriented design are
important not only for purposes of interoperability
but also for the purposes of reusability. Distributed
Object Technologies (DOTs) typically provide such a
standard through a common framework for
distributed objects. The interoperability experiments
described in this paper make use of DOT technology
as well as other standards.

The goal of the first interoperability experiment
involving C2 was to provide a mechanism by which
CCTT-SAF can receive and interpret CCSIL
messages. This allows for the control of CATT-SAF
entities by a CFOR commander or any commander
with the capability of sending CCSIL messages.

The second interoperability experiment involving
command and control provides the capability for
CATT-SAF to receive command and control
information which was sent in USMTF by a
commander at a Phoenix console. This capability
demonstrates not only interoperability but also the
reuse of this common C2 interface.

2.1 SISE

SISE (pronounced size) offers two distinct
capabilities. First, it offers a library of legacy
simulation component services that have been
wrapped for reuse. SISE allows these simulation
pieces to be connected together to form a whole
simulation or to be linked into an existing simulation.
Second, SISE offers a mechanism for allowing
simulations of different types (live, virtual,
constructive) to interoperate. To support these two
capabilities, different standards and different
representations will need to be arbitrated. Hence,
SISE contains the following arbitrators: semantic,

protocol, temporal, and spatial. These arbitrators will
be elaborated in subsequent publications.

SISE is composed of three distinct parts: the core, the
plug, and the GUI. Together, these parts allows a set
of simulations and/or simulation components to
interoperate. For the research presented in this paper,
SISE provided a testbed for interfaces with CCSIL
Signal PDUs and CORBA technology.

The SISE core consists of the SISE infrastructure and
an object model. It is anticipated that SISE will one
day be conversant with the High Level Architecture
Run-Time Infrastructure (HLA RTI) thus providing a
means by which legacy simulations can participate in
HLA exercises.

A SISE plug is a client interface to a simulation, or a
simulation component. The plug allows a simulation
component to talk to the SISE core and to other
simulation components participating in the exercise
(participants). The plug contains an interface to the
core which includes registration services, services for
synchronization with the simulation clock, and
queues for sending and receiving messages from
other participants.

The SISE GUI provides the user with an interface to
the library of services that have registered in or are
defaulted with SISE. The GUI receives descriptions
of simulation components via the core. The user may
then use the Simulation Integrator portion of the GUI
to construct a simulation. Once the simulation is
constructed the user may activate components and
start the simulation. Through the GUI, the user can
create entities, examine the status of entities, monitor
events, and control the simulation clock.

Through the SISE GUI, any combination of point-to-
point simulation component connections can be
emulated without having to write specific conversion
routines every time for every combination. Also,
when new simulations are added with SISE plugs,
little work needs to be done to previously connected
simulations to allow them to participate.

Portions of SISE that have been wholly or partially
developed and tested to date are the GUI and parts of
the infrastructure that allow plug-&-p!ay, semantic
arbitration, and protocol arbitration.

2.2 Distributed Object Technology

512

Unlike traditional distributed simulations that use
distributed processes exchanging messages, object-
oriented simulations are concerned with distributed
objects and use them to provide the communication
between heterogeneous distributed environments via
remote method invocations. Interoperability is
possible because the objects conform to the
representation and interfaces needed by the host
application, regardless of whether the object is local
or remote.

Object Request Brokers (ORBs) provide facilities
that allow applications to invoke object methods and
receive responses from objects created and owned by
remote servers. All ORBs define an interface such as
the CORBA Interface Definition Language (IDL)
that allows remote objects to be seen in an identical
fashion to the application as a local object, without
regard to the object's true location.

As mentioned previously, all ORBs must define an
interface for interoperability. The Common Object
Request Broker Architecture is designed to do just
that (OMG 1995). It separates the interface of an
object from its implementation using an IDL. The
ORB will generate proxy objects for every remote
instantiation of an object needed from a server. The
ORB processes an object method invocation by first
locating the object, invoking it (starting a server),
converting the data as necessary, invoking the
corresponding object method, and processing the
return data. For example, an application may request
pointers to remote objects and then use these pointers
to call the remote services of the objects. The ORB
provides a reliable communication path between
heterogeneous applications using the same objects.

The use of object-oriented technology in the DIS and
CGF simulation domains is a relatively new concept.
However, some previous work has been done in the
area. SimCore uses CORBA objects to encapsulate
PDUs for internal communication using ORBs and
ODBMSs(Lander 1995). Kuhl also has encapsulated
PDUs and used these objects via an ORB for air
traffic control (Kuhl 1994). The ORB was used to
provide the service needed by the Entity Update
Service of the DIS protocol. The Entity Update
service of the ORB provides the publish and
subscribe service needed by the SISE GUI mentioned
previously. Object-oriented technology is being used
in a different aspect by Sureshchandran to manage
dynamic changes in the environment (terrain,
weather, etc) to provide real-time, high fidelity
environments on demand (Sureshchandran 1995).

The Tri-service Advanced Countermeasures and
Threats Integrated Combat Simulation (TACTICS)
also uses an object-oriented environment to allow
high fidelity simulations to interact across distributed
platforms. (Peck 1995). Similar to the SISE plug
concept, TACTICS provides for the migration of
existing simulations to the object-oriented model but
focus on simulations that assess ground combat
vehicle survivability.

The Joint Precision Strike Demonstration program
(JPSD) is using advanced real-time ODBMS
technology to facilitate the logging and analysis of
DIS PDUs, tactical messages, and audio/visual data.
The logged information can be accessed during run-
time or during an After Action Review.

2.3 CATT-SAF

Close Combat Tactical Trainer (CCTT) is a
distributed training system that simulates battlefield
aspects of the US Army SAF, man-in-the-loop
simulators, and indirect fire and logistics
components. The SAF component of the CCTT,
referred to here as Combined Arms Tactical Training
SAF (CATT SAF), simulates US Army and Soviet
Army tactical behaviors for dismounted infantry,
vehicle, platoon, company and battalion echelons.
These behaviors are developed from documented and
validated Combat Instruction Sets (CISs) and, as
such, are useful for training, mission rehearsal,
acquisition, and Test and Evaluation (T&E)
environments.

As part of the object-oriented design, CATT SAF
uses a SAF Entity Object Database (SEOD) which
contains representations for units, task organizations,
overlay symbols, execution matrices, commanders'
orders, and subordinates' reports. It is through the
SEOD that this research influences the CATT-SAF
simulation.

2.4 Phoenix

The Phoenix Battle Command and Control Decision
Support System (BCDSS) is increasingly being used
in the U.S. Army Battle Labs. This system has been
successfully used to provide a user friendly human
interface for the voluminous amount of information
received by high echelon military personnel. This
live, go-to-war system aids the decision maker in
managing data sources so that more rapid command
of forces may be effected.

513

Phoenix is intended to link with a number of systems
such as IVIS. The primary interface employed in this
research is an email capability that uses USMTF
messages. These messages are used to convey reports
to the commander as well as track enemy and
friendly forces. The version of Phoenix used in this
research did not have an Operational Order
(OPORD) capability used to generate and transmit
orders to subordinate units. Therefore, USMTF
freetext messages were used for this purpose.

2.5 CFOR

Command Forces (CFOR) is a program under the
Synthetic Theater of War (STOW) effort sponsored
by the Defense Advanced Research Projects Agency
(DARPA) that is intended to emulate high echelon
commander reasoning and decision making using a
variety of information sources including sensory
capabilities in the synthetic battlefield. These
command entity reasoners communicate with
simulations as well as other reasoners by using the
Command and Control Simulation Interface
Language (CCSIL). CCSIL provides reports and
orders information for all aspects of military
operations including ground, air, and sea. These
messages are communicated across a Distributed
Interactive Simulation (DIS) network encoded within
Signal Protocol Data Units (PDU). A number of
CCSIL messages have been defined and an interface
to ModSAF have been provided by The Mitre
Corporation that allows an automated commander to
control units in ModSAF.

The work performed in this research adapted CCTT
SAF to accept CCSIL messages and therefore
provides an additional simulation capability for
CFOR. This proof of concept used the CCSIL
Execute Directive message to convey commands to a
CCTT unit using CORBA technology.

3. Common Architecture

Both of the experiments make use of a common
architecture based conceptually upon SISE. A plug
was built for each of the simulation components in
the experiments. The plugs in this architecture do
not contain all of the features required of a SISE
plug, e.g. the registration mechanism was not
included for each plug. Although this is the case, the
SISE plug concept is still intact. Each plug is in

essence a client interface between a simulation and
SISE. The plug sends simulation information to SISE
or SISE may grab this information from the DIS
network as in the case with CCSIL Signal PDUs.
SISE then communicates this information to various
services via an ORB. These services are translators to
a generic command and control format. Upon
reaching their destination component(s), the
messages in the generic format are converted into the
components' native formats. In the case of CCTT
SAF, the native format would be SEOD format.

This architecture allows any compliant simulation to
send and/or receive command and control
information from any other compliant simulation.
Compliance only requires the construction of an
interface plug and a translation service (if a
translation service does not already exist). When
linking many components, this approach is much
simpler than providing direct linkages between each
component, requiring only O(n) translations versus

O(n^) translations.

3.1 Generic Format

The generic command and control information
format used is based upon a small subset of
command and control information. The command
and control information sent in these experiments is a
subset of the CCSIL execute directive message. This
message contains orders for change formation,
execute action drill, contact drill, halt, resume, and
others. This set of orders was chosen because it
consisted of a small set of messages that would be
simple to implement while yielding practical, visible
results.

4. Phoenix to CATT-SAF Implementation

The first experiment involved linking both Phoenix
and CATT-SAF to allow a commander at a Phoenix
console to send orders to CATT-SAF units without
learning the CCTT SAF Workstation GUI. The
intent of this experiment is to demonstrate the
reusability of the Phoenix console and the
construction of a "proof of concept" of using an ORB
to provide the interoperability between simulation
components in a manner correlating to SISE. The
ORB used was a COTS implementation called Orbix
by Iona Technologies. A diagram of the
implementation can be seen in Figure 1.

514

Phoenix CATT-SAF

Clients

ORB
SISE

DIS Network ODBMS

I I
CCSIL

Translator,
CATT-SAF
Translator

Services

Figure 1: Phoenix Linkage

The Phoenix mechanism used for sending command
and control information in this experiment was a
USMTF message sent via e-mail. When the e-mail
message is received, a process is executed which uses
the message as input. This process is the SISE plug
for Phoenix. It is implemented as an ORB client and
calls a translator service which translates the USMTF
into the generic command and control format. After
performing the translation into the generic format,
the information is placed into an order object. The
order object is stored in the ORB until it has been
delivered to its destination(s).

On the other end is a SISE plug for CATT-SAF.
This plug is responsible for the reception of all
command and control messages intended for CATT-
SAF entities. This process theoretically should
receive a callback when the generic order is placed in
an Object-Oriented Data Base Management System
(OODBMS). Since this portion of the architecture
was not implemented, the process ticks the ORB
periodically to see if there is an order for its entities
stored in a generic order object. If there is, then the
order is translated into the equivalent CATT-SAF
order and placed into the SEOD appropriately for use
by the current execution of CATT-SAF.

At the time of implementation, there was no Ada
ORB implementation available. Thus, for purposes
of translation, the CATT-SAF plug was implemented

in Ada with the ORB client portion implemented in
C++. Thus, an Ada main program was executed with
an interface to the C++ ORB client routines. This
prevents the C++ runtime libraries from being
initialized upon execution of the process. This is also
why the plug was implemented to tick the ORB
periodically rather than having a callback function
associated within the ORB to appropriate messages
to the CATT-SAF plug upon reception.

5. CCSIL to CATT-SAF Implementation

The second experiment involved the linkage of
CCSIL messages to CATT-SAF, thus allowing
CATT-SAF to play in CFOR exercises. Once again,
the only CCSIL message that was used in these
experiments was the execute directive message. This
implementation is illustrated in Figure 2. Note that
almost all components from the previous experiment
were reused.

A CCSIL capability was implemented within SISE
which pulls Signal PDUs off of the network and
strips out the CCSIL messages. The CCSIL messages
are sent out through an interface that is part of the
SISE-GUI. The plug then calls the translator service
to translate the messages into the generic format
discussed previously. The generic message is then
forwarded to the CATT-SAF plug in the same
manner as the first experiment.

515

Clients

SISE
DIS Network ODBMS

Services

CATT-SAF
Translator

Figure 2: CFOR Linkage

Phoenix
Translator

The CATT-SAF plug used in this linkage is identical
to that of the Phoenix to CATT-SAF linkage. Thus,
the CATT-SAF plug communicates with the ORB
and with CATT-SAF in the same manner as in the
previous experiment. This means that the source of
the order is transparent to the CATT-SAF end.

6. Results and Conclusion

These experiments were performed with Phoenix, the
SISE GUI (used as a CFOR commander), and
CATT-SAF executing simultaneously. This allowed
orders to be sent from both Phoenix and the SISE-
GUI to the same CATT-SAF exercise. The
verification methodology for the experiments
consisted of visually inspecting, after each order was
sent, the changes to the CATT-SAF execution matrix
and to the entities on the CCTT SAF Plan View
Display.

Through these two experiments, we have
demonstrated both interoperabiliy and reusability of
simulation components. Interoperability has been
demonstrated at the command and control level
across several different simulations. This was
accomplished with minimal effort due to the common
architecture design shared by all components and by
the use of ORB technology.

In theory, a representation of the CCSIL standard
could be the generic command and control format
used in this architecture. A full linkage of CATT-
SAF to CCSIL would allow a wide variety of

doctrinal command and control capability to be
utilized among CFOR simulations while providing
the platform interactions that are normally allowed
via DIS PDUs. This will be accomplished through a
planned linkage to ODBMS middleware such as
Object Design's ObjectStore which will allow the
storage of orders in a generic format resembling an
object-oriented version of CCSIL.

7. References

Kuhl, Frederick. DIS and Object Request Broker. In
Proceedings of the 1 Oth Workshop on Standards
for the Interoperability of Distributed
Simulations. Orlando, FL (1994), 43-46.

Lander, W. B. Object-oriented technologies in
SimCore. In Object Oriented Simulation, 1995.
Proceedings of the 1995 Western MultiConference,
1995.

Object Management Group (OMG). The Common
Object Request Broker Architecture (CORBA)
Specification. (1995).

Peck, Dr. Charles C; et. al. Applications of
distributed object technology to DIS. In
Proceedings of the 12th Workshop on Standards
for the Interoperability of Distributed Simulations.
Orlando, FL (1995), 537-552.

516

Sureshchandran, S.; et. al. Use of object request
broker for dynamic environments in Distributed
Interactive Simulation. In Proceedings of the 13th
Workshop on Standards for the Interoperability of
Distributed Simulations. Volume 1. Orlando, FL
(1995), 65-67.

8. Authors' Biographies

Dr. Frederic (Rick) McKenzie has been a member
of the Advanced Distributed Simulation Research
Team (ADS RT) since April 1995 serving as P.I. for
two interoperability IRAD projects. He holds a
Senior Scientist position at SAIC Orlando and is
currently technical lead on an ARPA sponsored
advanced interoperability project. For two years prior
to joining the ADS RT, he had been a member of the
knowledge engineering team for the SAF component
of the Close Combat Tactical Trainer (CCTT)
project Dr. McKenzie has had two years teaching
experience in software languages and data structures.
He obtained a Master of Science in Computer
Engineering in 1990 and a Ph.D. in Engineering in
1994 from the University of Central Florida. Both his
Masters and Ph.D. work have been in AI research,
focusing on knowledge representation and model-
based diagnostic reasoning.

Gregory Shumaker has been a member of the
Advanced Distributed Simulation Research
Team(ADS RT) since July 1994. He has been
involved with several R&D efforts and is currently
supporting an ARPA sponsored advanced
interoperability project involving the verification and
validation of SAF behaviors. Gregory has a Bachelor
of Science in Computer Science from the University
of Central Florida in 1993. He received his Master of
Science in Computer Science in May 1996 from the
University of Central Florida. His Masters work
involved the Bulk-Synchronus Parallel(BSP) model
of general purpose parallel computing.

Pete Campbell was a member of the Advanced
Distributed Simulation Research Team (ADS RT)
from October 1995 to May 1996. He is currently
pursuing other goals. Pete has a Bachelors of
Science in Computer Engineering from the
University of Central Florida in May 1996.

517

Drilling CGF Agents in METT-T:
an alternative approach to conventional AI

R.W. Penney
Defence Research Agency,

St. Andrews Road. Great Malvern,
Worcestershire WR14 3PS, U.K.
email: penney@signal.dra.hmg.gb

Abstract
While Western military doctrine stipulates that of-
ficers at all levels must weigh-together many dis-
parate factors in their decision-making, whether
reacting or planning, it is well-known that ex-
isting techniques for simulating such battlefield
decision-making are generally rather poor at bal-
ancing these various disparate influences. There-
fore it is not entirely certain whether even a semi-
automated force having close human supervision of
small groups of computer-controlled entities, could
provide a realistically challenging opposition for in-
dividual humans. This is of particular concern in
training or mission-rehearsal contexts if the low-
level reasoning of individual simulated entities is
so simplistic and inferior to that of the humans
with which they must contend. We have therefore
sought to develop algorithmic techniques that are
better able to support rational artificial decision-
making in complex non-stereotyped situations. An
implemented application of these techniques to the
versatile control of small numbers of simulated
tanks moving in rich randomly-generated topogra-
phy, without relying on numerous inflexible rules,
will also be discussed. Thereby we will indicate
how our algorithm is inherently able to balance the
requirements of route-planning, enemy avoidance
and force cohesion as circumstances dictate.

© British Crown Copyright 1996/DERA. Published with

the permission of the controller of Her Britannic Majesty's

Stationery Office.

1. Introduction
The impressive recent developments in creat-
ing virtual environments for military applica-
tions do much to support the substantial replace-
ment of highly costly large-scale field exercises

by simulator-based alternatives. Even consider-
ing the, often underestimated, computational ex-
pense of transcribing a plethora of real-world phys-
ical phenomena (e.g. vehicle dynamics, inter-
particle collisions, wind effects, and visual and
sonic phenomena) into a computer model, the ben-
efits of versatility, controllability and accessibility
are quite persuasive. However, as the scale of ex-
ercises becomes greater, the extent to which train-
ing must be focussed on a relatively tiny set of the
participants in order to be effective, becomes very
marked. Clearly, the interest in minimizing the
staffing requirements of such exercises by replac-
ing as many, purely ancillary, staff by computer-
generated forces (CGFs) is understandable, but
makes extreme demands of the artificial forces if
they are to be able to interact closely with humans
practising and polishing their own skills.

1.1. Fidelity and Verisimilitude
It may seem that the many simulation systems
used for operational analysis must provide some
important universal paradigms in battlefield mod-
elling. However, this would be to ignore some rel-
evant general principles that are highly pertinent
to the successes of modelling in general. Perhaps
foremost amongst this are the concepts of univer-
sality and self-averaging (Fischer and Hertz 1991),
whereby as the scale at which a system is observed
increases, the sensitivity to the precise characteris-
tics of the lowest-level dynamical laws and micro-
scopic details diminishes. Hence, to a large extent
the usefulness and temptation of such simulations
rests on the ability of relatively crude modelling of
entity-level physics to yet provide plausible macro-
scopic force behaviour. So, provided one is care-
ful how one analyses the results from such sys-
tems (taking due account of random fluctuations,

519

and the depth to which the results can be trusted)
the occasional failings and fortuitousnesses of their
simplistic lowest-level behaviours may well can-
cel out on average. This means that producing
statistically-correct large-scale models of collective
behaviour can be greatly facilitated by exploiting
this tolerance in the fidelity required at the lowest
level of detail, even though this lower-level mod-
elling is often the most convenient way of mod-
elling the effective behaviour of larger composites
(Richardson 1994). Furthermore, one should rec-
ognize that it is often very difficult even to deter-
mine whether individual entities are making sensi-
ble decisions when their behaviour is only observ-
able on a plan-view display. Again, the larger-scale
plausibility of force behaviour, when seen in plan-
view, does not mean that individual entities are
acting in a way that a human, in a similar posi-
tion, would not consider crass.

Even though, when carefully used, relatively crude
battlefield models can be generally instructive, it
would clearly be cavalier to assume that such tech-
niques are necessarily sufficiently accurate in their
low-level details to be able to support human par-
ticipation. The great fluency with which humans
adapt to, and exploit, the peculiarities of a situ-
ation means that, far from being nullified on av-
erage by other random factors, the human's skills
could potentially undermine the credibility of the
simulation as a whole. For example, a failure of
computer-generated tanks to be able to hide be-
hind ridge-lines or manoeuvre collectively while
covered from a moving enemy, would give hu-
man tank commanders an anomalously high kill-
rate against such an opposition, that could dras-
tically skew the outcome of an exercise. Indeed,
such weaknesses are not simply avoided by the
semi-automated force (SAF), unless their human
controller has access to entity-level perceptions.
Given the many conflicting military factors, such
as Mission, Enemy, Time, Terrain, Troop (METT-
T), that humans recognize as important to effec-
tive operations, these must surely be reflected in
the decision-making of artificial forces if they are
to form an effective opposition. Moreover, how-
ever facile all humans find spatio-temporal rea-
soning tasks such as hiding and moulding forma-
tions to context, it would be extremely naive to
believe that these abilities can be emulated with-
out highly computationally-intensive calculations.

Indeed, this human ability is primarily a reflection
of the wealth of intuition and common-sense that
underpins domain-specific expertise; hence the em-
phasis on using doctrinal rules as the foundation
for CGF systems is rather questionable if any real
flexibility is expected. Certainly it is possible to
regulate exercises and predetermine some of the
likely circumstances within it, but given the grow-
ing emphasis on initiative and creativity in mil-
itary doctrine it seems unrealistic not to expect,
at least significant variations on the anticipated
courses of action, to occur. Individual CGF enti-
ties have to be able to adapt to these variations
autonomously, if they are to be of any real value
in reducing staffing requirements in synthetic en-
vironments. Yet in order to adapt reliably to vari-
ations and combinations of stereotyped situations,
it is not sufficient for agents to treat conflicting sit-
uational influences separately; more rational com-
promises must be found.

1.2. Divide and Contort
If one measures existing CGF technologies against
these requirements, there are grounds for concern
(e.g., Meliza and Vaden 1995), however impressive
the progress that they may represent. In general
the weakness of existing systems can be largely
attributed to the discretization and compartmen-
talization that are so pre-eminent. For example,
it is commonplace to find route-planning to be
considered separately from mission-planning1 and
from formation-keeping, while clearly these prob-
lems are only independent in the most sterile of
situations (c.f. Campbell et al 1995). There is
indeed a tendency for unit behaviour to be gen-
erated as an isolated whole, without considering
how this should be influenced by the behaviour
of other units, or the implications for the con-
stituents of single units (Ourston et al 1995, Har-
mon et al 1994). For example, planning a con-
cealed route for an atomic tank troop does noth-
ing to prevent the individual tanks straying out
from behind ridge-lines through taking naive ac-
tion to keep in formation; an issue that may
or may not have wider implications according to
context. Similarly the style of Combat Instruc-

1This is particularly relevant as route-planning tech-
niques seem focussed solely around finding routes between
•pre-specified endpoints, while taking scant account of the
time-dependence in the extraneous factors influencing the
choice of route.

520

tion Sets (Ourston ei al 1995) almost forces one
into a finite-state-machine (Dougherty and Giar-
dina 1988) formulation of behavioural modelling.
For example, for a tank troop responding to indi-
rect fire, it may have to commit either to hastily
retracing its steps or to scattering into nearby cov-
ered positions, or to continuing with the mission
regardless. However, even though all these options
sound sensible, to assert that they are exhaustive,
can all be clearly distinguished, and are each un-
ambiguous, is somewhat unrealistic — there could
manifestly be situations where a small change in
the intended route ahead would allow the troop to
continue with the mission while having the bene-
fits of cover. While this slight generalization of a
basic principle is utterly obvious to a human, too
naive a transcription of the basic set of options
into software would totally prevent natural gener-
alization when circumstances represent a mixture
of the stereotyped cases. Moreover, merely decid-
ing which of a limited set of options to adopt must
be dependent on how these options will actually
be enacted, and yet such information, as well as
general contextual factors, are extremely difficult
to include in this style of formulation.

In view of the ramifications of the apparently in-
evitable limitations of some of the more popu-
lar CGF techniques, we have sought to develop
a novel formulation of artificial decision-making
that avoids some of these weaknesses. In view
of our scepticism of compartmentalization of be-
haviour, utter dependence on situation-specific ex-
pert knowledge, and too crude entity-level be-
haviour, we have aimed for a unified and intrin-
sically flexible entity-level planning algorithm. In
the next sections we will indicate how a func-
tional optimization process can be used to generate
plausible entity-level behaviour for a small num-
ber of tanks moving in rich terrain features, when
provided with only quite rudimentary knowledge.
Given that (time-dependent) route-planning, force
cohesion and enemy avoidance are thereby emer-
gent phenomena of a single process, we will indi-
cate how our system is able to respond to quite
a broad range of situations without relying on nu-
merous prescriptive rules, and when given only the
most limited of prescribed knowledge.

2. Conceptual Overview

Absolutely central to flexible behaviour genera-
tion, in any autonomous agent, is the ability to
make rational choices between possible actions,
and rational compromises between competing ac-
tions. This inevitably requires that agents have
sufficient information at their disposal to be able
to make these choices; there is no sense in expect-
ing a context-sensitive decision to be achieved if
an agent has an inadequate picture of its circum-
stances. Although some popular CGF technologies
may have great strengths in the lucidity or speed
of their reasoning systems, and have functional-
ity that is analogous to human military thinking,
when analysed more closely it is clear that they
typically inherently base their entities' behaviours
on far narrower information than is important to
human adaptability. Most notably, they often
expect to make decisions based on single snap-
shots of a battlefield situation, or to have semi-
automated entities execute their operator's orders
without any idea what factors lay behind his choice
of those orders.

We have already mentioned the importance of in-
tuition in fitting expert knowledge into context,
but it should be apparent that the doctrinally-
based branch-points in the pandemic rule-based
systems or finite-state machine architectures sim-
ply decree certain actions be taken; it thereafter
being the responsibility of each triggered action
to adapt, alone, to the prevailing situation. How-
ever, in complex environments it is optimistic in
the extreme to assume that the outcome of a
course of action can, with any generality, be reli-
ably determined without some form of simulation,
whether performed computationally, mathemati-
cally or cerebrally. If it is not realistic to predict
the outcome of a course of action without a sim-
ulation, then it is surely unrealistic to determine
which of a set of courses of action to adopt with-
out some similarly elaborate evaluation of each of
them. Yet this appears to be exactly what Combat
Instruction Sets, Finite-State Machines and rule-
based systems are attempting to do. For example,
determining whether one should instruct a subor-
dinate to defend a particular corridor of retreat
must depend on one's expectations about how a
preceding assault may develop over time, and the
likelihood that that particular mode of retreat will
be helpful. It would be a very crude assumption to

521

assert that there is any intrinsic value to sending
out orders that an arbitrary manoeuvre pathway
should be defended. Moreover, pre-processing a
pre-scripted exercise to identify 'strategically im-
portant' corridors seems anathema to flexibility
and to the idea that a CGF system can be a chal-
lenging, yet labour-saving, opposition to a human
force.

While directly useful in strongly stereotyped sit-
uations, doctrinal knowledge itself should be seen
as reducible to, and justifiable in terms of, some
underlying principles. Put crudely, one might
say that the simplest principle was 'avoid death',
with expert wisdom providing good suggestions of
how to achieve this in particular circumstances,
given known mechanical properties of vehicles, ter-
rain etc. As such, the principles behind doctrinal
knowledge provide not only a way of validating it
against a given context, but also equip one to deal
with novel situations to which no familiar maxim
really applies. So it is helpful to see doctrine as a
set of suggestions, that when evaluated can often
be seen to be viable, rather than as a set of pre-
scriptions. Indeed, as suggestions, they should also
be seen as mere sketches that may be combined
with existing strategies, and which will inevitably
need fitting into context on the basis of the ba-
sic principles of which the doctrine is a heuristic
assemblage.

Having already noted that flexibly making ratio-
nal context-dependent decisions must rely on some
form of mental extrapolation of the current situ-
ation, it is clear that intelligent behaviour cannot
simply be a process of continually deciding what
to do next — the consequences of actions may take
time to emerge, may obviously be affected by ac-
tions one takes in the interim, and could well be
influenced by the activities of other entities. More-
over, it is seldom the case that the effects of actions
are confined to instants in time — for example, the
act of shooting an enemy affects the viability of the
entire future period that this enemy could have
posed a threat. Similarly, fuel costs, or the expo-
sure suffered during an advance, accrue over time
rather than at isolated instances. Therefore, the
process of evaluating a plan is not easily reduced
to a simple evaluation of an end-state, rather it
involves an assessment of the entire history of that
plan, taking due account of the time dependences

in the exercise beyond one's own control.

To summarize, the principles we see as fundamen-
tal to achieving flexible autonomous agents for
complex environments such as virtual battlefields,
are as follows:

• the use of low-level knowledge as the discrim-
inant for all decisions;

• doctrine being used to provide suggestions
of advantageous behaviour, to be evaluated
against low-level understanding;

• the use of mental simulation to assess an
intended course of action in its effects over
time;

• an intrinsic mechanism for exploring varia-
tions on a course of action, which may be
used to adapt doctrine to context, or to gen-
erate new behaviour;

• the unification of all decision making into one
mechanism, so that compromises between
competing aspirations can be achieved ratio-
nally, rather than by decree.

3. Analytic Formulation
Having highlighted the importance of intuition to
human adaptability, and the inescapable computa-
tional expense of implementing skills that almost
any human would consider trivial, it is hazardous
to formalize an artificial decision-making system
through only a linguistic description (c.f. Hieb
et al 1995). However plausible such a description
may appear, when interpreted by a human undue
allowance for its omissions, assumptions, and am-
biguity may well be perpetrated. Given that nei-
ther computer hardware, nor electronic hardware
in general, is fundamentally capable of performing
more than purely arithmetic operations, it behoves
one to formulate one's problem in similar mathe-
matical terms, if one is not to be seduced by mere
analogies between one's expectations and what is
genuinely implementable2.

3.1. Cost-functions and basic knowledge
With this need for a fairly reductionistic formula-
tion of autonomous-agent behaviour in mind, we

2 Indeed, part of the magical power of human intelli-
gence is this ability to see analogies between rather different
things, yet this makes modelling intelligence difficult even
to confront seriously.

522

now turn to a brief specification of how our agents
choose their behaviour. Fundamental to this is a
cost-function £ that is to embody the low-level
knowledge that we see as central to flexibility. Al-
though this cost-function is to provide a means
of assessing each instant within the course of an
exercise against a given entity's aspirations, this
by itself is not enough to allow rational choices
of courses of action. The importance of visualizing
the consequences of each entity's actions over time,
i.e. mental simulation, means that the viability of
a course of action (starting at to) is determined
not by £ itself but by a time integral

-r £dt. (1)

(S is therefore a functiona/ of the future course of
events.) Given that this is a process of mental sim-
ulation, it must be an artifice of a single entity's
mind, and hence involve not only that entity's in-
tended activities, but also hypotheses about how
other entities will act. (The rich geometry of ter-
rain alone means that mathematically non-trivial
hypotheses will be necessary even to allow extrap-
olation of entities' trajectories around rudimentary
terrain features.)

As a simple example, suppose that in a particular
entity J'S mind, there are a set of phantom entities
{j = I... N} (one of which will represent the phys-
ical entity i itself), and that each of these phantom
entities has a hypothetical trajectory r}(<) in the
x^plane. Given a terrain surface z(r), there will
be a term in the cost-function due to the rate at
which entity i consumes fuel;

£t-i{y/(ri)* +{«)*+&(«) (2)

wherein

9(x) = { x x > 0
0 x <0

and Zi = fi.Vz(fi). (3)

When integrated over time, this part of the cost-
function represents the total fuel consumed during
the vehicle's motion, through work done against
friction and gravity by motion up gradients. It
is therefore clearly dependent on the topography
traversed and not solely determined by the end-
points of the route followed.

Similarly, one could discourage entities from mov-
ing too close to enemies by a term in £ of the form

£ death 2^ vi exP (~ jT ! (4)

in which i/j is the notional firing-rate of entity j,
and Xij is a representative lethal range (perhaps
depending on the existence of line-of-sight between
entities i and j). Here again, the viability of a
particular route r,(<) is not solely a reflection of
the exposure suffered at isolated instances, nor
is it uninfluenced by the motion of the hostile
forces. This term captures more flexible knowledge
through taking account of the separation between
entities, and being more clearly motivated in terms
of a mechanical model of shell-firing, rather than
enemy avoidance simply being treated as a con-
straint based on fixed enemy locations (c.f. Karr
et al 1995, Longtin et al 1995).

One can also encourage formation keeping by in-
cluding terms such as

- group 2_j exP 1 77"
ro

-l>, (5)

where £,7 represents that range of attraction be-
tween entities of the same force and ro reflects
the minimum safe inter-vehicle separation. That
this term only encourages friendly forces to re-
main together means that they are not simply tied
together and incapable of acting independently
or separating when situations favour this. Once
again, the accumulation of the cost-function into
a figure-of-merit 5 for an entire trajectory ri(<),
allows groups of entities to fragment when neces-
sary while anticipating that they will re-group at a
later stage. This seems a very necessary ability for
groups of entities that must cooperate while per-
forming differing roles, such as when executing a
two-pronged attack.

3.2. Striking Compromises
Now, by simply adding together the component
cost-functions (2, 4 & 5), and evaluating their
time-integral (1), one has quite a rich assessment
not only of the specifics of a course of action, but
also its context. For example, the viability of re-
joining one's colleagues can be assessed against the
need to cross intervening terrain, and the expected

523

motion of enemy forces as well as any expected mo-
tion of the friendly forces. This clearly equips the
entities to make a far more sensible judgement of
whether re-joining their formation is actually ad-
vantageous, rather than blindly being attracted to
a point in a template formation sited at a fixed
location.

Similarly, because fuel-costs (2) and enemy-
avoidance aspirations (4) are part of the same as-
sessment process, there is automatically an incen-
tive for entities to avoid enemies without crossing
awkward terrain. Hence, enemy avoidance is not
dependent on an entirely separate mechanism pro-
viding a protective location, to which a route is
found by yet another mechanism (which generally
will not take into account the motion of the en-
emy). In the present formulation, there is much
more of a pliable compromise between adopting a
safe retreat and conserving fuel3, and situations
where an inaccessible covered location is selected,
or where the nearest covered location is not the
most appropriate, are less likely to occur.

Indeed, it seems quite reasonable that considera-
tion of ways of avoiding an enemy force need not
be restricted to simply taking up static covered
positions. Moreover, when entities' plans are gen-
eralized to include hostile actions such as firing
shells, entities are then equipped to make some
rational choice between reducing such threats ei-
ther by confronting or by avoiding them. When
shooting is seen as a separate behaviour, perhaps
through being purely reactive, then entities can-
not easily adjust other aspects of their behaviour
to make best use of their shooting abilities.

3.3. Plain Optimization
So far we have discussed some of the implications
of a decision-making process based around (1),
in terms its favouring certain sensible courses of
action over others, especially in non-stereotyped
situations. However, to be able to function au-
tonomously, entities must be autonomously able to
think of courses of action (or plans) prior to being
able to make any rational choice amongst them.
Hence, behaviour-generation is essentially an op-

timization problem, where rather than optimizing
a simple function, it is a model of the future evo-
lution of an exercise (1), that is the object being
optimized.

Clearly the space of all possible plans is enormous
and it would be absurd to expect to be able to
find strictly optimal plans. Conventionally this is
seen as a motivation not only for compromising the
scrupulousness of the search for a good plan, but
also for compromising the evaluation of all plans
(c.f. Hoff et al 1995). Hence, in order to make
(relatively) complete examination of the range of
plans possible, the space of plans is often coars-
ened through some form of discretization that in-
evitably subverts the evaluation of the phenomena
produced by each plan, and hence reduces context-
sensitivity. However, as well as having weaknesses
in terms of the crudity of the evaluation of a plan4,
discretization is likely to obfuscate the broad range
of lengthscales and timescales over which battle-
field phenomena occur. For example, one would
like it to be a fairly simple matter not only to con-
sider small perturbations to a trajectory to better
negotiate motion up a slope, but also to make com-
parison of alternative routes either side of a hill
similarly natural. It is not easy to achieve both
these benefits with an artificial discretization of
the terrain (such as into a grid of vertices), while
still preserving the ability to refine a plan as events
unfold on the (real) battlefield. Nor, given what
we have said earlier about the consequences of ear-
lier decisions taking time to emerge, is it wise to
consider committing to the early stages of a course
of action without even the vaguest notion of how
it may conclude.

Although it will be illustrative to consider the pro-
cess of behaviour-generation as one of optimiz-
ing simply the trajectories Fj(t) of a set of enti-
ties (within a particular entity's mind), in general
these should be thought of as metaphors for all
their actions. Hence plans may include shooting
events (which in general may affect the population
of live entities or intact bridges etc.), communica-
tion events, and other actions that have observable
influences on the development of an exercise. As
such, perhaps together with other sources of time-

3Although we will refer to 'fuel costs' as though they
were solely due to some economic value, more generally they
can capture related notions of general expediency while in
transit.

* There is also a tendency for an unrealistically short
planning horizon to be chosen, or for the effects of a plan
to cease when a particular objective is expected to have
been met.

524

Figure 1: A schematic indication of the effect on a vehi-
cle's trajectory of a simple transformation of the vertices,
replacing part of the trajectory between to and fi by its
resultant.

dependence such as weather, they provide a means
by which an entity can form a hypothesis about
any instant in the future of the exercise3.

Given the status of a set of plans as a means of
describing the anticipated evolution of an exer-
cise, it is helpful to formulate them so that they
can describe the state of the exercise at any time,
even when the plans are in their most rudimen-
tary incarnations. In addition, to reflect the range
of lengthscales and timescales over which relevant
phenomena may occur, plans should have an ex-
pressive form that allows alterations on various
scales to be effected concisely. For example, one
may consider a trajectory to consist of a series of
line-segments, with the coordinates of the vertices
being events within a plan. Simply by inserting
or deleting events within such an event-list, or by
altering the locations of the vertices, one can make
natural distortions of the induced trajectory on
whatever lengthscale is desired. Such a represen-
tation allows one to have certain sections of a plan
refined in great detail while still allowing crude
sections of a trajectory to be described concisely
and in a form that allows the effects of following
the entirety of such a trajectory to be examined.
For example, figures 1 and 2 illustrate some repre-
sentative transformations of a trajectory that form
part of the plan-optimization process, and can be
effected by simple adjustments to the events within
a plan.

Given that it is not tenable to expect to find truly

sIt would be highly desirable if one could confine atten-
tion solely to relevant moments in the hypothesised future,
but this is highly non-trivial to achieve with worthwhile
flexibility in domains of any complexity.

Figure 2: Illustration of a series of trajectory-
transformations that together add a detour to the initial
route.

optimal plans, and our reluctance to sacrifice the
evaluation of a candidate plan, it is natural to use
some form of stochastic optimization process to re-
fine entities' plans. For example, simulated anneal-
ing may provide an effective means of affordably
exploring a representative sample of the space of
all possible plans. Just as complete, deterministic,
search methods rely on a judicious choice of the
order in which the points in the search space are
examined (for example Gray-coding or A* search),
stochastic optimization relies on a careful choice of
a dynamics on the search space. Conveniently, a
set operators that produce simple deformations of
a plan can be used as the basis of such a dynam-
ics. Hence, the style of distortions shown in fig-
ures 1 and 2, together with simple rotations, reflec-
tions and addition or removal of shooting events,
form a major part of the means by which effective
plan-refinement can occur. Moreover, because the
character of these operators is dictated primarily
by their geometrical appeal, rather than the rep-
resentation used to describe plans, they can to-
gether operate on a wide range of lengthscales and
timescales, rather than all always having to make
the smallest changes to a plan.

Given such a set of plan-adjustment operators,
which provide a stochastic dynamics on the space
of plans, plan optimization proceeds by continually
making tentative adjustments to a plan, evaluat-
ing the cost-functional of the new plan (1), and
accepting the alteration according to the change
in cost-functional. In simulated annealing this is
done on the basis of favouring moves to plans of
lower cost, but tolerating moves that increase the
cost by amounts similar to the scale provided by
the annealing temperature. By progressively re-
ducing this temperature, from an initially warm
level, the intention is that more subtle refine-

525

ments to a plan are made generally only after its
grossest features have been established. There is
also the considerable advantage that the optimiza-
tion is not absolutely dependent on the environ-
ment remaining constant as the optimization is in
progress, because the process centres around com-
parisons between only pairs of plans, rather than
expecting to be able to refine the later stages of a
plan without its earlier stages being invalidated as
events unfold. This offers the possibility of allow-
ing entities to continually refine their plans con-
currently with acting upon them, without having
either to think only once for each set of orders or
to have to stop and deliberate whenever circum-
stances change. While a convenient paradigm with
which to compare our actual optimization process,
there are nevertheless some significant differences
from classical simulated annealing, which we will
not discuss here. (Further details may be found in
Penney 1996.)

Two further roles for the operators at the basis
of the stochastic dynamics, are worth alluding to.
The first relates to the fact that the battlefield
situation in which each entity is refining its own
plan is constantly evolving, both through making
observations and also through developing its hy-
potheses about how other entities will act. Hence,
it is extremely helpful if entities are able to make
rapid initial refinements to their plans in response
to changing circumstances, before more consid-
ered changes can occur. The human ability to
be able to visualize bending trajectories around
terrain features, or deforming these to keep a set
of trajectories closer together, is one that is ex-
tremely powerful. Something of this ability can
be captured by including amongst the stochastic
plan-dynamics an operator that uses gradient in-
formation within the space of plans. For exam-
ple, if a plan is described by a set of parameters
£Q, then the gradients dS/d£,a provide suggestions
how to adjust each parameter so as to reduce the
cost-functional S- Moreover, by careful choice of
the representation used to describe plans, one can
conveniently exploit the expression

dS =1 " d£ dr d£ dr
+ —r-.-^rr +

dr ' d£a df' d£a . dt. (6)

to allow efficient calculation of these derivatives
concurrently with the same mental simulation used
to evaluate the plan itself.

The second additional aspect of the plan-
refinement operators is in supporting expert
knowledge without this being prescriptive. As the
conditions on the set of operators are relatively
weak (such as an aspiration for ergodicity (Re-
ichl 1980)), it is quite legitimate to extend these
operators to allow distortions of a plan in accor-
dance with strategies or behaviours known to be
generally beneficial. For example, entities can
be encouraged to consider keeping in formation
through an operator that suggests distortions to
their trajectory such as to bring parts of it closer
to those of their colleagues. However, because this
advice is given through mechanisms that as sub-
jected to the same plan-evaluation as are tenta-
tive adjustments that are made purely at random,
it is not treated as infallible advice, and can be
judged against the prevailing context. Once ac-
cepted, even if representing only relatively crude
advice, the effects of expert-operators can then be
better fitted into context by the basic stochastic
plan-dynamics that are central to the general effi-
cacy of the optimization.

4. Simulation Results
Now that we have given a brief overview of the
way in which our entities' behaviour is generated,
and the motivation for this, we can now discuss
some of the phenomena this mechanism actually
produces. In order to test whether the process
exhibits the. flexibility desired, and is able to be-
have rationally in a complex environment with-
out depending on copious human-supplied rules,
we have constructed a rarefied military scenario
on a randomly-generated terrain surface. By in-
sisting that our entities are able to contend with a
terrain that is realistically undulating, and is not
artificially easily debased into a collection of sim-
ple hills and valleys, their 'understanding' of ba-
sic concepts in spatio-temporal reasoning is being
much more powerfully tested than by a scenario al-
ways conducted on an unvarying terrain. Together
with the need to reason about the motion and ac-
tions of both friendly and hostile forces, the cho-
sen scenario captures some of the more demanding
characteristics of an exercise subject to human par-
ticipation, especially its variability and only loose
dependence on template terrain features.

With the profile of a fresh instance of the terrain
known to all entities (to avoid having to update

526

Figure 3: An indication of ground-truth two seconds into
a simulation. Terrain contours are shown at 2.5m intervals,
with line-of-sight between vehicles shown in the hexago-
nal icon (arrow-headed solid lines indicating the existence
of line-of-sight, which in general need not be symmetric).
Shells are marked as short thin two-tone lines, with the
white part showing the direction of travel.

Figure 4: (Red) tank 4's mental image of the exercise,
after twenty seconds. Vehicles' anticipated trajectories are
shown as thin white lines emerging from them. The full
circular line denotes tank 4 's belief that the blue force will
try to attack the region (shown by the dotted circular line)
that it is to defend.

their beliefs about such a geometrically subtle ob-
ject), the scenario opens (figure 3) with a force
of three (blue-force) tanks 1-3 towards the south,
with an opposition of three (red-force) tanks 4-6
split between the north-east and south-west. Once
again, this scenario is chosen in the interests of ex-
posing the entities to challenging situations quali-
tatively similar to the more demanding aspects of
real military exercises, rather than being intended
to be militarily realistic in a more ostentatious
sense. The tanks have varying aspirations, em-
bodied by their respective cost-functions, but all
are concerned with conserving fuel, avoiding live
enemies (perhaps by shooting them), and remain-
ing close to friendly forces. The opening positions
of the entities means that tanks 2 and 3 have each
already seen tank 5, and decided to opened fire.
(Here shells follow parabolic trajectories and have
finite times of slight, which the firers attempt to
allow for when shooting at a moving target.) At
this time, tank 1 is still unaware of tank 5, and also
of its colleagues' actions against this opponent. All
the blue tanks are oblivious to the existence of the
other red tanks to the north-east.

By twenty seconds into the simulation, tank 4's
picture of the battlefield situation is plausible, but
not wholely accurate (figure 4). Before its col-
league, tank 5, was destroyed by t = 4s, the latter

had communicated its sightings of tanks 2 and 3
(tank 1 having been occluded by the terrain). The
figure shows that tank 4 still believed tank 5 to be
alive, that the latter would proceed north-easterly
to join it and tank 6, and that tanks 2 and 3 would
remain to the south. (It is not clear whether it
thought that tank 3 would move to attack tank 5
while en route, or whether it was expecting to seek
cover in a depression after tank 5 had moved fur-
ther away.) The defensive goal shared by all red
tanks is also shown as the dotted circle in figure 4,
and they all assume that any blue tanks have an
incentive to assault this region, as indicated by the
solid circular line in the figure. At this time, tank 6
has also started to form hypotheses about the in-
tentions of the other tanks, but although quali-
tatively similar, this tank presumes that tank 5
will proceed east before turning northerly to join
it and tank 4, while the two blue tanks of which it
is aware retreat northerly.

In figure 5, tank l's mental picture of reality is
shown for thirty seconds into the exercise. This
tank has been given two successive rendez-vous
goals, shown as open circles. However, neither
of its colleagues has any direct incentive to move
through these regions; that they should do so at
all is a reflection of their desire to remain close to
their colleague. (This is intended to establish that
entities are able to cooperate even when not per-

527

Figure 5: (Blue) tank l's view of the exercise, after thirty
seconds, by when tanks 2 and 5 are known to have been
destroyed. Tank l's two rendez-vous goals are shown as
open circles.

Figure 6: Ground truth after two hundred seconds. The
black trails show tanks' motion during the last hundred
seconds. Tank 4 has retreated to the east of the figure,
while tank 6 has been killed.

forming identical functions; an important ability
of any unit that must sub-divide and yet still act
in coordination.) Tank 1 has clearly identified a
sensible route through its two goals, while taking
account of intervening terrain and the presence of
tank 6 (which was first seen at about this time).
Tank 1 also believes that tank 3 will take an alter-
native route, and one that keeps slightly further
away from tank 6 while exposed in the valley to
the east, but still rejoining tank 1 after a period
out of sight of both it and tank 6. Indeed, tank 3's
intended trajectory clearly represents a compro-
mise between keeping close to tank 1 as it moves,
minimizing fuel costs through attention to the ter-
rain traffickability, and avoiding an enemy (which
itself is expected to be in motion). Before tank 2
had been destroyed by tank 5 (at about t = 4s),
tank 1 thought that it too would follow the rest of
the blue force. Tank 6 was expected to retreat in
the face of this strong presence.

Shortly before tank 1 reached his first rendez-vous
position (figure 6), it and tank 3 had seen that
there were in fact two red tanks to the north-east,
and had revised their routes to take advantage of
cover provided by the northerly range of moun-
tains in the centre of the figure. (The discontinu-
ity in tank 3's trajectory is particularly evident as
tank 4 was sighted as they emerged from a moun-
tain pass.) Believing the entire blue force still to be
intact, and with tank 6 by now destroyed, tank 4
decided to retreat further north-east behind an-

other range of hills, leaving the two blue tanks
to proceed to tank l's second rendez-vous unhin-
dered.

This simulation history, which although chosen
for its illustrative merits is qualitatively similar to
most other runs of the simulation, is fundamentally
a reflection of very sparse knowledge that is sup-
plied to the entities through their cost-functions.
Given only a handful of terms in their respective
cost-functions, together with a few expert opera-
tors (to assist in not wasting shells on dead tar-
gets, in keeping in formation, and in providing a
vertex in their trajectory near a rendez-vous goal)
they show some very encouraging adaptability. In-
deed, they show pleasing response to the terrain,
as both an obstacle and as cover, without any need
for this to be pre-processed to identify 'significant'
features.

While with careful construction the simulation
runs only a few times slower than real-time on a
relatively modest multi-processor workstation, and
shows the techniques not to be impossibly expen-
sive, it is clear that the price of such adaptability
is not inconsiderable. Certainly there is much rel-
evant cognitive functionality that is not supported
within our current implementation, nor is likely to
be affordable. However, one of the serious hazards
of a more intuitive and less mathematical approach
than we have advocated, is that the computational
costs of rational adaptation to an ordinary range of

528

circumstances will be drastically underestimated.
Hence, whilst pragmatism must play some part in
the design of computer-generated forces in general,
it is unlikely that the problem domain admits any
expedient solution that does not have very serious
pathologies when measured against humans' abil-
ity to 'muddle through' under a wealth of differing
circumstances.

5. Conclusions

We have argued that, despite some impressive
achievements, conventional CGF technologies tend
to rely too heavily on an artificial segmentation
of a strongly coupled problem, and on intrinsi-
cally imprecise linguistic descriptions of military
decision-making. While such technologies can be
capable, affordable, and accessible, their inherent
weaknesses are often not appreciated. Indeed, it
appears that segmentation of behaviour cannot
help but undermine an ability to strike the com-
promises that are so important in complex environ-
ments, and that a conceptual description of human
decision-making is not precise enough, and too
reliant on an underlying intuition, to be directly
transcribed into versatile computer software.

With these reservations in mind, we have con-
structed a unified decision-making system for in-
dividual CGF entities that is based on low-level
knowledge. We have indicated how, through a pro-
cess of mental simulation and an optimization pro-
cess, this mechanism is intrinsically able to strike
context-dependent compromises between compet-
ing aspirations, such as conserving fuel, avoiding
enemies and remaining near friendly forces. So,
rather than being separate areas of functionality,
the classical behaviours of route-planning, enemy
avoidance, and formation-keeping, are emergent
phenomena of a single mechanism when viewed
in particularly simplified situations. We have
shown that this mechanism can be affordably im-
plemented in quite a rich scenario, and indicated
how quite capable behaviour of small numbers of
tanks can emerge in a randomly-generated terrain
surface without reliance either on pre-processing
or on copious human-supplied rules.

Nevertheless, although our techniques are not un-
workably expensive, through advocating a fairly
mathematical formulation of CGF functionality,
we have argued that the complex geometrical

and dynamical structure of military environments
means that even semi-automated adaptable be-
haviour cannot be achieved reliably without con-
siderable computational power. We have therefore
sought to caution against overlooking the basis
of military expertise upon intuition, and against
believing that the ordinariness of such intuition,
amongst humans, means that it is not exceedingly
subtle to emulate on machines that can scarcely
do arithmetic.

A cknowledgements
There have been a great many people who have
been influential in the development of this work.
Amongst these, we would particularly like to thank
Jeremy Baxter, Mark Eaton, Mike Kirton, Brian
Roberts, and Jake Turner, for their thoughts and
encouragement at various times.

References
Campbell C, Hull R, Root E and Jackson L 1995;

"Route Planning in CCTT" in proc. 5th
CGF&BR conf., pp233-243, Institute for Sim-
ulation and Training technical report IST-TR-
95-04

Dougherty E R and Giardina C R 1988; "Mathe-
matical Methods for Artificial Intelligence and
Autonomous Systems" Prentice-Hall

Fischer K H and Hertz J A 1991; "Spin Glasses"
Cambridge University Press (Cambridge)

Harmon S Y, Yang S C and Tseng D Y
1994; "Command and Control Simulation for
Computer Generated Forces" in proc. 4th
CGF&BR conf., pp263-273, Institute for Sim-
ulation and Training technical report IST-TR-
94-12

Hieb M R, Tecuci G, Pullen J M, Ceranowicz A
and Hille D 1995; "A Methodology and Tool
for Constructing Adaptive Command Agents
for Computer Generated Forces" in proc. 5th
CGF&BR conf., ppl35-146, Institute for Sim-
ulation and Training technical report IST-TR-
95-04

HofF B, Howard M D and Tseng D Y 1995; "Path
Planning with Terrain Utilization in ModSAF"
in proc. 5th CGF&BR conf., pp255-263, In-

529

stitute for Simulation and Training technical
report IST-TR-95-04

Karr C R, Rajput S, Cisneros J E and Nee H-L
1995; "Automated Mission Planning in Mod-
SAF" in proc. 5th CGF&BR conf., ppl59-168,
Institute for Simulation and Training technical
report IST-TR-95-04

Longtin M 1995; "Concealed Routes in ModSAF"
in proc. 5th CGF&BR conf., pp305-313, In-
stitute for Simulation and Training technical
report IST-TR-95-04

Meliza L L and Vaden E A 1995: "Measuring En-
tity and Group Behaviors of Semi-Automated
Forces" in proc. 5th CGF&BR conf., ppl81-
192, Institute for Simulation and Training tech-
nical report IST-TR-95-04

Ourston D, Blanchard D, Chandler E and Loh E
1995; "From CIS to Software" in proc. 5th
CGF&BR conf., pp275-285, Institute for Sim-
ulation and Training technical report IST-TR-
95-04

Penney R W 1996; "A Statistical Physics Ap-
proach to Artificial Intelligence for Complex
Virtual Worlds" (unpublished) Defence Re-
search Agency technical report, to be submit-
ted to Proc. Roy. Soc. A

Reichl L E 1980; "A Modern Course in Statistical
Physics" Arnold

Richardson S B 1994; "Modelling of Adaptable C3I
Systems (final report)" (unpublished) Defence
Research Agency technical report

Richard Penney read Physics at Oxford Univer-
sity, where he also gained his D.Phil, in Theo-
retical Physics on 'The Statistical Mechanics of
Neural Networks and Spin Glasses'. Now work-
ing for the U.K. Defence Research Agency on Au-
tonomous Command and Control Agents, his re-
search interests remain founded on statistical me-
chanics, stochastic processes, optimization prob-
lems and mathematical modelling.

530

Session 8a: Terrain Modeling

Stanzione, TASC
Reece, UCF/IST

Stanzione, TASC
Stanzione, TASC

Multiple Elevation Structures in the Improved
Computer Generated Forces Terrain Database

Thomas Stanzione
Forrest Chamberlain

Larry Mabius
Mike Sousa

Dr. Alan Evans
Cedric Buettner
Jonathan Fisher

Howard Lu

TASC
55 Walkers Brook Drive

Reading, MA 01867
tstanzione@tasc.com

SAIC
Suite 130

20 Burlington Mall Road
Burlington, MA 01803
aevans@bos.saic.com

1. Abstract

The Improved Computer Generated Forces Terrain
Database (ICTDB) project, a joint effort between
TASC and SAIC, is one of the four ARPA/TEC
Advanced Distributed Simulation Synthetic
Environments projects. Its goal is to design and
implement the next generation terrain database
representation for Computer Generated Forces (CGF)
systems. One of the areas that ICTDB is focusing on
is the representation of multiple elevation surfaces.
These include features with multiple elevations that
are integrated with the terrain surface, such as bridges,
tunnels, caves, and building interiors with multiple
floors. These features are necessary to allow ModSAF
vehicles to traverse multiple elevation terrain, such as
highway overpasses and underpasses, drive into
buildings, caves, and tunnels for concealment and
other purposes, and allow individual combatants to
move within buildings, which is especially important
for Military Operations in Urban Terrain (MOUT).

In this paper, we describe the extensions that the
ICTDB project has made to ModSAF in order to
provide support for these multiple elevation surfaces.
A new volume feature type has been added which
represents these multiple elevation surface (MES)
structures as both abstract features and full three
dimensional models. MES structures are represented
with enclosures and apertures. Enclosures are defined
by solid surfaces used to represent walls, floors, and
ceilings. Apertures are the areas that allow movement
between enclosures, and include door and window
openings, cave and tunnel entrances, and holes caused
by battle damage or demolition. Topological
information between enclosures is provided for
movement and planning purposes. A three

dimensional virtual grid was implemented to spatially
organize the polygons that represent the surfaces and
apertures. ModSAF terrain algorithms, including
elevation lookup and intervisibility, have been
modified to work with these MES structures. For
example, a new multiple elevation lookup function
has been developed which returns a list of all surfaces
and their elevations and surface types, which can be
used by the place entity function to explicitly place
an entity on a specific surface.

2. Design

2.1 Overview

One of the tasks of the ICTDB project is to expand
ModSAF to represent multi-level buildings, bridges,
caves, and tunnels. Because there are similarities in
the geometry and line of sight characteristics of all of
these types of features, a unified representation was
created for any multi-elevation surface structure. The
libCTDB functionality was extended so that vehicle
placement, intervisibility, and elevation lookup
calculations work within multi-elevation surface
structures as well as terrain.

Multiple elevation surface (MES) structures are
represented as a new volume feature subclass in
libCTDB. These features contain a roof outline and a
reference to an MES data structure. The data structure
for an MES structure consists of a header, a list of
enclosures, a list of apertures, a list of triangles, and a
hierarchy of grid-boxes.

The header specifies the origin of a local coordinate
system for the MES, in the Global Coordinate

533

System (GCS) developed earlier in this program
(Evans, 1995). The origin can be chosen to be in any
relation to the MES, i.e. it is not required to be at the
southwest corner. The header also specifies a
transformation matrix from the "world" space of the
terrain database containing the MES to the MES
space. This allows the creator of the MES to generate
all information in terms of a local coordinate system.
The origin and transformation matrix can be used to
translate between MES local space and the world
space. Modification of the origin and transformation
matrix also allows the simple reuse and relocation of
any MES structure, allowing MES structures to be
instantiated in multiple locations on a database.
Finally, the header also specifies a fixed point basis
(meters/unit), which is the unit in which all
coordinates in the MES are stored. MES structures
utilize a grid box organizational structure, which is
used for efficiency in the algorithms that operate on
them.

2.2 Enclosures

An MES structure contains a set of "enclosures". As
its name suggests, an enclosure is essentially an
enclosed volume. Enclosures are created so that their
contents are logically grouped together. An enclosure
can be convex or concave, but must be a single level.
That is, along each vertical line which intersects the
enclosure, there may be at most one positive normal
surface (e.g. a floor) and at most one negative normal
surface (e.g. a ceiling). This allows route planning to
retain some of its two dimensional outlook.

Any two enclosures may be placed arbitrarily with
respect to each other, except that one enclosure may
not overlap or be contained within another. Typically,
enclosures within a building will be grouped by
stories. A stairway is an enclosure which connects
one story to another. Some examples of enclosures
would be the rooms in a building, the hollow of a
cave, or a tunnel. The enclosure data structure also
contains a floor outline of the enclosure and the
average height of the enclosure.

Enclosures are made up of "walls", which are
triangulated surfaces in which mobility and line-of-
sight are both blocked. Each enclosure has a list of
wall triangles and a list of apertures, with each
aperture individually triangulated. The union of all
those triangles is required to completely bound the
enclosure, so that there is no path from the interior of

the enclosure to its exterior which does not cross at
least one (wall or aperture) triangle. The only
exception to this is the exterior enclosure of the MES
structure.

2.3 Apertures

Two adjacent enclosures may be connected by one or
more "apertures". An aperture is a planar polygonal
object of uniform, non-zero transparency, which
connects exactly two enclosures. The degree of
transparency/visibility is stored in the aperture data
structure. Each aperture is triangulated, and any
aperture can permit or deny mobility, as determined
by the modeller.

Consider the example of a single pane window. Since
an MES aperture is required to be planar, the MES
aperture corresponding to the window consists simply
of the glass portion of the window. The window's
casing and sill are triangulated with one or both of the
adjacent enclosures. Similarly, a bay window would
be represented as several distinct apertures, one for
each flat glass area of the bay window.

Apertures have two distinct functions. They describe
some of the possible mobility connections between
enclosures (i.e., they are the edges of the mobility
topology). Also, they group together transparent or
semi-transparent triangles of similar transparency.
This saves some storage space, since
transparency/visibility is stored once for each
aperture, not once for each triangle of the entire MES.

An aperture cannot have internal structure. It must
have the same transparency over its entire surface. If
an aperture has sub-areas with different transparencies,
it may be broken down into smaller apertures to
maintain uniformity of transparency. However, the
topology will not recognize the size of the overall
aperture in that case.

An aperture forms an interface between two distinct
adjacent enclosures, where one of the enclosures may
be the exterior enclosure of the MES structure. For
each of the two enclosures adjacent to a given
aperture, the aperture has a field specifying whether
there is a non-zero "step" from the lower edge of the
aperture to the floor of the enclosure, as shown in
Figure 1. It is used at run-time as an optimization in
determining whether a unit can traverse the aperture.
The "step", or discontinuity, need not be immediately

534

adjacent to the aperture. For example, a window with
a flat window-sill, ten feet above the floor, would
probably be deemed to have a step discontinuity.

the angle is too steep. The triangle data structure also
contains a material type, which can be one of the
Material Composition Category FACC attribute
values.

Step 2

Aperture

Enclosure

Stepl

Figure 1: Step Discontinuity at Apertures

In conjunction with the step discontinuity flag, each
aperture stores the thickness of the surrounding wall,
to allow the run-time code to calculate the height of
the step. In the example above, the thickness would
be the width of the window sill.

For higher resolution apertures, such as "mouse
holes" that result from a detonation, the cost of
triangulation may be prohibitive. For these cases, the
capability to associate a 32 by 32 bit array with an
aperture has been provided, where the values in the
array specify the location of the actual aperture. The
aperture is still triangulated, but only two triangles,
which define the area of extent of the bit array, are
used. The algorithms that operate on apertures check
these triangles first, and then check the bit array if the
aperture is of interest.

2.4 Triangles

The data structure of every triangle (wall and aperture
triangles) in an MES structure contains three vertices,
specified in the MES's local coordinate system. The
vertices are ordered counterclockwise when viewed
from the triangle's outward face. Triangles also
possess a normal vector, so that the direction that the
triangle is facing (such as the "top" of the floor) is
easily recognizable. Also, the angle between the
triangle's normal and the gravity vector can be used to
determine if an entity can reside at that triangle, or if

Figure 2 shows the relationships between the various
MES data types. MES structures are stored as
templates, which contain the apertures, enclosures,
and triangles that define the structure. These templates
are used to create instances of the structures at specific
locations in the database. These instances are stored in
the volume data structure. When an instance of an
MES structure is changed during run time, a new
template is created for the changed structure, which is
then referenced by the volume data structure for the
changed MES structure.

Figure 2: MES Data Hierarchy

2.5 Topology

The relationship between enclosures and apertures,
where apertures are the only gateways between any
two enclosures, provides sufficient information to
generate a connectivity graph for any MES structure.
In such a graph, the nodes of the graph represent the
enclosures of the MES structure and the edges
represent the apertures. This connectivity graph can
be used for route planning inside or through MES
structures. For example, to plan a route between two
points in an MES building, the enclosures that those
two points lie within are found, and then a route is
generated utilizing the network of enclosures and
apertures. A lower level path planner could then plan
the actual path inside an enclosure between the
apertures of the higher level route.

535

The topology defined by this connectivity graph
yields all possible routes within an MES. However,
some of those connections may not be feasible for a
given entity. For example, an individual combatant
should not be able to enter an MES building through
an aperture that is 20 meters off the ground, unless
special equipment is used. Therefore, MES structures
were designed to provide a feasible topology.
Candidate paths can be filtered to disallow movement
through closed/blocked apertures, to prevent routing
through apertures that require rises in elevation greater
than a climb threshold, or to prevent routing through
apertures that require a decline in elevation greater
than a fall threshold. This filtering is based on
information recorded with each aperture: the step
discontinuity flag, and the wall thickness flag. If the
step discontinuity flag is set for an aperture, the
topology traversal routines will check the height on
each side of the aperture. This is done by looking up
the elevation at a point "wall thickness" away from
the aperture, and subtracting the elevation at that
point from the elevation of the aperture. This
difference is compared to the maximum climb or fall
height for the specified entity, as appropriate for
entering or leaving the aperture. If the elevation
difference is within the limitations of the entity, then
that aperture is considered a topological edge.
Otherwise it is ignored for the purposes of the
specified entity.

3. ModSAF Modifications

The changes made to ModSAF to support MES
structures were mostly made within the Compact
Terrain Database library (libCTDB). We also modified
other portions of ModSAF in order to demonstrate the
use of MES structures in route selection and
planning.

3.1 Compact Terrain Database

Many changes were made to the Compact Terrain
Database (libCTDB) data structures and algorithms in
order to support MES structures. These changes
include implementation of the various MES data
structures discussed in the previous section,
modifications of the libCTDB algorithms to work
with MES structures, and the addition of new
functions to the API for use of the MES structures by
the ModSAF application.

3.1.1 MES Data Structures

Besides the enclosure and aperture data structures
previously described, other data structures were added
to libCTDB in order to support MES structures.
Most of these are internal to libCTDB, but one data
structure, the MESKEY, is used in the libCTDB API
for MES structures. The MESKEY is an aggregate
data structure that contains the unique ID of an MES
structure, as well as an identifier for a unique
enclosure within that MES. The MESKEY is used in
route planning to identify those route points that are
within an MES structure, and exactly where those
points are within the structure.

3.1.2 MES Algorithms

The approach taken for dealing with MES structures
within libCTDB algorithms was to modify the
existing algorithms, such as intervisibility, elevation
look-up and ground intersection, to identify when an
MES structure was intersected, and branch to routines
that were written specifically for MES structures
while within them. For example, when a line of sight
calculation is performed from outside an MES
building into it, the existing intervisibility routine is
used until the line of sight ray intersects the bounding
volume of the building. At that point, the MES
intervisibility algorithm is used until either the ray is
blocked by something within the building or it leaves
the building. If the ray leaves the building without
being blocked, the processing continues using the
non-MES intervisibility algorithm.

The line intersection algorithm is the basis for several
of the MES functions used in the intervisibility,
elevation look-up, and ground intersection routines.
This algorithm calculates the intersection points of a
line segment with the triangles which define the MES
shape and orders the intersections along the line
segment. The algorithm can be limited to finding the
first intersection point along the line segment.

In order to calculate these intersections points, the
algorithm, in theory, would have to test the
intersection of the line segment with each MES
triangle. The use of grid boxes has been introduced to
significantly reduce the number of these intersection
tests. The grid boxes are a hierarchy of boxes, each of
which contains a subset of the MES triangles. Each
box either contains two or more grid boxes or is a
lowest level grid box. The line intersection algorithm
determines the sequence of lowest level grid boxes
intercepted by the line segment and then, in this
sequence, tests each of the triangles contained within

536

these lowest level grid boxes. Since triangles often
are located in more than one lowest level grid box,
the algorithm keeps track of which triangles have
been tested so that no triangle is tested more than
once.

All of die grid boxes are contained within the outer
most grid box, which spans the entire MES structure.
As discussed elsewhere, MES structures use an
internal coordinate system in which coordinates are
allowed to vary between -2A30 and 2A30; the x, y, and
z dimensions of the outermost grid box are chosen to
be the smallest powers of 2 which allow it to contain
the entire structure (the reason for this will become
apparent in the following discussion).

When the MES structures are added to the database,
the corners of the outer most box are determined, and
an iterative process is used to subdivide the boxes.
The process is driven by the number of triangles
overlapping each box. If this number is more than a
specified constant (nominally 12) and the box's
longest side is greater than one, the box is subdivided
by splitting each of the long sides by two. If the box
has two equal length sides that are longer than the
third, the box is split into two equally sized boxes
along the longest side. If the longest side of the box
is longer than one of the other sides, the box is split
into four equally sized boxes along the longest two
sides. If all sides of the box are equal, the box is split
into eight equally sized boxes. Since the side
dimensions of the outer most box are powers of two,
the splitting process eventually leads to cubic boxes.

Testing whether a triangle is in a grid box begins
with testing its three vertices. If any of these vertices
is in the grid box, the triangle is in the grid box. If
all of the vertices are outside the grid box, the
intersection of each side of the box with the triangle
is tested. If any side intersects the triangle, the
triangle is in the grid box.

The line intersection algorithm calculates the
intersection points of a line segment with the
triangles which define the MES shape and orders the
intersections along the line segment. The line
segment is defined by the start and end points, Eo and
£,, either of which can be inside or outside of the
outer most grid box. A point E on the line segment
is defined in terms of the parameter a.

P = Eo + a (E, - Po), where 0 < a < 1

The line intersection algorithm first determines
whether Eo is inside or outside the outer most grid
box. If the point is inside this box, the algorithm
finds which lowest level grid box (one which is not
subdivided) contains this point. If the point is outside
the outer most grid box, the algorithm determines if
the line segment intersects it. If it does, the point of
intersection closest to point Eo is determined and the
lowest level grid box at that point is found. If the
segment does not intersect the outer most grid box,
the line segment does not intersect the MES.

Finding the intersection of the line segment with the
outer most grid box is accomplished by testing the
intersection of the line segment with all six sides of
the box and then calculating which of those
intersections is closest to point Eo.

Finding the lowest level grid box starting with a
point in a subdivided grid box is an iterative process
as the algorithm first calculates which of the
subdivided boxes contains the point. If this box is
further subdivided, this calculation is repeated.
Otherwise, the lowest level box is found.

Once a lowest level grid box is found, the intersection
of the line segment with all triangles that intersect
that grid box is determined. If the line segment
intersects a triangle, the normalized distance to the
intersection, c^, is used to order the intersections.

A record of each triangle tested for intersection is
maintained so no triangle is tested twice. Having
tested all of the triangles that intersect a lowest level
box, the next lowest level box through which the line
segment passes is found. First the intersection of the
line segment with all sides of the current lowest level
box (except the entry side) is calculated. The distances
to these intersections are calculated for the (infinite)
surfaces of the sides, not taking into account the
extent of the sides. Whichever distance is smallest
determines the intersected side. If the normalized
distance to this side (a) is greater than one, point Ei
is in the current lowest level grid box and the
algorithm is complete.

The algorithm then examines the "parent" grid box
containing the current lowest level box to determine
if the side through which the line segment is passing
is also the side of this box. If this side is not part of
the "parent" grid box, the next grid box in the
sequence for the "parent" grid box is chosen. If this
side is part of the "parent" grid box, the process is

537

repeated for the "parent" of the "parent" grid box.
When the "parent" grid box is the outer most grid
box, the algorithm is complete. Once the next grid
box is found, if it is not a lowest level grid box the
process of finding the lowest level grid box (described
above) is repeated. Having found the lowest level grid
box, testing the triangles it contains is also repeated.
This process continues until either point P^ or the
side of the outer most grid box is reached.

The calculation which determines if the line segment
intercepts a triangle uses the two points that define
the line segment, the triangle unit normal, n and the
vertices of the triangle, V„, V,, and Vj (Figure. 3).
First, the normalized distance, d, to the plane of the
triangle along the line segment is calculated.

d = n.(E0-Y0)/[n'(P,-Eo)]

Then, the intercept point of the line segment is
calculated.

P, = d(P,-P0) + P0

Note that normalized distance, d, must be between 0
and 1 for the line segment to intercept the triangle.
Once the distance is calculated, a vector in the plane
of the triangle, pointing into the triangle from the
side connecting vertices i and j (and normal to it) is
computed for each side.

Dq = [n x (Yj - v,)]

Note that one normal can be computed more
efficiently from the other two.

D20 = Hoi + D.12

If the intercept point P, is inside the triangle, the dot
product of the vector n.ij and the vector from vertex i
to the intercept point must be positive. That is:

!V(P,-YJ^0

The algorithm tests this criteria for all three sides, i.e.
(i,j) = (0,l),(l,2)and(2,0).

Figure 3: Triangle Intersection

The intervisibility and the ground intersection
functions directly use the line intersection algorithm
with the wall triangles and those aperture triangles
with non-zero transparency. The intervisibility
function directs the line intersection algorithm to
calculate a specified number of intercepts. The ground
intersection function directs the line intersection
algorithm to calculate one intercept.

The multiple elevation lookup function uses the line
intersection algorithm with only the wall triangles.
The line segment is defined using the specified x,y
point and a point above the outermost grid box and a
point below the outermost grid box. The direction of
the normal relative to the vertical line segment does
not affect the triangles being tested. The number of
intercepts per enclosure is limited to two by the
layout of the MES.

3.1.3 MES API Routines

A number of new routines have been added to the
libCTDB API. These routines allow qualified
elevation lookup for multiple elevations (Stanzione,
et. al. 1996), as well as access to the MES geometry
and topology information. Table 1 lists these new
functions.

3.2 Route Selection and Planning

The order that the triangles are intercepted along the
line segment is based on the value of d.

The modifications to ModSAF to demonstrate route
selection and planning within MES structures were
based on a depth first thread that allows placement of
an individual combatant on the terrain or inside of an
MES structure and tasking of that entity to move

538

into, within, and out of that structure. The challenge
in this approach was to implement three dimensional
(X,Y,Z) motion in an essentially two dimensional
movement environment.

The PointDescription object in the persistent object
(PO) database library (libpo) was modified to store

MES enclosure and aperture data. This object is used
by the LineClass PO object, which is used to store
routes. This change allows route information within
MES structures to be stored in the persistent object
database.

Table 1: MES API Functions

ctdb_lookup_elevation_mes Elevation lookup that takes MES structures into account
ctdb_lookup_qual_elevation Generic elevation lookup routine
ctdb_elev_data_to_string Converts elevation data into ASCII text
ctdb sort elev data Sorts a variable length list of elevation data
ctdb mes_get topology Returns the topology of the outside node
ctdb__mes_get connected_edges Returns a list of edges that connect to a node
ctdb_mes_filtered_connected_edges Filtered version of ctdb_mes_get_connected_edges
ctdb mes connected nodes Returns the two nodes that are connected by an edge
ctdb_mes_get_fiItered_connected_nodes Filtered version of ctdb_mes_get_connected nodes
ctdb mes find mes Finds the MES that is closest to a point within a radius
ctdb_mes xy in_enclosure Determines if the point (X, Y) is contained in the enclosure
ctdb_mes_find_enclosure
ctdb mes find node

Finds the enclosure id or node for a given (X,Y,Z) and
MES id

ctdb_mes_get_enclosure
ctdb_mes_get node info

Returns the outline of the enclosure and average height

ctdb_mes_get_edge_info Returns the outline of the aperture (edge)
ctdb_mes_get_aperture_centroid Returns the centroid of an aperture
ctdb_mes_get_mes Returns the roofline vertices that define the MES volume

Figure 4: Multiple Elevation Widgets

539

In order to allow placement of an entity anywhere on
the terrain, the user interface was modified to allow a
user to select the elevation surface onto which an
entity is to be placed. This was achieved by
modifying the PLACE and LINE widgets to
understand and accept three dimensional inputs, as
shown in Figure 4.

When an elevation lookup is initiated from the
ModSAF user interface, elevation information for all
terrain and volume features at the specified (X,Y)
location is determined. All intersections with
elevation surfaces are then presented to the user. The
user then has the option to select a specific elevation.
If the user chooses not to select an elevation surface,
the default behavior is to use the elevation of the
terrain surface. For example, if the user is specifying
a LineClass point, such as a route waypoint, and the
terrain elevation is selected, the two dimensional
point information (x, y) will be encoded in the
SP_Location variant of the PointDescription. If the
user selects an MES elevation surface, however, the
MES identifier, enclosure identifier, and the two
dimensional point information (x, y) will be encoded
in the SP_Enclosure variant. In both cases the
elevation information can be determined explicitly,
since the SPJLocation variant is assumed to use the
terrain surface, and the SP_Enclosure variant specifies
an enclosure, which is defined to have a single
elevation at every location.

The route generation utilities were modified to
support routes within MES structures. The LineClass
object is expanded into a route list, as before, and
then is post processed for MES structures. If the route
contains any waypoints that are inside of MES
structures, the route is modified to allow the entity to
move within the MES structure. The enclosure
information is stored for each waypoint that is inside
an MES structure. This enclosure information, along
with the MES topology, is used to generate specific
route segments within the MES to allow the entity to
move from the previous waypoint, which may be
outside or inside of the MES structure, to the
waypoint that is inside the MES structure. Similarly,
if a waypoint is outside of an MES structure, but the
previous waypoint was inside the structure, a route
segment is generated to move out of the building
from the previous waypoint. As an example, Figure 5
shows a route with one of the waypoints within an
MES structure. The final route generated by the route
planner is shown, with intermediate waypoints within
each enclosure that must be traversed to get to the
selected waypoint.

The vehicle move task uses the waypoints in this
expanded route as goals which are provided to the
lower level path planner (libmovemap). The
movement goals and the obstacles in the movemap,
however, must be unambiguous in elevation, since
the movemap library only plans in (X,Y,T(time)).
Since each enclosure is defined to have only one
positive (normal up) and one negative (normal down)
elevation surface, (x,y) locations within an enclosure
are unambiguous, and libmovemap can be used as
long as the movement planning is done within each
enclosure separately.

User Specified Route

Added Waypoints

Generated Route

Actual Path Followed

Figure 5: Route Planning in MES Structures

Obstacles generated for placement into the movemap
obstacle map are generated by the libvterrain library.
This library is being modified to support on demand
map generation and MES enclosure obstacle
generation. Since the time required to travel between
enclosures is relatively short (when compared to the
outside terrain movement) rapid, on demand movemap
planning is required. It is expected that the time to
generate an obstacle map for a single enclosure will
be short since the region of interest is small.

The libvterrain library is also being modified to
support MES obstacle insertion into a vehicle short
term movement map. If the movement is outside of
an MES structure, obstacle generation remains
unchanged. When planning for movement inside of an
MES structure, the obstacle generation code will
insert MES related impediments to movement (e.g.
walls) into the vehicle's movemap as obstacles. The
obstacles inserted into the movemap are the set of

540

obstacles that are interesting in the enclosure to be
traversed. This processing will occur as soon as each
new enclosure is entered. In addition to adding static
obstacles to the movemap, moving obstacles will
also be added if they are contained within the
enclosure being traversed. Figure 5 shows the actual
path taken by an entity within an MES structure,
based on the previously generated route and MES
structure as input to movemap.

3.3 Other ModSAF Modifications

The libCTDB terrain viewer and libxcig tools were
also modified to work with the MES structures.
These modifications allow the developer to test the
MES functionality and visualize the MES structures
in both two and three dimensions.

In order to get MES structures into CTDB databases
quickly, the recompiler correction file mechanism was
expanded to support the definition of MES structures
outside of the SI000 toolkit. Two new operators are
now supported within correction files.
ADD_MES_TEMPLATE allows an MES structure
to be defined, and ADD_MES_INSTANCE allows
the instantiation of the structure in the database.
When one of those two operators is encountered in a
correction file, the compiler creates a data structure for
an MES template or volume as appropriate, and
passes it to the compiler back end for processing. In
the correction file, each MES volume is linked to its
template by a unique ID, chosen by the modeller.

The following format is used in the correction file to
add a new MES template:

The viewer was modified to allow rendering of MES
volumes in the plan view and the three dimensional
view. In the plan view, intervisibility and elevation
lookup options were both modified to work with the
MES structures. The intervisibility option allows the
intervis ray to extend inside of an MES structure. The
elevation lookup option provides a list of the
elevations of all of the surfaces at the selected (x,y)
location.

(ADD_MES_TEMPLATE <template-name>
(type <type>)
(meters_per_unit <real>)
(roofline <vertex> <vertex> <vertex>...)
(floorline <vertex> <vertex> <vertex>...)
(enclosures <enclosure> <enclosure>...)
(apertures <aperture> <aperture>...)
)

The ability to visualize MES structures was
integrated into libxcig. In addition to the extraction
and display of the polygons of an MES structure, the
expanded material identifiers were used to provide
easier visualization of the different surfaces of the
MES structure. For example, the walls of the MES
and the floor are displayed in different colors.

The XCIG demonstration software was modified to
allow movement through MES structures. Movement
through physical obstacles in an MES, such as the
walls, is prevented. In addition, the command line
options of the demonstration software were enhanced
to allow the specification of a multiple elevation
starting location.

The following format is used to add a new MES
volume, such as a building, a bridge, or a tunnel.
<template-name> is the link between the new volume
and its corresponding template:

(ADD_MES_VOLUME <template-name>
(origin <real x> <real y> <real z>

<integer cell-id>);; GCS
(mes_to_world_rotation_matrix

<real> <real> <real>
<real> <real> <real>
<real> <real> <real>)

)

4. Compiler Modifications

Support for compiling MES structures into CTDB
terrain databases has been added to the recompile
and slkctdb compiler programs. These changes will
be present in CTDB format 6 databases.

where <enclosure> is:

(<enclosure-name>
(average_height <real>) ;; meters
(footprint <vertex> <vertex> <vertex>...)
(apertures <aperture-name> <aperture-name>...)
(triangles <triangle> <triangle> <triangle>...)
)

541

and <aperture> is:

(<aperture-name>
(visibility <real>) ;; 0 <= visibility <= 1
(mobility <real>) ;; 0 <= mobility <= 1
(connects_to <connection> <connection>)

;; exactly two connections
(outline <vertex> <vertex> <vertex>...)
(triangles <triangle> <triangle>„.)

)•

<triangle> is defined as:

((material <integer>) ; FACC MCC
(vertices <vertex> <vertex> <vertex>)

; exactly three vertices

)

with <vertex>:

(<real x> <real y> <real z>
; local MES coordinates

)

and <type> is one of:

unknown
building
cave
tunnel
bridge
other.

<template-name>, <enclosure-name>, and operture-
name> are arbitrary, non-quoted strings.

We are currently working with the SI000 developers
to add support for MES structure information within
S1000, which would allow the MES data structures
to be populated directly from S1000. This would
include not only three dimensional models
(buildings), but also multiple elevation terrain
features, such as caves and tunnels. We have
developed preliminary algorithms for extracting MES
information for simple models, such as bridges.

5. Conclusion

The multiple elevation surface structures described in
this paper are planned for integration into ModSAF in
July 1996. The MES representation provides
capabilities to ModSAF that will allow more realistic

vehicle and individual combatant behaviors to be
developed that utilize multiple elevations.
Particularly, the use of building interiors will now be
possible.

6. Acknowledgment

This work is being done as part of contract DACA76-
94-C-0022 from the Advanced Research Projects
Agency (ARPA) and the US Army Topographic
Engineering Center (TEC). The authors wish to thank
George Lukes of ARPA and Kevin Mullane of TEC
for their interest, encouragement, and guidance.

7. References

Evans, A., Stanzione, T. (1995), "Coordinate
Representations for CGF Systems", 13th
Workshop on Standards for the Interoperability of
Distributed Simulations.

Stanzione, T, Chamberlain, F., Evans, A., Buettner,
C. (1996), "Ocean Representation in the
Improved Computer Generated Forces Terrain
Database", 6th Computer Generated Forces and
Behavioral Representation Conference.

8. Authors' Biographies

Thomas Stanzione is the manager of the
Computer Generated Forces Section at TASC. He is
the Program Manager for the ICTDB project and a
key contributor to TASC's other CGF programs,
including the DIS Exercise Construction Toolset
(DISECT) being developed for STRICOM. His
interests include data representations for terrain
reasoning and terrain database generation for
simulation applications. Mr. Stanzione has a Masters
of Science degree in Photographic Science from the
Rochester Institute of Technology.

Alan B. Evans Dr. Alan Evans is the manager of
the Burlington office of SAIC and is the technical
lead on the ICTDB project. He has worked in
Advanced Distributed Simulation for over five years
with primary research interests in simulation systems
architecture, object modeling, distributed object
technology and synthetic environments. Dr. Evans
has a Ph.D. in Mathematics from Michigan State
University and an M.S. in Computer Science from
New York University.

Cedric Buettner is a Senior Software Engineer at
SAIC, Burlington. He has been involved in the

542

integrated TEN representation, Global Coordinate
System, Ocean Representation and the Multiple
Elevation Surfaces development under the ICTDB
program. Prior to joining SAIC, he worked on
Raytheon's Patriot Fire Unit software developing
prototype tactical system enhancements. He is a
graduate of Gordon College in Wenham, MA with a
BS in Physics and Mathematics.

Forrest Chamberlain is a Member of the
Technical Staff in the Computer Generated Forces
section at TASC. Forrest has been involved in
Computer Generated Forces work since joining
TASC in 1994. He is currently responsible for the
terrain reasoning and mission tracking components of
the Command Forces (CFOR) project at TASC and is
a critical contributor to the ICTDB terrain
representation effort. Prior to joining TASC, Forrest
participated in the hardware and software design of a
"wearable" computer system at Carnegie Mellon
University, where he earned his Masters Degree in
Electrical and Computer Engineering. Forrest earned
his BS in Electrical Engineering at Cornell
University.

Jonathan Fisher has been a Software Engineer at
SAIC since September of 1995, working on
Integrated CGF Terrain Database development. Prior
to joining SAIC, he was employed by a Seattle area
company providing software support for ATDS
research labs through the NTH. Jonathan graduated
from Dartmouth College with a BA in Math,
Physics, and Computer Science, and an MA in Math.

Howard Lu is a Software Engineer at SAIC. Since
joining in August 1995, Howard has been involved in
the Integrated Computer Generated Forces Terrain
Database development and the Synthetic Environment
Data Representation Interchange Specification
program. He graduated from the Massachusetts
Institute of Technology in Cambridge, MA with a
MS in Computer Science in 1995.

Lawrence E. Mabius is a Principal Member of
the Technical Staff in the Computer Generated Forces
section at TASC. He is currently involved with the
development of the Multiple Elevation Structure
component of the ICTDB terrain database. He is also
the principal developer of a reconfigurable simulation
and analysis tool for Rome Laboratory. Lawrence
received his BS and MS in Mechanical Engineering
and PhD in Computer and Systems Engineering at
Rensselaer Polytechnic Institute.

Mike Sousa is a Coop Engineer for the Systems
Development Section at TASC. During his coop,
Mike has been involved with the Joint Precision
Strike Demonstration (JPSD) project since starting at
TASC in 1994, and more recently with the ICTDB
terrain representation effort. Mike is currently
working towards the completion of his Masters
Degree in Systems Engineering at Boston University.

543

Representations of Buildings for Individual Combatant CGF

Douglas A. Reece and Hsiao-Kun Tu
Institute for Simulation and Training

3280 Progress Dr., Orlando, FL 32826
dreece@ist.ucf.edu, hktu@ist.ucf.edu

1. Abstract

Two areas of increasing interest to the military
training community are individual-level simulators
and urban environments. For the purposes of trainee
platforms, buildings may be represented as sets of
polygons in a format suitable for commercially
available image display software and hardware. This
representation is inadequate for Computer Generated
Forces (CGF). A CGF soldier simulator must check
visibility, determine height, and detect collisions—all
potentially expensive computations. In addition, CGF
soldiers must plan and control movement, perform
basic spatial reasoning, and make tactical plans. The
raw polygonal representation is unsuitable for these
tasks.

In this paper we describe our efforts to take a raw
polygonal building description and automatically
process it to produce new representations. The new
representations provide an efficient organization of
polygons for visibility and height calculations,
simplified obstacle models for other geometric
calculations, and semantic information for reasoning
tasks. Such automatic processing tools will be
valuable for rapidly generating urban databases for
simulation exercises involving CGF.

2. The Need for CGF Building Representations

The Institute for Simulation and Training (1ST) is
developing autonomous computer controlled hostiles
and neutrals (CCH/N) to populate a virtual battlefield
as part of the Team Tactical Engagement Simulator
(TTES) project. This project, which is sponsored by
the Naval Air Warfare Center Training Systems
Division in Orlando, will develop a system to train
small infantry units to fight in urban terrain. The
terrain database used for TTES is in a format
designed for image generators with no organization or
semantic information suitable for CGF. While this is
not a big problem for the ground surface, for
buildings—of which there are many in TTES—it is.
In this paper we describe our efforts to deal with the
building part of the TTES terrain database. First we

discuss the characteristics of the source data and
buildings and review some of the needs of CGF with
respect to terrain. Next we present the data
representation that we have developed so far to
support these needs; in particular we discuss the
height and intervisibility functions. Finally we
describe the algorithms used to extract the CGF
building representation from the source data.

2.1 Source Representation

The source data for a TTES building is simply a set
of polygons. The polygons are contained in a file in
Multigen Flight format. This is a very common
format for visual databases as it is supported by
common visualization hardware and software (i.e.
Performer running on SGI workstations).

In Flight files, polygons can be grouped, and the
groups can be arranged hierarchically. While it is
possible to build a file whose structure maps well to,
for example, the topology of a building's rooms or
the structure of its walls, in practice it is common for
the groups to correspond to polygons that have
something else in common. For example, if all
windows of the building look the same, the database
designer might construct one window frame, then
replicate it around the building and put all window
frames in a group. The TTES buildings files have no
groupings useful for a CGF database.

The raw polygonal representation lacks semantic
information that one would intuitively expect to be
useful for operating in a building. People commonly
see buildings as collections of rooms and hallways
joined together by doorways; windows and doors
connect the inside with the outside. Buildings have
levels, and stairs (and elevators, etc.) connect them.
Buildings can also be viewed as spaces partitioned by
structural walls. The raw polygonal database
contains none of this information. Of particular note
is the lack of aperture information; in the raw data,
an aperture is the lack of polygons.

545

2.2 CGF requirements

In order to determine what representation was needed
for CGF, we first had to examine the functional
requirements of CGF with respect to terrain. This
section reviews some of these requirements. The first
two, height and intervisibility, are common to many
CGF systems; the remainder of the requirements are
based on functions in the TTES CCH/N system, but
are similar to functions in other CGF systems.
• Height of terrain. Since gravity pulls entities

down to the surface of the terrain, it is necessary
to determine the surface elevation of any (JC, y)
point. Clearly, buildings can have multiple
surfaces at each (x, y).

• Intervisibility. Basic CGF behavior are based on
whether or not an entity can see another entity.
Thus CGF must be able to determine if a line
segment from them to anther entity intersects any
terrain polygons.

• Collision detection. As entities move, they must
not penetrate any impenetrable obstacles. In our
CCH/N system, entities are approximated by a
two-dimensional (2D) bounding curve, and they
are checked for intersections with line segments

• that represent obstacles.
• Dynamic movement control. Dynamic

movement control has similar requirements to
collision detection: as the entity moves, it
monitors the relative positions of obstacles
(moving and static) and makes corrections to its
speed and direction of movement. Obstacles are
again represented by line segments.

• Movement planning. The CCH/N system
includes a mode of movement that involves pre-
planning a route in clear space between static
obstacles from one point to another. Route
planning is done in 2D; this is a good abstraction
for ground-based entities because it captures most
movement constraints and makes computation
much simpler. Planning can be done by searching
a movement grid upon which obstacle line
segments have been drawn. The grid cells can be
marked to indicate a cost based on trafficability,
exposure to threat, etc. Apertures in or adjacent
to a cell can just be treated as a factor increasing
the cost to enter the cell. Our first goal for
extracting information for movement planning is
thus to provide a list of obstacle and aperture
locations (line segments).
Rather than searching a large movement grid, it is
more efficient to plan first in an abstract space. In
a building such an abstract search is most easily
constructed by assuming that apertures separate

and connect clear spaces; the movement planner
can then first search a graph of apertures and
secondly search the free space between apertures.
Our second goal to support movement planning is
therefore to build a graph of apertures and clear
spaces.

• Tactical reasoning. The above requirements
address how a CGF entity moves. Beyond this,
the CGF entity must decide (f and where to move.
Most of this reasoning can be performed just by
knowing the movement points between points and
whether one point is visible from the other. An
entity could use this information to answer such
questions as "Where can I move to to see point
PI What location is near cover but allows me to
fire at PI Extra information allows heuristics to
be used to narrow the search for tactically good
positions: the boundaries of apertures, the
locations of inside and outside corners, etc.

2.3 TTES Buildings

The TTES database is a representation of the Combat
Training Village in Quantico, Virginia (QCTV). It
contains about 16 buildings typical of those that
might be found in a small town. The largest are three
stories tall and about 20 meters on a side.

While the obvious way to represent buildings might
be as a box divided into levels and further into rooms,
we have found numerous characteristics in the TTES
buildings that make simple representations and
algorithms problematic. Some of these characteristics
are as follows:
• Apertures. The TTES buildings have "normal"

doors and windows, but also "loopholes" the size
of a cinder block (20cm x 40cm), windows with
low sills that a person can walk through, high
windows above a person's head, and low
windows by a person's feet. There are also
apertures in floors.

• Porches. Many exterior doorways exit the
buildings onto porches which have stairs to the
ground. These porches are open to the outside
on one or more sides and are effectively part of
the terrain surrounding the building, but their
polygons are part of the building definition.

• Balconies. Several buildings have balconies that
are partly enclosed, like the porches described
above. One balcony is cantilevered over the
ground. An entity can thus be under a building
floor polygon but be standing on the ground
surrounding the building.

546

Crawl spaces. There are crawl spaces under
some buildings where entities can move. These
are about a meter tall.
Varying ground height The ground around the
buildings varies in height. In many cases the
ground is below the level of the first floor; hence
the need for porches with stairs. The distance
below a ground floor window is therefore
different on either side. There are buildings for
which it is possible to enter the ground floor
from some apertures and the basement from
others.
Concentric rooms. Figure 1 shows a building,
the "Hotel," in the QCTV with a hallway that
follows the perimeter of a rectangle. Inside this
rectangle is a stairway that follows three sides of
a rectangle. Inside the stairway there is an

glir.rev•

Figure 1. Blueprint of TTES building with
porches, concentric rooms and partially

enclosed entryway.

elevator shaft. This building also has two
porches and an entryway that is open to the
outside on one side.

• Rubble. Several buildings have been constructed
to appear partially destroyed. These buildings
are missing large sections of walls, ceilings, or
whole levels. The remaining partial walls have
uneven tops; some are traversable, some are
effectively full walls, and some vary
continuously between the two extremes. Several
apertures have very ragged edges.

The one characteristic of the buildings that makes
terrain algorithms easier is that they are made up of
mostly orthogonal polygons. In the local coordinates
of the building, the polygons are normal to the

coordinate axes. This characteristic allows us to use
2D computations in many parts of the algorithms.

3. Representation

3.1 Symbolic Information

The goal of building analysis is to construct a
building database that uses data representations
suitable for efficient computation of the information
described in 2.2. We have chosen the following
representations to meet the needs of CGF:
• Two dimensional representations of Movement

Spaces.
• Multiple 2D Movement Spaces. At the very

least, Movement Space must provide an
unambiguous height for every (JC, y) location, so
multi-story buildings require multiple Movement
Spaces that generally correspond to the building
floors. We will outline how we are extracting
room representations so that in the future we may
use a separate Movement Space for each room.

• Outdoor Movement Space. Since in general the
ground outside a building does not correspond to
a Movement Space inside the building, a separate
Movement Space is required for entities moving
outside the building.

• Polygon floor maps. The 2D floor area of a
Movement Space is tessellated into rectangular
polygons which are attached to the Movement
Space. These polygons, along with a range of
elevation values for the Movement Space, are
used to organize the polygon search when
mapping an (x, y, z) location to a Movement
Space.

• Obstacle list. Obstacles to movement in a
Movement Space are encoded as a list of line
segments and stored with the Movement Space.
These are used both for movement planning and
for collision detection.

• Aperture list. Apertures contain fields for class,
geometry, and connected Movement Spaces.
Class indicates the type of aperture, such as
transition point, doorway, window, loophole, etc.
Transition points are boundaries between
Movement Spaces, regardless of whether there is
a spatial constriction also present. Geometry
information contains the bounding box, and
relative height to the surrounding ground or
floors. Apertures are linked to the Movement
Spaces they connect. Since we currently use
entire levels for Movement Spaces, Movement

547

Spaces may include apertures that do not connect
to other Movement Spaces.
Polygons. As we describe below, all original
polygons describing the building are kept in our
building representation. Eventually we intend to
keep a list of wall, floor, and ceiling polygons
with each Movement Space. However, we have
not yet implemented this step.

3.2 Polygon Organization

All polygons in the source file are also kept as part of
the building representation. As we describe below,
we take advantage of the fact that most of the
polygons are oriented normal to coordinate axes in
the local coordinate system of the building. To make
these algorithms easier, polygons are stored in four
groups according to their orientations—xy, xz, yz,
and "other." Furthermore, the polygons in each
group are sorted along their common normal
direction.

4. Terrain Attributes from Location

4.1 Terrain Height

One of the most common requests from the terrain
database is the height of the terrain at a location (x,
y). This is generally a unique value on the ground; in
a building, however, there may be many support
surfaces at a given (x, y). Our system defines a
function Entity_Height which determines the height
of the terrain for an entity. This function is the same
as the basic Height function when the entity is over
the ground, but uses the multiple height values and
the old elevation to determine the new height in a
building.

When (x, y) is inside a building, the Height function
basically searches through the building polygons to
see which ones intersect a vertical line that passes
through (x, y). This procedure is essentially the same
as searching through the polygons of a ground patch
to find the one under (x, y). If it is inside, then the z of
the polygon at {x, y) is computed.

Since the polygons in our building representation are
organized into orthogonal sets, the Height function
can ignore all polygons in the xz and yz sets. These
polygons are vertical and cannot be support polygons.

The Entity_Height function is similar to Height but
takes an old z value as a parameter. The function

assumes some coherence in space to disambiguate
between multiple possible z values at an (x, y). In
addition, the function is able to prune away many
polygons by taking advantage of the fact that the xy
polygons are sorted in z.. The algorithm works as
follows:

I. Given (x, y), zout. and xy polygon set S ordered
in increasing z;

Let

ZTCSI — Hclimb + 2oW .

where Hctimh is the maximum step up an entity can
make during nominally horizontal movement.

3. Let i = N, the number of polygons P, in 5;
decrement i until

z value of P, <zr«f •

4. Let/' = /', determined above; decrement/' until

(x, y) is inside of the projection of Pj
onto the xy plane.

5. Determine z for (x, y) in Pj.

This algorithm generally works well for the two
dimensional movement abstraction commonly used
for ground entities; it finds the first support polygon
underneath of the entity. The HcUmb adjustment
allows the entity to traverse a stair riser without
causing the algorithm to drop the entity down to a
polygon below the step. This adjustment can lead to
a problem, however, if the minimum height of a
ceiling (in a crawl space, for example) is smaller than
Hclimb.

4.2 Movement Space Identity

Since movement in a building is regulated by
Movement Spaces, it is necessary to be able to
identify the Movement Space containing a point (x, y,
z). Each Movement Space contains a set of
rectangular polygons describing the shape of its floor.
The algorithm for identifying Movement Spaces is
much like the Entity_Height function, except that
Movement Space polygons are examined. When a
candidate Movement Space is identified, the input z is
compared to the elevation range of the Movement
Space to determine if the point is part of that
Movement Space.

548

The algorithm above is not very efficient in theory. In
practice, we can use one floor polygon describing the
bounding box of the Movement Space. The only case
in which this simplification doesn't work is for non-
rectangular Movement Spaces combined with an
input z that is not on a support surface. Eventually, as
mentioned above, we will link the source building
polygons to Movement Spaces and so determine
Movement Space membership directly during the
height calculation.

Within each of the orthogonal polygon sets, the
algorithm takes advantage of the sorting to skip over
polygons that are outside the range of the candidate
line of sight. For example, if the candidate LOS goes
from point A to point B, and

LOSMinZ = Mm(Az,Bz)

then in the xy set the algorithm skips over all
polygons P for which

5. Visibility

The second major algorithm for CGF is
intervisibility, or clear line of sight (LOS)
determination. In our system, this algorithm simply
returns a Boolean value indicating whether there is a
clear LOS. Our LOS algorithm takes advantage of
the fact that most of the building polygons are normal
to one of the coordinate axes in local building
coordinates. Our building data structure stores these
polygons separated into different sets and sorted
within the set. The algorithms can treat each set of
polygons as a separate case and perform calculations
in only the appropriate two dimensions. Since the
polygons are sorted, the algorithm can quickly prune
some irrelevant polygons. Furthermore, the algorithm
uses heuristics to order the sets. To do all of this, the
algorithm must of course transform the endpoints of
the candidate line of sight from world coordinates to
local building coordinates. This is done using
transformation parameters stored with the building.

5.1 The Line of Sight Algorithm

For lines of sight that begin and end outside of a
building, the LOS algorithm first test to see if the line
intersects the bounding box of the building. If so, the
building polygons are checked. The points where the
candidate LOS pierce the bounding box are
calculated and then transformed to local coordinates.

The four sets of building polygons are checked in
order of decreasing component length of the
candidate line of sight. In other words, if the z
component of the candidate LOS is the longest, the xy
polygons are checked first, and so on. This heuristic
is intended to maximize the likelihood of finding an
intersecting polygon in the first set. The set of
polygons not orthogonal to a coordinate axis are
always checked last because the general three
dimensional intersection test is the most expensive.

Pz < LOSMinZ

Similarly, the algorithm always stops examining the
xy set when

Pz > LOS, MaxZ

For those polygons in the range to be tested, the
algorithm first tests to see if the bounding box of the
polygon (computed on the fly) overlaps the bounding
box determined by A and B. If so, the algorithm
computes the point T where AB pierces the plane of
P. This calculation is fairly simple since the plane of
P is orthogonal to a coordinate axis. A further check
is made to see if T is in the bounding box of P. If so,
then a two-dimensional Inside_Polygon test is made
to see if T is inside P. This test checks to see if the
sign of the cross product

(T-PdX(PM-Pd

is the same for all /', where P< is the i"1 vertex of P.

The polygons in the last set are not sorted and cannot
be pruned as readily. The algorithm uses a three
dimensional bounding box check between the LOS
and the polygon to see if the polygon must be tested
further; a three dimensional line-polygon intersection
check is then made. This check again requires that
the point T where AB pierces the plane of P be
computed; in this case it is computed in full three-
dimensional generality. However, the test to see if T
is in P is performed in two dimensions using the
projection of P and T on the xy plane. In the
infrequent case that P is vertical, then T and P are
project onto another coordinate plane. The two
dimensional Inside_Polygon test is much cheaper
than a three-dimensional version.

5.2 Experiments

We conducted several experiments to determine the
value of using various heuristics and checks described

549

above. In one experiment we generated 10,000 point
pairs randomly distributed inside a building and timed
how long it took to check the line of sight between
each pair. In one case we used a general, three-
dimensional line-polygon intersection calculation; in
the other case we used the algorithm described above.
The first case took 49 seconds (60 MHz Pentium PC),
while the second took 7 seconds. This result confirms
that our intervisibility algorithm is significantly more
efficient than general LOS algorithm.

We considered dividing the building volume up into
three-dimensional grid cells, each containing a list of
the polygons that intersected it. This should make
searches for polygons intersecting a line more
efficient. However, the irregular and sparse nature of
the polygon distribution in a building would seem to
require a more sophisticated structure (such as an
octree) to make the search efficient. We believe that
our polygon organization allows an efficient pruning
of polygons during the intersection search. We would
like to compare the algorithms experimentally
sometime in the future.

6. Building Analysis

The goal of our building analysis algorithms is to
generate the building representation described in
section 3.1. In all steps of this analysis we make tests
to determine where clear space is and where solid
surfaces are. In order to avoid many expensive
geometric computations, we first convert the
polygonal representation into a three dimensional
image representation and analyze this volume. We
digitize the volume in steps of 0.1 meters so that any
geometric information that the analysis produces will
be accurate enough for the simulation.

6.1 Preliminary Steps

6.1.1 Creation of a Volumetric Image

The terrain and building databases are first scanned
into a three dimensional (3D) volumetric image. The
size of the 3D volumetric image is 1 meter larger than
the bounding box of the building so the ground
surface can be included in the 3D image. Each
volume element, or voxel, in the 3D volumetric image
represents a 0.1 meter cube. Each voxel may have one
or more of the following attributes:
• Occupancy: SPACE or SOLID
• Ground relation: GROUND_SURFACE,

BELOW_GROUND, or ABOVE_GROUND

• TRANSmON_POINT
• APERTURE
• STANDABLE

In the following algorithm description, we will refer
to a function V(i, j, k); this is the access function for
the type of voxel (i, j, k).

All voxels are initialized as SPACE type, which
indicates free space, prior to scan converting building
polygons and ground polygons. A voxel is set to
SOLID type if its bounding box intersects any
building polygons. The resulting 3D volumetric
image is the approximate miniature of the actual
building described by the polygonal database.
Dimensions of apertures in the volume image are
always smaller than the actual dimensions.

After scan converting the building polygons, the
ground surface polygons around the building are
converted. A voxel is set as GROUND_SURFACE
type if its location is at the height of any ground
polygons. A voxel is set as BELOW_GROUND type
if it is below any ground polygons. A voxel is set to
ABOVE_GROUND type if it is above any ground
polygons. The GROUND_SURFACE voxels are
later used to identify the characteristics of the
perimeter of the building.

Figure 2 is one horizontal slice of the 3D image of the
Hotel. The dark lines are SOLID voxels indicating
walls.

I.

=8

Figure 2: A horizontal slice of the volumetric
image showing walls with spaces for apertures.

550

6.1.2 Filling in Walls

Since the building polygons represent the surfaces of
the walls, our algorithm attempts to fill in the core of
the walls in the 3D image. This prevents later stages
of the algorithm from identifying the space between
the walls as a room. The algorithm sets every
SPACE voxel to SOLID voxel if it is directly
between two SOLID voxels. With a voxel size of 0.1
meters, this procedure will fill in walls that are
between 0.1 and 0.2 meters thick. The result of
filling process on the Hotel is shown in Figure 3.

6.2 Finding Movement Spaces

6.2.1 Standable Voxel Extraction

The first step in identifying Movement Spaces is to
find those voxels on which an entity could stand.
These are the STANDABLE voxels. A
STANDABLE voxel is defined as a SOLID voxel
with a certain number of SPACE voxels directly
above it, i.e.

V voxels (i, j, k) ,

if V(i, j, k) = SOLID and
V(i, j, k+t)= SPACE, 1 < t <

then V(i, j, k) <= STANDABLE.
N,

6.2.2 Movement Space Identification

The identification of Movement Spaces has two
primary steps. In the first, all standable voxels that
are "adjacent" are linked into regions. In the second
step, these regions are split so that no region has two
standable voxels at the same (i, j).

The standable voxel linking step is essentially a three
dimensional version of a standard two dimensional
region labeling algorithm for image processing. The
one notable difference is that standable voxels are
considered adjacent if they are adjacent in the x and y
directions and within HMmt of each other in z- HMme is
a threshold height such that an entity can climb this
height during horizontal movement with no penalty.
This is just an approximation, but at any rate HMmt is
intended to be much smaller than the Hciimb used in
section 4.1 above.

We recognize that the use of such thresholds makes
the analysis of buildings entity dependent. However,
this is appropriate; the information we are extracting
from the building is intended to be used by individual
combatants. Armored vehicles, for example, would
view buildings differently so the representation we
are extracting would not be very useful anyway.

The second step of Movement Space identification is
the division of the standable regions into new regions
that do not overlap. Each standable region is
considered in turn. It is examined from minimum k to
maximum k. At each k, if voxel (i, /, k) in the region
is standable, then (i, j) in a two-dimensional region
map is annotated with the value of k. This process
continues until at some k, for all voxels (i, j, k) in the
region, the 2D map is already marked at (J, j). At this
point the 2D map is saved as the movement area for a
Movement Space and the voxels corresponding to
this area are cleared from the region under
consideration. The boundary voxels between
Movement Spaces are marked as TRANSITION
POINTS. The minimum and maximum k values of
the area are found and stored for use in the Movement
Space Identity function (described in Section 4.2).
The examination of the standable region then
continues with a new 2D map. Figure 4 shows one of
these 2D maps for the Hotel.

N is the number of voxels corresponding to ffcwuatMm
the minimum height of a ceiling over a
STANDABLE voxel. In our implementation,
HceiimfMin is 0.5 meter, so the definition of
STANDABLE voxels admits places where crawling
is required.

6.2.3 Polygonal Floor Map

We currently generate only a single rectangular
polygon to describe the footprint of the Movement
Space. This is determined easily by finding the

551

Figure 4: Movement areas. The dark region
shows the movement area corresponding to one

Movement Space.

extreme points of the 2D movement area just
computed.

6.3 Characterizing the Outside Movement Space

The Movement Space for the outside is generated
much the same as the others, except that ground
surface voxels are used instead of STANDABLE
building voxels, and the outer boundary of the
movement area is not considered. The algorithm
must identify obstacles between the building
Movement Spaces and the outside, and transition
points where an entity can walk freely between them.

Obstacles are formed by walls on the perimeter of the
building, where building and ground voxels meet.
Voxel (i, j, k) is an obstacle if
1. there is an adjacent voxel (/, m, n) that is of type

GROUND_SURFACE, where k - n > N, and
2. V(i, j, h) = SOLID for n<h<k

where N is the number of voxels in HMme.

Transition points from the outside to an interior
Movement Space may identify doors or windows, but
also places where a person can just walk onto a
building polygon. Porches are the common example
of features that give rise to non-aperture transition
points. The definition of transition points for the
outside Movement Space is a voxel (i, j, k) that has a
GROUND.SURFACE voxel adjacent in (i, j) and
within HMme in k.

6.4 Finding Apertures

Apertures are essentially boundaries where
Movement Spaces join, but across which entities
cannot move without a cost (if at all). They are
characterized by a spatial constriction.

6.4.1 Detecting apertures

The aperture extraction algorithm looks for voxels
that are in doorways and windows by checking to see
if there are SOLID voxels on either side of it (at the
same z) within distance WApemre. However, if the wall
found on either side is SOLID for less than a
thickness WWaUMin, then the constriction is assumed to
be part of a hallway and not an aperture. This
condition is illustrated in Figure 5. All voxels
meeting the aperture criteria are marked as
APERTURE type. The result for the Hotel is shown
in Figure 6.

Aperture
detected

No aperture-
surrounding
wall not thick
'enough here

Figure 5. Wall thickness criterion for labeling
voxels as APERTURE.

After the APERTURE voxels have been marked, a
3D connected component algorithm is run over the
3D image to connect together voxels into apertures
regions. The bounding box is extracted. Since the
aperture regions are as thick as the wall they are in, a
center point is computed (depthwise). Finally, an
aperture list is created and filled with all of the
geometric information.

In a similar manner, all TRANSITION_POINT
voxels are grouped together. These are two
dimensional features so do not carry the same
geometric information as apertures. However, they
still have the connectivity information.

552

Figure 6. Extracted aperture areas (dark)
overlaid on top of the wall of Figure 3 (light).

Note that the boundary cells include locations that
have windows. Thus the extracted obstacles will
include areas of the walls with windows. This
inclusion is deliberate. The extracted obstacles are
used as is to detect the collisions of walking entities,
which is the most common case; we desire a collision
result at a window if the entity is walking. If the
entity is climbing instead of walking, then the
collision detection algorithm must consider the wall
obstacle only while the entity is below the sill of the
window being climbed through. Windows with very
low sills, i.e. < //„„v„ are already part of the
movement area of the movement space and so need
no special treatment (they are effectively doorways).
For movement planning purposes, the terrain features
are written into a grid overlaid on the terrain; the
gridding algorithm must simply overwrite wall
obstacles with the appropriate aperture and transition
point features and the grid will represent the desired
mobility characteristics of the wall.

6.4.2 Connecting Apertures to Movement Spaces

As the apertures placed on a list, they are connected
to the Movement Spaces that they adjoin. The
aperture has two pointers to its adjacent Movement
Spaces and the Movement Spaces have lists of
pointers to adjacent apertures. The connection
process is straightforward: the (x, y) location just to
the sides (depthwise) of the aperture are computed,
and the Movement Space Identity function is called at
(x, y, z) where z is the elevation of the bottom of the
aperture. As Section 4.2 described, the Movement
Space corresponding to that point can be obtained by
comparing the z with the range of elevations covered
by the Movement Spaces.

6.5 Finding Obstacles

The major operational component of Movement
Spaces is the list of obstacles. The building analysis
algorithm takes the 2D movement map for each
Movement Space and identifies all cells that are not
in the movement area but are adjacent to a cell that is.
These identified cells form the boundaries of the
movement area. The cells are obstacles, with the
following exception: for each of these cells (i, j), the
algorithm looks at voxel (i,j,k), where k is the value of
cell (i, J) from the map generation process. If this
voxel is not solid, then the boundary cell is cleared
and the adjacent movement area cells are marked as
transition points (this is a place where the floor drops
off to another Movement Space). All of the remaining
marked boundary cells are clustered into line
segments and stored in a list.

6.6 Future Work

In the future it may be desirable to create smaller
movement area objects corresponding to rooms.
These room objects intuitively would correspond to
topological building features that humans think about
when they describe buildings. As such, room objects
would be useful for writing terrain reasoning
functions for CCHs. The smaller regions represented
by rooms could also provide a form of spatial
indexing into the building database to allow faster
search of obstacles, apertures, etc. during the various
terrain functions. We have already experimented
with extracting rooms; the main part of the algorithm
is connected component analysis, shows a slice of the
Hotel after such an analysis. The resulting regions
could be treated as Movement Spaces.

p^^^ I J
i

I ''• •

Figure 7. Movement Space subdivided int a rooms.

553

Another useful piece of information to add to the
building representation would be the list of polygons
associated with each Movement Space. Since the
building source files are not constructed with
polygons associated with only one floor or room,
there could be a many-to-many assignment of
polygons to Movement Spaces. Nevertheless, the
spatial indexing provided by the Movement Spaces
would allow faster access to the building polygons for
the functions that require them (e.g. height and
intervisibility).

7. Conclusions

We have presented a set of algorithms for taking an
unstructured set of polygons describing the surfaces
of a building and extracting topological and
geometric information useful to a CGF human.

Early in the TTES CCH project we were faced with a
choice of building a CGF building database by hand
or building tools to do it semi-automatically. We
experimented with editing the source files by hand
and creating semantic databases from scratch.
However, not only would this have been tedious to do
once for all buildings, but we received several
updated databases during the course of the project.
We would have had to re-extract all of the geometric
information from each new version. We thus opted
for the automatic conversion tools.

9. References

Stanzione, T., Chamberlain, F., Evans, A. and
Buettner, C. (1995) "Integrated Computer
Generated Forces Terrain Database", In
Proceedings of the Fifth Conference on
Computer Generated Forces and Behavioral
Representation, University of Central Florida.

10. Authors' Biographies

Douglas A. Reece is a Computer Scientist at the
Institute for Simulation and Training. He is the
Principal Investigator of the TTES Computer
Controlled Hostiles project. His research interests are
in artificial intelligence, specifically intelligent agent
design and computer vision. He has a Ph.D. in
Computer Science from Carnegie Mellon University
and B.S. and M.S. degrees in Electrical Engineering
from Case Western Reserve University.

Hsiao-Kun Tu is a Computer Scientist at the Institute
for Simulation and Training. Currently his effort
concentrates on design of a new generation of terrain
database for CGF. His research interests are in image
processing, pattern recognition, and computer vision.
He has received a M.S. and B.S. degrees in Computer
Science from University of South Florida.

We believe that, suitably developed, such tools will
be useful beyond TTES for creating representations
of buildings for other CGF databases (e.g. Stanzione
1995). Purely polygonal representations for image
generators are very common and seem to be the
standard format for objects created or recreated on
CAD systems. Automatic conversion tools would
avoid the time consuming, tedious process of
extracting the CGF-specific information from these
polygonal representations. Urban databases could
thus be constructed more easily and rapidly.

8. Acknowledgment

This work is being supported by contract N61339-94-
C-0006 from the Naval Air Warfare Center Training
Systems Division.

554

Ocean Representation in the Improved Computer
Generated Forces Terrain Database

Thomas Stanzione
Forrest Chamberlain

Dr. Alan Evans
Cedric Buettner

TASC
55 Walkers Brook Drive

Reading, MA 01867
tstanzione@ tasc.com

flchamberlain@tasc.com

SAIC
Suite 130

20 Burlington Mall Road
Burlington, MA 01803
aevans @ bos.saic .com

buettner® bos.saic.com

1. Abstract

The Improved Computer Generated Forces Terrain
Database (ICTDB) project, being developed jointly by
TASC and SAIC, is one of four projects in the
ARPA/TEC Advanced Distributed Simulation
Synthetic Environments program. The goal of this
project is to design and develop the next generation
terrain database representation for Computer Generated
Forces (CGF) systems. The ICTDB project is
focusing on a number of areas of improvement for
CGF terrain representations. One of the areas that
ICTDB is addressing is the representation of multiple
elevation surfaces. These include features that can be
overlaid onto the terrain surface, such as water
surfaces over the ocean floor, river, and stream beds.
Another area is the identification and representation of
advanced features and attributes, including all features
and attributes normally found in operational terrain
sources, such as Interim Terrain Data (ITD) and
Tactical Terrain Data ('ITD). Features and attributes
necessary to support dynamic terrain representations
will be provided, as well as a mechanism for easily
expanding the feature and attributes represented.
ICTDB is providing additional support for dynamic
terrain. The ICTDB representation is being designed
to be updated in real-time based on information from
the DIS network. This capability will allow ICTDB
changes based on input from the other ARPA
Synthetic Environment programs.

In this paper, we describe the extensions that the
ICTDB project has made to ModSAF in each of these
areas in order to provide a higher fidelity ocean
representation. The sea floor is being explicitly
represented within the ModSAF Compact Terrain
Database (CTDB) data structures. Soil types are being

expanded as appropriate to provide meaningful values
for the sea floor. The sea surface representation is
being handled as a second surface feature overlying the
sea floor. Tidal height variations are also supported.
Ocean attributes will be dynamically updated with
data made available through interaction with other
Synthetic Environment programs, namely the
Weather in DIS/Total Atmosphere and Ocean System
(WTNDS/TAOS) and Dynamic Virtual Worlds
(DVW), and derived from authoritative sources, as
available, including the Master Environmental
Library.

Additional support for the representation of the surf
zone is also being provided. This includes support of
a triangulated irregular network for the coastline, with
use of higher resolution hydrography and bathymetry
data than may be available in the deeper ocean. This
will facilitate modeling the transition from land to
sea, without large elevation discrepancies along the
shore. ICTDB also supports surf zone attributes of
surf height and water temperature, and man-made
features in the surf zone, such as jetties, oil rigs,
breakwaters, wharves, and piers.

Future work includes expanding the ICTDB
representation to provide a higher fidelity ocean and
surf zone representation. The ocean will be treated as
a number of volumetric features with similar
attribution. New surface and subsurface features will
be added to represent more of the ocean
characteristics. More explicit modeling of the surf
zone will be provided. Ocean subfloor characteristics
will also be represented.

555

In order to support Navy and Marine Synthetic Forces
simulations (Tracor, 1996), the Compact Terrain
Database (CTDB) used by ModSAF has been
expanded to include a representation of the ocean floor
along with a more complete representation of the
ocean surface. Table 1 shows the various ocean
characteristics that are represented.

The ocean bottom is represented using the existing
terrain representation (i.e., grids, TINs, and
microterrain) (Stanzione, et. al. 1996), and additional
supported soil types. Many ocean "features" are really
abstractions describing pieces of the terrain. As such,
the physical representation of such features can be
adequately handled by incorporating their structure
into the polygonal representation of the ocean
bottom. Abstract notions such as "this area of the
terrain is a reef can be explicitly stored as abstract
features using existing CTDB mechanisms.

The representation supports tidal variation of the
ocean surface. In the coastal regions, the absolute
elevation of the water's surface is specified, subject to
some maximum x-y bounds. Within the specified
region, any area where the water elevation exceeds the
land elevation is covered by water, and any area where

this is not the case is dry (or perhaps moist) land, as
shown in Figure 1. The bounding polygons for water
bodies are defined by high tide position, so that the
surface elevation can be decreased to represent lower
tide levels. In order to allow for changing tides in
real-time, all water polygons reference a tidal zone.
Each zone stores an offset, which is added to the
surface elevation stored for the polygon. Thus,
changing the tide in a region is simply a matter of
changing that region's tidal offset.

In most areas, the ocean surface is represented by
single square polygons that correspond to the size of a
CTDB terrain patch. The representation can not be
too coarse because in databases that use the Global
Coordinate System (GCS) (Evans, 1995) the ocean
surface is curved. On the other hand, the
representation can not be too fine or it will use much
more memory. The patch size is the largest size at
which integration into existing intervisibility
algorithms is straight forward, since the
intervisibility code already performs a patch traversal.
The representation consists of a single elevation value
for water in the patch, and a reference to additional
surface characteristic data. It is assumed that there will
be few unique sets of surface characteristics relative to
the number of patches.

Table 1: Ocean Representation Characteristics

Multiple Elevation
Surfaces

Advanced Features
and Attributes

Dynamic Terrain

Ocean Floor • Bathymetry data
• Extended soil types

infrastructure to include
bottom characteristics

Ocean
Surface

• Patch and Wet TIN surface
• Sea State attributes (primary

and secondary wave height,
period, speed, direction)

• Surface Temperature

• Dynamic sea state
and surface
temperature

Surf Zone • Tidal Zone with offset for
surf height

• Man made features
(wharves, piers, etc.)

• Variable tidal zone
offset

Rivers • Wet TIN surface

556

Figure 1: Tidal Variation

For areas where patches are simply too big, such as
along the coastlines, a triangulated irregular network
(TIN) of polygons is used to represent the surface.
These "wet TINs" contain elevation data, as well as a
characteristic reference and tidal zone as described
above. This representation is also used to represent
most river surfaces.

For areas where multiple water polygons overlap, the
highest one is assumed to be correct. Consider the
case shown in Figure 1. At high tide, the water level
is above the ridge in the middle, while at low tide it
is below it. As the tide recedes, water is trapped
beyond the ridge. Thus, when the tide is below the
level of the ridge, the water level to the right of the
ridge will stay at the level of the ridge, but when the
tide is higher, the water level everywhere will be the
tidal level. We can handle this by placing additional
wet TIN polygons to the right of the ridge at the level
of the ridge, and also having a tidal polygon that
covers that region.

A number of existing CTDB data structures were
modified to support this representation. A flag was
added to the patch group header for each patch
specifying whether that patch represented a water
surface. Within each patch data structure, a water
elevation field was added, which is only valid if the
patch water flag is set in the header. Also, pointers
were added for soil type and water characteristic
attributes.

To support the additional soil types needed for the
ocean bottom, we have added a level of indirection by

storing a soil table reference per patch or patch group.
Most soil tables have 16 entries, since microterrain
and grid posts only support 4 bit soils. However, the
CTDB TTNs representation supports 8 bit soils, so
256 entry soil tables are supported as well, allowing
greater flexibility for TINed regions.

An additional microterTain type was added in order to
support the wet TINs. A characteristic reference word
was added to the microterrain data structure in CTDB,
which points to a new data structure that contains the
water characteristics for the wet TIN polygons. These
water characteristics include sea state, temperature,
and tidal zone index, which is an index into an array
of tidal zones. The tidal zone reference was put in
with the other characteristics, since it is expected to
be constant over large regions. A reference was used
rather than storing the data directly to minimize the
number of places in which tidal data actually resides,
since this is something that may be modified
frequently at run-time, and localization is critical.

3. ModSAF Modifications

The scope of the ModSAF modifications was limited
to the terrain database library libCTDB. The general
design principle was to add a representation that
would support tidal variant water surfaces and support
the basic terrain utilities, intervisibility and elevation
lookup, to function above and below the water
surface.

557

3.1 Variable Water Surface

A variable water surface was added to ModSAFs
libCTDB to allow modeling of the dynamic ocean
surface for Naval and Littoral operations. The first
phase of development, integrated into ModSAF 2.1,
was to add the infrastructure to support water surfaces
and ocean bathymetry. The bathymetry was integrated
into the original TIN topology and the water surface,
added via patch water or wet TINs, was placed at the
mean high tide level and a tidal attribute was
referenced to determine the actual tide level of the
water surface. In any regions where water anomalies
may occur (e.g. captured water) the water surface
representation was augmented to allow this region to
contain multiple water surfaces each referencing a
different set of tidal attributes.

3.2 Elevation Engine

The "elevation engine" is the core utility behind all
vehicle placements and soil and elevation queries.
Prior to variable surfaces, the terrain database
optimized its elevation query scheme by enforcing a
hierarchy of features classes and subclasses. By
knowing that one feature class always superseded the
other in elevation, the elevation lookup processing
could terminate once the first feature surface was
intersected. For example, if both a canopy and
building reside at the same (x,y) location, then the
building elevation is always returned, even if the
canopy elevation is above the building.

With the addition of dynamic elevation features (ocean
surface) and multi-elevation surfaces (Stanzione, et.
al, 1996 (2)) the database can no longer guarantee that
the first intersection found is the intersection of
interest. This requires that the elevation engine
acquire information about all feature surface
intersections before returning the correct elevation.
For example, if the water surface is modeled via patch
water (separate feature class from terrain), then a point
(x,y) that resides in the littoral region would be
interested in the terrain elevation at low tide
(assuming that the water revealed the terrain) and the
water surface at high tide. This determination would
be possible only after all terrain surfaces (grid and
TIN) and all water surfaces (patch water and wet TIN)
were inspected.

Requiring that all features and terrain at a point (x,y)
be included in the elevation query increases the

amount of time to find an elevation. In order to limit
this additional processing, two new elevation query
routines were added to libCTDB to allow more
targeted elevation queries and thereby allow the user
to reduce the types of features inspected. It is
important to note that some profiling tests were
performed on the standard elevation lookup routine to
determine if the changes made for multiple elevation
queries significantly affected its performance. The
result was that the performance was slightly degraded,
by less then 6%. It was determined that this was an
acceptable expense for the improvement to the
elevation lookup functionality.

3.2.1 ctdb lookup qual elevation

This routine is a hybrid of the following routines:

ctdb_lookup_elevation(_ml)
ctdb_lookup_soil(_mI)
ctdb_lookup_max_elevation

These routines look for a single elevation that is the
maximum or the closest surface at or below the input
reference surface. Ctdb_lookup_qual_elevation pulls
all of the above functionality together into one
function by the addition of an elevation qualifier and
an elevation data structure. The elevation qualifier is
an enumeration that allows control over the feature
classes (e.g. volume, linear, canopy) and terrain
classes to include in the elevation lookup (e.g. land,
water), and surface information (material/soil type) to
be returned. Table 2 shows the defined elevation
qualifier values.

Ctdb_lookup_qual_elevation can also be used to
determine if a feature class or terrain class exists at a
certain point. For example, the libCTDB routine
ctdb_point_within_canopy could be replaced with the
following call:

ctdb_lookup_qual_elevation (ctdb, x, y,
(CTDB_INCL_CANOPY I
CTDB_RETURN_MAX),

0, CTDB_ELEV_DATA *)

This again stresses the new flexibility added to the
core elevation lookup functionality.

In addition to the qualifier interface to elevation
lookup, the user has the option of getting
comprehensive information about the terrain
intersection through a new output data structure
CTDB_ELEV_DATA. If a non-NULL address is

558

Table 2: Defined Elevation Qualifier Values

CTDB_USE_DEFAULT Same result as ctdb_lookup_elevation
CTDB_INCL_MICRO_ML Include multi-level microterrain in the search
CTDB_INCL_VOLUME Include all volumes in the search (e.g. buildings, multi-elevation structures,

etc.)
CTDB INCL LINEAR Include all linears in the search (e.g. treelines, dragon teeth, etc.)
CTDB INCL CANOPY Include all canopies in the search, not including treelines
CTDB INCL LAID LINEAR Include laid linears in the search (e.g. roads, rivers, etc.)
CTDB INCL MATERIAL Include the surface material in the search (i.e. soil)
CTDB INCL TERRAIN SKIN Include the terrain skin (grid and or TIN surfaces)
CTDB_INCL_MICRO_DEF_BASE Include default or base microterrain in the search
CTDB_INCL_MICRO_WATER Include water microterrain in the search
CTDB INCL VEHICLES Include individual vehicles in the search
CTDBJNCL_SINGLE_TREES Include individual tree models in the search
CTDB_INCL_PATCH_WATER Include patch water in the search
CTDB_RETURN_MAX Return only maximum elevation
CTDB RETURN MIN Return only minimum elevation
CTDB INCL WATER Include anything that is considered to represent water surfaces
CTDB INCL MICRO Include any type of microterrain (default, multi-level, base and water)
CTDB_INCL_LAND Include all elements in the terrain database that are considered to constitute

the terrain surface (terrain skin)
CTDB ALL FEATURES Include all classes of features in the search
CTDB LAND AND WATER Include all land and water
CTDB MAX LAND AND WATER Include all land and water and return only the maximum
CTDB MAX LAND NO WATER Include all land and return only the maximum

provided, the elevation routine will populate the data
structure with the elevation, feature class, subclass
and the surface information, as shown in Table 3.

Table 3: Elevation Data Structure

z Elevation
Class Terrain class (e.g. Linear,

Volume, etc.)
Subclass Terrain subclass (e.g. Terrain

Skin, Building, Treeline, etc.)
Material FACC Material Attribute Code
Normal Vector
(X, Y, Z)

Normal vector of elevation surface

3.2.2 ctdb lookup elevation mes

This new CTDB function is similar to the
ctdb_lookup_qual_elevation routine but returns all of
the intersected elevation surfaces, as specified by the
input qualifier. The output of this routine is an array
of CTDB ELEV DATA data structures. The list is

terminated by a feature class of CTDBJFCJOLLEGAL
which denotes an illegal feature class.

3.3 Intervisibility Engine

LibCTDB uses an "intervisibility engine" to perform
a number of tasks. The intervisibility engine
implements a linear traversal along the terrain surface,
noting all terrain and feature edges crossed. This
functionality is used to implement line of sight
calculations, generation of terrain profile vectors, and
high ground calculations along a linear path.

Prior to the addition of the ocean representation, an
intervisibility query always assumed that terrain
blockage was from below. To allow intervisibility
from below the water surface, the ModSAF
intervisibility algorithm needed to be modified to
support blockage from below and above the terrain,
possibly simultaneously. Depending on which
intervisibility algorithm is used (profile, high ground,
ground intersection, etc.), the desired effect of water
surfaces may be different. For the profile vector the

559

user may wish to know all terrain edge crossings
without taking the water surface into account (e.g.
when implementing a submarine behavior), but a
tank behavior would always take the combination of
land and water into account. Greater control has been
added to the intervisibility routines through the
passing of an elevation qualifier to provide more
control over the features to be taken into account.

Currently, as shown in Figure 2, the ocean surface
always blocks intervisibility from either above or
below. The ocean volume has the same affect on
intervisibility as air. It is anticipated that the
intervisibility through the ocean volume, as well as
the atmosphere, will be modified by environmental
models utilizing the WTNDS/TAOS atmospheric and
ocean databases, when this system is available
(Whitney, 1996).

Figure 2: Ocean Intervisibility

3.4 Ocean Attributes

As mentioned above, the dynamic water surface is
managed through a tidal attribute. By changing the
tidal attribute, all of the water mapped to that

attribute is modified. In addition to the tidal attribute,
the other ocean attributes added to ModSAF 2.1
include surf height, temperature, and primary and
secondary wave characteristics, which are period,
speed, amplitude and direction.

In order to access or modify these attributes, a simple
read and write interface was added to the libCTDB
API, with expectations to enhance the functionality
in future releases. The point read and write routines
contain variable list interfaces which allow easy
attribute access (single or multiple in a single query)
and attribute expandability without requiring a change
to the published API.

3.5 Global Coordinate System

To support the global coordinate system, the patch
water processing was modified to account for the
curvature that occurs at the extreme edges of cell
databases. With flat patch water, where each patch
uses a single elevation for the water surface in the
patch, potentially large step discontinuities could
exist between patches, as shown in Figure 3. To
better model the water curvature and facilitate tidal
variation, the patch elevation is mathematically
modeled using the WGS-84 ellipsoid. The tidal
variation is applied to the ellipsoidal elevation to
determine the true water elevation. To optimize the
computational load when determining the WGS-84
ellipsoidal elevation, intermediate results for a
specific GCS cell are cached. Both the elevation
lookup and intervisibility engines were modified to
lookup the adjusted elevation when analyzing surfaces
or edge intersections.

Flat Patch Water in GCS Curved Patch Water in GCS

Patch Extent
WGS 84 Ellipsoid

Tidal Range

Patch Extent

WGS 84 Ellipsoid

Constant elevation patch water
produces step discontinuities

Variable elevation patch water
produces no discontinuities

Figure 3: Patch Water Elevations in GCS

560

4. Compiler Modifications

In order to generate databases using the ICTDB ocean
representation, modifications were made to both of
the existing CTDB database compilers. The
recompile program is used to convert old format
CTDB databases to newer formats and vice versa, and
also supports addition of user specified terrain data to
an existing database. This program was modified to
optionally generate synthetic bathymetry in water
covered areas and to allow user input of multi-level
water features. The slkctdb program generates a
CTDB format database from SI000 data. This
program was also modified to generate synthetic
bathymetry data, as well as correctly compile multi-
level source data when available. These modifications
allowed us to successfully generate databases making
full use of the multi-level ocean representation, and in
the process highlighted some deficiencies in current
source data representations.

Since very few datasets exist that include both
bathymetric and surface data in formats that can be
easily converted to CTDB, it is important to allow
compile time modification of existing datasets to
include synthetic bathymetry data. This facilitates
testing both by developers and by the user
community. For this purpose, a relatively simple
conversion mechanism is adequate. With this in
mind, we chose to duplicate each water polygon found
in an existing database, "push" it down a user-
specified distance, and change its soil type, typically
to "sandy". This generates an ocean "bottom" with
constant depth. While this does result in
discontinuities at the ocean-shore boundary and hence
does not allow for realistic surf zone simulation, the
result is adequate for simple deep water usage. This
mechanism has been successfully implemented in
both the recompile and slkctdb programs. We
have experimented with more sophisticated
bathymetry generation algorithms that attempt to
generate more bowl shaped ocean bottoms with some
success, but have not attempted to perfect them as we
believe that users who require realistic bathymetric
data would be better served by using real world
datasets as they become available (see discussion of
the experimental Camp Pendleton dataset below).

In addition to supporting the generation of synthetic
bathymetry data, the recompile program has been
modified to allow users to add multi-level ocean data
by hand. This is supported via three mechanisms, all

of which read data from user-generated ASCII files at
database compilation time. The first allows the user
to add microterrain to a database by specifying a list
of terrain triangles to add. This allows the user to
replace the existing flat ocean data with a
representation of the ocean bottom that is as complex
and accurate as needed. The second mechanism allows
the addition of patch water over broad areas or in
specific patches. This allows rapid generation of
ocean surface data in regions of deep water. Finally,
the user may also specify wet TIN polygons as a list
of triangles, allowing detailed specification of the
water surface in the surf zone or other areas where
patch water polygons are too coarse. Together, these
mechanisms support the addition of multi-level ocean
data to support each user's needs without requiring
changes or additions to existing source datasets.

The mechanisms described above allow a great deal of
flexibility. However, it is important that CTDB also
support the use of multi-level ocean data in existing
source formats where available. During the course of
ocean representation development, we were able to
obtain a preliminary SI000 dataset for the Camp
Pendleton region that included explicit
polygonalization of both the ocean surface and the
ocean bottom. Using this dataset for testing, we
modified the slkctdb program to correctly handle
source data that includes both bathymetric data and
ocean surface data. To take advantage of the efficiency
of the patch water representation, water surface
polygons are converted to patch water wherever
possible. In cases where this cannot be done, for
example in patches that are only partially covered by
water, wet TINs are used.

While we were able to successfully generate a useable
CTDB format database from multi-level SI000
source, we did encounter some difficulties. Like
CTDB, SI000 has historically been used to represent
terrain with only a single surface at any given (x,y)
point. As such, it provides only limited support for
the types of queries a multi-level CTDB compiler
needs to make. For example, the CTDB ocean
representation treats water surface polygons which
have corresponding bottom data below them
fundamentally differently than "standalone" water
polygons which do not. Thus, it is important to be
able to query each polygon to determine whether or
not there exist other polygons covering the same area
but representing other surfaces, a query which is not
currently supported. Similarly, SI000 provides an
elevation lookup query that returns a single elevation
at a given (x,y). As discussed earlier, we found it

561

necessary to augment such interfaces in CTDB, and
believe that this should be done for other formats as
well.

features, as well as other attributes, could be obtained
from the TAOS ocean database, which is being
developed as part of the WINDS/TAOS program.

5. Future Work 6. Conclusion

The work that has been done to date has been to
develop an initial implementation of an ocean
representation. This representation can be further
expanded to support a more realistic ocean
representation by adding the characteristics shown in
Table 4. These include more dynamic characteristics,
as well as additional features and attributes. A
significant addition over the initial implementation
would be the representation for features and surfaces
within the ocean volume, such as areas of high
turbidity and thermal layers. The boundaries of these

The ocean representation described in this paper has
been integrated into ModSAF 2.1, including the API
routines to change the ocean attributes and the
compiler modifications to generate databases from
source data with and without bathymetry data. The
ocean representation is compatible with all of the
coordinate systems currently in use within ModSAF,
including GCS. Future work will expand this
representation to produce an even higher fidelity ocean
representation for use by a variety of CGF behavior
developers.

Table 4: Future Ocean Representation Characteristics

Static Representation Dynamic Representation

Ocean Floor • Subfloor characteristics • Dynamic subfloor
characteristics

Ocean
Surface

• Expanded sea state (salinity,
turbidity)

• Currents
• Ice

• Dynamic expanded sea state,
currents, and ice

Ocean
Subsurface

• Volumetric features
(temperature, density,
salinity, turbidity)

• Underwater surfaces (thermal
layer)

• Dynamic volumetric features
and surfaces

Surf Zone • Natural features (reefs, rocks)

• Mobility characteristics

• Variable boundaries of
features

• Dynamic mobility
characteristics (possibly
breaking waves)

Rivers • Variable height for flooding

562

7. Acknowledgment

This work is being done as part of contract DACA76-
94-C-0022 from the Defense Advanced Research
Projects Agency (DARPA) and the US Army
Topographic Engineering Center (TEC). The authors
wish to thank George Lukes of ARPA and Kevin
Mullane of TEC for their interest, encouragement,
and guidance.

8. References

Evans, A., Stanzione, T. (1995), "Coordinate
Representations for CGF Systems", 13th
Workshop on Standards for the Interoperability of
Distributed Simulations.

Stanzione, T., Braudaway, W., Chamberlain, F.,
Drutman, C, Roberts, I., Evans, A., Buettner,
C, Lu, H., D'Urso, R. (1996), "Integrated CGF
Terrain Database Interim Technical Report",
TASC.

Stanzione, T., Chamberlain, F., Mabius, L., Sousa,
M., Evans, A., Buettner, C, Fisher, J., Lu, H.
(1996), "Multiple Elevation Structures in the
Improved Computer Generated Forces Terrain
Database", 6th Computer Generated Forces and
Behavioral Representation Conference.

Tracor Applied Sciences (1996), "Environmental
Modeling Requirements for JCOS Maritime
Systems and Forces", Doc. Number T95-01-
9589-U.

Whitney, D., Reynolds, R., Schmidt, E., Driscoll,
M., Olson, S. (1996), "Integrated Ocean-
Atmosphere Environmental Data Services for
Distributed Simulations", 14th Workshop on
Standards for the Interoperability of Distributed
Simulations.

of Science degree in Photographic Science from the
Rochester Institute of Technology.

Alan B. Evans Dr. Alan Evans is the manager of
the Burlington office of SAIC and is the technical
lead on the ICTDB project. He has worked in
Advanced Distributed Simulation for over five years
with primary research interests in simulation systems
architecture, object modeling, distributed object
technology and synthetic environments. Dr. Evans
has a Ph.D. in Mathematics from Michigan State
University and an M.S. in Computer Science from
New York University.

Cedric Buettner is a Senior Software Engineer at
SAIC, Burlington. He has been involved in the
integrated TIN representation, Global Coordinate
System, Ocean Representation and the Multiple
Elevation Surfaces development under the ICTDB
program. Prior to joining SAIC, he worked on
Raytheon's Patriot Fire Unit software developing
prototype tactical system enhancements. He is a
graduate of Gordon College in Wenham, MA with a
BS in Physics and Mathematics.

Forrest Chamberlain is a Member of the
Technical Staff in the Computer Generated Forces
section at TASC. Forrest has been involved in
Computer Generated Forces work since joining
TASC in 1994. He is currently responsible for the
terrain reasoning and mission tracking components of
the Command Forces (CFOR) project at TASC and is
a critical contributor to the ICTDB terrain
representation effort. Prior to joining TASC, Forrest
participated in the hardware and software design of a
"wearable" computer system at Carnegie Mellon
University, where he earned his Masters Degree in
Electrical and Computer Engineering. Forrest earned
his BS in Electrical Engineering at Cornell
University.

«L Authors' Biographies

Thomas Stanzione is the manager of the
Computer Generated Forces Section at TASC. He is
the Program Manager for the ICTDB project and a
key contributor to TASC's other CGF programs,
including the DIS Exercise Construction Toolset
(DISECT) being developed for STRICOM. His
interests include data representations for terrain
reasoning and terrain database generation for
simulation applications. Mr. Stanzione has a Masters

563

Global Coordinate System in the Improved Computer
Generated Forces Terrain Database

Thomas Stanzione
Forrest Chamberlain

TASC
55 Walkers Brook Drive

Reading, MA 01867
tstanzione@tasc.com

flchamberlain@tasc.com

Dr. Alan Evans
Cedric Buettner

Howard Lu

SAIC
Suite 130

20 Burlington Mall Road
Burlington, MA 01803
aevans@bos.saic.com

buettner@bos.saic.com
hlu@bos.saic.com

1. Abstract

The Improved Computer Generated Forces Terrain
Database (ICTDB) project, being developed jointly
by TASC and SAIC, is one of four projects in the
DARPA/TEC Advanced Distributed Simulation
Synthetic Environments program. The goal of this
project is to design and develop the next generation
terrain database representation for Computer
Generated Forces (CGF) systems. One of the major
technology developments undertaken by the ICTDB
team is the design and implementation of a Global
Coordinate System (GCS) for CGF systems. GCS
starts with a tiling of the Earth's surface into cells
compatible with the GEOREF tiling. Within each
cell, a local Cartesian frame of reference is defined
whose axes furnish a secant plane to the Earth's
surface and a normal vector at the center of the cell.
This amounts to an offset and a rotation of the DIS
GCC coordinate system. The benefits of moving to
GCS include: elimination of projection anomalies,
natural ity to the application developer, fast
conversion to and from GCC and true global
scaleability. At the same time, the compactness of the
data representation is maintained. A more complete
description of the design of GCS is contained in a
paper by Evans and Stanzione presented to the 13th
DIS Workshop.

In the current paper, the details of the ModSAF
implementation of GCS are elaborated. To date, the
implementation of GCS exists in ModSAF, as
additions to the CTDB representation, together with
several new libraries to support the tiling scheme and
coordinate translations. This GCS framework has in

fact been integrated into ModSAF 2.1, together with
changes to the Persistent Object Protocol which
support the extra coordinate used by GCS, the cell
ID. We then discuss in detail some issues of
scaleability which argue for the use of the Global
Coordinate System. Our analysis shows that for the
upcoming STOW ACTD, use of GCS seems a strong
requirement. Finally, we outline future work needed
to make the implementation of GCS complete. This
includes changes to the database production process
needed to fully support GCS. Currently multi-celled
GCS databases have been produced from the Area 2
dataset for demonstration purposes.

2. Overview and Implementation Progress

First, we give an overview of the problems addressed
by the Global Coordinate System and list the CGF
requirements. We also survey the progress to date on
design and implementation.

2.1 Overview

In a paper presented to the simulation community at
the 13th DIS Workshop, Evans and Stanzione
outlined the arguments for switching to a Global
Coordinate System (GCS) representation of the
synthetic world for internal use by CGF systems
(Evans and Stanzione, 1995). This paper dealt
primarily with issues relating to the local faithfulness
of the representation, as well as the space
optimizations deemed necessary to achieve
acceptable real-time system performance. The current

565

paper looks more carefully at some of the issues
related to scaleability of the internal CGF model of
the synthetic world.

GCS is based on a tiling of the Earth's surface into
cells. In each cell, a local Cartesian coordinate
system is used which is offset and rotated from GCC,
Geocentric Cartesian Coordinates. The resulting
frame of reference has its origin at the center of the
cell, with X and Y pointing North and East,
respectively, and the Z axis normal to the Earth's
surface at the center of the cell. A location in GCS is
four-dimensional, specified by X, Y and Z in the cell
frame of reference together with a cell ID . In the
current paper, we first review the requirements which
led to the design of GCS. We then look at progress to
date on the GCS implementation, and try to
understand why current coordinate representations of
the synthetic world are inadequate to achieve the
objectives of STOW, as well as future programs. We
close with a series of recommendations on what
should be done next to complete the implementation
of GCS in the ModSAF-derived family of CGF
models.

2.2 Requirements

The following are the fundamental requirements
which argue for the adoption of GCS:

• Scaleability - As simulations grow larger in
scale, it is crucial that a representation be used
internally which supports arbitrarily large
exercise areas, perhaps even the entire surface of
the Earth.

• Compactness - Storage must make efficient use
of storage space. This requirement is, of course,
closely related to the scaleability requirement.

• Faithfulness - The coordinate representation
should be free of anomalies such as curvature
effects.

• Ease of translation to and from GCC - For
efficiency reasons, an internal coordinate
representation should support fast conversion
both to and from GCC, since this translation
must occur for every location vector which is
read from or written to the network in a DIS
exercise.

• Naturality - The coordinates values returned to
software components simulating platforms and

command elements must be natural in the sense
that they must have an intuitive relationship to
the real world for the benefit of developers of
this code.

In the paper cited above by Evans and Stanzione, it
was shown how GCS was designed to satisfy these
requirements.

2.3 ICTDB Implementation Progress

An implementation of the Global Coordinate System
now exists in ModSAF. The fundamental idea is to
produce one CTDB database per cell, with some
overlap at the edges to insure consistency. Over the
past four months, framework libraries have been
integrated into ModSAF to support GCS. The
additions to ModSAF include two new libraries:
libgcs and libworld. Libgcs provides the inter-cell
coordinate transformations required by
libcoordinates , as well as the 4D vector algebra
required by the application, while libworld
implements the tiling scheme and handles
initialization of the playbox in GCS. Also,
modifications have been made to libctdb which make
the intervisibility code aware of cell transitions. In
essence, when a line of sight (LOS) crosses cell
boundaries, the intervis engine is invoked recursively
using the features and elevation data of the new cell.
In actuality, any LOS used in simulation in the near-
ground environment would not intersect more than
three cells, since LOS calculations are typically much
shorter than the cell size of 100 km. This extreme
case could occur at a vertex joining four cells.
Eventually as simulations of imaging radar and other
high-flying sensors are incorporated, LOS
calculations involving many cells may occur. Finally,
changes have been made to the Persistent Object
Protocol to incorporate the cell ID required by GCS
into all PO data structures which contain positional
information.

Furthermore, several Proof Of Principle
demonstrations have illustrated the use of the
framework modifications. The most important
demonstration was a depth-first modification of the
slice of behavioral and planning support routines
necessary to fly simple FWA missions on multi-cell
GCS databases. None of the changes in behavioral
libraries needed to make the application GCS aware
have as yet been checked in to baseline ModSAF
code.

566

Finally, when it comes to generating GCS databases,
the tiling algorithms have been added to the ModSAF
compiler which takes SI000 source data and
produces CTDB format data. This process can be
switched at run-time to either output a true multi-cell
GCS product or a single-cell product which contains
GCS. data. The latter is reminiscent of earlier
"curved Earth" databases used in experiments and
trade shows.

3. Issues of Coherence and Scale

In this section, the core issues related to scaleability
and coherence of the GCS cell framework are
examined. Specific attention is paid to the system
requirements of the STOW ACTD.

3.1 Vertical Deflection

GCS solves a fundamental problem inherent with
projected coordinate systems. It restores the local
faithfulness of a real-world coordinate system. In
other words, straight lines in a GCS cell frame of
reference correspond to straight lines in the real
world. However, there is a trade-off which leads to
another kind of distortion as the extents of the
playbox increase. In a single cell, the Z axis is normal
to the Earth's surface at the center of the cell.
Moving away from the center of the cell, the vertical
deflection , or the angle between increasing Z and the
normal to the Earth's surface, becomes non-zero. For
a cell of 100 km by 100 km, this vertical deflection
would be about 0.7 degrees at the corners of the cell.
Current plans call for a playbox in STOW 97 of 5.5
degrees by 7.0 degrees. This means that for a single
cell GCS database, the vertical deflection at the
periphery of the playbox would grow to between 2.5
and 3.5 degrees, which could begin to be significant
for ground platform models. While the vertical
deflection is provided to the application by libgcs,
modifying all the ModSAF ground platform models
to account for the vertical deflection is not appealing.
Thus, to limit the size of the vertical deflection as
databases increase in scale, multi-cell GCS is
necessary. We should add that for a playbox of this
size, it has long been recognized that UTM databases
are unacceptable. This is due to compatibility
problems in spanning multiple map zones, datum
inconsistencies and the slowness of coordinate
conversion from one projected UTM frame of
reference to another.

3.2 Effective Slope

In a GCS database, the values of Z on the reference
ellipsoid decrease as one moves away from the center
of a cell. This decrease is the result of the curvature
of the Earth, and is a natural corollary of the fact that
GCS is faithful to the 3D geometry of the real world.
However, the platform models of current CGF
systems are calibrated in a local vehicle frame of
reference. Relative to his coordinate system, the
terrain in a GCS database will appear to be sloped.
This effect increases towards the cell periphery.
Assume that cells are about 100 kilometers square
and that the cell is subdivided into patches, with each
patch 500 meters square. A simple calculation with
the equation of the WGS 84 ellipsoid shows a
decrease in Z values of between four to six meters,
moving from the inner patch boundary to the outer
patch boundary for patches around the periphery of a
cell. On average, this means that the slope of the
ground in such patches would be about 0.6 degrees,
exclusive of local terrain morphology, or that driving
towards the cell periphery, one would appear to be
going slightly downhill. We emphasize that this
effect is relative to vehicle frame of reference. The
underlying GCS cell data correctly model the Earth's
curvature. Our estimate is that this "effective slope"
would have no significant impact on ground vehicle
dynamics for single-cell GCS databases of 100 km
square or less. However, the effective slope would
increase proportionately as the size of the cell
increased to as much as two degrees on a database
with the extents expected in STOW 97. This would
begin to affect mobility calculations based on
defragmented slope values, and may lead to
unacceptable changes in simulation behaviors.

3.3 Accuracy Limits

While the effects of vertical deflection and effective
slope described in the previous two sections may be
important, a more convincing argument for using
multi-cell GCS databases in STOW 97 revolves
around the implementation in ModSAF's CTDB. In
CTDB, elevation values are stored using a fixed point
basis which reserves twenty-one bits for Z values. As
is well known, this leads to an accuracy greater than
a centimeter over a vertical range of 10,000 meters.
However, a simple calculation with the equation of
the WGS 84 ellipsoid shows that in a GCS database
with cells of 100 km by 100 km (approximately one
degree by one degree), the range of Z values will at
least 500 meters from the center of the cell to the cell

567

boundary, which would be about 70 km distant at the
corner of the cell. If the size of a cell increases to five
degrees or more (350 km from cell center to the
corner), as is anticipated in STOW 97, over a quarter
of the range of Z values at the standard accuracy in
CTDB will be used in modeling the curvature of the
Earth alone. When surface morphology is added in
mountainous areas of the world, we see that the
storage capacity of the ModSAF CTDB will be
strained, forcing a decrease in accuracy. The only
alternative would be to restructure the bit fields used
to store elevation values. This would be an
unappealing alternative from an engineering
standpoint. The obvious conclusion is that multi-cell
GCS databases are necessary to support exercises on
the geographic scale of STOW 97. One might argue
that this conclusion would be invalid if appropriate
modifications were made to the CTDB
representation. However, as exercise scale increases
further in the future, it is safe to assume that any
modest increase in accuracy so achieved would
eventually be made obsolete.

3.4 2D Anomalies and the User Interface

With the integration of GCS into the ModSAF
framework, an important change occurred in the way
the synthetic battlefield is presented to the user.
Previously, the Plan View Display (PVD) used the
internal UTM or SIMNET coordinates, converted to
MGRS (Military Grid Reference System) to render a
view very much like an actual map projection on the
workstation desktop. With GCS, cell coordinates in a
single-cell database are mapped directly to screen
coordinates. In a multi-cell database, all coordinates
are transformed to the frame of reference of the cell
containing the point in the center of the screen, then
converted to screen coordinates. The overall effect is
as if the user were looking down at the Earth's
surface from an aerial viewpoint, instead of looking
at a map. MGRS grid lines are rendered on top of the
map, and at very high zoom levels, the lines will
appear to be slightly curved.

The fact that GCS models the curvature of the Earth
means that at high zoom levels, some behaviors of
the ModSAF GUI have changed. An areal feature
which maps to an image of U square units in screen
coordinates, when rendered at the center of the PVD,
will take up less than U square units when it appears
towards the edge of the window, and will actually
appear smaller to the human viewer. This is of course
what the human eye would see when looking down at

the Earth from above. It is not what you would see
when panning across a map with its projected view of
the world. This foreshortening does have some effect
on the software which does high-level motion
planning. Since the planning libraries such as
libroutemap reason about 2D locations only, they are
essentially working with the projection of cultural
and terrain features onto the GCS secant plane.
Relative locations of features are preserved, but the
absolute sizes of derived features, such as mobility
corridors and avenues of approach, are decreased
slightly towards the periphery of a cell. Our estimate
is that such effects are negligible, but more
quantitative study would be useful.

In addition to the intra-cell 2D concerns cited above,
there are inter-cell problems when using 2D data. For
motion planning, a 2D location (X,Y) is really a line
parameterized by Z. When a transition is made to an
adjacent cell, it is not obvious what the
corresponding 2D location (X\ Y') should be. If the
point (X,Y,0) is simply transformed to the adjacent
frame, the resulting point (X',Y',Z') will have Z' non-
zero. Projecting onto the secant plane will give a 2D
location in the new secant plane which is actually at a
different location in the database. This is in fact what
libcoordinates does now. This 2D inter-cell
coordinate conversion is used on routes spanning cell
boundaries, but is subject to the same small
anomalies discussed above. After a number of
experiments, the ICTDB team came to the conclusion
that these anomalies could be ignored. In general 2D
conversions must be applied often to PO database
objects near cell boundaries, since the PO protocol
now supports the GCS tiling in addition lo(X,Y) but
does not support Z.

4. Future Work

The fundamental technical problem of designing and
building a Global Coordinate System which satisfies
the requirements of Section 2.2 has been solved. The
full realization of this part of the STOW 97 system
still requires significant engineering efforts. Looking
to the future, the DoD goal is to build unified SAF
architecture. We briefly discuss the following four
areas:

• Full ModSAF GCS awareness
• Service SAFs and GCS
• Database production process and source data
• SAF Integration

568

4.1 Full ModSAF GCS awareness

In order to make ModSAF GCS-aware, all of the
behavior and platform model libraries will be
affected. This integration task has been estimated by
the ICTDB team to require on the order of 12 staff-
months of effort for the existing models in the Army
SAF baseline. Some initial design work on adding a
Relative Coordinate System (RCS) for ModSAF
platform models has already taken place. RCS will
support highly localized frames of reference, down to
the level of vehicle components and articulated parts.
The intention is to add support for RCS and GCS at
the same time. Some further design work on RCS is
needed. The OpenSAF GCS integration is tentatively
planned to take place just prior to ED2.

4.2 Service SAFs and GCS

If we assume that multi-cell GCS becomes the
database framework for STOW 97, then the Service
SAF models (AF SAF, FastFleet, MC SAF) will need
to be made GCS-aware as well. This integration task
has been estimated to require on the order of six
staff-months of effort.

4.3 Database Production Process

would require less initial investment, but would lead
to duplicative, hence less maintainable code.

4.4 CCTT and SAF Integration

The CCTT Environmental CSC makes the same
assumptions about coordinates that ModSAF did
prior to the integration of GCS. A location in the
synthetic environment is specified by two
independent coordinates, X and Y, together with a
third coordinate Z, all in a Cartesian frame of
reference. The surface of the Earth is a two-manifold
with Z dependent on X and Y for HOT (Height Of
Terrain) queries. The CCTT terrain database
production process makes the same use of UTM
projections as the process which takes DMA and
other source data, producing first SI000 and then
CTDB in the ModSAF environment. We have
discussed above the effort expended to date to add
the GCS framework to ModSAF. SAF Integration
work is slated to provide a common service for
modeling the terrain for ModSAF and CATT SAF
later this year. We recommend (1) that this
framework be required to support GCS, and (2) that
the full integration of the GCS framework into the
objective Integrated SAF system be incorporated into
SAF Integration planning.

The run-time databases used by ModSAF currently
are derived from S1000 data. The tiling algorithm
necessary to turn a single-cell database into multi-cell
GCS has been added to the ModSAF compiler which
produces CTDB from SI000. Currently, since SI000
databases are in UTM coordinates, the CTDB
compiler is forced to resample the elevation grid in
converting to even a single-cell GCS product.
However, SI000 is also used to compile run-time
databases for IG systems. The implicit grid
triangulation in SI000 derivatives means that these
other products are non-interoperable with single-cell
GCS CTDB. The current compromise is to resample
the grid and TIN, using SI000 elevation queries to
populate the TIN. The result is interoperable with the
non-GCS IG run-time products. However, the
increased storage required and decreased
performance could be avoided if the UTM
projections were removed from the SI000 production
process. For STOW compatibility, the consumers of
SI000 data will be made GCS-aware. Clearly the
tiling algorithm should eventually be integrated into
the SI000 production process. Adding the tiling to
other compilers of SI000 into run-time formats

5. Conclusion

The Global Coordinate System framework has been
integrated into ModSAF 2.1. A number of technical
reasons argue for the use of GCS in STOW. Future
work will complete the integration of GCS into
ModSAF, its service SAF derivatives and make GCS
an integral part of the database production process.

6. Acknowledgment

This work is being done as part of contract DACA76-
94-C-0022 from the Defense Advanced Research
Projects Agency (DARPA) and the US Army
Topographic Engineering Center (TEC). The authors
wish to thank George Lukes of DARPA and Kevin
Mullane of TEC for their interest, encouragement,
and guidance.

7. References

569

Evans, A., Stanzione, T. (1995), "Coordinate
Representations for CGF Systems", 13th
Workshop on Standards for the Interoperability
of Distributed Simulations.

8. Authors' Biographies

Thomas Stanzione is the manager of the Computer
Generated Forces Section at TASC. He is the
Program Manager for the ICTDB project and a key
contributor to TASC's other CGF programs,
including the DIS Exercise Construction Toolset
(DISECT) being developed for STRICOM. His
interests include data representations for terrain
reasoning and terrain database generation for
simulation applications. Mr. Stanzione has a Masters
of Science degree in Photographic Science from the
Rochester Institute of Technology.

Dr. Alan B. Evans is the manager of the Burlington
MA branch of SAIC's Technology Research Group
(TRG) and has worked in Advanced Distributed
Simulation for over five years. Dr. Evans is the
technical lead on the ICTDB effort sponsored under
the DARPA Synthetic Environments Program. His
areas of interest include simulation systems
architecture and performance analysis, object
modeling, distributed object technology and synthetic
environments. Dr. Evans holds a Ph.D. in
Mathematics from Michigan State University as well
as an M.S. in Computer Science from New York
University.

Cedric Buettner is a Senior Software Engineer at
SAIC, Burlington. He has been involved in the
integrated TIN representation, Global Coordinate
System, Ocean Representation and the Multiple
Elevation Surfaces development under the ICTDB
program. Prior to joining SAIC, he worked on
Raytheon's Patriot Fire Unit software developing
prototype tactical system enhancements. He is a
graduate of Gordon College in Wenham, MA with a
BS in Physics and Mathematics.

Forrest Chamberlain is a Member of the Technical
Staff in the Signal and Image Technology Division at
TASC. Forrest has been involved in Computer
Generated Forces work since joining TASC in 1994.
Prior to that, he was a critical contributor to the
hardware and software design of a "wearable"
computer system at Carnegie Mellon University,

where he earned his Masters Degree in Electrical and
Computer Engineering.

Howard Lu has been a Software Engineer at SAIC,
Burlington since August 1995. He has been a major
contributor to the implementation of the GCS
framework, and has also been heavily involved in
SEDRIS design specification and prototyping.
Howard is a graduate of the Massachusetts Institute
of Technology, with M.S. in Computer Science.

570

Session 8b: Advanced Concepts

Beheshti, University of Houston
Fields, U. S. Army Research Labs

Tambe, USC/ISI
Sapaty, University of Surrey, UK

An Adaptive Environment Modeling Method Under Uncertainty

Richard A. A16, Mohsen Beheshti, Andre de Korvin, Chenyi Hu, and Ongard Sirisaengtaksin
Department of Computer and Mathematical Sciences

University of Houston-Downtown
Houston, Texas 77002

1. Abstract

Different models may be appropriate to model a
system under conditions of changing environments.
In fact, under a fixed environment several models may
be appropriate with different degrees of beliefs attached
to them. As the environment changes, the degrees of
belief change too. Some of the models represent the
system's possible malfunctions while other models
might be possible models of normal performance.
External events take place which may cause a
probabilistic change in the environment. In the
present work we will like to model this situation and
find an estimate of the probability that the system
continues to function at any specified point in the
evolution of the environment.

2. Introduction

The main purpose of this work is to provide a
mechanism for automated commanders of CGF to
make, change, and refine the assessments on the
opposing forces upon the new information received.
This information might be a change in weather, in
terrain conditions or in forces. Assessments of
opposing forces or more generally of prevailing
conditions are of extreme importance and have been
studied in numerous works, Handley et. al. (1995),
Hille et. al. (1995), Holmes (1995), Pandari et. al.
(1995), and Yin et. al. (1995).

More specifically, we will use Fuzzy Sets (see Zadeh,
1968), the Dempster-Shafer Theory of Evidence (see
Shafer, 1976), Norton's (1988) work connecting
Dempster-Shafer masses to Markov Chains and other
works to set a framework for estimating the
probability of changing one assessment to another or
to stick with the same assessment. Also, we will
develop estimates of the probability of going from a
fuzzy assessment to a crisp evaluation and this should
have a clear impact on what course of action to take
as a consequence.

Fuzziness comes in naturally because sensors and/or
reports are far from being precise in most battle
situations. The Dempster-Shafer Theory of Evidence
comes in because we have different sensors to measure
different features, naturally generating masses on
subsets of possible alternatives. We need to combine
the information yielded by the different
sensors/reports. A key notion which helps to

develop the above result is the notion of degree cf
equality between two fuzzy sets.

The emphasis in this work is on the construction cf
the transition probabilities rather than on decision
making. However, we perceive this work as an
important first step for decision making with vague or
imprecise information in the context of policy making
as in Kleyle and de Korvin and in other applications
for example, de Korvin et. al.

The concept of defining probabilities on fuzzy sets
originated with Zadeh (1965). Klement et. al. (1981)
formally define fuzzy probability measures over fuzzy
cr-fields, which extend the basic a -algebra to the
fuzzy domain. Smets (1990) also deals with fuzzy
probability measures using an axiomatic approach,
while Piasecki (1985) further extends the theory to
probability measures on "soft a -fields" using the
concept of a weak separation.

In this paper we consider a Markov chain whose
states are fuzzy sets defined on some finite state space
X. Although an infinite number of fuzzy sets can be
defined on X, we consider chains having only a
finite number of fuzzy states. Since we restrict our
attention to the finite case, we avoid the measure-
theoretic problems that can arise when dealing with
probabilities on fuzzy sets.

In a recent paper, Kleyle and de Korvin, it has dealt
with Markov chains involving fuzzy transition
probabilities. Fuzzy transition probabilities arise
naturally when the transition from one state to
another is described by such mathematically
imprecise phrases as very likely, likely, unlikely, etc.
Procedures for decision making under this type cf
uncertainty which combine fuzzy set theory with the
classical theory of Markov chains have been proposed
by Kleyle and de Korvin. In the present work we in
some sense "reverse the process" and describe a
method of obtaining crisp transition probabilities
when the states themselves are finite fuzzy sets.
Fuzzy states are relevant to situations in which, due
to ambiguity in the data itself, the exact state of the
system cannot be pinpointed with certainty.

Norton (1988) has related the Dempster-Shafer rule of
combination to Markov chains whose states are finite
crisp (i.e. non-fuzzy) sets. In so doing he is able to
construct an expression for computing the transition

573

probability from one set-state to another. We first
present some special cases in which Norton's formula
can be extended directly to fuzzy set valued states.
We then use the concept of the degree to which two
fuzzy sets are equal to provide a general extension.
Lastly, we employ a modification of a result due to
Smets (1982) to compute transition probabilities
from a fuzzy state to a crisp state which is a member
of*.

To enhance the readability of this paper, the more
technical details are relegated to two appendices. A
simple numerical example illustrates the procedure.

3. Background

To make this paper accessible to the reader without a
background in fuzzy set theory, we now introduce
some of the most basic concepts of fuzzy sets. A
fuzzy set A on space X is defined by its membership
function

A:X->[0,1].
The membership function is a generalization of the
characteristic function of a crisp (i.e. ordinary) set.
For each x € X, A(x) denotes the degree to which
element x is a member of fuzzy set A. For a crisp
set, of course,

fl iff x € A

0 iff xeA

For fuzzy sets 0 < A(x) < 1. Those x 's for which
A(x) > 0 constitute the support of fuzzy set . For
notational convenience, we do not distinguish
between the membership function and the fuzzy set
itself. In effect, the membership function is the fuzzy
set.

When the domain A"« {xx,x2,...,xn} is finite, we
represent fuzzy set A by the notation

A= J.O/fx,

where a, = A(xt) denotes the degree to which x,
belongs to A.

3.1 Notation

Finite fuzzy sets are sometimes written as ordered
pairs {(a,,x,),(a2 ^),...,(a„,;cn)}, but we find the

above notation more convenient. In this paper the X
operator will be used in both the usual summation
sense as well as to define finite fuzzy sets. The usage
will usually be obvious from the context. Whenever
possible confusion may occur, as when X is used in
both senses in the same formula, the explicit usage

will be specified in the text. Also, to avoid further
notational confusion, we use the + symbol to denote
division and reserve / to separate the membership
from the support of a finite fuzzy set.

The operations of fuzzy union, intersection and
complementation are defined in terms of the
membership functions as follows:

(AvBXx) = Max{A(x),B(x)}
(AAB\X) = Mm{A(x),X(x)}
-^A(x) = \-A(x)

For a more detailed Account of Fuzzy Sets refer to
Zadeh (1965), Dubois and Prade (1980), and Klir and
Folger(1988).

We conclude this section with a brief discussion of
Dempster-Shafer mass functions and the Dempster-
Shafer (D-S) rule of combination. The D-S masses
can be successfully applied to the problem of object
recognition. Let J be a set of objects
xt,x2,...,xn. Assume that we look at a particular

feature F which has possible values fi,f2,••-,/„•

Assume also that sensors report the values of feature
F with some uncertainty, e.g., the sensors may
indicate that F has value /, with probability p,

and value f2 with probability p2. This assessment
generates a natural mass m defined by

m(Al)=pl, m(A2)=p2

where Ax and A2 are subsets of X; Ax

corresponding to all objects whose feature F has
value /, and A2 corresponding to all objects whose

feature F has value f2.

We now look at several features Fl,F2,...,Fm. where

fk denotes possible values of Fk. Each sensor

(geared to one particular feature) then generates a mass
m, (l< t<m) on subsets of X. The D-S rule of
combination allows us to combine the information
yielded by all the sensors. Each mass m, must have
the following properties:

(0 m,(A) >0

(ii) „t(0) = 0

(iii) I m,(A)
A €2*

= 1

574

The sets A for which ml(A)>0 are called the focal

elements of m, Mass /n, and m2 can be combined

into one mass mx 2 and can be defined by

ml2(A) = n\ ®m2{A)

= I m1(B)m2(C)+ I m,(5)m2(C) (1)
BnC= A BnC=0

The focal elements of the composed mass function
/n, 2 (.) are the intersections of the focal elements of

/»,(.) and m2(.). An improper composition is
given by

rn^jiA) = m, © rr^iA)

= I ^(5)^(0
BrC=A

(2)
which is simply the numerator of (1) and allows
positive mass to be assigned to 0.

The D-S rule of combination can be extended to any
finite composition,

mx2...n(.) = m]@m2®-®mn(.)
(3)

by induction. Furthermore, the computation can be
simplified by using an improper composition in the
intermediate stages, and then defining

^2..«(0)=O
(4a)

(4b)

This result has been stated and proved by Norton
(1988), Th. 1.

In the process of establishing the link between set-
valued Markov chains and the D-S rule of
combination, Norton obtains an expression for the
transitional probability of going from state Ai to

state A, in terms of the mass function:

P(Ai->AJ)= I m(Ak)

(5)

where the Ak 's are the focal elements of /«(.).

We will apply Norton's limit theorems to estimate
the probability of changing one assessment when
facing enemy forces. The way our mechanism works
we may either stay with our original assessment or
narrow further our evaluation, making it more
specific. We will come to a natural stopping point
where we can not narrow down any more on the
information from the reports and/or sensors that we
have available. It may happen that we deduce the
information to an empty set, meaning that the
information was inconsistent. The limiting set of
information refinement will correspond to an
absorbing set in the sense of Markov chain.

4. The Direct Extension

Since reports and information acquired during combat
conditions are typically not precise we would like to
introduce fuzzy sets as focal masses. For example,
consider a large enemy force, we might have a
situation which we believe with strength 0.7 that we
are facing a large enemy force while believing with
strength 0.3 that we have a large enemy force backed
up by a large number of tanks. We now introduce
the general notations.

Suppose the focal elements of a mass function are
fuzzy sets defined on finite space X which consist of
the "generating focal elements" Ax, A1,...,An and all
possible intersections of these focal elements. We
find it convenient to index these intersections with
subscript notation. That is,

A(ii,i2,...,ip)= Aii A A^A—AA, , (6)

where !</, </2 <• •<i.<n, p = 2,3,...,n.

There are such focal elements assuming (as we do)
that

A\ A A2A.---/^An *0
This last assumption would be rather restrictive for
crisp sets, but fuzzy set intersections are non empty
unless two (or more) of the focal elements have
disjoint supports. To have a convenient terminology
for later discussions we refer to focal elements
obtained from a p -fold intersection as in eq. (6) to be
p th order states.

REMARK: Suppose n mass functions all having the
same n fuzzy focal elements are composed by the D-
S rule as given in eqs. (1) and (3). This w-fold
composition will have focal element having precisely
the hierarchical intersection structure described above.
Explicit formulas for a mass function defined by (3)
and having this hierarchical structure that can defined
as follows: Let

575

ik = j\or j2 or ... or j for all k = l,2,...,n and

each possible value of ik must appear in the n -tuple

at least once).
Then the mass in the n -fold composition is given by

(ji,/2,..A)€5„Oi,..,y,)isi&.+i

For a proof see Kleyle and de Korvin. However, the
direct extension of Norton's eq. (5) to fuzzy focals

will hold whenever there are 2" -1 focal elements
with the above structure, whether or not the mass
function is formed by an n -fold composition.

General formulas for the transitional probabilities
defined by eq. (5) with a mass function having the
hierarchical intersection structure defined above can be
defined as follows: Clearly

/>(/*(/,,/2 ,...,/„)) -» A(JX J2,-Jg)) = 0 if q <P

If q >p, we define

S(q - p, v) = {(r,, r2,..., rq _p+v):

where q - p of the /; 's are the q - p indices not

equal to A , A, >•••>./* and the other v indices

constitute a subset of v of the indices

Jkl'Jk2<--'Jkpl-

It then can be shown that

P{A(Jx,i2,...,ip)) -> A(jx,j2,...Jg))

= I { I I m(A(r\,...,rq_p+v))}.
OSvSp (rlr..,r,.^v)sS(9-p.v)

For a proof see Kleyle and de Korvin. These general
expressions are rather complicated, so in order to get
an intuitive feel as to how these transition
probabilities are computed, we consider a simple case
in which n = 3 and there are only 7 focal elements:

4,/= 1,2,3; AiJ = AiAAJ, 1 < / < y < 3;

where Ax represents a large enemy force, A2

represents artillery vehicles, and A3 represents

weapons.

Then using (5) directly we can show that

P{AX ->4) = m{Ax);

P(Ax^Aj) = 0,y = 2,3

P(AX -> AXj) = m(Aj)+ miA.j),; = 2,3;

/>(,*,->43) = 0

/>(/*,->423) = m(A23)+m(Am)

Clearly,

S/S3 J l£;</£3 ' 15/53

+ />(/<, -*/J123)=l

Similar transition probabilities are obtained from
states A2 and A3 to the other states.

REMARK: The transition probability from any first
order state into itself is the positive mass associated
with that state, but the transition probability from a
first order state into any other first order state is zero.
This means the probability of staying with the
assessment that the object is a large enemy force is
positive, but the probability of changing the
assessment from a large enemy force to either artillery
vehicles or weapons is zero. The transition
probability from a first order state into second order
state having one of its indices equal to that of the first
order state is positive, but the transition probability
from a first order state into a second order state not
sharing an index with the first order state is zero.
That is the probability of changing the decision from
a large enemy force to a large enemy force and
artillery vehicle or a large enemy force to a large
enemy force and weapons is positive, but the
probability of changing the decision on a large enemy
force to artillery vehicles and weapons is zero. The
transition probability from a first order state into the
highest order state (third order in this particular
situation) is always positive, i.e. the probability cf
changing the evaluation from a large enemy force to a
large enemy force, artillery vehicles and weapons is
positive.

We now compute the transition probabilities for
second order state Al2.

P(Ai2^A,) = 0,fbr / = 1,2,3

P(Al2->Al2) = m(Ax)+m(A2)+m(A12)

P(AI2^> Ay) = 0, for i * 1 or/ * 2

P(Al2^Al2i) = m(A3) + m(Al3)+m(A23)

+m(/f]23)
Similar transition probabilities are obtained for the
other two second order states.

REMARK: The transition probability from a second
order state to a first order state is zero, and this is true

576

in general. That is, with the above hierarchical
structure on the focal elements, the transition
probabilities from a higher to a lower order state is
always zero. The transition probability from a
second order state into itself is positive, but the
transition probability into any other second order
state is zero. This pattern is also true in general. The
transition probability from a second order state into
the highest order state (third order in this situation) is
always positive. This means the probability of
changing the decision on a large enemy force and
artillery vehicles to either a large enemy force,
artillery vehicles or weapons is zero, but the
probability of reassessing the decision from a large
enemy force and artillery vehicles to a large enemy
force, artillery vehicles and weapons is positive.

Finally we note that:

^123^ 4 23>

0, for/= 1,2,3

0, for 1 < / < j < 3

= 1

REMARK: The transition probability from the
highest order state to any lower order state is always
zero, and this is also true in general. The transition
probability of the highest order state into itself is
always 1. That is, the highest order state in this
hierarchical structure of intersecting fuzzy states is an
absorbing state. In some sense this result is a finite
analog of Norton's limit theorem (TH. 4). The
interpretation is that once the evaluation is a large
enemy force, artillery vehicles and weapons which is
the high order state, the probability of changing this
assessment to other evaluations is zero.

The above remarks make intuitive sense if the mass
function is constructed by a n -fold composition as in
eq. (3). Each successive term in the composition
represents new information from an independent
source. As information accumulates, it is impossible
to go back to states associated with less information.
(Second order states represent two sources of
information, while 3rd order states represent
combined information from 3 sources, etc.) The
highest order state, representing all accumulated
information, is therefore absorbing.

The situation described above represents a
hierarchical structure of intersections of fuzzy states in
which a D-S type mass function can be used to
construct transitional probabilities via eq. (5). This
structure is that of the focal elements of an n -fold
application of the D-S combination rule, so it is
natural that Norton's transition formula, eq. (5),
which was derived in the context of the D-S rule
works for fuzzy states having this hierarchical

structure. However, the above structure is quite
restrictive when states (i.e. focal elements of the mass
function) are fuzzy. Furthermore, it is not unique. A
much simpler nested structure in which eq. (5)
produces valid transition probabilities is given
below.

Suppose
A„<zAn_l(Z-<zA2(zAi

With this nested structure it is easy to show that eq.
(5) implies:

PiA^Aj) = 0 for all; >j

P(A,->A,) = I »(4)
l£*£l

Clearly

f(4-»4) = m(Aj) i<j

I P{Ai-^A.) = 1 for all;,
MjSn J

and An is an absorbing state. However, the structure

of this model is so restrictive as to make it
uninteresting in practice. Other structures on the
fuzzy states involving nesting and intersections of the
"generating states" can be found for which eq. (5)
gives valid transition probabilities, but in general it
will not work for fuzzy states (focal elements) as the
following simple example illustrates.

Suppose set of aircrafts Jf = {F-14, F-16, A-10,
RAH-66} and the fuzzy states are

A\ =.8/F-14+.6/F-16+3/A-10

^2=2/F-14+i/F-16f.7/RAH-66

(7a)

(7b)

/43=.6/F-16+.4/RAH-66

/«(/*,) =5 m(A2)=A m(Aj)=.\

Ak/\Al= Ax if and only if k = 1

so P(AX^AX)=5

But for any
Ak A At * A^ for any k

& Ak A At * A3 for any k

Thus
P(A} -> Aj)= 0 for./' = 2 or/' = 3

Consequently,
I P(Ax-*Aj) = 5<\

REMARK: A{ represents the decision from an expert

that the object might be .8 F-14, .6 F-16, or .3

577

RAH-66. And the probability of decision Ax is 5.

Similarly, the probability from an expert's assessment
that the object might be 2 F-14, .5 F-16, or .7
RAH-66 is .4 ; and the probability from an expert's
assessment that the object might be .6 F-16, or .4
RAH-66 is .1.

5. The General Situation

As the above example clearly illustrates, eq. (5) will
not give meaningful results when the mass function is
defined on fuzzy states (i.e. fuzzy focal elements)
unless these focal elements have a hierarchical
intersection structure, a nested structure or some
combination of these structures. There is, in fact, no
reason to expect eq. (5) to extend to a situation
involving an arbitrary mass function defined on
arbitrary fuzzy states, since the Markov chain that
Norton works with is related to mass functions
obtained by the improper version of the D-S rule
given by eq. (2).

Nevertheless, eq. (5) has an intuitive appeal even
when the states are fuzzy. Given that we are currently
in fuzzy state At, the likelihood of going to state A,

when the new information indicates state Ak is the

degree to which Ai A Ak = A}.. Of course, the new

information does not specify state Ak specifically,

but gives a mass (i.e. probability) to each state in the
chain. A weighted sum over these masses in which
the weights indicate the degree to which
^ A Alc = Aj is an intuitively appealing measure of

the likelihood of transition from state A!
t0 state Aj

given the new information. What is needed,
therefore, to generalize eq. (5) to fuzzy states is a
measure of the degree to which two fuzzy sets are
equal.

The degree to which two finite fuzzy sets are equal
can de defined in various ways. The definition that
seems to best fit our purpose is

d[A = B]=\A A B\+ Max{|4,|5|}

(8)
where | A\ denotes the scalar cardinality of fuzzy set

A . That is,

14- 14*)
xeX

The above definition of degree of equality is based on
Ogawa and Fu's (1985) definition of the degree to
which fuzzy set A is a subset of fuzzy set B , which
is

I[ACB]=\AAB\ + \A\

= lMia{A(x),B(x)} + J,A(x)
xeX xeX

(9)
Our definition of degree of fuzzy set equality is
simply

4A= B] = Min{I[Ac B],I[B <zA)}

where I[A c B] is given by eq. (9).

Using the definition in (8) we now generalize
Norton's eq. (5) to the situation in which an arbitrary
mass function is defined on fuzzy states.

P(A,,-m.)- I d[AlAAk = A)m(Ak)
miAt)>0

+1 I d[AiAAk = A/]m(Ak)
J m(Ak)X)

(10)
We can think of the numerator of (10) as the degree of
belief that the process moves from fuzzy state A, to

fuzzy state Aj. The denominator is a normalizing

factor that converts these transitional beliefs into
transitional probabilities.

5.1 Example

Let us now return to the example given above in eqs.
(7a) and (7b). Note that

^,A^2=2/F-14+5/F-16

Ax A/*3=.6/F-14+.5/A-10

A2 A/f3=5/F-16

Ax A A2 A Ay = 0

X44 AAk =Axyn(Ak)
IS* £3

= d[Ax =A1]m(A])+d[Al A/^ = Ax]m(A2)

+ d[Ax AAZ =Ax]m(A3)

NOTE:

So

d[Ax = Ax] = l

d[Ax = A2]=\AX A A2*\AX^7 + 17

d[Ax = A3] =| Ax A AJ(*\4,1= 9 + 17

^d[AxAAk = Ax]

=5+ (7+ 17)x.4 +(9+ 17)x.l =.7176

Similarly we compute:

578

£44 A4 =/y = (7 + I7)x5+(7 + 14)x.4
If* £3

=4059
NOTE:

Thus,

d[At /\A3 = A2]=\A1AA2 A,43|+|/12|=0.

ld[AXAAk = y4j] = (9 + 17)x.5+(9+10)xl

=3457
NOTE:

c/[^4, A A3 = A3]=\AX AA2 A A3\-t\ A3\= 0.

Finally, we compute

I X d[AiAAt = /iy]=.7176+.4059+3457

= 1.4692

/>(/*,->/!,) = .7176 + 14692 = 489

P(AX -» /42) = .4059 +1.4692 =276

P{A^A3) = 3457 + 1.4692=235

Similarly we compute

P(A2 -» Ax) =293 P(A2 -» A2) =554

^(4 ->/43)=.153

/>(/i3 -> /!,) =255 /'(^ -» /42) =.143

^(4 -»/l3)=.602

REMARK: For example, P{A2-^ Ax)=293 is the

probability of changing the decision from ^ to >4,
is 293 , i.e. the probability of changing the decision
from the object most likely be RAH-66 to most
likely be F-14 is 293.

6. Transition Probabilities From Fuzzy to Crisp
States

This will correspond to making a final assessment
while our information still yields a fuzzy picture.
Thus P(A-*j) may denote the probability that we
go from assessment A (say a large force) to the crisp
statement, the size of the force is the number j
(where j has some membership in A). We shall
implement the technique developed by Smets for this
problem. The conversion formula is

/>(4->/>

where j denotes a crisp state in state space X . Note
that

jeX
J)

= ZP(A,->Ak){AkU)MAk\}

(ID

= lP(A,^Ak)ZiAkUWAll\}

= lP(A,^Ak) = l
\<,k&>

To illustrate the use of eq. (11) we return to our
example of the previous section. In this example the
crisp state space is X= {F-14, F-16, A-10, RAH-
66}, so that

Pi4 -* F-14) = P(Ai -> A,){A,(F- 14)+M,|}

+ P(A}-^A2){A2(F-14)MA2\}

+ P(Al^A3){A3(F-l4)MA3\}

=.489x(J8+1.7)+276x(.2+1.4) =270
Recall that /43(F-14) =0 since state F-14 is not in

the support of A3.

In a similar manner we compute:

P(A] -> F-16)=.489x(.6+1.7)+276x(5+1.4)

+235X(J6 + 1.0)=.412

P(AX -> A-10)=.489x(.3 + 1.7)+235x(.4+1.0)

=.180

P(At -»RAH - 66) =276 x (.7 +1.4) =.138
Similarly:

/>(/42^F-14) =217

P(A2 -> F-16) =393

/>(/*2-»A-10) =.113

PiAj ->RAH-66) =277

PiA^^ F-14) =.140

/'(^3->F-16) =.502

P(A3^A-\0) =286

P^-* RAH-66) =.072

REMARK: For example, P(A2 ->F-14) =217 is

the probability of changing the decision from A2 to
F-14 is 217 , i.e. the probability of changing the
decision from the object most likely be RAH-66 to
definitely be F-14 is 217 .

7. Summary

We have used a modification of a procedure defined
by Norton (1988) to be able to estimate the
probability of staying with our original assessment or

579

changing it by incorporating information refinement
We also have estimated the probability of going from
a fuzzy assessment to a definite crisp evaluation. Our
procedure yields naturally a "limiting set" which
represents the limit of attainable assessment using the
sources of information available. (If that set is empty,
the information is found to be inconsistent.)

8. Acknowledgments

This research is partially supported by an ARO grant
number DAAH-0495-1-0250 and an NSF grant
number CDA-9522157.

9. References

de Korvin, A., Hashemi, S., Quirchnayr, G. and
Hord, S., Evaluating policies based on their long
term average cost. (Submitted)

Dempster, A. P., (1967), Upper and lower
probabilities induced by a multivalued mapping.
Annals of Mathematical Statistics, 38, 325-339.

Dubois, D. and Prade, H. (1980), Fuzzy Sets and
Systems: Theory and Applications. Academic
Press, New York.

Handley, J., Jaenisch, H., and Carroll, M. (1995),
Identification of the behavior transition point in
data using a robust fractal method. Proceedings of
the Southeastern Simulation Conference, SESC
'95, October 1995, Orlando Florida, 57-66.

Hille, D., Hieb, M., Tecuci, G, and Pullen, J.
(1995), Abstracting terrain data through Sematic
terrain transformations. Proceedings of the Fifth
Conference on Computer Generated Forces and
Behavioral Representation, May 9-11, 1995,
Orlando, Florida, 355-365.

Holmes, W. (1995), Fuzzy systems computational
and simulation models for missile system control.
Proceedings of the Southeastern Simulation
Conference, SESC '95, October 1995, Orlando
Florida, 37-44.

Klement, E., Schwyhla, W. and Lowen, R., (1981),
Fuzzy probability measures. Fuzzy Sets and
Systems, 5,21 -30.

Kleyle, R. and de Korvin, A., Policy selection based
on a Markov model with fuzzy transition
probabilities. (Submitted).

Kleyle, R. and de Korvin, A., Transition
probabilities for Markov chain having fuzzy states.
Journal of Stochastic Analysis and Applications,
to appear.

Klir, G. and Folger, T., (1988), Fuzzv Sets.
Information and Uncertainty. Prentice Hall,
Englewood Cliffs, NJ.

Norton, I. (1988), Limit theorems for Dempster's rule
of combination. Theory and Decisions, 25, 287-
313.

Ogawa, H. and Fu, K.S., (1985), An inexact
inference for damage assessment of existing
structures. Int. Journal of Man-Machine Studies,
22, 295-306.

Paisecki, K., (1985), Probability of fuzzy events
defined as denumerable additivity measure. Fuzzy
Sets and Systems, 17, 271-284.

Pandari, P. and Schaper G., Terrain reasoning by
intelligent player. Proceedings of the Fifth
Conference on Computer Generated Forces and
Behavioral Representation, May 9-11, 1995,
Orlando, Florida, 367-373.

Shafer, G., (1976), A Mathematical Theory of
Evidence. Princeton University Press Princeton,
NJ.

Smets, P., (1982), Probability of a fuzzy event: an
axiomatic approach. Fuzzy Sets and Systems, 7,
153-164.

Smets, P., (1990), Belief functions versus probability
functions. Uncertainty in Artificial Intelligence,
5, 1-8.

Yin, Y. and Chung, K. (1995), A heuristic search
method for path-constrained, Markov-moving
target. Proceedings of the Southeastern
Simulation Conference, SESC '95, October 1995,
Orlando Florida, 251-257.

Zadeh, L., (1965), Fuzzy Sets. Information and
Control, 8, 338-353.

Zadeh, L., (1968), Probability measures of fuzzy
events. Journal of Mathematical Analysis and
Applications, 23, 421-427.

Zadeh, L., (1979), Fuzzy sets and information
granularity. Advances in Fuzzy Set Theory and
Applications, 3- 18.

10. Biographies

Richard A. A16 is a professor and chair of Computer
and Mathematical Sciences Department at the
University of Houston-Downtown. His research
interests are in the areas of automated reasoning and
decision making, computability/complexity,
numerical analysis, and functional analysis.

Mohsen Beheshti is an assistant professor of
Computer and Mathematical Sciences Department at
the University of Houston-Downtown. His research
interests are in the areas of object-oriented database,
logical optimization using fuzzy logic, and
concurrency control.

Andre de Korvin is a professor of Computer and
Mathematical Sciences Department at the University
of Houston-Downtown. His research interests are in
the areas of fuzzy logic, rough sets neural nets, and
probability theory.

580

Chenyi Hu is an assistant professor of Computer and
Mathematical Sciences Department at the University
of Houston-Downtown. His research interests are in
the areas of reliable scientific computation and parallel
processing.

Ongard Sirisaengtaksin is an associate professor of
Computer and Mathematical Sciences Department at
the University of Houston-Downtown. His research
interests are in the areas of neural networks, fusy
logic, and intelligent control systems.

581

Simulating a Battlefield Maneuver Using Reaction Diffusion Equations

Mary Anne Fields
Army Research Laboratory

Weapons Technology Directorate
Attn: AMSRL-WT-WE

Aberdeen Proving Ground, Maryland

1. Abstract

In this paper we present a battlefield simulation
model which uses a set of partial differential
equations, called reaction diffusion equations, to
model the behavior of each army on the battlefield.
The model is used to simulate the attack of a
stationary red force by a blue force. In this
simulation, the blue army is divided into three
smaller forces. Two of the blue forces envelop the
red army while the third force conducts a
diversionary frontal attack. We use the reaction
diffusion equation based model to study the effects of
variation of model parameters on the overall battle
dynamics.

2. Introduction

The purpose of this paper is to present an aggregate
level computer generated force model which uses a
family of parabolic partial differential equations
called reaction diffusion equations (RDEs) to model
the movement and interactions of the troops on the
battlefield. The primary assumption of an RDE based
battlefield simulation is that troops tend to move and
act as groups rather than individuals. The behavior
of these groups is described by a system of RDEs
similar to those used in other fields to describe the
movement, spread, and interaction of biological or
chemical species.

We are developing RDE based battlefield
simulations to use a parametric analysis tools in the
study of weapon concepts for the battlefield.
Preliminary work on RDE based battlefield

simulation is described in the papers of Fields
(1993), Azmy (1991), Protopopescu et al. (1989),
and Santoro et. al. (1989).

In this paper, we describe the RDE battlefield
simulation model in general. We apply this model to
a scenario in which a stationary red force is attacked
by a blue force. In the simulation, the blue force is
subdivided into two enveloping forces and a third
force that conducts a diversionary frontal assault.

3. An Overview of the RDE Battlefield

Simulation Model

Let B be a region of 9?2 representing the battlefield
and A;, 1 < i < n , be the armies involved in the
battle. In this paper, the term army refers to a
homogeneous force of at least battalion size. A
general RDE describing the movement and
interaction of the army A., is given by:

in which a; (x,y,t) measures the strength of the army
A; at the point (x,y) at time t. Strength may be either
a measure of the number of troops in a given area of
the batdefield or a measure of the combat power of
those troops as described by Dupuy (1987). In this
paper , strength measures the number of units (or
troops) at each point (x,y).

Movement of the army Ait as modeled by an RDE
has two components: diffusion and convection. The
more important of the two, convection, determines
the primary direction of movement for the army. In
many cases, it also determines the speed of that
movement, are least to a first order approximation.
In Equation 1, the coefficient functions Vix and V:

583

control the convective movement of the army in the
x and y directions, respectively. These coefficients
are functions of several factors including the
operational orders of the army, the terrain, and the
distribution of other armies on battlefield. The
coefficient functions Vix and V- will be discussed
in greater detail in the next section.

The second component of movement in the RDE,
diffusion, models the natural tendency of troops to
move randomly . Diffusion of army A; is controlled
by the coefficient functions Dix and D: . Large
diffusion coefficients model scenarios in which
troops spread out while traveling. Variations in
Dix and D; as functions of the terrain, can be used
to simulate battlefields containing marshes or other
regions in which the troops have a natural tendency
to spread out. In model presented in this paper, the
diffusion coefficients are set to a small constant
value simulating tightly controlled movement.

On the battlefield, troops are generally lost through
attrition and gained through reinforcement. The last
term on the right hand side of Equation 1,1-, models
the net gain or loss of army Aj as a function of
time, space and the other armies on the battlefield.

4. Simulating an Envelopment Maneuver

In this paper, we simulate an envelopment maneuver
involving three blue armies (armies Av Aj. and A3)
and two red armies (armies A4 and A5). In this
simulation, we assume that the red army has had
time to prepare offensive positions and mat it is
"dug-in", so these forces do not move. The red
army is subdivided into two forces to simulate a front
line force which have direct contact with the enemy
and a artillery force which does not have direct
contact with the enemy. Army A4 has direct line-of-
sight with the enemy forces. Army A, is a non-line-
of-sight force which responds to calls for fire from
army A4. The blue army is divided into three
armies, each with a different mission. Armies Aj
and A, envelop the red force from different

directions while army A3 conducts a diversionary
frontal attack.

The RDE system which models the envelopment
maneuver is

alt =Dalxx + Dalyy + Fxalx +Fyaly -I1(a4,a5)
a2, =Da2„ +Da2yy +Ec*a2x +ECya2y -I2(a4,a5)
a3t

=Da3» +D%yy
+Eccxa3x +Eceya3y -I3(a4,a5)

a4t =-I4(a1,a2,a3)
a5t =-I5(a1,a2>a3). (2)
The diffusion coefficients for the attacking armies
are set to a small positive number, simulating tight
formations. The name of the convective coefficients
in the first three equations indicates the type of
maneuver used by each army. The first army is the
frontal attack force, the second army envelops the
red army in a clockwise direction, the third army
envelops the red army in a counterclockwise
direction. The two red armies are "dug-in" so that
they cannot move. However, they can lose troops
through attrition.

The net loss for an attacking army Aj (i = 1,2, or 3)
at the point (x,y) is given by the

Ii(x,y) = ai(x,y)}|3lfi4(a4) + fi5(a4,a5)d3(. (3)
where ^ is a region of the battlefield centered at
(x,y). In this model, ^.is a circular region whose
radius is determined by the maximum range of the
weapons involved. The functions f, , (k = 4 or 5)
determines the effectiveness of the army Ak against
army A; as a function of range.

It is possible to simulate communication and
cooperation among the red forces. In particular, we
can simulate a "call-for-fire" by having the rear
forces respond to what the front line forces see.

Our previous work with the RDE battlefield
simulation model focused on developing the
convective coefficient functions to model various
types of movement on the battlefield. We developed
models of troop movement on realistic terrain. We
use work in this paper but, we will concentrate on
three types of movements used in offensive
operations - movement to a specific point on the

584

battlefield, a frontal attack and an enveloping attack.
A more complete discussion of terrain related
aspects of the coefficient functions Vix and Viy is
given in Fields (1993) and Fields (1995) .

The terrain used throughout this paper is an artificial
surface referred to as the variable resolution terrain
(VRT) model. It is continuously differential surface
constructed by summing several hill functions,
(similar to bivariate normal functions) of various
sizes. We use it in conjunction with the RDE
battlefield simulation model because it is
continuously differentiable and because we can
design terrain surfaces to test specific features of the
RDE model. VRT can also be used to fit actual
terrain data sets. By its nature, VRT is a complex
surface with non uniformity at any desired level of
detail. Consequently, it can supplement an actual
terrain data set with realistic micro terrain features.
For applications such as infantry combat
simulations, the micro terrain features add necessary
realism to standard terrain data sets in which
elevation posts are often 100 meters apart. For more
information on the VRT model, the reader is referred
to the report by Wald and Patterson (1992) and the
paper of Wald (1994).

4.1 Movement to a Rendezvous Point

In this section, we model a simple operational order
which directs the troops to move to the military
objective such as rendezvous point. We want the
simulation to be as flexible as possible so we do not
want to stipulate and initial position for the troops.
Instead, we develop coefficients so that troops can
reach the rendezvous point from almost any position
on the battlefield. It is helpful to visualize V, x and
Vj as components of a velocity vector, v, and to
discuss the velocity vector field generated by v. This
vector field is similar to a magnetic or electric field
and governs the movement of troops at any position
on the battlefield.

Figure 1 shows a velocity vector field that directs the
troops to the black circle in the upper right section of

the figure. The vector field is oriented so that the
variable x changes in the horizontal direction and
the variable y changes in the vertical direction. The
figure also shows ten equally spaced contours. The
height of some points of the battlefield have been
labeled to aid the reader. The length and width of
the battlefield are both 10 kilometers.

Figure 1. A Velocity Vector Field.

The direction of each arrow on the battlefield is a
function of terrain characteristics such steepness
and elevation and the operation orders of the army
Aj. The vector function is given by
v = wdd + wt(act£+cta.t£.) + wss (4)
The vector d is determined by the operational orders
for the army and by the army's ability to respond to
obstacles on the battlefield. In this example, the
orders direct the troops to move to the rendezvous
point indicated by the black circle shown in Figure
1. Suppose the rendezvous point is at (x0, y^, then
at any point (x,y) on the battlefield ,

d(x,y) = -
(x-

(5)
e+A/(x-x0)

2+(y-y0)
:; {y yo

If e is small, then speed of the troops will be close to
v nearly everywhere on the battlefield. This vector
uses only local information to determine the
direction of troop movement. By incorporating

585

"regional" information, the troops can respond to
obstacles in the distance.

The vectors t^ and t£. are functions of terrain of the
battlefield. The gradient of the terrain, which gives
the direction of steepest ascent from the point (x,y),
is t(x,y) = (Tx, T) where T(x,y) is the terrain
surface. The vectors t£ and t£. are orthogonal to t.
By following t^or t£., troops travel along a contour
of the surface in a clockwise or counterclockwise
direction, respectively.

The vector s is derived from the steepness of the
terrain. Let the steepness of a point (x,y) be defined

as 5(x,y) = X(T)f+Ty)> which is one half the square
of the length of the terrain gradient vector at the
point (x,y), then the steepness gradient is defined as

s(x,y) =
+ TT)i'n y y*

T T +TT (6)

The weights wd, wt and ws are functions of the
steepness of the terrain. Each point (x,y) on the
battlefield is categorized as easy, moderate, difficult
or impassable as a function of the steepness of the
terrain. For each of these category, a different vector
dominates the movement vector field. For instance,
in regions of the battlefield categorized as "easy", the
vector d dominates the vector field. The weights are
sigmoidal or bell-shaped functions which turn "on"
for certain steepness values and "off' for other
values.

The weights are also functions of the movement
characteristics of the simulated armies. By varying
the weighting functions, it is possible to increase or
decrease the army's sensitivity to the terrain. In this
paper, we shall use weights which allow the troops to
move freely throughout most areas of the battlefield.
Near the two large hills in the center of the
battlefield, troops must adjust their movements to
avoid the steep regions.

4.2 Frontal Attack

In this section, we design a vector field to simulate
the frontal attack on a stationary force. Suppose in
this simulation the army A; is the attacker and the
army Ak is the defender. In designing this field, we
want to consider the following elements. First, this
is a planned attack so the army A, has orders to
attack the army Ar The frontal attack vector field
depends on vectors similar to those in Equation 3 to
directs troops to a military objective within the
terrain occupied by the army Ak while avoiding
obstacles in the terrain. In this vector field, we also
need to control the attack so that it is realistic. The
frontal attack vector field is a function the position
and strength of both armies.

In the RDE battlefield simulation model, the armies
are represented by continuous, non-negative,
distribution functions \ and a^ respectively. Let
us define a local force ratio function, Tt ,for the
attacking army A; as the ratio of the strength of A,
to the strength of Ak within a neighborhood 9£
around the point (x,y)

ri(x,y) = wk- (7)
Jj^d^ + S

The term 8 is a small positive constant therefore Tt is
defined at all points on the battlefield. If wk is a
constant, the force ratio is independent of the actual
number of combatants within the neighborhood N.
For realism, the force ratio is only important if there
is enough of the enemy force in the neighborhood 7<l
to attack. Let

wk(x,y) =
eP(JJ*akoX-at)

1 + eP(J^akd^-at) (8)

Then for values of U^akdrA£ < at, the force ratio is
near zero; for values of jj^a.k(&t > a, the force
ratio reflects the relative strength the armies.

The vector field for the frontal attack is given by
v = wdd + wt(act^+acct^) + wss +

W* +fa<r,)< +f3(r,)ai . (9)

586

The first three vectors on the right hand side are
similar to those used in Equation 3. The gradient
vector ak points in the direction of increasing
strength for the army Ak; a^ and a^ are
orthogonal to the gradient of Ak. The functions flt fj
and f3 , which are functions of the steepness of the
terrain as well as functions of the force ratio,
determine the weight of the attack vectors in the
overall vector field. There may be points on the
battlefield at which the force ratio may dictate an
attack at a given point on the battlefield, but terrain
features are too severe to allow the attack. By
adjusting the weights on the attack vectors, the army
responds to the terrain rather than to the opposing
army at those points.

The vector field generated by a frontal attack
scenario changes continually as forces move on the
battlefield. When the attacking force is far away
from the red force, the changes in the field are slight.
However, as the blue force begins to make contact
with the red force, the local force ratio starts to
decrease, changing the vector field. As more of the
attacking force begins to make contact with the
enemy, units of the attacking force adjust their paths
to maintain a force ratio. Figure 2 shows four paths
generated by an attack scenario. The location of the
red armies are indicated on the contour map, the
blue army starts its advance at the bottom center of
the figure. Each of the paths are generated at a
different time in the scenario. Path #1 shows the
initial contact with the red army, paths #2-#4 show
later contacts with the enemy.

43 Envelopment

Constructing a vector field to describe an
envelopment of a stationary army is very similar to
constructing a vector field to describe a frontal attack
of a stationary army. In an envelopment, the
attacking army bypasses the front line and attempts
to attack the army from the rear. In our example
there are two envelopment - one in a clockwise
direction, the other in a counterclockwise direction.
In functional form, the vector field describing the
enveloping attack is the same as the vector field
describing the frontal attack given in Equation 6.
The functions fp f, and f3 are different.

An example of an envelopment is shown in Figure 3.
The attacking army envelopes the stationary army in
a clockwise direction. Since a hill is blocking the
way, the army also proceeds clockwise around the
hill.

* *—"* T> * (y/ > I i I 4 t 4 * •,^*"* * * *

» k k » > | * 6' 4 + * * *

1480 m
•&•

Q

» It xf~f

* t f T

p / r »

' t t t

T t t

9 t y i

1620 m

I:: &b: UQ

Figure 2. A Frontal Attack

Figure 3. An Envelopment Maneuver.

4.4 Simulating the Attack

By combining using the vector fields generated in
the previous sections as the convective coeffiecient
functions for the equations controlling the attacking
army, it is possible to simulate an envelopment

587

scenario. The general attack direction for each blue
army is given in Figure 4.

Figure 4. An Envelopment Scenario.

At the present time, the simulation is implemented
on a multiprocessor computer. The equations

controlling each of the five armies are solved by

different group of processors. As the complexity of
the vector fields increase, the number of processors

needed to solve the equations efficiently increases.

5. Movement as a Function of Terrain Resolution

In this section, we illustrate a possible use for the
RDE model as a tool for parametric analysis of battle

parameters. In this example, we examine the

sensitivity of our troop movement model to terrain

resolution. Troop movement, as modeled by the
RDE battlefield simulation, is sensitive the steepness

of the terrain. Steepness for a digital terrain data set
is a function of the resolution of the data set. Even
if the steepness is known exactly at the elevation

posts of the data set, it must be interpolated in

between those posts. In general, higher resolution

data sets have more variation in steepness than lower
resolution data sets.

Figures 4 and 5 show the same VRT surface sampled

at two different resolutions. The VRT surface

represents a 10km x 10km battlefield. The figures

show ten equally spaced contours and the highest

and lowest elevations on the battlefield. In Figure 4,

elevation posts were 10 meters apart. In Figure 5,

elevation posts are 100 m apart. Although the

figures show the same large features, many of the

smaller features shown in Figure 4 are missing or

distorted in Figure 5.

The paths shown in Figures 5 and 6 illustrate the

effect of terrain resolution on the movement of the

simulated forces. The paths in Figure 5 are longer

than the corresponding paths in Figure 6, indicating

that our movement model is sensitive to the
resolution of the battlefield.

Figure 4. Movement on a 10m resolution battlefield.

588

Figure 5. Movement on a 100m resolution
battlefield.

6. Conclusion

In this paper, we have developed a battlefield
simulation model based on RDEs. By incorporating
terrain and battlefield intelligence information in the
coefficient functions, we have shown that the RDE
model is flexible enough to simulate a complex
attack scenario. In the example scenario presented ,
we simulate an enveloping attack of a stationary red
force by a blue force. The blue army is subdivided
into two enveloping forces and a frontal attack force.
The red army is divided into forces which have
direct line-of-sight to enemy forces and non line-of-
sight forces.

RDE based battlefield simulation offer a method to
mathematically study the dynamics of a battlefield
simulation in a controlled setting. Using methods
for the qualitative analysis of differential equations,
we can study the sensitivity of the model to its
parameters. At the present time, this will help us
build a more realistic simulation tool. In the future,
after we have matched our parameters to real data,
we can use the RDE model to investigate weapon
system concepts for the battlefield, particularly at the
early stages of the development process.

7. References

Azmy, Y.Y. (1991). DCOR: A Deterministic Combat
Model Code., ORNL/TM-11690, Oak Ridge
National Laboratory, Oak Ridge, TN.

Dupuy, T.N. (1987). Understanding War: History
and a Theory of Combat, Paragon House.

Fields, M.A. (1993). Modeling Large Scale Troop
Movement Using Reaction Diffusion Equations,
ARL-TR-200, U.S. Army Research Laboratory,
Aberdeen Proving Ground, MD.

Fields, M.A. (1995). Preliminary Applications of the
Variable Resolution Terrain Model to a Troop
Movement Model, ARL-TR-842. U.S. Army
Research Laboratory, Aberdeen Proving
Ground, MD.

Protopopescu, V., R.T. Santoro and J. Dockery
(1989). Combat Modeling with Partial
Differential Equations., ORNL/TM-10636, Oak
Ridge National Laboratory, Oak Ridge, TN.

Santoro, R.T. , P. Rusu and J.M. Barnes, (1989). A
Mathematical Description of Offensive Combat
Maneuvers., ORNL/TM-10000, Oak Ridge
National Laboratory, Oak Ridge, TN.

Wald, J.K. and C.J. Patterson (1992). A Variable
Resolution Terrain Model for Combat
Simulation, BRL-TR-3374, U.S. Army Ballistics
Research Laboratory, Aberdeen Proving
Ground, MD.

Wald, J.K. (1994). Solving the "Inverse" Problem in
Terrain Modeling, ARL-TR-605. U.S. Army
Research Laboratory, Aberdeen Proving
Ground, MD.

8. Biography

Mary Anne Fields is a mathematician in the Weapons
Concepts Division of the Army Research Laboratory.
Dr. Fields has a Ph.D in applied mathematics. Her
research interests are in the areas of applied
differential equations, parallel processing and
computer generated forces.

589

Flexible Teamwork for Intelligent Simulated Pilots

Milind Tambe
Information Sciences Institute and Computer Science Department

University of Southern California
4676 Admiralty Way, Marina del Rey, CA 90292

tambe@isi.edu
http://www.isi.edu/soar/tambe

Abstract
Flexible teamwork among synthetic agents is a critical ca-
pability in advanced distributed combat simulations. Such
teamwork is more than a simple union of agents' simultane-
ous execution of individual plans, even if such execution
pre-coordinated. Indeed, uncertainties in complex, dy-
namic combat simulations often obstruct pre-planned co-
ordination, with a resultant breakdown in teamwork. The
central hypothesis in this paper is that for durable team-
work, agents should be provided explicit team plans and
an underlying model of teamwork that explicitly outlines
their commitments and responsibilities as participants in
team activities. Such a model enables team members to
flexibly reason about coordination activities. The underly-
ing model we have provided is based on the jointintentions
framework; although we present some key modifications
to reflect the practical constraints in (some) real-world do-
mains.

This framework has been implemented in the context
of a company of synthetic helicopter pilot agents; some
empirical results are presented.

1 Introduction
The Soar-IFOR(Tambe et al. 1995; Tambe, Schwamb, &
Rosenbloom 1995) project has been developing intelligent
automated pilots for participation in advanced distributed
combat simulations. Since July 1994, we have been devel-
oping pilot agents for synthetic rotary-wing aircraft (RWA),
specifically, synthetic AH-64 Apache attack helicopters. In
our previous work, reported in the proceedings of this con-
ference last year(Tambe, Schwamb, & Rosenbloom 1995),
we focused pilot agents for individual attack helicopters.
This paper goes beyond by focusing on a company of attack
helicopters, which may involve upto eight pilot agents.

The key issue addressed in this paper is enabling flex-
ible teamwork within such a team of synthetic agents.1

Such teamwork is not merely a union of simultaneous,
coordinated individual activities(Grosz & Sidner 1990;
Cohen & Levesque 1991). For instance, ordinary auto-

'in this paper, the word "team" should be interpreted in its
general sense, as referring to units such as a company, a platoon,
a section, etc.

mobile traffic is not considered teamwork, despite the si-
multaneous activity, coordinated by traffic signs(Cohen &
Levesque 1991). On the contrary, driving in a convoy, even
if sometimes uncoordinated is considered teamwork. In-
deed, our commonsense notion of teamwork involves more
than simple coordination, e.g., the American Heritage Dic-
tionary defines it as cooperative effort by the members of a
team to achieve a common goal.

Yet, to sustain such cooperation in complex, dynamic
combat simulations, agents must be flexible in their coor-
dination and communication actions, or else risk a break-
down in teamwork. To achieve such flexibility we apply
one key lesson from the arena of knowledge-based sys-
tems — an agent must be provided explicit "deep" or
causal models of its domains of operation (Davis 1982).
The key here is to recognize that when an agent partic-
ipates in a team activity, teamwork is itself one of the
domains, and hence the agent must be provided an ex-
plicit model of teamwork. Unfortunately, among imple-
mented agents in advanced distributed combat simula-
tions, team activities and the underlying model of team-
work are often not represented explicitly(Jennings 1994;
1995). Instead, individual agents are often provided in-
dividual plans to achieve individual goals, with detailed
precomputed plans for coordination and communication.
However, in real-world combat simulations unanticipated
events often disrupt preplanned coordination, jeopardizing
the team's joint effort (the next section provides detailed
examples).

The recent formal theories of collaborative action have
begun to provide the required models for flexible rea-
soning about team activities(Cohen & Levesque 1991;
Grosz & Sidner 1990; Kinny et al. 1992; Jennings 1995);
although few multi-agent implementations have built up
on them(Jennings 1995). In contrast, this paper describes
an implemented, real-world multi-agent system that builds
upon one such model. Our central hypothesis is that for
effective teamwork in complex, dynamic domains, individ-
ual team members should be provided team goals/plans,
that explicitly express a team's joint activities — although
these may hierarchically expand out into goals/plans for
an individual's role in the team. To execute such team
plans, team members must be provided an explicit model

591

of teamwork — their commitments and responsibilities as
team members — so they can flexibly reason about coor-
dination and communication. In our work, this model is
the formal joint intentions framework(Cohen & Levesque
1991), which we have modified in key ways to accommo-
date the constraints that appear typical in (some) real-world
dynamic domains.

Before describing team plans in detail, we first con-
cretely motivate their need by describing our initial expe-
riences in designing a company of helicopter pilot agents.
While we focus on a helicopter company, the lessons
learned here appear general enough to be applicable to
other agent-teams in advanced distributed combat simula-
tions. All our implementations are based on the Soar ar-
chitecture(Newell 1990; Rosenbloom era/. 1991). We as-
sume some familiarity with Soar's problem-solvingmodel,
which involves applying an operator hierarchy to states to
reach a desired state.

2 Initial Experiences
Figure 1 shows a typical attack mission for a company of
attack helicopters. The company may fly 25-50 kilome-
ters at varying altitudes, to halt at a holding point. One or
two scout helicopters in the company fly forward to check
the battle position, i.e., the location from where the com-
pany will attack enemy forces. Once the battle position
is scouted, other members of the company move forward,
each hovering in its own designated subarea of the battle
position. Here, an individual pilot agent hides/masks its
helicopter. To attack, the pilot has his helicopter "popup"
(rise high), to shoot missiles at enemy targets. The heli-
copter then quickly masks and moves as protection against
return fire, before popping up again. When the mission
completes, the helicopters regroup and return to base.

•ME BASE F „+"^S) /ENEMY GROUND
JH&) BA-rn.fl /VEHICLE

POSITION/I MOVEMENT

Figure 1: A company of helicopters in simulated combat.
The ridge line is ideal for masking.

In our first implementation of the helicopter company,
each pilot agent was provided an operator hierarchy to exe-
cute its mission(Tambe, Schwamb, & Rosenbloom 1995).
Figure 2 illustrates a portion of this operator hierarchy (at
any one time, only one path in this hierarchy from the
root to a leaf node is active). Each operator consists of (i)
precondition rules, to help select the operator; (ii) applica-
tion rules to apply the operator once selected (a high-level,
non-leaf operator may subgoal); (iii) termination rules, to
terminate the operator.

To coordinate among multiple pilot agents we used tech-
niques quite comparable to previous such efforts, including

our own, in the synthetic battlefield domain(Tambe et al.
1995; Rajput & Karr 1995; Tidhar, Selvestrel, & Heinze
1995). In particular, each individual was provided specific
plans to coordinate with others. For instance, when at the
holding point, the scout first executed an operator to fly
to the battle position, and then another operator to inform
those waiting at the holding point that the battle position
is scouted. Similarly, to fly in formation, each agent was
assigned a "partner" agent to follow in formation (unless
the agent was leading the formation). Eventually, all coor-
dination within a group was accomplished by each agent
coordinating with its partner.

EXECUTE-MISSION

Fly —hgtit <»ptOT

As Fly Select S*L_.
awt pouK route s^>*^ \

^ r ~ \ Iraualize Moartom Soleel- 7J Popup &*
^ Low comow X hover BOMIJ **M* Goto

Figure 2: A portion of the operator hierarchy for an indi-
vidual helicopter pilot agent.

The resulting pilot agents each contained about 1000
rules, and the company was tested in October 1995 in
the three-day ED-1 exercise (with upto 400 agents in the
synthetic battlefield).2 While the helicopter company ex-
ecuted helicopter tactics adequately, the exercise revealed
some key problems in teamwork — see Figure 3 for some
illustrative examples.

While a programmer could add specialized coordination
actions to address the above failures once discovered, an-
ticipating such failures is extremely difficult, particularly
as we scale-up to increasingly complex team missions. In-
stead, the approach pursued in this work is to focus on
the root of such teamwork failures — that as with other
multi-agent systems, individual team members have been
provided fixed coordination plans, which break down when
unanticipated events occur. In particular, the team goals
and/or team plans are not represented explicitly. Further-
more, an underlying model of teamwork, spelling out team
members's commitments and responsibilities towards oth-
ers when executing a team activity, is absent. That is why,
for instance, an agent ends up abandoning its team mem-
bers in a risky situation (Item 2, Figure 3). That is also why
the company cannot recover when the scout crashes (Item
1, Figure 3) — there is no explicit representation of the
company's team goal at the holding point and the scout's
part in it.

3 Explicit Model of Teamwork
To provide agents with an explicit model of teamwork, we
rely on the joint intentions framework(Cohen & Levesque

2The ED-1 test for Soar/IFOR helicopter pilot agents was
itself a team effort, led by Paul Rosenbloom; Karl Schwamb and
the author were the other members involved in the test.

592

1. Upon reaching the holding area, the company waited, while the
scout started flying forward. Unfortunately, the scout unex-
pectedly crashed into a hillside. Hence, the rest of the company
just waited indefinitely at the holding area, waiting to receive
a message from the (crashed) scout that the battle position was
scouted.

2. Upon recognizing that the mission was completed, one com-
pany member (the commander) returned to home base, aban-
doning others at the battle position. The commander's "part-
ner" agent was unexpectedly shot down, and hence it failed to
coordinated with others in its company.

3. While attacking the targets from the battle position, only one
member of the company could see the targets. Thus, only one
member engaged the targets; the others returned without firing
a single shot.

4. Some company members failed to recognize that they had
reached a waypoint — the agent leading the formation had
reached the waypoint, but those trailing in formation concluded
they had not individually done so (despite tolerance ranges in
measuring distances).

Figure 3: Some illustrative examples of breakdown in
teamwork.

1991; Levesque, Cohen, & Nunes 1990), since currently
it is perhaps the most well-understood framework. In this
framework, a team 0 jointly intends a team action if team
members are jointly committed to completing that team
action, while mutually believing that they were doing it. A
joint commitment in turn is defined as a joint persistent goal
(JPG). A JPG to achieve p, where p stands for completion
of a team action, is denoted JPG(0, p). JPG(0, p) holds
iff three conditions are satisfied3:
1. All teammembers mutually believe that p is currently false.
2. All teammembers mutually know that they want p to be even-

tually true.
3. All teammembers mutually believe that until p is mutually

known to be achieved, unachievable or irrelevant, they mutu-
ally believe that they each hold p as a weak goal (WG). WG(^,
p, 0), where \i is a team member in 0, implies that // either
(i) Believes p is currently false and wants it be eventually true
(i.e., p is a normal achievement goal); or (ii) Having privately
discovered p to be achieved, unachievable or irrelevant, n has
committed to having this private belief become 0's mutual
belief.
Two important issues should be noted. First, there is a

change in expressiveness of plans — in this framework,
an entire team can be treated as jointly committing to a
team plan. For example, when a company of helicopters
flies to a waypoint, it is a team jointly committing to a
team activity — each individual is not flying on its own
to that waypoint, while merely coordinating with others.
Thus, it is sufficient if the team reaches the waypoint, each
individual need not do so individually4. Such a change in

3JPG(0, p) also includes a common escape clause q, omitted
here for the sake of brevity.

4This may mean that the first or some pre-specified percentage
of vehicles reach close to the waypoint.

plan expressiveness alleviates concerns such as the fourth
item in Figure 3.

Second, to establish a joint intention, agents must hold a
WG (weak goal) which ensures that members cannot freely
disengage from their joint commitment at will. In particu-
lar, while a JPG(0,p) is dissolved when a team member \i
privately believes that p is either achieved, unachievable
or irrelevant, /i is left with a commitment to have this belief
become mutual belief. To establish mutual belief, an agent
must communicate with other team members. While this
communication is an overhead of team activity, it enables
an individual to ensure that its teammates will not waste
their time or face risks unnecessarily. This alleviates dif-
ficulties such as the second example in Figure 3, where
an individual disengaged from the joint commitment with-
out informing other team members, and exposed them to
unnecessary risks.

This framework provides an underlying model of team-
work, enabling flexible reasoning about coordination ac-
tivities. For instance, there is an explicit justification for
communication, enabling agents to reason about it. The
following now presents some key theoretical modifications
to the framework to accomodate the complexities of real-
world combat simulations.

3.1 Modifying Commitments

Fulfilling the requirements in WG(/i,p,0) requires a team
member to unconditionally commit to communicating with
other team members, whenever it drops p as a normal
achievement goal. However, in synthetic battlefields com-
munication can be costly, risky or otherwise problem-
atic. For instance, communication may break radio si-
lence, severely jeopardizing a team's overall joint activi-
ties. Therefore, the unconditional commitment to commu-
nication is modified to be conditional on communication
benefits to the team outweighing costs (to the team). Also
included in this modification is an agent's commitment to
search for alternative lower-cost methods of communica-
tion (e.g., the agent may travel to personally deliver the
message, if using the radio is risky). Nonetheless, in some
cases, benefits will be outweighed by costs, and hence no
commitment to communication will result. In other ex-
treme cases, an agent may be simply disabled from com-
munication even after dropping its normal achievement
goal (e.g., a pilot may be shot down).

Such communication difficulties require that other team
members take up some of the responsibility for attaining
mutual belief. In particular, a team member must attempt
to track the team's beliefs in the status of their joint goal.
For instance, if a company of helicopters reaches a well
specified waypoint, the team can be tracked as recognizing
its achievement, and thus unnecessary message broadcasts
can be avoided.

A second modification focuses on the dissolution of a
joint commitment (JPG). In particular, currently, if an indi-
vidual /i is known to drop the normal achievment goal, the
joint commitment is automatically dissolved. Yet, such an
automatic dissolution is often inappropriate. For instance.

593

if one helicopter p in the company of eight is shot down
during an engagement, the helicopter company does not
automatically dissolve its joint intention to execute its mis-
sion; that would waste the team's jointly invested efforts
in the mission and render the company highly ineffective
in combat. Therefore, if a team member p. is known to
drop its normal achievement goal, the JPG's dissolution is
modified to be conditional on: (i) p's role being critical
to the continuation of the joint intention (as discussed in
the next section); or (ii) pre-specified conventions. How-
ever, if p communicates achievement, unachievability or
irrelevance, then the JPG is dissolved as usual.

3.2 Complex Teams, Individual Roles and
Failures

While not defined in terms of individual intentions, a joint
intention leads individuals or subteams in the team to intend
to do their "share" (role) of a team activity (subject to the
joint intention remaining valid)(Cohen & Levesque 1991).
In our work, a role constrains an individual or a subteam to
undertake certain activities in service of the joint intention,
and the role may vary with the joint intention.

One key issue here is that in complex teams, that involve
multiple subteams, the success or failure of an individual's
role performance does not directly determine the achieve-
ment or unachievability for the team's joint venture. As a
result, an individual may succeed or fail in its role, yet com-
munication may not necessarily result. Hence agents must
communicate their role success or failures to other partici-
pants (should others be banking on this role performance).
Furthermore, since agents may be unable to communicate
(e.g., because costs exceed benefits), team members must
track other agents' role performance. Based on informa-
tion about others' role non-performance, team members
can determine the viability of the team's joint intention or
their own role. Two heuristics may be used:

1. Critical expertise heuristic: If the success of the team's
joint intention is solely dependent on the role of an in-
dividual agent, then the agent's role non-performance
(failure) implies that the team's joint intention is un-
achievable.

2. Dependency heuristic: If an agent's own role perfor-
mance is dependent on the role of the non-performing
agent, then the agent's own role performance is un-
achievable.

4 Implementing the Modified Joint
Intentions Framework

To implement the modified joint intentions framework the
concept of team operators has been defined. For the team
0, a team operator OP will be denoted as OP Q. The usual
operators as seen in Figure 2 will henceforth be referred
to as individual operators. As with individual operators,
team operators also consist of: (i) precondition rules for
selection; (ii) application rules (complex team operators

will lead to subgoals); and (iii) termination rules. How-
ever, unlike individual operators, team operators encode
the expressiveness and commitments of joint intentions.

4.1 Team Operators: Expressiveness

Team operators express a team's joint activity rather than
an agent's own activity. Thus, while individual operators
apply to an agent's own state, a team operator applies to a
"team state". The team state is an agent's (abstract) model
of the team's mutual beliefs about the world, which include
identities of members in the team, information about their
joint tasks etc. For instance, for a helicopter company,
the team state may include the routes to fly to the battle
position. Figure 4 shows the new operator hierarchy of
helicopter pilot agents where operators shown in boxes
such as Engage Q are team operators (the non-boxed ones
are individual operators). These team operators are not
tied to any specific number of agents within a team.

* Low CenkM X

Figure 4: A portion of the new operator hierarchy, executed
by an individual pilot agent.

To establish a joint intention OPje, each team member
individually selects that team operator. Typically, this se-
lection is automatically synchronized, since the selection
is constrained by the team state (the team operator's pre-
conditions must match the team state). Thus, since agents
track their team state, visually and also via communication
for terminating the previous team operator, it is usually un-
necessary to explicitly communicate prior to the selection
of the next team operator.

There are situations, however, where the agents' tracking
of team states is not fully synchronized, so that their se-
lection of team operators may be unsynchronized. In such
cases, agents execute the "agree-and-execute" algorithm
from (Kinny et al. 1992). In this algorithm, the leader
(commander) broadcasts a message to all team members,
seeking their commitment to the team operator to be ex-
ecuted next. Once it obtains everyone's commitments, it
broadcasts another message to the team to begin the ex-
ecution of that team operator. The execution of "agree-
and-execute" is triggered if a team operator is executed in
a subgoal after the completion of at least one individual
operator in that subgoal. This ensures automatic synchro-
nization among team members.

Note that in general, the subgoal of a team operator may
lead to either a team operator or an individual operator to

594

be applied. Thus, a joint intention may lead to either an-
other joint intention or to individual intentions in a subgoal
(subject to the parent joint intention remaining valid). For
instance, while the children of Engage e are all individual

Fly-flight-plan 9 are all team operators, the children of
operators.

4.2 Team operator: Communication
Once selected, a team operator can only be terminated by
updating the team state (mutual beliefs) to satisfy the team
operators termination rules. Updating the team state may
lead to a communicative goal. In particular, if an agent's
private state contains a belief that makes a team operator
achieved or unachievable, and such a belief is absent in
its team state, then it automatically creates a communica-
tive goal, i.e., a communication operator. When executed,
this operator leads the agent to broadcast the information
to the team. For instance, suppose the team is executing
Engage 9, which is achieved if the team state contains the

belief Completed(Engagement). Now, if a (commander)
pilot agent's own state contains Completed(Engagement),
and this is absent in its team state, then a communication
operator is proposed to inform team members (the com-
mander cannot just head back to home base alone).

To alleviate communication costs, certain safeguards are
already built into the proposal of a communication opera-
tor. In particular, a communication operator is not gener-
ated if the private belief does not contribute to the achiev-
ment or unachievability of any active team operator, or if
the team state is already updated,i.e., the team is already
aware of the belief. Furthermore, based on the modi-
fications discussed previously, even if a communication
operator is proposed, it is not implemented immediately.
Instead, the agent first evaluates the cost and benefits of the
communicative operator. For instance, if radio is the cur-
rent means of communication, and if the mission requires
radio silence, communication over the radio is prohibited.
An agent instead attempts to reduce communication costs
via alternative communication methods, e.g., travelling to
personally deliver the message. If the agent finally satisfies
its communicative goal, the sender and the receivers then
update their team state (we assume that communicated in-
formation reaches other agents securly). This then causes
the team operator to be terminated (either because it is
achieved or unachievable). If a high-level team operator
is achieved or unachievable, its children are automatically
assumed irrelevant.

43 Team Operators: Roles, Failures and
Recovery

For team operators, roles are instantiated via suboperators
in the operator hierarchy. If an OP 9 has Tl roles, denoted

I OP|e< 7i,..,7/e >, then 0's R sub-teams, <7|...erfl,
must undertake each of these roles. Many team operators,
however, can be defined via multiple role combinations.

between two to eight agents, some of them attack heli-
copters and some scouts. A separate representation of
OP |e< 71,..., -)R > for each role combination would re-

sult in a large number team operators.
To alleviate this concern, constraints are specified to

only implicitly define role combinations. For instance, for
Engage 9, the constraints specify that the allowable role-

For instance, Engage e may be performed by anywhere

performing subteams are individual team members, i.e.,
the role performing subteam <ii = I where l€ 0; without
any constraints on the number of participants. Each agent
instantiates the constraint relevant to itself, to know if it
is expected to act alone or as part of a subteam. The ac-
tual role an agent undertakes is based on this allowable
subunit, and any static specification of the subunit's role
in the current situation (e.g., an agent may be specified
to be a scout). This role specification is in turn based on
the subunit's or individual's capability. For a company of
helicopters, a specific individual may be the commander
(capability depends on the chain of command), a scout (ca-
pability depends on training), or the leader of a formation
(every team member possess this capability).

As mentioned earlier, it is useful for an agent to moni-
tor other agents' role performance. This is accomplished
in one of three ways. First, the other agent may it-
self communicate. Second, it is possible to track the
other agent's role performance, via techniques such as
RESC(Tambe & Rosenbloom 1995; Tambe 1996; 1995;
Tambe & Rosenbloom 1996), that dynamically infer other
agents' higher-level goals and behaviors from observation
of that agents actions. Given its expense, however, such
detailed tracking is performed selectively — instead, an
agent often only monitors the participation of other team
members. Third, other heuristics can also be applied, e.g.,
an agent cannot perform two conflicting roles simultane-
ously. Thus, if a scout is scouting the battle position, it
cannot participate in any other role at the holding area
(e.g., to fly in formation).

The following describes the overall recovery algorithm,
should an agent determine that \i € 9 is simply unable to
perform any role (e.g., ^'s helicopter crashes):

1. Let 7Z.= {r r^} be the set of currently known roles of p.

2. For each (OPJB in currently active hierarchy and for each r,
€ TL apply critical expertise heuristic to determine if [OPJ9
unachievable.

3. If some |OP L unachievable, due to critical role tc

(a) Terminate |OP|e and its active children.
(b) If self capable of performing rc. Communicate takeover of

rc to 0; Re-establish | OP |s.
(c) If self incapable of performing rc, Wait for another agent to

takeover rc; Re-establish | OP |s- If wait too long, |OP|e
unrepairable.

4. For each r, € 72. apply dependency heuristic to determine if
unachievable; apply domain-specific recovery strategies.

5. For all t} € ft, r, 5^ rc, If self capable of performing r,,
Communicate takeover of r, to ©.

595

6. While n disabled from performing any roles, check every
future |OP|e via critical expertise heuristic.

One key reason this recovery procedure works is the ex-
plicit representation of team operators. In particular, step
2 applies the critical expertise heuristic. To operationalize
this heuristic, the agent compares the achievement con-
dition of an OP 9 with the achievement condition of p's
role. If identical, p was solely responsible for achievement
of OP 9, and hence OP 9 is now unachievable. Thus, if
p is a scout, this test indicates that it is critical to the scout-
ingof the battle position. In Step 3-a, the agent terminates
OPje only if p plays a critical role in OP 9. In step 3-b,

the agent attempts to substitute itself for ps critical role
if capability exists, or else it waits for someone else to fill
in the role (step 3-c). Otherwise the implicated [OP]g is
irreparable.

In step 4, the agent attempts to recover from any individ-
ual operator dependencies (step 4). Here, to operationalize
the dependency heuristic, the agent checks the achieve-
ment condition of its own role for p's role. For instance, if
an agent is to trail p. in formation, its achievement depends
on p. Non-critical roles are examined later, as they may be
critical in the future (step 5). It is possible that one agent
does not possess all of p's capabilities, and hence may
takeover only one of p's roles, while other agents takeover
p's other roles. Not all of p's roles may be known imme-
diately; and hence any new operator is also checked for
critical dependency on p (step 6).

Interestingly, aspects (step 3-b and 3-c) of the above
recovery procedure can also be cast as team operators,
such that the communication in step 3-b and 3-c arises as
a result of achieved or unachievability status of the team
operator.

To see the above procedure in action, consider a com-
pany of five helicopters, Cheetah 1 through Cheetah5, with
the role and capabilities as shown:

Current roles:
Cheetah 1 <— Commander, Scout
Cheetah2, Cheetah3,Cheetah4, Cheetah5 <— Attack
Current capabilities:
Cheetah 1 ,Cheetah3 <— Scout
Cheetah2, Cheetah3,Cheetah4, Cheetah5 <— Attack
Chain of command: Cheetah l->Cheetah2->Cheetah3...

Suppose, the team is currently executing
wait-while-bp-scouted 9. In service of this team oper-

ator, the scout (Cheetah 1) is moving forward to scout the
battle position, while the rest of the company is waiting at
the holding area. Now if the scout crashes (as in Item 1 in
Figure 3), wait-while-bp-scouted 9 is deemed unachiev-
able (critical expertise heuristic). Two changes will then
take place. First, Cheetah3 will take over the critical role
of the scout — it has the capability of becoming a scout.
This enables the wait-while-bp-scouted 9 operator to be

5 Experimental Results
Agents based on our new approach each currently contain
1000 rules, with roughly 10% rules dedicated our explicit
model of teamwork. This new implementation addresses
three basic types of problems seen in our previous imple-
mentation:

• Recovery from incapabilities of key individuals, such as
a commander or a scout (e.g., addresses Item 1, Figure
3).

• Better communication and coordination within the team,
as members recognize responsibilities (e.g., addresses
Items 2 and 3, Figure 3).

• Improved tracking of own team state due to improved
expressiveness (e.g., addresses Item 4, Figure 3); also
possible to track team's high-level goals and behaviors,
not possible before.

Figure 5 illustrates that our current implementation pro-
vides significant flexibility in the level of coordination
among team members. The figure attempts to plot the
amount of coordination among team members (y-axis) over
simulation time (x-axis). The percentage of team operators
in a pilot agent's operator hierarchy (which consists of team
and individual operators) is a rough indicator of the amount
of coordination. In particular, a lower percentage of team
operators implies a higher percentage of individual oper-
ators and hence low coordination among members; while
a higher percentage of team operators indicates tighter co-
ordination. Time is measured in simulation cycles, with
9475 cycles in this run.

% « TEAM
OPERATORS 60-
in HIERARCHY

FLY
FLIGHT

I MOCOINOAH€A |

FLY A FLY
FLIGHT L FLIOHT
FLAM ' aSi

ENOAOF
TAPPETS

187S
SIMULATION TIME -

re-established for execution. Next, Cheetah2, the next in
command, will replace Cheetah 1 as the commander.

Figure 5: Percent team operators in an individual's operator
hierarchy (FFP = Fly Flight Plan).

The varying percentage of team operators over the run
indicates the flexibility in the level of coordination. Thus,
for the first 500 cycles, when the agents are flying a flight
plan (FFP) in close formation, they are tightly coordinated,
an individual'soperator hierarchy has 80% team operators.
For the next 50 cycles, the company halts, and then resumes
flying its flight plan. At cycle 1875, the company reaches
the holding area, where the scout files forward to scout the
battle position — the scout's percentage is shown sepa-
rately by a dashed line. Basically, the scout is now only
loosely coordinating with the rest of the company (33%
team operators). After scouting, the company moves the
battle position at cycle 4336, and until cycle 7154, engages
targets. The 33% team operators in engaging targets in-
dicate that the team members are to a large extent acting
independently. Nonetheless, the team operator percentage

596

"

is never zero, i.e., these agents never act completely alone.
Later the company returns to base.

Figure 6 illustrates the reduction in communication
due to our modifications to the joint intentions frame-
work. It shows results from a single test run of our
implementation. Figure 6-a projects percentages of op-
erators, had the agent worked with the original joint in-
tentions framework. In this case, there are 25% team
operators; and among the approx 75% individual opera-
tors, there are 25% communication operators and the rest
execute the agents' actions. Figure 6-b shows the per-
centage from an actual run with the modified joint inten-
tions framework. Communication percentage decreases
more than 10-fold (just about 2% on communication). In-
stead, there is more emphasis on agent- and team-tracking,
performed using RESC(Tambe & Rosenbloom 1995;
Tambe 1996), with about 8% operators.

KucrwT
m TOT*.
0»tMTO«I J

*TOUl

I • I 1 1
MMVlOiW.

(a) OLD FRAMEWORK

* ,*CTON TMCKMO COtai

MDMOUAL

(b) MODIFIED FRAMEWORK

Figure 6: Reduction in percentage of communication op-
erators.

6 Related Work
Few other research efforts have implemented theories of
joint action. Jennings's implementation of the joint in-
tentions framework in an industrial multi-agent setting is
one notable exception(Jennings 1995). Huber and Durfee
describe a similar implementation, although in a smaller
scale testbed(Huber & Durfee 1995). There are several
key differences in our work. First, in both these efforts,
agents' collaborative activity appears to involve a two level
hierarchy of a joint goal and a joint plan, with individuals
engaged in specific roles in the plan. When the joint goal
is accomplished, the collaborative activity is terminated.
In contrast, our work focuses on complex, long-term team
activities, involving the execution of a dynamically chang-
ing team operator hierarchy. A high-level mission leads to
the execution of a whole variety team operators. It thus
becomes essential to maintain and track an explicit team
state, and manipulate it via team operators — else agents
will lose track of the next team action. Second, the above
efforts typically involve two-three agents in the joint inten-
tion. The scaleup from two-three agent to five-eight agent
per teams (as in our work) creates new possibilities. More
specifically, even if a single agent is incapacitated, the team
operator hierarchy does not completely fall apart. How-
ever, agents have to explicitly check if lower-level team
operators are unachievable, and recover from failures. Re-
covery is important, else the entire team effort will go to
waste. Finally, in (Jennings 1995) issues of communica-
tion risk are not considered (although they are considered

in (Huber & Durfee 1995)).
Our recent work on team tracking(Tambe 1996) —

which involves inferring other team's joint goals and in-
tentions based on observations of their actions — is the
predecessor to the work reported here. However, given
its focus on tracking other teams, issues such as commu-
nication, recovery from unachievable team operators were
all explicitly excluded from consideration. The domain of
focus there was tracking the behaviors of a team of enemy
fighter jets.

7 Summary and Discussion
For improved realism of advanced distributed combat sim-
ulations, teamwork among team members is critical. Yet,
given the uncertainity in this domain, preplanned coordi-
nation cannot sustain such flexible teamwork. To alleviate
this problem, we have provided individual agents with
an explicit representation of team goals and plans, and
an underlying explicit model of team activity, which has
already substantially improved agents' flexibility in their
teamwork. Further contributions of this paper include: (i)
Detailed illustration of an implementation of the modified
joint intentions framework(Cohen & Levesque 1991) in a
real-world multi-agent domain; (ii) key modifications to
the joint intentions framework to reflect important con-
straints in the domain; (iii) techniques for recovery from
failure of team activities. As an important side-effect,
agent development has speeded up, since once agents are
equipped with such a model of teamwork, the knowledge
engineer can specify higher-level team plans, and let the
individual agents reason about the coordination activities
and recovery.

The key lessons in this work are that as we build agent
teams for increasily complex combat simulations, agents
should be provided (i) explicit representations of team ac-
tivities, and more importantly (ii) some core common-
sense knowledge of teamwork, separate from the agent's
domain-level expertise (e.g., helicopter tactics). These
lessons appears applicable to other agents within advanced
distributed combat simulations, as well as to agents in non-
military applications of advanced distributed simulations.
Indeed, to test these lessons, we have begun implementing
this framework for players in the RoboCup virtual soccer
tournament(Kitano et al. 1995).

8 Acknowledgement
I thank Paul Rosenbloom, Jon Gratch and Randy Hill for
discussions on teamwork. This research was supported un-
der contract N66001-95-C-6013 from the Advanced Sys-
tems Technology Office (ASTO) of the Advanced Research
Projects Agency (ARPA) and the Naval Command and
Ocean Surveillance Center, RDT&E division (NRAD).
Critical expertise and support has been provided by David
Sullivan of BMH Inc.

References
Cohen, P. R., and Levesque, H. J. 1991. Teamwork. Nous
35.

597

Davis, R. 1982. Expert systems: where are we? and
where do we go from here? AI Magazine 3(2).

Grosz, B. J., and Sidner, C. L. 1990. Plans for discourse.
Cambridge, MA: MIT Press. 417^45.

Huber, M., and Durfee, E. 1995. On acting together:
Without communication. In Proceedings of the AAAI
Spring Symposium on Reasoning about Mental states.

Jennings, N. 1994. Commitments and conventions: the
foundation of coordination in multi-agent systems. The
Knowledge Engineering Review 8.

Jennings, N. 1995. Controlling cooperative problem
solving in industrial multi-agent systems using joint in-
tentions. Artificial Intelligence 75.

Kinny, D.; Ljungberg, M.; Rao, A.; Sonenberg, E.; Tid-
hard, G.; and Werner, E. 1992. Planned team activity. In
Castelfranchi, C, and Werner, E., eds., Artificial Social
Systems, Lecture notes in AI 830. Springer Verlag, New
York.

Kitano, H.; Asada, M.; Kuniyoshi, Y.; Noda, I.; and
Osawa,E. 1995. Robocup: The robot world cup initiative.
In Proceedings ofIJCAI-95 Workshop on Entertainment
andAI/Alife.

Levesque, H. J.; Cohen, P. R.; and Nunes, J. 1990. On
acting together. In Proceedings of the National Confer-
ence on Artificial Intelligence. Menlo Park, Calif.: AAAI
press.

Newell, A. 1990. Unified Theories of Cognition. Cam-
bridge, Mass.: Harvard Univ. Press.

Rajput, S., and Karr, C. R. 1995. Cooperative behavior
in modsaf. Technical Report IST-CR-95-35, Institute for
simulation and training, University of Central Florida.

Rosenbloom, P. S.; Laird, J. E.; Newell, A.;; and McCarl,
R. 1991. A preliminary analysis of the soar architecture
as a basis for general intelligence. Artificial Intelligence
47(l-3):289-325.

Tambe, M., and Rosenbloom, P. S. 1995. RESC: An
approach for real-time, dynamic agent tracking. In Pro-
ceedings of the InternationalJoint Conference on Artifi-
cial Intelligence (IJCAI).

Tambe, M., and Rosenbloom, P. S. 1996. Architectures
for agents that track other agents in multi-agent worlds.
In Intelligent Agents, Volume II: Lecture Notes in Artifi-
cial Intelligence 1037. Springer-Verlag, Heidelberg, Ger-
many.

Tambe, M.; Johnson, W. L.; Jones, R.; Koss, E; Laird,
J. E.; Rosenbloom, P. S.; and Schwamb, K. 1995. Intel-
ligent agents for interactive simulation environments. AI
Magazine 16(1).

Tambe, M.; Schwamb, K.; and Rosenbloom, P. S. 1995.
Building intelligent pilots for simulated rotary wing air-
craft. In Proceedings of the Fifth Conference on Computer
Generated Forces and Behavioral Representation.

Tambe, M. 1995. Recursive agent and agent-group track-
ing in a real-time dynamic environment. In Proceedings

of the International Conference on Multi-agent systems
(ICMAS).

Tambe, M. 1996. Tracking dynamic team activity. In
Proceedings of the National Conference on Artificial In-
telligence (AAAI).

Tidhar, G.; Selvestrel, M.; and Heinze, C. 1995. Model-
ing teams and team tactics in whole air mission modelling.
Technical Report Technical Note 60, The Australian Ar-
tificial Intelligence Institute.

Authors' Biosketches
Milind Tambe is a research computer scientist at the In-
formation Sciences Institute, University of Southern Cal-
ifornia (USC), and a research assistant professor with the
computer science department at USC. He completed his un-
dergraduate education in computer science from the Birla
Institute of Technology and Science, Pilani, India, in 1986.
He received his Ph.D. in 1991 from the School of Computer
Science at Carnegie Mellon University. His interests are in
the areas of multi-agent systems, specifically agent model-
ing and multi-agent collaboration, as well as in parallelism
and real-time performance of AI programs, especially rule-
based systems.

598

Distributed Modeling of Cooperative Behavior by Mobile Agents

Peter S. Sapaty

Department of Electronic & Electrical Engineering,
University of Surrey, Guildford, Surrey GU2 5XH, UK

p.sapaty @ surrey .ac .uk

1. Abstract

The paper is describing a project aimed at parallel
and distributed modeling of cooperative behavior of
intelligent autonomous entities. The simulation
technology used is based on mobile cooperative
agents which can freely migrate between computers
and carry with them their states, operations to be
executed and local data, thus providing the most
natural mapping of dynamic scenarios with moving
and interacting objects onto distributed computer
networks. Some basic space navigation and mutual
coordination mechanisms for cooperative behavior of
distributed computer generated forces are described
with their implementation in a compact agent-
producing and coordinating WAVE language. A brief
description of WAVE and a summary of application
projects based on it are also provided.

2. Introduction

Computer generated forces (CGF) are both the heart
and brain of a distributed simulation, and the level of
their intelligence usually determines the intelligence
and effectiveness of the whole simulation and training
process. Of particular interest is the modeling of
collective behavior of CGF, where group solutions of
complex problems in a distributed space may be used
for both friendly and opposing forces effectively
complementing or competing with human-driven
(simulated or live) entities. Due to the internal
flexibility and self-organization, the latter often
exhibit productivity which is much higher than a mere
sum of their components, which explains the usual
superiority of human teams over (distributed)
computer models.

2.1 The Project's Objectives

The objective of the project described in this paper is
to investigate and design new efficient methods of
modeling and coordination of a collective behavior of
intelligent autonomous entities propagating and

interacting in space and pursuing complex common
goals. Research is being done into parallel and
distributed algorithms showing various forms of
collective behavior and having the following main
characteristics:

• They should be implemented in a flexible
distributed manner over a computer network and
should be capable of exhibiting elements of
robustness with respect to the failure of any
number of computing nodes.

• The majority of interactions between entities
should be at a local level: no centralized data base
or controlling mechanism should be invoked for
the basic operations within the groups of
communicating entities.

• A multi-layer parallel, distributed and dynamic
coordination structure should be designed, with
automatic classification, pattern recognition and
inferencing techniques on higher behavioral levels.

• Entities may incorporate elements of self-leaming
behavior and adaptiveness, leading if necessary to
a considerable change of their own functionality, in
order to improve performance with experience.

• Communication between entities should be
minimized, remaining however sufficient to
support main interaction patterns for collective
operations.

2.2 Mobile Agents

A simulation technology chosen for this project is
based in the ideology of mobile intelligent agents.
Mobile agents have become a hot topic in recent
years (Appleby & Steward 1994, Atkinson et. al.
1995, Gray 1995, Johansen et. al. 1994, Lingenau &
Drobnik 1996, Di Marzo et. al. 1995, Ordille 1996,
White 1994, and others) whereas code mobility is
also an important factor in the latest development of
conventional languages, like Java (Gosling &
McGilton 1995).

599

As an extension of the client-server paradigm, an
agent program can start from any computing node and
travels independently through the network using the
appropriate infrastructure. Such an infrastructure
supports general services and openness of the
network whereas local decisions, hops between
computers, data processing and different kinds of
interactions are carried out by the agent's program
individually while visiting computing nodes along its
itinerary. The currently pursued direction of these
technologies is focused mainly on applications like
remote information retrieval and electronic commerce
(White 1994), where an agent is regarded as a
monolithic autonomous program following some
route. Agents can establish direct communication
between themselves in some point (called a "meeting
place"), or they can share information in the places
while visiting them at different times.

2.3 WAVE

With a longer history than mobile agents and being
functionally more diverse, is the WAVE paradigm
(Sapaty 1988 and 1996, Sapaty & Borst 1996) which
combines full mobility of special recursive code with
dynamic creation and processing of arbitrary
knowledge networks in a distributed space in a
parallel pattern-matching mode. In WAVE,
autonomous moving agents are produced only on the
implementation level as a reflection of different
branches of a recursive self-evolving navigational
program. As integral parts of the same spatial
algorithm, these agents may range from arbitrary
large programs to elementary operations, and the
WAVE language embeds special mechanisms for
interactions between agents, between agents and the
environment, and for the global control over their
populations. Such control may also be fully mobile.

Experiments of using WAVE for simulation of
dynamic systems (Sapaty et. al. 1994 and 1996) have
shown its high flexibility for the creation of
distributed virtual worlds and for organizing
movement in these worlds of simulated entities with
any interaction and coordination patterns between
them. The latter may not be fixed in advance and can
evolve in time and space. Having special spatial
coordination mechanisms allowing control over
societies of mobile agents, not present in other
languages, WAVE may effectively complement other
programming paradigms allowing migration of an
interpreted program code, like Java (see Vuong
1996).

Based on full program code mobility, the WAVE
paradigm can easily model existing mobile agent
systems. As WAVE dynamically creates, activates
and processes any graphs and networks arbitrarily
distributed in computer networks, it can effectively
implement any other computational models with the
interpreted moving tokens and any functions in nodes,
like petri nets, dataflow, actors, neural networks,
object-oriented approaches, etc. (Sapaty 1996).
Moreover, such WAVE-based networks may evolve
in space and change their topology at runtime which
other existing models usually cannot do. These
features may enable WAVE to be used efficiently in
distributed parallel inference, automated planning,
machine learning, situation recognition and
assessment, expert systems, network management,
virtual reality, etc. All this may be quite useful in
designing and implementing intelligent computer
generated forces, with some ideas on that matter
presented in this paper.

2.4 Further Structure of the Paper

The rest of this paper is organized as follows. In
Section 3 elementary examples of programming in
WAVE are shown and a brief description of the
language is given in which main ideas of the paper
will be subsequently demonstrated. Section 4 reveals
basic mechanisms of navigation by mobile entity
models of a discrete space represented, for simplicity,
as a regular grid arbitrarily distributed between
processors. In Section 5, examples of some higher-
order space functions are described which may be
used by moving and cooperating models for making
autonomous decisions and organizing their group
self-recovery after damages. Section 6 summarizes a
number of projects written in WAVE which exhibit
collective behavior of moving objects in distributed
computer networks. Section 7 concludes the paper
and is followed by acknowledgments, references and
a short author's biography.

3. WAVE Language

WAVE treats any modeled world as a knowledge
network (KN) with an arbitrary topology where nodes
and links may associate with any information (as
arbitrary long strings). This network may be
arbitrarily distributed between processors and the
topology of a computer network may correspond to or
may be quite different from the knowledge network
topology. Wave programs (also called waves) may
process such abstract knowledge networks directly,
regardless of their distribution in a physical computer
network.

600

3.1 Elementary Programming Examples

3.1.1 Creation of Network Topologies
In Fig. 1, a WAVE program is shown which
incrementally creates a simple network while
physically moving in space and discarding its worked
parts. In this program, CR stands for CReate rule, "#"
is a hop operator with its left and right operands
setting up a link-node pair to be passed (here created,
in the context of the CR) during movement. "@"
identifies an associative, or "tunnel", link to a node,
"=" is an assignment operator, F is a moving, or
frontal, variable accompanying the mobile wave. The
latter carries an address of the created node "a"
(symbolically shown in square brackets), to be
accounted later in a cycle. A is an environmental
variable always lifting address of a node in which
wave currently stands, and period separates program
parts which should be executed one after another. The
CR rule, applied at the beginning to the whole
program, is automatically inherited by the remaining
mobile wave templates. The underlying interpretation
system will distribute this network between as many
processors as possible (here three), or to particular
processors, if this is explicitly stated in the program.

processor 2
stage 1:

CR(p#b.q#c.

processor

initial wave:
CR(@#a.F=A
p#b.q#c.r#F)

stage 2:

CR(q#c.r#F)

stage 3.
CR(r#F)
F=[a]

Figure l: Distributed Network Creation in WAVE

3.1.2 Solving Tasks in a Navigation Mode
After creation, a KN (like the one above) may be
navigated by other waves directly, to solve any
distributed problem on it. For example, finding all
direct neighbors of node "b" and printing their names
in parallel on terminal(s) associated with these nodes,
may be done as shown in Fig. 2a, where the rest of
the program (or its "tail") replicates into two copies
after broadcasting from "b" ("#" with missing
operands means "any links" or "any nodes", or both,
and results in local multicasting or broadcasting). T is
a special read-write environmental variable which
represents a terminal accessible from a KN node in
which wave currently stands (the terminal may be
different at different nodes), and C is another

environmental variable always lifting a content of the
current node. While spreading in KN, wave transfers
elementary operations to nodes which are executed in
them using only local environment and variables
associated with these nodes.

In Fig. 2b, a modification of this program is shown
which first returns the neighbors' names back into "b"
(using a predecessor address in the environmental
variable P in both "a" and "c"), collects them as one
list (in a shared, nodal variable N), and subsequently
prints this list from "b". The SQ (SeQuence) control
rule is used to activate the second branch of the wave
only after full completion of the first one (which itself
dynamically splits into parallel branches along links
"p" and "q"). To simplify the picture, only data
movement in frontal variables, and not the wave code
it accompanies, is depicted. Character "," is used here
as a separator between the two sequential branches.

@#b.#.T=C

a;c

c

T=C 1
w terminal(s)

a c

T=C

SQ((#.F=C.#P.N&F),T=N)

X terminal

©——©
a) Distributed Output b) Collecting in One Point

Figure 2: Printing All Neighbors of Node "b"

Different waves, originating from the same or
different users, may be launched independently and in
parallel on the same KN. For example, the two
neighbors-printing programs shown above may be
activated in parallel as:

or
(@#b.#.T=C), (@#b.SQ((#.F=C.#P.N#F),T=N))

@#b.(#.T=C), SQ((#.F=C.#P.N#F),T=N),

as they have the same starting node. Nodes, links or
any variables may also hold procedures (as strings)
which may be dynamically injected into main waves
and executed. Waves may also modify the very KN
they move through, while renaming, deleting and
creating its nodes and links.

3.2 General Structure of the Language

The top level syntactic structure of a WAVE
program, or wave, is shown in Fig. 3 where braces

601

mean zero or more repetitions (with a given delimiter
at the right, if more than one), square brackets denote
an optional construct, and vertical bar separates
alternatives. Period delimits sequential parts and
comma separates independent or parallel parts of a
wave called moves. The latter may be simple,
consisting of one or more elementary operations, or
acts (like assignments, hops, condition checking
filters, etc.) over information units, or again be waves
in parentheses optionally prefixed by control rules.
The latter impose a variety of constraints over
distributed development of waves in KN. Starting
from some node in KN, a move brings the wave into a
new set of current nodes, or Goal Set, GS (which may
include the initial one as well), to all of which the tail
of wave is applied; waves thus being interpreted
incrementally in KN. In general, many waves from
the same program or from different ones may spread
in KN in asynchronous wavefront mode.

wave -> {{ move ,}.}
move -> unit { act unit} [rule] (wave)

Figure 3: WAVE Language Recursive Structure

3.3 Basic Information Unit

The basic information unit of the language is vector -
a dynamic sequence of arbitrary length values
generally defined as strings, concrete interpretation of
which depends on the operations involved.
Syntactically, vector elements are separated by a
semicolon. This simple data structure with special
operations on it, together with the recursive syntax of
the language, proved to be sufficient for representing
arbitrary network creation and processing algorithms
in a distributed environment. No explicit type
descriptions are used in the language: automatic type
conversions are activated depending on the
operations.

3.4 Spatial Variables

Information units in a WAVE program can also be
expressed by spatial variables dynamically
distributed throughout KN by mobile waves. They
may be of the three types: nodal (prefixed by N or
M) dynamically attached to KN nodes and shared by
different moving waves, frontal (prefixed by F)
moving with waves and providing local information
exchanges between different nodes of KN, and
environmental, accessing currently available
resources related to KN nodes and links. The latter
are named as: C - node content, A - node address, L

- incoming link content, S - incoming link sign, P -
predecessor node address, T - user terminal (or one
of them if they are distributed throughout KN), and I
- "individuality" (color) of the mobile waves
(suffixing all their M-named variables).

3.5 Acts

Basic acts are selective or broadcasting hops in the
KN (for which the two units keep information about
links and nodes to be passed and also set up different
sorts of local and global broadcasting), condition
checking filters (halting if false), data processing
(arithmetic and string operations), explicit halts with
a repertoire of echoing termination conditions, and an
external call permitting an access and exchange of
information with other systems distributed in
networks. Hops (the "#" act) identify by the left
operand the links to be passed, and by the right
operand the nodes these links should lead to (nodes
may be given by contents or addresses). Omitting the
right operand makes any destination nodes acceptable
with the given links. Omitting the left operand leads
to neglecting of the link contents and broadcasting to
certain, if names are provided, otherwise to all,
neighbors. The special name "@" used as the link
operand triggers direct (tunnel) jumps between any
(including non-neighboring) nodes, and provides
broadcasting to all other nodes of KN if the right
operand is empty. If more than one link with the
given name is associated with a node, all of them may
be passed in parallel.

Filters ("=" - equal, "/="- not equal, "<" - less, "<="
- less or equal) allow for the further wave propagation
if their result is TRUE, and cause halts if FALSE.
Data processing includes arithmetic acts ("+", "-",
"*", "/"), splitting string into a vector ("I") and
merging vector into a string ("%") with the given
delimiters, appending vectors ("&").
finding/recording a content by an index (":"), finding
an index by a content or recording by a content ("::").
Act "?" makes an access to other systems on the host
(via its operating system) and "!" is a programmed
halt with the operands establishing different halting
conditions (right hand operand), or switching off the
special control track mechanism while launching
uncontrolled waves with an established life time
(specified by the left operand). Act "=" means a mere
assignment of the result obtained on the right to the
variable on the left. In its absence, the result of the
data processing operations is assigned to the leftmost
unit (a variable) in the move. For example, N=N+F-1
is equivalent to N+F-l, thus making expressions
more compact.

602

(ppjr-

3.6 Rules

The main rules and their abbreviations are: SeQuence
(SQ), Or Sequential (OS), Or Parallel (OP), And
Sequential (AS), And Parallel (AP), RaNdom choice
(RN), Repetition (RP), WaiTing (WT), InDivisible
(ID), and CReate (CR). The rules split waves into
branches (by their heads consisting of parts separated
by comma or being single hops producing
multicasting or broadcasting, with replicating and
attaching common tail) and coordinate their
cooperative (parallel or sequential) development in
the KN (SQ, OS, OP, AS, AP), provide distributed
logical synchronization (WT) and indivisible access
to shared resources (ID), repeated application of the
wave (RP), enable the wave to extend (including from
nought) the KN it moves through (CR). The control
points triggered by rules dynamically appear in
different KN nodes and make distributed coordination
of the propagating waves to a proper depth, using
tracks with a variety of backwareded through them
and merged control echo signals. The control points
cease to exist after the termination of waves they
oversee.

3.7 Dynamic Code Injection

It is possible to inject new strings into the moving
wave as procedures (kept and processed as string
contents of variables) which accompany the waves (in
frontal variables) or are picked up in nodes of KN
during navigation of the latter (by nodal and
environmental variables). This provides high
flexibility in the network creation and navigation
processes where the evolving spatial program may be
additionally fed from the distributed environment it
moves through. Syntactically this is expressed by a
move consisting of a single unit (a variable), without
any act, which causes injection of its content into the
wave with immediate execution of this code. Such
injection may be recursive to an arbitrary depth.

3.8 WAVE Language Implementation

A distributed WAVE interpreter has been
implemented in C and operates via Internet (Sapaty
& Borst 1996). A copy of this interpreter must be
installed in each computer, and the interpreters may
communicate with each other while forming a
parallel spatial machine driven by mobile waves.
Parts of the KN and dynamic track forests (used for
checking termination conditions of multiple
distributed processes and also serving as logical
channels for further spreading "waves" of waves),
located in different interpreters, form together a

seamless distributed and dynamic information &
processing space. In this space, waves (accompanied
by moving data variables) and echoes (backwarded
through tracks), are propagating either within the
memory of the same machines, or are automatically
forwarded to other interpreters on other machines.

4. Basic Distributed Coordination Mechanisms

In this section we will consider some basic space
navigation and mutual coordination mechanisms for
moving objects and their expression within the
mobile agents philosophy. These mechanisms will be
formally presented in WAVE language (with a
preliminary explanation in English) as WAVE is a
very dense machine-level language oriented on a
direct interpretation in networked hardware within a
program flow mode. As WAVE programs are moving
in a physical space and parallel wave algorithms are
highly communication-intensive, the program code
must be very compact in order to reduce traffic in
networks.

4.1 Representation of Space

As we are investigating here the use of mobile
program code propagating between computers for
simulation of dynamic systems with collective
behavior, the main concern will be a discrete, rather
than analog, model of space. The simplest one,
however general enough to explain the main ideas of
this paper, may be a regular grid. We will consider a
two-dimensional grid with "x" and "y" coordinates,
organized as a network of nodes having a combined
"x-y" name each and connected with each other by
oriented links named as "x" and "y" and directed
towards the increasing values of these coordinates
(see Fig. 4, where one of nodes 3-2, with incident
links, is zoomed).

The WAVE model, oriented on a direct processing of
arbitrary networks, can be easily used for creation and
distribution of a regular grid between any number of
processors, which may amount from one to the total
number of grid nodes, while in the latter case each
node may be located on a separate processor. The
WAVE program for creating a 5 x 5 grid may look
like the following (given here without explanations,
only as an example of its compactness, as it is outside
the main interest of this paper).

FX=5.FY=5.Fs=A.Fy=1.
RP(SQ((FA=NA.Fx=1.N=Fx&Fy%-.CR(@#N).

RP(FAN&A.
(CR(+y#FA:Fx.!3),.

603

Fx==FX.@#Fs.NA=FAN.!3),
(Fx<FX.Fx+1.F=Fx&Fy%-.
CR(+x#F))).!3),

(Fy<FY.Fy+1)))

4.2 Elementary Movement

Let us start with the most basic procedure: movement
through the discrete space (regular grid, as we
defined it). As mobile programs may be fully
autonomous, self-contained objects carrying with
them their states and local data (the latter hereinafter
will be named with prefix "MOVING"), the
movement through grid may be expressed as
straightforwardly as:

Set up destination coordinates X and Y
Apply in starting node
Repeat

Append current node to MOVING_PATH
If current node is the destination

print MOVING_PATH and halt
otherwise

If, by random choice between coordinates,
it is possible to decrease distance to
the destination, hop through
the proper link to a new current node

otherwise do nothing and stay in current node
endRepeat

During the movement (see Fig. 4), this mobile
algorithm also accumulates and carries with it the
passed path in MOVING_PATH which is output at
the destination point. Looking at first sight like a
conventional data processing procedure, this
algorithm however operates only with the local
environment connected to the current grid node it
stands at, and changes its own location in space each
time it moves to a new node, in which the whole
Repeat-body is applied again.

The corresponding WAVE code will be as follows
(where frontal variable FR is for MOVING.PATH,
and the moving procedure separating "x" and "y"
coordinates recorded in nodes with a hyphen
between them is kept in frontal variable Fd):

FX=4.FY=2.@#'2-4'.
Fd='FD=CI-.Fx=FD:1.Fy=FD:2'.
RP(FR&C.Fd.

OS((Fx==FX.Fy==FY.T=FR.!),
RN(((Fx<FX.+x#),(FX<Fx.-x#)),

((Fy<FY.+y#),(FY<Fy.-y#))),))

The randomly chosen and passed path will be printed
in node 4-2, and may be as: 2-4;3-4;3-3;3-2;4-2.

/Yy ./
node / link
markings

start

destination

1^^2 3 K 4 5

2-4;3-4;3-3;3-2;4-2

Figure 4: Movement through Space

4.3 Vision of Space to a Proper Depth

Another basic and very important procedure, while
moving through space, may be vision of this space,
say, to a proper depth, to assess the situation and
make a proper decision. The following algorithm,
starting from some grid node, dynamically creates a
depth-first search tree to a given depth, in a maximum
parallel mode, and then uses this tree for backwarding
and stepwise assembling in one final list names of all
the objects seen (together with names of the nodes
they occupy). The algorithm is based on a self-
invoking recursive MOVING_PROCEDURE, and
the collected information is subsequently output at the
start node.

Define MOVING_PROCEDURE as:
Increment MOVING_COUNTER by 1 and
continue only if MOVING.COUNTER is less

than MOVINGJLIMIT
Hop to all neighbors in parallel
If node is not marked, mark it
otherwise halt this branch
If there is an object in the node, put it together

with the node's name into NODAL_LIST
Do sequentially from the same node

1) Apply MOVING_PROCEDURE
2) Put NODAL_LIST into MOVING.LIST

Hop to predecessor
Append MOVING_LIST to NODAL_LIST

end MOVING_PROCEDURE
Begin in the proper start node
Put search_depth into MOVING_LIMIT
Mark current node
Do sequentially from the same node

604

a) Apply MOVING_PROCEDURE
b) Print NODALJLIST

WAVE code for this algorithm, applied in node 3-4
and searching the grid for a depth of 2, will be as
such:

F= 'Fd+1.Fd<=FD.#.N==.N=1.
OS((Ni/=.Nn=Ni&C%':'),).
SQ(F, (F=Nn.#P.Nn&F))\

@#'3-4'.FD=2.N=1.SQ(F, T=Nn)

where MOVING_PROCEDURE is in F, and marking
of nodes is performed by assigning 1 to the
stationary, nodal, variable N in each node. It makes,
as indivisible in each node, checking if the reached
nodes are not marked yet and marking them
(sequences of elementary condition checking and
assignment operators are indivisible in WAVE and
lock all nodal resources for other waves during their
execution).

initiator
node

collected result: b:2-3; c:5-4

breadth-first
spanning tree •)

12 3 4 5

Figure 5: Breadth-First Parallel Space Search

In case of a success in a node, the program
propagates further in parallel to all neighbors in
which it is applied again. As operator "#" broadcasts
generally to more than one node, the waves are self-
replicating when navigating the network, passing
nodes only once due to marks. This process is fully
asynchronous and nondeterministic; however it
always guarantees to receive a spanning tree covering
the whole network. One of possible such trees is
shown in Fig. 5 with the returned result to "a" as:
b:2-3;c:5-4 or c:5-4;b:2-3, as the system is
asynchronous and parallel.

4.4 Competition for Space

So far we were considering only one-object
movement. Let us imagine that many objects are
independently moving through the same space, and

let them not occupy the same grid node at the same
time. So we come now to a concept of competition
for space. When making a hop through the grid, now
each object must win the right to occupy the new
node, which may be described without details as:

Find a prospective hop to a new node
If the node is not marked,

mark it and move to this node
Hop to predecessor and remove the mark

otherwise abandon this attempt

The WAVE program putting objects "a", "b", "c",
and "d" into proper positions in the grid, each having
the same destination 5-5, may be written as (having
the main same body for each object, which will be
automatically replicated):

WT((@#'1-5*.F=a), (@#'2-5'.F=d),
(@#'2-4'.F=b), (@#'3-5'.F=c).N=1).

FX=5.FY=5.
Fd='FD=CI-.Fx=FD:1 .Fy=FD:2'.Fd.
RP(OS(RN(((Fx<FX.+x#),(FX<Fx.-x#)),

((Fy<FY.+y#),(FY<Fy.-y#)).
N==.N=1.(#P.N=.!3), Fd),))

Some possible snapshots of a collective movement
of these four objects through a grid are shown in Fig.
6. As the destination node 5-5 may be occupied by
only one object (here "b" succeeded first), others will
be busy-waiting in the neighboring nodes forever,
unless the objects are (self-) removed from the
destination node, which may be programmed in their
bodies.

,— blocked from-
further

— movement -

1 2 3

b) Final Stage

Figure 6: Competitive Movement

destination
a) Initial / Intermediate

Having forbidden any two objects to be present in the
same nodes simultaneously, we therefore established
a minimum allowed distance between them in a grid
as one. To make a two-step minimum distance the
following should be done while moving:

605

Find a prospective hop to a new unmarked node
and mark it

If all neighbors of the new node
(excluding the current node) are not marked

Move to the new node
Hop to predecessor and remove mark in it

otherwise abandon this attempt and remove mark
from the new node

The corresponding cyclic part of the previous WAVE
program should be rewritten for this case as:

RP(OS(RN(((Fx<FX.+x#),(FX<Fx.-x#)),
((Fy<FY.+y#),(FY<Fy.-y#)).N=.N=1.

OS(AS(AP(#.N=.!3),
(#P.N=.!3), Fd),

(N=.!4))),))

Any other threshold distance between objects can be
established, where the general solution may be based
on the breadth-first space search to a proper depth
described earlier.

4.5 Pursuit

Let us consider another basic scenario where one
moving object (let us call it "pursuer") is chasing
another moving one (or "escaper", not escapee), say,
in order to destroy it. The escaper's mobile algorithm
may generally look like:

Start from proper node
Put escaper's name into MOVING_NAME
Repeat

Mark current node by MOVING_NAME
Make time delay
If the node is not marked by MOVING_NAME

(i.e. marking changed by somebody else)
print "killed" in this node and halt

otherwise make next hop
endRepeat

If starting from node 2-2 with the escaper's name "a",
and its route along the "x" coordinate towards the
east, the wave may be as follows:

@#'2-2'.Fi=a.
RP(Ni=Fi.2?sleep.

OS((Ni/=Fi.T=killed.!3), (Ni=.+x#)))
Pursuer's full algorithm will combine repeated
parallel space search to the allowed depth, followed
with a hop towards reducing the distance between
pursuer's current position and escaper's coordinates in
the grid found in the search:

Start from proper node
Put pursuer's name into MOVING_NAMEl
Put escaper's name into MOVING_NAME2
Repeat

Mark current node by MOVING_NAMEl
Put current node address into

MOVING.ADDRESS
Do sequentially from the same node:

1) Repeat
Increment MOVING.COUNTER by 1
If MOVING.COUNTER is less than

search_depth and node is not marked,
mark the node

If node holds an object identified by
MOVING_NAME2

Return the node's coordinates to initiator
by MOVING_ADDRESS and halt

otherwise hop to all neighbors in parallel
endRepeat

2) Find, by a random choice between x and y
coordinates, a hop reducing distance to the
escaper and move to a new current node

endRepeat

With the pursuer's name "b", starting node 2-5, and
escaper's name "a", WAVE code for this will be:

@#'2-5'.Fi=b.Fesc=a.
Fd='FD=CI-.Fx=FD:1.Fy=FD:2'.Fd.
RP(Ni=Fi.Fs=A.

SQ((WT(RP(Fc+1.Fc<4.N==.N=1.
OS((Ni==Fesc.Fd.

@#Fs.NX=Fx.NY=Fy.!3), #))).!3),
OS(RN(((Fx<NX.+x#),(NX<Fx.-x#)),

((Fy<NY.+y#),(NY<Fy.-y#)).Fd),)))

pursuer

escaper

killed

12 3 4 5

Figure 7: Pursuit of "a" by "b"

Taking into account that pursuer moves faster than
escaper (the latter having an embedded time delay), it
will eventually reach the escaper and kill it (actually,
in the model, escaper discovers that his position is
occupied by another object than itself, and self-

606

terminates). Different stages of movement of the both
objects (numbered in bold) are depicted in Fig. 7.

4.6 Chaining by a Bilateral Agreement

Another than chase, common movement in space may
be based on a mutual agreement between two objects
where the first one, or leader, cannot move further
unless the other, or follower, is close enough to it.
The follower, in its turn, can move only if the leader
releases its current position in space, to move into it.
Leader's algorithm may be:

Define follower's name in MOVING_FOL
Make initial recording of the follower's address
Repeat
Do sequentially from the current node

1) Hop to predecessor node and wait until
it becomes marked with MOVING.FOL,

halt this branch
2) Perform time delay and make next grid hop
3) Lift control over this branch, make time delay,

put current node's address into NEXT_HOP
in the predecessor's node and halt this branch

endRepeat

This algorithm may be expressed by a wave with "a"
as a leader, "b" as a follower, and the leader's and
follower's starting nodes as 2-3 and 1-3 as:

Fi=a. Ff=b. Fs='2-3'. Fp=' 1 -3'.
@#Fs.#Fp.#P.
RP(SQ((#P.RP(Ni/=Ff).!3),

(5?sleep.+x#),
(1!3.1?sleep.#P.Nh=P)))

The follower may be expressed by the algorithm:

Define follower's name in MOVING_NAME
Start m proper node
Repeat
Mark current node by MOVING_NAME
Wait until NEXT.HOP becomes defined,

remove mark from the current node and
make grid hop by the recorded NEXT_HOP

endRepeat

With the follower's starting location in 1-3 and name
"b", WAVE code will look like:

Fi=b.Fs="l-3'.
@#Fs. RP(Ni=Fi.RP(Nh==).Ni=.#Nh)

Two stages of the development of these cohesive
moving processes are shown in Fig. 8.

mutual coordination
I

mutual coordination

12 3 4 1

b) Stage 2

Figure 8: Bilateral Chaining while Moving

Any number of entities may be linked in a similar
way to move cooperatively in space, with any spatial
coordination patterns established and maintained
between them. We will consider here, for simplicity,
chaining objects as a column only, with the route
being dynamically planned and followed by the
column's leader. Within such a column, the first and
the last objects will be organized the same as the
leader and follower described above. But all
intermediate objects will integrate some features of
both leader and follower, as follows:

Define entity's name in MOVING_NAME and
the direct follower's name in MOVING_FOL

Make initial recording of the follower's address
Repeat
Mark current node by MOVING_NAME
Do sequentially from current node

1) Hop to predecessor node and wait until
it becomes marked with MOVING_FOL,

halt this branch
2) Wait until NEXT_HOP becomes defined,

remove mark from the current node and
make grid hop by the recorded NEXT_HOP

3) Remove NEXT_HOP record in current node,
lift control over this branch, make time delay,
put current node's address into NEXT_HOP
in the predecessor's node and halt this branch

endRepeat

United WAVE code for "b" and "c" intermediate
nodes, the main body of which will automatically
replicate into two identical copies, with setting up of
their names and starting positions, will be:

(Fi=b. Ff=c. Fs='3-3'. Fp='2-3'),
(Fi=c. Ff=d. Fs='2-3'. Fp=' 1-3').
@#Fs.#Fp.#P.
RP(Ni=Fi. SQ((#P.RP(Ni/=Ff).!3),

(RP(Nn==).Ni=.#Nn),
(Nn=.l!3.1?sleep.#P.Nn=P)))

The column's movement is depicted in Fig. 9.

507

mutual coordination

/ I \
mutual coordination

12 3 4 5

a) Stage 1

12 3 4

b) Stage 2

Figure 9: Multiple Chaining as a Column

Any other route, different from the above described
which followed the "+x" direction only, may be set up
in a leader. The others in the column will follow it
exactly. Say, for following the route 4-4 -> 3-4 -> 2-4
-> 2-3, with the initial position in 4-3 and direct
follower in 3-3, the leader should be organized as:

Frou='4-4';'3-4';'2-4';,2-3'.
Fi=a.Fs='4-3'.Fp='3-3'.
@#Fs.#Fp.#P.
RP(SQ((#P.RP(Ni==).!3),

(5?sleep.Frou/=.#Frou:1.Frou:1=),
(1!3.1?sleep.#P.Nn=P)))

Two snapshots of the movement of the whole column
along this route are shown in Fig. 10.

4 <*\^~ 4~W^

12345 12345

a) Stage 1 b) Stage 2

Figure 10: Arbitrary Route Followed by the Column

5. Some Higher-Order Functions

The described basic mechanisms of navigation and
vision of a discrete space may be used for expressing
higher-order distributed coordination functions of the
cooperative behavior of computer generated forces.
They may include, for example, election of a leader
of a distributed team, spreading commands from
leader to other team members, accumulating and
averaging the knowledge acquired by different team
members, etc. They may also include recognition of
complex situations on distributed battlefields to make
autonomous decisions and compete, say, with human-
controlled simulated entities and their teams.

5.1 Pattern Recognition

We will consider here recognition of simple
situations represented as structures distributed
throughout the grid by using mobile programs. The
latter may be launched from any moving entity (being
itself a mobile program) while replicating into
multiple copies and navigating in and searching the
discrete space in parallel.

5.1.1 Group Recognizer
Assuming that objects distributed throughout a grid
are considered linked with each other only if they are
located in neighboring nodes, the following parallel
algorithm collects into one list all objects linked by
such neighborhood relation to an arbitrary depth,
finding all such groups and printing the
corresponding lists in parallel. As the same group
may be recorded from any starting node, it will be
allowed to be collected and printed as a list only if its
starting node (kept in MOVING_START) is of the
smallest (or biggest, as another variant) value in
comparison with all other nodes, thus solving the
competition in this simplest way and preventing the
issuing of duplicates of the lists.

Define MOVING.PROCEDURE as:
If node is occupied

Do sequentially from current node
If occupant's name is less

than MOVING.START
halt with killing all processes

originated from the start node
If node is not marked, mark it by putting

the occupant's name into NODAL_LIST
otherwise halt
Do sequentially

1) Apply MOVING_PROCEDURE
2) Put NODAL_LIST into MOVING_LIST,

hop to predecessor and append
MOVINGJLIST to NODAL_LIST

end MOVING_PROCEDURE
Start in originator
Do sequentially

3) Hop to all grid nodes, each becoming a start
Continue if node is occupied, put occupant's
name into MOVING_START

and NODAL_LIST
Do sequentially from a current (start) node

a) Apply MOVING.PROCEDURE
b) Append NODAL_LIST to predecessor

node's FINAL_RESULT
4) Output FINAL_RESULT

608

WAVE code starting from originator node 2-3 and
then activating all grid nodes in parallel will be:

F= ' #.Ni/=.SQ((NkFs.lO),).N==.N=Ni.
SQ(F, (F=N.#P.N&F))'.

@#2-3'.SQ((@#.WT(Ni/=.Fs=Ni.N=Ni.
SQ(F, (Fr=N%-.@#P.Nr&Fr)))),

T=Nr)

Result printed in 2-3 may look like:
p-m-f-o-j-c; I-d-i; n-g-k-b-a-h-e,

as shown in Fig. 11, where the order in which
different groups are recorded may be arbitrary as the
program is not deliberately synchronized and operates
in parallel ("-" is used as a delimiter within the group
lists).

5.1.2 Column Recognizer only
Let us consider here another mobile algorithm
recognizing columns spread throughout a grid, where
columns may be defined as groups in which every
object has no more that two direct neighbors, and
objects at the ends of the chain have only one
neighbor each. The algorithm below first finds
objects which may be potential ends of a chain, and
then tries to traverse the chain sequentially. For both
starting and internal nodes of the chain the same rule
applies: the node may be included into the growing
chain only if it has exactly one neighbor not included
into it yet. Taking into account that columns may be
chased from both their ends, whereas only one
solution should be registered, the algorithm will look
like:

Start in all grid nodes
If node is occupied, continue
Repeat

Append occupant's name to MOVINGJLIST
Do sequentially from current node

1) Hop to all neighbors
If node is occupied and

not in MOVING_LIST
Hop back to predecessor
Put the node's address into NEXT_HOP
Increment COUNTER and halt the branch

2) If COUNTER equals 1, hop by NEXT_HOP
If COUNTER equals 0 and first element
in MOVING_LIST is greater than its last
element, print MOVINGJJST and halt

endRepeat

a;b;k a;b;k;g a;b;k;g;n

group

Figure 11: Recognizing Distributed Objects

Starting from all grid nodes in parallel, and also
taking into account the necessity of individual nodal
variables for the each growing chain solution (Mf and
M are used), the corresponding WAVE code may be:

@#.Ni/=.l=Ni.
RP(FR&Ni.

SQ((#.Ni/=.FR::Ni==.#P.Mf=P.M+1.!3),).
((M==1.#Mf),
(M==.FR:-1<FR:1.T=Fr.!))))

The result will be:
a;b;k;g;n;h;e issued in "e", and d;l;i issued in "i"

(see Fig. 11). With a slight modification of this wave,
all results may be easily collected in the same node
(as it was done in the previous example).

Any other structures and images, both deterministic
and fuzzy, with any topologies and any distribution
between machines, may be efficiently recognized by
mobile wave agents recursively navigating the
modeled space in parallel.

5.2 Self-Recovering Topologies

The WAVE model dynamically creating and
processing arbitrary knowledge network topologies in
a distributed environment may be efficiently used for
organizing self-recovering control structures in which
arbitrary failures may be repaired by the remaining
parts of the control network. We will consider here a
simplified case where an arbitrary graph node may be
lost (together with all incident links), with the
neighbors of this node discovering the damage and
repairing it. After the repair, the recovered node is
becoming a full member of the topology again, i.e.
able to analyze the graph integrity and repair the
damaged neighbors in its turn.

609

The main idea is as follows. All nodes, regularly
contacting their neighbors, copy the corresponding
part of the topology, i.e. the star with themselves as
the center, and select one of their neighbors as a
"trustee", i.e. a node which will repair them (with the
incident links) in case of damage, forwarding the
copied star to the trustee. Each node periodically
contacts the nodes to which it is a trustee, and in case
of their absence creates the missing nodes with their
links to other nodes, the latter represented by their
addresses remembered in the recovery star.

It also loads a complete recovery program into the
recovered nodes, making them active again and able
to support their neighbors. All neighbors of the
recovered nodes are informed about the recovery act
and subsequently relaunch the copying of their stars
and updating their trustees, as the address of the
recovered node (assigned automatically by the
underlying system) may have changed. Fig. 12 shows
the situation when node "b" with its links to nodes
"a", "c", and "d" has been damaged and later repaired
by its trustee "a" which discovered the loss.
(Addresses of nodes are symbolically shown as their
names in square brackets.)

An active recovery template holding the copied star
for a node, regularly renewed by every node itself
(independently and in parallel with other nodes), is
forwarded to its neighboring trustee and executed in
the latter at regular intervals. It has the following
structure:

If the truster's node is missing
Create the node by its recorded name in the
place automatically offered by the system
or explicitly stated in the program

Do sequentially from the created node
a) Create links leading from the node

to other nodes represented by their addresses,
mark these nodes to be self-activated later

b) transfer into the created node a full
analysis & recovery procedure and activate it

WAVE code for this recovery template will be like:

OS(# node_name,
CR(@# node_name.

SQ((link_1 # node_address_1, ... ,
link_m # node_address_m. N=1),

(1I.FP))))

recovery template

CR(@#b.m#[a],p#[c],o#[d])

lost node (star)

"trustee" of b n (cj active nodes

Figure 12: Automatic Recovery of "b" by a Trustee

General organization of the whole program making
an arbitrary distributed graph self-repairing (any node
at a time) without any central resources is as follows:

Define MOVING_PROCEDURE as
Repeat
Do sequentially

1) If node is marked, remove the mark,
create or update the recovery template
for this node and record it in its trustee

2) Activate recovery templates for all nodes
for which the current node is a trustee

end MOVING.PROCEDURE
Start in all nodes, mark them, and
activate MOVING_PROCEDURE

The complete recovery WAVE program is as
follows:

FP=
'RP(SQ((N/=.N=.

SQ((Ns=.#.F=L&A%'#'.#P.Ns&F %','),
(F= 'OS(#' & C & ',CR(@#' & C &

'.SQ((' & Ns & '.N=1),(1!.FP))))'%.
Fc=C.RN(#).
OS((Nk::Fc==.Nk&Fc.Nt&F),

(Fk=Nk::Fc.Nt:Fk=F)))).!3),
(Nt.!3),))'.

@#.N=1.FP

Being applied to all nodes of an arbitrary graph in
parallel, it makes the graph undestroyable (with an
assumption of any one node failure at a time). The
program runs on any number of computers in a
network, where the repaired nodes may migrate
between them (eventually the whole self-recovering
topology may migrate in such a way in a distributed
environment after multiple node failures and
recoveries). The described self-recovery spatial

610

mobile algorithm is extendible to the case where
multiple nodes and links may be simultaneously
damaged, while the whole network may self-recover
in a completely distributed environment if at least a
single node remains alive. This self-recovery
technique, based on spreading of the recursive control
code, many be useful for CGF and live command &
control systems in many cases, for example, to
maintain their organizational patterns in highly
dynamic environments which can be damaged, say, in
combat operations.

6. Mobile Programming Applications

We provide here a summary of some tasks effectively
implemented in WAVE where mobile interpreted
code migrating between computers has shown clear
advantages before traditional stationary and compiled
techniques.

6.1 Deaggregated Groups Clashes

Two groups of entities having different sources and
destinations propagate independently through a large
distributed grid and accidentally intersect in space,
destroying each other's orders. The entities are not
allowed to occupy the same node of the grid, whereas
entities from one group (being "lightweight") keep a
small distance from each other, and from another
group (or "heavyweight") - a larger one. Lightweight
entities are deaggregated from a single unit and
interact with the heavyweight ones, aggregating later
again having moved through the heavyweight orders.
Each entity is represented by an independent WAVE
program (into which the original program replicates)
physically moving in a distributed environment.

6.2 Group Propagation Through a Maze

A group of entities generated at a source moves to a
destination and meets on its way an arbitrary complex
maze. Entities both compete for space and cooperate
to break deadlocks in narrow corridors collectively.
During their propagation the entities change between
moving through free space, while reducing the
distance to the destination, and going around walls.
Deadlocks are resolved by self-changing the entities'
functionality in a chain mode where, say, moving
clockwise becomes dominant. Eventually all entities
come to ihe proper destination.

6.3 Digging a Ditch Cooperatively

A group of entities (say, robots), starting from some
point, moves towards a certain place and collectively

digs a ditch of a given size. Entities both compete
with each other for space and work, and cooperate to
ensure taking all the soil out, regardless of computer
speeds and communication delays in a network. For
this task, as well as for the others mentioned in this
section, it is possible to create highly robust
distributed models by using mobile programs which
are free to move in space, can carry their states with
them, and make complex decisions themselves.

6.4 Predator-Prey Games in Networks

A model has been written and shown in WAVE
where a distributed computer network may be used
for the analysis of behavior and pursuit of multiple
moving objects in space. The objects may be injected
into the network model at any time and from any
nodes, and can have complex routes unknown in
advance (say, being alien cruise missiles). They may
be seen only from local nodes of a network, due to
the limitations of physical (for example, radar)
systems. Mobile waves in the implemented model
were able to discover such objects and follow them in
the network. The waves were also able to study
behavior of the objects, measure and average their
speeds throughout the network, subsequently
organizing interactions between different types of
objects with establishing dynamic predator-prey
relations between them, with a variety of possible
practical applications.

6.5 Dynamic Virtual Reality

Languages for representing 3D virtual reality in
computer networks are of growing popularity
nowadays, like VRML (Bell et. al. 1995). In an effort
to add dynamics to VRML scenes, a number of its
extensions have been developed. All these, however,
base the description of a scene on a rigid hierarchical
structure known as a "scene graph", which cannot be
effectively changed from within the VRML programs
as it reflects the structure of the program text.
Successful experiments have been made using
WAVE to provide fully distributed and highly
parallel multi-user processing of VRML scenes, parts
of which or the whole could be easily modified at
runtime by treating scene graphs as WAVE
knowledge networks, with parallel inference on them.
The languages like VRML supporting visual
representations of the modeled worlds and direct
communications with the users were used on the
surface of this semantic knowledge processing.

611

6.6 Distributed Dynamic Terrain

Standard visualization techniques have also been used
on top of the dynamic distributed semantic worlds
expressed in WAVE to model dynamic distributed
terrain. For example, a possible representation of the
terrain may be a regular grid again, each node
containing data such as height, surface type, etc. Such
a grid may be created in WAVE as a knowledge
network (as described in Section 5) and dynamically
distributed between any number of computers.
Mobile wave societies have been created to produce
on these grids actively changing shapes dynamically
spreading among computers (e.g. growing craters,
flooding, or "moving mountains"). This process is
fully open, i.e. any (multiple) agent activities in these
worlds can be started in parallel at any time, by
different users, and from different machines. Other
terrain representation, like, say, triangular networks
may also be used.

7. Conclusions

On the results of the experimental programming
presented and discussed in this paper we may say that
mobile agent technologies may provide realistic
models of collective behavior of autonomous entities
which may efficiently operate in arbitrary computer
networks, in a highly parallel mode, and without any
central resources.

Mobile programming may be efficiently used on
different levels of the description of a collective
behavior of computer generated forces, ranging from
elementary procedures of navigation and vision in a
distributed space, to pattern recognition and
assessment of dynamic situations distributed
throughout computer networks. Mobile programming
models may also exhibit high robustness and
possibility of full self-recovery after complex failures
in the underlying system software and hardware.

The obtained solutions for a discrete space as a
regular grid may be easily modified and generalized
for any other expression of a discrete or a combined
discrete-analog universe. Representing fully
distributed solutions, such mobile models may
effectively compete with groups of human-driven
(simulated or live) entities. They may also have a
straightforward implementation in multiple live
(including fully automatic) platforms, to be used on
battlefields.
In this paper we have demonstrated a variety of
mobile algorithms using the extremely compact
WAVE language which self-migrates and navigates in

networks. Any other mobile agent techniques, as well
as conventional languages like C, C++, Java, etc.,
may also be used for the expression of the presented
collective behavior ideas, however programs in them
may be up to 50-100 times longer and much more
complex. The latter is because WAVE embeds
special mechanisms of parallel navigation, interaction
and coordination in space, with generalization of the
distributed states (using tracks, for example) on a
very high level. Being directly supported by a
distributed WAVE interpreter, these features,
however, have to be explicitly programmed for each
application within most of the other techniques. As
some support to this statement may also be the fact
that the full machine programs for all discussed
parallel and distributed space navigation and
coordination mechanisms are included into this paper.

Further activities within the project described
envisage the design of an intelligent high-
performance wave chip from which any parallel and
distributed self-organizing control structures may be
networked, including the wireless teams of automatic
platforms propagating and collectively solving
complex problems in a distributed dynamic terrain.

8. Acknowledgments

This work has been partially funded by DRA
Farnborough, UK, within a research project
"Modeling Collective Behavior of Intelligent
Autonomous Agents in Advanced Combat
Operations". Special thanks are also due to James
Darling, Malcolm Corbin, Peter Borst and Hans-
Thomas Goetz for participation in this project and the
discussions of the presented ideas.

9. References

Appleby, S., and Steward, S. (1994). "Mobile
software agents for control in telecommunication
networks", BT Technol. J., Vol 12, No 2.

Atkinson, B., Brady, S., Gilbert, D., Levine, D.,
O'Connor, P., Osisek, D., Spagna, R., Wilson, L.
(1995). "IBM intelligent agents", Unicom Seminar
on Agent Software, London.

Bell, G., Parisi, A., Pesce, M. (1995). "The virtual
Reality Modeling Language. Version 1.0
Specification".

Gosling, J. , and McGilton, H. (1995). "The Java(tm)
Language Environment: A White Paper". Sun
Microsystems, Inc.

Gray, R.S., (1995). "Agent Tel: a transportable agent
system", In T. Finn and J. Mayfield, Eds, Proc.

612

CIKM'95 Workshop on Intelligent Information
agents, Baltimore, Maryland.

Johansen, D., van Renesse, R., Scheidner, F. B.
(1994). "Operating system support for mobile
agents", In Y. Labrou, T. Finin, Eds, Proc.
CIKM'94 Workshop on Intelligent Information
Agents, Gaithersburg, Maryland.

Lingnau, A., Drobnik, O. (1996). "Making mobile
agents communicate", Proc. etaCOM'96, Portland,
Oregon.

Di Marzo, G., Muhugusa, M., Tschudin, C., Harms,
J. (1995). "The messenger paradigm and its
implications on distributed systems", in Proc.
ICC'95 Workshop on Intelligent Computer
Communication.

Ordille, J. J. (1996). "When agents roam, who can
you trust", Proc. etaCOM'96, Portland, Oregon.

Sapaty, P. S. (1988). "WAVE-1: A new ideology of
parallel processing on graphs and networks",
Future Generations Computer Systems, vol. 4,
North-Holland.

Sapaty. P. S. (1996). "Mobile Processing in Open
Systems", To be publ. in Proc. HPDC-5
Symposium, IEEE, Syracuse, New York.

Sapaty, P. S., Corbin, M., Borst, P. M. (1994).
"Using the WAVE Paradigm for Modeling and
Control of Dynamic Multi-Agent Systems",
Artificial Life IV Conference, MIT, Cambridge.

Sapaty, P. S., and Borst, P. M. (1996). "WAVE:
Mobile Intelligence in open networks", Proc.
etaCOM'96, Portland, Oregon.

Sapaty, P. S., Corbin, M. J., Seidensticker, S.(1996)
"Mobile intelligence in distributed simulations",
Proc. 14th DIS Workshop, Orlando, FL.

Vuong, S., Ivanov, I. (1996). "Mobile intelligent
agent systems: WAVE vs. JAVA", Proc.
etaCOM'96, Portland, Oregon.

White, J. E. (1994). "Telescript technology. The
foundation for the electronic marketplace", White
paper. General Magic, Inc.

10. Author's Biography

Dr. Peter S. Sapaty is Reader in Distributed
Knowledge Processing at the Department of
Electronic and Electrical Engineering of the
University of Surrey, UK. His research interests
include theoretical models and algorithms for parallel
and distributed computing and control in open
computer networks and their applications in system
integration & management, artificial intelligence,
distributed interactive simulation,
telecommunications and dynamic virtual reality.

613

Authors List

Adamson, Janusz M. - 49, 237,493
Adkins, Michael L. - 313
Albright, Robert L. - 381
Alo', Richard A.-573
Baker, Damon D. - 373
Balzer, Robert-181
Banks, Sheila B. - 101
Baxter, Jeremy W. - 319
Beheshti, Moshen - 573
Berkowitz, Jack - 131
Bimson, Kent - 57
Bombardier, Kevin C. - 291
Brooks, WilbertJ.-127
Buettner, Cedric B.- 533, 555, 565
Calder, Robert B. - 19
Campbell, Chuck E. - 511
Carreiro, Richard L. - 19
Carver, Donald E. - 283
Chamberlain, Forrest - 533, 555, 565
Chandler, Edward V. - 355
Cisneros, Jaime - 255, 455
Clarkson, Jeff - 275
Cohen, Phil-217
Coradeschi, Silvia - 93
Coulter, Karen J. - 203
Courtemanche, Anthony J. - 57
Craft, Michael A. - 141
Creech, Ross C. - 67
D'Urso, Robert - 209
de Korvin, Andre - 573
Dean, Christopher - 171
Durfee, Edmund H. - 329
Dymond, Marguerite M. - 127
Evans, Alan B. - 533, 555, 565
Fields, Mary Anne - 583
Fineberg, Michael L. - 479
Fischer, Pete - 435
Fisher, Jonathan - 533
Fogel, Lawrence J. - 265
Franceschini, Derrick J. - 159
Franceschini, Robert W.- 159, 427

Frosch, Ken -441
Giguere, G.- 389
Goldman, Seth R. - 31
Gonzalez, Avelino - 171
Gratch, Jonathan - 37
Hartzog, Susan - 11
Hepplewhite, Richard T. - 319
Hieb, Michael R.-243,441
Howard, Martin D. - 419
Howard, Charles W. - 463
Howells, PeterB. - 389
Hu, Chenyi - 573
Hudson, Irwin L. - 347
Jackson, Greg - 79
Johnson, Thomas E. - 291
Jones, Randolph M. - 113
Joshi, K. G. - 237
Juliano, Michael - 209
Karlsson, Lars - 93
Karr, Clark R. - 141, 189, 255,455
Kelly, Paul - 337
Kenny, Patrick G. - 329
Kluge, Karl C. - 329
Koc, Nazim - 119
Kocabas, Sakir-119
Kraus, Matthew K. - 159
Kwak, Se-Hung - 397
Laird, John E. - 113,203
Landry, Jean Philippe - 503
Laviano, Vincent P. - 441
Lu, Howard - 533, 565
Lyons, Reba - 397
Mabius, Larry - 533
Marshall, Henry - 355
Mastroianni, George R. - 367
McCauley-Bell, Pamela - 455
McClellan, Gene E. - 479
McEnany, Brian R. - 355
McKenzie, Frederic - 171,511
Metzler,Ted- 151
Middleton, Victor E. - 367

614

'

Authors List

Miller, John - 79
Mullally, Daniel E. - 159
Mullis, Charles W. - 373
Naff, William T. - 283
Napravnik, Lee J. - 159
Nida. Jonathan C. - 427
Nielsen, Paul E. - 113
Nordyke, John - 151
Norwood, John D. - 303
O'Keefe, John A. - 463
Oviatt, Sharon -217
Owen, Mark - 265
Oztemel, Ercan - 119
Panagos, James N. - 19, 291
Parsons, George M. - 283
Parsons, Rebecca J. - 255
Paz, Ben - 347
Peacock, Jeffrey C. - 291
Penney, Richard W.-519
Peters, Steven D. - 479
Petty, Mikel D. - 67
Pittman, James A. - 217
Porto, Bill - 265
Powell, Edward - 209
Pratt, David R. - 3, 225
Pratt, Shirley - 225
Preston, Gary - 493
Pullen, J.Mark-243, 441
Rajput, Sumeet - 189, 255, 455
Reece, Douglas A. - 337, 409, 471, 545
Salisbury, Mamie R. - 11
Santos, Eugene - 101
Sapaty, Peter S. - 599
Saucier, Paul - 463
Schricker, Stephen A. - 427
Shumaker, Gregory - 511
Siksik, Dave N. - 503
Sirisaengataksin, Ongard - 573
Smith, Ira-217
Sousa, Mike - 533
Stanzione, Thomas - 533, 555, 565

Stober, David R. - 427
Stytz, Martin R. - 101
Tambe, Milind - 591
Tecuci, Gheorghe - 243
Thomas, Jr., John G. - 355
Tolley, Tracy R. - 159
Tome, Anders - 93
Tu, Hsiao-Kun - 545
Ullom, Lawrence - 435
Uludag, Mahmut- 119
Valade, S. - 503
Vrablik, Rob G. - 19
White, Elizabeth L. - 441
Wirthlin, Ralph - 409
Wise, Ben - 209
Yang, Tzu-Chieh-217
Yi, John - 275

615

