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PURPOSE 

Preface 

This report presents the proceedings of the Sixth 
Conference on Computer Generated Forces (CGF) 
and Behavioral Representation (BR). The 
Conference is scheduled from 23 - 25 July in 
Orlando, Florida and is hosted by the Institute for 
Simulation and Training (1ST). 1ST is a component 
of the Division of Sponsored Research at the 
University of Central Florida. 

OBJECTIVES 

The objectives of this conference are to: 
• Provide a forum for information exchange on 

CGF and BR modeling research. 
• Identify gaps in CGF and BR research. 
• Present upcoming research programs and 

opportunities. 
• Present technology demonstrations to the CGF 

and BR community. 

Attendees will have an opportunity to participate in 
discussions of Service User needs, CGF systems 
issues, and technical presentations on the components 
of a CGF. 

BACKGROUND 

Under the sponsorship of the Defense Modeling and 
Simulation Office (DMSO, the U.S. Army, 
Simulation, Training & Instrumentation Command 
(STRICOM), and the Institute for Simulation and 
Training of the University of Central Florida is 
conducting this Sixth Conference on CGF and BR. 

UCF/IST has hosted five previous CGF & BR 
symposia. An indication of the success of these 
interest group meetings is reflected in the steady 
attendance, rising from 84 attendees in Oct. 1990 to 
128 in May of 1991, to 310 in March of 1993, to 323 
in May of 1994 and 281 in May of 1995. 

Following the topics outlined in the Second BR 
symposium, 1ST is tasked by DMSO and STRICOM 
to host a continuing series of CGF and BR 
conferences. These conferences will provide a 
continuing ability to promote and focus research in 
this important area. Most attendees at previous 
conferences expressed an interest in continuing in a 
dialogue with developers on future requirements in 
order to justify their own internal research and 
development participation and commitment to this 
emerging technology. 

Other conference topics which merit consideration 
for resolution by the community of military, industry, 
and academic researchers in BR include: 
• Interoperability Standards for Behavioral 

Representation in Defense Simulations; 
• Validation, Verification and Accreditation of 

Behavioral Representation models; 
• Functional Spec ification rationale for Behavioral 

Representation models in Design, Testing and 
Training Simulations; 

• Interoperability issues for classified modeling in 
Behavioral Representation; 

• Behavioral Representation in Virtual Reality. 

GENERAL 

This report is presented in one volume. Wherever 
possible, the papers are arranged in the order of 
presentation. 

A list of attendees will be distributed to all registered 
attendees at the conclusion of the conference. 
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Next Generation Computer Generated Forces 

David R. Pratt 
Joint Simulation System Joint Program Office 

12249 Science Dr. Suite 260, Orlando, FL 32826 
prattd@stricom.army.mil 

1.   Abstract 

Computer Generated Forces (CGF) originated with 
the advent of the computer wargames to support train- 
ing and analysis. CGF really came into its own in 
the late eighties as part of the Simulation Networking 
(SIMNET) Semi-Automated Forces (SAF) program. 
Since then CGF have been an integral part of almost 
all Distributed Interactive Simulation (DIS) Exer- 
cises. The next major evolutionary step occurred 
when the Command Forces (CFOR) program incor- 
porated Command and Control capabilities. The 
CGF community is now ready for the next major step 
forward. In this paper we will present a brief taxon- 
omy of CGF and some of the inspirations and chal- 
lenges for the next generation of CGF systems. 

2.   Disclaimer 

This is an academic paper. The information and ideas 
are not part of - or used in the evaluation of the 
Joint Simulation System (JSIMS) Integration and 
Development Contractor Request For Proposal 
(RFP). 

3.   Introduction 

As the computer matured and uses beyond straight 
number crunching were found, the military developed 
Computer Aided Training (CAT) war gaming. These 
first wargames were the automated equivalent of the 
"Risk" strategy game. This formed the basis of the 
constructive combat models in the years to come. 
More than anything else they kept track of the 
strength and location of the forces and resolved the 
engagements the users instigated. From these simple 
games, the roots of Computer Generated Forces 
emerged. The forces represented in these games 
tended to be aggregated and useful only for high level 
staff training due to the low resolution and fidelity of 
the models. The resolution and fidelity were limited 
by the available hardware resources and training audi- 
ences needs. 

The major advance in CGF came about with the ad- 
vent of the microprocessor. This provided the founda- 
tion for the development of the first virtual simulation 
system. It was quickly realized that it was not cost 
effective to build simulators for all the Battlefield 

Operating Systems (BOS)1. To round out the simu- 
lator units and add the Opposing Force (OPFOR), 
the Semi-Automated Forces (SAF) systems were 
developed. Currently, SAF represents the state of the 
art in CGF. However, we are starting to see pushes 
toward the next major evolutionary generation of 
CGF, the Autonomous Forces. 

It is important to realize some of the tradeoffs that 
must be accomplished when developing a system. 
As shown in Figure 1, the developer and, in turn, the 
user must exercise tradeoffs between four important 
parameters. Resources - the number and type of peo- 
ple and equipment. Fidelity - How accurate are the 
models used to represent the cognitive and physical 
processes. Resolution - What level (platform, unit, 
etc.) is the battle space modeled. Execution Time - 
Speed of the model and execution of the model (fester 
/ slower than real time). The determination of these 
tradeoffs is dictated by the exercise. It is here where 
the generations of CGF fit in, each has a niche on the 
overall spectrum of CGF possibilities. 

Execution Time 

Resolution 

Boundary of 

Model Space 
Fidelity 

Resources held constant 

Figure 1: Tradeoffs in the Model Space 

We have organized this paper into roughly two parts. 
In the first part we take a look back and develop a 
taxonomy for  CGF systems. The second part looks 

1 More commonly called entities, but are sometimes 
represented as functional units. 



to the future and tries to characterize what the next 
generation of CGF is going to be like. It is important 
to note that when we look into the future we see what 
might be, not what will be. 

4.   Generations of CGF 

Like most taxonomies the categories can be parti- 
tioned in various ways and called different things. For 
the sake of this paper, we have chosen to develop a 
taxonomy based upon the cognitive processes used in 
the CGF systems. While this does not lend itself to a 
strict hierarchical breakdown, the generations can be 
seen in Table 1. This allows us to talk about general 
characteristics of each of the generations. One of the 
reasons why this is not a strict generational system is 
the current generation has not replaced the previous 
ones. This is due to the large number of requirements 
that the CGF systems fill. As a result, the genera- 
tions tend to fill a niche requirement even after they 
have been supplanted technically. 

Generation Cognitive Process 
1 None 
2 Detection and engagement 
3 Task interruption and execution 
4 Multilevel Command and Control 
5 Goal Selection and Learning 

Table I. The CGF Taxonomy 

4.1   First Generation 

The first generation of CGF is characterized by their 
complete lack of any cognitive process. As such, 
there is no deviation from the script that is laid down 
for them. While this might seem like a useless gen- 
eration of entities, in reality they are some of the 
most instrumental and common CGF Systems. The 
data logger playback and traffic generator systems are 
typical of this generation. The data logger allows a 
prerecorded exercise to be repeated, observed, and 
analyzed over and over again. This provides the basic 
functionality for an After Action Review system. The 
exercise is recorded as it occurs, then it is analyzed 
after it is over to provide insight into what happened. 
More complex scenarios can be constructed by laying 
down new track over the existing ones or splicing 
pieces of existing tracks together. Likewise, the very 
definitive tracks are used in analytic evaluations since 
the paths and timing can be held constant over a large 
number of runs. 

The noise generation systems are used to populate 
the battle field with a large number of low fidelity 
entities. The use of such a system is the track gen- 
erator for a J-STARS like system, or to test a net- 
work's connectivity and throughput. At the Naval 

Postgraduate School, we used a noise generator ex- 
tensively when giving demonstrations to kids. The 
entities provided ample simple targets for them to 
shoot at. 

The advantage to this generation of the CGF is that 
they are simple to use and require a minimum of re- 
sources to run. This allows a large number of enti- 
ties to be placed on the battlefield with a minimum of 
resources. 

4.2 Second Generation 

The second generation of CGF added the ability for 
the entities to execute simple reactive behaviors that 
do not interfere with the planned actions. These be- 
haviors are normally limited to detection, targeting, 
and engagement of hostile forces. The paths and 
routes are laid out by a user before or during the exer- 
cise; the reactive actions occur along these paths. 
Typical of these actions are for a unit to follow the 
route at all costs; the unit will charge on despite all 
of its peers getting killed, until it is killed, or until it 
reaches the end of the predetermined path. The com- 
plete lack of behavior reprogramming requires that the 
user pay close attention to the entities to ensure that 
they do not do something counter to common sense 
and doctrine. 

The advantages of the second generation CGF are 
exemplified in the majority of current constructive 
models. These models are used for both training and 
analytical purposes. They tend to be manpower in- 
tensive to set up and run, but they are predictable. 
Some of them, particularly those used for analytical 
purposes, have a batch capability that allow multiple 
runs without operator interaction to determine the 
solution space for a given set of parameters. The 
rigidness of the behaviors limits the number of vari- 
ables and aids in the analytic process. 

4.3 Third Generation 

With the advent of the virtual training systems came 
the realization that the aggregate Second Generation 
CGF systems could not adequately portray the indi- 
vidual entities on the battlefield. To satisfy this need 
the next generation of CGF was developed. This gen- 
eration, commonly called Semi-Automated Forces 
(SAF), are the result of this work. These systems are 
typically a collection of preprogrammed tasks. The 
tasks themselves are made up of either a rule-based or 
state machine-based systems. What makes these sim- 
ple behaviors so powerful is the nesting of the behav- 
iors into task frames. The task frames are in rum 
nested within other task frames. 

Missions are made up of a series of task hierarchies. 
This was a major advancement in the state of the art. 



The hierarchy of tasks allows for complex reactive 
behaviors by creating a task queue. While not able to 
do goal selection, the second generation of CGF is 
capable of building complex missions with compli- 
cated reactive behaviors. The creation of the task 
frame sequences allows the user to create complex 
missions for the entities and, in some cases, simple 
units. More complex unit relationships can be built 
by linking the frames together in parallel. 

4.4  Fourth Generation 

The Third Generation CGF was a great step forward 
in the emulation of platform level entities. What is 
lacking is a representation of the Command and Con- 
trol (C2) process. At its most simplistic level, the 
C2 process can be broken down in order to decide 
what the unit and subordinate units are suppose to 
do, and ensure it is carried out. While seemingly 
simple, it is one of the hardest tasks on the battle- 
field. The defining characteristic of the Fourth Genera- 
tion CGF is the ability to replicate this process. 

While there are many ways to insert C2 into an exer- 
cise, we shall limit our discussion to systems that 
represent the Headquarters unit in software. Even 
with this limitation there is a further limitation that 
we will make which is to ignore the majority, if not 
all, of the staff functions outside of the combat opera- 
tions. This is a very valid assumption since very few 
of the CGF systems support any of the staff functions. 
As a result, only the commander is represented. This 
reduces the problem space to having to model the 
decision, or cognitive, processes, and the communi- 
cation, or information gathering and order dissemina- 
tion, process. 

Typical of the Fourth Generation of CGF is 
DARPA's Command Forces (CFOR) program. 
CFOR models the C2 process by representing it as a 
series of interactions and behaviors of command enti- 
ties. This results in the C2 process being primarily 
an information flow process among command entities 
problems. To address this, the Command and Con- 
trol Simulation Interface Language (CCSIL) was cre- 
ated to represent the information exchanges between 
commanders. CCSIL messages are then passed 
through the command's communication structure to 
emulate the real battlefield information flow. This 
limits the information to those commanders who 
would really have it. 

Even with a realistic information content and flow, 
the decision making is done at the individual com- 
mand entities. These are the originator and recipient 
of the data. To simplify the generation of the orders 
and taskings from the user developed behaviors, 
CFOR uses a layered architecture where the develop- 
ers only concern themselves with the top layer, the 

Command Entity Application. The developer inter- 
acts with the lower layers by means of a well defined 
API. Once the orders are created and distributed they 
are interpreted by a Third Generation CGF system. In 
the case of the CFOR, Modular Semi-Automated 
Forces (ModSAF) executes the orders. 

5.  Where are we now? 

Roughly equal numbers of people cheer the success of 
the various CGF programs and deride them. The 
reason for this is quite simple, the systems are suffer- 
ing from their success. By this, we mean that the 
highly successful programs are being put in a situa- 
tion to do something that they were never designed 
to do, and are being criticized because they cannot 
perform the tasks with ease. Starting at the entity 
level, the state of CGF mirrors the current state cf 
Distributed Interactive Simulation (DIS), both work 
well at the company and below level. Once the entity 
counts and command structures start getting above 
that, they start to break down. From the aggregate 
level, it is the opposite. The higher level units can be 
reasonably portrayed, but the individual platforms 
have problems. To compensate for these problems we 
have seen a series of aggregate level models interfac- 
ing with the platform level models with varying de- 
grees of success. This is not necessarily a limitation 
on part of the systems' developers, rather it is a com- 
bination of modeling paradigms, resource limitations 
and funding, and research and development profiles. 

One of the major problems with the government fund- 
ing system is that it is much easier to incrementally 
add a capability to a system than it is to re-engineer 
it. This results in systems that are large and mono- 
lithic, since the funding agency "just wanted to add 
one feature, not redesign the system." Due to the 
growth pattern and architectural age, the current CGF 
system have become resource intensive since almost, 
if not all, of the capabilities are in every version of the 
system. 

One of the major problems of a system architecture 
having a long life span is the clean interfaces and 
modular nature of the first version erodes as features 
are added. This makes it very difficult to find the core 
features of the system and as a result the system be- 
comes hard to maintain and adapt. 

Those who have gotten us here have accomplished a 
Herculean task. In doing so, they have overcome a 
large number of hurdles. However, if we are to satisfy 
the customers who have grown to expect miracles, it 
is time to bring on the next generation. 



6.  Challenges for the Next Generations of CGF 

Given all that it has taken to get to where we are 
now, there is as much, if not more, to go before there 
is a CGF system that can repeatedly pass a Turing 
test. With that in mind, the remainder of this paper 
deals with some of the critical technologies that will 
have to define the next generation of the CGF. 

6.1   Changing and Adding Behaviors 

The true value of a CGF is the behaviors that are part 
of the model. Likewise, these are some of the hardest 
things to model. The reason for this is quite simple, 
it is very hard to express any cognitive process in a 
clear, unambiguous manner. Given that is the case, 
we are presented with the first of the major challenges 
- standardization and codification of processes and 
cognitive models. There are currently several tasks 
under way by the Joint Staff and the various services 
to do this. The outcome of these efforts could then be 
merged and encoded into a common conceptual 
model. It is this encoding, expressed in terms that 
the operators can understand and agree to, that could 
then be compiled to generate the behaviors of the 
entities on the battlefield. By compiling the behav- 
iors straight from the operators' task list to a runtime 
format, we can save significant time and resources in 
the generation, modification, and validation of the 
behaviors that make up the model. 

The development of a common compatible specifica- 
tion language resolves some of the needs of the be- 
havior generation of the next generation of CGF; 
however, it does not solve all the problems. The user 
of the CGF systems needs to be able to generate new 
behaviors to represent the unique training objectives 
of the particular exercise. The behaviors and taskings 
need to be tunable to represent the human conditions. 
If the CGF entity has been in combat for the last 
twenty-four hours, the decision cycle is going to be a 
little longer and they might not be as aggressive. 

6.2   Reduce Required Resources 

With a few exceptions, the CGF have been developed 
for use by dedicated operators or gaming cells. This 
is roughly equivalent of fighting the war through an 
interpreter. The next generation CGF system will 
interact directly with the war fighter using their or- 
ganic systems. This is a fairly broad statement that 
most people interpret to mean that the CGF will be 
controlled by the Command, Control, Communica- 
tion, Computer, and Intelligence (C4I) systems. 
That is a part of it, but there are many more means of 
communication that are used. To explore the new 
interface paradigms, the CGF developers are going to 

have to interact to new communities. For example, 
the use of speech as both an input and output mecha- 
nism is starting to reach a point of maturity where it 
is robust enough to be useful in a fielded system. 
This opens up the possibilities of the synthetic radio 
network where the software scout can send a spot 
report back to the human commander and the com- 
mander can give him a new tasking. In order for this 
to happen, natural language processing will have to 
evolve to a point where the messages can be parsed 
and understood with some degree of reliability. The 
new interfaces are not limited to speech; gestures and 
image understanding also play a part. In a field exer- 
cise, the commander or the operations staff will mark 
up a map as they develop the plan. After this, an op- 
erations order is developed and briefed. By under- 
standing the meaning of the overlays, the text of the 
order, and the gestures used in the briefing, the basis 
of the CGF operations of the exercise has been cre- 
ated. In small unit operations, the use of formal ges- 
tures, such as hand and arm signals, can represent a 
majority of the communication bandwidth between 
entities. Since one of the major functions of the CGF 
is to flesh out units, they should be able to take di- 
rection in the same manner as their real life counter- 
parts. 

The reduction in resources is not just in the set up on 
an exercise, the next generation runtime system has 
fundamentally changed from the current monolithic 
systems. The new systems take full advantage of the 
network computing paradigm that allows the process- 
ing of the data to migrate from one processor to an- 
other. The user's concern with the CGF is primarily 
- "is it doing what I want it to", not - "what is the 
CGF computing model and where are process execut- 
ing." This only becomes a concern when the CGF is 
not providing the user with the responses in a timely 
and realistic manner. Taking advantage of this, the 
next generation CGF is based on the paradigm that 
there are services that are available on the simulation 
network, so use them. The existence of processing 
modules allows the system to dynamically alter 
where computations are done. The ability to do load 
shedding and balancing is central to the systems abil- 
ity to reduce the number and power of machines re- 
quired for the system to operate efficiently. By 
segmenting the CGF tasks into functional modules, 
they can be optimized and parallelized to increase the 
flexibility and scalability of the system. This way if 
there are no ships in the scenario, that capability will 
not have to have resources allocated to it even though 
they will not be used. This takes the "Dial a War" 
concept used in DIS down to the functional level. 



6.3 Model Forces at a User Selected Level Of 
Resolution / Fidelity 

The current state of CGF lends itself to the large 
monolithic systems geared to a particular level of 
forces. The next generation system will be built 
much more along the lines of the layered system 
shown in Figure 2. The foundation of these systems 
will be a common set of core Support Services. 
These are the parts of a CGF system that are intro- 
duced as simulation artifacts rather than models cf 
real life processes. This includes such modules as the 
computer communication network interface (i.e. Run 
Time Infrastructure (RTI) interface), the process 
scheduler, and persistent object storage and manage- 
ment. This foundation is the most universal of the 
three layers and, as such, the most reusable. 

Corps 
Level 

Battalion 
Le\el 

Platform 
Level 

I |   Simulated Representation 

Common Services 

| |   Support Services 

Figure 2: Interactions of Modules in a multifidelity 
CGF System 

The remaining two layers of the next generation CGF 
system represent where the differentiation between 
CGF systems exists. At these layers, the Common 
Services and the Simulated Representation, the de- 
veloper has to make the tradeoffs shown in Figure 1. 
This leads to differing implementations of the same 
military entity. For example, if a CGF system needs 
to run on a single workstation much faster than real- 
time, it will have lower fidelity and resolution than 
one that runs across a network of machines in real- 
time. However, if both systems had a consistent 
interface to the object, it would then be possible to 
replace one object with the other. This, in turn, 
gives the user the ability to select the object that they 
need for a particular exercise from a repository. 

The next logical step is to have a single object that 
has multiple fidelities and resolutions internal to it. 
This would allow the ability of an object to be con- 
sistent within itself regardless of the echelon it is 
operating at. Using the terrain as an example, a plane 
is flying high overhead, it can see a large area of ter- 
rain, but at a fairly low level of resolution. As the 
plane comes in for a close air support mission the 
terrain changes resolution to match the fidelity needed 
for the ground targets to operate in. As the plane rolls 
out, the terrain is relaxed once again to allow the 
large area visualization. While the scenario above is 
done easily with level of detailing on a single station 
visualization system, it is much harder to do in a 
dynamic multiplayer system and in a system where 
the CGF has to reason about the terrain. 

The middle layer of Figure 2, Common Services, is 
where the echelon modeling starts to make a differ- 
ence in the types and the functionality of the modules 
in the simulation system. At this level the common 
services are those modules that help establish the 
common operating environment for the CGF, or are 
modules that apply across a wide range of CGF sys- 
tems. This layer is comprised of such modules as 
the Synthetic Environment, mobility models, Line of 
Sight (LoS) processes, and the interconnections to 
the user's organic equipment. 

The top layer contains the Simulated Representa- 
tions, or physical and cognitive processes, of the 
CGF. As in the layer below it, the objects are repre- 
sented by either a multifidelity object or a family of 
objects having the same interfaces. Once again, this 
allows the user to perform tradeoffs to compose the 
CGF mix that is appropriate for the exercise. How- 
ever, at this level of abstraction and encapsulation the 
consistent interfaces also allows for the insertion of 
the human player at various echelons. The big advan- 
tage of the multi-resolution object representation is 
that the units are internally consistent with them- 
selves. As a result the need for external aggregation / 
disaggregation no longer exists, since the object per- 
forms it internally. 

6.4  Goal and Mission Selection 

Perhaps, one of the greatest differences between hu- 
mans and the rest of the animal kingdom is our abil- 
ity to set goals, rationalize them, and make plans to 
achieve them. In order to reduce the number of con- 
trollers, the next generation CGF needs to have this 
capability as well. A goal, such as taking a hill, can 
be assigned to an object by internal or external forces. 
Externally, it can simply be told to take the hill. 
Internally, it has to rationalize the larger context be- 
fore it decides that taking the hill is to its advantage. 
The reasoning process is the hard part. To determine 
if the hill should be taken, several questions need to 



be answered and tradeoffs need to be done in the an- 
swer space. In many ways, this is what the battlefield 
commander does as a matter of course, set the goals 
of the unit in the context of the overall mission. 

Once the goal has been set, the next step is to plot 
out a mission, or how the goal is going to be 
achieved. Once again tradeoffs will have to be done. 
For example, the variables of expected number of 
friendly / enemy / neutral casualties, amount of terrain 
covered, types of equipment needed and available, 
possibility of future actions, etc.. all have to be con- 
sidered. The next generation of CGF will have to be 
able to make these types of determinations if we ex- 
pect them to represent forces at different levels while 
reducing the amount of human controllers. 

Perhaps the biggest challenge is the reprioritization of 
the goals and mission. Current Third Generation 
CGF Systems have the ability to interrupt what they 
are doing to respond to external stimuli, such as 
mine fields and air attacks. Once the stimuli induced 
event is over, the mine field breached or the planes fly 
off, the original mission resumes. What is lacking is 
the ability to reprogram the goal based upon what 
just happened. In the case of the air attack, the enemy 
now knows where the CGF units are, so surprise is 
lost. As a result, the mission parameters have 
changed and the tasking and goals need to reevalu- 
ated, and possibly altered, in light of the new infor- 
mation. 

6.5  Learning 

The final of the characteristics of the next generation 
of CGF system that we are going to discuss, know- 
ing that there are others, is the ability of the CGF to 
learn. If we take a look at the rationale for building 
the majority of the CGF programs, we see that they 
were used to support training. The training that has 
been done has been completely on the human side. 
At the end of the exercise, it is the same CGF as that 
which started the evolution. The CGF should be 
able to learn from the exercise as well. For example, 
if one of its units runs into a minefield and gets hit 
with artillery fire, it might be a coincidence. The 
second time it happened, the CGF should see a pat- 
tern developing. The third time the CGF hit a 
minefield, it should be expecting the artillery fire and 
react accordingly. The ability to find trends and ex- 
ploit them is a characteristic of a good commander. 
Likewise, repetitive actions and tactics allows the 
enemy to predict what is going to happen next and 
react to it. As the CGF assume the role of a battle- 
field commander, it needs to learn how to fight the 
war as well. 

7.   Conclusion 

In this paper, we have presented three key topics: (1) 
How we arrived at the current state of CGF; (2) The 
fact that there are niches for many different kinds of 
CGF and no one monolithic system can satisfy all 
needs; and (3) There is still a lot of work to be ac- 
complished, but we are poised to take the next great 
step. The next generation will be one step closer to 
the objective CGF system that is capable of plotting 
goals, strategies to achieve them, taking advantage of 
the opponent's mistakes, and exhibiting those human 
traits that make us individuals. At this point in 
time we will have a true Autonomous Force. 
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1. Abstract 

The command forces (CFOR) program is implement- 
ing a new aspect of warfare simulation: explicit 
modeling of command and control. The program 
adds three major elements to the corpus of combat 
simulation: (l)an architecture where software simu- 
lation of command and control interacts with the 
simulated battlefield through a set of common serv- 
ices; (2) a common language for information between 
and among command entities and human participants; 
and (3) a development strategy that integrates the 
efforts of multiple developers to produce a function- 
ing multi-service command forces simulation. 

The CFOR program has passed through the concept 
and planning phases and is being implemented. This 
paper presents a brief overview of the three major 
elements along with a description of the current status 
of the program and its near term objectives. 

2. Background 

The Command Forces (CFOR) project is a part of the 
Synthetic Theater of War (STOW) program, an Ad- 
vanced Concept Technology Demonstration (ACTD) 
that is jointly sponsored by the United States Atlantic 
Command (USACOM) and the Defense Advanced 
Research Projects Agency (DARPA). The STOW 
program is scheduled to support a USACOM exercise 
in 1997 where entities from each US armed service 
will interact with each other and with credible oppos- 
ing force objects in a virtual simulation environment. 
The STOW ACTD will be the first large-scale dem- 
onstration of a High Level Architecture (HLA) simu- 
lation Federation supported by the HLA's Run Time 
Infrastructure. 

The STOW ACTD requires the representation of 
larger-scale and more diversified military operations 
in virtual simulation. A key element in achieving this 
goal is the ability to represent both fighting forces and 
their commanders in software. CFOR extends the 
current entity level simulation architecture to incorpo- 

rate explicit, virtual representation of command 
nodes, C2 information exchange, and command deci- 
sion making. 

3. CFOR History 

The CFOR concept and program was born in the Fall 
of 1993 in response to DARPA's concern with the 
vertical scalability of entity-level simulations. 
DARPA's goal in the Advanced Distribution Simula- 
tion project was to provide a high resolution, high 
fidelity battlefield simulation that would support Joint 
Task Force level training. The modeling techniques 
being applied at that time did not seem likely to 
achieve realistic simulated behavior for larger and 
more complex force structures. After studying the 
problem we determined that the vertical scalability 
problem might be solved by focusing on the com- 
mand and control entities that synchronize and direct 
the activities of the forces applied in a battle. Our 
theory was that the basic actions of an individual tank 
or airplane are fairly straightforward. Complexity 
arises from the organization of platforms into units 
that can execute temporally and spatially sophisti- 
cated actions to accomplish goals. The key tasks of 
organizing platforms into units and directing and 
controlling their actions are accomplished in the real 
world by battlefield commanders. 

4. CFOR Contributions 

The CFOR program adds three major elements to the 
corpus of combat simulation. These three elements 
are described here. 

4.1 CFOR Architecture 

The CFOR architecture was devised to allow for ex- 
perimentation in the application of cognitive model- 
ing techniques to the problem of simulating battle- 
field commanders. The architecture is flexible in that 
it allows multiple developer teams to explore differ- 
ent technical approaches for developing sophisticated 
models of battlefield commanders and necessary de- 
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Figure 1: CFOR Technical Reference Model 

cision-makers and to link those models to the existing 
entity-level simulations. In the CFOR program, these 
models of commanders and decision-makers are 
called Command Entities. 

The CFOR architecture is portrayed best by the tech- 
nical reference model (TRM). This TRM (see Figure 
1) promotes interoperability and coherent C2 activity 
by providing a shared infrastructure, a common set of 
information and computing services, accessible 
through a well-defined applications interface. 

The TRM is composed of three layers: Application 
Layer, Information Services and Utilities Layer, and 
Baseline Infrastructure Layer. This layered approach 
provides three specific benefits: 1) it provides a 
means of centralizing control over the baseline of 
doctrinal knowledge needed by the command entity 
applications; 2) it reduces command entity develop- 
ers' efforts by providing common reusable software; 
and 3) it shelters the command entity developers from 
technology and functional enhancements in the base- 
line applications (e.g., ModSAF) and allows them to 
focus on command decision behavior. 

• The Command Entity Application layer is where 
the command decision-making processes reside. 

Command Entity Applications may be fully auto- 
mated software or C2 workstations operated by 
human command entities. All details about the ac- 
tual implementation of a software command entity 
are under the purview of the simulation developer 
organizations; they are free to implement their own 
approach to making command decisions. Likewise, 
the adaptation of C2 workstations to the CFOR ar- 
chitecture is dependent only on the interface speci- 
fication to selected modules with the Information 
Services layer. Workstation developers are free to 
decide how to display, massage, or augment the 
simulation data available via the Information Serv- 
ices layer. 

The Information Services layer contains services 
and utilities that provide the information needed to 
support command decisions. These services im- 
pose few restrictions on how to model the decision 
process. They avoid making any inferences or 
judgments that are the proper purview of command 
entities. 

Access to the services and utilities is specified by 
an Application Programmer's Interface (API) writ- 
ten in Interface Definition Language (IDL). 

Services available include the following: 

Platform Behaviors provide a generic interface 
to a command entity's physical representation on 
the battlefield. A command entity is associated 
with a vehicle or a set of vehicles (e.g., a command 
post). For example, an Army Company com- 
mander may ride in a tank, a Bradley Fighting Ve- 
hicle, a helicopter, or a HMMWV. Services pro- 
vided mimic the commander's ability to sense from 
his vehicle, move his vehicle around the battlefield, 
and employ his weapons. In the past two years the 
platform behaviors have been extended as the un- 
derlying application responsible for modeling the 
commander's vehicle has become more capable. 
For example, a command entity can now request in- 
formation about the atmospheric conditions ob- 
servable or discernible from his vehicle. 

Communications offer an application interface to 
Command and Control Simulation Interface Lan- 
guage (CCSIL) message utilities, (see below for a 
discussion of CCSIL) 

C2 Utilities represent the background knowledge 
and rote reasoning capability of the commander— 
"routine" knowledge, shared by every human com- 
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mander, that does not depend on subjective judg- 
ments. This is important for several reasons: 
• To prevent redundant and potentially inconsis- 

tent knowledge acquisition and engineering ef- 
forts by the command entity developers. 

• To help focus the activities of the command en- 
tity developers on addressing the difficult issues 
in modeling subjective, context-sensitive judg- 
ments and decisions. 

• To localize the encoding of doctrinal information 
within the CFOR family of application software 
for two reasons: 1) to facilitate CFOR testing and 
evaluation; and 2) to minimize the effort needed 
for future enhancements or modifications for 
particular exercises or scenarios. 

Figure 2: Activity Relationships 

Services include 
Environmental Utilities which provide the ability 
to compute mobility corridors, control measures, 
reverse slopes, routes, travel time and speed. 
(Environment includes terrain, ocean, and atmo- 
sphere.) 
Unit Info which provides access to static data 
about units (own and enemy) and the ability to 
make basic inferences (e.g., combat power) from 
the raw data. 
Missions and Tasks which provides doctrinal 
decision templates to help interpret an ordered 
mission and to devise a plan. 
Tactics, Techniques, Procedures which provides 
templates to help fill out orders and implement a 
plan. 

• The Baseline Infrastructure Layer contains the ba- 
sic platform representation and general DIS inter- 
face utilities. These capabilities are accessed by 
command entity applications indirectly through the 
Information Services layer. For the STOW ACTD 
the baseline infrastructure layer includes the four 
Synthetic Force applications: Army SF, Navy SF, 
MC SAF, and AFSAF. 

4.2 CCSIL 

The Command and Control Simulation Interface Lan- 
guage (CCSIL) is a special language for communicat- 
ing between and among command entities and small 
units of virtual platforms generated by computers for 
the STOW ACTD environment. CCSIL includes a 
set of messages and a vocabulary of military terms to 
fill out those messages. It was developed to facilitate 
interoperability between different implementations of 
command entities and platform entities (vehicles) in 
an HLA Federation. 

A common language designed for interpretation by 
software is needed to allow all three implementation 
approaches (workstation, automated command entity, 
and SAF) to work together in one environment. By 
using the structured format of CCSIL messages, hu- 
mans at real world command and control worksta- 
tions can send orders and directives to software 
command entities and expect them to react appropri- 
ately. Likewise, software command entities can ex- 
change messages with each other. 

Without a common language and communications 
services, every new element added to a Federation 
would need to be iteratively retrofitted to interoperate 
with every other existing element of the virtual simu- 
lation Federation. CCSIL serves as a unifying thread 
among diverse implementations of command entities, 
computer generated forces, and command and control 
workstations. 

4.3 CFOR Development Process 

The process for developing a fully operational CFOR 
system is depicted in Figure 2 and described in the 
following paragraphs. 

The process is being applied to each of the Services 
independently, although oversight over the entire 
program is being applied by the program System En- 
gineer. 

• Requirements Definition. The first step in imple- 
menting CFOR is deciding and documenting which 
C2 elements will be represented in simulation, 
which missions they should perform, and how each 
of them will be implemented (human, automated 
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commander, or SAF). This concept is developed in 
close coordination with Service representatives. 

Knowledge Acquisition. Experts in each field and 
for each military Service gather information about 
the command process. Particular emphasis is 
placed on planning, decision-making, monitoring, 
and revising plans. After initial gathering and 
documenting by contractors, the Services will as- 
sume responsibility for maintenance of the knowl- 
edge base. 

CCSIL Development. CCSIL is based on the prod- 
uct of knowledge acquisition—on the documented 
C2 process and the identity, format, and content of 
relevant message exchanges. The CCSIL devel- 
opment team works closely with the knowledge ac- 
quisition team to assure clarity and completeness. 

C2 Workstation Adaptation. Selected C4I Systems 
will be integrated with the Modular Reconfigurable 
C4I Interface (MRCI) to enable the warfighter to 
participate in the virtual simulation via their real 
world system. To the extent possible, the MRCI 
project is adopting the CCSIL message set as a 
starting point for defining the standard for informa- 
tion exchange between real world C4I devices and 
simulations. 

SAF Adaptation. ModSAF is being enhanced to 
model new vehicles and small units and to model 
new behaviors for entities and small units. This 
version of ModSAF is then adapted to properly 
carry out CCSIL orders and requests and to gener- 
ate CCSIL reports. The CCSIL adaptation has 
been integrated into the ModSAF 2.1 baseline. 

Command Entity Development. The CFOR pro- 
gram plan calls for multiple contractors, each de- 
veloping a software implementation of a command 
entity. For each command entity, the contractor 
builds the required mission behaviors. After a suit- 
able period of development, the implementations 
are evaluated. Subsequently, the developers con- 
tinue to deliver additional mission areas and new 
command entities on an approximate schedule of 
every three months until the 1997 demonstration. 

Infrastructure Building. The CFOR infrastructure 
software provides services to the command entity 
simulation and the real world C2 systems based on 
information provided by the knowledge acquisition 
process. An initial delivery of this software was 
made in January 1995; new versions are issued 

every one to three months, accommodating new 
CCSIL messages and modifications needed by 
Command Entity developers. 

• Testing and Integration. The nature of the CFOR 
program dictates steps beyond the normal testing 
process. Technical integration testing is needed to 
assure that all components communicate correctly. 
Also Command entity behavior must be evaluated 
against reasonable behavior standards, initially by 
the knowledge acquisition teams and ultimately by 
Service experts. 

5. CFOR Development Status 

The majority of the CFOR development work ac- 
complished to date has been in the Army domain. 
However, some work has been completed for the 
other military Services. Using the general outline 
described in Section 3 for the CFOR Development 
Process, the following paragraphs briefly describe 
the status of the CFOR effort. 

5.1 Army 

Army requirements definition started in October 
1993. Based on the requirement for the Army to 
simulate a heavy brigade as part of the Joint Task 
Force for STOW 97, we determined that the initial 
command entity to be developed would be an Ar- 
mor/Mech Company Team Commander. Additional 
command entities to be developed include the Com- 
pany FIST, the Company Trains Commander, the 
Engineer Platoon Leader, and the Battalion Com- 
mander. In order to support ground maneuver opera- 
tions for a Mech Heavy or Armor Heavy Brigade 
Task Force, the mission areas being developed are 
Attack, Defend (including defense in sector, defense 
of a battle position, and reserve unit in the defense), 
and Movement to Contact. The overall goal is to 
provide a combined arms capability with emphasis on 
maneuver and fire support. To address Rotary Wing 
Air (RWA) requirements, RWA Company and Battal- 
ion Commanders are being developed that will be 
capable of performing Attack, Reconnaissance, and 
Security missions. 

Logicon RDA has the responsibility of providing 
Army CFOR knowledge acquisition (KA). Based on 
the above requirements, Logicon's approach has been 
to identify key elements in the decision process based 
on Army doctrine. In particular, the KA team has 
used the Army Training Evaluation Program 
(ARTEP) collective tasks with particular attention to 
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C2. These individual ARTEP tasks combined with 
descriptions of higher order decision making to col- 
lectively provide the basis of the knowledge for the 
command entity development. 

The current CCSIL Ground Operations message set 
consists of about 39 messages that cover Orders and 
Directives, Unit Situation and Status Reports, Fire 
Support Messages, Engineer Messages, Air Defense 
Messages, and Combat Service Support Messages. 
Currently, the majority of messages being used fall 
into the Orders and Directives and Unit Situation and 
Status Reports categories. 

Science Applications International Corporation 
(SAIC) has the responsibility for developing Army 
Ground Maneuver command entities. Initial devel- 
opment started with the Company Team Commander 
in January 1995. SAIC demonstrated the Company 
Team Commander performing an Attack mission in 
the STOW Engineering Demonstration 1 in October 
1995. Since then, their focus has been on the Defend 
mission area, enhancing the Attack mission area, and 
on developing command entity to command entity 
communications so that eventually all companies will 
be able to operate and communicate effectively as 
part of a battalion. SAIC is also building the FIST 
command entity along with the interactions 
(guidance) that occur between the Company Team 
Commander and the FIST. SAIC initiated the Battal- 
ion Commander effort in May 1996. 

The SAIC team's approach to automated decision 
making is based upon a Constraint Satisfaction Tool. 
Planning and replanning is performed by a Combina- 
torial Constraint Satisfaction (CCS) procedure which 
acts as an interpreter for high-level behaviors ex- 
pressed as Constraint Sets (CS). Execution and 
monitoring is performed by Autonomous Control 
Logic (ACL+). 

Information Sciences Institute (ISI) has the respon- 
sibility for developing RWA commanders. The ini- 
tial effort to develop a RWA Company Commander 
capable of performing an Attack mission is well un- 
derway. Using the SOAR technology, ISI has built an 
RWA Company Commander that can plan for and 
direct a force of RWA pilots also built in SOAR. 

The Army CFOR testing methodology has been to 
test the command entities in several virtual Situa- 
tional Test Exercises (vSTXs) and virtual Field 
Training Exercises (vFTXs) which, collectively, 
make up the unit level testing of the command enti- 

ties. The main purpose of the vSTXs and vFTXs is to 
assess the reasonableness of behaviors within the 
ARTEP construct. 

SAIC's and ISI's Army command entities will be 
further tested in STOW's Combined Behaviors Test 1 
in July 1996. The Army portion of this multi-Service 
test will occur at the National Simulation Center 
(NSC) at Fort Leavenworth, Kansas. Army Service 
experts will be present to evaluate behaviors. 

5.2 Navy 

Navy CFOR requirements definition started in Febru- 
ary 1995 and continues. The Navy CFOR effort has 
focused on Navy CCSIL development in support of 
both sea and air operations. 

The current CCSIL Sea Operations message set con- 
sists of about a dozen messages that cover Sea Mis- 
sion Control, Anti-Air Warfare (AAW), and Anti- 
Surface Warfare (ASuW) components of the Navy's 
mission space. Additionally, Link 11, OTH Gold, 
and ATP-1 message sets have been identified. The 
Navy Synthetic Force entity development team has 
adapted their simulation to send and receive CCSIL 
messages and has developed an initial implementation 
of Link 11. 

The current CCSIL Air Operations message set, 
which supports both Navy and Air Force air opera- 
tions, consists of about 45 messages that cover Close 
Air Support (CAS) Mission Control, Brevity Codes, 
and Air Mission Control. 

BMH Associates has the responsibility of providing 
Navy KA. To provide a CCSIL capability within the 
Navy, BMH has developed two storyboards that will 
closely tie in sea assets being represented by Navy SF 
and air assets being represented by Soar Fixed Wing 
Air Intelligent Forces (IFOR). These two storyboards 
will demonstrate Close Air Support (CAS) and Anti- 
Air Warfare (AAW) missions. 

The Link 11 message as well as the CAS storyboard 
and its supporting messages will be tested in STOW's 
Combined Behaviors Test 1 in July 1996. The Naval 
sea component will be tested from NRaD in San Di- 
ego, California and the Air component will be tested 
from the WISSARD lab at NAS Oceana, Virginia. 
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5.3 Marine Corps 

Marine Corps CFOR requirements definition started 
in February 1995 and continues. Because a major 
thrust of the Marine Corps Synthetic Force program 
is to develop the Individual Combatant, we decided 
that the first command entities to be developed would 
be an Infantry Platoon Commander and an Infantry 
Company Commander. To support the Marine Corps 
role in STOW 97 in the areas of ground maneuver 
and amphibious operations, the mission areas being 
developed are attack, link-up, movement to contact, 
and hasty defend. The overall goal is to provide a 
combined arms capability with emphasis on being 
able to flexibly task organize Marine Corps assets 
into the force packages necessary for the mission. 

BMH has the responsibility of providing Marine 
Corps knowledge acquisition (KA). BMH's ap- 
proach has been to provide KA based upon Marine 
Corps doctrine. In particular, the Mission Perform- 
ance Standards (MPS) from the Marine Corps Com- 
bat Readiness Evaluation System (MCCRES) and the 
Battle Drills established by Marine Corps Order have 
been collectively used to provide a framework to 
guide development and testing. 

To support Dismounted Infantry, several of the mes- 
sages in the CCSIL Ground Operations message set 
were enhanced. New CCSIL tasks and enumerations 
were provided to support Marine Corps lifeforms and 
munitions. Currently, the majority of message types 
being used fall into the Orders and Directives and 
Unit and Status Reports categories. 

Hughes Research Laboratories (HRL) has the re- 
sponsibility for developing Marine Corps Infantry 
Platoon and Company Commanders. HRL's initial 
effort was in developing an Army Company Team 
Commander in 1995. This was done simultaneously 
with SAIC's Army Company Team Commander ef- 
fort in order to mitigate risk. HRL demonstrated the 
Company Team Commander performing an Attack 
mission in December 1995. Since January 1996, 
HRL has been entirely focused on developing the 
Marine Corps Infantry Platoon Commander. An at- 
tack mission capability will be provided first. HRL 
will soon begin developing the platoon commander to 
platoon commander interactions and communications 
so that the Company command entity can be realized. 

The HRL team calls their implementation the Ca- 
nonical Commander Model (CCM). The CCM com- 
prises several  distinct modules:     a mission ana- 

lyzer/planner, a friendly and enemy situation 
analyzer, and a terrain analyzer. A major technology 
component of the CCM is an inference engine that 
works over a set of fuzzy logic tables containing spe- 
cific military decision making knowledge. 

The unit level testing for the Marine Corps command 
entities will follow the methodology used in the Army 
program, namely to run through several virtual Situa- 
tional Test Exercises (vSTXs) and virtual Field 
Training Exercises (vFTXs) where reasonableness of 
behaviors will be assessed in accordance with Mis- 
sion Performance Standards (MPS) and the Battle 
Drills framework. 

HRL's Marine Corps command entities will be fur- 
ther tested in STOW's Combined Behaviors Test 1 in 
July 1996. The Marine Corps component of this test 
will occur at NRaD in San Diego, CA. In the future 
the Marine Corps CFOR work will be integrated into 
the LeatherNet facility which is being used for train- 
ing and mission rehearsal at 29 Palms, CA. 

5.4 Air Force 

Air Force CFOR requirements definition started in 
December 1994. The initial concept was to build an 
Airborne Control Element (ACE). However, this has 
been superseded by a requirement to develop an 
automated Wing Operations Center (aWOC). The 
automated WOC will receive an Air Tasking Order 
(ATO) in CCSIL and generate most of the necessary 
data to launch simulated aircraft on missions. This 
data will be forwarded to the Soar exercise editor and 
stored in a database accessed by the Soar FWA pilot 
entities. We expect that the aWOC will have a limited 
capability and that a human will be required to pro- 
vide the detailed routing information needed to exe- 
cute a mission. However, this initial capability will 
greatly ease the burden of the STOW operators in 
sortie generation. This effort is expected to start in 
July 1996. 

Many of the existing CCSIL Air Operations messages 
will be reused to support the exchange of C2 infor- 
mation between Soar FWA pilots and other command 
decision makers that may be represented in software 
or played by humans, such as Forward Air Control- 
lers. 

6. Summary 

CFOR is implementing explicit modeling of com- 
mand and control by adding three major elements to 
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combat simulation: (l)an architecture where simula- 
tion of command and control interacts through a set 
of common services; (2) a common language for in- 
formation among command entities and human par- 
ticipants; and (3) a development strategy to integrate 
the efforts of multiple developers to produce a multi- 
service command forces simulation. 

CFOR has completed the concept and planning 
phases and is being implemented. This paper pre- 
sented an overview of the three CFOR elements and a 
description of the status of the program and its near 
term objectives. 
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Representing command and control decision-making 
in software is a critical and challenging task 
confronting the simulation community. As the focus 
of Distributed Interactive Simulation shifts towards 
larger-scale, higher-fidelity exercises, there is an 
increased requirement for software implementations of 
intelligent command entities at higher-level military 
echelons. Current computer generated forces systems 
have achieved the reasonable simulation of individual 
platforms and small units. The Command Forces 
project endeavors to realistically model the complex 
command and control decision-making process of 
higher-level unit (i.e. company and above) 
commanders in the military hierarchy. 

This paper presents the software architecture of a 
CFOR command entity which has been designed and 
implemented to achieve the goal of simulating this 
high-level decision-making behavior. The first 
application of this architecture is aimed at modeling 
the behavior of various Army commanders at the 
company and battalion levels. Descriptions of the 
key components of the system and details of the 
interactions which occur among these components are 
presented. 

2. CFOR   Overview 

The Command Forces (CFOR) project is a part of the 
Synthetic Theater of War (STOW) program, an 
Advanced Concept Technology Demonstration 
(ACTD) that  is   jointly   sponsored   by   the   U.S. 

Atlantic Command (USACOM) and the Defense 
Advanced Research Projects Agency (DARPA). The 
STOW ACTD is focused on training commanders at 
multiple levels up to the joint task force level, and 
therefore requires the ability to represent large-scale, 
diversified military operations in simulation. A key 
element in achieving this goal is the ability to 
represent both fighting forces and their commanders 
in software. Current computer generated forces 
(CGF) systems provide the simulation of individual 
platforms and small units. CFOR extends the basic 
DIS architecture to incorporate explicit, virtual 
representation of command nodes, command and 
control (C2) information exchange, and command 
decision-making. 

The CFOR concept and technical reference model are 
described in full detail in [Salisbury, et al, 1995]. 
This paper focuses on the software architecture of a 
simulated commander, called a Command Entity 
(CE), which is capable of performing the planning, 
execution, tracking, and replanning of missions for 
various military commanders. 

3. CE  Application   Areas 

The CE architecture presented below has been 
designed to support the modeling of C2 decision- 
making for commanders at various echelon levels in 
multiple service areas. The initial application of this 
architecture has been the modeling of an Army Armor 
Company Team commander. 
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3.1   Army        Armor        Company 
Command   Entity   Capabilities 

Team 

The Army CFOR program has devised a CE 
capability assessment model in terms of Mission, 
Enemy, Terrain, Troops, and Time Available (METT- 
T). This model is used to define the behavioral 
capabilities of the CFOR CE, and as a basis for 
determining test plans for the CE. The missions and 
behaviors which the CE can perform are based on 
published Army doctrine, and are traceable back to the 
Army Training and Evaluation Program (ARTEP) 
tasks defined for a given unit type. 

Using the METT-T model, the capabilities of the 
Army Armor Company Team CE include: 

Mission: The CE plans and executes offensive and 
defensive missions as part of a battalion task force. It 
plans and performs attack, defend, and reserve 
missions utilizing the appropriate company-level 
ARTEP tasks. It plans and performs explicit tasks 
which were specified in the battalion operations order, 
and also identifies, plans, and performs implicit tasks 
which were not specified by the battalion, but are 
required for successful execution of the mission. It 
properly handles a variety of unplanned events, such 
as encountering unexpected enemy ground or air units 
and encountering obstacles. 

Enemy: The CE incorporates expected and actual 
enemy units and enemy force ratios into its planning 
and execution. 

Terrain: The CE operates on open, desert terrain and 
rolling, wooded terrain. It incorporates expected 
visibility and mobility into its planning process. 

Troops: The CE constructs plans for an Armor 
Company Team, which can consist of any mix of 
tank and mechanized infantry platoons, ranging from 
two to five platoons. 

Time Available: The CE considers the time available 
to perform its mission during the planning process. 
This affects various factors of how the mission can be 
accomplished, such as route selection. 

4. Command  Entity  Architecture 

A high-level block diagram of the required 
components for a CFOR simulation is shown in 
Figure 1. Within the context of this architecture, the 

CE software exists as a separate process which 
models the C2 decision-making of one or more 
simulated commanders. 

In addition to the CE simulation process, Figure 1 
shows a higher echelon commander (either human or 
simulated) which must be present to perform the role 
of the commander to which the CE is responsible. 
The role of this higher echelon commander may be 
filled by a human at a C2 workstation or another 
CFOR CE simulation process. Currently, this role 
is filled by a human operating a menu-driven C2 
interface. The primary function of this interface is to 
allow the operator to send and receive messages on 
simulated radio networks. 

Figure 1 also shows a small unit forces simulation 
which must be present to perform the simulation of 
the subordinate units and entities which the CE is 
commanding. The role of these units may be filled 
by any CGF system which fully supports the CFOR 
applications programmer interface (API). Currently, 
this role is filled by a modified version of the 
Modular Semi-Automated Forces (ModSAF) 
program, called Adapted ModSAF, which fully 
supports the CFOR API. 

All communication between the CE, higher echelon 
commander, and small unit forces is via the 
Command and Control Simulation Interface Language 
(CCSIL). CCSIL includes a set of messages and a 
vocabulary of military terms for filling out those 
messages. The definition and implementation of the 
CCSIL message set allows different implementations 
of CE's, C2 workstations, and CGF systems to 
communicate via a common language. CCSIL 
messages are sent in DIS signal PDUs over simulated 
radio networks. Examples of Army CCSIL 
messages are the Operations Order, Fragmentary 
Order, Situation Report, and Status Report. 

As shown in Figure 1, the CE application interfaces 
with the CFOR infrastructure utilities via direct 
function calls and Remote Procedure Calls (RPC). 
The C2 Utilities and Environmental Utilities are 
libraries which are linked directly into the CE 
application and are therefore invoked via direct 
function calls. The Communications and Platform 
Behavior Services are libraries which are linked into 
the Adapted ModSAF and are therefore invoked via 
RPC. 

20 



Higher Echelon 
Commander's C2 

Workstation 

COMMAND ENTITY 

CFOR Infrastructure 
"~T T~" 

C2    | Environmental |    RPC 
Utilities       Utilities Interface 

RPC 

RPC 

Small Unit Forces 
Simulation 

Platform Behavior Services 

Communications Services 

CCSIL CCSIL 

DIS NETWORK 

Figure 1: CFOR Simulation Component Block-Diagram 

The architecture of the CE software has been designed 
to support the modeling of command and control 
decision-making for software commanders at multiple 
echelon levels in various service areas. It is organized 
such that general knowledge is contained in generic 
base classes and domain-specific knowledge is isolated 
in well-defined derived classes. This provides for 
maximum reuse of previously developed software, 
while not prohibiting implementations where specific 
knowledge is needed. The CE is designed utilizing an 
object-oriented methodology, and the software is 
implemented in C++. A high-level, object-oriented 
component diagram of the CE is shown in Figure 2. 
Figure 2 also shows critical data flows between the 
key components. 

The following sections describe each of the major CE 
components in detail. These descriptions may have 
an Army bias, as that is the first application area to 
which this architecture has been applied, but the 
components presented are applicable to a CE in any 
service area. 

4.1   Commander  Class 

A single CE process is capable of simulating 
multiple     commanders    simultaneously. The 
commanders simulated can be of similar or different 
echelons and roles. For example, multiple armor 
company team  commanders,  or a mix  of armor 

company team and fire support team commanders, can 
be simulated in a single process. 

This capability is facilitated by encapsulating all of 
the components shown in Figure 2 inside of a 
commander class, and instantiating a separate 
commander object for each commander to be 
simulated. A     non-interruptible,     round-robin 
scheduling mechanism is used to give each 
commander object its slice of processor time. In 
order to ensure that each commander object gets its 
slice of the processor in a timely fashion, the planner 
class is constructed such that it returns control to the 
main scheduling loop if it utilizes the processor for 
more than a pre-specified amount of time. This is 
essential since the construction of an initial plan can 
take on the order of a few minutes. If the system 
allowed a single commander's planning to proceed 
uninterrupted for several minutes, it would cause all 
of the commanders being simulated to lose touch 
with the state of the simulated world. The approach 
implemented ensures that each commander, including 
the one which is performing the complex planning, 
will have timely access to events occurring in the 
simulated world. 

The base commander class has derived classes for each 
of the different types of commanders which the CE 
application can simulate. Most components shown 
in Figure 2 also have similar derived classes. 
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4.2     External  Communications 

The CE does not have a direct connection to the DIS 
network, and therefore does not read any DIS PDUs. 
Instead, it has two mechanisms for effecting changes 
in the simulated world and obtaining information 
about the entities and environment in the simulated 
world: 1) commands and queries of the platform, 
weapons, and sensors of the commander's vehicle, and 
2) transmission and receipt of CCSIL messages. 
Both of these interfaces are implemented via RPC 
from the CE application to the CFOR infrastructure 
services. 

The CE utilizes the Platform Behavior Service 
component of the CFOR infrastructure to interface to 
its own vehicle. The CE moves its vehicle, employs 
its weapons, and controls its sensors via this 
interface. This interface is also utilized by the CE to 
find out its location, speed, weapon status, and sensor 
status. 

The CE communicates with other entities in the 
simulation via CCSIL messages. It receives CCSIL 
orders and intelligence messages from its higher 
echelon commander, and sends CCSIL situation and 
status reports to its higher echelon commander on a 
simulated radio network. It sends CCSIL orders to its 
subordinate units, and receives CCSIL situation and 
status reports from its subordinate units on a separate 
simulated radio network. 

Each CCSIL message is a well-defined data structure. 
However, many CCSIL messages are complex data 
structures which contain sub-structures, optional 
fields, and variable length lists. In order to ease 
access to incoming CCSIL messages and 
construction of outgoing CCSIL messages, all of the 
CCSIL structures and messages have been 
encapsulated into C++ classes in the CE software. 
Each C++ CCSIL class has methods to access and set 
all of the CCSIL structures and fields within that 
CCSIL structure. Therefore, the CE components 
which access and manipulate CCSIL information 
never operate directly in the CCSIL message format. 
Instead these components access and manipulate the 
C++ CCSIL class objects. Each C++ CCSIL class 
has a method which converts an incoming CCSIL 
structure into its corresponding CCSIL C++ object. 
Additionally, each C++ CCSIL class has a method 
which converts it into its corresponding CCSIL 
structure.   This encapsulation approach provides the 

advantages of object-oriented programming for the 
entire CCSIL message set. 

4.3   Event  Processor 

Each CE's execution thread is event-driven. The 
individual components of a command entity are 
responsible for identifying and registering all Events 
(discussed below) that are potentially relevant to their 
operation. 

The Event Processor maintains a queue of all such 
events, and is responsible for identifying when any 
event on the queue has occurred, and triggering the 
desired response. 

4.3.1   Events 

Events are objects that define something that can 
occur in the system that requires that the system react 
in some way. They are implemented as instances of 
classes derived from the abstract Event base class. 
The Event base class defines a generic interface for 
each event, which includes three critical components: 
how to determine whether the event has occurred; 
what, if anything, is expected to be true about the 
state of the world when it occurs; and what to do 
when it has occurred. 

Each subclass of Event defines its own Boolean 
"Occurred" function, which returns true when the 
conditions for the event have been met, and false 
when they have not. This function can then be 
queried by the Event Processor to determine when the 
event has occurred. For example, the "CommEV" 
event is considered to have occurred whenever a new 
CCSIL communication is received. 

4.3.1.1   Expectations 

Each event has associated with it a list of zero or 
more Expectations. Each expectation encodes the 
desired set of values for some characteristic of the 
world when an event occurs. For example, if the 
event is "Unit A crossed phase line Alpha," an 
expectation might be that this occurred before time T. 
Expectations, which are primarily used by the 
Tracker, are used to determine whether the mission is 
progressing according to the plan, based on a 
mission-specific set of parameters and tolerances. 
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4.3.1.2   Callbacks 

Each event also contains a list of zero or more 
Callbacks. Each callback object encapsulates an 
action which should take place when the event occurs, 
such as informing the Tracker when a subordinate has 
crossed a phase line. As with events and 
expectations, callbacks are implemented using a base 
class which defines a generic interface, and subclasses 
which define actual functionality. The Event 
Processor is responsible for triggering each callback 
of each event that occurs. Note, however, that the 
functionality of each individual callback is completely 
hidden from the Event Processor. 

4.3.2  CCSIL Message List 

Incoming communications, representing orders and 
intelligence from the CE's superior, as well as status 
and situation reports from the CE's subordinates, 
account for many of the events handled within each 
CE. In order to efficiently handle this message 
traffic, the Event Processor is responsible for pulling 
messages off of the incoming communications queue, 
and storing them in a manner that renders them easily 
accessible by interested events. 

4.4   Situational   Awareness 

In order for the CE to perform its mission planning, 
execution, and tracking, it must have a representation 
of its perception of the current state of the world. 
The Situational Awareness (SA) class provides this 
representation. In the Army context, C2 decision- 
making is performed based on the factors of Mission, 
Enemy, Terrain, Troops, and Time Available (METT- 
T). The SA class performs processing to build and 
store data regarding mission, enemy, troops, and time 
available. Due to the complexity of processing and 
the volume of data required for terrain processing, the 
CE architecture represents processing and knowledge 
of the terrain as a separate class, which is described 
below. 

SA processes information from multiple sources, 
including CCSIL orders and intelligence messages 
from the higher echelon commander, CCSIL reports 
from subordinate units, and sensory data from queries 
via the platform behavior services. It uses this 
reported and sensed information directly, and also 
generates derived data from this information, to build 
the picture of the commander's view of the world. 

SA registers with the Event Processor to receive all 
CCSIL messages which are sent on the commander's 
radio nets. As it receives each message, it extracts 
the information relevant to the commander and 
updates the corresponding SA data. SA also 
periodically queries the CFOR platform behavior 
services to obtain sensory information from the 
commander's vehicle and updates this data in the SA 
state. 

A difficult problem encountered when building up 
state information from multiple sources is the proper 
handling of repeated or contradictory data in reports. 
SA handles this to some degree by performing simple 
fusing of data from multiple reporting sources, such 
as merging spot reports from multiple subordinates 
which overlap on the same enemy units. SA does 
not currently implement a sophisticated sensor data 
fusion algorithm, but the CE architecture supports 
the implementation of one. 

In order to allow other CE component objects to 
retrieve SA state data, SA provides accessor functions 
to all of its information. To improve efficiency and 
reduce the computational load, the calculation of 
derived information in SA is mostly demand-driven; 
that is, it is only computed when asked for. 

Examples of the types of information contained in 
SA include: the mission objective(s); location, 
strength, and type of known and suspected enemy 
units; location, strength, and composition of 
subordinate and peer units; location and type of all 
battalion and company control measures; location of 
known obstacles; and time remaining to complete the 
current mission. 

4.5   Terrain and Environment 

Terrain analysis is one of the most complex and 
critical components involved in C2 decision-making. 
In order for the CE to perform effective mission 
planning, execution, and tracking, it must continually 
evaluate the terrain and environment in which it is 
operating. The Terrain classes provide services to aid 
this evaluation and build the representation of the 
commander's perception of the environment. 

The services provided by the Terrain classes are built 
on top of the CFOR Infrastructure's Environmental 
Utilities (EU) library. This library contains a set of 
basic terrain related services,  and  is   based on   a 
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tessellation of the underlying polygonal terrain. The 
EU utilizes this terrain tessellation to provide services 
which perform analysis of trafficability, fields of fire, 
cover and concealment, and line of sight. In addition, 
the EU provides services which allow access to the 
basic terrain data such as elevation, soil type, feature 
type, and coordinates. 

The Terrain classes utilize the EU library to provide 
services to other CE components for analyzing the 
terrain at the individual vehicle and aggregate unit 
level. These services are used primarily by the 
constraint sets (described below) in the process of 
constructing a plan. 

The Terrain services utilize information from SA to 
support their analysis. For example, known and 
suspected enemy locations are needed to generate 
covered and concealed routes, and a unit's 
composition is needed to compute the size of a battle 
position. In addition, the Terrain services utilize 
information from the CFOR Infrastructure's C2 
utilities to support their analysis. For example, the 
range of a unit's weapons system is needed to 
generate attack by fire positions. 

The services provided by the Terrain classes adhere to 
all control measures which have been specified in the 
order by the commander's higher echelon. This 
includes such control measures as unit boundaries, 
axes of advance, routes, assembly areas, and battle 
positions. In addition, known obstacles and other no- 
go areas are considered by these services. For 
example, if a unit is to defend in sector, then the 
sector boundaries must be honored in the generation 
of defensive battle positions and routes to subsequent 
battle positions. 

Examples of terrain analysis services provided by the 
Terrain classes are the computation of: mobility 
corridors, based upon a unit's composition; avenues 
of approach, based upon an objective, a unit's 
boundary lines, and a unit's composition; routes, 
based upon enemy locations, a unit's composition, 
and time available to traverse the route; overwatch 
positions, based upon an objective location, enemy 
locations, weapons ranges, and a unit's composition; 
defensive battle positions, based upon an objective 
location, enemy locations, weapons ranges, and a 
unit's composition; assault positions, based upon an 
objective location, enemy locations, and a unit's 
composition; and attack positions, based upon a line 
of departure, objective location, enemy locations, and 
a unit's composition. 

4.6   Planner 

The Planner is the CE component which generates, 
evaluates, and selects a course of action that satisfies 
the mission objectives within the guidance specified 
by the higher echelon commander. It is invoked 
when a new order is received, or whenever the 
situation warrants a change in the course of action. 
The CE software uses an approach based upon 
constraint satisfaction to perform its planning. The 
following sections describe the critical components 
which are involved in the planning process. 

4.6.1   Constraint Sets 

The objects in the CE software which encode all of 
the knowledge required to plan a given task are called 
Constraint Sets (CS). Each CS is a C++ class which 
specifies how to make a coherent set of decisions. 
For a given type of operation, a CS specifies the 
relevant decisions to be made and generates options 
for each. The decisions can be sequential or parallel, 
and in any order. In contrast, finite state machines 
specify how to perform a temporal sequence of 
actions. The CE software utilizes two types of CSs: 
component CSs and composite CSs. 

A component CS is used to evaluate alternatives and 
generate a feasible solution to an individual 
component of an overall mission. Each component 
CS contains specific knowledge to generate a plan for 
a particular task. There are many component CSs 
defined in the CE software, with each one typically 
corresponding to a single ARTEP task. For instance, 
there is a component CS which plans unit-level 
tactical movements, and another component CS 
which plans obstacle breaches. An instantiated 
component CS is a plan for executing a specific 
behavior given the current or expected tactical 
situation. 

A composite CS is a collection of component CSs 
which are dynamically linked at run-time to form a 
mission. There is only one composite CS defined in 
the CE software, and it has no task-specific 
knowledge associated with it. Each mission will 
construct and generate a unique composite CS at run- 
time, which is capable of planning the mission at 
hand. The component CSs in the composite CS are 
linked together spatially by each of their start and end 
points. The composite CS also handles the 
allocation of mission-critical resources, such as time 
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and forces, across the component CSs. An 
instantiated composite CS is a plan for executing an 
entire mission over the course of time and space. 

Both component and composite CSs have a common 
set of characteristics, as they are derived from a base 
class CS. All CSs have four basic components: a 
set of minimum input variables, a set of derived 
variables, generator functions, and prioritizer 
functions. 

The set of minimum input variables are those pieces 
of information which are required to construct a plan 
for the given CS, and are supplied to the CS when it 
is initially constructed. These typically include the 
unit's name, the unit's composition, the known and 
suspected enemy locations, the start and end points, 
and the current order from the higher echelon 
commander. 

The derived variables are those pieces of information 
which are computed by the constraint set. Each 
derived variable corresponds to a tactical choice which 
must be made by the CE. Once a set of consistent 
values have been generated for all derived variables in 
a CS, the CS represents a feasible plan for 
accomplishing the task at hand and is said to be 
instantiated. Examples of derived variables are the 
allocation of subordinate forces, route selections, 
tactical position selections, formation selections, and 
speed selections. The derived variables are ordered 
such that a given derived variable depends only on the 
previous derived variables. 

Each derived variable has a corresponding generator 
function. A generator function produces a list of 
candidate values for a given derived variable. The 
values generated are consistent with the choices for 
previous derived variables and with the current battle 
state. Each value represents a different option for 
satisfying that derived variable. A variable can be of 
a simple type (such as a floating point number 
representing a speed) or a complex type (such as 
another constraint set). The generators invoke terrain 
analysis and situational awareness services as needed 
to support relevant decisions. 

Each derived variable may also have a corresponding 
prioritizer function. A prioritizer function orders the 
values generated for a given derived variable in a best- 
first or least-constraining order. 

As mentioned above, in some CSs a derived variable 
may be another CS, which returns different feasible 

solutions to its parent CS. In this case, the CS is 
itself a generator function since it is dynamically 
generating multiple instances of itself as candidate 
values for the current variable. 

The process of instantiating a constraint set involves 
exercising the generator and prioritizer functions until 
a consistent set of values for all derived variables has 
been found (e.g. a feasible set of firing positions, 
routes, etc. for an assault; a set of formations, sub- 
routes, and overwatch positions for a move). To 
develop a CS, a software engineer must specify in 
code the relevant variables, in what order they are to 
be matched, on which previous variables they are to 
depend, and how to generate candidate values for a 
variable given the current values of previous variables 
(if any). 

4.6.2 Order to Constraint Set Decomposition 

The CE software must examine the current order to 
determine what component CSs are needed to fully 
accomplish a given mission in accordance with the 
higher echelon commander's guidance. This function 
is performed in the CE by a class which decomposes 
CCSIL orders into an appropriate composite CS. 

This decomposition software is based on concepts 
developed by Logicon RDA which break down Army 
missions into categories of tasks which can be 
performed to accomplish each mission type [Kleiner, 
et al, 1995]. Each mission which the CE can 
perform has a set of applicable ARTEP tasks which 
fall into one of the following categories: Achieve 
Tactical Disposition, Reduce Enemy Posture, 
Achieve Culminating Task, Consolidate, and Perform 
Situational Interrupt. 

The CE software utilizes these concepts to decide 
which tasks, both explicit in the order and implied by 
the order, are to be performed to successfully execute 
the mission. It then maps these tasks into their 
corresponding component CSs and constructs a 
composite CS which contains these component CSs. 

4.6.3 Constraint Satisfaction Tool Planner 

4.6.3.1.1   Combinatorial Constraint Satisfaction 

The Combinatorial Constraint Satisfaction (CCS) 
class is the CE component which invokes the 
generator    functions    of    the    CSs     during    the 
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instantiation process. It acts as an interpreter for 
CSs. handling the interactions between choices by 
searching the implicit space of possible choices. It 
successively calls the generator functions for each 
variable of each CS in the mission. If no values can 
be generated for a given variable which are consistent 
with the values selected for previous variables, then 
CCS backtracks to reconsider other values of the prior 
variables. Once CCS successfully instantiates a 
composite CS, the planning is complete. 

The ability to embed CSs within one another, as 
mentioned above, is facilitated by the fact that CCS 
can recursively invoke itself. This, combined with 
the capability to dynamically link CSs together at 
run-time into a variable length composite CS, avoids 
a combinatorial explosion of the number of CSs to 
be developed. If this were not the case, pre-defined 
CSs for all mission possibilities would be required. 
Additionally, encoding the CSs as C++ classes 
allows for inheritance among common behaviors at 
multiple echelons, which lessens the number of 
required CSs and the amount of code duplication. 

4.6.4  Replanner 

When replanning is needed, CCS is invoked to plan 
reactions. When the reaction is complete, CCS is 
invoked to replan the remainder of the mission from 
the correct re-entry point. Reactive planning is 
complete on the order of seconds because the search 
space required for terrain analysis is small. 

4.7   Plan 

A plan in the CE is an object which consists of three 
component objects: the set of instantiated constraint 
sets, an execution matrix, and an operations order. 

The plan will be followed by subordinates, and 
progress will be measured against it by the Tracker. 
It contains information which indicates the 
constraints which were used to generate particular 
nodes of the plan, for use in replanning and new 
OPORD evaluation. 

4.7.1   Instantiated Constraint Sets 

Once the planning process has been successfully 
completed as described above, a fully instantiated 
composite CS with fully instantiated CSs results. 
However, this representation of the plan as a set of 

variables with corresponding values is not sufficient 
to describe the entire mission which has been planned 
for the commander's unit. It does not describe all 
details of the tasks which need to be assigned to 
subordinate units, only those characteristics which 
needed complex planning due to dependencies upon 
other values. Additional representations with more 
detailed information are needed and are described 
below. 

However, these instantiated CSs contain the context 
in which the choices for the derived variable were 
made, and are therefore useful to save for future 
reference. In particular, their primary use is to assist 
the CE in performing partial replanning of the 
mission as the situation warrants. 

4.7.2  Execution Matrix 

After the CSs are fully instantiated, each CS 
generates its part of an object in the CE called the 
Execution Matrix. The Execution Matrix is a time- 
phased list of the company- and platoon-level tasks 
which the unit will perform as it carries out the plan. 

Information contained in the Execution Matrix is the 
equivalent of that contained in an Army operations 
order execution matrix, plus detailed segmenting 
information needed for mission tracking and additional 
information required for execution of the plan by the 
CE. The Execution Matrix is designed to represent 
the flow-down definition of the mission from the 
form it takes in the instantiated CSs to a detailed, 
quantitative sequence that can be easily monitored and 
executed. As all tactical decisions were previously 
made by the CSs, the primary function of the 
Execution Matrix is to organize these decisions in 
such a way that they can be easily communicated to 
subordinate units and ensure synchronization. 

The Execution Matrix representation is a hierarchy, 
the root of which is the mission itself. Lower levels 
of the hierarchy decompose the mission successively 
into phases, tasks, and segments. A data structure is 
also assembled in the Execution Matrix for the CE to 
use in monitoring events and issuing commands to 
subordinate units. 

As each CS builds its part of the execution matrix, it 
also creates the segments that are part of each phase 
of the matrix. This segmentation scheme was 
inspired by the Autonomous Control Logic system 
[Glasson, 1992]. Segments are defined as portions of 
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a mission phase which have homogeneous attributes. 
Phases can be segmented in any way desired, but are 
typically segmented spatially or temporally. Each 
segment contains one or more transition arcs to other 
segments and may also contain expectations which 
embody the attributes of the segment. Some example 
segment attributes are: nominal times for beginning 
and end of segment; exposure state; likelihood of 
enemy contact; and unit formation. 

4.7.3   Operations Order 

After the Execution Matrix has been generated, it is 
turned into a CCSIL C++ class operations order or 
fragmentary order. This order is then converted into 
CCSIL for transmission to the subordinate units. 
This is the third and final component of the Plan. It 
is useful to save in order to perform simple 
replanning where the CE needs to make minor 
modifications to the previous order, such as changing 
a speed or formation. Having access to the order for 
reference allows for easy composition of fragmentary 
orders. 

4.8   Mission   Tracker 

The Mission Tracker monitors the progress of the 
commander's unit as it executes its planned mission. 
It continuously compares actual states with expected 
states and initiates requests for replanning when 
corrective action is needed It is also responsible for 
responding to or forwarding incoming messages from 
the CE's superior; relatively simple orders, such as 
Execute Directives, are handled by the Tracker 
directly, while more complex ones, such as 
Operations Orders, are forwarded to the Planner. 

The Mission Tracker makes use of segments, 
described previously, to measure the unit's progress 
against the Plan. The Mission Tracker maintains the 
current segment for each subordinate, the unit as a 
whole, and the unit commander. Transitions between 
segments are detected using events, described above. 
When a segment transition event occurs, the Mission 
Tracker first checks that all execution state 
expectations (as described above, in the discussion on 
events) have been met. If they have, the Mission 
Tracker then queries the Plan for the next segment, 
transition events, and expectations for the affected 
unit(s). The new transition events are then registered 
with the Event Processor. Note that some segment 
transitions may require that the CE take specific 
actions  (e.g.,   sending an  Execute Directive to  a 

subordinate). This is handled by attaching an 
appropriate callback to the transition event. If all 
execution state expectations have not been met, the 
Mission Tracker invokes the Replanner to adjust the 
plan accordingly. 

5. Future Work 

Army CFOR CE development is currently in 
progress, and a variety of tasks are scheduled for the 
near future. These include continued expansion of the 
Army Armor Company Team CE, development of 
additional Army CE's (with horizontal expansion at 
the company level and vertical expansion to the 
battalion level), and refining and improving the basic 
CE architecture. In addition, the application of this 
CE software and architecture to a non-Army command 
entity is a mid-term goal. 

5.1 Expansion of Army Armor Company 
Team  CE  Capabilities 

The following additional Army Armor Company 
Team CE capabilities are planned to be developed in 
support of the STOW 97 exercise: 

-Expansion and improvement of capabilities in attack 
and defend missions. 

- Integration with an Army Fire Support Team 
(FIST) CE to plan and execute indirect fires in the 
offense and defense. 

- Development of capabilities for planning and 
executing movement to contact missions. 

- Integration with an Army Company Trains CE to 
plan and execute combat service support operations. 

- Integration with an Army Rotary Wing Aircraft 
Company CE to plan and execute combined arms 
coordination. 

- Development of capabilities for planning and 
executing engineer operations. 

5.2 Additional  Army  Command  Entities 

The following additional CE's are planned to be 
developed in support of the STOW 97 exercise: 
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- Development of an Army Fire Support Team 
(FIST) CE. 

- Development of an Army Battalion Cdr/S2/S3 CE. 

- Development of an Army Battalion Fire Support 
Element (FSE) CE. 

- Development of an Army Company Trains CE. 

6. Conclusions 

The architecture presented herein currently serves as 
the basis for a successful implementation of the C2 
decision-making of an Army Armor Company Team 
Commander CE. This CE is capable of performing 
mission planning, execution, monitoring, and 
replanning. It has been successfully demonstrated at 
various STOW program events, and continues to be 
expanded and improved as software development 
proceeds. As the CE's capabilities are increased, the 
quality of its tactical decisions are also being 
improved. This CE architecture is rich and flexible 
enough to be applied to CE's at multiple echelons, as 
well as CE's in other service areas. 
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1. Abstract 

In this paper, we discuss our general approach to 
knowledge acquisition and delivery and how we have 
applied it to the construction of intelligent software 
command entities as embodied in our work on the 
CFOR (Command Forces) and MC IC (Marine Corps 
Individual Combatant) DARPA programs. There are 
five key issues to address when integrating 
knowledge products with traditional software models: 
1) Modularity - we don't want to have to get all the 
knowledge before the rest of the code can be 
developed, 2) Validation - the expert must be able to 
verify the acquired knowledge, 3) Scoping - we must 
be able to specify default parameters as place holders 
until the requisite knowledge can be acquired, 4) 
Reusability - decisions should be captured at the 
appropriate level of abstraction within and across 
domains, 5) Deliverability - the knowledge must be 
accessible to the software clients but independent. 
Each of these issues will be discussed in detail, 
together with examples of the knowledge bases 
derived for these DARPA CFOR and MC IC 
programs. 

2. Introduction 

For the past 18 months, we have been working on the 
DARPA CFOR (Command Forces) and MC IC 
(Marine Corps Individual Combatant) programs. In 
1995, the CFOR team was tasked to develop a 
software command entity to model an Army Tank 
Company Team Commander. The MC IC team was 
tasked to develop a smart Rifle Squad leader within 
the ModSAF simulation environment. In 1996, the 
MC IC work continues and the CFOR team is tasked 
to develop a Marine Rifle Platoon Commander and a 
Marine Rifle Company Commander. There are many 
differences between the two programs but they share 
a common need for intelligent decision making to 
guide planning and behaviors. We have a great deal 
of experience in building complex knowledge based 
systems for a variety of applications (e.g., traveling 
wave tube design, financial analysis and investment). 
The current programs offered new challenges: to 
acquire the knowledge from a variety of sources (e.g., 
interviews   with  a  subject   matter  expert   (SME), 

military training documents, documents compiled by 
the SME), and to make this knowledge available to a 
decision making process embodied in either the 
ModSAF simulation environment or our command 
entity software. 

To meet these challenges, we have developed a 
mechanism called fuzzy tables, based upon our 
Modular Knowledge Acquisition Toolkit (M-KAT) 
methodology. The M-KAT methodology differs from 
traditional expert system construction techniques by 
emphasizing a very tight interview - implementation - 
feedback cycle. The knowledge acquisition process 
and supporting software environment facilitate rapid 
prototyping of the expertise so that the SME can 
quickly explore the knowledge within the overall 
domain framework. Fuzzy tables are an abstraction of 
some of the most commonly used parts of M-KAT. 
We expect that with training in the construction of 
fuzzy tables, domain experts will be able to 
knowledge engineer themselves and produce 
knowledge bases that can be integrated in a variety of 
applications. 

Fuzzy tables are used in a variety of ways: 1) they 
direct the knowledge acquisition process and keep it 
focused, 2) they provide a declarative representation 
of the SME's decision making process, and 3) they 
serve as input to the fuzzy table runtime engine 
which provides client applications with access to the 
SME's knowledge via a query/response interface. 
Fuzzy tables are modular, verifiable, expandable, 
reusable and deliverable. Each of these properties is 
addressed below using examples from our CFOR and 
MC IC work. All the examples are drawn from the 
context of the appropriate military units conducting 
an attack. At the conceptual level, the doctrine for 
attack is not significantly different for an army tank 
company versus a marine rifle squad. Both units are 
concerned with finding good positions to launch the 
attack, finding good support positions for suppressing 
the objective, and responding to unexpected enemy 
encounters or to obstacles such as minefields. 
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3. Modularity 

Divide and conquer is a well known technique in 
problem solving. Decomposing a problem into small, 
manageable pieces and combining the results 
produces a more robust solution which is easier to 
validate and maintain. In addition, the smaller pieces 
are potentially useful in solving other problems. We 
have applied the same concepts in our development 
of fuzzy tables. Each table documents a single 
decision made by the SME. Table 1 depicts the 
decision concerning the time constraints imposed by 
linking up with the main force at a particular rally 
point. 

time-to-new- 
rp 

time- 
remaining 

new-rp-time- 
constraint 

lOmin <30min slightly-constrained 
lOmin 2hr not-constrained 

lOmin >5hr not-constrained 
30min <30min not-possible 
30min 2hr slightly-constrained 
30min >5hr not-constrained 

2hr <3Qmin not-possible 
2hr 2hr not-possible 
2hr >5hr slightly-constrained 

Table 1: Rally Point Time Constraint 

Fuzzy tables consist of a series of input columns 
followed by a single output column. Each column 
represents a factor that the SME considers in making 
the decision represented in the final column. In this 
example, the decision is called new-rp-time- 
constraint and has one of the following values: 
slightly-constrained, not-constrained, or not-possible. 
The decision is based upon two factors: 1) how long 
will it take to get to the new rally position and 2) how 
much time is left in the mission. Based upon these 
two factors, a decision is reached which will then be 
used to make other decisions as we shall see below. 

Where does the knowledge come from, how do we 
map the absolute values to fuzzy values? The 
knowledge is elicited from the SME through one or 
more interviews. In our original implementation of 
fuzzy tables, the mapping from absolute values to 
fuzzy values was represented by a separate series of 
rules. Maintaining a separate knowledge source was 
cumbersome and led to inconsistencies over time. 
Therefore, we augmented the fuzzy table 
representation to include not only the knowledge of 
how to map absolute values to fuzzy values but also 
the enumeration of legal fuzzy values for each 
column of the table. We still use rules to perform the 
actual mapping but these are generated automatically 
when the fuzzy tables are parsed. In this way, all the 
knowledge required for a particular decision is 
represented by a single fuzzy table. We shall see 
examples of this below. 

How do we combine fuzzy tables to make more 
complex decisions? The output column for a fuzzy 
table can be linked to an input column of other fuzzy 
tables. Thus, decisions can be used as inputs for other 
decisions. For example, the output from Table 1 is 
used as input in deciding the method of attack for the 
rifle squad. 

The decision of how a rifle squad should attack an 
enemy has the following possible outcomes: na - 
cannot carry out the attack, ab - abort the mission (the 
costs are too high), mv - move to a new location and 
reconsider, fr - conduct a frontal assault, se - conduct 
a single envelopment by establishing a suppressive 
base of fire (BOF) position. Entries in the output 
column separated by slashes indicate alternatives that 
cannot be distinguished by this table. Additional 
knowledge is required to choose one outcome over 
the other. 

A key feature of fuzzy tables is that both the inputs 
and outputs need not be absolute values but can 
instead be fuzzy values. For example, the time to the 
new rally position might be one hour. In this case, the 
one hour will get translated into a fuzzy value of 70% 
30min and 30% 2hr. To paraphrase, one hour is 
mostly like thirty minutes and a little bit like two 
hours. If the time remaining is two hours then the 
result from the table will be 70% slightly-constrained 
and 30% not-possible. 
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fire- 
tea ms- 

left 

bof-and- 
assault- 
position 

bof- 
ability 

new-rp- 
time- 

constraint 

method 
-of- 

attack 
1 yes yes not- 

possible 
na 

1 yes no slightly- 
constrained 

fr/ab 

1 no no constrained ab 
1 no no slightly- 

constrained 
ab/mv 

2-or-3 yes yes constrained se 
2-or-3 yes no not- 

constrained 
fr/ab 

2-or-3 no yes not- 
possible 

fr/ab 

2-or-3 no yes constrained mv/fr 
2-or-3 no yes not- 

constrained 
mv 

Table 2: Rifle Squad Method of Attack 

We see in Table 2 that one of the input columns is the 
output from Table 1: Rally Point Time Constraint. 
Decisions can thus be decomposed into a sequence of 
easier decisions. This modularity facilitates the 
acquisition, testing, and maintenance of complex 
decisions. 

4. Validation 

So where does the input come from when it is not 
from other tables? The answer depends upon how the 
tables are being used. Because the knowledge 
engineer must write code to implement the answers to 
questions relevant to the problem, this code generally 
requires information from the client application. 
When the tables are being used by the client 
application, the code for a particular column is 
executed, the result returned by the client is then used 
as the input for the column. Returning to Table 1, the 
first column is the time required to get to the new 
rally point (RP) from base of fire position (BOF). 

This datum must come from the client application. 
The client application must supply a callback routine 
which computes this value. The knowledge engineer 
then writes a small piece of code (glue) to call this 
routine with the appropriate parameters, in this case, 
the parameters are the BOF and the RP. 

If the tables are being used to debug the knowledge 
acquisition process, then instead of calling back to the 
client application, we want to ask the expert (SME) to 
provide the required data. Our fuzzy table 
implementation provides tools that support both 
modes of operation. The knowledge engineer can 
write glue routines that will either callback to the 
client application or ask the expert depending upon 
the context. 

One of the drawbacks of our initial implementation 
was that many of the details were hidden from the 
expert; the tables did not contain sufficient 
information by themselves. The knowledge engineer 
had to do some programming to make the tables 
operational. Since some of the knowledge was 
embedded in the code, validation was more difficult. 
We have addressed this issue by expanding the 
column headers for the table so that they include all 
the information necessary to operationalize the tables 
without programmer intervention. This does not free 
the knowledge engineer from writing the glue 
routines; however, it does make explicit the 
parameters to those routines and the legal values they 
may return. 

Table 3 shows the decision of what formation the 
tank company should use. An asterisk in a cell 
indicates that the answer doesn't because other 
factors control the outcome. To provide better 
information, the column headers have gotten a bit 
more complicated. They now contain information 
about permissible values and how they are to be 
computed. Each header consists of three elements: a 
name for the decision, the value specification, and the 

(current-action 
(movement assault flank-security) 

(lcfor:current-actionl ->unit)) 

(enemy-contact 
(likely possible unlikely) 

(Icfor.enemy-contactl ->unit)) 

(company-formation 
(line echelon column wedge vee) 
(:movement-module :company- 

formation ->unit)) 
assault * line 

flank-security He echelon 
movement likely vee 
movement possible wedge 
movement unlikely column 

Table 3: Company Formation 

3 3 



path. The last column in Table 3, which provides the 
outcome of the decision is: 

name: company-formation 
value spec: (line echelon column wedge vee) 
path: (:movement-module 

xompany-formation ->unit) 

The value spec for company-formation limits the 
output to be: line, echelon, column, wedge, or vee. 
No other values are permitted. The path specifies how 
this table is invoked and the parameters it requires. 
Parameters are indicated by names beginning with "- 
>". The company formation table requires only a 
single parameter, the unit name of the company. For 
the inputs of Table 3, the first column is: 

name: current-action 
value spec:   (movement assault flank-security) 
path: (Icfor.current-actionl ->unit) 

When the first element of the path is enclosed in 
vertical bars, that indicates a callback to the client 
application. In this case, the fuzzy table determines 
the current action of the unit by asking the client 
application to compute the value and provides the 
name of the unit as a parameter. During validation, 
the user would be prompted to select one of the 
possible values. 

The second column is also a callback, asking the 
client application to determine the likelihood of 
enemy contact for the unit: 

name: enemy-contact 
value spec:   (likely possible unlikely) 
path: (Icfonenemy-contactl ->unit) 

In most circumstances, this question probably 
requires additional knowledge and more reasoning. 
However,   it   can   be   initially   implemented   as   a 

callback to facilitate development of the client 
application. When additional knowledge acquisition 
yields more details concerning this decision, new 
tables can be built and used in place of this callback. 
This ability to incrementally expand the scope of the 
reasoning capabilities of the knowledge base is 
crucial, and is one of the features of M-KAT. 

5. Scoping 

In our experience, constructing a command entity 
requires concurrent development of the knowledge 
base and the client application. It is essential to 
minimize the interdependence of these development 
paths. We use a top-down knowledge acquisition 
process to achieve this goal. When interviewing the 
SME, we attempt to identify the major high-level 
decision points that guide the planning process. With 
these decisions in place, the client application can 
continue testing and development while we work with 
the SME to elicit the lower level decisions which feed 
the high-level decisions. 

This approach serves us well for two reasons: 1) as 
stated above, the impact upon development of the 
client application is minimized, and 2) access to the 
SME is often restricted to discrete intervals. As the 
SME becomes familiar with the fuzzy tables and our 
methodology, we can perform knowledge acquisition 
interviews over the phone in a short amount of time. 
Fuzzy tables can be generated by the interview 
process and then sent to the SME to be filled out. 

Scoping also helps keep the SME focused on the 
particular decision at hand instead of becoming 
distracted by the details of the input parameters. For 
example, if one of the columns deals with how far 
away the unit is from the objective, we can simply 
characterize the distance as: near, medium, or far. 
Later on, we will ask the SME to specify how those 
fuzzy values relate to actual distances. 
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(c+c (distance (add-sbf-sites? (ap-to-obj- (viability 
((no 0.0 0.4) (yes ((very-close 0 200) (yes no) exposure (very-good good fan- 

0.61.0)) (close 250 1200) (Icfonadd-sbf- ((small 040) poor unacceptable) 
(Icfor.c+c-positionl - (far 1500 sites?! ->ap-loc - (medium 45 55) (rap-evaluation- 
>ap-loc ->ep-loc)) :+infinity)) >ep-loc)) (large 60 100)) module :dismounted- 

(Imodsaftdistancel - (icfonexposurel - viability->ap-loc - 
>ap-loc ->ep-loc)) >ap-loc ->ep-loc)) >ep-loc)) 

yes very-close yes small very-good 
yes close yes medium good 
yes far no large poor 
no very-close yes small poor 
no close yes medium poor 
no far no large unacceptable 

Table 4: Dismounted Assault Position Viability 

The  mapping  from  absolute  to  fuzzy  values 
expressed in the value spec part of the header. 

is 

name: distance 
value spec: ((very-close 0 200) 

(close 250 1200) 
(far 1500 :+infinity)) 

path: (lmodsaf:distancel ->ap-loc ->ep-loc) 

For column 2, distance, very-close is anything 
between 0 and 200 meters, close is between 250 and 
1200 meters, and far is anything more than 1500 
meters. Notice that the values don't fully cover the 
range of numbers which raises the question of how is 
225 meters going to be represented? The fuzzy table 
software automatically interpolates and assumes that 
the point halfway between two values will be half one 
fuzzy value and half the other. Thus, 225 meters is 
50% very-close and 50% close. 

6. Reusability 

At the lower echelons, such as tank companies and 
rifle platoons, the doctrine for conducting an attack 
on an objective is very similar. We would like to be 
able to exploit this aspect and reuse some of the 
tables developed for one application in another. If the 
decisions and their inputs are indeed shareable, there 
is still one aspect that will almost certainly be 
different, the value specifications in the tables. These 
specifications determine the mapping from absolute 
values to fuzzy values. Using the example from Table 
4. the values used to convert absolute distances to 
fuzzy distances would be different for a rifle squad 
compared to a tank company. Infantry traveling on 
foot will consider 1000 meters to be much farther 
than if they were mounted in a tank. 

For now, we lack an elegant solution to this problem. 

The simple solution is to copy the table and change 
the values appropriately. At least the work of 
validation and acquisition are capitalized upon. An 
alternate solution would be to leave it up to the client 
application to compute the fuzzy values. This places a 
large burden on the application developer and 
requires more knowledge to reside in the client 
application. A more satisfactory solution is to 
augment the value spec representation to include a 
reference to the client for each mapping. This would 
permit using the same tables for different clients and 
have the values mapped properly. This is probably 
the approach we will take when this issue gets 
addressed. 

7. Deliverabilitv 

The current fuzzy table environment is implemented 
in Common Lisp and runs on Macintoshes, Suns, and 
SGIs. The Lisp environment provides easy interactive 
debugging of the knowledge as it is acquired. Clients 
connect to a knowledge server running in Lisp using 
TCP/IP sockets. While the Lisp environment is 
essential to the acquisition/development cycle, it is 
too limiting during execution of the client application. 

We have looked at various ways to deal with the issue 
of providing the knowledge to the client application 
in an efficient manner. Ideally, the client developer 
should be able to link the knowledge base into the 
application directly or communicate with a 
knowledge server somewhere on the network. We are 
building a version of the fuzzy table runtime engine in 
C using a Common Lisp to C translator. In this 
approach, the knowledge engineer acquires and 
debugs the knowledge using the Lisp fuzzy table 
development environment, translates the Lisp code to 
C, and then compiles the C code into a library to be 
linked   with  the  client  application   or  run  as  a 

35 



standalone server process. 9. Acknowledgments 
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This solution still requires that the knowledge 
engineer (fuzzy table developer) still have access to a 
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complete user interface to the compiled knowledge 
base, we feel it is important to maintain the flexibility 
provided by the Lisp development environment. The 
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the results of tables if necessary. For example, rather 
than build a new table to disambiguate the 
inconclusive outcomes from Table 2: Rifle Squad 
Method of Attack (e.g., mv/fr, mv/ab), it is often 
simpler to write a small piece of code to resolve the 
ambiguity. This applies during the knowledge 
acquisition and development process. In the final 
version, the disambiguation should in fact be done 
with a table. 

8. Conclusions 

Fuzzy tables provide a compact representation for 
knowledge captured from a domain expert. Their 
modularity makes it easy to break down the decision 
making process into manageable parts. Our ability to 
rapidly make the tables operational provides the SME 
with quick feedback and facilitates the validation 
process. In addition, the augmentation of the column 
headers provides explicit documentation of all the 
knowledge for a particular decision. Incremental 
expandability enables us to model the decision 
making process in a top-down manner, capturing the 
big picture decisions at first and later on focusing in 
on the details. This speeds up the development 
process and keeps the SME focused on the decision at 
hand. With some additional development work, we 
should be able to reuse tables easily where the 
decisions and their inputs are the same across 
applications and the variations are restricted to the 
mapping of absolute to fuzzy values. Finally, fuzzy 
tables can be delivered as C code which can be either 
compiled into an application or executed as a 
standalone knowledge server providing a high degree 
of portability and performance. 
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1. Abstract 

Developing synthetic command entities requires 
addressing a host of issues not normally faced by 
more traditional unitlevel agent models. 
Commanders must reason over a broader scope and 
about events unfolding over long periods of time. 
Key amongst this is the ability to reason about and 
control unit interactions: coordinating the behavior 
of subordinates, meshing with the intentions of ones 
superiors, and managing the interactions with enemy 
forces who are intent on disrupting the commander's 
intentions. We describe the implementation of a 
rotorwinged aircraft (RWA) company command 
entity implemented in Soar and simulated within 
DIS. The command entity adopts planning 
techniques to manage the issues of coordination, 
control, and replanning that arise in this domain. 

2. Introduction 

As work in computer generated forces has developed, 
it has become more ambitious in its scope. A recent 
important effort is the development of socalled 
command forces or CFORs (Salisbury et al. 1995). 
The goal of the command forces project is to 
explicitly model command and control decisions in 
simulation. In contrast to the issues faced by vehicle 
or platoon level units, CFORs must model the 
decision making from a broader perspective and over 
longer time scales. Whereas vehiclelevel decision 
making tends to be more reactive in nature, 
higherechelon units must deliberate about 
alternative courses of action, project effects into the 
future, and detect harmful (or beneficial) interactions 
between subordinate units and enemy forces. 

In this paper, we describe the Soar/CFOR command 
forces project currently under implementation as part 
of the CFOR effort. Soar/CFOR extends the the 
Soar/IFOR capabilities to higher echelons and 
incorporates   the   communication   and   command 

functions necessary to operate at these levels. The 
project is associated with the Synthetic Theater of 
War (STOW) program and is being developed in 
conjunction with the Soar/IFOR project (Laird et al., 
1995, Rosenbloom, et al., 1995). Soar/IFOR is an 
implemented system for controlling intelligent pilot 
agents for participation in simulated battlefield 
exercises. Soar/IFOR has already participated in 
simulated combat exercises with expert human 
pilots, including the STOWE and EDI exercise 
and will participated in the upcoming STOW97. 

The initial implementation of Soar/CFOR has 
focused on the command functions of an AH-64 
Apache attack helicopter company commander. 
Subsequent work will extend this functionality to the 
battalion level. Command behaviors include the 
ability to receive orders from one's superiors (live or 
simulated), plan missions for subordinate units, 
develop a situational awareness of the battlefield, 
monitor the execution of plans, and perform 
replanning whenever the situation dictates. 

Soar/CFOR is developed within the Soar architecture 
which also serves as the system underlying 
Soar/IFOR agents. The demands of command 
decision making have led to considerable differences 
in the higher_level organization of CFOR agents 
when compared with Soar/IFOR agents. The greater 
focus on temporal and interaction reasoning has led 
us to draw substantially from the Al planning 
literature in the course of the command entity 
development. In particular, the Soar/IFOR entities, 
though they do have deliberation capabilities, are 
more focused on reaction than planning. 
Vehiclelevel behavior is not guided by an explicit 
representation of the situation, but is rather implicit 
in rules that key off of the content of the current 
situation. This makes Soar/IFOR efficient and 
responsive to dynamic changes, but makes it more 
difficult to reason about interactions and changes 
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Figure ll Attack Helicopter Bn attacks to destroy the SOI MRR in EADULUTH 

over time. In contrast, the command entity 
incorporates a reasoning style known in the planning 
community as hierarchical task-decomposition 
planning (Stefik 1981, Erol, et al., 1994, Ambros- 
Ingerson and Steel, 1988). Task-decomposition 
planners view a plan as a sequence of tasks, with 
dependency information that records the interactions 
and causal connections between tasks. Planning 
proceeds by taking individual tasks and 
decomposing them into a partially ordered sequence 
of more specific tasks, in response to the current 
situation. Task-decomposition planning meshes well 
with the hierarchical flavor of military decision 
making as well as the hierarchical structure of the 
Soar/IFOR agents which the Soar/CFOR entity 
commands. 

3.  Command and Control Requirements 

The responsibilities of a command entity differ 
markedly from those of lower_echelon units. This 
can be seen clearly by considering a typical mission 
flown by an Apache attack helicopter company. This 
example is based on the virtual Situational Training 
Exercise (vSTX 2) provide by Logicon, which served 
as the basis of a recent evaluation of our CFOR 
effort. The exercise has been generalized slightly to 
include capabilities we are expected to provide in 
STOW97. Figure 1 illustrates the operation overlay 
for a deep strike mission against enemy units. 

In this mission, the helicopter company receives a 
mission from its battalion commander. In this case, 
the 1-155th Attack Helicopter Battalion is ordered to 
destroy the 501st Motorized Rifle Regiment as it 
passes through engagement area Duluth. This is a 
phased attack with company A moving along axis 
Mankato and company B moving along axis Anoka. 
This is a deep operation, meaning it is well beyond 
the forward line of our own troops (FLOT). 
Company A must pass through a known group of 
enemy forces and an artillery strike will be called to 
create suppression of enemy air defense (SEAD). 
Each company will proceed along their respective 
axes to a holding area. On orders from the battalion 
commander they will enter the battle position and 
commence the attack. Company A will attack first, 
and then coordinate a transfer of the engagement area 
over to Company B. Companies should report the 
crossing of all phase lines, bypass all enemy units, 
and report units of company size or greater. 

The battalion commander transmits this mission to 
his company commanders. In our simulation, 
missions are communicated using the Command and 
Control Simulation Interface Language (CCSIL) 
developed by Mitre (Salisbury et al. 1995). CCSIL 
provides a structured language to facilitate all 
communication between CFOR entities. The mission 
includes information necessary for the company 
commander to perform mission planning: the goal of 
the mission (attack to destroy the 501 MRR); the 
actions to be performed by the battalion and brigade; 
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expected actions of enemy forces, plans for each 
company; and the operation overlay. Each 
company's plan is specified by a sequence of tasks. 
These are to be interpreted as highlevel guidance or 
constraints on how the company commander 
develops his course of action. In this case, Company 
A is ordered to 1) move to and occupy battle position 
Viking along axis Mankato; 2) on order, destroy 
targets in engagement area Duluth, and 3) return to 
FAA and prepare for future operations. The mission 
also includes reporting requirements (e.g., report 
crossing of all phase lines) and coordinating 
instructions (e.g., coordinate SEAD). 

3.1 Abstract and Implied Tasks 

The tasks in the company orders are quite different in 
character from those typically given to simulated 
forces. The first difference is that the tasks are 
specified too abstractly to be directly executed. For 
example, moving to and occupying a battle position 
involves multiple tasks. Since the axis crosses the 
FLOT, the commander must coordinate a passage of 
lines with friendly ground forces. Different 
formations and speeds will be chosen for different 
points along the axis. The axis itself is an abstract 
construct and must be refined into a route based on 
characteristics of the terrain. Firing positions must 
be selected within the battle position, flanking 
positions selected, etc. 

A second key difference is that the mission may 
contain many implied tasks. As a simple (but 
common) example, the axis may not go completely 
from the FAA to the holding area. The command 
entity must recognize whatever gaps exist and plan 
routes to fill in these missing pieces. More generally, 
the commander must deal with a whole host of issues 
involved in interpreting the mission statement and 
that are resolved by the principles of METT-T, but 
also involve considerable "common sense" 
reasoning. As another brief example, in one of the 
missions in which we participated, the axis of 
advance was specified in the reverse direction from 
what we were expected to fly. A human command 
would easily recognize that the direction should be 
reversed. Simulated command agents must be able to 
handle similar complications. 

3.2 Managing Interactions 

A large portion of the commander's planning focuses 
on managing interactions with other entities. With 
friendly units, the commander must insure proper 

coordination: in the above mission, the commander 
of Company A must plan coordinate activities with 
ones'superiors, with other friendly units and between 
elements of his company. Coordinating with 
superiors requires reasoning about activities of 
higherechelon units. Other outside interactions 
include the coordination of passage of lines with 
ground forces, coordination of SEAD with division 
artillery, and the transfer of the engagement over to 
Company B. Each of these interactions places 
constraints on his mission planning, particularly 
timing constraints, which may influence how the plan 
is developed (e.g., what formations and speeds to use 
at different points of the mission). 

Within his company, the commander coordinates 
interactions between subordinates. Scouts must be 
overwatched; rally points must be established if the 
company becomes separated. During the attack, 
several coordination issues arise. The commander 
must insure that units distribute their fires across the 
engagement area and adjust the company's position if 
units are interfering with each other or are coming 
under effective counterattack. 

Perhaps the most complex interactions involve 
enemy forces. At the very least the commander must 
ensure his forces reach the battle position when the 
enemy is in the engagement area. Beyond this, the 
commander must recognize and manage potential 
threats the successful completion of his mission. 
This can be preplanned to some extent (e.g., planning 
secondary battle positions, rally points, etc.) but also 
may require replanning during mission execution 
(e.g., developing a route to bypass unanticipated 
enemy forces). 

3.3 Replanning 

As just alluded to, one of the most difficult 
requirements on command entity behavior is the need 
to handle unanticipated contingencies. The 
battlefield is a dynamic environment. Unanticipated 
contingences can be handled with local reactions 
only to an extent. Often a plan has tight constraints 
and avoiding an unexpected enemy force early in the 
plan may have consequences for subsequent 
execution. Changes might be as minor as changing 
speed to as demanding as replanning the mission 
from scratch based on new information enroute. A 
command entity must recognized the 
interdependencies of plan steps in order to respond to 
such dynamic changes. 
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Figure 2: Hierarchical task network for (part of) the mission in Figure 1 

4. Command and Control in Soar/CFOR 

The above requirements place several constraints on 
the development of a command entity. The company 
commander must reason about interactions between 
his subordinates as well as with other forces. Besides 
constructing the initial plan, the commander must 
track the interdependencies between tasks, recognize 
how the changing situation effects these 
dependencies, and repair the plan whenever these 
dependencies are violated. To address these 
requirements, we adopted a plan representation 
known as hierarchical task_networks (HTN) 
(Sacerdoti, 1977; Tate, 1977; Wilkins, 1988). 
Planning in Soar/CFOR is accomplished through a 
combination of techniques developed for HTNs and 
techniques developed in the partial'order planning 
paradigm (Chapman, 1987; McAIlester and 
Rosenblit, 1991). First we will describe the plan 
representation. 

4.1  Plan Representation 

Figure 2 illustrates a hierarchical task network for the 
ingress part of the mission. The egress part of the 
mission is left out for simplicity. The network 
represents a hierarchy of tasks. At the top of the 
hierarchy is the abstract task "destroy the 501st 
MRR." This is broken down into a partial lyordered 

sequence of subtasks, two of which are to be 
performed by Company A and one of which 
corresponds to the actions of the enemy regiment. 
Subtasks may be further subdivided into more 
subtasks. The intended interpretation of the network 
is that subtasks represent a more detailed 
specification of how a task is accomplished. A task 
with subtasks is said to be an abstract task, and the 
subtasks are said to be a decomposition of the 
abstract task. Tasks that cannot be further 
decomposed are referred to as primitive tasks. These 
typically correspond to actions that can be directly 
executed by the agent. (Note that a primitive task at 
one echelon may be an abstract task at lower 
echelons. Primitive tasks for the company 
commander are converted into a set of task by the 
Soar/IFOR entities.) In Figure 2, tasks are 
represented as rectangles. Shaded rectangles 
correspond to primitive tasks. 

Much like other plan representations, tasks in a 
hierarchical task network may have preconditions 
and effects. Preconditions are facts which must be 
true in the world to execute the task. Effects are 
those facts that are added or deleted by executing the 
action. In our plan representation, preconditions and 
effects may be predicates with an arbitrary number of 
variables. Currently, we do not implement variable 
quantifies in. 
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IF <w> is a task of form: 

(j^ED- 
Task<w>, 

Type: *Movep 
Route: ..*<*> 

-(a(<y>)] 

AND o intersects the FLOT at <z> 

THEN create subtasks: 

(*W)- 
Task<5l>j 

T^pe: *   Move p 
Route :....> -^heao>; 
Technique: Travel 2 
Formation: Trail 

~(«W)- •(Sw)- 
Task<s3>, 

Type: »  Move? 
Route:....»  -<r.tai>? 
Te ch rri qu e: Over Watch fc> 
Formation: Trail 

fe<z>))- 

Task<s2>, 
TVpe: ....>Linep 
 ......^Passage 

-pt^T) 

Figure 3:   Task-decomposition operator 

preconditions. In Figure 2, preconditions and effects 
are represented as ovals. 

Typically the network will include two "dummy" 
tasks. The *init* task asserts all the facts of the 
initial state as its effects. The *goal* task has the 
overall purpose of the mission (destroy the 501st 
MRR) as its preconditions. 

Dependency information is represented as links 
between preconditions and effects in the network, 
which are represented as arrows in the network. For 
example, for the enemy to be destroyed, the company 
must perform the engage task at the same time that 
the 501st is in the engagement area. This is indicated 
by a dependency of the destroyed precondition and 
the effects of these two tasks. Links between 
preconditions and effects are a specialcase of a more 
general concept of a protection constraint. If task 1 
asserts fact A which is a precondition to task2, the 
commander must ensure that fact A remains true 
from the end of task 1 to the beginning of task2. This 
can be stated as a constraint that A must remain true 
from taskl to task2. Note that these protection 
constraints also force orderings between tasks: the 
asserting task must precede the the task whose 
precondition it establishes. The planner may also 
impose ordering constraints directly between tasks. 
The hierarchical task network representation makes it 

easy to express a variety of constraints on the plan 
structure. 

4.2 Plan Generation 

Planning is accomplished in a fashion similar to the 
IPEM architecture (Ambros-Ingerson and Steel, 
1988). A final plan is developed though a process 
called refinement search (Kambhampati et al, 1995). 
Initially one will start with a partial task network 
probably consisting of a few abstract tasks (in the 
mission described above, the commander receives the 
top node in the hierarchy and the first level of 
subtasks in the operations order). Typically, the 
initial plan cannot be executed. It may contain 
non_primitive tasks or tasks may have unsatisfied 
preconditions. The limitations in the initial plan are 
addressed by applying operations that modify the 
plan structure and, hopefully, result in a complete 
sequence of primitive tasks that achieve the goals of 
the mission. These planning operations are called 
refinements and can be classified by the type of 
limitations they address. 

Taskdecomposition: Non_primitive tasks are 
addressed by a refinement called taskdecomposition. 
Task_decomposition operators specify how an 
abstract task might be broken down into a partial 
sequence of subtasks. Such an operator is illustrated 
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in Figure 3 (the syntax "<x>" denotes a variable 
named x). This rule checks if a movement task goes 
along a route that intersects the FLOT. If so, it 
creates three subtasks, the first moves along the route 
up to the FLOT, the second performs the passage of 
lines, and the third moves along the remainder of the 
route. This rule also augments the subtasks with 
movement techniques and formations appropriate to 
the crossing of a FLOT. Note that the decomposition 
involves more than simply asserting a set of subtasks; 
it may additionally assert ordering and protection 
constraints to the plan structure. 

Establishment: Unsatisfied preconditions are 
addressed by two different refinements. The first is 
called simple establishment. This operation looks for 
some effect already in the plan structure that satisfies 
the precondition. If such an effect exists, a 
dependency link is created between this effect and 
the precondition. The effect is said to establish the 
precondition. This also enforces a protection 
constraint on the plan - no other task may delete this 
effect until after the task whose precondition is 
established by it. 

If no existing effect in the plan can establish the 
precondition, an alternative method of establishment 
can be used called stepjiddition. This operation 
adds some task to the plan that has an effect which 
unifies with the precondition. A link is then drawn 
between the effect of this new task and the 
unsatisfied precondition. 

Protection Violation: A final class of refinements 
addresses potential violations to the protection 
constraints in the plan. For example, consider that 
effect At(HoldingArea) is protected from taskl to 
task2, that task3 deletes At(HoldingArea), and that 
task3 can possibly occur between taskl and task2. In 
this case, there are two ways to refine the plan to 
remove this potential conflict. Promotion asserts an 
ordering constraint which forces task3 to occur after 
the protection interval (after task2). Demotion asserts 
an ordering constraint which forces task3 to occur 
before the protection interval (before taskl). Finally, 
separation asserts a binding constraint which states 
that <x> cannot equal <y>. 

Planning proceeds by incrementally applying 
refinements until a complete plan is discovered. 
Alternative refinements can be explored by 
depthfirst search. If no refinements can be applied 
or there is an unresolvable flaw in the plan, the 
planner is forced to backtrack.   Multiple courses of 

action can be entertained by exploring different 
refinement sequences in parallel. Typically 
taskdecomposition refinements are applied first, to 
sketch out the basic structure of the plan. Next, 
simple establishment, promotion, demotion, and 
separation are considered, Finally one considers 
stepaddition. 

4.3 Plan Execution 

In addition to refinements, we implemented two 
other planning options. The command entity can 
initiate the execution of a task or terminate the 
execution of an executing task. Tasks may be 
executed if their preconditions are satisfied and no 
other unexecuted task precedes them. Tasks may be 
terminated if some prespecified termination criteria 
has been reached (e.g., a movement task terminates 
when the movement objective has been attained). 
The command entity may interleave execution and 
termination with the other refinements and thus 
achieve an interleaving of planning and execution. 

4.4 Replanning 

Replanning occurs in much the same way as the plan 
was initially developed. During the course of plan 
execution the current state may change in ways that 
violate or potentially violate the dependencies in the 
plan structure. For example, the execution of a task 
may not have the expected effects, or some 
unanticipated event may occur, such as a change in 
the location of the target. When such situations arise 
they are interpreted by the planner as limitations in 
the current plan, and are addressed by the same 
refinements used in plan generation. When 
preconditions become unsatisfied the planner will try 
to reestablish them through simple establishment or 
step addition. When that fails the planner will be 
forced to backtrack across the refinements that 
introduced the unsatisfied preconditions. When all 
else fails the commander can contact his superiors for 
further instructions. 

5. Company Organization 

In our simulation, we have made a distinction 
between the Soar/CFOR command entity, which does 
mission planning/replanning and the Soar/IFOR 
vehicle entity which implements the vehicle level 
behaviors. A human company commander must play 
both roles; he or she must plan the mission and 
control the vehicle, often both at the same time.  We 
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Figure 4:   Company Organization 

have addressed this problem by essentially dividing 
the commander's brain in two. Although they are 
separate processes, the Soar/CFOR entity is 
associated with a particular Soar/IFOR vehicle and 
has special information links to it. 

Figure 4 illustrates the basic organization of a RWA 
company as simulated within DIS. The command 
entity is controlled by Soar/CFOR. Each RWA in 
the company is controlled by Soar/IFOR. The 
command entity is associated with a particular RWA 
and gains access to that vehicle's sensors through the 
CFOR infrastructure provided by Mitre. 
Communication between the command entity and the 
vehicles of the company (including his own) occurs 
via CCSIL messages. Vehicles may communicate 
directly to each other via CCSIL or simulated radio. 
The commander mediates all communication with 
units outside the company. 

Initially the company commander receives a mission 
in   the   form    of   a   CCSIL   operations   order. 

Soar/CFOR develops a plan, backbriefs it to the 
battalion commander, and if approved, broadcasts the 
plan, via CCSIL, to the company. At this point all 
entities have a consistent representation of the 
mission. As the mission progresses, new information 
may become available: new information may arrive 
in the form of new orders, vehicle sensors, or 
situation reports (in CCSIL) from other units. It is 
the responsibility of individual vehicles to inform the 
command entity of relevant new information. If this 
information invalidates the current plan, the 
command entity will regenerate a new course of 
action and broadcast the new mission to the 
company. 

An issue raised by this organization is how to model 
transfers of command, as when the commander is 
killed during the mission. The Soar/IFOR entities 
model a chain of command: when it becomes know 
that the commander is dead, the next vehicle in the 
chain assumes the commander's role. What this 
means in our company organization is that the new 
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commander acquires the interface to the command 
entity. Currently, we are not planning on modeling 
the loss of information and expertise that 
accompanies such a change. 

6. Project Status 

As of the writing of this article the Soar/CFOR 
command entity has been in development for eight 
months. The basic plan generation capabilities are in 
place and performed successfully during a recent 
evaluation based on a reduced version of the scenario 
described in Section 3: no SEAD was involved; only 
one company flew at a time; and CCSIL 
communications were strictly vertical (the company 
commander only communicated with his battalion 
commander and with his. company through the 
medium of operations orders and situation reports.). 
The planner currently considers only one course of 
action and does not, as of yet, have to capability to 
evaluate the strengths and weakness of alternative 
courses of action. Another key limitation is that 
replanning capabilities are not fully implemented. It 
is likely that some details of execution and 
replanning will change as we gain more experience 
with these new capabilities. 

We plan to expand the repertoire of behaviors 
available to the command entity and broaden the 
project to include higher levels of command. 
Currently, the commander plans for attack missions. 
We will soon broaden this to include missions of 
security and reconnaissance. These tasks appear to 
place more reliance on recognizing and adapting to 
changes in the situation, and we expect the explicit 
dependency information in our plan representation 
will be invaluable in providing these capabilities. By 
STOW97 we intend to have implemented a battalion 
level command entity. 
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1. Abstract 

The end of the Cold War has led to major changes in 
the world strategic environment which in turn have 
led to major revisions of NATO defence policies. 
Whilst the core role is still national defence, there is 
now a greater emphasis on the capabilities needed for 
regional conflict and on the requirement for 
Operations Other Than War (OOTW). 

Wargames and simulations, which have been 
developed for defence applications, can provide 
excellent environments for the examination of para- 
military operations such as peace keeping and peace 
making (i.e. Operations Other Than War). 

By peace keeping and peace making operations we 
mean such operations as operational planning, tactics, 
training, mission rehearsal, resource management, 
conflict resolution, crisis management and studying 
the complex decisions required for long and short 
term states of stability within the community. 

2. Introduction 

The Defence Evaluation and Research Agency 
(DERA) is a government owned research and 
technology organisation whose aim is to provide 
independent, high-quality, cost-effective scientific 
and technical services to its customers, primarily the 
Ministry of Defence (MOD). 

The Centre for Defence Analysis (CDA), a division 
of DERA, provides advice and analysis of defence 
systems, procedures and operations, primarily to 
MOD. Operational Analysis (OA) forms a key 
element in the underpinning role of CDA in the 
decision making process for defence equipment 
procurement, defence planning and formulation of 
defence policy. 

In order to meet these changing requirements, the 
CDA Land Studies Department at DERA, Fort 
Halstead, is enhancing a combination of wargames 
and simulations ranging from one-on-one to 
divisional and corps battles.   One such development 

is the Close Action ENvironment (CAEN), which can 
be run as either a wargame or a simulation. At the 
CDA, CAEN is used for operational analysis and 
weapon system evaluation. The UK Police may use 
CAEN for operational planning, tactics and training 
of officers in law enforcement and small arms 
situations. 

3. CAEN 

CAEN is a highly detailed model of the close combat 
battle. It is both a means of simulating weapons 
effects and an interactive wargame between opposing 
forces of up to platoon level strength. The area 
covered is typically 5-by-6 km and the terrain is 
represented at 10m resolution. Both urban and rural 
areas can be modelled with detailed representation of 
buildings and ground cover. Up to 200 entities are 
usually modelled and consist of either infantrymen 
and their personal weapons or vehicles such as 
armoured personnel carriers and main battle tanks. 

CAEN can operate either as an automatically 
replicated simulation with no user intervention, or as 
an interactive game in which two or more 
independent players control the actions of their own 
forces. 

The overall system comprises: 
Terrain editor facility. 
Interactive on-line gaming system. 
Deployment system. 
Game replay facility. 
Replication system. 

3.1 Terrain Features 

Terrain features include roads, rivers, minefields and 
obstacles. Vegetation can be represented as simple (a 
height and density) or complex (density varies with 
height) culture. CAEN represents complex culture as 
a number of different layers of varying density 
vegetation at different heights. Buildings are 
represented in higher resolution than other culture 
and include multiple storeys, sloping roofs and 
windows. 
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3.2 Interactive Gaming 

The interactive system enables players to issue orders 
to allow them to change routes, arcs, activities etc. 
during the course of play. In this way the player can 
react to events in the game which are considered to be 
of military significance. The player does not have to 
control the actions of all the entities all of the time. 
Instead each entity or group of entities will follow an 
initial set of orders provided at the start of the game 
unless overridden by an interactive command. The 
wargame system also contains acquisition, movement, 
engagement and tactical models which are processed 
automatically. 

The players can interrogate any entities under their 
control for relevant information such as damage 
status, ammunition remaining, etc. 

The interactive gaming system is supported by a 
sophisticated colour graphics facility which allows 
each player a realistic view of the ongoing scenario, 
but constrained by the knowledge available to his 
own forces. 

A save/restart facility allows players to save the state 
of the game at any time during play. 

3.3 Movement 

Movement is between nodes. Routes can be specified 
for groups or individual entities. Speed is limited by 
terrain. Infantry can change posture which may 
further limit speed (for example crawling). Infantry 
can be carried by vehicles and debussed from them. 

3.4 Tactical Model 

A major feature of CAEN is the tactical model which 
enables the player to set up tactics for entities or 
groups of entities. Objectives, aim zones and triggers 
can be set up to initiate or suspend activities (or 
behaviours) by entities or groups. Some triggers (for 
example suppression or cut wire) automatically 
initiate certain activities while others are set up by the 
player. Activities are either simple or complex. A 
complex sequence of activities is made up of simple 
activities which succeed or trigger one another. 
Group members may carry out different activities (for 
example fire and movement). 

3.5 Detection 

Detection occurs as follows: 

• Random search detection methods use line-of- 
sight and target acquisition calculations; the 
models used depend upon whether the sight is 
optical, thermal or image intensifier. 

• Detection using weapon signature is based on 
firing weapon, observer's sight and range. 

• Detection is based on the noise made by the 
weapon being fired; it is also range dependent. 

3.6 Engagements 

Engagements are carried out using: 
• Aimed fire. This is the same as direct fire in 

most models. Once a target(s) has been 
acquired, the entity will select a target. 

• Suppressive fire. This is also direct fire, but it is 
directed at an area/object with the aim of 
suppressing any entities/objects in that area. It 
may incidentally cause casualties. 

• Indirect fire. Missions are player directed or set 
up using aim zones and triggers. 

3.7 Engagement Models 

Engagement models include: 
• Small arms. This model calculates the 

trajectories of rounds to determine casualties. 
Any hit by a bullet on a person is considered to 
have incapacitated the person. 

• Fratricide. This models the accidental shooting 
of own troops. 

• Explosive munitions. The mean area of effect is 
used to determine effects. 

• Other munitions, for example armour piercing 
rounds. Hit probability and lethality are used. 

3.8 Other Modelling Capabilities 

Other effects of rounds modelled include: 
• Suppression. This varies depending upon both 

the recipient and the incoming fire. Its effect is 
to cause the recipient to take cover. 

• Obscuration (smoke) uses the COMBIC model. 
The smoke clouds drift across the map. They 
vary in size and shape, and depend primarily 
upon the type of round and meteorological 
conditions. 

• Illumination. This modifies the (night) ambient 
luminance for a given area. The area will drift 
with the wind, and depends upon the ammunition 
type. 

Minefields are defined by type and density of mine. 
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A "weapon sharing" model enables men to pick up 
key weapons whose operators have become 
casualties. 

3.9 Fighting Within Buildings 

Fighting within buildings, at the moment, is carried 
out using look-up tables. Entities of opposing sides 
enter combat once they are within a building and in 
the same 10m square. The fighting in buildings 
model then determines casualties with time. Entities 
can be added during the combat. Combat will 
continue until all of one side is killed or withdraws. 

3.10 Other Faculties 

A number of facilities are available to assist the 
player during planning the deployment. The most 
important of these is the ability to get a view of the 
battlefield from any given location (during the game 
the player can only get views from his entity's current 
locations). 

Day, night, and various meteorological conditions can 
be modelled. 

4. Virtual Reality 

Virtual Reality (VR) offers the capability to model 
and visualise 3-dimensional objects in real-time. A 
natural application of this enabling technology has 
been applied with great success to CAEN. 

The VR facility within CAEN includes: 
• A pre-game set-up facility. This allows players 

to move to any position and mimic entity 
viewpoints, thus helping validate line-of-sight 
assumptions and permitting a reconnaissance of 
the terrain. 

• An interactive facility. This is achieved by 
networking and synchronising both gaming and 
VR environments. Thus, when a player displays 
a sensor view, the viewpoint data are transferred 
to the VR environment and the corresponding 
view displayed in the virtual world. 

• A post-run analysis facility. This makes use of 
CAEN output to drive the virtual world. The 
analyst is able to move around the battlefield, 
view all static features, and monitor the 
unfolding battle from different perspectives 
without interacting with any of the entities. 
Alternatively, the analyst can clamp the 
viewpoint to a selected entity in order to check 

for accuracy of modelling, orders and for desired 
behaviour 

5. Operations Other Than War 

Events which threaten life, property, the community 
or the environment, make particular demands, both 
financial and human, on those responsible for 
decision making when controlling and co-ordinating 
resources in response to those events. 

The most critical period following such an event can 
be the time taken to respond, restore normality and 
take control of the situation, especially when initially 
there is incomplete information available. 

This is especially the case where certain events have 
increasing economic, as well as national impact on 
the    forces    involved. Whilst    organisational 
procedures, skills and drills exist, those with 
responsibility for decision making also need well 
developed human skills and knowledge in order to 
make them effective, even under stress. Operational 
officers (i.e. commanders) need to manage their 
doctrinal, organisational and leadership skills and 
then plan, exercise and test their theories in order to 
clearly see and understand how these situations 
evolve from initiation through to a successful 
achievement of the desired state. 

To achieve this requires an approach which combines 
theory with practice. The theory can be encapsulated 
within products such as the Surrey Police Leadership 
Evaluation Action and Development (LEAD) product 
and the practice exercised and simulated within the 
CAEN environment. 

Leadership training of operational officers, who are 
expected to take command and lead teams, is critical 
for mission accomplishment in operations such as: 

Terrorism. 
Hostage/Siege. 
Environmental disasters - fire, flood, etc. 
Explosions - natural, accidental, deliberate. 
Incidents - natural, accidental, deliberate. 
Industrial hazards. 
Public order, law enforcement, riot control. 
Movement control. 

5.1 Modelling Methodology 

A key requirement for modelling these events is the 
behavioural representation of neutral factions, non- 
combatants and crowds.   This can be achieved by 
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aggregating numbers of people and representing them 
as single entities. For example, an entity may 
represent an individual trouble-maker within a crowd, 
whilst another entity may represent a group of people. 
Then taking advantage of the multi-screen, multi- 
sided capabilities within the wargame/simulation 
environment, it is possible to model and game a 
multi-national peace keeping force together with 
neutrals and non-combatants consisting of agitators, 
demonstrators, bystanders, the press, the police and 
any other interested party. 

Other important components which need to be 
considered include how entities respond to noise, the 
realistic modelling of command and control 
(communications), the use of Command Agents, user 
interface issues, visualisation and object based 
(dynamic) terrain. 

These components, when incorporated within a 
wargame or simulation, will provide a powerful 
generic environment for creating, testing and 
exercising plans in order to achieve a more positive 
outcome in the possible event of a major crisis or 
incident. 

5.2 Behavioural Representation 

Non-combatants are those entities who are present in 
the tactical area of interest but are not seeking to 
influence events. From a military point of view, these 
entities may represent refugees, evacuees, prisoners 
of war or members of non-military organisations. For 
non-military applications, they may represent the 
utility services, elements of a crowd, casualties, 
detainees, criminals, the news media or any other 
interested party. The emergency services, who are 
dealing with the crisis are the equivalent of 
combatants in a war game. 

The presence, attitudes, activities and requirements of 
neutral factions, non-combatants and crowds can have 
a significant effect on the outcome of a major crisis or 
incident. If they are to be modelled, then the 
gaming/simulation environment must provide entity 
attributes such as: 
• Disablement or injury, be it temporary or partial. 

This may include bodily functions such as sight, 
arms, legs, etc. The injury may affect mobility 
and posture. 

• An entity may die from the wounds if not treated 
within a given time. Alternatively, the entity may 
be treated and recover from the injury. 

• Effects of non-lethal weapons such as CS gas. 

• Fear and aggression could be triggered 
dynamically by firearms, riot control equipment, 
agitators, noise, injury, etc. and would make an 
entity behave differently. 

• Use of roman tactics during a scuffle, such as 
kicking and punching. Weapons such as boots, 
fists, batons and bricks would be made available. 

• Dynamically changing clothing and weapons, 
such as the police having to change into riot gear, 
or the disarming of military personnel. 

• The formation of wedges to break up crowds. 
• Pushing activities such as aggregating individual 

entity strengths to move a vehicle. 
• Making arrests, causing injury, detaining, 

removing or transferring injured entities from the 
tactical area. 

• Individual entities could be identified and tagged 
for periods of time. 

Within CAEN, these behavioural representations are 
activated by rules, triggers and data. 

5.3 Multi-Screen 

A multiple screen environment allows more than one 
player per side to participate in the interactive game 
sessions at the same time. By having several players 
per side, each side can be structured to represent 
several levels of command and control. This will 
allow investigations into communications problems 
between different levels of command. 

Within CAEN each side can be divided into 
"command forces". A "commander" would be 
nominated for each side. Each commander may have 
additional players on his side so that more than one 
command force is represented for each side. The 
default would be one command force and one player 
per side. 

5.4 Multi-Sided 

A multi-sided system will allow more than two sides 
to participate in an engagement. This will allow non- 
combatant sides to be present, sides of unknown 
hostility, combat forces enforcing a cease fire or a 
UN peace keeping/peace making force. The multi- 
sided system will also allow for terrorists, criminal 
elements or different crowd factions to be 
represented. 

CAEN allows each side to be deployed separately in 
the same manner detailed for separate forces in the 
multi-screen environment. 
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5.5 Noise 

The modelling of noise and its effects on entities 
(noise may cause crowds to panic) needs to be 
considered. Noise may be broken down into 
background and foreground. Background noise is 
generally ignored, such as noise from lorries and cars, 
but the ambient level is significant. Foreground noise 
is generally sudden noise that may be heard above the 
ambient background; typical examples include a 
gunshot or a car backfiring. 

5.6 Communications 

Communications addresses the passing of information 
gathered by deployed entities throughout the chain of 
command. Current wargaming and simulation 
environments tend to have a perfect communications 
network. If communications are to be made more 
realistic, it is necessary that information is delayed, 
degraded or lost during the message passing process. 
Decisions, orders and actions will then have to be 
made upon imprecise information. Within CAEN, 
the communications network will exhibit the 
following characteristics: 
• Errors in entity positions. The positions of 

entities on the screen will represent the last 
position at which a report was made to the 
operations officer. As more entities acquire a 
target, the target's position will tend towards its 
actual position. 

• Delays in communication. Existing out of date 
information will be retained until an update is 
successfully communicated. 

• Failure to communicate information. There may 
be situations where the information is not 
considered important. 

5.7 Command Agents 

Command Agents are used to represent decision 
making nodes within a command hierarchy. Each 
Command Agent represents a command post which is 
able to make decisions and interact with other 
Command Agents and entities within a wargaming, 
simulation environment. Command Agents therefore 
control operations within the tactical area of interest. 

At the heart of a Command Agent is a knowledge 
based system containing explicit knowledge which 
describes sets of tactics and behaviours required by a 
command post to perform its particular role during 
the operation. 

Facilities need to be provided for a human controller 
to take on the role of a Command Agent. This means 
that the human controller will perform all the decision 
making processes of that agent, thus replacing an 
existing agent or work independently alongside other 
agents within the command structure. 

In a multi-screen, multi-sided environment, the use of 
Command Agents will reduce manning levels and 
hence the running cost of the simulated exercise. 

Command Agents have been demonstrated with great 
success during a game at divisional level. These 
Command Agents are very sophisticated and 
contained a large number of rules. Individual entity 
Command Agents will not require very sophisticated 
knowledge bases. 

5.8 User Interface 

A human computer interface is that combination of 
physical components and software which combine to 
allow the user to issue commands to the computer, 
and allow the computer to present information to the 
user. 

A user friendly interface is an essential requirement to 
ensure rapid acceptance of any system. A generic 
user interface is therefore required with a consistent 
look-and-feel for all application views. The user 
interface has to be intuitive, easy to use, 
reconfigurable and individually customised for 
specific applications. A graded " help" facility, 
which is activated by the user and based on the user's 
familiarity with the system, is a useful additional 
feature. 

5.9 Visualisation 

Virtual Reality (VR) provides an additional 
dimension to visualisation. The rapid creation of new 
terrain and objects, full immersive facilities for 
training people in leadership qualities under 
stressful/chaotic conditions, the smoothing out of 
movement between frames during gaming and replay, 
provide an important role in the decision making 
process. 

5.10 Object Based Terrain 

The requirement is to develop an overlay terrain 
structure so that terrain objects can be placed upon 
the terrain without being restricted by the grid 
structure of the current underlying terrain. 
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The proposed CAEN object terrain will allow a 
higher degree of detail to be represented in selected 
areas of interest. It will also provide a more realistic 
modelling environment for general terrain areas. This 
will provide the following benefits: 
• Any size of terrain object will be possible, so a 

more realistic representation of features such as 
buildings, rubble, fox holes and trees can be 
modelled. 

• The defining of terrain objects in terms of 
constituent elements will allow for a greater 
variation in the shape of buildings, trees, etc. 

• The enabling of objects to be positioned on the 
terrain overlapping grid square boundaries will 
remove the uniformity observed in the existing 
terrain feature representation. 

The current representation of a terrain area based on 
regular squares will be replaced by irregular triangles. 
This will provide a direct mapping to the VR 
implementation which uses flat irregular triangles for 
terrain representation. In the future, objects will be 
created within the VR environment and mapped 
directly into CAEN, thus considerably reducing the 
gaming set-up time for new geographical locations. 
However, additional processing may be required for 
terrain areas with complex contour detail. 

6. Applications 

Wargames and simulations, such as CAEN, can be 
customised to game and simulate threat management. 
By threat management we. mean "the positive 
management of any event which is a threat or 
potential threat to a state of stability". Public order 
operations, emergency planning operations and 
mission planning are examples of threat management. 

The rapid creation of specific terrain and culture is an 
essential requirement for threat management. If data 
is not readily available, then a generic environment, 
such as a generic town, will suffice as an interim 
solution. This town might contain a railway station, 
town centre, county court, police station, sports town 
by-pass. 

A typical operation might address the tactics and 
resources required to police elements of a crowd 
moving from one part of a town to another. Police 
cars would be used to shepherd people along main 
roads whilst additional police cars and police officers 
would also be allocated to strategic positions to 
cordon off parts of the town. Potential application 
areas include the control of football crowds, the 

policing of the annual carnivals or the containment of 
riots following an unpopular event or decision. 

Another operation might be concerned with the co- 
ordination of the emergency services following a 
major incident in a built-up area. 

A typical incident report may read as follows: 

SCENARIO 
Date: 
Time: 
Weather: 
Wind direction: 

20 June 1996 
09.30 am 
Overcast - outlook rain 
NNE speed 5 mph 

INCIDENT 
At 09.30 am a fully laden tanker, travelling EAST 
through the village of Copehill has overturned 
whilst manoeuvring around a tight corner. 
Immediately behind the tanker is a group of foreign 
tourists in a car. 

The tanker explodes and the tanker driver is killed. 
The driver of the tourist car is killed and one of his 
party is injured. 

The person in the house next to where the tanker 
explodes tries to help the driver, but is killed in the 
attempt. 

The remainder of the family in the house have 
walking injuries and are able to move to a safe 
location, but do require urgent medical assistance. 
Wargames and simulations such as CAEN can be 
used to create the above incident and encourage 
operations officers to take control of the situation and 
restore   normality   within   a   constructive,   virtual 
environment. 
It has been observed that the most critical period 
following any incident can be the time taken to 
respond, restore normality and take control of the 
situation at the scene of the incident, especially when 
initially there is incomplete information available. 
Typical questions that may need to be addressed are: 
• How quickly can the emergency services arrive 

at the scene of the incident? 
• What is the quickest route to the incident? 
• What resources are required to restore order and 

take control of the situation? 
• What    measures    are    required    to    prevent 

escalation? 
• Where   are   the   most   suitable   locations   for 

establishing command posts? 
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7. Safety Management 

Analysis of the major incidents reported within the 
European Community indicates that, in the majority 
of cases, management error was the underlying cause. 
This error can manifest itself as deficiencies of 
organisation, inadequate training, or simply failing to 
take into account the possibility of human error. 

The cost of running live exercising in order to 
minimise these errors is excessive. For example, 
when Eurotunnel decides to close down one of their 
railway tracks for such a live exercise, the loss of 
revenue could be excessive especially when trains are 
scheduled to run through the Channel Tunnel at 3 
minute intervals. 

The real business behind training and exercises is to 
test the foundations of corporate, organisational and 
personal responsibility. Distributed Interactive 
Simulation (DIS) techniques and protocols would 
provide a multi-agency approach to the planning, 
exercising and testing of emergency plans. A 
distributed system would consist of workstations 
which are located at various sites and linked together 
over a wide area network. This system architecture 
would enable operational officers, who are sited at 
various geographical locations, to communicate, 
game, simulate and exercise their plans together in a 
realistic virtual environment. 

8. Conclusion 

The cost of such live exercises, excluding manpower 
costs, may range from £15K to in excess of £150K 
(for example, a 3 hour exercise at a provincial airfield 
costs in the region of £100K). When the Control Of 
Major Accident Hazards (COMAH) legislation 
becomes law, the number and frequency of running 
different types of live exercises may increase. 

7.1 COMAH 

COMAH is a major European accident prevention 
policy which will set out in writing an operator's aims 
and principles for the control of major hazards in an 
establishment, and in particular, the safety 
management system which is controlled by that 
operations officer. 

Operations officers will have to prepare emergency 
plans and explain how they will respond should a 
major incident occur. They will have to provide 
sufficient information to the authorities to enable 
them to draw up off-site emergency plans. Part of 
the plan will be the requirement to inform the public 
within the vicinity of the incident what actions 
should be taken. 

Wargames and simulations such as CAEN could 
help validate the quality risk assessment procedures 
required when the COMAH legislation becomes 
law. 

7.2 Safety Exercises 

The testing of an emergency plan may prove to be 
pointless as it has been observed that these exercises 
tend to be repetitive and may not necessarily test the 
critical components of the plan. Existing wargames 
and simulations could provide the solution. 

Wargames and simulations, such as CAEN, provide 
excellent environments for gaming and simulating 
para-military operations such as: 
• Operational Analysis (OA) on such topics as 

Close Combat, Military Operations in Built-up 
Areas (MOBA) and Key Point Defence. 

• Operational planning and training. 
• Reviewing command and control. 
• Evaluating human performance. 
• Training personnel for given emergencies. 
The flexibility of CAEN and the very fine detail of its 
modelling capability provide an excellent 
environment for Operations Other Than War. Within 
reason, anything that moves on land can be modelled 
and gamed within CAEN. This is illustrated by the 
ease with which CAEN has been used for creating a 
variety of different scenarios for both defence and 
non-defence applications. 

There are many potential uses of CAEN for peace 
keeping, peace making and paramilitary activities. 
These include operational planning, tactics, training, 
mission rehearsal, resource management, conflict 
resolution, crisis management and studying the 
complex decisions required for long and short term 
states of stability within the community. 

The benefits of using wargames such as CAEN 
include: 
• A distributed computer environment to visualise, 

interact with and rapidly re-configure complex 
events and disorder. 

• The ability to plan, practice and test a variety of 
responses to emergency and critical situations in 
a tailored environment. 

• A facility for pre-operational and post- 
operational analysis on  such topics as threat 

55 



analysis,     vulnerability     analysis     and     risk 
assessment. 

• A substantial reduction .in the costs incurred 
when an organisation sets up "real" situations to 
simulate complex events and disorder. 

• Reduction in the costs and damage to reputation 
which occur when organisations "get it wrong" in 
an emergency and find that they are the victims 
of damage litigation. 

In summary, wargames like CAEN offer forums to 
explore the synergy between the terrain, the 
environment, and the man-in-the-loop for both 
defence and non-defence applications. 
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1.   Abstract 

Dramatic improvements are needed to increase the 
level of medical readiness in the Department of 
Defense, FEMA, and other medical services. These 
improvements can be achieved through innovative 
application of simulation technology. We have 
developed a vision for simulation support to medical 
readiness based on medical extensions to, and linkages 
among virtual and constructive combat simulations, 
command and control systems, advanced patient MIS 
systems, and medical training simulators. 

As a first step in implementing our vision, we have 
developed a prototype Medical Semi-Automated 
Forces (MedSAF) system based on medical 
extensions to the Modular Semi-Automated Forces 
(ModSAF) combat simulation system. We have also 
developed a modem-line linkage between MedSAF 
and the Human Patient Simulator (HPS), a scenario- 
based, parameter driven mannequin-style simulator 
developed by the University of Florida School of 
Medicine. We can demonstrate a fully integrated 
medical scenario that includes combat, generation of 
infantry casualties, simulation of first care treatment, 
evacuation to higher echelons of care via combat 
ambulances and evacuation helicopters, and models of 
treatment at a Battalion Aid Station and Evacuation 
Hospital. Casualty models have been developed that 
change state over time, including vital sign 
degradation (e.g. pulse, blood' pressure, blood loss) 
based upon casualty type. 

In this paper, we describe the design and 
implementation of these MedSAF extensions to 
ModSAF. This publication is a follow-on to our 
previous report and it updates the status of our 
development since that publication and provides more 
detail relevant to the DIS and CGF communities. 

2.   Introduction:    The Need to Improve 
Medical  Readiness 

As we have reported in our previous paper 
(Courtemanche et al. 1996), the tri-service medical 
community is currently focused on meeting the 
medical readiness challenges imposed upon it by the 

digitized battlefield requirements, including training, 
mission rehearsal, leadership development, doctrine 
evaluation, materiel solutions, and the need to test 
and evaluate a system's readiness for fielding. The 
medical community is attempting to accomplish 
these goals in the face of decreasing budgets and 
increasing technical, personnel, medical, and threat 
challenges. 

In the past, many of these challenges have been met 
through direct training on live systems and through 
live simulation exercises, approaches that are 
becoming increasingly expensive and which suffer 
from the liability that they are non-repeatable, 
uncontrollable, and, in many cases, medically 
deficient. As has been amply demonstrated for 
combat forces, simulation offers key technology to 
help meet many of these challenges. Unfortunately 
little has been done to date to support medical 
readiness through the use of Advanced Distributed 
Simulation (ADS), and this has prompted the 
development of our vision for improving medical 
readiness through simulation linkages. 

3.   Improved  Medical  Readiness Through 
Simulation   Linkages 

SAIC's ASSET and Health Care Technology Group 
organizations have put together a vision for how the 
goals of medical readiness can be achieved by 
extending current simulation systems to play medical 
processes, and then linking them to live medical 
equipment to support military medical training, 
system evaluation, and procedure validation. 

The key components of this vision are: 
1. linking different types of simulations, 
2. exploiting    the   synergy    provided    by    such 

linkages, and, 
3. extending the systems with medical play. 

Sections 3.1 through 3.5 describe the types of 
simulations we envision linking together to provide a 
superior solution to the challenges of medical 
readiness. 
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3.1 Virtual   Simulations 

An example of virtual simulators are Semi- 
Automated Forces (SAF) applications and the crewed 
simulators that these applications interact with. One 
such example is ModSAF (Courtemanche & 
Ceranowicz 1995). ModSAF, or Modular Semi- 
Automated Forces, is a Computer Generated Forces 
(CGF) system that researchers can build upon and 
extend. It is fully compatible with DIS network 
protocols. Its development has been funded by the 
Defense Advanced Research Projects Agency 
(DARPA) and the Army's Simulation Training and 
Instrumentation Command (STRICOM). The latest 
version, ModSAF 2.1, was released in May 1996, and 
it contains over 750 thousand lines of software 
written in C. 

One of the current users of ModSAF is DARPA's 
Synthetic Theater of War (STOW) program. STOW 
has the objective of demonstrating the use of ADS for 
large scale exercises at the Joint Task Force level 
distributed over many sites, including linkages to 
constructive simulations and live players (Aronson 
1996). The STOW program is currently enhancing 
ModSAF in the areas of service-specific synthetic 
forces, synthetic environments, and simulation 
networking, leading to the STOW '97 training 
exercise. 

3.2 Command  &  Control Systems 

An example of Command and Control (C2) systems 
is the Army's Phoenix system, formerly know as the 
Battle Command Decision Support System 
(BCDSS). Phoenix, developed by Mystech 
Associates, is a real world command and control 
system that allows commanders to organize, analyze, 
display, and manipulate information about their forces 
on the battlefield. It is one of a group of systems 
that are attempting to revolutionize the way in which 
command decisions are made and combat data is 
disseminated. Phoenix is not a simulation, but is 
used extensively in training exercises and is integrated 
with existing training simulations. The system 
provides a relational database, tactical maps, 
communications tools, decision support tools, and 
command matrices on a computer. The computer 
system increases the speed at which information can 
be generated, exchanged, , and understood by 
commanders. As such, it is a force multiplier, 
making U.S. forces more responsive and effective 
against their enemies. 

3.3 Advanced MIS Systems 

An example of an advanced medical MIS system is 
the Trauma Care Information Management System 
(TCIMS).   Under sponsorship by DARPA, TCIMS 

is being developed by various consortium members as 
the next generation medical MIS system for the DoD. 
It provides unprecedented levels of accurate patient 
information to various echelons of care, starting at 
level 1 (medics treating individual soldiers at incident 
sites) up to levels 3 and 4 (military hospitals treating 
large groups of casualties). 

3.4   Patient   Simulation 

An example of patient simulation is the Medical 
Education Technologies Inc./University of Florida 
Human Patient Simulator (HPS). The HPS is a full 
scale, life-like simulator that is model-driven and 
script controlled (Lampotang et al. 1995 and van 
Meurs et al. 1993). This hybrid system allows users 
to optimally and creatively take advantage of both 
types of control. The cardiovascular features of the 
HPS include palpable radial and carotid artery 
pulsations, heart sounds (normal and abnormal), 5- 
lead electrocardiogram, non-invasive blood pressure 
measurements, and invasive arterial, central venous, 
pulmonary artery, and wedge blood pressure. All 
these measurements are made using standard 
monitoring equipment. 

Simulation scenarios can be constructed for individual 
patients. This allows for the implementation of 
specific script driven events (e.g. a certain amount of 
blood loss from an injury). The physiologic data will 
respond to those events in a realistic manner as 
dictated by the physiologic model. 

Scenarios including combat casualties such as wounds 
causing blood loss, pneumothorax, and insufficient 
oxygen uptake caused by chemical weapons or smoke 
inhalation are possible. Development of the HPS is 
still ongoing and currently work is underway to add 
brain, eye, and neurological features to the HPS. The 
modular design of the HPS and the ability to program 
different patients via the scenario editor makes the 
HPS the ideal human model to be used in combat 
simulation. 

3.5   Simulation 
Readiness 

Linkages      for     Medical 

Each of the above systems excels in its respective 
domain. The ModSAF combat simulation provides 
valid representations of combat activity and can 
populate a virtual battlefield with large numbers of 
simulated entities. Phoenix, as part of the Army's 
Maneuver Control System (MCS), can receive, 
manipulate, and send a wide variety of command and 
control messages, including reports and orders. 
TCIMS holds the promise of dramatic improvements 
in collecting, maintaining and retrieving accurate 
patient data. The HPS provides a simulation and 
training environment that allows medical practitioners 
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to practice medical procedures using actual medical 
equipment. 

Our vision for linking the above simulations and 
systems to improve medical readiness can be 
summarized in Figure 1. 
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Figure 1: Simulation Linkages 

We propose development of a medical training system 
that includes representation of the combat mission. 
As casualties are generated in combat SAF 
simulations such as ModSAF, these casualties can 
populate patient MIS systems. Given a Medical SAF 
capability that can accurately model the medical 
logistics as well as maintain a suitable representation 
of casualties and their treatment at the multiple 
echelons of care, training of medical evacuation 
logistics can be performed. When linked to patient 
simulators such as the HPS, training for care 
providers can be accomplished in the same scenario. 
Properly linked to the advanced patient MIS as well 
as actual command and control equipment, a seamless 
training scenario that exercises all aspects of the 
medical mission is possible. 

The benefits of this proposed linkage are that it 
allows multiple uses of individual simulations in a 
combined fashion. Simultaneous training at varying 
resolutions and levels of care becomes possible. 

Since doctrine dictates that the medical mission must 
support the combat mission, we stress that it is 
crucial to extend accepted combat simulations with 
medical play rather than to develop them in stand- 
alone mode. 

4.   The MedSAF Prototype 

As a first step in implementing our vision, we have 
developed a prototype Medical Semi-Automated 
Forces (MedSAF) system based on medical 
extensions to ModSAF. MedSAF was then 
integrated to interoperate with the HPS. We call the 
combined MedSAF and its linkage to the HPS, 
MedSIM (Medical Simulator). 

The remainder of this paper describes the capabilities 
and implementation of MedSAF and linkage to the 
HPS. This integrated MedSIM capability can be used 
to demonstrate a fully integrated medical scenario that 
includes combat, generation of infantry casualties, 
simulation of first care treatment, evacuation to 
higher echelons of care via combat ambulances and 
evacuation helicopters, and models of treatment at a 
Battalion Aid Station and an evacuation hospital. 
Casualty models have been developed that change 
state over time, including vital sign degradation (e.g. 
pulse, blood pressure, blood loss) based upon casualty 
type. 

A remote linkage to the Human Patient Simulator 
allows substitution of a life-like simulator for 
MedSAF casualties, just as tank simulators may be 
substituted for ModSAF tank entities in a distributed 
simulation. Much as virtual tank simulators allow 
platoon leaders and tank crewmen to train in the 
combat context represented by ModSAF, the HPS 
allows medical professionals to train on a human-like 
simulator in the combat context represented by 
MedSAF. The HPS provides a powerful environment 
for training in triage and treatment of casualties 
throughout the course of the simulation. Our 
prototype system can be made fully compatible with 
existing DoD standards for DIS or DMSO's emerging 
High Level Architecture (HLA). 

4.1   Extensions 
Simulation 

to      Support       Medical 

The extensions developed to produce a medically 
credible MedSAF from the ModSAF combat 
simulation system are described below. These 
extensions were specifically developed to support the 
execution of the demonstration scenario described in 
section 5.1 

4.1.1 Medical Support Vehicles 
The first development task under the MedSAF project 
was to ensure that the proper entities existed to 
populate the synthetic battlefield in the demonstration 
scenario. Refinement of the scenario revealed the 
requirements for a M113 combat ambulance and an 
evacuation helicopter, as described in the following 
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sections. In addition, a generic individual combatant, 
enhanced to support casualty modeling was created. 

4.1.1.1 M113 Combat Ambulance 
ModSAF already contained a baseline version of a 
Ml 13 ambulance; however no medical modeling 
capabilities or patient transportation were available 
for that vehicle. The MedSAF project enhanced the 
baseline ModSAF Ml 13 ambulance by adding the 
specific transportation behaviors described later in the 
paper. This was easily accomplished by updating the 
Ml 13 ambulance configuration files to include the 
capabilities to execute the specific unit level task 
described in section 4.1.2 

4.1.1.2 UH-53 Evacuation Helicopter 
To implement air evacuation from the Battalion Aid 
Station (BAS) to the evacuation hospital, a specific 
UH-53 air evacuation helicopter was created in 
MedSAF. This was accomplished by creating a 
parameter file for the UH-53. This helicopter was 
extended with transportation behaviors in the same 
manner as the Ml 13 combat ambulance. 

4.1.1.3 Dismounted Infantry 
A generic infantry entity was created (again using 
ModSAF's ability to define new entities via data 
files) to implement casualty generation and modeling 
of wounded patients. For the purposes of the 
demonstration, this infantry had no specific weapons. 
This infantry entity was extended with the casualty 
generation algorithm, casualty transportation and 
casualty representation modeling described in the 
following sections. 

4.1.2 Casualty Transportation 
To support the transportation of wounded casualties 
across the battlefield, the ModSAF behaviors that 
already allow dismounted infantry to mount vehicles 
were investigated. An analysis of the existing 
ModSAF mount and dismount behaviors revealed 
serious limitations that would restrict the ability for 
combat ambulances to transport arbitrary casualties to 
and from arbitrary echelons. At the time, ModSAF's 
capabilities to allow soldiers to mount and dismount 
vehicles and to be transported across the battlefield 
were limited to infantry that were task organized as 
part of integrated vehicle/individual combatant combat 
units. In this form, this implementation would 
unacceptably limit the transportation of casualties. 
For example, the ability to transport enemy or non- 
aligned casualties would not be supported. 

A design for flexible "mounting" and "dismounting" 
of wounded from ambulance vehicles (both the Ml 13 
combat ambulance and the UH-53 evacuation 
helicopter) was developed to overcome the ModSAF 
shortcomings. This design relies on message passing 

between the ambulance vehicle and the patient to 
coordinate the pickup and delivery of the wounded, as 
shown in Figure 2. This message passing is 
accomplished via encoded DIS Signal Protocol Data 
Units (PDU's) that allow different entities in a 
networked simulation to communicate with each 
other. 

The contents of the "Board Me" message indicate the 
DIS entity ID of infantry being commanded to board 
the ambulance, and the entity id of the ambulance to 
board. The contents of the "Boarded' message 
provides a positive acknowledgment that the boarding 
occurred, also by indicating the respective entity ID's. 
The implementation of the "DeBoard" and 
"DeBoarded" messages are similar. 

Ambulance     Infantry        Ambulance     Infantry 

Board Me 

Boarded 

. DeBoard Me 

DeBoarded 

Figure 2: Messages and Timelines for Casualty 
Pickup and Delivery 

This approach of using DIS messages to 
communicate and acknowledge the boarding and 
deboarding process allows potential future 
interoperability with the boarding and deboarding of 
non-CGF individual combatants onto non-CGF 
vehicles. 

The boarding capabilities were implemented by a pair 
of ModSAF tasks, as described below. 

4.1.2.1   Vehicle Board 
A ModSAF vehicle level behavior called VBoard was 
created for the wounded infantry to monitor requests 
from ambulances to be picked up or dropped off. As 
in all vehicle level ModSAF behaviors, this behavior 
has direct access to the vehicle it supports. This 
access enables the behavior to directly cause the entity 
to deactivate (leave the DIS exercise) or reactive 
(rejoin the DIS exercise). 

Based loosely on the baseline behaviors for the 
mounting and dismounting of DI Groups, VBoard 
continually examines incoming radio messages for 
requests to be picked up, or, if already boarded, to be 
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dropped off. If a request from an ambulance to board 
is received, the infantry deactivates itself, leaving the 
DIS exercise, and it becomes dormant. When a 
request from the ambulance to deboard is received, the 
infantry entity reactivates at a location near the 
ambulance vehicle. This gives the appearance that as 
the vehicle moves, the boarded infantry has moved 
along with it. 

4.1.2.2  Unit Evacuation 
A unit level behavior, UEvac, was created for 
transportation vehicles to initiate the request to 
pickup or deliver wounded infantry. This behavior 
was based loosely on the behavior to pick up DI 
Groups. As a unit level behavior, it can be direcdy 
assigned to a unit or vehicle from the ModSAF GUI. 
The operator assigns an Evacuation mission to either 
an ambulance or Medevac helicopter. The operator 
must supply a location at which to perform the 
evacuation or delivery. Depending on the type of 
vehicle (ground or RWA), the UEvac behavior (task) 
that is part of the Evacuation mission (taskframe) 
spawns the appropriate movement sub-behaviors to 
move the vehicle to the evacuation or delivery point. 

Once the vehicle arrives at its destination, if the 
operator has configured the mission for pickup, the 
vehicle searches an operator-controlled search radius 
for wounded infantry. Once located, "Board Me" 
messages are sent to the wounded infantry. If the 
mission has instead been configured for delivery of 
the wounded, the behavior instead sends "DeBoard 
Me" messages to all the infantry that have previously 
boarded. Receipt of "Boarded" or "DeBoarded" 
messages allows the unit behavior to positively track 
the current number of infantry it is carrying. 

The fact that the behavior is sensitive to whether it is 
running on a ground vehicle or RWA vehicle (and 
that it determines which particular movement sub- 
behaviors to invoke based on vehicle type) is a unique 
design in the domain of ModSAF behaviors. It is 
possible and desirable in this case because evacuation 
by air or ground is extremely similar at this 
resolution of modeling. 

4.1.3 Casualty Representation 
The most significant development activity in the 
MedSAF project was the development of credible 
medical models. This was accomplished via the 
development of a flexible modeling language, and the 
use of subject matter experts to help develop models 
within that language, as described in sections 4.1.3.1 
through 4.1.3.3. 

4.1.3.1   State Interpreter 
In the MedSAF project,  we developed a flexible 
interpreted   computer   language   called   the   State 

Interpreter Language (SIL). The high level purpose 
of SIL is to represent physical and behavioral models 
in a data driven interpreted fashion to facilitate 
development and debugging. SEL was specifically 
used in this project to model the evolution of human 
casualty states. 

SEL allows the declaration of state variables of 
integer, floating-point and string types. These 
variables can be initialized and updated through the 
actions of a full suite of mathematical operators. 
Through the use of defined states and control-flow 
statements, conditional expressions can be defined. 
The basic SIL language is interpreted via a SIL 
interpreter. The SIL interpreter can run a SIL 
program stand-alone as well as imbedded within 
MedSAF. The SIL interpreter has been designed to 
allow easy extension of the SDL language through the 
registration    of    named    primitives. External 
applications can interface with SIL through shared 
variables or primitive extensions. 

The advantage of the SIL language for the 
implementation of medical models and behaviors is 
that it allows the rapid addition of models and 
behaviors into the MedSAF system without 
recompilation. For example, we were able to easily 
add new medical sub-models without code 
compilation, such as a model of diastolic and systolic 
blood pressure derived as a function of mean arterial 
pressure (MAP). This facilitates development and 
explorations into new behaviors or models. 

4.1.3.2 Human Physiological Modeling 
In MedSAF, we used SEL to implement several 
prototype medical models to represent the time- 
evolving state of human casualties. The use of SIL 
in MedSAF was dictated by the requirements to easily 
create MedSAF models. Given that the proper state 
variables that define a human casualty were unknown 
until late in the development cycle of the project, it 
was essential to develop a system that facilitates 
model development without compilation. As the 
models become more refined and gain stability in 
implementation, these models can be implemented in 
ModSAF's compiled Finite State Machine (FSM) 
language (Calder et al. 1993), for efficiency of 
execution. 

Our current medical model was created with medical 
subject matter advice provided by medical modeling 
experts from the University of Florida Department of 
Anesthesiology. The model represents a human 
patient via several coupled sub-models, which include 
a cardiovascular model and a model of blood 
oxygenation. A model of brain death based on blood- 
pressure and blood oxygenation determines the health 
of the patient. 
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4.1.3.3   Treatment Modeling 
In order to feed medical treatment inputs to the 
MedSAF human physiological models, the SIL 
language had to be extended with primitives to 
determine if the patient has a healthy buddy available 
to treat wounds, whether the patient was in an 
ambulance, whether the patient is at the Battalion Aid 
Station, or whether the patient is at the evacuation 
hospital. Because of SIL's ability to accept named 
extensions via code registration, these extensions 
were straightforward to implement. Each of the 
primitives used ModSAF search primitives to 
determine the nearness of other DIS entities (healthy 
buddies) or certain graphical objects (BAS or 
evacuation hospital). A primitive to determine 
whether or not the infantryman is in an ambulance 
was also added. 

Based on the results returned from these primitive 
extensions, the SIL-encoded casualty model will 
dispatch to appropriate treatment logic, such as a 
change in blood oxygenation due to intubation and 
ventilation. In this manner, we have demonstrated 
how to provide "echelons of care" to simulated 
casualties within a DIS combat simulation. 

4.1.4  Casualty Generation 
Prior to the transportation and treatment of casualties 
in MedSAF, casualties must be generated as a result 
of combat. In support of the development of high- 
resolution casualty generation -in MedSAF, a limited 
survey of casualty generation data sources was 
performed. The results of the limited survey were 
disappointing, in that the only available documented 
models deal with human injuries at a very high level, 
consistent with the aggregate vehicle-level damage 
states of mobility kill, firepower kill, and 
catastrophic kill. Clearly this level of injury 
representation was too coarse to be used in a medical 
scenario. Recent contacts within the Army medical 
community indicate that higher resolution human 
injury models are available, and these will be 
examined as part of follow-on MedSAF development. 

As a result of the limited injury-modeling 
information available at the time of development, a 
new ModSAF damage library was created. This 
library generates injury events as a result of direct or 
indirect fire, according to the datafiles and algorithms 
described in sections 4.1.4.1 and 4.1.4.2. 

4.1.4.1 Direct Fire Casualty Generation 
Taking ModSAF's direct fire model as an example 
(Courtemanche & Monday 1994), the following data 
structure was used in the casualty library to determine 
whether an infantryman has sustained an injury due to 
a small-arms direct fire event. 

("No Injury" 0 05) 
("Severed Limb" 0 05) 
("Flesh Wound" 0 40) 
("Chest Wound" 0 30) 
("Head Wound" 0 10) 
("Death" 0 10) 
) 

This data specifies that there is a 5% chance of "No 
Injury", 40% chance of "Flesh Wound", etc. The 
probabilities must add up to 1.0. A different set of 
probabilities can be associated with different targets 
and different weapons impacting the target. Being 
data driven, the statistics can be easily changed to 
correlate with empirical data. 

The benefit of this data representation is that the 
damage events are completely data-driven. For 
example, a new damage event such as "Abdominal 
Wound" can be added to the data file without 
recompilation. As these damage events are routed 
directly to the SEL-encoded human physiological 
models, completely new damage events and resulting 
human patient outcomes can be created just by 
augmenting data files. 

4.1.4.2  Indirect Fire Casualty Generation 
For indirect fire (that is weapons impacts directed at a 
location as opposed to a specific vehicle), a slightly 
modified damage file is used: 

( 
(0.0 5.0   ( 
(5.0 10.0  ( 

(10.0 25.0 ( 

(25.0 50.0 ( 

(50.0 100.0 

"Death" 
"Head Wound" 
"Death" 
"Head Wound" 
"Chest Wound" 
"Death" 
"Head Wound" 
"Chest Wound" 
"Flesh Wound" 
"No Injury" 
"Death" 
("Chest Wound" 
("Flesh Wound" 
("No Injury" 

1-0))) 
0.1) 
0.9))) 
0.1) 
0.1) 
0.8))) 
0.1) 
0.1) 
0.2) 
0.1) 
0.5))) 
0.1) 
0.2) 
0.7))) 

) 

This data file contains damage probabilities as in the 
direct fire case; however these probabilities are 
associated with different range bands. For example, 
between 0 and 5 meters away from the indirect fire 
impact, this data file indicates 100% chance of 
"Death". 
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4.2   Linkage to the HPS 

MedSAF was envisioned not as a standalone system, 
but as a system capable of being networked with 
other simulations to provide multi-level medical 
combat training. An example of this is the 
demonstrated linkage of MedSAF with the HPS, 
which was prototyped under the HPS Pilot Study, as 
described below. 

The overall concept of linking MedSAF and the HPS 
is based on current ADS training environments, in 
which manned combat simulators (i.e., tanks, APC's, 
etc.) are linked to SAF combat forces. Likewise, 
medical combat training requires a high resolution 
manned simulation interface (the HPS), as well as 
semi-automated forces (MedSAF). The simulator 
portion (i.e., HPS) can be used to model certain 
MedSAF casualties at a sufficiently high resolution 
that effective "team training" (i.e., training of medical 
practitioners) can take place. 

Figure 3: MedSAF Display of HPS Data 

4.2.1   Human Patient Simulator Pilot Study 
In the HPS Pilot  Study, we prototyped a linkage 
between the HPS  and MedSAF.    Under the Pilot 
Study, modem-based serial communications was used 

to communicate patient data from the HPS in 
Gainesville, Florida to MedSAF running in Orlando, 
Florida. Due to the limited schedule for the Pilot 
Study, a very rudimentary linkage was designed and 
implemented. The HPS communicates scalar (non- 
waveform) data, such as breath-rate, via the modem 
link. A standalone communications program co- 
located with the MedSAF system receives the data 
from the HPS and displays it graphically over time, 
as in Figure 3. 

The current linkage is two-way in that a standalone 
program communicates commands to the HPS to 
initiate the linkage, load up the patient with a pre- 
planned patient scenario, and receive vital sign data 
back from the HPS. However, the linkage is limited 
in that the particular patient configuration is pre- 
planned and not a reflection of the particular state of a 
particular casualty in MedSAF. This extension is 
planned in the next version of MedSAF. 

4.2.1.1 MedCOM Serial Communications 
Serial modem communications between the HPS and 
MedSAF was accomplished using a reliable 
communications protocol specifically designed to 
transmit physiologic data over modem connections. 
This protocol, named MedCOM, uses data packets of 
variable length, a checksum and a positive 
acknowledge algorithm for reliability. This protocol 
was tested with data generated by the HPS over a 
telephone link between Gainesville, Florida and 
Orlando, Florida. Link interruption tests show that 
the protocol is reliable and that it has the ability to 
resynchronize a connection when synchronization is 
lost. 

Although the normal linkage to the HPS is currently 
over a modem line, we have demonstrated the ability 
to maintain a direct serial line linkage in the case 
where the HPS and the MedSAF workstations are co- 
located. Also, we believe that the MedCOM protocol 
can be easily adapted to DIS via the encapsulation 
within Signal PDU's or the use of the Simulation 
Management Protocol. In the future, as HLA 
implementations become prevalent, the MedCOM 
communications model can easily be converted to a 
Run Time Infrastructure (RTI) which can 
communicate changing attribute values (vital signs) 
with specified reliability characteristics. 

4.2.1.2 Remote Interface to HPS 
To facilitate remote control and remote data collection 
from the HPS, the HPS software has the ability to 
run one or more remote controls that are connected to 
one of the multiplexer serial ports contained within 
the HPS. To connect the HPS to the MedSAF 
communications program and data display, a gateway 
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was designed that communicates as a remote control 
to the HPS and on the other side connects to a 
modem and transmits the data that the MedSAF 
communications program wants to receive. All 
communication is via the MedCOM protocol. The 
HPS-MedCOM gateway software requests 
physiologic data from the HPS every five seconds and 
sends it on via the modem with the MedCOM 
protocol. Commands coming from the MedSAF 
communications program are translated and validated 
and sent on to the HPS. An example of a command 
is "start patient", which will cause the HPS to start 
loading a specific padent scenario. 

4.2.1.3  Data Grapher 
In order to display real-time remote patient state from 
the HPS to the MedSAF operator, an X-Windows and 
Motif based display subsystem was created to 
graphically display time-changing MedSAF and HPS 
data. This system, called Data Grapher, can plot 
multiple synchronized waveforms, as in an 
EKG/respiration monitor. This display system was 
integrated with the standalone MedSAF HPS 
communications program to plot returning HPS 
variables, as in Figure 3. In the future, this display 
system will be integrated directly into MedSAF to 
plot the state variables of the low resolution MedSAF 
medical models. 

5.   Project Status and Results 

The MedSAF and HPS Pilot Study were sponsored 
by SAIC's Independent Research and Development 
program. Successful    demonstration    of    the 
capabilities described in this paper was given in the 
first quarter of 1996. A fully integrated scenario 
including combat, generation of casualties, treatment 
of the casualties at different echelons of care, 
transportation of casualties to different echelons of 
care, and linkage to the HPS has been demonstrated 
and briefed to several representatives of the 
Department of Defense Simulation, Training, and 
Medical communities. This demonstration scenario 
is described below. 

5.1   MedSAF  Scenario 

A mech infantry platoon, part of a Mech Infantry 
Company Team, is attacked, and casualties are 
sustained to a dismounted infantry squad. First care 
to the wounded is provided by an M113A3 Combat 
Ambulance, which had already been task organized to 
the Company Team from the Battalion Medical 
Platoon. The Combat Ambulance moves forward, 
from its normal position with the Company trains 
1000 meters behind the front line of the Company 
team, to assist the wounded squad. The casualties are 
transported by combat ambulance rearward to a patient 
collection point behind the Company Team defenses. 

Unable to treat all the casualties, the Company 1 st 
sergeant requests ground evacuation of the wounded to 
the Battalion Aid Station (BAS). The BAS 
dispatches one of its un-tasked M113A3 ambulances 
to retrieve and transport the wounded from the 
Company to the BAS. 

At the BAS, care is given to the retrieved wounded by 
the Battalion surgeon. A critically wounded 
infantryman with chest trauma is stabilized prior to 
evacuation by air via UH-53 medical evacuation 
helicopters. The infantryman is transported to the 
Evacuation Hospital for treatment, including 
intubation for general anesthesia during chest surgery. 

Figure 4 below is a graphical representation of the 
scenario. 

r 

Figure 4: MedSAF Scenario 

5.2   MedSAF  Scenario  Execution 

During the course of the execution of this scenario, 
all of the capabilities of MedSAF and the linkage to 
the HPS are exercised. This is graphically depicted in 
Figure 5. 

The basic capabilities of ModSAF are used to lay 
down the forces for this scenario, including the 
dismounted infantry, combat vehicles, medical 
platoon, evacuation helicopters, and map annotations 
(graphical Persistent Objects) to represent the 
Battalion Aid Station and the evacuation hospital. 

When the infantry come under indirect fire, the 
MedSAF casualty generation algorithms dynamically 
produce a statistical distribution of casualty types. 
These casualties execute the MedSAF patient and 
treatment   models.       For   example,    an    injured 
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infantryman can receive positive treatment for certain 
medical problems if a healthy infantryman is nearby 
to provide aid. 
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Figure 5: MedSAF Architecture 

The MedSAF operator chooses where and when to 
dispatch the Company and Battalion ambulances to 
evacuate casualties. Using the MedSAF patient 
transportation capabilities, casualties are moved to 
higher echelons of care, including the Battalion Aid 
Station or the evacuation hospital. AH the while, the 
MedSAF patient and treatment models execute, 
reacting to the types of treatment available in the 
different echelons of care. If the casualty is severe 
enough, or if the operator fails to evacuate the 
casualty fast enough, the patient may lapse into 
unconsciousness, sustain irreversible brain damage, 
and ultimately die. 

In parallel with these MedSAF scenario activities, the 
HPS may be remotely connected to MedSAF. 
Commands over the modem connection can initiate 
communications and initialize the HPS in a given 
treatment scenario. Medical practitioners can provide 
treatment to the HPS in the form of intubation, 
anesthesia, and injection of drugs. In conjunction 
with this, real-time vital sign data from the HPS is 
transmitted over the modem connection and displayed 
to the MedSAF operator via the Data Grapher. 

6.   Future Work 

There are many applications of our medical 
simulation capabilities. While our prototype is 
directly applicable to the areas of combat medical 
readiness for all services in the Department of 
Defense, including combat medical training and 
supporting a materiel development environment for 
evaluation of different medical doctrines, other 
applications are also possible. For example, training 
for mass casualty triage and treatment could greatly 
benefit from validated simulations that can generate 
realistic casualties based on realistic scenarios. Other 
examples of potential future applications are described 
below. 

6.1 2-Way HPS Linkage 

A complete two-way linkage between MedSAF and 
the HPS is the next logical developmental step. 
Under this linkage, particular casualties generated in 
MedSAF will be downloaded to the HPS over the 
modem communications link. Sufficient medical 
state must be forwarded to the HPS to load it with a 
useful medical training scenario that correlates 
between the MedSAF representation of the casualty 
and the HPS. Also under this complete linkage, the 
MedSAF DataGrapher should be integrated into 
MedSAF so that the operator can direct the display of 
MedSAF casualty vital-signs as well as HPS 
communicated vital-signs. This facility would aid in 
performing validation scenarios which would be used 
to correlate the MedSAF and HPS medical models. 
In addition, a continuous linkage concept could be 
provided, which would allow one MedSAF scenario 
to generate multiple casualties which are transported 
to various treatment locations on the synthetic 
battlefield. Certain casualties could be downloaded to 
the HPS on demand by a scenario controller to 
provide medical training to trainees co-located with 
the HPS. As part of triage training, multiple HPS's 
could be used to represent multiple casualties, with 
medical personnel deciding whether to treat a high 
priority patient immediately or to move on to the 
next patient. This evolves naturally into a mass 
casualty training and experimentation laboratory. 

6.2 Enhanced Medical Scenarios 

The MedSIM system provides opportunities for 
enhanced medical scenarios. ModSAF supports 
environmental modeling that includes battlefield 
smoke and may ultimately include chemical and other 
environmental agents (Schaffer 1994). Treating 
casualties inflicted with injuries due to smoke or 
chemical warfare is already possible using the HPS; 
slight extensions are needed to MedSAF to play NBC 
and smoke. 

Another possible direction for new medical scenarios 
include simulation of mass casualties due to man- 
made accident (such as a passenger plane crash) or 
natural disasters (such as earthquake). Appropriate 
statistical distributions of casualty type could be 
modeled, and MedSAF capabilities of dispatching care 
and evacuation and HPS capabilities of simulating 
triage and accepting clinical treatment can be used to 
train coordinators, medics, and clinicians in a mass- 
casualty scenario. 

6.3 Other Linkages 

As described in our previous report, a linkage to 
TCIMS' Mobile Medical Monitor (MMM) is 
possible. The MMM could be attached to the HPS to 
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monitor real-time vital-sign data. The combination 
would be used by selected medical personnel to assess 
and subsequently treat the HPS. This scenario would 
provide a proof-of-concept "of several integrated 
capabilities: (1) improved training, with real time 
feedback and response; (2) algorithm validation; (3) 
integration of medical teams into synthetic combat 
exercises; and (4) real time testing and evaluation of 
medical readiness using the HPS to supply realistic 
test data. 

7.   Conclusions 

We have presented our vision for using simulation 
linkages to improve medical readiness, and discussed 
the prototypes used to prove the viability of the 
concept. We have described how these capabilities 
can be implemented within the DIS and CGF 
paradigm. The success of our work so far has 
convinced us that this approach is sound. Although 
many challenges still face us in the development of 
synthetic medical environments, we believe this 
work has helped to establish a clear roadmap to a 
mass casualty training system using integration 
approaches developed for the combat community. 
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1. Abstract 

The response to large-scale emergencies can involve 
large numbers of personnel, vehicles, and other 
resources. Such responses are controlled and managed 
during and after an emergency by emergency managers. 
The Plowshares project enhanced Janus, a military 
constructive simulation, to produce TERRA, a 
simulation that can be used to train emergency 
managers in a command post exercise format. An 
important activity during a large-scale emergency is the 
evacuation of the civilian populace in the affected area. 
This paper describes the design and implementation 
status of the evacuation model designed for 
Plowshares. 

2. Introduction 

This section provides background on the Plowshares 
project, which was the context for the evacuation model 
that is the subject of this paper, and briefly surveys 
some previous research in evacuation modeling. 

2.1 The Plowshares project 

Large-scale emergencies, such as earthquakes and 
hurricanes, require massive responses, involving large 
numbers of personnel, vehicles, and other resources. 
Emergency managers are charged with managing and 
allocating resources and coordinating the many actions 
taken in response to an emergency. The Plowshares 
project applied military constructive simulation 
technology to produce a simulation intended to train 
emergency managers. In particular, the U. S. Army's 
Janus entity-level constructive simulation model (Titan 
1993) was enhanced with emergency management 
features. The resulting simulation, called TERRA, 
simulates an emergency and the actions taken in 
response to it, allowing emergency managers to 
practice their skills. TERRA is used in a command 
post exercise mode, where the command hierarchy and 
communications channels of emergency managers 
remain unchanged, except at the lowest level, where 
actual disaster events (such as fires) and response units 
(such as fire trucks) are replaced with the computer 

simulation. The initial version of TERRA simulated 
the effects of hurricanes, fires, tornadoes, chemical 
spills, and other hazards, and response actions such as 
fire fighting and road clearing. 

More information on the Plowshares project can be 
found in any of the following: 

1. Project   overview   (Petty 1996)   (Petty 1995b) 
2. CGF    capabilities    needed    for    emergency 

management simulation (Petty 1995 a) 
3. Emergency management training using 

simulation (Slepow 1995) 
4. Mathematical models of disaster events 

(Wood 1995) 

For many types of emergencies, the large-scale 
evacuation of citizens is a major factor. Thousands of 
people fleeing a hurricane completely occupy the 
transportation network in the affected area. Controlling 
and facilitating that evacuation requires communication 
and coordination among all emergency response 
agencies. Effective training of emergency managers 
with a simulation requires that the large-scale 
evacuation of citizens be modeled. This paper presents 
the evacuation model designed for TERRA and reports 
the status of its implementation. 

2.2 Evacuation modeling 

A number of models have been proposed and 
developed to cover different types of evacuations, 
employing a variety of different modeling methods. 
References to some of that work are listed below: 

1. Common characteristics of evacuation models 
(Banz 1991) 

2. Optimal egress modeling as a state dependent 
finite   closed   queuing  network   (Bakuli 1991) 

3. Building evacuation,  based  on  network  flow 
(Choi 1991) 

4. Regional evacuation on roads (Newsom 1991) 
5. Evacuation    decision    support    (Kisko 1991) 
6. Evacuation  around   a  nuclear  power  station, 

based on network flow on roads (Hobeika 1991) 
7. Survey   of  evacuation   models   and   methods 

(Lovas 1993) 
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8. Mine evacuation during a mine fire, based on 
network flow (Unger 1993) 

9. Evacuation of a geographical area in advance of 
a hurricane, based on network flow on roads 
(Tufecki 1993) 

10. Improved calculation of travel speed along arcs 
in network flow evacuation models 
(Bakuli 1993) 

11. Evacuation movement of human flow modeled 
as particle systems (Bouvier 1995) 

3. Evacuation model design 

This section presents the evacuation model design. 

3.1 Design overview 

The Plowshares evacuation model does not represent 
individual persons and their specific locations. Rather, 
it represents the geographic area to be evacuated as a 
two dimensional array of square cells, each 100x100 
meters. An attribute of each cell is the number of 
persons in that cell. During execution, persons flow 
from cell to cell at discrete time intervals according to 
the constraints of the underlying terrain, moving away 
from hazards (such as fires or hazardous chemicals) 
and towards safety (such as shelters). This familiar 
finite element method for modeling continuous flows 
has been widely used in applications as diverse as heat 
flow (Jacoby 1980) and tornado winds (Davies- 
Jones 1995). 

3.2 Assumptions 

The evacuation model design makes certain 
assumptions, which are listed here. Essentially, each 
assumption is a reflection of what information the 
underlying emergency management simulation must 
provide to the evacuation model. 

1. Presence of hazards. The emergency 
management simulation must set hazard flag(s) in 
affected cells to note the presence of fire, obstacles, and 
hazardous materials, and change those flags over time 
as the extent and  location of the hazards change. 

2. Presence of shelters. The emergency 
management simulation must note the presence and 
capacity of a shelter in a given cell and its capacity. 

3. Initial cell population. The emergency 
management simulation must initialize each cell with an 
initial      population      and      maximum      capacity. 

4. Presence of roads. The emergency management 
simulation must initialize each cell with or without the 
presence of roads. 

5. Casualty parameters. The probabilities of each 
hazard causing casualties must be given as parameters. 

6. Discrete cell updates. The state of all grid cells' 
attributes are assumed constant during any given 
evacuation time interval. Although an attribute could 
change value many times during the time step; only its 
final value is used for the evacuation model. This 
assumption applies onlyif the evacuation model uses a 
time step that is different from the underlying 
emergency management simulation. 

3.3 Terrain grid cell attributes 

The citizen evacuation model relies heavily on the 
database design of the Plowshares TERRA software. 
In the TERRA, citizens are made an attribute of the 
terrain. The terrain map is divided into cells of 100 
square meters. The size of the terrain map determines 
the number of cells; a 60 square kilometer map has a 
600x600 grid of cells. 

Each cell is one of three feature types: generic urban, 
vegetation, or generic areas. Each area feature type has 
seven classes. Each cell's value of type and class 
determine an initial population for that cell. In addition 
to the feature type/class and initial population, several 
other attributes will be used in the citizen evacuation 
model. They are listed in Table 1; the table also shows 
how each attribute is initially set and whether the 
attribute is dynamic or static. 

3.4 Preprocessing 

Preprocessing refers to all processing that takes place 
before the evacuation model begins execution. Note 
that the emergency management simulation execution 
begins prior to the start of the evacuation model, during 
which time the initial effects of the disaster (e.g. 
hurricane) are calculated. The preprocessing steps are 
as follows: 

1. Initialize       feature       type        and        class. 
2. Initialize presence of buildings, fences, rivers, 

obstacles, roads, and shelters. 
3. Initialize  population   and  maximum  capacity. 
4. Hurricane enters the area. 
5. Update presence of hazards (fire, obstacles, 

hazardous        materials)        and        shelters. 
6. Assess    casualties    and    update    population. 
7. Hurricane leaves the area (the hurricane can has 

moved for enough away to begin the exercise; 
however,     it     can     still     cause     damage). 

8. Initialize population for evacuation model with 
each cell's current population 

9. Initialize basic flow rate of citizens. 
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3.5 Feature type/class and roads 

Each cell's feature type and the presence of roads are 
established in the terrain database. These attributes are 
predefined before the simulation ever begins and never 
change. Global variables identify a cell's feature type 
and the presence of primary or secondary roads. Bit 
masks are used to determine the presence of roads and 
the associated feature type. 

3.6 Number of citizens 

The initial number of citizens per cell is also 
preprocessed; however, each cell's initial value to be 
used by the citizen evacuation model is calculated after 
the hurricane leaves the area and the training exercise 
begins. As mentioned previously, each cell has an 
initial population based on it's feature type and class. 
As the hurricane moves through the population of 
affected cells will decrease. Once the hurricane leaves 
the area, the resulting population of each cell becomes 
the initial value to be used by the evacuation model. 
Casualties inflicted by the hurricane are tracked 
separately from those resulting from the evacuation. 

3.7 Hazards 

Hazards are created by the hurricane and the state of 
any hazard can change over time. Models will set/reset 
flag(s) to note the presence of a hazard in a given cell; 
bit masks are used to determine each hazard's presence. 

3.8 Flow rate 

Each cell will have an associated flow rate of citizens 
across that cell. This flow rate determines how many 
citizens can move across the cell in one time step. A 
cell's basic flow rate is a function of its feature type; 
the basic flow rate is dynamically modified by cell 
attributes to calculate at each time step an adjusted 
flow. Table 2 shows the basic flow rate for cells based 
on their feature type. Table 3 shows the general effect 
of each cell attribute on the cell's adjusted flow rate. 
The adjusted flow rate will take into account the 
presence of hazards, roads, and police, and will be the 
rate that is used to move citizens. The number of 
citizens to move is the adjusted flow rate times the 
number of time steps since the last cell update. 
However, the number of citizens to evacuate can not 
exceed the cell's current population and can not exceed 
the maximum population of the cell being evacuated to. 

Cj = current cell's population (citizens) 

c2 = cell to evacuate to's population (citizens) 

m2 = cell to evacuate to's max population (citizens) 

n = number of citizens to evacuate (citizens) 

rb - cell's basic flow rate (citizens per minute) 

ra = cell s adjusted flow rate (citizens per minute) 

At = time since last cell update (minutes) 

n=MIN[ra -At, c, nu c2l 

3.9 Population capacity and shelters 

The maximum population capacity attribute limits the 
number of persons that may be present in a cell. A 
cell's maximum population will be a function of the 
cell's feature type, class, and the presence of a shelter. 
The cell's feature type and class will determine a 
maximum population assuming no shelter exists in the 
cell. The presence of a shelter adds to the maximum 
population capacity. It should be noted that since 
shelters can be destroyed at any time during the 
exercise, the cell's maximum population can change. If 
the cell population exceeds the cell's maximum shelter 
population, it is assumed that the shelter is full and the 
others are unsheltered. 

3.10 Attraction index 

Each cell will have an associated attraction index which 
determines its likelihood to attract citizens. Citizens 
move towards cells with larger attraction indices. 
Population to or from any area can be caused by a 
variety of factors. (Banz 1991) lists some of those and 
notes that some cause movement away from a location 
(e.g. hazards) and others cause movement towards a 
location (e.g. safety). This general idea is extended to 
the concept of attractors and repellors. As previously 
mentioned, each cell has an associated attraction index; 
and citizens move toward cells with larger attraction 
indices. Each cell's attraction index is a function of 
nearby repellors and attractors. Citizens move away 
from repellors and towards attractors; see Table 5. 

Table 6 shows the effect of repellors on a cell's 
attraction index, based on the current cell's distance 
from the repellor source. The numbers 0 - 5 indicate 
the number of cells (range) away from the repellor 
source. A range of 0 indicates the effect of a repellor 
located in that cell; a range of 5 indicates the effect of a 
repellor located 5 cells away. Table 7 shows the effect 
of attractors on a cell's attraction index, based on the 
current  cell's   distance   from   the   attractor   source. 
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Grid Cell Attribute Initialization Dynamic? 
Feature Type / Class 

- Generic Urban 
- Vegetation 
- Generic Areas 

Preprocess No 

Road 
- Primary 
- Secondary 

Preprocess No 

Hazard(s) 
- Fire 
- Obstacle 
- Hazardous materials 

By hurricane Yes 

Number of citizens Preprocess Yes 
Maximum population capacity Preprocess Yes 
Flow rate Preprocess Yes 
Shelter capacity Preprocess Yes 
Attraction index None Yes 

Table 1. Grid cell attributes. 

Feature Type Basic Flow Rate 
Generic Urban 1000 
Vegetation 2000 
Generic Areas 1500 

Table 2. Basic cell flow rate. 

Attribute Effect Comment 
Feature Type Positive Vegetation (relative to generic) 

Negative Urban (relative to generic) 
Number of Citizens Negative Crowded cells slow movement 
Presence of Hazards Negative 
Presence of Roads Positive 
Presence of Police Positive Police assigned to traffic control 

Negative Police cordon around hazard 

Table 3. Effect of cell attributes onflow rate. 
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Attribute Presence Adjustment 
Factor 

Fire No 1.0 
Yes 0.5 

Obstacle No 1.0 
Yes 0.7 

HAZMAT No 1.0 
Yes 0.5 

Road None 1.0 
Primary 1.8 

Secondary 1.6 
Police to 
increase flow 

0 1.0 

1 -2 1.5 
3-5 2.0 
>=6 2.2 

Police to 
block flow 

0 1.0 

1 -2 .5 
3-5 .3 
>=6 .2 

Citizens 0-1/4 Full 1.0 
1/4-1/2 Full .8 
1/2 - 3/4 Full .5 

3/4 - Full .3 

Repellors Attractors 
Hazards Shelters 
Crowded Cells Uncrowded Cells 

Cells with Roads 

Table 5. Repellors and attractors. 

Repellors Range (in cells) 
0 1 2 3 4 5 

Fire -7 -4 -1 0 0 0 
Rubble -6 -3 0 0 0 0 
Obstacle -6 -3 0 0 0 0 
HAZMAT -6 -4 -2 -1 0 0 
Crowded cell -6 -3 0 0 0 0 

Table 6. Repellors' effect on a cell attraction index. 

Attractor Range in cells) 
0 1 2 3 4 5 

Shelter 2 1 0 0 0 0 
Primary road 2 1 0 0 0 0 
Secondary road 2 1 0 0 0 0 
Uncrowded cell 2 1 0 0 0 0 

Table 4. Flow rate adjustment factors (notional). Table 7. Attractors' effect on a cell attraction index. 

71 



Similar to Table 6, the numbers 0-5 indicate the 
number of cells (range) away from the attractor source. 
The parameter values chosen in Tables 4, 6, and 7 are 
notional. The actual values of these parameters will be 
determined with the aid of subject matter experts data 
collected from actual disaster evacuations. 

A cell's attraction index is the cumulative effect of all 
attractors and repellors within range. The calculation 
is: 

/ = Attraction Index 

na = Number of Attractors Within Range 

np = Number of Repellors Within Range 

a, = Value for Attractor i 

Pj = Value ofRepellorj 

np 

t-i 

3.11 Algorithm overview 

During each time step of TERRA: 

(1) As hazards are created/removed, update cell. 
(2) For each cell, assess casualties. 

(2.1)  For each hazard present in the cell, 
casualties = number of citizens * 

probability of casualty 
number of citizens = number of citizens - 

casualties 

During each time step of the evacuation model: 

(1) For each cell, calculate its adjusted flow rate. 
(2) For each cell, calculate its attraction index. 
(3) For each cell, move citizens to adjacent cells 

(if possible and necessary). 
Rules for movement: 
(3.1) Citizens will move to the cell with the 

greatest attraction index. 
(3.2) If all cells have the same attraction index, 

the citizens will not move. 
(3.3) Citizens can not move to a cell whose 

maximum population capacity would be 
exceeded. 

(3.4) The number of citizens to move is the 
minimum of the cell's current population, 
the maximum number of citizens that could 
move via the calculation of n, and the 
available space in the cell to move to. 

(3.5) If 2 or more cells have the same largest 

attraction index, 
If one of the cells under consideration is the 
citizens' current location, 
then the citizens will not move, 
else the citizens will move to the least 
crowded cell first, the second least crowded 
cell next, and so forth until all citizens are 
moved or all cells under consideration are 
full. Any remaining citizens will not move. 

3.12 Training characteristics 

With this evacuation model, the emergency managers 
are challenged to allocate police to control traffic and 
optimize the evacuation flow. They must also reduce 
casualties during the evacuation by eliminating the 
hazards (e.g. using fire trucks to extinguish fires) and 
using police to direct evacuation flow away from and 
around hazards. The emergency managers can be 
measured quantifiably based on the number of 
casualties versus total population and the number of 
sheltered versus unsheltered citizens. 

4. Evacuation model implementation 

This section details the initial implementation of the 
evacuation model into the Plowshares TERRA 
software. The initial implementation was completed 
under tight time constraints and includes only limited 
functionality; however, it serves as a basis for further 
development. The design and implementation of the 
initial evacuation model are discussed, as well as 
suggested improvements for subsequent development 
iterations. 

4.1 Chemical cloud hazard 

A single chemical cloud is the only hazard used in the 
initial evacuation model implementation. The chemical 
model incorporated within the TERRA software, which 
was not modified from Janus, is used to update the 
chemical cloud's location, radius, and toxicity. These 
parameters are dynamic and can change with each 
chemical model update. 

4.2 Flow rate calculation 

The evacuation model uses a cellular approach, 
dividing the terrain into a grid of cells, each with an 
associated feature type occupying 100 square meters. 
The terrain editor is used to associate different terrain 
feature types with the population density, measured in 
citizens per square kilometer, basic flow rate of citizens 
across the cell, measured in citizens per minute. 
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Terrain feature types include urban, vegetation, and 
generic areas. As noted in Figure 1, all cells that lie 
within 0.5 kilometers of the chemical cloud boundary 
are evacuated. All other cells are assumed to be within 
a safe distance and evacuation is unnecessary. The cell 
center is used for all calculations. The distance of 0.5 
kilometers is a notional number that can be revised as 
deemed necessary. For those cells that lie within the 
radius of the cloud, the flow rate of citizens increases 
by 25% in order to allow for increased movement due 
to citizen panic. This increase is also notional and can 
be revised as necessary. Finally, the number of citizens 
to evacuate can not exceed the cell's current 
population. 

Determining if a cell lies within the evacuation area is 
done based on simple Euclidean distance. We begin 
with the following variable definitions: 

(xi,yl )= coordinate of cloud center 

(x2,y2) = coordinate of cell center 

r = radius of cloud 

dx = distance from cell center to cloud center (km) 

d2 = distance from cell center to cloud boundary (km) 

c = cell's current population (citizens) 

n = number of citizens of evacuate (citizens) 

rb = cell's basic flow rate (citizens per minute) 

ra = cell's adjusted flow rate (citizens per minute) 

At = time since last cell update (minutes) 

Using the diagram in Figure 2 as a reference, d} and d2 

are calculated using Equations (1) and (2), respectively. 

4.3 Evacuation movement direction 

Each cell is examined in relation to the cloud center 
and the wind direction. For analytic purposes, the cell 
center and chemical cloud center are used for all 
calculations. As shown in Figure 3, each cell and the 
wind direction can lie in 1 of 8 regions. Each region 
occupies a portion of the terrain spanning an arc of 45° 
from the chemical cloud center with the size of each 
region dependent on the location of the chemical cloud 
within the terrain boundary. The direction in which the 
citizens evacuate is determined by the cell's region and 
the chemical cloud's region. Evacuation movement of 
citizens is modeled as movement from cell to cell. 
Citizens will evacuate to one of the surrounding cells to 
the north, northeast, east, southeast, south, southwest, 
west, or northwest. In certain circumstances (i.e. for a 
cell in the corner), not all eight directions are available 
for evacuation. See Table 8. 

The chemical cloud's region is determined by the 
direction of the wind. The direction is merely an angle 
measured from the +x axis, referred to as qi in the 
diagram in Figure 2. For example, a wind direction of 
225° degrees places the chemical cloud in region 6. 
The cell's region is also determined with a direction, q2 

; but this direction is dynamic and varies from cell to 
cell. Angle q2 is the angle measured from the cloud 
center to the cell center (measured from the +x axis). 
Using the diagram in Figure 2 as a reference, one can 
calculate q2 using Equation (3). For instance, a cloud 
center to cell center direction of 45° places the cell in 
region 2. Assuming this cell lies within the evacuation 
area and the chemical cloud is in region 6, citizens will 
move to the cell to the northeast. 

dl=^(x2-x]f + (y2-yl)
2 

d2=dx — r 

(1) 

(2) 

In summary, the pseudocode for calculating the 
adjusted flow rate and number of citizens to evacuate 
for each cell is: 

if(d2 <05) 

{ 
if(d2<0)ra=1.25rb 

elseru = rb 

n= MIN[ra   At.cJ 

} 

e2=TAN' -if yi-y\ 
x-, -x I J 

(3) 

If the chemical cloud's region and the cell's region are 
identical, the evacuation direction is determined by 
noting which direction (angle) is larger. See Table 8. 
It should be noted, however, that Table 8 provides only 
one evacuation direction. If for some reason, this 
direction is unavailable, the citizens can not evacuate. 
In subsequent development iterations, the table should 
be extended to allow for alternative directions if the 
first choice is unavailable. 

73 



Cloud Boundary 
(radius r) 

Cloud Center 
(*i. yi) 

AH cells within this 
area must evacuate 

• +x axis 

Figure 1. Evacuation area. 
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Figure 3. Evacuation direction regions. 
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Figure 2. Evacuation distance calculation. 
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Figure 4. Cell evaluation sequence. 
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4.4 Integrating the evacuation model into TERRA 4.5 Future improvements 

The TERRA simulation software is organized around a 
number of event queues. Event queues include events 
for hurricane, fire, tornado, vehicle movement, etc. 
Each event queue contains a series of events to occur in 
the future, each with an associated time stamp, that 
determines event. 

The evacuation model is implemented as another event 
queue, very similar to the design of hurricane disaster 
model. The TERRA software is easily enhanced to 
include an additional event queue within the main 
simulation driver. The manner in which the initial 
evacuation model implementation examines each cell is 
identical to that of the hurricane model. The hurricane 
model must assess damage for all cells. Due to the 
large number of cells, the model can not update all cells 
at each model update. Therefore, the hurricane model 
uses an update interval which specifies the time is takes 
to update all cells on the terrain. 

Rather than evaluate the cells sequentially from bottom 
to top, the terrain is divided into four quadrants. One 
cell from each quadrant is evaluated for each hurricane 
damage update iteration. The evaluated cells form a 
grid across the terrain and evenly distribute the damage 
evaluation for each iteration. The starting point 
determines which cell in each quadrant is evaluated. 
The starting point moves up and over alternatively, 
generating a wave-like evaluation from lower left to 
upper right in each quadrant. Figure 4 details the order 
in which the first 32 cells are evaluated. 

It should be noted, however, that in using this approach 
for the initial evacuation model implementation, all 
cells are analyzed, regardless of their proximity to the 
chemical cloud. As previously mentioned, only those 
cells with 0.5 kilometers of the cloud boundary require 
evacuation, and much time is wasted checking those 
cells outside of this area. 

Several unimplemented features of the design and 
possible improvements remain with the initial 
evacuation model implementation. Some of those are 
listed here: 

1. Cell capacity. The current model allows for an 
infinite cell capacity. The software should be enhanced 
to give each cell a maximum capacity based on its 
associated terrain feature type and the presence of 
additional buildings and/or shelters. 

2. Presence of hazards. The current model only 
recognizes one hazard source, a single chemical cloud. 
The model should be enhanced to recognize multiple 
hazards. 

3. Presence of attractors. The current model does 
not recognize any attractors. The model should be 
enhanced to recognize multiple attractors to attract 
citizens. Attractors include the presence of shelters 
and/or roads. 

4. Presence of emergency response units. The 
current model does not recognize the presence of 
emergency response units and police. The model 
should be affected by the presence of these units. 

5. Attraction index calculation. The current model 
does not incorporate the attraction index calculation. 
After being able to recognize multiple hazards, 
attractors and the presence of emergency response 
vehicles,    this    calculation    can    be    incorporated. 

6. Cell evaluation algorithm. Rather than 
implement the algorithm detailed in section 3.4, a more 
sophisticated algorithm should be developed that uses 
multiple hazard locations to determine which cell to 
evacuate next. In addition, this algorithm should only 
evaluate    those    cells    that    require    evacuation. 

7. Discrete events. Ideally, evacuation of multiple 
cells would occur simultaneously; however, in a 
discrete simulation, such events must occur 
sequentially. Discrete, sequential calculation can cause 
undesired artificial delays to movement when cell 
populations are at or near the cell's capacity. 

In subsequent development iterations, the same 
interleaved cellular examination approach can be used; 
but rather than examine all cells, only those cells within 
the bounding box surrounding the chemical cloud need 
to be checked. Given the location and radius of the 
chemical cloud, one can easily calculate the corner cells 
that bound the evacuation area. 

5. Conclusions 

Large scale civilian evacuation is an important part of 
emergency managers' responsibilities, and must be 
included in an emergency management simulation. A 
relatively simple and elegant model can provide a 
usefully realistic representation of evacuation. 

76 



6. Acknowledgments 

This work was partially supported by the U. S. Army 
Simulation, Training, and Instrumentation Command as 
part of the Plowshares project, contract N61339-96-K- 
0003, under the supervision of STRICOM Project 
Director Jean H. Burmester. That support is gratefully 
acknowledged. 

7. References 

Bakuli, D. L. and Smith, J. M. (1991). "Optimal 
Routing and Resource Allocation within State 
Dependent Evacuation Networks", Proceedings of 
the SCS Multiconference on Simulation in 
Emergency Management and Engineering and 
Simulation in Health Care, Anaheim CA, January 
23-25 1991, pp. 23-30. 

Bakuli, D. L. and Smith, I M. (1993). "Optimal 
Routing in State Dependent Evacuation Networks", 
Proceedings of tthe 1993 International Emergency 
Management and Engineering Conference, 
Arlington VA, March 29 - April 1 1993, pp. 87-90. 

Banz, George (1991). "Toward a Generic Evacuation 
Simulation Technique", Proceedings of the SCS 
Multiconference on Simulation in Emergency 
Management and Engineering and Simulation in 
Health Care, Anaheim CA, January 23-25 1991, 
pp. 39-41. 

Bouvier, E. and Cohen, E. (1995). "Simulation of 
Human Flow with Particle Systems", Proceedings 
of the 1995 Simulation MultiConference, Phoeniz 
AZ, April 9-13 1995, pp. 349-354. 

Choi, W. (1991). "A Simulation Model for Emergency 
Building Evacuation", Proceedings of the SCS 
Multiconference on Simulation in Emergency 
Management and Engineering and Simulation in 
Health Care, Anaheim CA, January 23-25 1991, 
pp. 31-38. 

Davies-Jones, R. (1995). "Tornadoes", Scientific 
American, Vol. 273, No. 2, August 1995, pp. 48-57. 

Hobeika, A. G. and Kim, S. (1991). "Emergency 
Evacuation Around Nuclear Power Stations", 
Proceedings of the SCS Multiconference on 
Simulation in Emergency Management and 
Engineering and Simulation in Health Care, 
Anaheim CA, January 23-25 1991, pp. 54-61. 

Jacoby, S. L. S. and Kowalik, J. S. (1980). 
Mathematical Modeling with Computers, Prentice- 
Hall, Englewood Cliffs NJ, 1980. 

Kisko, T and Tufecki, S. (1991). "Design of a 
Regional Evacuation Decision Support System: 
Integrating Simulation and Optimization", 
Proceedings of the SCS Multiconference on 
Simulation    in    Emergency    Management    and 

Engineering and Simulation in Health Care, 
Anaheim CA, January 23-25 1991, pp. 48-53. 

Lovas, G. G., Wilklund, J., and Drager, K. H. (1993). 
"Evacuation Models and Objectives", Proceedings 
of tthe 1993 International Emergency Management 
and Engineering Conference, Arlington VA, March 
29-April 1 1993, pp. 91-97. 

Newsome, D. E. and Beriwal, M. (1991). "Regional 
Evacuation Planning Using Computer Simulation: 
Promise and Pitfalls", Proceedings of the SCS 
Multiconference on Simulation in Emergency 
Management and Engineering and Simulation in 
Health Care, Anaheim CA, January 23-25 1991, 
pp. 42-47. 

Petty, M. D., Slepow, M. P., and West, P. D. (1995a). 
"CGF Opportunities in Plowshares", Proceedings 
of the Fifth Conference on Computer Generated 
Forces and Behavioral Representation, Orlando 
FL, May 9-11 1995, pp. 337-344. 

Petty, M. D. and Slepow, M. P. (1995b). "Plowshares: 
Emergency Management Training with a Military 
Constructive Simulation", Proceedings of the 17th 
Interservice/Industry Training Systems and 
Education Conference, Albuquerque NM, 
November 13-16 1995. 

Petty, M. D. and Slepow, M. P. (1996). "Plowshares: 
An Emergency Management Training Simulation", 
Simulation, Vol. 66, No. 6, June 1996. 

Slepow, M. P. and Kincaid, J. P. (1995). "Plowshares: 
Effective Training Using an Emergency 
Management Simulation", Proceedings of the 1995 
Southeastern Simulation Conference, Orlando FL, 
October 22-24 1995, pp. 141-149. 

Titan, Inc. The Janus 3.X/UNIX Model User's Manual, 
W800XRO-3125-0052, TRADOC Analysis Center. 

Tufecki, S., Sandesh, J. J., Albusairi, A. (1993). 
"Importance of REMS in the Aftermath of 
Hurricane Andrew", Proceedings of tthe 1993 
International Emergency Management and 
Engineering Conference, Arlington VA, March 29 - 
April 1 1993, pp. 81-86. 

Unger, R. L., Glowacki, A. F., and Stein R. R. (1993). 
"An Evacuation Simulation for Underground 
Mining", Proceedings of tthe 1993 International 
Emergency Management and Engineering 
Conference, Arlington VA, March 29 - April 1 
1993, pp. 75-80. 

Wood, D. D., Farr, J. V., Horsley, M., and Petty, M. D. 
(1995). "Plowshares: Hurricane, Tornado, and Fire 
Modeling in TERRA", Proceedings of the 1995 
Southeastern Simulation Conference, Orlando FL, 
October 22-24 1995, pp. 159-166. 

77 



8. Authors' biographies 

Ross C. Creech is a Research Assistant at the Institute 
for Simulation and Training, working on the High 
Level Architecture BDS-D project. Previously he 
worked on the software engineering team for the 
Plowshares project. Mr. Creech recently received a 
M.S. at the University of Central Florida in Computer 
Engineering, specializing in Software Engineering. He 
also holds a B.S. in Industrial and Systems Engineering 
from the University of Florida and has professional 
experience in multi-chip microelectronics design and 
manufacturing. 

Mikel D. Petty is a Program Manager and Senior 
Research Computer Scientist at the Institute for 
Simulation and Training. He is currently leading IST's 
HLA BDS-D project; previously he managed IST's 
Emergency Management and Computer Generated 
Forces research. Mr. Petty received a B.S. in Computer 
Science from the California State University 
Sacramento and a M.S. in Computer Science from the 
University of Central Florida, and is a Ph.D. student in 
Computer Science at UCF. His research interests are in 
simulation and computational geometry. 

78 



Application of Computer Generated Force Technology 
to Interagency Drug Interdiction 

John Miller and Greg Jackson 
BMH Associates, Inc 

5425 Robin Hood Road, Suite 201 
Norfolk, VA 23513-2441 

miller@bmh.com  jackson@bmh.com 

Will Miller 
Joint Interagency Task Force East 

Key West, FL 

1. Abstract 

Over several years and administrations, the U.S. 
government's drug interdiction strategy has evolved 
to an approach that emphasizes the selective, 
intelligence-cued, and carefully planned employment 
of a constrained number of interdiction assets in the 
transit zones (e.g. the Caribbean air and sea routes) 
leading to the continental United States. Given their 
limited resources, the three Joint Interagency Task 
Forces (JIATF) East, South, and West, established 
in 1994 would greatly benefit from the application of 
Computer Generated Force (CGF) technology to the 
training and operational tasks implicit in their 
interdiction mission. In the training arena, the 
JIATFs are responsible .for integrating law 
enforcement and military personnel of varied expertise 
and experience into cohesive command center teams 
capable of smooth, effective action to counter detected 
air and maritime trafficking events. Operationally, the 
JIATFs continually face cost-benefit decisions in 
determining the optimal force laydown, near term and 
long range, to counter drug trafficking trends. 
Moreover, with reliable pre-event intelligence, the 
JIATFs conduct detailed planning and gaming to 
ensure that limited assets are most effectively arrayed 
against anticipated specific events. Adapting the CGF 
capability to replicate air and maritime interdiction 
operations for training, mission rehearsal and after 
action analysis purposes could pay a substantial 
dividend in this critical national and international 
security issue. 

2. Introduction 

Simply put, our purpose is to overview U.S. drug 
interdiction, particularly operations conducted in the 
Caribbean drug transit zone, highlighting the features 
most relevant to the potential application of 
Computer Generated Force (CGF) technology. If the 
issues are divided into two broad categories, those 
relating to interdiction operations and those relating 
to CGF development, our discussion is primarily in 
the former. Much of our description of the mission is 

conveyed via a representative drug trafficking event, 
in this case an air transportation incident spanning 
the Caribbean. We selected this discussion vehicle, 
an actual event, to depict the complexity and 
challenges of the daily situation; an interagency force 
responding regionally within a very compressed 
timeline under restrictive rules of engagement. The 
foregoing statement alone implies the training and 
event analysis requirements that we believe offer the 
greatest payoff in the application of CGF technology 
to this problem. We use the mission, command 
relationships and infrastructure of Joint Interagency 
Task Force East in Key West, Fl to represent the 
potential for CGF application in drug interdiction. 

3. Just Another Night at the Office 

It's very late in the evening on a Saturday and the 
atmosphere in the Joint Operations Command Center 
(JOCC) of the Joint Interagency Task Force East 
(JIATFE) in Key West, Florida is about to be 
dramatically transformed. Manned 24 hours a day, the 
JOCC is the focal point for coordinating the response 
of the U.S. government and its regional allies to air 
and maritime drug smuggling events as they occur in 
the Caribbean. Linked to military and law 
enforcement vessels, aircraft and radar installations 
ashore, JIATFE quarterbacks a diverse and far flung 
interagency and international team. Calling the play 
in the JOCC is the Command Duty Officer (CDO), 
on this particular evening an officer of the U.S. 
Customs Service (USCS), one of three U.S. agencies 
along with the Department of Defense (DoD) and the 
U.S. Coast Guard (USCG) that provide most of the 
180 personnel who staff JIATFE. Little in the 
background of an officer from any of those three 
agencies prepares them thoroughly, prior to their 
assignment, for the challenge of orchestrating 
operations of a complexity and scale routinely 
experienced at JIATFE. Reflecting the interagency 
composition of JIATFE, the JOCC is continuously 
manned by a dozen personnel, specialists in both the 
Intelligence and Operations fields. Approximately half 
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of the crew is DoD with the remainder divided 
between the USCS and USCG. 

The Caribbean area of responsibility (AOR) 
encompasses a region comparable in size to a triangle 
bounded by the cities of Miami-Seattle-New York 
and includes the territorial air and sea space of 
multiple nations whose cooperation with U.S. 
counterdrug operations covers the full range from 
strong to nonexistent. The assets coordinated by 
JIATFE to cover the AOR, limited in number but 
highly capable platforms, represent the principal 
agencies and nations engaged in interdiction. 
Constantly patrolling or on alert in the AOR is a 
drug interdiction force that includes: 

U.S. Navy vessels 
British and Dutch Navy vessels and aircraft 
Air Force fighter interceptors 
Airborne Early Warning aircraft (USAF E-3, 
USN E-2) 
Maritime Patrol aircraft (P-3) 
U.S. Coast Guard cutters and patrol boats 
U.S. Customs Service tracker aircraft 
Drug Enforcement Administration aircraft 
U.S. Army and Coast Guard helicopters (UH-60) 
DoD radar sites and associated command centers 

And given the sensitivities of interagency operations 
in international waters and airspace, the JIATFE 
CDO is in a continual state of information exchange 
in a wide network that includes DoD, law 
enforcement and diplomatic agencies in places as 
diverse as Washington, Norfolk, El Paso, Colorado 
Springs, Puerto Rico, and American Embassies 
throughout the Caribbean. 

The sequence of related events unfolding for our CDO 
actually began, fairly typically, long before his actual 
watch in the JOCC. Given the size of the AOR and 
the limited assets available, the difference between 
interdiction success and failure is often the degree to 
which pre-event intelligence from varied sources 
provides cues to decision-makers who play an 
educated guessing game in positioning the force to 
disrupt the traffickers' plan. Our Saturday evening 
operations can be traced back to the previous 
Tuesday. The intelligence community produced the 
indications of an impending transfer of some 400 
kilograms of cocaine by a small, twin engine 
(propeller) aircraft flying from a remote airstrip on the 
north coast of South America to a rendezvous in 
either the Eastern Caribbean or the Bahamas. Upon 
reaching its destination the aircraft might land briefly 
and offload at a small airstrip or might drop its load 
in bundles to several small, "go fast" boats that will 
immediately scatter at high speed to isolated beaches 
and coves on the nearby islands. At cache sites ashore 

the cocaine will be repackaged and later moved along 
the transportation pipeline to U.S. and European 
destinations for distribution. In moving contraband in 
this leapfrog fashion, the exposure of the shipment to 
interdiction is minimized and the drugs are 
conveniently warehoused along the way until needed 
at the distribution end of the chain. 

While the intelligence preceding our Saturday 
evening event is invaluable, it is not sufficiently 
detailed for the JIATFE planners to commit assets to 
a narrowly defined course of action. Moreover, when 
the warning of the airdrop event was received, 
JIATFE was also planning against a reported surface 
transfer, potentially multi-ton in size, in the western 
Caribbean. The intelligence only indicates that the air 
event might possibly occur during a timeframe of 
several days and the location remains vague. With 
that level of foreknowledge, the interdiction plan 
places vessels and aircraft in positions from which 
they can flexibly respond to a number of potential 
airdrop sites while maintaining a realistic state of 
readiness for the projected period of time. Land based 
radar assets are oriented to enhance their surveillance 
of the projected flightpath. The interagency 
intelligence effort is focused on refining the initial 
warning. The JIATFE planners, their counterparts in 
other command centers, and the key personnel who 
will execute the operation, plan their roles in 
anticipation of foreseeable events and 
contingencies...and await developments. 

Late Saturday the event begins to unfold with an 
initial detection of the suspected aircraft by the 
Remote Over The Horizon Radar (ROTHR) system 
that provides surveillance of the Caribbean and South 
America from bases in Virginia and Texas. The 
suspect aircraft is in a flight profile that matches that 
often used by drug traffickers. Thus begins the 
process to sort and identify that contact from the 
multitude of legitimate aircraft operating in the area. 
The earliest possible confirmation that the contact is 
the anticipated drug trafficker is necessary to give the 
surface and air units directly involved in the endgame 
the best opportunity to be in position to intercept the 
shipment. 

Shortly after the initial ROTHR contact, the USNS 
Capable, a small specially equipped surveillance 
vessel (see the MOD T-AGOS description in Section 
6) operating off the north coast of Venezuela, also 
detects the low flying, northbound aircraft and adds 
its track data to the overall detection and monitoring 
information flow into JIATFE. The CDO acts to 
obtain visual identification of the aircraft, now an Air 
Target of Interest (ATOI), and ensure that an airborne 
monitoring platform is in position to maintain 
contact with the ATOI for the duration of the event. 
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Two USAF F-16 fighters based in Puerto Rico are 
launched to intercept and covertly identify the ATOI. 
At about the same time a USN E-2C and USCS P-3 
aircraft are launched to provide tracking and airborne 
command and control of the air assets that will 
converge on the scene. Following the F-16's 
identification of the aircraft and their return to base, a 
U.S. Customs Service tracker aircraft is integrated 
into the monitoring of the ATOI. Meanwhile a 
Surface Action Group consisting of a USCG Cutter 
and two USN Patrol Coastal vessels, with USCG 
boarding detachments aboard, is alerted to move to 
the vicinity of a possible airdrop. These surface 
assets, including the UH-60 helicopter aboard the 
USCGC, will attempt to disrupt the airdrop, block 
the escape of the high speed surface craft involved and 
recover any contraband floating in the area. 

Our CDO, assisted by the intelligence analysts and 
operations specialists in the JOCC and in 
coordination with other regional command centers, is 
not only orchestrating the interdiction of the 
northbound movement of the ATOI, but also is 
acting to ensure that the aircraft is continually tracked 
on its southbound return home. At that point 
established information exchange procedures will be 
exercised to assist the host nation law enforcement 
agencies effect an arrest and seizure. The frigate USS 
Sides will be repositioned to assist in the 
monitoring. 

"")   HELOS    ATOI LANDS, OFFLOADS TO TRUCKS 
A TAKES OFF AGAJN 

US CUSTOMS TRACKER 

P-3 

Figure 1. Eastern Caribbean Air Event 

Meanwhile, instead of an airdrop our ATOI transits 
through the Eastern Caribbean, then turns to the 
northwest and ultimately lands on a small island in 
the Bahamas archipelago (see figure 1). In less than 5 
minutes of ground time the cocaine is offloaded and 
the plane takes off again southbound. Minutes later 
two U.S. Army Blackhawk helicopters airlifting a 
joint arrest team of DEA agents and Bahamian police 
officers, arrive on scene from their base in the eastern 
Bahamas having been alerted and updated on the 

developing event by JIATFE. The Blackhawks 
swoop into the airstrip vicinity and debark the arrest 
team while the narco ground crew is still present 
loading their cargo onto a truck. The overwhelming 
speed and force of their arrival discourages any 
hostilities and results in the seizure of the cargo, the 
vehicle and the arrest of three suspects. Unfortunately 
contact with the southbound ATOI is lost soon after 
its takeoff. Quite possibly it landed on another nearby 
island. 

Nevertheless, a trafficking event has been frustrated. 
The shipment and some assets have been seized. 
Some arrests made. And equally significant, valuable 
investigative leads will be developed and followed up 
for the more proactive targeting, by U.S. and foreign 
law enforcement agencies, of the drug trafficking 
organizations' transportation, command and control 
and financial infrastructure. This event typifies transit 
zone activity. Known air and surface transportation 
events may exceed 100 during a given quarter. Any 
operation offers lessons to be learned and applied in 
the future. Our example is no exception. Although 
busy preparing for the next event while maintaining 
readiness, the participants consider the after-action 
issues: 

• In reconstructing the event, how were the actions 
of the various elements integrated? 

• How can the participating command centers and 
subordinate elements better prepare (train) for the 
event recognition, decision-making and 
coordination tasks that must be accomplished 
rapidly? 

• Given the pre-event intelligence, was the 
preparatory force laydown optimal? What are the 
tradeoffs of alternative positioning schemes? 
Other interdiction assets? 

• How does the course of action selected during the 
event compare with other alternatives? 

These questions are constants for the interdiction 
planners and executors. Computer Generated Force 
(CGF) technology under development for the 
Synthetic Theater of War (STOW) offers a training, 
planning, and assessment tool, readily transferable 
from its conventional application to the interdiction 
aspect of the National Drug Control Strategy. An 
overview of the threat, interdiction strategy, and the 
supporting infrastructure will aid in understanding the 
requirement, potential application, and payoff. 
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4. Threat Overview 

Although the flow of drugs from source to 
distribution can take several forms and routes, some 
geographic and tactical trends are evident. The 
principal air and maritime routes and the activity 
levels are as shown in figure 2. 

EUROPE 
22% 

EPAC38% 

Figure 2. Principal Routes/Activity 

Given their resources, drug traffickers have fielded an 
impressive array of air and surface platforms. 
Generally the vehicles of greatest interest 
(vulnerability) to the interdiction force fall into four 
categories: 

• light twin-engine propeller or executive style jet 
aircraft 

• large commercial style jet aircraft 
• small, high speed surface craft 
• small commercial (e.g. fishing) vessels 

Traffickers often employ one or a combination of 
techniques to move their product through the transit 
zone. 

• transport large shipments aboard commercial 
type jet aircraft (e.g. Boeing 727) non-stop from 
South America to • remote airstrips in 
central/northern Mexico, flying routes and 
altitudes normally used by commercial air traffic 
in an effort to blend in with that flow 

• transport smaller shipments aboard low flying 
propeller-driven aircraft from the northern coast of 
South America to rendezvous sites in the 
Caribbean islands where the aircraft either lands 
at a remote airstrip briefly to offload its cargo or 
drops the load in waterproofed bundles to 
waiting surface craft that move the cargo to cache 
sites ashore 

• transport large shipments via surface platform 
(e.g. fishing, merchant vessel) from the coast of 
South America to an at sea rendezvous with 
smaller, high-speed craft that move the cargo to 
cache sites ashore 

• transport smaller shipments via small, high 
speed surface craft from the coast of South 
America to at-sea rendezvous or cache sites in the 
islands 

• transport shipment, concealed among difficult to 
search legitimate cargo, via surface merchant 
vessel directly into commercial ports 

5. The Command and Control Structure 

The U.S. Government's command and control 
system to combat the distribution of illegal drugs has 
evolved through many stages from its origins soon 
after the turn of the century. With each phase, the 
problem gained recognition as one of increasing 
severity and the number and diversity of agencies 
engaged in the effort steadily grew. In 1988, the Office 
of National Drug Control Policy (ONDCP) was 
created to bring unity to the activities of the 
numerous federal, state, and local counterdrug 
agencies. By law, the Director, ONDCP develops the 
annual National Drug Control Strategy (NDCS) that 
includes goals for the international interdiction 
program. The latest version of the NDCS (April 
1996) places great emphasis on the interdiction 
component. 

During the late 1980's, countering the production, 
trafficking, and use of drugs was declared to be a 
"high priority national security mission". With the 
passage of the FY 1989 National Defense 
Authorization Act (NDAA), Congress imposed 
specific new responsibilities upon the Department of 
Defense (DoD). Prior to this action, the DoD role had 
largely been to provide training and loan equipment 
to Drug Law Enforcement Agencies (DLEA). The 
1989 NDAA significantly expanded the DoD role. 
The military was tasked to take the interagency lead 
in the detection and monitoring (D&M) of illegal 
drug shipments into the U.S., and was also tasked to 
create an integrated command, control, 
communications, and technical intelligence network 
linking the military and civilian agencies (See Figure 
3). These new responsibilities were subsequently 
made part of permanent law in Title 10, USC. 

INTERDICTION OPERATIONS 

DETECTION k 
MONITORING 

INTERCEPTION* 
COORDINATED 

HANDOFF 

APPREHENSION 

DOO LEAD AGENCY DLEA LEADAGENCY  I" 

Figure 3. Interdiction Phases/Responsibilities 
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To accomplish this mission, DoD built upon the 
existing Unified Command structure. The 
Commanders-in-Chief of the Atlantic and Pacific 
Commands established Joint Task Forces Four and 
Five respectively in Key West, Florida and Alameda, 
California as operational command centers controlling 
D&M activity. Critical as they were, these two 
centers were only two nodes in a complex array of 
counterdrug operations and intelligence centers under 
both military and law enforcement leadership. 

In 1994, Presidential Decision Directive (PDD) 14 
directed that ONDCP "review the multiplicity of 
command and control and intelligence centers 
involved in international counternarcotics and 
recommend steps to streamline the structure". The 
result was the National Interdiction Command and 
Control Plan (NICCP). Figure 4 portrays the 
consolidation and agency relationships with respect 
to operations in the transit zone. The Commandant of 
the Coast Guard was empowered as the U.S. 
Interdiction Coordinator (USIC) with responsibility 
for coordinating the interdiction effort in the Western 
Hemisphere. The USIC is responsible for ensuring 
that assets for interdiction are sufficient and that their 
use is properly integrated. At the same time three 
Joint Interagency Task Forces (East, South and 
West) were established to provide command and 
control for the military and law enforcement assets 
assigned to interdiction. Though these command 
centers were built upon existing DoD infrastructure 

including the former counterdrug Joint Task Forces 
Four and Five, the new concept integrated military 
and civilian personnel and assets under unified 
leadership to an unprecedented degree. The JIATF's 
are true national task forces comprised of U.S. 
Customs Service, U.S. Coast Guard, DoD and even 
allied resources. 

Even with this trend toward interagency integration, 
the government's counterdrug program management 
remains exceptionally complex. The growing pains 
are not unfamiliar to those who've experienced 
DoD's jointness evolution. Some thirty federal 
agencies continue to exercise some form of drug law 
enforcement jurisdiction. Their members bring the 
diversity in policy, training, and procedures of their 
parent organizations to the interagency task forces. 
This coalition presents both opportunity and 
challenge to the Director, ONDCP and the USIC. 
The blend of the interagency ensures that the widest 
range of government talent and resources are 
continually engaged in the fight. The challenge, 
efficiently focusing the assets on specific objectives 
that contribute to the NDCS, is nowhere more 
evident than in the interdiction arena. And nowhere 
in the interdiction realm are the requirements, 
advantages, and limitations of interagency jointness 
better represented than in Joint Interagency Task 
Force East. 
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Figure 4. Command and Control Structure 

8 3 



6. Joint Interagency Task Force East 

The scenario presented earlier illustrates the JIATFE 
mission, task force composition, and the 
interrelationships of the interdiction elements. Figure 
5 depicts the task organized structure reflecting the 
U.S and allied (Royal Netherlands Navy) elements. 
Although it's conceivable that virtually any air or 
maritime platform available in the DoD or drug law 

enforcement inventories could be employed by 
JIATFE for specific purposes and periods the 
following descriptions highlight those most likely to 
be found operating in the AOR on any given day. 
The parent agencies are also indicated. Within DoD 
the assets are sourced from both active and National 
Guard forces and represent both the Atlantic and 
Pacific Fleets. 

CINCUSACOM 

JIATF EAST 

RNLN 
ELEMENT 

Figure 5. JIATFE Task Organization 

Airborne Platforms. Airborne platforms provide 
counterdrug forces several capabilities. They can 
provide much greater height and range for electronic 
and visual search, reconnaissance, or surveillance 
missions. They provide a platform with equal or 
better performance than the drug smuggling aircraft to 
allow for interception and tracking, and they provide 
the means for DLEA officers to be rapidly deployed. 

E-3 Sentry (AWACS) - (USAF). This is an airborne 
early warning, and command and control aircraft 
based on the Boeing 707 airframe. It is used for air 

and maritime radar surveillance detection and tracking 
of suspected smuggler aircraft and vessels. 

P-3 Orion - (USN, USCS). The Orion is a fixed- 
wing, multi-engine turboprop, Maritime Patrol 
Aircraft (MPA). It is used as a surveillance platform 
in the counterdrug role. 

E-2 Hawkeye - (USN). This is a carrier capable, 
fixed-wing, twin turboprop, Airborne Early Warning 
(AEW) aircraft capable of detecting air and maritime 
targets. 
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F-15 Eagle / F-16 Fighting Falcon - (USAF/ANG). 
Single-seat fighter aircraft. Operated by the Air Force 
and the Air National Guard in the counterdrug role as 
interceptors. 

UH-60 Blackhawk / Seahawk / Jayhawk - 
(USA/USN/USCG) This is a twin-turbine, combat 
assault transport helicopter. Operated in different 
variants by the Army, Navy, and Coast Guard, for 
surface search, airborne tracking, and DLEA 
apprehension. 

Cessna Citation II - (USCS). The Citation is a 
modified twin turbofan, fixed-wing general aviation 
jet. It is equipped with an air search and tracking 
radar and FLIR. It is used by the Customs Service 
to intercept and track suspected smuggling aircraft. 

Cheyenne III Customs High Endurance Tracker 
(CHET) - (USCS). The CHET is a modified twin 
turboprop, fixed-wing general aviation aircraft. It 
is equipped with radar, FLIR and VHF 
communications. It is used by the Customs Service 
to intercept and track suspected smuggler aircraft. 

Afloat Platforms. Sea-based platforms provide 
counterdrug forces the advantages of mobility and 
high endurance. They operate in air and maritime 
D&M, interception, and apprehension roles. 

High Endurance Cutters (WHEC) - (USCG).  These 
378 foot vessels are equipped with air and surface 
search radars and are capable of supporting 
a helicopter.   They are used for air and maritime 
surveillance, interception, and apprehension. 

Medium Endurance Cutters (WMEC) - (USCG). 
These 210 to 270 foot cutters are equipped with 
surface search radars and are capable of supporting a 
helicopter. They are used for maritime surveillance, 
interception, and apprehension. 

Picket Ships - (USN). US Navy cruisers, destroyers 
and frigates are used as radar picket ships to provide 
air and maritime search and surveillance. 

Modified Ocean Surveillance Ships (MOD T-AGOS) 
- (USNS). These are 224 foot ocean surveillance 
vessels capable of speeds of 11 knots and modified for 
counterdrug operations. They are equipped with an 
air search radar and are deployed in lieu of USN 
combatants. They are capable of data linking with 
other platforms and have extensive communications 
equipment. 

Submarines - (USN). US nuclear powered 
submarines can provide information on both sea and 
air traffic while remaining completely covert. 

Land Based Systems. Land based systems may be 
either fixed or mobile, depending on size and mission 
requirements. 

Relocatable Over the Horizon Radar (ROTHR) - 
(USN). This is a Navy sponsored over-the-horizon 
backscatter radar system capable of providing wide 
area detection and surveillance of air targets up to 
2000 NM from the site with real-time reporting cf 
targets of interest via the Anti-Drug Network 
(ADNET) to appropriate agencies. There is currently 
one ROTHR site operating in Chesapeake, VA, with 
a second site in Texas. A third site is currently 
planned for installation in Puerto Rico. 

Ground Mobile Radars - (USAF, USMC, ANG). 
These mobile radar sets provide primary or augment 
existing radar coverage and are capable of long range 
searches up to 240 nm, and height finding up to 
95,000 ft. 

Caribbean Basin Radar Network (CBRN). The 
CBRN is a series of linked U.S. and host nation 
radars throughout the Caribbean. 

6.1 Concept of Operations 

To tailor the concept of operations (CONOPS), 
JIATFE uses a planning cycle which considers: the 
threat, asset requirements, asset availability, and both 
pre-planned and quick response operations. JIATFE 
publishes periodic threat assessments that are sent to 
all headquarters and agencies that provide D&M asset 
support. With that as a basis, JIATFE hosts regional 
planning conferences where a CONOPS for an 
upcoming period is developed. JIATFE then 
publishes the CONOPS for execution. 

JIATFE's operational concept is built on defense in 
depth to detect and monitor drug traffickers as close 
to the source country as possible, followed by 
continuous monitoring using a mixture of electronic 
and visual means as the target transits across the 
AOR, and finally handing off the target to DLEAs. 
The process is extremely complex because it 
frequently involves several military commands and 
Federal agencies. To accomplish this, JIATFE 
employs a mixture of DoD and DLEA assets and 
sensors to conduct routine patrol operations and 
respond to changing intelligence assessments. The 
actual employment of ships and airborne assets is 
determined on a daily basis in response to current 
intelligence information concerning ongoing or 
expected drug trafficking operations. Assets are 
positioned to optimize time-on-station to cover threat 
routes. Timely intelligence support enables JIATFE 
to provide target alerts to law enforcement command 
centers  allowing   cueing  of assets   for   successful 
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apprehensions. Once an aircraft has been detected and 
sorted by JIATFE, it is monitored in transit until a 
positive handoff or other disposition is coordinated 
for apprehension by the DLEAs. Maritime targets are 
handled in much the same manner. 

6.2 Connectivity 

As touched upon previously, one of the principal 
DoD counterdrug responsibilities under current law is 
to integrate counterdrug "command, control, 
communications, computers, and technical 
intelligence   (C4I)   assets   of  the   US"   into   a 

communications network. The Defense Information 
Systems Agency (DISA) is responsible for the 
integration of the national telecommunications and 
information systems master plan for the Federal 
DLEAs. The backbone for counterdrug connectivity 
is the Anti-Drug Network (ADNET). The ADNET 
provides rapid, secure, and interoperable C4I 
connectivity supporting the counterdrug missions for 
both DoD and non-DoD agencies (Figure 6). 
ADNET uses the Joint Visually Integrated Display 
System (JVIDS) as the primary means to exchange 
and display information over a primary framework 
provided by Defense Data Network (DDN). 

Primary ADNET Nodes (220 + sites) 
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Figure 6. The AntiDrug Network (ADNET) 

ADNET nodes are subdivided into command, 
operational, and intelligence sites. The command 
sites exercise oversight responsibility for counterdrug 
operations. Operational sites are charged with 
command and control over intelligence gathering 
assets, D&M and/or suspect target interdiction. 
Intelligence sites are primarily involved with fusing, 
analyzing, and dissemination of information within 
ADNET. Figures 7-9 are an overview of counterdrug 
connectivity in the Caribbean zone including the 

circuits, integration of ADNET with tactical systems 
i.e., Tactical Data Information Link (TADIL) and 
Link 11, and the Officer in Tactical Command 
Information Exchange System (OTCLXS). 
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Path Circuit To. Comment 

Ti satellite ROTHH (data) Northwest 2400 Baud Raw Radar Data 

ROTHR (vdCC) NVW CARIBROC Voice Voice Coordination 

CASREP/SORTS CINCLANTFLT 2400 Baud 

Phone (x 5) USCINCLANT Vote 

JWICS (SCI data) Interagency 384K SCI Data 

VTC Intoragency 384K SCI VTC 

UHF satellite TRE NSGA Key West 2400 Baud EUNTData 

OTCIXS TG 4.1/Otner 2400 Baud C2 

101 Interagency Voice JIATF-E NECOS 

401 TG4.1 Voice AdrmrVLogisrjcs 

402 USCG Voice Able Manor Net 

403 TG4.1 Voice AW NECOS 

407 Cryptotogrsts SI Voice 

409 Selected Voice Restricted Ops 

Andean Ridge JIATF South Voice JIATF South C2 MM 

SIPRNET AONET ADNET 56K Genser Data 

NTRS NS6AKW 56K 

INTEUNK-S Interagency 56K (AONETLINK) 

Figure 7. JIATFE Circuits 

6.3 Training 

We've already seen that the interagency team- 
building responsibility of the JIATFE Director is 
significant. Task force members manning the 
command center and other critical nodes bring their 
diverse backgrounds to a process that must produce 
and maintain the skills required to master the crisis 
action essential to interdiction command and control. 
CGF technology distributed via realistic force 
representation to the key nodes of the counterdrug 
command and control network (e.g. JIATFE, land 
based radar command and control sites, ships) is a 
vehicle for molding interagency teams in the same 
way that DoD is pursuing training at the Joint Task 
Force level. Analyzing the training needs of the 
JIATFE level training audience and their counterparts 
points to some general requirements: 

DISN-ADNET 

\  (\ CARIBROC Sf 
V                          7            \.         JIATF-? 

—          '             "AW 
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Figure 8. Tactical Data Information Link (TADIL) 
A/Link 11 Integration 

Monitoring the battlespace 
Threat assessment 
Developing   plans/taskings   for   the   JIATFE 
elements 
Managing information flow and reporting 
Familiarity with platform and system capabilities 

Strategic Theater 
ST 8 Develop and Maintain Alliance and Regional 
Relations 
ST 8.4 Provide Theater Support to Other DoD and 
Government Agencies 
ST 8.4.1 Support Counterdrug Operations in Theater 

Operational 
OP2 Develop Operational Intelligence 
OP2.2 Collect Operational Intelligence 
OP2.2.2 Collect Information on Operational Targets 
OP2.2.3 Provide Operational Reconnaissance and 
Surveillance 
OP2.3 Process Operational Information 
OP2.3.2 Analyze and Evaluate Operational Areas 
OP2.3.3 Integrate Operational Intelligence 
OP1 Conduct Operational Movement and Maneuver 
OP 1.2.2 Posture Joint Forces for Operational 
Formations 
OP1.2.4 Conduct Operations in Depth 
OP1.5.4 Isolate Theater of Operations 
OP5 Exercise Operational Command and Control 
OP5.1.1 Communicate Operational Information 
OP5.1.3 Maintain Operational Information and Force 
Status 
OP5.3.7 Select or Modify Course of Action 
OP5.4.4 Synchronize/Integrate Operations 
OP5.7 Coordinate and Integrate Joint/Multinational and 
Interagency Support 
OP5.7.4 Coordinate Plans with Non-DoD 
Organizations 

Figure 9. OTCIXS to ADNET Bridge Figure 10. Mission Essential Task List 
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Although it's not our intent to develop an all 
inclusive counterdrug mission essential task list, 
DoD's Universal Joint Task List (UJTL) provides a 
useful framework. The UJTL is a comprehensive 
hierarchical listing of the tasks that can be performed 
by a joint force. It is organized by the level or 
echelon of the activity, Strategic National (SN), 
Strategic Theater (ST), Operational (OP) and Tactical 
(TA). The Strategic Theater and Operational tasks in 
figure 10 have been extracted from the UJTL as a 
possible list of priorities for counterdrug purposes at 
the JIATFE level. 

6.4 Event Analysis 

The interagency counterdrug community is in a 
continual state of event analysis, dissecting 
individual trafficking events and identifying trends fcr 
the information that will refine interdiction tactics and 
focus limited assets for the greatest payoff. 
Considerable effort and expense is rightfully devoted 
to this function. The analysis can be further 
distinguished as either pre-event planning or post- 
event assessment. As we saw in our introductory 
scenario, pre-event intelligence cueing is the 
foundation of an effective response. Situationally 
dependent, the quality of intelligence and the time 
remaining may allow for detailed planning, 
comparison of courses of action and consultation with 
all key participants. In that case, the capability to 
distribute the anticipated event and alternative 
responses to the principal counterdrug C2 elements 
using representative CGFs would be an invaluable 
planning and mission rehearsal enhancement This 
"drawing of the play in the dirt" with realistic CGF 
tools would not only strengthen common 
understanding of the plan but would also identify 
force deficiencies. Post-event assessments can range 
from the relatively informal reconstruction in the 
immediate aftermath to the more structured process cf 
the Interagency Counterdrug Performance Assessment 
Working Group (ICPAWG). The ICPAWG was 
established in 1992 to develop a data base of known 
drug smuggling activity and to measure interdiction 
performance. The process consumes the effort of some 
35 representatives of the principal U.S. counterdrug 
and intelligence agencies as they review in great 
detail the prosecution of each event. This necessary 
review reduces duplicative agency reporting and 
provides a current threat basis for future planning and 
asset allocation. 

7. Computer Generated Interdiction Forces 

CGF technologies provide the opportunity fcr 
interoperability of constructive simulation programs, 
virtual forces, and instrumented live play facilities, 
which  can   provide   for  an   interdiction   training 

environment as good or better than "real-world" on- 
the-job training. The U.S. Navy's experience and 
program goals seem particularly appropriate for the 
similarities between the Navy's conventional air and 
maritime interdiction mission and the requirements of 
JIATF-led drug interdiction operations. We've seen 
that the Navy already contributes a substantial 
portion of the DoD resources dedicated to transit zone 
interdiction. The Navy has also amassed a talent pool 
in the application of CGF simulating those same air 
and surface platforms. Much of that experience is 
fairly recent. Prominent milestones include the 
Synthetic Theater of War-Europe (STOW-E) 
Technical Demonstration, during November, 1994 
and Exercise Kernel Blitz 95 (KB95), during March 
and April, 1995. 

STOW-E was significant in that it served to indicate 
that modeling and simulation technologies had the 
potential to contribute to operational training. The 
demonstration showed that synthetic forces could be 
integrated with live forces to permit exercise 
participants to train in a seamless "theater of war" 
that more accurately represents real-world operations. 
KB95 was the Navy's first opportunity to integrate 
synthetic forces into an operational exercise. KB95 
presented an overall scenario that linked several 
smaller exercises in the Southern California and Gulf 
of Mexico Areas. The simulation support task in 
KB95 was to enrich the exercise by simulating a 
Carrier Battlegroup and opposition forces for the 
"live" Amphibious Task Force engaged in the 
exercise. The Navy tapped the capabilities of modem 
simulation laboratories and training facilities for 
KB95. Analysis of KB95 clearly showed that the 
training accomplished in a STOW environment can 
increase readiness by enriching the training 
environment and present additional, more complex 
training opportunities to exercise participants. KB95 
showed that the use of CGFs offers a chance to 
conduct training that otherwise may not be possible 
because of budgetary or other restrictions. 

The core simulation for KB95 relied on 
geographically dispersed simulations linked via the 
Defense Simulation Internet (DSI) communicating 
among one another using 2.0.3 Institute of Electrical 
and Electronics Engineers (IEEE) standard 
Distributed Interactive Simulation (DIS) protocols. 
The primary simulation engine was CGFs in the 
form of Loral/Defense Advanced Research Projects 
Agency (DARPA) Modular Semi-Automated Forces 
(ModSAF) and the Battle Force Tactical Training 
(BFTT) Program Operational Procedures Consoles. 
The ModSAF used was a variant of the Loral 
ModSAF Version 1.4 modified by DARPA for 
generation of Navy, Air Force, and Opposition Force 
(OPFOR) aircraft in the What If Simulation System 
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for Advanced Research and Development 
(WISSARD) facility located at Naval Air Station 
Oceana, VA. ModSAF blue air forces were generated 
from Fleet Combat Training Center, Pacific, San 
Diego, CA. and OPFOR air from WISSARD. Man- 
in-the-loop tactical submarine simulators physically 
located in San Diego, CA and Groton, CT were also 
used. Man-in-the-loop mock-ups were configured 
with Link 11 and OTCLXS capability. All 
simulations were integrated using the DSI and 
commercial lines. 

A review of the technical accomplishments of KB95 
showed that exercises can be signifigantly enhanced 
through the use of CGFs and that distributed and 
interactive CGF simulations can be effectively 
interfaced with real-world C4I systems for training 
purposes. Borrowing upon the practical experience 
gained in supporting both STOW-E and KB95, a 
series of demonstrations of CGF capabilities were 
conducted for representatives of both the USACOM 
Counterdrug Operations Division and the JIATFE 
during the October 95-February 96 period at 
WISSARD. 

The demonstrations were conducted on an 
independent (nonet) pocket system using a variant of 
Loral ModSAF modified by DARPA. The ModSAF 
platforms which were chosen to portray the various 

aircraft and ships were already similar enough in 
system and behavioral capabilities that minimal 
modification was required (e.g. top end speed) to 
replicate the drug-running ("Go-Fast") boats. For 
presentation purposes the icons presented on the 
Graphical User Interface (GUT) were changed to look 
like the appropriate platforms. Following an initial 
"canned" scenario a number of other typical 
counterdrug events were initiated and the observers 
were allowed to participate in order to "drive" the 
outcome of events with decisions similar to what 
might be expected of a CDO on watch in the JIATFE 
JOCC. The demonstrations were typical of the kind 
of event driven exercises which could run concurrent 
with or independent of actual JIATFE operations, and 
served to show that the complexity of the JIATFE 
organization and operation lends well to a varied mix 
of constructive, virtual, and live exercise 
participation. The JIATFE JOCC is an outstanding 
setting for an instrumented live play facility, as 
would be select land-based radar sites at various 
locations in the U.S. and the Caribbean. Aircraft 
simulators i.e., an AWACS and/or E-2 simulator, 
could provide "virtual" detection and monitoring 
support of exercise operations. And, to further 
enhance training, constructive CGFs (friendly and 
opposition airborne and surface platforms generated at 
sites like WISSARD) can play an active part in 
interdiction exercises. 
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Figure 11. Interdiction Demo GUI Display (WISSARD Lab) 
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8. Summary 

Not surprisingly this conceptual paper raises a 
number of implementation issues that require further 
investigation. We recognize the need to refine the 
training and analysis applications, training audience 
and objectives, network and other considerations. 
Planning for the CGF distributed simulation 
demonstrated in the Kernel Blitz exercise previously 
cited was considerable. Clearly we believe that there 
are sound reasons for continued study of the 
counterdrug application of CGF concept. Prominent 
among them are: 

• The systems and behaviors of the most capable 
air and surface platforms commonly found in the 
interdiction force inventory match closely those 
that are currently in development as CGF entities 
(particularly Navy and Air Synthetic Forces). 
Representative "OPFOR" are also within reach. 

• The interagency interdiction task force mission 
inherently lends itself to the use of CGF in 
distributed interactive simulation. Implicit in the 
mission is the need to continue operations on a 
24 hour basis while training and integrating a 
diverse interagency team. 

• As components of the principal DoD counterdrug 
commands (USACOM, SOUTHCOM and 
PACOM), the JIATFs are well positioned to 
transfer DoD expertise in the application of CGF 
technology to the interagency. In particular, 
JIATFE, a component of USACOM, is well 
situated to reap the training and analysis benefits 
of STOW technology and the emerging 
capability of USACOM's Joint Training 
Analysis and Simulation Center (JTASC). 

• Conversely, the counterdrug arena represents a 
ready operational forum providing feedback to the 
CGF development process. 

• The experience gained in air and maritime drug 
interdiction can be applied in other missions 
tasked in recent years (e.g., enforcement of 
embargoes, no-fly zones, etc.). 

• The counterdrug C4I network, also a DoD area of 
expertise and responsibility, is in place as a 
framework which can support the application of 
distributed simulation for counterdrug 
operations/exercises. 

The current investment in drug interdiction is 
substantial. At the federal level S1.4B of the annual 
national counterdrug budget of $15B is aimed at 

interdiction programs. Detection and monitoring 
operations consume S226M of which S143M 
supports the operations we've described in the 
JIATFE AOR. This is a level of effort and a national 
priority worthy of the readily available enhancement 
resident in CGF technology. 
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1.   Abstract 

In this paper we give a first account of a project at 
LinkOping University in collaboration with Saab 
Military Aircraft AB, Sweden. The aim of the project 
is to study the design and implementation of intel- 
ligent agents for the air combat domain, especially for 
beyond visual range combat. In particular users 
should be able to construct such agents without 
computer science expertise. Our main interest lies in 
the decision process of the agent and in how the 
behavior of the agent can be specified. 

2.   Introduction 

Systems for simulation of beyond visual range 
combat are currently used for evaluating aircraft, 
missiles and tactics and also for training pilots and to 
supply enemy aircraft in battlefield simulations. 
These applications require that the behavior of the 
automated pilots is almost indistinguishable from 
human behavior in the specific air-combat domain. 
This is especially relevant in training applications 
where humans interact with automated pilots. It is, in 
fact, important for the realism of the simulation that 
humans interact with automated agents as they would 
interact with other humans. 

Human pilots are in general guided in their actions 
by strategies and tactics, but are also able to react to 
unexpected situations and to adapt general strategies 
to specific cases. The challenge is then to develop the 
capability in an intelligent agent to react in a flexible 
way to uncertain and dynamic environments and still 
follow strategies and tactics as a human pilot would. 

Our interest is focused on the decision process of the 
automated pilot. An approach to modeling the human 
decision processes is proposed in TAC BRAWLER, 
a simulation tool for providing a detailed 
representation of air-to-air combat, both within and 
beyond visual range (Decision-Science Application 
1991). In TAC BRAWLER the deci-sions about 
what actions to perform are made by the automated 
pilots which evaluate, for each alternative 

action, the situations that will result if the alternative 
were to be executed. 

The TacAir-Soar is also an interesting approach to 
air-combat simulation (Tambe et. al. 1995a). TacAir- 
Soar has been developed within Soar, a software 
architecture created as a basis for general intel-ligence. 
In this project several features that are required for an 
intelligent agent have been con-sidered, for example 
coordinated behavior (Laird et. al. 1994) and enemy 
tracking (Tambe et. al. 1995b). 

In both these systems air-combat experts can specify 
the behavior of the agents, but it is then encoded by 
system experts. In our approach the experts of the air- 
combat domain are intended to specify the behavior of 
each agent directly, without the aid of a system 
expert. This has the advantage of letting the experts 
give the directives that the agents should follow, test 
the behavior and change the directives in case the 
agents do not behave as expected. It also makes it 
possible to tailor the behavior for testing specific 
features of aircraft, missiles and tactics or to train 
pilots for a particular situation. On the other hand 
this puts special requirements on the user aspects of 
the system, both with respect to learning it and 
working with it. These aspects are considered in 
TACSI (TACtical Simulation) (Saab Military Air- 
craft 1995), a system developed by Saab Military 
Aircraft for autonomous simulation of many vs. many 
beyond visual range combat. This system is currently 
used at Saab for evaluating and developing their 
products. In parallel to the continued devel-opment of 
TACSI, Saab and LinkOping University have 
undertaken a collaborative project with the aim of 
further investigating the design and imple-mentation 
of automated agents for the air combat domain. 

In our approach a scenario contains the specification 
of the agents present in the scenario, a state for each 
agent describing the information that is used for 
making decisions, and a decision-tree for each agent. 
So for we have implemented a prototype of the 
decision-mechanism and we have interfaced it with a 
simplified simulator, where the technical charac- 
teristics of aircraft and missiles are described though 
not yet on a high level of accuracy. The next step 
will be to design a user-interface for specifying the 
decision-trees, interface the decision system with the 
simulator currently used at Saab Military Aircraft and 
test the system with respect to both the performance 
and the user issues. 
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In the next section we see how the requirement that 
the user defines the decision-tree has influenced our 
choices in building the system. We then examine 
specification of the agents, state, decision-tree and 
actions and finally we consider an example. 

3.  Requirement for user-defined decision-trees 

The knowledge required by an agent to perform 
realistically in complex and uncertain situations is in 
general difficult to acquire and to code precisely by 
the persons who implement the agents. Further-more 
the user can require difFerent behaviors of the agents 
for different purposes, for example a pilot's trainer 
may want a very simple model of the behavior of the 
agent in order to train an inexper-ienced pilot. It then 
seems reasonable to give the user the possibility to 
determine the behavior of the agents and to adapt it to 
their particular context. 

The challenge is to design a mechanism for speci- 
fying the behavior of the agent that is powerful 
enough for the user to specify the desired behavior 
within reasonable limits, but at the same time is easy 
to learn and to use. 

3.1 Hierarchical structure and language of 
conditions 

Specifying the decision mechanism in the form of 
rules is a natural way to represent behavior. How- 
ever, the number of rules and conditions necessary for 
specifying complex behaviors can be very large. 
TacAir-Soar for example contains about 1700 rules. 
Also several conditions can be common to more than 
one rule. Therefore organizing the rules in a tree can 
contribute to a more structured and compact 
representation and this can facilitate the writing of the 
rules and the understanding of the resulting behavior. 
In our solution each node in the tree is associated 
with a condition that has to be satisfied in order to 
enter the node, and each "end node", or leaf, is in 
addition associated with an action. A branch of the 
tree represents a rule that has as conditions the 
conjunction of all the conditions in the arcs of the 
branch, and as action the action in the leaf. In this 
way the conditions are structured from more general 
to more specific and can be common to several 
branches yielding a more compact representation. 

It is also important to allow the user to write 
complex conditions. For example a condition for 
performing the action of moving toward an enemy in 
order to intercept him can require that the enemy in 
question has been explicitly selected for interception 
and that the agent knows his position. A language 
has been defined for writing conditions that allow the 
use of and, or, not, there-is, for-all and functions. 

3.2 Priorities and changes of priorities for 
actions 

Several branches of the tree can be visited in parallel. 
If a leaf is reached, the corresponding action 
is a candidate to be performed. All the candidate 
actions form the candidate action set. From this set, 
the actions that are actually performed are selected on 
the basis of dynamically varying priorities. The user 
specifies a priority value for die action in each leaf and 
also specifies how this value can be changed during 
the evaluation of the branch conditions in which the 
action is a leaf. We have introduced the possibility of 
dynamic change of priorities in order to simplify the 
tree and to simulate the change of priority, in the 
pilot's mind, of the actions that he should perform 
depending on the situation. 

The following example illustrates how dynamic 
change of priorities is used. In figure 1 a part of a 
decision-tree is presented. The whole tree is presented 
and explained in section 7. 

(selected-enemy x)-> 6 
poesibD)-fire  *• (do-fire x) turn 10 

(< (no-of-missik) 2)-> -10 

Figure 1: Example of dynamic change of priorities 

The agent has the possibility to fire at an opposing 
agent x and should decide whether to fire or not. If x 
is the selected enemy, it should fire. If is not the 
selected enemy, it should fire only if more than 1 
missile is left. In the example, if x is the selected 
enemy the priority of the sequential action (do-fire x) 
turn is increased by 6, and if the number of missiles 
is less than 2, the priority is decreased by 10. Given 
that the priority of the action is 10 and that the action 
is not performed if its priority is equal to or less than 
0, the behavior is the desired one. In order to 
implement the same behavior without a dynamic 
change of priorities four action nodes would be 
necessary (figure 2). 

(and (< (no-of-missik) 2) 
(not (selected -enemy xM] 

(do-ttre x) turn 0 

ponbOy-Gre 

(and (>» (no-of-missik) 2)x 

(not (selected-enemy x)))^ 

itnd (>» (no-of-missik) 2) 
"(selected-enemyxir (do-Hl* *)«•»!< 

(< (no-of-missik) 2) 
.{selected-enemy x)) 

' (do-fire x) torn 6 

* (do-fire x) torn 10 

Figure 2: The same example as the previous figure 
without dynamic change of priorities 
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The actions at the leaves of the decision-tree can also 
be concurrent and sequential actions. Sequences of 
actions are useful if the user wants an action to be 
followed by other actions, for example firing and 
turning in the previous example. Concurrent actions 
are used when a number of actions should be started 
at the same time, for example turning and releasing a 
decoy in case a missile warning is received. 

4.   Specification of the agent 

The specification of the agent contains the charac- 
teristics specific to each agent. These characteristics 
are specified by the user before starting the simu- 
lation and are maintained in the state of the agent. 
Examples of characteristics are: 

• Physical characteristics, such as type of aircraft, 
number and type of missiles and amount of fuel. 

• The role of the agent in the simulation, for 
example leader or wingman. 

• A description of the mission that the agent should 
perform. 

• General criteria the agent should follow in 
performing actions, for example commit criteria, 
i.e., criteria for deciding whether to intercept an 
enemy aircraft, and rules of engagement, i.e., 

about   general   conduct   during   the directives 
mission 

5.   State 

Each of the agents has a state where the information is 
maintained that is necessary for deciding what actions 
to perform. This information is of four types. First, 
the state contains the characteristics of the agent that 
the user has specified. 

Secondly there is the information the agent receives 
from the simulator position, velocity and direction of 
other aircraft visible on the radar and missile 
warnings. This is the same information that a pilot 
would receive from on-board sensors. 

Thirdly, there is the information about the present 
status of the agent, the direction, velocity and 
position of the aircraft, the number of missiles left, 
friendly aircraft still present and the actions currently 
being performed, for example the agent is following 
the leader or moving toward a point. 

Finally, one part of the state represents the "memory" 
of the agent. In the memory are recorded, among 
other things, important past events, for example at 
whom the agent has fired and how long before, and 
decisions previously taken, for example the decision 

to select an enemy as main target or the decision to 
intercept an enemy, and orders received via com- 
munication channels. 

6.  The decision-tree 

The decision-tree consists of a hierarchy of decisions 
with one decision for each node. At every cycle in the 
simulation the decision-tree is visited and a list 

tMot •cttoao 
to execute 

1   u choioooT 
compatible 
•ctioo with 
high.* priority 

vh* 
action 

to tbc anaolator 

State 
mtarlicai 

Figure 3: Phases of the decision mechanism 

of possible actions is created (figure 3). The actions 
in the list are the actions that the agent will consider 
performing. To this list the actions still in progress 
are added. The list is sorted in order of priority, and 
the agent picks actions from the top and downwards, 
testing that each action is compatible with the higher 
prioritized actions already chosen. 

6.1 Decision-tree structure 

In a decision-tree, figure 4, a node is entered if the 
entry condition associated with it is satisfied. In the 
leaves there are actions with a basic priority value. 
Modifier conditions can also be associated with a 
node. Modifier conditions have the form (condition 
-» number). If the condition is true, the number is 
added to the priority of the actions associated with 
the branches. If the priority of the action falls to 0 or 
below, the action is not performed. 

^_^w (action priority) 
_node<TL 

node<^-' - (action priority) 

coodkioi^v ^^*>  (action priority) 
modifier conditions'' node^^ 

^""-^ (action priority) 

Figure 4: Decision-tree structure 

6.2 Conditions 

The conditions are defined as follows: 

•   Primitive Conditions 

Atomic Conditions 

Atomic conditions are true if the information is 
present in the state, for example the atomic condition 
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missile-warning is true if in the state the information 
that the agent has received a missile warning is 
present. Atomic conditions can also have the form 
"(property agent)" and in this case a check is made in 
the state to establish whether the property is satisfied 
by the agent. For example (selected-enemy x) checks 
if x is the selected enemy of the agent. The variables 
can only refer to agents in the present imple- 
mentation, but the system can be easily extended to 
allow other type of variables too. 

Relational Conditions 

Relational conditions consist of relational operators 
such as <, >, <, 2, *, = applied to numbers and 
numerical functions. An example of a relational 
condition is (< (distance-to x) 100) where (distance- 
to x) is a function that returns the distance of the 
agent to another agent x. 

•   Composite Conditions 

Composite conditions are formed by applying the 
operators and or, not, for-all and there-is to other 
composite or primitive conditions. If the condition 
associated with a node has the form "(for-all x 
condition)" the condition is tested for each agent x 
present in the simulation. The rest of the branch is 
visited once for each of the agents for which the 
condition is satisfied. All the actions selected are then 
taken into account as candidate actions to be 
performed. A "(there-is x condition)" finds the first 
agent that satisfies the condition and continues to 
evaluate the tree with x as this agent. 

6.3  Actions 

There are three kinds of actions: primitive actions, 
concurrent actions and sequential actions. Primitive 
actions are, for example, (do-fire x) i.e. fire a missile 

at the agent x. They can also be internal actions, i.e., 
actions that update the state of the agent. For example 
(selection-enemy x) records in the state the 
information that x is the current selected enemy of the 
agent. The actions sent to the simulator can be 
instantaneous, for example (do-fire x), or can have a 
duration such as turn. The agent keeps track of the 
actions that he is currently performing in the state and 
takes this information into account when deciding 
what actions to perform next. 

Concurrent actions consist of a collection of actions 
that should be started at the same time. There is a 
concurrence of actions inherent in the system as 
actions in different branches can be selected and, if 
they are compatible, started at the same time. As for 
explicitly concurrent actions, however, we are sure 
that either all the actions are performed or none of 
them are. An example of a concurrent action of the 
latter kind is the sending of a command from the 
leader to the wingman to select a specific aircraft as 
primary target and the internal action of recording that 
the wingman now has a selected target. 

Sequential actions are composed by actions that 
should be performed one after another. When a 
sequential action is started, the first action of the 
sequence is started and an automatic record is made 
in the state as to which are the following actions in 
the sequence that should be performed. When the first 
action of the sequence is completed, the second action 
of the sequence becomes a candidate action to be 
started and it competes for starting with the actions 
currently being performed and the other actions 
selected at the present cycle of the simulation. If the 
second action is started, the same thing then done 
with the third action and so on until the sequence is 
completed. 
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If an action that is in turn is not started, the sequence 
is aborted. When a sequential action is started, the 
priority of the following actions in the sequence is 
increased with a value decided by the user depending 
on how important it is to complete the sequence once 
it has been started. 

Finally actions can be a composition of both con- 
current and sequential actions. For example, in the 
case of a missile warning the aircraft turns and at the 
same time releases a decoy and then it increases its 
speed. 

6.4  Compatibility of actions 

The test to check if two actions are compatible is 
made on the basis of the physical resources they use. 
Two primitive actions are compatible if they do not 
use the same resources. For example the action cf 
firing is compatible with the action of turning left as 
they use different resources. A concurrent action is 
compatible with another action if all the actions that 
form the concurrent action are compatible with the 
other action. A sequential action is compatible with 
another action if all the actions that are present in the 
sequence are compatible with the other action. In this 
way we consider incompatible actions that could be 
performed at the same time. For example, the action 
of firing can be performed at the same time of the 
sequence of actions of turning and firing, but in order 
to build a compatibility criterion that would 

Figure 5: Example of decision-tree 
take these cases into consideration, it would be 
necessary to predefine the duration of the actions and 
this is not in general possible. 

7.   Example 

In this section we present an example of a decision- 
tree (figure 5). The user will not need to write the 
decision-tree in this form; instead there will be a user- 
interface that will support the construction of the tree. 
The example is mostly constructed with the aim cf 
showing the capability of the system and does not 
claim to be correct in terms of military tactics. Parts 
of this decision-tree have already been used in 
previous sections. Here we present a few brief 
comments: 

• (do-fire x) turn is a sequential action, turn and 
release-decoy together constitute a concurrent 
action; 

• if the condition (selected-enemy x) is true then 
(selected-enemy x) —> 6 adds 6 to the priority cf 
the action at the end of the branch; 

• if an action has priority less then or equal to 0, it 
is not performed; 

» f> (time-since-fired-at x) 5) means that the agent 
that is making the decisions has fired at the 
aircraft x more than 5 time units before or has 
never fired at it; 

• The condition (< (distance-to x) 100) means that 
the agent that is making the decisions is at a 
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distance less than 100 spatial units from the agent 
x; 

• The condition selected-for-wing is true if an 
enemy has already been selected for the wing-man; 

• (set-intercept x) records the decision cf 
intercepting x. (intercept x) is true if x is the 
enemy that the agent has previously decided to 
intercept; 

• (go-to ward x) makes the agent go toward the last 
recorded position of x; 

• (send-command agent command) means that the 
agent that receives the command updates the state. 
The value can then be tested in the context of the 
updated state and may influence the behavior of 
the agent. For example (send-command 
wingman (selection-enemy x)) will make the 
wingman add to the state that the selected-enemy 
is x. 

We have tested this decision-tree in a scenario with 
two opposing sections. Let us consider step by step 
some of the decisions that the leader of one of the 
sections makes. First, the action go-to-mission- 
points is performed and the agent starts moving 
toward the first of these points. When the first aircraft 
of the enemy section is detected, the agent selects this 
enemy as primary target, (selection-enemy x), and 
decides to intercept it, (set-intercept x). In the next 
cycle the interception is started (go-toward x). When 
the second enemy is detected a command is sent to 
the wingman to select this enemy as primary target 
and it is recorded that the wingman has now a 
selected enemy. When one of the enemies is close 
enough, a missile is fired. However in the meantime 
one of the enemies has also fired a missile and our 
agent receives a missile warning. So it rums and it 
releases a decoy. When the turning action is 
completed, the speed is increased. The scenario 
continues then to evolve with several interceptions, 
firings and avoiding of missiles until just aircraft of 
the same side are left. 

8.   Conclusions and future work 

In this paper, we have presented preliminary results of 
a project on the design and implementation cf 
intelligent agents for air combat simulation. In 
particular, we want to permit air combat experts to 
implement such agents without the aid of computer 
expertise. In order to achieve this, we are attempting 
to find a good balance between simplicity and 
expressiveness in the means given to the user to 
specify the behavior of the agent. We intend to 
continue the development of the system and to 

evaluate it both with respect to performance and user 
issues. 

Our approach has the advantage of flexibility in 
responding to situations, as the priority of the actions 
is changed dynamically depending on the actual 
situation. At the same time describing complex 
situations is made easier by the fact that decisions are 
taken at several levels, from general decisions to 
specific ones, and also by the fact that the decisions 
do not need to be exclusive. In fact, several 
branchesof the decision-tree can be visited at the same 
time and several alternative actions can be taken into 
consideration. Dynamically changing pri-orities 
establish which actions are the ones that are 
performed. Decisions are reconsidered at each step of 
the simulation and this allows a quick reaction to 
changes in the situation. At the same time the agent 
can also follow strategies performing sequences cf 
actions. 

In this paper we have mainly considered the decision 
mechanism in itself. In the future we also intend to 
consider issues such as communication, coordination 
and tracking of enemies. Further it seems important 
to implement a more sophisticated handling of the 
interruption of sequential actions which, for example, 
would make it possible to continue an interrupted 
sequence of actions. It would also be of interest to 
consider a change in the priorities of the actions due 
to an assessment of the resulting sit-uation after 
performing the action. 
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1. Abstract 

Research in Computer-Generated Forces (CGFs) has 
developed the ability to create a variety of human and 
computer-controlled entities that can operate within a 
distributed virtual battlespace. Unfortunately, it is 
often easy to distinguish between human-controlled 
and computer-controlled entities because of the 
predictable nature with which the computer-controlled 
entities behave. This defect may allow training 
subjects to identify the CGFs, predict their behavior, 
and defeat them using methods that would fail against 
human-controlled entities. Consequently, we 
undertook the Automated Wingman research project. 
The Automated Wingman is implementing a 
computer generated aircraft system that exhibits 
correct human behaviors without mimicking the 
human reasoning process by relying upon fuzzy logic 
as its primary reasoning mechanism. In this paper, 
we present the current state of the Automated 
Wingman's development as a realistically behaving 
computer generated aircraft system. In our view, in 
light of continually developing requirements, the 
knowledge base and system architectures are 
keystones to the success of the research. Therefore, 
we discuss the system architecture and knowledge 
architecture methods we use to maintain independent 
system components and to enable rapid evolutionary 
and exploratory prototyping for both of these aspects 
of the Automated Wingman. We conclude with 
requirements for future work on this project. 

2. Introduction 

Within the modern battlespace, the air component is 
a decisive factor in determining the outcome of an 
engagement. To date, however, there has been under- 
representation of aircraft entities within Distributed 
Interactive Simulation (DIS)-based distributed virtual 
environments (DVE). This is partially due to the 
expense of developing aircraft simulators that are DIS- 
compliant and partially due to the difficulty in 
developing aircraft computer generated forces (CGFs). 
To address this problem, we are developing a CGF 
that can be used to realistically increase the number of 
aircraft within the DVE while minimizing the cost of 
achieving a higher aircraft entity count.   Our research 

is aimed at developing aircraft CGFs that exhibit the 
complex characteristics of human decision making 
and behavior. Rather than initially attempting to 
develop an entity with a complete set of pilot tactical 
skills, we chose to begin with a simpler problem, 
that of modeling a wingman's behavior. This project 
is called the Automated Wingman. During 
operation, the Automated Wingman flies at the 
wingman's station in support of a lead, manned 
simulator but with enough intelligence to be 
indistinguishable from human controlled entities. 

Because of the requirement for intelligent behavior 
apart from the lead and the need to deal with 
uncertainty, ambiguity, and approximation to model 
human behavior, we chose to use fuzzy logic as the 
basis of the AW's decision making capabilities. 
Fuzzy logic is an artificial intelligence technique that 
enables the entity to mimic human behaviors by 
dealing with ambiguity and uncertainty in a way that 
traditional logic cannot. The Automated Wingman 
uses a fuzzy expert system to select a tactical 
maneuver or set of maneuvers and control their 
execution. To use this approach, we require 
appropriate knowledge bases and linguistic variables, 
and the production rules to manipulate them. The 
Automated Wingman fuzzy expert system uses a 
hierarchy of knowledge bases for decision making and 
knowledge storage. The fuzzy expert system 
provides the AW with a reasoning capability while 
the knowledge bases provide the information required 
to select appropriate tactics, determine the required 
maneuvers to implement those tactics, and fly the 
maneuvers. 

Current work on the Automated Wingman requires 
that we concurrently develop several AW capabilities. 
The knowledge engineering tasks for this year are to 
develop the knowledge bases defining tactical 
situations that must be processed by the AW and to 
refine the fuzzy logic-based decision-making 
capability (including fuzzy sets, fuzzy variables, and 
fuzzy variable hierarchy) for assessing tactical 
situations. We are also extending the knowledge 
bases to support 1) two airframes operating within 
four mission types, 2) complex inter-entity behaviors 
for cooperative formation flying between multiple 
AWs,   and   3)   an   improved   on-board   planning 
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capability. A final important requirement is 
development of a capability to model pilot skill 
levels ranging from novice pilot to the expert pilot 
level. This final capability affects all the knowledge 
bases in the AW. Because we are attempting to 
address these requirements simultaneously, we 
require a methodology to guide us in managing both 
the knowledge base development process and the AW 
software architecture. 

This developmental approach places severe strain on 
the software architecture and the structure of the 
knowledge base. The strain arises from the need to 
accommodate changing implementation and 
performance requirements as well as continual 
improvement in the AW's reasoning capability. To 
accommodate the instability of requirements and the 
accelerating change of pace in the underlying 
technologies, we use a software architecture suitable 
for implementing and maintaining applications 
developed using a modified rapid prototyping 
approach. A key aspect of this architecture is the 
Common Object Database (CODB) (Stytz, et. al., 
1996). To accommodate the need for continual 
improvement in the AW knowledge base, we use the 
Rapid Exploratory and Evolutionary Prototyping 
(REEP) methodology. 

The next section presents background information 
concerning the Automated Wingman project. 
Section Three presents a description of the 
Automated Wingman's software architecture. 
Section Four presents our rapid prototyping approach 
to developing and refining the AW's knowledge 
bases. In section Five we describe the current status 
of the Automated Wingman and Section Six contains 
expectations for future work. 

3. Background 

The Automated Wingman seeks to improve the state 
of the art for CGFs by using fuzzy logic as its core 
reasoning mechanism. Because its use is central to 
the capabilities of the Automated Wingman and to 
our approach to developing its knowledge bases, in 
this section we will present a brief introduction to 
fuzzy logic and provide an example of its use. 

Fuzzy logic provides the Automated Wingman with 
a means to represent and reason with uncertain data, 
ambiguous terms, and approximations. Therefore, a 
fuzzy logic system is potentially capable of dealing 
with situations that cause difficulty for systems that 
use traditional Boolean logic. Because humans 
continuously deal with uncertainty, ambiguity, and 
approximation, we believe that any CGF required to 
exhibit human behaviors must also be able to deal 
with uncertainty, ambiguity and approximation. 
Fuzzy logic provides this ability. 

The strength of fuzzy logic is its evasion of 
Aristotle's Law of the Excluded Middle (Kosko). 
Aristotle stated in his "Laws of Thought" that an 
assertion can be either true or false, but not both. 
Therefore, the middle (partially true and partially 
false) is excluded. The Law of the Excluded Middle 
is a central concept behind traditional logic systems, 
such as Boolean logic. However, there are many 
commonplace situations where traditional logic fails. 
These situations are called paradoxes. Although 
paradoxes are often dismissed as trivial and 
meaningless by mathematicians, these paradoxes lie 
at the core of the real world problems faced by 
computer scientists and expert system designers who 
have to contend with the lack of expressability of 
traditional logic systems. 

In a fuzzy-logic system of reasoning, an assertion may 
have a degree of both truth and falseness. While this 
may seem contradictory, it is a common way of 
representing situations. For example, consider a 
piece of teal matte board and the assertions "the 
board is blue" and "the board is green". Depending 
upon the shading, we may say that the assertion that 
the board is blue is true to degree 0.6 (out of 1) and 
the assertion that the board is green is true to degree 
0.4. We now have two assertions, both of which are 
true to a degree. We can reason with these assertions 
by factoring in the degree of truth of each assertion to 
arrive at a conclusion that considers all of the 
available information. 

The concept within fuzzy logic relied upon by the 
Automated Wingman is that of a linguistic variable. 
A linguistic variable, such as temperature, describes a 
quantity or an idea that is best represented by fuzzy 
sets, called term sets. For example, fuzzy sets for 
temperature could be hot, warm, and cold. The value 
of the linguistic variable can be assigned to one of 
these term sets. For example, if we agree that 100° C 
is hot, then we can say that the temperature of boiling 
water is hot. A more powerful technique is to 
"fuzzify" a crisp value and determine the term set(s) 
to which the crisp value belongs, allowing the 
linguistic variable to be evaluated as the union of its 
fuzzy sets. The linguistic variable then takes on the 
value of all the term sets that apply, not the crisp 
value itself (Zadeh, Schwartz). To better illustrate 
the use of fuzzy logic within the Automated 
Wingman, we will discuss it within the context of 
the knowledge base design for its flight control 
system. 

The flight control knowledge base must provide the 
AW with three independent axis of control. These 
are altitude, heading, and thrust. Using the 
linguistic variables in Table 1, we developed 
production rule graphs for each of these axes of 
control. These rule graphs show how the linguistic 
variables  combine  to   describe  the  state   of the 
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Automated Wingman along each axis and the correct 
action that the Wingman should take in response to 
the state. As a result, the Automated Wingman can 
control its own airplane entity. 

Table 1: Linguistic Variables in the Automated 
Wingman 

LINGUISTIC VARIABLES 

Current Relative Altitude 
Projected Relative Altitude 

Vertical Velocity 
Vertical Velocity Difference 

Desired Vertical Velocity Difference 
Projected Vertical Velocity Difference 

Vertical Acceleration 
Total Acceleration 

Current Relative Airspeed 
Projected Relative Airspeed 
Projected Airspeed Difference 

Relative Heading 
Range 

Lead Bearing 
Bank Angle 

Although Flight Control consists of three axes, space 
limitations permit us to describe only the Altitude 
axis. Altitude is assessed using the ClimbRate 
linguistic variable and term sets. The ClimbRate 
variable assesses the climb rate of the aircraft that is 
required to achieve the desired altitude. This variable 
considers the current altitude relative to the desired 
altitude and the altitude difference at some time in the 

future given the current velocities and accelerations. 
This linguistic variable relies, in turn, on other 
linguistic variables to determine the appropriate 
value. 

Figure 1 presents the Climb Rate Rule Graph for the 
Automated Wingman. Each of the bubbles in the 
decision tree represents a term set that describes a 
quantity relevant to climb rate. The Flight Controls 
module determines values for all these term sets and 
then navigates this graph to determine the value for 
ClimbRate. For example, at the top of the graph the 
current value of AttachMode is checked. K" 
AttachMode is "Attached" then the term set 
"CurrentRelativeAltitude" is examined. If that is 
"Nil" then the VerticalVelocityDifference variable is 
checked. If that is also "Nil," then the 
ProjectedRelativeAltitude variable is tested. A "Nil" 
for that variable indicates that the Wingman should 
maintain the current vertical velocity (climb rate). 
However, because the term sets are fuzzy, the other 
paths through the graph may also apply but with less 
weight. To determine which term sets apply, each 
path through a term set evaluated as greater than 0.0 
is examined. The other paths' weights will "spread" 
the value of ClimbRate out so that it can encompass 
all five term sets, Decrease, Dip, Maintain, Bump, 
and Increase, to a degree. In general, all the term sets 
apply to some degree in every situation but most will 
apply to a near-zero degree. The variability in the 
degree with which each term set applies to the 
linguistic variable is the foundation for the power of 
this form of reasoning. 
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Figure 1. Climb Rate Rule Graph for the Automated Wingman 
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The Automated Wingman is not the first attempt at 
creating a realistic CGF that exhibits human 
behaviors. Several others have tried with varying 
degrees of success such as Tac-Air Soar (Laird, et.al. 
and Tambe, et.al.). Tac-Air Soar builds upon the 
Soar architecture for general intelligence and 
reasoning. Tac-Air Soar is the most successful of the 
current aircraft CGFs and it has participated in several 
exercises, including the STOW-E (Europe) exercise. 
During STOW-E the Tac-Air Soar team was able to 
field aircraft entities, conduct independent force type 
missions, and fight against manned simulators in a 
limited fashion. Unlike the Automated Wingman, 
Tac-Air Soar does not handle uncertainty in its 
decision making process. 

There are several requirements driving our AW 
design decisions. These are DIS compatibility, 
autonomous flight control, automatic route planning, 
within visual range combat, beyond visual range 
combat, and route planning. The Automated 
Wingman must be DIS compliant to perform its 
mission as a CGF. Like any pilot, the Automated 
Wingman must be able to fly its own plane, know 
where it is going, and know how to get there using 
maneuvers available to human pilots. The AW must 
also, at times, operate as an intelligent entity 
independent from its lead aircraft simulator. 
Therefore, the AW must have the ability to 
independently plan within the context of a mission 
plan and commands from the lead aircraft. The 
requirements for autonomous route planning and 
flight control support these capabilities. The 
Automated Wingman must also select a suitable 
tactic or maneuver based on the current situation in 
light of its mission and near term goals. Assessment 
of the current situation requires the ability to orient 
sensors in the appropriate direction, then fuse and 
interpret the incoming raw sensor data. The 
interpretation and assessment of incoming sensor data 
forms the basis of situational awareness for a CGF. 
Using its knowledge about the current world 
situation, along with knowledge concerning tactics 
and doctrine, weapon employment capabilities, and 
voice commands from the lead pilot, the Automated 
Wingman then selects an appropriate pilot behavior 
that will be indistinguishable from that of a human 
controlled entity. Satisfying these requirements led 
to the development of the software architecture 
presented in the next section. 

4. Automated Wingman Software Architecture 

Our motivation for the development of a general 
architecture to support the AW was to provide a basis 
for the design of broad classes of CGFs. While each 
class of CGF has its own unique characteristics and 
performance requirements, we contend that there are 
many factors common to all classes and that these can 

be successfully reused across all classes of CGFs. 
We have noted that simply crafting CGFs primarily 
from the viewpoint of emphasizing differences often 
results in only a few highly specialized types of 
CGFs. This is typically due to the amount cf 
knowledge engineering necessary to effect intelligence 
and the focus on guaranteeing the unique behaviors of 
the CGF. Without a general approach to constructing 
CGFs, it is likely that little or no information will be 
transferable from class to class, or even between entity 
types in the same class of CGF. 

Aside from the Soar projects, little work has been 
done to address the following issues of CGF 
construction: 1) approximation of human behaviors, 
2) computational efficiency, 3) ease of knowledge- 
engineering, and 4) scaleable performance. Our goal 
is to provide a general architecture for CGFs which 
naturally accounts for "variety" in a given type of 
CGF as well as detail a general approach for 
organizing and building vastly different CGFs such as 
tanks versus aircraft. Given the continuous changing 
nature of CGF requirements as we learn more about 
them, an evolutionary and exploratory approach to 
knowledge engineering, such as the REEP 
methodology, discussed in the next section, is also 
required. Our architecture consists of highly modular 
components where interdependencies are well-defined 
and minimized. 

The architecture we developed is based on several 
precepts. The first is that future architectures should 
focus on reducing programmer costs, even at the 
possible expense of marginal processing inefficiencies. 
We believe that this tradeoff is wise because the 
growth in CPU power that will occur over the period 
of system development will offset the minor 
processing inefficiency costs that are introduced by 
minimizing programming costs. Note, however, that 
this strategy only allows for marginal inefficiencies. 
We contend that code within an object should be 
clean and tight, however we believe that inter-object 
communication should be open and clear with a 
minimum of coupling. 

The second precept is that the development cycle for 
the Automated Wingman, as in most research and 
development projects, will include a series of 
revisions to the requirements and additions to its 
desired capabilities because the basic system 
requirements continue to evolve. These changes 
range from changing protocol data unit (PDU) formats 
to introduction of new behaviors, such as infrared 
sensor management, close-air support, or smart 
bombs delivery, into the system. As a result, a 
formal requirements analysis process is not a 
worthwhile undertaking because end-users will 
generally not be aware of defects and shortcomings in 
the system until the system is in operation and 
operational tests reveal new requirements.     As a 

104 



result, the architecture should be developed to 
support both exploratory and evolutionary rapid 
prototyping in order to reveal new requirements and 
to test solutions. 

A third precept is that the push to attain improved 
performance and the strain of meeting delivery 
deadlines increases the entropy of any design, until 
the design concept becomes blurred. The most 
obvious symptoms of this occurrence are the use of 
global variables, global functions, and the 
disappearance of private data items. The architecture 
should, therefore, address the problem of increasing 
entropy by erecting entropy firebreaks between the 
major objects in the system and mechanisms that 
encourage the programmer to remain within the 
architecture rather than circumvent it. As a result, the 
architecture relies upon an object-oriented design of 
its major system components, containerization, and a 
common object database to manage public data. 

A fourth precept is that the components of the 
airframe (aerodynamics model, avionics systems, and 
weapons packages) should be rapidly modifiable. 
Therefore, these components should be realized as 
separate objects that have a clean, robust interface to 
the remainder of the system. In addition, the airframe 
components should be built upon validated models. 
The reasoning components that use the outputs from 
the airframe CGF components should be separate. 

A final precept is that expanding system requirements 
will cause the knowledge base and reasoning system 
to be modified and adapted to new requirements 
throughout the life of the project and the subsequent 
fielded    system. For    example,     impending 
requirements for CGFs are the capability for multiple 
skill levels within the CGF, a capability for the CGF 
to direct its attention to specific environment 
components, a capability to control smart weapons, a 
capability to change its reasoning pattern to adapt to 
new avionics capabilities, and a capability for sensor 
management. As a result, we concluded that these 
knowledge and reasoning components should be 
structured so that the knowledge base and reasoning 
system are separate. Additionally, the analysis and 
action components of the reasoning system should be 
separate components as well. Furthermore, since we 
are using fuzzy logic, we should implement each cf 
these components as a hierarchy of objects that serve 
to aggregate information and dynamically limit the 
search space. 

Our system architecture, see Figure 2, used these five 
precepts to guide the architectural definition. Within 
the architecture we use containers, which are data 

structures used to move large amounts of structured 
data between system components, to manage and 
control inter-component communication. The main 
AW components are specified as objects. These 
objects are the Pilot Skills Component (PSC), the 
Active Decisions Component (ADC), the Physical 
Dynamics Component (PDC), the Common Object 
Database (CODB), the World State Manager (WSM), 
and the Environment Database. Each of these objects 
are, in turn, hierarchically defined as a set of objects 
that use the containers to communicate with the other 
components of the AW via the Common Object 
Database. The CODB holds all public data for the 
AW and all system components may access the 
CODB for data from other system components. The 
World State Manager is responsible for maintaining a 
complete description of the state of distributed virtual 
environment as communicated using DIS-formatted 
PDUs. The Pilot Skills Component, the Active 
Decisions Component, and the Physical Dynamics 
Component are discussed in detail later in this 
section. In our system, component development is 
accomplished using a rapid prototyping approach that 
uses both exploratory and evolutionary prototyping 
to extract system requirements and refine 
requirements solutions. 

Figure 2 also presents the basic CGF architecture and 
its relationship to the other system components. In 
its most abstract form, a CGF consists of three 
components: a PDC, a PSC, and an ADC. The PDC 
encapsulates all the physical attributes and properties 
of the CGF. For example, in the AW, this 
component includes the aerodynamics model, entity- 
specific properties, aircraft capabilities, weapons load, 
sensors, damage assessment, and physical status. In 
addition, the PDC contains the processes for 
computing physical state changes such as updating 
object position in the virtual environment. The PSC 
consists of those portions of the CGF that need to 
vary between individual entities within a type and 
class. This component serves to model the skills 
and ability of the pilot of the entity. For an aircraft 
entity, the components of the PSC consist of the 
pilot's ability to maintain situation awareness and to 
execute tactical and flight skills. These PSC 
components play an integral part in the decision 
making ability within the ADC. The ADC 
encompasses the intelligent decision making 
processes and the knowledge necessary to properly 
drive them. This includes the overall mission, goals 
and objectives, plan generation, reaction time, and 
crisis management ability, etc. Clearly, the ADC 
must accomplish many of its activities in real-time. 
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Figure 2. Automated Wingman System 

We use this tri-fold separation of the components cf 
the CGF in order to insure that changes are isolated 
and do not propagate throughout the system. The 
PDC is only responsible for the basic entity 
maneuver information, and operates completely 
unaware of the status of the other system components. 
Likewise, the ADC is solely responsible for decision 
making   and   only   knows   about   the    physical 

Architecture Incorporating the Common Object Database 

component's status based upon the data placed in the 
CODB. The PSC is more closely tied to the ADC 
than the PDC because the ADC is responsible for 
computing control outputs for the entity based upon 
the modeled pilot's skills. The PSC supplies a 
description of the pilot's ability to the decision 
making component so that the decision can be 
appropriately constrained by the pilot's  abilities. 
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The division of capabilities between these basic 
components lessens the system level impact of any 
requirements changes in the PDC, PSC, or ADC. 

The PSC and PDC contain all the information and 
status required to portray an aircraft model and model 
its pilot's ability. The PDC encapsulates the entity 
state information and the PSC contains a 
representation for all the pilot skill variables. The 
key aspect of these two components is that these 
subsystems are completely parameterizable, and hence 
rapidly reconfigured and reused. We isolate entity 
control skills into the PSC because this separates the 
ability to parameterize the operator's capabilities from 
the decision making mechanisms used by the 
operator. Through this parameterization, any number 
of CGFs of a given type may be generated using a 
given ADC so that each entity has its own unique set 
of operator skills. The PSC models the pilot's skills 
as a hierarchy of capabilities. The lowest level of the 
hierarchy contains the atomic skills for the pilot, such 
as ability to perform a bank, highest sustainable g- 
force level, ability to acquire a target, ability to 
operate a weapon system, etc. Subsequent levels of 
the hierarchy are web-like interconnections between 
these skills. This scheme allows us to compose 
more complex skills from elementary skills and to 
compose the higher level skills using a careful 
weighting of the appropriate elementary skills. The 
drawback to this approach is that the atomic skills 
must be carefully chosen and crafted so that high level 
skills have the desired performance. The PDC and 
PSC do not, however, perform decision making 
based upon the information they store. The decision 
making task is solely the responsibility of the ADC. 

Decision making in the ADC is not based on a 
traditional goal-driven planning approach. Instead, 
the ADC contains the fuzzy goal-planner that allows 
certain subgoals to remain unsatisfied but still have 
the supergoal satisfied. This decision making 
flexibility permits for a much wider variety of 
possible behaviors and provides additional decision- 
making elasticity to allow the CGF to achieve its 
mission in the face of uncertainty. That is, the system 
can tolerate uncertain satisfaction of subgoals and then 
use it as a measure. Also, the fuzzy approach 
provides a method for optimization when various 
subgoals are applicable but only one is desired. This 
use of fuzzy logic adds another behavioral distinction 
that can be exploited to create a diverse mix of 
entities. 

The ADC is the heart of the Automated Wingman, 
and holds the fuzzy logic decision engines. There are 
four primary reasoning modules of interest: the 
strategic decision engine (SDE), the tactical decision 
engine (TDE), the critical decision engine (CDE), 
and the basic control module (BCM). The ADC also 
contains relevant knowledge-bases specific to these 

reasoning modules. The SDE handles strategic 
matters related to accomplishing mission goals by 
continuously re-evaluating the completion status of 
mission objectives and re-planning to achieve the 
objectives in a deliberative fashion. To execute its 
plans, the SDE then requests the TDE to carry out 
the near term (tactical) objectives. The TDE operates 
under the direction of the SDE to manage near-term 
situations and determine a fine-grain course of action 
for imminent tactical situations. It then implements 
those actions as requests to the BCM. For example, 
for an aircraft, the TDE transmits stick and throttle 
settings to the BCM. The TDE is less deliberative 
than the SDE and must perform its functions in real- 
time. The CDE is a purely reactive reasoning system 
that deals with critical situations the AW might 
encounter. Its purpose is to enable the AW to survive 
a life-threatening situation, and it operates 
independently of mission goals and objectives. For 
example, pilots are trained to respond in a certain 
fashion when presented with a threat such as an 
approaching surface-to-air missile. To operate 
effectively, the CDE monitors the world state (in the 
container passed from the CODB) passively until a 
critical situation is detected. The CDE then assumes 
control of the AW until the crisis has passed. During 
the crisis, the SDE and TDE monitor the AW's state 
so that they may resume control after the crisis has 
passed. Lastly, the BCM processes the requests of 
the TDE and CDE to pass as flight control inputs fir 
the AW. Processing the requests takes into account 
the state of the PDC and PSC most relevant to the 
requests. For example, the BCM filters its flight 
control decision outputs using parameterized pilot 
ability ratings to execute a maneuver before it is 
applied to the aircraft's control inputs. The ADC 
could initially operate with only the BCM. 

The above decomposition of the ADC maintains 
component independence. Furthermore, knowledge- 
base decomposition mirrors that of the decision 
engines, allowing the various knowledge-bases to be 
constructed   and   tested   independently. By 
modularizing our decision engines and the 
knowledge-bases in this fashion, traceability and 
validation of the CGF behaviors can be much more 
easily achieved than previous approaches to 
knowledge engineering CGFs. This improves our 
prospects for correctly revising and identifying new 
behaviors during our development life-cycle. Finally, 
within each sub-module or knowledge-base, 
additional hierarchies can be imposed to further 
increase the possibility of re-use when constructing 
other similar CGFs. 
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5. Rapid Evolutionary Prototyping Of The 
Knowledge Architecture 

To facilitate progress in our research projects, we use 
a modified rapid evolutionary exploratory prototyping 
(REEP) approach in conjunction with exploratory 
prototyping for developing and improving the AW 
knowledge architecture and implementation. Rapid 
evolutionary prototyping is the use of prototyping 
techniques to achieve incremental improvements in 
knowledge base implementation and design. The 
approach arose from the realization that users need an 
operational    system    to    measure    against    their 

expectations and needs. By combining exploratory 
and rapid evolutionary prototyping, users can use 
functional systems to uncover and validate 
requirements and facilitate implementation solutions. 
Just as important, these techniques allow us to make 
progress on the system in the face of continually 
uncovered requirements and simultaneous 
modification of multiple system components. The 
combination of exploratory and rapid evolutionary 
prototyping also allows us to manage the prototyping 
process and to incorporate prototyping results into 
the AW. 

Figure 3: Process Flow in System Development. 
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Figure 3 shows the general process flow from 
exploratory prototype to evolutionary prototype. To 
provide a starting point for knowledge base 
development, we construct a system that satisfies the 
known baseline requirements at the beginning of the 
project. Using feedback from users in our laboratory 
and demonstrations of the systems, we determine 
requirements that were unknown when we established 
the baseline requirements and refine and expand upon 
the requirements that the baseline addressed. As a 
result of this continual feedback and experimentation 
process, we arrive at a revised set of requirements, 
design solutions to the requirements, and implement 
them. 

When we discover new requirements, we use 
exploratory, or partial, prototypes to examine specific 
means for addressing the requirements because 
complete prototypes are expensive to build. 
Exploratory prototyping is the use of a prototype to 
refine a requirements definition or to examine an 
implementation solution within the context of an 
operational system. We do not require that the 
exploratory prototype be fully functional. The 
prototype may be retained in the system for further 
development or discarded. If we discard the 
prototype, then subsequent evolutionary systems 
incorporate the lessons learned from the exploratory 
system. We learned that the exploratory prototyping 
approach is valuable when the main question to be 
answered is implementation related and there is little 
experience in building the desired software solution. 
We have used exploratory prototypes to address both 
small and large requirements, thereby allowing us to 
implement and assess potential solutions in a few 
days or weeks. 

Because we use rapid evolutionary prototyping and 
object-oriented programming, we reuse software 
components of the baseline evolutionary architectures 
whenever possible. Our intent is that successive 
revisions to the design do not require major 
reworking of the software components or of the 
software architecture, although this certainly can 
happen. The evolutionary systems themselves 
evolve over time, but are always complete systems. 
Each new system tends to bring to light new 
requirements. These new requirements determine the 
experiments we perform with the next set of 
exploratory prototypes. We then incorporate the 
solutions developed via the exploratory prototypes 
into the next evolutionary prototype. The solutions 
typically take the form of new objects or revisions to 
existing objects. 

This combination of prototyping techniques allows 
us to manage the process of defining and refining 
requirements and implementation approaches within 
components    of   the    system    even    as    system 

requirements, design, and implementation evolve and 
develop. 

6. Current Status 

At the heart of the Automated Wingman is a fuzzy 
expert system that uses a hierarchy of knowledge 
bases for decision making and knowledge storage. 
The fuzzy expert system provides the Automated 
Wingman with a reasoning capability while the 
knowledge bases provide the information required to 
select appropriate tactics, to determine the required 
maneuvers to implement those tactics, and to fly the 
maneuvers. 

The PDC has completed the modifications necessary 
to incorporate a new, accurate aerodynamics model. 
With this model in place we are able to rapidly 
change the dynamics behavior of the aircraft CGF by 
simply changing a parameter file. We use this 
capability to implement a variety of aircraft entities. 
The PSC is under development at this time. The 
key aspects of this development project are 
continuation of an assessment of the key components 
of pilot skills and assessment of the knowledge 
domain. 

The ADC is the main focus of our current work. All 
four components within the ADC are in begin 
developed simultaneously; however, the TDE and 
BCM are key to our progress this year. Current 
development efforts for the TDE include incorporation 
of defensive counter air and close air support tactical 
decision making capabilities. The current BCM 
flight control capability exhibits improved 
capabilities over last year's prototype (Edwards, 
1996). 

The current implementation of the Automated 
Wingman operates on a Silicon Graphics 
workstation. The Automated Wingman achieves an 
update rate of approximately 15 cycles per second. 
All application software, except for Fuzzy CLIPS, is 
written in C++. 

To date, the Automated Wingman project has 
demonstrated the viability and feasibility of a fuzzy 
logic based CGF. We have a fundamental design 
that is flexible and ready to serve as the foundation of 
future efforts on this project. Our implementation has 
shown that a hierarchy of fuzzy linguistic variables 
can be used to control a dynamic process in an 
airplane. However, the AW is far from complete. 
The next section presents our ideas as to future 
development. 

7. Future Work 

Further developmental work will address the need to 
incorporate the Command and Control Simulation 
Interface Language (CCSIL) to provide a means for 
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the lead aircraft to verbally issue commands to the 
AW. The SDE strategic planning capability must be 
further enhanced and knowledge added to allow the 
AW to transition to autonomous operation. The 
PSC knowledge bases must be expanded to include 
multiple pilot skill levels that degrade under pilot 
stress and fatigue factors. 

Necessary future work must also address developing a 
sensor fusion and sensor management capability 
using fuzzy logic within the AW. The AW sensor 
package needs to be augmented and the pilot skills 
should be modified so that the AW exhibits different 
behaviors and capabilities based on time of day and 
weather conditions. The AW will be given an 
updated weapons store and the ability to chose these 
weapons based upon different situations that can occur 
during a mission. Therefore, an updated weapons 
selection knowledge base is required. 

On a broader scale, a methodology to take a model of 
a subject and create a computer generated entity that 
exhibits the behaviors of that subject is needed. On a 
fundamental level, this requires a formal design 
technique for the linguistic variables and term sets to 
be used by the automated entity. The current state- 
of-the-art for their design is merely trial and error, 
which is both time consuming and error prone. A set 
of techniques that would identify the of linguistic 
variables and their definitions would dramatically 
reduce the time required to implement and validate 
the system. Finally, a rigorous test methodology for 
validation of linguistic variables that ties required 
behavior to the associated variables and term sets is 
needed. Using our progress on the Automated 
Wingman as a guide, we have begun to address these 
issues. 
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1. Abstract 

Intelligent synthetic agents have participated suc- 
cessfully in a series of military simulation exer- 
cises. However, their participation has been lim- 
ited mostly to rather simple missions and situa- 
tions, and they have been less successful in terms 
of participating in, and reasoning about, missions 
that require paying attention to an entire theater 
of operations and the concerns that come with 
such a global picture. From our experiences with 
theater-level exercises, we have identified a small 
number of categories for improvement of intelli- 
gent synthetic agents in this regard. In addition, 
we have devoted significant effort to implementing 
solutions to these concerns, and have successfully 
demonstrated synthetic agents that behave intel- 
ligently and flexibly in simulated theater-level op- 
erations. 

2. Introduction 

Intelligent automated forces have successfully im- 
plemented a subset of the behaviors required to 
model individual agents in combat engagements 
(Tambe et al., 1995). The goal of such forces is to 
increase the fidelity of training simulations by gen- 
erating human-like behavior. Building such forces 
involves creating agent models that incorporate 
the knowledge and capabilities that humans use 
to achieve their missions. 

The first implemented IFOR's successfully gener- 
ated human-like performance for relatively simple 
missions and constrained situations. For example, 
Jones, Tambe, Laird, and Rosenbloom (1993) de- 
scribe intelligent agents that participate in limited 
one-on-one air-to-air engagements. Rosenbloom et 
al. (1994) expanded the abilities of the agents to 
perform a small number of specific air missions, 
such as combat air patrols and sweeps. This work 
also implemented em initial capability for groups of 
agents to communicate and coordinate with each 

other (e.g., flying in section). 

We had the opportunity to evaluate these agents 
by participating in the STOW-E exercise. In gen- 
eral, the participation of IFOR's in their first op- 
erational military exercise met with success. How- 
ever, participating in such an exercise made it ob- 
vious that there is really no such thing as an iso- 
lated mission that is independent of a larger the- 
ater of activity. Intelligent forces were able to ful- 
fill their specific, limited roles in the theater-level 
exercise, but we were also able to identify a num- 
ber of ways that we could increase the flexibility of 
the forces, so they would be more useful in theater- 
level simulation exercises. 

The remainder of this paper first identifies three 
general categories of requirements for bringing in- 
telligent forces into full-blown theater-level exer- 
cises. We then present a number of specific so- 
lutions we have developed to meet these require- 
ments. These solutions enable the deployment of 
intelligent forces in theater-level exercises, and cul- 
minating with their participation in STOW-97. 

3. Desired Capabilities 

Our experiences in STOW-E highlighted a num- 
ber of desired capabilities that would have made 
deployment of the intelligent forces much easier 
and more robust. These capabilities fall into three 
general categories, which we present here. 

3.1 Agent Knowledge 

The first category of capabilities involves enrich- 
ing the knowledge base of individual intelligent 
agents, so they take theater-level goals and con- 
straints into account while executing their partic- 
ular missions. This helps the agents generate more 
appropriate and human-like behaviors when faced 
with a wide range of choices. 
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At the theater level, the agents must incorporate 
knowledge of the overall exercise into many of their 
local decisions. For example, for a BARCAP mis- 
sion, it is not enough for an agent to know that 
it is must fly a racetrack at a particular waypoint, 
oriented in a specific direction, and intercept any 
enemy aircraft that come close enough. In ad- 
dition, the agent must know about the following 
types of things: 

• How long to remain on station. 
• Who the air traffic controller is, and how to 

interact with it. 
• When and where to refuel. 
• Specific, possibly complex commit criteria to 

begin an intercept. 
• Keeping track of where friendly aircraft are, 

and who they may be intercepting. 
• Which direction to force the intercept, based 

on what is being protected. 
• Levels of acceptable risk, for deciding which 

tactics should be used during an intercept. 

Another example of theater-level concerns for in- 
dividual agent knowledge involves the ability to fly 
in packages for strike or close-air support missions. 
Strike packages consist of a number of individual 
missions, such as sweeps, suppression of enemy 
air defense, escorts, tankers, and the strike itself. 
However, all the agents executing these missions 
must have the capability to coordinate and com- 
municate with each other. In addition, they must 
have knowledge of how to execute proper ingress 
and egress profiles, as well as the ability to interact 
with various command and control entities. 

These capabilities represent a significant increase 
over those required to carry out specific missions 
(which are themselves non-trivial). In an intelli- 
gent synthetic agent, these capabilities translate 
directly into requirements for new knowledge. For 
the agents to operate successfully in a theater of 
war, they must incorporate a large amount of new 
knowledge that specifically addresses the theater- 
level concerns. 

3.2 Intelligent Support Agents 

The second category involves expanding the in- 
frastructure for supporting intelligent agent roles 
in theater-level exercises. For our purposes, this 
includes building intelligent forces to model all the 
entities involved in the air combat portion of a the- 
ater of operations. Examples of agent behaviors 
that support theater-level activities are airborne 

early warning, forward air control, refueling, and 
escorting strike packages. Each of these jobs can 
be performed by a human or an intelligent force, 
and they all contribute to the quality of decision- 
making by individuals in the theater. 

As we hinted above, the core capabilities for in- 
telligent agents enable agents to fly relatively au- 
tonomous missions, such as executing an intercept, 
or delivering ordnance to a ground target. In real- 
ity, however, these missions require many different 
types of support in order to be successful. At the 
very least, support can be provided by humans in 
simulators or real vehicles, but even in this case 
the intelligent synthetic agent must have knowl- 
edge of what these support roles are, and how to 
interact with them. At the other end of the spec- 
trum, however, we would like all of the support 
missions to be implemented by synthetic agents 
as well. In order for these agents to be intelligent, 
they must incorporate complete knowledge of how 
to fulfill each support role. 

3.3 Tools and Interfaces 

The third category of capabilities involves devel- 
oping tools and interfaces that support the use 
of intelligent forces in theater-level simulations. 
These tools should allow humans to specify sce- 
narios and control agents as easily and flexibly as 
possible. Facilities exist for specifying the missions 
of semi-automated forces, and manipulating them 
during the course of an exercise in response to new 
demands for the training scenario. However, the 
existing interfaces do not apply well to groups of 
intelligent agents, which require interactions that 
are much more similar to those for human partic- 
ipants in the theater of operations. 

The participation of our agents in the STOW-E 
exercise revealed two fundamental weaknesses in 
the tools we had to interface with intelligent syn- 
thetic agents. The first involved the interface for 
specifying mission and situation briefings for the 
agents. The basic interface allows us to specify 
scenario and mission parameters to each individ- 
ual agent, but the process must be repeated for 
each agent. This is fine when agents are execut- 
ing separate missions, and do not need to share 
much information. However, when theater-level 
concerns are introduced, there is much necessary 
information that should be shared among different 
groups of agents. 
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For example, waypoint names and locations gen- 
erally hold across an entire exercise. A particular 
Airborne Early Warning aircraft will be assigned 
to interact with a number of flights of aircraft. All 
the members of a division of aircraft will share call 
signs and other information. Thus, when all the 
information for an exercise needs to be conveyed to 
all of the agents, there can be an enormous amount 
of redundancy. To address this problem requires 
a shift away from "agent-centered" mission inter- 
faces, moving instead to an "exercise-centered" in- 
terface, which reflects a more flexible organization 
for mission information, and shares information 
among appropriate groups of agents. 

The second interface weakness arose toward the 
end of the STOW-E exercise. Most of the exercise 
missions were scripted weeks in advance, and we 
were able to specify the appropriate missions for 
all of our agents so they could execute them on de- 
mand. However, toward the end of the exercise, it 
became clear that the administrators running the 
exercise wanted to change the script dynamically 
in response to changes in the training situation, or 
to explore variations of the initial exercise. 

With standard synthetic forces, it is no problem 
to "pick up" the aircraft, move it to a different 
location, and assign it a new mission. However, 
with intelligent agents this is not so simple, largely 
because intelligent agents maintain a memory of 
events in the current mission, as well as knowledge 
structures representing their current awareness of 
the overall situation. If you try to "pick up" and 
move an intelligent agent, you will get a similar 
type of confusion that might arise if you suddenly 
teleported a human pilot to a different portion of 
the world. The agent will not know where it is or 
why. It will no longer have an accurate picture 
of its situation, because the situation will have 
changed. In addition, it will not necessarily be 
a simple matter for the agent simply to abandon 
its old mission and pick up a new one from some 
arbitrary starting point. 

In order to address this situation, we require an 
interface that allows exercise administrators to in- 
teract with intelligent synthetic agents in a man- 
ner similar to how they interact with human par- 
ticipants in the exercise. When a human needs to 
be assigned a new mission—for example, to exe- 
cute a BARCAP at a new waypoint—a controller 
must instruct the pilot by radio to knock off the 
current mission and fly to the new waypoint. Then 

the pilot must fly there; the aircraft cannot mag- 
ically transport. There are similar requirements 
for interacting with an intelligent synthetic agent. 
The agent must be instructed by a simulated radio 
with new orders, and then it must carry them out 
itself, in order to maintain a reasonable awareness 
of the world around it. 

4. Progress and Results 

We do not yet have fully autonomous, intelligent, 
synthetic agents participating in theater-level ex- 
ercises. However, we have completed significant 
amounts of research and development in each of 
these three categories. 

4.1 New Agents and Capabilities 

The first two categories have not so much required 
the creation of new tools as they have a redoubling 
of our effort to acquire and engineer knowledge to 
make the intelligence of our agents as rich as pos- 
sible. To begin with, we have built agents that 
fulfill a number of new roles to fill out the sim- 
ulated theater of war. These include agents that 
perform the following functions: 

• Tanking. 
• Strike escort. 
• Suppression of enemy air defense. 
• Airborne Early Warning. 
• Reconnaissance. 

In addition, we have developed limited agent ca- 
pabilities to provide a number of command and 
control functions: 

• Land/Launch control. 
• Strike control 
• Tactical air control center. 
• Direct air support center. 
• Fire support coordination center. 
• Forward Air Control (airborne and ground- 

based). 

These command and control agents come nowhere 
near providing the full capabilities for each of their 
missions, but they provide enough support that 
they can fulfill simulated roles to enable our other 
air agents to execute their missions in a realistic 
manner. 

Finally, we have enriched our basic agents with 
the knowledge that allows them to interact ap- 
propriately with each of these new agents. In ad- 
dition, knowledge has been incorporated to allow 
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the agents to coordinate in packages for large-scale 
strike, interdiction, and close-air support missions. 
Finally, the knowledge for defensive missions has 
been updated so that agents can provide a more in- 
tegrated defense, taking into account theater-level 
concerns, as well as coordinating intercepts and 
defensive assignments between different groups of 
aircraft. 

4.2 New Mission and Command Interfaces 

In order to address the need for improved inter- 
faces to our agents, we have developed two new 
graphical interfaces, both of which greatly improve 
the flexibility and ease of interacting with the in- 
telligent synthetic agents. 

The first tool is an exercise editor for specifying all 
the information relevant to a theater-level exercise 
and translating it to parameters used by our in- 
telligent agents. The editor organizes mission and 
scenario specifications into multiple levels: exer- 
cise, event, mission, and entity. Entity-specific 
information is tailored to the smallest groups of 
agents (divisions, sections, or individual vehicles). 
However, information common to a single mission 
or a single event (for example, an integrated strike) 
only needs to be entered once, even though it is 
then passed on as parameters to a number of indi- 
vidual agents. The highest level of the hierarchy 
contains information common to all agents over 
the entire course of the exercise. Coulter and Laird 
(1996) provide more complete details on this ed- 
itor. Experience with the editor has shown that 
it is relatively easy to learn, and that it greatly 
improves the efficiency of specifying new exercises 
involving our synthetic agents. 

The second tool we have developed is a graphical 
interface panel to allow simulated radio commu- 
nication with the intelligent agents. The inter- 
face provides templates for semi-natural language 
phrases that the intelligent agents can understand 
and know how to obey. This allows an exercise ad- 
ministrator to give orders to the intelligent agents 
in a relatively natural style of discourse. Because 
the agents communicate with each other using the 
same language and the same simulated radio inter- 
face, they do not care whether they are receiving 
orders from a human or from another appropri- 
ate synthetic agent. When an intelligent synthetic 
agent receives such an order (for example, to as- 
sume a new CAP station or to vector to a partic- 
ular bogey group), it can parse the message, obey 

it, and begin executing the appropriate maneuvers 
(and changes in mission specification and situa- 
tional awareness) to implement the order. This 
tool allows a measure of flexibility for administer- 
ing synthetic agents in a simulated exercise, while 
maintaining their ability to fulfill the role of a 
human-like participant in the theater of war. 

5. Conclusion 

As discussed in this paper, we have approached the 
problem of bringing intelligent synthetic agents to 
theater-level exercises from a variety of directions. 
In October of 1995, we were able to participate 
in an ARPA-sponsored simulation exercise, called 
ED-1. This exercise provided an opportunity for 
us to evaluate our progress and compare it with 
our participation in STOW-E. Our experiences in- 
dicate that we have made strides in the right di- 
rection. It was much easier to develop the scenar- 
ios for the exercise, using the exercise editor. We 
were able to demonstrate a number of new capabil- 
ities in the intelligent synthetic agents. Finally, we 
have demonstrated the capability to change sce- 
narios by giving agents new orders via the graph- 
ical communications panel. We plan to continue 
our efforts in these directions, eventually providing 
robust interfaces and intelligent synthetic agents 
for STOW-97. 
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1. Abstract 

An intelligent system, AlSim is being developed by 
the AI gToup at MRC, within the framework of 
multinational battlefield simulation project (EUCLID 
RTP 11.3). AlSim is being developed to enable a 
simulated air target (an F16 plane) to behave 
intelligently in cooperation with other computer 
generated and man controlled air targets, in tasks and 
activities in CAP and Escort missions in defensive 
and offensive scenarios. The system's tasks include 
Navigation, Patrol, Escort, BVR and WVR 
Engagement, Air-to-Air Refueling, Disengage and 
Retum-to-Base. 

2. Introduction 

The study of intelligent agents in real-time simulation 
systems has been one of the most challenging 
research topics in artificial intelligence (see, e.g., 
Jones, et. al. 1994). The primary purpose of such 
studies is to examine agent behavior in real-time 
environments and scenarios, and to prepare more 
realistic systems for training human operators for 
certain skills. Recently, extensive research is being 
carried out on intelligent agents operating in 
distributed interactive simulation (DIS) environments. 
The DIS environments enable to use a number of 
agents with different goals and behavior patterns in 
real-time scenarios (see, e.g., Oztemel & Kocabas, 
1996; Laird, et al., 1995; Tambe, et al., 1995). DIS is 
mainly concerned with time and space-coherent, 
synthetic representation of real-world environments 
and interactions of operational entities in them. 

The synthetic environment is created through real- 
time exchange of data units between distributed, and 
computationally autonomous simulation applications 
in the form of simulations, simulators and 
instrumented equipment interconnected through 
standard computer communicative services. The 
computational entities can be in one location or 
distributed geographically. A DIS system has the 
following characteristics: 

• No central computer is used for event scheduling 
or conflict resolution. 
• Autonomous simulation stations are responsible 
for maintaining the state of one or more simulation 
elements. 
• There is a standard protocol for communicating 
ground-truth data. 
• Receiving stations are responsible for determining 
what is to be perceived. 
• Simulation stations communicate only changes in 
their state. 
• "Dead-reckoning" algorithms are used to reduce 
overloads in processing communication data. 

An intelligent agent consists mainly of three 
components: perception, cognition and action. 
Memory, reasoning, learning, understanding, 
planning, scheduling, and control are some of the 
basic characteristics of intelligent behavior. An agent 
equipped with these capabilities can receive 
information from its environment, organize its 
knowledge about the environment, evaluate 
situations, deduce conclusions, solve problems, and 
generate actions. 

1 Also affiliated with: Department of Space Sciences and Technology, ITU, Maslak, Istanbul, Turkey. 

2 Also affiliated with: Department of Industrial Engineering, SAU, Adapazari, Turkey. 
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The cooperation of DIS agents depends on the kind 
of tasks and activities they are expected to do, and the 
environment in which they operate. There may be 
three different types of tasks: 1) Agents may perform 
problem solving in a common domain, 2) agents may 
be working together to improve their individual 
performance, and 3) agents may be working together 
to improve the performance of the overall system they 
are designed for. In DIS systems the third type of 
cooperation is important as it concerns the question of 
dependency between agents. If an agent needs to 
communicate with other agents, it has to know the 
underlying model of these agents. Additionally, there 
has to be a standard data communication accessible 
by every entity within the overall system. Some data 
communication problems are solved by "dead 
reckoning" algorithms. Such algorithms estimate the 
future situations in the temporary absence of 
situational data, ensuring that the system is somewhat 
fault tolerant with respect to temporary 
communication failures. In a complex environment, 
knowledge used by an agent can be incomplete, and 
the goals of the agents might be conflicting (Jones, et. 
al., 1994). If an agent has conflicting goals, a set of 
heuristics or a classifier can be used to deal with the 
conflict. However, if different agents have conflicting 
goals, then there is a need for a negotiator to deal 
with this problem. The negotiator is an agent which 
defines the authority of information. 

This paper describes the design of an intelligent 
agent, AlSim, operating in a DIS environment. Our 
study focuses on the following problems in designing 
such agents: 

- Rationality of agent behavior 
- Agent cooperation and coordination 
- Resolution of conflicts in agent goals and tasks 
- Agent situation and behavior explanations 
- Agent reusability. 

The design history of AlSim goes back to the design 
of its prototype RSIM (Kocabas, et. al., 1995). RSIM 
was a simple model operating in a 2-d space, with 
capabilities of learning its rules of behavior and 
explaining its behavior. AlSim is a much more 
developed version with the capabilities of detailed 
situation assessment, action management and 
behavior explanation. In the following sections, first a 
summary of the design history of AlSim is provided. 
Then the system is described in terms of its hardware 
and software structure. Next, AlSim's methods and 
capabilities are discussed in comparison with other 
related systems. Finally, the paper concludes with a 
summary of the results. 

3. System Development 

The following procedure is employed in the 
development of AlSim: 

- Domain analysis to define the activities to be 
simulated in the application. 

- Requirements analysis, to define the system's 
goals and functions. 

- Global design analysis, to ensure that each 
specified goal is achieved by a set of functions. 

- Detailed design, to guide the software engineers 
to code the system in accordance with the specified 
requirements. 

- Software development which is the actual code 
generation process. 

- Testing, verification and integration to DIS 
system. 

Currently, this work has passed the prototype and 
design stages, and is now in the software development 
stage, in which AlSim has been integrated with the 
underlying simulation system. 

Al 
station 

Simulation 
station 

AlSim simulation 
system 

interface interface 

pdus — 
n DIS Network 

Figure 1. Hardware structure of the DIS system on 
which AlSim runs. 

4.   System Description 

The hardware structure of the DIS system on which 
AlSim runs is shown in Figure 1. The system operates 
as networked to the simulation system in a DIS 
environment, where AlSim runs on the Al station, 
and control its agent(s) on a simulation station 
connected to the same DIS system. The simulation 
station runs ITEMS1 simulation system. The 
communication between the workstations is carried 
out by exchanging standard data units in the network, 
under InterSIM2 a DIS network software. 

1 ITEMS is the product of CAE Electronics. 
2 InterSIM is the product of TTS. 
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As to the software architecture of the system, we have 
selected a hierarchical approach for the design of 
AlSim, in which the system has four levels of goals: 

1) Mission goals 
2) Task goals 
3) Subtask goals 
4) Activity and action goals. 

CAP missions. The total number of sub operators in 
these task operators is 52, which in turn have a small 
set of action rules and procedures. Figure 2 shows a 
section of AlSim's mission, task, subtask and activity 
hierarchy. In this hierarchic control structure AlSim 
supports the following intelligent agent character- 
istics: Situation assessment, action management and 
explanation. 

DIS scenarios require the definition of mission goals 
such as air interception and tactical air support. 
AlSim has been designed for two different mission 
goals: Combat Air Patrol (CAP), and Escort to 
bombers. When the system's mission goal is defined 
as CAP, it is divided into a set of task goals such as 
navigation, patrol, and BVR combat. These task goals 
are further divided into a set of subtask goals such as 
trajectory guidance, weapons management, and 
evasion. The subtask goals in turn, are divided into 
activities such as firing and guiding a missile, 
performing an evasion maneuver, and turning towards 
a target. Activities are also divided into a set of 
simple actions such as changing heading, speed and 
altitude. 

AlSim's control structure supports the goal hierarchy 
described above. The system has two modules: 
Situation Assessment (SA) and Action Management 
(AM). The SA module monitors the situational 
parameters 10 times a second on average, by first 
selecting a set of situational parameters, calculates the 
situation, and sends a reduced set of situational 
indicators in the form of signals to the AM module. 

The AM module itself consists of a set of operators 
in a hierarchy. On the top of this hierarchy is the Task 
Control Operator (TCO), which controls a set of task 
operators by deciding which task operator is to be 
activated under the current situation. Once a task 
operator is activated, this in turn, fires subtask and 
activity operators and rules. In this way, AlSim 
directs its agent in the scenario in accordance with its 
assessment of the current situation. 
AlSim's TCO has the following operators which can 

become active in a CAP mission: Takeoff, Navigate, 
Patrol, BVR Engage, WVR Engage, Disengage, Air- 
to-Air Refueling (AAR), Return to Base (RTB), and 
Land. Each of these operators have a set of subtask 
operators which in turn have a set of activity 
operators, and finally each activity operator has a set 
of action rules. The task control operator of AlSim 
currently has 23 rules for selecting task operators for 

Missions 

Tasks 

CAP 
Escort 

CAP 

Navigate 
Patrol 
BVR Engage 
WVR Engage 
Disengage 

Subtasks      BVR Engage 

BVR Approach 
BVR Attack 
BVR Evade 
BVR Escape 

Activities     BVR Attack 

Maintain Angle of Attack 
Check Missile Envelope 
Missile Launch 

Actions        Missile Launch 

Launch Missile 
Perform f-pole 
Guide Missile 

Figure 2. AlSim's hierarchy of operators for mission 
tasks, subtasks, activities and actions. 

5. Discussion 

In this section AlSim is discussed and compared with 
other related systems in terms of: 

- Domain tasks 
- System architecture (knowledge organization) 
- Intelligent agent features 

. Situation assessment (perception, cognition) 

. Action management (cognition, action) 
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. Robustness 

. Timeliness 

. Flexibility (e.g. reusability) 

. Learning, 

. Explanation. 
- Performance in mission scenarios. 

AlSim has been tested in controlling an F 16 against 
ITEMS and man controlled Mig 29's and F 16s in 
various CAP scenarios. Tests on the system in escort 
scenarios are continuing. In CAP scenarios, the 
AlSim agent (ATT) takes off, navigates to a patrol 
waypoint in a predefined desired engagement zone 
(DEZ), performs patrol in an elliptical orbit towards a 
given threat direction. When a threat approaches a 
certain distance, AlSim's TCO passes control to BVR 
Engagement operator, and this in turn, to BVR 
Approach sub-operator, and so AIT leaves patrol and 
approaches its target in a certain angle. Within a 
certain range, BVR Attack sub-operator takes control 
of AIT, guiding it through to own missile envelope, 
while securing and maintaining radar lock until a 
certain range. This sub operator is also responsible 
for launching and guiding BVR missiles. Meanwhile, 
if a radar lock comes from the opponent in a certain 
range, control passes the BVR Evade sub-operator, 
which in turn, guides AIT into evasive maneuvers. 
Chaff throws and radar jams can automatically be 
taken care of by the simulation system ITEMS. 
During BVR Attack or BVR Evade, if AIT has 
entered WVR engagement range, then TCO passes 
control to WVR Engage operator which directs AIT 
in WVR attack, evade and escape maneuvers. 

At all times, TCO checks the fuel and missile stocks 
of AIT. When AIT runs out of BVR and/or WVR 
missiles, control passes to Disengage and RTB 
operators depending on the tactical situation. When 
the fuel level of AIT is below a predefined level, and 
the mission is still on, TCO passes control to Escape 
and/or AAR operators, and AIT is directed towards 
an AAR point where it refuels. 

The above is a brief description of AIT's behavior in 
which a good deal of details are omitted for reasons 
of the limitations of this paper. 

The knowledge organization and control structure of 
AlSim is based on the hierarchic homuncular control 
(HH) architecture (Kocabas, 1991). Unlike the 
sequences of operators of Soar-IFOR, in this 
architecture, AlSim's operators are systematically 
divided into mission, task, subtask and activity 
operators as shown in Figure 2. This architecture 
provides   effective   search   control   in   real-time 

behavior. Accordingly, at any moment in its activity, 
the AlSim agent can pass from one task (such as BVR 
Engage) to another task ( e.g. Disengage). 

The number of operators and rules of AlSim are 
small, compared to the variety of tasks and activities 
performed by its agents in a scenario. There are two 
reasons for this: 

1) AlSim's HH control architecture has proved to be 
effective in partitioning the control of agent activities. 

2)  Many of the  low  level  activities such  as 
navigation to a waypoint and radar lock are carried 
out by the ITEMS simulation system. 

Like Air-IFOR agents (Laird, et. al. 1995), AlSim 
agents are isolated from the details of the underlying 
simulation environment, such as missile and plane 
dynamics, and sensor simulation. However, unlike 
Air-IFOR agents, AlSim controls its agents created in 
a simulation station in the DIS environment, from a 
separate workstation connected to the same 
environment, using the data protocols of the DIS 
network software InterSIM. In other words, as 
opposed to Air-Soar systems which run in direct 
communication with its simulation system ModSAF 
on the same workstation, AlSim runs independently 
on a separate workstation. Therefore its configuration 
is more general in terms of data communication and 
control than that of Air-Soar. 

As to the intelligent agent features of the system, 
AlSim's SA module reads the set of data on the 
dynamic and static simulation elements, and 
computes the parameters of the tactical situtation 
from some of these data, and sends the relevant 
attribute-values to a message list to be read by the 
system's TCO operator. AlSim reads about 60 
different types of data (which are grouped in 
themselves), and sends about 15 types of data to the 
DIS network. The simulation system's clock cycle is 
20 Hz. AlSim's action management operators, as have 
been described above, are capable of guiding its agent 
in different tasks and activities. The current version 
performs well in 1-v-l engagements, and has a simple 
set of prime opponent selection rules to deal with 
more than one opponent at a time. However, unlike 
Air-IFOR agents the system has not yet been 
developed for 1 -v-2 and 2-v-2 air combat scenarios. 

AlSim tests shows that the system is robust in the 
sense that the system shows reasonable performance 
in different scenarios in 1-v-l and l-v-2 engagements. 
The system has also passed the timeliness criterion in 
its current form. 
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As to the flexibility criterion, AlSim architecture has 
proved to be flexible enough in adapting to other 
missions (e.g., from CAP to Escort missions) simply 
by adding new task operators and a small set of task 
control rules in TCO. Unlike Air-Soar's procedure, in 
which this system uses a decision procedure to select 
operators according to the current situation by using a 
rule set for operator selection, in AlSim task selection 
is done by its task control operator. One advantage of 
this architecture is that it enables to change the 
doctrines of the AIT more easily. 

We had tested learning methods on our earlier model 
RSIM (Kocabas, et al, 1995) which learns action 
rules to perform meaningful maneuvers in 1-v-l 
engagements. Learning methods have been applied in 
limited activities such as learning pure pursuit 
(Hommertzheim, et. al., 1991) and certain close 
combat maneuvers (Crowe, 1990). AlSim's 
architecture allows it to learn task control and activity 
rules, but the system's search space is too large for 
effective control and action rules. For this reason, we 
have postponed the implementation of learning 
methods in AlSim. On the other hand, many military 
missions and tasks are taught by instruction. Air 
combat maneuvers are also well defined both in 
tactics and geometrical paths and trajectories. 
However, this does not mean that learning is not 
feasible in such systems, particularly because of the 
use of new technologies in missiles and planes. 

Behavior explanations is an important feature for 
computer generated agents, as it is useful to know 
both for development and training purposes, what the 
agent has been doing at a particular moment during 
its activities. Behavior explanations can be in the 
form of post-mission explanations (Johnson, 1994) or 
in real-time (Kocabas, et al.,1995). Like its 
predecessor RSIM, AlSim explains its agent's 
behavior in real-time. The system's knowledge 
organization, particularly its task based hierarchy of 
operators into tasks, subtasks, activities and actions, 
facilitates the detailed explanation of its agent's 
behavior in real-time. Air-Soar agents also have 
explanation capability, but as post-flight explanations 
(Johnson, 1994). 

The same knowledge organization also facilitates to 
include the description of agent goals and intentions 
beside simple behavior explanations. Goal directed 
explanations can be useful in monitoring the agent 
behavior more closely, particularly the agent's 
situation assessment capabilities. We intend to 
implement   this   feature   in   AlSim.   Under   these 

considerations, we believe that AlSim has a more 
flexible knowledge organization scheme and control 
architecture than that of Soar which provides the 
basic knowledge organization scheme to Air-Soar 
systems. 

As opposed to TacAir-Soar (Tambe, et al. 1995), 
AlSim can in principle deal with multiple 
independent goals simultaneously. We are in the 
process of implementing this feature in the system. 
AlSim can control more than one Al targets in a 
scenario from one station, although we have tried and 
tested only one so far. 

Like Air-IFOR agents of Air-Soar, the AlSim 
provides the following capabilities to AIT: situation 
assessment, following flight plans, performing patrol 
in reference to a certain waypoint and opponent 
direction, prime opponent selection, attack and 
missile management, evasion and escape, escort 
behavior and tactics, fuel management, 
disengagement, and coordinating with other agents in 
escort tasks. To these capabilities, own behavioral 
explanation and target behavior interpretation must be 
added. 

On the other hand, compared with Air-IFOR agents, 
AlSim agents have a limited range of mission 
simulations, as confined to CAP and Escort. 

6. Summary 

In this paper we have described the design of an 
intelligent system AlSim, capable of performing tasks 
and activities in CAP and Escort missions. We have 
also discussed the system's knowledge organization 
and control architecture comparing with other related 
systems. AlSim's architecture supports intelligent 
agent requirements such as situation assessment, 
action management, timeliness, flexibility and 
behavior explanation. 
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1. Abstract 

Computer Generated Forces (CGFs) are software 
driven forces whose tactical behaviors/decisions are 
made by human commanders (semi automated 
forces) or automated algorithms (automated forces). 
CGFs were developed to support Army applications 
in three modeling and simulation domains. 
Distributed Interactive Simulation (DIS) applications 
have been demonstrated in all three domains. CGF 
developments to support DIS fall into two categories: 
new developments and modifications to existing 
CGFs. 

The CGF Assessment evaluated seven CGFs to 
provide a basis for an Army investment strategy. The 
CGF Assessment addressed four questions: 
1. What are the current and planned CGFcapabilities? 
2. What are the CGF characteristics? 
3. Is the CGF credible? 
4. Which DIS domain applications can be satisfied? 

This paper presents the CGF Assessment approach 
and summary of results and the Army's CGF 
investment strategy. 

2. Introduction 

Computer Generated Forces are software driven 
forces whose tactical behaviors/decisions are made by 
human commanders (semi-automated forces) or 
automated algorithms (automated forces). CGFs 
were developed to support Army applications in the 
three modeling and simulation domains: Advanced 
Concepts and Requirements (ACR); Research, 
Development, and Acquisition (RDA); and Training, 
Exercises, and Military Operations (TEMO). 

3. DIS CGF Development History 

Distributed Interactive Simulation (DIS) proof of 
concept was demonstrated for unit training by the 
Simulation Network (SIMNET). SIMNET linked 
simulators together in a virtual environment with a 
semi-automated force (SAF) developed to represent 
both the threat and friendly units.   Since SIMNET 

proof of concept for unit training, DIS applications in 
all three modeling and simulation domains were 
demonstrated using variants of the SIMNET SAF. 
As a result of the SIMNET proof of concept for 
training the Army initiated the Combined Arms 
Tactical Trainer (CATT) program to develop the next 
generation of Army training systems to support 
combined arms training for units at the team through 
battalion task force level. The first phase of the 
CATT program is the Close Combat Tactical Trainer 
(CCTT) development. CCTT supports training for 
armor and mechanized infantry units. Manned 
simulators support the primary training audience. 
CCTT SAF fills out the battlefield with Opposing 
Forces (OPFOR) units and adjacent, supporting, or 
tethered Blue Forces (BLUFOR) units. CCTT is 
scheduled for fielding in 1997. 

Modular SAF (ModSAF) development was initiated 
by the Advanced Research Project Agency (ARPA) 
in 1992 as a replacement for SIMNET SAF for DIS 
RDA and ACR applications and to support SAF 
advanced distributed simulation research. ARPA and 
the Simulation, Training, and Instrumentation 
Command (STRICOM) continue to sponsor its 
development and application in ACR, RDA, and 
TEMO domains. STRICOM's Battlefield Distributed 
Simulation-Developmental (BDS-D) Advanced 
Technology Demonstration (ATD) is enhancing 
entry-level representation for Army systems and 
verification and validation through the Anti Armor 
(A2) ATD. ARPA is sponsoring the development of 
an Air Force, Navy, and Marine Corps ModSAF as 
part of the Synthetic Theater of War (STOW) 
program. Due to the accessibility of the source code, 
ModSAF provides the foundation for the advanced 
distributed simulation research in the following areas: 
Intelligent Forces (IFOR), Command Forces (CFOR) 
SAF, synthetic environment phenomenology (e.g., 
clouds, smoke), real-time information transfer, 
networks, development of a High-Level Architecture 
(HLA), Synthetic Environment Data Requirements 
Information System (SEDRIS), and the next 
generation of DIS protocols. 
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CCTT SAF and ModSAP were designed to run in 
real-time, be DIS compatible (DIS compliant (send 
and receive DIS protocol data units) and coherent in 
time and space with respect to other simulations). 
STRICOM, PM CATT, and ARPA initiated planning 
to develop an interoperable (DIS compatible with 
consistent physical and behavior models that ensure a 
fair fight) CCTT and ModSAF capability. 

Several existing CGFs are being modified to run in 
real-time and be DIS compliant and compatible: 

a. Interactive Distributed Early Entry Analysis 
Simulation (IDEEAS) variant of Battlefield 
Environment Weapon System Simulation (BEWSS). 
BEWSS is a high fidelity engineering simulation that 
models critical performance characteristics for 
precision guided weapons in a realistic battlefield 
environment. It was developed by the Missile 
Command (MICOM) for trade-off analyses 
comparing different sensors, guidance, and missile 
designs in a degraded environment; performance 
comparisons of different terminally guided and smart 
weapons in a degraded environment; small unit smart 
weapon force mix analyses; and optimum 
employment studies for smart weapons. IDEEAS has 
two main objectives: 1) to create a DIS compatible 
version of BEWSS, and 2) to make BEWSS an 
interactive tool. 

b. Interactive Tactical Environment Management 
System (ITEMS). ITEMS was developed by CAE 
Electronics, Montreal, Canada, for the Army 
Research Institute as an outgrowth of CAE's in-house 
capability as a simulator developer. Since ITEMS 
was designed to run in real-time to provide a virtual 
environment for simulators, its architecture supported 
making it DIS compliant and compatible. ITEMS is 
designed to support engineering analyses of rotor and 
fixed wing aircraft, including mission equipment and 
sensor systems in a realistic environment (including 
countermeasures). Today, ITEMS is also used by the 
Research, Development, and Engineering Centers 
(RDEC) for aviation, armaments, and tanks; industry; 
and foreign military facilities around the world. 
c. Janus linked to DIS (JLINK). JLINK is a recently 
completed research project that developed a DIS 
compatible version of Janus (i.e., linked through an 
interface called World Modeler (WM)). It has been 
demonstrated with manned simulators and ModSAF. 
Janus was developed by Lawrence Livermore 
National Laboratory (LLNL) in the early 1970s. In 
1983, LLNL transferred the source code and system 
design of Janus 1.0 to the Training and Doctrine 
Command   (TRADOC)  Analysis  Center  (TRAC). 

TRAC has improved Janus through enhanced 
functional representations and a more robust 
operating systems (UNIX). Janus 5.1 is installed at 
over 50 sites worldwide where it is primarily used for 
training, combat development analyses, and research 
and development. TRAC is planning to continue 
research with JLINK with formal configuration 
management planned in FY98. 

d. Joint Conflict Model (JCM). JCM was developed 
by LLNL as a derivative of the Janus simulation to 
support joint staff training exercises. Janus was 
expanded to represent a brigade task force supported 
by air and naval operations. Subsequently, JCM was 
re-designed using an object-oriented approach for its 
data structures and added a DIS protocol interface. 

e. Joint Tactical Simulation (JTS). JTS is also a 
Janus derivative developed by LLNL. The current 
JTS is a re-engineered and significantly enhanced 
merger of Urban Combat Computer Assisted Training 
System (UCCATS) and the Security Exercise 
Evaluation System (SEES). JTS is a unique high 
fidelity simulation of dismounted combat in an urban 
environment. JTS is currently used for officer 
training and operational planning by U.S. Army 
Europe (USAREUR) and U.S. Army Special 
Operations Command (SOCOM), site security 
training and analysis by U.S. Army Southern 
Command (SOUTHCOM), and security training, 
analysis, and evaluation by Department of Energy 
(DOE) National Laboratories. Joint Warfighting 
Center (JWC) plans to merge JTS and JCM into a 
single simulation. 

At a briefing for the Army senior leadership (charged 
with oversight responsibility for modeling and 
simulation to support acquisition) on ModSAF 
development status in October 1994, the need to 
assess these seven CGFs to provide a basis for 
developing an optimum Army CGF investment 
strategy for DIS was identified. The Army Material 
Systems Analysis Activity (AMSAA) was tasked to 
develop a plan to evaluate alternative CGFs because 
MSAA was managing the A2ATD and participating 
in the development and verification and validation of 
all CGFs except JCM and JTS. AMSAA formed a 
CGF Assessment Working Group composed of 
knowledge people within the Army (Army Materiel 
Command, TRAC, and National Simulation Center), 
Institute for Defense Analysis, the Mitre Corporation, 
Carmel Applied Technologies, and Illgen Simulation 
Technologies, Inc. 
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4. Purpose and Approach 

The purpose of the CGF assessment was to evaluate 
the alternative CGFs for all Army DIS domains: 
ACR, RDA, and TEMO. 

The CGF Assessment addressed four questions: 
1. What are the current and planned CGFcapabilities? 
2. What are the CGF characteristics? 
3. Is the CGF credible? 
4. Which DIS domain applications can be satisfied? 

Current and planned CGF capabilities were 
evaluated on the basis of two evaluation criteria: 
battle force representation and simulation modeling 
features. Battle force representation assesses the 
ability of the CGF to represent different types of 
weapon systems/military equipment for all services 
(Air Force, Army, Navy, Marine Corps); levels of 
military organizations (platoon through Division); 
Command, Control, Communications, and 
Intelligence (C3I); behaviors of entities and units; 
tactics and doctrine. Command entities and their 
ability to communicate with crews through the 
Command and Control Simulation Interface 
Language (CCSIL) were also assessed. Simulation 
modeling features characterize simulation models and 
data bases used to represent system performance and 
the environment. 

CGF characteristics were evaluated on the basis of 
system architecture; simulation execution; system 
ergonomics; operation, maintenance, and 
expandability; and scenario development. System 
architecture addresses both hardware and software 
architecture. Hardware requirements were assessed 
for several scenarios. Software architecture addresses 
run-time architecture, software development 
environment and standards, system update rate and 
load balancing, hardware platforms that run the 
software, and DIS network interface. 
CGF credibility was evaluated based upon 
verification, validation, and accreditation completed 
and planned. Long term configuration management 
was also considered. 

5. CGF Requirements 

While the CGF Assessment developed 
comprehensive evaluation criteria to assess 
capabilities, characteristics, and credibility, there are 
key criteria in each area that can be considered as 
discriminators among CGF alternatives to meet future 
CGF requirements. Required capabilities include 
flexibility   in   modeling   unit   behavior   (i.e.,   semi 

automated (player control) or validated automated), 
physical algorithm fidelity (using standard 
performance models for most applications and 
engineering models for unique applications requiring 
this level of detail), ability to represent the joint 
battlefield, and a high resolution environment (time of 
day, atmosphere, countermeasure for the entire 
electromagnetic spectrum). 

Required characteristics include the ability to run in 
real-time, DIS compatibility, compliance with the 
High Level Architecture (HLA)-interfaces and object 
model templates for linking of simulation 
environments, and using an object management 
approach. Credibility     requires     verification, 
validation, and accreditation of the CGF for 
applications and a government controlled 
configuration management process and access to the 
source code. 

6. Objective CGF Architecture 

Before presenting summary comparisons of the seven 
CGFs capabilities, characteristics, and credibility, an 
objective CGF architecture that uses an object 
management approach (OMA) is described. OMA 
describes a software architecture for composing 
CGFs to meet applications from interworking 
component objects. Objects are defined in terms of 
attribute data and operations they make public. All 
objects require some services. Two or more (but not 
all) objects share facilities. Some objects have 
unique attributes and operations they make public 
(not common with any other object). Examples of 
services required by all objects are time and exercise 
management. Examples of facilities shared by two or 
more objects are physical models. An example of a 
unique object may be a weapon on one system (e.g. 
laser). Objects in a CGF (unique, shared, and 
required) are connected by an object request broker 
using an interface definition language. 

7. Comparison of CGF Capabilities, 
Characteristics, Credibility 

Comparison of required capabilities indicates that 
only three CGFs offer flexibility in modeling unit 
behaviors (semi automated or automated): CCTT 
SAF, ITEMS, and ModSAF. A higher level of unit 
behavior automation (CFOR) is also being developed 
in ModSAF as part of the STOW program. BEWSS 
uses scripted battles and is developing a semi- 
automated capability. All the Janus model 
derivatives (JCM, JLINK, and JTS) are only capable 
of    modeling     unit     behavior    through     human 
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intervention (semi automated) or replay of scripts 
from previous Janus battles. All CGFs use standard 
performance models (or derivatives). BEWSS has 
implemented engineering models for missiles and 
smart artillery, and ITEMS has implemented 
engineering models for aviation systems (including 
weapons). JCM is the only CGF that has a joint 
battlefield representation. ModSAF is developing a 
joint battlefield representation as part of the STOW 
program. BEWSS and ITEMS have implemented a 
higher resolution environment representation for the 
systems engineering models. CCTT SAF plays 
terrain interactions and their impact on mobility at the 
highest level of resolution. JTS has a unique 
representation of urban terrain. Finally, a dynamic 
environment is being developed in ModSAF as part 
of the STOW program. 

Comparisons of CGF characteristics indicate that 
only CCTT SAF, ITEMS, and ModSAF were 
designed to run in real-time and be DIS compatible. 
Only CCTT SAF and ModSAF are being developed 
and will demonstrate HLA compliance. In addition, 
ModSAF will be modified as part of the STOW 
program to demonstrate an initial object management 
approach. 

CGF credibility depends upon verification, 
validation, and accreditation. CCTT SAF has the 
most comprehensive VV&A plans and configuration 
management process. The government owns or 
currently has unlimited rights to the source code for 
all CGFs excepts ITEMS. Although ITEMS is a 
proprietary code CAE is willing to negotiate sale of 
the code to the U.S. government. 

8. Conclusions 

The CGF Assessment concluded that: 

1. BEWSS, JCM, JUNK, and JTS are not robust 
CGF solutions for DIS because they do not have 
automated behaviors, and they were not designed to 
run in real-time or be DIS compatible. 

2. CCTT SAF, ITEMS, and ModSAF have the 
potential to meet all domain applications with 
additional investments. Integration of interoperable 
ModSAF and CCTT SAF functionality into a 
flexible, extensible SAF architecture that exploits 
distributed object management approaches and is 
HLA compliant should meet all future Army CGF 
requirements with the least additional investments. 

3. BEWSS, ITEMS, JCM, and JTS will continue to 
meet unique CGF requirements (engineering trade-off 
analyses, joint operations staff training, and 
dismounted infantry in an urban environment) until 
integrated ModSAF and CCTT SAF are available 
with these capabilities. Unique functional capabilities 
in these CGFs should be identified and incorporated 
into the ModSAF and CCTT SAF architecture (if 
necessary). 

4. The Army needs a ModSAF configuration 
management process that institutionalizes ModSAF 
V&V implemented by BDS-D/A2ATD. STRICOM 
(DIS Program Manager) has the lead for developing 
this process. 

9. Army CGF Investment Strategy 

The Army investment strategy is to integrate 
interoperable ModSAF and CCTT SAF functionality 
into a flexible, extensible SAF architecture that 
exploits distributed object management approaches 
and is compliant with the High Level Architecture 
being developed by DMSO. The short term ModSAF 
and CCTT SAF integration goal is to develop and 
demonstrate an interoperable ModSAF and CCTT 
SAF capability in STOW 97. This strategy leverages 
Army, ARPA, and DMSO investments in ModSAF, 
CCTT SAF, STOW, HLA, and Advanced Distributed 
Simulation research. The ModSAF and CCTT SAF 
integration will be managed by the CATT Program 
Manager. 

The CCTT SAF and ModSAF integration program is 
built around a series of experiments and technical 
assessments, which progressively assess key issues in 
interoperability and integration of capability. The 
major issues affecting SAF integration are terrain 
interoperability, command and control, network 
communication, and architectural design. 
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1.   Abstract 

The LeatherNet system provides a unique opportunity 
for the use of CGF by operational commanders. In 
this article, the development of the LeatherNet 
training system is reviewed, highlighting the training 
and human computer interaction principles which 
have guided development. The system incorporates 
modules that perfrom synthetic force simulation, 
speech recognition, visualization, and decision 
aiding. Next, the beginning efforts at performing 
structured training effectiveness evaluations are 
reviewed, along with the shortcomings of this 
evaluation. 

Two critical elements are highlighted in connection 
with using Computer Generated Forces (CGF) for 
decision making training. First, the fidelity of the 
CGF behaviors must be relatively high, despite the 
relative abstractness of some of the trained concepts. 
Second, although often tacked on last, the user 
interface to the CGF must be considered up front 
when designing CGF applications, including the 
design of the actual simulated forces. 

2.   Introduction 

As part of the agreements reached between the 
Defense Advanced Research Projects Agency 
(DARPA) and the United States Marine Corps, a 
development was initiated that would benefit both 
DARPA's ongoing Synthetic Theater of War 
(STOW) program and the Marine Corps Air Ground 
Combat Center (MCAGGC) Twentynine Palms' 
training mission. This cooperative development 
would result in a capability that could be used to 
actively train Marine Corps users for a specific series 
of exercises at MCAGCC. 

The development is being conducted by the Naval 
Command Control Ocean Surveillance Center, 
Research Development Test and Evaluation Division 
(NRaD) on behalf of the DARPA Synthetic Forces 
Program Manager. NRaD is assisted in the 
development by a series of contractors located 
throughout the country. MITRE supports the 
development by running the integration and training 
site at MCAGCC Twentynine Palms and through 
other engineering in San Diego and other sites. 

The LeatherNet system was devised for two purposes: 
1) to provide a mechanism for subject matter expert 
feedback regarding synthetic force behavior for the 
Marine Corps component of STOW; and 2) to 
provide a real-use exploratory system for the Marines 
cycling through MCAGCC for Combined Arms 
Exercise (CAX) training. Included in this 
development was the implementation of a research 
laboratory and test bed at MCAGCC for the 
development of the training system. 

This paper is organized in three sections. First, a 
recap of the system requirements and design is 
presented. Next, the preliminary efforts at evaluation 
of training system effectiveness, and efforts to 
improve these results, are presented. Last, a 
discussion of needed training concepts and 
components is provided. 

Note that the specifics of the LeatherNet 
implementation are available from other sources 
(Osga and Murray, 1994; Berkowitz, 1995a; 
Berkowitz, 1995b). The focus on this paper will be 
on the rational for developments and not specifically 
on implementation considerations; however, some 
references the prototype implementation are 
provided. 

3.  Development of the Training Concept 

The LeatherNet system is a group of computerized 
tools for the primary purpose of performing 
command decision training and tactical mission pre- 
and post briefs. Central to the LeatherNet system is 
the concept of wargaming, in which users can 
establish scenarios and conduct battles using friendly 
forces against unfriendly forces. Essentially, 
LeatherNet provides tools to allow a Marine Corps 
user to perform wargaming using simulated 
individual, mechanized, and airborne forces, and to 
manipulate the ongoing simulated battle through a 
series of visualization tools. 

3.1   User 

The intended user of LeatherNet is a Marine 
commander at the company commander or battalion 
level of command (0-3+). The Marine can perform 
multiple  tasks using the system,  including plan 
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assault and defense missions on a simulated 
battlefield, run these planned missions using 
simulated troop behaviors, and review/critique 
previous simulated and real battles using the 
assembled computer tools. 

3.2  System Requirements 

The system is designed around a series of basic 
training and human computer interaction 
requirements, all focused on the central development 
concept presented above. In the next few paragraphs, 
the essential system requirements are presented. The 
first few requirements are major driving functions for 
the system design and are expanded here, with the 
additional requirements presented in a reduced format 
for brevity. 

3.2.1 Knowledge of Results. 

Essential to the positive transfer of training is the 
effective use of Knowledge of Results within the 
system (Jacobs, et al,; 1993). Including adequate 
methodologies for experimentation of tactics (so- 
called "bands and sequels") and arranging the system 
to rapidly track and analyze results can aid in the 
trainee understanding what went wrong with his plan 
as well as what was correct. The timely presentation 
of results can be beneficial both for recalling 
information not readily evident, as well as indicating 
changes that might be easily implemented. If 
presented within the same session, the trainee might 
be able to continue to work using his adapted 
strategy, and thus successfully complete the 
simulated mission. 

Included in this concept is the proper application of 
multimedia tools to provide adequate and appropriate 
knowledge of results to the Marine Corps user. This 
is an important concept to ensure positive training 
transfer as opposed to null or negative training. For 
example, if the concept being trained involves the 
three-dimensional relationship between a 
commander's ground units and supporting indirect 
fire, then it might be best to present this information 
in a three-dimensional format, as opposed to text 
tables or scores. 

3.2.2 Training Needs 

A primary goal of this guideline is to select and 
prioritize information and design techniques towards 
providing meaningful training (Goldstein, 1986; 
Hays and Singer, 1989). For example, a range of 
informational items may be displayed describing the 
status of an individual SAF entity. The selection of 
which information should be selected is determined 
by what is more meaningful to the Marine 
commander being trained. Given that systems have 
limited display space and techniques, an appropriate 

trade-off would be to display the current and intended 
orders for the entity, as opposed to the DIS protocol 
entity number. In addition, information can be 
prioritized according to the importance at the specific 
time in the simulation, as this may also prove useful 
for training. 

3.2.3  Unified User Interface 

Despite the array of computer tools and hardware 
systems employed, the user must see a unified view 
of the LeatherNet system. The central component of 
this view is provided by the human computer 
interface (HCI) of the CommandVu system. 
Essentially, CommandVu provides a three 
dimensional representation of the simulated 
environment, and provides method for the user to 
interact with the CGF entities. This view is 
augmented by two dimensional map and information 
displays to provide additional tactical and planning 
information The interaction of the user will be 
restricted to the CommandVu system, with necessary 
interaction to other LeatherNet components, 
including Marine Corps Synthetic Forces (MCSF), 
performed using the CommandVu Input Manager. 

The reason for this restriction is two-fold. First, the 
users of this system are Marine Corps commanders 
who, although undoubtedly proficient in several 
computer systems, are using LeatherNet for command 
training. This training is provided once or twice a 
year at the Marine Corps Air Ground Combat Center 
(MCAGCC), 29 Palms. The various tools for the 
command training, including MCSF, each have 
unique user interfaces, and are undoubtedly different 
than the common user interfaces the Marines will 
have on their personal computers. Therefore, using a 
common user interface for all LeatherNet tools will 
simplify the process of learning a computer system 
for the Marines — the purpose of the system is to 
produce better trained military commanders, not 
better trained computer users. 

Second, conventional command training takes place 
in the field; at 29 Palms, two sample maneuver 
ranges are Range 400 for troops and Delta Corridor 
for mechanized units. In the field, the commander 
can visually acquire both friendly and enemy targets, 
as well as use other sensors for detection. 
Commands are largely verbal, with responses from 
units provided back via radio. The LeatherNet 
system mimics this relationship through three 
dimensional representation and voice input and 
feedback. There are a series of complex cognitive 
skills combined for command decision making, and 
by maintaining some of the environmental constants 
for the commander, hopefully negative training 
transfer effects due to using an "artificial" system can 
be minimized. 
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3.2.4 Synthetic versus Real Environment 

The environment created for LeatherNet is a synthetic 
environment which provides representations of the 
real-world using computer generated imagery and 
sound. However, the intent of the system is not to 
create an absolute replica of the real world. The level 
of environmental fidelity reproduced by the system 
should be determined in reference to the identified 
training needs of the Marine Corps user community. 

The distinction allows for a range of possibilities in 
terms of interface design. A primary implication is 
the ability to add decision aiding overlays in the 
graphical environment. For example, an graphical 
enveloped may be added to the display which 
represents the fly-out patterns for weapons. This 
representation is not available on a real training 
range; however, the knowledge of the weapon ranges 
may assist in overall decision training, and therefore 
can contribute valuable information. Similarly, the 
visual detail provided on entities appearance, the 
environment, and other information can be 
manipulated to reach an optimal level between the 
absolute reality and the needs of the trainee. 

3.2.5 Natural Input Methods and Language 

Driven from the training needs requirement is the 
selection of input and output methods which will not 
interfere with the intent of the training mission. The 
techniques used to control entities, and for that 
matter the training environment, should match those 
that are used in the real world to the degree possible. 
If not, it is possible that negative training effects 
could be encountered, with commanders getting very 
good at manipulating a computer, but actually 
learning bad or incorrect troop movements due to 
using the computer. 

3.2.6 Timing of Events 

Command decision making, particularly in combat, 
is an extremely time critical process. The 
information received from the field must be relayed 
quickly and clearly, and subsequent orders must be 
transmitted and received efficiently. The LeatherNet 
system must similarly provide a realistic response 
relationship in terms of processing orders and 
providing feedback to the Marine using the system. 

3.2.7 Dynamics of Combat Environment 

The battlefield is a very dynamic environment. 
Despite the best planning and strategy, the 
commander must constantly change and alter orders 
in response to developments, both positive and 
negative, in the battle. One key to executing the 
strategies is knowing that the changed orders have 
been received and are being followed by the 
subordinate troops.    Similarly, the LeatherNet user 

interface must incorporate adequate flexibility and 
feedback cues so as to enable the commander to direct 
the battle as he/she would in the real world. 

3.3  System Description 

Given the adoption of the requirements above, a 
series of design activities were initiated, including 
limited training needs assessments, projective task 
analyses, story boarding, and paper user interface 
prototypes. Based on the preliminary design work, a 
system was designed and is currently being 
implemented geared towards the MCAGCC CAX 
user. The major components of the LeatherNet 
system are described briefly in the next sections. 

3.3.1 Synthetic Forces 

For each mode of operation, the heart of the 
LeatherNet system is the Marine Corps Synthetic 
Forces (MCSF) that are depicted on various displays. 
These forces are computer simulations of actual troop 
and vehicle behavior, termed entities in the computer 
modeling field. The behavior of entities is based on 
extensive knowledge acquisition on actual troop and 
vehicle movements, and the translation of this 
knowledge into computer models of the specific 
component. The focus of the MCSF project is the 
development of infantry or individual combatants for 
STOW, although additional vehicles and weapons 
platforms which are Marine Corps specific are also 
being developed (for example, the Amphibious 
Assault Vehicle). 

MCSF is a computer program which can be used to 
manipulate and control the behavior of entities on a 
simulated battlefield. In this respect, MCSF is the 
heart of the LeatherNet system, as it is the tool that 
drives the balance of the simulation system. MCSF 
is built on top of an existing military simulation 
program, ModSAF, which allows for the control of 
tactics, troop response, environment, enemy position, 
and many other aspects of the simulated battlefield. 
Again, the additions for MCSF include enriching the 
capabilities for inidividual combatant entities to 
fight, receive commands, and react to various 
stimuli, including MCSF is capable of being run in 
a stand-alone configuration; however, LeatherNet 
provides a series of visualization tools and decision 
aids which can greatly enhance the training and 
simulation environment for the user. 

3.3.2 Visualization 

The primary tool provided is the CommandVu 
visualization environment. CommandVu provides a 
three-dimensional representation of the entities on the 
simulated battlefield, and allows the user to move 
throughout the battlefield to view and control 
movements   from   different   vantage   points.       In 
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addition, CommandVu provides a series of graphical, 
auditory, and intelligent decision aids to assist the 
user in planning troop movements, in learning and 
predicting troop response, and in following 
maneuvers and decisions post hoc. Most 
importantly, all user interaction with the LeatherNet 
system, including the ModSAF simulation engine, is 
provided through CommandVu. 

3.3.3 Terrain Analysis 

What this feature allows for is the combining of 
additional tools with ModSAF in order to strengthen 
the training potential of the system. The Terrain 
Evaluation Model (TEM) can provide quick analyses 
of terrain data for use in the system. Operating off 
of military terrain data bases, TEM provides Iine-of- 
sight and weapons coverage analysis capabilities. 
The eventual goal is to have the outputs of the terrain 
analysis displayed in both two and three-dimensions. 

3.3.4 Natural Input Methods 

Additionally, DARPA sponsored Voice Recognition 
tools can be used to pass messages to ModSAF to 
allow the Marine user a more natural method of 
interaction with the simulated entities. These tools 
allow for speech recognition and natural language 
understanding of verbal commands issued from 
commanders and commands for controlling the 
simulated environment. Essentially, the speech 
recognition system allows the user to use "radio- 
speak" for command and control of the simulated 
forces. 

In additon, methods for combining pen-based gesture 
and voice recognition for transmitting graphical plans 
to the simulated forces are being developed. The 
method of interaction for these tools include the 
drawing of attack positions and avenues of approach 
onto a tactical map display, and then transmitting 
these "pictures" to the forces. This method attempts 
to replicate the use of paper maps and acetate overlays 
commonly used for small unit planning. 

To effect these inputs, several techniques are 
employed. Display devices include: 

• Helmet mounted displays 
• Large projection displays arranged as a 

walk through environment. 
• Three dimensional sound 
• Speech generation. 

Input devices include: 
• Speech recognition 
• Keyboards     and     virtual     on-screen 

buttons. 
• On screen controls (tape displays) 
• Joysticks and other tracking devices. 

4.   Evaluation of the Training Concept 

The initial implementation of the LeatherNet system 
proceed based on several iterations of design analyses 
and reviews. However, throughout the entire 
development process, essential questions regarding 
the effectiveness of the system to prepare company 
commanders for CAX exercises continued to surface. 

These questions were complicated due the relatively 
long development cycle required of the system. 
Although portions of the system had been in 
existence separately in various forms, the 
combination of the systems for training had not been 
tried previously. In addition, the complexity of the 
software system required long lead times for 
translating requirements into stable and somewhat 
functional platforms. 

In the fall of 1995, it was decided to perform a semi- 
controlled experiment using actual CAX participants 
as subjects. This test would occur approximately 14 
months after the initiation of the development effort, 
and a full two years before the scheduled completion 
date of the system. 

The focus of the testing for the development team 
was to identify if the training concept was feasible 
given the constraints of the CAX schedule and 
requirements that was administered at MCAGCC. 

The emphasis from the Marine Corps was to identify 
those parts of the system that were useable to the 
CAX process immediately, and begin to phase these 
developments into the on-base training cycle as they 
made sense. It should be noted that at no time was 
the initial testing construed to be an evaluation of the 
work being produces, i.e., this was not an acceptance 
test for modeling and simulation by the Marine 
Corps. 

4.1   Test Conduct 

The initial focus of the use of LeatherNet was for the 
mission analysis and briefing of the Range 400 
exercise which occurs during the CAX. The R400 
exercise is an infantry company dismounted attack on 
a series of lightly fortified positions "manned" by 
fictional enemy within a box canyon. It is a live-fire 
exercise for the Marine Corps, and includes the use of 
indirect fire weapons (mortars), heavy machine guns, 
and shoulder launched missiles (DRAGON). 

For a Marine company commander, this exercise 
represents several of the critical decision making 
tasks which he must employ in combat. Included in 
these decisions are the use of suppressive fire to 
support movement, the employment of supporting 
forces such as engineers, to augment regular assets, 
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and the management of resources such as ammunition 
and personnel. Successful execution of the mission 
resembles a well executed football play, with a 
continuous flow of troops up the canyon. 
Unsuccessful execution is marked by a lack of 
movement, the running out of ammunition, and 
generally disrupted performance. It should be noted 
that the development team members, many of whom 
had no experience with Marine Corps land 
maneuvers, quickly learned to spot successful and 
poor R400 performances. 

The exercise is administered by the Tactical Exercise 
Evaluation and Control Group (TEECG), a 
permanent resource at MCAGCC who operate the 
CAX process. This group had been functioning as 
the subject matter experts for the MCSF 
developments, and would function as the eventual 
administrators of the LeatherNet system. The choice 
of the R400 scenario was also beneficial as it was one 
of the major development scenarios for the MCSF 
individual combatant development to date. 

Breaking down the R400 exercise further, the 
execution consists of six distinct elements, including 
two obstacle breaches, the movement of indirect and 
supporting fires, and the clearing of three different 
trench systems. The execution of each of these 
elements in sequence provided a framework for the 
employment of the LeatherNet system. 

4.2  Test Implementation 

Soon after initiating the test planning, it became 
obvious to both the Marine Corps and development 
team representatives that a complete use of the 
LeatherNet system would not be possible, nor would 
complete use of the synthetic forces by achievable. 
In terms of CIF, several of the behaviors needed to 
complete an entire company-level mission sequence 
were judged to be relatively immature. Furthermore, 
the visualizations to support some aspects of 
planning, including the linkage to terrain analysis, 
were not complete. This situation was not surprising 
considering the development schedule and the thrust 
for early evaluation, but it did impact the use of 
different tools in the evaluation. 

It was decided to approach the use of the system in a 
lecture format course with a TEECG representative 
acting as an instructor for a course in basic infantry 
operations. The course would focus on several 
elements from the METT-TS-L concept (Mission, 
Enemy, Terrain, Tactics, Time, Space, Logistics), 
and particularly the Intelligence Preparation of the 
Battlefield (IPB) (U.S. Army, 1994). Due the 
maturity of the different tool sets, the initial course 
would   emphasize   the   use   of   the   TEM   and 

CommandVu systems for terrain analysis, with the 
use of CGF limited at first. 

The Marine Corps desired to employ some method of 
using a control and experimental group for the test, 
sending half of company commanders into the 
LeatherNet system for a lecture course, with the 
control group receiving a similar briefing, but only 
using the 1:50K resolution maps that are standard 
issue. For the two CAX rotations used for the 
evaluation, this represented three company 
commanders in each group. The exposure for both 
groups would be two hours, with similarly topics 
covered. 

It should be noted that this was far from a structured 
training effectiveness experiment. Due to the 
logistics of units participating in the CAX process, it 
is difficult if not impossible to get equivalently 
balanced performers assigned to different study 
groups. Similarly, as part of existing range 
orientation practices at MCAGCC, all commanders 
are allowed to walk the actual terrain with safety 
officers, and the Marine Corps was understandably 
hesitant to suspend this practice for an initial system 
test. 

The other major difficulty was in the quantification 
of results from the training. In a classical training 
effectiveness study, a series of transfer measures are 
collected from both objective and subjective data to 
derive some indication of transfer and corresponding 
transfer effectiveness (i.e., dollar spent for amount of 
incremental improvement). Collect measures from 
both the control and experimental group and 
essentially a rough measure of transfer can be 
deduced. 

Although seemingly straightforward for the R400 
problem, the difficulty lay in the fact that company 
commanders do not actually "fail" on R400. This 
situation does not constitute a grade inflation for the 
commanders, it is just a more subjective assessment 
between the TEECG, the superior officers in the unit, 
and the commander himself. There are a multitude of 
factors that are uncontrollable in the exercise, 
including weather, the state of readiness of the unit, 
basic experience level, and so on which complicate 
any evaluation. However, attempts were made to 
formulate some qualitative measures centered around 
the six R400 phases, and used in the subsequent 
analysis. 

4.3  Test Results 

The test results break into two elements, those 
concerning LeatherNet system use, and those 
concerning specific CGF use and interaction. Note 
that the collection of data did not follow a strict 
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evaluation prototcol. Although a more rigorous 
evaluation procedure was proposed, the Marine Corps 
chose to use a questionnaire approach, again in 
reference to the relative early stage of system 
development (Berkowitz, 1996). Further transfer 
studies are planned as development continues. 

4.3.1 System Use 

The results of the initial testing indicated that the 
system, although limited in its application, did have 
some benefits to the user population. Subjective 
comments included the improved selection of 
approach and target points, the use of intelligent 
terrain analysis tools, and the improved use of the 
lecture/classroom tools by the instructor (an 
unintentional improvement was the perceived 
improvement in the curriculum that the entire CAX 
process underwent). TEECG subjective assessments 
of the student's performance did not differ between 
the control and experimental group, however, given 
the nature of the software status and the constraints 
on the evaluation, this result was not unexpected. 

Most important for the LeatherNet development was 
the feeling within the TEECG that the system did 
have some usable components even in the current 
state, and that the TEECG subsequently decided to 
phase in all aspects of the system into regular CAX 
training rotations. This resulted in the development 
of a revised R400 curriculum featuring the LeatherNet 
system's use during the preparation for mission 
stages. LeatherNet use continued into the 1996 CAX 
schedule, with additional features introduced into the 
system as of the April, 1996 CAX rotations. 

4.3.2 UseofCGF 

This latest development is most critical to the 
concept of entity based CGF used for training. As 
noted previously, the use of CGF in the Fall 1995 
evaluations was limited. This was primarily due to 
the limited maturity of the CGF behaviors. 
Although these behaviors were considered sufficiently 
developed for successful demonstration in the STOW 
Engineering Demonstration I activities conducted in 
the Fall of 1995, the TEECG felt that they were not 
to the level required for active student use. 

Specifically, the TEECG felt that the CGF should be 
able to conduct elements of all six required phases 
(breaching, machine gun set-up, etc.) for the use by 
students for their active training. Anything short of 
complete and reasonably accurate behaviors could 
prove disrupting to the student's ability to grasp 
concepts that needed to be expressed. For example, a 
critical concept in the R400 training is the use and 
control of machine guns as a base of fire for 
maneuvering troops. It would be necessary for the 
student to be able to accurately control the machine 

guns produced by CGF, and to have the squads 
behave according to standard operating procedures for 
the exercise, so as not to distract the student from 
learning to control the fires as part of an overall 
movement. The concern was that if a student had 
to focus in on a specific piece of CGF that was 
not acceptably functioning, then he would be 
distracted from the overall situation of the 
exercise. Interacting with the behavior of the CGF 
was the method of controlling the CGF — if the 
interaction was not a natural method, then the 
trainee would similarly be drawn into an 
artificial mode and away from the actual 
intended training situation. These two concerns 
form the basis of the training concepts and issues to 
be presented in section 5. 

It should be noted that as more mature CGF 
behaviors are coming on line within MCSF, they are 
being phased into the training program at MCAGCC. 
For example, as of the April CAX, the use of cover 
and concealment by CGF infantry squads is of 
sufficient "fidelity" that the TEECG is allowing 
some limited use of their behaviors for students to 
time movements 

5.  Entity-Based Training Concepts and Issues 

Based on the experiences from LeatherNet 
developments to date, and specifically the use of 
LeatherNet tools for company commander training at 
MCAGCC, several issues can be put forth concerning 
the use of entity-based simulated forces for training. 
These issues are somewhat complex and have several 
layers of variables associated with them, however, an 
attempt is made to constrain them to the low level 
commander use being experienced at Twentynine 
Palms. Several additional concerns may be more or 
less important with the increasing echelon levels of 
the training audience. 

For the LeatherNet system, two areas of concern 
arise: 1) the functionality of the CGF behaviors, and 
2) the methods for human interaction with the CGF. 
Although discussed separately below, both factors are 
inextricably linked when considering system 
implementation. Also discussed will be a more 
structured method of training evaluation and 
assessment that would prove useful in improving 
system design. 

5.1  Functionality of CGF behaviors 

MCSF behaviors are being developed to support the 
missions of the Marine Corps component for the 
STOW exercise. The R400 exercise is almost a 
perfect match to these requirements because the six 
mission  phases executed are  also  present in  the 
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preliminary mission assignments for infantry in the 
STOW scenarios. 

However, at the levels of the STOW training 
audience (JTF and Component commanders), small 
problems with CGF performance will not 
significantly affect commander decision making. The 
same is not true at a lower echelon level, and in fact, 
can effectively render the training useless. The 
critical point is that at lower echelon levels, CGF 
behaviors to support decision making must be 
exact and precise, even if the decision making 
concepts are relatively abstract such as resource 
management. 

For example, the situation where the CGF do not 
adequately employ machine guns means that the 
balance of the mission can not be executed. For 
illustration, suppose that the CGF expend 
ammunition at a rate 10% faster than the company 
commander desires, simply due to a slightly differing 
standard operating procedure. To most CGF 
development teams, this rate of fire problem would 
not seem extreme, and although it could be fixed in 
time, would probably not prevent the system from 
falling outside of some acceptable bounds. However, 
in response, the company commander must make 
alterations to his plan during the scenario to account 
for these events. This presents the situation where 
the simulation no longer adequately represents the 
real world to the trainee, thereby preventing positive 
transfer of training. An argument can be made that 
these situations happen in the real world and that the 
commander should be able to adjust to these constant 
management demands, but this fails to be sustainable 
across all possible situations. 

Similarly, CGF behaviors must be inclusive of all 
missions that might be encountered during a specific 
exercise. The key to decision making training in the 
R400 scenario is the successful stringing together of 
actions or phases that are usually practiced in 
solitary. One Marine Corps advisor likens these 
CAX exercises to the "big game" as opposed to 
"blocking and tackling drills". Thus, successful 
completion of the complete exercise requires all 
aspects of the complete system to be functioning to 
some degree of adequacy. The execution of a 
mission without the capability to perform an obstacle 
breach would be similar to attempting to forward 
pass without blocking in the backfield. 

5.2  User Interface to Support CGF Interaction 

Whereas the first observation on CGF functionality is 
probably not novel to experienced developers, it is 
probable that the second observation has not received 
enough attention by developers. Specifically, no 
matter how sophisticated the CGF behaviors, the 

system is limited by the relative efficiency of the 
user interface to the CGFs. 

A shortcoming of the system implementation as of 
the date of testing was the degree of CGF control 
allowed via natural user interaction modes. Despite 
the fact that the CommandVu system was designed 
around the Marine Corps user, and has been 
constructed on the base with constant input, the jump 
between normal operation methods and the level of 
interface to CGF entities is large. The most 
significant change is the degree to which Standard 
Operating Procedures must be specified directly to 
CGFs, where as operational forces would have pre- 
knowledge or comfort with these concepts. Users 
easily became involved in the intricacies in 
specifying engineer level parameters and behavior 
sequences. Therefore, subsequent development efforts 
in the user interface are featuring the use of standard 
operating procedures, natural language processing, 
and other "regular" interaction methods. 

This concept is also extendible to higher echelon 
training exercises. Complex behavior assignments 
are sometimes necessary for the completion of 
taskings that can be expected from higher echelon 
commanders. For example, in MCSF, a commonly 
expected order that should occur in STOW is to have 
infantry embarked on helicopters that would in rum 
take off from an amphibious carrier. Once 
disembarked from the aircraft, that infantry would 
then be tasked with a series of missions appropriate 
to their echelon. In terms of simulation, this 
sequence represents a series of complex mission 
assignments and procedures. Failures in the user 
interaction with this system would affect the eventual 
training audience either through incomplete execution 
of simulated entity behaviors, incorrect execution, or 
poor timing. 

The LeatherNet system attemps to counter these 
problems through the use of natural interaction 
methods for CGF, including visualization, speech 
recognition, natural language understanding, and 
gesture technologies. Together, these methods seems 
to be effective in minimizing some learning of the 
systems, but more importantly, help to lower the 
apprehension of users to CGF. This is an important 
point as CGF continues to mature and become 
accessable to different types of users. 

However, despite adoption of novel interfaces and 
methodologies by the LeatherNet project onto an 
existing CGF architecture, the system will probably 
continue to be limited and require expert "assistance" 
from LeatherNet workers. The root of the solution to 
these problems lies in the development of the CGF 
entities themselves.    The CGF entities have been 
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designed for performance to exacting performance 
specifications, but not to specifications for then- 
control by human operators. Just as C4I systems are 
now being designed with the user interaction as a 
central focus (for example, dynamic automation 
assignments based on user mode), the simulations 
which stimulate these C4I systems must consider the 
human user before coding can begin (for example, 
should there be a SOP file such that the user can rely 
on it?) 

This methodology is starting to be adopted within 
the MCSF development strategy. As new behavioral 
developments are initiated, so are the language and 
gesture developments to support these behaviors. As 
MCSF incorporates speech interaction, efforts are 
made to keep speech capabilities in pace with 
ongoing behavioral developments. Although there is 
admittedly some lag in such developments, this 
methodology has had some success, such that 
baseline versions of MCSF for distribution are 
speech, and in the future gesture, enabled. 

The beginnings of such user-centered design is also 
evident in the Command Forces (CFOR) project for 
STOW, through which the infantry platoon and 
company commander entities are being constructed. 
In the design and analysis stage, the actual 
communication processes between echelons are being 
documented and implemented in the form of 
Command and Control Simulation Interface 
Language (CCSIL) messages. 

A suggested improvement to CGF development 
would be the completion of a user system interface 
section during the Knowledge Acquisition and 
Engineering phases of the development process. 
Similar methods have been used successfully in the 
development of complex decision aiding systems 
(such as flight management systems in aircraft) and 
in other complex system developments. Such a 
section would not only contain the specific 
messaging intended for CGF commands, but also a 
notion of user specification of behaviors and 
parameters. 

5.3  Methods to Assess Training Effectiveness 

A major difficulty in the work to date has been the 
adoption of a standard methodology for the 
evaluation of training effectiveness for LeatherNet. 
Although standards of commander performance do 
exist, these are only loosely applied within the R400 
evaluation, as the collection of objective parameters 
during the live fire exercises is difficult, and as noted 
previously, the evaluation of performance is highly 
individualized for each commander. 

Two developments should improve this situation. 
First, under separate programs, the Marine Corps is 
beginning the development of a range 
instrumentation     system     at     R400. This 
instrumentation system could allow for the collection 
of objective data including direct measures of 
performance such as ammunition expenditure, and 
more indirect measures, such as time to complete 
certain mission phases. 

A second effort is the development of rating scales 
for use in evaluating company performance on R400. 
These scales have been developed in reference to the 
specific battle drills and phases executed in the R400 
mission, and are targeted in answering whether 
positive transfer of training has occurred through 
LeatherNet system use. However, as these are not 
current operational evaluation matrices used by the 
TEECG in the field, their active use for CAX 
participants remains questionable. The hope is that 
other units stationed at MCAGCC or visiting to 
execute R400 outside of the normal CAX schedule 
could be used as participants in such evaluations. 
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1.  Abstract 

Techniques developed to use virtual simulations to 
evaluate new or proposed systems (vehicles or weap- 
ons) are discussed. An experimental application of the 
techniques is described. Some of the practical prob- 
lems encountered are discussed. 

The techniques described are suitable for evaluating 
proposed systems, system modifications, and, possibly, 
tactics. 

Many important decisions can be made by using virtual 
simulation based evaluations early in the acquisition 
process without endangering people, disturbing the 
environment, or huge expenditures. 

2.   Evaluation Techniques 

The evaluation of a weapons system (or a simple vehi- 
cle or a tactic) using the techniques described requires 
a suitable CGF system along with people who know 
how to use it and software engineers capable of enhanc- 
ing it. Experts are required to develop test scenarios 
and evaluation metrics for the experiments. Project 
members are needed to examine the statistical signifi- 
cance of the experiments. 

The Vehicle Under Test (VUT)1 must be compared 
with some baseline, either an existing vehicle or a 
competing variant. For the purposes of discussion, this 
paper is couched in terms of two competing variants. 

2.1   Personnel Requirements 

The work described is more than just the development 
of software. Scenarios used to test vehicles should be 
designed by people who understand military scenarios. 

' For simplicity, the remaining discussion refers to ve- 
hicle tests and the Vehicle Under Test (VUT) although 
the technique has much wider application. 

Similarly, it is inappropriate to have software engineers 
"invent" metrics for determining the outcome of the 
experimental scenarios. It may be that "off-the-shelf 
scenarios or metrics are available and can be employed, 
but such plans should be reviewed by Subject Matter 
Experts (SMEs). 

2.2 CGF System Requirements 

Many, perhaps most, virtual simulation packages that 
comply with the Distributed Interactive Simulation 
(DIS) protocol are suitable for this technique. Non- 
DIS systems can also be used, providing they are ca- 
pable of generating the needed (externally visible) in- 
formation. The discussion here is in terms of the 
analysis of DIS traffic. 

The CGF system will almost certainly require modifi- 
cations to support the variants to be evaluated. 
Whether this is done by adding a new vehicle type for 
each variant or by building a distinct system for each 
variant is irrelevant. Other modifications may be re- 
quired to support test scenarios. These matters (and the 
difficulty of implementing them) are in part a function 
of the quality and completeness of the CGF system 
selected. Modification may also be necessary to sup- 
port the evaluation scenarios. 

A primitive CGF system or a vehicle implementation 
without accurate vehicle characteristics (speed, correct 
weapons modeling, valid damage information and 
modeling, etc.) will yield untrustworthy results. 

2.3 Scenario Development 

A series of scenarios must be developed to exercise the 
VUT in a manner consistent with its expected use. 
Many scenarios may be required to represent a suffi- 
ciently rich test environment. Scenario selection is a 
substantial determinant of the quality of the outcome. 

Each scenario should be customized for each VUT 
since vehicles with different capabilities will almost 
certainly use different tactics. It is unfair to use 
"generic" tactics if the VUTs should use different tac- 
tics. 
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2.4 Evaluation Metrics 

A set of Measures Of Effectiveness (MOEs) must be 
established, preferably before any scenarios are run. It 
is probably necessary for the MOEs to be scenario de- 
pendent, although this makes the evaluation phase 
somewhat more complex. 

In order to automate the evaluation process the MOEs 
need to be in terms of quantities that are visible through 
the (DIS) protocol. Many entity properties can be seen 
or deduced from network traffic, including the entity's 
health, location, velocity, and heading. 

2.5 Experimental Variation 

Although it would seem that all that is left is to run 
each variant through (its version of) each scenario and 
to compare the results, the situation is not that simple. 
For one thing, a scenario may not (and should not for 
these purposes) play-out the same from run to run: any 
single test run is just one battle in a family of possible 
battles for a fixed scenario. 

Unless the scenarios are very simple, there is no way to 
be sure that a given run is representative of the family 
of possible outcomes. Many runs must be done and the 
MOEs applied to each in the hope of finding the mean 
MOE for a scenario-variant pair. It may be necessary 
to have some automated perturbation of the scenarios 
or CGF system2. 

Perturbation can be accomplished by re-seeding the 
random number generator (if one is used), moving ve- 
hicle's start points (slightly) from run to run, or chang- 
ing other factors that do not distort the scenario design, 
but which might affect its modeling. 

2.5.1   Sample Size 

Statistical techniques (analysis of variance to compare 
two means of independent samples) can be applied to 
find the "superior" vehicle. However, the experimenter 
must be aware of, or control, the precision of the re- 
sult. 

The first set of runs should be used to estimate the 
mean and standard deviation for the MOEs (or the 
overall metric). Using these results the number of runs 

required to distinguish the versions (for a given confi- 
dence) can be estimated. 

2.6  Data Collection and Analysis 

For each scenario, a number of trials are carried out for 
each variant. Statistical techniques are applied to the 
resulting MOEs to determine which variant is superior 
for the given scenario. This paper discusses an appli- 
cation of the techniques required. 

Because results are likely to be mixed (some MOEs in 
some scenarios indicate variant-1 is superior but other 
combinations indicate variant-2 is superior) decisions 
will have to be made as to which scenarios and which 
MOEs are more important. Weights for each scenario 
and each MOE should be determined before experi- 
mentation is begun, and then a "decision" will be made 
by building a weighted average based on all the MOE 
results. 

Whether such a mechanistic determination is accept- 
able is up to the experimenters. If many MOEs are 
used with many scenarios and a mixed result appears, 
endless debates are possible as to which VUT is supe- 
rior. 

In any case, these techniques are suitable to generate 
one or a raft of MOE results. If experiments are to give 
"an answer" scenarios and individual MOEs need to be 
combined. 

3.  Experiment Overview 

The test case described here compared two variants of 
a proposed Advanced Amphibious Assault Vehicle (the 
Marine's AAAV) running under ModSAF, a computer 
generated forces product developed by Loral3. A com- 
plete experiment design was done, and an analysis of 
the comparative value of the variants completed. 

It is impractical and unnecessary to present the full 
experimental details here. Rather, examples in key 
areas are outlined. For a full description, refer to 
[Craft, 1995]. 

The process is analogous to selecting one element of a 
family of solutions to a differential equation by select- 
ing an initial condition and then finding neighboring 
solutions by perturbing the initial condition. 

ModSAF is used for a variety of applications. It is 
used for experiments by BDS-D, A2ATD, and 
LOSAT. The National Guard uses ModSAF to support 
training exercises with manned simulators. It is used as 
an architectural prototype for the design for the Close 
Combat Tactical Trainer (CCTT) SAF system 
[Vrablik, R. and Richardson. W. 1994]. 
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3.1 AAAV Variants 

The only modeled difference is that the model of Vari- 
ant AAAV-X has no Javelin mounted while the second 
variant, AAAV-J, has a Javelin mounted on 1/3 of the 
vehicles. Other differences were not modeled, but this 
variation is by far the most important distinguishing 
characteristic between the two AAAVs. 

3.2 Accommodating the CGF 

A daylight setting was specified for each mission with 
no clock time specified. This allowed the use of exist- 
ing ModSAF behaviors. No weather or environmental 
conditions were created or supported. The scenarios 
were designed to avoid firing weapons over the surf 
zone since the Surf Zone is not a recognized ModSAF 
terrain type. 

ModSAF uses Line-of-Sight (LOS) triggering as a fun- 
damental mechanism; the system constandy checks 
LOS to determine if it has the ability to engage, report, 
etc. The scenarios were laid out to avoid immediate 
LOS between opposing forces. Scenario play allowed 
forward movement (Movement to Contact) and LOS 
acquisition (Enemy Contact); after that the ModSAF 
modeled behavior determined the sequence of interac- 
tion. 

3.3 Terrain Selection 

The terrain selected must be rich enough to support 
meaningful scenarios, it must be available in a sup- 
ported (computer) format, and other conditions may 
come into play (such as the availability of military 
standard maps). The details of selection will vary from 
experiment to experiment. As a matter of information, 
the AAAV experiment was carried out using two data- 
bases; one for Hunter-Liggett and the other a Korean 
TDB. 

AAAVs are to take out a SCUD. Reconnais- 
sance indicates an OPFOR force to the North 
and South of the expected SCUD location. The 
AAAVs leave a Mortar team on the beach while 
the remaining forces split North, East, and South 
(the N and S forces intending to set up blocks to 
protect the Eastern forces). OPFOR forces are 
encountered in the North and South, and battles 
ensue. The Eastern force climbs through 
switch-backs, encounters OPFOR forces, fights, 
and destroys the SCUD. 

Complete scenario design rationales were developed, 
and a simplified Operations Order was written. A no- 
tional Marine Expeditionary Unit (MEU) was created 
along with an Amphibious Readiness Group (ARG) to 
support the operations order. AAAV DRPM SMEs 
assisted with the scenario details. 

In the Raid scenario the transition from the plan to the 
simulation in ModSAF required additional manipula- 
tion to replicate the human control measures found in a 
"live" exercise. 

Many compromises were made to allow for the limita- 
tions in the CGF system and, in some cases, the CGF 
system was modified to accommodate the scenarios. 

For example, the AAAVs, once ashore, followed routes 
laid out to reach target positions, or move to contact. 
Initially movements were controlled based on time. 
This proved troublesome as changes in route caused 
changes in timing (leading to frequent scenario re- 
design and re-entry). A scenario modification was 
made to allow the use of military 'Tactical Control 
Measures" similar to those used on operations overlays. 
This caused problems because the control measures 
had to be in LOS of the units for them to effect their 
control. A ModSAF modification was made to allow 
the control measures to be non-LOS based. 

3.4  Scenarios 

Two scenarios were developed by an SME to provide 
realistic and doctrinally correct interaction between the 
modeled players. 

For the sake of illustration, one part of one scenario is 
briefly outlined here (each scenario contains various 
"sub-scenarios"). 

3.4.1   Sample Scenario Design 

The "raid mission," in brief: 

Cooperative behaviors embedded in ModSAF some- 
times performed erratically. Vehicles would apply a 
higher priority to maintaining vehicle intervals (as they 
traveled) rather than returning fire. Modifications were 
made to the scenario, the ModSAF priorities, or the 
control measures to assure that the planned behavior 
was exhibited. 

This table shows the timing, vehicles involved, and 
events modeled in the AAAV Raid mission's east bat- 
Ue. The scenario recorded for analysis omits the ocean 
run-in and initial maneuvers. Adding these elements 
would offset times but has no significant impact on the 
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experiment proper (the run in was accounted for by the 
analysis tool). 

East Battle at the SCUD Position 
Time Vehicle Event 
-2:15 All Resume ModSAF 
0:00 EastAAAV 

Platoon 
Start moving in column for- 
mation along the East road at 
a maximum speed of 40 kph 

0:07 EastAAAV 
Platoon 
SCUDBMP2 
Platoon 

See OPFOR vehicles at the 
SCUD site and begin Hasty 
Occupy Position 
See East AAAVs and begin to 
move to line formation for 
Attack bv Fire 

0:20 SCUDBMP2 
Platoon 

In line formation along their 
battle line 

0:26 AAAV's or 
BMP2s 

First shot of this battle fired 
(exact time and vehicle var- 
ies) 

1:05 EastAAAV 
Platoon 

In line formation along their 
battle line 

1:35 EastAAAV 
Platoon 

Destroy the SCUD (exact 
time varies) 

6:45 All End 

3.5   Measures of Effectiveness 

The measures of effectiveness (MOEs) used are based 
on information gleaned from DIS traffic. Work done in 
this area is independent of ModSAF code and imple- 
mentation. Methods developed in this experiment can 
be used with any DIS compliant CGF system. 

Further, the software for gathering information and 
analyzing results was built in parallel with other work 
(serial development dependencies were greatly de- 
layed). 

3.5.1   Marine MOEs 

The MOEs were built using section 3 (Measures and 
Methodology) of Advanced Amphibious Assault Ve- 
hicle (AAAV) Supplemental Analysis, Volume 1, Final 
Report (dated May 2, 1995). While the measures out- 
lined there are not suitable as written, they yielded in- 
sight into what the Marine's consider when defining 
MOEs. The paper identifies 4 general, high level, 
MOEs: 

1. Win Quickly 
2. Win Decisively 
3. Dominate the battlespace 
4. Minimize casualties 

3.5.1.1 Win Quickly 

Win quickly is defined in terms of defeating orange 
breakout (time at which the last Orange battalion es- 
caped) and the task force arriving at its objective 
(establishing blocking positions). 

These are not suitable for the experimental scenarios, 
so "victory" is approximated. In one case, the destruc- 
tion of a key entity is used as an indication of victory 
(denoted as "entity based victory" or EBV). In the 
other scenario victory is deemed to have been achieved 
when the last entity damage takes place (deemed 
"damage based victory" or DBV). DBV would be dif- 
ficult to recognize in a live scenario, but it is not a 
problem for a logged scenario. 

EBV is well suited to scenario-1 (the objective is the 
destruction of the SCUD) and this MOE is given con- 
siderable weight in scenario-1. The situation is not as 
clear cut in scenario-2 and so this MOE was not given a 
large weight for scenario-2. 

3.5.1.2 Dominate the Battlespace 

1. Seven quantities are listed for this MOE in 
the reference. The measurements are 
specified to be taken when combat intensity 
is "at a reasonably static state." This is far 
too vague for a computer analysis, but the 
scenarios used are simply allowed to run to 
completion and the measures are applied 
then. The MOEs include such things as 
Loss-exchange ratio (battalions), Or- 
ange/Blue and Orange battalions lost. 

3.5.2  Experimental MOEs 

An examination of the Marine MOEs shows only a few 
key quantities need to be tracked to allow computation 
of the experiment's MOEs. These building blocks are 
used to build key MOEs which are then normalized (re- 
mapped to a range of 0 to 1) and combined as a 
weighted average to produce a single MOE. 

3.5.2.1   MOE Building Blocks 

This table shows key quantities gleaned from the data 
logs by the analysis tool. These are the basis of build- 
ing the experiment's MOEs. These quantities are given 
mnemonics to simplify their use in equations. 

To illustrate the complexities involved in automating 
the MOEs the rational used for "win quickly" and 
"dominate the battlespace" are outlined here. 
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Description Blue Orange 
Time until the key EBV N/A 
entity is destroyed 
Time to last damage DBV N/A 
Initial personnel count B_IPC OJPC 
Initial vehicle count B rvc o rvc 
Initial force value B IFV O IFV 
Final personnel count B_FPC 0_FPC 
Final vehicle count B FVC 0 FVC 
(Neutralized vehicles 
are not counted.) 
Final force value B FFV 0 FFV 

Based on the MOE building blocks key ratios are com- 
puted which tie directly to the Marine's MOEs. Here 
are the ratios used: 

Description Name Computation MOE 
Reference 

0 neutralized OVN <o_rvc-o_Fvc)/ Win 
o_rvc decisively 

Initial IFR B_IFV/0_IFV Win 
force ratio decisively 
Residual RFR B_FFV/0_FFV Win 
force ratio decisively 
Final      Force FFR RFR/IFR Win      deci- 
Ratio sively 
Loss-exchange LXV <o_rvc-o_Fvc)/ Dominate 
ratio (B_rvc-B_FVC) Battle 
(vehicles) 
Loss-exchange LXF (0_IFV-O_FFV)   / Dominate 
ratio (B_IFV-B_FFV) Battle 
(force) 
Loss-exchange LXP (0_IPC-0_FPC)   / Dominate 
ratio (B_IPC-B_FPC) Batde 
(personnel) 
Blue casualties CAS (B_IPC-B_FPC)    / Minimize 

B_IPC Casualties 
Surviving SSTR B_FFV/B_IFV Minimize 
Blue strength Casualties 

Only four of the denominators can be zero under the 
assumption that all scenarios begin with at least 1 ve- 
hicle, which carries at least 1 person. Zero denomina- 
tors may cause RFR, or any of the loss-exchange ratios, 
to be undefined. These special cases are handled as 
part of normalization. 

Not shown is time to victory (EBV or DBV depending 
on the scenario) as that is not a ratio. The name "VIC" 
is used for the time to victory. In scenario-1 VIC rep- 
resents EBV, whereas in scenario-2 VIC represents 
DBV. 

3.5.2.2  Normalized MOE Ratios 

It is problematic to build an MOE average using 
quantities with different ranges and so the values 
should be normalized.   A typical technique is to map 

the worst value observed (for a scenario using both 
variants) to 0 and the best value to 1. 

It is possible that the time to victory between the vari- 
ants will prove to be only a few seconds apart in the 
worst case and yet, with normalization, this could be 
artificially magnified. In some sense the normalization 
should map "poor" values to 0 and "good" values to 1. 

The normalized form of X is spelled "N_X." 

The eight individual MOEs are combined using a sce- 
nario dependent weighted average. 

4.   Experiment Implementation 

The two scenarios designed for this experiment are 
intended to present the VUT in roles consistent with its 
expected use. They were created with the benefits and 
within the limitations of the CGF testing environment, 
ModSAF. Two variants of a new vehicle were added 
to the testing environment to study the feasibility of 
using virtual simulation for test, evaluation, and com- 
parison of new or proposed vehicles. 

4.1  ModSAF Modifications 

Significant modifications to ModSAF were needed to 
support the vehicles under test and the test scenarios. 

No amphibious vehicles exist in ModSAF 1.5.1 or DIS 
2.0.3. The addition of this type required a ModSAF 
vehicle hull type capable of moving on both land and 
water and a definition for the amphibious domain (plus 
specific vehicle instances) in DIS protocol terms. 

Along with a standard set of vehicle capabilities (e.g., 
routing, sighting and enemy vehicle engagement) the 
vehicle models need other distinguishing functionality 
such as the ability to rise in the water during accelera- 
tion and plane. 

Some more details of problems encountered with the 
CGF system are covered in section 6.1, but for illustra- 
tion, consider submergence. 

ModSAF models the water surface but not the land on 
which the water sits. This is common to many, and 
probably most, CGF systems and is a function of the 
terrain representations in general use. The popular 
terrain representations are polygon based, and the ter- 
rain polygons have no thickness and consequently wa- 
ter has no depth. 
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To overcome this, a configurable beach inclination 
angle was added to the amphibious hull definition. 
When an amphibious vehicle crosses from a land poly- 
gon to a water polygon, the vehicle descends into the 
water polygon at this angle, until a maximum depth is 
reached. Similarly, when an amphibious vehicle is in 
water and approaches land, it climbs back onto land 
using the same slope. 

4.2  Data Analysis 

The scenario analysis is based on DIS traffic. An in- 
house data logger was chosen as the DIS data collec- 
tion tool. The analysis tool used the data logs as input. 

Entities were partitioned into 3 groups; high-force 
(tanks, AAAVs), medium-force (infantry teams), and 
low-force (trucks). With a few exceptions, the force 
values used are: 

Force Existence       Mobility       Firepower 

High 3 
ledium 2 
Low 1 

4 
3 
0 

The low-force entities are given no firepower forces as 
any firepower they might carry is incidental. 

5.2   Raw data 

The analysis is composed of two executables. The first 
condenses raw binary scenario log files into a sum- 
mary file which captures the significant scenario times 
and events. The second phase processes the summary 
file, based on a configuration file, and generates vari- 
ous statistics, including the aggregate MOE. The tool's 
configuration file specifies, for example, the weights 
associated with measures of effectiveness and vehicles 
that were not represented in the DIS traffic but should 
be reflected in the MOEs. 

5.   Experimental Results 

It must be re-emphasized that the goal of this experi- 
ment was to test the feasibility of using virtual simula- 
tions for vehicle and weapon evaluation. The AAAV 
results are useful to test and illustrate the analysis 
techniques. However, various simplifications were 
made and the AAAV results, per se, should not be 
taken seriously. 

5.1   Force Values 

Entities are given three "force values" used to compute 
a side's force. A side's "force" is the sum of the forces 
for the side's entities, and the analysis tool's configura- 
tion file specifies the force represented by each entity. 
The force is a function of the entity's type and its 
health. Without more expertise, the assignments are 
somewhat arbitrary (in a full analysis, considerable care 
in this area would be necessary). 

The force for an entity is denoted by three values: exis- 
tence-force, mobility-force, and firepower-force. A 
healthy entity is given a force as the sum of these three. 
A destroyed entity has force zero. A healthy entity has 
at least its existence-force; it may also have its mobility 
or firepower force depending on its health. The DIS 
stream is rich enough to determine an entity's force. 

This is the raw MOE measures as generated by the 
analysis tool for scenario-1. The various quantities are 
computed as already described. All results are based 
on 80 runs. 

MOE U a 
N VIC 0.7352 0.1275 
N_OVN 0.7722 0.1261 
N RFR 0.7022 0.1476 
N LXV 0.5658 0.0971 
N LXF 0.4456 0.1322 
N LXP 0.3883 0.1518 
N CAS 0.3580 0.1599 
N_SSTR 0.6211 0.1499 
W_MOE 0.5736 0.0805 

Variant-1 
MOE " a 
N_VIC 0.7452 0.1196 
N OVN 0.7639 0.1316 
N_RFR 0.7102 0.1473 
N LXV 0.5593 0.0969 
N LXF 0.4492 0.1175 
N_LXP 0.3945 0.1295 
N CAS 0.3383 0.1346 
N SSTR 0.6348 0.1282 
W_MOE 0.5744 0.0795 

Variant-2 

5.3   Statistical Analysis 

The individual MOEs are used to produce a combined 
MOE, as already described. In this table, each cell 
shows, for a given scenario/variant pair, the mean, and 
the standard deviation for the combination. The num- 
ber of runs is all cases is 80. 
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AAAV-X AAAV-J 
Scenario-1 

Scenario-2 

u=0.5736 
0=0.0805 
|i=0.6725 
a=0.0743 

|i=0.5744 
a=0.0795 
u=0.6722 
0=0.0704 

The samples are treated as independent samples drawn 
from a normal distribution. The object is to estimate 
the difference in the means for the variants for each 
scenario. 

(^-/i5/)±(0.3099)cT, 

5.3.1   Analysis for Scenario-1 

From the above equations, the confidence interval for 
(Hix.|iij)is: 

(0.5736 - 0.5744) ± (0.3099)(0.0800) 
or 

(-0.0256,0.0240) 

Symbolic representations in this analysis use subscripts 
to denote scenarios and variants. For scenario-s, vari- 
ant-v, the mean, standard deviation, and number of 
trials for an experiment are denoted n.sv, asv. and Nsv 

respectively. 

The maximum likelihood estimate for the difference in 
means for the scenario-s MOE is u« . p.Sj. A positive 
value indicates an advantage for the AAAV-X, a nega- 
tive value indicates an advantage for AAAV-J. This 
raw figure cannot be taken seriously in light of the 
variation in sampling (as indicated by the standard de- 
viation). 

A pooled sample variance for jis 

used for the overall deviation: 
Us,, denoted as, is 

(JV„ - \)o)x + (Nsj - \)a'sj 

N„ + N, 

Because N„ = Nsj (= 80), 

os
2 = (Osx2 + osj

2)/2 

(the combined variance is the mean of the sampled 
variances). 

Using this, a confidence interval for |i„. fJ-aj is easily 
computed. Enough data is available for all of the ex- 
periments (NSI + NSj - 2 > 30) to use a large-sample 
confidence interval. 

(M,-^)±(42Xa,)U+i 

Since this interval includes zero, no conclusion can be 
drawn as to which variant is superior based on this 
data. With additional information (increasing Nsx and 
NSj) the confidence interval can be reduced to the point 
where a conclusion can be reached. 

5.4  Hypothesis Testing 

A hypothesis test may also be used. There is a duality 
of confidence intervals and hypothesis testing, and ei- 
ther may be applied to the case at hand. Earlier compu- 
tations, such as the pooled sample variances, are used 
here. 

The obvious hypothesis is that the variants have differ- 
ent MOEs, but the likelihood of a type II error (3) if 
that is used as the null hypothesis is unclear. So, as is 
often done, we reverse roles use u.» = \iai as the null 
hypothesis. This way we can know the likelihood of 
incorrectly deciding that Hax*u,aj when they are actually 
equal (this is a type I error and we can control its value, 
a). 

Ho:^-M^j = 0 
Ha:U.sx-Hsj*0 

Our sample sizes are large enough for approximate 
normality of our sample means to hold. Our test statis- 
tic, Z, is 

For both scenarios, the radical reduces to approxi- 
mately 0.158. 

For a 95% confidence interval, Zan - 1.960. Nsx = Nsj 

= 80. Thus, our interval, to four significant digits, re- 
duces to: 

We have a two sided alternative, and so IZI will have to 
exceed Z(a/2) for Ho to be rejected. Seeking 95% 
confidence, a=0.05 and Z(cc/2) = 1.960. 
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For scenario 1, 

Z = l0.5736-0.5744l/((0.205)(0.158)) - 0.025 

not within the rejection region. For scenario 2, 

Z = I0.6725-0.6722I/((0.07235)(0.158)) = 0.026 

also outside of the rejection region. 

Thus, in both cases, Ho cannot be rejected, so we can- 
not conclude \ii% - u.Sj * 0. This is consistent with the 
confidence interval result. 

5.5  Additional Trials 

and NSj and so will reduce More trials will increase N, 
the size of the confidence intervals. With enough trials, 
we should be able to distinguish between the variants, 
if they are different. The results are far too close to 
trust this additional analysis; it is included here for 
demonstration purposes only. 

For scenario-1, the means differ by (only) -0.0008. 
Assuming we continue to use the same number of trials 
for each variant (call this Ns), for the confidence inter- 
val to exclude zero: 

Zan0ijy< 

or, for scenario-1 and a 95% confidence interval: 

(1.96X0.08)^4=—< 00008 
IN. 

or 

277.1 < 
which indicates that over 76,000 more runs are needed 
for each variant (for a total of over 150,000 more trials; 
this would take over 11 weeks of continuous logging). 

5.6  Variant Conclusions 

Based on these experiments, there is no difference be- 
tween the variants. This conclusion says more about 
simplifications in the experiments than the variants 
themselves. 

5.6.1   Problematic Simplifications 

Among the simplifications that may have lead to the 
negative conclusion: 

AAAV-X and AAAV-J are identical except that 
1/3 of the AAAV-J's carry Javelin ammo. Any dif- 
ferences must come about from this one differ- 
ence. 

Both variants used the same tactics (in fact, used 
the same scenario). A full blown test should use 
tactics appropriate to the available weapons. 

Only two scenarios were tried. A richer scenario 
mix may uncover important differences even for 
these variants. 

The underlying CGF system forced many com- 
promises, some of which may have hidden variant 
differences. 

6.   Overview of Experimental Problems 

Several flaws are obvious when the methods applied 
are compared with the recommendations. These flaws 
reflect the nature of the experiments and a reduced 
emphasis on attempting to actually reach conclusions 
regarding the AAAV variants. The experimental work 
did not require a greater emphasis in these areas to 
yield the techniques sought. Highlights of flaws in 
applying the recommendations include: 

• the scenarios were not customized for the 
AAAV variant being tested, 

• the scenario selection list was far too short, 
• the MOEs reflect best guesses (they are not 

in any way validated), 
• the AAAV implementation lacks details 

(such as armor modifications), and 
• vehicle and weapon data is not accurate (as 

far as practical it does reflect supplied in- 
formation). 

6.1   Problems with the CGF 

Other experimenters are likely to encounter problems 
of the sort encountered with ModSAF. All such sys- 
tems are likely to be inadequate in some areas. To give 
a notion of what to expect, and to clarify the nature of 
the experimental work, the most striking problems en- 
countered are mentioned here; there were many more. 

Variable Platoons: The vehicle count in ModSAF 
platoons is tied to the vehicle type (T72 platoons uni- 
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formly consist of three vehicles), 
needed to be of variable size. 

AAAV platoons 

Entity Counts: The size of the execution matrix , 
which is unaccounted for in ModSAF's maximum en- 
tity benchmark, appears to have a dramatic impact on 
the maximum vehicle count. This dilemma placed 
constraints on scenario design; as scenarios became 
more complicated (manifested as larger execution ma- 
trices) the number of vehicles that could be modeled 
dropped. 

Performance: ModSAF monitors its performance and 
announces overloading as "gasping." When the system 
is past the gasping threshold, behaviors break down. 
Gasping was a serious problem throughout this project. 

Sound Modeling: No sound modeling exists in Mod- 
SAF but the experimental scenarios required control 
measure triggers on the sound of approaching vehicles 
and weapons fire. To mimic this, a line of sight re- 
quirement was relaxed for a specialized ModSAF task 
transition mechanism. 

Radio Control Measures: Task transition based on 
inter-vehicle communication is a realistic, and neces- 
sary, missing feature. Without knowledge of task 
completion, timers and transition lines were used to 
trigger transitions although this technique is, at best, 
imprecise. 

Indefinite Holds: An observed unit crossing a control 
measure before the observing unit is in position causes 
an indefinite hold on the current task of the observing 
unit. 

Infantry Mounting Restrictions: An infantry team 
that is intended to mount must be created in tandem 
with the vehicle to be mounted. The infantry team is 
then restricted to mounting its partner vehicle 
(ModSAF does not allow the substitution of one Per- 
sonnel Carrier for another). 

Mounted Infantry Immortality: ModSAF does not 
kill mounted infantry when the vehicle they are on ex- 
periences a catastrophic kill; they simply are not al- 
lowed to dismount. This would yield underestimates of 
the casualties in the MOEs. Workarounds were im- 
plemented in the analysis tool. 

Close Air Support: No reaction is available to call for 
close air support. To explain the lack of air support in 
the scenarios, bad weather conditions were hypothe- 
sized. 

Javelin Targeting: On those occasions that a AAAV 
fires a second Javelin while one is in flight, the second 
always uses the same target as the first (this is very 
unrealistic). 

Poor Reload Behaviors: reload is immediate, leaving 
the AAAVs vulnerable for about one minute during 
reload. Reload should be done under cover. 

Locked Target Priorities: a Javelin equipped AAAV 
should not seek tanks to kill but it should defend itself. 
As ModSAF stands, tanks are targets (on the priority 
list) or not (off the priority list). 

Weapon Targets: appropriate weapons selection is 
not available; in order to have AAAV-J attack tanks at 
all, the tanks had to be on the priority list. However, in 
that case AAAVs attacked whether they had a Javelin 
on board or not. 

Nominal Entities: In some cases ModSAF developers 
have made compromises by modeling one entity by 
simply mapping it to another (e.g., the underlying 
Javelin model is a TOW missile model). The names 
used ("Javelin") can give false confidence in results. 

PO Database: multi-station ModSAF runs experi- 
enced packet losses under PO database5 bursts. Such 
losses jeopardize experimental results and were 
avoided by performing the experiments on a "Pocket 
Simulator" (a single station), which eliminated the need 
for PO network traffic. To accomplish this, the number 
of entities had to be minimized. 

Shut Down: During scenario shut-down, DIS traffic 
appears to be suspended, then, after a considerable 
delay (sometimes over a minute), more DIS traffic is 
transmitted. The analysis tool uses inter-traffic gaps to 
recognize scenario breaks and so this was a real prob- 
lem. Adjustments to the tool (ignoring "short" scenar- 
ios) compensated for the problem. 

Hasty Occupy & Attack by Fire: While executing 
either Hasty Occupy Position or Attack by Fire, entities 
try to close up ranks when a vehicle is destroyed along 

4 ModSAF tasks are assigned to entities (including 
units) via an "execution matrix." This is a sequential 
list of entity's tasks and task transition specifications. 

ModSAF uses version-dependent, non-standardized, 
"Persistent Object" database network traffic (possibly 
too free-wheeling to be properly called a "protocol") to 
keep its stations synchronized. 
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the occupied battle line. This stops fire until the ranks 
close, causing some vehicles to expose their side armor 
while the ranks close (and is generally unrealistic). 

Force Confrontation: Opposing forces often begin a 
battle with heavy firing, followed by a period with a 
lone surviving vehicle actively fighting on one side and 
one or more (apparently) idle vehicles on the opposing 
side. Eventually, the isolated vehicle is killed, but not 
before it had time to inflict damage. 

Fire Permission: Fire permission cannot be changed 
from task to task, although it is automatically changed 
during reactions. Positions and routes had to be se- 
lected to avoid LOS and so avoid unintended firing. 

Command Line Options: ModSAF crashes when the 
"sourcefile" option is specified in conjunction with the 
nogui6" option. The sourcefile option was essential to 
automate the experiments. The system was run with a 
GUI in spite of the performance costs. 

Scenario Editing: There is no way to insert new tasks 
into the execution matrix other than at the end of the 
matrix. This resulted in terrific overhead for scenario 
generation. Seemingly small changes, requiring inser- 
tion of a new task, required a complete re-build of the 
scenario. Old scenarios could not be loaded into new 
AAAV versions of ModSAF when a change in the 
AAAV PO Database definition was introduced. 

7.   Conclusion 

CGF systems can be used for evaluating future systems 
but it is a complex process. A CGF must be altered to 
support the system to be tested, a variety of appropriate 
scenarios must be developed and implemented, MOEs 
are needed for the scenarios and should be instantiated 
in software, and enough experimental runs are needed 
to determine statistically significant results. 

Each step requires personnel with special expertise. 
For example, it is unlikely that the people who carry 
out software development will also have the knowledge 
to develop appropriate scenarios for the experiment. 

It is recommended that the MOEs be based on network 
traffic (e.g., DIS) as this breaks a key binding between 
result analysis tools and the CGF work (development 
of analysis software and scenarios support work can be 

done in parallel, and different versions of each may be 
developed without impacting the other). 

An experimental use of the technique, in spite of se- 
vere simplifications (making the results of the system 
analysis valueless), turned out to be a large project 
which uncovered many problems in the CGF system 
used. To carry out the experiment to the point where 
the results would be trustworthy, using the same CGF 
system, would be a more complex and difficult prob- 
lem. Given a mature, verified, and validated CGF ap- 
propriate for the system under test the experimental 
development's complexity could be reduced tremen- 
dously. 
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1. Abstract 

This paper describes a use of simulations with 
Computer Generated Forces (CGF) in which 
ModSAF supported the testing of rule-based 
Artificial Intelligence (AT) modules in an 
Automated Training Analysis and Feedback 
System (ATAFS). A brief overview of the 
ATAFS tool is presented with accompanying 
figures to explain the developmental context of 
the testing. Testing methodology is then 
described and illustrated with a number of 
specific examples of how ModSAF was used. 
Results of testing are reported and evaluated, 
identifying certain advantages offered by the 
CGF tool for applications of this kind. Synergy 
of interacting CGF simulation and AI reasoning 
demonstrated in this testing may also benefit 
other development efforts—a possibility 
addressed in our concluding review of Anther 
ModSAF applications suggested by the work we 
describe. 

2. System Background 

ATAFS constitutes one application of a more 
general technology-based capability to 
"eavesdrop" on selected data streams, collecting, 
analyzing and displaying information. The 
ATAFS workstation is an expert system-based 
after action review (AAR) tool that 
automatically produces AAR aids for simulation 
networking (SIMNET) exercises, with potential 
to support other virtual, constructive and live 
simulations. The AAR aids generated by 
ATAFS include discussion points, animated 
plan views of the battlefield, displays showing 
shotlines and artillery impacts with traces of 
unit movement, graphs, tables and replays of 
voice communications produced synchronously 
with top-down views of the player unit's 
activities. A composite illustration of some of 
these features is shown in Figure 1. 

Operated interactively by an Observer/Controller 
(O/C), ATAFS records and monitors SIMNET 
messages, using its rule-based AI components to 
identify automatically the occurrence of certain 
battlefield events. ATAFS prepares AAR aids 
without assistance from the O/C for those 
tactical events the system is able to recognize. 
For example, ATAFS can detect direct and 
indirect fires, vehicle kills and vehicles crossing 
control measures such as the Line of Departure 
(LD). Control measures of this kind are 
graphically designated for the system on a 
digitizing tablet by the O/C, according to 
operating instructions in the ATAFS user's 
manual (LB&M 1996). Simulation events that 
mark the start or end of an AAR aid are 
recognized by ATAFS software in terms of 
"triggers." A sample of these events and 
triggers is shown in Figure 2. Comparison of 
Figure 2 with Figure 1 will help clarify the 
foregoing description for the illustrative 
battlefield event, "Movement from LD to First 
Enemy Contact." AI modules of ATAFS, 
implemented in CLIPS v6.0, monitor and 
interpret SIMNET messages to detect the 
"triggers" using rules of the type illustrated in 
Figure 3. 

To ensure the rule sets correctly and reliably 
recognize selected battlefield events in the 
network traffic, we employed ModSAF v 1.2.2 as 
a testing tool, generating developer-controlled 
network activity that the AI components of 
ATAFS could monitor and interpret. 

3. ModSAF Application 

A prototype ATAFS workstation played a 
passive role in the testing configuration, 
eavesdropping on an ethernet network carrying 
SIMNET messages. The messages were 
generated   by   a   ModSAF   simulator,   which 
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developers successively set up to produce 
selected test scenarios. Unlike some other 
ModSAF development applications involving 
interaction of prototype AI objects with CGF 
entities (Laird 1995, Tambe 1995), our tests 
challenged the rule-based modules of ATAFS 
only to "observe" and correctly interpret the 

assembled them allowed detection of 
deficiencies in rule sets. Figure 4 depicts the 
simple configuration used for this iterative 
procedure of testing and rule refinement. 

Battlefield scenarios employed in the procedure 
involved "Force on Force" activity of CGF 

Figure 1. 
unfolding CGF scenarios. For each test scenario 
members of the development team functioned as 
O/Cs, operating the ATAFS workstation to 
capture desired AAR aids. Subsequent 
comparison of the AAR aids actually produced 
with the test scenarios from which ATAFS 

AktStiht: 2 

Exercrse Phase: Movement from LD to Fast Enemy Contact 

Aid Nurnber, Title and Type Possible Starting Everts and 
Trigger. 

PossMe finding Events and 
Triggers 

21 PMocn Cranes ID (PVA) EVENT 1st vet** crosses LD EVENT   Corted report sent 

TRIGGER: Lrve Trigger used so 
ATAFS cm sense the urn's orostrvg 
of Hie ID 

TRIGGER: OC scutate* Corned 
Report ijrcrnpL. 

EVENT: BlUFOR flres first (fired 
fir* round. 

TRIGGER: ATAFS senses first 
B1.UFOR rand fired using the 
Fling Trigger 

EVENT: OPFOR flres lYst dred 

TRIGGER: ATAFS senses first 
OPFOR round fired using the 
Faring Trigger 

Figure 2. Events and Triggers 

ATAFS Features 
entities-for example, pitting one BLUFOR 
armor platoon against one or more OPFOR 
armor and/or motorized infantry platoons. 
Defensive, offensive and tactical road march 
scenarios were simulated by ModSAF in the 
testing. 

4. Results 

The testing with ModSAF 
proved to be a valuable 
developmental procedure, 
disclosing a number of needed 
corrections in the prototype rule 
sets of ATAFS. For example, it 
was discovered that when 
vehicles entered an objective 
and remained there, the rules 
initially generated spurious 
training aids indicating exit of 
the vehicles from the objective. 
Repaired versions of these 
defective rules were tested with 
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additional ModSAF scenarios, readily correcting 
the behavior. 

and precise incremental changes for this part of 
the testing. 

?>5?JJ»5»5J>)J»>»>M»»9»>>>»5>MM>JJ>»5?>J»»>»J> 

;;;These are the rules for watching BLUFOR entering and exiting objectives. 

(defrule recheck-position-objective-in 
(Start Exercise TTrigger) 
(Current Time 7TT&: (=0 (mod?TT 5000))) 
(object (is-a VEHICLE) 

(force blue) 
(type ?VehType&: (eq ?VehType Tank)) 
(status alive) 
(vehicle-id ?x) 
(location ?vloc)) 

(object (is-a FEATURE) (title ?ST) (type objective) (location ?floc)) 
?cur<-<VEHICLE 7x is OUT FEATURE objective ?ST) 
(not (VEHICLE ?x has entered ?ST) 

=> 
(bind ?RL (OBJCHECK Tfloc ?vloc)) 
(if(neg?RLOUT) 
then 
(printout t "WE ENTERED" ?ST ":" ?x crlf) 
(retract ?cur) 
(assert (VEHICLE ?x is ?RL FEATURE objective ?ST)) 
(assert (VEHICLE ?x has entered ?ST)))) 

Figure 3. Sample Rule 

Testing also helped remove an undesirable 
limitation in ATAFS capability. The expert 
system rules of ATAFS originally were 
formulated to monitor a single platoon of 
manned simulators. Accordingly, when ATAFS 
encountered more than a single platoon of 
BLUFOR—which frequently occurred in 
practice, as users added CGF entities for more 
realistic exercises—the rules failed to produce 
the correct AAR aids. Therefore, we modified 
the appropriate ATAFS AI module and 
graphical user interface, permitting the O/C to 
designate specific platoons for the rules to 
monitor. Testing with ModSAF was then used 
to confirm that these modifications produced the 
intended improvement. 

In addition, ModSAF allowed progressive stress 
testing to determine system failure thresholds. 
Successive scenarios, involving increasing 
numbers of CGF entities, were set up and 
executed until symptoms of system overload 
were encountered. The user interface features of 
ModSAF permitted our Analysts to set up rapid 

Moreover, the use of ModSAF 
offered important advantages over 
employment of manned simulator 
exercises for this testing. In 
contrast with the relatively 
unpredictable nature of manned 
simulator data, ModSAF allowed 
developers to tailor and isolate 
specific battlefield events to ensure 
systematic testing of the ATAFS 
rule sets. Rapid setup and "what- 
if" capability furnished by 
ModSAF also facilitated minor 
modifications of battlefield 
scenarios to test the operational 
implications of specific expert 
system rule changes. 

For  example,  one  ATAFS   rule 
initiates an AAR aid when the 
BLUFOR   crosses   the   LD   and 
terminates the aid by one of three 
system recognized events:     first 
BLUFOR direct fire, first OPFOR 
direct fire, or first indirect fire 
from either BLUFOR or OPFOR. 

The flexibility of ModSAF allowed us to set the 
desired parameters (i.e., OPFOR weapons on 
hold, BLUFOR weapons free, and no operator 
controlled indirect fire) and conduct successive 
tests in which the event we desired to test was 
the only one that occurred. With this versatility 
we could develop a master event  list  with 
specific rule event parameters that we desired to 

521§c>  igEmk) 

Figure 4. Test Configuration 
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check for each test run to ensure that all rule 
triggering events were thoroughly exercised. In 
general, the flexible ModSAF support for 
creating a wide range of custom scenarios 
permitted our analysts to confirm rule sets that 
work (versus "should work"). 

S. Future Directions 

Enhancements of the ATAFS workstation are 
expected to include an "authoring tool," 
allowing users who are not programmers to 
extend the set of AAR aids ATAFS produces. 
Extensions created with this tool will also 
occasionally need to be tested. To satisfy this 
need, we may reasonably consider a lesson from 
the developmental experience just described and 
make a subset of ModSAF capability available 
for use with the authoring tool. 

In actual simulation exercises, we have also 
observed that the ATAFS workstation is often 
operated concurrently with a separate 
workstation from which ModSAF generation of 
CGF entities is controlled. This practice 
introduces redundancy, since ATAFS and 
ModSAF share some common representations 
for input of control measures, overlays, etc. 
Accordingly, future versions of ATAFS may be 
more immediately connected with ModSAF, 
allowing one operator at a single workstation to 
direct CGF parts of a simulation while building 
AAR aids with ATAFS. 

Finally, it may be possible for ModSAF to assist 
the development of AAR systems such as 
ATAFS in ways somewhat different from the 
direct testing we have described. In particular, 
work previously reported at this conference 
regarding the automated knowledge acquisition 
system known as "Captain" (Hieb 1995, Hille 
1994) suggests an interesting potential linkage 
of ATAFS, Captain and ModSAF. As a tool for 
building intelligent (CGF) command agents, 
Captain may offer useful resources to 
development of future ATAFS workstations, 
since much of the situation awareness and 
reasoning required of the battlefield 
commanders modeled by Captain is also 
employed by O/Cs in production of AAR aids. 
In turn, ModSAF supports Captain's adaptive 
modeling of such behavior in several interactive 
learning modes. Hence, ModSAF may continue 
to benefit future ATAFS development through a 

training role as well as the more immediate 
testing role reported in this paper. 
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1.   Abstract 

As CGF systems have matured over the last ten years, 
they have been applied to solving increasingly 
difficult problems. The analysis community would 
like to use CGF systems that portray battlefield 
effects at the individual vehicle level. For credible 
analysis, it is desirable that CGF behaviors be derived 
from military doctrine and be traceable back to that 
doctrine. 

The CCTT SAF program has undertaken a large 
knowledge engineering effort to produce realistic 
CGF behaviors. Part of this effort transforms military 
doctrine into Combat Instruction Sets (CISs), a 
natural language description of tactical behavior. 
Because they are based on CISs, CCTT SAF 
behaviors are traceable to military doctrine. 

This project's goal is to research methods of 
incorporating these CISs into ModSAF1. This has 
consisted of several phases of work. The first phase 
was to research CISs to understand their structure and 
complexity. Next, 1ST enumerated differences 
between CCTT SAF and ModSAF that could affect 
CIS integration. Then CCTT SAF code and 
corresponding documents were used to provide more 
insight into the CCTT SAF environment and its 
implementation of selected CISs. Lastly, two 
prototype CISs were implemented in ModSAF. This 
proof of concept successfully illustrated the 
feasibility of incorporating traceable behaviors in 
ModSAF. 

2.   Background 

CIS behaviors bring obvious realism and credibility 
benefits to the research and training communities. 
Reusing CCTT SAF technology leverages the 
investment the US government has made in 
simulation and training. 1ST leveraged the CCTT 
SAF software development effort to help implement 
CISs in ModSAF. 

IST's research first focused on several behavior 
integration issues. 1ST researched CISs to understand 
their structure and complexity. 1ST then found 
differences between CCTT SAF and ModSAF that 
could influence behavior interoperability. Finally 
1ST developed a process for implementing CISs in 
ModSAF. Two prototype CISs were implemented in 
ModSAF as a proof of concept. 

3.   CIS General Information 

1ST studied Combat Instruction Sets (CISs) before 
implementing a prototype behavior. CISs are 
designed to allow someone unfamiliar with military 
doctrine to understand the actions taken by a unit 
executing a behavior. CCTT SAF uses CIS 
descriptions found in the CATT-Task Database to 
produce doctrinally correct actions for each behavior. 
The CATT-Task database combines training data 
from task manuals, soldier manuals, subject matter 
experts, and training studies into one source (Wright 
1994). 

3.1 Sources 

BLUFOR2 CISs are derived from U.S. Army Training 
and Evaluation Program (ARTEP) Mission Training 
Plans (MTPs). Because they were derived from U.S. 
doctrine, BLUFOR CISs contain more detailed 
information than their OPFOR counterparts. They 
are denoted by Bxxxx where the number xxxx 
corresponds to the unit type. 

3.2 Elements of a CIS 

A CIS contains a behavior description, a sequence of 
actions to be taken in the behavior, initial conditions, 
input data, terminating conditions, and situational 
interrupts. In the Actions to be Taken section of the 
CIS, each action in a BLUFOR behavior is grouped 
into move, shoot, observe, or communicate based on 
the nature of the action. OPFOR CISs only list the 
actions in their order of execution. Initial conditions 
detail   necessary   information   for  the   behavior  to 

1   All   unqualified  references  to  ModSAF are  to 
version 2.0. 

- BLUFOR refers to U.S. Forces and OPFOR refers 
to Opposing Forces. 
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execute. Terminating conditions outline reasons for 
behavior completion and what actions to take when 
the behavior has finished. Situational interrupts 
describe reactive behaviors that could interrupt the 
behavior. 

3.3 Complexity 

One measure of implementation complexity is the 
relationship between CISs. In general, 1ST 
determined that each CIS requires other CISs as part 
of its specification. Therefore, the complete 
implementation of one CIS requires implementation 
of many other CISs. For the purposes of this project, 
1ST has limited the problem by substituting existing 
ModSAF behaviors for the supporting CISs. 

4.   Differences Between CCTT SAF and ModSAF 

1ST investigated the feasibility of implementing CISs 
in ModSAF. Because CCTT SAF uses CISs for their 
behaviors, adding CISs to ModSAF would improve 
the interoperability between these two CGF systems. 
Differences between the underlying architecture of 
these two systems could impact the behavioral 
interoperability between CCTT SAF and ModSAF. 
Over one hundred issues were found that could 
impact behavior interoperability. Due to space 
limitations, only a few of the issues are discussed 
here. These issues can be grouped into the following 
categories: 

• Command and Control Hierarchy 
• CGF Services 
• Task Management 
• Reactive Behaviors 
• CCTT SAF FSMs vs. ModSAF AAFSMs 
• Environment and Terrain 
• Code Sharing 
• Crew Level Behaviors 

This section examines some differences between 
CCTT SAF and ModSAF that affects behavior 
integration. 

4.1 Command and Control Hierarchy 

CCTT SAF uses a "ghost" controller associated with 
a platoon as the platoon leader. The ghost controller 
is associated with a simulated entity, but it is not a 
simulated entity itself: it does not have a physical 
model, take damage, or interact with other entities in 
the battlefield. When its associated vehicle is 
destroyed, the ghost controller is assigned to another 
vehicle.  All information gathered is maintained and 

the task continues (Marshall 1996). A platoon leader 
in ModSAF is assigned to a particular vehicle in the 
platoon. If this vehicle is destroyed, ModSAF restarts 
the entire task with the role of platoon leader assigned 
to a new vehicle. All previous knowledge that this 
task has acquired since the task was initialized is lost 
(Rajput and Karr 1995). Note that neither system 
completely reflects what occurs in real life. In the 
real world, the new platoon leader should have some 
of the knowledge that the previous one had, but it 
would take time to assimilate information that the 
previous platoon leader gathered. 

The two systems also handle communication between 
subordinates and commanders differently. In CCTT 
SAF, superiors send orders to subordinates in the 
SAF Entity Object Database (SEOD) (Horan 1994). 
ModSAF does not have the concept of orders, rather 
it has superiors start tasks for subordinates using 
procedure calls. 

4.2 CGF Services 

Even with identical behavioral logic and supporting 
data at a given echelon level, behaviors can produce 
different results because of dissimilar underlying 
services. Some examples of these underlying CGF 
Services are terrain reasoning, weapon system 
modeling (e.g., assessing, enemy detection, and 
targeting), physical modeling (e.g., hull and turret), 
and sensor modeling (e.g., visual, infrared, radar). 

Routing and searching for covered and concealed 
positions requires terrain analysis. While CCTT 
SAF's dynamic and static obstacle avoidance 
algorithms are based on existing ModSAF algorithms, 
there are differences. For example, IDA* was used in 
CCTT SAF for planning road routes instead of A*, 
which is used in ModSAF (Campbell et al. 1995). 
Further research is necessary to determine the extent 
of the differences between the CGFs in other CGF 
services (e.g., other areas of terrain reasoning, 
weapons system modeling, physical modeling, and 
sensor modeling). 

Differences in these underlying behaviors could be 
perceived as the distinct methods individual soldiers 
would use were they executing one of these tasks 
(e.g., two drivers may choose two different routes 
through the same forest to reach the same 
destination). 
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4.3 Task Management 

Execution of a scenario consists of coordinating and 
executing a series of behaviors. Given that a set of 
behaviors from two CGF systems are identical, 
differences in task management can affect overall 
behavior and scenario outcome. Currently, 1ST lacks 
information about CCTT SAF's task management 
methodology. Because of this, only general issues 
that affect behavior interoperability of two CGF 
systems will be addressed here. 

4.3.1 Task Scheduling (Priorities and Hierarchy) 
For two CGFs to have interoperable behaviors, their 
task scheduling mechanisms must be similar. CCTT 
SAF and ModSAF use ring queues to manage time 
based and priority based task scheduling. Tasks in 
CGF Services, among other things, are grouped into 
schedule rings based on the number of times per 
second that they need to be executed, e.g., all tasks 
that need to be executed 15 times per second are 
assigned to the 67 millisecond ring. As vehicles and 
units are created, several CGF Service tasks (e.g., 
routing, assessing) associated with vehicles or units 
are initialized and assigned to their proper rings. The 
rate at which all CGF Service tasks are executed in 
both CGF systems should be similar for behavioral 
interoperability between the CGF systems. 

4.3.2 Task Execution (Ticking and Task Transitions) 
Execution of a scenario involves the coordination and 
execution of a sequence of behaviors. Transitions 
between behaviors can be automatic, triggered by a 
Control Measure, or require operator intervention. 
There are ModSAF behaviors that do not 
automatically transition to a subsequent behavior 
when they complete (e.g., Hasty Occupy Position), 
while other behaviors do automatically transition 
(e.g., Road March). Knowledge of CCTT SAF's 
handling of task transitions would allow more insight 
into how interoperable a sequence of behaviors could 
be in comparison to a similar sequence in ModSAF. 

A 'wrapper' is code that executes before or after a 
user specified behavior. Any wrapper placed around 
behaviors in CCTT SAF must be identical to those in 
ModSAF for a sequence of behaviors to act similarly. 
ModSAF requires a preparatory task, a preliminary 
task executed before the actual behavior, for each 
behavior (HALT is most commonly used). The 
advantage to using a preparatory task is that each 
behavior starts from a known condition. The 
disadvantage is that certain sequences of tasks exhibit 
odd behavior. For example, sequential move tasks 
will not keep a vehicle in continuous movement. The 

second move (as well as the first) starts from a halted 
state, i.e., the vehicles stop between each move task. 
If CCTT SAF handles this differently, a behavior in 
CCTT SAF would act differently than its equivalent 
in ModSAF. 

The tick rate is the maximum frequency that a task is 
executed. As a simulation becomes busy, the time 
required to execute tasks in a ring queue can exceed 
the assigned time for the ring, compromising 
simulation fidelity and the "real-timeness" of the 
system (Smith and Swarts 1990). Symptoms of a 
busy simulation are movement and behavior 
degradation (Vrablik and Richardson 1994). 
Behavioral inconsistencies may arise because CGF 
system A may assign more items to a given ring than 
system B. As the number of items on a ring 
increases, it will become more difficult for those 
items scheduled on a ring to complete on time. 

4.4 Reactive Behaviors 

ModSAF behaviors do not correspond to CIS 
definitions. Consequently, the full implementation of 
a CIS will require the addition of CIS reactive 
behaviors in ModSAF. 

For some behaviors, CCTT SAF incorporates the 
code for a reactive task into the code for a non- 
reactive task. For example, in the OPFOR Assault 
an Enemy Position, CCTT SAF will execute code 
to breach an obstacle inside the Assault an Enemy 
Position task instead of calling a standard Breach 
Obstacle task. ModSAF transitions to a reactive task 
by starting the appropriate task. The limitation of 
CCTT SAF's approach is that every behavior needing 
Breach Obstacle must incorporate all the code for 
Breach Obstacle again. An advantage to doing this is 
that Breach Obstacle could be tailored to a specific 
behavior, i.e. an assault Breach Obstacle may need to 
be different from a traveling Breach Obstacle. 
Although this presents no behavioral interoperability 
difficulties, having redundant code presents software 
maintenance problems. 
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Reactive Behavior ModSAF 
(2.0) 

CCTT 
SAF 

Ambush (OPFOR) No Yes 

Consolidate and Reorganize No Yes 

Execute  Appropriate Action 
Drill 

No Yes 

Execute Contact Drill Yes3 Yes 

React to Indirect Fire Yes3 Yes 

React to Terrain Yes3 Yes 

Recon Drills (OPFOR) No Yes 

Take Actions At Obstacle No Yes 

Take   Active   Air   Defense 
while Moving/Stationary 

Yes3 Yes 

Table 1 - Reactive Behaviors 

Table 1 illustrates some sample reactive behaviors 
and whether they are supported in the two CGF 
systems. 

4.5 CCTT SAF FSM and ModSAF AAFSM 

Finite State Machines (FSMs) are often used to 
describe behaviors. An FSM consists of states and 
transitions. Each state in an FSM corresponds to 
either a function or a low-level FSM. Transition 
conditions associated with each state make up the 
criteria for entering another state (Smith and Petty 
1992). Note that CCTT SAF and ModSAF 
implement different variations of FSM structures. 
CCTT SAF and ModSAF have several 
implementation differences in their FSM structures 
that could affect either the way that a behavior is 
executed or the ease of implementing a behavior. 
These differences are exhibited in the implementation 
language, preprocessing steps, and task parameter 
changes. 

CCTT SAF's FSMs, written in Ada, contain all the 
details that link FSMs into the CCTT SAF. On the 
other hand, ModSAF FSMs, written in C-like syntax 
(Asynchronous Augmented Finite State Machine or 
AAFSM format), must go through a preprocessing 
stage before they become C code. This abstracts out 
details of FSM linkage to the system and thereby 
accelerates behavior development. 

CCTT SAF does not respond to changes in an input 
to a behavior once the task is running, restricting the 
operator from responding to changes in orders. 
ModSAF's AAFSM format explicitly allows this 
change of parameters. For example, if a frag order 
updates a phase line's position, then the operator may 
move it and the task will respond to this change, 
instead of having the operator reissue the task with 
the new parameters. 

4.6 Environment and Terrain 

Environmental elements may affect behaviors (e.g., 
smoke, rain, fog, snow, etc.). These will cause a 
degradation in various behaviors due to reduced 
sensory input, reduced traction, and reduced 
trafficability. A CGF system's behavior is limited by 
the fidelity of its terrain. High fidelity terrain 
provides more covered and concealed positions and 
objects for entities to interact with (e.g. log cribs, tank 
ditches, DI berms. etc.) than lower fidelity terrain. 

Because they represent the operating environment for 
entities, environment and terrain differences can play 
an important role in affecting unit behaviors. In 
general, CCTT SAF has more detailed environment 
features and terrain than ModSAF. 

4.6.1 Environment 
Deviations in support for environmental factors will 
cause two CGFs to act and react differently. This 
affects behaviors by increasing sensor degradation 
and reducing trafficability. 

CCTT SAF and ModSAF support sensor degradation 
due to rain, fog, and haze. Trafficability in CCTT 
SAF is reduced due to rain soaking the ground (if the 
rain floods an area, vehicles will route around it, and 
traction is reduced on rained soaked terrain). 
ModSAF does not currently support rain soaked 
terrain. By ModSAF ignoring the impact of weather 
on routing (e.g., avoiding muddy terrain), its 
behaviors will not be interoperable with CCTT SAF. 

1 Modifications necessary for CCTT SAF compatibility 
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4,6.2 Terrain 
The terrain database representation in CCTT SAF has 
varying polygonal facets of 60, 120, and 240 meters. 
This is multi-level terrain, providing trafficability 
both over a bridge and through the water beneath it 
(Pope et al. 1995). ModSAF's terrain database can 
have different polygonal facets and there are no 
multi-level terrain features (Braudaway et al. 1995). 
Forests in CCTT SAF are represented as tree 
aggregates, each of which can be broken up into its 
respective trees (Pope et al. 1995). Forests are 
represented as canopies in ModSAF with no 
information about individual trees contained inside 
the forest (Braudaway et al. 1995). CCTT SAF's 
terrain database contains up to 10,000 destroyable 3D 
features. The terrain also contains many relocatable 
objects (those that can be moved around the terrain) 
in the form of log cribs, tank ditches, DI berms, etc. 
(Pope et al. 1995). There are few destroyable or 
relocatable objects in ModSAF (e.g., ModSAF has 
A VLB vehicles) (Braudaway et al. 1995). 

CCTT SAF's varying polygonal facets and support of 
closer grid posts allow for more accurate terrain 
representation. This terrain format allows vehicles in 
high traffic areas to have more terrain objects (trees, 
buildings, water, etc.) to interact with than ModSAF's 
terrain format provides. The CCTT SAF's use of tree 
aggregates allows an entity or unit routing through a 
forest to be able to use the trees for concealed 
positions and to have its route affected by more 
obstacles (in the form of trees). Relocatable and 
destroyable objects provide a more realistic 
environment for the entity. An entity may take 
advantage of a relocatable object for concealed 
positions or face obstacles because of destroyed 
objects. 

4.7 Code Sharing 

CCTT SAF has separate behaviors for each force for 
a majority of the CISs (see Figure 1), but it also has 
common behaviors for both forces (e.g., Platoon 
Execute Traveling). This represents a trade-off 
between code maintainability and the need for 
separate behaviors. ModSAF uses the same 
behaviors for BLUFOR and OPFOR vehicles. This 
is a problem for behaviors that execute a given 
behavior differently. For example. Assault an 
Enemy Position for a Tank Platoon is executed 
differently for each force. The BLUFOR CIS for 
Assault an Enemy Position specifies CGF operator 
intervention and calls for moving to the Objective 
using covered and concealed routes.  Conversely, the 

OPFOR behavior requires neither operator 
intervention nor moving to the Objective using 
covered and concealed routes. Because a CIS is 
tailored to either BLUFOR or OPFOR behaviors, a 
mechanism must be introduced to provide separate 
behaviors for BLUFOR and OPFOR in ModSAF. 
One solution to this problem is to augment 
ModSAF's task filtering mechanism to distinguish 

Two other similar areas of concern for code sharing 
are sharing behaviors across unit types and across 
echelons. In CCTT SAF two units of different types 
but at the same echelon level may use the same body 
of code.    For example, in OPFOR Assault an 

CCTT SAF 
Behaviors 

BLUFOR 

Shared 

OPFOR ModSAF 
Behaviors 

Figure 1 - BLUFOR/OPFOR Code Sharing 

Enemy Position both a tank platoon and a motorized 
rifle platoon will execute the same body of code, but 
a tank company executes different code. In ModSAF, 
behavior code is shared between unit types, and to 
some extent, between echelons. 

4.8 Crew-level behaviors 

CCTT SAF has implemented behaviors down to the 
crew level. This is largely a naming convention for 
low-level vehicle responsibilities consisting of the 
Weapons Crew (e.g., target assessment), Maintenance 
Crew, Driver (e.g., routing), and Resupply Crew. 
The Crew-level behaviors in CCTT SAF order the 
Driver to move to a certain location, while ModSAF 
starts a task for a subordinate vehicle to travel to a 
certain location. Consequently, for implementation of 
behaviors in ModSAF, a design decision to either 
implement Crew-level behavior or use existing 
ModSAF functionality must be made. 
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4.9 Conclusions of CCTT SAF and ModSAF 
Differences 

Although important, many of the differences between 
the two systems were disregarded for this project to 
allow implementations of CISs in ModSAF. 
Supporting behaviors and CGF services were similar 
enough to support implementation of CISs. Future 
interoperability enhancements to supporting 
behaviors and CGF services will only support more 
realistic behaviors. 

5.   Prototype Implementation 

After a survey of the CATT-Task database, 1ST chose 
eight CISs to implement in ModSAF (see Table 2). 
These were chosen to get a sampling of behaviors that 
are simple, complex, BLUFOR, OPFOR, in 
ModSAF, not in ModSAF, for a Company, and for a 
Platoon. 

BLUFOR Status 
Conduct Hasty Occupation of 
Battle Position (B0025) 

Done 

React to Air Attack (B0113) 
Execute Traveling Overwatch 
(B0017) 
Emplace Hasty Protective 
Minefield (B0137) 
OPFOR Status 
Conduct Fire Engagement 
(HVY-0324) 
Assault an Enemy Position 
(HVY-0022) 

Done 

Execute Evasive Actions 
(HVY-0029) 
Company Assault an Enemy 
Position (HVY-0113) 

Table 2 - Selected CISs 
As part of this research, 1ST 
manually added two CISs to 
ModSAF (shown in gray in 

Table 2). This process began by analyzing the CIS 
definition in the CATT-Task database and 
constructing flow diagrams and a list of inputs and 
outputs required by the CIS. The CCTT SAF code 
was then analyzed and compared to the CIS 
definition. Necessary components for the CIS were 
sought in ModSAF. A ModSAF implementation was 
designed using this gathered information. Necessary 
underlying code in ModSAF was used in the design. 
The design was then implemented and tested. 

5.1  B0025 Conduct Hasty Occupation of a Battle 
Position 

This section presents a description of Conduct Hasty 
Occupation of a Battle Position, outlines IST's 
approach to implementing Conduct Hasty 
Occupation of a Battle Position in ModSAF, and 
evaluates IST's CIS implementation. 

5.1.1 CIS Description 
In Conduct Hasty Occupation of a Battle 
Position, a U.S. Platoon moves toward and occupies 
a Battle Position (CATT-Task Database). A 
description of this CIS as given in the CATT-Task 
database appears in Figure 2. 

Figure 2 - Conduct Hasty Occupation of a Battle 

The platoon is conducting offensive or 
defensive operations and has received an order 
to conduct a hasty occupation of a battle 
position (BP). The platoon moves to and 
occupies the BP, orients itself properly on the 
likely direction/avenue of enemy attack and/or 
assigned engagement area (EA), ensures 
survivability of the platoon and its fighting 
position, and is prepared to defend the BP by 
the time specified in the order (ARTEP 17-237- 
10-MTP, pp. 5-112 to 5-114; FM 17-15, pp. 4- 
20, 4-4 and 4-5, 4-10 to 4-16). 

BP 

EA 

An advantageous location, selected on 
the basis of terrain and weapon 
systems, from which a unit defends or 
attacks. Platoon BPs and their direct- 
fire orientation are designated in the 
Operations Order(FM 17-15, p. 2-8). 
An area designated along enemy 
avenue(s) of approach in which the 
commander intends to destroy the 
enemy force with massed fires. It can 
be identified by prominent terrain 
features or by Target Reference Points 
at the comers (FM 71-2. p. 4-22). 

Figure 2 - Conduct Hasty Occupation of a Battle 
Position 

Position shows the sequence of actions that a Tank 
Platoon should follow in the Conduct Hasty 
Occupation of a Battle Position: 

1. Routes to the center of the Battle Position. 
2. Locates covered and concealed positions. 
3. Moves to and occupies the Battle Position. 
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5.1.1.1 Supporting CISs for B0025 
Conduct Hasty Occupy Battle Position uses other 
CISs  for  situational   interrupts.     The   situational 
interrupts required for this CIS are listed below. 

Situational Interrupts: 
B0013 React to Indirect Fires 
B0020 Take Active Air Defense While 

Stationary 
B0022 Execute Actions on Contact 

These three CISs represent actions to be taken by the 
Platoon executing a Hasty Occupy. React to 
Indirect Fires occurs when the Platoon encounters 
indirect fire. Take Active Air Defense While 
Stationary is used to respond to air threats. Execute 
Actions on Contact provides instructions to follow 
when opposing ground forces are encountered. 

5.1.2 1ST Approach 

For this prototype, 1ST explored the CIS, examined 
the corresponding CCTT SAF code, looked at the 
existing ModSAF code for a similar behavior, and 
constructed a diagram for the 1ST implementation. 

5.1.2.1 CIS Task Description 
1ST first reviewed the CIS definition. The Actions to 

Hasty Occupy Battle Position (CIS B0025) 

Enters BP from 
flank or rear 

Keeps all weapons 
-»1 oriented in "enemy 

direction" 

Platoon moves into 
a turret-down pos. 

Points out each 
tank's primary 
fighting pos. 

Points out limits 
of company team 

EA 
Points out TRPs 

_J 
T 

Indicates sectors of 
fire 

»- 
Designates routes 

out of BP to 
subsequent BPs or 

AA 

»- 
Each tank moves 
into hull-down 

pos. on 
PL's order 

PL reports 
establishment 

of BP to Company 
team cmdr 1 

Effective direct 
fires are placed 

into the appropriate 
sectors) of fire 

Each tank moves to 
turret-down position 

& scans sectors of 
fire 

Each TC moves 
his tank back to 

turret-down 

TCs and gunners 
scan for threat 

targets & alert the 
platoon to threats 

•• 
Platoon com 

to improve position 

START 

Calculate center of BP. 
Stan Traveling task to center of BP. 

Transition to Moving 

T 
Moving 

If distance from platoon to center of BP 
is less then 500m, then 

Transition to Halt_Position 

Halt_Position 
Search for C&C positions. 

When all vehicles have found their C&C positions, 
then send orders for individual vehicles 
to travel to their turret down position. 
Transition to Execute_Orders. 

V , , 

Execut e_Orders 
If all the vehicles have reported reaching 

their turret down positions, then wait 
5 minutes and transition to 

TurretDown. 

Turret_Down 
Distribute orders to move to hull down position 

Transition to Hull_Down 

Hull_Down 
If all vehicles have reported 

reaching their hull down position, 
then issue progress report 
stating that the position is 

occupied. Transition to End. 

Figure 4 - CCTT SAF Implementation of B0025 

be Taken section of the CIS definition outlines the 
procedure a unit follows when executing a CIS. 1ST 
researchers created a flow diagram from the high 
level actions in this section (Figure 3). 

Figure 3 - CIS Description of B0025 
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START 

I 

Preparing_for_searoh 
Initialize search for C&C positions. 

Transition to Searching_for_positions.. 

Searching_for_pos it ions 
If searchs for C&C positions are complete, 

start vehicles moving to primary fighting positions. 
Transition to Moving_to_postions. 

Moving_to_pos it ions 
If all of the vehicles are in their primary positions, 

transition to At_positions. 

At  positions 
Wait here until operator intervension. 

^ 

Figure 5 - ModSAFs Hasty Occupy Position 

Actions from top to bottom represent the sequential 
order of actions that occur in the task. From the 
description, a platoon executing B0025 would arrive 
at the Battle Position. Individual vehicles of the 
platoon would move into a turret down position, 
move into primary fighting positions, move into 
turret-down positions, and then continue to improve 
their positions. 

5.1.2.2 CCTTSAFCode 
1ST researchers created FSM state diagrams from 
CCTT SAF behavior code. The state diagram 
provides an overview of the sequence of actions in 
the CCTT SAF implementation of B0025, including 
transition timing. Figure 4 for the state diagram for 
CIS B0025. 

r~ ~~^ 
Init_state 

Calculate BP center. Start Unit Traveling. 
Transition to Moving_to_bp_center 

Moving_t o_bp_c enter 
Calculate distance 

between unit center and BP center. 
If distance is within threshold, 

stop the traveling task, and transition to 
Preparing for search. 

Preparing_for_s earch 
Break up the BP line into 

segments and determine which vehicles will 
occupy which segment. 

Initialize the search for C&C positions. 
Transition Searching_for_positions 

Searching  for positions 
Confirm that all vehicles are done 

searching for C&C positions. 
If done, start moving to hidden positions and 

transition to Moving_to_positions. 

Moving to positions 
If all vehicles are done 

moving to hidden positions, 
start move tasks to 

primary fighting positions. 
Transition to At_positions. 

At positions 
Wait for orders 

Figure 6 - Implemented Conduct Hasty Occupation of 
Battle Position 

Figure 4 shows the actions of the CCTT SAF Hasty 
Occupation of a Battle Position. Each of the boxes 
represents a state in the CCTT SAF code. Transitions 
between states are represented with arrows. 
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5.1.2.3 Similar Existing ModSAF Behavior 
A similar behavior to Conduct a Hasty Occupation 
of a Battle Position existing in ModSAF is Hasty 
Occupy Position. A state diagram for Hasty Occupy 
Position appears in Figure 5. 

Figure 5 shows the actions of the Hasty Occupy 
Position. Each of the boxes represents a state in the 
ModSAF code. Transitions between states are 
represented with arrows. This ModSAF behavior was 
analyzed to determine the modifications necessary to 
implement CIS B0025 in ModSAF. Note that in 
Figure 4 the platoon moves as a unit to the center of 
the Battle Position, the vehicles move independent to 
their hidden positions, and then the individual 
vehicles move their primary fighting positions. In 
Figure 5 however, vehicles of the platoon move 
independently to their primary fighting positions. 

5.1.2.4 1ST Implementation 
Using the information gathered in Figure 3, Figure 4, 
and Figure 5, 1ST developed an implementation plan 
for adding Conduct Hasty Occupation of a Battle 
Position to ModSAF. These three diagrams were 
merged into a final implementation guide, Figure 6. 

5.1.3 Implementation Evaluation 
1ST evaluated its implementation of Conduct Hasty 
Occupation of a Battle Position against CCTT 
SAF's implementation to determine the differences 
between the two. 1ST enumerated difficulties that 
were encountered in implementing this CIS in 
ModSAF. Finally, 1ST compared its CIS implemen- 
tation to a similar behavior in ModSAF (Hasty 
Occupy Position). 

5.1.3.1 Differences Between CCTT SAF and 
ModSAF Implementations 
CCTT SAF uses supporting CGF Services from 
CCTT SAF (e.g., CCTT SAF's target acquisition, 
CCTT SAF's covered and concealed location search). 
IST's implementation uses ModSAF's supporting 
CGF Services (e.g., ModSAF's target acquisition, 
ModSAF's covered and concealed location search). 

CCTT SAF's CIS implementations are built using 
supporting CIS implementations (e.g., Execute 
Traveling, React to Indirect Fires). IST's 
implementation of the CIS uses ModSAF supporting 
behaviors (e.g., unit traveling, react to indirect fire). 

5.1.3.2 ModSAF Implementation Difficulties 
ModSAF's supporting tasks occasionally do not 
behave as expected. Periodically, vehicles traveling 
in the unit would get out of formation, occasionally 
stopping to let the rear platoon vehicle pass the third 
vehicle. Although some amount of flexibility is 
expected in formation maintenance, our SME deemed 
this inappropriate. 

5.1.3.3 Difference From Existing ModSAF Behavior 
The CIS was built using ModSAF's Hasty Occupy 
Position task as a base. Obviously if the original task 
followed the CIS definition, no work would have 
been necessary. It should be noted that much of 
ModSAF's original task was similar to the CIS 
definition. Main differences between the CIS 
prototype and the existing ModSAF behavior are the 
use of the CIS for only one unit type, movement to 
Battle Position and use of hidden positions. 

ModSAF's Hasty Occupy task can be used by both 
homogeneous and mixed units (e.g., DI-IFV 
platoons). This CIS is specifically written for a 
BLUFOR tank platoon. All references to mixed unit 
tasks were removed and replaced with non-mixed unit 
equivalent tasks. Although the mixed tasks would 
have accomplished the same result, they were 
essentially wrappers for non-mixed tasks, and 
therefore unneeded for these purposes. 

At the beginning of ModSAF's Hasty Occupy 
Position (right side Figure 7), each vehicle finds a 
primary fighting position, an alternate fighting 
position, and hidden positions. The vehicles then 
move individually to their primary fighting positions. 
In IST's CIS implementation, the center of the Battle 
Position is calculated. The platoon moves in column 
formation to this location (on left in Figure 7). After 
the platoon arrives, individual vehicles search for 
C&C positions. When all vehicles have located their 
positions, the vehicles individually move to their 
hidden positions. After waiting in their hidden 
positions (delay period is specified in the CIS), the 
vehicles move to their primary fighting positions. 

When enemy vehicles are spotted, 
1. the engagement area is updated, 
2. new C&C positions are calculated, 
3. the entire platoon moves first to new hidden 

positions (typically using reverse gear), 
4. waits a specific amount of time and 
5. moves to the new primary firing positions 

(typically using forward gear). 
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Figure 7 - CIS and ModSAF Hasty Occupy Position 

Use of a hidden position is significant in that it allows 
better use of the vehicles front armor. The sequence 
of backing into a hidden position and driving forward 
to a new fighting position (vehicles move from P to 
H' to P' in Figure 8) keeps a vehicles front armor 
facing the engagement area. The ModSAF behavior 
skips steps 3 and 4 (vehicles move directly from P to 
P') ignoring hidden position. Consequently vehicles 
often expose weaker side armor while moving to a 
new fighting position. 

6.  Lessons Learned 

Engagement Jk^ 
Area              • 

^1 
Ix 

Figure 8 - Use of Hidden Position 

Many of the issues uncovered initially in this project 
have been addressed with the implementation of these 
CISs. Some of these key issues include: 

• Can behaviors for specific alignments be 
implemented in ModSAF? 

• How different are ModSAF behaviors and 
CCTT SAF CIS based behaviors? 

• Can CISs be implemented in ModSAF? 
• Can the knowledge engineering and software 

development effort of CCTT SAF program 
be leveraged to help implement CISs in 
ModSAF? 

• Can this process be automated? 

Behaviors for specific alignments (OPFOR Hasty 
Occupation of a Battle Position, and a different 
BLUFOR Hasty Occupation of a Battle Position) can 
be incorporated into ModSAF. Behaviors for 
separate alignments were added to ModSAF in 
separate libraries. Each behavior was then restricted 
in use to members of the alignment for whom the task 
was designed (i.e., only BLUFOR vehicles could 
execute a BLUFOR defined CIS). 

ModSAF behaviors seem to have much of the 
functionality required by CISs, but seem to lack many 
of the CIS details. This is probably due to ModSAF's 
use of one behavior for many types of units and 
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vehicles (e.g., tank platoons use the same behavior as 
mixed Dismounted Infantry/Infantry Fighting Vehicle 
platoons). 

CISs can be implemented in ModSAF. 1ST 
implemented two CISs in ModSAF based on the CIS 
definition and the CCTT SAF code. These CISs rely 
on ModSAF behaviors such as unit traveling, but do 
perform the tasks called for in the definition. 

Reusing CCTT SAF technology leverages the 
investment the US government has made in 
simulation and training. 1ST leveraged the CCTT 
SAF software development effort to help implement 
CISs in ModSAF. 

Much of the process to implement a CIS (at least for 
the first prototypes) is repetitive and can be 
automated. For example, creating state diagrams 
from CIS definitions and CCTT SAF code, library 
duplication, and inserting CIS definitions in source 
code to closely tie the definition to the code could be 
automated. Methods to automate this process will be 
examined further by 1ST. 

7.   Future Work 

In addition to further study of behavioral integration 
techniques, there are a number of important problems 
to be solved that are of value to the simulation 
community. 

• Measuring Behavioral Interoperability- Methods 
are needed to measure the impact of integration 
issues identified above and the overall execution of 
specific behaviors. Behavioral interoperability 
needs to be clearly defined and methods developed 
for measuring it. 

• CGF Independent Behaviors- CGF systems 
currently have unique behavior implementations. 
The same behavior implementations could be used 
in different CGF systems. One approach to this is 
to develop a behavior interface library. One side of 
the library interfaces to a CGF system and the other 
side interfaces to CGF independent behavior code. 
Two CGF systems could then execute the exact 
same behavior code and share in the benefits of 
interoperability, code re-use and validation. 

• Flexible Behavior Sequencing- The Execution 
Matrix used in ModSAF and CCTT SAF utilizes a 
spreadsheet type form that executes a single stream 
of behaviors from beginning to end. Realism is 
compromised because it is not possible to plan out 
contingencies in advance and execute different 
behaviors without operator intervention.   Research 

is necessary on development of a behavioral 
organization that supports decision making on the 
fly, possibly based on METT, with execution of 
multiple behavioral streams. 

8.   Conclusion 

This project has demonstrated the feasibility of 
adding CISs to ModSAF. This paper has illustrated 
the process that was used to add a CIS to ModSAF 
and has documented some of the general issues that 
impact behaviors. 1ST determined that many of the 
enumerated issues can be overcome (by 1ST or the 
CGF community). CIS prototype implementations 
helped reveal processes used in CIS implementation 
that could be automated. By examining the CATT- 
Task database, 1ST found that a core group of CISs 
are frequently used by other CISs. More examination 
of the CATT-Task database is necessary to fully 
enumerate this list, but this core group of CISs 
represents a starting point for CIS integration. 
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1. Abstract 

The Advanced Distributed Simulation Research 
Team (ADS RT) at SAIC-Orlando has been 
conducting experiments with the interoperability of 
simulations. One of these experiments focuses on a 
generic approach for sharing behaviors between 
Modular Semi-Automated Forces (ModSAF) and 
Close Combat Tactical Trainer Semi-Automated 
Forces (CCTT-SAF). One goal of military 
simulation training is to provide large scale or joint 
exercises to train personnel at higher echelons. To 
help meet this goal a research experiment was 
designed to investigate how lower echelon 
combatants may consist of computer generated forces 
with units composed of entities represented by 
different simulations and different SAF 
operators/facilitators. This research explores a method 
of reducing operator work load by allowing units of 
one simulation to be task organized with high 
echelon units of a different type of simulation. In this 
way, the simulation that owns the higher echelon 
unit would be able to impose behaviors on unfamiliar 
subordinate units without the aid of an operator. The 
result is a unit composed of different simulations that 
behave as one unit. This is accomplished through the 
correlation of the behaviors of entities in different 
simulations so that they can cooperate with one 
another while performing unit tasks. Specific 
behaviors from the simulation with the upper echelon 
unit (source behaviors) can be translated to a form in 
terms of general behaviors which can then be 
correlated to the behaviors of any desired subordinate 
unit owned by a different simulation (destination 
behaviors) without prior knowledge of the pairing. 
The approach is to develop an ontology of general 
behaviors and behavior parameters, a database of 
behaviors written in terms of these general behaviors, 

and heuristic metrics which are used to compare 
source behaviors with destination behaviors. 

The results of this research has shown that heuristic 
metrics, in conjunction with a corresponding 
behavior and parameter ontology, are sufficient for the 
correlation of heterogeneous simulation behavior. 
These metrics successfully correlated known pairings 
provided by experts. In addition, the metrics also 
provided reasonable correlations for behaviors that 
have no corresponding destination behavior. For an 
environment composed of a variety of SAF 
participants, these metrics show greate promise to 
serve as a foundation for more complex methods of 
arbitration. A description of the generic arbitration 
algorithm and the results of the experiments are 
contained in this paper. 

2.  Introduction 

The initial focus of Distributed Interactive Simulation 
(DIS) application development has been on training 
of large, joint, or combined forces which is lacking in 
traditional training. (DIS Steering Committee, 1994). 
Since no single simulation can meet all the training 
needs required for large or joint exercises, multiple 
simulations must be used that can interoperate with 
one another seamlessly in a common environment. 
The DIS protocol was developed to promote 
interoperability in a heterogeneous simulation 
environment. Experience has shown that the DIS 
standards do not address all of the issues associated 
with interoperability. Although DIS provides 
standards and guidance for interface definition, 
communication, environment representation, 
management, security, field instrumentation, and 
performance measurement, it does not specify entity 
representation standards, behavior standards, 
synchronization   standards,   or   spatial    coherence 
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(correlation of terrain, resolution correlation and 
environment correlation such as ambient 
illumination, buildings, weather, etc.) standards and 
database standards. This research specifically 
addresses the behavior standards problem and the 
behavior interoperability of SAF simulations. 

I 
CCTT o 

1 • •  1 • • 1 • 

CCTT 

O 
CCTT o 

ModSAF 

o 
Figure 1: Task Organized Heterogeneous Simulation 

Units 

3. Behavior Interoperability 

Because of the military's desire to conduct large-scale 
theater of war training exercises and joint force 
operations, there is a growing interest in the use of 
SAF in the generation of simulated forces. 
Coordination between different services employing 
different SAF systems requires that the SAF systems 
be capable of coordinated actions. To help alleviate 
SAF operator workload in such an environment, 
CGF units must be able to be composed of entities 
that are owned and simulated by different simulations 
(Figure 1). The units must perform their actions 
properly under the specified task organization, i.e. 
each unit must coordinate with every other unit even 
if simulated by different simulations. This can be a 
problem since the behavior of the simulations may be 
of a different fidelity or functionality. Also, different 
simulations may not even possess corresponding 
behaviors. Behavior interoperability addresses these 
interactions in an attempt to achieve the same 
performance from the different simulations, i.e. 
behavior correlation. Using this approach, entire 
missions need to be arbitrated regardless of the 
method used (reactive, intelligent agents, CBR, etc.). 

To address the problem of behavior interoperability, a 
common framework is necessary to provide a basis for 
correlating SAF behaviors (Smith, 1995). In object- 
oriented terms, simulation entities, events, etc. can 
be converted from their specific form to a general form 
and then to the specific form required by the 
destination simulation. The extra step of converting 
to the general common model provides flexibility in 
that it allows interoperability between different 
combinations of simulations without having to know 
the exact combination beforehand. For the correlation 
of behavior,  not   only   is   a   common   behavior 

framework necessary but some degree of correlation of 
the behavior is required that can allow a simulation 
to execute the behavior specified by a another 
simulation. This requires that all the necessary 
attributes of a behavior must be imitated by both 
simulations. However, due to the differences in 
simulation behaviors, the behavior correlated for the 
destination simulation may not be exactly the same 
as that of the source simulation, i.e. they do not share 
a common framework. Thus, the best match or 
correlation must be arbitrated. Only major changes 
to the destination simulation's architecture (to 
support a common framework) would allow the total 
correlation specified by the above definition. For this 
research, arbitration will be defined as the 
discrimination of behaviors based on an evaluation of 
semantically correlated tactical procedures between 
two heterogeneous simulations. A discriminated 
behavior will be the best fit tactical maneuvers for a 
subordinate unit based on the requirements of its 
commanding unit. Semantic arbitration for behavior 
needs to not only arbitrate the best "match" between 
simulation behaviors, but also correlate the 
parameters associated with the behaviors. If the 
parameters of the commanding unit's behavior cannot 
be correlated with the target simulation behavior then 
the behavior cannot be executed. 

As part of the subject research, a methodology was 
developed that promotes interoperability of behavior 
among simulations using a common behavior 
framework, along with heurisitc metrics to correlate 
behavior. A set of closeness heuristic metrics has 
been defined for both behaviors and their parameters. 
These metrics will use the general behavior and 
parameter ontologies to determine the destination 
behavior with the best "semantic closeness" to the 
given source behavior. 

To satisfy the problem of interoperable SAF 
simulations, this research involves the development 
of a general framework for behavior and behavior 
parameters that facilitates the correlation between 
tactical procedures. The structure of this framework 
is domain independent which enables the system to 
be used with other applications outside Department of 
Defense training. Additionally, the system may be 
used to perform off-line arbitration between known 
simulations and parameter correlation during run-time 
or the system can perform arbitration at run-time to 
allow any combination of simulations to interoperate. 
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4. Semantic Correlation 

HOVE SHOOT 

/   \ /\ 
HALT                    TRAVEL /   ATTACK BY FIRE 

\y J 
OCCUPY ASSAULT 
POSITION 

ROAD MARCH 

OCCUPY BP 

/   \ 
DISPLACE                       HASTY 

TO SUBSEQUENT           OCCUPY BP 

BP 

Figure 2: Partial Hierarchy for Tank Platoon 
Behaviors 

Any combination of these metrics can be used at the 
various levels of decomposition to determine the 
semantic closeness of two behaviors. In this context, 
semantic closeness is defined as the percentage that 
the destination behavior will perform the desired 
behavior. There is no guarantee that the chosen 
behavior will execute the same behavior as the 
source, only that it will be the best match possible 
among the available destination behaviors. Many 
times, behaviors may be essentially the same but are 
organized differently. There are five major cases that 
illustrate the various ways differently structured 
behaviors can be correlated. The five cases use 
contrived examples of behavior from the military 
domain for the sole purpose of illustrating the 
possible metrics. The behaviors of interest in each 
case are represented in italics. 

4.1 Behavior Correlation Metrics 

Behaviors are usually represented in an aggregate 
fashion. Higher level behaviors are represented in 
terms of lower level behaviors until the primitive 
level is reached. Behaviors may be represented in 
terms of more general behaviors or the aggregate of 
lower echelon behaviors. In the case of aggregate 
lower echelon behaviors, different behaviors may be 
assigned to different units. This is not a problem 
since the higher echelon behavior can still be 
considered to exhibit these behaviors even though not 
all lower echelon units exhibit all the behavior. 
Because there is an infinite number of ways the same 
behavior can be represented a simple comparison is 
not sufficient. When trying to compare and correlate 
behaviors several metrics can be used to determine 
how similar they are: 

• A source behavior can be found at a lower or 
higher level of decomposition of a behavior than 
in the destination behavior. This is defined as 
the WHERE-IS metric. 

• A source behavior can be decomposed into its 
sub-behaviors which can then be correlated. 
This is defined as the HAS-A metric. 

• A source behavior can be related to a more 
general or more specific behavior present in the 
destination behavior. This is defined as the IS-A 
metric. Note that an ontology such as that 
shown in Figure 2 is necessary for this 
determination. 

The first case illustrates a source behavior that is 
found one deeper level of decomposition on the 
destination side. If the behavior is not found, then its 
subcomponents can be used as a means of correlation. 
An example of the first case is: 

CASE 1: Lower Level WHERE-IS 

Behavior A: 

TRAVEL 
MOVE 

OCCUPY-POSITION 

Behavior B: 

CAUTIOUS-MOVE 
TRAVEL 
OCCUPY- 

POSITION 

Case 2 illustrates a similar situation but in reverse, 
the behavior is found two levels of decomposition 
higher: 

CASE 2: Upper Level WHERE-IS 

Behavior A: Behavior B: 

ASSAULT 
TRAVEL 
OCCUPY-BP 

TRAVEL 
TARGETER 

OCCUPY- 
POSITION 

CONSOLIDATE 

ATTACK-BY-FIRE 
TARGETER 
TRAVEL 

OCCUPY- 
POSITION 

CONSOLIDATE 

A source behavior can be related to a similar 
behavior of the destination. This is defined as 
the SIBLING-OF metric. 
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Case 3 illustrates the situation where the behavior is 
decomposed into its sub-behaviors and correlated: 

CASE 3: HAS-A 

Behavior A: 

ASSAULT 
TRAVEL 
OCCUPY_BP 

TARGETER 
TRAVEL 
OCCUPY- 
POSITION 

CONSOLIDATE 

Behavior B: 

TRAVEL 
OCCUPY_BP 

TARGETER 
TRAVEL 
OCCUPY- 
POSITION 

CONSOLIDATE 

destination behavior do not affect the closeness as it has 
been defined. Extra behaviors only mean that the 
destination behavior does more than needed which is 
acceptable. Only if the extra behaviors drastically cause 
the behavior to conflict with the source behavior will there 
be a problem. There may also be some ambiguity if more 
than one destination behavior share the same subset cf 
behaviors that match the source behavior. As far as the 
semantic closeness is concerned the behaviors are equal. 
A modification to the algorithm could be made that 
would choose the behavior will the least amount of extra 
behavior but that is no guarantee that behaviors will not 
be ambiguous. Extra behaviors on the source behavior do 
decrease the closeness since the destination behavior may 
be missing some important functionality. 

Case 4 illustrates both the general-to-specific and 
specific-to-general IS-A correlation. When correlating 
from behavior A to behavior B the more specific 
HASTY_OCCUPY_BP can be used in place of 
OCCUPY_BP. When correlating from behavior B to 
behavior A, the more general OCCUPYBP can be 
used in place of HASTY_OCCUPY_BP. Case 4 is 
as follows: 

LOCATION 

CASE 4: IS-A 

Behavior A: 

ASSAULT 
TRAVEL 
OCCUPY_BP 

TRAVEL 
MOVE 

SHOOT 
CONSOLIDATE 

Behavior B: 

ASSAULT 
TRAVEL 

MOVE 
TARGETER 

HASTY_OCCUPY_BP 
OCCUPY-POSITION 
CONSOLIDATE 

Case 5 illustrates the SIBLING-OF correlation. Here 
BOUNDING_OVERWATCH is correlated with 
TRAVELING_OVERWATCH since they are 
inherited from the same parents, and hence similar: 

CASE 5: SIBLING-OF 

Behavior A: 

ASSAULT 
BOUNDING- 
OVERWATCH 

TRAVEL 
OCCUPY- 
POSITION 

OCCUPY- 
POSITION 

CONSOLIDATE 

Behavior B: 

ASSAULT 
TRAVELING- 
OVERWATCH 

TRAVEL 
OCCUPY- 
POSITION 

OCCUPY- 
POSITION 
CONSOLIDATE 

Extra behaviors may also be present on either the source 
behavior or destination behavior.   Extra behaviors on the 

AREA 

/ 
SECTOR 

\ 
OBJ 

POSITION 

/\ 
ASSAULT 

POSITION 

POINT 

/     \ / 
START END       PHASE 

PT PT LINE 

I 
RELEASE 

PT 
ROUTE 

TOAP 

OVERWATCH 

POSITION 

LINE 

ROUTE 

ASSAULT 

ROUTE 

Figure 3: Partial Hierarchy for Behavior Parameters 

4.3 Parameter Correlation Metrics 

In addition to performing metrics when correlating 
behaviors, metrics must also be calculated for 
correlating the parameters associated with that 
behavior. Parameters either are necessary for the 
corresponding behavior to perform its function or 
modify how the behavior is executed. Common 
parameters for military behaviors include speed, 
formation, platform, route, etc. The metrics define 
how close the parameters between the two behaviors 
match. Parameter correlation is only performed for 
the top level source and destination behavior. The 
parameters of sub-behaviors are not really significant 
since as long as the initial parameters correlate, the 
behavior can be executed. In addition, many times 
the sub-behavior parameters will be derived internally 
and have no explicit relationship to the top level 
parameters. 

There are three metrics that apply to parameter 
correlation, the IS-A, PARENT-OF and HAS-A 
metrics. The IS-A and PARENT-OF metrics both 
determine the closeness along an inference path 
between a source parameter and destination parameter 
using information shown in Figure 3. The IS-A 
metric determines if a destination parameter is a child 
of one of the source parameters. The metric 
determines the inferential distance between the two. 
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Similarly, the PARENT-OF metric determines if a 
destination parameter is a parent of one of the source 
parameters. Unmatched (Additional) parents in a 
PARENT-OF metric also do not affect the closeness 
for the parameter. This just means that the parameter 
is more complex than the source parameter being 
correlated which is satisfactory. These two metrics 
can be combined to generate a correlation path from a 
specific source parameter to a more general parameter 
and then back to a more specific destination 
parameter. For example, an ASSAULTPOSITION 
can be correlated to an OBJECTIVE by following the 
inference path from ASSAULT_POSITION to 
POSITION to AREA to OBJECTIVE, where 
OBJECTIVE is a specific type of AREA. The HAS- 
A metric determines the closeness along a 
decomposition path between a source parameter and 
destination parameter. For example, suppose a 
ROUTE can be decomposed into a STARTPOINT 
and END_POINT. Then, a source ROUTE 
parameter can be correlated with STARTPOINT 
and ENDPOINT parameters of the destination 
behavior. The IS-A and PARENT-OF metrics can 
be combined with the HAS-A metric so that the sub- 
parameters of parameter may also be matched with 
destination parameters. 

4.4 Incremental Decomposition And Abstraction 

The correlation algorithm uses incremental 
decomposition and abstraction of behaviors to 
determine the closeness. Each source behavior is 
recursed into and is compared (via recursion again) to 
the levels of the destination behavior. Each behavior 
is decomposed into its sub-behaviors which are also 
correlated down to the primitive level. The 
correlation algorithm uses the following high level 
steps when correlating a source behavior: 

1) Check for the presence of the sourcebehavior at 
the given level of decomposition in the 
destination behavior. 

2) If the behavior is not present, apply the 
WHERE-IS, IS-A, HAS-A, and SIBLING-OF 
metrics, using the maximum closeness result. 

3) Recurse into the source behavior, performing 
these steps on each sub-behavior. Combine the 
results of the sub-behavior correlations and 
multiply the result by the closeness value 
determined in one of the two previous steps. 

4) Repeat steps 1-3 on the next behavior at this 
same level of decomposition. 

The parameter correlation algorithm follows the same 
basic steps, with the parameter metrics being applied 
instead.   It is important to note that behaviors can 

increase the closeness if they match, but behaviors 
that match in name are not necessarily equal. The 
closeness must be determined down to the primitive 
level to determine an accurate correlation (hence the 
presence of step 3 above). The correlation algorithm 
uses the semantic closeness metrics defined earlier to 
determine the behavior closeness value. This value 
is calculated using closeness factors (decreases in 
closeness) for each metric along with a few others. 
These factors may need to be adjusted for a specific 
destination system to guarantee proper correlation. 

As each source behavior is correlated, the metric that 
produces the best closeness value is combined with 
the aggregate closeness value of its sub-behaviors. 
The value is then combined with the other behaviors 
at the same level of decomposition and filtered up to 
the upper levels of decomposition. At the top-level, 
the correlation of the behaviors is combined with the 
parameter correlation to obtain a final correlation for 
the behavior in the range between 0 and 1. Each sub- 
behavior (except reactive behaviors) are equally 
important in the closeness determination. Reactive 
behaviors count for less since they do not define the 
behavior, only their presence helps determine the 
closeness. The algorithm makes sure that it does not 
recurse into reactive behaviors when looking non- 
reactive source behaviors since this would drastically 
throw off the correlation. Also, a destination sub- 
behavior can be correlated against a source behavior 
more than once. In some cases this makes sense and 
is useful if a destination behavior encapsulates more 
of the source behavior. However, in some cases this 
is not true. The uncertainty is captured by the 
decrease in closeness factor for the correlation but no 
decrease in correlation is currently implemented for 
multiple destination matches. 

The parameter correlation mechanism is a simpler 
form of the behavior correlation algorithm. As 
mentioned previously, this is primarily because it is 
focused on a conversion path not just similarity. The 
WHERE-IS metric is not used since sub-parameters 
on the destination side are never recursed into. 
Source parameters are broken up into their 
constituents if necessary and these are matched 
against the top-level destination parameters only. 
Missing parameters contribute a portion of the 
closeness if they are default. Unmatched required 
parameters on the destination side will set the entire 
behavior closeness to zero, because even if the 
behaviors are similar, if the parameters cannot be 
correlated then the behavior cannot be executed. 
Unmatched required source parameters only decrease 
the closeness determination by setting their closeness 
contribution to zero. Both source and destination 
parameters that are default and cannot be correlated are 
not set to zero only the closeness is reduced by a 

175 



specified amount. Default parameters are defined as 
those which have preset values within their 
appropriate simulations and are not required to be set 
for the behavior to be executed. 

This research focused on the correlation of CCTT 
tank platoon behaviors with that of ModSAF tank 
platoon behaviors so they could interoperate under 
one task organization. Only those behaviors that 
could be assigned to tank platoons via their 
respective GUIs were considered for source and 
destination correlation. Each CCTT behavior 
assigned to a ModSAF platoon would be correlated 

with the best matching ModSAF behavior and its 
parameters converted and the behavior assigned. 

5.1  Proof Of Principle 

As a proof of principle, twelve CCTT behaviors will 
be correlated with one of twenty ModSAF behaviors. 
Seven of these behaviors will have expected pairings 
provided by subject matter experts. The remaining 
five will have no corresponding ModSAF behavior. 
The unknown correlation results are subject to 
interpretation since no agreed correlation already 
exists. Table 1 presents the correlations that will be 
tested via the experiments. 

CCTT-MODSAF CORRELATIONS 

CCTT BEHAVIOR MODSAF BEHAVIOR 
Assault an Enemy Position 
Attack by Fire 
Bounding Overwatch 
Tactical Road March 
Travel 
Hasty Occupy Position 
Traveling Overwatch 
Occupy Bp 
Passage of Lines 
Platoon Defensive Mission 
Platoon Fire and Movement 
Consolidate and Reorganize 

Assault 
Attack by Fire 
Overwatch Movement 
Tactical Road March 
Travel 
Hasty Occupy Position 
Traveling Overwatch 
unknown 
unknown 
unknown 
unknown 
unknown 

Table 1 

5 Experimental Results 

Testing ASSAULT and ATTACK BY FIRE will 
test the algorithms ability to discriminate between 
similar offensive actions. Testing BOUNDING 
OVERWATCH will test the algorithms ability to 
discriminate between several ModSAF forms of 
movement, namely TRAVEL, TACTICAL ROAD 
MARCH, OVERWATCH MOVEMENT, and 
TRAVELING OVERWATCH. A similar reason 

applies to TACTICAL ROAD MARCH. The 
ModSAF TACTICAL ROAD MARCH is not as 
robust and thus may not be determined to be the best 
correlation. Testing TRAVEL will set the lower 
bound for the test since this behavior exhibits a 
strong correlation to the ModSAF TRAVEL 
behavior. 

5.2  An Experiment 

One experiment involves correlating the CCTT 
Assault An Enemy Position behavior. A typical tank 
platoon assault behavior is concerned with issuing 
movement and firing commands to its vehicles. 
These commands instruct the vehicles to perform an 
on-line attack and occupy the position attacked. 
More specifically, the tank platoon closes with and 
destroys the enemy by overrunning and seizing the 
occupied enemy position. The tanks move rapidly in 
line formation under the cover from direct and indirect 
fire to the far side of the objective. Figure 4 shows 
the CCTT Assault An Enemy Position behavior. 
CCTT is more robust than ModSAF in this case 
because it provides for an initial travel to the assault 
position, allows for the breach of obstacles along the 
way, and a consolidation and reorganization of forces 
after the assault has been completed. 

176 



CCTT ASSAULT ENEMY POSITION: 

TRAVEL 
vehic!e_MOVE 

BOUNDINGJDVER WATCH 
TRAVEL 

vehicle_MOVE 
vehicle_OCCUPY_POSITION 

vehicle_MOVE 
vehicle_SEARCH 
vehicle_HIDE 

vehicleHALT 
vehicleMOVE 
vehicle_SEARCH 

SEEK_COVER_AND_CONCEALMENT 
vehicle_SEARCH 

vehicle OCCUPY POSITION 

The semantic closeness values of zero represent cases 
where required ModSAF parameters could not be 
correlated. Figure 5 shows the ModSAF Assault 
behavior. The common primitives of vehicleMOVE 
and vehicleSEARCH (common to 
OCCUPY_POSITION) and the TRAVEL behavior 
are the primary reasons for the correct correlation. 
For similar reasons, the second and third choices 
(TRAVELING_OVERWATCH and 
OVERWATCHMOVEMENT, respectively) 
exhibited high semantic closeness values. The 
presence of these primitives in several 
OCCUPYPOSITION behaviors offset some of the 
missing behaviors even though the positions being 
occupied are very different. The different positions are 
captured by the parameter correlation but their effect 
on the overall closeness is much smaller. 

GENERATE_R£QUEST_FOR_IFIRE 
CONSOLIDATE_AND_REORGANIZE 

SEEK_COVER_AND_CONCEALMENT 
vehicleSEARCH 

vehicle_OCCUPY_POSITION 

GENERA TE_SITREP 

Figure 4:  CCTT Assault An Enemy Position 

For the CCTT Assault An Enemy Position behavior, 
the following semantic closeness values were 
calculated for the ModSAF behaviors: 

ASSAULT 0.522923 
ASSEMBLE 0.264287 
ATTACH 0.425562 
ATTACK BY FIRE 0.39817 
BREACH 0.431557 
CHANGE FORMATION 0.265716 
CONCEALMENT 0.401982 
DELAY 0.419041 
DETACH 0.425562 
FOLLOW VEHICLE 0.0 
HALT 0.264287 
HASTY OCCUPY POSITION 0.377462 
OVERWATCH MOVEMENT 0.43608 
PLOW BREACH 0.431557 
PURSUE 0.0 
ROAD MARCH 0.422094 
SUPPLY 0.400714 
TRAVEL 0.422094 
TRAVELING OVERWATCH 0.488249 
WITHDRAW 0.409559 

The highest correlation is with the ModSAF assault 
behavior with a semantic closeness of 52%. The 
actual closeness value is not so important as is the 
relative values between the different ModSAF 
behaviors.   This pairing is the expected correlation. 

MODSAF ASSAULT: 

EXECUTE_ASSAULT 
ASSAULT 

TRAVEL 
vehicleMOVE 
vehicleSEARCH 
vehicle_ENEMY 
FOLLOWUNIT 

vehicleMOVE 
vehicle_SEARCH 
vehicle_ENEMY 

TARGETER 
vehide_SHOOT 
vehicle_ASSESS 
vehicleSEARCH 

OCCUPY_POSITION 
vehicle_ALTERNATE 

vehicle_MOVE 
vehicleTERRAIN 
vehicle_SEARCH 

Figure 5: ModSAF Assault Behavior 

The CCTT parameters were correlated with the 
ModSAF parameters in the following fashion with 
their corresponding closeness values: 

CCTT UNITJD to ModSAF UNITJD 
(SC= 1.0) 

CCTT PLATFORM to ModSAF 
PLATFORM (SC = 1.0) 
CCTT ROUTE_TO_AP to ModSAF 
ROUTE (SC = 0.9) 
CCTT ASSAULT_ROUTE to ModSAF 
ROUTE (SC = 0.9) 
CCTT ENEMYPOSITION to POSITION to 
AREA to ModSAF OBJECTIVE 

(SC = 0.729) 
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CCTT TRIGGER LINE to LINE to ModSAF 
ROUTE (SC = 0.81) 
CCTT ASSAULT_POSITION to POSITION 
to AREA to ModSAF OBJECTIVE 

(SC = 0.729) 
CCTT DEPARTUREJTIME to NO MATCH 
(SC = 0.0) 
CCTT OBSTACLE defaulted (SC = 0.9) 
CCTT BREACH_ROUTE to ModSAF 
ROUTE (SC = 0.9) 
CCTT PRE-BREACH_ROUTE to ModSAF 
ROUTE (SC = 0.9) 
CCTT POST-BREACH ROUTE to 
ModSAF ROUTE (SC = 0.9) 
CCTT ALPHA_SECTION ignored 

(SC = 0.75) 
CCTT BRAVO_SECTION ignored 

(SC = 0.75) 
ModSAF LEFTTACTICALBOUNDARY 
defaulted (SC - 0.75) 
ModSAF RIGHT TACTICAL BOUNDARY 
defaulted (SC = 0.75) 
ModSAF SPEED defaulted (SC = 0.75) 
ModSAF DISMOUNTEDSPEED defaulted 
(SC = 0.75) 
ModSAF 
STOPPING_ASSAULT_CRITERIA 
defaulted (SC = 0.75) 
ModSAF SECURE_OBJECTIVE_FLAG 
defaulted (SC = 0.75) 
ModSAF FORMATION defaulted 

(SC - 0.75) 
ModSAF SPACING defaulted (SC - 0.75) 
ModSAF X_DI_OFFSET defaulted 

(SC = 0.75) 
ModSAF Y_DI_OFFSET defaulted 

(SC = 0.75) 
ModSAF ASSAULTREASON defaulted 

(SC = 0.75) 
ModSAF DI_FORMATION defaulted 

(SC = 0.75) 

The results agree with the predictions with one 
exception that illustrates one inherent problem with 
the parameter correlation. Destination parameters that 
are equally related to more than one source parameter 

cause an ambiguity as to which parameter correlation 
is the correct one. In this experiment there are five 
equally related source routes and only one destination 
route. We know that the ASSAULTROUTE is the 
best correlation but it is unclear as to how the 
algorithm can determine this automatically. 
Correlating in the other direction, a single source 
behavior can be matched against more than one 
destination behavior. In some cases this may be 
satisfactory but in other cases it may cause 
unexpected results and thus the destination 
parameters should have been allowed to default. 
Some a priori knowledge code may need to be used 
to modify the parameter correlation for known 
problems before assigning the behavior. As an 
example, code can be used that will check to see if all 
the routes are the same and if they are, default all the 
routes except the assault route. Also, the best 
correlations should take precedence over lesser 
correlations such as the TRIGGERLINE in this 
case. The CCTT TRIGGER_LINE should be 
ignored since there are better ROUTE correlations. 
This is a trivial task that can be done when the actual 
parameter conversions are done. The ordering of the 
parameters may also be used to specify a priority as a 
conflict resolution scheme. However this may not 
always be correct when the simulations being 
correlated is determined at run time. 

5.3  Experiment Conclusions 

Based upon the results of the experiments, it has been 
shown that the use of heuristic metrics in conjunction 
with a corresponding behavior and parameter 
ontology is sufficient for correlating CCTT and 
ModSAF behaviors. Table 2 summarizes the results 
of the experiments. Out of seven expected 
correlations, six were correlated correctly with the one 
exception due to a deficiency in ModSAF. The 
remaining five unknown correlations were deemed 
acceptable by subject matter experts under the given 
constraints. Most of the correlations resulted in 
closeness values around 50% thus demonstrating the 
dramatic differences that can be present in externally 
similar systems. 
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SUMMARY OF EXPERIMENTAL RESULTS 

# CCTT MODSAF MODSAF SEMANTIC ACCEPT- 
SOURCE RESULT EXPECTED CLOSENESS ABLE 

1 ASSAULT 
ENEMY 
POSITION 

ASSAULT ASSAULT 0.522923 YES 

2 ATTACK BY ATTACK BY ATTACK BY 0.607225 YES 
FIRE FIRE FIRE 

3 BOUNDING OVERWATCH OVERWATCH 0.554897 YES 
OVERWATCH MOVEMENT MOVEMENT 

4 TRAVELING TRAVELING TRAVELING 0.744768 YES 
OVERWATCH OVERWATCH OVERWATCH 

5 TACTICAL 
ROAD MRCH 

BREACH TACTICAL 
ROAD MRCH 

0.51583 NO 

6 TRAVEL TRAVEL TRAVEL 0.899357 YES 
7 CONSOLIDAT 

REORGANIZE 
DELAY <NONE> 0.489362 YES 

8 OCCUPY BP ASSAULT <NONE> 0.589559 YES 
9 PASSAGE OF 

LINES 
TRAVELING 
OVERWATCH 

<NONE> 0.39317 YES 

10 PLATOON 
DEFENSIVE 
MISSION 

ASSAULT <NONE> 0.540253 YES 

11 PLATOON 
FIRE AND 
MOVEMENT 

ASSAULT <NONE> 0.528677 YES 

12 HASTY HASTY HASTY 0.594519 YES 
OCCUPY OCCUPY OCCUPY 
POSITION POSITION POSITION 

6.  Conclusion results. Even though the correct ModSAF behaviors 

This research has shown that SAF behaviors can be 
correlated with behaviors from different simulations 
so they can interoperate with one another to support 
simulation training. Specific source behaviors are 
translated to a form in terms of general behaviors 
which are then correlated to any desired specific 
Table 2 

destination simulation behavior without prior 
knowledge of the pairing. As the experiments show, 
the correlation may not be 100% since the 
simulations may have different semantics. The 
experiments do show that the use of heuristic metrics 
in conjunction with a corresponding behavior and 
parameter ontology is sufficient for correlating 
heterogeneous simulation behavior. 
This research has shown that using a database of 
CCTT behaviors and ModSAF behaviors written in 
a general form, a common ontology of behavior 
parameters, and a set of heuristic metrics, that CCTT 
and ModSAF tank platoons can interoperate (to a 
degree) under one task organization. Of the seven 
known pairings experiments, six showed the expected 

were selected, however, many of the closeness values 
were quite low. This is further proof of how 
simulations that appear similar externally can actually 
be very different in their internal semantics. As 
mentioned previously, the one failed experiment was 
not due to an error in the correlation algorithm but 
due to the drastic difference in robustness of the 
supposedly the same behavior. The five unknown 
pairings produced acceptable results (as determined 
by experts) when considering that there was no 
corresponding ModSAF behaviors for these CCTT 
behaviors. The ModSAF and CCTT units are still 
interoperating but not to the degree desired. Often 
100% interoperability of like simulations (same class 
such as virtual or constructive) requires complete 
reengineering of one of the simulations to the extent 
that it is no longer beneficial to use two different 
simulations at all. 

This research has shown that a less sophisticated 
form of correlation with a simple behavior 
representation can indeed correlate behavior correctly 
and satisfactorily in most cases. This has the 
potential to reduce the SAF operator workload in 
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large-scale exercises. It also demonstrates the 
promise of using heuristic metrics and knowledge 
frameworks to solve semantic interoperability 
problems. As the state of the art in CGF increases, 
these semantic interoperability issues will become the 
dominant factor in the pursuit of large-scale and joint 
exercises. This research is but the first step towards 
the heterogeneous simulations of the future. 

7. Future Work 

The focus of this research has been on the arbitration 
algorithm and its supporting components. The 
actual run-time interfaces and parameter conversion 
routines have yet to be developed. There were also 
were several issues addressed in the arbitration 
algorithm. Specifically, how to handle source 
parameters that correlate to more than one destination 
parameter equally, and destination parameters that 
correlate to more than one source behavior. Both can 
cause unexpected behavior when the behavior is 
executed with these parameter conversions. Also, 
more research is required to study when to allow 
parameters default instead of being correlated. Of 
course, if 100% correlation is desired than an 
extention of this work is needed that allows 
simulations to be data driven and share behavior 
primitives. 
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1.  Abstract 

There is nothing special about our Computer 
Generated Forces, except that they are automatically 
generated from high level descriptions in a formal 
specification language. 

We have designed a high level graphical language 
for specifying military doctrine concerning the 
makeup and behavior of military forces and a 
synthetic force generator which translates these 
specifications into simulation modules that fit into 
the ModSAF architecture and simulate the behavior 
of those military forces. Central to this specification 
language is the definition of formations describing 
the coordinated movement and behavior of a 
disaggregated military group. 

This language is intended to eventually cover the full 
range of military doctrines found in the four services 
and was inspired by the Combat Instructions Sets 
developed by the Army for the CCTT simulator. 
Those validated doctrines are stated in natural 
language. Our specification language attempts to 
cover the same space and require little semantic 
restructuring to formally specify those doctrines. 

The initial version of this language has focused on 
the definition of military formations and the 
movement and maneuvers of the individual units in 
that formation. It has been used to formally specify 
the naval doctrine for how convoys are refueled and 
resupplied at sea and to automatically generate the 
ModSAF code from this specification. 

2.  Introduction 

The objective of our effort is to design a formal 
specification language for describing synthetic force 
behavior which is semantically close to the 
information contained in the Army's Combat 
Instruction Sets (CISs) [McEnany & Marshall 1994] 
and a generator for that language which 
automatically converts those formal specifications 
into operational ModSAF code. 

2.1 Maneuver Specification Language 

We have developed an initial prototype of such a 
language, called Maneuver, which allows formations 
to be graphically defined. These formations identify 
the participants in the formation, specify their 
locations relative to one another, and indicate the 
movements or other actions they should perform in 
the formation together with any synchronization or 
other constraints on those actions. 

A specification consists of a set of such formations 
and rules for switching between them including the 
reassignment of roles between those formations. 
These rules specify for each participant what role it 
plays in the new formation and what maneuvers or 
other actions it must undertake to reach its assigned 
position in that formation. 

Bounding Overwatch can thus be specified through 
two formations which respectively switch the 
(stationary) "overwatch" and (advancing) 
"bounding" roles between two squads. 

2.2 Maneuver Generator 

We have also built a generator which translates 
Maneuver specifications into operational ModSAF 
code in two stages. In the first stage, these 
specifications are translated into a high level general 
purpose specification language called Relational 
Abstraction [Goldman & Naraswamy 1992]. This 
high level general purpose specification language 
was designed to facilitate the definition of the formal 
semantics of domain specific languages (such as 
Maneuver) while delaying decisions about how that 
semantics would be implemented. 

Those implementation decisions are addressed in the 
second stage of translation which occurs in 
alternative back-ends that produce operational code 
hi a particular programming language. We have 
previously developed Relational Abstraction back- 
ends for Lisp, C++, and Ada, and have utilized the 
first two in this effort. 
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3.  Replenishment At Sea Example 

3.1  Informal Specification 

To illustrate the scope of the existing language, we 
(informally) summarize the naval doctrine for 
refueling a naval convoy at sea: 

A formation is described (see Figure 1) in which the 
convoy ships are arrayed in a circle around the 
supply ship (shown in black) and rotate from 
position to position to eventually take up a refueling 
position along side the supply ship (on either its left 
or right side). The left and right hand semi-circles 
(as seen from the heading of the convoy) rotate 
independently of each other. This rotation is 
triggered by the pulling away of the refueled ship on 
that side of the supply ship. The length of time it 
takes for a ship to refuel is determined by the amount 
of fuel that it needs and the number of supply hoses 
that it has for the refueling (only a single size hose is 
used). In addition, the ship must hook-up those hoses 
before refueling can begin, and break those 
connections before pulling away. 

When carrier is refueled, 
it departs the RAS vicinity 

This long movement 
avoids crossing in front of supply ship. 

Figure 1: Ship Layout and Movement 

Eventually, all of the ships in one of the semi-circles 
will be all be refueled. At that point, the ships from 
the other side will begin to rotate into both refueling 
positions (rather than just the single one on then- 
side of the supply ship). This is accomplished as a 
change in formation. The two formations share most 
of their roles. The formation change is specified by 
naming the target formation and specifying the 
target roles for those ships which are changing roles. 
Each formation has its own rules for when synthetic 
entities switch roles, how those role switches are 
synchronized with others, and how the synthetic 
entities move from one position to another. (In the 

Replenishment at Sea task ships move from one 
position in a semicircle to another by pulling forward 
and turning to the outside of the formation, 
proceeding to the rear until they pass their intended 
position, and then turning back to the inside and 
pulling up into their new assigned position. During 
these maneuvers they are forbidden from crossing in 
front of the supply ship). 

Variant formations are defined for describing how 
the carrier of the convoy takes up a special position 
outside the rotation once it has been refueled. 
Additional, formations are used to describe the 
optional use of helicopters to ferry containerized 
packets of material from the supply ship to convoy 
ships abeam of the supply ship (but not those 
currently refueling). These ships move closer to the 
supply ship to facilitate this helicopter resupply 

3.2 Formal Specification 

All the information contained in the previous section 
- except for the details of the path taken in moving 
from one position to another - is formally specified 
in the Maneuver language through a set of annotated 
diagrams and a small number of non-graphical 
textual declarations. The Replenishment At Sea task 
without helicopters is defined by 5 formations (one 
of which is terminal) and 10 textual declarations. 
Specifying the behavior of the helicopters requires an 
additional 2 formations (one of which is terminal). 
In addition, to specify the behavior when an 
(unpredictable) emergency breakdown occurs, 4 
more formations are required. 

One diagram (see Figure 2) specifies the layout of 
the initial formation of the ships in the convoy 
around the supply ship and defines all of the 
positions in that formation that can be occupied by 
ships during the Replenishment At Sea task. Besides 
the circle of positions at a 1 to 2 mile radius around 
the supply ship these positions include the refueling 
positions on either side of the ship (LF and RF), the 
waiting positions (LW and RW) 500 yards aft of 
these refueling positions (in which ships are 
prepositioned as the refueling of the ship on that side 
is nearing completion so that when that ship pulls 
away the next ship to be refueled can quickly pull 
into position), and the carrier position (C) several 
miles ahead of the convoy where the carrier goes 
after being refueled (to get itself out of the way of all 
the movement and maneuvering occurring during 
this task). 
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Figure 2: Initial Formation Layout 

Each of the other diagrams specifies the behavior 
for a single formation including the rules, if any, for 
switching to another formation (specified by another 
diagram). Figure 3 specifies the behavior of the 
initial formation. It is initialized with the carrier and 
one ship at the left and right waiting stations (LW & 
RW), with the rest of the convoy ships in the circle 
of positions arrayed around the supply ship (L1-L4, 
R1-R4, and G). The refueling positions (LF and RF) 
and the carrier refueled position (C) are unassigned. 

Each of the arrows in a behavior diagram specifies a 
role switch (and movement) that can occur within 
the specification. These role switches are governed 
by the predicates, if any, that appear on the arrow, 
but can only occur when the role at the arrow's tail 
has an assigned ship. In Figure 3 the LW and RW 
roles are occupied in the initial state, and the 
predicate on their outward-bound arrows ("not asgT 
meaning "not assigned") is true. Therefore, these 
two role switches can occur. However, there is 

© Diagram RAS_C_L4_R4 , 

' If not left-side-iU-fuekd? 
i then switch-to-focmation RASJL3JM « 
! else switch-to-formation RAS JAJM II 

!  swKch-to-rorm»tionRAS_C_L4Ju! 
•   »-<^*-->Rl IR1->R2UR2->R3l 

IIR3->R4HR4->R5 

~$&»- 

Figure 3: Initial Formation Behavior 
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another constraint ("depart-approach") on these 
transitions (indicated by the wavy line that connects 
the transitions into and out of the refueling positions 
LF and RF). 

This synchronizing constraint prevents arrivals and 
departures alongside the supply ships from 
overlapping each other, so the navigator of the 
supply ship can focus on a single arriving or 
departing ship. It is defined textually in Figure 5. 
The numbered boxes on the constraint connectors 
indicate preference among the possibilities. Here 
those preferences allow the carrier in LW to be 
reassigned to LF and move into the left refueling 
position and block the reassignment of the ship in 
RW to RF until one minute after the arrival of the 
carrier at the left refueling position. 

Once a ship has arrived at the left or right fueling 
stations it hooks up its fueling hose(s), fuels, and 
then disconnects (breaksdown) those hose(s). This 
triggered sequence and the definitions of these three 
actions are textually specified in Figure 5. 

The completion of the breakdown for one of the 
refueling ships triggers (via the "breakdown 
complete?" predicate) the reassignment of that ship 
to one of the positions emanating from the arrow out 
of that fueling position. As with the arrival arrows 
into the fueling positions, these departure arrows are 
synchronized by the "depart-approach" constraint 
which will delay this reassignment as necessary to 
prevent its overlap with other arrivals or departures. 

For the right fueling station (RF) the choice of which 
of the three positions to transit to from the refueling 
position is governed by the priorities specified in the 
numbered boxes attached to the arrows leading to the 
three possible targets. Each of these is tried in turn 
until a true predicate is found. Since the "right side 
has room" (i.e. as defined in Figure 5, not all the 
right hand positions are occupied — which will be 
true until all the right hand side ships have been 
refueled and rotated out of the refueling station), the 
highest priority choice will be available and the 
refueled ship departing RF will be reassigned to Rl. 

The dashed arrows emanating from roles Rl, R2, 
and R3 indicate that these transitions are 
synchronized with the reassignment to the role at the 
start of the arrow. Thus, when a ship assigned to RF 
is reassigned to Rl, Rl's ship is reassigned to R2, 
R2's ship is reassigned to R3, and R3's ship is 
reassigned to R4. The rotation on the left hand side 

(LI to L4) is similarly synchronized (by the dashed 
arrows) with the reassignment of a ship to LI. 
The reassignment of a ship to the lifeguard position 
(G) is not synchronized with the reassignments from 
Rl to R4. Rather it is governed by the predicate 
attached to its transition arrow ("not asg? G"). Thus, 
whenever G is unassigned and R4 is assigned, the 
ship assigned to R4 will be reassigned to G. 
(Reassignment may occur even before a ship arrives 
at a destination, so a ship in transit from R3 to R4 
may be reassigned to G if G is vacated before that 
ship arrives at R4.) 

As long as the ship at the lifeguard position (G) is 
not refueled, that ship will be reassigned to the left 
or right waiting position (LW or RW) when the ship 
at the corresponding refueling station is nearing 
completion of its refueling (formally it will be 
reassigned in anticipation of that completion so that 
the waiting ship will be in position at the waiting 
station 7 minutes before the refueling ship's 
breakdown is complete). The right hand waiting 
station is the preferred choice but ships can also be 
reassigned to the left hand waiting station once all 
the ships on the left side have been fueled. The 
reassignments into and out of L4 are defined 
similarly to those into and out of the lifeguard 
position. 

All of the transitions in Figure 3 have been 
explained except for the transition from LF and the 
second and third choices from RF. Let's start with 
the transition from LF. It specifies a switch of 
formations to formation RASJL3JR4 (see Figure 4) 
or formation RAS_L4_R4 (not shown) depending on 
whether the left side still has room. In the unusual 
case when it doesn't (because the refueling of the 
carrier took so long that the right hand side was 
completely refueled and all the left hand side ships 
were refueled on the right hand side of the supply 
ship), the convoy switches to the terminal 
RAS_L4_R4 formation. Normally, when the rest of 
the convoy has not yet been completely refueled, it 
switches to the RAS_L3_R4 formation. 

This formation is very similar to the starting 
formation, except that it has one fewer left hand side 
position (LI through L3 instead of LI through L4) to 
account for the fact that the carrier has been 
reassigned to position C and is not participating in 
the left hand side rotation. The reassignment of the 
carrier (the ship icon denotes the ship assigned to the 
role at the start of the reassignment arrow) to 
position C is explicidy stated. By default all the 
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Diagram RAS_L3_R4 

swicci-io-fonnatioo RASJL4 JM 
»--> LI II LI ->L2 II L2->L3 IL3-H4 ! 

«witch-to-fomutioo RAS_L4_R4 II 

>L1_IL1->L2IL2->L3 n L3->L4 | 

ootasg?G 

Figure 4: Left Side Short Formation 

remaining (unmentioned) roles are carried forward 
to the new formation However, the relative 
positions of those roles in the new formation may be 
(and in this case, some are) different, so the ships 
may have to maneuver to satisfy the specification. 

Returning to the second and third choices from RF, 

the second choice will be selected when room 
remains on the left side but not on the right (that is, 
when all the ships on the right hand side have been 
refueled and reassigned away from the refueling 
position, but some on the left remain to be refueled). 
In these cases, RF is reassigned to LI and the left 
hand  side  rotates   in   synchronization   with   this 

further activities not specified in the diagram: 
on arrival at RF fueling station, hookup, fuel, and then breakdown 

upon @?RFdo {hookup[@RF];fuel[@RF];breakdown[@RF]} 
abort emergency? do emergency-breakdown[@RF] 

upon @?LFdo {hookup[@LF];fuel[@LF];breakdown[@LF]} 
abort emergency? do emergency-breakdown[@LF] 

prevent undesirable overlaps: 
these events must not overlap; reassignments will be delayed to assure this 
1st minute of departures approaches and 1st minute thereafter 

overlap depart-approach (Sl,S2,S3,S4:ship) = 
{ from Sl:LF-> to Sl:LF-> + 1 minute,     from S2:RF-> to S2:RF-> + 1 minute, 

from S3:LW-> to S3@LF + 1 minute,     from S4:RW-> to S4@RF + 1 minute } 
action definitions: 

simulate hookup of a ship at a station by waiting 20 minutes. 
definition hookup[ship] = wait 20 minutes 
definition fuel(ship) = wait (0.95 * (fuel-capacity(ship) - fuel-remaining(ship)) 

/fuel-rate(ship)); 
assert fueled?(ship) simulate filling to 95% of capacity 

definition breakdown[ship] = wait 15 minutes; assert breakdown-completed?(ship) 
definition emergency-breakdown[ship] = wait 5 minutes; 

assert breakdown-completed?(ship) 
predicate definitions: 
definition left-side-all-fueled? =(every left-side-stations, s, is fueled?(asg(s))) 
definition right-side-all-fueled? =(every right-side-stations, s, is fueled?(asg(s))) 

True if every ship assigned to a left (or right) side station is fueled. 
definition right-side-has-room? = not (every right-side-stations, s, is asg?(s)) 

Figure 5: Textual Declarations 
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reassignment. Finally, if all ships on both sides have 
been refueled except the carrier, the third choice 
from RF is selected and a switch is made to a 
formation which creates a new right hand position 
for the refueled ship and rotates the ships on that 
side into their final positions. 

The operation of the RAS_L3_R4 formation in 
Figure 4 is very similar to the RAS_C_L4_R4 
formation that we have just described, except that it 
leads to a slightly different terminal formation as the 
third choice for the LF and RF transitions. 

Although we haven't mentioned it previously, an 
emergency breakdown (caused by an enemy attack, 
an accident, or an impending collision of the supply 
ship) can occur at any time. If this occurs, refueling 
stops immediately, the refueling hoses are 
explosively disconnected and the refueling ships 
immediately depart from the resupply ship. Many of 
the remaining formations, which we have not shown, 
result from the unpredictable timing of this 
exceptional event. 

4.  Architectural Issues 

4.1  Synthetic Force Commanders 

This task operates as a commander for the synthetic 
force (convoy) which controls and coordinates the 
actions of the entity level units (ships) within that 
synthetic force. It monitors the activity occurring 
within the synthetic force, determines what actions 
should be performed by each entity level unit, and 
assigns the appropriate task to that unit to 
accomplish the required action. Thus, when 
breakdown is completed at one of the fueling 
stations, the commander task determines which 
option should be selected by the departing ship and 
assigns it a movement task that corresponds to its 
new role in the (current or new) formation. The 
commander also assigns movement tasks to any 
other ships whose rotation (movement) is 
synchronized with the ship departing the fueling 
station. 

Thus, the commander is the only task that 
understands and effects the synchronization and 
coordination defined in the specification. The 
commanded units merely get a succession of 
primitive actions they are capable of performing 
individually. The coordination of the synthetic force 
arises from the commander's determination of the 

timing and duration of those individual tasks for 
each of the entity level units it controls. 

4.2  Abstract Target Architecture 

As an interface between the Synthetic Force 
Commander and the entity level units that compose 
that synthetic force there must be a set of behaviors 
that those entity level synthetic forces can perform. 
These behaviors provide the means by which the 
commander can control and coordinate the actions of 
the entity level units that comprise the synthetic 
force. 

This formulation of the interface between a synthetic 
force commander and the entity level units that 
comprise that synthetic force allows us to restate the 
generation task more precisely: given a specification 
that describes the desired behavior of an aggregated 
synthetic force, the generator must translate that 
specification into sets of commands to be issued by a 
synthetic force commander to the entity level units of 
that synthetic force which ensure the coordination of 
their behavior in performing the specified task. 

Thus, the generator must understand the semantics 
of the behaviors that the entity level units can 
perform and how sequences of those behaviors can 
be used to accomplish the specified task. Rephrasing 
this in conventional compiler terminology, these 
behaviors are the operations of the abstract virtual 
machine for which programs must be generated. 

We believe that the definition of that abstract virtual 
machine will be one of the major results of this 
effort. By defining a full compliment of platform 
specific actions (e.g. move, turn, follow, aim, shoot, 
reload, refuel) an operational infrastructure will be 
developed that supports many different synthetic 
force tasks (i.e. Combat Instruction Sets). 

Although the code for the platform specific actions 
in this abstract virtual machine could theoretically be 
automatically generated from a specification, we 
have chosen not to do so, but rather to use the 
existing manually developed implementations 
produced by the military services or then- 
contractors. 

This abstract virtual machine thus forms the 
boundary between the automatically generated 
commander code and the platform specific actions 
that the entity level units can perform. 
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4.2.1 Incomplete Abstract Virtual Machine 

Not surprisingly, we found mismatches between our 
conceptualization of a suitable abstract virtual 
machine and the set of available manually coded 
platform specific actions. 

Some of these mismatches arose because our efforts 
were concurrent with the creation of the platform 
specific actions and while they eventually would be 
produced, they weren't ready when we needed them. 
Others arose from the task oriented nature of the 
development which limited each contractor to only 
produce those platform specific actions required for 
the SAF tasks it was assigned to implement. This 
resulted both in overly specific tasks and the absence 
of required actions. One example of the former is the 
inability to turn a ship to a specified heading, and an 
example of the latter is the absence of a following 
action for helicopters. 

We resolved these mismatches by manually 
constructing code which realized the idealized 
abstract virtual machine operations in terms of the 
available implementations. Thus, to achieve a 
smooth "outside" turn to shift positions in the 
semicircle, our command task issued a sequence of 
course/speed adjustment commands. After each 
command, the command task would monitor the 
ships progress to decide when to issue the next 
course adjustment. Similarly, the absence of a 
following task for helicopters was resolved by 
regularly updating the destination location that the 
helicopter is moving toward (but never reaching). 

A second example of an overly specific action is ship 
collision avoidance. It used an implementation 
developed for tanks. Collision avoidance is defined 
as maintaining a separation of x units between the 
boundaries of the entities. Those boundaries are 
calculated as one half of the entity's longest 
dimension. For relatively square platforms, such as 
tanks, this approximation works quite well. 
However, for long narrow platforms, like ships, it 
prevents them from pulling up along side of one 
another — a maneuver required for refueling. 
Without rewriting this platform specific algorithm, 
our only resolution was to specify the refueling 
positions (LF,RF) at distances that would require 
unrealistically long hoses to transfer the fuel. 

4.2.2 Command and Simulation 
Within ModSAF, there are two possible target 
implementations for a "command" task like RAS. 

One is to actually simulate communications between 
the commander and the ships - e.g., by transmitting 
radio messages, a concept supported by the 
simulator. This, requires that the ships be executing 
suitable tasks to monitor for radio messages, and that 
a message protocol exist whereby the content of the 
radio messages is properly interpreted by the ships to 
alter their behavior. 

If one's goal is not to simulate the communication 
itself, but only the synchronized movements of the 
ships, a simpler mechanism is available (which we 
used). That mechanism allows the commander task 
to directly add tasks (or modify the parameters of 
existing tasks) in the task lists of the ships being 
commanded. 

5.  Status 

There are two implementations of our generator. The 
first was a feasibility prototype that illustrated the 
possibility of automatically generating synthetic 
forces from a high level domain specific formal 
language. This generator produced Lisp code that 
operated outside of ModSAF in a separate process 
and communicated with it via network sockets. 

Our second version produces C code that operates 
within ModSAF and eliminates the need for any run- 
time Lisp code. This version has been completely 
implemented and is being debugged. We expect to 
deliver shortly an operational C-based 
Replenishment At Sea module to NRaD's Navy SAF 
project. 

Currently the graphic specifications must be hand 
translated into a set of assertions (in our Relational 
Abstraction language) which describe the topology of 
the diagrams and the labels attached to the nodes 
and lines. A graduate student is building a graphic 
editor and translator which will allow these 
diagrams to be interactively created and modified 
and will automatically construct the assertions 
required by the Maneuver generator. 

6.   Future Work 

Starting this summer, we will be testing the breadth 
of this language and its program generator by 
developing formal specifications and synthesized 
ModSAF Computer Generated Forces for 10 CCTT 
Combat Instruction Sets for Scout and Mechanized 
Infantry Platoons that were selected by STRICOM as 
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being representative of a spectrum of complexity and 
difficulty in implementation. 

7. Acknowledgment 

This work was jointly funded by DARPA's ISO and 
ITO offices under contract DABT63-91-K-0006. 

8.  References 

McEnany, B.R. and Marshall, R (1994) "CCTT 
SAF Functional Analysis" Fourth Conference on 
Computer Generated Forces and Behavioral 
Representation. May 1994 

Goldman, Neil and Narayanaswamy N. (1992) 
"Software Evolution through Iterative 
Prototyping" Proceedings of the 14th International 
Conference on Software Engineering, Melbourne, 
Australia, May 1992 

9.   Author's Biography 

Robert Balzer received his B.S., M.S., and Ph.D. 
degrees in Electrical Engineering from the Carnegie 
Institute of Technology in 1964, 1965, and 1966. 
After several years at the Rand Corporation, he left 
to help form the University of Southern California's 
Information Sciences Institute (USC-ISI). He is 
currently Professor of Computer Science at USC and 
Director of ISI's Software Sciences Division. The 
Division combines Artificial Intelligence, Database, 
and Software Engineering techniques to automate 
the software development process. Current research 
includes program generators, architecture 
description and refinement, domain specific systems, 
transformation-based development, computing 
environments, constraint-based systems, and 
executable specification languages. 



A New Mechanism for Cooperative Behavior in ModSAF 

Sumeet Rajput and Clark R. Kan- 
Institute for Simulation and Training 

3280 Progress Dr., Orlando, FL 32826 
srajput@ist.ucf.edu 

1. Abstract 

Like vehicles in a real battlefield, CGF vehicles must 
cooperate with each other to achieve battlefield 
objectives. Traditional CGF systems, such as 
Modular Semi-Automated Forces (ModSAF), contain 
a Centralized Control Architecture (CCA) to control 
the behavior of simulated entities. In this approach, 
an entity (sometimes invisible) controls the behavior 
of other entities. CCAs are easy to implement but do 
not mirror cooperation of vehicles in the real world. 
A more realistic way to control the cooperative 
behavior of entities is through a Decentralized 
Control Architecture (DCA). In this approach entities 
cooperate with each other directly; there is no 
supervisory control. DCA's have several advantages 
and reflect real world cooperation. This paper 
describes a DCA developed within the ModSAF CGF 
system. The core of the DCA is a Finite State 
Machine (FSM) Engine. Cooperative behaviors are 
expressed as formal FSMs to obtain an unambiguous 
control process. 

2. Cooperative Behavior 

2.1 Real World Cooperation 

In a real battlefield, soldiers and vehicles (actually 
soldiers inside the vehicles) cooperate in most 
situations. They may cooperate: 

• by coordinating movement and fire, 
• by understanding the unit's plan and their 

role within it, 
• by    reacting    to    unexpected    events    in 

acceptable ways, 
• through information passing, and 
• by following commander's directives. 

A unit in the battlefield has a hierarchy of command 
which reflects the information flow from the top to 
the bottom levels. 

In a real battlefield, entities cooperate in a 
decentralized fashion as opposed to using a 
centralized  approach.      Decentralized   means   that 

entities cooperate with each other directly without 
being directly controlled by a supervisor. This does 
not mean they are unsupervised but rather the 
supervisor (commander) controls his subordinates 
through orders and signals and not through direct 
immediate control of the subordinate's behaviors. 

Soldiers and vehicles cooperate either explicitly or 
implicitly. Explicit cooperation involves transmission 
of signals. Platoons transmit signals using: 
messenger, wire, visual, sound, and radio (US Army 
[1990]). Implicit cooperation does not involve any 
transmission of signals. Entities observe other 
entities and change their behavior accordingly; for 
example, entities do formation-keeping by observing 
the behavior of other entities. 

2.2 Statement of the problem 

The goal of the research described in this paper is to 
implement a CA architecture that: 

• mirrors    real    life    cooperation    between 
vehicles, 

• uses   explicit    and    implicit    cooperation 
between vehicles, 

• allows  new  cooperative   behaviors  to   be 
created easily and with little coding, and 
can be verified and validated easily. 

3. Cooperative Behavior Control Architecture 

The cooperative behavior control architecture 
controls the behavior of subordinate entities. There 
are two ways to control subordinate entities: 
Centralized control and Decentralized control. 

3.1 Centralized Control Architectures (CCA) 

In a Centralized Control Architecture (CCA), a 
centralized controller makes behavioral decisions for 
subordinate entities and conveys these decisions to 
the subordinates. CCAs resemble the real world 
because, like the real world, the unit is controlled 
from a centralized location. However, there are 
important distinctions.   The first distinction is in the 
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granularity of control relative to that of the real 
world. CCAs exercise unrealistically fine control. 

For example, CCAs may do formation-keeping for a 
platoon by monitoring each entity and making sure 
that entities maintain appropriate distances between 
them. In the real world, formation-keeping is done by 
entities; proper entity-to-entity distances are 
determined and maintained by entities themselves. 
The second distinction is in reasoning and decision 
making. In CCAs, the centralized controller reasons 
and makes decisions on the entities' behalf whereas in 
the real world entities reason and make decisions 
themselves. For example, CCAs plan routes for the 
entities whereas real world entities plan their own 
routes. 

The entity exercising centralized control may be 
either a simulated entity (e.g., a tank) or an invisible 
"ghost" entity (or process). Furthermore, the 
centralized controller may control subordinate entities 
either explicitly or implicitly. Explicit control 
requires the transmission of messages (orders) from 
the centralized controller to the subordinates. These 
orders, unlike real world orders, contain specific 
information which otherwise would have been 
computed by the subordinates themselves. For 
example, an order to move may contain the route 
information. In the real world, a subordinate will 
only be told to move to a destination and it will 
compute the route itself. Implicit control is more 
direct. In this case, the centralized controller 
executes code on or on behalf of subordinate entities. 
Code execution directly affects a subordinate's 
behavior. 

The centralized controller in ModSAF is an invisible 
process representing the unit which "knows" the 
identity of the vehicle responsible for the unit, e.g., a 
Platoon Commander. When the Platoon Commander 
is disabled, ModSAF restarts the cooperative 
behavior on the platoon. The responsible entity is 
updated, i.e., another entity becomes the Platoon 
Commander. The centralized ModSAF controller 
controls the subordinates implicitly by executing code 
on their behalf. 

CCAs are suitable for implementing simple 
cooperative behaviors but have several disadvantages. 
First, implementing a CCA results in loss of realism. 
For example, with a "ghost" centralized controller, 
the unit's collective behavior can be unaffected by the 
loss of the simulated commander. On the other hand, 
if a simulated centralized controller is destroyed, the 
collective behavior of   the unit is disrupted.    Of 

course, both problems can be addressed by 
introducing provisions in the software for transfer of 
command. But the complexity required to centrally 
resolve all the conflicts between centrally controlling 
a real world decentralized control process forces 
compromises and simplifications. To make up for 
these losses would entail increasing the complexity of 
the software. Second, generating the behaviors of all 
entities from a single source results in inefficient use 
of resources; more time is spent in the controller 
causing it to be overworked. Finally, modeling larger 
units, such as companies or battalions, becomes 
increasingly complex because the centralized 
controller has to control more vehicles. 

3.2 Decentralized Control Architectures (DCA) 

In a Decentralized Control Architecture (DCA), 
subordinate entities follow the unit's plan and 
commander's orders but make their own behavior 
decisions. Unlike a CCA, there is no unseen 
controller that makes decisions on their behalf; this 
approach mirrors cooperation in the real world. A 
DCA commander functions like a real world 
commander by giving and receiving orders from other 
entities. For example, a DCA commander may order 
an entity to move to a destination. Like the real 
world, the commander may only supply the entity 
with the location of the destination and not a precise 
route. In this case, the entity computes its route to 
reach the destination. 

DCAs have several advantages. First, unit or group 
cooperative behavior emerges as a result of direct 
cooperation between entities potentially resulting in 
realistic cooperative behavior in complex situations. 
Second, because behavior generation is distributed 
across entities, which can be distributed across 
computers, limited hardware resources can be used 
efficiently. Finally, DCAs give rise to modular 
implementations; e.g., a Platoon Commander's 
cooperative behavior can be housed in a module 
separate from modules containing behaviors of other 
commanders. Each module's behavior can be verified 
and validated independently. On the other hand, 
CCA implementations combine the behaviors of 
different levels in a unit into one module making 
verification and validation more difficult. 

When discussing DCAs two questions need to be 
answered. First, how do entities cooperate with each 
other? Second, how do entities know what task to do 
and when to do it? 

Entities can cooperate in a number of ways: 
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• Message Passing: Noreils [1993]), (Noreils 
[1992a]), (Noreils [1992b]), (Noreils [1992c]), 
(Parker [1994]), (Shin and Epstein [1990]), 
(Lefebvre and Saridis [1992]), (Smith and Davis 
[1981]), (Fisher and Woodridge [1994]), (Decker 
[1987]), (Ohko et. al. [1993]), and (Parker 
[1994]). 

• Shared Memory: (Laengle and Lueth [1994a]), 
(Laengle and Lueth [1994b]), (Corkill [1991]), 
(Occello and Demazeau [1994]), and (Dai et. al. 
[1993]). 

• Combination of Message Passing and Shared 
Memory: (Lun and Macleod [1992]), (Wang 
[1994]), and (Harmon et. al. [1986]). 

• Implicit Cooperation: (Payton and Dolan 
[1991]). 

Entities can be allocated tasks by: 

• Negotiation: (Noreils [1993]), (Noreils [1992a]), 
(Noreils [1992b]), (Noreils [1992c]), (Lun and 
Macleod [1992]), (Smith and Davis [1981]), 
(Fisher and Woodridge [1994]), (Decker [1987]), 
and (Ohko et. al. [1993]). 

• Self-contribution: (Corkill [1991]) and (Parker 
[1994]). 

A survey of DCAs and the above two questions are 
discussed in Rajput and Kan- [1995]. 

4. A Decentralized Control Architecture using 
Finite State Machines 

4.1 Approach 

To model cooperative behavior, 1ST chose to 
implement a DCA within the ModSAF CGF system. 
Traditional CGF systems have used CCAs for 
controlling cooperative behavior. The work described 
in this report is the first time a DCA has been 
implemented within a CGF system for controlling 
cooperative behavior. 

The DCA chosen is based on Finite State Machines 
(FSMs). FSMs were used as building blocks for the 
architecture; FSMs are a well understood formal 
process control mechanism (Sudkamp [1988]). 

Entities cooperate explicitly by exchanging simulated 
radio messages (Signal PDUs) and implicitly by 
observing other entities. Observation is implemented 
by an Observation Module, a software module that 
observes the battlefield situation and sends 
observation messages to the entity. 

The implementation is data driven and allows new 
behaviors to be defined quickly and easily through 
data files. In current CGF systems, considerable 
coding effort is required to create new cooperative 
behaviors. This increases development and 
prototyping time for new cooperative behaviors. 

4.2 Formal FSMs 

A formal FSM is defined as: 

1. A set of states: An FSM is in one of its 
states. The state of an FSM is also the state 
of the process being controlled by the FSM. 

2. Events: Only events cause an FSM to change 
states. 

3. State Transition Procedures (STPs): These 
are procedures (i.e., code) which are called 
to do work. STPs are used only during state 
transitions. 

FSMs have been defined formally (Sudkamp [1988]) 
but implemented to various degrees of formality. 
FSMs are an excellent process control technique. 
FSMs, as their name implies, track the state of a 
process, handling events which may cause the process 
to change state. 

Formal FSMs are often represented as diagrams. 
Consider the example of a coin-operated candy 
dispenser whose FSM is shown in Figure 1. 

Start 

{DispenseCandy} 

Figure I: FSM for a coin-operated candy dispenser. 

This machine accepts only nickels and dimes and 
dispenses candy worth $0.15. In Figure 1, the circles 
represent states and arrows represent state transitions. 
Above the state transition line, in angle brackets 
(< >), is the event causing the transition. Square 
brackets ([ ]) represent any events that are generated 
as part of the transition. Braces (( }) represent calls 
to STPs. 
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A formal FSM does not poll for events to change 
states; rather, events are generated and their arrival 
causes state transitions. This feature of formal FSMs 
is especially attractive because it eliminates 
inefficiencies introduced in polling. 

1ST considered implementing the DCA using 
ModSAF FSMs. In ModSAF, FSMs are not 
implemented formally: code is executed within states 
rather than by STPs during state transitions, and many 
state transitions are not event driven. Because formal 
FSMs provide an unambiguous way to control a 
process, they were used for the implementation 

4.3 FSM Communication 

An entity's cooperative behavior is implemented as an 
FSM. To cooperate, entities need to communicate 
and they do so via FSM communication. FSMs may 
communicate with each other (inter-FSM 
communication) or an FSM may communicate with 
itself (intra-FSM communication). 

4.3.1 Inter-FSM communication 

In inter-FSM communication, FSMs send events to 
each other. These events, called external events, 
often take the form of simulated "Radio Messages." 

An entity may generate external events to itself. 
These events are generated from an Observation 
Module and are called Observation Events. 
Observation Events are generated in response to 
battlefield conditions. 

4.3.2 Intra-FSM communication 

Using a common queue for external and internal 
events can lead to synchronization problems. State 
machine actions are non-preemptive; processing an 
internal event is done completely and, possibly, new 
internal events are generated in one execution thread. 
While internal events are being processed new 
external events may continue to arrive. If the external 
and internal events are processed in an interleaved 
manner unexpected situations can develop. Handling 
all possible interleaving of internal and external 
events is needlessly complicated. 

The solution is to queue external and internal events 
in separate queues. External events are put into one 
or more external event queues while internal events 
are put into an internal event queue. No external 
event is dispatched until the internal event queue is 
empty. This allows all intra-machine communication 
(spawned by an external event) to complete without 
interference from new external events. The approach 
also allows a single external event to be re-mapped 
into several internal events. This reduces machine 
complexity and breaks complex external events into 
simpler requests. 

4.4 FSM Engine 

Because formal FSMs do not exist in ModSAF, an 
FSM Engine (Figure 2) was developed to run formal 
FSMs. The FSM Engine contains an FSM's 
description in a State-Event Table. The State-Event 
Table is created by reading a data file FSM 
description (Section 5.3). The table is indexed by a 
state/event pair that determines the new state of the 
FSM; the indices are the current state of the FSM and 
the internal event to be processed. 

FSMs communicate with themselves by sending 
internal events to themselves. Consider the FSM for 
the coin-operated candy dispenser shown in Figure 1. 
Assume that the FSM is in state "$0.05." When a 
dime is deposited, the machine generates an internal 
event, dispense, to itself and transitions to the 
state "$0.15." The receipt of the dispense 
internal event signals the FSM to transition to another 
state and execute an STP (DispenseCandy). 

4.3.3 Event Queues 

FSMs communicate by generating external events 
between themselves. When external events arrive, 
they are first mapped to internal events and then put 
into an event queue for processing. There are two 
approaches for handling external and internal events: 
use one or two event queues. 

During the transition, external and internal events 
may be generated and STPs called. 

The FSM Engine receives input from two sources: 
Signal PDUs and Observation Events. Signal PDUs 
contain radio messages and simulate radio 
communication. Observation Events are generated by 
the Observation Module in response to battlefield 
situations. Radio messages and Observation Events 
are external events which are queued on two separate 
queues: Radio Message Queue and Observation 
Event Queue. 
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FSM Engine 

Internal Event Queue 

State-Event Table 

External Event h—I Radio Message Queue |» 
to 

Internal Event 
Mapper Observation Event Queue 

Internal Event 

New State 
Radio Message (External Events) 
State Transition Procedures 

Observation 
Module Observation 

Events 

Figure 2: FSM Engine. 

Simulated Battlefield (TDB, DIS Traffic) 

Signal PDUs  

Periodically, the external event queues are checked to 
see if any external event is waiting to be processed. 

The external event is removed from the queue, 
mapped into an internal event, and queued on the 
internal event queue. Then, internal events from the 
internal event queue are removed and processed. 

To process events, the FSM Engine needs to be called 
periodically. This is done by calling the FSM Engine 
from a non-transitioning ModSAF FSM. Each time 
the ModSAF FSM becomes active, it calls the FSM 
Engine; the FSM Engine can be thought of as 
embedded within the ModSAF FSM. Note that the 
ModSAF FSM does not do anything. Its sole purpose 
is to ensure that the FSM Engine is called 
periodically; all the work required in processing 
events and changing the behaviors of entities is done 
by the FSM Engine. 

5. Implementation 

5.1 Hierarchy of Commanders 

A vehicle can execute behaviors on many levels. 
Consider Vehicle 1 in Figure 3. The commander of 
this vehicle has three responsibilities, those of the 
Platoon Commander (PC), Section Commander (SC), 
and Vehicle Commander (VC). One way to represent 
the cooperative behavior of this commander would be 
to create a large and complex FSM that merges the 
platoon, section, and vehicle commander behaviors. 
This process can become arbitrarily complex as the 
hierarchy grows and commanders with more 
responsibilities are modeled. 

For example, for the hierarchy shown in Figure 3, 
Platoon-Section-Vehicle Commander, Section- 
Vehicle Commander, and Vehicle Commander FSMs 
would be needed to encapsulate all classes of 
cooperative behaviors. 

A h 
Vehicle 1    Vehicle 2 

PC FSM PC 

SC FSM SC SC 

VCFSM vc vc 

h & 
Vehicle 3   Vehicle 4 

; PC 

SC SC 

vc vc 

Section 1 Section 2 

Figure 3: Hierarchy of Commanders. 

Instead, 1ST established a hierarchy of commanders 
like the one shown in Figure 3. Each box in the 
figure represents a ModSAF FSM. Embedded inside 
each ModSAF FSM is the FSM Engine (Section 4.4). 

This approach allows complex behaviors to be split 
into fundamental behaviors that are implemented as 
separate FSMs; complex FSMs containing merged 
behaviors are thus avoided. For example, Vehicle 1 
(Figure 3) has three FSMs (Platoon, Section, and 
Vehicle Commander FSMs) controlling its behavior. 
Each FSM communicates with others. 
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The command hierarchy is created by higher level 
commander FSMs spawning lower level commander 
FSMs; for example, the Platoon Commander FSM 
spawns the Section Commander FSMs which in turn 
spawn Vehicle Commander FSMs. 

In addition, there are next in command (deputy) 
commanders, shown by dotted boxes in Figure 3. 
Deputy commanders assume command when the 
original commanders are disabled so that the unit's 
mission can continue unhindered (Section 5.4). They 
model the behavior of the original commander but do 
not communicate with other entities. This allows 
them to continuously track the original commanders 
behavior and assume command in case the original 
commander is disabled. In Figure 3, Vehicle 3 is a 
deputy Platoon Commander (i.e., Platoon Sergeant), 
and Vehicles 2 and 4 are deputy Section Commanders 
for Vehicles 1 and 3 respectively. 

To start, a user assigns a mission to the unit. As part 
of initialization, a data structure known as a Role 
Matrix is created. The Role Matrix is a two 
dimensional array of vehicle IDs and roles such as 
Platoon Commander, Section Commander, Vehicle 
Commander, and deputy commanders. 

Vehicle ID 1 2 3 4 
PC 1 0 0 0 
PC deputy 0 0 1 0 
SC 1 0 1 0 
SC deputy 0 1 0 1 
VC 1 1 1 1 

Figure 4: Simplified Role Matrix. 

Figure 4 shows a simplified Role Matrix for the 
commander hierarchy in Figure 3. The vehicles in the 
unit have IDs from 1 to 4. A "1" in a cell at the 
intersection of a vehicle ID column and role row 
means the vehicle is playing that role; for example, 
Vehicle 1 is the Platoon Commander, Section 
Commander, and Vehicle Commander. A "0" in a 
cell at the intersection of a vehicle ID column and 
role row means that the vehicle is not playing that 
role; for example, Vehicle 3 is not the Platoon 
Commander. Note that Vehicle 3 is a deputy Platoon 
Commander and Vehicles 2 and 4 are deputy Section 
Commanders. Because a Vehicle Commander's 
responsibility is limited to his vehicle's domain and 
another Vehicle Commander cannot assume his 
functions, there are no deputy Vehicle Commanders. 

This is represented by the absence of a deputy 
Vehicle Commanders row in the Role Matrix. 

A vehicle's Role Matrix is accessible from the 
vehicle's FSMs. Using the Role Matrix a vehicle can 
easily determine the role of other vehicles. In a real 
battlefield, a vehicle is designated roles before an 
exercise begins. The Role Matrix is a manifestation 
of this information in the computer. 

5.2 Bounding Overwatch 

The FSM architecture was tested on a platoon 
executing a Bounding Overwatch. Bounding 
Overwatch provides a simple and elegant way to test 
the architecture. In this behavior, a platoon advances 
by having its sections alternately move and overwatch 
the movement of the other section. The sections 
move until the platoon reaches an objective or enemy 
contact is made. By moving in this fashion, the 
platoon reduces the risk of being ambushed by enemy 
forces. The section that moves is called the Bounding 
Section while the section that keeps watch is called 
the Overwatch Section. 

Sections 5.2.1 through 5.2.3 show FSMs for the 
Platoon, Section, and Vehicle Commanders for 
Bounding Overwatch. These FSMs communicate via 
radio messages (explicit cooperation). Note that in 
the following discussion overwatch is also called 
"Cover." 

5.2.1 Platoon Commander FSM 

Start 

Start 
t sCart_overwatch) "*(     Wait     ) 

<plc_bound_done> 

(      Done     ) 

Figure 5: Bounding Overwatch Platoon Commander 
FSM. 

To start the process, the Platoon Commander FSM 
sends a radio message, [start_overwatch], and 
transitions to the Wait state (Figure 5). It then stays 
there until it is informed (via event 
<plt_bound_done>) the platoon is at the 
objective, when it goes to the Done state. 
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5.2.2 Section Commander FSM 

Figure 6 shows the Section Commander FSM for 
Bounding Overwatch. Initially the FSM is in the 
Waiting state. When a Section Commander 
receives the order to move (via event 
<start_move>), it sends a radio message, 
[start_move], to its Vehicle Commanders and 
transitions to the Move state. In this state the section 
moves toward an intermediate destination. 

When a Section Commander receives the order to 

The moving section may arrive at the intermediate 
destination in two ways. Either the Section 
Commander arrives first (event 
<my_bound_done> arrives) followed by the 
Wingman (event <wingman_complete> arrives) 
or vice versa. If the Section Commander arrives first, 
the FSM transitions to the I_arrive state. When 
the Wingman arrives (event 
<wingman_complete> arrives) the FSM 
transitions to the Cover state and as part of the 
transition does this: First, the Section Commander 
issues a radio message to its Vehicle Commanders to 

Figure 6: Bounding Overwatch Section Commander FSM. 

cover (via event <start_cover>), it sends a radio 
message, [start_cover], to its Vehicle 
Commanders and transitions to the Cover state 
where it overwatches the moving section. 

start cover and second, checks if the intermediate 
destination is the objective. If the section is at the 
objective it sends a radio message, [sec_at_obj ] 
(section at objective), otherwise the section is at an 
intermediate destination and a radio message, 
[sec_bound_done] (section bound done), is sent. 
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The section now overwatches the movement of the 
other section, which has transitioned from overwatch 
to move. 

5.2.3 Vehicle Commander FSM 
Stan 

<move_f inishei 
[veh_bound-done] 

(if (move_£inished) 

(move_finished] 

Figure 7: Bounding Overwatch Vehicle Commander 
FSM. 

Figure 7 shows the Bounding Overwatch Vehicle 
Commander FSM. Initially, the FSM is in the Wait 
state. The order to start a move (via event 
<start_move>) takes the FSM to the Move state. 
As part of the transition the FSM spawns a ModSAF 
Move task (via STP {SPAWN Move}). This is a 
low level ModSAP behavior that a vehicle uses to 
travel. 

Periodically, the Vehicle Commander checks if it has 
finished traveling. This check is made every time the 
FSM receives a <tick> event. When the move is 
finished the Vehicle Commander sends a radio 
message, [veh_bound_done] (vehicle bound 
done), and transitions to the Wait state to receive 
further orders from its Section Commander. 

5.3 Describing Commander FSMs in Data Files 

FSMs describing the cooperative behavior of 
commanders are written in data files. This approach 
allows quick behavior specification; a user only needs 
to change a data file to create a new behavior, code 
changes are not required. 

5.3.1 FSM Grammar Production Rules 

To describe FSMs, production rules were developed. 
These production rules specify the structure of an 
FSM description.    FSM descriptions are "parsed" 

based on production rules and a representation of the 
FSM is created inside the computer. 
The production rules for the FSM grammar are: 

FSM      =>   (State) 
State      =>   (state_name (Event)) II 

(state_name (Event)) State 
Event    =>   (event_name next_state 

(STP)) II 
(event_name next_state (STP)) 
Event 

STP      =>   (TRUE (Actions)) STP II 
(PRED (Actions) 
(Actions)) STP II (FUNC) II e 

Actions =>   MSG string Actions II 
EVENT string Actions II 
SPAWN string Actions II 
STOP string Actions II e 

PRED    =>   string 
FUNC   =>   string 

where: 
e is the symbol for a NULL string. 

An operator (TRUE, PRED, and FUNC) specifies 
how Actions are to be treated. TRUE means execute 
unconditionally the Actions that follow. PRED is a 
user specified predicate function. Based on the result 
of the predicate function, true or false, the first or the 
second list of Actions is executed. FUNC is a user 
defined function. The Actions specify what is to be 
done. MSG means to broadcast the string that 
follows as a radio message. EVENT means to put an 
internal event, string, on the internal event queue for 
processing. SPAWN means to spawn a ModSAF task 
specified by string. STOP means to stop a ModSAF 
task, specified by string, which was spawned earlier. 

5.4 Change in Command 

In the real world, when a commander becomes 
disabled, the next in command (deputy) commander 
takes charge. Shifting command enable units to 
continue their missions with minimal disruption. This 
important real world feature was implemented in this 
project. 

In the simulated battlefield, a deputy commander 
models his commander's cooperative behavior via an 
FSM similar to the commander's FSM. This model 
(FSM) is constantly updated through receipt of 
observation and radio messages. This information 
keeps the model synchronized with the original 
commander's   cooperative   behavior.       A   deputy 
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commander "knows" what his commander is doing 
because the deputy's commander's FSM goes through 
the same transitions as his commander's FSM. (An 
important characteristic of the model is that 
information flow is unidirectional; i.e., information 
contained in observation and radio messages flows 
into the model but does not flow out, e.g., a deputy 
commander does not transmit radio messages which 
are intended for transmission by the original 
commander). If required, a deputy commander can 
assume command and continue the mission from the 
last executed command of the original commander. 

In the simulated battlefield, all entities watch out for 
each other and respond when someone is disabled. 
When an entity is disabled, such as by a firepower 
kill, another Vehicle Commander is notified by a 
"vehicle destroyed" observation message from its 
Observation Module. The observation message 
contains the Vehicle ID of the disabled vehicle. 
Upon receipt of the Observation Message, the 
Vehicle Commander sends a "vehicle destroyed" 
radio message containing the disabled vehicle's 
Vehicle ID. This message is sent only once. 

A deputy commander runs a ModSAF FSM, called a 
Monitor FSM, to process vehicle-destroyed 
messages. Because deputy commanders are present 
at different levels in the command hierarchy, such as 
deputy commanders for Platoon and Section 
Commanders (Section 5.1), Monitor FSMs are also 
present at different levels. When a Monitor FSM 
receives a vehicle-destroyed message it checks the 
vehicle. ID in the message with the vehicle ID of the 
original commander. If they are different, the 
message is discarded. Otherwise, the Monitor FSM 
changes the Role Matrix (Section 5.1) to reflect the 
change of command. 

When a commander is disabled, ModSAF designates 
another entity as the commander and restarts the unit's 
mission. ModSAF developers believe that restarting 
the mission reflects the change in command; another 
entity is "promoted" to the commander. ModSAF's 
internal architecture imposed a barrier to 
implementing this change of command process. The 
new commander plans and executes the task using the 
current vehicles and positions. 

Because changes to the ModSAF software, to disable 
automatic mission restart, involve a fundamental 
change to the ModSAF architecture, 1ST did not 
pursue this approach. However, to test the transfer of 
command, 1ST designated an entity to be the Platoon 
Commander which is different than the ModSAF- 

designated Platoon Commander. When the IST- 
designated Platoon Commander is destroyed, control 
is transferred to the Platoon Sergeant. 

6. Results 

The formal FSM DCA was implemented in ModSAF 
version 1.5.1. Bounding Overwatch with explicit and 
implicit cooperation was implemented and tested. 

When the Bounding Overwatch order was given to a 
platoon using explicit cooperation, both vehicles in 
the Bounding Section started simultaneously because 
they each received the order via a radio message. 
When they reached the first overwatch position, the 
vehicles stopped and the Overwatch Section started 
moving. The sections repeated this process until the 
platoon was at the objective. 

When the Bounding Overwatch order was given to a 
platoon using implicit cooperation, the Section 
Commander of the Bounding Section started first. 
His Wingman remained stationary for a while until he 
noticed the Section Commander's movement. The 
Wingman then followed the Section Commander to 
the first overwatch position. When the Bounding 
Section stopped, the Overwatch Section started its 
bound. 1ST noted that the vehicles in the Bounding 
Section did not maintain as tight a formation, as 
compared to the formation of the vehicles in the 
Bounding Section in the explicit cooperation 
Bounding Overwatch, because of observation delays. 

7. Conclusions 

This project has implemented a Decentralized 
Control Architecture (DCA) within the ModSAF 
CGF system. In addition to mirroring cooperation in 
the real world, DCAs allow cooperation within larger 
units (companies, battalions, etc.) to be modeled with 
little increase in complexity. Explicit and implicit 
cooperation between entities has been demonstrated 
within a platoon engaged in a Bounding Overwatch. 

The cooperative behavior of an entity is implemented 
through FSMs. An entity's cooperative behavior is 
described in data files. These descriptions are read 
and converted into FSM representations inside the 
computer. Communication between entities is 
implemented by FSM communication. FSMs 
communicate by sending each other external events 
implemented as radio messages. An FSM 
communicates with itself by sending internal events. 
An FSM Engine, embedded within ModSAF, "reads" 
the description and executes the defined behavior. 
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The FSM Engine is general purpose and can be used 
by other ModSAF code; ModSAF has been extended. 

The FSMs use low level ModSAF behaviors. For 
example, a ModSAF task is used for vehicle travel as 
the underlying fundamental behavior. This attempts 
to reuse code as much as possible. Thus, in addition 
to being extendible, the approach is built on top of 
ModSAF. 

Simpler implementations result as a consequence of 
the FSM approach. Instead of modeling various 
responsibilities of a commander as a large and 
complex FSM, responsibilities corresponding to 
different levels in the command hierarchy are 
modeled as separate FSMs which communicate with 
each other. 
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1. Abstract 

One of the most time-consuming aspects of using 
computer generated forces (CGF's) is specifying 
their missions. At best, current tools organize in- 
formation around the individual entity or small 
groups of entities. At worst, current tools orga- 
nize information around the simulator code im- 
plementation. It is left to the user to translate 
between actual military command structure and 
current mission specification formats for CGF's, 
and to create higher levels of organization, possi- 
bly duplicating information shared at lower com- 
mand levels. As we attempt to include more and 
more entities within a scenario, mission specifica- 
tion can become the most difficult part of running 
an exercise. To ease the burden on the user, we 
have created a graphical tool that allows users to 
specify complete exercises for Navy fixed-wing air- 
craft missions in a manner consistent with military 
command structure. This tool was used success- 
fully to configure agents for a simulation exercise 
in October 1995, and more recently was used to 
great extent by novices during a week-long tuto- 
rial on our TacAir-Soar synthetic agents. 

2. Introduction 

In order to achieve human-like performance in sim- 
ulations, intelligent synthetic agents require the 
same input parameters that are briefed to actual 
pilots for their missions. Depending on the scope 
of the exercise and the mission type, the number 
of input parameters which must be specified for 
each agent can range from 50 to 100 or more. Of 
these, often less than 10 parameters are unique to 
an individual agent. The rest of the input data 
is common to other agents in the same mission 
or event. However, existing tools for generating 
synthetic forces require users to specify parame- 

ters on an agent by agent basis, requiring a huge 
duplication of effort when more than one agent is 
defined. These tools also present the user with 
the list of all parameters required for all possible 
mission types, leaving it up to the user to deter- 
mine which are relevant to the particular mission 
type currently selected. Because these tools sup- 
port the configuration of so many different types 
of synthetic forces in a very generic way, there is 
very little error checking available, leaving the user 
to track down problems at simulation time rather 
than during data entry. 

In developing a new tool for configuring our pi- 
lot agents, our goals were to reduce the time and 
effort required to configure the agents for large ex- 
ercises, and to allow domain experts to create mis- 
sions without having to understand the underly- 
ing implementation of the simulation. In order to 
achieve these goals and avoid the problems of ex- 
isting tools, the TacAir-Soar Exercise Editor was 
developed according to the following design crite- 
ria: 

• The Exercise Editor should be organized in a hi- 
erarchical fashion, following the briefing struc- 
ture used by the Navy. Agents defined at the 
lowest level inherit all data values entered at 
higher levels. 

• The information presented on the screen should 
be data-driven, so that the value of certain pa- 
rameters will affect whether or not the user will 
be prompted to enter values for other parame- 
ters. 

• The potential for user-input error should be re- 
duced by giving the user lists of possible set- 
tings from which to choose, by providing reason- 
able default values, and by implementing error- 
checking of data as it is being entered by the 
user. 
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The remainder of this paper describes the orga- 
nization and implementation of the Exercise Edi- 
tor and discusses the progress and results to date, 
and the future work planned. The Exercise Editor 
has been implemented primarily to support intel- 
ligent forces implemented in the TacAir-Soar sys- 
tem (Tambe et al., 1995 and Laird et al., 1995), 
although we expect it to be easily adaptable to 
many types of synthetic forces. 

3. Organization 

3.1 Briefing Structure 

The TacAir-Soar Exercise Editor organizational 
structure is based on actual pilot briefing hierar- 
chy as described to us by former Navy pilots dur- 
ing knowledge acquisition sessions (Petersen, 1995 
and Checchio, 1995-96). There are four briefing 
levels in the editor hierarchy: the Exercise level, 
Event level, Mission level and Element level. The 
Exercise level includes general information that is 
expected to be relevant to all pilot agents during 
the whole exercise, for instance rules of engage- 
ment, climatology, and terrain data. An Exercise 
consists of one or more Events, and each Event in- 
cludes information relevant to all activities which 
occur during a specific time period, for instance 
launch and recovery information and weather re- 
ports. Each Event consists of one or more Mis- 
sions, a coordinated activity designed around a 
specific target or objective. At the Mission level, 
items such as the specific mission type are identi- 
fied, route and target parameters are defined, the 
likelihood of ground and air threats are indicated 
and controller agencies are identified. Finally, at 
the Element level, individual aircraft are assigned, 
and call-signs, radio frequencies and formations 
are determined. Individual pilot agents defined 
at the Element level have knowledge of all data 
within their own Mission specification and at the 
Event and Exercise levels above it. 

The Exercise Editor is used to define one exer- 
cise at a time. Below the Exercise level, there 
can be any number of Events, Missions and Ele- 
ments. Events and Missions are identified by their 
respective Event and Mission numbers. Agents at 
the Element Level are identified by call-sign. The 
only order imposed on the lower levels is that the 
Events are numbered sequentially as they are cre- 
ated. This is done mainly to support the directory 
structure for the editor input and output files, but 
also follows the protocol of the Navy briefing hier- 

archy. Mission numbers are assigned by the user 
as are agent call-signs. At the Element level, the 
user can create an individual vehicle, a section (2 
aircraft) or a division (3 or 4 aircraft) to carry out 
the mission. 

Much of the information briefed to pilots is de- 
pendent on the type of mission being carried out 
and by the number and type of aircraft constitut- 
ing an element. Parameters required by a single 
agent flying a barrier combat air patrol are quite 
different from the parameters required by a divi- 
sion of aircraft conducting a strategic attack. The 
Exercise Editor prompts the user for only the pa- 
rameters required for a particular mission type and 
element configuration. All parameters related to 
a specific mission type are organized into a form 
which, whenever possible, follows the same format 
used by Navy pilots. When the user selects a mis- 
sion type, the corresponding form is presented for 
input. Likewise, if an element consists of only a 
single vehicle, the user will not be asked to define 
the formation type; and the list of possible forma- 
tion types displayed will be different for a section 
than for a division of aircraft. Users are not re- 
quired to decide which parameters must be defined 
for correct mission performance, since those that 
are not required will not be presented to the user 
for input. 

3.2 Graphical Structure 
The graphical structure of the Exercise Editor par- 
allels the briefing structure, resembling an inverted 
tree, with the Exercise level at the top and the El- 
ements making up the terminal leaf nodes. Each 
level has its own distinct screen format identify- 
ing the current level, and providing pushbuttons 
to move up or down to the next level. The user 
interacts with only one node at a time. 

At each level, the user is presented with a simple 
and consistent set of widgets for specifying param- 
eters. An example of the Exercise level screen is 
shown in Figure 1. The five basic widgets used 
are: 

• Buttons: Used to navigate from one level to 
another and to pop up/down related screens. 

• OptionMenus: Displays the current setting 
for a parameter. Options which are not cur- 
rently selected are only displayed when the 
menu is activated. 

• PulldownMenus: Used for various functions, 
such as selecting a particular mission to dis- 
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Radio Color-Freq Chart ... 
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Edit Events 

Figure 1: Sample Exercise Level Screen 

play, as indicated by the label on each Pulldown- 
Menu. 

• TextEntry: Used to enter free-form text val- 
ues. 

• RadioButtons: Displays the current setting 
for a parameter, but also displays all values not 
currently selected. 

Wherever possible, the user is presented with a 
list of possible choices to select from, rather than 
being forced to enter a new value at the keyboard, 
which is more time-consuming and more prone to 
user error. Free-form text entry widgets are used 
only when necessary, such as for specifying mission 
numbers and agent call-signs. 

In order to simplify the amount of information 
the user must interact with at one time, sets of 
related input parameters are grouped into forms, 
which are displayed by activating buttons on the 
main screen. For example, at the Exercise level, 
there are usually more than a dozen waypoints 
specified, with the name, latitude and longitude 
required for each point. Rather than try to display 
them all with the rest of the Exercise level data, 
the waypoints are grouped into a single form that 
is popped up by pressing the "Waypoints..." but- 
ton at the Exercise level (see Figure 1). Having 
a separate form for the waypoints also allows for 
the waypoint data to remain visible while the user 
traverses Event, Mission and Element levels. The 
grouping of related parameters is used through- 
out the Editor, and allows for simple, consistent 
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Figure 2: Briefing Status Tree 

screens through the four main levels. 

Several features have been built in to aid the user 
in navigating and reviewing the events and mis- 
sions which constitute an exercise. The Briefing 
Status Tree shown in Figure 2 is a separate window 
that provides a summary view of all Events, Mis- 
sions and Elements defined in the Exercise. The 
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Event and Mission numbers are identified, and 
call-signs and the number of vehicles are displayed 
for each Element. Each object in the Briefing Sta- 
tus Tree is represented by a pushbutton, which 
when activated will cause that object to be dis- 
played in the main window. The Briefing Status 
Tree allows users to quickly traverse the nodes in 
the exercise in any order; users are not limited to 
moving up and down the connected nodes of the 
tree. At the Event level, a more detailed summary 
of all missions defined in that event is presented 
in a format used by the Navy, listing aircraft type, 
mission type, number of aircraft per mission, sta- 
tion name and controller call-sign. 

A limited amount of error checking has been im- 
plemented, which alerts the user to inconsisten- 
cies at data entry, rather than forcing the user to 
track them down at execution time. Users are im- 
mediately alerted at the Mission level when con- 
troller call-signs are specified for which no con- 
troller agent has been defined, and are never per- 
mitted to enter non-numeric values where integers 
are required. 

4. Implementation 

The Exercise Editor is implemented in Tel, the 
Tool Command Language, developed by John 
Ousterhout, currently with Sun Microsystems. 
Tel is an interpreted scripting language with sev- 
eral hundred extensions, available in the public do- 
main. Two of these extensions were used in cre- 
ating the Exercise Editor to enhance its capabil- 
ities. The [incr Tel] extension package, written 
by Michael McLennan at AT&T Bell Laboratories, 
adds object-oriented facilities to Tel, and provides 
a means of supporting inheritance and encapsu- 
lating data in the Exercise Editor. Each level of 
the Editor has its own associated object type and 
methods for handling the data and propagating 
dependencies. Functionality at each level is easily 
expanded by changing the definition of the object 
and its methods, without compromising the in- 
tegrity of the other levels. The other extension 
package used for the Exercise Editor is tclMotif, 
developed by Jan Newmarch at the University of 
Canberra, which allows Tel programs to use the 
Motif set of widgets to create a graphical inter- 
face. tclMotif does not duplicate the Motif widget 
set — it uses the resident Tm library to create and 
manipulate the widgets. Thus the Exercise Editor 
graphical interface is consistent with all Motif ap- 

plications on a user's system and does not require 
the user to learn an additional set of graphical be- 
haviors. 

The battlefield simulation and aircraft used in 
TacAir-Soar are provided by ModSAF (Calder et 
al., 1993). In order for the Exercise Editor to 
generate ModSAF scenario files for running the 
simulations, several ModSAF libraries are linked 
into the Editor. The Editor then makes calls to 
ModSAF routines to read terrain database infor- 
mation, and to create the vehicles and waypoints 
in the persistent object database and save the 
database out to a scenario file. No modification to 
the ModSAF libraries is necessary and the func- 
tion calls are straightforward. 

In addition to generating ModSAF scenario files 
and reading terrain database files, the Exercise 
Editor generates agent mission files and exercise 
data files. Each agent mission file contains all data 
required by a particular agent to carry out its mis- 
sion; they are read by TacAir-Soar at startup. The 
exercise data files store the complete data for the 
entire exercise and are used only by the Exercise 
Editor for saving and restoring exercises. 

5. Progress and Results 

Our goal in creating the TacAir-Soar Exercise Ed- 
itor is to reduce significantly the time and exper- 
tise required to configure exercises for TacAir-Soar 
agents. A prototype of the Exercise Editor was 
used to configure agents for a simulation exercise 
called ED-1 in October 1995. Although the proto- 
type required several intermediate steps in order to 
start the simulation, the amount of time required 
to configure all of the agents was reduced from 
days to hours. The current version of the Exer- 
cise Editor generates the simulation scenario files 
directly, allowing a user to create complex events 
with many missions in just a few hours. Using 
the Exercise Editor makes it much easier to make 
changes to the exercise parameters and propagate 
those changes to all agents. It is now being used 
to generate all new missions for simulation exer- 
cises. In April, during a week-long tutorial on the 
TacAir-Soar system, novices were given a one-hour 
presentation on the Exercise Editor, followed by a 
short, hands-on working session. The users were 
able to modify existing exercises with few errors, 
and were confident that they would be able to gen- 
erate an entire exercise on their own with little dif- 
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ficulty. The Exercise Editor was used throughout 
the week to generate scenarios for testing various 
aspects of the TacAir-Soar system, allowing users 
to spend more time learning about the capabilities 
of the synthetic agents and less time figuring out 
how to specify missions. 

6. Future Work 

As we continue to expand the capabilities of our 
synthetic agents, the Exercise Editor must be 
modified to support new agent input requirements, 
which will consume most of our development ef- 
forts for the near term. Work is currently under- 
way to investigate adding a map-based interface 
to the Editor to allow users to specify flight plans 
and waypoints graphically, rather than through 
text input. Other proposed enhancements to the 
Editor include adding a copy feature to duplicate 
missions within an exercise, implementing better 
help facilities, providing a mechanism to specify 
which agents should run on which workstations, 
and adding a graphical capability for configuring 
weapons loadouts on individual aircraft. 
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1. Abstract 

The Scenario Analysis and Infrastructure Analysis 
tools (SAT/IAT) are currently being developed by 
SAIC under the SEID contract to support the STOW 
(Synthetic Theater of War) Exercise Implementation 
(XI) system. The simulation is responsible for aiding 
in the exercise generation, management, and 
infrastructure design and testing for Computer 
Generated Forces (CGF). Since future CGF 
exercises, including STOW, are required to support a 
distributed exercise of a large number of entities, a 
pre-exercise faster than real-time determination of 
scenario, network and computational validity is 
necessary. The SAT/IAT simulation executes at a 
rate of hundreds to one real-time. The modeling of 
an entire week's exercise in less than an hour allows a 
user to try different configurations with a quick 
turnaround time. 

One area in which the SAT/IAT is useful is in 
generating performance numbers for CGF 
applications before execution of a full scale exercise. 
The IAT can predict loads based upon simple models 
of host processor capabilities. Each CGF 
application's computational resources are calculated 
as the exercise unfolds. Predictions of network traffic 
at both the Wide Area Network (WAN) and Local 
Area Network (LAN) are provided. Therefore, for a 
given scenario, the IAT can generate information 
such as the number of entities that can be modeled 
per simulation process per host. Also, it is possible to 
provide the number of remote packets received per 
host, the number of packets received per LAN, and 

the number of packets transmitted over the WAN as a 
function of time. 

Another area where the SAT/IAT is useful is in 
predicting entity migration via dynamic load 
balancing. Using host processor loads over time, the 
IAT can predict when CGF applications are most 
likely to migrate entities to other CGF applications. 
The effects of entity migration upon the network 
infrastructure will be provided. Various algorithms 
that implement load balancing and entity migration 
can be modeled in order to determine the optimal 
computational and network performance. 

The major objective of the SAT/IAT is to simulate a 
given scenario at a very coarse level and provide 
processing and network loads upon a given 
infrastructure and network topology based upon the 
SAT output. The goals of the SAT are to 1). validate 
laydown information of an exercise's units on a 
synthetic environment (SE) database, 2). provide unit 
location, strength, logistical consumption, attrition, 
rate of sensor detection's and losses during execution 
of the scenario, 3). generate a profile of the units' 
processing and network requirements based upon 
their activity, and 4). provide coarse level network 
traffic to the IAT. The goals of the IAT are to 1). 
map the respective units and their entities to 
simulation processes to computers and the network 
topology, 2). calculate the processing and network 
loads on the infrastructure based upon the SAT 
output, and 3). supply the user with time-based 
predictions of network and computationally 
utilization. This includes an indication of 
overloading   of  resources   to   allow   the   user   to 
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reconfigure the hosts, network, and mapping units to 
nodes and simulation sites. 

The current process for Infrastructure and Scenario 
analysis involves a great deal of manual data 
manipulation. This process tends to be time 
consuming and less accurate. The SAT/IAT tool 
functionality will greatly reduce the time for analysis 
and increase the validity of the resultant analysis data. 

2. Scenario Analysis Tool 

2.1 SAT Functionality 

The goal of the Scenario Analysis Tool is to provide 
exercise planners with the capability to design, 
execute and refine a given exercise scenario. The 
SAT allows the user to initialize, save, load and 
perform analysis of a given scenario at a faster than 
real time execution rate. The quick turnaround allows 
the user to define a scenario at a very high level and 
refine it to a level of detail to be used as a starting 
point to plan an exercise. The SAT simulation 
performs analysis of a scenario at a coarse level of 
execution and is not intended to provide or predict 
battle outcomes. Instead it is used to determine if a 
given scenario is realistic in the sense of scenario 
planning and to interface with the IAT to predict and 
optimize network loading for a selected topology. 

The user begins by creating an exercise to analyze. 
The Corps Level Computer Generated Forces 
(CLCGF) Simulation Interface Unit (SIU) is utilized 
by the user for exercise laydown, initialization and 
visualization. Once the user defines the exercise that 
is under analysis, the data is saved in the SIU format 
and loaded to the SAT. Units represented at various 
echelons are placed on the SE database. The units are 
assigned routes and activities. The activities 
currently simulated are moves, attacks, and radar 
scans. The data is reformatted and sent to the SAT 
for analysis. The unit is assigned missions and is 
assigned to a simulation process. An algorithm will 
be used to optimally assign the unit to the process 
based on force type, unit size and LAN assignment 
constraints. The mission data which consists of a set 
of activities, time durations and waypoint locations 
are utilized to drive the discrete event scheduler 
controlling the SAT simulation. The SAT simulates 
each of the missions for each of the units defined. 
Currently the SAT will not simulate resupply units 
but includes automatic resupply when the units 
supplies are depleted and a saved message to the user 
will occur.   After  the scenario is executed the user 

has the ability to look at the resulting data and refine 
or change the given scenario. The SIU can be 
enabled so that the user can visualize the scenario as 
it unfolds. The user will have the capability to stop 
the scenario at a given point to save and analyze the 
data to determine whether or not to proceed. The 
SAT allows the planner to quickly determine scenario 
viability while providing the necessary network data 
to the IAT for network and infrastructure analysis. 
The following paragraphs will detail some of the 
outlined functionality described above. 

2.2 SAT Scenario Initialization / Creation 

The planner can create, load and edit exercise 
scenarios using the CLCGF SIU. The SIU runs as a 
separate process connecting to the SAT using sockets. 
Transmission Control Protocol / Internet Protocol 
(TCP/IP) datagrams are used by the SAT to send 
information updates to the SIU. The SIU enables the 
user to create unit representations of any type of force 
and entity type. Once the unit representation is 
defined it is added to the SIU and Table of 
Organization and Equipment (TOE) database. The 
databases are utilized by the planner to laydown the 
appropriate units for the specific exercise. When the 
desired units of a given scenario are placed on the 
terrain database the planner can save the SIU 
representation. This allows the capability to reload a 
particular scenario and make adjustments if 
necessary. When the planner is satisfied with the unit 
laydown it is saved and reformatted into data files to 
be read by the SAT. The data files which include the 
exercise, missions, units, processes and TOE files are 
used to initialize the SAT simulation. The exercise 
data file is used to initialize the scenario parameters 
such as data files to read in, database representation 
and parameters used to set simulation variables. The 
unit data file defines each of the units used in the 
scenario and their initial position. These units can be 
of any echelon, size, role and force. The missions file 
specifies the units movement, attack or scan activity 
each with an attached duration. The duration is based 
on the vehicles speed and distance between 
waypoints. The discrete event scheduler uses the 
mission data to execute the simulation. The processes 
data file specifies each of the units attached to each 
process. This will be created using the rule based 
algorithm mentioned earlier. During the initialization 
process of the SAT execution the unit data is sent to 
the SIU to place the units on the simulated terrain. 
The icons and colors signify the units' representation 
and strength. The user can then execute the 
simulation with the IAT enabled or disabled. If the 
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IAT is not selected an output file is generated to save 
the SAT data so that the IAT can run at a later time. 

2.3 SAT Simulation Execution 

The user starts by defining an exercise using the SIU 
or using a predefined scenario, the SAT reads in the 
necessary data files to execute the simulation. A 
mission process is executed for each unit. The units' 
waypoint, activity, and time duration of activity 
initiate the SAT process. The SAT schedules events 
based upon the activity's type and duration. Each of 
the waypoint route legs are divided into scheduled 
subevents. A full update of each of the units updates 
its location, velocity and interaction with other units. 
The units are currently divided into two categories , 
direct fire and indirect fire. The SAT also uses a TOE 
database lookup to provide relevant data to each of 
the unit types. This data includes entity composition, 
sensor range, engagement range, weapon impact 
range, and supplies. The direct fire unit's sensor 
range is utilized to determine if any units are within 
range. This is used to generate network traffic as well 
as to determine if an engagement can occur. For all 
units detected within sensor range, an update is 
performed. If this unit is an opposing force and within 
engage range an engagement is scheduled. During an 
engagement attrition is applied to each unit 
uniformly using Lanchester equations. Attrition is 
applied to supplies and entity counts based upon 
programmable parameters of defensive resistance and 
offensive power of each of the engaged units. 
Logistical consumption for petroleum, oil and 
lubricants (POL) as well as ammunition is also 
defined by the planner. During this engage activity, 
fire and detonate traffic is produced for infrastructure 
analysis. For indirect fire units an attack activity is 
scheduled and the weapon impact range is used to 
determine if and engagement of units within range are 
scheduled. The relevant network data is generated 
based on the interactions. The SAT simulation for 
each of the represented units occurs until one of the 
following events occurs : the unit is destroyed , 
missions complete or the planner stops the simulation. 

2.4 Direct / Indirect Fire , Radar Units 

Currently the SAT simulates three types of units 
based on the mission assigned. This includes direct 
fire, indirect fire and radar scanning units. Each unit 
is comprised of a combination of entity types. This 
data is stored in the TOE database. The ground unit 
types are divided into tanks, trucks, infantry fighting 
vehicles, dismounted infantry, and artillery vehicles. 

Air units consist of fixed wing aircraft, unmanned 
aerial vehicles and rotary winged aircraft . This will 
be expanded to include other types. The SIU provides 
tools to create any unit type at any echelon level. 
These tools will eventually be integrated with the 
SAT software. A unit defined as indirect fire behaves 
differently than a direct fire. Some of the units can 
take on different missions. For example a FWA can 
be on a bombing mission in which case it is defined 
to be an indirect fire classification. An FWA can also 
be defined as flying against a defined ground target in 
which case it becomes a direct fire class. 
Radar scan units include AWACs, JSTARS and any 
other intelligence gathering type unit. 

2.5 Unit Movement 

A simple algorithm is implemented for a units 
movement. A user defined route is used by defining a 
set of waypoints. Interpolation is used to move the 
unit from waypoint to waypoint. The units initial 
position in the units data file and the subsequent 
mission waypoints are used to simulate the units 
movement. Movements are currently limited by 
supplies, combat intensity and live/dead status. 
Attrition is applied to fuel consumption of a unit and 
is automatically resupplied when reaching a 
predefined resupply point. When a unit engages in 
combat with an opposing unit an attrition value is 
used to decrease the amount of supplies and strength. 
Once the unit has reached a user defined attrition 
percentage the unit stops its movement and a 
message is generated for the planner. Eventually the 
SAT will be integrated with a terrain module to use 
terrain factors to influence the units route planning 
and movement. 

2.6 Unit Engagement 

An engagement process links two units in the case of 
direct fire or a unit and an indirect fire position. An 
engagement occurs if the unit is within engage range 
and has strength and supplies. The process is initiated 
from full update. The duration of an engagement is 
estimated and a faster update rate is set. The duration 
is estimated as the minimum of the time for either unit 
to be destroyed ,pass out of engagement range or the 
completion of an indirect fire activity. Engagement 
range is specified in the TOE data file for each type 
of unit. A weapon impact point range is used to 
simulate indirect fire units. The engagement will 
update the strength and logistical status of each unit 
(ammo and fuel consumed and destroyed). Attrition 
is modeled at very low fidelity,    but follows the 
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standard service modeling practices. The losses are 
equal percentage losses based on relative fire power 
and time since last update. The next engagement is 
scheduled at the end of the interval. If a one sided 
engagement occurs , it continues as in the case of 
FWA attacking an undefended column of logistical 
trucks. 

2.7 SAT Network Flow Data 

The SAT produces network flow data based on the 
unit's activity and its interaction with relevant units. 
The data is in the form of process source, data type, 
flow rate, and process destination. The flow rate is 
based on Engineering Demonstration #1 (EDI) 
network traffic results. Currently the SAT generates 
the significant types of Distributed Interactive 
Simulation (DIS) Protocol Data Units (PDU). These 
include entity state, emission, transmitter, 
environmental, data collection, signal, fire and 
detonate PDUs. This data was used to validate the 
existing software. 

2.8 SAT Analysis Data 

As the initialized exercise progresses, SAT 
information is collected to provide information to the 
planner. The SAT can measure combat activity, 
losses, resupply points for each of the units 
participating in the exercise. The SAT saves 
scoreboard data which displays attrition for each of 
the units by alignment and its entities. The SAT 
produces diagnostic data if enabled for each of the 
runs. This data is in Excel spreadsheet format and 
tools will be developed to extract, reformat and 
analyze the data in order to be utilized efficiently by 
the planner. 

2.9 SAT Visualization 

The SAT utilizes the simulation created by the 
CLCGF effort. The SIU is used by the planner for 
exercise planning and initialization and also for the 
plan view display (PVD). Once a scenario is 
constructed the data is sent by the SIU to the SAT. 
The SAT simulation is started and the scenario is 
executed. As the SAT is executing the units' data is 
sent back to the SIU for display. The units are placed 
onto the SE database and tagged with the appropriate 
information (call sign, speed, location). As the move 
activities are executed for each of the units the 
position , velocity and strength of the unit is updated 
to the SIU PVD. This allows the planner to visualize 
the exercise as it executes. Once an engagement 

occurs the strength is also updated. Color codes are 
used to signify the percentage of strength remaining 
for a unit. The unit turns black when all of its entities 
have been destroyed. The planner can use this data to 
determine the integrity of the scenario and replan if 
necessary. 
The SAT also provides the user with a graphical user 
interface that provides status of the units including 
position, velocity, alignment, simulation process 
assigned, number of entities and supplies. This data 
is dynamically updated as the scenario progresses. 

3. Infrastructure Analysis Tool 

3.1 Functionality 

The IAT has been designed to execute in conjunction 
with the SAT or in standalone mode, accepting as 
input the generated output of a previous SAT 
execution. The IAT accepts packet flow data and 
applies it to the network infrastructure. In order to 
model the packet flow data, the IAT requires a 
network topology and a list of simulation processes. 
Regardless of how the IAT is invoked, each IAT 
invocation is associated with a specific SAT scenario, 
consisting of one or more unit/mission pairs which 
are associated with one or more simulation processes. 

3.1.1 Network Representation 
The network infrastructure is specified by the user. 
Currently, this is done using data files. The network 
infrastructure consists of one or more LANs 
connected over a WAN. The two WAN 
configurations supported by the IAT are the Defense 
Simulation Internet (DSI) and the Advance 
Technology Demonstration (ATD) network / ACTS 
ATM network (AAI). Once a WAN is selected, the 
user can create sites with one or more LANs and 
connect each site to the WAN. The link connection 
types, such as Tl, T3, etc., are configurable by the 
user. The three LAN configurations currently 
supported by the IAT are Ethernet, Switched 
Ethernet, and Fiber Distributed Data Interface 
(FDDI). For each LAN, the user specifies the number 
of nodes and the type of each node. The nodes can be 
routers or simulation hosts, such as Sun, Silicon 
Graphics (SGI), Hewlett-Packard (HP), and Digital 
(DEC) workstations or Network Personal Computers 
(PC). 

3.1.2 Network Initialization 
The IAT accepts the user-specified network topology 
and creates an aggregate network, which consists of 
nodes and links. The characteristics of the nodes and 
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links are initialized via a table lookup, based upon 
type. This information, which currently consists of 
commercially available data, is critical for the proper 
determination of processor and network loading. For 
nodes, this data includes the number of processors per 
node, the processor type, and the ratings per 
processor. For links, this data is the bandwidth of the 
link. 

3.1.3 Assignment of Processes to Hosts 
Given the network topology and the list of simulation 
processes, the user specifies the assignment of 
processes to simulation hosts' processors. The IAT 
provides the capability to save the current 
process/host assignments in order to be recalled for 
future executions of the selected SAT scenario. 

3.1.4 Network and Host Loading 
As the IAT executes, it computes the loading across 
the entire aggregate network of simulation nodes and 
links. The SAT provides the IAT packet flow rates 
from source to destination simulation processes. 
There are two types of packet flows: those which are 
added across the network, known as "Insertion" 
flows, and those which are removed from the 
network, known as "Deletion" flows. Using the user- 
specified process/host assignments (section 3.1.3), the 
IAT determines the "best" path from the source host 
to the destination host. The "best" path algorithm 
currently is based upon the fewest number of hops, 
but can easily be modified to include other variables 
such as current network traffic and cost. The IAT 
then applies the "Insertion" or "Deletion" packet flow 
to all nodes and links along the resultant path. 

The network link calculation is simply specified as 
the data rate (bits per second). The simulation host 
loading calculation is based upon the number of 
entities simulated on the host and the remote packets 
received/processed by the host. The host loading 
equation was provided by MIT Lincoln Laboratories, 
based upon the results of ED #1. 

3.1 Visualization 

During the execution of a SAT scenario, the IAT 
displays the scenario's effect upon the specified 
network topology. The IAT provides a GUI which 
shows the network and host loading. For simulation 
hosts, the GUI displays their type, the assigned 
simulation process, and CPU loading. For links, the 
GUI displays the hosts connected by the link, their 
type, the bandwidth, and the current data rate in bits 
per second (bps). As the IAT executes and calculates 

the CPU and network loading, it updates the GUI 
with the new load values. To signal to the user 
potential problems, the background color of the load 
entries changes between green, yellow, and red. 
These colors respectively represent less than 50% 
capacity, greater than 50% but not full capacity, and 
full capacity or overload. 

3.1 Analysis 

In the end, it is the IAT analysis data which is most 
important to the user. While the IAT provides a 
visualization capability which gives the user an idea 
of the network effects, it is the statistics it gathers 
and outputs which are crucial. Statistics currently 
gathered by the IAT include average flow rate 
between simulation hosts, average flow rate between 
all nodes, and peak flow rate between simulation 
hosts. Additional statistics to be gathered include the 
number of remote packets received per host, the 
number of packets received per LAN, and the number 
of packets transmitted over the WAN as a function of 
time. The analysis output can easily be input to an 
Excel spreadsheet. It should be noted that this type of 
analysis and output is time-consuming as it is 
routinely done by hand. 

Another important statistic which the IAT will gather 
is simulation host processor loads over time. The 
IAT will use this to predict when simulation 
processes, such as ModSAF, are most likely to 
migrate entities to other simulation processes in order 
to balance the CPU load throughout the network. 

3.2 Optimal Process/Host Assignment 

The selected assignments of simulation processes to 
hosts can be a key determinant as to whether an 
exercise plan is or is not feasible. Different 
assignments can stress the infrastructure in different 
ways, and the user may wish to re-run the same SAT 
scenario with different process/host assignments so as 
to examine the type and level of stresses on the 
infrastructure. Since the user of the IAT is 
attempting to support large distributed exercises, 
exploring the alternative assignments of processes to 
hosts can be a laborious task. 

In order to ease this process, the IAT will provide a 
utility which will suggest good process-to-host 
assignment for a given SAT scenario and network 
topology, for various different measures of stress on 
the infrastructure. The current design develops the 
initial assignment based on grouping units of similar 
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echelon and service that are close to each other in the 
initial scenario laydown. This is based on the two 
heuristics that the units are likely to share simulation 
support software and are likely to be close to each 
other in the simulated command hierarchy, sharing 
support software, or a common controller for several 
simulations makes it desirable that they be co-located 
for cost reasons. If they are closely linked in the 
command structure, it is likely that the units will stay 
close throughout the exercise. This means that they 
would be kept on the LAN to minimize traffic across 
the WAN. 
After the SAT has been executed and a matrix of 
process-to-process flows over time is available, this 
assignment can be improved. 
For example, individual processes can be swapped 
until no further reduction in stress is found. As the 
SAT provides data over time, it is now possible to 
modify assignments so as to reduce the peak loads on 
different LANs, even though they occur at different 
times, without having to consider only the average 
flows, or only the peak flows. In the first case, peaks 
would be ignored. In the second case, the user is 
forced to work under the false assumption that all 
inter-process flows peak simultaneously. We plan to 
include real-world constraints on swaps, such as 
required matching of specific process to specialized 
hosts, keeping simulators and simulations near their 
controllers, etc. 

4. Planned Capabilities 

The SAT/IAT is currently in BETA release. The 
following items outlines some of the major planned 
capabilities. 

The SAT will have the capability to test and 
analyze      various      multicast      schemes 
developed under the STOW contract. 
SAT/IAT     will   have   the   capability   to 
simulate the effects of 
aggregation/disaggregration and its impact 
on the network. 
The SAT/IAT will simulate the High Level 
Architecture (HLA) including insertion of 
the Federation object model for Interest 
management and support of data object 
passing. 
The SAT will be capable of simulating the 
effects of the Run-Time-Infrastructure (RTI) 
as well as the Simulation Support 
Framework (SSF) used for the STOW 
contract. 
Replace the IAT network topology data files 
with a GUI which provides the user with the 
ability to create, modify, and save network 
configurations. It will provide the user with 
the choices of WAN and LAN types as well 
as node types (routers, workstations, etc.). 
Future IAT visualization GUI enhancements 
will replace the network and host entry list 
with a connected network of nodes and 
links. The size of the nodes and links will 
increase or decrease based upon its 
corresponding load and data rate values. In 
addition, the colors of the nodes and links 
will change similar to the way the GUI 
currently does this for load entries. 
Enhance capability of SAT/IAT simulation 
based on STOW contract scheduled 
software release / task schedule. 

214 



Data Files 
Interactive GUI 
Terrain Models 
Mission Planning 

Scenario TCL/Tk GUI Display 
Scenario Statistics 

Data Files 
Interactive GUI 

SIU 

ModSAFPVD 
Scenario creation 
Visualization 
Color coded 
Unit representation 
Socket connection 

Scenario 
Placement 
Unit movement 
Sensing 
Engagement 
Attrition 
Information Reporting 

Data Flow 
(PTAP) 

Insertion / Deletion 
Objects 
Attribute Data 

Network Topology 
Interest Management 
Map Units to Nodes 
Path determination 
Update Path Loading 
Information Reporting 

Figure 1 : SAT/IAT/SIU High Level Diagram 

5. SAT/IAT Functionality 

The illustration in Figure 1 shows the partitioning of 
the high level functions of the SAT, the IAT, and the 
CLCGF SIU as well as the data flow among these 
components. As mentioned earlier, the SAT and the 
SIU communicate using datagrams to create, 
initialize, and update a scenario. The SAT 
communicates with the IAT using packet flow rates, 
which are called PTAPs (source Process, data Type, 
flow Amount, and destination Process). This diagram 
also indicates the use of data files between the SAT 
and the IAT to allow either of these tools to run 
standalone. 

6. Other related efforts 

The SAT simulation is being utilized to support the 
JPSD DIS PDU to HLA translation effort. The SAT 
has been integrated with the translator and it will be 
used for testing the software by creating different 
scenarios to drive the Common software and the RTI. 
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1. Abstract 

We are developing a hand-held system to control 
ModSAF and its 3D visualization. The interface, 
called QuickSet, combines speech and pen-based 
gesture input, and allows the user to set up training 
exercises by creating forces and control measures, 
and to control the exercise by assigning tasks to the 
forces. The interface consists of a PDA (a hand-held 
PC weighing roughly 3 lbs) employing wireless LAN 
communications, color screen, microphone, pen 
stylus, on-board speech recognition, and on-board 
gesture recognition. Communication between the 
military simulation system and the PDA is brokered 
by the Open Agent Architecture. 

The design of speech commands and the pen gestures 
is driven by observations of real users using a 
simulated interface. These observations occur in 
Wizard-of-Oz experiments in which a human 
collaborator plays the role of the speech and gesture 
recognizers. This methodology allows us to tailor 
the interface to the users, and to do so before the 
system is built. Subsequently, the system is built and 
tried by real users. 

2. Introduction 

The STOW-97 exercise anticipates substantial 
expansion in the number and types of entities to be 
created and simulated. However, the graphical user 
interface paradigm employed in the core simulator 
(ModSAF (Courtemanche and Ceranowicz, 1995)) 
will not scale easily to larger exercises. For example, 
the following (Figure 1) is the entity creation menu 
for MCSAF (USMC ModSAF). Note that for 
company-level training with LeatherNet the menu 
fills a 21" SGI screen. 

Clearly the ModSAF GUI as currently formulated 
has exceeded the design parameters for effective GUI 
interaction. Given that users also express a desire for 
a small portable device for simulation set-up, a new 
user interface paradigm needs to be employed. We 
propose use of multimodal interaction—employing 

speech, pen, and GUI technologies as best fits the 
problem at hand. 

Figure 1: One menu from the MCSAF unit editor. 

Our goal is to build a hand-held system that can be 
used to control LeatherNet, the USMC training 
simulation facility developed at NRaD (Clarkson, 
1996), which employs ModSAF for combat 
simulation and CommandVu, an NRaD-enhanced 
version of NPSNET (Zyda, Pratt, Monahan, and 
Wilson, 1992), for 3D terrain visualization. Recently 
SRI International added the CommandTalk system 
(Moore, 1995), which provides speech input based 
on Marine Corps radio communication. 

CommandVu is controlled by a special GUI called 
VABS. VABS attempts to make available the 
extensive functionality of CommandVu with a small 
numerical keyboard, and thus users must rely on a 
labyrinth of modes and mode-switching keys. In 
addition, some CommandVu commands require the 
selection of a vehicle by mouse click. Fast moving 
vehicles have proven difficult to select. 

QuickSet combines speech and pen-based gesture 
input, and allows the user to set up LeatherNet 
training exercises by creating forces and control 
measures, and to control the exercise by assigning 
tasks to the  forces (Cohen,  Pittman,  Smith,  and 
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Yang, 1996). It also allows the user to control the 
viewpoint of the CommandVu terrain visualization, 
along with its many features (radar, HUD, tethered 
modes, etc.), and also provides control of video 
switching for large-screen displays. The system 
consists of a PDA (a hand-held PC weighing roughly 
3 lbs) employing wireless LAN communications, 
color screen, microphone, pen stylus, on-board 
speech recognition, and on-board gesture 
recognition. Communication between ModSAF and 
the PDA is brokered by the Open Agent Architecture 
(Cohen, Cheyer, Wang, and Baeg, 1994). Figure 2 
shows an artist's rendition of QuickSet controlling 
the LeatherNet "Cave" display, and Figure 3 shows 
collaborative use of the system for creating units, 
areas, lines, and a minefield breach. 

Figure 2: Artist's rendition of multimodal 
interaction with 3D simulation, 2D maps on 
PDAs, and a "deployable unit." 

Figure   3:   Using   QuickSet   for   multimodal, 
collaborative simulation set-up. 

Speech input and pen input each have advantages and 
disadvantages.    Speech enables naming things not 

currently visible on the screen, such as platoons just 
out of view on a map, or tasks, procedures, rules, or 
situations that do not have an iconic presentation. 
Speech is also faster for issuing commands. Pen 
input is often more convenient (and more accurate) 
for indicating objects that are currently in view on the 
screen. Pen input also allows specification of 
irregular lines that might indicate routes, or 
boundaries of areas such as minefields, swamps, 
landing zones, assembly areas, etc. Moreover pen 
input has the advantage of being usable in public 
places, where one might not want to verbalize 
commands because of privacy or secrecy, and also is 
usable where the noise of weapons, aircraft, and 
ground   vehicles   can   prevent   use   of  a   speech 

Our multimodal input system gives the user the 
ability to capitalize on both sets of advantages, using 
whichever modality meets the need of the moment. 
In addition, experimental subjects often switch 
modes to deal with error correction, writing a word 
that the speech system just cannot recognize, or 
uttering a word that the pen system fails to recognize. 

3. High-Fidelity User Interface Simulations 

We have investigated the use of speech-only, pen- 
only, and combined speech-pen input modalities in a 
variety of tasks, using high-fidelity Wizard-of-Oz 
simulations (Oviatt, 1996; Oviatt, Cohen, Fong, and 
Frank, 1992; Oviatt, Cohen, and Wang, 1994). In 
these experiments, subjects perform tasks such as 
making airline reservations, checking bank accounts, 
or updating maps and locating houses on maps for 
real estate clients. The subjects use what they believe 
to be a speech recognizer and a pen gesture 
recognizer to enter commands. In fact, the 
recognition is performed by a collaborator hiding in 
an adjacent room. 

These studies demonstrate that combined speech-pen 
interfaces, as compared to speech-only or pen-only 
interfaces, reduce user's wordiness, utterance length, 
lexical variability, disfluencies, bigram perplexity, 
and syntactic ambiguity (i.e., number of parses 
generated). This yields significantly faster task 
performance, and significantly fewer user errors. Not 
surprisingly, experiment subjects show a strong 
preference for the multimodal interface, as can be 
seen in Figure 4. 
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Figure 4: Self-reported preference for multimodal 
versus unimodal interaction in verbal, 
quantitative, and map-based simulations. 

4. The Open Agent Architecture 

The Open Agent Architecture (OAA) (Cohen, 
Cheyer, Wang, and Baeg, 1994) is based on 
FLiPSiDE (Schwartz, 1993), an enhanced blackboard 
architecture. In the traditional blackboard model 
individual knowledge sources (agents) communicate 
by posting and reading messages on a common 
blackboard. An agent will periodically poll the board 
to see if there are any posted goals (from other 
agents) it can solve; when an agent needs help, it can 
post a goal to be solved, then retrieve the answer 
when it appears on the board. The OAA model 
enhances this with a facilitator agent resident on the 
blackboard. This facilitator stores the blackboard 
data, identifies agents that can solve particular posted 
goals and routes requests to the appropriate agents. 

In the Open Agent architecture all communication 
among the agents takes place through the blackboard 
and its facilitator agent. In addition to the standard 
blackboard operations of posting and reading, agents 
in an OAA can send general and specific queries to 
the blackboard's facilitator agent and they can have 
the facilitator set triggers. A general query asks the 
facilitator agent to route the goal to be solved to any 
or all agents that can solve it, a specific query tells 
the facilitator to route the query to a specified agent, 
and by setting a trigger an agent is asking the 
facilitator to notify it when a specific event has 
occurred. The OAA uses an interagent 
communication language (ICL) that consists of hom 
clauses. The language is a standard prolog enhanced 
with certain temporal operators. 

Under the Open Agent Architecture, when an agent 
joins a blackboard, it registers with the blackboard, 
and with the facilitator agent, by providing a list of 
goals it can solve, and (optionally) with a list of goals 
to which the agent wishes to subscribe; the facilitator 
will add the agent to its list of available knowledge 
sources. Whenever a goal to be solved is posted to 
the blackboard, the facilitator routes the goal to a 
subset of those registered agents that have claimed to 
be able to solve it. When a message is posted to the 
blackboard by an agent, the facilitator will route the 
message to all the agents that have subscribed to 
messages of that type. The OAA's facilitated 
architecture allows blackboard communication to be 
more efficient than in a standard blackboard 
architecture-agents no longer have to continually 
poll the board, their help will be requested when a 
goal for them to solve is posted, and they will be 
notified when messages for them, either requested 
solutions or predicates they have subscribed to, are 
posted to the blackboard. Agents only need to initiate 
communication with the blackboard when they have 
a request to make of another agent, or when they 
need a predicate they do not subscribe to. 

The Open Agent Architecture is a flexible system 
that provides a means for "agentifying" previously 
written programs through a library containing the 
basic features of the OAA's ICL. This library can be 
linked with existing programs, allowing a legacy 
program to function as an OAA agent. Libraries 
currently exist for programs written in Prolog, C, 
C++, Visual Basic, and Java. 

In its QuickSet implementation, the OAA uses ten 
primary agents to control the simulation and to 
provide windows into the simulation via the world 
wide web and CommandVu. The QuickSet agent 
configuration is illustrated in Figure 5. The natural 
language agent (Gemini (Dowding et. al. 1993)), the 
multimodal interpretation agent, an agent to execute 
the logical forms produced by the natural language 
agent, the agentified ModSAF, and the PDA-based 
agents (the user interface agent (UI agent), gesture 
recognizer and the speech recognizer) are used to 
control the ModSAF simulation. The other agents 
(video controller, web agent, and CommandVu 
agent) are used to control the various user interfaces 
that are displaying the simulation. The blackboard, 
Gemini, the logical form agent, and the agentified 
version of ModSAF are all provided by SRJ 
International. 
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Figure 5: The blackboard serves as a facilitator, channeling queries to agents who claim they can solve them. 

The QuickSet system is run in a multi-platform, 
multi-os environment; the PDA agents are in a 
Windows95 environment, ModSAF and 
CommandVu run on SGI platforms under IRIX, and 
the other agents can run in either the SGI 
environment or on SparcStations under SunOS. 

An agent's ability to subscribe to one or more 
predicates provides the basis for an initial 
collaboration facility among users. When a user 
enters the QuickSet system, the PDA's UI agent 
subscribes to the ink predicate. Whenever any PDA 
in the system produces ink, the blackboard's 
facilitator agent will route the ink to every other 
PDA. In this way, all user input appears on every 
PDA; every user is made aware of the totality of 
input in the system. 

4.1 World Wide Web Access to ModSAF 

The web agent allows an interested observer to watch 
the simulation from any workstation supporting a 
Java-enabled World Wide Web browser, as seen in 

Figure 6. The web agent is an agentified Java applet 
embedded in a web page. Because NetScape 
constrains Java applets to interact only with their 
home domain, a web server is run on the same host 
as the QuickSet blackboard. Communicating through 
the server, the web agent queries the blackboard for 
information (e.g. unit positions, objectives, lines of 
departure). The blackboard routes the request to the 
ModSAF agent, then routes the answer back to the 
web agent. By repeatedly querying for current 
information, the web agent is able to maintain an up- 
to-date display of the status of the simulation. Our 
future plans include enhancing this agent to enable it 
to update the simulation through pen/voice 
interaction. 
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Figure 6: The Java applet shows the ModSAF 
map, units, lines, and objectives. 

4.2 Using the QuickSet PDA 

Under the QuickSet system, the ModSAF simulation 
is controlled using the PDA. After the user interface 
agent (UI agent) has connected to the blackboard, an 
image of the current exercise's terrain appears on the 
PDA screen (Figure 6). The PDA user can control the 
ModSAF simulation by a combination of gesture and 
speech directed at the PDA. For instance, to create a 
new unit a user might click the pen on the map (at the 
spot the unit is to be placed) and utter "m one a one 
platoon". The UI agent directs the speech stream to 
the speech agent for conversion to a list of 
recognized words; at the same time, the pen click is 
directed to the gesture agent. The information in the 
two streams are combined (the integration process is 
described in detail in the sequel), and the resultant 
command is sent to the ModSAF simulation. 

In addition to controlling the simulation, a PDA user 
can effect other simulation visualization tools. 
Speech commands issued through the PDA (e.g. 
"commandvu world view on", "commandvu go to 
one thousand") are routed to the CommandVu agent, 
controlling the CommandVu display. A video 
switching agent controls the video signal reaching a 
large display monitor in our demonstration room. 

Currently the video switching agent can choose 
between the ModSAF display, the web agent, 
CommandVu, and one PDA screen. 

5. The QuickSet Gesture Recognizer 

The QuickSet gesture recognizer consists of a neural 
network and a set of hidden Markov models. For the 
neural network recognizer the gesture is size 
normalized, centered in a 2D image, and fed into the 
neural network as pixels (Pittman, 1991). For the 
HMM recognizer the ink is smoothed, resampled, 
and converted to deltas, and fed to the HMM 
recognizer. 

Both recognizers provide the same coverage (they 
recognize the same set of gestures). These gestures, 
some of which are illustrated in Figure 7, include 
various military map symbols (platoon, mortar, 
fortified line, etc.), editing gestures (deletion, 
grouping), route indications, area indications, taps, 
lassos, etc. The probability estimates from the two 
recognizers are combined to yield probabilities for 
each of the possible interpretations. 

X     < 
deletion       grouping 

letter "c"   mortar 

platoon   mechanized 
company 

fortified line 

- 
obstacle line 

phase line 

line of movement 

Figure 7: Some of the symbols and gestures used 
in QuickSet. 

The inclusion of route and area indications creates a 
special problem for the recognizers. Both 
recognizers recognize shape (although they see the 
shape in different data formats). But as Figure 8 
shows, route and area indications may have a variety 
of shapes. This problem is further compounded by 
the fact that we want the recognizer to be robust in 
the face of sloppy writing. More typical, sloppy 
forms of various map symbols, such as are illustrated 
in Figure 9, will often take the same shape as some 
route and area indications. A solution for this 
problem can be found by combining the outputs from 
the gesture recognizer with the outputs from the 
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speech recognizer, as is described in the following 
section. 

logical forms to represent various interpretations of 
the speech recognizer, along with their probabilities. 

O 
Figure 8: Pen drawings of routes and areas. 
Routes and areas do not have signature shapes that 
can be used to identify them. 

2    Sb     ex-     O 
mortar      platoon        deletion        letter "c' 

Figure 9: Typical pen input from real users. The 
recognizer must be robust in the face of sloppy 
input. 

6. Integrating Speech And Gesture Recognizers 

Multimodal input allows error correction by users by 
switching modes. But it also enables another type of 
error correction, an automatic form of error 
correction in which the system combines roughly 
concurrent pen gestures and speech utterances to 
form a single multimodal command. 

For instance, the user might speak the command: 
"M1A1 platoon follow this route" while 
concurrently drawing a route with the pen from the 
platoon to some objective. This is illustrated in 
Figure 10. Depending on the shape of the route, the 
gesture recognizer might have (mis)recognized this 
gesture as a route, an area, a tap, a letter or digit, a 
map symbol, or an editing gesture. The 
interpretation with the highest probability is shown 
on the PDA. But as seen in Figure 11, the gesture 
recognizer also issues a logical form to the 
blackboard that indicates the probabilities of each of 
the interpretations. Those interpretations that involve 
objects on the screen (such as taps and group 
encirclings, called "lassos") include the object IDs of 
those objects.    In the future we will add similar 

Figure 10: The user enters a multimodal 
command. The ink and its interpretation are 
shown in place on the map. In this example the 
ink was misrecognized as an area. The user's 
speech (as recognized) is displayed at the bottom 
The user can correct speech misrecognitions with 
the pen. 

gesture(area(0.65, [...coords...]), 
objects(0.65, [...EDs...]), 
line(0.50, [...coords....]), 
grouping(0.45, [...IDs...]), 
letter(0.25, 'c'), 
unit(0.21, mortar), 
letter(0.21, V), 
digit(0.21, 0), 
delctioiM0.il, ID). 
tap(0.01, ID)). 

Figure 11: Logical form issued to the blackboard 
by the gesture recognizer. Each interpretation has 
a probability. Note that the probabilities do not 
sum to 1.0, as they are not mutually exclusive 
interpretations from the viewpoint of the gesture 
recognizer. 

7. Summary 

Our multimodal interface has been implemented on a 
wireless hand-held PDA, and interfaced to the United 
States Marine Corps version of ModSAF and 
CommandVu, called LeatherNet, as well as the 
United States Army version of ModSAF. The 
interface supports the creation of units and control 
measures, the issuing of tasks, the maneuvering and 
control of CommandVu's stealth viewpoint, and the 
control of the video feed to a large display screen. 
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The Open Agent Architecture enables collaborative 
interactions among users. In addition, we have 
created a Java-enabled web page connected via the 
agent architecture that allows users to view the 
simulation via a web browser. 

Our research continues, focusing on improving and 
integrating speech recognition, pen gesture 
recognition, and natural language understanding, and 
on improving and clarifying the use of agent 
architectures as a foundation for this integration. 

The project will be demonstrating the value of the 
research by delivering a working system to the 
USMC training facility at 29 Palms, California for 
actual use in training. We have already demonstrated 
the system at the Royal Dragon exercise at Ft. Bragg. 
In addition we will deliver our multimodal interface 
to other DARPA-supported research projects 
involved in military training exercises. To support 
this we will continue to collect more gesture data 
from real users, to add gestures to the gesture 
vocabulary, and to add more commands to the speech 
system. 
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1.  Abstract 

Soldier Station is a unique simulation system which 
bridges the gap between two distinct realms of mod- 
eling: constructive and virtual. The Soldier Station 
operator controls a simulated dismounted infantry 
soldier in a 3D virtual environment with rules of 
movement, engagement and tactics provided from a 
constructive model. This paper describes the Soldier 
Station system, its design, and the integration of two 
separate simulations with radically different modeling 
philosophies. The features of the resulting system, 
its limitations, and plans for future work are pre- 
sented. 

2.   Introduction 

Traditional US Army simulations generally fall into 
one of two distinct modeling realms: constructive or 
virtual. Constructive simulations allow a user the 
ability to control one or more battlefield entities sub- 
ject to software rules, data and procedures. Entities 
are indirectly controlled through the user's interac- 
tions with a 2D plan view display and a Graphical 
User Interface (GUI). In contrast, virtual simulations 
strive to immerse a user into a 3D synthetic envi- 
ronment as the entity itself. The user interacts with 
various input devices which provide direct control 
over the entity. Currently, systems of both types of 
simulations are in popular use. Major efforts have 
been expended to allow these disparate systems the 
ability to participate together in joint Distributed 
Interactive Simulation (DIS) exercises. Soldier Sta- 
tion is a unique effort which brings the two modeling 
realms together within a single DIS-compatible sys- 
tem. 

Soldier Station bridges the gap between the two 
modeling realms by integrating together the US 
Army's constructive Janus model algorithms and the 
Naval Postgraduate School's NPSNET virtual envi- 

ronment system. It allows for visual realism and user 
interactivity that is currently not available in standard 
US Army constructive models. It utilizes realistic 
movement, detection and engagement algorithms not 
present in most virtual simulators. The integration of 
two well established simulations represents a signifi- 
cant reduction in project risk while offering signifi- 
cant advantages over building either system 
independently. The primary purpose of Soldier Sta- 
tion is to serve as an analytic tool for TRADOC 
Analysis Center (TRAC) to address Land Warrior 
program issues concerning Dismounted Infantry (DI) 
command and control, situational awareness, tactics, 
techniques and procedures. 

Soldier Station is DIS-compatible and able to in- 
teroperate with other constructive and virtual systems 
which use DIS Version 2.0.3 or 2.0.4 network pro- 
tocols. The availability of a particular terrain data- 
base format required by an application, however, can 
be another limiting factor to this interoperatilibity. 
As part of this project, a terrain tool was developed to 
convert the gridded Janus terrain data into a polygo- 
nal database format appropriate for many visual simu- 
lations including NPSNET and Soldier Station. 
Generally speaking, terrain format incompatibilities 
are a major problem in the DIS simulation commu- 
nity which exceeds the scope of this paper. 

3.  System Overview 

Soldier Station is actually a system of systems. It is 
designed to run on two separate Silicon Graphics 
(SGI) workstations, a multiple processor SGI Onyx 
Reality Engine2 and a SGI Indy. Two machines are 
used to accommodate the large graphics and CPU 
processing requirements of the main simulation sys- 
tem and to meet substantial user interface system 
demands. One SGI Onyx with a multi-channel op- 
tion (MCO) is actually more expensive and more 
likely to become overloaded resulting in poor system 
performance than a two machine system. 
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3.1   User Interface Components 

Figure 1 shows the various user interface components 
of Soldier Station. The visual display is a 3D per- 
spective view of the synthetic environment. This 
view depends on the DI entity's posture, head and 
body orientation and the current sensor. From two 
nearby speakers the user can hear DIS networked bat- 
tlefield sounds. Verbal communication with other 
DIS participants is possible using a telephone or ra- 
dio headset. 

has three degrees of freedom allowing body and 
head/weapon orientation (heading and pitch). It also 
has a trigger for weapon firing capabilities. From the 
touch screen GUI the user may easily select different 
types of weapons, sensors or instruct the DI entity to 
execute one of numerous different types of hand sig- 
nals. To orient himself on the battlefield, there is a 
2D map which can show various information over- 
lays and the relative position of other detected or dead 
entities. The GUI also has a compass which indi- 
cates the current body and head/weapon orientation, 
and various textual feedback information (i.e. location 
coordinates, actual speed of travel, ammunition 
rounds left, movement/injury status). Table 1 sum- 

o Communications 
/ 

Figure 1: User Interface Components of Soldier Station 

The operator controls the input speed and the sol- 
dier's posture using levers and switches on the BG 
Systems Flybox input device.   The Flybox joystick 

marizes some of the various options which the Sol- 
dier Station operator may select while controlling the 
DI. 
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3.2  Software Components 

The software components of Soldier Station are 
shown in Figure 2. The main system runs on the 
SGI Onyx and is comprised of two tightly coupled 
modules, a Visualization Module (VM) and a Com- 
bat Module (CM). The User Interface System (UIS) 
runs on the SGI Indy and consists of two separate 

the FORTRAN algorithms for Soldier Station sys- 
tem initialization, DI movement, detection, weapon 
firing and damage assessment. These routines, which 
were originally part of Verified and Validated (V&V) 
Janus Version 4.2 code, were modified to allow en- 
hanced user control over the DI entity. Later they 
were upgraded to Janus Version 6.0 which most no- 
tably supports multiple sides of forces and fratricide. 
Although the modified routines are still subject to the 
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Figure 2: Software Components of Soldier Station 

applications, a GUI and a sound server. 

The VM is responsible for overall Soldier Station 
program control. It is a modified version of Naval 
Postgraduate School's NPSNET Version IV. 8 system 
(Pratt et al., 1996b). NPSNET is an object oriented 
C++ application which uses the SGI Performer visual 
simulation toolkit (Rohlf and Helman, 1994) to cre- 
ate 3D graphical representations of terrain, objects, 
entities and environmental effects. The VM also pro- 
vides DIS network management, remote entity dead 
reckoning (DR) and simulation of the local DI entity. 
Soldiers are generally represented using a medium 
resolution, fully-articulated soldier model and a li- 
brary of real-time animations from University of 
Pennsylvania's Jack system (Granieri and Badler, 
1995). 

V&V process, they provide realistic feedbacks for 
maneuvering over terrain and obstacles, for weapons 
firing outcomes and injury determinations which were 
not previously present in NPSNET. 

The GUI application acts a central collection point for 
all of the user input made via the BG Flybox and 
touch screen devices. It packages the inputs into 
Interface Data Units (IDU) protocols and sends them 
to the main system via multicasting. The VM proc- 
esses the inputs, makes the appropriate calls to the 
CM routines and then sends back feedback data in 
IDUs for the GUI to display. Thus, it is possible for 
the operator to request unrealistic speeds, postures or 
weapon firing given certain situations and be limited 
by the CM which allows, in theory, only reasonable 
outcomes to occur. 

The Combat Module (CM) is based on  the US 
Army's Janus system (US Army, 1996).   It contains 

In addition to the feedback data displayed on the 
GUI, the user hears various battlefield sounds from an 
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NPSNET sound server application running on the 
SGI Indy. The sound server listens for certain DIS 
PDUs which it recognizes as having a sound associ- 
ated with them (primarily Fire and Detonation PDUs 
and also some of the local entity's Entity State 
PDUs). Upon receiving such PDUs, the distance 
between the DI entity and the source of the sound is 
computed as the sound wave propagates in the virtual 
environment. When the distance is zero, the sound 
is played over the speakers adding considerable real- 
ism to the simulation. 

3.3  System Design Considerations 

The Soldier Station system is designed to host the 
VM and CM together as a single integrated applica- 
tion running on the SGI Onyx. The modules interact 
extensively during the simulation and pass consider- 
able amounts of information between them. In order 
to minimize the communication latency between the 
two modules, the CM routines are bundled into a 
library and linked to the VM. 

4.   System Development 

The integration of two distinct simulation systems, 
Janus and NPSNET, was much easier said (and 
drawn) than done. The integrated system was envi- 
sioned to work together seamlessly, however, the two 
component systems are based on radically different 
modeling philosophies, are written in different com- 
puter languages, and utilize different terrain file for- 
mats. The integration was primarily carried out in an 
stepwise manner with often multiple iterations occur- 
ring at each step: 

do 
merge code 
test results 
do 

debug problems 
test results 

until CORRECT 
until DONE 

4.1   Integrating Janus and NPSNET 

Substantial user interface requirements for the Soldier 
Station system justify the use of a second low-end 
SGI workstation. A separate monitor is needed for a 
touch screen. The GUI application manages inputs 
from both the touch screen and the BG Flybox de- 
vices, passes user input information to the main sys- 
tem, and receives and displays feedback information 
from the main system. In addition, the sound server 
application requires a minimum of 32 MB memory 
to be able to play sounds instantaneously upon re- 
ceiving the appropriate PDUs. These demands and 
the high cost of a new SGI MCO display drove the 
decision to run the UIS system on a separate SGI 
Indy workstation. This two machine configuration 
frees valuable computational resources for the main 
system which has substantial demands for graphics, 
entity simulation and networking. 

As shown in Figure 2, the main system on the SGI 
Onyx interacts with the GUI application on the SGI 
Indy via multicast networking protocols. Although 
multicasting is inherently an unreliable means of 
network communication, it provides some attractive 
features. Namely, it allows multiple Soldier Station 
suites to co-exist on the same physical network by 
partitioning the network traffic into separate multicast 
groups which each suite can subscribe to (Pratt et al., 
1996a). The ability to subscribe to multiple multi- 
cast groups, if desired, also allows the future devel- 
opment of a logger application which can record 
multicast network traffic for user analysis purposes. 

Integration of the two modules which comprise the 
main Soldier Station system required careful coordi- 
nation and consideration between the VM and CM 
developers. The first step was to identify exactly 
what the types of interactions were sought between 
the VM and CM. This step produced five main CM 
driver routines as listed in Table 2 (Ohman, 1996). 

4.1.1 Modifications to Janus 

The appropriate constructive model algorithms for 
DIs were isolated from the original Janus code. The 
CM continues to use the exact same input data files 
as Janus (i.e. FORCE, DEPLOY, JSCRN, and 
SYSTEM) and has complete knowledge of all entity 
attributes and system characteristics. These CM rou- 
tines control one interactive DI entity so at least one 
system type in the FORCE file must be the same as 
the Soldier Station system type specified during pro- 
gram startup. The CM must inform the VM of the 
DI entity system type's capabilities in order for the 
user to be able to effectively control the entity. Thus, 
SSsetup passes back the names of the weapons and 
sensors along with the starting number of ammuni- 
tion rounds available for each program run. 

Some modifications to the Janus routines were intro- 
duced to resolve time and space incompatibilities and 
to provide enhanced user control. Since Janus is an 
event driven simulation, changes were made to allow 
the CM algorithms to be called in real-time and re- 
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gardless of the frame rate. Built-in time delays for the 
soldier's movements due to obstacles and suppression 
by fire were shortened from minutes to seconds in 
order to allow the user to respond in a realistic 
amount of time to such situations. All references to 
nodes for routes and movement control were removed 
with input now being provided by the Soldier Sta- 
tion operator via the Flybox. The DI entity may 
move in one direction and look in another by having 
his head turned. He may also now move backwards 
so that the soldier can remain facing forward while 
retracing his last steps instead of having to rum 
around. He can also now enter any infantry foxhole 
or vehicle prepared fighting position regardless cf 
which Janus side it belongs to. 

Unlike traditional Janus DIs, the Soldier Station en- 
tity can fire his weapon on command at no specific 
targets (e.g. generate suppressive fire), and also fire in 
a non-horizontal plane. He can detect up to twenty- 
five targets (instead of just ten as for Janus DIs) pro- 
vided he is alive and does not have a major wound 
which might impact his ability to detect targets. If 
targets are detected, the CM allows the Soldier Sta- 
tion to fire at them regardless of side assuming that 
other firing criteria have been met. Thus, the Soldier 
Station entity can always possibly commit fratricide 
if he does not exercise good judgment in the syn- 
thetic battlefield. As in Janus, the firing criteria 
which must simultaneously be met include meeting 
minimum safe range requirements for firing a weapon, 
and meeting weapon jam/clearing times and ammuni- 
tion reloading times. Short firing delays are intro- 
duced if any of these criteria are not met. 

Along with added control the user is also faced with 
more potential simulation hazards. For example, the 
entity is now also able to step on and detonate de- 
tected mines whereas Janus entities can not detonate 
mines previously detected. Automatic defilade 
status changes have also been removed so that the DI 
entity no longer changes from fully exposed to partial 
defilade when he stops moving unless directed by the 
user to do so. In fact, the DI entity may remain fully 
exposed while being fired upon if the user does not 
take any action. 

For demonstration purposes, the DI entity is also 
allowed to be resurrected if killed. In addition to 
possibly being killed or suppressed, the soldier may 
also now be wounded. For determining a wound 
status, the body is divided into six parts, each having 
a probability of being wounded depending upon the 
current posture. The damage assessment routine 
processes direct fire, indirect fire or mine explosion 
events. 

4.1.2 Modifications to NPSNET 

To integrate the CM with the VM, NPSNET pro- 
gram flow was examined to determine where and how 
the CM driver routines should be called. Since Sol- 
dier Station was designed to use the NPSNET visual 
simulation framework, the relatively minor modifica- 
tions were needed to be able to interact with them. 
These included making coordinate conversions 
to/from NPS coordinates to Janus UTM coordinates 
and transferring information from C++ dynamic data 
structures into static arrays to pass to the CM. Code 
was also added to map internal NPSNET vehicle 
numbers of remote entities to Janus unit numbers. 
These Janus unit numbers are pre-defined in the Janus 
FORCE file which is read when SSsetup is called 
during system startup. Remote DIS entities must 
pass an appropriate Janus unit number in DIS Entity 
State PDU markings fields to the VM in order to be 
recognized by the CM as valid units (a requirement 
which will hopefully be removed in the near future). 

Strict interfaces for each of the CM driver routines 
were defined, e.g. function name and the number, 
type and order of the arguments. C++ wrappers 
(which account for the C++ name mangling of func- 
tion names and facilitate correct argument type pass- 
ing) were then created so that the CM functions could 
be called directly from the VM. The five main CM 
driver routines and numerous other supporting rou- 
tines are archived together in a library object and 
linked to the VM. 

There were several features added to NPSNET to 
comply with the additional capabilities required for 
Soldier Station. To allow the Soldier Station entity 
the ability to select between up to five different weap- 
ons, additional weapon models (besides the existing 
M16 rifle) were added with only one showing at any 
given time. Additional sensor views for the binocu- 
lar and gun sights sensors were added as 2D overlays 
over the 3D view along with concurrent changes in 
the field of view. To receive the user's inputs from 
the UIS, multicast IDUs were defined. 

Support for up to six different sides of DIs was pro- 
vided. This involved creating DI models with nu- 
merous different colored uniforms and one model 
which carried no weapon (to be used as a civilian). 
Low resolution soldier models were also incorporated 
for low level detections which assume that features 
such as uniform patterns, faces, objects carried and 
even limbs are not visible. Presently, only DIs have 
multiple levels of detail models available. 
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4.2  Conversion of Janus Terrain 

The terrain data formats used by Janus and visual 
systems such as NPSNET are completely different. 
The terrain elevations in Janus are gridded and as- 
sumed to be constant within each grid square (or 
pixel based). If represented in 3D graphics, the ter- 
rain would appear as a collection of cubes with differ- 
ent heights. On the other hand, in NPSNET the 
terrain file format is polygonal in nature and its repre- 
sentation consists of triangles connecting each grid 
point to the next grid point forming a relatively 
smooth terrain surface when compared to Janus' ter- 
rain representation. 

The relatively small size of the DI entities demands 
smooth 3D terrain representations in order to avoid 
large visual abnormalities in the terrain database at 
the edge of each Janus grid square. However, the CM 
routines still represent the terrain as gridded cells 
internally. Thus, there is a mismatch in the internal 
terrain representation for each module which some- 
times causes the DI entity to appear either above or 
below the actual polygonal ground surface. Some 
detection mismatches would also likely occur causing 
entities to disappear/appear although the VM may not 
actually show terrain blocking/not blocking the line 
of sight. Both of these problems are more predomi- 
nant in terrain areas where steep and/or rapidly vary- 
ing gradients exist. 

As part of the NPSNET-Janus integration, a SGI- 
based software tool was developed to convert the 
Janus terrain into a MultiGen Flight format for the 
VM. The terrain tool reads in the Janus gridded ter- 
rain elevations and the separate polygonal Janus fea- 
ture data (vegetation, roads, rivers, buildings, etc.) 
and converts them into the required polygonal Mul- 
tiGen format. Since the CM uses the Janus terrain 
format while the VM uses the polygonal database 
format, the Soldier Station system relies on this abil- 
ity to convert various Janus terrain databases. With 
the availability of MultiGen terrain databases, other 
DIS-compatible simulations which also use the for- 
mat are also be able to interoperate with Soldier Sta- 
tion. So far, Soldier Station has successfully 
participated in numerous exercises with remote DIS 
entities generated from Janus linked to DIS (JLINK) 
(Pate and Roussos, 1996), NPSNET, and another 
Soldier Station system. 

The terrain tool is capable of automatically handling 
most types of Janus terrain databases with minimal 
user intervention. Because of the very large number 
of grid points present in most Janus terrain data- 
bases, the tool subsamples the points, using every 

other grid point, in an effort to reduce the number of 
polygons. The time it takes to convert a terrain da- 
tabase depends strongly on the number of Janus po- 
lygonal terrain features as well as on the number of 
elevation grid points present. A medium sized ter- 
rain database (say, 10 km by 10 km) with an average 
number of polygonal features takes about ten minutes 
to convert. Currently, small tree areas with relatively 
large concave edges can cause some conversion prob- 
lems. 

4.3  Main Program Flow 

Figure 3 is a simplified program flow chart of the 
integrated NPSNET-Janus main system. Essentially, 
various initializations are carried out and then several 
major tasks are carried out continuously as long as 
the simulation continues. These tasks include the 
handling of DIS network PDUs, handling user input 
IDUs, simulation of the local DI entity, updating the 
position and statuses of the remote entities and finally 
drawing the scene. It is noted, however, that usually 
network management and drawing would be handled 
asynchronously in a multiprocessing mode. 

During program startup, the VM calls SSsetup 
once. Various Janus data files are read and, if desired, 
post processor data files are started to log data from 
the Soldier Station during the simulation. In the 
simulation loop, PDUs from other remote entities on 
the DIS network are processed. User input IDUs 
from the GUI are processed similarly, and given the 
current inputs, SSmove is called to determine the 
soldier's next position and his movement status. 
Remote entities are updated using dead reckoning, 
and once a second SSsearch is called to determine 
what live entities the Soldier Station entity can de- 
tect. Dead entities are not detected by Janus and are 
not passed to SSsearch. However, they are still dis- 
played on the GUI 2D map as black icons and appear 
visibly damaged on the synthetic battlefield. 

When an IDU packet contains data about a trigger 
pull effected, SSreload is called to determine the 
outcome of the firing event. If the weapon was suc- 
cessfully fired, a fire PDU is sent out over the DIS 
network. If a close proximity detonation PDU is re- 
ceived from another remote site, SSassess is called 
to determine the extent of an injury, if any. If the 
soldier is uninjured, the simulation proceeds as be- 
fore. If the soldier is killed, he can be resurrected by 
the user in demo mode, or the user can elect to exit 
the simulation. If the soldier is killed or wounded, 
movement, detection and/or firing capabilities will be 
impaired depending on the injury. For simplicity, 
Figure 3 assumes that the DI entity is uninjured. 
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Figure 3: Simplified Main Program Flow 

During each frame, feedback data about the current 
status of the DI entity and what entities have been 
detected at what detection level (aimpoint, recogni- 
tion and identification) is sent back to the GUI. This 
feedback information is then displayed on the GUI 
and could affect the user's next inputs. Table 3 lists 
some of the possible outcomes from making function 
calls to the CM driver routines. 

The program flow shown in Figure 3 is actually 
nearly the same as the normal program flow of 
NPSNET with the exception of the calls to CM rou- 
tines. Without the CM driver routines, NPSNET 
assumes that the DI entity can always move regard- 
less of terrain characteristics, can detect anything that 
is drawn, can fire upon anything when the trigger is 
pulled, and is always fatally wounded by any close 
proximity detonation. Clearly, the integration of the 
Janus algorithms brings much needed realism into 
the visual simulation. 

5.   Conclusions 

The decision to merge Janus and NPSNET together 
to form one seamless Soldier Station system was, to 
a large extent, governed by practical reasons. Namely, 
the analysis needs of the Soldier Station project could 

be met while significantly reducing project develop- 
ment time and costs by integrating two existing sys- 
tems rather than developing either one independently. 
By reusing code from NPSNET, Soldier Station ac- 
quired a major head start on underlying 3D graphics, 
basic entity simulation, DIS networking and sound 
requirements. New development efforts could be fo- 
cused on the integration with Janus, adding necessary 
features which were not currently available in 
NPSNET and the development of the UIS. By merg- 
ing Janus algorithms, the virtual simulation acquired 
robust mobility characteristics and target detections 
as well as realistic weapon firing outcomes and injury 
assessments. These features replaced non-existent or 
very simplistic (and generally unrealistic) graphics 
based capabilities which were previously available in 
NPSNET. 

The combined system, represents a significant im- 
provement over either of its component parts, but it 
does have some limitations. Currently the representa- 
tion of terrain, soldier movements and engagements, 
and visual parameters are at moderate levels of detail. 
These are subject to change according to the resolu- 
tion needed by the simulation, but large, high resolu- 
tion terrain databases with many entities (say, more 
than fifty) present will degrade the system perform- 
ance without further optimizations (as mentioned 
below).   The inherently different VM and CM inter- 
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nal terrain representations causes some visual incon- 
sistencies which need to be resolved. For improved 
DIS-compatibility, unit numbers should be able to be 
created or assigned dynamically within the CM. The 
transfer of data from VM's dynamic data structures to 
static arrays for the CM routines is unavoidable with- 
out major code changes to the VM data structures. 
However, this could impact performance otherwise 
and requires some in-depth system performance 
analyses beforehand. Some data transfers are simply 
unavoidable due to C++ and FORTRAN language 
differences. 

For increased system performance, we plan to spawn 
a separate process to obtain the computationally ex- 
pensive CM detection routine output asynchronously 
via shared memory buffers. Optimizations to the vis- 
ual simulation include an upgrade to SGI Performer 
2.x which supports terrain database paging and in- 
creased use of level of detail modeling techniques. 
To significantly lower hardware system costs, we 
plan to tune the main system to run on the new, 
much less expensive SGI Maximum Impact worksta- 
tions. Enhancements for Soldier Station to partici- 
pate in night time and urban environment 
simulations are also planned in the near future. 
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Control Item Available Options User Interface 

Posture Upright, Crouching, Kneeling, Prone, Fox hole, Deploy weapon, Align 
head and body orientation, Lase target 

Flybox Buttons 

Sensor Eye balls, Binoculars, Gun Sights (Thermal in future) GUI Radio Buttons 

Weapon M16A2 Rifle, M203 grenade launcher, M60 machine gun, M249 semi- 
automatic weapon, M72 light anti-tank weapon (Object Individual 
Combat Weapon in future) 

GUI Radio Buttons 

Hand Signals Various signals for movement control, formations, fire control, emer- 
gency alerts, echelon designation, and other miscellaneous signals 

GUI Push Buttons 

Map Display Map displayed, not displayed 
Zoom in, zoom out 
Show topographical contour shading, grid lines, terrain features, build- 

ings, obstacles 
Detected entity icons shown, not shown 

GUI Push Buttons 

Table 1: User Selectable Options for Soldier Station 

CM Routine Purpose Example Considerations 

SS_setup Reads Janus data. Passes DI capabilities back to 
VM 

Scenario, run, system number inputs 

SSmove Determines current location, actual speed, move- 
ment status 

Soldier posture / orientation, terrain 
characteristics, requested speed, 
suppression status, wound status 

SS_detect Determines what live entities are visible at what 
detection level 

Soldier posture / wound status, ac- 
tive sensor, target defilade 
status/speed. LOS probability 

SSreload Determines firing result, impact point, rounds 
remaining 

Soldier posture / orientation, target 
type, active weapon, rounds left, 
time last fired 

SSassess Determines injury, if any, due to a close proxim- 
ity detonation 

Soldier posture, munition type, im- 
pact location, firing entity, luck 

Table 2: Description of the Five CM Driver Routines 
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CM Routine Basic Outputs Specific Information 

SS_move Movement status 

Speed status 

Delay status 

Posture status 

Moving on a road, in vegetation, in an urban area, in a river 

Moving at requested speed, slowed by terrain, moving at maximum 
speed allowed, not moving because soldier is kneeling or in a fox hole 

Obstructed by a building, fence, another unit, by a river, an abatii, a 
smoke pot, a mine 

In the requested posture, not in a fox hole because none nearby 

SS_detect No entities detected 

Entities detected 

None 

For each entity, detection at level: aim point = 1, recognition = 2, iden- 
tification = 3 

SS_reload Successfully fired 

Unsuccessfully fired 

Fired at a target, or generated suppressive fire 
Impact point is XYZ 

Unable to fire because: 
Soldier is wounded, moving too fast, being suppressed, not ready to fire 
Range is too far, too close 
Weapon is out of ammunition, pointed at too large of a pitch angle 
Target is a non-combatant, is dead, a low probability hit, a bad target, 

an identified friendly target 

SSassess Injury status 

Wound type 

Suppression status 

Not injured, dead, wounded 

Hit in the head, chest, stomach, pelvis, leg, arm 

Not suppressed, suppressed by fire 

Table 3: Example Feedback Data from theCM 
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1.   Abstract 2.   Background 

Realistic modelling of force behaviour in a combat 
simulation or wargame increases in difficulty and 
importance with the complexity of the simulation. 
Where there are many activities available to the 
modelled entities and a large quantity of information 
on which decisions will be based, the need for 
realistic modelled behaviour without the need for 
excessive user intervention is at its greatest. 

The Centre for Defence Analysis (CDA) and EDS 
have explored the possibility of using Genetic 
Algorithms (GAs) as a means of developing realistic 
tactical behaviour within a detailed combat 
simulation, CDA's Close Action Environment 
(CAEN). 

CAEN is a highly detailed model of the close combat 
battle. It is both a means of simulating weapons 
effects and an interactive wargame between opposing 
forces of up to platoon level strength. Up to 200 
entities are usually modelled and consist of either 
infantrymen and their personal weapons or vehicles 
such as armoured personnel carriers and main battle 
tanks. The representation of tactical activities within 
CAEN makes it possible to apply the GA mechanisms 
of evolution and selection to entity behaviour in an 
effective manner. 

The study work undertaken shows that GAs can 
succeed in developing feasible behaviour as a 
consequence of straightforward primary goals such as 
individual survival and the achievement of tactical 
objectives. The results also show that the 
effectiveness of the GA method is closely linked to 
the fidelity of the underlying combat model, and is 
likely to produce increasingly realistic behaviour as 
the simulation environment itself becomes more 
complex. 

2.1 Modelling Realistic Behaviour 

Complex computer simulations of the battlefield 
require not only the details of the military hardware, 
but also the tactics and behaviour of the entities 
involved. The problem of the detailed modelling of 
realistic tactics is the subject of current research by 
the Centre for Defence Analysis, DERA Fort 
Halstead. 

A major limitation of existing simulations is the 
inability of models to represent subjective decisions 
and to provide common-sense, realistic behaviour in a 
range of situations. This limitation applies both to 
fully autonomous simulations and to wargames which 
are driven by interactive commands from users. It is 
particularly evident in high-resolution models, since 
the greater the detail and realism of the underlying 
simulation, the more complex is the decision making 
faced by the simulated entities. For example, a high 
fidelity model such as CAEN provides a large number 
of activities which an entity may choose and a large 
quantity of information on which the entity may base 
its decision. 

2.1   Involvement of the User 

A problem often encountered with wargames is the 
high level of user effort required to drive them. To 
avoid overloading the players with detail, wargames 
are usually equipped to enable commands to be 
issued to groups of entities which then move and 
engage in the same way. This is broadly realistic 
except in situations when the success of the group 
depends upon the differences between its entities 
rather than their similarities. For example, in 
advancing under fire, it is advantageous for some 
entities to supply covering fire while their comrades 
advance. 
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2.3 Intelligent Entities 

For detailed aspects of wargames such as the above, 
adequate realism can only be achieved by intensive 
user involvement. If a method can be found to define 
a degree of intelligent response by computer 
generated entities to general instructions, then the 
user is freed to control the overall picture or to 
observe and analyse. In addition, the level or 
expertise required by the user can be reduced, the 
potential complexity of the behaviour can be 
increased and the realism of the behaviour can be 
matched to the underlying model. 

The last point is particularly important. As models 
increase in complexity, more intelligent decisions 
must be made, and more of these will have to be 
taken by the system rather than the user. 

3.   Use of Genetic Algorithms 

3.1 Optimisation 

Intelligent computer generated entities must be able 
to respond to general instructions in a manner which 
is both effective and realistic. 

In combat models, if we can represent the elements of 
entity behaviour in a suitable manner, we may hope to 
obtain realistic responsive behaviour as a result of 
optimising these elements with respect to the 
achievement of military goals. 

The effectiveness of this approach will depend on the 
selection of a suitable optimisation technique. 
Genetic Algorithms (GAs) provide a robust approach 
to optimisation with a number of features relevant to 
this application. 

3.2 Genetic Algorithms 

Genetic Algorithms (Goldberg 1989) have been 
applied to a number of optimisation problems in 
complex domains. The GA uses principles based on 
genetic processes in nature. It operates by 
maintaining a population of diverse solutions to a 
problem, combining elements from members of this 
population, and selecting the fittest from which to 
form the next generation. In this way it iteratively 
seeks stable optimal solutions, with inefficient paths 
being rejected at each iteration. 

The method is effectively a parallel one in that the 
variety of the paths provide a greater chance of 
overcoming obstacles to the optimisation, and the 

discarding of unsuitable candidates at each stage 
narrows the search. The advantages of this approach 
include: 

• The population domain need not be continuous. 
• Wide coverage of the domain of possible 

behaviours is maintained at all times. 
• The solution will not converge to a local 

maximum with poor global performance. 

3.3  Principal Features 

The principal features of GAs are: 

• The features of the system to be optimised are 
encoded in a data series, called a chromosome. 
The encoded features are referred to as genes. 

• Fitness is defined by means of an objective 
function defined on each chromosome. 

• A population of chromosomes, or candidate 
solutions, is maintained and modified in a series 
of iterations, or "generations". 

This leads to an iterative process which should 
eventually converge to a population of highly 
performing individuals. The algorithm will then be 
terminated by a suitable criterion. 

The iteration is governed by three operations: 

• Reproduction. 
• Recombination. 
• Mutation. 

3.3.1 Reproduction 
The fitness of each chromosome determines its 
probability of selection for the next generation, 
causing the better chromosomes to dominate. In this 
study, a weighting based on fitness ranking was used 
to discard the worst individuals in favour of the same 
number of newly created individuals. 

3.3.2 Recombination 
Pairs of chromosomes may "mate" and reproduce by 
exchanging genes, enabling the creation of 
individuals combining the best features of both. The 
techniques used in this study were: 

• "Uniform crossover", where the values of the 
gene in each location for two randomly selected 
parents may be exchanged according to a 
probability test. 

• "Average crossover", where the selected gene 
pairs are replaced by their average value. 
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3.3.3  Mutation 
Random changes may cause particular genes in a 
child chromosome to differ from those of its parent. 
A variant (random creep) was also used, in which 
random increments were added to the (real number) 
values of randomly chosen genes. 

4.   CAEN 

4.1 Summary of CAEN 

The CAEN model was chosen to investigate the use 
of GAs in force simulation. 

CAEN is a two-sided close combat model 
representing entities down to the resolution of 
individual infantrymen with their personal weapons 
or armoured vehicles. It can be used either as an 
automatically replicated simulation with no user 
intervention, or as an interactive wargame in which 
players create and control their own forces within a 
terrain database, supported by graphical displays. At 
the CDA, CAEN is used for operational analysis and 
weapon system evaluation. 

CAEN provides a highly suitable environment for the 
assessment of GAs (or other tactical optimisation 
methods), on at least two counts: 

• The level of modelling resolution is detailed 
enough to represent the tactical options available 
to individual entities in complex scenarios. 

• The parametric method used to specify tactical 
behaviour provides an appropriate basis for the 
application of the GA mechanism. 

4.2 Tactical Behaviour 

The tactical behaviour available to entities in CAEN 
is very flexible. It is defined in terms of simple base 
activities such as changes in posture and speed, 
surveillance, target acquisition, direct fire or 
suppressive fire. Each entity has access to a variety 
of information about its current situation and it can 
use this data to make decisions about which activity 
to perform next. 

A key feature of CAEN is the control of this 
behaviour by input data files set up by the user prior 
to the game. The files, known as Activity Sequences, 
consist of a sequence of predefined activities together 
with test conditions to allow branching to different 
points in the sequence. Activity sequences thus 
provide tactical algorithm templates parametrised by 

quantities such as the time spent performing an 
activity and the conditions for entering and leaving 
the activity. Random elements are provided to avoid 
the behaviour of an entity becoming too predictable. 

Changes to entity behaviour in the simulation are 
effected by editing one or more activity sequences. 
Group tactics, executed by all entities within a group, 
are contained in Tactics files which reference a set of 
activity sequences. In this way, hard-coded rules of 
behaviour are replaced by data files allowing 
behaviours to be easily created and modified by 
setting parameters. 

Although the mechanics of tactical definition are 
easy, the creation of an effective and realistic activity 
sequence for even a simple scenario is a complex and 
time consuming problem. Considerable care must be 
taken to ensure that the resulting behaviour is as 
desired. This is where the use of Genetic Algorithms 
provides a potentially valuable means of improving 
fidelity and automating the process of tactical 
definition. 

5.   Application of Genetic Algorithms to CAEN 

5.1 General Approach 

The application of GAs to CAEN is based on 
representing Activity Sequences as chromosomes. 
Several sets of parameters are randomly generated 
and used to define tactical algorithms. These are then 
used as input data by the CAEN simulation, using a 
scenario suited to the tactical template. For example, 
if a minefield is specified in the scenario, then the 
tactical template should include a mine clearing 
activity. 

The results of the CAEN simulation are then 
processed to determine the effectiveness of each 
activity sequence, using a suitable measure of 
effectiveness (MOE). In the studies to be described, 
the MOE is based on a combination of simple 
military criteria, namely the proportion of Blue forces 
killed and the time taken to reach the objective. A 
number of CAEN replications are carried out with 
each chromosome/activity sequence in order to build 
up a significant MOE. A new generation is then 
formed by the procedures of Section 3.3, and the 
process iterated until a reasonably stable tactical 
algorithm is established. 

5.2 The Study Environment 
The study environment made use of an existing GA 
harness   previously   developed   by   EDS   for   the 
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optimisation of target recognition rules. The GA 
harness was linked to CAEN by an interface program 
which translated parametric data between the CAEN 
activity sequence format and the GA manipulations. 
A main control program scheduled the repeated runs 
of the GA harness and the CAEN replications. 

5.3  Modifications to CAEN 

The CAEN functionality was augmented to allow 
entities to develop behaviour based on two new areas 
of information, namely: 

The sequence thus consists of two phases of different 
durations: 

• Direct fire only. 
• Suppressive and direct fire. 

On entering one of these phases, the entity will make 
a posture/speed decision, randomly selecting one of 
run, walk, crawl or remain in the same speed/posture 
as before. This activity sequence can therefore be 
parameterised by allowing the variation of the 
following data items: 

• Awareness of own forces. 
• Awareness of surroundings (terrain and culture). 

These features had not been needed in previous uses 
of CAEN where the tactics of advancing troops were 
preordained by the user. This is in contrast to 
awareness of enemy forces, and the effect of terrain 
and culture on detection and engagement, which are 
fully represented and used in executing these tactics. 

6.   Studies and Results 

The use of Genetic Algorithms for tactical 
development within CAEN was assessed by carrying 
out a series of three studies using tactical activity 
sequences of increasing complexity. These were: 

1. An undetected advance. 
2. An advance under fire. 
3. A   "generic"   advance   in   which   the   tactical 

sequence is largely unspecified. 

6.1   Undetected Advance 

6.1.1   Activity Sequence 
In this first study, a simple tactical activity was 
chosen to enable the GA principle itself to be 
assessed. The main objects were: 

• To    verify    that   tactical    optimisation    was 
achievable. 

• To assess the effects of the parameters governing 
the optimisation process. 

An Undetected Advance activity sequence was 
defined to represent a group of infantry moving 
towards an objective in a straight line. While moving 
forward the infantry may or may not engage in 
suppressive fire, and may change speed and posture. 
If an entity acquires a target, it engages in direct fire. 

• The duration of each phase. 
• The probability of selecting each posture/speed on 

starting the phase. 

This results in eight numbers: one time and three 
probabilities for each phase. These eight numbers are 
the values to be optimised. 

6.1.2 Scenario 
A simple scenario was defined with a small number 
of Blue and Red infantrymen armed with rifles. The 
Blue objective was defined as a particular building 
occupied by Red forces. The distance to the objective 
was defined such that the Blue entities would need to 
repeat their tactical activities several times. This 
helped to ensure that the optimised parameters were 
not too closely tailored to the specifics of the 
scenario. 

6.1.3 Measure of Effectiveness 
The success S of a run was defined by the formula: 

S = (1 - L) exp(-f/r0) 

where L is the proportion of Blue forces killed, t is 
the time taken to reach the objective, and tQ a time 
constant of the order of a typical value of t. This 
fitness function was used in all three studies. 

6.1.4 Results 
The study used a population of ten chromosomes, 
initially selected at random. The progress of the 
optimisation between generations was monitored 
though a 10 generation moving average of the fitness 
measure 5 for the most successful chromosome. 

The study runs were broadly successful. The fitness 
values of the chromosomes used were found to 
increase as the evolution progressed, and the 
individual genes were found to converge. 
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One outcome was to highlight the effect of the 
stochastic nature of the CAEN simulation on the 
optimisation process. As stated earlier, CAEN 
performs a number of statistical replications to 
estimate the mean fitness value for each chromosome. 
It is more difficult for the GA system to distinguish 
the fittest chromosomes for the next generation when 
this estimate is inaccurate due to random effects. 
Increasing the number of replications had the twofold 
effect of speeding the GA optimisation and making 
the results more precisely defined. About ten 
replications per chromosome were necessary to 
produce effective optimisation in this case. 

Despite these limitations, the resulting activity 
sequence showed an improvement on a priori 
parameter estimates of the type that would be adopted 
in a normal use and a large improvement on randomly 
chosen parameter values. 

6.2  Advance under Fire 

6.2.1 Activity Sequence 
This study aimed to optimise a more complex activity 
sequence, where the Blue entities come under 
significant suppressive fire. The previous activity 
sequence was enhanced to enable entities to make the 
decision, when encountering suppressive fire, to 
either engage immediately or to attempt to avoid 
hostile entities by moving to another position. In 
order to design an activity sequence with this degree 
of flexibility, a much larger number of parameters, 
which included times, probabilities, search ranges and 
speeds, needed to be fixed. A suitable subset of these 
was chosen for genetic evolution, giving a 
chromosome length of 17. 

6.2.2 Scenario 
The previous scenario was enhanced by providing the 
Red infantry with heavy suppressive fire. The Blue 
attacking force was much larger. This was intended 
to represent overwhelming force, so that even fairly 
poor activity sequences would be capable of 
completing the mission. This allowed non-zero 
fitness values to be associated with all sequences, 
which in turn allowed the ranking of all chromosomes 
within a generation. 

6.2.3 Results 
Considerable difficulty was found in optimising this 
activity sequence. Many adjustments had to be made 
by the sequence designer to obtain any success in the 
scenario. The optimised sequence was observed to be 
inferior to the Undetected Advance. 

The lesson learnt from this study was the importance 
of correct design of the tactical template on which the 
GA operates. For example, the design assumption of 
attempting to avoid enemy fire is preferable to simply 
returning fire, appeared to be flawed. More 
generally, the GA system was unable to make 
progress with a complex sequence where it had little 
control over the ordering of activities. The GA 
system was unable to improve what transpired to be 
essentially a poor design. 

6.3   A Generic Sequence 

6.3.1   Activity Sequence 
This study had the objective of taking a very general 
structure for the activity sequence which effectively 
allowed the GA to determine which activities should 
be used in the scenario. 

In defining a generic sequence, it was noted that any 
activity sequence could be divided into three types of 
component, namely: 

• Base activities. 
• Fixed subsequences of base activities. 
• Decision tests. 

Following execution of any of these activities, the 
generic sequence will jump to a chromosome defined 
successor, which may be another decision test or the 
entry point to another fixed subsequence. 

In this way, each chromosome defines a pattern of 
execution of activity subsequences and decision tests. 

As many possible decision tests and activity 
subsequences were made available. Contrary to the 
previous studies, every effort was made to ensure that 
the activity parameters were not chromosome driven. 
This was done to avoid unnecessarily long 
chromosomes as increasing the chromosome length 
would increase the run time required to perform the 
optimisation. 

The chromosome eventually used had 44 genes. 

6.3.2   Scenario 
The underlying scenario was similar to that in the 
previous studies. No fixed route was pre-defined for 
the Blue entities; the Blue entities would have "Entity 
Routes" defined dynamically by the optimised 
activity sequence. 
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6.3.3  Results 
The generic sequence was successfully optimised 
with virtually no need for modification to the initial 
sequence design. The optimisation was more 
straightforward than for either of the earlier sequence 
types. This was a clear consequence of deliberately 
avoiding tactical assumptions at the design stage. 

The GA process was allowed to shape the tactics. 
The resulting activity sequence did not exploit all the 
potential decision tests and activities. Instead, it 
concentrated on the two fundamental activities of 
moving towards the objective and engaging the 
enemy. 

The Blue entities evolved the tactic of destroying Red 
entities as a means of achieving the primary goals of 
low casualty rate and speed of reaching the objective. 

7.  Conclusions 

The studies reported in this paper have successfully 
demonstrated the feasibility of using Genetic 
Algorithms for the automatic generation of tactical 
behaviour in detailed combat simulations such as 
CAEN. It has been shown that using the GA process 
to optimise effectiveness in terms of clear primary 
objectives can result in the evolution of tactical 
behaviour that helps to achieve those goals. 

It has been seen that the method is potentially most 
powerful when given the most scope in evolving 
tactical sequences. Attempting to constrain the 
algorithm a priori to a poorly designed tactical 
template may be worse than useless. But given freer 
range, the method is capable of converging quickly to 
an effective tactical sequence. 

The study has also shown how the efficiency of the 
method is closely linked to the accuracy of the 
underlying simulation. For example, using larger 
simulation runs to improving statistical accuracy 
benefits the convergence of the GA and may improve 
overall efficiency. 

Future enhancements to the fidelity of CAEN, such as 
improvements in terrain modelling and psychological 
factors, may help to demonstrate a corresponding 
improvement in tactical realism. 

It is precisely in the context of increasing model 
complexity, where the demands on the user become 
most severe, that the Genetic Algorithm approach 
seems to offer the most potential. 

8.  Acknowledgements 

The investigation which is the subject of this paper 
was initiated by Land Studies Department, Centre for 
Defence Analysis, DERA Fort Halstead, Sevenoaks, 
Kent, TN14 7BP, and was carried out under the 
Terms of Contract No. CDA/H/131. 

9.   References 

Goldberg, David E. (1989). Genetic Algorithms in 
Search, Optimisation and Machine Learning, 
Addison-Wesley. 

10.   Authors' Biographies 

Janusz Adamson is a Senior Consultant at the Centre 
for Defence Analysis, DERA Fort Halstead. Mr. 
Adamson has a BSc(Hons) degree in Astronomy and 
an MPhil. His project responsibilities include 
Command Agent Support for Unit Movement 
(CASUM), the Close Action ENvironment wargame 
(CAEN), Genetic Algorithms, Real-time Knowledge 
base Systems and Command Agents. His technical 
focus is on Synthetic Environments and Computer 
Generated Forces. 

Dr Keith Joshi was employed for three years by EDS 
Defence Ltd's Research and Studies Group as a 
Systems Engineer. A Mathematical Physicist with a 
doctorate in Theoretical Physics Dr Joshi specialised 
in combat modelling during his career with EDS. 

Achieving the goal of tactical realism for computer 
generated forces through this approach will depend 
ultimately on the fidelity of the combat simulation 
itself. The nature of the evolutionary process is such 
that the evolved behaviour will adapt closely to its 
environment, and the Genetic Algorithm can only 
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1. Abstract 

As Computer Generated Forces (CGF) technology 
advances to where Command Forces (CFORs) are 
constructed and deployed, automated knowledge 
acquisition tools will become increasingly important. 
Since CFORs are expected to emulate human 
behavior, their development will require more 
knowledge acquisition than previous CGF efforts, 
however knowledge acquisition has traditionally 
constrained the development of knowledge-based 
systems. This paper presents a ModSAF command 
agent called Virtual Commander (VCDR) that the 
Subject Matter Expert (SME) can "teach" using 
ModSAF editors. VCDR is built upon Agent- 
Disciple, a multistrategy apprenticeship learning 
system that provides machine learning and 
knowledge acquisition methods in a "toolkit". With 
VCDR, an SME gives the CGF command agent 
specific examples of problems and solutions, 
explanations of these solutions, and supervises the 
agent as it solves new problems, all through the 
ModSAF interface. We have prototyped this training 
approach with the Captain system, that allowed an 
SME to teach a ModSAF company commander how 
to defend its assigned area of responsibility. In this 
paper we describe the design of VCDR, the learning 
and problem solving algorithms it utilizes, and novel 
prototype implementations of both a distributed 
interface that integrates learning functions (Agent- 
Disciple) to CGF (ModSAF), as well as graphical 
ModSAF editors for VCDR. 

2. Introduction 

The ability to build intelligent command agents for 
CGF is significantly constrained by the knowledge 
acquisition effort required. Many iterations by SMEs, 
programmers and knowledge engineers are required 
to develop acceptable behavior even for a narrow 
range of situations. Moreover, once built the agents 
cannot adapt themselves to changes. Various 
automated knowledge acquisition tools have been 
proposed and utilized for this problem, but there is no 
standard acquisition methodology for CGF that has 
gained acceptance. The existing approaches primar- 
ily utilize programmers and knowledge engineers to 
encode the expertise of a SME. Our goal is to have 
the SME use a familiar simulation interface to 

instruct a CFOR agent directly. This direct 
instruction reduces the involvement of programmers 
and knowledge engineers, increasing the efficiency of 
the acquisition process and improving the quality of 
the acquired knowledge. 

VCDR agents are instructable ModSAF agents, 
providing a new approach to solving the knowledge 
acquisition problem for CFORs. VCDR follows a 
general methodology for developing instructable 
agents for existing applications given in Hieb (1996). 
VCDR utilizes Programming by Demonstration 
(PDB) (Cypher, 1993) and Machine Learning 
techniques to allow instruction by an SME. 
Programming by Demonstration systems give an end 
user the ability to create programs by demonstrating 
their actions thorough a graphical user interface. This 
is a new research area that is concerned with interac- 
tive learning of user tasks from a limited number of 
examples and explanations given by the user. 
Machine Learning uses more formal, domain- 
independent autonomous learning methods. Often 
the input to machine learning programs are either 
large numbers of examples, extensive background 
knowledge, or, for multistrategy learning systems, 
both. 

In our approach, an SME teaches a VCDR agent 
through the ModSAF Graphical User Interface rather 
than using a different interface for the learning 
system. The SME initially demonstrates to the 
VCDR agent how to perform a new mission. The 
SME uses the existing ModSAF task editors to 
"program" the agent, as the SME normally would, 
creating a sequence of specific tasks. This is given as 
an initial example of the mission to the learning 
system. The SME then explains the relevant features 
of the mission. The learning system will then attempt 
to perform a different instance of the mission (e.g. on 
a different piece of terrain) under the supervision of 
the SME, asking the SME to classify its solution of 
the mission as a correct or incorrect example. The 
SME uses ModSAF's graphical user interface to 
correct the agent if it does not perform the mission as 
required by the SME. After this teaching session, the 
VCDR agent will have learned how to perform this 
type of mission (i.e., create a rule specifying how to 
select tasks and instantiate task parameters for a 
specific mission) and be able to perform this new 
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Figure 1: VCDR Design 

mission when asked to do so by the SME, without 
requiring the SME to program the behavior. 

We have prototyped this approach with the Captain 
system (Hieb, 1996; Hieb & Tecuci, 1996; Hieb et. 
al. 1995) which consisted of an integration of the 
apprenticeship learning system, Disciple (Tecuci 
1988), and ModSAF. In Captain, a ModSAF 
company commander can be taught how to place its 
platoons to defend its assigned area of responsibility. 
This process involves eliciting an initial example 
from the SME, eliciting 5 to 10 explanations and 
showing the SME 5 to 10 examples of solutions that 
the system generates. Experiments with Captain 
indicate that the system will scale up as it is applied 
to learning other tasks in this domain. Captain 
utilized the ModSAF terrain map to show examples 
to the SME for classification, but did not fully 
integrate other learning interactions (specifying 
examples and explanations) into the ModSAF 
interface. 

Figure 1 shows the system design of VCDR. An 
SME uses editors within ModSAF to teach a 
command agent new tasks. The machine learning is 
performed on a separate workstation running Agent- 
Disciple software (Agent-Disciple provides the 
learning functions of Disciple in a modular toolkit). 
The gray modules indicate modules that are being 
modified or created for VCDR. 

In order to fully integrate VCDR with ModSAF we 
are expanding upon the Captain interface in two 
areas. We are developing a series of ModSAF editors 

that will provide an integrated interface for the 
instruction process, rather than using the interface of 
the learning system. For instance, the new ModSAF 
VCDR editors allow the SME to use the terrain map 
interface during the explanation process, rather than 
requiring the use of a textual interface. Also we are 
interfacing the learning functions (which are Lisp- 
based) to ModSAF using experimental protocol data 
units (PDUs). 

The remainder of this paper is organized as follows. 
Section 3 presents an extended discussion of related 
work. Section 4 presents the special format of VCDR 
rules. Section 5 describes the implementation of 
VCDR, including a prototype interface between 
Disciple and ModSAF, and the design of ModSAF 
editors designed for agent training. Finally, Section 6 
concludes the paper with a discussion of our agent- 
building approach. 

3. Related Work 

We first review some of the related research on 
learning, particularly Apprenticeship Learning and the 
new field of Programming by Demonstration. Then 
we describe how this research applies to agents. 

3.1 Learning 

Apprenticeship Learning systems are at the 
intersection of the fields of Machine Learning and 
Knowledge Acquisition. An Apprentice Learning 
System can be defined as an interactive knowledge- 
based consultant that is provided with an initial 
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domain theory and is able to assimilate new problem- 
solving knowledge by observing and analyzing the 
problem-solving steps of its users through their 
normal use of the system (Tecuci and Kodratoff 
1990). 

Apprenticeship Learning systems involve the user in 
the learning process, where Machine Learning sys- 
tems generally are not interactive. In Apprenticeship 
Learning systems the user provides the learning 
system's input in a representation that is natural to the 
user. The learning system has an interaction with the 
user during the learning process, where the user may 
be asked to give other examples, confirm a hypothe- 
sis, or give explanations. The output of this learning 
is generally presented to the user prior to being 
translated into a form usable by a performance ele- 
ment (e.g., a rule-based production system) (Tecuci 
& Hieb, 1994). Most Machine Learning systems re- 
quire their learning input to be put into a special for- 
mat. The user may not be able to understand the in- 
put (which may be in the form of data) or the output 
(which is often in the form of rules) unless the user is 
quite familiar with the learning method. 

Knowledge Acquisition systems and Apprenticeship 
Learning systems are closely related. However, the 
emphasis of most Knowledge Acquisition systems is 
on modeling the initial knowledge base and eliciting 
knowledge. The emphasis in Apprenticeship 
Learning systems is on refining knowledge that has 
already been elicited or created, using machine 
learning techniques that learn from a user. 

PBD systems give an end user the ability to create 
programs by demonstrating their actions. Machine 
learning covers an overlapping area of research 
concerned with methods that learn concepts from 
example or domain theories, including such 
instruction from a teacher. An example of a PBD 
system is the Metamouse system (Maulsby & Witten, 
1993) gives the user the ability to automate drawing 
tasks. The user instructs an agent (a turtle named 
Basil) on how to manipulate objects through an 
innovative graphical interface. Basil learns from 
specification of graphical constraints to construct a 
program that automates graphical editing. The 
program can have loops and conditionals. 

PBD systems are significant because their goal is to 
empower the end user by assuming that, if a user 
knows how to perform a task on the computer, then 
that knowledge should be sufficient to create a pro- 
gram to perform the task. Rather than learn a pro- 
gramming language, the user should be able to in- 
struct the computer to watch as the task is demon- 
strated (Cypher, 1993). A common concern among 
these systems is interface design. The graphical (and 

verbal) user interface of these systems is generally 
very sophisticated, and the inferencing techniques are 
usually more specific to the task domain than ma- 
chine learning methods (Maulsby, 1994). 

PBD systems generally deal with the automation of 
simple tasks. They generally do not deal with 
automating complex tasks or behaviors, such as 
concerns the ModSAF agents. The systems do not 
provide facilities for the end user to specify domain 
knowledge to the system, as is done with knowledge 
elicitation or knowledge acquisition methods. 

3.2 Instructable Agents 

Software agents are programs that can execute with 
their own identity within an application, either 
autonomously or semi-autonomously. The agents 
that currently are being developed either have fixed 
(non-adaptive) behavior or can exhibit some limited 
forms of learning. Agent-Disciple can be thought of 
as an agent development environment either for 
training existing agents or for building entirely new 
agents. 

ModSAF agents use a task-level architecture similar 
to a subsumption architecture. This allows a user to 
give orders to an agent, who then attempts to carry 
out the orders, unless it reacts to a condition for 
which it was programmed (e.g., a threat). Since this 
is a reactive architecture, the agents must be 
supervised closely by the SME. 

Other approaches have been used to develop entirely 
new ModSAF agents using the SOAR problem- 
solving model (Tambe et. al, 1995). These agents 
currently operate primarily in air environments. The 
Soar-based agents have the potential to significantly 
improve the behavior of ModSAF entities, but 
conducting the knowledge acquisition to build such 
agents remains a difficult problem. 

Soar (Laird, Newell & Rosenbloom, 1987) is a 
general problem-solving architecture that addresses 
the problem of agent learning. SOAR has a learning 
mechanism that is integral to its architecture- 
chunking. In contrast, Agent-Disciple integrates 
many learning methods for agent instruction. Soar 
has a very elaborate model of problem solving - the 
Problem Space Computational Method (PSCM) - 
that uses deductive rules. By Contrast Agent- 
Disciple uses rules with plausible conditions and is 
able to reason with incomplete knowledge, although 
its problem solving model is also more complicated 
than most expert systems. 

Huffman (1994) used Soar in his system Instructo- 
Soar, where an instructable agent, learns from tutorial 
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instruction. Instructo-Soar learns general knowledge 
from specific instructions, using rote learning and a 
type of inductive learning (situated explanation) in 
addition to the chunking of SOAR. Huffman 
deliniates the type of knowledge that must be learned 
to build an agent in SOAR's computational model, 
and demonstrates the ability of Instructo-Soar to 
acquire the majority of knowledge types necessary. 
Instructo-Soar has been demonstrated in a small 
domain, a blocks world with a small number of 
operators, properties and relationships (less than 10 of 
each). 

4. Plausible Version Space Rules in VCDR 

We first describe the novel structure of rules in 
VCDR and then give examples of how VCDR uses 
such plausible version space rules. 

4.1 Plausible Version Space Rules 

VCDR uses a hybrid knowledge representation 
integrating semantic networks and rules. Semantic 
networks represent information from a terrain 
database at a conceptual level, as well as knowledge 
about forces and weapon systems. In order to 
facilitate learning, the objects and the rules both use 
the following representation unit: 

(concept-i concept-k (FEATURE-1 value-1) 

(FEATURE-n value-n)) 

This expression defines 'concept-k' as being a 
subclass of 'concept-i' (from which it inherits 

features) with additional features. The value of a 
feature may be a constant or another concept. 

In VCDR, rules are procedures that consist of a 
PROBLEM statement, CONDITIONS and a SOLUTION 
statement. Each condition (also called a clause) 
consists of a plausible upper bound and plausible 
lower bound which are in the format of the 
representation unit described above. The plausible 
upper bound is a conjunctive expression that is 
supposed to be more general than the exact condition, 
and the plausible lower bound is a conjunctive 
expression that is supposed to be less general than the 
exact condition. The two bounds define a plausible 
version space (PVS) for the condition to be learned 
by Disciple (Tecuci, 1992). The bounds and the 
version space are called plausible because the 
learning process takes place in an incomplete 
representation language that may cause them to be 
inconsistent (a lower bound that covers some 
negative examples or an upper bound that does not 
cover all positive examples). 

Figure 2 shows the general form of a PVS procedure 
in VCDR. A procedure is learned from specific 
problem solving episodes indicated by a user. Once 
learned, a procedure can be selected to be performed 
by an SME. A mission is a goal specification given 
to the agent (the agent in the military simulation is 
given an order). A task is an action that the agent can 
take in the simulation. 

The terms pj through pn and pn through pjv 

represent parameter names, mn through mn represent 
mission parameters, tji through tjv represent task 

PROBLEM: 
to accomplish 

MISSION pi mi ... pn m„ 

CONDITIONS: 
plausible lower bound 

verify 
(umi mi emu ... cmio)& 

plausible upper bound 

(lmi mi cmji ... cmi0)& 

(umn mn cmni ... cmnp) 
find 

(utn tn etui ... ctiir)& 

(lmn m„ cmni ... cmnp) 

(lti tn etui ... ctiir)& 

(Utjy tjv ctjvi ... Ctivs) (lti tjv ctjvi ...ctivs) 

SOLUTION: 
perform 

TASK] pn  tn     Plw   tlu 

TASKj   pji tji ••• Piv tjv 

Figure 2: PVS Procedure 
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parameters, urn and ut represent the upper bound 
class, lm and It represent the lower bound class, and 
cm through ct represent constraints upon the 
parameters. The plausible upper bound and plausible 
lower bound are both conjunctive expressions. The 
plausible upper bound is more general than the 
plausible lower bound. The upper bound represents a 
set of possible solutions, while the lower bound 
represents the least general generalization of the set 

of solutions actually encountered. 

4.1 Examples of Using PVS Rules 

Figure 3 contains simple procedures for an agent 
corresponding to Figure 4. Procedure PI specifies 
how to OBSERVE an object tl: verify that it meets 
the constraint in the lower bound - that it is a terrain- 
element (both the upper and lower bounds are the 

PI: 
to accomplish 
OBSERVE  TERRAIN tl 

plausible lower bound plausible upper bound 
verify 

(terrain-element tl) (terrain-element tl) 

find 
(hill t2 (OPPOSITE  tl)) (hill t2 (OPPOSITE  tl)) 
(armored-platoon u) (platoon u) 

perform 
MARCH UNIT-ID u LOCATION    t2 

with the positive examples 
(tl " hill-60-70,    t2 • hill-44-91, u " platoon -a2) 
(tl " lake-57-82, t2 " hill-60-70, u " platoon- a2) 

with the negative examples 
(tl " hill-44-91, t2 - lake-57-82, u " platoon- a2) 
(tl " hill-60-70, t2" hill-44-91, u company -a) 

P2: 
to accomplish 
MOVE UNIT-ID c    LOCATION   t 

plausible lower bound plausible upper bound 
verify 

(company c         (COMMANDS   pi) 
(COMMANDS   p2) 
(COMMANDS p3)) 

(hill t) 

(company c (COMMANDS pi) 
(COMMANDS pi) 
(COMMANDS p3)) 

(terrain-element t) 

find 
(armored-platoon pi) (platoon pi) 
(armored-platoon p2) (platoon p2) 
(infantry-platoon p3) (platoon p3) 

perform 
MARCH UNIT-ID pi LOCATION   t 
MARCH UNIT-ID p2 LOCATION   t 
MARCH UNIT-ID p3 LOCATION   t 

with the positive examples 
(t " hill-60-70, c"company-a, pi   platoon-al, p2 ' platoon-a2, p3 " platoon-a3) 
(t" hill-44-91, c"company-h, pi" platoon-h7, p2 platoon-h8, p3   platoon-h4) 

Figure 3: PVS Procedures 
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Figure 4: Terrain Map 

same in this case); if it is, then find objects for the 
task parameters t2 and u subject to the constraints in 
the lower bound - that t2 is a hill opposite from tl 
and that u is an armored-platoon; if there are no 
armored platoons, then use the upper bound and 
attempt to find a platoon; if objects for the task 
parameters are found, then perform the march task. 

Procedure PI has been learned from the following 
initial example.' 

to accomplish 
OBSERVE 

TERRAIN hill-60-70 
perform 

MARCH 
UNIT-ID platoon-al LOCATION    hill-44-91 

The initial example is expressed as a tuple, 

(tl " hill-60-70, t2 " hill-44-91, u " platoon-a2) 

A detailed description of how the upper and lower 
bounds are formulated and modified to obtain PI is 
given in (Hieb, 1996). The second example, 

(tl " lake-57-82, t2 " hill-60-70, u " platoon-a2) 

is positive and indicates that the lake in Figure 3.1 
can be observed from hill-60-70 by a platoon. The 
example 

(tl - hill-44-91, t2 " lake-57-82, u " platoon-a2) 

' An instructor gives the initial example and 
classifies the subsequent examples in this scenario as 
positive or negative. This scenario focuses on the 
learning method rather than interaction. 

is negative since the platoon cannot move onto the 
lake (the platoon is a motorized unit with tracked 
vehicles and cannot drive on the lake). The example 

(tl " hill-60-70, t2 " hill-44-91, u " company-a) 

is negative since a company cannot be utilized as the 
observing unit (it is too large to perform the 
observation mission). 

After the procedure is learned, it can be used by the 
agent as follows: 

1) SELECT - The agent selects a procedure to 
accomplish a specific mission and binds the 
variables in the problem to the mission 
parameters. 

2) VERIFY - Verify that the mission parameters 
meet the constraints imposed by the 
corresponding verify lower bound conditions. 

3) FIND - Find a set of objects corresponding to the 
task parameters that meet the constraints in the 
find lower bound conditions. 

4) EXECUTE - Instantiate the task(s) in the 
solution with the set of objects from steps 2 & 3 
corresponding to the parameters of the task(s), 
and invoke the task(s). 

If the agent cannot find a procedure in step 1 to 
accomplish the mission, or the mission parameters do 
not meet the constraints imposed by the verify lower 
bound conditions in step 2, or the agent is unable to 
find a solution in step 3 (a set of objects meeting the 
constraints in the find lower bound conditions), then 
the agent will be unable to accomplish the mission. 
To simplify the problem solving, only the lower 
bound is used. The upper bound is manipulated 
during learning and is kept so that the rule can be 
modified later. 

For example, the user of the simulation may wish to 
have the agent monitor for enemy activity in the area 
depicted by Figure 4. The user selects the agent and 
orders it to OBSERVE forest-55-87. 

1) SELECT - The agent selects PI to OBSERVE 
forest-55-87 and binds the variable tl to the 
object forest-55-87. 

2) VERIFY - The agent checks that the object 
represented by parameter tl meets the constraints 
imposed by the verify lower bound condition in 
PI: 

(terrain-element tl) 
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Since forest-55-87 is a terrain-element, tl is 
verified. 

3) FIND - Find the objects corresponding to t2 and 
u that meet the constraints in the find lower 
bound in PI: 

(hill t2 (OPPOSITE tl)) 
(armored-platoon u) 

tl was bound to the object forest-55-87 in step 
one. The object found for t2 must be a hill 
opposite from the object represented by tl. This 
must be hill-60-70 according to the knowledge in 
the agent's semantic network. Then the object 
found for u must be an armored platoon, platoon- 
a2 is found, but could be any other armored 
platoon. 

4) EXECUTE - The agent orders platoon-a2 to 
execute the march task to hill-60-70. 

Similarly, procedure P2 has been learned from the 
following initial example: 

to accomplish 
MOVE 

UNIT-ID company-a LOCATION   hill-60-70 

perform 
MARCH 

UNIT-ID platoon-al   LOCATION   hill-60-70 
MARCH 

UNIT-ID platoon-a2   LOCATION   hill-60-70 
MARCH 

UNIT-ID platoon-a3   LOCATION   hill-60-70 

This procedure specifies how to move a company to a 
position - by moving each of the platoons associated 
with that company using the appropriate movement 
task for a platoon (MARCH). The relationship 
COMMANDS must hold since otherwise a company 
could "take" another company's platoons. There are 
two positive examples, and the procedure is less 
completely learned than procedure PI. For example, 
the variables representing the platoons in the lower 
bound could be further generalized from armored- 
platoon and infantry-platoon to platoon, since it does 
not matter what type the platoons are. 

When performing procedure P2, there is an additional 
complication since the constraints on mission 
parameter c involve other variables representing task 
parameters from the solution. In this case a least 
commitment strategy is used, where it is merely 
verified that the object represented by c has the 
relationship COMMANDS to three other objects in the 
VERIFY step. These objects are then found in the 
FIND step. 

5. Implementation of VCDR 

The design of VCDR follows the Agent-Disciple 
methodology of creating an Agent Training 
Environment from (Hieb, 1996). The basic learning 
and problem-solving functions were taken from the 
Agent-Disciple toolkit. In addition to using the core 
methods in Agent-Disciple's toolkit the following are 
required: 1) translators between ModSAF's data 
structures and the semantic network; 2) 
implementation of an interface between the learning 
functions written in Lisp and the ModSAF libraries 
written in C; 3) constructing ModSAF training 
editors; 4) integrating the new tasks learned into the 
existing task-level architecture; and 5) modifying the 
task editor so that the new tasks can be selected. The 
overall implementation is depicted in Figure 5. 

We discuss our approach to 2) and 3) below. 

5.1 Distributed Interface to Learning System 

As researchers in the field of Programming by 
Demonstration have found, it is very difficult to 
interface learning systems to existing applications. 
We have designed a distributed interface, since the 
two systems are quite different. This also has the 
advantage of allowing the use of a separate CPU 
(from that running ModSAF) to run the learning 
functions. To convey the data from the ModSAF 
training editors, we are interfacing the learning 
functions of Disciple to ModSAF using an 
experimental Distributed Interactive Simulation 
protocol data unit (PDU). 

In designing this interface, we distributed control of 
learning between ModSAF and the learning functions 
in Lisp. ModSAF is in control of sending PDUs to 
Disciple. The Lisp process blocks while waiting to 
receive PDUs. When Disciple receives a PDU, it 
processes the message part, then sends a PDU back to 
ModSAF in reply (either carrying data or sending an 
acknowledgment) and blocks. 

Table 1 shows the interface protocol created for the 
interface. The phases correspond to distinct sets of 
learning functions as in Hieb (1996). Within the 
phases, types are discrete events, triggering actions 
(PDUs sent activating the learning functions in Lisp). 
Even types indicate ModSAF sending PDUs to 
Disciple, while odd types indicate Disciple sending 
PDU to ModSAF. 
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Agent-Disciple Toolkit 

Learning -^ 

Knowledge 
Representation "^ 

Problem Solving   

Customization 
ModSAF Company 

Commander 

(ModSAF Plan View Display^) 

Figure 5: Constructing VCDR Using the Agent-Disciple Toolkit 

Specification of Initial Scenario Phases 
Phase 4 - Generate Experimentation Example 

Phase 0 - Give Initial Example Type 0 - Request Example to be Generated 
Type 0 - Select Example Template Type 1 - Send Example 
Type 1 - Send Acknowledgement of Template 
Type 2 - Select Initial Example Phase 5 - Give Experimentation Example 
Type 3 - Send Acknowledgement of Initial Type 0 - Specify Example 

Example Type 0 - Send Acknowledgement of Example 

Phase 1 - Give Initial Explanations Phase 6 - Classify Experimentation Example 
Type 0 - Select Variable to Generate Type 0 - Classify Example 

Explanations from Type 1 - Send Acknowledgement of 
Type 1 - Send List of Explanations Classification 
Type 2 - Select Explanation(s) 
Type 3 - Send Acknowledgement of Phase 7 - Explain Mistake in Experimentation 

Explanations Type 0 - Select Variable to Generate 
Explanations from 

Phase 2 - Quit Initial Signal Phases Type 1 - Send List of Explanations 
Type 0 - Quit Specification of initial Type 2 - Select Explanation(s) 
Type 1 - Send Acknowledgement of Quit Type 3 - Send Acknowledgement of Explanations 

Type 4 - Select Variable to Blame 
Learning through Experimentation Phases Type 5 - Send Acknowledgement 

Type 101 - Quit Explanation Phase 
Phase 3 - Experimentation Search Parameters Type 102 - Send Acknowledgement 

Type 0 - Select Variable(s) to Fix 
Type 1 - Send Acknowledgement Fixed Phase 8 - Quit Experimentation Signal Phases 
Type 101 - Quit Search Phase Type 0 - Quit Experimentation 
Type 102 - Send Acknowledgement of Quit Type 1 - Send Acknowledgement of Quit 

Table 1: Protocol for Agent-Disciple/ModSAF Interface 
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The specific implementation of the PDU interface 
functions in both ModSAF and Disciple is covered in 
much greater detail in (White et. al. 1996). 

5.2 VCDR ModSAF Editors 

A major part of building a VCDR instructable agent 
is developing the graphical user interface for the 
SME instructor. We have designed a series of 
ModSAF editors to act as the agent instruction 
interface. A ModSAF editor is a GUI that allows the 
user to directly manipulate ModSAF data structures. 
The VCDR editors allow an SME to give both 
examples of how to perform a mission and also 
explanations to the VCDR agent, using the existing 
ModSAF interface. During the teaching session the 
VCDR agent will learn the mission and later, be able 
to perform it when asked to do so. 

A challenge for the interface designer of a new 
ModSAF editor is to use as much of the existing 
ModSAF interface as possible, including both the 
terrain map (or plan view display) and the editables 
within the existing ModSAF editors. For VCDR we 
are designing an interface within ModSAF that both 
utilizes elements of the plan view display (such as the 
command and control graphics) and new text 
editables to allow a user to specify examples and 
explanations during learning. 

An analysis of existing interactive learning systems 
shows that there are at least four main classes of 
interaction necessary to teach an instructable agent 
(Hieb, 1996): knowledge specification, specification 
of training examples, specification of explanations, 
and classification of examples. We have designed 
and are implementing editors that support these 
interactions. 

Knowledge specification is mainly performed during 
the construction of the agent, prior to the phase when 
the SME instructs the agent. However, the SME will 
specify different terrain areas to utilize as training 
and testing data to the learning system. Thus a 
VCDR terrain editor will allow the SME to both draw 
boundaries around the terrain area and also guide the 
learning system in performing semantic terrain 
transformations (Hille et. al. 1995), a form of semi- 
automated knowledge acquisition. 

MITRE is developing a Command and Control 
Simulation Interface Language (CCSIL) to provide 
CFORs a common language for command and 
control, utilizing military terms and message formats 
(Salisbury et. al. 1995). Since an agent instruction 
interface must utilize predefined knowledge about the 
mission and terrain, some CCSIL language constructs 
can be used as standardized terms during instruction. 

The remaining classes of interactions are 
implemented in the VCDR instruction editors, which 
provide the capability to select command and control 
graphics from the plan view display. Figure 6 shows 
the Main VCDR editor, which allows an SME to 
specify the initial task to be learned ("Start"), to 
begin the training process ("Train"), to verify the task 
taught ("Verify") and to assign an agent the new task 
("Use"). Figure 7 shows the Training Editor, which 
is invoked when the "Train" button is pressed in the 
Main Editor. The Training Editor allows the SME to 
construct training examples for the system ("Give 
Examples") or to have VCDR generate examples 
(through experimentation) for the user to classify. 
Classification of training examples is provided via a 
yes/no/unknown menu option button. Figure 7 shows 
the Verification Editor, which is invoked when the 
"verify button is pressed from the Main Editor. This 
editor allows the user to verify a rule by selecting 
another terrain area and specify variable assignments 
of a task. 

All of the editors also provide a history of past 
examples and explanations via buttons on a common 
utility pane, as well as providing the user to directly 
examine the rule and variable assignments. 

7. Conclusions and Future Research 

Systems for automating complex tasks must be 
designed so that they can be general enough to be 
adapted to different domains. For example, 
considerable effort was expended in modifying both 
the ModSAF application (which contains over 450 
source libraries written in C) and Agent-Disciple to 
create Captain. The next goal, in VCDR, is to use the 
existing editor interface of ModSAF, as opposed to a 
separate learning system interface. Lieberman (1994) 
points out that the interface between an end user and 
the agent training system is a crucial issue not 
addressed in most of the machine learning research. 
The VCDR approach is to use as much of the existing 
ModSAF interface as possible, on the assumption that 
this is easier for the SME. 

The VCDR instruction method requires a pre-existing 
knowledge base and the creation of customized 
methods to translate the application's current state to 
the learning function's semantic network. To address 
this drawback in the ModSAF domain, terrain 
transformation techniques have been developed and 
are being implemented to automatically create a 
substantial portion of our semantic network from the 
digital terrain databases (Hille et al 1995). Also, 
facilities are provided for the SME to specify 
additional terms in the representation language during 
the training process, as in Dybala & Tecuci (1995). 
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Figure 8: VCDR Verification Editor 

From our experience we have concluded that it is 
difficult to give the user the flexibility to define 
completely new complex tasks such as missions in 
the ModSAF domain. The missions that a ModSAF 
agent can perform are quite complicated because the 
environment is complex and non-deterministic. In 
VCDR we provide the SME a task template 
corresponding to the basic missions available to the 
SME. The user can then specialize or modify this 
template to create the task structure necessary for 
learning a procedure. 

Much of the power of the agent instruction approach 
presented comes from the multiple types of 
interaction between the SME and the agent being 
taught. Such rich interaction is rare among Machine 
Learning systems, and is closer to the interaction 
found in Programming By Demonstration systems 
(Maulsby, 1994). Such interaction is necessary, 
however, to develop more powerful agents. These 
interactions include: specifying new terms in the 
representation language of the agent; giving the agent 
an example of a solution to a task for which the agent 
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is to learn a general procedure; validating analogical 
instances of solutions proposed by the agent; 
explaining to the agent reasons for the validation; and 
being guided to provide new terms in the 
representation during interaction (Tecuci & Hieb, 
1994). 

VCDR addresses the basic requirements for an ideal 
Programming By Demonstration learner, as identified 
by Maulsby and Witten (1995). First, the learning 
agent is under the user's control, who specifies the 
actions and features relevant to the task to be taught, 
gives hints and explanations to the agent, and guides 
its learning actions. Second, the learning agent uses 
various knowledge-based heuristics for performing 
plausible generalizations and specializations that are 
understandable, including plausible generalization of 
a single example. It also learns from a small set of 
examples. Third, the agent learns a task in terms of 
all the parameters necessary for task execution. 

VCDR does not currently address autonomous 
learning, where the agent would learn without the 
guidance of an SME, but the same learning methods 
that are being developed for instruction should be 
applicable (Hieb, Hille & Tecuci, 1994; Hille, Hieb, 
& Tecuci, 1993; Tecuci et. al., 1994). 

Verification and validation is a difficult problem with 
CFORs, because of the complexity of the agent 
reasoning process. Our approach addresses this 
problem by allowing the user to test the agent with 
additional examples after the agent has successfully 
learned how to perform a mission. The SME can 
select the testing examples or the testing examples 
can be automatically generated. If the agent performs 
the mission incorrectly, the user can correct the agent 
through the same instruction techniques that were 
originally used to teach the agent (i.e., by giving 
additional examples or explanations). If the agent 
performs the mission selected by the SME correctly, 
then confidence in the learned behavior increases. 

VCDR offers an efficient approach for teaching 
complex behavior to an agent through demonstration. 
This approach was illustrated by our investigations 
with the Captain system (Hieb, 1996). This approach 
to training ModSAF agents appears to be more 
natural and significantly simpler than the currently 
process, where the SME manually specifies the 
mission of the ModSAF agents in great detail to 
achieve reasonable behavior in a simulation. The 
learning efficiency in VCDR is achieved through the 
use of plausible version spaces and a human guided 
heuristic search of these spaces. 
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1. Abstract 

Computer Generated Forces (CGF) systems are 
typically rule-based systems in one form or another. 
The behaviors of vehicles and units are implemented 
by a set of unchangeable rules. It may not be possible 
to consider all the nuances of a situation to develop a 
complete set. Research demonstrates a mechanism 
whereby the Subject Matter Expert (SME) can 
directly teach a CGF system a set of rules without an 
intermediary knowledge engineer (to develop 
production rules) or computer programmer (to write 
computer code). Machine learning is a research area 
in the Artificial Intelligence domain whose focus is 
on making machines "learn." In the CGF domain, 
machine learning can be used to teach simulated 
commanders new rules for responding to situations 
resulting in intelligent behavior selection; thus, 
"canned" responses are eliminated. A product of 
IST's research is a Learning Testbed which provides 
an environment for machine learning in the CGF 
domain. This testbed has been implemented in the 
Modular Semi Automated Forces (ModSAF) CGF 
system. The focus of this research is teaching 
ModSAF company commanders how to select 
appropriate reactive behaviors. 

2. Introduction 

2.1 Objective of this Research 

CGF systems are typically rule-based systems. The 
behaviors of vehicles and units are implemented by a 
set of unchangeable rules. Although, rule designers 
spend significant effort in developing an "adequate" 
set of rules, the rule set is rarely, if ever, sufficient to 
address all possible situations. Rule-based systems 
suffer from suggesting similar responses to situations 
which may be significantly different. 

Machine learning is a research area in Artificial 
Intelligence (AI) whose focus is on making machines 
"learn." After learning, the machine is expected to 
"solve" problems presented to it. In the CGF domain, 
machine learning can be used to teach simulated 
commanders new rules for responding to situations 
resulting in better or more intelligent behavior. 

The primary objective of IST's research was to create 
a Learning Testbed. This testbed has been 
implemented in the ModSAF CGF system and has 
been used for "teaching" simulated company 
commanders how to choose a reactive behavior to a 
situation. The learning target was feasible and 
provided an opportunity whereby the existing reactive 
behavior mechanism could be improved. Further, the 
improved reactive behavior mechanism could be 
compared and contrasted with ModSAF's original 
reactive behavior mechanism. 

3. Machine Learning 

3.1       Supervised   and   Unsupervised 
Learning 

Machine 

Learning is an important aspect of human cognition. 
Humans have the ability to acquire new knowledge, 
to learn new skills, and to improve with practice. 
One method to improve computer system 
performance is for the system to "learn;" i.e., acquire 
knowledge and change the performance based in a 
manner similar to human learning. Research into 
machine learning has revealed methods whereby 
computer systems can "learn," such as: instruction, 
analogy, examples, failure, observation, and 
discovery (Charniak et al. [1987]). These methods 
can be grouped into two disjoint categories: 
supervised and unsupervised machine learning 
methods (Hertz et al. [1992]). 

In supervised machine learning, a teacher guides the 
student (i.e., the learning system) to a solution, or 
gives the solution to the student, along with an 
explanation. In unsupervised machine learning, 
students do not have a "teacher" or an "oracle" for 
guidance. Section 3.2 lists general machine learning 
approaches. These approaches are a mixture of 
supervised and unsupervised machine learning 
methods. In the remainder of the text the term 
"learning" will mean "machine learning" and the two 
terms will be used interchangeably. 
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3.2 General Machine Learning Methods 

Learning methods are: 

• Connectionist: Neural networks and their 
relatives (Adeli et al. [1995]) and (Hertz et 
al. [1992]). 

• Genetic/Evolutionary: Genetic algorithms 
(Holland [1975] and Goldberg [1989]), 
classifier systems, and genetic programming 
(Adeli et al. [1995]), Koza [1992], and 
(Winston [1992]). 

• Inductive methods: Decision tree systems 
and learning by example (Winston [1992]). 

• State Operator And Result (SOAR) 
Chunking (Winston [1992]) and (Michalski 
etal. [1994]). 

• Case-based and other analytical methods: 
Explanation-based learning (Winston 
[1992]), case-based learning (Kolodner 
[1993]), and exemplar-based learning 
(Bareiss[1989]). 

Rajput and Karr [1995] presents a survey of the 
general learning methods and methods specific to 
learning reactive behaviors. 

3.3 Learning Reactive Behaviors using Exemplar- 
based Learning 

Exemplar-based learning is based on classification 
and problem solving (Bareiss [1989]). It combines 
learning with problem solving to learn new concepts 
and to refine existing concepts based on experience. 
From a simple classification point of view, common 
concepts are collected into categories. However, the 
basis for category membership of a concept is poorly 
understood. Creating a category, and classifying new 
cases as members of that category, depends on 
determining commonalities between new cases and 
existing members of the category. 

Exemplar-based learning represents a category by a 
set of retained cases, called exemplars. Every 
exemplar in a category has an explanation associated 
with it to explain its degree of relevancy in that 
category. To classify a new case, an exemplar is 
retrieved to serve as a model for interpreting features 
of the new case. The model exemplar provides 
information as to which features the new case should 

possess and their importance to the category's 
membership. Because there are several exemplars 
defining a category, a wide range of models is 
available to help classify typical as well as atypical 
cases that belong a given category. 

For acquiring knowledge about when to use reactive 
behaviors, a classification hierarchy was created 
where each category represents a ModSAF reactive 
behavior. No problem solving is required to classify 
the reactive behavior exemplars because the SMEs 
classify the reactive behavior for a given situation. 

4. The Learning Architecture 

4.1 Introduction 

Traditional Al has generally interpreted the organized 
nature of everyday activity in terms of plans and plan- 
following (Agre [1988]). Chapman [1987] has shown 
planning to be computationally intractable in all but 
simple descriptions. This poses a severe restriction 
for real time simulation. Because of the situated and 
interactive nature of units in the simulation 
environment, traditional planning is unsuitable to the 
realtime selection of reactive behaviors.. 

Agre [1988] takes a different approach in his 
computational theory of action. The principal idea is 
that continually redeciding what to do is more flexible 
and computationally feasible than executing a plan 
because it is more responsive to opportunities and 
contingencies. It is possible to approximate the ideal 
of continual redecision because life is almost entirely 
routine. The routine portion of the reasoning leading 
to each moment's action can be implemented 
efficiently by recording the reasons behind any novel 
bits of reasoning (Agre [1988]). 

For learning reactive behaviors, the situation 
assessment provides the novel bits of reasoning to 
help a unit decide what to do. The situation 
assessment serves as an index to the appropriate 
reactive behavior stored as exemplars (Section 3.3). 
The bit patterns describing the situation are 
independent, so a rule will not invalidate another rule 
unless there is an attempt to map one situation to two 
different reactions. In this case the SME is asked to 
choose between two contending rules or to better 
qualify the situation, to prevent inconsistensies in the 
acquired knowledge. 
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4.2 Overview of the Approach 

Machine learning begins with the detection of events 
that trigger reactive behaviors, such as presence of 
enemy ground and air units, minefields, and indirect 
fire. The company commander then analyzes the 
situation and consults a Knowledge Base (KB) for a 
reactive behavior to apply to the situation. If the KB 
cannot provide an answer, an SME is consulted. The 
SME selects a reactive behavior and then justifies his 
or her choice by selecting one or more pre-conditions 
or "justifications" through an editor. These 
justifications are considered: 

1. 

2. 

3. 

5. 

6. 
7. 

9. 
10. 
11. 
12. 
13. 
14. 

Availability of cover and concealment in the 
situation. 
Ratio of unit strength to enemy strength at 
the objective. 
Ratio of total friendly strength to enemy 
strength at the objective. 
Ratio   of   unit   strength   to   total   enemy 
strength. 
Ratio   of total   friendly  strength  to  total 
enemy strength. 
Presence of dangerous threat. 
Presence of friendly support. 
Ratio of enemy strength on left, front, right, 
and rear to unit strength. 
Inadequacy of unit strength to the mission. 
Enemy operational activity. 
Direct and indirect fire, 
Distance to the objective. 
Attacking aircraft. 
Presence of minefield. 

The justifications form the bit pattern described in 
Section 4.1 and together with the reactive behavior 
constitute a rule. The rule is then stored in the KB 
and the systems "learns." Thus, at any time a 
company commander's knowledge consists of the set 
of rules in the KB. 

4.3 The Learning Algorithm 

The Learning Algorithm (Figure 1) is implemented as 
a ModSAF task or Finite State Machine (FSM) 
running on behalf of a unit commander. 

The algorithm begins in the "Monitor" stage. In this 
stage the algorithm checks for events that trigger 
reactive behaviors: establishment of Line-of-Sight to 
an enemy, air attack, detection of minefield, and 
indirect fire. After an event is detected, the algorithm 
goes to "Situation Analysis" where the unit 
commander does situation assessment (Section 4.4). 

The algorithm checks the KB (Section 4.5.4) for a 
rule that matches the situation. If a rule is found it is 
presented to the SMEs. The SMEs have two choices: 
they can either accept the rule, in which case the 
reaction associated with the rule is executed, or they 
can modify it. If the SME modifies a matched rule 
the system "learns." The newly created rule is 
merged into the KB. This entails creating a new rule 
and possibly modifying the matched rule. In any 
case, after SMEs have provided their input, the 
chosen reaction is executed. If no rule is found that 
matches the situation, SMEs are asked to create one. 
This new rule is stored in the KB and its associated 
reaction is executed. After the reaction is over the 
algorithm returns to the "Monitor" stage. 

Start 

Display matched 
rule and accept 
SME input 

Accept SME 
input / 

Figure 1: The Learning Algorithm. 
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4.4 The Situation Analyzer 

Situation Analysis (or Situation Assessment) 
quantifies the situation with respect to certain 
parameters discussed in the following sections. Using 
the quantified situation assessment parameters, the 
system matches a rule with the situation. The 
Situation Analyzer (SA) is a software module 
developed for this purpose. It provides the simulated 
company commander with information about: 

• itself (self assessment), 
• enemies (enemy assessment), and 
• the terrain (terrain assessment). 

4.4.1 Self Assessment 

This includes information about the unit and other 
friendly forces: 

1. Operational activity: This is the unit's 
operational activity including halt, march, 
assembly area, hasty occupy position, attack, 
and others. 

2. Original strength: Strength of the unit when 
it was created. Each vehicle is assigned a 
strength value representing its strength 
relative to another vehicle (Rajput and Karr 
[1995]). The unit's strength is the sum of 
vehicles' strengths in the unit. 

3. Current strength: This equals orginal 
strength less the strength of vehicles 
damaged or destroyed. 

4. Type: Type of unit including armor, 
artillery, mechanized infantry, and others. 

5. Speed: The average speed of all vehicles in 
the unit. 

6. Receiving Indirect Fire (IF): Is the unit 
under indirect fire? 

7. Presence of friendly forces: Are there 
visible friendly forces? 

8. Friendly forces strength: If there are visible 
friendly forces, their strength is computed. 
Two value are computed: the average 
friendly forces strength and the strength of 
the strongest friendly group. 

9. Importance to mission: Whether the unit is 
a main, support, or diversionary unit. 

10. Distance to objective. 
11. Attacking aircraft: Is the unit under attack 

from enemy aircraft? 
12. Receiving Direct Fire (DF): Has the unit 

received direct fire from enemy units within 

a    set    time     interval    prior     to    the 
determination? 

13. Minefield    detected: Has    the    unit 
encountered a minefield? 

4.4.2 Enemy Assessment 

Visible enemy vehicles are separated into groups 
using a technique discussed in Cisneros et al. [1995]. 
Then, for each enemy group this information is 
deduced: 

1. Enemy strength: Sum of the strengths of the 
vehicles in the group. 

2. Position: The position of the group, whether 
left, front, right, or rear, with respect to the 
center of mass and heading of the analyzing 
unit. 

3. Distance: Distance to the analyzing unit. 
4. Type: The type of the group is the type of 

the vehicles that are similar and a majority in 
the group. For example, if the majority of 
vehicles in a group are T80s (an armored 
vehicle), the group is classified as an armor 
unit. 

5. Speed: The average speed of the vehicles in 
the group. 

6. Operational activity: Formation, speed, and 
vehicle headings are used to give clues to the 
enemy's operational activity. Vehicles in a 
platoon exhibiting high variance in heading 
are in defense. Vehicles in a platoon moving 
in line formations are assaulting whereas 
vehicles moving in other formations are 
traveling. Vehicles in a platoon that are not 
moving and are not in a defensive posture 
are holding. 

7. Enemy at or near the objective: Is the 
enemy at or within a threshold distance from 
the objective? 

4.4.3 Terrain Assessment 

Terrain assessment computes covered and concealed 
positions within an area using available ModSAF 
routines. 

4.5 Knowledge Representation 

The system's knowledge is stored in a data structure 
called a KB. The fundamental unit of knowledge is a 
rule containing a bit pattern and a reactive behavior. 
The KB is used for: 
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• matching a rule's bit pattern to a situation, 
• storing new rules, and 
• modifying matched rules. 

4,5,1 Situation Pattern, Justifications, and Rules 

The SME "teaches" the simulated company 
commander which reactive behavior to execute in 
response to a situation. After SMEs have selected a 
reactive behavior, they justify their choice by 
selecting one or more justifications. The set of 
justifications encode a bit pattern which indicates 
why a reactive behavior was selected and details the 
necessary preconditions for the execution of a 
reactive behavior. Some justifications are more 
important than others and a measure of their 
importance is given by a degree of importance. This 
is an integer value, in the range 1 to 10, 1 being the 
least important and 10 being the most important. In 
the Learning Testbed, all justifications have the same 
degree of importance, namely 10. However, the 
system provides support for replacing the default 
value by one determined by the SME. 

In many AJ systems, rules are predefined and 
unchangeable. A rule's "if" part must be satisfied 
before the "then" part is executed (Winston [1992]). 
In IST's approach, rules can be modified during run 
time and new rules can be created from existing ones. 
As the system's repertoire of rules grows, so does its 
knowledge. 

There are three types of justifications: 

• Binary: A binary justification becomes part 
of a bit pattern when selected by the SME, 
otherwise it does not. For example, when 
the SME selects the justification, 
"Availability of cover and concealment in 
the situation," it means that the SME 
considers the availability of cover and 
concealment a precondition for selecting the 
reactive behavior. No other data is stored 
with the justification. 

• Enumeration: The justification consists of a 
set of values. If any value is chosen, the 
justification becomes part of the bit pattern 
and the value is stored with the bit pattern. 
For example, the justification, "Enemy 
Operational      Activities,"      has      values 
Holding," "Move," "Assault," and "Hasty 

Defense."   The SME picks one value, such 

as Move, from the set which is stored with 
the bit pattern. 

• Range: Two numbers are associated with 
the justification which define the lower and 
upper bounds of a range. The justification 
becomes part of the bit pattern when 
selected by the SME and the range bounds 
are determined from situation variables 
(Section 0). 

Based   on  consultations  with   IST's   SME,   these 
justifications were considered: 

1. Availability of cover and concealment in the 
situation (Binary): Important if selected. 

2. Ratio of unit strength to OPFOR strength at 
objective Favorable (Range): 

ratio = 
Su 

SoPFOR(obj) 

where Su is the strength of the analyzing unit 
and SopFomobj) is the OPFOR's strength at the 
objective. 

3.    Ratio of unit strength to OPFOR strength at 
objective unfavorable (Range): 

ratio = 
SoPFOKobj) 

4.    Ratio of total friendly strength to OPFOR 
strength at objective favorable (Range): 

ratio = 
S, 

SoPFOR(obj) 

where Sf is the total friendly strength. 

5.    Ratio of total friendly strength to OPFOR 
strength at objective unfavorable (Range): 

ratio = 
SoPFOR(obj) 

St 

6.    Ratio  of unit strength  to  total  OPFOR 
strength favorable (Range): 
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ratio = 
SoPFOR 

where SOPFOR is the total OPFOR strength. 

7.    Ratio  of unit  strength  to  total  OPFOR 
strength unfavorable (Range): 

SOPFOR 
ratio = 

8.    Ratio  of total friendly  strength  to  total 
OPFOR strength favorable (Range): 

ratio = 
Sj 

SOPFOR 

9.    Ratio  of total friendly  strength  to  total 
OPFOR strength unfavorable (Range): 

ratio = 
SOPFOR 

~sT 
10. Presence of dangerous threat (Range): Two 

ranges are stored: The average strength and 
the average distance to all enemies. 

11. Presence of friendly support (Range): Two 
ranges are stored: The average strength and 
the average distance to all friendly forces. 

12. Enemy on right flank (Range): Ratio of 
OPFOR strength on the right flank to unit 
strength. 

SoPFOK(r) 
ratio = 

where S0pFOR(r> is the OPFOR strength on the 
right flank. 

13. Enemy on left flank (Range): Ratio of 
OPFOR strength on left flank to unit 
strength. 

ratio = 
SorFOK(l) 

~s7~ 

where S0PFORW is Ae OPFOR strength on the 
left flank. 

14. Enemy  in  the front  (Range):     Ratio of 
OPFOR strength in the front to unit strength. 

ratio = 
}OPFOH(f) 

Su 

where S0PFOR(/) is the OPFOR strength in the 
front. 

15. Enemy in the rear (Range):  Ratio of enemy 
strength in the rear to unit strength. 

ratio = 
Su 

where S0PFOR<rtar) is the OPFOR strength in 
the rear. 

16. Force inadequate due to losses (Range): 
Ratio of current unit strength to original unit 
strength. 

ratio = Su I Sorigiml 

where Sorigirui, is the original unit strength. 

17. Enemy operational activity (Enumeration): 
The enemy operational activity chosen by 
the SME is stored in the justification. 

18. Direct fire (Binary): Important if selected. 

19. Indirect fire (Binary): Important if selected. 

20. Far from objective (Range): Distance to the 
objective is stored as a lower bound in the 
justification. 

21. Close to objective (Range): Distance to the 
objective is stored as an upper bound in the 
justification. 

22. Attacking aircraft (Binary): Important if 
selected. 

23. Minefield detected (Binary): Important if 
selected. 

4.5.2 Matching Rules To A Situation 

After rules have been created and stored, they have to 
be searched to find one that matches the situation. 
Two types of matches are determined: perfect 
matches and near matches. 
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A rule is a perfect match if the situation satisfies all 
the justifications. A binary justification is satisfied if 
the situation has the same property as the 
justification. For example, if the justification Cover 
and Concealment is selected and the situation also 
has cover and concealment, the justification is 
satisfied. An enumeration justification is satisfied if 
the enumeration value in the justification is present in 
the situation. For example, if the justification 
Enemies Operational Activity has the value "move" 
and the enemy in the situation is also moving, the 
justification is satisfied. A range justification is 
satisfied if the situation variable falls within the 
specified range. For example, if the justification Unit 
to OPFOR has the range 5.09 to «> and the ratio of 
unit strength to OPFOR strength in the situation is 
10.0:1.0, the justification is satisfied because 10.0 
falls within the range 5.09 to °°. On the other hand, a 
rule is a near match if some justifications are true and 
the sum of the degree of importance (score) of true 
justifications exceeds a threshold. 

Of the perfect and near matched rules the best-fit rule 
is returned to the SME. This could either be a perfect 
match rule or a near match with the highest score. 

creating a new rule from a best-fit rule. Overlapping 
ranges may lead to multiple matched rules in a future 
situation, the matched rules differing only in their 
range bounds. This leads to ambiguous results. For 
example, assume two rules, R; and Rj. R, is the best- 
fit rule and R; is derived from it. The only difference 
between /?, and Rj is in the difference in their range 
bounds of a justification x. Let r, and r, be the ranges 
of x in R, and Rj respectively. 

Now, if the corresponding situation variable has value 
v which lies in both r, and rp rules R, and Rj will be 
perfect matches. The solution is to split the ranges as 
shown by this example: 

Let r,= [10.0, «], Tj=- [20.0, «], and v = 25.0; i.e., v 
lies in both r, and r;. The ranges are split such that r, 
= [10.0, 20.0] while r, remains unchanged. Now, the 
ranges do not overlap and ambiguous situations are 
avoided. 

4.5.4 The Knowledge Base Organization 

To match rules efficiently, the KB is organized 
hierarchically (Figure 2). 

4.5.3 Creating Rules and Modifying the Best-fit Rule 

If the system cannot find a rule that matches the 
situation, the SME can create and insert a new rule in 
the KB. On the other hand, if the system determines 
a match and presents the best-fit rule to the SME, the 
SME can modify it. There are three cases: 

• SME chooses new justifications (Case I): 
This results in a new rule which is inserted 
in the KB. The best-fit rule remains 
unchanged. 

• The ranges change (Case 2): A new rule is 
inserted into the KB. The new rule has the 
same justifications as the best-fit rule but 
differs in the ranges of those justifications. 
The best-fit rule is modified. 

The rules are organized for indexing and retrieval 
with respect to unit type; for example, UNIT_TYPEi 
might be an armor company and UNTTJTYPEi might 
be a mechanized infantry company. 

Within each unit type the rules are further organized 
based on the unit's operational activity (oa); for 
example, oa, might be a "march" and oa2 might be an 
"assault." Each operational activity node has a list of 
rules; for example, rulesi.„ in the figure. The broken 
arrows represent the continuation of the KB for other 
unit types. This organization is in addition to the 
exemplar-based hierarchy discussed in Section 3.3.2. 

In a given situation, only the branch of the hierarchy 
containing the unit's type and operational activity is 
searched. This avoids searching the entire KB and 
constrains the search to a narrow area. 

• Only the reaction changes (Case 3): The 
SME selects a new reaction to the situation 
for which a different reaction was chosen 
previously. The reaction in the best-fit rule 
is overwritten by the SME's selection. 

Consider Case 2 which requires that the best-fit rule 
be modified. The modification is in terms of 
eliminating range overlap occurring as a result of 
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RULES 
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Figure 2: The Knowledge Base. 

5. Results 

The learning testbed was implemented in ModSAF 
version 1.5.1 and used for "teaching" company 
commanders the reactive behaviors for different 
situations. To test the learning testbed, 1ST devised 
an experiment. The experiment was implemented in 
two parts: training the company commanders and 
using the learned reactive behaviors. 

In the first phase of the experiment, four sets of 
scenarios were developed that resembled typical 
battlefield conditions. These sets comprise the 
training set (Section 5.1). Using these sets of 
scenarios, IST's SME trained the company 
commanders with different reactive behaviors for 
different situations. This information was input to the 
KB (Section 4.5.4). 

In the second phase of the experiment, the KB created 
for each scenario set was used in each of the other 
three scenario sets. The applicability of the reactive 
behavior, recommended by the KB, to the situation 
was judged by ISTs SME (Section 5.2). 

5.1 The Training Set 

1ST developed four sets of scenarios for the training 
set (Rajput and Karr [1995]). Each set had a base 
scenario which was varied to develop the entire set. 
The variations resulted in a richer training set 
allowing more justifications to be used. The four 
scenarios were executed on different machines and 

four KBs were created and saved as four output files. 
Table 1 shows the justifications used by all scenarios. 

Justification A B c D 
Cover and Concealment V V V V 
St/SopFORfobi) 

Sf/SopFOR(obi) 

S„/SopFOR V V V V 
Sf/SoPFOR V V V V 
Dangerous threat V V V 
Friendly Support 
SoPFORfl. r. f. rear/Su V V V 
^t/^original 

Enemy operational activity V V 
Direct or indirect fire V 
Distance to the objective 
Attacking aircraft 
Presence of minefield V 

Table 1: Justifications used in the scenarios. 

5.2 Using Learned Reactive Behaviors 

After the scenarios were executed, four KBs were 
created. To test the learned knowledge, each KB was 
applied to all scenarios which did not originally 
create it; a KB, KB,, was applied to all scenarios, Sj, 
such that (' i*/, For IST's experiment, this yielded 12 
combinations. The performance of KB, in a scenario 
Sj was judged subjectively by IST's SME. The SME 
felt that the recommended reactive behaviors were 

262 



correct in 75% of the cases within the constraints of 
the ModSAF system. 

6. Conclusions 

In traditional CGF systems, such as ModSAF, two 
situations, which may require different responses, 
elicit the same reactive behavior from a company. 
Improving the choice of a reactive behavior provided 
an interesting topic for research. This project 
implemented a learning testbed that was successfully 
used to learn reactive behaviors. 

IST's approach uses supervised learning (exemplar- 
based learning), allowing a company commander the 
ability to learn how to react to different situations. 
An SME decides which reactive behavior to use 
under certain conditions. This information is stored 
in a KB, in the form of a bit pattern and semantic 
information. (This is referred to as a "rule.") Future 
simulation situations may yield a rule that matches the 
situation, in which case the rule's reactive behavior is 
used as a response to the situation. 
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1. Abstract 

Attempts to optimize behaviors are often realized 
through the imposition of heuristics in an artificial 
intelligence program. A set of if-then-else rules are 
derived and applied to the problem at hand. This 
approach, while mimicking the previously discovered 
decisions of humans, does not really allow for true, 
dynamic learning. In this paper we discuss the use of 
evolutionary programming to optimize computer 
generated forces (CGF) behaviors which actually 
learn courses of action adaptively, as opposed to 
relying on a preset rule base. Actions of computer 
generated forces are created on-the-fly by iterative 
evolution through the state space topography. 
Possible courses of action at each time step in the 
scenario are scored with respect to a payoff matrix 
(Valuated State Space) which is goal specific. This 
methodology is inherently self-adaptive to the 
dynamic environment of the CGF. 

2. Introduction 

Effective training requires realistic simulation of the 
combat environment including the enemy force, its 
decision-making ability, and mission. Having 
qualified individuals simulate the OPFOR command 
presumes we understand their doctrine and can 
adequately reflect their culture. Both these 
assumptions are false. In addition, such simulations 
are non-repeatable and cannot be calibrated. 

It is equally dangerous to train against an enemy that 
follows any set of rules derived from prior combat 
experience. Particular rules may have been effective 
at that time in that setting, but it is dangerous to re- 
fight the old war. Small changes in behavior may 
have a major effect on the outcome. Tomorrow's 
enemy may be more intelligent and have a new 
mission. 

Indeed, training against an enemy that follows of any 
set of fixed rules is inappropriate, for the real enemy 
learns, may demonstrate initiative, and thus behave in 
a generally unpredictable manner. The computer 
generated force must be adaptive for, in the words of 
Charles Darwin, "It is not the strongest of species 
that survive . . . but rather the one most responsive to 
change." Facing an expert system, we learn how to 
defeat the game rather than an intelligently 
interactive foe. 

What is needed is an arbitrary-culture, intelligently- 
interactive computer-generated adversary that can 
operate at any specified level of intelligence from, 
say, inept to ingenious. It must be able to take full 
advantage of the available sensors, 
communication/computation capabilities, and 
weapons/platforms or, for the sake of planning future 
missions, those of an other time and place. This 
capability can be realized through the use of the 
Valuated State Space (VSS) approach and 
evolutionary programming. The former provides a 
convenient way to express the enemy's mission in 
measurable terms. The latter discovers increasingly 
appropriate courses of action in light of that mission 
until one of sufficient worth is found, or the assigned 
computation has been expended. 

2.1 Discussion 

Proper assignment of forces begins with a clear 
understanding of what must be achieved, by when. 
But what if that outcome is not realized? Surely, 
some value is found in lesser degrees of achievement. 
There are even times when our primary concern is to 
avoid some particularly undesirable outcome. In 
other words, to be meaningful, the mission must be 
stated in terms of the significantly different futures 
and their relative worth, all the way from Utopia to 
catastrophe, for only then can we measure the overall 
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worth of any situation and properly identify the 
remaining problems. 

Unfortunately, it is difficult to envision these 
significantly different futures, no less their relative 
worth. The Valuated State Space (VSS) approach 
provides a way to overcome this difficulty. Those 
responsible for defining the mission indicate 
preferentially independent aspects of their concern. 
Each of these parameters is weighted in relative 
importance and made measurable in terms of those 
differences that make a difference in degree of 
achievement. Each of these defined class intervals is 
then attributed some value. Thus each line item is a 
multiple-choice question concerning the current or 
any projected situation. A normalizing function that 
expresses the relationship among the parameters 
translates the answers to the individual questions into 
the overall worth of that situation. In many situations 
it is appropriate to use the weighted arithmetic mean. 
If, however, all the parameters are critical the 
weighted geometric mean is appropriate, and there 
are various degrees of criticality. Clearly, Measures 
of Effectiveness (MOEs) and Measures of 
Performance (MOPs) alone do not tell the whole 
story. 

In practice, the mission takes the form of a hierarchy 
of measurable parameters and subparameters together 
with an appropriate normalizing function across the 
various levels. Briefly stated, the Valuated State 
Space and normalizing function indicate what to 
measure, with what specificity, and how to fuse these 
data into the overall worth of any situation. It 
identifies the remaining deficiencies/problems by 
priority, as well as the overall worth of any 
prospective solution. 

But our best supposed move may not truly be best if 
it significantly injures an ally and/or greatly benefits 
a foe. The Valuated State Space approach can be 
expanded to include the presumed purpose of each of 
the other players. We can then find our best move 
(and, if we choose, their best moves) in light of the 
mutual attitudes and the current state of the game. 
With the mission well defined it becomes appropriate 
to evaluate prospective "what ifs," Courses of 
Action (COAs), tactics, for these are simply 
alternative temporal commitment of the allocable 
resources, combinations of the available personnel 
and equipment, modes of deployment, within the 
related dynamics, constraints, and doctrine. But the 
number of possible tactics is immense, a number so 
great as to forbid exhaustive analysis. The number of 

those considered by the assigned personnel is, in 
comparison, minute. It is reasonable to believe that 
there are much better ways to accomplish the mission 
than any of those "on the table." What is needed is a 
way to efficiently search the space of possible tactics 
to find one of sufficient value in time for it to be 
useful. 

When exhaustive analysis is clearly impossible, we 
ordinarily turn to heuristics. But these prove useful 
only under certain circumstance. For example, 
steepest descent is prone to failure if there are a 
multitude of minima points. Linear programming is 
often used even when the constraints are known to be 
nonlinear. Complex problems are decomposed into 
simple ones so that these can be treated separately. 
But the aggregate of these local optimizations leads 
to a global optimum only if the component problems 
are independent, and they rarely are. Statistical 
procedures generally presume stationarity, but the 
real-world is nonstationary. In fact, these and other 
heuristics are rules. If the rules that always solve the 
problem at hand are known a priori, the optimal 
approach is to use them. If they are not known, it is 
dangerous to guess, for the rules chosen may often 
stand in the way of finding a better solution. 

In contrast, the evolutionary programming algorithm 
(Fogel et al., 1962, Fogel 1995) is a most general 
optimization technique. The only "rules" are 
problem-independent iterative mutation and 
selection. Those components of randomness which 
are found to be of value are retained to benefit in 
further generations of solutions. Evolutionary 
programming is an inherently elegant and potent 
technique simulating the mechanisms of natural 
evolution and selection to generate organisms which 
exhibit optimal behavior with regard to an 
environment and desired payoff function. 

Evolutionary programming operates by iteratively 
generating successive populations of finite state 
machine organisms. A population of "parent" 
machines is exposed to the observed environment 
and measured with respect to their ability to predict 
the next event (e.g., course of action) in light of a 
prescribed payoff function. 

Offspring machines are created by randomly 
mutating each parent machine. For convenience, each 
parent is often made to produce a single offspring, 
but generating multiple offspring per parent is also 
possible. Mutations are chosen with respect to a 
probability   distribution,   typically    uniform.   The 
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number of mutations per offspring is also chosen 
with respect to a probability distribution or it may be 
fixed a priori. These offspring are then evaluated 
over the existing environment in the same manner as 
their parents. 

It is interesting to note that, in direct contrast, 
advocates of genetic algorithms adopt exactly the 
opposite position. They traditionally presume it's "a 
good idea" to code every problem into a string of bits 
(simulating chromosomes). 

Genetic algorithms construct solutions bottom-up. 
Crossover operators are used to exchange hopefully 
useful building blocks of subcode between candidate 

solutions. In contrast, evolutionary programming 
discovers solutions top-down. It only scores entire 
individuals in terms of their expressed behavior. 
Evolutionary programming maintains the 
interrelationships between the sections of subcode 
and the manner in which they fit together as a whole. 

Those machines that provide a sufficient payoff are 
retained to become parents of the next generation. 
Typically, half of the total machines are saved so that 
the parent population remains the same. This process 
is iterated until it is required to make an actual 
prediction, i.e., create a plan of action for the next 
time step. The "best" machine is chosen to generate 
this prediction. Figure 1 diagrams this process 
pictorially. 

Evolutionary Programming Algorithm 

t:=0; 
initialize P(0):= {a'i(0),a'40) a'^0)} 

evaluate P(0): {<D(^(O)),O(a'2(O)),...,O>(0VO))} 
iterate 

{ 
mutate: F(t):= rm«(P(t)) 

evaluate: Pit): {®(a'i(t)),®(a'2(t)),...,&(a'x(t))} 

select:  P(t +1) := Ses(F(t) u Q) 
t := t + 1; 

where 
a' is an individual member in the population 
(X > I is the size of the parent population 
A > 1 is the size of the offspring population 
P{t) := {a'i(t),a2(t),...,a'n(t)} is the population at time t 

O: I —> 9? is the fitness mapping 
met is the mutation operator with controlling parameters &* 

ses is the selection operator 9 Se* I   ul*1*   I —> I 

Q € {0, P(t)} is a set of individuals additionally accounted for in the selection step, 

i.e. parent solutions. 

Figure 1: The evolutionary programming paradigm 
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Note that evolution is most properly simulated at the 
phenotypic rather than genotypic level, for natural 
selection acts only on expressed behavior, not on the 
individual organs or the genes. In the words of the 
famous biologist Ernst Mayr (1988), "The genes are 
not the units of evolution nor are they, as such, the 
targets of natural selection." 

Genetic algorithms (Holland, 1975) are suitable when 
a problem can be successfully partitioned into 
subproblems that can be dealt with independently. 
Unfortunately, most real-world problems 
encountered rarely exhibit such simplicity. 
Evolutionary programming, because it acts top-down, 
is particularly appropriate when a problem is not 
easily separable, and each potential subproblem is 
affected by the solutions to other subproblems. That 
evolutionary programming outperforms the genetic 
algorithm on such problems (and often by orders of 
magnitude) has been repeatedly demonstrated in the 
scientific literature. 

3. Implementation 

Application of evolutionary programming involves 
consideration of several key aspects of a problem. 
These include problem representation, data flow, 
parameterization, and generating a function for 
measuring the relative worth of solutions in the 
population. 

For our application of evolutionary programming to 
generating intelligently interactive CGF entities, the 
decision was made to utilize as many existing low- 
level MODSAF finite state machine behaviors as 
possible. Thus we utilized a state space which created 
a parameterized task list for each member of the 
population. An evolutionary programming task was 
scheduled to run periodically using the MODSAF 
scheduler. Figure 2 shows the overall system 
procedure in a block diagram format. This task first 
executed a temporary 'freeze scenario' command' in 
order to prevent data synchronization problems. Data 
flow to and from MODSAF was implemented in the 
following manner. First, the current state of the world 
(e.g. entities, positions, actions, status) was obtained 
through querying the database directly. 

Next, these state parameters were used to create a set 
of parent plans for each entity in the population. 
Offspring plans of action were created through 
mutation of the current task(s) and parameters within 

Interactive Evolution of 
Task Plans using MODSAF 

Freeze 
Scenario 

I 
Access  Current 

World Status 

J 
Create N Parent 
Plans using full 
set of MODSAF 

Entities 

I 
Create M 

Offspring for each 
Parent Plan 

through Mutation 
Operators 

I 
Score Plans 
using VSS 

I 
Select N Top 
Scoring Plans 

I 
Transfer Best Plans 

to MODSAF 
Simulation Entities 

T 
Restart 

Scenario 

Figure 2: Block diagram of behavioral optimization 
through evolutionary programming. 
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the task(s). A copy of the parent plan was first made, 
and both the number and type of mutations were 
randomly chosen from a Poisson and uniform 
distribution, respectively. 

The achievement of the specified goal by each plan 
in the population was measured by calculating the 
probabilities of being killed, killing opposing forces, 
and other pertinent features (attainment of positions, 
etc.). This scoring function is defined for each player 
in the scenario, and is not necessarily symmetric due 
to potential alliances and relative worths of achieving 
parts of a goal. Since execution of a task or course of 
action most often occurs over time, a kinematic state 
prediction mechanism was implemented. Current 
states were projected in discrete steps throughout the 
time of the evolved plan by using velocity and 
acceleration estimates. This allowed both 
cumulatively assessing the state through the discrete 
time steps, as well as allowing for multiple 
(temporally sequential) tasks. 

After the desired number of iterations were 
processed, the final plans of action for each entity 
were taken from the 'best' (highest scoring) evolved 
population member. By implementing the process 
with this approach, we were able to realize not just 
single player (evolving side A versus a side B 
generated by a human or AI system) games, but also 
multiple player scenarios (evolved side A versus an 
evolved side B, C, ...). Other than by memory 
limitations, there is no inherent limit on the number 
of entities on each side nor of the number of sides 
playing against each other. 

For multi-player games, a payoff function is 
generated which defines the specific goal (or 
purpose) of each side in the scenario. This 
methodology also allows for the inclusion of allied or 
even neutral sides. 

Finally, after the iterative process is finished, the 
resulting plans for the desired number of sides are 
transferred back to MODSAF by affecting the current 
task state stack and parameterization of the new 
task(s). This is accomplished through modification of 
objects within the persistent object database. After all 
of the proposed changes have been performed, the 
scenario is 'unfrozen' so that it may perform normal 
MODSAF updates to the states until the next periodic 
call to the evolutionary program. No loss of 
generality is incurred by starting and stopping 
MODSAF for these optimization updates other than a 
slight  degradation   in   visual   performance  of the 

system. Typically, the program is executed on 
periodic 5 to 10 second intervals, and by governing 
the number of desired iterations, the optimization 
process produces very little apparent visual change in 
the MODSAF update rates. As faster computers are 
available, this will eventually be completely invisible 
to the operator. In fact, the optimization process can 
be implemented on a separate processor on an 
interrupt basis, with the only impact to MODSAF 
being the small time necessary to access and transfer 
parameters back and forth between computers. 

All code was developed using the standard ANSI C 
processing language for maximum flexibility. 

4. Experiments 

A series of experiments ere conducted to treat generic 
military situations using the combination of 
MODSAF and evolutionary programming for 
behavioral optimization. For the sake of simplicity, 
these initial experiments pitted two MODSAF entities 
against each other. The initial experiment concerns 
defensive movement. Here an entity (vehicle or 
platoon) is required to take minimum risk in moving 
to another location. For example, a single tank is 
required to run a gauntlet by moving along a road to 
reach the desired endpoint by a given time, taking 
minimum risk of being observed (attacked, damaged, 
or destroyed). The road is, say, ten miles long. The 
required time of transit is less than 30 minutes. The 
acceptable risk is less than one chance in 10 of being 
observed by the enemy. 

More specifically, the purpose of the friendly tank is 
to complete the following mission: 

6 Estimated time of transit 
10 > 30 minutes 
9 < 30 but > 40 minutes 
6 < 40 but > 70 minutes 
3 < 70 but > 110 minutes 
1 < 110 but >180 minutes 
0 > 180 minutes, and 

Probability of being observed 
10 >0.1 
8 <0.1 but > 0.3 
5 < 0.3 but > 0.5 
2 < 0.5 but > 0.7 
1 < 0.7 but > 0.9 
0 >0.9 
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Note that, the relative important weights are arbitrary 
so that the mission can range from "transit without 
concern for risk" all the way to "only transit if there 
is no risk." Both parameters are critical so that the 
overall worth of any situation is the geometric mean 
of the contributions in each regard. 

In this initial experiment the location of enemy 
observers is given, together with the likelihood of 
their observing the tank as a function of range. The 
required solution is the speed of the tank as a 
function of position during the transit. 

A second experiment involves including the 
possibility of moving off road in the preceding 
scenario. This demonstrates the capability to generate 
plans which alter both the route and velocity of the 
entities. Additional experiments encompass the 
capability of attacking specified unit entities on the 
opposing side. Each unit entity in the scenario is 
given a priority of which the scoring function weighs 
outcomes. These priorities are not necessarily equal 
as this set of experiments is designed to test the 
capability for evolving behaviors which achieve are 
capable of attacking specific goals while minimizing 
risk encountered through the simulation. 

Initial results of these tests have indicated the definite 
capability of the evolutionary program to generate 
interactively intelligent behaviors. The resultant paths 
and parameterizations thereof indicated learning of 
increasingly better and adaptive plans in light of the 
specified goals. Results of these experiments will be 
demonstrated at the conference as the behaviors are 
best presented graphically. 

5. Future Directions 

Future experiments will be conducted which stress 
increasingly complex goals. In addition, allocation of 
multiple units on a side will be tested, as well as two 
and three player games. Most of the improvements 
to the code will focus on implementing a more 
detailed state space (with additional MODSAF 
options) and subsequent mutations which can operate 
on these states. 

Additional efforts will also focus on making the 
graphical interface more user friendly, with access to 
more parameters in the scenarios. A graphical 
presentation of the performance through time will 
also be developed. This will allow the user to view 
performance of the algorithm and make dynamic 
adjustments   of   the   population    size,    mutation 

strategies, and number of iterations per periodic 
update. Automatic adjustment of mutation parameters 
through self-adaptation will also be added to our 
program. This meta-level implementation of 
evolutionary programming holds great promise as the 
parameterization is self-adaptive, and leaves one less 
item of concern for the operator. 
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1.  Abstract 

This paper presents a progress report on the 
LeatherNet Project and includes a description of the 
LeatherNet concept of operation, development 
concepts & approach, and system description & 
products to date. LeatherNet provides the interface for 
United States Marine Corps (USMC) commanders 
into the environment of the Defense Research Projects 
Agency (DARPA) Synthetic Theater of War '97 
(STOW-97) exercise. Capabilities of LeatherNet 
facilitate the training of Marine commanders in 
tactical battlefield management techniques. 

Computer tools currently implemented in LeatherNet 
include: Marine Corps Synthetic Forces (MCSF), 
Terrain Evaluation Module (TEM), CommandVu 
and CommandTalk Human Computer Interfaces 
(HCI). MCSF is developing the entities necessary to 
conduct Marine Corps operation in a Virtual Joint 
Task Force with emphasis on the development of 
individual combatants. TEM is a tool for terrain 
evaluation including weapons fans, line-of-sight 
analysis, and so forth. CommandVu provides an 
enhanced synthetic environment to display Marine 
Corps command decision tools and MCSF 
behaviors. CommandTalk is a natural language, 
speech recognition and gesture system that provides 
users with the ability to communicate to 
CommandVu and MCSF simulation through natural 
means. These tools when used together provide the 
means to conduct enhanced tactics preparation, 
simulation, rehearsal and after action review for the 
USMC. 

2.   Introduction 

In the Fall of 1993 representatives from the Defense 
Advanced Research Projects Agency (DARPA) met 

with the Commanding General of the Marine Corps 
Air Ground Combat Center (MCAGCC), 
Twentynine Palms, CA and reached a cooperative set 
of agreements. As part of the Synthetic Theater of 
War (STOW) program, DARPA would invest 
hardware and software resources at MCAGCC in 
order to develop the amphibious component of a 
virtual Joint Task Force for the Synthetic Theater of 
War '97, with specific emphasis on the development 
of highly complex individual combatant synthetic 
forces. In exchange for research facilities and access to 
subject matter experts (SME) located on the Combat 
Center, DARPA agreed to make the emerging 
STOW technologies available to the Combat Center 
for training. DARPA further agreed to explore 
advanced user interface concepts at this research 
facility and focus the effort, to be known as 
CommandVu, on the live fire training conducted at 
the Combat Center. 

The LeatherNet system is an integration of existing 
and developing computer tools being combined to 
create a dynamic, user-centered environment for 
Marine Corps training, mission rehearsal, and 
analysis at (MCAGCC. The computer tools 
currently implemented in LeatherNet include: Marine 
Corps Synthetic Forces (MCSF), a computer 
simulation tool that can simulate the USMC 
individual combatants, vehicles and behaviors; 
Terrain Evaluation Module (TEM), a planning tool 
developed by the US Army used for terrain evaluation 
and includes tools for line-of-sight and weapons 
coverage analyses of targets in terrain; CommandVu, 
an enhanced synthetic environment which provides 
three-dimensional representations of MCSF 
behaviors, the display of control measures, for the 
training of Marine Corps commanders at MCAGCC; 
and CommandTalk, a speech recognition and natural 
language understanding system that provides Marine 
Corps commanders with the ability to communicate 
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to the simulation software and MCSF entity through 
spoken language and pen based gestures. 

The development and project management is being 
conducted by the Naval Command Control and 
Ocean Surveillance Center, Research Development 
Test & Evaluation Division (NRaD) on behalf of the 
Defense Advanced Research Projects Agency 
Synthetic Forces Program Manager. There is a 
diverse group of government agencies, academic 
institutions, and private industries all collaborating 
to develop the LeatherNet System. 

This paper is organized in four main sections. First, 
a summary of the concept of operation of the 
LeatherNet; second, discussion on the development 
approach; finally, a description of the sytem and 
products of the LeatherNet. 

3.  Concept of Operation 

The LeatherNet system provides Marine Corps 
commander with a set of tools that aid in the tactics 
development, briefing, simulation/rehearsal and 
debrief (After Action Review-AAR) of two live fire 
training ranges at MCAGCC. In order to enhance 
training and improve live fire range safety several 
DARPA advanced technologies are being developed 
in cooperation with MCAGCC. It must also be 
pointed out the missions and resources available to 
the Marine Corps make LeatherNet a microcosm for 
STOW-97 given the fact it includes infantry, special 
operations capabilities, mech/armor, air and an 
amphibious capability. 

The intended user of LeatherNet is a Marine Corps 
commander at the company or battalion level of 
command and the immediate subordinates. The 
concepts and human computer interface toolkit 
provided in LeatherNet should be able to scale up or 
down the echelon of command from Platoon Leader 
all the way to Regimental Commander or above. It 
is apparent to the developers that there will need to 
be specific tools tailored for each different echelon of 
command, yet, it is believed that the basic concepts 
and approach will apply throughout. 

Figure 3-1 depicts a Marine Corps commander using 
the system to formulate and develop tactics and plans 
by using a walk-in-synthetic-environment (WISE) as 
an interactive tool. Commanders can: create and 
issues orders to MCSF (ModSAF) enties with 
speech, create ModSAF commnad and control 
measure with speech, enter the simulation as a tank, 
helo, etc... or as a Stealth. Commanders can also 
access the TEM tools through window on the WISE 
for group planning and briefing. Subordinates are 
inmersed in Helmet Mounted Display (only one is 

currently functioning) to allow individual freedom of 
movement through the terrain. 

Figure 3-1 Concept of Operation 

Typically, 3D "stealth" viewers in the STOW 
community have only been used for AAR as a "video 
tape" type tool. Users have only been able to 
passively see what has transpired. In the 
CommandVu concept, the environment is the tool 
set. 3D objects are "buttons". Click on a 3D M1A1 
tank model and information about the tank will be 
displayed attached to the model and will move in the 
environment with tank. Command and Control 
measures have 3D representation and can be used in 
planning, briefing, rehearsal, or debrief to augment 
the user's view of the situation. By providing an 
augmented environment users may be able to 
reinforce decision-making skills before they go the 
field. 

In order to limit the amount of training required to 
learn how to use the system and to provide the user 
with a "natural" user interface, the system was 
designed with the user's normal methods of data 
input and output in mind. User commands are 
normally issued verbally and responses are auditory. 
Therefore, the LeatherNet system implemented speech 
and gesture as a primary input method into the 
synthetic training environment. Additionally, a 
common user interface for LeatherNet tools will 
simplify the use of the computer system for the 
Marines Corps Commanders. 
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4.   Development Concepts and Approach 

4.1   Development 

USMC SF Capabilities are provided as enhancements 
to an existing Modeling and Simulation (M&S) 
system called Modular Semi-Automated Forces 
(ModSAF). These enhancements are defined as 
Problem/Change Requests (PCRs) related to the 
USMC domain for Battalion-level entities and their 
tactical behaviors for Amphibious Operations. To 
implement these USMC capabilities, a spiral, 
concurrent development methodology is employed, 
beginning with an analysis of the M&S requirements 
to the validated software (see Figure 4-1.) 

Figure 4-1 Development Process 

In compliance with the principles of DoD and USN 
Verification, Validation, and Accreditation (VV&A), 
a Conceptual Model (CM) *s formulated through 
systematic Knowledge Acquisition (KA) and 
Knowledge Engineering (KE) processes so that the 
USMC M&S Management Office (MCMSMO) can 
evaluate and approve the use of the capabilities for the 
envisioned training application and its inclusion in 
an M&S CM repository. To ensure adequate 
information is collected and analyzed for the required 
capabilities, the development process incrementally 
produces knowledge and prototypes (PT). The 
prototypes confirm the level of fidelity and 
functionality with requisite Subject Matter Experts 
(SMEs), thereby helping to identify missing 
information and the long-lead design tradeoffs 
(preliminary design - PT). 

An integrated Development Engineering Team 
(DET), comprising SMEs, engineers, programmers, 
and testers, works together toward a validated 
software product on assigned domain entities 
throughout the development process.    Acquisition 

and engineering of knowledge on USMC echelons 
and operational doctrine continues until the prototype 
confirms acceptable simulated performance to 
cognizant SMEs (KA1 - KAn, KE1 - KEn). A 
preliminary design for the capability is generated 
(PD1) and prototyped (PT1) based on the initial KA; 
depending on the prototypes general acceptability, 
detailed design data is collected (DD1), and coding 
and testing activities begin. Software verification is 
performed by the DETs to ensure the coded and 
tested software product satisfies the preliminary 
design. 

Integration testing is performed on sets of PCRs in 
scenarios established to exercise capabilities in a 
typical operational scenario and to regressively test 
legacy code. These activities incrementally validate 
the integration of capabilities developed for scheduled 
DARPA Combined Tests (CTs) held throughout the 
year. These CTs are conducted in large multi-force, 
multi-service scenarios, with SMEs as test operators, 
monitors, and evaluators. The results of these tests 
are then submitted to MCMSMO for accreditation of 
use in DoD training systems employing USMC 
amphibious operations. 

4.2   Integration and Test 

The goal of this integration effort is to ensure the 
MCSF/CFOR, CommandVu, CommandTalk and 
Synthetic Environment are integrated into a seamless 
training environment that will be a successful tool to 
train JTF Commanders and USMC Commanders. 
Concurrent with this goal is the intent of LeatherNet 
to provide MCAGCC with a virtual synthetic 
environment system capable of augmenting and 
enhancing the existing MCAGCC Combined Arms 
Exercise (CAX) training syllabus. 

Integration and test team (ITT), comprising SMEs, 
programmers, systems administrators, systems 
integrators, and testers combine verified software from 
individual DETs for milestone-driven integration 
tests, and configuration management. The milestone- 
phased testing approach of the integration strategy 
emphasizes the operational, technical, and systems 
operations of each subsystem integration and 
test/demonstration. This strategy also allows 
scheduling control to accommodate STOW-97- and 
MCAGCC-driven mission-based MCSF/CFOR 
requirements throughout the LeatherNet development 
period. Each integration milestones maps directly to 
specific MCSF/CFOR mission capabilities. Once 
the integration test is successfully completed, 
integrated software is then baselined and labeled by 
the local configuration manager as a formal 
LeatherNet baseline. Then MCSF software is 
checked into the Synthetic Forces configuration 
management   system   called   Version    Integration 
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Control System Semi-Automated Forces / Open 
Semi-Automated Forces (VICS SAF/Open SAF). 

LeatherNet is integrated at MCAGCC on a monthly 
basis. A developmental integration suit is setup at 
NRaD so preliminary integration and testing may be 
performed. The LeatherNet development suit is 
designed and developed for various rapid prototypes 
as well as experiments. This integration suit is used 
to debug and improve the final MCAGCC target 
system. NRaD utilizes a commercially available 
revision control tool (CVS) to streamline integration 
and upgrade to new versions of the software and 
system. The ITT is responsible for integration and 
installation of integrated LeatherNet system at the 
MCAGCC LeatherNet Lab. 

5.   LeatherNet System Description and Products 

The major components of the LeatherNet system are 
briefly described in the next sections. 

5.1   Marine Corps Synthetic Forces (MCSF) 

The Marine Corps Synthetic Forces (MCSF) 
component of the LeartherNet project, will provide a 
representation of Marine Corps platforms and 
behaviors operating in a realistic synthetic 
environment for STOW-97 and beyond. MCSF is 
based on ModSAF. The desired resultant 
capabilities of this system are the integrated system 
functions and behaviors to accurately represent a 
Marine Expeditionary Force (MEF) Forward 
composed of a Ground Combat Element (GCE), an 
Air Combat Elements (ACE), and a limited Combat 
Service Support Element (CSSE), to operate in a 
joint synthetic theater of war. It will also provide 
accurate, concise behavioral representation of 
specialized teams, functions, and specific mission 
areas, including an amphibious assault, movement- 
to-contact, attack, consolidation, defense, and 
patrolling. LeatherNet will also be capable of 
representing in software a platoon leader, company 
commander, and command staff that can provide 
command and control of the integrated system 
functions and mission areas through the DARPA 
sponsored Command Forces (CFOR) project. 

MCSF individual combatants entities are modeled 
down to the individual combatant, with unit tasking 
down to the Fire Team composed of four synthetic 
Marines. Other individual combatant entities include 
the Rifle Squad, Machine Gun Teams, Assault 
Teams, and Mortar Teams. Vehicles include variants 
of the Amphibious Assault Vehicle (AAV), Light 
Armored Vehicle (LAV), and the High-Mobility, 
Multi-purpose Wheeled Vehicle (HMMWV), and the 

Ml Al main battle tank. Aircraft include the CH46E, 
CH53E, AH-1W, AV-8B and F/A-18. 

MCSF will continue the development and refinement 
of individual combatants, ground and air vehicles, 
systems, and related behaviors for MEF-(Forward). 
The main focus of this effort will be the development 
of advanced behaviors to accomplish the Marine 
Corps amphibious assault and attack missions in a 
realistic environment. This will include Marine 
Corps CFOR representation in software of a Rifle 
Platoon Leader, Rifle Company Commander, and 
various command assets to enable command and 
control of synthetic Marine Corps forces in 
performing the desired missions. 

Also a more realistic, dynamic synthetic environment 
will be developed to meet the requirements of 
MCSF. Current high resolution triangulated 
irregular networked terrain efforts will need to be 
expanded to include other terrain databases in which 
individual combatant involvement is required. 
MCSF will investigate the need to be able to react 
and represent the effects of this environment within 
the behavior of its vehicles, individual combatants, 
their systems, and the command and control 
elements. Representation may include effects caused 
by the environment resulting in changes to 
performance of individual combatants, sensors, 
communications, weapons systems, and vehicle 
operations. MCSF is especially in need of a 
representation of the littoral area for Amphibious 
operations in the surf zone. 

5.2 Terrain Evaluation Module (TEM) 

The current version of TEM installed at the 
LeatherNet Lab is TEM 7.2. Current TEM is use in 
a standalone configuration, but ability to take TEM 
data, such as weapons fan coverage's and line-of-site 
calculations into the 3D CommandVu environment 
in underway. This would be an example of a 
prototype of a 3D-C4I device for planning in a 
simulated training environment. 

5.3 CommandVu 

As the Human-Computer Interface (HCI) development 
effort of LeatherNet, CommandVu must support four 
closely related tasks. The first task is to support the 
development of tactical expertise among USMC field 
officers in the context of live fire exercises at 
MCAGCC. The second task is to support the 
development and validation of MCSF algorithms. 
The third task is to provide an interface that will 
allow Marine Corps commanders to interact with the 
MCSF units by using natural inputs including 
speech and gesture commands.   And the last task is 
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to serve as the Marine Corps interface for participation 
in STOW-97. 

These applications require a robust, easy-to-use 
interface which can support both individual decision- 
making behavior and team coordination in a 
simulated outdoor environment, where both real and 
computer-generated forces are led through tactical 
battle problems. This HCI design combines a 
variety of diverse technologies and performance 
improvement concepts in novel ways, called a 
"concurrent"    virtual    environment. Such    an 
environment is typified by: 

Simultaneous use of head-mounted displays 
(HMD), multiple large-screen (CAVE) displays, 
and conventional CRT displays, which are 
selected as a function of the user role or a 
performance improvement objective, and which 
may be changed repeatedly during a single 
simulator session. 
Support of multi-mode input technologies, 
including gesture, speech, physical control 
panels and virtual control panels, and pointers. 
Input methods will be highly redundant, to 
support user preference and to enhance system 
recognition of user intent (e.g., through 
simultaneous voice and gesture combinations). 
Support of individual and coordinated activity 
between several live participants interacting with 
intelligent computer-generated agents (both 
vehicles and humans controlled by ModSAF and 
MCSF) , involving both vehicle operation and 
dismounted tasks (including navigation through 
the environment on foot). Participants may work 
at different levels of representation, from different 
perspectives in the environment, and for different 
specialized goals. 

Development of CommandVu involves essentially all 
of the analysis, design, and evaluation tasks of most 
complex system programs, however some issues have 
proven unique for both the application and the user. 
As a result, some of the design approaches taken for 
this program have required specialized supporting 
research in human factors and performance 
measurement which deserve discussion. In particular, 
efforts include: 

an iterative design and review program is being 
pursued with prospective users for task domain 
guidance but, more importantly, to foster an 
understanding of the potential utility of state-of- 
the-art technologies for solving current problems 
in new ways. 
a series of studies concerning perceptual 
problems in navigating rapidly through large 
expanses of simulated terrain, especially when 

one individual controls the perspective for other 
participants, in real time. 
a research program in perceptual and cognitive 
integration   of  multiple   visual   perspectives, 
supported by the CommandVu system, and of 
orientation   problems   associated   with   rapid 
perceptual or display changes (e.g.    HMD to 
CAVE and back). 
a   research   effort    to    develop    "augmented 
visualization,"   or   artificial   cues   which   can 
enhance    decision-making    and    which    can 
encourage effective team collaborations in  real 
time. 
an    examination    of    adaptive    performance 
improvement methods for gradually removing 
artificial    cues    from    displays     until     the 
environment matches that experienced in the real 
world,   with   performance   maintained   at   the 
desired level. 
an   empirical    study    of   display    resolution 
requirements, to minimize computational loads 
while retaining task-relevant realism  and user 
confidence. 
design   and   evaluation   of   optimal    system 
configuration  and  control  tools   -   including 
efficient allocation of functions to physical and 
virtual   control  devices  —   to   support   rapid 
realization of desired scenes and actions.   This 
work is focused on requirements to set up and 
demonstrate   scenarios   quickly,   to   expedite 
training, and to examine the nature of team 
collaborations by observing how these tools are 
used. 
efforts to exploit the potential of comprehensive 
performance measurement in complex scenarios, 
to provide real time performance feedback and to 
conduct long term "trend" analysis and decision 
modeling through examination of cumulative 
databases. 

CommandVu display devices include, helmet 
mounted displays, large projection displays arranged 
as a walk through environment with three 
dimensional sound. 

Multi-modal input devices include, speech 
recognition, traditional keyboards and mouse, virtual 
on-screen buttons, wireless three 3D gyro mouse, on 
screen controls (tape displays), joysticks and tracking 
devices. 

CommandVu includes the use of selectable 3D 
command and control measure, including: vehicle 
trails (blue for friendly, red for enemy), lines, 
polygons and text. Figure 5-1 depicts a USMC 
mechanized movement to contact. 
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ability to control individual combatants, ability to 
set control measures, issue "op-orders", and 
orders". 

'frag- 

Figure 5-1 Command and Control Measures 

Phase lines, an assemble area, a blocking position, 
checkpoints and boundary lines are all represented in 
the CommandVu environment. These 3D control 
measures are linked to their counterparts in MCSF. 
If a checkpoint is selected and moved in the 3D 
environment, the checkpoint on the MCSF Plan 
View Display (PVD) will move simultaneously. 

Weapons fan can be represented in CommandVu in a 
similar manner to the 3D command and control 
measures. Figure 5-2 shows an M1A1 weapons &i 
on R400 terrain at MCAGCC. 

Figure 5-2 Weapons Fan 

5.4   CommandTalk 

Initial efforts were focused on the development of 
speech to MCSF, with current work focused on the 
development of speech, the Command Control 
Simulation Interfaced Language (CCSIL) developed 
by MITRE, improved user feedback, increased 
vocabulary for the Platoon Leader, Company 
Commanders, and Battalion Commanders, speech to 
CommandVu, and the addition of the ability to 
speech and gesture to the system at the same time. 

Technical Capabilities include a 500+ word 
vocabulary, featuring "radio-speak" phraseology (use 
of entity call-signs), ability to control vehicles keyed 
by unit call signs (regardless of unit composition), 

There are four benefits of adding human language 
capabilities to the LeatherNet system. First is the 
ability to create forces and control measures. Second, 
is the ability to assign missions and task frames to 
synthetic forces. Third is the he ability to control 
and modify missions during program execution. And 
forth, is the ability to control system functions (such 
as fundamental PVD controls). 

6.   Conclusions 

LeatherNet has made significant progress in its two 
years of existence and withstood intense scrutiny by 
the Office of the Secretary of Defense, Marine Corp 
Flag officers including the Commandant of the 
Marine Corps as well as the Defense Director of 
Research and Engineering. 

The ability of the LeatherNet Team to produce rapid 
result is directly attributable to several factors briefly 
explained below. 

Do  not   hold   a   "not   invented   here"   attitude. 
LeatherNet built MCSF based on DARPA's 
ModSAF and applied the systems and behaviors of 
the other DARPA service Synthetic Forces 
development effort to build MCSF ground vehicles 
and Aircraft. CommandVu built its Human 
Computer Interface concept on top of the existing 
NPSNET software developed by the Naval 
Postgraduate School, Monterey, CA. The addition 
of other DARPA-sponsored effort in speech and 
gesture technologies were evaluated and integrated 
into the core system. 

Adopt a flexible development approach that could 
be adapted to the changing STOW requirements as 
well as the MCAGCC user evolving requirement. 
When LeatherNet was first introduced to the Marine 
Corps, MCAGCC did not have operation 
requirement nor an accepting attitude. But within the 
first 6 months the USMC and MCAGCC leadership 
recognized the value of the DARPA relationship and 
the potential benefits for MCAGCC training. As the 
Marine Corp interest and training needs grew, so did 
the use of the LeatherNet Lab, and the need for 
specific user define requirements. 

Set a clearly defined vision. The specifics of what 
features, entities and behaviors were added to the 
system to date were constantly being refined, but the 
core vision remains virtually untouched from the 
LeatherNet kickoff. LeatherNet also challenge some 
of the brightest developers in the community (NRaD, 
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HRL, MITRE, ATI, NPS, SRI, OGI, KES, GSC 
and BMH) to pull together and achieve a common 
vision. 

User-centered development. Another key factor in 
the success of the LeartherNet project was fact that the 
Lab was placed on a Marine Corps Training Base 
that supports the Fleet Marine Force, vice in a 
research environment. LeatherNet followed the lead 
of another DARPA-sponsored project call WISSARD 
(What If Simulation System for Advanced Research 
and Development) and funded strong site manager 
support to interface with the Marine Corps and the 
DARPA developers. Additionally, the ability to 
work closely the users and understand their needs as 
it applies to the mission accomplishment has proven 
to be invaluable. 
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1.    Abstract 

The Missile Defense Battle Integration Center 
(MDBIC) will provide computer generation of the 
complete set of joint TMD assets via the Extended 
Air Defense Testbed (EADTB) augmented by Modular 
Semi-Automated Forces (ModSAF). The MDBIC has 
demonstrated the capability of the EADTB and 
ModSAF, operating in tandem through distributed 
interactive simulation (DIS), to model all elements of 
the TMD "pillars" in real time. 

The EADTB is a state-of-the art constructive 
simulation with DIS compliance demonstrated at the 
prototype level and scheduled for delivery in 
September 1996. A High Level Architecture (HLA) 
translator is also under development. The rapidly 
expanding EADTB capability allows simulated 
entities such as weapon systems to be modeled 
independently as objects on the gameboard. These 
"models within the model" can be selected, modified, 
or developed by the user. 

The MDBIC manages a master library that currently 
contains a complete set of extended air defense system 
models. All three services have initiated development 
of TMD active-defense models to be validated and 
certified by the system proponent offices for specific 
ranges of applications. The MDBIC will thus 
augment any DIS or HLA exercise with a full suite of 
computer-generated joint TMD assets including 
proponent-certified active-defense system entities. 

2.     Introduction 

The Missile Defense Battle Integration Center 
(MDBIC) will provide computer generation of the 
complete set of joint Theater Missile Defense (TMD) 
assets via the Extended Air Defense Testbed (EADTB) 
augmented by Modular Semi-Automated Forces 
(ModSAF). TMD active defense assets will be based 
on validated models, certified by the Army, Navy, and 
Air Force system-proponent offices. The MDBIC has 
demonstrated the capability of the EADTB and 
ModSAF, operating in tandem through distributed 
interactive simulation (DIS), to model all elements of 
the TMD "pillars" in real time. 

3.    The Pillars of Theater Missile  Defense 

The theater missile threat includes both tactical 
ballistic missiles and cruise missiles. TMD includes 
contributions from four "pillars": active defense; 
passive defense; attack operations; and battle 
management/command, control, communication, 
computers, and intelligence (BM/C4!). While active 
defense includes all means for killing theater ballistic 
missiles (TBMs) in flight, passive defense comprises 
all measures to make TBM targets harder to find and 
harder to kill. Attack operations are the offensive 
actions taken to kill TBMs and their supporting 
infrastructure on the ground. BM/C4!, which 
supports all of the activities associated with the other 
three pillars, is often represented as a foundation 
rather than a pillar, as shown in Figure 1. 
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Figure 1. The Pillars of TMD. 

While most new system acquisitions, such as THAAD, 
and major system upgrades, such as PATRIOT PAC-3, 
are associated with active defense, the requirements on 
these systems and the total success of TMD depend on the 
integrated performance of all four pillars. 

4. The Extended Air Defense Testbed (EADTB) 

4.1    EADTB   Functions 

SSRs include the representation of rule-set-based 
"thinkers," both human and machine, that react to 
perceived data. The "thinker" portion of each model is 
formally restricted from access to truth data. The analyst 
has full access to the rule sets controlling "thinker" 
behavior through the SSR code, allowing "what ifs" on 
rule set logic. However, any change of a PEO-approved 
model requires renaming, thus ensuring the integrity of 
certified models. 

The EADTB, a state-of-the-art constructive simulation, 
will use DIS [and later, High Level Architecture (HLA)] 
to provide active defense elements including THAAD, 
PATRIOT, Corps SAM, and AEGIS. As required, the 
EADTB can generate theater missile threats as well. 

The EADTB allows simulated entities, such as weapon 
systems, to be modeled independently as objects on a 
gameboard (Figure 2). These "models-within-the-model," 
which are referred to as Specific System Representations 
(SSRs), can be selected, modified, or developed by 
EADTB users. Thus, the EADTB serves as a model- 
development environment as well as a model in itself. 

The EADTB gameboard environment includes elevation 
based on Digital Terrain Elevation Data (DTED), features 
based on Digital Feature Analysis Data (DFAD), time- 
varying weather (with clouds), and both infrared (IR) and 
radio frequency (RF) backgrounds. The gameboard 
reference coordinate system for DIS entity-state 
specification is Earth-centered rotating (WGS-84). 

The EADTB has been recognized as an ideal framework for 
joint-service and international creation, certification, and 
sharing of models. The MDBIC maintains a master 
library of SSRs for joint system studies.    Efforts are 
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currently underway by Army, Navy, and Air Force 
participants to certify models of key systems. Figure 
3 illustrates this concept in which proponents develop 
experimental models for their own use while 
preparing and certifying models for use by the 
community. 

A key part of this "sharing-of-models" concept is the 
documentation of certification. The documentation 
will specify how verification and validation were 
accomplished and will state the limits of model 
validity. Thus, the certifying agency can bound the 
applicability of the models and protect itself from 
model misuse. 

4.2    EADTB  History  and  Siting 

From its beginning in 1989, EADTB development 
has been managed by the Testbed Product Office 
(TPO) within the U.S. Army Space and Strategic 
Defense Command (USASSDC). Funded by the 
Ballistic Missile Defense Organization (BMDO), the 
EADTB is intended for joint-service, international 
use, with the primary goal of serving the extended air 
defense  community.      Initial   EADTB   sites   (see 

Figure 4), which are sometimes referred to as nodes, 
were located at the USASSDC Advanced Research 
Center (ARC) in Huntsville, Alabama; the NATO 
Strategic Headquarters Allied Powers Europe 
(SHAPE) Technical Centre (STC) in the Netherlands; 
and the U.S. Army Air Defense Artillery School 
(USAADASCH) at Fort Bliss, Texas. Since the first 
incremental capability delivery in 1994, sites have 
been added at the Joint National Test Facility (JNTF) 
in Colorado; the Naval Surface Warfare Center 
(NSWC) at Dahlgren, Virginia; the Tactical Air 
Command and Control Simulation Facility 
(TACCSF) at Albuquerque, New Mexico; and the 
Ballistic Missile Defense Organization (BMDO) and 
the Warfighter Analysis and Integration Center 
(WAIC), both in the Washington, D.C., area 
Memoranda of Agreement (MOAs) are currently under 
negotiation for the addition of sites in France and 
Germany. 

5.     DIS/HLA   Compliance 

As illustrated in Figure 5, the EADTB adapts 
naturally to the DIS environment.     Ghost  SSRs 
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Figure 4. EADTB Sites 

simply replace standard SSRs to allow external 
control of simulated entities. Users can create their 
own ghost SSRs in order to introduce new externally 
controlled entities into the paradigm. 

A prototype Distributed Interactive Simulation (DIS) 
compliance capability was delivered and successfully 
demonstrated in September 1995. 

Figure 6 shows the prototype DIS demo scenario, 
which has been frequently run at the MDBIC. 
ModSAF, the Extended Air Defense Simulation 
(EADSIM), and the Target Acquisition Fire Support 
Model (TAFSM), along with the EADTB, were 
housed at the MDBIC s Advanced Research Center 
(ARC). The Reconfigurable Tactical Operations 
Simulator (RTOS), an operator-in-the-loop virtual 
simulator, was configured to represent a PATRIOT 
battery, sited at Fort Bliss and linked to the ARC via 
the Defense Simulation Internet (DSI). (A video 
teleconferencing link between the ARC and Fort Bliss 
was maintained simultaneously over the DSI to view 
live operator and on-screen activity.) 

TAFSM supplied field artillery attack operations 
assets including ATACMS and an artillery tactical 
operations center (TOC). ModSAF supplied Army 
aviation attack operations assets consisting of attack 
helicopters and an aviation TOC. EADSIM provided 
the TBM threats and their transporter erector launchers 
(TELs).   The EADTB generated the cruise missile 
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Figure 6. EADTB DIS Demonstration in September 1995 
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threats and the bombers that launched them; the 
Defense Satellite Program (DSP) space-based sensors 
and Joint Tactical Ground Station (JTAGS); the 
THAAD radar, launcher, and missiles; and an Air 
Defense TOC (ADTOC). The exercise, which 
included a total of 165 simulated entities, was 
intended to demonstrate the EADTB potential for 
populating DIS exercises with constructive TMD- 
asset entities. 

The first delivered, DIS-compliant version of the 
EADTB will be capable of simulating 80 types of 
entities and will send and receive entity-state, signal, 
transmit, start/resume, and stop/freeze PDUs. 

6. Capability for TMD  Computer 
Generated    Forces (CGF) 

with high-fidelity land-combat models. Thus, the 
land-combat simulator can control the movement of 
the launcher and the generation of the launch event. 
The EADTB constrains the missile to move with the 
launcher until the launch event occurs, after which the 
EADTB controls missile movement. 

The concept for EADTB support to exercises is 
illustrated in Figure 7. The EADTB can support a 
federation of live, virtual, and/or constructive 
simulations by populating the scenario with 
computer-generated TMD assets. The EADTB SSR 
library will be the source of individual entity models 
comprising simulations validated by system 
proponent offices. 

7.    Summary 

The EADTB will have its first delivery of a DIS- 
compliant version (Version 4) in late September 
1996. A DIS-to-HLA translator is also under 
development to provide a near-term, limited HLA 
capability to support STOW 97. 

The Version 4 delivery will allow entity-state PDU 
generation for all of the approximately 80 different 
distinct types of entities represented by the existing 
set of EADTB SSRs. (The total number of entities 
instantiated and played simultaneously in the EADTB 
is constrained only by computer power.) Users can, 
as stated above, create new SSRs for internally 
controlled and/or externally controlled (i.e., ghost) 
entities. 

Simulated entities include sensor, missile, and 
launcher components of PAC-2, PAC-3, and THAAD 
systems; fighters and bombers; airborne, space-based, 
and surface-based sensors; jammers; cruise missiles, 
ballistic missiles, and ARMs; and TMD-capable 
cruisers. As stated previously, the EADTB maintains 
a formal partition between perceived data and truth 
data. CGF entities contributed by the EADTB will 
react to three classes of perceived data: 

• Information received via signal PDUs 
• Information  received  via   messages   from 

EADTB-controlled entities 
• Information      from      on-board      sensing 

capability 

Special capabilities include the launch of an internally 
controlled TBM by an externally controlled launcher. 
This capability was added to support interoperability 

The mission of the MDBIC includes support of 
training, mission rehearsal, operations analysis, 
combat development, and materiel acquisition. 
Computer generation of TMD assets via the EADTB 
and other models is a key means of supporting these 
activities. The EADTB library of proponent-validated 
entity simulations will provide a quality capability 
for computer generation of joint, four-pillar TMD 
assets. For information on the level of detail of 
specific models available, please contact the authors. 
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1. Abstract 

The Corps Level Computer Generated Forces 
(CLCGF) system is being jointly developed by 
SAIC and Raytheon for the Joint Precision Strike 
Demonstration Program (JPSD). CLCGF is a 
system that is centered on the linkage of the 
constructive, aggregate-level simulation Eagle, with 
the virtual, entity-level simulation ModSAF. The 
purpose of this paper is to update the community on 
enhancements that have been made to the CLCGF 
system over the last year. The following topics will 
be covered; resolution management, proxy, 
Distributed Eagle, tactical message processing, new 
SIU (Simulation Interface Unit) client applications, 
and the development of a North Korean rocket 
launcher threat. 

As with any constructive - virtual linkage, 
Aggregation/Disaggregation is the main reason for 
creating the system. Until now CLCGF has 
supported two methods for controlling 
Aggregation/Disaggregation: Operator selection from 
the GUI, and Call For Fire events. While these two 
techniques supported the initial needs of JPSD they 
are clearly limited. As a result we have designed a 
Resolution Management library (libresman) which 
extends the Aggregation / Disaggregation Triggers 
available. The idea is to provide a framework for 
supporting any number of user defined triggers. 
These triggers are then monitored by the resolution 
manager and resolution changes are effected 
automatically. The        application       of 
aggregation/disaggregation triggers are performed in 
two ways: via a data file specific to a given scenario, 
or by dynamic events which occur during a given 
simulation (ex. Call For Fire). 

In preparation for the 1995 JPSD exercise CLCGF 
was enhanced with the capability to update Eagle 
with status information on disaggregated units 
controlled by non ModSAF based simulations. This 

new capability, called "proxy" was implemented as a 
new state of disaggregation whereby a linkage 
between an aggregate unit and remotely reported non 
ModSAF based entities was made. A second more 
interesting capability was also added. Through the 
proxy technique the capability to attach sensor 
components to remote vehicles was also developed. 
This allowed the JPSD program to represent a live 
UAV in the simulation environment which was 
capable of producing Reconnaissance Exploitation 
Report (ReccExRep) reports based on the state of 
Aggregate units 

Distributed Eagle was developed by TRAC Ft. 
Leavenworth as an extension to the existing Eagle 
model. Distributed Eagle's main purpose is to 
increase the size of the aggregate battle being 
simulated by the CLCGF system. During the JPSD 
95 demonstration CLCGF ran over 300 aggregate 
units which began to push the limits of Eagle, and 
the Eagle <-> SIU linkage. As a result TRAC 
developed the concept of Distributed Eagle which 
sought to increase the size of the Aggregate battle by 
distributing the battle across multiple platforms. 

One of JPSD's many thrusts has been the integration 
of constructive, virtual and live systems. JPSD's 
version of ModSAF 2.0 has been modified to allow 
the simulation to process a subset of the "tactical 
messages" which are produced by live/simulated 
systems used by JPSD. To accomplish this we have 
added new libraries to ModSAF which support 
tactical message processing. The following tactical 
messages are currently processed; Reconnaissance 
Exploitation Report (ReccExRep), JPSD Sensor 
Control messages, and Fire Mission Call For Fire 
(FM;CFF) messages. 

In addition to Eagle, the current SIU has been used to 
support 2 other programs; the STOW exercise 
generation effort and the Rapid Battlefield 
Visualization (RBV) program. 
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2. Introduction 

2.1 The JPSD Program 

One of the Joint Precision Strike Demonstration 
(JPSD) program's goal is to introduce and implement 
new technologies into the defense arena that can 
address and correct precision strike deficiencies. To 
facilitate this goal, the JPSD program has created a 
simulation environment which is used to evaluate 
technologies, train users, and perform experiments 
necessary to reduce sensor-to-shooter timelines. As 
part of this environment, the JPSD program has 
sponsored the construction of the Corps Level 
Computer Generated Forces (CLCGF) system. 

The primary purpose of CLCGF is to provide the 
corps level simulation environment for DIS exercises 
in which the above mentioned program goals can be 
met. CLCGF is used during the JPSD exercises to 
simulate maneuver and artillery units contained in an 
Army corps. The simulated units provide stimulus 
for and interact with tactical hardware systems and 
their operators. 

2.1.1 JPSD 1996 

The simulation being developed for JPSD 1996 is 
based on a North Korean Multiple Rocket Launcher 
threat. CLCGF will portray the North Korean 
OPFOR, as well as friendly airborne sensor platforms 
at the entity level. In addition, CLCGF will also 
play over 600 aggregate units to fill out the 
battlefield. The aggregate units will provide 
additional targets for sensor systems and will be 
available for disaggregation based on fire missions 
executed during the scenario. 

2.2 The CLCGF System 

Entity-level simulations represent each entity which 
exists on the virtual battlefield at the individual 
platform level. They typically represent entities from 
the individual platform level up to the company 
level. They use the DIS protocol to interact with 
other entity-level simulations, and simulate the 
physical characteristics of each entity to determine 
battlefield outcomes. On the other hand, constructive 
simulations represent groups of entities as single, 
aggregate unit objects. They typically represent units 
at the company or battalion level up to the division 
or corps level. They are typically not designed to 
interact with other simulations, but instead simulate 
the entire battlefield internally, and use Monte-Carlo 
techniques to determine battlefield results. 

The DIS environment has traditionally included only 
entity-level simulations. It has provided a sound 
environment for small-scale, tactical troop training, 
as well as a potential testbed for evaluating new 
vehicles and weapon systems. However, simulating 
the effects of entity-level simulations in corps level 
operations has remained beyond the reach of the DIS 
environment, due to network bandwidth and 
computer resource constraints. Using current network 
and computer technology, a traditional DIS exercise 
is simply not capable of supporting a corps level 
operation. This was the primary motivation for 
creating a CLCGF which utilizes both constructive 
and entity-level simulations. Transmission of unit 
state data at the aggregate level is a key factor which 
decreases network load by significantly decreasing the 
number of PDUs transmitted in a large-scale exercise. 
If DIS is to support a 100,000 entity exercise, 
representation of some units on the battlefield as 
aggregates is likely. 

The simulation engine of the CLCGF has been built 
by integrating the constructive, aggregate-level 
simulation Eagle, with the virtual, entity-level 
simulation ModSAF. This simulation engine 
interacts with various live, tactical hardware systems, 
including: the Reconfigurable Workstation (RCW), 
the Maneuver Control System / Phoenix (MCS/P), 
and the Automated Deep Operations Coordination 
System (ADOCS). 

In order to allow military training and analysis of 
scenarios of interest to JPSD, the CLCGF must 
generate a full corps-level exercise. To accomplish 
this goal, many technical challenges need to be 
addressed. These involve issues such as efficient 
incorporation of aggregate units into DIS, effective 
incorporation of DIS entity-level information into 
constructive simulations, development of a dynamic 
aggregation/disaggregation protocol, interaction 
between constructive and entity-level simulations, 
and interaction between a constructive/virtual 
simulation, live systems, and engineering-level 
simulations. The work performed on the CLCGF to 
date has focused on these fundamental goals. 
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2.3 CLCGF Interaction with other JPSD Systems 

In order to create a test and evaluation environment in 
which to conduct JPSD experiments and studies, the 
requisite constructive, virtual, and engineering-level 
simulations must inter-operate with one another, as 
well as with current and future fielded, tactical 
systems used in Army Corps operations. A block 
diagram of the CLCGF system and the non-DIS 
systems with which it interfaces is shown in Figure 
1. 

The CLCGF system consists of the linkage between 
Eagle, the SIU (Simulation Interface Unit - whose 
primary function is to link Eagle to the DIS 
network), and ModSAF. It is responsible for 
simulating the entities and aggregate units on the 
corps battlefield, presenting a plan  view  display, 

with other DIS simulations, and 
interfacing with the other non-DIS systems shown in 
the block diagram. The RCW and MCS/P systems 
are used to present a picture of the tactical battlefield 
situation to an operator (via intelligence feeds), and 
to initiate precision strike target nominations. The 
ADOCS system is used to create, monitor, and 
assign fire missions to corps artillery assets. The 
STRIKE simulation is used to simulate the 
deployment, fly-out, and impact of smart sub- 
munitions. The Tactical Gateway (TGW) is 
responsible for routing tactical messages to other 
platforms which have registered for specific types of 
tactical messages. For details on the interactions of 
the systems described in Figure 1 see (Calder et. al 
1995). 
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Figure 1: CLCGF Interface Block Diagram 
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3.1 Resolution Management 

3.1.1 Motivation 

CLCGF uses a variety of mechanisms to implement 
resolution change. However, a more general approach 
is desirable, where resolution decisions are made by 
the software. It should be possible for the operator to 
define rules that would allow the system to 
aggregate/disaggregate automatically. In order to be 
effective this module must allow the resolution 
change rules to be modified at any time during the 
exercise so that aggregation/disaggregation can be 
based on the evolution of the scenario. Such a 
module would allow designers to create complex 
logic for controlling resolution change. In addition, 
such a module would centralize resolution 
management and reduce code duplication. 

In response, a resolution management library has 
been created (libresman). Libresman provides a 
general "clearinghouse" for all aggregation and 
disaggregation decisions in CLCGF. The motivation 
for this library is to: 

• Centralize the aggregation/disaggregation 
decision logic. 

• Provide a basic discipline of resolution change 
(which can be automated) so that more 
sophisticated behaviors can be created. 

• Define a precision in the semantics of 
aggregation and disaggregation that uses a wider 
range of properties to calculate resolution change, 
(i.e. disaggregate units that are not only within 
range-as is typical of current technology, but that 
may have a particular weapon system etc.) 

The last two factors impart a control over resolution 
change which is offered as a tool to counter the 
dreaded "spreading disaggregation" problem that can 
plague systems of varying simulation fidelity. 

3.1.2 Implementation 

Libresman determines whether an entity, vehicle or 
unit, should change its resolution state. It 
is designed to abstract the aggregation or 
disaggregation decision as a boolean outcome; as 
such, complex boolean algebra can be built into 
the decision-making process. The domain of the 
resolution change decision is defined at run-time and 
its range is determined by the designer but can be 
potentially the entire ModSAF address space (i.e. any 
library - subject to the usual C compile and link 
restrictions). 

An entity must be registered with libresman via the 
function resman_register_aggregate. With this 
simple call to resman_register_aggregate, an entity 
acquires a basic set of rules which govern its 
resolution. Libresman will automatically define a 
"negation" rule for any rule defined. This negation 
rule will undo the effect of a rule when its predicate 
is no longer applicable. Libresman maintains its 
own VTAB of entities which have rules associated 
with them. Each of these are ticked with respect to 
all entities known to ModSAF, local and remote. 
Upon each tick, the appropriate list of resolution 
rules (based on the entity's current resolution state) is 
evaluated. If any rule is found to be true, a 
resolution change will be implemented for the 
entity. 

Defining an entity's resolution change behavior is 
controlled by defining its resolution change rules. A 
resolution change rule contains the following: 
1) A pre-defined predicate. 

2) Information on whether to use the rule to re- 
aggregate or disaggregate; this information is 
maintained by the system and is transparent to 
the user. 

3) Information on the types of rules to "respond 
to". Using this information, a rule can be defined 
to be fired if and only if another rule has 
previously been fired. This allows for fine- 
tuning pairs or groups of rules so that they can 
work together. 

In general, there are two ways to associate a rule to 
an entity: by reader file or by function call. Reader 
file association allows resolution management to be 
defined on a per scenario basis. Reader rules are read 
once, (at startup) and thus are very useful in defining 
blanket (i.e. global) rules. On the contrary, function 
call association can be made at any time during the 
execution of the code thus enabling registration of 
rules in response to changing scenario events. 

Currently, resolution change predicates include: 
• unitinarea. If the aggregate enters a 

specific area, disaggregate. 
• duration. If the aggregate has been 

disaggregated for some period of time, re- 
aggregate. 

• spherejofjnfluence. If another type of vehicle 
comes in proximity to us, disaggregate.(currently 
not implemented). 

These are but a few of the predicates that could be 
defined, the above mentioned serve as test cases. The 
definition of additional predicates is left to the user 
and will be driven by new requirements as they 
develop. 
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3.1.3 Adding new predicates 

Predicates can be chosen from a pre-defined set or can 
be defined at compile time. A newly defined 
predicate must be a new boolean function with 2 
arguments: the vehicle id of the owning entity, and a 
parameter structure defining private (to the predicate) 
information. The predicate then has to be declared in 
libresman's list of predicates. Once defined, the new 
predicate can be used via reader file or function call. 

3.2 Proxy 

3.2.1 Motivation 

In a typical CLCGF scenario, Eagle maintains 
control of aggregated units until a request for 
disaggregation is received by the SIU. Upon receipt 
of the disaggregation request, Eagle relinquishes 
control of the aggregate to the SIU, and then 
periodically polls the SIU for updates, such that 
Eagle can maintain current positional and 
compositional data for the disaggregated unit. The 
SIU initiates the disaggregation and subsequent 
creation of the entities comprising the aggregated 
unit. To accomplish a successful disaggregation, 
ModSAFs operating on the same exercise id and PO 
database as the SIU assume the responsibility of 
simulating the entities. Entity state information is 
then summarized and used to update Eagle as to the 
state of the aggregate. This method posed a 
limitation that all entities comprising an aggregate 
must be simulated within ModSAF, thus limiting 
the potential sources of entity level simulation for 
Eagle aggregates. 

Libproxy was developed to allow non-ModSAF 
based entities to influence the outcome of the 
aggregate battle being played in Eagle. Eagle was 
originally designed to run as a stand-alone 
application without a DIS interface. The linkage 
with the SIU has indirectly given Eagle a limited 
DIS interface. The interface required to allow Eagle to 
utilize entities reported from remote sources on the 
DIS network must utilize information common to 
both the ESPDU and the Eagle-SIU interface. To 
accomplish this the proxy interface was designed to 
utilize the unit designation within Eagle and the 
marking contained within the 'entity-marking' field of 
the ESPDU. 

An additional capability which extends the proxy 
interface, provides CLCGF ModSAF with the 
capability to attach sensor components to remote 
vehicles. This capability allowed for the 
representation of a live UAV in the simulation 
environment,   which   was   capable   of   generating 

Reconnaissance Exploitation Reports(ReccExrep) for 
aggregate units. The need for this capability was two 
fold; one the UAV platforms were not being played 
by ModSAF and two, the CLCGF ModSAF is the 
only system that understands how to generate the 
entity level representation for an aggregate unit. 

3.2.2 Implementation 

Initialization of libproxy occurs for all CLCGF 
ModSAF's during startup. Libproxy is initialized 
with a ModSAF reader file, in which a mapping 
between the Eagle unit designation is made with the 
expected 'base' marking of the entities being reported 
via the ESPDU. During initialization, a proxy table 
is created, storing the aggregate marking with the 
expected base marking for each entry in the reader 
file. If the proxied unit is to simulate a sensor, the 
sensor name must also be included within the reader 
file. This table provides a means by which either the 
SIU or the proxy machine may query libproxy to 
ascertain the status of a proxied unit. 

As with a disaggregation command, when a unit is 
commanded to be proxied, the SIU assumes 
responsibility for providing the information necessary 
to keep Eagle updated as to the status of the proxied 
unit. However, unlike the process of disaggregation, 
the SIU does not initiate the creation of the entities 
comprising the aggregate, but instead the SIU utilizes 
the data received from remote entities being reported 
via the ESPDU to provide the inputs required to 
update Eagle. The SIU commences the proxy process 
by querying libproxy to determine if this unit was 
specified as a proxy unit in the reader file. If this unit 
was identified as a proxy, the SIU extracts the 'base' 
marking for the remote entities, and begins a search 
of the main vehicle table (VTAB), looking for 
REMOTE_VEHICLES which contain the specified 
'base' marking. Upon finding a match, the SIU 
updates the proxy table with the vehicle id and 
entity-marking of the received remote. Since 
aggregates typically are defined to contain more than 
one vehicle, the SIU does not consider a unit proxied 
until remote entities representing each constituent of 
the aggregate have been found in the vehicle table, 
i.e. if the Eagle aggregate is composed of 10 entities, 
the SIU must find 10 remote vehicles, each having a 
unique marking comprised of the base marking, to 
complete the proxy of this unit. If Eagle requests a 
status update on a unit, for which not all constituents 
have been remotely simulated, the SIU reports back 
to Eagle the last state of the aggregate. Upon 
completion of the proxy, i.e. all constituents of the 
aggregate are represented as remote entities, the SIU 
creates an average representation of the positions and 
velocities of the remote entities, and reports this 
average back to Eagle upon request. Each time Eagle 
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requests a status update on a proxied unit a check is 
made to insure that all remote entities comprising the 
proxied unit are still active. If any constituent is not 
currently being simulated the SIU reverts to reporting 
the last state of the aggregate, and begins the search 
for the constituents of the aggregate again. 

A goal of the JPSD program is to integrate live 
tactical forces into the simulation environment. For 
the JPSD 95 demonstration, a live UAV was 
introduced into the exercise by means of telemetry 
data transmitted to a ground station. The ground 
stations translated the coordinates of the UAV from 
CONUS coordinates to the simulated battlefield in 
Korea and generated Entity State PDU's, providing a 
method whereby the live UAV was incorporated into 
the exercise. Use of the proxy technique allowed the 
attachment of a sensor component to the remote 
entity. 

To accomplish this task a dedicated ModSAF was 
initialized with a new command line argument, - 
proxy', which permitted tagging remote entities as 
proxy vehicles within libremote. On the machine 
performing the proxy, libremote queries libproxy to 
determine if the received entity is a proxy vehicle. 
This check occurs only on the initial reporting of an 
entity to libremote i.e., the entity has not yet been 
assigned a vehicle id. If the vehicle is identified as a 
proxy, libremote tags the entity as 
VTAB_REMOTE_PROXY and adds the vehicle to a 
proxy tick list, allowing us to tick the vehicle similar 
to a remote but with the additional sensor 
components added. 

Upon determination that a remote is to perform a 
proxy mission, a check is made to retrieve the sensor 
component to tick from the proxy table. As with 
local vehicle processing, proxy utilizes the parameters 
files defined for the simulation of each vehicle. 
Within these files, more than one sensor component 
may be specified for the vehicle. To insure that only 
the desired sensor was activated, all defined sensor 
components are initially deactivated, then based on 
the specified component in the proxy table, the 
specific sensor is activated 

3.3 Distributed Eagle 

Eagle was initially designed to simulate units at the 
battalion-level and higher. CLCGF requires that 
units which are candidates for disaggregation be 
simulated at the company/battery level. Eagle 
scenario developers have made the necessary 
accommodations to support the CLCGF effort. 
However in doing so they have increased the unit 
count in Eagle to the point where run speed has 
become an issue.    During JPSD   1995 the  Eagle 

scenario consisted of approximately 300 units. In 
order for Eagle to maintain real-time while connected 
to the SIU, the Eagle time step was changed to 3 
minutes. Clearly a performance improvement was 
necessary for the FY 1996 demonstration, which was 
planning a 600+ unit Eagle scenario. The solution 
was to develop 'Distributed Eagle'. 

Distributed Eagle seeks to increase the size of 
scenarios it can support by dividing up its scenario 
among multiple platforms. Distributed Eagle 
communicates over a local area network, through the 
use of ALSP. Distributed Eagle was developed by 
TRAC Fort Leavenworth as an enhancement to the 
existing model. Its main purpose has been to 
increase the size of the Aggregate battle. 

The Aggregate Level Simulation Protocol (ALSP) 
was designed to permit multiple, pre-existing warfare 
simulations to interact with each other over local or 
wide area networks. In concept it was patterned after 
SIMNET (now Distributed Interactive Simulation - 
DIS) where each simulation controls its own objects 
and shares information about them with other 
simulations. The advantage to this type of protocol is 
that aggregate level constructive simulations which 
represent distinct segments of a battlefield can be 
connected and thus effectively provide a common 
environment to support major training exercises. 

For the JPSD 1996 Demonstration the planned Eagle 
scenario has 600+ units which will be simulated by 
two Eagle <-> SIU combinations running in parallel. 
Up to four Eagles can be connected via ALSP. The 
CLCGF system has been designed such that various 
combinations of Eagles and SIUs can be supported. 

3.4 Tactical Message Processing 

CLCGF's version of ModSAF 2.0 has been modified 
to process a subset of the "tactical messages" which 
are produced by live/simulated systems used by 
JPSD. To accomplish the tactical message 
processing two new libraries have been added to 
ModSAF. These new libraries support processing for 
the following tactical messages; Reconnaissance 
Exploitation Report (ReccExRep), JPSD Sensor 
Control messages, and Fire Mission Call For Fire 
(FM;CFF) messages. 

All tactical messages used by JPSD are sent wrapped 
within a Signal PDU. The new libraries added to 
ModSAF to support control of and processing for 
tactical messages are libtactmsgcntrl and libtactmsg. 
Libtactmsgcntrl provides the user with a GUI that 
allows processing of the supported messages to be 
enabled/disabled. In addition, the operator is able to 
select   which   radio   nets   should   be   listened   to. 
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Libtactmsg is responsible for registering a callback 
with libpduproc to catch all Signal PDUs. The 
callback function consults libtactmsgcntrl to 
determine which types of messages and which radio 
nets are to be processed. Given that a message passes 
these tests it is then dispatched to a parser to 
determine message type and contents. 

The ReccExrep message contains a sensor report 
being transmitted by one of the UAVs. Each UAV is 
assigned it's own PO overlay in which to store PO 
PointClass objects. A new PointClass object is 
created for each ReccExrep received. The operator is 
free to show/hide or even delete any overlay using the 
ModSAF overlay editor. This capability will allow 
JPSD to capture where each UAV is reporting targets 
and determine how accurate the intelligence reports 
are with respect to ground truth. Having the ability 
to view ground truth and perceived truth (intelligence 
picture) on a single system is a very valuable tool 
which should provide additional insight into how the 
scenario is unfolding. 

The JPSD Sensor Control message was developed to 
provide an operator with a mechanism for controlling 
the flight path of simulated UAVs with out having to 
use the ModSAF PVD. This capability provides the 
operators at a tactical workstation with the capability 
to, for example, task a UAV to fly over a specific 
area for Bomb Damage Assessment (BDA) or to 
confirm an enemy location prior to generating a call 
for fire message. As Sensor Control messages are 
received the designated UAV is given a new route by 
creating a new PO LineClass object using the given 
waypoints. Once the new route has been created the 
PO object id for the current route is replaced with the 
new object id. The existing ModSAF fly route 
behavior continuously monitors the route and 
automatically re-directs the UAV based on the new 
route information. In addition to route modification 
the Sensor Control PDU is also used to 
enable/disable the UAVs sensor. 

The JPSD FM;CFF is issued by the ADOCS to 
initiate a fire mission. The SIU is responsible for 
taking the following actions when an FM;CFF is 
received. Disaggregation of the target area, and 
disaggregationofthe shooter if the mission is being 
issued to an aggregate unit under CLCGFs control. 
Note that disaggregation of the shooter is optional 
and in fact TAFSM will be responsible for all MLRS 
firings during JPSD 1996. 

3.5 New SIU Client Applications 

The original interface between the SIU and Eagle 
consisted of approximately 6 commands which 
utilized RPC and shared memory as the 
communication mechanism. During JPSD 1995 we 
found that the RPC/shared memory interface was 
unreliable during periods of heavy network traffic. 
As a result a decision was made to use TCP/IP 
sockets to interface the two systems. The socket 
interface has worked very well to date and given us 
the reliability that was lacking during 1995. 

During 1996 two additional SIU clients have been 
developed in addition to Eagle; the Simulation 
Planning Agent(SPA), and the Scenario and 
Infrastructure Analysis Tool (SAT/IAT). The SPA is 
being developed under the Rapid Battlefield 
Visualization program, while the SAT/IAT is being 
developed under the STOW Exercise Implementation 
(XI) effort. (Juliano et. al. 1996) 

3.5.1 Simulation Planning Agent (SPA) 

The purpose of the SPA is to interface the SIU with 
MCS/P. (See Figure 2) The current system is utilized 
in 2 modes; as a wargaming tool, and as a 
visualization tool. 

As a war gaming tool the SPA extracts a snap shot of 
the MCS/P database, parses it and forwards the 
relevant information to the SIU via the socket 
interface. The SIU then instantiates each of the 
aggregate units and begins transmitting Aggregate 
State PDUs. (ASPDU) At this point a user sitting in 
front of a ModSAF PVD can disaggregate units of 
his/her choosing and run "what if type scenarios 
using ModSAF. As the scenario is executing the 
SPA is probing the SIU for the status of each 
disaggregated unit. The SPA then updates the 
MCS/P overlay with the status of the war game. 

As a visualization tool the SPA continuously extracts 
unit information from the MCS/P and forwards it to 
the SIU. The SIU in turn creates the given units and 
begins transmitting ASPDUs. This capability will 
allow the commander to visualize the current state of 
both friendly and enemy troops based on current 
intelligence information. The current system utilizes 
the ModStealth to render the 3D view. 

The ability to run what if scenarios and to visualize 
the current state of the troops is sure to provide the 
commander with a powerful decision aid. 
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3.5.2    Scenario   Analysis   Tool    /    Infrastructure 
Analysis Tool (SAT/IAT) 

The Scenario and Infrastructure Analysis tools 
(SAT/IAT) are currently being developed by SAIC 
under the SEID contract to support STOW (Synthetic 
Theater of War) Exercise Implementation (XI) 
system. The simulation is responsible for aiding in 
the exercise generation, management and analysis 
process for Computer Generated Forces (CGF). 
Since future CGF exercises, including STOW, are 
required to support a distributed exercise of a large 
number of entities, a pre-exercise faster than real-time 
determination of scenario, network and computational 
validity is necessary. The SAT/IAT simulation 
executes at a rate on the order of several hundred 
times faster than real-time. 

The current system consists of the SAT/IAT 
application with an optional interface to the CLCGF 
SIU. (See Figure 3) Again the socket interface 
originally developed to allow ModSAF and Eagle to 
communicate has been reused. The SIU has two uses 
under the exercise generation effort; as a PVD to 
visualize the status of a SAT/IAT scenario, and as 
GUI for creating SAT/IAT scenarios. 

Figure 2: SPA Interface Block Diagram 
As a PVD the SAT/IAT simply requests that the SIU 
create each unit in its scenario so a visual 
representation of the scenario will appear on the 
ModSAF PVD. Once the units have been created by 
the SIU the SAT/IAT scenario is executed. During 
the execution phase the SAT/IAT continuously 
updates the SIU with the latest unit information. 
The ModSAF PVD gives the user the ability to 
visualize how the forces are positioned as well as an 
indication of each units strength. 

As a GUI for creating SAT/IAT scenarios the 
ModSAF PVD is used to lay down forces and assign 
behaviors for Aggregate units (currently move is the 
only supported behavior). The operator uses the 
current ModSAF unit editor and execution matrix to 
create and task aggregate units. Once the operator has 
completed development of a SAT scenario he/she 
selects the "SAT/IAT Load Scenario" option under 
the "File" pulldown on the ModSAF PVD. The 
"SAT/IAT Load Scenario" feature then cycles through 
the PO database extracting all relevant scenario 
information. The relevant scenario information is 
then output as ASCII text in the format required to 
be used as input to the SAT/IAT application. 

By interfacing the SAT/IAT with the SIU the 
Exercise Implementation effort has obtained several 
significant capabilities; a PVD for visualization, and 
a planning GUI for scenario generation. 
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Figure 3: SAT/IAT Interface Block Diagram 

3.6 North Korean Rocket Launcher threat 

For the JPSD 1996 demonstration, the CLCGF 
ModSAF will be used to portray a North Korean 
Multiple Rocket Launcher (MRL) threat. The new 
threat behavior is being developed as a company level 
task which reused a significant portions of several 
existing ModSAF tasks. A key area of investigation 
for JPSD 96 is the effect of the destruction of 
logistics support on the overall tempo of the battle. 
The new MRL task will permit an in-depth analysis 
of the affects of eliminating the capability to re- 
supply shooters. The new behaviors, modeled at the 
company level, provide enhanced capabilities over the 
existing MLRS and service station behaviors 
currently incorporated within ModSAF. These new 
capabilities include: 

• Ability to conceal MRL and re-supply 
vehicles in caves to avoid detection by 
airborne sensors or other intelligence 
gathering assets. 

• Automatic route generation utilizing the 
defined road network if available. 

• Modeling of company level re-supply 
behaviors. 

As experience in the Gulf War proved, tracking and 
ultimately destroying the SCUD launchers proved to 
be a very difficult task. The tactics of hide, shoot, 
and hide proved to be a very effective technique in 
eluding the enemy and subsequently surviving to 
fight again. The MRL task currently being developed 
provides the same basic ability. The MRL task is 
designed to search an area around the initial unit 
placement for caves, which are reported via Entity 
State PDUs. At initialization of the MRL task, a 
determination of unit placement is made. This 
determination compares the locations of the vehicles 
comprising the unit, with the reported caves. For 

units located within the confines of a cave, the task 
sets the concealment bit ( bit 19) for each vehicle in 
the unit, thereby hiding the unit from airborne 
sensors and protecting the vehicles from the effects of 
the majority of weapon systems which would be 
employed. While in a concealed state, the only way a 
vehicle can be damaged is for the cave to sustain 
damage, thereby trapping the concealed vehicles in 
the cave. 

Once the determination of concealment and possible 
damage has been made, vehicle level movement is 
utilized to move the undamaged vehicles from the 
cave which causes them to become visible. Once all 
vehicles have exited the cave, a route is computed to 
move the company from the current unit location to 
the designated fire location, using the road networks 
defined in the terrain database. A company march 
task is assigned to the unit, tasking it to follow the 
generated route. When the unit arrives at the fire 
location, the unit aligns along a user defined firing 
azimuth. Set-up timers, defined for the type of 
shooters are used to simulate the time necessary to 
prepare the unit to fire. Upon termination of the set- 
up timers, the unit performs a coordinated barrage 
attack against the target area, firing a user specified 
number of rounds. Upon conclusion of the fire 
mission, the unit begins a tear-down process, where 
tear-down timers simulate the time required to 
prepare the unit to travel. At the expiration of these 
timers, a new route, generated as before, takes the 
unit from the current location to the defined re-supply 
point, utilizing the road network if possible. The unit 
is tasked again with a company march and proceeds 
to the re-supply point. 

Upon arrival at the re-supply point, the MRL task 
determines if re-supply is possible. Re-supply is 
defined as possible if the following conditions are 
true: 

•     The re-supply unit is not damaged. 
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• The re-supply unit is not moving, i.e. 
the designated re-supply vehicles are at 
the re-supply point. 

• The re-supply unit is within range of 
the re-supply point, i.e. the re-supply 
vehicles have not been stopped due to 
damage. 

If any of the conditions for re-supply fail, the MRL 
task will not attempt to perform the re-supply. In the 
case where all the re-supply vehicles for a battery are 
damaged, the MLR task will compute a route back to 
the initial starting location of the unit and the 
behavior will terminate. In the other cases, i.e. the 
re-supply vehicles are moving, or the re-supply 
vehicles are not within range, the MRL task will wait 
at the re-supply point for a user defined period. 
During this wait cycle, the MRL task will check the 
conditions for re-supply, and if the conditions are 
met for re-supply, the company service station task 
will be spawned. If after the expiration of the wait 
timer, the re-supply vehicles still have not reached 
the re-supply point, the MRL task will compute a 
route back to the initial start location of the unit and 
terminate the behavior for the company. 

The MRL task makes several coarse level checks of 
the current situation prior to spawning the company 
level service station task. These checks are in place 
to determine if the conditions are such that a re- 
supply is even possible. If re-supply is deemed 
impossible due to a missed rendezvous or damage to 
re-supply vehicles the company service station task is 
not spawned and the scenario continues without a re- 
supply cycle. As stated earlier, the effects of 
removing the logistical supply lines are very 
important considerations under study for the 1996 
demonstration. By removing the enemies ability to 
re-supply you remove or severely impair his ability 
to fight. 

When the base conditions for re-supply have been 
met, the MRL task spawns the company level service 
station and re-supply of the shooters is attempted. 
The re-supply behavior was implemented at both the 
company and platoon level. The company level task 
was developed from scratch while the platoon level 
task leveraged previous ModSAF development. At 
the company level multiple supply vehicles are used 
to facilitate re-supply under the following situations. 

• The first situation is re-supply of an 
MRL company in the open. Each 
platoon in the company is tasked to re- 
supply from the closest, first available, 
undamaged supply vehicle. Each vehicle 
in the platoon receives supplies until 
the entire unit has been completely 
supplied. If there are more platoons than 

supply vehicles, upon completion of a 
platoon re-supply, the waiting platoon 
would then be assigned to the available 
re-supply vehicle. If at any point 
during the execution of the re-supply 
task a supply vehicle is damaged the 
platoon terminates the current re-supply 
behavior and returns to its starting 
position. If any receiving vehicles are 
damaged while re-supplying then the 
next vehicle to receive supplies would 
begin re-supplying. 

• The second situation is re-supply of an 
MRL company within a cave. The 
company level task determines the 
number of undamaged caves available, 
the number of platoons to receive 
supplies and how to distribute the 
platoons such that re-supplying them 
would be efficient. It then tasks the 
platoon(s) to travel to the cave to be 
supplied. Once the platoon enters the 
cave it is deemed concealed and the re- 
supply process begins. If the cave is 
damaged while the vehicles are re- 
supplying then the re-supply task 
terminates to reflect the damage to the 
cave, and any vehicles in the cave are 
considered trapped and unusable. 

Upon completion of the re-supply mission, the MRL 
task will re-execute the same steps as described 
above, moving the unit to the next fire location and 
performing a new fire mission. 

4. Future Work 

Our future development will be guided by the needs 
of the JPSD program and other CLCGF users. 
Possible future development areas include the 
following: 

- integration with other fielded or prototype tactical 
equipment. 
- continued support of both the Rapid Battlefield 
Visualization and the STOW Exercise 
Implementation efforts. 
- enhancements to the existing JSTARS capability 
- summarizing and reporting DIS indirect fire to 
Eagle so units played within the constructive model 
can be attritted by DIS indirect fire 
- full parsing of Eagle OPORDs and the utilization of 
CCSIL to task disaggregated units. 
- Work with LADS on the integration of a core 
aggregate capability into the ModSAF baseline. 
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1. Abstract 

In recent months, there has been increasing 
interest in the potential for integrating the 
functionality of two separate Semi-Automated 
Forces (SAF) products ~ Modular Semi- 
Automated Forces and Close Combat Tactical 
Trainer SAF (CCTT SAF). The overarching 
concept is to develop and test an underlying SAF 
architecture that can be used to combine or 
integrate the features and functionality of these 
products. This concept originally grew out of 
meetings between the Project Manager for 
Combined Arms Tactical Trainer (PM CATT) 
and the Defense Advanced Research Projects 
Agency (DARPA), as a concept for technology 
transfer. SAF Integration has been subsequently 
incorporated into the Computer Generated 
Forces (CGF) Assessment conducted by the 
Army Materiel Systems Analysis Activity 
(AMSAA). Additionally, both the Deputy Under 
Secretary of the Army for Operations Research 
(DUSA(OR)) and the Army Acquisition 
Executive have endorsed the program as the 
Army strategy for its potential in eliminating 
duplication of effort in SAF development and 
potentially facilitating the migration to a single 
SAF product. This paper presents an overall 
strategy consisting of a series of experiments and 
technical assessments which address key issues 
in achieving an integrated SAF for the Army. 

2. Background 

Semi-Automated Forces (SAF) is an area of 
considerable interest to the modeling and 
simulation (M&S) community. SAF allows one 
to represent multiple, unmanned entities in the 
synthetic environment with some measure of 
intelligent behavior and human-like functionality. 
SAF first began as an outgrowth of the Defense 
Advanced Research Projects Agency (DARPA) 
Simulation Networking 
(SIMNET) program. Early on, it was understood 
that the cost of fieldina large numbers of manned 

simulators was prohibitive, and that a method of 
fleshing out the forces with tactically meaningful 
numbers of entities must be found. A second 
motivation for developing SAF was that an 
intelligent enemy force was needed for training 
in the synthetic environment. The eventual 
solution was a SAF system, in which multiple 
entities were controlled from a single, low-cost 
computer platform. While SIMNET was well 
received in the training community, it was fielded 
with limited functionality and documentation and 
was not easily modifiable to include new or 
enhanced capabilities. 

ModSAF (Modular Semi-Automated Forces) 
traces its lineage to the SIMNET program. As its 
name implies, ModSAF modularized the 
software code associated with both SIMNET 
SAF and ODIN (73 Easting) SAF. In 1993, 
DARPA began building ModSAF by developing 
an open architecture, which could be used to 
create synthetic agents for a variety of 
Distributed Interactive Simulation (DIS) 
applications. The initial effort fielded a system 
in December 1993 to support the What-if 
Simulation System for Advanced Research and 
Development (WISSARD) program, which had a 
requirement for beyond-visual-range, air-to-air 
engagement scenarios. After the initial release, 
additionally Battlefield Operating Systems 
(BOS) and behaviors were added to ModSAF in 
order to fill out the synthetic battlefield. 
Concurrently, the Simulation, Training, and 
Instrumentation Command (STRICOM) agreed 
to fund an effort to document this revised code. 
ModSAF 1.2 was released in June 1994 and 
included the majority of systems that had been 
represented in the previous SIMNET SAF 
version. 

Close Combat Tactical Trainer (CCTT) SAF is 
being developed and fielded as an integral part of 
the CCTT program. When CCTT was awarded 
in November 1992, SAF development was 
considered the highest risk area of the CCTT 
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program, potentially having significant 
performance, schedule and cost risks. Initially, 
the CCTT program focused on developing a new 
SAF product; however, after identifying several 
major design deficiencies with the chosen design 
approach, a SAF Trade Study was initiated to 
determine the best way to proceed. The Trade 
Study recommended that ModSAF be re- 
engineered to accommodate the CCTT software 
environment, while incorporating many new 
functional, system, and visual requirements 
specific to CCTT. To facilitate this re- 
engineering effort, CCTT developers were 
placed at the ModSAF development facility in 
Cambridge, Massachusetts, and a ModSAF 
engineer was hired for CCTT. Thus, while 
CCTT SAF was an evolution of the ModSAF 
baseline; significant changes were made which 
caused it to diverge from the ModSAF 1.2 
baseline. This divergence hinders compatibility, 
data interchange, and software reuse between the 
two products. 

While ModSAF and CCTT SAF evolved from a 
similar backgrounds, they are in fact very 
different products. Key reasons for this 
disparity are that they were developed for 
different simulation domains, are intended for 
use by different simulation communities, and 
have differing needs in terms of differing 
verification, validation, and accreditation 
(W&A). ModSAF, built by DARPA has been 
used primarily as a research tool and has found 
wide-spread support in the research and 
development community. On the other hand, 
CCTT SAF is focused primarily on training 
issues and must be verified, validated, and 
accredited (W&A'ed) by the training 
community. This situation springs from the 
necessary dichotomy in modes of operation 
between DARPA, a technology developer, and a 
program management office, like PM CATT. 
DARPA develops technology with sufficient 
representative functionality to demonstrates the 
utility of the approach to an operational user. 
Conversely, a PM office focuses on providing the 
required functionality with sufficient technology 
to meet a user's set of approved operational 
requirements. Key   to   this   effort   is   a 
demonstrated commitment between DARPA and 
PM CATT to transition technology as it is 
developed to provide the operational user with 
increased capability and functionality. This 
commitment is most evident in the Command 
Forces   Memorandum   of   Agreement,   which 

stresses a cooperative effort in development and 
transition of CCSIL. A similar agreement is 
appropriate for SAF Integration. 

In January 1995, Mr. Walter Hollis, Deputy 
Under Secretary of the Army for Operations 
Research, commissioned the Army Materiel 
Systems Analysis Activity (AMSAA) to assess 
the status of the major SAF systems currently in 
use throughout the Army. The specific purpose 
of the CGF Assessment was to evaluate 
alternative CGFs for all Army DIS Domains: 
Advanced Concepts and Requirements (ACR); 
Training, Exercises, and Military Operations 
(TEMO); and Research, Development, and 
Acquisition (RDA). A key conclusion of the 
CGF Assessment was that no CGF assessed 
meets or will meet all M&S domain application 
requirements. This point is also clear from the 
discussion presented above. SAF design 
decisions are driven by the requirements of the 
simulation domain for which they are built. A 
second and complementary conclusion is that 
while pursuing one CGF to meet the needs of the 
entire community is conceptually feasible, it may 
not make optimal use of existing resources and 
investments. In     fact,     the     leap    from 
conceptualization to implementation may be 
daunting in terms of the technology and 
investment required to be all things to all users. 
Finally, managing the development of a single 
SAF system is highly dependent upon the ability 
to bring together the right people and funds in a 
management structure that can both develop the 
system and meet the requirements and milestones 
of the user community. 

This document formally describes the SAF 
Integration program and presents an overall 
strategy for executing the program. 

3. Program Goals and Objectives 

The overall goal of the SAF Integration program 
is to develop and prototype an objective SAF 
architecture, which integrates or combines the 
functionality of both ModSAF and CCTT SAF. 
To accomplish this goal, it is necessary to 
identify and assess several intermediate 
objectives. 

• Establish a greater degree of 
interoperability between ModSAF and 
CCTT SAF to facilitate experimentation and 
evaluation of technical issues. 
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• Identify and assess the technical 
barriers/challenges to integrating ModSAF 
and CCTT SAF. 

• Crosswalk the synthetic environment terrain 
representation requirements for ModSAF 
and CCTT SAF and integrate these with the 
DARPA Integrated CGF Terrain Data Base 
(ICTDB) program. 

• Propose a flexible and extensible SAF arch- 

•     Build community consensus for migrating to 
the objective system. 

4. Experiments 

The SAF Integration program is built around a 
series of experiments, which progressively assess 
key issues in interoperability and integration of 
capability. These experiments are shown 
graphically in Figure 1. The major issues 
affecting SAF integration are:     synthetic 

SAF Integration Strategy 

Experiment 1 ObjectiveSAF 
y/   Common 

/      Environment 

(Full Integration 
using Objective 
Architecture) 

Experiment 4 

(Partial Integration) 

Figure 1: SAF Integration Strategy 

itecture for integrating ModSAF and CCTT 
SAF, which considers (and incorporates, as 
appropriate) the on-going developments in 
the DMSO High Level Architecture, 
Distributed Interactive Simulation, and the 
Synthetic Theater of War (STOW) 97 
programs. 

environment interoperability, command and 
control, distributed network communications, 
and SAF architectural design. The experiments 
presented below attack these issues and draw 
conclusions, which become important in 
assessing and implementing the re-architecture of 
the two systems. 

4.1. Synthetic Environment Interoperability 
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This experiment addresses the idea of a common 
synthetic environment representation for 
ModSAF and CCTT SAF. Currently, ModSAF 
uses a terrain representation known as Compact 
Terrain Data Base (CTDB) and CCTT SAF the 
Model Reference Terrain Data Base (MRTDB). 
These terrain databases differ significantly in 
their capability. To increase compatibility, 
CTDB should be enhanced to represent new 
MRTDB features, including: additional soils 
types, forest templates or basis sets, variable grid 
diagonalization, etc. In fact, recent releases of 
ModSAF (versions 2.0 and 2.1) incorporated 
many of these improvements into the CTDB 
format 4. The focus of this first experiment is to 
evaluate selected terrain functionality into a 
CTDB format 5 and assess performance and 
capability tradeoffs and provide this feedback 
into both CCTT and the ICTDB program. This 
will provide a measure of interoperability to the 
two SAF products and provide a basis for future 
enhancements and technology transfer between 
systems. 

4.2. Higher Level Command and Control 

This experiment builds on the first experiment by 
assessing the ability of a command entity to 
simultaneously control both ModSAF and CCTT 
SAF in the execution of a common mission. The 
command entity will be represented by 
leveraging the Command Forces (CFOR) 
program and the Command and Control 
Simulation Interface Language (CCSIL) being 
developed for DARPA by the Mitre Corporation. 
This experiment requires that both ModSAF and 
CCTT SAF implement CCSIL. In fact, a 
ModSAF CCSIL interface has already been 
developed and is being extended by the STOW 
97 program. This experiment proposes to 
integrate CCSIL with CCTT SAF and to 
communicate commands to both several 
ModSAF and CCTT SAF units from a higher 
command entity hosted on either system. A 
secondary goal is to integrate this work with the 
High Level Architecture (HLA) and the runtime 
Infrastructure (RTI). This experiment 
accomplishes several objectives. First, it 
exercises the CCSIL interface by using it to 
control entities separate of ModSAF — its 
development environment. Secondly, it provides 
valuable insight into the issues associated with 
command and control of the two independent 
SAF systems. Third, it demonstrates an ability to 

task organize using different simulation assets 
within an overall simulation exercise. 

4.3. High Level Architecture 

This experiment identifies and assesses issues 
associated with ModSAF and CCTT SAF 
interoperating through the HLA RTI. Since 
CCTT SAF is participating in the HLA Platform 
Proto-Federation    (PPF), this    experiment 
leverages the already planned (and funded) HLA 
PPF demonstration for integration of the RTI 
into CCTT SAF. Additionally, the STOW 97 
program is integrating the RTI into ModSAF. 
Both systems will be HLA compliant and 
available for experimentation by late summer 
1996. Experiments in the PPF and between the 
SAF systems will stress the RTI and provide 
valuable feedback to DMSO for improving and 
streamlining the RTI for entity-level, real-time 
simulation systems. It should be noted that 
neither SAF is fully integrating the HLA RTI 
fully within the systems. This experiment will 
focus on providing data as to the long-term utility 
of this integration effort. 

4.4. Common Services 

This experiment uses the results of the three 
previous experiments, the output of the Technical 
Assessments (described below), and ongoing 
work and products developed in STOW 97 to 
specify, develop, and implement a prototype 
objective architecture for SAF. The DARPA 
STOW program has recently been designated as 
the developer of simulation technology for the 
Joint Simulation (JSIMS) program. In this role, 
it is anticipated that a new simulation 
infrastructure will be developed suitable for 
entity- and aggregate-level simulation. These 
plans are currently under development and will 
be finalized in July 1996. It is anticipated that 
this infrastructure will provide common 
simulation services and be applied across the 
services in next generation simulation systems. 
The Army must maintain awareness of these 
developments and evaluate their utility to entity- 
based, platform-level simulation systems, like 
ModSAF and CCTT SAF and assess their 
applicability in integrating the two products. 
This experiment will give insight into the 
viability of the new architectures for an objective 
SAF and serve as a decision point for continuing 
the SAF Integration program. 
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4.5. Objective SAF Architecture 

The final experiment builds upon all previous 
experiments by further decomposing ModSAF 
and CCTT SAF on an objective SAF 
architecture. The primary objective of this 
experiment is to determine the level to which 
both SAFs can be decomposed and to what 
extent the component parts can be shared. This 
experiment addresses how various component 
(models, algorithms, behaviors, etc.) can be 
shared as common services, to what extent they 
can be interchanged for a given application, and 
what composition relationships must exist in 
configuring a SAF application. This experiment 
pushes the state-of-the-art in architectural 
developments and will provide insight into entity 
level simulations in a global sense. This 
experiment leverages STOW architectural 
development and improves upon it where 
appropriate. The results and conclusion may be 
useful to such ongoing programs as CATT, 
WARSIM, andJSIMS. 

5. Technical Assessments 

A key premise of the SAF Integration program is 
that much of the ModSAF and CCTT SAF 
functionality can be shared and/or migrated from 
one system to the other. It is important to 
evaluate many key technical areas to assess 
implementation issues, degrees of software reuse, 
impacts of new technologies, and the ability to 
migrate functionality to an objective SAF system. 
These assessments will generate insight into the 
issues associated with developing an objective 
SAF architecture and reusing components and 
features of both ModSAF and CCTT. The 
following technical assessments have been 
identified to date: 

Assess the implementation issues associated with 
incorporating the CCTT SAF Hulls Computer 
Software Component (CSC) into ModSAF. The 
Hulls CSC contains the CCTT SAF mobility 
codes, which provide enhanced functionality to 
ModSAF. This assessment provides insight into 
the ease of software reuse and the ability of the 
ModSAF Generic Model Interface (GMI) to 
accept CCTT SAF code. 

5.3 Global Coordinate System (GCS) 

Assess the impact of the Global Coordinate 
System (GCS) on CCTT SAF and the objective 
SAF architecture. GCS provides a significant 
enhancement over coordinate projection systems 
currently used in SAF. GCS provides curvature 
of the earth information to local coordinate 
systems. A key issue will be the system impacts 
of implementing GCS on both SAF Systems. 

5.4 Behaviors 

Assess implementation issues associated with 
migrating and/or sharing entity behaviors 
between ModSAF and CCTT SAF. CCTT SAF 
has developed a library of verified, validated, 
and accredited (VV&A'ed) behaviors using a 
methodology of developing and implementing 
Combat Instruction Sets (CIS). Additionally, 
many ModSAF behaviors have been W&A'ed 
for the Anti-Armor Advanced Technology 
Demonstration (A2ATD) and other programs. 
Since both systems use a Finite State Machine 
(FSM) architecture for implementing behaviors, 
it seems plausible that behaviors could be 
migrated from one system to the other and 
certainly to the objective system. 

5.1. Software Languages 5.5 Private Protocols 

Assess the ability of Ada 95 and Common Object 
Request Broker Architecture (CORBA) to 
overcome computer software language 
differences between ModSAF and CCTT SAF. 
Both Ada 95 and CORBA have the potential to 
incorporate existing software without a 
significant recoding effort. 

5.2 Reuse 

Assess the ModSAF Persistent Object Protocol 
(POP) and the CCTT SAF Synthetic 
Environment Object Database (SEOD) for 
commonality and applicability to an objective 
SAF architecture. Currently, both ModSAF and 
CCTT SAF provide command and control 
communications using private protocols. It is 
important to understand the POP and SEOD 
implementations in structuring the objective 
architecture. 
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5.6 Synthetic Environments 

Assess the DARPA Synthetic Environments (SE) 
work currently on-going in Dynamic Virtual 
Worlds (DVW), Weather in DIS/Total 
Atmosphere and Ocean Server (WINDS/TAOS), 
and Dynamic Terrain and Objects (DTO) for 
implementation in CCTT SAF and in the 
objective architecture. STOW SE is developing 
and integrating significant SE enhancements to 
ModSAF, these improvements should be 
evaluated for applicability and use in the 
integrated SAF system. 

5.7 Terrain Format 

Assess the ICTDB representation for 
implementation in the integrated SAF. ICTDB 
is already supplying a synthetic environment for 
ModSAF. An important part of this assessment 
will be to provide a complete set of requirements 
to support both SAFs. Any gaps or missing 
functionality must evaluated with respect to its 
future impact on both systems. Also, key issues, 
such as the use of integrated triangulated 
irregular network (mN) must be assessed. 

6. Key Issues 

Several key issues have been identified that 
impact on an eventual SAF integration. These 
issues must be resolved over time and determine 
to a large extent the form of the objective SAF 
architecture. 

6.1 Monolithic System versus Software 
Repository 

The concept of a single SAF system may be 
outmoded. One can envision a SAF that serves 
multiple users and applications by linking 
together software modules retrieved from a 
central software repository. However, this 
concept presupposes a flexible and highly 
extensible SAF architecture that can dynamically 
link diverse software components to form a SAF 
construct for a specific application. 

6.2 Common Services 

There is much discussion currently concerning 
the idea of providing common services via a 
distributed architecture. An important product of 
this effort will be to identify these common 
services and confirm that they can indeed be 

distributed in some fashion in a real application. 
Identification of these services will impact 
directly on development of the objective 
architecture. This issue is being addressed 
partially by the HLA. 

6.3 Common Terrain 

The DARPA ICTDB effort is being incorporated 
directly into ModSAF. It is important to 
understand the structure and implementation of 
ICTDB and ensure that future development 
incorporates the requirements of CCTT SAF. To 
better understand this issue a capability matrix 
must be developed which crosswalks the 
capabilities of ICTDB, MRTDB, and CTDB. 
This matrix will highlight commonality and 
identify gaps and shortfalls with respect to the 
various formats. 

7. Program Management 

7.1 Participating Agencies 

Several DoD programs are developing 
technology which is crucial to the SAF 
Integration program, several of whom are 
identified above. Additionally, this program has 
received high level attention throughout the 
DoD. While      SAF   Integration   will   be 
principally managed in PM CATT, an Integrated 
Product Team (IPT) will also be formed to guide 
the overall development effort. The IPT will 
initially consist of participants from the following 
agencies: STRICOM, AMSAA, the National 
Simulation Center, the TRADOC Analysis 
Agency, and DARPA. The IPT will be chartered 
and chaired by PM CATT. 

7.2 Related Programs 

Several programs are currently underway, which 
potentially have interest in the interoperability 
and eventual integration on ModSAF and CCTT 
SAF. These programs may be leveraged directly 
by focusing experiments and/or technical 
assessments to produce results of particular 
interest. However, the concept of leveraging for 
SAF Integration, while necessary to the success 
of the effort, does not appear to be sufficient to 
ensure overall program success. Programs with 
direct interest in SAF Integration include but are 
not limited to:    STOW 97, JSIMS, WARSIM, 

308 



ModSAF developers, CCTT, and the High Level 
Architecture. 
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1. Abstract 

This paper presents a study using a control flow 
model of the ModSAF scheduler. The model 
consists of two parts: a representation of a polling 
architecture like that used in ModSAF and one that 
accomplishes the same tasks under an event-driven 
architecture. The purpose of this study was to 
compare the two approaches as they relate to a CGF 
system and analyze the results to see which, if either, 
is more efficient. The main focus was on the 
scheduler, because it is an important efficiency area in 
CGF systems. 

The experimental part of the study included 
collecting data from runs of ModSAF. The number 
of ticks that were recorded for one specific function in 
the loop was used for input for the two experimental 
models. Results show the differences in efficiency of 
the two architectures. 

2.  Introduction 

CGF systems depend on the management of many 
simultaneous tasks. This is accomplished using 
scheduling methods. The two most common 
methods are polling and event-driven. 

In a polling architecture, each task in the system is 
processed either at regular time intervals or each time 
the system makes its way through its list of tasks. 
The tasks are "checked on" at these intervals in order 
to see if they have a current need for processing, ff 
there is something to do, then control is given to the 
task, otherwise, the next task in the list is invoked. 

An event driven architecture is one in which each task 
in the system receives processing time upon the 
occurrence of an event. The system does not spend 
any time with a task until something occurs which 
indicates that it requires processing. This ensures 
that a task is not invoked unless it needs to be. 

As simulation technology advances, users expect to 
run larger applications with higher fidelity. 
Demanding simulations impede performance of even 
the fastest systems. Small improvements in 
efficiency can return significant gains in performance. 
In a CGF system, increasing demands due to the 

growing size and complexity of simulations require 
efficient software designs to ensure maximum 
performance. Some implementation methods are 
more efficient than others. 

In a CGF system, function calls are used to achieve a 
specific goal through transitions from one state to 
another. For example, the goal of a vehicle may be 
to move to a location. It might begin by 
transitioning from a state of "stationary" to a state of 
"moving in the direction of the desired location". 
Other state changes occur as necessary until the goal 
is achieved. 

ModSAF handles this process by polling or 
"ticking" function calls at specified time intervals. 
This is accomplished by placing them into a "ring". 
Each process, in this case function call, in the ring is 
periodically "ticked" to see whether it requires 
processing time. If it does, then the appropriate 
action is taken. Otherwise control is bypassed to the 
next process. It is possible that an event-driven 
process would be more efficient, since time would not 
be spent checking to see if a specific function needs to 
be called. Instead, it would be given control only 
when needed. 

One purpose for this project was to compare the two 
scheduling architectures as they relate to a CGF 
system and to analyze the results to see which 
method, if either, is more efficient Another reason 
was to determine a method for measuring 
inefficiencies related to scheduling. ModSAF was the 
CGF system used in this comparison. 

3. Scheduler 

The ModSAF scheduler orchestrates the entire 
simulation process by scheduling function calls based 
on time priorities and then invoking those functions 
as timely as possible in an attempt to keep all 
entities and tasks updated throughout the course of 
the simulation. 

3.1 Relevant Definitions 

ring - A ring is a data structure used by the 
scheduler to keep track of functions that need to be 
invoked at a specific time interval.   ModSAF creates 
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two rings by default. One ring contains functions 
that need to be invoked every 67 milliseconds and 
the other calls them every 29000 milliseconds. More 
rings can be added for different time intervals. 

tick - A function that gets called periodically is 
referred to as having been "ticked" every time it is 
invoked by the polling mechanism (i.e. scheduler), 
so each call to a function is referred to as a tick. 

3.2 Overview 

In a CGF system, entities achieve specific goals 
through a series of transitions from one state to 
another. One method of accomplishing this is by 
calling specific functions which perform the steps 
required for the desired change to take place. An 
example would be a vehicle with a goal of moving 
from one location to another. If the vehicle were 
sitting still and then set into motion toward its 
intended destination, it could be seen as having 
changed from a state of "stationary" to one of 
"moving in the direction of the desired location". 
The appropriate function or sequence of functions 
would be called to accomplish this move. 

ModSAF handles this process by polling or 
"ticking" function calls at specified time intervals. 
Each function is first placed onto a priority queue. Its 
position (i.e. priority) in the queue is determined by 
the time in which it is scheduled to execute. If a 
function is to be called only once, then it is removed 
from the queue, executed, and then removed from the 
system. If it is to be called periodically, then it is 
removed from the queue, executed, and then 
scheduled onto a ring with other functions that need 
to be invoked at that same time interval. Each 
function call in a ring is then periodically "ticked" or 
invoked to see if it needs to update the status of a 
specific entity or process. If updating is required, 
then the appropriate action is taken. Otherwise the 
next function in line is invoked to see if it has work 
to do. 

Since the functions have to check to see if there is 
work to be done, it is possible that an event-driven 
process would be more efficient, since time would not 
be used checking for work. Instead, functions would 
be   invoked   only    when    they    need    to    be. 

Priority Queue 

function function 
• function 

function function 
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Figure 1 : Basic Structure of the ModSAF scheduler 

4. Project Description 

The first step was to study the ModSAF scheduler in 
order to learn which scheduling method it employs 
(polling or event driven).    As stated earlier, the 
scheduler uses a polling architecture. 

Two experimental models representing the polling 
and event driven architectures were developed.   The 

number of productive and non-productive function 
calls were recorded from a run of ModSAF and used 
to formulate input. In order to keep the amount of 
time spent on productive function calls the same, a 
delay function is called using the same amount of 
delay (delay_time) in both models. The polling 
program also allows the user to dictate the maximum 
number of passes (maxpasses) that can be made 
through the "tick  loop", the number of processes 
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i miniber of processes) in the tick loop and the ratio 
of good to bad ticks, which is controlled by the 
(process_intervaI). If the processinterval = n, then 
every "nth tick" would be counted as a good tick. 

The models helped to discover some differences 
between the two architectures. One of the most 
noticeable differences is that a polling architecture 
keeps querying the system to see if there is work, 
while an event driven one waits for the appropriate 
event to occur. When there are only a few tasks in 
the system, the polling method may out perform the 
event driven, but when the number of tasks becomes 
large enough, the overhead in polling may be enough 
to allow the performance of the event driven system 
to prevail. A variety of different numbers of tasks 
were used as input for the two models. Results 
support polling as the quicker method with a small 
number of tasks, but the event driven surpasses it 
once the number of tasks grows large enough. 

5. Models 

The polling and event driven models represent 
straightforward implementations which simulate the 
bare essence of each architecture, in order to compare 
the differences in efficiency of the two methods. 

5.1   Input Data 

A function call is considered to be productive if it 
performs or invokes a task which is needed by the 
simulation at the time the call is made. If a function 
call is made when there is no task to be performed, 
then it is considered non-productive. 

For example, if a run resulted in a case where one-half 
of a total of 1000 "functions ticked" were during 
times in which the ticked process had something to 
do, then those 500 ticks would be considered 
productive, leaving the remaining 500 as non- 
productive. 

The number of productive and non-productive ticks 
were recorded from runs of ModSAF and used to 
formulate input for the two models. 

The ModSAF library Libtracked handles the 
changing of states of all tracked vehicles running in a 
ModSAF scenario. This library was selected as the 
one to gather data from because all that had to be 
done to ensure that it was placed into the scheduler 
and repeatedly invoked was to create tracked vehicles. 
The file trktick.c was modified to count the number 
of ticks in which something productive was 
accomplished and the number in which there was no 
reason to have made the call. The amount of time 
which elapsed in  each of the instances  of non- 

productivity was recorded and the average time spent 
in each was calculated. 

5.1.1 Input for the polling model 

The following four variables were used as input for 
the polling model. 

delay_time = The amount of time in milliseconds to 
delay on a productive tick. This time is always the 
same for all ticks. This helps ensure that the amount 
of productive time spent processing can be easily 
accounted for and duplicated in both models. 

max_passes = The total number of times to pass 
through the tick loop. 

number_of_processes = The total number of 
processes in the tick loop. 

The product of (max_passes * numberofprocesses) 
must be equal to the total number of ticks from a 
ModSAF run. This gives the option of ticking a lot 
of processes a few times or ticking a few processes a 
lot of times, while still having the desired number of 
total ticks. 

process_interval = 
number_of_total_ticks/number_of_good_ticks. Th i s 
number allows the user to dictate the number of good 
and bad ticks. For example, if we let (n = 
processinterval), then we can count every "nth tick" 
as a good tick. 

5.1.2 Input for the event driven model 

The following two variables were used as input for 
the event driven model. 

delaytime = The amount of time in milliseconds to 
delay on the occurrence of each event. In an event 
driven system, all events are productive, so the delay 
is called for each one. 

number_of_events = The number of good ticks from 
a ModSAF run. 

5.2 Implementation 

In the example from section 4.1 above, the polling 
program would cycle 1000 times, invoking a delay 
function every time there was supposed to be 
something productive done by the task or process. 
To determine when a tick is supposed to be 
productive, the total number of ticks is divided by 
the number of productive ticks. The result (n), is 
how often a tick should be productive (i.e. every nth 
tick). During the non-productive cycles, the program 
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would just pass through, not calling the delay 
function. It is the overhead of passing through 
without doing any productive work that is being 
questioned as far as its effect on the overall efficiency 
of the process. 

The event driven program would invoke the total 
number of productive ticks, 500 in this case, taking 
one right after the other from a queue and calling the 
delay function for the same amount of "delay time" as 
in the polling process. The difference is that there 
wouldn't be the overhead of passing through without 
doing any work that was experienced with polling. It 
is important that the amount of productive processing 
time spent in both models is the same, so that the 
only time difference is in what happens during times 
when no productive processing occurs. It is the 
amount of time spent on non-productive activities 
such as polling that must be minimized so that more 
time is available to processes that need it. 
The overhead in polling as opposed to the lack of it 
in an event driven system is what prompts the 
question of differences in efficiency between the two 
methods. 

6. Results 

6.1 ModSAF 

The results of the ModSAF efficiency portion of this 
study are based on information gathered from the 
ticking of the trackedtick function in Libtracked. 
This is the only function that was observed in 
determining the number of productive and non- 
productive function calls made by the scheduler, as 
well as in calculating the amount of time used on 
non-productive function calls. 

If productive work was done somewhere in the 
function, a flag was set to true to denote a "good 
tick". Otherwise, the flag would be returned from the 
function with a false value and be considered a non- 
productive tick. 

Any function that is placed into the tick loop process 
of the scheduler could be used, as well. In fact, this 
information would have to be collected from all of the 
functions ticked during a run to obtain accurate 
results from the entire simulation. 

The average time spent on non-productive ticks 
ranged between .02 and .05 milliseconds for each 
tick. If most of the tracked entities were moving or 
engaged in some type of activity, then the number of 
non-productive ticks and wasted time was minimal. 
As the entities stopped because their task had ended 
or due to damage from enemy fire, the number of non- 
productive ticks and the amount of time wasted 
would rise.    The amount of time spent and the 

number of non-productive ticks is scenario dependent 
due to the fact that there are usually different numbers 
of entities engaged in different types of activities. 
Different runs of the same scenario can also result in 
different outcomes due to the randomness of some 
elements, therefore the percentages of productive and 
non-productive ticks and time wasted will vary here 
as well. 

If there are a lot of vehicles destroyed early in a run, 
then the number of bad ticks accumulated due to 
ticking dead vehicles will be higher than on a run 
when most vehicles survived until near the end. The 
reason for this is because the tracked_tick function is 
still ticked, even when the tracked vehicle it is 
checking has been destroyed. This means that as the 
number of destroyed tracked vehicles increases, so 
will the amount of non-productive time spent ticking 
them. In a scenario with multiple engagement areas, 
once the tasks are finished or a lot of kills occur in 
one area, then more time will be spent ticking these 
vehicles instead of being used elsewhere in the 
scenario. 

The same can be said for scenarios in which entities 
are halted in one position while waiting for a specific 
event or period of time to elapse before moving or 
executing a task. During the waiting period, very 
little productive work occurs in the trackedtick 
function. 

In order to compensate for the variability of different 
scenarios, a series of scenarios could be created, with 
each one representing different levels of activity. The 
resulting data would then be compiled together to 
find an average to represent the entire variability 
spectrum. 

6.2 Models 

The amount of time it takes for a model to perform 
all of its ticks (polling) or invoke all of its events 
(event driven) was used as the measure of efficiency. 
The total time it took for the polling model to 
perform the designated number of "productive and 
non-productive ticks" was compared to the amount of 
time it took for the event driven model to invoke a 
number of events equal to the number of productive 
ticks performed by the polling model. Each time a 
model encountered a "productive tick" or an "event", 
a delay function was called so that each tick or event 
lasted the same amount of time in both models. 
Therefore the only difference in the amount of elapsed 
time should be the overhead required by the nature cf 
the architectures themselves plus the time spent on 
non-productive ticks in the polling model. 
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In each instance of testing with actual data from a 
ModSAF run, the polling and event driven models 
gave similar results for the amount of time each one 
required to complete the same percentage of tasks, 
with each task completed taking the same amount of 
time. Even when the number of non-productive ticks 
was extremely high, the overhead in polling them 
was not enough to make the event driven system 
noticeably more efficient 

A comparison of the two models was performed with 
a series of tests. The process interval was set at 20 
for each test. This means that in all of the tests, only 
5% of the total number of ticks were productive ticks 

in which the delay function was called. These 
numbers would be a rare occurrence in actual runs, 
but having a situation bad enough that its occurrence 
would be uncommon in actual ModSAF runs would 
be a good measure for a "worst case" scenario to 
judge results against. 

Polling proved to be the faster method when only a 
few tasks were used. As the number of tasks 
increased, the event driven became faster. 

The following table shows the results from the 
different   numbers    of   tasks    used    as    input. 

Polling Event Driven 

Number of Tasks Elapsed Time Number of Tasks Elapsed Time 
500 2000 25 2,500 
1000 5000 50 5000 
25,000 125,200 1,250 125,000 
50,000 250,400 2.500 250,200 
100,000 500,900 5,000 500,200 
1,000,000 5,006,900 50,000 5,003,800 

Table 1 : Polling and Event Driven Comparisons 

A ModSAF scenario consisting of only tracked 
vehicles was run for 100,000 ticks of the tracked_tick 
function. The number of productive ticks in this 
instance was approximately 50%. Representing this 
data as input for the polling model consisted of 
100,000 total tasks, with a process interval of 2. 
This allows every other task invoked to be a 
"productive tick". The event driven model had to 
process 50,000 events, which represents 50% of the 
total number of tasks used as input to the polling 
model. The results showed that the event driven 
model completed all of the tasks in 83.414 minutes, 
which was approximately 1.6 seconds faster than the 
83.440 minute time period used by the polling 
method. 

7. Conclusions 

Results suggest that there are areas in CGF systems 
where an increase in efficiency could be beneficial. In 
particular, during times of lesser activity, a significant 
amount of processing time can be spent on non- 
productive polling in the updating of tracked 
vehicles. To provide a more accurate result, other 
areas handled by the scheduler could be checked 
using the same method. 

Results from the comparison of the polling and event 
driven architectures do not lead one to believe that 
one method would be significantly better than the 

other with regard to the ModSAF scheduler's 
handling of tracked vehicles. However, that does not 
necessarily mean that the same conclusion would be 
drawn in other areas of ModSAF. All areas that are 
handled by the scheduler would have to be tested to 
lead to that conclusion. 

This project provided valuable insight into 
simulation architectures and some of the factors that 
influence their performance. Further investigation 
would provide more in-depth information and 
possibly lead to other conclusions. 

8. Future Work 

The methods described in this paper could be used 
by others to perform similar tests in other areas of 
ModSAF, or in other simulation models. 

The level of sophistication of the experimental 
polling model could be increased by varying the 
duration, frequency and types of tasks used in the 
model. These changes would provide a more 
accurate representation of the polling architecture used 
by the ModSAF scheduler. 

The mechanism used to time the functions and 
models returned results in milliseconds. It is 
possible that the execution time of some functions 
may be less  than  one  millisecond.      Therefore, 
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fractions of time that need to be recorded are being 
lost. Getting the results in microseconds may 
provide more accurate results. 
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1.  Abstract 

Computer Generated Forces (CGF) are becoming 
increasingly important for controlling entities within 
Synthetic Battlefields. The thrust of CGF 
development is reducing the large number of 
operators required to control battlefield units when 
training only a few military commanders. 

These automated forces must operate in a spatially 
and temporally continuous domain, react to any 
situation in a realistic but non-deterministic manner, 
using potentially uncertain information about the 
world. 

This paper describes a "broad agent" approach to 
implementing intelligent entities for battlefield CGF 
systems, which attempts to avoid using detailed rules 
covering every possible contingency but instead uses 
more fundamental principles for deriving plans to 
achieve objectives. These agents are linked in a 
command and control (C2) hierarchy. The agent's 
behaviour is implemented as rule sets executed by a 
tool-kit, developed to support generic agent 
architectures. The tool-kit supports multiple objects 
and mechanisms enabling the agents to interact in 
synthetic environments. 

When the command agent receives an objective it 
generates a plan by considering possible sequences of 
actions selecting the most appropriate plan for the 
current situation. These actions are then acted upon, 
and may include giving orders to subordinate 
command agents. 

Initial results have shown that by considering only a 
few actions the agents are capable of generating 
complex plans. 

2.   Introduction 

The cost of performing live military exercises to 
provide training for future commanders is becoming 
increasingly prohibitive. The complexity of training 
higher ranking officers in strategic thinking in battle 

could require an exercise involving thousands of 
troops, which except occasionally is infeasible. 

Hence, synthetic environments, (or a virtual 
battlefield) are increasingly being used to simulate 
battlefield entities and their interactions to provide 
commanders with their training experience. Here the 
trainee commanders control their forces as in a real 
exercise, by issuing orders, but the behaviour of the 
units and/or entities are computer generated. The 
opposing forces are similarly controlled by an 
operator controlling a number of Computer Generated 
Force (CGF) units. 

These simulators inter-operate (for example using the 
Distributed Interactive Simulation, DIS, protocols) to 
give the appearance that the commander is competing 
against a real adversary. Although this training 
method may be more cost effective than live 
exercises, it still requires many more operators than 
trainees. Additionally the intelligence level of entities 
in many systems is such that the operator frequently 
has to intervene to correct inappropriate actions of the 
units. 

It is therefore desirable to increase the level of 
automation and intelligence of the CGF systems to 
reduce the number of operators and the amount of 
operator intervention required. This has lead to a 
large number of CGF research activities (see 
Ceranowicz 1994; Courtemanche and Ceranowicz 
1995; McEnany & Marshall 1994). 

Clearly a CGF system should represent realistic 
behaviour with minimal operator intervention. In the 
complexity of the battlefield the use of reactive 
systems or drill procedures is not ideal because it 
does not: 

1. account for enemy positions or intentions, 

2. utilise the environment to its best effect (e.g. 
considering the GROUND). 
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Hence, a more general planning system which can 
consider the outcome of its actions is seen as a more 
appropriate solution to aim at. To achieve this aim, 
we are investigating the use of "broad agents" (Bates, 
Loyall, & Reilly, 1991) for implementing intelligent 
battlefield entities. 

This approach aims to remove the need for detailed 
doctrinal Combat Instruction Sets (CISs) by raising 
the level of decision making. Instead the agent would 
have knowledge of the principles of manoeuvres and 
constraints about the world allowing orders to be 
issued in the form of objectives to be attained thus 
endowing the agent with a measure of initiative. This 
methodology is in keeping with the current British 
Army doctrine of mission command. 

This paper examines some important issues in 
developing an effective CGF system. An outline is 
given of the approach adopted at DRA Malvern to 
provide plausible agent behaviour, and some results 
are presented. 

3.   Characterising the Problem 

The physical properties of entities (such as 
movement, fire rates, ballistics, etc.) can be modelled 
correctly using appropriate mathematical models. 
However, modelling human behaviour is much more 
difficult because representative models are difficult to 
specify and are computationally too expensive to 
operate within the usual time constraints of a CGF 
system. However in mitigation more than one course 
of actions may be acceptable in a given situation, and 
it is generally sufficient that the CGF chooses a 
plausible course of action. Hence, a heuristic 
methodology of planning is suited to modelling 
behaviour (see Meliza and Varden 1995). 
The process of planning within the battlefield is a 
complex process. The agent has to take account of 
many factors, including: 

• Movement of enemy forces. 

• The Intention of the enemy force. 

• Uncertain, incomplete and out of date 
information ("Fog of War"). 

• Terrain features. 

Conventional game theory is inadequate because the 
number of possible actions is unbounded. 

We have identified five principles which a CGF 
should exhibit if it is to realistically represent the real 
world: 

3.1 Appropriate Actions 

The agent should be capable of acting in any situation 
it may encounter. A CGF system based on CIS or 
drill procedures could easily find situations for which 
is does not have a procedure for, in which case it may 
not perform any action. Worse is a combination of 
situations (such as encountering a minefield while 
under air attack) where a procedure must exist for the 
combined situation otherwise an inappropriate action 
could be executed (such as scatter). 

Our approach overcomes these problems by 
considering the environment and the effects different 
courses of actions would produce and so chooses the 
most appropriate plan. 

3.2 Act at Tempo 

One of the most important considerations in military 
operations is that of Tempo. Tempo is where a force 
executes sequences of events, or performs several 
activities at once, more quickly than the opposition is 
able to keep pace with, and hence becomes 
overwhelmed. Therefore, to prevent being outpaced 
(or out manoeuvred), the commander must be capable 
of quick responses to situations whilst maintaining an 
overall scheme, so maintaining purpose. 

Our implementation has the facility for the agents to 
respond to a situation quickly by invoking a reactive 
behaviour, but still developing (in the background) an 
overall plan of action. 

3.3 Co-operative/ Co-ordinated Behaviour 

In any operation or activity it is essential that the 
agents act co-operatively (or mutually support one 
another) for greater effectiveness of the unit. This 
holds whether on an offensive manoeuvre (e.g. 
covering fire) or a movement operation, which 
generally requires good co-ordination of the agents. 
For example, only one entity can cross a bridge at a 
time. 

Effective co-operation results from a hierarchical 
command and control structure which includes the re- 
allocation of roles following attrition. 
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For this reason and because it corresponds to real C 
systems,  we have chosen to use a hierarchy of 
command agents. 

3.4 Operator Interaction 

Ultimately the CGF system must interact with a 
human operator who provides the overall battle plan, 
and can intervene to modify the actions of a unit if 
required (e.g. to create a situation to test the trainee). 
Therefore, the method of communicating information 
between the operator and the entities must be in a 
form which is clearly understandable, and in a 
familiar format (e.g. see Ceranowicz, Coffin, Smith, 
Gonzalex and Ladd). 

The tool-kit developed enables any communications 
method to occur between the agents and the outside 
world. This is achieved by a "plug in module" which 
translates messages between the outside world format 
and that required by the particular agent message 
handling implementation. 

3.5 Plausible but not Predictable 

4.1   Requirement 

In order to support the complex internal information 
processing and the casual interactions of agents (or 
objects) both external and internal behaviour is 
required. In general a general idea of the desired 
architecture is known before hand, however it was 
unclear at the start of the project which particular 
architecture would support the functionality of a 
broad agent. 

The tool-kit therefore needed the facility to support 
different architectures between the agents, but also 
the agent itself may require a number of sub- 
architectures to support all its functionality. Thus the 
ontology space imposed by the tool-kit should not be 
restricted. 

Also, the agents need to interact with each other, but 
also (especially in a DIS environment) interact with 
other agents (or entities) in the world. Therefore, the 
agents must perform some simulation (physical). This 
can be achieved using internal modules to the tool-kit, 
or by enabling the agents actions to control a separate 
simulation system. 

In order for the trainee to be convinced they are 
battling against a real opponent, the behaviour of the 
entities must be plausible, both in the short term 
(short term behaviour) but also in the long term 
(overall strategy). The more cunning the opponent is, 
the more intelligence and initiative is required of the 
trainee to triumph. 

However, the CGF entities must not be predictable, 
and always do the same action between similar 
situations. If this were the case, the trainee could 
learn what action to expect from their opponent, 
which is obviously undesirable. 

Our approach intends to overcome these problems, by 
considering different courses of actions and selecting 
either the best, or one from the 'n' best plans and 
thereby introducing uncertainty. 

4.   Tool-Kit Implementation 

The framework for the agents has been developed in 
collaboration with Birmingham University as a tool- 
kit "SimAgent", written in Poplog (Sloman and Poli 
1995). The SimAgent tool-kit allows multiple agents 
to run, controls the message passing between them 
and allows either simple internal simulation, or 
control of a remote simulation. 

The tool-kit is based on the POPRULEBASE library 
provided within the POPLOG development 
environment, and which also provides rapid proto- 
typing capability. 

4.2   Scheduling 

The tool-kit scheduler is responsible for the correct 
running of each agent (or object). The top-level 
scheduler procedure is presented with the list of 
agents, and the maximum number of time slices for 
each agent. 

The scheduler runs in a two pass operation. Firstly, it 
allows the agents to perform any sensor operations, 
read messages from other agents, and perform 
internal processing (behavioural modelling). 
Secondly, it passes any messages between the agents, 
and runs any external actions, such as move, turn, etc. 

This ensures the behaviour is generally independent 
of the order of the agents, because all agents get to 
perform sensor and thinking activities before the 
actual state of any entity is changed. 
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4.3  Agent Mechanisms 

Each agent has an associated collection of rule sets, 
each rule set is a collection of condition-action rules, 
that interact via one or more databases. Hence, one 
rule set might be concerned with sensory perceptions, 
another rule set may be involved in planning 
activities, and so on. The rules can switch between 
databases, push them on a stack, restore them, etc. 
(c.f. with SOAR, see Laird, Clave, Erik and Roberts 
1993). Rules also can invoke other rule sets. 

The addition of the facility to enable the agent to 
control remote entities has obviated the need to 
redevelop the physical simulation part of the entities 
(e.g. motion dynamics, sensors, etc.) by using our 
existing simulation software. This also enables the 
entities to interact with other simulated entities by 
using the DIS protocol. 

Figure 1 shows the relationship between the agent 
objects, the rule sets, the tool-kit and remote 
simulation. 

Although learning is not included in our 
implementation, it is supported in the tool kit. A rule 
can introduce new rule sets, or create new rules 
within a rule set. The rules are not limited to a 
particular style, they could invoke a theorem prover, 
such as Prolog, also since the rules can invoke Pop- 
11, it is (with Poplog Popl 1) possible to invoke other 
languages such as C or C++. 

The tool-kit also has the ability of simulating 
constrained thinking time (or resource limited 
planning) by constraining the amount of processing 
any one agent can perform on a cycle. 

4.4 Actions 

Inevitably the agents will want to perform some 
actions based on their motivations, thus the agents 
ultimately need to perform physical actions. The tool- 
kit scheduler allows the objects to execute actions 
during its second pass either by updating entries 
within its database, or its object slots. 

However, the tool-kit has been extended to enable the 
agents to control the physical operation of entities 
running on a remote simulation using simple 
command and control messages. These messages also 
allow information from the entities sensors to pass 
back to the agents. Thus the mental and physical 
modelling of the entities is entirely separated. 

4.5 Conclusions 

The tool-kit provided enables a general approach to 
be adopted for the implementation of the agents. It 
does not present undue restrictions on the architecture 
employed to achieve the desired behavioural 
representation. By providing the facility to execute a 
number of agents together enables the modelling and 
execution of small military groups, such as troop (or 
platoon) and squadron (or company) on a single 
workstation. 

SimAgent (Tool-Kit) 
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I Scheduler Pass 21 

Sensors/ 
Message: 

Actions 

Actions  1 j Sensors/messages 

An Agent 

I RuIeSetMRuleSet | 

Actions RuleSet 

Network Remote 
Simulation 

Figure 1. Tool-Kit Overview. 

The first pass of the scheduler allows all the agents to 
process sensory information and incoming messages, 
and run their behavioural methods. This could 
generate a number of actions in a number of agents. 
Only when the scheduler does its second pass are the 
actions executed, using a (user defined) API to the 
simulation methods. 

If required a different remote simulation could be 
used by simply replacing the Simulation Methods 
Module. Since the actions and sensors use a (user) 
defined structure, provided the new module 
communicates with the tool-kit using the same 
format, no changes are required to the agent's rules. 
Similarly the physical simulation could be entirely 
contained within the simulation methods module. 

5.  Agent Implementation 

As mentioned the entity intelligence is based on a 
"broad agent" implementation within a military 
Command and Control (C2) hierarchy modelling the 
structure of military units. A broad agent (Bates, 
Loyall, & Reilly, 1991) is designed to have a broad 
but shallow range of capabilities, instead of a limited 
but very detailed set of behaviours. Our intention is to 
implement a planning framework based on the 
military doctrine of Mission Command and avoid 
detailed CIS for every situation. This enables the 
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agents to create plans of action taking into 
consideration their objective and their estimation of 
the ground. The C2 hierarchy enables commands to be 
devolved from high level commanders to 
subordinates and so each agent only considers the 
appropriate level of detail. 

The scenario being developed to demonstrate the 
agents' behaviours is based on a battle group 
formation, shown in Figure 2. 
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Figure 2. Example of a BattleGroup Hierarchy. 

A broad scenario was adopted because it encourages 
a broader approach to implementing the intelligence 
because the units will have to think about different 
types of friendly or enemy units on the battlefield, 
and their associated roles. The aim is to implement 
simpler intelligence initially which can think more 
generically about the battlefield, rather than highly 
intelligent units which can only reason about a 
specific type of unit and limited number of situations. 
Additionally using an existing C2 hierarchy directly 
relates units at each point to the real world, making it 
easier to extract the behaviours from subject matter 
experts (SMEs). This also helps with validation of the 
behaviours, because a military officer can watch the 
actions of units and by using their experience evaluate 
the realism. Because the units are simulated 
separately, the force can be distributed across a 
number of computers and a larger number of entities 
can be simulated. Physical interaction can be 
achieved using DIS protocols for instance, and a 
separate Command and Control language (which 
could be the Command and Control Simulation 
Interlace Language, CCSIL) used for instructions and 
messages. 

We have not embodied learning behaviour into the 
agent in the present implementation because it was 
felt that a lot of behavioural principals could be 
extracted from Army Field Manuals, and Doctrine 
Manuals. 

The current implementation extends to one tank 
squadron of the Battlegroup of Figure 2., shown in 
Figure 3. 
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Tank Tank 

Figure 3. Squadron Composition. 

Each agent within the hierarchy is based on a broad 
agent, the basic design is shown in Figure 4: 

Orders, Messages 

Planner 
BBSESBI Plans 
Evaluate Plans 
Safe! Plan 

Planner Monitor 
QOat AccooipastlsvJ? 
Re-Plan Raqulnxl? 

Sensing 
Datacl 
LOOM 

Actions 
Own Actons 
Instruct 
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Messages 
Sighting Raports 
Status Information 

Orders, Messages 

Figure 4. Broad Agent Design Concept. 

The fundamental properties of this design are: 

1. It contains a central database, through which all 
the modules communicate. This database can be 
partitioned into a number of sub-databases each 
holding a set of related data, allowing searching 
within the database to be performed much more 
quickly, and potentially to distribute the database 
across processes (locally or over a network). 

2. Individual modules can be identified to perform 
fundamental tasks. Although these can be 
separated their operation may be related to 
another module, for example, plan monitor which 
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monitors the progress of a plan relies on sensory 
information. However, separating functionality 
enables parallelism of the modules. 

3. The modules only simulate the agent's intelligence 
and do not perform any actual physical modelling. 
If the agent wishes to perform an action, for 
example change the heading, it sends an 
instruction to the physical simulator with the 
request. The intelligence gets confirmation back 
about the action via its sensors. The advantage of 
this approach is the intelligence modelling can be 
separated from the physical simulation, and so 
allows the re-use of existing physical simulators. 
The control is replaced with our intelligence. It 
also allows the two parts to be run on separate 
processors (locally or over a network). 

4. The design of the intelligence is then generic to 
any position in the C2 hierarchy. 

It should be noted that a single battlefield entity (such 
as a tank) is modelled as a single agent (i.e. the 
commander, gunner and driver are aggregated). The 
overall operation of the unit seen externally appears 
as a single intelligence, hence the need for separate 
modelling of the individuals within the tank is not 
necessary. Taking the next command level, the troop 
commander, also resides in a tank. This tank performs 
the same functions as a subordinate tank except it is 
also able to command other tanks, and so has extra 
functionality. This is emulated within the broad agent 
design by additional modules which performs troop 
command thinking. This can be visualised in Figure 
5. 

If during a battle the troop commander is destroyed, 
the second in command of the unit takes charge of the 
unit. This is achieved by the new troop commander 
gaining the troop commander capabilities (i.e. by 
adopting the extra rule sets) and continues the 
campaign. Note, the new troop commander does not 
obtain the database from the previous commander, 
but, in accordance with military doctrine already 
knows the objective in hand. 

Initially all agent functions ran internally to the Tool- 
Kit, which obviated the need for real time constraints. 
However, when the link to the external physical 
simulation was established, it became important that 
the agents ran in real time. This is achieved by 
constraining the amount of processing an agent can 
perform on a cycle. However, the consequence is that 

plans may take longer to generate. In situations where 
Orders, Messages 
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Actions 

1 
Orders, Messages 

Figure 5. Example Troop Commander 
Architecture. 

immediate action is required this would not be 
acceptable, hence, the agent would need to fire either 
a reactive behaviour, or a very simple planning action 
to deal with the immediate problem. 

The behaviour of the tank agents is observed by using 
them to control tanks inside a simple simulation 
linked with the agent Tool-Kit in a small tank battle 
scenario. 

Currently only the tank agents are able to perform 
planning (Baxter and Hepplewhite 1996); the troop 
and squadron commanders currently follow 
prescriptive decomposition of commands. For 
instance, the Squadron Commander can accept an 
order to occupy an area of terrain, which is devolved 
to orders for each troop commander to occupy a 
different part of that area. The troop commander 
determines the heading and speed for the troop and 
informs each tank individually. 

6.  Agent Planning 

Individual agents are responsible for choosing targets 
for their weapons and controlling their own motion 
within the framework set out by the troop 
commander. To do this they take orders from the 
troop command agent as a set of guidelines and 
constraints. Plans have to be constructed which fulfil 
the goals set by the troop commander as far as 
possible without violating any constraints. An 
example of a constraint could be a boundary line that 
the agent must not cross, perhaps because this area 
has been assigned to a different troop. The desired 
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speed and heading of the troop as a whole is taken by 
the tank agent as a guideline to derive goals in space 
and time for the tank agent. 

6.1 Planning Framework 

The guidelines and constraints supplied by the troop 
commander are used to derive a short term positional 
goal, a planning horizon (the maximum time to which 
plans should extend), and a target time by which the 
positional goal should be reached. Without the 
presence of obstacles or opposing agents these 
settings cause tank commanders to move together as a 
group in a formation dictated by the troop 
commander. 

The method which has been adopted uses the present 
state of the battlefield to suggest a number of discrete 
actions for a tank agent to consider. Each of these 
actions has an associated cost in distance, time and 
risk which are combined together to give an overall 
cost by use of a weighting function. Actions may be 
rejected because they violate one or more of the 
constraints set down by the troop commander. 
Combinations of actions with their cumulative costs 
are made into plans and an optimal plan selected by 
an A* search (see Russell and Norvig 1995). This 
enables the search space to be restricted to actions 
which, in general, seem applicable to the agent's 
present situation. By basing the cost on a detailed 
consideration of the effects of the action, situations in 
which the action is inappropriate can be identified. 
The generation of multiple actions also provides for 
the possibility that a slightly sub-optimal choice could 
be made to prevent the agent's actions being too 
predictable. 

6.2 Generating Actions. 

Five actions are currently available to a tank 
commander agent. They can be described as advance, 
assault, retreat, run away, and face. The advance 
action involves moving toward the goal with a speed 
and heading to ensure the agent is within its assigned 
formation position at the end of the motion. 

The other actions are more complicated. They are 
based upon the fact that a tank's frontal armour is 
much stronger than its side or rear armour so the best 
approach to an opposing tank is to face it, thereby 
reducing the probability that a hit will be destructive. 
The actions therefore try to combine facing the enemy 
with progress towards the goal. 

To help in generating actions from this knowledge the 
agent first makes a "threat map" which identifies 
threat with respect to heading based on the proximity 
of hostile tanks. Using this threat map two potential 
actions can be directly generated; facing the 
maximum threat and remaining stationary, the "face" 
action, or reversing, the "run away" action. The 
assault and retreat actions try to find a "safe" 
direction which also lead towards the goal. This is 
done by multiplying the ratings of the threat map by a 
value proportional to the difference between the 
heading and the heading direct to the goal (for 
advance) or directly away (for retreat). Selecting the 
headings with the maximum values after this process 
(so long as there is a non-zero value present) gives 
two suggested actions which should give motion 
towards the goal but on a heading so that the risks to 
the tank agent can be minimised. Presently each 
action is considered to last for ten seconds, after 
which new actions will be considered. 

6.3   Costing Actions 

For use in the A* search the cost of selecting an 
action as part of the plan must be evaluated along 
with an estimate of the cost to reach the goal after the 
action has been completed. The distance and time 
costs are simple to derive but an accurate 
measurement of the risk to which an entity is exposed 
is much harder to evaluate. At its most extreme this 
would require a statistically significant number of 
simulations of the execution of the plan to be carried 
out and the proportion of instances in which the agent 
was destroyed to be found. 

Instead an estimate of the risk is found by making 
several assumptions about the course of events. The 
vehicle is assumed to make the move to the end point 
of the action in a straight line and assumes all other 
agents continue in straight lines. The risk involved is 
calculated by assuming all hostile agents within range 
may fire upon the agent with a probability based upon 
the relative strengths of the two sides involved in an 
engagement. The risk is therefore a combination of 
the probabilities that each enemy agent will choose 
(or be able) to fire on the planning agent, that the shot 
or shots will hit and that a hit will penetrate the 
armour and destroy the tank. This gives an overall 
probability of destruction during an action. 

The estimate of the risk in reaching the goal after the 
action is taken to be zero, thus ensuring it is an 
underestimate and guaranteeing the optimal set of 
actions will be selected by A* search. 
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7.  Results 

Initial tests have been carried out using two opposing 
troops of three tanks whose starting positions and 
final goals are such that they move into view of each 
other with intersecting paths if no avoiding action is 
taken. By altering the relative weights attached to 
time taken, distance and exposure to risk, different 
behaviour patterns occur. Thus a "personality" can be 
attributed to a commander in terms of their 
cautiousness or risk taking behaviour. 

In the risky vs. risky scenario shown in Figure 6 the 
two groups come into sight of each other when they 
reach A. When they come within range at B both 
groups launch into an immediate assault and a fight 
ensues. Neither group is prepared to postpone its 
actions in order to avoid a fight but do alter their 
approach to the goal to face the enemy. By the time 
the groups have closed to C all the red tanks and one 
blue tank have been destroyed. The remaining blue 
tanks continue to their goal. 

simply delays its advance and moves towards the goal 
when the red troop has retreated out of range. 

visual range 2 km 

firing range 1 km 

•a 
Red stan 

m- jV"-«i 

Blue goal position Red goal position 

Figure 6 Combat between two groups of 'risky' 
tanks. 

In the risky on cautious scenarios after a brief initial 
engagement the cautious group retreats out of range 
and stays clear of the more aggressive troop, even 
though this delays them considerably. 

Two cautious troops, shown in Figure 7, tend to 
hover around the limits of the maximum firing range 
trying to work their way around each other and 
occasionally exchange shots. Neither group is willing 
to expose itself to the opposite side's fire in order to 
achieve the goal. When the groups come into firing 
range at B both retreat but the red force has to take a 
large detour since the tanks cannot move directly to 
their goal without exposing their flanks to fire from 
the blue troop. The blue troop on the other hand 

visual range 2 km 

firing range 1 km 

-S3 

Red stan 

[3- 
6-^-a] 

K^s 
-^&          Blue stan 

BS- 

Blue goal position 

Red goal position 

Figure 7 Combat between two 'cautious' 
groups. 

These scenarios demonstrate that appropriately 
different behaviours can be achieved by simply 
changing the risk parameter the agents find 
acceptable. This shows that different command styles 
(ranging between cautious and the reckless) can be 
easily emulated. 

The behaviour of the agents have been viewed by a 
military advisor and agent responses to enemy tanks 
accepted as plausible. The main deficiency was 
recognised as the lack of terrain utilisation by the 
agents. 

The planning speed of the agents varies considerably 
depending on the level of activity. When a group is 
isolated from any opponents, planning is relatively 
simple and fast. However, when an opposing unit 
comes into range, the planning process becomes more 
complex as the agent searches through sequences of 
alternative moves, to optimise its cost over the next 
few seconds of the scenario. Consequently the 
planning becomes much slower. 

8.   Conclusions 

The results we have obtained show that our approach 
has promise. The generation of actions, based on the 
current situation allow the potentially infinite search 
space to be restricted to considering only a few, 
promising, actions. The costing of these actions by 
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the use of a mini "simulation within a simulation" 
enables agents to identify when an action is 
inappropriate due to the specific conditions under 
which it would be executed. 

We have also seen that the time for agents to plan can 
vary dramatically as the situation of the battlefield 
changes. For training and inter-operation with other 
systems it is essential to operate at a consistent rate, 
usually at real time. To ensure this real time AI 
techniques must be used. 

9.   Further Work 

Immediate enhancements are aimed at incorporating 
more intelligence into the troop and squadron 
commanders to develop longer term tactical plans. 
These are intended to be based upon the same 
framework as the planning for individual entities. It 
will include simulation of battlefield activity at a 
more abstract level including simulation of enemy 
responses. The actions available to individual tanks 
will be increased to include terrain based activities, 
such as hiding and seeking cover. 
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1.  Abstract 

The battlefield of the future will be comprised of both 
human- and computer-controlled entities, where the 
hope is that unmanned systems will increasingly take 
on the higher-risk missions. Realizing this vision 
involves the construction of entities such as 
unmanned ground vehicles (UGVs), and the 
development of mechanisms by which human 
commanders can convey the intent and parameters of a 
mission to UGVs and can monitor/correct the 
performance of UGVs. At the same time, the 
commander cannot be expected to hand-hold the 
UGVs. so the UGVs need the capability to replan and 
improvise (in a doctrinally-appropriate way) so as to 
fulfill the mission goals in a coordinated manner, 
with minimal human intervention. 

Our research has been focusing on the development of 
tools for planning, execution, and coordination of 
multiple UGVs at a strategic mission level. The 
interface to a human commander permits the 
specification of a mission at an appropriately strategic 
level. Our underlying tools work with the 
commander to elaborate the mission sufficiently to 
begin its execution, and then during mission 
execution our mechanisms allow the flexible 
achievement of various objectives based on the details 
of circumstances encountered. 

We have developed a system that is comprised of 
multiple instances of a procedural reasoning system, 
an interface for the specification of high level military 
missions, tools to help plan routes, formations, and 
observations, and to assimilate various kinds of 
information and monitor plan execution. 

2.   Introduction 

The ability for users to generate multi-vehicle plans 
which perform realistic behavior and coordinated 
control of unmanned vehicles without specifying the 

low-level detail that is required to control the robotic 
vehicle is and will be of great importance in the 
usefulness to deploy and use robots. The ability for a 
robot to process and carry out the goals in the plan in 
a reactive manner will also be crucial for the robot to 
accomplish it's mission. 

This paper describes a system that was developed for 
the Unmanned Ground Vehicle (UGV) project to 
initially add mission planning and reactive re- 
planning for the UGV vehicles, then later as a 
alternate design approach for the control and 
coordination of robotic vehicles in a simulated 
environment. The system is composed of a high- 
level mission planner which aids the user in 
composing a mission plan by placing militarily 
significant information on a Graphical User Interface. 
The objectives so specified are then decomposed into 
a set of plans for multiple vehicles. The second part 
of the system is a set of vehicle processes which 
execute and monitor the generated plans in a 
simulated environment, ModSAF. 

The underlying architecture that is used to control 
each of the components is a procedural reasoning 
system called UMPRS (Lee et al, 1994). UMPRS 
allows for the system to generate realistic behavior by 
encoding military doctrinal knowledge inside the 
reasoning system which is called upon when the 
appropriate context arises. 

This paper starts out by describing the overall system 
architecture and all the components of the system. It 
then describes the mission planner functionality, 
where the user enters the mission and the planner 
decomposes it into a set of vehicle plans. Following 
that the paper then describes the agent architecture 
processes and related tools. The last section describes 
the execution and reactive re-planning that can be 
performed by the agents in the system. We then 
conclude with an analysis of the architecture and how 
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and where it can be applied in the computer generated 
forces arena. 

3.   System   Architecture 

The system we have designed and built is composed 
of many modules interconnected and communicating 
amongst each other. A the top of the system is a 
mission planner connected to a GUI, the middle of the 
system is composed of the vehicle process and tools 
and the bottom is the vehicle simulator, ModSAF. 
See Figure 1 for a view of the system architecture. 
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Figure 1. System Architecture 

Following is a brief description of each of the 
modules in the system. 

3.1.   UMPRS 

In order to perform realisticly in a real or simulated 
environment a vehicle should execute tasks in a real 
time and reactive manner. We have developed a Real 
Time Planning and Control Procedural Reasoning 
System, UMPRS (Lee et al, 1994). UMPRS is based 
on SRI Procedural Reasoning System (PRS) 
developed by Georgeff et al, (Georgeff & Lansky, 
1986). UMPRS is a general purpose reasoning 
system, integrating traditional goal-directed reasoning 
and reactive behavior. 

UMPRS is well suited for use in robotic applications 
because it allows the robots to pursue long term 
goals by adopting pre-determined procedures based on 
context and not blindly following a prearranged plan. 
It is also well suited for use by robots in a reactive 
environment where it can switch out of it's currently 
executing procedure and invoke another apporiate 
procedure when the situational context changes. For 
example if a vehicle is traveling down a road 
executing a move-to procedure that has context that 

states that there are no enemies in sight, and then it 
spots an un-friendly vehicle, the context for the 
current world state will be changed the current 
procedure will be switched out and another procedure 
will be invoked to deal with this new change in 
context. 

UMPRS is composed of five components, see Figure 
2: 

Database - 
A database called a world model that contains the 
beliefs and facts about the world. Initial facts are 
asserted at the beginning of a UMPRS program, other 
facts and beliefs can be either asserted or retracted by 
KA's, which is explained below. 

Knowledge Area's - 
A set of declarative procedure specifications that 
describe how to achieve a system goal or query. A 
KA consists of a purpose (a goal, test or query or 
action) for executing the KA. The context in which 
the KA is applicable and a body which is viewed as a 
directed graph in which nodes represent states in the 
world and arcs represent actions or subgoals. The 
body may consist of goals to achieve or maintain, 
goals to test , subgoals, branches, assertion or 
retraction of beliefs or primitive function to be 
executed, this is just a partial set of action, for full 
set refer to the UMPRS User Documentation (Huber 
et al). A primitive function can be a function to 
control a robot, send communications or perform 
some calculation, primitive functions are the low- 
level interface to the real world and are generated by 
the user. 

Goals  - 
UMPRS maintains a set of current goals to be 
realized, KAs may place additional goals or subgoals 
into the system by attempting to achieve some 
action. A top level goal is different from a subgoal 
in that the system will continue to pursue the top 
level goal until it is satisfied, but goals within KA 
bodies are not persistent. 

Intention  Structure  - 
The intention structure acts as the run-time stack of 
the system. It keeps track of the progress of each 
high-level goal and all of the subgoals. The intention 
structure suspends, resumes, cancels and proceeds 
with the execution of goals in much the same way as 
an operating system. The intention structure 
maintains information about what KAs are currently 
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active, as well as what actions in each KA are to be 
executed next. 
Interpreter - 
The interpreter is what controls the execution of the 
entire system. Whenever there is new or changed 
information in the world model or goal list, the 
interpreter determines a new set of applicable KA's, 
called a SOAK set, to pick the next appropriate KA 
to be placed in the intention structure. When there is 
no new SOAK being generated, the interpreter checks 
the intention structure for the currently active KAs 
and executes the next action. If this action changes 
the goal list, by creating a subgoal or satisfying a 
goal, a new SOAK is created and the cycle starts over. 
If a new SOAK is not created then the next arc in a 
KA is executed. 

(       SENSORI       1 
I      RECEIVER      J 

Figure 2. UMPRS Architecture 

In the system that we have developed, UMPRS is 
used both as a mission planner and as a vehicle plan 
execution, re-planning and monitoring process, both 
of which are described in later sections of the paper. 
For a UGV application, the plans, beliefs, contexts, 
and goals are based on standard operating procedures 
as defined in military doctrine. 

3.2.   Mission   Planner 

At the top of the system is a mission planner 
composed of UMPRS and a KA library that describes 
how to decompose the mission into a set of goals for 
the vehicles to achieve. The mission planner is 
connected to a Graphical User Interface where the user 
enters military significant icons and mission data. 
The mission planner has tools available for the 
decomposition of the plans; these include a route 
planner, a formation expert and an observation points 

planner. The mission planning process is described in 
detail in a later section. 

3.3. Operator Work Station (OWS) 

The OWS GUI was designed and built specifically for 
the UGV project. The OWS consists of a map 
interface able to read in various formats of DMA 
terrain data. Tools to display and analyze map data, 
get distances, perform line of sight calculations, plan 
routes, add military measure icons and perform other 
various UGV specific planning and execution 
monitoring. For our purposes, we are using the 
OWS as a graphical interface to the mission planning 
processes. 

3.4. Vehicle   Processes 

The vehicle processes in the system execute and 
monitor the plans and goals generated from the 
Mission Planning process. There is a separate vehicle 
process for each vehicle used in the mission plan. 
Each vehicle process consists of a UMPRS process 
and KA library that describes how to accomplish 
goals, an information assimilation database and an 
observation points planning process. The vehicle 
process and execution are described in more detail in a 
later section of the paper. 

3.5. ModSAF   Vehicle   Simulator 

The ModSAF vehicle and forces level simulator is 
used as a testbed for the execution of the vehicle 
processes. Although in the UGV project we have 
access to multiple Hummer robots, the cost and time 
it takes to run missions on the vehicles is 
prohibitively large compared to that of running 
scenarios on a simulator. Since the actual UGV 
vehicles are limited in their sensing and what they can 
do, we are able to run more complex behaviors and 
missions with the simulator. We can set the 
simulator and system up to be run as a friendly or 
enemy force and have them each perform exercises 
against each other. 

3.6. TCX   Communications   Package 

The last part of the system is the communications 
package that ties all of the processes together. We 
used a communications package, developed at CMU 
called TCX [Fedor]. Through TCX we are able to 
send reliably data structures over the internet. 
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4.   Mission   Planning 

The process of describing the low level details of 
robotic plans can be an enormous task, especially if 
there are multiple vehicles used in a mission. 
Military planners like to think in high level terms 
when planning missions, not low-level robouc 
details. The gap that exists between the military 
planners and the detailed plans needed to be executed 
on a robotic vehicle are filled in by the mission 
planning capabilities of the system. 

The mission planning part of the system is composed 
of a UMPRS process and a set of KA libraries, an 
OWS Graphical Interface process, a route planner tool 
process, a formation tool process, and an observation 
points planner tool. 

The user starts a planning cycle by entering on the 
graphical interface the military specification of the 
mission and the associated military measure icons. 
For example to plan a reconnaissance mission for two 
vehicles the user would enter an assembly area 
measure for the vehicles to start, a few checkpoints 
that the vehicles need to pass through and an 
observation post where the vehicles would perform a 
recon. See Figure 3 for a planning example. 

"A. 

•'r-=§. 

'iii^i awr-jLiTfrtj •                             H***^"°*l 

Figure 3.  Mission Planning Example 

The icons and associated data would then be sent off 
to the mission planning process to be elaborated. The 
icons could have been entered in any arbitrary order, 
and the sequence and strategies for pursuing the 
measures might not be obvious purely from the map. 
As a result, in order to resolve ambiguities the 
mission planner draws on its library of templates or 
KAs for operations, or can call on the user to provide 
such a template. By matching military symbolgy to 
the template, the  mission   planner formulates  the 

sequence of action and goals that must be carried out 
by the robotic vehicles. 

As it elaborates the mission, the planner can call on 
more specialized tools to formulate portions of the 
robotic plan. These include tools for planning routes, 
planning apporiate reconnaissance points along a 
route, and planning formations for vehicles to travel 
in when necessary. 

The detailed steps of how to elaborate the data from 
the mission specification are defined in the UMPRS 
KA library that the mission planner uses. For 
example these can be simple steps such as move from 
one checkpoint to another, to complex steps such as a 
planning a set of bounding overwatch points, where 
one vehicle watches as another moves along a route, 
then they reverse roles. As more KA sets are added to 
the library, the system will be able to plan more and 
complex behaviors and missions. The degree of 
autonomy does not necessarily have to be at the 
vehicle level. Since UMPRS KA's are a set of 
procedures for accomplishing a certain goal, the goal 
may be a high level goal such as plan for an assault 
on a position with many groups of vehicles, where 
the reconnaissance task is just a small part of the 
overall goal. 

The elaboration of the plan does not stop at the 
mission planning level; indeed, once the plan is sent 
to the vehicle process it may elaborate the plan farther 
to develop more detailed control. Our architecture 
makes no commitment to which degree of autonomy 
is instantiated at any given time; rather it will depend 
on the particular knowledge and procedures provided 
to the various agents. 

The military missions that we have developed are 
centered around reconnaissance tasks executed by a 
team of two or four vehicles. Some of the subtasks 
may include bounding overwatch, deep range recon, 
cooperative vehicle sensor observations and reacting 
to unknown or enemy threats by replanning. Reactive 
tasks can be replanned by the vehicle, such as when a 
vehicle needs to find an alternate route to a goal 
point, or in some cases it may require the assistance 
of the operator or mission planner, depending on the 
level of autonomy in the system, to issue a new plan 
when the team cannot achieve a goal or mission. The 
missions are based closely on military doctrine for 
executing reconnaissance operations. This 
information is explicitly inserted into the mission 
planning system or vehicle process as procedures and 
goals, in the form of KAs   to be achieved. As added 
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knowledge is stored in the system, the vehicles will 
be capable of performing more detailed and complex 
missions. 

5.  Agent  Architecture 

Once the plans are generated for each of the vehicles 
in the system, they must be run on an actual robot or 
agent. This section describes the agent architecture 
that we have developed to control each autonomous 
vehicle. Like the mission planning process, the heart 
of the autonomous vehicle agent is a UMPRS 
process and a KA library. In the current system the 
mission planner creates the vehicle process, or 
processes if there are several vehicles, after it has 
elaborated the plans for each vehicle. When each 
vehicle process is invoked it opens a connection to 
any other vehicles also present, opens a connection to 
the mission planner and a connection to the vehicle 
simulator. It also runs a vehicle level information 
database, and an observation points planning tool. 
The information assimilation database is used as a 
blackboard where it can make requests for certain 
types of information and once that information 
becomes true, the process will send that information 
to the vehicle. The observation points planning tool 
is run afterward as a reactive behavior when the 
vehicle detects an enemy. 

UMPRS is well suited as a device to control 
autonomous agents because of it's ability to 
reacuvely switch behaviors based on environmental 
context. In the system we have developed, vehicles 
are given a plan of goals that need to be executed, and 
a set of reactive behaviors when they detect changes 
in the environment. The reactive behaviors are called 
survival behaviors and have a higher priority than any 
of the goals in the plan. Currently in the system, the 
only context that will invoke the reactive behavior is 
when a vehicle detects an enemy vehicle. In that case 
the vehicle retreats to it's last safe position it knows 
about. If there are a group of friendly vehicles and one 
detects an enemy, then that one communicates to the 
other vehicles that it has detected an enemy and they 
should retreat, while it plans for further observations 
with the observation points planning tool. 

5.1   Information   Assimilation   Database 

Groups of cooperating processes or agents need a 
method to communicate partial results to each other 
and a shared model of various aspects of the 
environment. The blackboard model (Nii, 1986) is a 
common method used in AI research to achieve these 

ends. The blackboard is a database which is connected 
to all the cooperating processes, allowing them to 
share information and coordinate their problem 
solving efforts towards common goals. The 
CODGER system (Stentz, 1990) was a variant on the 
blackboard architecture developed for use in the ALV 
project research at Carnegie Mellon. While traditional 
blackboards explicitly scheduled which process would 
be active next based on the contents of the blackboard 
database, CODGER did not perform active process 
scheduling. Instead, synchronization primitives 
available through CODGER permitted process 
synchronization. 

The system described in this paper uses a CODGER- 
like blackboard to store the shared information about 
the world used by the different processes in the 
system. Our goal in future work is to extend the 
blackboard formalism in two significant ways. First, 
the types of military missions which UGV-like 
vehicles are expected to perform may cover large areas 
of terrain (100 or more square kilometers). As a 
result, efficient spatial indexing of objects with 
geometric attributes will be crucial to efficient 
database access. Second, there is an important 
distinction between an area of the blackboard's "map" 
not having a certain type of object in it and the 
corresponding area in the world not having such an 
object in it. Representing the distinction between 
absence of data and absence of enemy vehicles (for 
example) is crucial for task performance. This requires 
keeping track of which sensors have examined which 
patches of terrain (and how recently the examination 
was performed), which again involves choosing 
appropriate spatial representations for efficient 
database operation. 

5.2.   Observation   Points   Planner. 

Intelligent autonomous or semi-autonomous agents, 
whether in a synthetic environment or the real world, 
need to be able to actively plan deliberate 
observations of their environment. This is an area 
which has generated work in the areas of computer 
generated forces (Van Brackle, 1993), robotic semi- 
autonomous vehicles (Cook et al, to appear; Kluge 
et al, 1994), and planning tools to assist humans 
(Musman et al, 1994), with the same concepts 
potentially applicable across all three domains. Our 
work has focused on the problem of planning 
sequences of observations to achieve a specified level 
of certainty with respect to some hypothesis. The 
initial domain studied was the problem of planning a 
sequence of observations of a stationary target in order 
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to achieve a specified accuracy of localization of the 
target's position. The path the observing vehicle was 
to follow was preplanned and given as an input to the 
observation point planning (OPP) module. The goal 
of the OPP module is to find a set of observation 
points which should maximally shrink the target 
position uncertainty given the number of 
observations made. 

Planning such a sequence of observations can be 
posed as search in a state space which consists of the 
hypothesis uncertainty space crossed with the 
observing vehicle's configuration space. In the 2-D 
stationary target localization problem, the hypothesis 
uncertainty space is three dimensional (the orientation 
of the long axis of the two sigma position 
uncertainty ellipse, and the lengths of the long and 
short axes). The observer's configuration space is one 
dimensional (position along the prespecified vehicle 
path). By using a simple heuristic (given two sets of 
observations which achieve the same degree of 
localization, pick the set which does so after a shorter 
distance along the observer's path), the state space can 
be kept to the three dimensions of the target position 
uncertainty space. The Kalman filter defines the new 
target position uncertainty state given a current target 
position uncertainty state, an observation location, 
and a model of the sensor observation uncertainty. 
Conventional A* search can be used to generate the 
set of observations which will maximally shrink the 
target location uncertainty for the number of 
observauons made. 

Plans for future work include incorporating models of 
target detectability (Shaham, 1988) exploring 
domains with temporal constraints (stationary target, 
multiple possible observing vehicles), and exploring 
domains which involve balancing tactical 
considerations with the improvement in hypothesis 
certainty (merging OPP into path planning). 

6.   Mission   Execution 

The capabilities of our mechanisms currently 
outstrips those of real UGVs. Thus, while our work 
is compatible (and has been partially integrated into) a 
real UGV system developed as part of the DARPA 
UGV project, much of our development and 
experimentation has revolved around simulation. The 
capabilities that we have implemented on top of the 
simulator allow us to automatically generate a small 
collection of forces, good and/or bad, and 
automatically assign tasks to the vehicles, based on 

the high level mission specified by the operator. The 
simulator that we have chosen to integrate into the 
system is the ModSAF, modular forces simulator. 

After the vehicle plans are generated and sent down to 
each vehicle process, that process creates an entity on 
the ModSAF simulator. Currently we use a standard 
Hummer model for the entity; in the future we would 
like to be able to make a model of an actual UGV 
Autonomous Hummer with the same sensor 
characteristics and movement behaviors. This will 
help in field testing and running through scenarios 
with combined UGV and human forces. As each 
entity is set up in ModSAF, they communicate their 
status to each other. We currently do not use the 
communications ability with the simulated radios in 
the simulator, but instead choose to perform all 
communications from UMPRS process to UMPRS 
process. Using the radios in ModSAF would be more 
realistic, but would also involve more detailed 
planning to make sure that each vehicle was in line- 
of-sight or that the radio information was received 
correcdy. Next, the vehicles are assigned tasks 
according to the goals of the mission: they may move 
to designated positions, perform RSTA observations, 
perform RSTA on the fly while moving to a 
location, or observe the movement of friendly 
vehicles as they move to a bounding point. 

The scenarios that we have run on the simulator 
consist of simple one vehicle recon missions to four 
vehicle cooperative recon missions. A typical 
scenario involving two vehicles performing a 
cooperative recon as follows. See Figure 4 for an 
example of a two vehicle recon mission being 
performed in ModSAF. Each vehicle gathers in an 
assembly area, and they communicate to each other 
their status. They wait for the mission planner to 
elaborate the mission entered by the user. Once that is 
done, the mission planner sends the plan to each 
vehicle. Each vehicle processes the plan and finds the 
first goal point to move to, and the UMPRS process 
assigns move-to tasks for the vehicles to move to 
their first points. If they arrive there without detecting 
an enemy, then UMPRS assigns the next move-to 
task to the vehicles. During the execution of the 
move-to tasks if a vehicle encounters the presence of 
an enemy vehicle, then a reactive behavior will be 
invoked. In this case, the first vehicle to see the 
enemy communicates to the other vehicle that it has 
found an enemy and to go find cover. The vehicle that 
gets the communication returns to the last safe point 
along its route. The vehicle that saw the enemy now 
calls upon it's observation points planning tool to 
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find a better point along its route to observe the 
enemy vehicle. When the observation points planning 
tool returns the best set of positions along the route, 
the vehicle stores away it's original vehicle plan and 
creates a new plan with these new observation points 
as it's new set of goals. The vehicle then executes the 
new plan, moves to the new positions and performs 
some observations of where it detected the enemy. 
See Figure 5 for a picture of the mission after the 
vehicles have detected the enemy and planned new 
observations. 

commanders who can task these systems in very 
much the same way as they might task human 
subordinates, and who can expect from these systems 
some degree of flexible mission execution rather than 
having to teleoperate the vehicles. The current 
implementation of our system is running under the 
ModSAP (DIS) environment, allowing us to 
experiment with the capabilities of our techniques, 
and more broadly providing another suite of 
computer-generated forces (simulating UGVs) for 
training and evaluation 

Figure 4. Two Vehicle Recon Mission 

Figure 5. Replanning New Observations 

7.   Conclusion 

An agent-based approach to bridging the gap between 
operators and robotic vehicles provides significant 
advantages by embedding knowledge and initiative 
within a semi-automated mission planning and 
execution system. In conclusion, the system 
developed at the University of Michigan explores the 
possibilities for controlling and coordinating the 
behaviors of multiple UGVs. The ultimate goal is to 
put  such   vehicles   at   the   disposal   of  military 
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1.  Abstract 

The Institute for Simulation and Training is 
developing Computer Controlled Hostiles and 
Neutrals (CCH/N) to support an individual combatant 
trainer being developed by the USMC. The CCH/N 
system requires simulation of all aspects of human 
soldiers from physical actions to problem solving. At 
the physical level we have implemented visual and 
audio detection models, an action model, and "stubs" 
for aiming, wound effects, and fatigue. The control 
level implements continuous actions such as 
movement control. The action selection level 
determines the immediate focus of activity; this level 
contains the knowledge about what actions or 
subtasks are appropriate to accomplish a task in the 
current situation. Probabilistic selections at this level 
allow the system to simulate different behavior for 
different types of soldiers. Finally, the problem 
solving level performs long-term computations that 
cannot be completed in the time available to select 
the next action. These computations, such as route 
planning or terrain analysis, are started in response to 
requests from the action selection process. This 
paper describes the CCH/N entity architecture. 

2.   Introduction 

2.1   TTES 

1ST is developing autonomous individual computer 
controlled hostiles and neutrals (CCH/N) to populate 
a virtual battlefield as part of the Team Target 
Engagement Simulator (TTES) project. This project, 
which is sponsored by the Naval Air Warfare Center 
Training Systems Division in Orlando, will develop a 
system to train small infantry units to fight in urban 
terrain. The users will initially be Marine Corps 
squads, but the system could potentially be expanded 
to other services, Special Forces operations, hostage 
rescue missions, etc. The system is designed to 
operate as a distributed virtual environment 
simulation using Distributed Interactive Simulation 
(DIS) protocols to link simulator nodes. 

Simulating humans requires modeling all aspects of 
human behavior from physical actions to problem 
solving. In this paper we present the overall 
architecture of our artificial human agents and 
describe the models used at different behavior levels. 
We then focus on action selection behavior in more 
detail. 

2.2  CCH/N 
Constraints 

Design        Requirements       and 

Several requirements and goals directed the design of 
the CCH/Ns. 
• In the distributed simulation environment, the 

public representation of the IC is currently 
constrained by available DIS entity state 
variables. Thus besides location and velocity, 
the only configuration state available is stance 
(standing, kneeling, prone) and weapon readiness 
(stowed, deployed, in firing position). The 
transitions between stances, gaits and weapon 
readiness states are animated at the image 
generator of the TTES trainee stations to avoid 
requiring entities to generate and broadcast body 
part information. 

• The motions and state changes of the CCH/N 
must be realistic. Trainees do not just view the 
CCH/Ns from long range but can literally come 
face to face with them. For the CCH/Ns to look 
realistic, their speeds, accelerations, facing 
changes, and timings for stance and weapon 
readiness changes must be as accurate as 
possible. 

• The domain of TTES is fireteam or squad level 
engagements in urban terrain. The scenarios 
usually put the CCHs on the defensive, although 
the engagements are more like meeting 
engagements than set battles. Meetings can be 
surprising and can occur at close range. Thus it 
has been more important to model individual 
perception and individual responses to new 
threats and changing situations than it has to 
encode unit tasks. 
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• The TIES CCH system is modeling different 
kinds of hostile soldiers—regulars, untrained 
militia, etc. Subject matter experts have 
provided opinions as to the differences in soldier 
behavior in terms of probabilities of different 
responses to certain situations. For example, the 
probability of engaging vs. seeking cover when 
first detecting a threat. Thus the CCH must not 
simply find the best action for the situation, but 
must identify a number of actions and choose one 
probabilistically. Most existing computer 
generated forces systems do not do this. 

• The TTES CCH system simulates multiple 
entities on one host computer. The simulation is, 
of course, in real time. Thus the CCH 
architecture must provide a way to keep the 
CCHs responsive even when their reasoning 
process requires long computations. 

3.   Overall Architecture 

The CCH/N system is divided into several distinct 
levels, as shown in Figure 1.    At the bottom is the 

may either be physical actions or computation 
processes at the next higher level. Action selection 
takes place repeatedly in a "decision cycle" of about a 
second. The highest level is the problem solving 
level where long computations are performed. 

3.1   Physical level 

The physical level of the CCH contains all of the data 
and procedures that define the characteristics of the 
entity. The first aspect of the physical level that must 
be defined for ICs is a model of action. While there is 
no man-made hull to simulate, there is an analogous 
body to model with similar physical parameters— 
maximum speeds, accelerations, etc. Unlike most 
vehicles, humans can easily move in a direction other 
than the one they are facing. The human body also 
has a great many moving parts which potentially 
increase the complexity of its movement 
characteristics. Although in TTES body parts are not 
separately modeled, even the few DIS lifeform 
(soldier) states make the physical model fairly 
complex. 

Problem Solving 

Z 
Action Selection 

"sT 
Feedback Control 

Physical Model 

Simulation support 
(terrain, entity dead reckoning, 

network) 

Figure 1. Levels of the CCH architecture. 

physical level which describes the physical 
interaction of the CCH with the virtual world. 
Above that is the control level where behavior 
requiring continuous feedback control is 
implemented. In these two levels, continuous 
phenomena are simulated in time steps. The next 
level is the action selection level where knowledge is 
applied to select immediate actions.   These actions 

State 
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Values and 
COMMANDS: 

JATE 

THRUST ANGLE 

Standing_to_prone 
.Prone_to_standing 

Prone 

Kneeling_to_prone 
Prone_to_kneeling 

Stowed_to_firing 
Rring_to_stowed 
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Firing_to_stowed 

AD 
•-True 

Figure 2. Interacting state variables in the CCH 
action model. 
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Figure 2 shows some of the necessary state variables 
and their values. The complexity arises from the 
interaction of the state variables. For example, what 
are the constraints on speed while holding the weapon 
in the firing position? Is it possible to fall prone 
while running? Is it possible to reload a weapon 
while rising to a standing position? The action model 
must specify how long it takes to perform various 
actions, and various combinations of actions. We are 
developing a model of human action (within DIS) that 
explicitly describes the state variable interactions, and 
are making much of it configurable with data files. 

A second important aspect of the physical level is the 
perception model. Our perception model includes 
both vision and hearing. The vision component 
includes primary and peripheral fields of view with 
instant "pop-up" target detection in the peripheral 
field and search-based target identification in the 
primary field. The hearing component, which 
includes a simple sound generation and propagation 
model, allows CCHs to detect and sometimes identify 
other entities when they move or fire. Loud sounds 
mask softer sounds. A more detailed description of 
the perception model can be found in (Reece 1996). 

We have incorporated weapon control into the CCH 
physical level. In a more detailed model of a soldier, 
aiming and firing a weapon would properly be part of 
the control level; however, we do not model the 
control of the position of body parts but treat aiming 
and firing as primitive physical actions. The result of 
firing is currently a hit probability rather than a 
ballistic round trajectory. Hit probability is based on 
a nominal maximum error radius for the soldier- 
weapon combination at 100 meters. The resulting hit 
area is compared with the visible target area projected 
at 100 meters. Target and firer motion and firer 
stance are factored in to the error radius. In the future 
we will also modify the error radius for aim time, 
wounds, suppression effects, and other factors that 
affect aim. 

The fourth component of our physical level is fatigue. 
We currently use a simple fatigue model that reduces 
the CCH's "energy" as it moves; faster movement 
uses energy faster. Remaining stationary allows the 
CCH to regain energy. Reduced energy levels cause 
the CCH's movement capability to be reduced. This 
model is called from the dynamics routine in one 
place and could be replaced in the future by a higher 
fidelity model such as IUSS (Okeefe 1994). 

The final aspect of the physical level is modeling 
wounds. Wound effects are difficult to simulate 
because they introduce further complications into the 
action model. We do not currently simulate wounds. 
This has not been an important requirement in TTES, 
partly because there are no visual effects to 
accompany wounds and partly because the human 
trainees suffer no wound effects. 

3.2  Control level 

The control level implements those behaviors that 
require continuous feedback control. In our CCH 
system this currently includes only movement 
activities. Tracking (facing) moving entities or 
avoiding moving obstacles requires constant sensing 
and motion correction to perform the task accurately. 
When movement along a path can be modified by 
moving entities or other disturbances, or when 
desired motion is not possible due to acceleration or 
turning limits, the path following task also requires 
feedback control to stay on track. Path following may 
include moving toward a point, movement along a 
road, movement along a wall, etc. 

The control level in our CCH system is composed of 
a controller manager and a number of control 
modules. The controller manager receives commands 
from the level above and activates and connects the 
appropriate control modules together. Figure 3 shows 
these components implementing a simple route point 
following activity. The control modules take data 
from the physical level, the environment data base, 
and from other control modules via input "ports." 
The data produced by the modules are sent out of an 
output "port," which may be connected to another 
control module or to the physical level. 

When the controller manager connects together a set 
of control modules, it forms a network through which 
data flows from sense input to control output. This 
concept has been used in the low levels of numerous 
autonomous agent designs (e.g. Brooks 1976 and 
Becket 1993). In our system the activated control 
modules are put on an execution list and executed in 
order every time step. The controller manager's 
implementation of the command functions must place 
the modules on the list in the correct order so that 
they are executed in the desired order. Generally, the 
desired order is from input to output so that there is 
no latency. The modules could be connected in 
loops, and the single pass execution would prevent 
race conditions from occurring. 
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Figure 3. Controller manager and control modules for simple route following with obstacle avoidance. 

3.3  Action selection 

The action selection level is the center of cognitive 
activity for the CCH. Decisions at this level initiate 
all physical and problem solving activities. Outputs 
can go directly to the physical level to perform 
actions, to the control level to start physical activities, 
or to the problem solving level to start long 
computations. This system organization is similar to 
other that of other intelligent agent architectures such 
as (Becket 1993, Gat 1992, Mettala 1992, and Reece 
1993). 

The action selection layer runs periodically like the 
control modules but with a longer period. In 
addition, significant events can trigger action 
selection to run before its scheduled time—for 
example, near misses from weapons or new, nearby 
threat sightings. The action selection computation is 
intended to be fast so that it (as well as control, 
physical model, and computations for other entities) 
may be run frequently and without situation- 
dependent delays. Long computations are performed 
at the problem solving level so that the CCH always 
remains responsive even while thinking. It is 
desirable to set an upper bound on action selection 
computation time in order to guarantee real time 
responsiveness in all situations;  however, we cannot 

yet guarantee an upper bound on the CCH action 
selection process because the CCH's simulated 
perception requires some searching of a database 
instead of indexing directly to interesting objects (see 
Section 4.2 below). 

3.4  Problem solving 

The top level performs mental actions that take a long 
or unbounded amount of time to finish. Typically 
these are route planning, terrain analysis or mission 
planning tasks. The expense of the tasks comes from 
a search through a large space of alternatives or from 
expensive numerical calculations, or both. 

The functions in the problem solving level are run in 
separate processes from the action selection and other 
levels. The CCH system multitasks between the 
entity's processes (and between processes of different 
entities) using cooperative multitasking; i.e. the 
processes have to give up control of the processor 
voluntarily. Functions at the problem solving level are 
written to allow cooperative multitasking. Processes 
implementing the lower levels can continue to run 
while long problems are being solved; thus the entity 
stays responsive to the environment. The problem 
solving processes may be run at a lower priority than 
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etc. 

Figure 4. Partial hierarchy of tasks and subtasks known to a CCH. The solid boxes show an example of 
what subtasks a CCH might be performing at a moment in time. 

others to ensure that the entity moves and reacts 
properly even under higher processor load. 

When the action selection level determines that a long 
computation is needed, it starts a problem solving 
process and remembers that it did so. While the 
computation is being undertaken, the action selection 
level chooses the appropriate action given its lack of 
information. Action selection does not restart the 
process every time it runs, but may update data 
provided to the process. If this invalidates the 
problem process' work so far, it might have to start 
again. If the problem solving process is written in 
such a way that it can provide partial results (e.g., the 
first part of a route plan) before it is done, the action 
selection level can take advantage of these results. 

4.  Action Selection 

The action selection level consists of a hierarchy of 
subtasks that allow the entity to decompose its tasks 
into primitive activities; knowledge of what subtasks 
can accomplish a task in a given situation; and an 
inference engine that applies the knowledge to start 
subtasks and activities. 

4.1   Tasks 

The CCH system encodes domain-specific knowledge 
about action in an object called a task. Each task 
contains a list of subtasks which can help, in some 
situation, the entity accomplish the task. In addition 
the task has a set of rules that describe how to select 
subtasks.     The subtasks can  themselves describe 

subtasks, so that the entity's knowledge about a task 
is a hierarchy of tasks and possible subtasks. A 
number of intelligent agent designs described in the 
literature use task hierarchies, but they often have a 
strong flavor of finite state machines that follow 
limited sequences of states (e.g. Ahmad 1994, Calder 
1993). Our task hierarchy is more like (Tambe 1995) 
in that it is intended to provide a set of subtasks that 
may be freely chosen to best accomplish the task in 
the current situation. 

At the bottom of this hierarchy, tasks may start 
physical or mental actions. In terms of our CCH 
architecture, the tasks may request an action from the 
physical level, start a controlled activity at the control 
level, or start a mental process at the problem solving 
level. The current focus of attention of the CCH at 
any time is describe by the stack listing the active 
task, subtask, sub-subtask, etc. Figure 4 shows part 
of the task hierarchy of a CCH with the current state 
indicated; this entity is currently seeking cover in 
response to a new threat. 

4.2   Rules For Selecting Subtasks 

Knowledge about how to accomplish tasks is encoded 
in rules. Rules examine facts in the CCH's 
"memory" to assess the internal and external situation 
and then either propose subtasks to start or reject 
subtasks. A rule may, for example, reject 
Immediately_Engage if the entity's weapon is not 
loaded or if the entity is out of ammunition. The 
proposals have a coarse priority assigned to them so 
that important or default proposals may be indicated. 
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if 
(Received_close_fire) 
(Range_to_highest_threat > 
CLOSE_QUARTERS_RANGE) 

then 
(propose_action 

((name Seek_cover) 
(priority VERY_HIGH))) 

if 
(Threat_with_LOS) 
(Range_to_closest_threat < 
CLOSE_QUARTERS_RANGE) 

(Weapon_loaded) 
then 

(propose_action 
((name Immediate_engage) 
(priority HIGH))) 

if 
(Threat_wi th_LOS) 
(Have_ammo) 

then 
(propose_action 

((name Immediate_engage) 
(priority MEDIUM) 
(weight 20))) 

if 
(Threat_with_LOS) 

then 
(propose_action 

((name Seek_cover) 
(priority MEDIUM) 
(weight 80))) 

Figure 5. Sample rules for selecting subtask of 
Respond_to_threat_as_individual task. 

For example, a suppression response to a nearby 
bullet impact might have a high priority, while a 
proposal to look around might be the default action. 
Figure 5 gives some sample rules for selecting actions 
in the Respond_to_threats_as_individual task from 
Figure 4. In the future we plan to allow rules to 
specify preferences for one subtask over another as a 
more situation dependent way of expressing the 
importance of subtasks. 

Rules provide a "probability weight" with each 
proposal. This weight is intended to indicate the 
relative probability of selecting the given subtask 
from among the subtasks proposed with the same 
priority. This mechanism is necessary to implement 
behavior variations between different types of CCHs. 
Subject matter experts have reported, in studies for 
TIES, the probability distribution of different 
behaviors in different situations for different types of 
soldiers    (Lind    1995).        Our    action    selection 

mechanism is thus required not to find the best 
subtask to accomplish a task, but to propose a set of 
potential subtasks and select among them randomly. 
This requirement is generally not addressed by 
intelligent agent architectures in the literature. 

The CCH memory for action selection rules is an 
object with slots pre-assigned for all facts that are 
used by all of the rules. These facts are objects with a 
value and an evaluation function. The evaluation 
function can call simulator access functions to get 
terrain or other entity information, or use 
"perception" functions to access state variables in its 
own entity or otherwise find data. 

Our rule mechanism does not have the expressibility 
of traditional rule-based inference systems. In 
particular, the rules have very limited use of 
variables. Generally, facts and expressions in rules 
have only one attribute or parameter. There are two 
reasons that we have chosen this design. First, the 
inference mechanism is simple, small, and fast; it 
was easy to integrate the mechanism as a module into 
the existing body of simulation code. The CCH 
memory described above, combined with the simple 
rules, avoids the need for memory management 
support such as garbage collection. The rule based 
action selection is run on a different CCH memory 
and potentially a different rule set for each CCH 
simulated in the program. 

The second reason for designing our rule system this 
way is to try to make the action selection process 
more directed by a focus of attention. A traditional 
rule system must examine all combinations of facts 
that might match the logical expressions in the left 
hand sides of the rules. Consider the problem of 
finding the closest visible threat entity; a logical rule 
would have to describe this entity A as 

Me(£) A 

Threat (A) 

Threat (B) A 

Visible (A, £) A 

V B, Range{A) < Range(B) 

There is no explicit control over how the system goes 
through the entities checking visibility (a relatively 
expensive operation) and threat and comparing ranges 
pairwise. Our goal is to create the "perception" 
functions mentioned above so that they identify facts 
relevant to the entity as directly as possible, and then 
to write rules using these salient facts.  For example, 
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our rule would not use the above expressions in the 
left hand side, but would refer to 
"the_closest_visible_threat_entity." This approach 
was described by (Agre, 1987). Their Pengi system 
used action proposers in a combinatorial decision 
whose inputs were "indexed" to the entity. The 
inputs were generated by "visual routines" that found 
important inputs directly. In our case we cannot 
always find inputs without searching short lists of 
entities or terrain features, but we at least have 
explicit control over the search mechanism. 

4.3  Action Selection Process 

The action selection process is run repeatedly about 
once a second. It can also be run immediately in 
response to a significant event such as an activity 
completion, a new sighting, or a fire event. Each time 
action selection is run, the top level task is examined. 
Its rules are evaluated and a subtask is selected. If it 
is the same as the currently active subtask, the action 
selection process drops down the task stack to this 
subtask an repeats the task evaluation process. If a 
new task was selected, the old subtask and, 
recursively, its subtasks, are stopped; the new 
subtask is then started and its rules evaluated 
immediately. 

When the rules of a task are evaluated, they create a 
list of proposed subtasks with priorities and 
probability weights. An arbitration function throws 
away all but the highest priority tasks. If the current 
task has been proposed again, it is selected 
immediately. This prevents the CCH from randomly 
selecting a new task each cycle and "dithering" 
between tasks. If the current task has not been 
proposed, the weights of the proposed subtasks are 
normalized to the total weight of those proposed and 
a random number is generated to select a subtask. 

4.4   Minimizing the Computation of Facts 

One persistent challenge of developing computer 
generated forces is computing quickly the information 
that is immediately available to humans. For 
example, a human can look at a region of terrain and 
immediately identify a rise behind which he can hide 
from a threat; for a computer to find this location, it 
generally has to sample points on the terrain and 
make intervisibility tests. Many of the rules that we 
might create to control CCH behavior could test such 
facts in their left-hand-sides.    For example, a rule 

might test something about a nearby cover location, 
thus requiring the above intervisibility computations. 

Given that many facts are expensive to compute, it is 
highly desirable to avoid doing this unless it is 
necessary. We have implemented three simple 
mechanisms to help avoid unnecessary computation 
of facts. The first is simply a lazy evaluation 
procedure; no facts evaluation functions are run until 
needed to evaluate a rule. The second mechanism is 
a cache. Fact objects contain a flag that indicates 
whether the fact has been updated during this 
decision cycle. When a rule requests a fact, the flag is 
consulted to see if the evaluation function must run. 
When the fact is evaluated, the result is stored for the 
next time and the flag is set. Thus fact evaluation 
functions are only run once even if more than one rule 
uses the same fact. 

The third mechanism we use to avoid fact evaluation 
is rule ordering and incremental arbitration. We 
deliberately avoid the traditional forward-chaining 
inference mechanism because it must check all facts 
to see if any rules can fire. The rules are grouped 
according to priority and only one group is activated 
at a time. The groups are activated from highest to 
lowest priority. Rather than waiting until all groups 
have been considered, the arbitration mechanism is 
invoked after each group is evaluated. Thus if a rule 
proposes a subtask with a high priority, none of the 
rules that propose lower priority subtasks need to be 
considered—i.e., need to evaluate their facts. 
Currently the rules are grouped by hand, but this 
would be straightforward to do automatically. 

5.   Conclusion 

We have developed an architecture for computer 
controlled individual combatants that defines 
modeling levels for physical characteristics, activity 
controlled by feedback, responsive action selection, 
and problem solving. Within this architecture we have 
developed new models for ICs at several levels. At 
the action selection level, we have defined domain 
knowledge representation using a task hierarchy and 
rules to select subtasks in different situations. Our 
action selection mechanism can select behavior 
probabilistically, and avoids unnecessary evaluation 
of computationally expensive facts in the rules. 
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1.   Abstract 

The precise alignment of the Software Development 
Process to the implementation of Verification and 
Validation (V&V) has been proven to be critical in 
determining the credibility of models and simulations 
(M&S). Since ModSAF is an M&S which has 
unanticipated requirements to meet the needs of 
various programs, its development strategy has to be 
unique and versatile. There has to be a standard 
process in place to enable the community to develop 
new and robust capabilities for integration into the 
ModSAF baseline. In order to ensure credibility, this 
development process must be paired with an equally 
standardized V&V plan. Hence, the ultimate goal is 
to leverage from various programs and produce 
credible releases of ModSAF. 

2.   Introduction 

extend with ease compared to the previous SAF 
systems. In mid 1993 the Battlefield Distributed 
Simulation - Development (BDS-D) program began 
the process of identifying legacy capabilities to 
integrate with ModSAF. These capabilities were 
often no more than demonstration quality in order to 
provide proof of concept for SAF development. 

Early in 1994 the Ami-Armor Advanced Technology 
Demonstration (A2 ATD) embarked on the effort for 
Verification, Validation, and Accreditation of the 
BDS-D environment. During the course of the A2 
ATD, weaknesses of the software development and 
configuration management processes became 
apparent as obtaining and developing data and then 
controlling the data in the baseline were very complex 
to manage. 

2.1   ModSAF Overview 

Modular Semi-Automated Forces (ModSAF) is a 
widely used Computer Generated Force simulation 
for use in Distributed Interactive Simulation 
exercises. ModSAF provides simulated forces and 
environmental effects on the virtual battlefield. 
Only elements which are externally visible or 
significant are simulated. A heuristic approach is 
used to simulate behaviors. This approach lends 
itself well to computational efficiency but does not 
provide for complete automation. An operator is 
required to plan the orders for units and intervene in 
situations where the automated behavior lacks an 
appropriate response. 

In 1995, the Computer Generated Forces Assessment 
Working Group (CGFAWG) was formed for the 
Deputy Under Secretary for the Army for Operations 
Research (DUSA-OR) to conduct a study of CGF for 
use in DIS. The study identified ModSAF as being 
capable to support Distributed Interactive Simulation 
(DIS) needs for the Advanced Concepts and 
Requirements (ACR), Research Development and 
Acquisition (RDA), and Training Exercises and 
Military Operations (TEMO) domains. This finding 
resulted in the perception across the Army community 
that ModSAF actually possesses these capabilities 
(not just the potential). However, ModSAF did not 
possess all the capabilities (and certainly not the 
domain specific V&V). 

2.2  Background 

ModSAF development began in the spring of 1992 
with the objective of providing an open, modular 
architecture which researchers could enhance and 

By late 1995 the results of the CGFAWG (Brooks et 
al. 1996) spread throughout the Department of the 
Army. Throughout 1995 ModSAF was in a 
transitional phase from the BDS-D program manager 
to the Program Manager for Distributed Interactive 
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Simulation (PM DIS). Many new ModSAF users 
were unaware of the origin of the ModSAF program 
ignoring the transition status and expected a 
operational system with the V&V that robust 
Configuration Management (CM) supports for 
exercises or training scenarios. Under the technology 
based BDS-D Program, although capabilities were 
developed from military doctrine, V&V traceability 
was not sustained due to the lack of CM. 

Today ModSAF Simulation of military doctrine and 
platforms does not perform as expected and as a 
result user confidence in the system has fallen. 

2.3 Objective 

The DUSA-OR requires PM DIS to develop and 
implement a ModSAF CM process which 
institutionalizes ModSAF V&V as implemented in 
the A2 ATD and the BDS-D program (Hollis 1995). 
A standard configuration managed process aligning 
software development and verification and validation 
is needed to provide the required traceability. 

2.4 Mission Statement 

The objective for this paper is to inform the ModSAF 
user and developer communities on the enhanced 
development process. This new process provides 
CM for the entire system, links V&V to software 
development, and provides a plan for V&V of legacy 
capabilities. 

process and must be published in a manner readily 
accessible by all users and developers. 

3.1   Development Process 

To begin the process of making ModSAF more 
credible, PM DIS established a Configuration Control 
Board (CCB) for the ModSAF program (PM DIS 
1996c). The CCB is chartered to systematically 
control changes and maintain the integrity and 
traceability of the functional requirements. Under the 
umbrella of Integrated Process and Product 
Management (IPPM), two working arms of the CCB 
have been established: the Integrated Product Team 
(IPT) and the Integrated Development Team (IDT). 
The teams include membership and participation 
from government and industry. The IPT conducts the 
management of program activities while the IDT 
performs technical assessments for developments and 
problems. The hierarchy of the CCB structure is 
represented in Figure 1 below. 

CCB 

IPT 

IDT 

3.   Configuration Management 

An extended software development approach now 
exists which includes V&V from the onset. A robust 
CM process must be in place to support the 
development (PM DIS 1996a). Existing and future 
capabilities   for   ModSAF   must   conform   to   this 

Figure 1 : CCB Structure 

The IPT meets on a regular basis approximately once 
every two months. The IDT is organized into a series 
of working groups which report progress to the IPT. 
Methods for improving a particular process may 
invoke a temporary IDT working group while the 
process of reviewing 
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Figure 2 : Software Development and Verification and Validation Cycles 

Problem/Trouble Reports (PTR) is conducted in 
ongoing working group. 

The ACR, RDA, and TEMO domains each have 
representation at all levels of the CCB. The CCB 
representatives provide the requirements for their 
respective domain. At the IPT and IDTlevels the 
domain representatives are primarily concerned with 
V&V of new capabilities. ModSAF software 
development remains as it was defined for version 1.2 
(Courtemanche and Ceranowicz 1995); however, the 
process is extended to link V&V with software 
development as shown in Figure 2 (PM DIS 1996b). 
The spiral shows the development process along with 
the V&V activities. The traditional feedback loop is 
not represented in the diagram to reduce the 
complexity. Products are enclosed by ovals and 
processes are enclosed by rectangles with V&V 
activities linked via bent lines. 

The four basic phases to ModSAF development are 
(1) Knowledge acquisition (KA) and Knowledge 
Engineering (KE), (2) designing, (3) programming, 

and (4) integration and test. After successful 
completion of the these four phases a new capability 
exists in the ModSAF baseline. The enhanced 
software development cycle now starts with a V&V 
plan. When new system requirements are established 
for development the generic ModSAF V&V plan may 
be augmented with some unique extensions for that 
development. 

At the end of the KA and KE processes a conceptual 
model and software requirements are prepared. The 
conceptual model is a description of the functional 
area to be developed. 

In cases involving complex tactical conditions, a 
story board approach will be used to show the 
capability being automated in ModSAF. This model 
will be reviewed with the user and the developer. 

The V&V team will be responsible for validating the 
conceptual model and for citing deficiencies. The 
model is intended to foster an understanding between 
the user and the developer of the functionality to be 
modeled in ModSAF.   Also at this phase, software 
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requirements are verified against system 
requirements. This level of V&V up front is designed 
to reduce the risk of developing the wrong 
functionality. 

Government representatives to the IDT can close 
PTRs that only require technical expertise. Those 
PTRs requiring tactical expertise will be referred to 
the appropriate user site for closure. 

The subsequent phases of software development are 
typical to what has been performed since ModSAF 
version 1.0. Based on the KA/KE products, the 
design phase begins. Once a design is complete the 
V&V team will have planned what elements of the 
design to review such as user interface, timing and 
sizing, and training issues. A design report will be 
produced. 

Of course, following design, programming begins and 
culminates in new code. The V&V team will review 
the code for integrity, compare the code to the design 
and evaluate interfaces as necessary. A code review 
report will be produced. Following completion of a 
capability, tests will be developed against the 
software requirements. 

The phases of designing, programming and testing are 
typically incremental which means capability will be 
ready for integration prior to completion of the entire 
functional area under development. Incremental 
integrations will provide the user with the opportunity 
to check the new functionality and provide feedback. 
This feedback should be positive in that the up front 
V&V will have minimized invalid KA and KE. The 
feedback will provide input for future enhancements 
in place of corrections and fixes. 

Immediately following the integration of new 
capability regression tests are performed 
(Courtemanche and Ceranowicz 1995). When the 
baseline planned freeze date is reached all the 
incremental integrations of capabilities and its 
associated regression test is complete, the release 
testing process begins. In Figure 2, the inner curve of 
the spiral represents the release testing process which 
starts with the frozen baseline. 

During this time, release and acceptance testing are 
performed. The Beta version is released to user sites 
and other developer sites. User sites are responsible 
to find problems based on ModSAF capabilities and 
submit Problem/Trouble Reports (PTR) in their 
functional areas. Developers will submit PTRs based 
on stressing the system to find anomalies and 
problems in their functional area. The IDT is 
responsible   for   tracking   and   correcting   PTRs. 

3.2 Proliferation 

A key element is the exposure of this process to the 
entire community. One method for achieving this is 
to use the world wide web. The web site is located at 
http://www.modsaf.org. Access to the web site is via 
user and developer accounts. To obtain an account a 
ModSAF Distribution Agreement must be in place 
with PM DIS. CM maintains the ModSAF program 
status on the web. Information to be published 
includes the status of PTRs, changes and additions to 
software libraries, development schedules, future 
plans, and user help. This system will provide a 
means for users and developers to enter new PTRs 
and obtain help from the Frequently Asked Questions 
pages. 

The ModSAF Configuration Status Accounting 
(CSA) system will be a means for users and 
developers to check the development process. 
References to documentation including V&V reports 
will be available on line. The traceability from 
requirements through test will be available. 

Documentation developed for the system will be 
written according to the new ModSAF Software 
Development Plan (SDP). This new documentation 
will support traceability by mapping test procedures 
back to the initial system requirements. The SDP will 
be made available for the user community to 
understand what is required for integrating externally 
developed capabilities and how to successfully 
accomplish it. 

As new configuration managed versions of ModSAF 
are released the spiral process of obtaining feedback 
from the ModSAF user and developer community. 
This feedback is tied into the process not only with 
PTRs but also with user enhancement requests which 
can be entered into the web system. After review by 
the IDT and IPT, the requests will be presented to the 
CCB 

3.3 CM Database 

The documentation and code of the ModSAF system 
will be stored in the CM database.  This database is 

350 



not accessible through the web. The database will 
possess the links between the various documents and 
also to code. Change information will be stored as it 
is approved. 

3.4 Legacy Capabilities 

Legacy capabilities in ModSAF typically did not have 
CM to a satisfactory level for V&V. In performance 
of a ModSAF development effort legacy capabilities 
may be impacted. In this case, this extended 
development process will V&V the legacy 
capabilities in building the new functionality. 

The remainder of the ModSAF system that has not 
been developed with V&V will require a plan to be 
completed. The plan must include transforming the 
legacy documentation into the new format for V&V 
review of the documents and code. As part of the 
transformation, a reverse engineering effort on code 
may reveal dead code which will subsequently be 
deleted. Other code may require rework. For each 
case involving rework the CCB will make the 
decision on repairing an implementation or removing 
its invalid representation. 

3.5 Future Objectives 

ModSAF is a system built with legacy components 
and structures. The architecture needs enhancements 
to ease maintainability. For example, standardizing 
data formats and adding tools for novice users to be 
able to enter and change military information, 
including tactics, would greatly enhance system 
usability. 

Creation of mission statements for the ACR, RDA 
and TEMO domains will determine how ModSAF 
must be adapted for each domain. The adaptations 
needed will cause further changes to maximize 
leveraging between the domains. The differences 
between the domain requirements may include 
substitution of new physical models with greater 
detail while the behavioral characteristics remain the 
same. All of these changes will lead to more 
confidence in ModSAF by the user community. 

4.   Verification and Validation 

4.1   Objectives 

The V&V methodology for ModSAF is derived with 
this premise in mind: The main purpose for 
conducting V&V for ModSAF is to provide an 
"Accrediting" authority with sufficient information 
for determining whether ModSAF adheres to its 
intended purpose and use, as prescribed by the given 
requirements. 

The Verification process applies to the functionality 
of the software as it relates to the requirements, 
conceptual model, and design. The Verification 
process determines whether or not the software 
development functions according to the requirements 
and accurately represents the user's conceptual 
descriptions and specifications. 

The Validation process determines the manner and 
degree to which the behavior of a M&S is an accurate 
representation of the real world. Validation addresses 
the credibility of the requirements, by analyzing the 
conceptual model and testing the behaviors and 
physical models of the M&S. 

V&V provides several benefits to software 
development. When implemented properly, it 
identifies deficiencies early in the development cycle, 
which allows for early corrective actions that reduce 
impacts to the program's cost and schedule. It also 
provides technical monitoring of developer's efforts, 
which consequently helps to ensure that the 
development complies with requirements. 

V&V gives the user a concurrent look into the 
performance of the software. It provides necessary 
input which improves the quality of the software 
documentation (i.e. data, models, requirements, 
design, code, and test material). Furthermore, 
Verification, Validation, and Accreditation is 
required for all M&S products that are developed 
under the Army Model and Simulation Management 
Program (AMSMP). Guidance is provided by Army 
Regulation 5-11 and the Department of the Army 
Pamphlet (DA 1992, 1993) 

4.2  ModSAF V&V 

The basis for ModSAF V&V will be centered around 
a team approach to ensure a successful product. The 
ModSAF V&V Team shall be responsible for 
coordinating and conducting the required V&V 
activities on the specific components that comprise 
each individual ModSAF development effort. The 
team shall include various organizational participants 
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in the V&V field for the components or modules 
being tested, along with independent evaluators. 

As mentioned earlier in this paper a specific V&V 
plan will be prepared for each ModSAF development 
effort by the assigned V&V Team . This plan will be 
tailored from the V&V Methodology for ModSAF 
Software Production (PM DIS 1996d) in accordance 
to the ModSAF Software Development Plan. 

Verification analysis will be performed on the 
Software Requirements Specification to ensure that 
the developers requirements map back to initial 
system requirements produced by the user. Software 
design will begin only after the conceptual models for 
the development effort have been validated by 
government representation. A V&V report will be 
generated to show the results of the verification and 
validation analysis performed on the SRS and 
Conceptual Model. There will also be a Verification 
report produced for the analysis performed on the 
software design. Another Verification report will be 
generated for the analysis performed on the code and 
test documentation. 

Individual Validation reports will be generated for 
the testing performed on the Behaviors and Physical 
Models of ModSAF. After final testing, the V&V 
Team will perform an overall assessment of the final 
product. A final V&V report containing results, 
conclusions and recommendations will be generated 
and made available to the accrediting authority. 

The above process plays a critical role in producing a 
"credible" ModSAF development product. 

5.   Summary 

This paper summarizes the current status of V&V in 
the ModSAF Program Plan, ModSAF Configuration 
Plan, ModSAF Software Development Plan, and the 
Verification and Validation Methodology for 
ModSAF Software Production. The overall guidance 
for this paper is from the ModSAF Program Plan. 
The content of this paper is abstracted from the these 
plans. 

Throughout this paper the emphasis is on 
maintenance of V&V traceability and not the 
individual activities supporting V&V. CM is the key 
element that links software development to V&V. 
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1. Abstract 

This paper attempts to define issues relating to the 
correlation between the Semi Automated Forces 
(SAF) and the manned SIMulators (SIMs) in the 
Close Combat Tactical Trainer (CCTT) Distributed 
Interactive Simulation (DIS) domain. The correlation 
or what is sometimes termed 'Fair Fight' is critical to 
the acceptance of the CCTT system as an accredited 
training simulation system. If left uncorrected, many 
of these issues will create negative training 
environment for the crews of the simulators. 

2. Introduction 

The development of CCTT mandates the use of 
validated data and models which have been provided 
by Army Materiel Systems Analysis Activity 
(AMSAA) and other sources. Some data and model 
sets where not available from approved providers and 
had to be synthesized during the development. These 
models have been developed based on real world 
empirical and engineering data and typically have 
problems correlating to the limitations and 
performance of current visual system designs. The 
CCTT visual system is constrained by a 4000 meter 
magnified range and a 2400 meter unity vision 

Correlation issues have been identified in a wide 
number of areas including; damage assessment, 
mobility/trafficability, behaviors, rate of fire, delivery 
accuracy, and target acquisition. For example, 
during the User exercises the most common concern 
expressed by the SIM operators was how easily the 
Opposing FORce (OPFOR) SAF acquired and 
engaged the SIMs, despite the fact they where moving 
and/or the simulators where positioned in a well 
concealed area. The target acquisition problem is the 
most difficult and critical fair fight issue. As part of 

our discussion, we will explore the ACQUIRE model 
which is the validated target acquisition methodology, 
its limitations, rational, as well as limitations of the 
CCTT simulators visual environment and behavioral 
aspects of acquiring and engaging targets. 

Other correlation issues such as damage assessment 
and mobility stem from, providing a maximum 
fidelity model for the simulators, and a limited 
fidelity model for the SAF. This strategy reduces 
computational and data storage overhead for SAF 
processors while ideally allowing minimal correlation 
differences. 

The paper will also show current testing and action 
plans to address these issues in the development of 
CCTT. The contractual requirements to correlate SAF 
and modules are part of Baseline Change Request 
(BCR) 174. The purpose of BCR 174 stemmed from 
experience gained in observing differences between 
SIMs and SAF entities in SIMulation NETwork 
(SIMNET) and Modular Semi-Automated Forces 
(ModSAF). A four month investigative effort began 
last year to examine what legacy differences existed, 
what was the current state of similar development 
areas in CCTT, determine if specific experiments to 
test the significance of differences were needed and 
finally, were modifications to ongoing CCTT 
development warranted to correct any correlation 
issues. The results of this investigation provided 
several recommendations, of which, performing 
experiments on target acquisition capabilities between 
SAF and SIMs was the most significant. Currently 
CCTT is in the process of integrating and testing 
functionality in four separate blocks designed to grow 
the overall system functionality. This effort will be 
going on through the end of this year. An important 
part of each block will be to perform new 
experiments and integrate new data and findings of 
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the BCR 174 effort. Currently, the CCTT system has 
matured to the point where experiments to derive 
useful data can occur. However, as of the writing of 
this paper, the progress of BCR 174 is limited to 
requirements definition and preliminary testing. 
Detailed implementation finding will be discussed in 
future papers and be added to future versions of the 
AMSAA CCTT Data Compendium. 

3. Correlation Issues 

3.1 Damage Assessment 

The principal determinants of damage assessment are 
combat damage, stochastic failures, and deterministic 
failures. The damage assessment process will identify 
the component or system that was damaged or failed, 
the organization that can repair the damage or failure 
(either crew or Unit Maintenance Collection Point 
[UMCP]), and the time to repair the damage or failure. 

Under combat damage, once it has been determined 
that a target has been hit, an assessment of whether the 
target is killed needs to be made. Probabilities of kill 
given a hit are based on impact conditions on the target, 
such as damage, location of hit on the vehicle, range 
from the firer to the target, attack angle, and type of 
ammunition used. Kill criteria are as follows: mobility 
(M) kill - an armored vehicle suffers M kill if it is 
incapable of executing controlled movement within a 
short time after being hit and is not repairable by the 
crew; firepower (F) kill - an armored vehicle suffers F 
kill if it becomes incapable of delivering controlled fire 
within a short time after being hit and is not repairable 
by the crew; M or F kill - an armored vehicle suffers M 
or F kill if it suffers a mobility or firepower kill; and 
catastrophic (K) kill - an armored vehicle suffers a K 
kill if it is destroyed or suffers both mobility and 
firepower kills and is not economically repairable. 

A stochastic failure occurs when the vehicle or 
equipment fails on its own, not through crew error or 
combat damage. The frequency of failure is 
determined by the Mean Time Between Failure 
(MTBF) for the particular vehicle, based on AMSAA 
provided reliability data. The current design does not 
support OPFOR SAF stochastic failure. This is desired 
because there is no training value in having a OPFOR 
operator, which is a contractor, recover a OPFOR 
vehicle that failed in a stochastic manner. 

A deterministic failure is a failure that occurs due to 
resource depletion or improper action. These type 
failures include mismanagement of fuel and 
ammunition, collisions, thrown tracks from high speed, 

and warnings ignored by the crew. SAF entities avoid 
situations that lead to deterministic failures, with 
exception of running out of fuel and ammo. 

For combat damage, SIMs and SAF use essentially the 
same data provided by AMSAA. However, SIMs use 
component level damage data; whereas SAF uses a 
distribution to ascertain mobility kills, firepower kills, 
and catastrophic kills. The components that SAF can 
damage is limited to; engine, tracks, weapons, turret, 
sensors, fuel transfer pump, computers and 
transmission. For stochastic failures, SIMs use 
component level failure data as provided by AMSAA; 
whereas SAF uses mobility, firepower, and 
electrical/sensor subsystem failure data. 

AMSAA did not provide deterministic failure data for 
SIMs or SAF. Data was generated by Integrated 
Development Team (IDT) for SIMs and SAF. SIMs 
will simulate more deterministic type failures than SAF 
and will include starter motor and laser range finder 
failures, rollover, drowning, and thrown tracks; 
whereas SAF will only simulate thrown tracks, 
collision, out of fuel and out of ammo . Note, in the 
current baseline, SAF will receive collision damage 
where as the SIMs react to collisions dynamically only. 
The SIMs that drowns will receive engine damage and 
get stuck. The SAF entity will get stuck and halt. 

Findings and Concerns - The main difference in all 
damage assessment between the SAF and SIMs, is that 
SIMs uses component level failure data while SAF uses 
mobility, firepower, and electrical/sensor subsystem 
failure data. As a result, SIMs can randomly degrade 
some mobility and firepower failures and continue its 
mission while SAF either stops moving or stops firing. 
The current methodology used by SAF does not lend 
itself to modeling degradation in mobility or firepower. 
Since a typical SAF Computer Generated Forces 
(CGF) processor is targeted to control upwards of fifty 
entities, verses one for the SIMs. SAF can not support 
the higher fidelity component and subcomponet 
modeling the SIMs can. 

For deterministic failures, the difference between SIMs 
and SAF is the number of type failures that can occur. 
The ability of SAF to receive collision damage which 
the SIMs do not may produce a disadvantage for SAF. 

Despite the data differences in the levels of damage and 
failure and the man-in-the-loop, damage assessment is 
not a major problem for SIMs and SAF. Currently the 
major problem in testing, is that some vehicle types are 
very difficult to damage with certain types of 
ammunition providing non logical results. The SAF 
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damage assesment method does not provide for 
cummulative damage effects, making situations where 
a vechicle will be hit numerous times and only receive 
numerous mobility kills. 

3.2 Mobility 

Differences exist between SAF and SIMs in terms of 
hull motion dynamics. SIMs use manufacturer's 
engineering data combined with algorithms based on 
dynamic Newtonian models. When combined with 
crew actions, they achieve realistic, interactive 
movement across the terrain. The SAF system is based 
on Newtonian models, enhanced legacy algorithms, 
data-driven models, or modified SIMs algorithms. 
They provide generically realistic SAF behaviors. 
Validated vehicle mobility data from Waterways 
Experiment Station (WES) is used to approximate the 
interactions between vehicle and terrain for both SAF 
and to test and validate the SIMS overall automotive 
performance. 

SIMs have a high level of detail and fidelity. For the 
SIMs, each roadwheel is independently modeled. There 
is full engine and drivetrain simulation that provides 
the crew with all needed visual, aural, and motion cues. 
WES-supplied terrain characteristic coefficients are 
combined with vehicle system simulation and operator 
input to result in dynamically varying behavior. The 
level of fidelity approximates that of classical flight 
simulators. The SIMs were originally based on the Ml 
driver trainer, and there was no comparable legacy 
system in terms of capability. For SAF, vehicle/crew 
mobility is approximated by the crew behavior model, 
which inputs appropriate behaviors to allow the vehicle 
to perform in an automated manner. 

For both SIMs and SAF, WES-provided mobility data 
permits a range of different types of paved surface, soil 
type, season and vegetation, and both dry and wet 
conditions. SIMs combine terrain coefficients with 
other inputs, while SAF uses tables with 30 specified 
terrain types. With SAF propulsion force is calculated 
using the vehicles velocity curves during acceleration. 
These velocity profiles are generated by the NATO 
Reference Mobility Model (NRMM), and are a 
function of vehicle type, terrain type, terrain slope, 
throttle position, and gear position. 

SIMs account for terrain slope using weight vector 
resolution in 3 dimensional space. Model processing 
combines weight components and other simulation 
aspects in horizontal degrees of freedom to get the 
effects of slope, without use of traction or other terrain 
interactions.  The  SIM   includes  the  M2/M3   slope 

indicator which provides a check that he vehicle is on a 
sufficiently flat surface for TOW firing. SAF uses WES 
mobility data tables with 6 gradients of slope. Velocity 
for SIMs takes into account the vehicle engineering 
data, terrain coefficients, and operator inputs. In 
addition, dynamics such as power loss during steering 
is taken into account. For SAF, velocity is based on 
WES data curves/profiles. 

The turn rate for SIMs is based on terrain coefficients, 
transmission engineering data, combined with the 
vehicle simulation and operator inputs. It is sensitive to 
terrain, velocity, load, power losses, and operator 
control. By integrating these factors, damage such as 
thrown track, rollover, or collisions can realistically 
occur, normally as a result of operator error. Thrown 
tracks are determined by track side-forces resulting 
from the interactions between terrain, soil type, 
velocity, operator error, and similar conditions. Similar 
input determines roll-over and vehicle drowning. 
Collision reactions are based on a Newtonian 
momentum model providing full reactions in 
longitudinal, lateral, and yaw directions, and can 
account for multiple collisions and angular momentum 
effects. 

Turn rate and collisions are simplified in SAF. The 
behavioral inputs or the crew behavior model precludes 
errors or accidents from occurring by automatically 
slowing the vehicle to a safe but high speed (around 
turns) or by avoiding obstacles (steep slopes, non- 
fordable water, no-go terrain, terrain features with 
collision volumes, etc.). When a SAF vehicle collides 
with any of the above obstacles, the vehicle will come 
to a stop. 

For towing, SIMs add additional resistance in the 
longitudinal direction based on towed vehicle mass and 
towing vehicle longitudinal velocity. All normal model 
processing is still fully active. For towed SIMs, 
Newtonian spring-damper forces are added based on 
towing vehicle position, and its effect is calculated. 
For dust trails, 1 of 3 sizes/types (or none) is generated 
using synthesized factors including vehicle velocity. 

For SAF, thrown tracks are not a function of mobility, 
but may occur as discussed in damage assessment. 
Roll-over and drowning are also not used as part of 
mobility. In general, SAF avoids No-Go locations such 
as steep terrain and drowning-depth water. SAF 
vehicles are placed on the terrain with three contact 
points (two in front and one in the center rear). SAF 
collision and towing use modified versions of SIMs 
algorithms. 
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Findings and Concerns - Factors impacting mobility 
are reflected in the components of the system or its 
behaviors. Differences between SAF and SIMs are that 
SIMs have interactive crew/operator input, while SAF 
uses software to model operator decision logic. Also, 
SAF has no discrete physical model for vehicle 
components, but uses empirical output data and 
algorithms to describe how the vehicles move. SAF 
interaction with the terrain is an approximation of the 
many factors that impact mobility. 

The main terrain difference between SAF and SIMs is 
that the visual and the SAF correlated database are 
designed for different purposes. SAF uses the SAF 
correlated database to determine areas of no-go or 
restricted terrain types. The SIM must rely on visual 
cues such as terrain skin texture and cut & fill slope 
and make their own determinations on mobility 
suitability. In several experiments the SAF halted or 
avoided areas of no-go terrain while the SIMs 
occasionally had problems cueing on the visual scene 
causing the vehicle to flip or get stuck. Terrain types 
dry peat (no-go) and river fordableity determination 
have been identified as major issues in this area for the 
SIMs being able to cue on the terrain. Much of this 
problem comes from the design decision, to make the 
skin texture and features in the visual database match 
with the vegetation defined in the raw source data 
instead of the underlying soil type. Often the same 
vegetation type will have several different types of 
underling soil. The visual systems design also provides 
different texture patterns to different areas of the same 
terrain to avoid the synthetic appearance of having a 
common texture for every terrain type. Being able to 
cue off the soil type is turning into a big issue for the 
SIMs. 

Most vehicle components do not cause differences 
between SAF and SIMs. Engine, drivetrain, and fuel 
availability are important to mobility, but no significant 
differences are expected in their representation. The 
track and suspension interacts with the terrain and has 
the potential to create discernible differences between 
SAF and SIMs. SIMs account for most suspension 
system components, and outputs vehicle bounce, pitch, 
and roll, whereas SAF will not show these actions. 
SIMs also display the results of artificial undulation 
(rocking) in the pitch direction even over unvarying 
terrain. SIMs track and suspension effects will be 
visible (and will be even more drastic for braking). 

The turning rate and radius is derived from AMSAA 
data. However, SIMs respond realistically to operator 
input including mistakes, and models problems such as 
fantailing, sliding out of a turn, or even overturning. 

SAF does not model these actions; when a SAF vehicle 
reaches maximum turn conditions, the crew behavior 
model either causes the vehicle to slow, or use a wider 
turn radius (but still conduct a controlled turn). SIMs 
also take into account the large horsepower losses 
experience during turns, due to sideways dragging of 
the tracks. SAF does not account for this (it has no 
requirement to simulate engine functions), and is able 
to conduct turns at higher speeds without losing 
control. It is possible that during movement on winding 
roads, SIMs may have difficulty keeping up with like 
SAF tracked vehicles. 

Along similar lines, the velocity/acceleration of SAF 
may differ from SIMs, in that the crew behavior model 
may cause SAF to move at an acceptable, but rapid 
pace (as defined in WES-supplied vehicle velocity 
curves), while the SIMs may move slower due to 
human operator uncertainties in terms of cues, 
command and control, or other factors. SIMs driving 
cues include visual effects, vehicle controllability, seat 
sub-woofers, artificial undulation, and terrain-induced 
bouncing, pitching, and rolling. These cues are likely to 
result in lower speeds. Similar factors pertain to 
braking/deceleration, again resulting in differences 
between SAF and SIMs. Suspension reactions exhibit 
visual differences as SIMs move using several degrees 
of freedom including pitching while moving over 
undulating terrain or during braking or turning 
operations. 

Other effects such as towing, collisions, damage, and 
recoil also display differences between SAF and SIMs. 
A full range of reactions are provided for SIMs towing 
and collisions. Collisions can have effects in the 
longitudinal, lateral, and yaw directions, including 
glancing, rebounding, rotation, and slowing reactions, 
and can respond to multiple simultaneous collisions. 
SAF reactions will be simplified, producing reactions 
only in the longitudinal direction. For mobility-related 
damage such as thrown track or roll-over, SIMs 
synthesize terrain coefficients and vehicle velocity to 
determine the actual reaction under various conditions. 
Damage such as drowning can also result if operator 
error results in placing all road wheels in drowning 
water depth. SAF has much lower level of detail with 
regard to these actions. The SAF control mechanism in 
vehicle simulation (see behaviors section below for 
more details on the SAF architecture) is ideally 
operated at a 15 hertz rate to synronize with the visual 
systems refresh rate. However the framework 
mechanism within the design degrades this rate when 
the processor becomes loaded and unable to maintain 
the 15 hertz rate. Typically the large numbers of 
vehicles (upwards of 50) and varying computational 

358 



loads, causes SAF to frequently operate in a degraded 
mode. As the frequency is reduced the ability of the 
entities to maintain stable vehicle control is reduced. In 
areas such as forests with numerous high density 
collision volumes, and steep turns the SAF entities may 
collide with the obstacles before the entities direction 
can be adjusted. This may cause the SAF designers to 
review the possibility of ignoring collisions under 
certain circumstances. 

3.3 Target Acquisition 

Of all correlation issues, target acquisition is widely 
viewed as the most significant, based on experiences 
with legacy systems such as SIMNET and CCTT user 
exercises. Typically the acquisition abilities of the 
SAF and SIMs are greatly mismatched. In SIMNET 
exercises, the SAF operators would typically limit the 
opening ranges of the SAF to avoid the SAF 
destroying the SIMs before they could detect the 
SAF. 

The target acquisition ability supported by the SIMs 
is primarily dictated by the fidelity level provided by 
their Computer Image Generation (CIG) and display 
system. This fidelity is established somewhat by the 
state of the art in visual technology but more so by 
cost considerations. The contrast and resolution of 
the visual systems used in these moderately priced 
SIMs fall noticeably short of real world capabilities. 
The CIG is operated at a 15HZ update rate as a 
design compromise which enables the rendition of 
higher density imagery. The performance penalties of 
15HZ, e.g., image stepping and multiple imaging, are 
experienced and degrade target acquisition 
performance. Additionally the CIGs overload 
management system sometimes compounds this 
degradation by modifying or eliminating scene 
elements critical to acquisition performance. This 
reduces resolution of the image while a sensor is 
scanning and forces SIMs into a reduced scan rate. 
The commander's popped hatch (CPH) visual system 
uses an area of interest scheme whereby only about 
forty percent of the field of view is presented at the 
CCTl's highest resolution. The rest of the CPH area 
has degraded resolution, creating some limits for the 
commander's view and scanning abilities. Finally, 
many of the SIMs vision assets have fields of view 
which are smaller than the design basis vehicle. 

The SAF simulation uses the Night Vision Electronic 
Sensors Directorate (NVESD) target acquisition 
methodology (herein referred to as ACQUIRE 
methodology) to represent target acquisition sensor 
performance for Direct View Optics (DVO), Image 

Intensifies (12), and thermal InfraRed (IR) systems. 
ACQUIRE methodology is currently used in 
constructive Army combat simulation models. 

The ACQUIRE methodology, adopted by the Army 
in 1993, utilizes the same equations as the obsolete 
Night Vision Laboratory (NVL) methodology but 
requires modified input data. The ACQUIRE 
methodology differs from the NVL methodology in 
its use of a modified (line pair) criteria for the various 
level of target acquisition, in its use of a two 
dimensional representation of target size, and in its 
use of a two dimensional Minimum Resolvable 
Contrast (MRC) or Minimum Resolvable 
Temperature (MRT) curve. This methodology and 
associated assumptions are presented in the following 
sections. 

Basic Definitions, Assumptions and Limitations: The 
ability to acquire a target in a particular environment 
is a complex function of not only the observer's 
visual perception of an image, but the object's size, 
shape, color and the background's scene luminance 
and thermal characteristics. Factors such as clutter, 
motion, camouflage, obscurants, etc., either enhance 
or degrade an observer's ability to detect, classify, 
recognize and identify objects. Training is a basic 
requirement to enhance an individual's target 
acquisition capability. 

Definitions: Associated with ACQUIRE methodology 
are distinct factors that affect how, when, and where a 
target will be detected and ultimately upon by SAF. 
The AMSAA definitions of these factors are shown 
below. It was shown during BCR 174 that minor 
differences in terminology between the US Army 
Gunnery Manual definitions of similar terms and the 
ACQUIRE definitions do exist. These have been 
mapped to the ACQUIRE definitions below; 

Field of Regard: The field of regard is the angular 
portion (horizontal and vertical) of the surrounding 
environment over which a sensor is moved to search 
for targets. 

Field of View: The field of view is the angular 
portion (horizontal and vertical) of the surrounding 
environment visible through a sensor at any given 
instant of time. 

Target Acquisition Levels: The following military 
definitions that comprise target acquisition levels are 
defined as follows: 
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Detection: The ability to distinguish an object of 
military interest in the field of view (FOV). 

Classification: The ability to distinguish a target by 
class, e.g., tracked vehicle, a helicopter, or a wheeled 
vehicle. 

Recognition: The ability to distinguish between 
different categories of targets within a class, i.e., 
tanks versus armored personnel carriers (APCs) in the 
tracked vehicle class. 

Identification: The ability to distinguish between 
specific models of targets, i.e., a T72 tank versus a 
Ml tank. 

Acquisition Criteria: The Johnson Criteria is the 
methodology used for the basis of target acquisition 
in the ACQUIRE methodology. The criteria equates 
the number of cycles per milliradian (cy/mr) or line 
pairs (LP), using a standard target board, with an 
acquisition task in which half of all observers can 
resolve the target. The acquisition levels and criteria 
are provided in Table 1 below. 

Table 1. Target Acquisition Line Pair Criteria. 

Acquisition CRITERIA (cy/mr) 
Detection Level 0.75 
Classification 1.5 
Recognition 3.0 
Identification 6.0 

Assumptions and Limitations of the ACQUIRE 
Methodology. Verification,     Validation     and 
Accreditation tests conducted on the ACQUIRE 
methodology indicate that, for FOV only search, the 
model can accurately predict, to within 20 percent, 
the range at which given values of target acquisition 
probability are achieved. These results are restricted 
to those conditions that can be accurately represented 
by the methodology. There are a number conditions 
of interest that cannot be represented or accurately 
modeled by the ACQUIRE methodology. These 
limitations are discussed below as follows; Modeling 
of Moving Targets, The ACQUIRE methodology is 
not designed to model the effects of target motion on 
target acquisition. A moving target's motion acts as a 
visual cue in the target detection process; therefore, 
the probability of detecting a moving target can be 
significantly greater than the probability of detecting 
an otherwise identical stationary target under the 
same set of conditions. AMSAA uses a line pair 
criteria of 0.5 for modeling detection of targets with a 
significant radial velocity component across the line- 
of-sight. This line pair criteria was chosen because 
earlier research suggested that a line pair criteria of 
0.5 could be used to model detection for a zero clutter 
condition. In addition ground clutter, pinpoint effect 
such as muzzle flash or dust trails, and multi-target 
acquisition and not modeled by the ACQUIRE 
methodology. 
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TARGET ACQUISITION 
(PRIMARY COMPUTATIONS) 

Compute Cycles 
Across Target 

F*CD 

Figure 1. Target Acquisition Computation Overview 

Figure 1 provides an overview of the primary inputs 
and computations employed by the ACQUIRE model 
for a visual sensor. The top part of the main factors 
which are target, sensor type and intervening 
atmosphere. The target is described in the model by 
input values such as inherent contrast (Cl) and 
characteristic dimension (CD). The sensor is 
described in terms of a sensor resolution curve, MRT. 
The MRC/MRT curve is unique to each sensor and is 
a function of spatial frequency. The atmosphere is 
depicted in terms of atmospheric attenuation, 
visibility range, ambient light level and sky to ground 
ration. The lower portion of the figure provides the 
computational steps used to compute the acquisition 
probability given an infinite amount of time. This 
quantity is known as "P infinity" and is used to 
compute the average acquisition time and acquisition 
probability given a finite time P(t). 

Findings and Concerns - For the search process and 
the rate at which targets are detected, recognized, and 
identified, SIMs are dependent on crew skill. For the 
search process, SAF uses AMSAA data and a scan rate. 
For the rate to detect, recognize, and identify targets, 
SAF uses AMSAA's ACQUIRE algorithm. Basically, 

the difference is that SIMs use a crew and SAF uses 
AMSAA and other data. 

Currently the SAF disregards targets that are less than 
30% exposed. This makes detecting targets that are in 
defilade or hull down positions difficult to acquire and 
may provide a unfair advantage to the SIMs. The 
CCTT design treats constructed defilade positions as a 
relocateable object on the terrain skin. These object 
tend to stand out from the color and texture of the 
surrounding skin making them more noticeable to the 
SIMs. Thus the defilade positions or other relocatable 
harboring SAF entities may be unfairly acquired by the 
SIMs. 

Visual representation of terrain has an impact on target 
acquisition for SIMs and SAF. At ranges beyond 2,400 
meters, terrain objects can fade, particularly at more 
distant range, such as 3,500 to 4,000 meters. This 
fading is due to the image generator's "load 
management" of the number of polygons used to 
represent terrain objects while maintaining an 
appropriate level of visual fidelity. For example, if 
there is a building in front of a potential target, the 
image generator can fade the building due to "load 
management".    With the building faded, SIMs now 
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have line of sight to the target behind the object that 
was faded. However, SAP will continue to see the 
building and would not have line of sight to any 
potential targets. 

There may be a difference in the rate in which SAF and 
SIMs detect, recognize, and identify targets. Using the 
sensors in SIMs, detection, recognition and 
identification of targets is dependent upon crew skill. 
SAF knows the location and identity of all targets in a 
sensor's field of view and may detect movement 
quicker than SIMs because it uses the ACQUIRE 
model while SIMs depend on its crew. Currently, SAF 
will not detect muzzle flash, smoke, or dust clouds. 
Given the data (AMSAA does not have muzzle flash 
data), physical models can develop the code for these 
signatures; behaviors cannot use these signatures to 
detect line of sight to actual targets because muzzle 
flash, smoke, and dust are not considered targets by 
SAF. The search process itself is discussed under 
behaviors below. 

Target contrast is a major issue with the ACQUIRE 
model. The SAF performs contrast in a relatively 
simplistic manner by determining the terrain type (e.g., 
forest) the target is located on. A adjustment factor is 
provided for that type which is used in the model. The 
SAF does not have processing time to search the 
background behind the target to do a detailed analysis 
of the target contrast. For example a tank has the same 
contrast factors being well positioned in a tree line as 
opposed to being in the open just outside the tree line 
assuming it is located in the same terrain area. As of the 
writing of this paper, the SIMs where just finishing 
tuning the thermal sensors. The correlation of thermal 
abilities will likely raise a number of issues. 

3.4 Behavioral Aspects 

The Behaviors Computer System Component (CSC) 
provides the basic decision logic and control for the 
SAF entities. Table 2 shows the structured layers of 
dependency within the CGF design. The components 
higher in the Table 2 list can "with" or directly call 
components lower in the list. For components lower 
in the list to send information to components higher 
in the list they must use a callback, which is similar to 
leaving a message in a data file to get back to you. 
This structure provides for a well organized 
dependencies structure and avoids complications such 
as cyclical dependencies. Within the CGF design, 
behaviors includes sub-elements such as; Crew 
Behaviors, Small Unit Tactics, large unit tactics, and 
order decomposition. Vehicle simulation includes; 
hulls, sensor, turret, weapon, resource, special effects 

and damage assessment functionality. Environment 
includes; line of sight determination, munitions 
impact detection, route generation and verification, 
obstacle avoidance, relocatable and preposition 
object management, collision detection, height of 
terrain/surface type, cover and concealed position 
location and environmental effects. 

Table 2. Layered Structure of the CGF CSCI 

Simulation Manager CSC 
Behaviors CSC 

Vehicle Simulation CSC 
Framework CSC 

Environment CSC 

A typical target engagement scenario has the 
following flow of events;. Sensors determines which 
targets are in the sensors field of regard (scan area) 
and passes them off to the environment. The 
environment line of site function uses a 20 point 
raster to determine the amount of the target which is 
visible by performing a intersection search between 
the 20 points on the target and the sensor. If the target 
is blocked by a partial transparent object such as a 
tree, the visibility is adjusted according to the objects 
opacity factor. A percent visibility is returned to 
sensors, which uses the ACQUIRE model to add in 
factors such as time of day. weather effects ,target 
size, and sectors the sensor is scanning, to determine 
to what level the target is visible (e.g. identified, 
detected .classified). Sensors builds a spot list and 
passes it back to crew behaviors, which generates a 
spot report (for new sightings). The crew behaviors 
may move the gunners sensor over to a detected 
target to magnify it and try to get a identification. If a 
number of targets are identified, unit behaviors will 
identify the "most dangerous target" for the vehicles 
weapon(s) to engage. This criteria is defined by 
current doctrine which looks at factors like; does the 
target have the ability to destroy the vehicle, how 
close is the target to the vehicle, and is the targets 
weapon systems (articulated parts) pointed at the 
vehicle. This provides a simplified example of one of 
many complex interactions between behaviors and 
the CGF primitive functions that occur. The 
behaviors provide a number of correlation issues 

Findings and Concerns - Behaviors define the rules 
of engagement for the SAF entities. Current doctrine 
specifies that targets will note be engaged unless 
identified and is the primary rule of engagement 
represented in SAF. This policy and the knowledge 
of where all targets and entities are on the battlefield 
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prohibit fratricide by SAF. However, a SIM, 
depending on situational awareness received by the 
human crew, may fire on a lesser visible target ( e.g. 
not identified) which may cause fratricide to occur. 
Although initial setup of CCTT attempts to match 
rules of engagement between SAF and SIMs, 
difference due to human interaction should be 
expected to occur. In the sense of a "fair fight", the 
SIMs would have an unfair advantage if the rules of 
engagement differ between SAF and SIMs. 

In the current experiments the SIMs typically 
searched , based on situational awareness, and 
concentrated on known hiding areas such as tree 
lines. SAF gunner and tank commander search sectors 
are predefined by doctrine and may miss less obvious 
targets. To eliminate some of these differences 
between SAF and SIMs, the current target tracking 
methodology is being modified to account for target 
persistence. If a detected target were to move into a 
hiding position, the SAF process would drop it from 
the target list and the vehicle would resume searching 
for targets. This may provide a major advantage to 
the SIMs which could briefly hide, until the SAF 
vehicle started to scan again and then pop out and 
engage the SAF. Currently, fixes which have SAF 
concentrate on the last known location of a object for 
a limited duration of time are being implemented., 
thereby recognizing target persistence in a manner 
similar to that represented in some constructive 
models and simulations. 

3.5 Rate of Fire 

The Rate of fire methodology for SAF is based on a 
series of variables for which data has been provided 
to SAF. The variables are: the weapons slew rate to 
point the weapon at the target; the weapons load time 
which is static for automatic loading vehicles such as 
a T-80 and stochastic for breach loaded vehicles as a 
M1A1; the lay time for the first round which is 
stochastic based on a table which provides different 
median time values based on range and weapon 
system; the time of flight for each round to the target; 
the subsequent round lay time which is stochastic 
based on a table that provides the median time based 
on the weapon system. Adjustment factors are 
suggested for target motion and firing while moving. 
The data provided is based on average combat 
conditions, average crew proficiency, stationary firing 
weapon and a stationary target. CCTT requires that 
the SAF operator be able to adjust crew proficiency. 
This is performed by adjusting the rate of fire factors 
and the delivery accuracy to reflect the crew 
competency. The combination of data allows SAF to 

generate simulated events which may be used as 
checkpoints for crew proficiency. Again, it must be 
noted that SIMs performance is greatly affected by 
the human interactions within the vehicle platform. 

Findings and Concerns - Some question exists as to 
what factors should be adjusted to reflect crew 
competency. The rate of fire methodology has created 
some concern based on the fact that during some tests 
, crew members felt that the SAF fired at a unrealistic 
rate. As with all data provided, the various 
combinations involve some risk of providing credible 
results when implemented. In tests conducted with 
master gunners acquiring, detecting and identifying 
targets, ModSAF results were very comparable, 
indicating that the data sets used may be 
representative of average or expert crews. While this 
area is not viewed with the most urgency, future 
correlation experiments involving master gunners 
may be planned to check rates of fire combinations. 

3.6 Delivery Accuracy 

SAF computes the delivery accuracy based on firing 
at the center of a target (direct fire) or at a location 
(indirect fire). The direct fire methodology is based 
on having the weapons system aim at the center of 
mass of the target. The intended aimpoint is adjusted 
based on data tables which provide variable and 
random bias adjustment factors based on weapon 
system and range. Additional variance is added for 
either moving targets or moving while firing. If the 
target is moving, the new adjusted aimpoint is 
projected in front of the target based on it's velocity 
and heading. The "fire at location" is adjusted based 
on the variances alone. Typically the variances for 
indirect fire weapons and much larger than direct fire 
weapons. In addition the SAF Weapons code 
multiplies the adjusted bias based on the crew 
competency, to decrease variance for expert crews 
and increase variance for novice crews.. 

Findings and Concerns - Since SAF fires at the 
center of mass instead of the center of the exposed 
target area, concern exists now to handle unique 
situations such as targets in defilade positions. The 
method that SAF uses to project munitions flight 
based on target velocity projections has shown that in 
situations where the target is moving on irregular 
terrain (up and down Z values) it may increase the 
odds of missing the target. During several exercises 
SAF seemed to have exceptional accuracy compared 
to the SIMs on fully exposed targets. This area will 
likely be reviewed in future BCR 174 testing. 
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4. Test Results 

The first BCR 174 test scenario was designed to be a 
daytime run with unrestricted visibility. Both SAF 
and SIMs (M1A1 & M1A2) used only Direct Vision 
Optics (DVO), no thermal capabilities. A 
combination of T80, BMPs and DI targets where all 
emplaced in tree lines, out in the open and on the sky 
line. Several targets where emplaced so they only had 
a limited window of opportunity from a fixed 
direction to be detected. All targets where stationary. 
The detecting vehicle went down a 8 Kilometer 
course at a search speed of 25 kms per hour. All 
targets where emplaced to be acquired between 500 
and 4000 meters from the course. A total of 3 targets 
sets where developed of 4 targets each for the course. 
The crews ran all 3 target sets as one run, a total of 10 
runs where performed for both SAF and SIMs(with 
different crews). 

Findings and Concerns- The SAF proved to be 
slightly to significantly better in target acquisitions 
then SIMs in most circumstances. SAF was 
significantly better in acquiring DI targets even at 
extended ranges. The SIMs had great difficulty 
acquiring DI targets in tree lines because of their 
small size and the ease they where mistaken for tree 

trunks. The feeling among the SIM operators was that 
DI were thermal targets. In future test runs when the 
SIMs use thermal sensors the DI should be easier to 
acquire. To fix this problem from a SAF perspective, 
the contrast factors will be lowered in the ACQUIRE 
model for DI targets to make them less detectable. 

SAF proved to be able to detect all targets even if 
they only had a limited window of opportunity, or 
required rear or side vision to detect. This likely 
comes from the fact that the M1A1 is modeled with a 
driver with 120 degrees of forward unity vision, a 
loader with 360 degrees of unity vision ,a commander 
with 360 degrees of unity vision and a gunner with a 
magnified site. The 3 unity sensors increased the odds 
of getting a detection on the target, regardless of its 
direction with respect to the searching vehicle. Once a 
detection was made the SAF vehicle would bring its 
gunner's magnification sensor on the target and 
identify it. In the SIMs the loader and driver sites 
proved to be no where near as effective in detecting 
targets. To fix this problem we are having AMSAA 
look into the effectiveness of commanders and 
loaders in acquiring targets. Future test will look into 
the effectiveness of each searcher in acquiring targets 
for both SAF and SIMs. 

Target Number MODULE ACQUIRED DISTANCES (Meters) SAF ACQUIRED DISTANCES (Meters) 
1 2 3 4 5 1 2 3 4 5 

1 BMP 1587 1537 2055 1846 1415 1943 1944 1943 1943 1939 
2 DI NA NA NA NA NA 1561 1821 1829 1862 1820 
3 BMP PLT 1917 NA 1922 NA 1757 1922 1905 1910 1924 1923 
4 T-80 3706 1586 2636 1923 1711 3704 3862 3989 3974 3960 
5 BMP 2994 2217 2343 2250 2278 2638 2389 2974 2937 2767 
6 T-80 NA 604 566 NA NA 612 613 613 613 610 
7 DI 195 840 844 290 1161 2264 917 2098 2177 2007 
8 BMP 1666 1702 1750 NA 1757 1736 1730 3436 1732 1731 
9 T-80 1214 1194 1369 1221 1306 1404 1396 1374 1402 1405 
10 T-80 763 1400 1013 NA 1016 3976 3992 3699 3984 3993 
11 T-80 NA NA 2375 1943 NA 3141 3154 3317 3303 3308 
12 T-80 3796 3097 3720 3320 2057 3938 2590 3844 3646 3595 

Table 3 - Provides a sampling of data from 5 of the 10 SAF & SIM runs. Acquired distances 
when the vehicle running the course engages the target Which is an identified target in the 
ACQUIRE model for SAF. NA- Not Acquired 

are 

5. Conclusions 

The specification for SAF contains the statement, 
"The SAF software shall provide the SAF units 
behavior based on the operator's inputs from the 
workstations and will be indistinguishable from the 
manned simulators". Meeting this requirement via the 
COT BCR 174 effort has many challenges. Without 
correlation, CCTT will be difficult to accredit as a 
training system, in the ongoing W&A process. The 
correlation effort also offers challenges to data 

providers such as AMSAA to develop data sets that 
are modifiable based on the limitation and 
capabilities of the systems synthetic environment. 
One of the by products of the BCR 174 effort will be 
test cases that could be used in the future to gather 
data for analysis. The immediate test plans include; 
test cases with BLUFOR targets mixed among 
OPFOR that look into the level of detection and rules 
of engagement, moving targets, different target types, 
thermal detection , weather, obscurants and time of 
day. 
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1. Abstract 

We conducted a field study to validate the energy 
expenditure prediction algorithms of cross-country 
dismounted movement in our small-unit simulation 
system (the Integrated Unit Simulation System - 
IUSS). March rate, terrain grade, and individual 
energy expenditure were estimated for a lengthy route 
(approximately 70 miles) over mountainous terrain. 
While energy expenditure predictions from the model 
appear to be valid, the accuracy of these predictions 
is heavily dependent on knowledge of march rate. We 
explored several methods for generating valid march 
rate predictions. A fuzzy-logic approach appears 
promising especially in that it may have wider 
application in the representation of human behavior. 

2. Introduction 

Figue 1 

The IUSS is a comprehensive computer simulation 
environment emphasizing dismounted infantry 
operations. It employs a sophisticated suite of 
physiological, ballistic and chemical models to relate 
soldier capabilities to mission demands, 
environmental conditions, and combat outcome. The 
IUSS contains physiological models that relate work 
intensity and energy expenditure to the combined 
effects of load, terrain conditions, environmental 
conditions, soldier march rate, and clothing. The 
models consider the heat transfer properties of the 

clothing and equipment associated with each 
simulated individual and compute predicted heart 
rate, skin temperature, core temperature, and other 
indices of soldier physiological state at frequent 
intervals. Figure 1 shows that observed energy 
expenditure values bear a close relationship to field 
observations, suggesting that this component of our 
system is valid. 

An important long-term goal of ours is to improve our 
understanding of the relationship between terrain 
characteristics and voluntary march parameters such 
as speed. Knowledge of soldier speed and other 
mobility parameters is crucial to realistic simulation 
of dismounted movement. Overestimating speed in 
our simulation leads to unrealistically high energy 
expenditure and body temperature predictions; 
underestimating speed has opposite effects. 

At present, prediction of soldier speed relies heavily 
on the terrain grade; on steep uphills, we expect 
soldiers to slow down; on downhill grades, we expect 
them to walk faster. There is no generally accepted 
method for predicting march rate across complex 
terrain. We used our field obserations to develop a 
first approximation to a method of generating these 
predictions, at least in the context of cross-country 
movement without anticipated enemy contact. We 
have not yet addressed the problem of dismounted 
movement under more tactically demanding 
conditions, which presents a much more complex 
problem. 

3. Initial Findings 

We expected to see a strong relationship between 
terrain grade and march rate in our field observations 
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As Figure 2 illustrates, however, there is considerable 
variability in march rate observed for segments with 
very similar grade. 

In laboratory research, grade is generally fixed on a 
treadmill, and other factors potentially contributing to 
workload held constant. In the field, though, soldier 
choice of grade is heavily influenced by factors other 
than grade. Examples of these are substrate type, soil 
condition, and terrain smoothness, or the consistency 
of grade. This last factor is important because our 
method of grade measurement in the field provides 
only an average grade over the segment distance, and 
is insensitive to frequent shifts or reversals of grade 
that characterize some terrain. Under these 
conditions, our measure of grade does not faithfully 
reflect the workload experienced by a soldier. A 
further complication in proceeding from laboratory or 
field data to simulation is that terrain data files 
available to us do not support higher resolution 
analysis of grade. 

To overcome some of the shortcomings of our grade 
measurement method, we defined another measure of 
workload: energy expended per meter. We estimated 
the energy expended over a segment using the 
average heart rate for that segment, and divided by 
the distance. This measure confounds grade and 
speed, because workload is partially determined by 
the speed chosen, but it implicitly includes the 
contributions of other (as yet unspecified) factors. 
Our data, as shown in Figure 3, illustrate that energy 
expended per meter (kcal/m) is more systematically 
related to speed than is grade. 

Because the definition of speed is so important to 
achieving good simulation results, we attempted to 
explore the use of energy expenditure measures from 
our field study to test some alternative methods of 
predicting soldier speed. We tried (1) predicting 
speed based solely on grade and (2) predicting speed 
by assuming that soldiers tend to maintain a relatively 
constant work intensity. We tested these approaches 
and compared the accuracy of resulting speed 
predictions. Predicting speed directly from terrain 
grade was accomplished using the equations of the 
regression lines relating grade and speed. (Separate 
regressions were used for uphill and downhill 
segments). This method produced a correlation of .55 
between predicted and observed speeds; grade 
accounted for 30.25% of the variance in speed. 

After inspecting the speed prediction residuals plotted 
against energy cost per meter, we selected segments 
with relatively extreme values. We adjusted the 
predicted speed of segments with very low terrain- 
related energy cost (z<-.5) upward by .85 m/s, and the 
speed of segments with very high terrain-related 
energy cost (z>.5) down by .25 m/s. This arbitrary 
adjustment increased the correlation between 
predicted and observed speeds to .81, and accounted 
for 65.6%. of the variance in speed. 

To predict speeds based on an assumed constant work 
intensity, we computed speeds for our segments that 
would produce a work intensity of 466 watts (the 
overall mean) Energy expenditure prediction for 
downhill locomotion is not as well understood as is 
prediction on level or uphill terrain. The equations 
that form the core of our physiological model do not 
apply to downhill grades; speeds computed in this 
way for downhill segments are unrealistically high. 
The correlation between these speeds and observed 
speeds is -.11. We adjusted these predictions by 
substituting speeds computed for corresponding 
uphill grades on downhill segments. These values 
work  better than  those  computed   using  negative 
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grades, correlating .51 with the observed speeds. We 
adjusted these predicted speeds for energy cost per 
meter using the same method described above for the 
grade-based speed predictions. The adjusted 
predictions correlated .77 with observed values, 
accounting for 59.3% of the variance in speed. Both 
methods show promise as methods for generating 
useful speed predictions. While the first method 
requires specific knowledge of the grade-speed 
regression for these data, and the second requires an 
estimate of the overall work intensity sought by 
soldiers, both methods produce much more realistic 
speed predictions than the practice of using a constant 
speed for all segments. 

4. A Fuzzy Logic Analysis 

While some of the variability in speed is undoubtedly 
related to measurable terrain factors, we suspect that 
speed regulation, like many other aspects of human 
behavior, will never yield completely to deterministic 
schemes. Humans are organisms of such staggering 
complexity that even apparently simple functions 
such as speed regulation may be influenced by a host 
of variables and considerations, such as past 
experience, knowledge of future demands, cumulative 
fatigue effects, expectations of imminent rest, and the 
like. 

It is unlikely that quantitative data will ever be 
available for more than a small fraction of the human 
behaviors we need to represent in combat simulation 
systems. This assessment prompts us to look for a 
method that permits us to use both the empirical data 
available and the insights provided by subject matter 
experts to produce valid representations of complex 
human response as an improvement over strictly data- 
based or insight-based approaches. For this effort, we 
explored the use of fuzzy logic concepts to provide a 
method of integrating insight and data, and in 
particular to develop a model of speed/terrain 
relationships. 

We concentrated on energy expended per meter as the 
primary determinant of speed. Clearly, additional 
research is needed to permit us to decompose this 
global measure of terrain difficulty into constituent 
factors, including grade, frequency and magnitude of 
grade changes, substrate type and condition, and the 
like. Our use of this measure is predicated on the 
assumption that at some future time, we will be able 
to account for the same variance in speed that is now 
related to energy expended per meter using a larger 
set of factors. The analysis presented here is meant to 

explore the potential utility of the methods, not to 
accomplish a definitive treatment of the problem. 

4.1 Data Clustering 

We included speed and energy cost per meter as input 
variables to a popular commercially available fuzzy 
logic software system. Five clusters of points were 
identified. Adjective sets were chosen as descriptors 
of       these       clusters       for       both       energy 
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cost and speed. Energy cost was assigned five 
descriptors: Very Low, Low, Moderate, High, Very 
High. Speed was assigned Very Slow, Slow, March, 
Fast, Very Fast. A simple set of five rules was 
defined, relating energy cost to speed. (Higher energy 
costs produce slower speeds). Figure 4 shows the data 
as clustered. 

Membership curves were constructed for each 
variable for the five clusters. These curves were 
produced by plotting the points against the 
probability of membership in each cluster; a function 
was then "eyeballed" in to 
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establish a continuous probability of membership 
function over the range of energy cost and speed 
observed. An example of the construction of one of 
these membership curves is shown in Figure 5. 
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4.2 Fuzzy Prediction 

These membership curves and the five simple 
inference rules were used to produce a set of 
predicted speeds based on the observed energy cost 
values. (The "centroid" method was used to de- 
fuzzify    the    speed    predictions.)    As    expected, 

Figure 6 
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the predicted "fuzzy" speeds correlated quite well 
with the actual speeds - the Pearson correlation was 
approximately .91. Figure 6 illustrates these data. 

Because this process essentially amounted to 
providing a curve fit to the available data, this result 
is unsurprising; however, it is encouraging to note 
that the prediction performance of this method is 
superior to other techniques that have been attempted. 
The constant work intensity method used earlier 
produces a correlation between predicted and actual 
speeds of approximately .77. The fuzzy method, then, 
does as good or better a job at predicting speed from 
energy cost than other methods we have tried. 

4.3 Current Limitations and Potential 

The fuzzy analysis we performed was limited by our 
data. As discussed above, we chose to work with the 
single variable most related to speed, energy cost, and 
our results amounted to a curve fit expressing speed 
as a function of energy cost. In this particular 
instance, as also illustrated in Figure 5, the data can 
be described about as well using a simple exponential 
curve fit. The value of this analysis to us, however, is 
not the demonstration of a new curve fitting 
technique, especially given that existing techniques 
serve as well or better for the data at hand. Rather, 
we have explored the viability of a technique that we 
believe holds the best promise for extending our 
results into domains where current methodologies 
will not serve. 

This belief (in the potential of rule-based inference 
schemes based on fuzzy logic) is driven by several 
factors. Human behavior is fundamentally fuzzy. 
Soldiers do not march across country at constant 
speeds, and they don't adjust speed in terms of fixed 
increments - they go a little faster, or a lot faster 
based on their perception of their environment and 
their psycho-physiological state. That state is another 
example of fuzzy: tired, afraid, hot, do not lend 
themselves to precise measurement. 

Fuzzy inference rules are intuitive. They make sense 
to soldiers, and can be developed in conjunction with 
soldier inputs without the need for intense training or 
understanding of the formal algorithms involved. 
"Go slow if you are using a lot of energy to cross the 
terrain, go fast if it is easy" is more acceptable to the 
average individual than y=2.444e"7'3826 

Fuzzy inference rule sets can accommodate 
inconsistent or even contradictory rules. Human 
behaviors are frequently driven by complex and 
often contradictory impulses. Fuzzy inference engines 
resolve such conflicts by assessing the relative 
weights by which different rules fire, and by adjusting 
behaviors by corresponding degrees. 

Fuzzy inference rule sets easily incorporate multi- 
modal distributions. In the example above, a simple 
plot of the bivariate data involved suggests an 
exponential fit, and these data support a regression fit 
to such an equation. In many cases, however, field 
data are not so suggestive, and often group about 
distribution modes or otherwise are more amenable to 
a piecewise fit to regression curves. The cluster 
analysis we used to derive fuzzy adjective 
membership sets is easily applied to such data, and in 
fact is actually more valid in such cases than it is for 
our current data 

Fuzzy inference rule sets can accommodate new 
variables relatively easily. The complexity of curve 
fit techniques grows rapidly with the number of 
variables involved. Bivariate relationships result in 
two-dimensional curves, adding additional variables 
leads to multi-dimensional surfaces, and 
corresponding computational complexity. Fuzzy 
inference rule sets, on the other hand, integrate new 
information with the addition of new rules. If rules 
are based on variables about which soldiers have 
knowledge, sparse data can be supplemented with 
soldier-generated insights to produce realistic 
behaviors. 
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In the example presented here, the use of energy 
expenditure to predict speed is of limited use to our 
simulation because energy cost is not directly related 
to any of our current terrain base variables. If, 
however, we can establish that speed is well 
explained by a combination of grade, substrate type, 
and perhaps one or two other variables, we believe it 
will be much easier to encapsulate this relationship 
through modifications to our current rule set than to 
develop the complex surfaces defined by multi- 
variable regression relationships. 

5. Summary 

A key advantage of the fuzzy logic approach 
is that it facilitates the integration of insight and 
information. The development of rules and adjective 
sets is a kind of knowledge acquisition, in which 
information is combined with individual insight to 
produce a computational model that weights the 
relative contribution of various factors in determining 
an outcome. This process is ideally suited to the 
development of better simulations of human behavior, 
where empirical data is often sparse. The approach 
contains the possibility for continuous improvement, 
because rules can be deleted, added, or modified as 
new data become available. 
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1. Abstract 

Identifying a process both credible and efficient 
for evaluating semi-automated force (SAF) 
behaviors within the context of performing 
verification and validation (V&V) functions in 
computer generated forces (CGF) is not a trivial 
matter. This paper presents one approach 
employing the combat instruction set (CIS) in 
evaluating the behaviors of SAFs. A brief 
synopsis of the CIS precedes a presentation the 
general flow of the process necessary to first 
verify adequate behavioral functional coverage 
and then validate model performance against a 
real-world standard. This description of the 
method is punctuated with examples of its 
application in V&V for both the Army Modular 
SAF (ModSAF) and the Close Combat Tactical 
Trainer (CCTT) SAF. The behavioral V&V 
efforts for ModSAF and CCTT SAF are 
compared and contrasted to show similarity of 
the method in light of the great diversity in 
resource availability and allocation on the two 
evaluation efforts. Utility of the CIS in 
developmental efforts such as tracking software 
as it progresses to maturity is also explored. 

2. Introduction 

Evaluating semi-automated force (SAF) 
behaviors in modem simulations is not a trivial 
matter. The evaluation must first verify adequate 
behavioral functional coverage and then validate 
model performance against a real-world 
standard. There exist a nearly infinite set of 
combinations of conditions and terrain spaces in 
which the behaviors set may be assessed, and 
there are often severe limitations regarding both 
time and resources which are available to be 
applied to the verification and validation (V&V) 
process. Also, run-time complexity can mean 
that combinations of perfectly good code lead to 

an unrealistic performance of the model at the 
applications layer. Thus, the task of designing 
an evaluation which is credible, yet remains 
capable of being completed on time and within 
budget, can be somewhat daunting. 

One approach to performing V&V evaluations of 
SAFs which can be designed to meet even very 
limited resource availability entails application 
of the Combat Instruction Set (CIS) as the 
yardstick by which the behaviors are measured. 
In this paper we present a method which has 
been successful in using the CIS to conduct 
V&V of two emergent computer generated force 
(CGF) SAF simulations. But first you may ask, 
what exactly is a CIS, and why should I care 
about it? 

2.1 Combat Instruction Sets 

A combat instruction set is defined as a computer 
generated representation of a tactical combat 
behavior at a unit and platform level (McEnany 
and Marshall, 1994). While the units may 
include organizational levels of Battalion, 
Company, Platoon, Squad, Section, and Fire 
Team, the platform is defined as a representation 
of an air or ground vehicle, or a dismounted 
infantry, engineer, or scout entity at some 
organizational level. A platform object has 
modeling attributes which include a physical 
body (hull), the ability to mount a weapon 
system and sensor, carry supplies and 
ammunition, a cross-country maneuver 
capability, and the potential to house one or more 
crew members. 

As an adjunct to the CCTT development effort, 
the U.S. Army Program Manager - Combined 
Arms Tactical Trainer (PM CATT) sponsored 
work to collate combat behavior source 
information into a single repository~the CATT 
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Task Data Base. Information on unit behaviors 
was gleaned from various Army regulations, 
field and technical manuals, Army Training and 
Evaluation Plans (ARTEP), Mission Training 
Plans (MTP), and Russian-Heavy doctrine 
source materials. This data set comprises in 
excess of 700 separate CIS, and is maintained, 
updated, and distributed under contract with the 
U.S. Army by Resource Consultants Inc., 3051 
Technology Parkway, Orlando, FL. 

The CIS describes the tasks, conditions and 
standards by which Army units and their 
subordinate platforms are required to perform 
various combat behaviors. Examples of these 
collective tasks for a BLUFOR tank platoon 
include Execute a Wedge Formation (B0004), 
Action Drill Left (B0009), React to Indirect 
Fires Drill (B0013), and Assault an Enemy 
Position (B0031). There are an additional 43 
named CIS available for the BLUFOR tank 
platoon with similar CIS coverage for other unit 
types (infantry, scout, etc.) and sizes (company, 
battalion, etc.) in the CATT Task Data Base. 

The process of including a behavior in the 
CATT Task Data Base includes receipt of a 
signature affirming validation of the behavior as 
described, thus obviating any need for verifying 
or validating the CIS itself. In short, the CIS is a 
natural language description of the doctrinally 
sound combat behavior set, and it is an excellent 
starting point for initiating the process of 
modeling and simulating the modern battlefield. 

2.2 Verification and Validation 

Verification and validation are required for all 
models, simulators, and simulations developed 
under the Army Model and Simulation 
Management Program (AMSMP). Guidance is 
provided by Army Regulation (AR) 5-11 and 
DA Pamphlet (DA Pam) 5-11. Verification is 
the process of determining that the model, 
simulation (MS), or simulator (S) accurately 
represents the developer's conceptual description 
and specifications. Validation is the process of 
determining the extent that the MS or S 
represents the real world entity. 

In short, verification entails ensuring that a 
model is doing things right while validation 
comprises ensuring that it is doing right things. 
When applied to the SAF behaviors arena, a 
V&V effort can be as detailed (and costly) as 
examining individual lines of code, or as high 
level (and theoretically inexpensive) as saying 
"looks good to me."   Most program managers 

would prefer to pay for the latter while receiving 
the benefits of the former. 

3. V&V Metodologies 

The problem of matching an affordable level of 
effort with the regulatory requirements for V&V 
is faced by all CGF/SAF development programs. 
Analysts at TRAC-WSMR have been 
performing V&V evaluations of SAF behaviors 
which encompass both ends of the detail 
spectrum; at the very detailed low-end we have 
been assessing ModSAF; and at the limited 
detail high-end we have been evaluating CCTT 
SAF. However, the design process for both 
levels of intensity have been sourced from the 
CIS. 

3.1 ModSAF Behaviors V&V 

The very detailed low-end of the SAF V&V 
spectrum is represented by our work with the 
V&V of ModSAF. The purpose of the the effort 
was to verify, validate and accredit (VV&A) 
ModSAF as required in the Anti-Armor 
Advanced Technology Demonstration (A2 ATD) 
Technology Demonstration Plan (TDP). The 
purpose of the A2 ATD was to develop and 
demonstrate a verified, validated, and accredited 
DIS capability to support anti-armor weapon 
system virtual prototyping, concept formulation, 
requirements definition, effectiveness evaluation, 
and mission area analysis on a combined arms 
battlefield at the Battalion Task Force or Brigade 
level. 

3.1.1 Verification Plan 

The overall approach for verification of 
ModSAF entailed assessing the individual code 
libraries, and specific details including which 
libraries can be found in Denney (1994). In 
performing verification of the ModSAF libraries 
as well as the overall model the following 
subtasks were completed. 

3.1.1.1 Documentation Review. Documentation 
for ModSAF 1.0 was supplied to TRAC-WSMR 
and detailed reviews were conducted regarding: 
adequacy of documentation (determined by 
compliance to TRADOC 5-11 standards), 
clearness, completeness, and sufficiency to meet 
the intended purposes. As a part of the 
documentation review, the contractor acceptance 
test procedures were reviewed for compliance to 
the requirements document for ModSAF 1.0. 

3.1.1.2. Algorithmic and Methodology Review. 
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Algorithmic and methodology review were done 
both by TRAC-WSMR and AMSAA. 
Standardized Army algorithms as delineated in 
AMSAA's compendium of algorithms were the 
primary standard for weapon systems 
performance and effectiveness. 

3.1.1.3. Verification Software Testing fVSTl 
Stylized tests were conducted to insure: that the 
software would perform within the design limits 
and was adequate to meet performance needs; 
that, in the case of data voids, default values 
were used; and that the performance degraded in 
a graceful manner when operating near or 
outside of the designed limits. 

3.1.1.4. Top Level Tests (TLTl The goal of 
TLT was to assure that the libraries worked 
together as a unit. An integrity check of the 
overall model structure was necessary to assure 
that the model cycled correctly ( i.e. all of the 
units were serviced for all applicable functions). 
The model was evaluated in a stand-alone mode 
as well as send and receive information mode 
which affects other simulations (i.e. simulators, 
AFORs, etc..) as well as its own simulation. The 
SAFsim is the primary tool to setup and run a 
ModSAF simulation while the SAFstation is the 
primary link to the DIS. The primary function of 
the SAFlogger is to record and playback 
simulation sessions. Each of these modules were 
tested separately, in as much as it was feasible, 
and they were also be tested as a modular unit. 

3.1.1.5. Parametric Analysis. Wherever 
necessary, and as time permitted, individual 
libraries were tested, using parameter values 
which fell within the normal range of 
distributions for the selected variables under 
question. The aim of this exercise was to 
measure the affects on the simulation throughout 
a range of selected test values. While the library 
itself may function for all the selected test 
values, it may well be that some values for some 
variables would cause anomalies in the overall 
simulation or else cause unacceptable run times 
(times causing unrealistic responses). 

3.1.1.6. Peer Review. A critical and detailed 
analysis of the model's internal representations 
and outputs by functional area experts was as 
much a validation effort as it was a verification 
effort. The emphasis of the peer review for 
verification purposes was to assure that the 
actual software code faithfully represented the 
intended methodology for the phenomena being 
modeled. 

3.1.1.7. Model Interactions. ModSAF is a hybrid 
type of model in that it has characteristics of both 
an interactive war game as well as a fully 
automated combat simulation. In the DIS world 
interoperability is a necessary requirement for all 
models used in a "Simworld". ModSAF must 
interact with simulators, treating the simulator as 
if it were an entity within and belonging to its 
own set of automated entities. Initial verification 
tested model operability by simulating the 
simulator through a local network. Correct 
Protocol Data Units (PDU's) must pass both in 
and out of ModSAF. The emphasis was in 
testing the results of those PDU's received in the 
ModSAF. The interactive screens on the 
ModSAF equipment were used to visually verify 
correctness of responses. 

3.1.1.8. User Interfaces. The presentation to the 
user is an important aspect of a SAFOR. Ease of 
operation, intuitive actions, readable icons, 
reduced steps to accomplish an action and other 
human behavior issues are all things that deserve 
an expert review by a human factors expert. 
TRAC-WSMR included user interface as a 
verification item. 

3.1.1.9. Model Responsiveness. It is imperative 
that the model be able to respond in a real-time 
mode in order to effect a realistic simulation 
which involves man-in-the-loop actions. This is 
a function of both network responsiveness as 
well as model design, Since the network was 
fixed and not available during initial V&V, 
timing tests involved only turn around response 
time from message receipt until message 
response (i.e. only internal model actions were 
considered). 

3.1.2 Validation Plan 

The validation plan read much shorter than its 
verification counterpart. Wherever practical, 
extant Field test data, were utilized. No field 
exercises were conducted to compare ModSAF 
with the "real world." Theoretical evaluation 
was conducted using available literature and/or 
computer code. Subject matter experts were 
consulted regarding inputs and in face-to-face 
observation with model developers while 
conducting structured walk-throughs of the code. 

Comparison of ModSAF results against the 
results of similar scenario runs in the Combined 
Arms and Support Troops Force-on-Force 
Evaluation Model (CASTFOREM~the Army's 
only accredited high resolution force-on-force 
model)   were   the   primary   evaluation   by 
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comparison. ModSAF results were considered 
"correct" if they compared in a statistical sense. 
Acceptable bounds for correctness were 
established, and anomalies were explained or if 
considered incorrect by a consensus of functional 
area experts, code was modified to correct. 

3.1.3 Implementation 

Verification and validation required access to the 
ModSAF system, and a suite was installed on- 
site at TRAC-WSMR. This physical access to 
the system greatly facilitated both the breadth 
and depth with which evaluations were 
conducted. A total of six professional staff years 
were programmed over two fiscal years for the 
entire ModSAF V&V effort. 

3.2 CCTT SAF Behaviors V&V 

This limited detail, high-end SAF behaviors 
V&V effort is being conducted in concert with 
other V&V work as a contribution to the overall 
verification, validation, and accreditation of the 
CCTT for use as a training device in support of 
training exercises. The CCTT is a group of 
interactively networked simulators and 
command, control, and communication work 
stations replicating the vehicles and weapons 
systems of a mechanized infantry or armor 
battalion task force and its supporting Combat, 
Combat Support and Combat Service Support 
elements. It was designed to provide training to 
individual crew and unit personnel covering the 
skills and knowledge of crew through company 
task force level doctrine for the implementation 
of combat missions. As a training simulation 
system, the CCTT is expected to contribute by 
providing a realistic environment in which the 
necessary enhancement and maintenance of 
soldier skills may be obtained. This implies that 
the terrain correlation, system latencies, SAF 
behaviors and interactions, and the overall 
fidelity are required to be at such levels that 
negative training, cartoonish effects, and 
unrealistic situations are eliminated. 

3.2.1 Verification Plan 

The process of verifying the SAF behaviors for 
CCTT regarded making a determination that the 
model accurately represents the developer's 
conceptual description and specifications. The 
main thrust of the developer's concept for SAF 
behaviors in CCTT concerned implementation of 
the CISs, that is, the tactics or behaviors 
exhibited by the SAF were to be those outlined 
by the CIS. 

A critical subset of 276 CISs from the total list of 
over 700 CISs had been selected by PM CCTT 
to serve as the baseline for implementation in 
CCTT. The verification process for CCTT SAF 
behaviors comprised two interrelated functions 
regarding this baseline CIS subset. The first of 
these functions was a determination that the 
selected CIS subset was in fact available for 
execution in the final CCTT configuration 
delivered to the government, and the second 
comprised activities necessary to assess 
adequacy of the exhibited behaviors in light of 
the CIS description. 

The methodology necessary to support the first 
CIS verification function entailed comparing the 
prioritized baseline subset of the overall CIS list 
to the CIS available for execution in an exercise. 
The second CIS verification function entailed 
scripting a set of scenarios for execution with the 
SAF and CGF workstations. A sample of 
behaviors from the baseline CIS subset were 
selected for assessment, and small vignettes or 
scenarios requiring execution of each sampled 
CIS were built and run. Sampling criteria 
included CISs which enabled assessment of the 
four measures of effectiveness 1) move, 2) shoot, 
3) see, and 4) communicate, and those CISs with 
disconnect and discrepancy attributes identified 
as described in the validation section which 
follows (3.2.2). 

Vignettes were prepared to evaluate the CIS- 
based behaviors in isolation as well as in more 
complex scenarios which required execution of 
one or more situational interrupts to other CIS 
behaviors. Scenarios which were developed 
encompassed a wide variety of environmental 
conditions addressing maneuvers and 
engagements under both day and night 
conditions. The actual evaluation process for 
each selected CIS comprised rating each subtask 
within the CIS on a four-point nominal scale of 
Approved (A), Needs Improvement (NI), 
Unacceptable (U), and Not Tested (NT). A log 
of these isolated and combined scenario 
executions was maintained, along with the final 
state of nominal evaluation for each tested CIS 
subtask, and these results were then documented 
for inclusion in the final report. 

3.2.2 Validation Plan 

The process of validating the SAF behaviors for 
CCTT regarded making a determination of the 
extent to which the CCTT represents the real 
world.     The  unit behaviors  in CCTT are 
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generated from the CISs, and each of the 
elements of each CIS are validated by the 
responsible U.S. Army authority before they are 
accepted for posting into the list. Since the CIS 
are validated as adequate models for SAF 
behavior, the only remaining step toward 
validating CIS-based SAF behavior was 
assurance that the CIS had been faithfully 
implemented. 

The CIS validation issue necessitated a detailed 
analysis of each CIS to be implemented in search 
of situational interrupt target behaviors. Since 
the CIS themselves have been validated, the 
validation function served by this effort was to 
validate the process of turning CIS into software 
coded behaviors. The methodology entailed 
tracing each of the 276 baseline CISs in search of 
the branching destinations on situational 
interrupts. Each CIS in the baseline subset was 
analyzed to identify both the conditions requiring 
a branch to some other CIS, and which specific 
CIS was the destination for the interrupt. 
Potential disconnects and discrepancies (such as 
a closed loop or a branch to a nonimplemented 
CIS) in the baseline CIS subset were 
documented and a log of these disconnects and 
discrepancies and their resolutions were included 
in the final report. 

3.2.3 Implementation 

Validation under this methodology was a 
paperwork exercise, and was completed at 
TRAC-WSMR with only a copy of the CATT 
Task Data Base and a listing of the 276 baseline 
CISs. Verification required access to the CCTT 
SAF system, and since this could only be 
accomplished on-site at the development facility 
in Orlando, it was. A total of three professional 
staff years were programmed for this entire V&V 
effort, with 2 people on intermittent TDY over a 
period of 6 months for the on-site verification 
segment. 

4. Additional CIS Applications 

That the CIS is a doctrinally sound description of 
the necessary combat behaviors make it an 
invaluable tool for the software developer. The 
process of turning the natural language CIS into 
software code has been summarized in an 
excellent paper by Ourston, et.aL (1995). 

In addition to its use as a blueprint for the code 
development process, the CISs consolidated in 
the CATT Task Data Base can serve as a tool to 
scope the overall SAF behaviors development 

effort. As described under CCTT validation 
above, identification of all of the necessary 
behavioral branches early on in a developmental 
effort can be of significant value in terms of 
determining the level of effort necessary to 
achieve a desired level of functionality. 

The CIS subtasks may also serve to function as a 
sort of managerial checklist. After breaking each 
CIS into its subtasks, a list of the primitive 
function calls and code segments begins to 
emerge. These subtasks may then be cross 
referenced to parent CIS, and development 
prioritized in accordance with current 
management objectives. Thus, the CIS can serve 
as both the technical breakdown of the work to 
be performed, and as the ordering plan by which 
the primitive segments are built up into a fully 
functional SAF. 
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1. Abstract 

Existing systems of Computer Generated Forces 
(CGF) do not model sound. The need for sound 
representation became evident in a scenario for 
demonstration of a research project (Craft 1995) 
conducted by the Institute of Simulation and Training 
(1ST). An opposing force of a BMP-2 platoon with 
dismounted infantry are atop a hill occupying defilade 
positions. They are placed as a strategic road block 
defending route access to a SCUD launcher. The 
opposing force should have moved into a hasty 
defensive position in preparation for an ambush upon 
hearing sound cues from an approaching United 
States Marine Corps Advanced Amphibious Assault 
Vehicle platoon on the other side of the hill. Since 
Modular Semi-Automated Forces (ModSAF) did not 
model sound, 1ST constructed a work-around to 
simulate the situational awareness cues which would 
trigger the reaction from the opposing force. 

This paper presents a CGF sound model. It addresses 
production, propagation, and detection of sound 
waves. Production is the creation of a sound wave, 
propagation is its spreading, and detection is its 
reception and perception. Sound waves emitted from 
vehicles and aircraft are supported. 

The model is a physical model with components 
allowing linkage of behavioral models. Sound 
production and propagation are the physical models 
using equations. Detection is the opening where 
behavioral models can be plugged in. Examples are 
reactive behaviors to sound cues and the effects of 
battle sounds on infantry. A reactive behavior to 
sound cues is exhibited in the scenario above where 
sound triggers a task transition. 

Implementation is in ModSAF and uses the technique 
of "line-of-sound" to demonstrate linkage of the 
behavioral to the physical. This modeling process 
answers "Can this entity be heard?" much like "line- 
of-sight" for the engagement process answers "Can 
this entity be seen?"    A scenario is played using 

sound cues as a trigger for task transition. Two Blue 
Infantry Javelin teams are hiding behind a tree line in 
enemy territory awaiting orders for their next move. 
Meanwhile, a platoon of Red T72M tanks on patrol 
are moving towards the tree line. A terrain feature 
blocks line-of-sight. Upon hearing the sound of the 
approaching vehicles, the BLUEFOR move into a 
hasty defensive position. They fire upon the tanks 
after identifying them as enemy. 

2. Introduction 

The need for sound representation in CGF became 
evident in a feasibility experiment conducted for the 
Marine Corps by 1ST. A scenario created for 
experimentation showed an opposing force of a 
BMP-2 platoon with dismounted infantry atop a hill 
occupying defilade positions. They were placed as a 
strategic road block defending route access to a 
SCUD launcher. The opposing force should have 
moved into a hasty defensive position in preparation 
for an ambush upon hearing sound cues from an 
approaching United States Marine Corps Advanced 
Amphibious Assault Vehicle platoon on the other side 
of the hill. Since ModSAF, the virtual simulation 
used for experimentation, did not model sound, 1ST 
constructed a work-around that simulated the 
situational awareness cues to trigger the reaction of 
the opposing force (Craft et. al. 1995). 

The CGF community is faced with the challenge of 
modeling behaviors as they occur in reality, because 
behavioral replication of the real-world battlefield is 
required in CGF (Crooks et. al. 1995). Acoustics, the 
science of sound (Blitz et. al. 1964), can be modeled 
and offers progress towards meeting this challenge. 

3. Sculpturing Acoustics into CGF 

Sequential steps taken to build an acoustics model 
into CGF were the following: researching the 
physics of sound, researching how soldiers react to 
sound cues, linking the behavioral to the physical, 
choosing a reactive behavior for demonstration of its 
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2. Design 

In order to support Navy and Marine Synthetic 
Forces simulations (Tracor, 1996), the Compact 
Terrain Database (CTDB) used by ModSAF has been 
expanded to include a representation of the ocean 
floor along with a more complete representation of 
the ocean surface. Table 1 shows the various ocean 
characteristics that are represented. 

where this is not the case is dry (or perhaps moist) 
land, as shown in Figure 1. The bounding polygons 
for water bodies are defined by high tide position, so 
that the surface elevation can be decreased to 
represent lower tide levels. In order to allow for 
changing tides in real-time, all water polygons 
reference a tidal zone. Each zone stores an offset, 
which is added to the surface elevation stored for the 
polygon. Thus, changing the tide in a region is 
simply a matter of changing that region's tidal offset. 

The ocean bottom is represented using the existing 
terrain representation (i.e., grids, TINs, and 
microterrain) (Stanzione, et. al. 1996), and additional 
supported soil types. Many ocean "features" are 
really abstractions describing pieces of the terrain. As 
such, the physical representation of such features can 
be adequately handled by incorporating their 
structure into the polygonal representation of the 
ocean bottom. Abstract notions such as "this area of 
the terrain is a reef can be explicitly stored as 
abstract features using existing CTDB mechanisms. 

The representation supports tidal variation of the 
ocean surface. In the coastal regions, the absolute 
elevation of the water's surface is specified, subject 
to some maximum x-y bounds. Within the specified 
region, any area where the water elevation exceeds 
the land elevation is covered by water, and any area 

In most areas, the ocean surface is represented by 
single square polygons that correspond to the size of 
a CTDB terrain patch. The representation can not be 
too coarse because in databases that use the Global 
Coordinate System (GCS) (Evans, 1995) the ocean 
surface is curved. On the other hand, the 
representation can not be too fine or it will use much 
more memory. The patch size is the largest size at 
which integration into existing intervisibility 
algorithms is straight forward, since the intervisibility 
code already performs a patch traversal. The 
representation consists of a single elevation value for 
water in the patch, and a reference to additional 
surface characteristic data. It is assumed that there 
will be few unique sets of surface characteristics 
relative to the number of patches. 

Table 1: Ocean Representation Characteristics 

Multiple Elevation Surfaces Advanced Features 
and Attributes 

Dynamic Terrain 

Ocean Floor • Bathymetry data 

• Extended soil types 
infrastructure to include 
bottom characteristics 

Ocean Surface • Patch and Wet TIN surface 

• Sea State attributes (primary 
and secondary wave height, 
period, speed, direction) 

• Surface Temperature 

•   Dynamic sea state 
and surface 
temperature 

Surf Zone •   Tidal Zone with offset for 
surf height 

•   Man made features 
(wharves, piers, 
etc.) 

•   Variable tidal zone 
offset 

Rivers •   Wet TIN surface 
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Graph 4.1 

linkage to the physical, implementing the model in a 
CGF system, and testing its validity. 

4. Background 

4.1 Physical Research 

A disturbance generated from a physical, as opposed 
to chemical, change by means of applied force will 
input energy into the medium surrounding it. This 
causes the immediate surrounding particles to 
undergo back and forth motions about their 
equilibrium positions. These particles influence their 
neighboring particles to behave likewise as the energy 
carries the disturbance particle to particle, away from 
its source. The disturbance travels in the form of a 
wave and has a distinct wave motion (Blatt et. al. 
1989, Bolemanet. al. 1989). 

Graphically, a wave is described by the sine function 
(Boleman et. al. 1989). Graph 4.1 illustrates y as a 
function of the sine of x. The sine curve this function 
produces represents the behavior of one particle in 
the medium when it encounters the passing 
disturbance (Whitten et. al. 1996). 

One wavelength is an observed single back and forth 
motion of the individual particle. One complete up- 

and-back (makes one "hill"), then down-and-back 
(makes one "valley") motion is an oscillation. The 
number of oscillations a particle will undertake is a 
function of the amount of energy given off by the 
disturbance. A greater amount of energy produces 
more oscillations. The number of oscillations per 
second is the frequency of the wave (Boleman et. al. 
1989). 

Amplitude is the maximum distance an individual 
particle in the medium will move about its 
equilibrium position as the disturbance passes. This 
wave characteristic is used to gain a measure of the 
amount of energy given off by the disturbance (Sears 
et. al. 1987). 

A sound wave originates from a vibrating source 
producing compressional wave motion in the 
surrounding medium. The vibrations shove the 
particles in its way closer to their surrounding 
particles, leaving a partial vacuum in the wake of 
their movement. The medium around the partial 
vacuum rushes in from all sides due to pressure from 
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the compression pushing them back. Alternating 
regions of particles compressed together and spread 
apart occur along the distance the disturbance travels. 
These pressure fluctuations spread in all directions 
away from the source. As the distance from the 
source increases, the flow rate of the disturbance 
diminishes because the amount of energy carrying the 
disturbance becomes less, and the amount of energy 
given off as heat, due to friction, increases. This is 
the property of attenuation (Blatt et. al. 1989, Blitz et. 
al. 1964, Boleman et. al. 1989). 

4.1.1 Acoustical Phenomenon 
Inspecting a wave's life cycle unveils three 
credentials of acoustics. They are a sound wave's 
production, propagation, and detection. Production is 
the sound wave's creation, propagation is its 
spreading through a medium, and detection is its 
reception and perception (Blitz et. al. 1964). 

4.2 Behavioral Research 

Detection provides the opportunity for a sound 
stimulus to trigger a reaction when the stimulus is 
processed (Boleman et. al. 1989). A reaction of 
interest to a researcher may be internal or external. 
Internally, the heart rate of a soldier may increase at 
extreme sounds that suddenly occur from ammunition 
detonation in combat. Externally, a sound cue will 
alert a soldier and establish situational awareness 
(Mullally et. al. 1995). For example, a soldier at rest 
may become hastily defensive upon hearing a sound 
cue in the distance. 
Psychoacoustics is the study of psychological 
interactions between humans and the world of sound. 
The primary perceptual attributes of sound are 
loudness and pitch (Parker et. al. 1988). The 
information describing them are transmitted in a 
propagating sound wave. Loudness, or a sound's 
intensity level, is a measure of how much energy per 
second the wave brings next to the detection device 
(Blatt et. al. 1989).  It depends on a sound's physical 

intensity, amplitude, and frequency. Pitch is the 
highness or lowness of a sound and depends on a 
sound's frequency (Parker et. al. 1988). 

5. Linkage of Behavioral to the Physical 

The three credentials of acoustical phenomena 
suggest three platforms in the acoustics model which 
aid in tying all the credentials together to produce an 
acoustics model which can be implemented. The 
platforms are the physical, behavioral, and linkage. 
The physical platform scientifically represents sound 
and addresses its production and propagation. The 
behavioral platform addresses reactivity to sound 
cues in the environment. Finally, the linkage 
platform connects the behavioral to the physical with 
sound detection being the opening where behavioral 
models plug in. The three platforms are wound 
together in a shape that gives a form the acoustics 
model can be implemented. 

6. Implementation 

The acoustics model is implemented in the CGF 
simulation ModSAF, version 2.0. Five physical 
models, one behavioral model, and one linkage model 
are implemented. The physical models are sound 
velocity, intensity, intensity level, power level, and 
pressure level. The behavioral model is task 
transition upon hearing sound cues. The linkage 
model is line-of-sound. 

6.1 Sound Velocity Model 

The sound velocity model returns the speed of sound 
in a gas. Sound velocity is a function of air mass, 
humidity, and temperature. 
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Gas % Composition 
Nitrogen (N2) 78.09 
Oxygen (02) 20.95 
Water vapor (H20) 0-4 
Argon (Ar) 0.93 
Carbon dioxide (C02) 0.03 
Neon (Ne) 0.0018 
Helium (He) 0.000524 
Krypton (Kr) 0.0001 
Radon (Rn) 6x10-18 

Table 6.1.1.1 

Equation 6.1.1 drives this model and gives the 
velocity of a sound wave in meters per second (Blatt 
et. al. 1989). 

V = 

Equation 6.1.1 

T is the temperature of the gas expressed in Kelvins. 
K is Boltzmann's constant. Gamma is the ratio of 
specific heat (Blatt et. al. 1989). 

Specific heat is the amount of heat that must be 
supplied to an object to effect a temperature change. 
The ratio of specific heat is the ratio of the specific 
heat of a gas at constant pressure to its specific heat at 
constant volume (Blatt et. al. 1989). 

M is the molecular mass of the gas serving as the 
medium for the traveling sound wave. The 
experiment used for demonstration of the acoustics 
model propagates sound through air. Air is a mixture 
of gases and does not exist as a single molecular 
structure, therefore its mass cannot be measured 
(Boleman et. al. 1989). 

6.1.1 Virtual Air 
Virtual air was created to resolve this conflict. It 
portrays air as having a single molecular structure 
while maintaining its percent composition as a 
mixture. The percentage of the gas that occurs in air 
is the percentage of gas characteristic in one virtual 
air molecule. Consider a volume of one-hundred 
molecules. This volume is a mixture of four gases. 
Ten molecules are carbon, twenty argon, thirty 
oxygen, and forty nitrogen. The volume of gas is 
then 10% carbon, 20% argon, 30% oxygen, and 40% 
nitrogen.    The virtual molecule representation also 

maintains these percentages. One virtual molecule 
would be comprised of 1/10 carbon, 1/5 argon, 3/10 
oxygen, and 2/5 nitrogen. One hundred virtual 
molecules placed in the same volume will maintain 
the same percentages. 1/10 carbon multiplied by 100 
virtual molecules is 10% carbon, 1/5 argon multiplied 
by 100 virtual molecules is 20% argon, 3/10 oxygen 
multiplied by 100 virtual molecules is 30% oxygen, 
and 2/5 nitrogen multiplied by 100 virtual molecules 
is 40% nitrogen. Table 6.1.1.1 shows the gases that 
comprise air and their percentage of occurrence 
(Boleman et. al. 1989). 

6.2 Sound Intensity Model 

The sound intensity model returns a measure of the 
sound energy radiating from a source in all directions. 
Sound intensity is a function of sound power emitted 
from a source. 

The intensity of a sound wave is defined by the 
energy it brings into a unit of area each second. It is 
calculated using equation 6.2.1 (Blatt et. al. 1989). 

Ir = 
P 

4nR2 

Equation 6.2.1 

I subscript r is expressed in watts per meter squared, 
P is the sound power expressed in watts, R is the 
range (in meters) between source and listener, and 
4*PI*R accounts for the source radiating sound 
energy uniformly in all directions (Blatt et. al. 1989). 

6.3 Sound Intensity Level Model 

The sound intensity level model returns the loudness 
of a sound source at the listener.    Sound intensity 
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level is a function of the source's sound intensity.  It 
is calculated using equation 6.3.1 (Blatt et. al. 1989). 

P=Wlog10| 
^0 

Equation 6.3.1 

Beta is expressed in decibels (dB). Sound intensities 
are naturally compared by humans logarithmically, 
therefore their levels are specified on a logarithmic 
scale. Two sounds differ in intensity by one bel if the 
ratio of their intensities is ten. The decibel, one-tenth 
of a bell, is a more common expression used (Blatt et. 
al. 1989). 

I subscript r is the sound intensity of a source 
perceived by a listener at a given range. I subscript 
zero is the sound intensity at the threshold of 
audibility (Blatt et. al. 1989). 

6.4 Sound Power Level Model 

The sound power level model returns the sound 
strength of a source. Sound power level is a function 
of the sound power emitted from a source. Sound 
power is the rate at which sound energy is spread. 
Sound power level is calculated using equation 6.4.1 
(Besancon et. al. 1966). 

PWL = 101og w 
10^ ref 

Equation 6.4.1 

W is the sound power expressed in watts. W 
subscript ref is the sound power at the threshold of 
audibility (Besancon et. al. 1966). 

6.5 Sound Pressure Level Model 

The sound pressure level model also returns the 
sound strength of a source. Sound pressure level is a 
function of the density of the gaseous medium a 
sound wave is propagating through. It is calculated 
using equation 6.5.1 (Besancon et. al. 1966). 

SPL = 201og10p^ 

Equation 6.5.1 

Rho is the density of air. Rho subscript ref is the 
density of air at the threshold of audibility (Besancon 
et. al. 1966). 

6.6 Task Transition Upon Hearing Sound Cues 

This behavioral model supports alertness and 
situational awareness. It exists in ModSAF as an 
enabling task (Iibesound) and is easily detached when 
the level of sophistication this behavior model offers 
is not needed. 

6.7 Line-Of-Sound 

Line-Of-Sound propagates a sound wave between a 
source and listener to answer "Can this entity be 
heard?" The listener has an intensity level of 
background noise occurring around him or her. A 
sound source in the distance will be heard if the 
intensity level of its sound wave is greater than the 
intensity level of the background noise. 

Four combinations of source to listener can occur. 
They are individual to individual, individual to group, 
group to individual, and group to group, with the first 
two being supported, respectively. 

6.8 Libsound 

ModSAF's libsound was created to contain the 
physical and linkage models. It can be easily 
detached when the sophistication an acoustics model 
offers is not needed. 

7. Experimentation 

A scenario was created to demonstrate the acoustics 
model. Two Blue Infantry Javelin teams are hiding 
behind a tree line in enemy territory awaiting orders 
for their next move. Meanwhile, a platoon of Red 
T72M tanks on patrol are moving towards the tree 
line. A terrain feature blocks line-of-sight. Upon 
hearing the sound of the approaching vehicles, the 
BLUEFOR should move into a hasty defensive 
position and fire upon the tanks after identifying them 
as enemy. 

8. Results 

The Blue Infantry Javelin team moved from a state of 
rest to hasty defensive position upon hearing the 
sound cues of approaching vehicles. After identifying 
the approaching vehicles as enemy, they fired upon 
the REDFOR. 
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9. Conclusion 

Sound is represented in a CGF system. Its 
representation demonstrates progress towards realism 
in behaviors by entities on the virtual battlefield. 
Acoustics in a CGF simulation adds the sophistication 
to behaviors that the CGF community assumes to be 
present. 

10. Future Work 

Behaviorally, the acoustics model could be used to 
study effects of battle sounds on infantry. Support for 
sounds of weapons fire and ammunition detonation 
would need to be included to support this. Vehicle 
identification by sound signature could also be 
incorporated. Pitch would need to be modeled to 
support this. 

Physically, the acoustics model could be extended. 
Solid mediums could be included in sound 
propagation. Phenomenons    affecting    sound 
propagation, such as reflection, absorption, 
interference, turbulence, and refraction (turning) 
could be incorporated. 

This acoustics model only supports sounds emitted 
from an individual vehicle. Sound blending caused 
by units of more than one vehicle is also needed. 

The concept of "virtual air" assumes that the 
dispersion of the gases comprising air is evenly 
distributed and no concentration of one gas hovers 
nap of the earth. Validation is needed that compares 
sound velocity calculated in "virtual air" against 
sound velocities recorded in air. 
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Creating a Synthetic Environment for Naval Applications 
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1. Abstract 

The use of synthetic environments in the areas of 
training, research and development, and equipment 
evaluation is becoming common practice. This paper 
will describe an existing simulation package 
developed for air force and army applications that has 
been expanded to cater for Anti-submarine Warfare 
(ASW), Anti-surface Warfare (ASuW), Search and 
Rescue, and Naval Gunfire Support. It will give an 
overview of the existing simulation package and a 
description of the models that have been developed to 
support a naval environment. A scenario in which a 
helicopter prosecutes a submarine is presented as an 
example problem to illustrate the application of the 
new software. 

2. Introduction 

The generation of synthetic environments for naval 
applications is concerned with the simulation of 
entities such as submarines, surface ships, aircraft and 
helicopters. Typical weapons and sensors carried by 
these platforms may include missiles, rockets, bombs, 
torpedoes, mines, radars, passive sonars, and active 
sonars. The scenarios that can be created using these 
elements encompass Anti-submarine Warfare (ASW), 
Anti-surface Warfare (ASuW), Search and Rescue 
and Naval Gunfire Support. 

CAE's Interactive Tactical Environment Management 
System (ITEMS) has been expanded to include the 
above platform types, weapons and sensors. The 
models developed are physical models that consider 
the essential parameters that affect performance. 
ITEMS uses an off-line Database Management 
System (DBMS) for the player definition and 
scenario creation. The DBMS user interface provides 
the user with the flexibility to modify and create new 
platform types and new training scenarios. 
This paper gives details of the models used to 

describe the above platform types, weapons and 
sensors. Details are also given of manoeuvres such as 

zig-zag patterns for ships and dip manoeuvres for 

helicopters. A scenario in which a torpedo armed 
helicopter prosecutes a submarine is presented as an 
application problem. Such a scenario could be created 
to support a training exercise, or an equipment 
evaluation process where ITEMS acts as the target 
generator. 

ITEMS includes many more platform types, weapons 
and sensors than those mentioned above for army and 
air force applications. The present paper however will 
be confined to the naval elements. Since all three 
services are supported, ITEMS lends itself to 
combined operations. 

3. ITEMS Overview 

CAE's Interactive Tactical Environment Management 
System (ITEMS) provides the synthetic environment 
for air, land and sea environments. ITEMS is used in 
a number of research and training facilities world- 
wide to support training and equipment evaluation. 

The basic element within ITEMS is the Player. A 
Player is defined as anything of tactical importance: 
an aircraft, a tank, a ship, a submarine, a surface to air 
missile installation are just a few examples. Each 
Player may be assigned a range of weapons and 
sensors. 

Scenarios are defined off-line using the DataBase 
Management System (DBMS) which use low-level 
databases that define the weapons, sensors, platform 
dynamics, and behaviour. Figure. 1 illustrates the 
setup. DBMS comprises a specialised set of editors 
based on the X-windowing system. 

An important part of Player definition is the 
modelling of behaviour. ITEMS uses a rule based 
system that allows Players to determine their 
opponent and how to react. In the case of a ship 
moving through hostile waters, the knowledge based 
rule  set could,  for example, control  the  ship to 
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perform a zig-zag pattern and set all sonars to passive 
mode. The same rule set could force the ship to 

deploy countermeasures if it detects an incoming 
torpedo. 

As an aid to scenario creation and scenario execution, 
ITEMS uses a map display and a stealth view. 

COUNTER ffy*fi 
MEASURES V 

WEAPONS 

IDENTIFY MISSION ROUTE. 
ASSIGIN RULES, INITIAL 
INVENTORY, POSITION 

DYNAMICS, 
SIGNATURES 

SENSORS 

COMMUNICATIONS 

DOCTRINE 

LOW LEVEL 
LIBRARIES 

PLAYER 
LIBRARIES 

TACTICAL 
SCENARIO 

Figure 1: ITEMS Architecture 

4. System Models 

The following section gives an overview of the 
mathematical models developed to describe the above 
mentioned platform types, weapons and sensors. 

Active Sonar: 

Illustrated in Figure.2, are the principal factors that 
affect the target detection process in the case of an 
active sonar: the source level (SL), transmission loss 
(TL), target strength (TS), the noise level (NL), 
directivity index (DI), reverberation level (RL), and 
the signal processing gain (PG). 

Figure 2: Active Sonar model 

Each of the variables are related according to the 
expression: 

S/N = SL - 2TL + TS - max( RL, NL-DI) + PG 

where the ratio (S/N) is the signal to noise ratio. 

The noise level is calculated from the noise sources 
defined at the scenario creation time and include 
ambient and shipping noise. The transmission loss is 
an important parameter in the underwater detection 
process and this is calculated from look-up tables 
entered at the DBMS level.   The tables require the 
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user to define the sound channel which provides for 
increased detection ranges under certain conditions. 
The input variables to the look-up tables include 
range, sonar operating frequency, and whether the 
sonar platform, or target lie within the sound channel. 

The parameter PG is the signal processing gain. This 
parameter is defined by the user and represents the 
increase in the signal to noise ratio that is achievable 
using advanced signal processing. 

A target is detected using either a deterministic 
model, or a probabilistic model. In the case of the 
deterministic model, a target is detected if the signal- 
to-noise ratio exceeds a fixed threshold value. In the 
case of the probabilistic model the signal-to-noise 
ratio is used to compute the probability of detection 
from a probability of detection versus signal-to-noise 
ratio curve entered via DBMS. A random number is 
then drawn from a gaussian distribution and 
compared with the probability of detection value. If 
the random number is less than or equal to the 
probability value, then the target is detected. The two 
models allow the user to define either a deterministic 
or probabilistic scenario. For example, while training 
the sonar operator it may be advantageous that target 
detection be random, where for the equipment 
evaluation process fixed detection ranges may be 
desirable to keep the problem tractable. 

The active sonar model is used to represent hull 
mounted sonars for ships and submarines, sonobuoys, 
and torpedo acoustic homing heads. 

Passive Sonar: 

The passive sonar model is illustrated in Figure .3 
below. 

SL 

TL 

transmission signal, however, means that the signal- 
to-noise ratio is given by a slightly modified equation: 

S/N = SL - TL - NL + DI + PG 

The sources of the different noise terms is the same as 
for the active sonar. 

The passive sonar model is used to model such 
entities as towed arrays, sonobuoys, passive listening 
hull mounted sonars and torpedoes. 

Acoustic Decoys: 

The acoustic decoy model simulates acoustic 
countermeasures that may be deployed from sea 
platforms, or towed behind a surface ship. The nixie 
is an example of the latter. The countermeasure 
model generates an additional noise term that appears 
in the sonar equations. The noise level that is 
calculated takes into account the attenuation of the 
noise signal as it propagates through the water. 

Surface Ships: 

Surface ships are represented as linearized dynamic 
models with an autopilot for speed and course 
control. A simple model is available to represent the 
sea state based on four sinusoids generated from the 
sea spectrum appropriate to the sea state for the 
scenario. The four sinusoids give rise to the wave 
height which is calculated at four locations around the 
ships hull which are then used to generate buoyancy 
forces and moments that give rise to ship pitch, roll 
and heave motions 

Submarines: 

Submarines, like the ships, are modelled as linear 
dynamic models. An autopilot system is available for 
speed, course and depth control. 

Figure 3: Passive Sonar model 

As shown in Figure.3, The variables affecting the 
passive target detection process are the same as those 
for  the  active   sonar.   The  absence  of the  active 

Anti-Ship Missiles: 

ITEMS already supports the simulation of a range of 
Proportional Navigation and Command to Line-of- 
Sight Missile Systems. For the Naval environment, 
provision is made for the definition of height and 
azimuth inertial steering to simulate anti-ship missiles 
like Harpoon and Sea Eagle. A range of terminal 
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homing modes from pop-up and dive to terminal 
homing at sea skimming height are also available. 
Provision is available for defining a an inertial 
navigation course so that the missile can fly an off-set 
way point from the target to create a dog-leg 
trajectory. 

Torpedoes: 

The torpedo model is a full five-degree ( roll 
stabilised ) freedom model that considers the 
principal factors that affect performance: thrust 
developed by the propulsion system, drag and weight. 
The torpedo may be launched from either submarines, 
ships, helicopters, or aircraft. A range of search 
patterns may be defined via DBMS which the torpedo 
executes to search for the target. The acoustic sensor 
assigned to the torpedo may operate in either a 
passive or active mode. Once the torpedo has locked 
on to the target it is steered on the target using a 
proportional navigation law. The torpedo remains 
locked on to the target unless there is a drop in the 
signal to noise ratio, brought about, say, by the 
deployment of countermeasures. 

Depth Charges: 

Depth charges may be deployed from helicopters, 
surface ships, or aircraft. The model considers the 
mass of the depth charge, drag coefficient, and initial 
launch conditions, such as velocity and attitude. 
When in air, the depth charge follows a parabolic 
trajectory up to the point where it broaches the waters 
surface, at which point it sinks at a user specified sink 
rate. Detonation occurs based on a depth setting 
entered via DBMS. 

manoeuvres for units involved in a screening pattern 
and generic fixed wing and rotary wing search 
patterns for submarine detection and prosecution. 

5. Example Problem 

The purpose of this example is to demonstrate how 
the ITEMS system makes use of the above entities to 
create a naval scenario. Space does not allow for a 
full description of each player and player rule sets, so 
only a sub-set will be presented here. 

5.1 Scenario Description 

In Figure.4 are presented details of the scenario. The 
figure shows a airborne early warning radar equipped 
aircraft which detects submarine periscope at the 
surface. The aircraft send a tactical message to a 
nearby surface ship which dispatches a helicopter 
equipped with a dipping sonar and torpedo to 
prosecute the submarine. The submarine detects the 
incoming helicopter on its radar, and submerges. The 
helicopter looses contact with the submarine and 
proceeds to dip its sonar at the last known reference 
point. The helicopter is successful in locating the 
submarine and deploys a torpedo. The submarine 
detects the incoming torpedo and takes evasive action 
by manoeuvring and deploying counter measures. 

Sonobuoys: 

Sonobuoys may be deployed from any air platform. 
Their dynamic characteristic are much the same as the 
depth charge for the in-air phase. Sonobuoys may be 
deployed in varied patterns, and may be set to operate 
in either a passive or active mode. 

Manoeuvres: 

In order to complement the naval environment 
entities, automatic manoeuvres have been developed 
to enhance realism. Such manoeuvres include zig-zag 
patterns for ships, an auto dip pattern for naval 
helicopters     equipped     with     a     dipping     sonar, 

Figure 4:Scenario Overview 

5.2 Player Definition 

When creating the above scenario, the first step is to 
define the Player types; in this case the aircraft, ship, 
helicopter and submarine. The definition of these 
players requires the user to specify details of the 
weapons and sensors, typically the radar carried by 
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the aircraft and the sonar and torpedo carried by the 
helicopter. 

In Figure 5. is illustrated a sample DBMS page for 
the definition of the dipping sonar. The data fields are 
shown commensurate with the parameters that appear 

in the sonar equation defined above. The table that 
defines the probability of detection versus range 
curve is also shown. Similarly pages are available for 
defining the player characteristics (dimensions and 
maximum speed for example) and weapon system 

Scnar Mode Database Record Edit Record Name •  [MCOTtANSOS 50S(CPF Omnidrr. search)): RecordKty: [ 14] 

R«:ordN»a»e.. 

SootrMtxkRamd&M 

Rucord   Function   Options. 

DEBUG : Dipping sonar OmnlcHr. search 

i HuQ mounted active sonar::Search, mode. 

Re ;ord Description 

So jar Mode Type 

Data Extraction Imprecision.. 

; 1 Bi aring Information Available    . f YES    Bearing Extraction Imprecision   J 3.00 

£1 .-varlon Wi>nn«lon Available   , YES |. Elevation Extraction Imprecision |SHO 
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Figure 5: Active Sonar Mode definition 
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Figure 6: Active Sonar definition 

5.3 Rule Sets 

As mentioned in section.2 above, player behaviour is 
represented using an rule based system. A sample rule 
set for the submarine player is shown in Figure. 5. 
The rules require the submarine to submerge if it 
detects an air or surface contact. Further, if the 
submarine detects an incoming torpedo it is to 
manoeuvre and deploy countermeasures. As Figure 
.5. shows, the rules are based on "IP, "THEN" 
statements that make use of condition and response 
parameters. 

MIMMM 'LATER DOCTKiNE RULEtfT MUXES LMT   *«.••* *••»    [H»n«| 0.|]    ».,.D i„    [M] 

B 
B 

<«t—i *•— I RED »Uf ACTION R 

IF UNDER »TI*C« 

If »0 PLATEOM • AKIOOll 

IMF" TURN AU KA0AR on CHANGE RELATIVE HCKJtir ro OfrtH . »• 

IF  UNDER TOA»E0O ATTACK 

THER EXECUTE RE»»ON3E 
EXECUTE IMIUVII TRMCCTOMT 
MANEUVER TAAJECTORT NAME TORPEDO EVAtlVf MANEUVER 

• ET OLOftAl VAftlAllE - IMOER ATTACK 

if UNDER IMMN ATTACK 
AMD CLOlm VANIAtlE UNDER ATTACK1 TRUE 
AKO CLOiiL VARIABLE TIME ITAMR UNDER ATTACK > 'JO 1EC 

THEN EXECUTE «£i»ON»E • CO TO PERISCOPE DEPTH 

It '0 RLATT-OR* TTPE . SU"f A=E 

TMtN EXECUTE NE1PON1E 
»'f POACH PRIME QPPCNtNT 
m MO c • DE« 

THE" EXECUTE RESPONSE HRE WEAPON TORPEDO 

Figure 7: Red Sub Action ruleset 
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5.4 Scenario Execution 

In Figure.6  is shown a snapshot of the Tactical 

Situation Display (TSD) that is available for the 
monitoring the scenario during run time. The Forward 
View Display (FVD) although available is not shown. 

Figure 8: ITEMS Tactical Situation Display 

6. Conclusion 

Details have been presented of extensions to the 
ITEMS synthetic environment simulation package to 
support naval applications. Key to the new 
development is the use of physical models that 
consider the principal factors that affect performance. 
In the case of the acoustic environment, the sonar 
equation is used in both its active and passive form to 
simulate the target detection process. 

An example problem involving an attack on 
a submarine was presented to illustrated the use of 
some of the naval elements that had been developed, 

as well as the concept of player definition and the 
creation of rule sets for the control of players. 
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1.  Abstract 

Phenomenology sensitive behaviors are key 
components for constructing a realistic CGF. 
However, research and development of these behaviors 
have been much delayed because of complex and yet 
fuzzy nature of the behaviors and because of scarce 
mathematical models and data. This paper described a 
new development in ModSAF for phenomenology 
sensitive behaviors. Behavioral scaling, a novel 
approach, is taken for the phenomenology behaviors 
project, which allows infinitive numbers of 
behavioral variations of a single base behavior by 
scaling the base behavior depending on environmental 
conditions. To    support    this    concept,     a 
phenomenology behavior architecture is introduced. 
It is based on a behavioral taxonomy; passive, 
reflexive, reactive, and reflective behaviors. In order 
to facilitate the behavioral upgrade process as well as 
to improve modularity of the process, environment 
assessment and reasoning libraries (modules) are also 
newly built. The behavioral scaling concept, 
phenomenology behavioral architecture, and 
environmental assessment and reasoning libraries 
significantly saved development time and efforts. 
Moreover, they provide a generic framework for 
adding new phenomenology sensitive behaviors. 
This paper also discusses phenomenology 
(environment) models implemented in ModSAF. 

2.   Introduction 

ModSAF is one of the most widely-used 
constructive/virtual CGF programs. Since its 
inception in 1993, it has grown rapidly with the 
continuous addition of new functionality, facilitated 
by its modular architecture. One of the recent major 
advances in ModSAF is the inclusion of 
phenomenological effects transforming ModSAFs 
simple, constant, high-noon, clear-day environment 
to a dynamic environment. Currently, ModSAF 
supports rain, fog, smoke, dust, and illumination 
variations due to the locations of the sun and the 
moon < time-of-day effects). Even though the dynamic 
nature of phenomenology is supported in ModSAF, 

most ModSAF behaviors used to assume the high- 
noon, clear-day environment that was present at their 
creation. 

Thus, LADS phenomenology behavior (LPB) group 
started to work to eliminate the limitation. First, the 
group surveyed to identify the impacts of these 
phenomenological effects for all behavior libraries in 
ModSAF. Based on the observations, an architecture 
extension for encoding local and global obscurant and 
night related behaviors is developed. This extension 
is not only efficient enough to handle dynamically- 
changing smoke effects, but also generic enough to 
handle other environmental effects such as fog, rain, 
night, etc. Using the architecture, the LPB group 
eliminates the above mentioned behavioral 
limitations and transforms the existing ModSAF 
behaviors to phenomenology sensitive behaviors. 

This paper starts with the brief discussion of the 
current ModSAF phenomenology. It is followed by 
approaches taken for phenomenology behavioral 
implementation. This includes the phenomenology 
behavior architecture, behavioral classification 
concept, and actual phenomenology behavioral 
implementation. 

3.     Current  ModSAF Phenomenology 

The DVW (Dynamic Virtual Worlds) group of LADS 
has introduced environmental effects within ModSAF. 
Their contributions include an environmental 
architecture and associated environmental models 
(Anon, 1995). 

3.1     Environmental Architecture 

The environmental architecture in ModSAF was 
designed to allow software modules that simulate 
environmental phenomena to easily be plugged into 
ModSAF. A well-defined API isolates the 
implementation details of the environmental models 
from the user. This approach is advantageous in that 
it allows models to be switched in and out easily, 
facilitating multi-resolution modeling, and making 
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ModSAF more adaptable to different applications 
requiring different models. 

The API is implemented in a library called 
libenvironment. Each environmental model is 
contained in its own library. Each model registers its 
capabilities with libenvironment. Some models 
provide information and can only be queried, while 
other models can carry out requests for man-made 
environmental effects such as smoke clouds and 
illumination flares. 

When the API is asked for a piece of information 
about the environment, such as a query for 
temperature at a given location or a query for 
transmissivity between two locations, it dispatches 
the request to the model(s) that know how to handle 
it. If several models know how to handle a given 
request, a resolver model is used to merge the 
information into one response. This way, several 
models which provide the same type of information 
can work together. For example, consider model A, a 
simple, constant ambient model, and model B, a 
model that simulates the smoke effects of a burning 
tank. Both transmissivity values of the ambient and 
the smoke of the burning tank will contribute to the 
transmissivity of near the tank. If the user makes a 
query for the transmissivity of near the tank, it is up 
to the resolver model to calculate the resultant 
transmissivity based on the inputs of the two models. 
Specifically, the resolver model multiplies the two 
transmissivity values from the two model to compute 
the resultant transmissivity. The way of merging 
values from multiple models varies depending on the 
nature of a parameter (roughly equivalent to 
environmental effect) activated by a query. 

3.2 Environmental Phenomena Currently 
Modeled in ModSAF 

This section describes the environmental phenomena 
which are part of the 2.1 version of ModSAF (Anon, 
1995). 

3.2.1 Constant Environment 

There is a simple constant environmental model 
which is capable of providing answers to all possible 
queries supported by libenvironment. Running 
ModSAF with this model simulates running an 
exercise on a clear sunny day at high noon. This 
basically simulates SIMNET environment. However, 
it can be used for DIS if computationally expensive 
dynamic environment is not required for a specific 
DIS exercise. Or some environmental factors (called 
parameters) can be selectively registered to this 
constant model, but others are assigned to more 
complex environmental model.   For example, the 

constant model provides constant temperature, wind, 
and transmissivity, but a smoke model can provide 
detailed transmissivity. 

3.2.2 Simple Environment 

A collection of simple, low-fidelity models 
constitutes the simple environment model. Although 
this model supports time varying parameter values, 
most of parameters remain constant throughout the 
exercise. Those parameters are individually 
initialized. Once they are set, all parameter values are 
assumed horizontally and vertically constant. This 
model always checks legality of those values; such as 
range check and cross validity check with related 
values. Again, parameters are individually 
registerable to any environmental model. 

3.2.3 Natural Illumination 

The natural illumination model takes the sun 
position, moon position, and moon phase into 
consideration when calculating illumination. This 
model determines the value for illumination. This is 
based on the U.S. Army Research Laboratory 
Battlefield Environment Directorate's (ARL-BED) 
ILUMA model, as driven by commonly available 
model of the ephemeris. 

3.2.4 Smoke and Dust Clouds 

The COMBIC (Combined Obscuration Model for 
Battlefield-Induced Contaminants) model is used to 
calculate transmissivity through smoke and dust 
clouds. It was developed by the U.S. Army Research 
Laboratory Battlefield Environment Directorate, and 
consists of the following: 

• smoke sources description 
• diffusion model (simulates the expansion of the 

cloud) 
• buoyant rise model (simulates the rising of warm 

clouds) 
• boundary   layer   model   (considers   wind, 

temperature, and cloud density) 

The COMBIC model is used both in preprocessing 
and at run-time. During preprocessing, the model is 
used to produce data for specific munitions types and 
environmental conditions. Smoke-history tables are 
also computed off-line. During run-time, once the 
actual ammunition type and environmental conditions 
are known, the actual smoke characteristics 
information is obtained from the tables. This 
information is then used to calculate the 
transmissivity. 

3.2.5 Atmospheric Extinction 
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The LOWTRN model is used to compute uniform 
atmospheric extinction (or transmission). The output 
from LOWTRN is a table that provides 
transmissivity at various ranges given a particular set 
of input atmospheric conditions. Tables of extinction 
coefficients for useful sets of atmospheric conditions 
are precomputed and accessed at run time, since the 
LOWTRN model is too slow to run in real time. 
The LOWTRN model is developed by the U.S. Air 
Force Geophysics Lab. 

3.2.6 Signal Smoke and Hares 

Signal smoke and flares are intentionally-generated 
man-made environmental phenomena used for 
signaling. An enabling task that monitors for these 
signals can be used to enable the signals to act as 
conditions for units transitioning from one phase of 
the execution matrix to the next. 

4.   Behaviors 

Behaviors are entities capable of producing 
interactions between systems (Kwak, 1995). 
Behaviors also interact with each other at the system 
boundaries, and these interactions are often considered 
as interactions between systems. Therefore, 
behaviors define observable characteristics and 
capabilities of a system. However, behaviors cannot 
exist by themselves. They need embodiment. A 
system is such an embodiment or a container of the 
behaviors. 

Two or more behaviors can be composed to create a 
composite (or complex) behavior, and this 
compositional relationship can be recursive. 
Therefore, depending on our point (or level) of 
interest, some behavior can be viewed as a composite 
behavior, while the same behavior can be seen as a 
primitive (or atomic) behavior for other behaviors. 

A composite behavior is not a simple collection of 
primitive behaviors. When the primitive behaviors 
are aggregated for a composite behavior, extra 
behavioral characteristics are added. The extra could 
be additional memories (or states) and state transition 
logic1. Obviously, the way of aggregation using 
operators, such as AND, OR, etc., greatly influences 
the characteristics of the composed behavior. 

For our research and development of Phenomenology 
behaviors in ModSAF, unit behaviors (or platoon 
behaviors) are treated as composite behaviors. 

'States and state transition logic approach is a finite 
state machine based behavioral implementation. 
Many other approaches are available (Kwak, 1995). 

Individual vehicular behaviors are treated as primitive 
behaviors for the unit behaviors. Because the unit 
behaviors have directly observable and controllable 
from the outside of ModSAF, they should be 
meaningful and useful as they are to the external 
world (or a human operator). That is, they should be 
able to perform desired, identifiable, and meaningful 
tasks; such as road march, occupy position, etc. 
Therefore, when such a task is assigned to a tank 
platoon, using internal behavior logic and memories 
it controls vehicles in the platoon through activating 
vehicle-level behaviors; such as a vehicle movement 
behavior. This type of a behavioral organization 
constitutes a behavioral hierarchy in ModSAF. 

The ModSAF behavioral hierarchy is mapped into 
four classes of behaviors: i.e., Reflective (or Active) 
behaviors, Reactive behaviors, Reflexive behaviors, 
and Passive behaviors. The reflective behaviors 
correspond to the composite behaviors described 
above. The reflexive behaviors are primitive (or 
atomic) behaviors for the unit behaviors. The 
reactive behaviors are unit-level exception handlers 
that are activated when the unit confronts an 
unexpected situation. They also temporarily suspend 
the unit behavior currently executed when they are 
activated. If such situation is not persistent any 
longer, then the reactive behavior becomes inactive 
and the suspended unit behavior becomes active again. 
The passive behaviors are encapsulated in ModSAF 
physical components. They are not regular ModSAF 
behaviors but needed to simulate behaviors of 
physical components. 

In fact, categorization of behaviors into the four 
classes is based on time planning horizon, degree of 
deliberation, and degree of coordination. Obviously, 
reflective behaviors, such as ModSAF unit level 
behaviors need much higher degree of planning. 
Thus, they are associated with long time planning 
horizon, high degree of deliberation, and high degree 
of coordination between vehicles, while characteristics 
of reflexive behaviors such as ModSAF vehicle level 
behaviors are represented with shorter planning 
horizon, little deliberation, and no coordination 
crossing the vehicle boundary. 

Four categories of phenomenology behaviors 
classification with descriptions are listed as 
following: 

• Passive Behaviors 
Performance of tasks not directly related to 
environmental effects is either degraded (in 
most cases) or improved. These are related 
to sensors and hulls (ModSAF physical 
libraries), and degradation of weapon-system 
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effectiveness (ModSAF weapon delivery 
libraries). 

• Reflexive Behaviors 
Default vehicle-level reflexive behavior. No 
coordination with other vehicles is needed or 
required. Slowdowns and heading changes 
are examples. 

• Reactive Behaviors 
Unit-level behavior which is initiated by any 
unexpected environmental change. Loosely 
speaking, this is a unit-level reactive 
phenomenology behavior. It includes units 
moving to alternative positions, changing 
the direction of travel, unit formation 
change, or employing protective smoke 
under a sudden enemy attack. 

• Reflective (or Active) Behaviors 
Unit-level behavior which coordinates with 
deliberation. Tactical maneuvering to take 
advantage of deliberately-deployed smoke can 
be an example. 

The above four classes of behaviors are inter-related 
each other, and in most of cases they run 
concurrently. (Reactive behaviors are only exception. 
They are usually dormant until a proper condition is 
arrived.) They are usually cooperative for a common 
objective that is given to a reflective behavior for 
execution. However, a conflict can be arisen: 
sometimes planned behaviors from a unit cannot be 
executed by the subordinate individual vehicles 
because of constraints imposed on individual vehicles. 
Even though a unit plans out a unit behavior with 
consideration of the constraints of its subordinates, it 
is only able to consider the average environmental 
effect. Each vehicle might confront a totally different 
environmental condition from the averaged condition 
used in the planning. Thus an unit level 
phenomenology behavior, such as smoke sensitive 
phenomenology behavior, cannot satisfy all 
constraints of the individual vehicles in the unit. The 
requested unit behavior should be reevaluated by the 
individual vehicles before executing it. In the worst 
case, the planned unit behavior can threaten the safety 
of an individual vehicle. This type of localized 
behavioral reevaluation and modification is expected 
to be performed by reflexive behaviors at the vehicle 
level. Therefore, the reflexive behaviors have the 
highest priority among them. (Passive behaviors are 
always executing to simulate physical components. 
Thus, they are not included for discussing behavioral 
priorities.) The second highest priority is given to 
reactive behaviors. They are allowed to interrupt the 
unit behaviors (reflective behaviors) assigned to the 

unit in order to handle unexpected situation. Thus, 
the reflective behaviors have the lowest priority. 

The highest priority of reflexive behaviors allows 
individualistic behavioral modification by deviating 
from a command given from an unit level behavior. 
For example, if smoke blocks the movement of only 
one vehicle in an unit, then the blocked vehicle 
should adjust behavior to overcome the newly 
confronted environmental condition. It might change 
speed and/or heading depending on the location and 
density of smoke blocking its movement while others 
are moving as commanded. Thus, the blocked vehicle 
acts differently from the rest of the vehicles. This 
uncoordinated individualistic vehicle behavior with 
respect to other vehicles in the unit will increase 
disorder in the unit. Thus, the group behavior of the 
unit will be automatically degraded. This type of 
behavioral disturbance influencing at the unit level 
implements an emergent (unit) behavior that is not 
explicitly programmed but surfaces up from the 
interactions of many entities that are capable of 
responding individualistically to local environment2. 

5.     Behavioral  Scaling 

Under phenomenological effect, a behavior of a 
vehicle or a group of them tends to perform poorly. 
For example, the density of smoke is increased, the 
behavioral performance is degraded. That is, thicker 
smoke makes a vehicle move slower. If the vehicle 
is relieved from the smoke, then it has to restore the 
original traveling speed. A general relationship 
between environment and perception and 
environmentally sensitive behavior is shown in 
Figure 1. Because of standard terminology of the 
military perception levels, finer description is made 
for the perception performance as the smoke density 
is thicker. However, the behavioral performance scale 
is very coarsely described because of lack of such 
terminology. In either case, there is no crisp 
boundary in such behavior performance descriptions. 
Even though this discussion is made based on smoke, 
this concept can be applicable to any environmental 
effect that reduces perception performance. Fog, 
night, rain, snow, dust, and etc. are such 
environmental effects (Kwak et. at. 1995). 

2Pure subsumption architecture is solely based on 
emergent behaviors (Brooks, 1986), which is an 
optimistic behavioral implementation. Thus, there is 
no guarantee to achieve a global objective. In this 
paper, usage of emergent behaviors are limited to 
perturbation of a globally coordinated behavior to 
properly respond environmental irregularities so that 
the unit (or group) can still be able to achieve the 
given global objective. 
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Figure  1:  Perception and Behavior 
Performance under Smoke Environment 

One of the noble approach developed for this project 
is behavioral scaling. In stead of creating discrete, 
multiple, and specialized behaviors for various cases 
of environmental effects, a single behavior based on 
assumption of a high noon clear day is created, which 
is called a base behavior. Then the base behavior is 
dynamically modified (or specialized) to match with 
the given environment. Thus, a wide (or whole) 
degree of a given environmental effect can be covered 
by one base behavior by scaling the behavior. This 
approach eliminates an enumeration of multiple 
behaviors, which are similar but vary depending on a 
degree of the given environmental effect. Economy 
of behavioral implementation is obviously a big 
advantage of this approach. 

However, significance of this approach comes from a 
paradigm match between the behavioral 
implementation and human behavior. We, human 
beings, continuously monitor environment 
surrounding us and dynamically adjust our behaviors 
based on perceived information about the world. If 
we cannot perceive anything because of a very poor 
environmental condition, then we have to stop a 
currently executing a task - a goal directed behavior - 
for our safety (or self-survival). If we are able to start 
to perceive the world again, we can resume our task 
within the limit that the environmental condition 
permits. For example, obscuration and/or lower light 
level limits our perception capability. Thus, under 
such an environmental condition we move slowly 
with caution. If such a condition is removed, then we 

can move freely as we intended. This type of 
dynamic behavioral adjustment based on perception 
(or in general environmental assessment) is 
behavioral scaling. In ModSAF, like ourselves, 
phenomenology behaviors are scaled based on an 
environmental assessment level (or perception level). 
This adjustment continues until the behavioral 
performance is scaled to a proper level. 

Finally, the behavioral scaling approach provides a 
big relief for knowledge acquisition process for 
phenomenology behaviors. First, quantitative 
behavioral descriptions related to a certain 
phenomenology are very scarce. Even through some 
of them are available, the description is hardly 
complete. For example, a formation interval for a 
tank platoon is described as following: "During clear 
day, the formation interval is 100 meters, but if 
visibility is limited, the interval should be half of the 
clear day interval." This is one of the best 
descriptions we can get from SME input. However, 
this statement already has two issues to be 
implemented in ModSAF. First, how much degree of 
visibility degradation really means "limited". Second, 
even though we can know the exact degree of the 
degradation, the description covers only one case. 
There are whole spectrum of visibility degradation. 
Therefore, the captured knowledge conveys very 
minimal information. If this statement were literally 
adopted for writing a behavior in ModSAF, then the 
spacing adjustment would be binary; for example 
either 100 meters or 50 meters intervals, not in 
between. This would be hardly realistic neither. If 
non-binary behavioral adjustment is needed, then 
obviously many entries for formation spacing 
depending on varying degree of visibility degradation 
are required. This is practically impossible because of 
lack of availability of such amount of data. 
Therefore, behavioral scaling is seemingly only 
option to implement realistic phenomenology 
sensitive behaviors. However, the captured 
knowledge by SME's is still useful. The knowledge, 
instead, was used to verify the behavioral scaling 
scheme by making observation of the implemented 
behavioral output; i.e., measuring intervals under a 
typical degree of an environment effect (for example, 
by a medium level of fog density) during 
development. If the observed result was not 
satisfactory, the behavioral scaling scheme was tuned. 
This process continued until the result was 
satisfactory.   SME's was involved in this process. 

Consequently, the behavioral scaling approach is an 
innovative methodology. It allowed to create realistic 
phenomenlogy behaviors in ModSAF by overcoming 
lack or vagueness of data. This approach provides 
following advantages: implementation economy with 
dynamic specialization, high realism due to paradigm 
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match with that of human perception-based behaviors, 
and a seemingly only practical means of 
implementing efficient and realistic phenomenology 
behaviors. 

6.   Phenomenology   Behavior  Architecture 

Introducing phenomenology behaviors into ModSAF 
was first seen as a formidable task. It was initially 
estimated that all existing ModSAF behaviors should 
have been examined and possibly modified to 
implement the phenomenology behaviors case-by- 
case. Because of the large number of ModSAF 
behavior libraries - far more than 100, such a task 
would have required significant amount of engineering 
efforts. However, we developed an approach for the 
implementation of the phenomenology behaviors 
which is complementary to the existing ModSAF 
behaviors and maintains the hierarchical behavioral 
structure. 

As discussed before, the current ModSAF implement 
behaviors as following: physical component libraries 
implement passive behaviors. Vehicle level task 
libraries realize reflexive behaviors. Reactive task 
libraries construct reactive behaviors, and finally unit 
level task libraries implement reflective (active) 
behaviors (Kwak et. al. 1995). This behavioral 
organizational structure exactly matches with the 
phenomenology behavior implementation architecture 
developed and shown in Figure 2. This architectural 
match has significandy reduced the development time 
required to incorporate the phenomenology behaviors 
into ModSAF. 

Reflective Behaviors Libraries 
(Unit level task libraries) 

1 
Environment 
Assessment 
& 
Reasoning 

Libraries 

Reactive Behaviors Libraries 
(Unit level reactive task libraries) 

Reflexive Behavior Libraries 
(Vehicle level task libraries) 

\ ' 
Passive Behavior Libraries 

(Physica libraries) 

Figure 2.    Interactions between 
environmental libraries and other libraries. 

ModSAF behavior libraries can consult 
environmental impacts on ModSAF behaviors with 
the assessment and reasoning libraries. Then the 
libraries return behavioral modification information to 
the ModSAF behavior libraries. Based on the 
information, the ModSAF libraries adjust their 
behaviors. The relationships of two libraries are 
shown in Figure 3. 

query 

smoke assess 

boolean 
+ augmented value 

night_assess 

ATM_assess 

combined_assess J 

libenvreason 

6.1      Environmental 
Reasoning 

Assessment      and 

Figure 3: Environmental Assessment and 
Reasoning   Architecture 

Libenvassess is an environment perception library. 
When there is a query about the environment from 
other libraries, it utilizes libenvironment and all 
available sensor libraries if needed. Then, it processes 
numeric values received from such libraries and 
returns a symbolic value in response to a query as 
shown in Figure 3. It usually answers a query with a 
Boolean value and augmented values if applicable. 
Thus, it can be considered as an abstract symbolic 
sensor. In other words, libenvassess is an interface 
library translating numerically measured sensory 
information to symbolic values for behavioral 
libraries. Because of the modular approach, each 
environment factor can be added piece by piece when 
available. Currently, three different classes of 
environmental effects are considered. They are 
smoke, night, and uniform atmospheric effects. 
These effects are independently computed in 
ModSAF. That is, smoke is represented as 
obscuration, night is as a low illumination level, and 
uniform atmospheric effects are as poor 
transmissivity. Not all behaviors are expected to be 
simultaneously influenced by all of these 
environmental effects. Some might be susceptible to 
only one specific environmental effect, while others 
might be influenced by all of them. Therefore, 
libenvassess currently concerns four different cases; 
i.e., smoke only effect, night only effect, atmospheric 
only effect, and finally combination of all three 
effects3. 

ModSAF phenomenology behaviors are built upon 
two core libraries; i.e., libenvassess and libenvreason. 
Whenever there is an environmental change, the 

3The current architecture is able to support any 
combination of smoke, night,  and atmospheric 
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Specifically, those individual effects are separately 
computed by assessing obscuration, illumination, and 
transmissivity values, which are retrievable through 
libenvironment's public interfaces and processed 
individually. However, in order to combine all three 
effects, spatial frequency (SF) approach is chosen 
(Mackey et. al. 1992). That is, for the given sensor, 
libenvassess computes SF based on apparent contrast 
and illumination level. The block diagram for SF 
computation is shown in Figure 4. 

TRANSM 
(obscuration) 

ACON 
(apparent 
contrast) 
equation 

Sensor 
Type 

i ATTN 
(atmospheric 

effects) 
MRC table 

RANGE 

t SOG 

Illumination 
Level 

(day/night) SD 

SF 

Figure 4: SF computation block diagram 

In order to compute SF, apparent contrast(ACON) is 
calculated based on five different aspects. First, 
obscuration effect(TRANSM) is calculated. This 
value is affected by existence of smoke and dust. If 
smoke or dust is presented transmissivity is degraded. 
Second, uniform atmospheric effect or extinction 
coefficient(ATTN) is calculated based on current 
environmental conditions given from libenvironment. 
This value is affected by fog, rain, snow, etc. Third, 
range( RANGE) is the sensor to target distance in 
kilometers. Fourth, it gets sky_over_ground 
ratio(SOG) from libenvironment. Fifth, 
suppression_degradation(SD) is currently set to 1.0. 

After these five values are computed, the following 
equations are used to calculate apparent 
contrast(ACON): 

DVO.  NVO: 
ACON =  (SD * TRANSM) / (1.0 + (SOG 

*(exp(ATTN * RANGE) -1.0))) 

IR: 
ACON = SD * TRANSM * (exp(-1.0 * ATTN * 

RANGE)) 

where 
DVO: Daytime View Optics 
NVO: Nighttime View Optics 

effects. However, not all of external interfaces are 
currently provided. 

IR: Infrared or Thermal Sensor. 

Illumination level is computed by ILUMA model that 
takes the sun position, moon position, and moon 
phase into consideration. 

When the illumination level is computed, it allows to 
pick a MRC (Minimum Resolvable Contrast) curve 
as shown in Figure 5. Then simply read Y axis value 
corresponding to the apparent contrast represented in 
X axis. 

Contrast 

Figure 5:    MRC Curve 

After SF is computed, it is compared with a 
prescribed value. If it is greater than the prescribed 
value, then there is no behavioral degradation. If it is 
smaller, then there is a behavioral degradation. The 
degree of the degradation is computed based on the 
magnitude of SF. Our implementation for 
computing the degree is to normalize SF - a 
behavioral scaling value, so that it can have a range 
of zero to one. That is, if the environment becomes 
very unfavorable, such as a dark night-time dense fog, 
then the normalized value becomes very close to zero. 
However, the value becomes one under a high noon 
clear day. If the environment is in between the two 
extremes, the value lies anywhere between zero and 
one. Details can be found in ModSAF libenvassess 
Texinfo which is distributed with ModSAF source 
code distribution. 

Libenvreason is a reasoning library for environment. 
It mainly makes queries to libenvassess and performs 
reasoning functions to take environmental effects into 
account. The outcome of this reasoning is a 
behavioral scaling value to be used to modify 
behaviors under consideration. Most of ModSAF 
behavior libraries communicate with this library to 
get the behavioral scaling values. 
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6.2 Phenomenology 
Implementation 

Behavior 

Passive and reflexive behaviors, which are 
fundamental behaviors, are strongly influenced by 
phenomenology effects because they are very closely 
tied to physical models and physical phenomena. 
These libraries interface environment through 
libenvassess and libenvreason. Thus, the 
libenvassess and libenvreason form the basis upon 
which all passive and reflexive behaviors have been 
developed. In turn, the passive and reflexive behavior 
libraries in ModSAF provide a foundation for other 
behaviors, such as reactive and reflective behaviors. 
That is, many reactive and reflective ModSAF 
behavior libraries use the passive and reflexive 
behaviors to complete their behaviors. 

In order to facilitate further discussion, behavior 
libraries in ModSAF are grouped into two: 

• Passive and Reflexive Behavior libraries, and 
• Reactive and Reflective Behavior libraries. 

Each of the libraries of the latter group, especially the 
reflective behavior libraries, are individually created 
for implementing specific tasks. The libraries in the 
former group are generic libraries that implement 
fundamental behaviors, such as sensing, snooting, 
and simple movements. These libraries are not fully 
specialized for performing any specific and stand alone 
tasks. Instead they provide atomic behaviors for the 
latter group so that the construction of the 
specifically tailored reactive and reflective behaviors 
can be facilitated. This generality and commonalty 
reduces the number of separate libraries which is 
required for passive and reflexive behaviors. 

The common environmental assessment and 
reasoning libraries, the small number of passive and 
reflexive behavior libraries, and the utilization of 
these libraries in the construction of reactive and 
reflective behaviors have significantly reduced the size 
of the required development efforts. First, the 
approach developed for the phenomenology project 
encourages the solution of generic problems rather 
than specialized problems. For example, the concept 
of behavioral scaling was used. Rather than tailoring 
behaviors on a case-by-case basis, the existing 
behaviors4 were scaled to transform them to 
environmentally sensitive behaviors. Thus, the 
behavioral scaling was effectively used for a means of 
specialization. Therefore, by modifying the small 
number of generic passive and reflexive behavior 

4The existing behaviors become the base behaviors 
that phenomenology sensitive behaviors can be 
derived from. 

libraries, the environmental sensitivity of these 
libraries became immediately effective to the large 
number of behaviors represented by the reactive and 
reflective behavior libraries too. 

Moreover, the generality of environmental assessment 
and reasoning can handle many distinct classes of 
environmental conditions which are being developed 
by LADS in DARPA's Synthetic Environments 
initiative (Dynamic Virtual Worlds and Dynamic 
Terrain & Objects). Thus, when a new 
environmental effect was introduced, the existing 
assessment and reasoning could properly function 
with virtually no modification. If not, a very 
minimal upgrade process was needed to provide new 
interfaces to the libraries to handle a newly required 
functionality. 

In the phenomenology behaviors project, we chose to 
use generic interfaces provided by the environmental 
assessment and reasoning libraries for most of cases. 
Thus, the passive and reflexive libraries that use these 
environmental interfaces were generic enough to be 
equally applicable to the three currently implemented 
classes of environmental conditions: smoke, night, 
and uniform atmospheric conditions. 

The reactive and reflective behavior libraries have 
structured relationships - not totally hierarchical, but 
logically organized. This characteristic facilitates the 
inclusion of phenomenology sensitive behaviors. 
That is, if one common library is modified, then 
many libraries automatically take advantage of this 
modification. However, these libraries have been 
individually examined, unless excluded because of a 
total detachment from phenomenology. If a library 
was determined to require modification, it was 
modified to call common libraries that had been 
modified to be environmental sensitive. This type of 
modification is recursive, and usually terminated at 
the most complex behavior libraries that are usually 
directly used by human ModSAF operators through 
ModSAF GUI or by CCSIL commands. 

7.   Current  Status  of Phenomenology 
Behaviors 

In ModSAF currently three categories of behaviors - 
sensing, movement, and shooting behaviors - 
properly respond to under various phenomenology 
effects; such as smoke, day/night, and fog, etc. These 
behaviors are fundamental to any combatant in a 
battle field. If there is an environmental effect, then 
performance of sensing, movement, and shooting 
behaviors are degraded. On top of these fundamental 
behaviors, two smoke specific behaviors; smoke 
reaction and smoke deployment are added to ModSAF. 
When one of these reactive behaviors executes, the 
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above fundamental behaviors also run background 
while matching up their performance level to a given 
environment condition. Currently, all of the 
phenomenology behaviors are mainly optimized for 
both Army ground vehicles and Army combat 
echelons; such as a M1 tank platoon. 

7.1. Sensing 

The primary sensor of a ModSAF ground vehicle is a 
vision sensor. Thus, enemy vehicle information is 
collected mainly through the vision sensor. Thus, if 
vision sensor's performance is degraded by an 
environmental effect, then ModSAF vehicle's ability 
to acquire a target is automatically degraded. The 
performance degradation is based on the upper 
mentioned SF. A ModSAF vehicle has an ability to 
incorporate multiple crew member sights in order to 
simulate multiple human crew members. Each crew 
member's sight also has multiple sensors with 
different types, but only one sensor is allowed to be 
used at a time by each crew member in ModSAF. 
ModSAF also automatically chooses the best 
performing sensor among the given sensors to each 
crew member to match with an environmental 
condition. 

When a specific sensor is chosen, a target spatial 
frequency is calculated and compared with the 
minimum cycles required for detection, classification, 
recognition, and identification - four target acquisition 
levels in order. For example, if the spatial frequency 
is higher than the minimum detection cycle and lower 
than the minimum classification cycle, then the target 
is classified as a detected target. That is, a smaller SF 
results in a lower target acquisition level. 

Target acquisition process in ModSAF is a 
cooperative task among the crew members in a 
vehicle. If enemy targets are spotted, then the enemy 
target information observed from the multiple crew 
members are merged into one unified enemy list. 
Then the list is processed to assign threat levels to 
the targets, and a target with the highest threat level 
is chosen for an engagement. 

7.2. Movement 

ModSAF vehicle movement is influenced by 
environmental effects. For example, if there is fog, 
then our common sense reasoning tells to slow down 
traveling speed, and it continuously adjusts traveling 
speed until the traveling speed is slow enough for our 
safety under the environmental condition. The degree 
of slowness is also roughly proportional to the 
density of smoke. That is, the denser fog is, the 
slower the traveling speed is. In ModSAF, the denser 
fog in ModSAF leads to a lower spatial frequency, 

and then the lower frequency is translated into a 
behavioral scaling value (or a behavioral degradation 
value). Finally, it causes to slow down the vehicle 
speed. 

Whenever there exist environmental effects, the 
movement behavior does not always need to be 
degraded. If a commended speed is slow enough so 
that a vehicle can maintain the speed, no speed 
reduction is applied. That is, no behavioral 
degradation value is generated. This feature is built in 
ModSAF libenvassess and libenvreason. Because of 
the feature, if a proper speed is given to a ModSAF 
vehicle, then there is no speed reduction even under an 
environmental effect. However, if an excessive speed 
is commanded, then a ModSAF vehicle refuses to 
follow the commanded speed. The speed is 
automatically adjusted to a proper speed. Therefore, 
no matter whatever speed is commanded, the 
ModSAF phenomenology movement behavior 
maintains a proper speed corresponding to the given 
environment. 

Currently, ModSAF environmental effects are 
globally uniform except the smoke effect. Thus, 
while most of environmental effects only cause speed 
reduction, the smoke effect, which is localized, opens 
up another option to respond - a heading change. 
Rather than going through the smoke with a slower 
speed, a ModSAF vehicle is allowed to go around the 
smoke cloud. Thus, it can deviate from the planned 
path. Because deviating from the given path 
introduces a greater surprise to the plan/commander of 
the ModSAF vehicle than a simple speed reduction, 
ModSAF has a GUI-based switch to enable or disable 
the heading change behavioral option during 
execution. When this switch is disabled, a ModSAF 
vehicle simply responds smoke with a slower speed. 
If this switch is enabled, then a ModSAF vehicle tries 
to avoid the smoke by modifying its heading. 
Sometimes, a ModSAF vehicle briefly travels 
through a smoke cloud while it tries to avoid the 
smoke cloud by following the perimeter of the cloud. 
Because of the dynamic nature of smoke cloud 
formation, this situation cannot be totally avoidable. 
However, if a ModSAF vehicle is caught in a smoke 
cloud while avoiding, it automatically reduces its 
traveling speed. Thus, two behaviors are 
superimposed. 

Movement behavior is only affected by a driver's 
sensing ability unlike the cooperative target 
acquisition behavior described above. Therefore, 
driver's sensor ability is the sole source for 
determining the movement performance. If a driver 
has no night vision device, such as a night vision 
goggle, then the driving performance at night will be 
significantly poor; i.e., moving very slowly.   If a 
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driver has a night vision device, then its movement is 
greatly improved but cannot match with the daytime 
performance. 

7.3.   Shooting 

Shooting behavior of ModSAF vehicles is affected by 
environmental effects, too. Specifically, two sub- 
behaviors of the ModSAF shooting behavior are 
influenced. First, delivery accuracy of a direct weapon 
is affected. If there is an environmental effect; i.e., 
other than a high noon clear day, then the delivery 
accuracy is degraded. The degree of degradation is 
again computed based on the spatial frequency. That 
is, the low spatial frequency is translated into a 
behavioral degradation value, and this value is used to 
magnify a shooting error - dispersions and biases 
(Topper, 1993). This scheme simulates less accurate 
delivery performance of a direct firing weapon. The 
behavioral degradation value, as discussed before, is 
computed by libenvreason using the assessment from 
libenvassess. Second, targeting behavior is also 
affected by environmental effects. Targeting difficulty 
is simulated with a longer time required to track a 
target before shooting with a direct firing weapon. 
The behavioral degradation factor is again used to 
lengthen the tracking time longer. 

Performance of the above shooting sub-behaviors is 
only determined by gunner's sensing ability in 
ModSAF. For example, an US tank gunner has a 
thermal sensor. Thus, the gunner has little 
difficulties to look out to aim and shoot an enemy 
target at night or through a smoke cloud if the smoke 
is not IR blocking smoke. However, if a gunner had 
no thermal sensor, then his ability to engage a target 
would be significantly degraded under such 
environment. 

7.4  Smoke  Reaction  Behavior 

This is a specialized behavior for an US Army tank 
platoon. When a smoke screen blocks an intended 
traveling path, a tank platoon changes its formation 
to a line formation and reduces its formation spacing 
distance. This smoke reaction behavior is activated 
only when this reaction behavior is enabled. This 
option can be switched on or off through ModSAF 
GUI. However, the smoke reaction behavior is 
coupled with the smoke avoidance behavior option. 
That is, if the smoke avoidance option is enabled, 
then the platoon will go around smoke rather than 
going through the smoke. The smoke reaction 
behavior is effective when the smoke avoidance 
option is disabled. If neither options are enabled, 
then the platoon will go through the smoke screen 
without platoon level coordination. They will neither 
going around the smoke nor switch the formation 

with a reduced formation spacing distance between 
vehicles. 

When the platoon emerges from the smoke screen, it 
starts to travel in a dash mode - a faster speed with a 
fully alert state. If any enemy is encountered, then 
the platoon immediately attacks the sighted enemy 
with the tank main guns. Then it will continuously 
attack the spotted enemy until the enemy is destroyed. 
If no enemy is spotted after emerging from the smoke 
screen, then it will keep traveling in the dash mode 
until a prescribed time limit is met without 
encountering any enemy vehicle. If so, the smoke 
reaction task is terminated and the platoon starts to 
execute a suspended task due to the smoke reaction 
behavior. 

7.5 Smoke  Deploy  Behavior 

This is also a specialized behavior for an US Army 
tank platoon that carries on-board smoke grenades. If 
any one of the tanks in a platoon is attacked by an 
enemy anti-tank guided missile (ATGM), then the 
tanks of the platoon start to deploy its smoke 
grenades to hide themselves from further observation 
from the enemy ATGM gunner, and shoot HE rounds 
back to the enemy ATGM site while covering or 
concealing them against the enemy. If the enemy 
ATGM site is completely destroyed from this 
engagement, then the platoon resumes its temporarily 
suspended task due to the enemy ATGM attack. 

This behavior actively deploys smoke between the 
tank platoon and the enemy ATGM site. Thus, 
accuracy of ammunitions from the tank main guns as 
well as visually guided missiles exchanged is degraded 
when they fly through the deployed smoke clouds. 
The performance of vehicle movement is also 
degraded by the deployed smoke. Finally, target 
acquisition and detection of both parties also become 
less effective. Sensing, movement, and shooting are 
equally affected by the deployed smoke even when a 
smoke deploy behavior is executed. 

7.6 Summary of Available Behaviors by 
Categories 

The following list provides a synopsis of the 
phenomenology behaviors capabilities implemented: 

• Environmental assessment and reasoning: 
- Libenvassess: assessment of 

environmental effect 
- Libenreason: computation of 

behavioral degradation value based on 
environment assessment 

• Complete set of passive and reflexive 
behaviors for all types of Army ground 
vehicles: 
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- Passive sensing: target acquisition 
- Passive shooting: weapon delivery 

accuracy 
- Reflexive sensing: automatic sensor 

switching 
- Reflexive shooting: tracking 
- Reflexive movement: speed reduction, 

heading change, active formation 
keeping 

• Two reactive tasks: 
- Libureactsmoke: smoke cloud crossing 

with formation and speed changes 
- Libusmoke: smoke deployment against 

enemy anti-tank missile attack 
- Visibility based dynamic formation 

spacing adjustment 
• Movement related reflective tasks for Army 

ground vehicles 
- Phenomenology influenced hiding 

positions for hasty occupy position 

8.  Summary and  Conclusions 

The phenomenology behavioral architecture with 
libenvassess and libenvreason provides a generic 
means to interface to ModSAF phenomenology. 
This approach facilitates inclusion of phenomenology 
behaviors in ModSAF. Rather than creating specially 
tailored ModSAF behavior libraries, the existing 
behaviors are transformed to phenomenology- 
sensitive behaviors by simply scaling the behaviors 
using values from libenvassess and libenvreason. 
This novel approach was found to be applicable to a 
wide range of ModSAF behaviors. 

Not all behaviors are scalable. Some behaviors are 
very specific and only valid to a certain environmental 
condition. For example, reaction to smoke screen is 
not a scaled behavior from a general movement 
behavior. This behavior must be specifically created. 

Sensing, movement, shooting behaviors for Army 
ground vehicles in ModSAF are successfully 
implemented with the behavioral scaling concept. 
However, development of the phenomenology 
behavioral architecture is still under way. As the 
project continues, the architecture will progressively 
cover   more    behavioral    concepts. However, 
phenomenology behavior project is already mature 
enough to find applications to other services, such as 
Marine Corps, Navy, and Air Force utilizing the 
generic means of phenomenology behavior 
architecture,, and the behavioral scaling concept The 
success on Army phenomenology behaviors can be 
easily duplicable for other services. 

Finally, all of the discussion done in this document is 
based   on   ModSAF   2.1.1.       Libenvassess   and 

libenvreason as well as all of environment sensitive 
libraries discussed can be found in ModSAF 2.1.1. 
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1.   Abstract 

Computer Generated Forces (CGF) systems that 
simulate individual combatants require a much more 
sophisticated detection model than do systems that 
simulate platforms. Platform-level CGF systems can 
simplify detection for several reasons: there are often 
several people on the platform whose observations 
can be aggregated; the observers may have a limited 
view of the world through windows or optical 
devices; visual search may be less important than 
other searches using instruments; and the platform 
may make enough noise so that audio detection is 
irrelevant. These factors are not true for individual 
combatants, so simulators must model the visual 
search and audio detection processes in more detail. 
Furthermore, typical CGF platform entities maintain 
a simple world model based on entities that they can 
currently detect; for individual-level simulations in 
which entities rapidly move in and out of line of sight 
or field of view, a more sophisticated world model is 
required. In this paper we describe our visual and 
audio detection models, an internal world model for 
individual combatant CGF, and some typical 
behaviors that result from these models. 

2.   Introduction 

As part of our work in simulating individual 
combatants (ICs) we have developed a computational 
model of human detection. The IC simulation is part 
of our effort to build computer generated forces 
(CGF) for the Team Tactical Engagement Simulator 
(TTES). TTES is a training system being developed 
by the US Marine Corps using distributed interactive 
simulation technology. 

2.1   Detection in platform entities 

IC CGF systems require much more sophisticated 
visual and audio detection models than do systems 
that simulate platforms. Platform-level CGF systems 
can simplify visual and audio detection for several 
reasons: 

• There are often several people on the platform 
whose observations can be aggregated. 

• The observers on the platform may have a 
limited view of the world through windows or 
optical devices. This situation makes entity 
facing more important, but eliminates the need to 
model variations across the field of view of the 
human observers. 

• Visual search may be less important than other 
searches using instruments. For example, a 
platform crewman may perform search by 
looking at a radar display. 

• The platform may make enough noise or shield 
sound so much that audio detection is irrelevant 

• The scale of time and space is generally larger in 
platform level engagements. When targets 
appear and move they are likely to stay in the 
same part of the field of view. 

2.2  Urban IC detection requirements 

At the IC level, the sensing characteristics of an entity 
must reflect the capabilities and limitations of one 
human. For visual detection, this means modeling 
multiple, limited fields of view with different acuities 
and directing visual search with one field based on 
objects visible in the second field. Hearing also plays 
an important part in the soldier's awareness of the 
situation. Sounds such as weapons fire or footsteps 
indicate the presence of friendly and enemy troops. 
Typically, the IC recognizes that other soldiers are 
around him from movement in his peripheral vision 
or from sound, and turns his gaze to identify the 
entity. These multiple sensing modes also require 
that the ICs mental model of sensed entities be more 
than just a list of visible objects; the IC must remain 
aware of threats even as they quickly disappear from 
his field of view. 

Some examples of the interactions with trainees that 
IC CGF must be able to support include the 
following." 
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• Soldier A shifts his gaze from one direction to 
another. Soldier B is lying prone in the direction 
A is looking. After some time, A detects B. 

• Soldier A shifts his gaze from one direction to 
another.  Soldier B is standing off to the side of 
A. A does not detect B. B moves, and A detects 
B. A cannot identify B, but turns toward him and 
identifies him. 

• Soldier A is in a room. Soldier B is outside in 
the hallway. A and B cannot see one another. A 
hears B as B walks down the hallway toward A's 
room. 

• Soldier A and B are in a room and hallway as 
above. A is firing its weapon out the window. A 
does not hear B walk down the hallway. 

• Soldier A is outside facing some direction. 
Soldier B walks very slowly up behind A. A 
does not detect B. 

• Soldier A moves around the corner of a building 
and sees soldier B in the street. A moves back 
behind the corner but prepares to fire at B 
coming around the corner. When nothing 
happens, A ventures around the corner to fire at 
B. B is no longer there. A continues down the 
street but watches for a nearby threat. 

This paper describes the visual and audio detection 
models, the mental situation model, and some of the 
related behavior of the IC CGF in TIES. 

3.   Visual Detection 

Ultimately, it would be desirable to model all aspects 
of human vision, including low level eye movement 
control, detailed eye characteristics, eye movement 
attention control, and low level visual processing 
(feature and motion detection, perceptual memory, 
etc.). Such detail would provide for accurate 
simulation of the effects of camouflage, target- 
background contrast, background clutter, motion 
detection, light levels, etc. and their effect on combat. 
However, for now we attempt to capture only some of 
the vision characteristics and thus some of the tactical 
effects. 

3.1   Vision characteristics modeled 

Human vision has been described in various texts 
such as (Haber, 1980). It is characterized by a high 
acuity, small angle primary field of view (foveal 
vision) and a lower acuity, peripheral field of view. 
The foveal field of view is only about 1 °. The fovea is 
used for shape, pattern, and color discrimination, and 

thus is the primary means of identifying targets. We 
do not model the visual processing in detail but 
compare the resolution of the foveal vision (a 
parameter) with the apparent size of an object and 
probabilistically determine if the object can be 
identified according to a published formula. 

Human vision also has a peripheral area that extends 
to about 95° from the vision center. Visual acuity 
falls off rapidly in the peripheral area, dropping to 
50% just 1° from center, 15% 8° from center, and 
finally to zero at the edge of vision. We currently 
model peripheral vision with a constant acuity value 
over all angles that is 10% of the foveal acuity. 
Peripheral vision is sensitive to motion, somewhat 
less sensitive than the fovea to color, but more 
sensitive to light. Our model incorporates acuity in 
comparison to target size and target motion to 
determine detection probability according to a 
published equation. We do not consider color 
contrast, and illumination levels do not currently vary 
in our synthetic environment. 

Since the peripheral field of view is so much bigger 
than the foveal field of view, it is the primary means 
of detecting targets. In fact, the near-foveal area is 
used for identifying all visual features of interest and 
directing the fovea to new directions. The fovea 
moves in jumps of 2 - 6° several times a second to 
new fixation points. We do not model the individual 
fixations, but instead simulate visual search over an 
area extending 30° from center (see Figure 1). This is 
an area in which people can recognize coarse patterns 
(and direct the foveal vision effectively). Detections 

Figure 1. Visual Melds of view. Shaded area is 
primary field of view, in which detailed visual 

searches are performed. 
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in the peripheral field of view are effectively 
immediate; in this 30° area, however, we compute an 
acquisition time for detecting objects because the 
fovea has to search the area. This model also 
assumes that identification is immediate once the 
fovea fixates on the object. 

The above description mentioned a few 
characteristics of human vision that we have not 
simulated; others that might be useful in a higher- 
fidelity simulation include the following: 
• Other differences in capability between primary 

and secondary: color sensitivity, low light 
sensitivity. 

• Effects of low light levels on acuity; effects of 
high light levels on dynamic range (and thus 
contrast); adaptation to low or high light levels. 

• Effects of observer motion on detection and 
identification. 

• Effect of contrast—brightness, color, and texture. 
Partly due to computational limitations— 
sampling background along line of sight to 
determine its characteristics. A contrast 
parameter is present in our model, but a default 
constant is used in all situations. Texture is hard 
to characterize. 

• Effects of clutter in scene on search and 
detection speed. 

• Specific direction of gaze during search and 
other tasks. However, in the future, search will 
be limited during specific tasks such as aiming a 
weapon, moving, or identifying an already 
detected object, because during these tasks vision 
is occupied by a specific object in a small 
angular area and search over the larger primary 
field of view does not take place. 

3.2   Discrete simulation of continuous sensing 

There is a modeling problem caused by the discrete 
nature of our computer simulation. The continuous 
sensing processes are approximated by discrete 
sampling. All events in the world and vision system 
that occurred in the last sampling interval dt are 
aggregated into the current sample. This sampling 
causes potential problems with short duration events, 
with rapid observer orientation change, and with 
simulation of dynamic processes. First, if the 
sampling period is longer than duration of just- 
noticeable events, then these events may be missed. 
For example, enemy entity peeks head around wall, 
then pulls it back quickly. Since in our simulations 
these   events   are   not   produced   by   an   easily 

recognizable action (unlike weapon firing events), the 
only solution is to sample frequently. Heuristics may 
be used to guess when samples can be skipped or the 
sample period can be stretched (e.g., Rajput, 1995). 

Second, if the entity is moving its field of view 
quickly, e.g. by rotating, then some angles—and thus 
areas of the world—may be skipped by the (enlarged) 
foveal field of view. For rapid movements this may 
be realistic; it corresponds to reduced acuity during 
observer movement. However, in a slower "sweep," 
it is unrealistic to prevent an entity from identifying 
an object that his vision passed over. We avoid this 
problem by using a suitably high sampling rate so that 
the new foveal field overlaps the old one. If this is 
not possible, then the foveal field is extended to cover 
the entire swept angle if the angular rate of change is 
less than 90° per second. 

We do not model low-level dynamic vision processes 
such as light level adaptation, eye movement control, 
etc. If these were modeled, then sampling must be 
frequent enough to avoid aliasing or instability. 

3.3  Algorithm 

The IC sighting algorithm is based on the Army's 
CECOM Night Vision and Electronic Systems 
Directorate (NVESD) sighting model as reported in 
(Lind, 1995). Versions of this model are used in the 
Janus and ModSAF simulations. This model has 
been extended to reflect the visual characteristics 
described in section 3.1 above. 

The output of the algorithm is a sighting status, which 
is one of the following: 
• INVISIBLE - The target is not in the observer's 

field of view or the observer doesn't have a clear 
line of sight to the target. 

• VISIBLE - The target is in the observer's field of 
view of sight and the observer has at least a 
partial line of sight to the target. 

• DETECTED - The observer has detected an 
entity. 

• RECOGNIZED - The observer knows the class 
of the target. 

• IDENTIFIED - The observer knows the specific 
type of the target, and whether it is friend or foe. 

The input parameters to the algorithm include the 
following environmental factors: 
• Light level. Since, as mentioned above, we do 

not consider light level, a default value is used. 
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• Atmospheric attenuation. We do not currently 
model this environmental factor. Since the 
ranges in our application are all under 250 meters 
anyway, this factor currently has little effect. 

• Brightness contrast with background. We do not 
yet examine the background to determine 
contrast, so a default value is used here. 

The following observer parameters are also inputs to 
the algorithm. The first two use values from (Lind, 
1995); the second two are set to correspond to the 
description in section 3.1. 
• Spatial frequency (acuity) of foveal vision, in 

cycles per unit angle of the visual field. 
• The number of sensor elements (e.g, pixels) that 

must cover the target in order to have a 50% 
chance of detecting, recognizing or identifying 
the target. 

• Size of primary and peripheral (secondary) fields 
of view, horizontally (30° and 95°) and 
vertically. 

• The spatial frequency of peripheral vision (10% 
of foveal acuity). 

• A random number indicating the observation 
ability of the observer relative to the average of 
the population. This is a "normally" distributed 
number with m = 0.5 and cutoff of [0,1]. 

Finally, the calculation depends on the particular 
situation: 
• Range to target. 
• Visibility of target. This depends on the target 

aspect, target posture, and occluding obstacles. 
Multiple observer-to-target visibility checks 
allow arbitrarily fine determination of occlusion. 
We currently use three parts for IC targets— 
head, torso, and legs. 

The algorithm proceeds as follows: 

I. Determine the range to target (RANGE). 

II. Calculate the target's critical dimension (CD). 
This is a linear, rather than areal, measure of size 
used in the NVESD model. 
A. If no part of the target is visible, acquisition 

status is INVISIBLE and the algorithm ends. 
B. Target_Visible_Area = area of projection of 

visible portion of target against a plane 
perpendicular to the line of sight between the 
observer and target. This step makes prone 
ICs more visible from the side than from in 
front, etc. 

C. CD is taken to be the square root of the 
Target_Visible_Area. (Lind 1995, p.15) 
defines characteristic dimension as the target's 
"smallest" size in meters. However, since we 
characterize the human figure in different 
postures in terms of areas rather than 
dimensions, our model generates a linear 
measurement from area. 

III. Determine if the target is in the primary and 
secondary (peripheral) fields of view: 
A. Primary field of view—target is within a 

horizontal angle (PFOV_HORIZ_ANGLE) and 
vertical angle (PFOV_VERT_ANGLE) of 
observer. 

B. Secondary field of view—target is within a 
horizontal angle (SFOV_HORIZ_ANGLE) and 
vertical angle (SFOV_VERT_ANGLE) of 
observer. 

C. If the target is not in either field of view, 
acquisition status is INVISIBLE and the 
algorithm ends. 

IV. Calculate the target's angular size (TAS). This is 
an approximation based on the fact that 

tan (6) B 9 

when 8 is small. For recognition and 
identification, and for detection in the primary 
field of view, 

TAS = CD /RANGE 

For detection in the secondary field of view, also 
consider target motion: 
A. Calculate Axial Motion Factor (AMF), which 

is movement along observer's line of sight— 
"looming." 

AMF = Cy X | (Current size - last size) | Idt 

where C/ is a sensitivity constant. Note that if 
a target suddenly becomes visible ("blinks 
on") in the field of view, the AMF will be non- 
zero for the next sighting check. 

B. Calculate Perpendicular Motion Factor 
(PMF) which is movement perpendicular to 
observer's line of sight: 

PMF = C2 x [CD x VPy I dt 

where C2 is a sensitivity constant and VP is the 
speed perpendicular to the line of sight. 
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C.   TAS = (CD + AMF + PMF) /RANGE 

V. Calculate the number of cycles (i.e., sensor 
elements in the eye) that overlap the critical 
dimension of the target. 
A. Determine the spatial frequency (SF) of the 

sensor. The NVESD model accounts for 
target-background contrast, sky-to-ground 
brightness, atmospheric attenuation, and scene 
brightness by modifying the effective spatial 
frequency of the sensor. Our model ignores 
these factors for now and uses the spatial 
frequency that corresponds to optimal 
conditions. From (Lind 1995, p.24), 

While the NVESD uses a new random 
number in this expression for each sighting 
attempt; we use the ABILITY which is 
constant for the observer. 
If the target has been in the primary field 
of view for Tir, time, then the acquisition 
status is DETECTED; otherwise it is just 
VISIBLE and the algorithm ends. The 
NVESD model also makes sure that Td„ is 
less than the time it takes to search the 
entire field of view. We have chosen not 
to do this, but in the future we plan to 
reformulate the detection time equation to 
account for field of view size. 

SFpriman = 2.299 cycles/milliradian 

SFsccondan = 0.10 X (SFprima0) 

B.  Calculate cycles on the target for primary and 
secondary field of view: 

N=TASxSF 

been VI. Detection. If the target has already 
detected, skip to Recognition. Otherwise: 
A. Calculate the probability of detection given 

infinite time (P,n!) for each applicable field of 
view. The function, from ( Lind, 1995, p. 15), 
is based on the ratio between the number of 
cycles on the target (N) and the number of 
cycles required for an average observer to 
have a 50% probability of acquisition (Nso). 

P^iN/Nsof/ll+iN/Nsof) 

where /V5o = 1.0 ( Lind, 1995, p. 11) and £ is 
given by 

£ = 2.7 + 0.7xAWV. 50 

B. Compare Pmf to the observer's acquisition 
ability (ABILITY). Unlike the NVESD model, 
which generates a random number for each 
observer-target pair, we use one number per 
observer. If the test fails, this target will never 
be detected under current conditions, and the 
check ends. If the target is in the secondary 
field of view, detection is instantaneous and 
the algorithm proceeds to Recognition. 
Otherwise calculate the time required to detect 
in the primary field of view (Tdet) in seconds: 

1.   Tde, = (-3.4 / Pinf) x In (1.0 - ABILITY) 

VII. Recognition. If the target has already been 
recognized, skip to Identification. Otherwise, 
calculate Pinf for recognition for each applicable 
field of view and compare it to ABILITY. /V5o for 
recognition is taken to be 3.5 (again, Lind, 1995). 
If the test succeeds, then this target's acquisition 
status is immediately set to RECOGNIZED. 

VIII. Identification. Calculate Pmf for identification 
for each applicable field of view and compare it to 
ABILITY. Nso for identification is taken to be 6.4. 
If the test is successful then this target's 
acquisition status is immediately set to 
IDENTIFIED. 

Figure 2 illustrates typical values generated by this 
model for an IC application.   The bottom and top 

"* Identification - Primary FOV 
-   Detection-Secondary FOV - Stationary 

"°- Detection - Secondary FOV - Movement at 3 m/sec 

Figure 2. Probabilities of detection and 
identification of a standing human, vs. range. 
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curves show the probabilities of detecting a human 
when it is in the secondary field of view. The top 
curve is for a moving person. The center curve shows 
the probability of subsequently identifying the human 
when the primary field of view is turned toward it. 
Intuitively, these probabilities seem too high to us, 
even for excellent lighting conditions; it is possible 
that the probabilities should be reduced to account for 
visual clutter in the scene. 

4.   Sound 

4.1   Sound Generation and Propagation 

As with visual stimulus generation, sound generation 
and propagation is complex and dependent on many 
physical phenomena. A first order model of sound is 
actually more difficult to create than a simple 
visibility model. The simple visibility model assumes 
all objects reflect a lot of light to the observer, and 
thus the object can be seen if there is a clear line of 
sight to it. Object size, which is information easily 
obtained, can be the dominant factor affecting 
detection probability. In typical battlefield 
environments, sound dissipates over much smaller 
ranges than does light, so the intensity of the source 
and the effects of propagation are much more 
important. The sound generation characteristics of an 
entity are complex and not readily derivable from 
visual models. Entity sound characteristics depend 
on what the entity is currently doing. Sound 
propagation depends not just on the line of sight, but 
on reflections over many paths. 

We have not attempted to build a high fidelity sound 
generation and propagation model. Not only would a 
high fidelity model be computationally expensive, but 
it would depend on experimental data that we do not 
have. Instead, we have attempted to build a simple 
model that captures—at least qualitatively—some 
tactically significant phenomena. 

Our sound generation model assumes that the primary 
source of sound for humans is the foot hitting the 
ground, and that the sound generated by footfalls is 
proportional to running speed. In addition, the sound 
level is reduced for ground types that are not hard 
(dirt, grass, etc.). The maximum sound level while 
running, heard at 1 meter, is a configurable 
parameter. For vehicles, we assume that the primary 
source of sound is the engine, and that engine noise is 
proportional to engine load. We estimate engine 
load by comparing the vehicle's current acceleration 
value with the maximum acceleration allowed: 

Sound_Level = Vehicle _Max_Sound x 
Acceleration I Max_Available_Accel 

where Vehicle_Max_Sound (sound level at 1 m) is a 
configurable parameter for the vehicle. 
Max_Available_Accel is a function of speed in our 
vehicle dynamics model, e.g. 

Max_Available_Accel = Max_Accel X 
(1 - Speed I Max_Speed)) 

Weapon fire is also important. Each entity generates 
sound at a certain level when it fires its weapons. 
This level is also configurable. For all sound sources, 
we assume that the sound level is equal in all 
directions from the source. 

Our sound propagation model is currently very 
simple: sound is attenuated with increasing distance 
and absorbing and reflecting surfaces are ignored. 
Attenuation is 20 x log(Di stance) in dB, which was 
estimated from (Woodson, 1981). In addition, we 
reduce the sound level 10 dB if there is no clear line 
of sight from source to listener. We do not currently 
model propagation time, as sound can cross our 
terrain database in about a half a second. 

4.2  Sound Detection 

Once sound reaches the listener, audio detection 
phenomena must be modeled. Characteristics of 
human hearing include a limited active dynamic range 
and the masking effect of louder sounds, adaptation to 
different sound levels, ability to discriminate 
frequencies, ability to discern the direction of the 
sound, and aftereffects of loud sounds. We are 
chiefly concerned with masking effects and direction 
determination in our model. At any moment, we 
compute the loudest sound reaching the listener and 
allow him or her to detect that sound and any others 
within 30 dB. This range was estimated from the 
results of masking experiments, described for 
example in (Geldard, 1953). We allow the listener to 
determine the location of the sound source exactly. 
This is perhaps the biggest weakness of our model. 
However, this simplification avoids a great deal of 
computation and it matches the current localization 
capability of the manned TTES trainee platforms. In 
some cases it may not even be unrealistic, as humans 
in the real world may be able to use other cues to 
localize sound. 
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As with visual detection, we model continuous audio 
phenomenon with discrete sampling. Since weapons 
fire is truly asynchronous in DIS, we accumulate fire 
events between samples. 

5.   Internal Situation Model 

5.1   Partial Identification 

As indicated in the sections above, our CGF uses the 
fairly standard (e.g. Lind 1995) entity identification 
levels "detected" (entity presence known, but nothing 
known about it), "recognized" (class of entity- 
vehicle, lifeform, etc. is known), and "identified" 
(everything about the entity is known). In our sound 
detection model, footsteps and engine noise provide 
recognition; small arms weapons fire provides 
identification. 

These identification levels are coarse aggregations of 
facts known about a target and do not really represent 
knowledge well. For example, it is not clear how 
useful the distinction between detected and 
recognized is for ICs. "Identification" is not really 
identification of a specific individual, which could be 
useful at the IC level. Ideally, all bits of information 
about an entity could be determined from inference as 
well as observation. Information includes all publicly 
observable facts present in an Entity State PDU plus 
other information such as whether the entity is a unit 
leader, whether it is damaged, what it is carrying, 
what its age is, how well trained it is, etc. Various 
observations could fill in different facts about the 
entity. For example, the behavior of a soldier could 
indicate that it was a unit leader; the motion of a 
soldier could indicate what load it was carrying; or 
the path of a vehicle across rough ground could 
indicate that the vehicle is tracked. This is an area for 
future work. 

5.2  Situation Memory 

ICs in particular must remember entities that they no 
longer see. Their field of view is limited and entities 
disappear if the observer turns around; in addition, 
most threats may be out of sight behind cover most of 
the time. 

We have developed a representation for an entity's 
mental model of the entities it has seen. When 
entities are currently visible and detected (to some 
level), they are "real." Entities that have been 
detected with sight or sound but are not still visible 

are given a status of "figment." A complete record of 
information known about them when last seen is 
recorded. The positions of figments can be tracked by 
sound if they continue to make noise. If an observer 
looks at a location thought to contain a figment but 
the figment is not observed there or elsewhere, the 
figment becomes a "ghost." This ghost is known to 
exist but the observer does not know exactly where it 
is. (Possible locations may be inferred.) 

When an entity is detected, goes out of sight, and then 
reappears, the observer must determine if it saw the 
same or different entities. On one hand, there are 
many details of appearance, equipment and weapons 
carried, and motion that might allow an observer in 
the real world to distinguish between individuals. On 
the other hand, if such discrimination is not possible 
in the real or virtual world, it could be arbitrarily 
difficult to determine how many individuals were 
seen. Sophisticated constraint reasoning would be 
required to estimate the true situation (e.g., how many 
individuals were seen at once? Could one individual 
have moved between the observed locations in the 
time observed?). 

6.   Conclusion 

Individual combatant simulations involve a great deal 
of detail and require relatively high fidelity models, 
especially in urban environments. It is common in 
such environments for trainees to interact with CGF 
entities at ranges under 10 m, unlike in armored 
combat environments. Behavior in the IC 
environment from moment to moment often depends 
on visual and audio sensing. This sensing is primarily 
natural human vision and hearing. We have adapted 
existing CGF detection models and created new ones 
to provide our IC CGF with realistic visual and audio 
sensing abilities and mental situation models. This 
has allowed us to create much more realistic IC 
behavior. 
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1. Abstract 

The Modular Semi-Automated Forces (ModSAF) 
simulation has historically placed heavy emphasis on 
platoon and company level maneuver entities 
operating in a close battle environment. These 
behavioral representations are supported by 
observation, enemy detection, terrain recognition, 
tactical movement, and direct fire engagements, all of 
which are suitable behaviors to operate in the task 
frame environment on which ModSAF is based. 
However, the introduction of entity-based indirect 
fires into the virtual battle has required significant 
conceptual changes in the manner by which combat 
simulations are employed and driven. 

Current ModSAF functionality incorporates fire 
support through a series of graphical user tools to 
plan and implement indirect fires. Application of 
these tools require highly skilled operators to 
effectively utilize these tools to create indirect fires 
effects on the virtual battlefield, which supports the 
reality of the maneuver scenario being executed. 
While this may lend a degree of realism to the 
maneuver personnel using ModSAF, it lends little 
training benefit to the fire support personnel 
employed in support of the operation. In fact, it 
presupposes a high level of expertise, since this fire 
support operator must effectively simulate the 
resultant behavior of all echelons of fire support 
personnel who would normally be supporting the 
maneuver force in the exercise, as well as simulating 
the responsiveness of the fire units. 

Effective simulation of indirect fire support must take 
into account the dissimilarities by which these assets 
conduct themselves in support of a tactical operation. 
The tactics employed by fire support assets differ 
greatly from their maneuver counterparts, since they 
do not engage in close combat operations. Hence, the 
maneuver task frame and action drill behaviors so 
prevalent in ModSAF lends little application to fire 
support entities. The actual engagement of maneuver 
units in close combat relies on direct observation and 
reaction to enemy deployments and activities, and is 
largely conducted by individual entities. However, 
indirect fire support relies upon information exchange 
(tactical messaging) between stationary elements of a 
structured  command   and  control   organization   to 

provide target acquisition, fire support coordination, 
and supporting fires. Also, fire support missions are 
short in duration and event driven, which does not 
lend itself to the time-driven simulation world found 
in ModSAF. 

The Applied Research Laboratories, the University of 
Texas at Austin (ARL:UT), together with the Defense 
Advanced Research Projects Agency (DARPA) and 
the U.S. Army Simulation, Training, and 
Instrumentation Command (STRICOM), have been 
developing an entity-based fire support simulation in 
ModSAF in conjunction with the Command Forces 
(CFOR) program. This effort necessitated significant 
design changes to allow the event-driven fire support 
simulation to work within the ModSAF environment 
and allow the leveraging of existing tactical rulesets 
required to simulate fire support entity behavior. 
Recent integration of the initial phases of this work 
into the ModSAF baseline shows that this design 
approach is feasible, and may be explored as an 
avenue to support other event-driven behaviors. This 
paper will present an overview of this simulation 
concept, and introduce the design approach selected to 
serve as the infrastructure for future development of 
tactical mission behaviors. 

2. Current Virtual Fire Support Capabilities 

Recent years have brought an explosive growth in the 
application of computer simulation technology to 
provide high-quality, cost-effective training to 
military combat personnel. These applications range 
from combat crew trainers to extensive "man-in-the- 
loop" wargaming systems, which create a virtual 
battlespace in which entity models may exist and 
intemperate within a defined framework. Although 
other virtual battle simulations exist, ModSAF 
essentially may be viewed as the standard virtual 
simulation envisioned for use in training command 
and staff groups in battlefield operations and tactical 
control measures. 

The virtual battlefield currently defined within 
ModSAF consists of representations of terrain and 
combat entities, and a suite of tools used to establish 
the guidelines within which the entity models 
operate. These tools are used to refine the basic 
(default) behaviors of virtual entities and to create/link 
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task frames for the entities which define the tactical 
operations each shall conduct. Using these tools, the 
user may create tactical scenarios in which created 
entities maneuver according to a derived plan, detect 
opposing entities, and engage them with direct fires 
within the limits imposed by the system user. These 
limits consist (basically) of the ability to control 
whether a particular entity will engage a target on 
acquisition (freeing weapons to fire) and specifying a 
level of proficiency. 

Hence, the current system supports the visual (line of 
sight) requirements of the close maneuver battle and 
possesses a fairly mature ability to control the tactical 
disposition and displacement of combat entities. 
However, this represents only one facet of a tactical 
operation. Success depends every bit as much on the 
incorporation of other assets into the overall scheme 
of battle. Maneuver forces cannot hope to succeed 
without indirect fire, air defense, engineering, signal, 
and logistical support. Some tools do exist within 
ModSAF to provide a limited functionality in some 
of these areas, but they are derived from a maneuver 
perspective and do little to train ModSAF users either 
in the unique missions of these supporting arms, or 
more critically, in the coordination of efforts between 
the combat and support elements essential to overall 
success. Effective operational coordination (both in 
planning and execution) should be the cornerstone of 
any command and staff training objectives. 

Although shortcomings may be noted in several 
areas, as indicated above, this paper focuses on the 
necessity of incorporating indirect fire support 
capabilities into the virtual battlefield environment. 
In general, the task frames and behaviors provided in 
existing ModSAF baseline releases are not suitable 
for fire support entities. Existing behaviors were 
developed to simulate the direct fire battle and do not 
address the combat operations and tactical behaviors 
of the Field Artillery units and sections supporting 
the indirect fire battle. Some behaviors have limited 
similarity, but only through very careful and constant 
manipulation can a highly skilled fire support 
individual use ModSAF to approximate a simulation 
of integrated fire support. The level of skill required 
to affect this indirect fire behavior tends to suggest 
that no fire support training benefit would be derived 
by using the system in this fashion. 

For example, given a tactical scenario running on the 
current ModSAF where a friendly Field Artillery unit 
is sustaining damage, a skilled operator could 
represent a hasty displacement of a Field Artillery 

unit by quickly creating a unit movement task frame 
for the selected unit, defining a route to another 
location, and immediately initiating the move. 
However, if properly implemented, a hasty 
displacement to an alternate position should be a 
reactive measure that a Field Artillery unit should 
initiate in response to receiving a significant volume 
of incoming indirect fires on their position. This 
reactive behavior should occur without operator 
intervention or direction. 

ModSAF does provide some fire support tools which 
may be used to simulate indirect fire support. These 
tools do have benefit in that they may effectively be 
used to provide pseudo-indirect fire effects in the 
virtual environment to enhance the realism of training 
maneuver command and staff personnel. The Fire 
Support Editor can be used to simulate fire missions, 
but the tool is operator intensive, and again requires 
significant, pre-existing skills to use the tool 
properly, thus precluding a need to use ModSAF to 
train the operator. There is also a munitions 
implementation button, affectionately known as the 
"finger of God", which allows instantaneous 
detonation of any pre-selected munition load. This 
tool is unrealistic in that it allows instantaneous 
response with unrealistic effects. 

Section 4 will introduce the specific capabilities that 
need to be considered to make a suitable virtual 
environment to support the indirect fire battle. Before 
considering these needs, a brief description of the 
concept of fire support (the tactical activity which 
provides indirect fires) is useful. 

3. Overview of Fire Support 

3.1 General 

During combat operations, maneuver forces cannot be 
expected to deal with all targets which present 
themselves. The threats present to maneuver forces 
range far beyond those opposing maneuver elements 
which are within range of visual capabilities. Other 
threats include opposing indirect fire systems, 
observation locations, command and control centers, 
assembly point for reserve forces, and logistical 
centers. All these classes of threat are ideal targets for 
indirect fires. Also, maneuver commanders in 
defensive operation may elect to engage targets with 
indirect fires to preclude giving away the location of a 
friendly unit prematurely. 
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All maneuver brigades are employed in battle with 
indirect fire assets (cannon artillery) which are in 
direct support of the brigade. These systems augment 
the organic mortar assets included with the maneuver 
forces. Additional, longer-range artillery assets [e.g., 
Multiple Launch Rocket System (MLRS)] are 
available in general support to division and corps 
elements. Additionally, maneuver elements (brigade 
and higher) may be supported by air assets (rotary 
and/or fixed wing) and Naval Gunfire. 

Potential targets are identified by intelligence sources 
or by sensor systems. This information is forwarded 
to Fire Support Elements (FSE), which are attached 
to each maneuver echelon from company to corps. 
The FSEs determine which potential targets are 
attackable, and prioritize that list for consideration. 
These targets are then scheduled for attack and a 
determination is made with respect to what type 
indirect fire system will be used in the attack. Targets 
may be scheduled for attack immediately, or, in the 
case of preplanned targets, scheduled in accordance 
with a time sequence or as "on call" missions. Those 
targets scheduled for attack by cannon and rocket units 
are forwarded to a Field Artillery Command Post 
(CPs), where specific units to engage the targets are 
determined. 

3.3 Fire Support Coordination and Control 
(FSCC) 

Although two distinct functional areas, Fire Support 
Coordination and Fire Support Control are combined 
for ease of discussion and understanding. FSCC deals 
with those tasks associated with the delivery of fires 
during the execution phase of the operation, and is 
commonly referred to as fire mission processing. 
There is a tendency to view the tasks of Fire Support 
Coordination as being performed by Fire Support 
Elements (FSEs), while Fire Support Control tasks 
are performed by Field Artillery units. However, it is 
better to view Fire Support Coordination as a process 
that produces a target and determines a suitable means 
to attack it, while Fire Support Control is the process 
by which the mission is conducted after those 
selections are made. The sequential performance of the 
tasks associated with FSCC is what lends the process 
flavor to these functional areas. FSCC tasks are also 
often logically grouped in terms of these sequential 
events for a single class or category of fire mission, 
which are commonly referred to as fire mission 
threads. 

3.4 Movement Control (MC) 

Fire support is conducted in two distinct phases; 
planning and execution. Planning encompasses those 
activities that are performed prior to the actual 
conduct of a tactical operation. At that point, the 
execution phase begins. Planning functions are 
grouped logically and tend to be viewed as process- 
oriented, while execution functions are more task- 
oriented, in keeping with the precepts of the U.S. 
Army's Training Evaluation Program (ARTEP). Five 
functional areas have been defined which comprise 
indirect fire support. 

3.2 Fire Support Planning (FSP) 

This functional area is the heart and soul of fire 
support, and consists of those processes which are 
used to determine the suitability of a maneuver plan 
in terms of fire support's ability to support the 
maneuver forces by fires, to determine the guidance 
by which subordinate units will conduct the execution 
phase of the plan, and to determine a schedule of 
indirect fires against planned targets which will pose 
an immediate threat to the maneuver forces during 
execution. The products of this process is the Fire 
Support Plan, the Field Artillery Support Plan, and 
the Fire Support Execution Matrix. 

This functional area comprises those tasks that are 
required to position and emplace fire support assets in 
positions to support the initial execution phase of the 
operation and to control the movement of those assets 
after inception of the operations. Movement during 
execution consist of both planned and reactive 
movement. Unlike maneuver elements, fire support 
assets normally travel in column formations from one 
stationary position to another, and do not normally 
require provisions for individual maneuvering in 
reaction to contact. This may change as the Paladin 
and Crusader systems assume the principal place in 
the definition of movement doctrine, but the standard 
maneuvering schemes used by mechanized and armor 
assets will still not be applicable to fire support 
formations. 

3.5 Tactical Operations (TACOPS) 

This functional area is a repository for a collection of 
miscellaneous tasks performed in support of the 
execution phase of an operation. These tasks are 
normally performed by support elements rather than 
the indirect fire units themselves. Missions performed 
within   this   area   include   ammunition    resupply. 
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meteorological operations, survey operations and 
status reporting. 

4. Requirements of the Indirect Fire Battle 

Conceptually, there are fundamental differences in the 
direct fire and indirect fire battles, which must be 
addressed within the virtual training environment. The 
close maneuver battle is more execution intensive, 
allowing individual combatants the ability to react to 
the immediate threats identified (line of sight 
acquisition) within their environment. As discussed 
previously, ModSAF was largely developed to 
provide a suitable virtual environment to support 
this. Within the fire support community, there is a 
limited need to observe the enemy directly, with the 
exception of those observation elements which are 
attached to forward maneuver forces and who are 
responsible for identifying targets of opportunity and 
responding to requests for fire support from the 
supported maneuver commanders. 

In contrast, indirect fire support strives to provide 
adequate and responsive fires in a target-rich 
environment in the face of a highly lethal counterfire 
threat. Hence, effective analysis of target intelligence 
and appropriate planning to support maneuver forces 
with indirect fires during execution of their operation 
is the goal of those persons responsible for indirect 
fires. To accomplish this, the fire support community 
relies heavily on automated command and control 
measures, using a structured, data-intensive 
communications network, to move targeting 
information efficiently about the battlefield and to 
provide the fires necessary to defeat identified targets. 

The current ModSAF environment provides very 
limited support for structured command and control 
decision making during either the planning or the 
execution phases of an operation. Existing entity 
behaviors are very reactive in nature, and do not 
exhibit more than a rudimentary ability to assess 
information and to make intelligent choices during 
execution. Maneuver elements, when confronted with 
an opposing entity, engages the target with a selected 
organic weapon, and does not even consider indirect 
fires or air support as a means to defeat the target. 

In contrast, indirect fire support entities, at all 
echelons, rely on the ability to collect and analyze 
information to determine the most effective and 
efficient means to service targets and maneuver 
requests for fire. The indirect fire environment is 
target rich and asset poor, so selection criteria must 

be clearly defined and logically checked to maintain 
tactically realistic results. Each mission considered 
will, at each echelon, result in numerous available 
options. 

The current ModSAF is essentially a time-driven 
simulation, with state transitions and activities 
occurring within specific time slices which recur 
steadily. This environment suits the reactive nature of 
the maneuver entities, which display rapidly change 
states, such as changing locations during movement, 
tube orientation, and ballistic flyouts. Although an 
implementation of indirect fire simulation could be 
designed to operate in a like manner, an event-driven 
simulation is more appropriate to model the processes 
by which fire support is accomplished. Fire support 
assets normally operate in stationary positions, until 
forced to move by the tactical situation. This move is 
then conducted in a deliberate fashion, and existing 
ModSAF functionality will probably be suitable to 
support this. 

Fire support assets react to trigger events which 
instantiate sequential steps in the overall fire support 
mission processes which define the fire support 
tactical mission. Normally, but not always, these 
trigger events are in the form of a tactical message 
received via the communication network. Although 
the current ModSAF does include provision to send 
messages between entities, often the interaction 
between entities is determined by shared access to a 
common database and special utilities coded to 
represent verbal or visual communications. 

In summary, it should be clear that an effective 
virtual simulation of the indirect fire support battle 
should allow for intelligent entities reacting to events 
which trigger a logically structured decision process. 
To support this, the entities should be capable of 
routing data between them via a structured 
communication network. Although not present in the 
ModSAF baseline, work has been accomplished to 
establish a working prototype event-driven simulation 
and structure communications network within the 
ModSAF environment in support of the Synthetic 
Theater of War (STOW) Command Forces (CFOR) 
effort. 

5. FS CFOR Implementation Overview 

5.1 General 
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The Fire Support Command Forces (FS CFOR) 
project was initiated to begin providing enhanced 
indirect fire support capabilities to maneuver forces 
operating in the ModSAF virtual environment. FS 
CFOR seeks to create intelligent command entities 
(CE) that can apply interpretive logic to situations 
and operational orders to make tactical decisions and 
plan, direct, and influence the behavior of subordinate 
semi-automated forces within the virtual 
environment. In order to accomplish this, CEs receive 
information through both traditional ModSAF 
techniques and the transmission and receipt of 
Command and Control Simulation Interface Language 
(CCSIL) messages. CCSIL messages are intended to 
simulate, in the virtual battlefield, the voice and data 
message traffic present on the live battlefield. 

This basic simulation concept and generic model was 
leveraged directly into the FS CFOR effort. The 
simulation engine which was designed for the FS 
CFOR effort is known as the Decision Manager, and 
versions of this functionality run currently both in 
ModSAF and FS CFOR software. 

Output Message #1 

1. Receive Input 
2. Assess State 
3. Determine Path 
4. Update State 
5. Compose Output 
6. Transmit (Delay) 
7. Timeout Actions 

Input 
Message 

lOutput 
Message 
#2 

5.2 Decision Support Logic 

The FS CFOR effort grew out of existing fire 
support simulation technology and the behavioral 
representations which were completed for the Fire 
Support Automated Test System (FSATS) program. 
FSATS is an ongoing test instrumentation effort by 
ARL:UT which incorporates an event-driven, 
message-based simulation which has proven highly 
effective in support of operational testing of the 
Advanced Field Artillery Tactical Data System 
(AFATDS). This program has invested a great deal of 
time and resources to define the logical behavior, in 
the form of tactical rulesets, associated with the 
various fire support command and control players to 
support the processing of routine fire missions. 

In the FSATS simulation, software objects are created 
which represent simulated players, or operational 
facilities (OPFACs) in the test environment. Each 
object maintains an independent suite of tactical state 
information, which is used in determining appropriate 
courses of action. The objects communicate via actual 
tactical networks using appropriate protocols and data 
formats. On receipt of a tactical message, the 
receiving model determines a course of action based 
on its internal state and the information contained in 
this triggering event. Once the appropriate pathway is 
determined, the resultant activities dictated by that 
pathway (normally updating state, building and 
transmitting an output response message, and 
entering a "wait for" state) is accomplished. The 
generic process by which this occurs is graphically 
depicted in the following figure. 

Output Message #3 

Figure 1: The OPFAC Logic Model 

5.3 Abstract Message Formats 

Inherent in this simulation approach is the knowledge 
that a sound inter-object communications network 
must exist. In the FSATS system, live tactical 
networks, which supported the wide array of fire 
support messages was used. The resulting FSATS 
simulation remains effective, but the numerous 
differing representation of the four major messaging 
schemes supported by FSATS [AFATDS Variable 
Message Format (VMF), TACFIRE Bit-Oriented 
Messages (BOM), TACFIRE Character-oriented 
Messages (COM), and TACFIRE Fixed Format] led 
to an implementation where decisions were based in 
large part on the system with which the simulation 
was interfacing. This has proven cumbersome to 
maintain, as changes to decision logic and utiltiy 
software must be made to accommodate routine 
changes to tactical messages. 

In the FS CFOR effort, it was determined that this 
approach should not be used, and that the impacts of 
external message formats and data representation 
should be isolated away from the Decision Manager. 
Happily, the overall CFOR effort had already 
implemented the CCSIL concept to emulate tactical 
messaging. This gave ARL:UT the ability to define 
the Fire Support Abstract Message Set (FSAMS). 
This internal data representation forms the basis for 
the fire support CCSIL messages (implemented by 
the MITRE Corporation) and maps to messages used 

423 



FIRE REQUEST 

FR;GRID/POLAR/LASER/SfflFT 
FR;MOVl/MOV2 
PTGT;RPT (Firefinder FM;CFF) 
FM;CFF 
MM_FSE_FR RO 
MM_CP_FR RO 
MM_OTFRO 
MM_CP_FO RO 
MM_FO RO 

FM INFO/CONTROL 

FR;QUICK 
FOCMD 
MTO;TGT 
EOM;SURV 
FM;FOCMD 
FM;MTO 
FM;EOM 
FM;MFR 
MM Commands RO 
MM_In_Progress RO 
MM_EOM RO 
MM_MFR RO 
MM_Coord_Request RO 
MM_Coord_Response RO 
MM_Status RO 

INTELLIGENCE REPORT 

ATI;GRID/POLAR/LASER/SHIFT 
SHELREP 
ATI;CDR 
ATI;AZR 
ATI;SHELREP 
MM_ATI RO 

UNIT DATA 

OBSR;LOC 
RDR;LOC 
AFU;UPDATE 
UM_Basic_Unit 
UM-Unit_Detailed 

AMMO DATA 

AFU;AMMO 
AFU;CSR 
AFU;AMOL 
UM_Ammo_Summary 
UM_Ammo_Detailed 
UM_Cn_Mtr_MunUons 
UM_Rocket_Missile_Munitions 
UM_Propellaiit 
UM.Fuze 
MM EOM RO 

MOVE RECORD 

AFU;UPDATE 
AFU;SR 
UM_Move 

Figure 2: Fire Support Abstract Message Set (FSAMS) 

by the live devices to ensure a complete translation 
(when required). A summary chart of the current 
FSAMS messages, and their equivalent tactical 
messages is shown in Figure 2. At the current time, 
only the Fire Request and the Fire Mission 
Information/Control messages have been 
implemented. 

5.4 Integration of Live Elements 

When defining the FSAMS message contents, care 
was taken to ensure that each message contained a 
sufficient amount of data elements to allow a 
mapping of the data contained in the CCSIL 
messages to the various formats used by the live 
devices in the fire support community. Then using a 
modified version of FSATS, which has been adapted 
to be compatible with the Distributed Interactive 
Simulation (DIS) environment, ARL:UT was able to 
create a prototype interface box which will allow 
integration of live fire support players with simulated 
entities existing in the CFOR virtual world. This 
effort,   known   as   the   AFATDS-DIS   bridge,   is 

operational in prototype form, and contains sufficient 
functionality to allow the incorporation of a live 
Brigade FSE, using AFATDS, to interact with 
CFOR players in conducting an end-to-end fire 
mission. 

6. Current State of FS CFOR 

The FS CFOR development has completed its initial 
prototype phase. At the current time, five fire support 
entities have been developed which support basic fire 
mission processing (fire for effect mission thread). 
These entities are the Forward Observer (FO), the Fire 
Support Team (FIST), the Battalion (BN) FSE, the 
Mortar Platoon, and the Field Artillery Direct 
Support Cannon Platoon. 

The FO surveys its area of reference in the virtual 
environment and determines whether opposing force 
entities entering into that area are to be classified as 
targets, according to its guidance tables. If so, a fire 
request is prepared and forwarded through the FIST to 
the BN FSE.  This entity determines whether the 
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target should be engaged with mortars or cannon 
assets and forwards the fire request to the selected 
entity The fire mission then runs to completion, 
with the entities creating appropriate message traffic 
and transmitting these via the CCSIL network. 

Continuation of this work should receive a high 
priority, if FS CFOR is to become an effective tool 
to train key fire support command and staff elements. 
Additionally, a complete, entity-based fire support 
virtual simulation should be considered as a strong 
candidate to drive collective training exercises in the 
near future. 
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1. Abstract 

Computing power has often been the primary factor 
limiting the number of entities that a stand-alone, 
virtual-level Computer Generated Forces (CGF) 
system can support. By connecting several CGF 
systems to a network, using a communications 
protocol such as Distributed Interactive Simulation 
(DIS), CGF developers have been able to increase 
exercise capacity. However, the capacity of virtual 
exercises is still relatively small; networked CGF 
systems that use DIS are currently restricted to 
exercises on the scale of hundreds of entities. Yet 
large-scale exercises, consisting of perhaps tens of 
thousands of entities, are desirable both for their 
ability to teach cooperative techniques to large groups 
of soldiers and for their potential to visualize analysis 
scenarios at the entity level. 

One way to extend such exercise limitations is to 
integrate one or more aggregate-level wargame 
simulations into the virtual environment; the 
wargames provide the context for a large-scale 
exercise, while smaller conflicts are played out in the 
virtual environment. In addition, CGF entities can 
supplement manned simulators-and even live 
equipment-to populate the virtual battlefield. 

1ST has developed an interface architecture that links 
multiple aggregate-level wargame simulations to 
multiple virtual components in DIS. In this 
architecture, each aggregate and virtual component 
uses a Simulation Interface (SI)-a set of functionality 
that allows interaction across the Aggregate+Virtual 
(A+V) boundary-to manage the communications 
between the linkage components. 

This paper presents IST's architecture for linking 
multiple aggregate-level wargame simulations to 
multiple virtual components. It discusses the issues 
that make such a linkage difficult, and the 
communications required to support the architecture. 
This paper also presents details of the architecture's 
implementation as part of two projects: Integrated 
Eagle/BDS-D, which links the Eagle aggregate 
simulation    to    the    1ST    CGF    Testbed;    and 

Eagle/TTEMS, which links Eagle to ModSAF and 
ITEMS-hoth CGF systems. 

2. Background 

Computer-based battlefield simulations may be 
classified into two broad categories: aggregate and 
virtual. In aggregate simulations, the typical atomic 
simulation object is the military unit; the simulation 
abstracts the soldier- and vehicle-level details of the 
battlefield so that it can model higher-level issues. 
For example, an aggregate simulation would 
represent a mechanized infantry company as a single 
object rather than as a group of battlefield entities 
consisting of dismounted infantry, armored personnel 
carriers, and tanks. The aggregate simulation 
maintains all of the characteristics for the unit as a 
whole and performs statistical analyses on the unit's 
actions to determine its overall state. In contrast, the 
typical atomic simulation object in a virtual 
simulation is the battlefield entity. Given the example 
above, a virtual simulation would represent the 
mechanized infantry company as several instances of 
dismounted infantry, armored personnel carriers, and 
tanks. To gather any unit-level details regarding the 
company, the virtual simulation must make inferences 
based on the actions of the individual entities that 
belong to the unit. 

In addition, aggregate and virtual simulations often 
treat the passage of time differently. Virtual 
simulations are typically used for battlefield training, 
which requires strict adherence to the passage of 
time; the realism of the virtual simulation depends 
upon the exercise's events occurring at a rate that 
corresponds to that of real-world events. Thus virtual 
simulations are considered real-time simulations. 
Aggregate simulations, on the other hand, are 
typically used for analytic purposes, such as tactical 
situational evaluation. The time that it takes for the 
aggregate simulation to process the events for a 
particular time interval is not necessarily related to 
the amount of actual time that the interval represents 
(were those events to occur in reality). Thus, most 
aggregate simulations may be considered non-real- 
time; they may run faster or slower than real-time, 
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depending on the resolution of the events that they 
model. 

The differences in entity and time representation 
between aggregate and virtual simulations creates 
difficulties in simulation interoperability. For 
example, in the virtual environment, it is difficult for 
the individual battlefield entities of a virtual 
simulation to detect and react to aggregate units. 
Similarly, units in aggregate-level wargame 
simulations do not typically detect and react to 
individual battlefield entities. The problems 
associated with differing time representations are 
obvious; the simulations need to operate on the same 
time scale in order for their interactions to make sense 
(Karr 1994). 

The architecture presented in this paper addresses 
many of these interoperability issues. 

3. The Aggregate+Viitual (A+V) Architecture 

Aggregate 
Component 

Virtual 
Component 

Simu 
Inter 

(A 

lation 
tace 
Si) 

, Simulation 
interface 

(VS!) 

A+V Network 

Figure 1: Conceptual A+V Architecture 

Figure 1 shows a conceptual diagram of the A+V 
linkage architecture developed by 1ST. A typical 
A+V linkage would consist of one or more aggregate 
components in combination with one or more virtual 
components. An aggregate component is an 
aggregate-level wargame simulation, such as the 
Eagle simulation developed by the TRADOC 
Analysis Center (TRAC). A virtual component is a 
CGF system possibly networked with manned 
simulators or live simulations (Stober 1995b). For 
example, a single virtual component might consist of 
a ModSAF suite along with several manned simulator 
or live simulation resources; the manned/live 
simulations provide a training environment for 
soldiers, while the ModSAF suite supplies additional 
friendly- and opposing-force entities. 

Each   aggregate   and   virtual   component   uses 
Simulation     Interface     (SI)     to     manage 

a 
the 

communications among the linkage components. The 
SI provides the functionality that allows interaction 
across the A+V boundary. 

3.1 Simulation Interface (SI) 

The Simulation Interface (SI) coordinates 
communications across the A+V boundary (Karr 
1994). Each aggregate and virtual component in the 
linkage has its own specialized SI that is responsible 
only for the assets of its linkage component. 
Although it would be possible to construct a single, 
integrated SI that supports all of the components in 
the linkage, a distributed SI properly separates and 
isolates the details of each component's specific 
requirements. Thus, each SI services only the 
communication to a single linkage component. This 
gives SI implementers considerable flexibility-the SI 
can be a distinct node on the network, a 
complementary process on its linkage component's 
node, or a program module integrated into its linkage 
component's software (Stober 1995b). 

Though this architecture will support multiple 
aggregate and virtual components, the remainder of 
this discussion will assume an A+V linkage 
consisting of only one aggregate component and one 
virtual component. 

3.1.1 Functional Architecture 
Perhaps the most important concept regarding this 
architecture is that it describes a functional rather 
than a physical design. In other words, it is the role 
of the Sis to provide a certain set of functionality to 
the system in order to maintain the A+V linkage. 
Where this functionality resides and how it is 
implemented are issues that are beyond the scope of 
this paper. 

3.1.2 Aggregate SI (ASP 
The ASI provides the interface between the aggregate 
simulation and the virtual environment. It has two 
functions: it incorporates virtual-level data into the 
aggregate simulation, and it provides aggregate-level 
data to the virtual environment. The ASI gathers 
virtual-level data, such as entity status information 
and requests for action, and forwards this data to the 
aggregate simulation for processing. The ASI also 
receives unit-level updates from the aggregate 
simulation and places this data onto the A+V network 
for the Virtual SI(s) to process. 

3.1.3 Virtual SI (VST) 
The VSI provides the interface between the virtual 
simulation and the aggregate environment.   It, too, 
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has two functions: it incorporates aggregate-level 
data into the virtual component and it provides 
virtual-level data to the aggregate environment. The 
VSI gathers aggregate-level data, such as unit status 
information and requests for action, and forwards this 
data to the virtual component for processing. The 
VSI also receives entity-level updates from the virtual 
component and places this data onto the A+V 
network for the ASI(s) to process. 

3.2 Unit States 

In an A+V exercise, only one component may control 
a particular unit or entity at any one time. If an 
aggregate component controls a unit, the unit is said 
to be aggregated. If a virtual component controls a 
unit's entities, the unit is said to be disaggregated 
(Stober 1996). A+V researchers have defined several 
other unit states, such as icon (Franceschini 1995), 
fully-disaggregated, pseudo-disaggregated, partially- 
disaggregated, (Foss 1996), gradually-disaggregated 
(Cox 1995), and locally-disaggregated (Calder 
1995), but they are essentially special cases of 
aggregated and disaggregated. (The exception is 
partially-disaggregated, in which more than one 
component may simultaneously control a unit and/or 
its entities. The circumstances surrounding units in 
this state, however, are beyond the scope of this 
paper. See Foss (1996) for a more complete 
discussion.) 

when the aggregate and virtual environments must 
interact directly. When a unit is disaggregated, the 
virtual component requires information describing the 
unit's current operations. Otherwise the unit's 
entities would not know what actions to perform 
while the unit is disaggregated. Likewise, a 
disaggregated unit may request indirect fire from 
nearby artillery. The aggregate simulations are 
responsible for allocating the indirect fire to the 
appropriate artillery units. 

3.3.1 Operations Orders 
When a unit is disaggregated, the VSI receives from 
the ASI operations-order data for the unit, which it 
distributes to the unit's entities in an appropriate 
manner. In addition, the ASI receives updates from 
the VSI regarding the intentions of disaggregated 
units in response to changes in environmental 
conditions. This dialog persists while the unit is 
disaggregated. 

3.3.2 Indirect Fire 
The ASI receives requests for indirect fire from 
virtual components, which it forwards to the 
aggregate simulation. When the aggregate simulation 
allocates the indirect fire to an appropriate artillery 
unit, the ASI sends the resulting indirect-fire volley 
data to the VSI, which converts it into fire and 
detonation data for introduction into the virtual 
environment 

3.2.1 Disaggregation 
When the disaggregation of a unit is triggered, the 
ASI instructs the aggregate simulation to temporarily 
stop simulating the unit; unit updates will come from 
the ASI (via the virtual component and the VSI) 
while the unit is disaggregated. The VSI then 
instantiates the unit's entities on the virtual 
component. When the disaggregation process is 
complete, the ASI receives entity updates from the 
VSI, compiles this data, and forwards it to the 
aggregate simulation. 

3.2.2 Aggregation 
When a unit no longer needs to be disaggregated, the 
VSI instructs the virtual component to remove the 
unit's entities from the virtual environment. The ASI 
informs the aggregate simulation that it can resume 
simulating the unit, and begins providing the virtual 
environment with aggregate data regarding the unit. 

3.3 A+V Interactions 

Most interactions in an A+V exercise occur at the 
virtual level.   There are a few instances, however, 

4. A+V Interoperability Protocol (IOP) 

The A+V Interoperability Protocol (IOP) is the 
communications mechanism that transfers command 
and control information, as well as information 
detailing aggregate- and virtual-level unit activities, 
across the A+V boundary (Karr 1994). Although the 
functionality of the IOP is well established, the 
implementation of the IOP is an issue that is beyond 
the scope of this paper. 

The IOP provides five primary message types: 
initialization messages establish communications 
pathways when components begin participating in an 
exercise; unit status messages allow the exchange of 
aggregate- and virtual-level information; state- 
transition messages allow units to request aggregation 
or disaggregation; operational details messages 
provide a means of communicating a unit's 
operations and intentions; and indirect-fire messages 
allow aggregated and disaggregated units to exchange 
indirect fire. 
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4.1 Initialization Messages 

Every SI transmits an initialization message to inform 
the linkage of its presence in the exercise. The other 
Sis respond accordingly to acknowledge the message. 

4.2 Unit Status 

Unit Status messages provide the means by which the 
aggregate and virtual components update their local 
records for remotely-controlled units. The ASI 
receives virtual-level data from the VSI and 
incorporates it into the aggregate simulation, while 
transmitting aggregate-level data to the VSI. 
Likewise, the VSI receives aggregate-level data from 
the ASI and incorporates it into the virtual 
component, while transmitting virtual-level data to 
the ASI. 

4.3 State Transition 

State Transition messages allow a simulation operator 
or unit commander to request that a unit change its 
state. This permits a transfer-of-control over units 
across the A+V boundary. 

4.3.1 Disaggregation 
When the ASI receives a request to disaggregate a 
unit, it instructs the aggregate simulation to suspend 
the simulation of the specified unit and informs the 
VSI that it can proceed with the disaggregation. The 
VSI then instantiates the proper entities on the virtual 
component Once the disaggregation is complete, the 
VSI transmits virtual-level data regarding the unit to 
the ASI, which incorporates the data into the 
aggregate simulation. 

4.3.2 Aggregation 
When the VSI receives a request to aggregate a unit, 
it instructs the virtual component to remove the unit's 
entities from the virtual environment. The ASI then 
informs the aggregate simulation that it may resume 
the simulation of the unit. Once the aggregation is 
complete, the ASI resumes transmitting aggregate- 
level data regarding the unit to the VSI, which 
incorporates the data into the virtual component. 

4.4 Operational Details 

Operational Details messages provide a means of 
communicating a unit's instructions and intentions 
across the A+V boundary. When a unit is first 
disaggregated, the aggregate simulation transmits the 
unit's operations orders to the ASI. The ASI sends 
this information to the VSI, which forwards it to the 

unit commander for interpretation. As operations 
change or orders are completed, the aggregate 
simulation will transmit fragmentary orders in the 
same manner. In addition, the unit commander can 
transmit commander's intent messages to the 
aggregate simulation, via the VSI and ASI, in 
response to environmental conditions. 

4.5 Indirect Fire 

Indirect Fire messages allow for indirect-fire 
interactions across the A+V boundary. A unit 
commander may request indirect fire from nearby 
artillery. The VSI receives the request and forwards 
it to the aggregate simulation via the ASI. The 
aggregate simulation receives the request, allocates 
the indirect fire to an appropriate unit, and computes 
the details of the ensuing indirect-fire volleys. The 
ASI receives the volley data and forwards it to the 
VSI, which converts the indirect-fire volley data into 
fire and detonation data, and introduces it into the 
virtual environment at the appropriate times. 

5. Difficulty Issues 

There are a number of issues that make the 
implementation of an A+V linkage difficult. Among 
these are the size of the IOP messages, the 
implementation of direct fire across the A+V 
boundary, and a side effect of automatic 
disaggregation triggers-spreading disaggregation. 

5.1 IOP Message Size 

Since aggregate unit-state messages can carry data 
regarding perhaps hundreds of individual battlefield 
entities, the messages themselves can become 
enormous. It is important to take this into 
consideration    during    implementation. These 
messages may need to be separated into several 
smaller messages in order to satisfy message size 
requirements. 

5.2 Direct Fire 

Direct fire between aggregate units and virtual 
entities is much more difficult to address than is 
indirect fire. Current research has failed to provide 
not only a solution, but also an adequate definition of 
the problem itself. Attempts have been made to 
remedy the problem of A+V direct fire by ensuring 
that direct-fire confrontations occur in the same 
environment (usually virtual), but a true solution has 
yet to be found (Stober 1996). 
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5.3 Spreading Disaggregation 

One benefit of A+V is that the linkage software itself 
can monitor the exercise and aggregate or 
disaggregate units as it deems necessary. For 
example, as a unit enters a "high-resolution" area 
(Karr 1994), where any action inside occurs at the 
virtual level, the system can automatically 
disaggregate the unit without human interaction. In 
addition, as two opposing-force units approach one 
another, the system can trigger their disaggregation in 
order to resolve any ensuing conflict at the virtual 
level. 

An anomalous result of automatic disaggregations, 
though, is "spreading disaggregation," in which one 
disaggregation triggers a series of disaggregations 
(Petty 1995). This could produce a windfall effect 
that would eventually overload the resources of the 
virtual environment. This issue will need to be 
addressed as research into automatic disaggregation 
triggers progresses. 

6. Implementation Details 

1ST has been involved in the implementation of two 
A+V linkages: Integrated Eagle/BDS-D, which links 
the Eagle aggregate simulation with the 1ST CGF 
Testbed and manned simulators; and Eagle/ITEMS, 
which links Eagle with ModSAF and ITEMS-both 
CGF systems. The following sections discuss 
implementation details for these two projects. 

6.1 Integrated Eagle/BDS-D 

The Integrated Eagle/BDS-D Project, which serves as 
a proof-of-concept for the interoperability of 
aggregate and virtual simulations, links the Eagle 
aggregate simulation with the 1ST CGF Testbed 
(along with manned simulators), and can operate in 
either SIMNET or DIS. Eagle is a UNIX process that 
can run on Sun or Hewlett-Packard workstations. 
The Testbed is a CGF system that runs on several 
networked IBM-compatible personal computers and 
consists of at least two nodes: a Simulator, which 
performs the entity simulation; and an Operator 
Interface, which provides a graphical user interface 
for the CGF operator. 

6.1.1 Process Architecture and Message Pathways 
Figure 2 shows the process architecture and message 
pathways for the Integrated Eagle/BDS-D system. 
The Eagle Simulation Interface Unit (SIU) provides 
the functionality of the ASI and communicates with 
Eagle using UMX Remote Procedure Calls (RPC). 

RPC 

1ST CGF 
Testbed + 

Manned Sim, 

1ST Messages 

Eagle CGF 
Manager 

IOP + 
SIMNET/DIS 

A+V Network 

Figure 2: Integrated Eagle/BDS-D Process 
Architecture and Message Pathways 

The Eagle CGF Manager provides the functionality of 
the VSI and communicates with the Testbed via 
special TCP/IP network packets called 1ST Messages. 
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Figure 3: Integrated Eagle/BDS-D Network 
Configuration and Implementation 

6.1.2 Network Configuration and Implementation 
Figure 3 shows the network configuration and 
implementation for the Integrated Eagle/BDS-D 
system. The SIU is implemented as a distinct process 
that runs on the same node as the Eagle simulation. 
The Eagle CGF Manager is a modified 1ST CGF 
Simulator with its entity simulation capability 
disabled. 

6.1.3 Interoperability Protocol (IOP) 
The Integrated Eagle/BDS-D IOP is implemented 
differently for the SIMNET and DIS versions of the 
system. For SIMNET, the IOP consists of a 
combination of pre-defined SIMNET PDUs and new 
IOP PDUs. The SIU gathers virtual-level entity data 
by monitoring the SIMNET network for Vehicle 
Appearance PDUs; the remaining IOP messages are 
carried inside SIMNET Association PDUs with a 
special value identifying those PDUs as Integrated 
Eagle/BDS-D IOP messages. 
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For DIS, the SIU gathers virtual-level entity data by 
listening to DIS Entity State PDUs. The remaining 
IOP messages are carried inside 1ST Messages. 

For more information regarding the Integrated 
Eagle/BDS-D architecture and network configuration, 
see Karr (1994). 

6.2 Eagle/TTEMS 

The Eagle/TTEMS linkage, which is part of the 
ongoing development of the Aviation Digitization 
Laboratory at Fort Rucker, Alabama, links the Eagle 
aggregate simulation with ModSAF and ITEMS, and 
operates in DIS. ModSAF is a UNTX process that 
can run on Silicon Graphics, Sun, or Hewlett-Packard 
workstations. ITEMS is also a UNTX process that 
can run on Silicon Graphics workstations. 
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Figure 4: Eagle/TTEMS Process Architecture and 
Message Pathways 

6.2.1 Process Architecture and Message Pathways 
Figure 4 shows the process architecture and message 
pathways for the Eagle/TTEMS linkage. The Eagle 
Constructive Simulation Interface Unit (CSIU) 
provides the functionality of the ASI. Early versions 
of the CSIU communicated with Eagle via UNIX 
RPCs. However, more recent versions are 
configurable to use TCP/IP or UDP network packets- 
an example of the flexibility that this architecture 
affords its implemented. 

The ModSAF Virtual Simulation Interface Unit 
(VSIU) provides the functionality of the VSI for 
ModSAF and communicates with ModSAF using the 
Persistent Object (PO) protocol. 

The ITEMS VSIU provides the functionality of the 
VSI for ITEMS and, since it is implemented as a 
program module integrated directly into the ITEMS 
software, communicates with ITEMS simply via 
function calls. 

ModSAF Suite 

Eagle 

CSIU 

ModSAF 

ModSAF 
(VSIU) 

DIS Network 

Figure 5: Eagle/TTEMS Network Configuration and 
Implementation 

6.2.2 Network Configuration and Implementation 
Figure 5 shows the network configuration and 
implementation for the Eagle/TTEMS linkage. The 
CSIU is implemented as a ModSAF Simulator that 
has undergone extensive modification (including the 
elimination of its entity simulation capability) so that 
it can communicate with Eagle. Thus it is a distinct 
process that runs on its own network node. 

The ModSAF VSIU, like the CSIU, is implemented 
as a ModSAF Simulator, and is also a distinct process 
that runs on its own network node. Unlike the CSIU, 
however, the ModSAF VSIU retains its functionality 
to simulate virtual entities. 

The ITEMS VSIU, as stated previously, is 
implemented as a program module integrated directly 
into the ITEMS software. 

6.2.3 Interoperability Protocol 
The Eagle/TTEMS IOP is implemented as a 
combination of pre-defined DIS PDUs and new IOP 
PDUs. The CSIU gathers virtual-level entity data by 
monitoring the DIS network for Entity State PDUs. 
In addition, the CSIU provides aggregate-level unit 
data to both VSIUs by broadcasting both DIS 
Aggregate State PDUs and specially developed IOP 
Unit Detail PDUs. This was necessary because the 
prototype Aggregate State PDU used during 
development did not meet all of this particular 
system's requirements. 

The remaining IOP messages developed specifically 
for the Eagle/TTEMS linkage are carried inside DIS 
Message PDUs with a special value identifying those 
Message PDUs as Eagle/TTEMS IOP messages. 
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7. Conclusions 

Aggregate+Virtual linkages are viewed as a solution 
to the current limitation of virtual exercises: the 
virtual network is incapable of supporting very large 
scale exercises. A+V is also viewed as a new and 
powerful tool for conducting analytic studies and as a 
way to bring legacy systems into the virtual 
environment. The architecture presented in this paper 
seeks to standardize the methodology for linking 
aggregate and virtual simulations in order to facilitate 
the development of similar systems in the future. 

The architecture presented in this paper discusses 
only the functionality that an Aggregate or Virtual SI 
must provide to the A+V linkage. Implementation 
details are left to developers, giving them the freedom 
to tailor future A+V implementations that use this 
architecture to the specific requirements of the 
linkage components that they intend to incorporate. 
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1. Abstract 

The Modular Semi-Automated Forces 
(ModSAF) simulation tool traditionally models a 
weapon's physical and behavioral characteristics 
by loading simplistic algorithms that are derived 
from generic data into the main simulation 
application. This causes inherent problems. The 
processor load of the weapon models must 
remain relatively low to maximize the entity 
count per workstation. This is often the leading 
cost driver in an exercise. In addition, using 
sensitive weapon data imposes security issues on 
the ModSAF application. 

The operational requirements for certain training 
exercises dictate that weapon models must 
perform as a functionally valid replica of the 
actual system. This ensures the training 
performed would enhance the trainee's 
performance in a similar situation. Given the 
current approach, it is too computationally 
expensive to add validated models to the actual 
ModSAF application. The use of an Ordnance 
Server (OS), as demonstrated by the Air Combat 
Environment Test and Evaluation Facilities' 
Manned Flight Simulator (ACETEF7MFS), 
provides a better solution. 

The Ordnance Server is an external host that 
models weapons surrogates. Validated weapon 
models are incorporated into the Ordnance 
Server and the corresponding ModSAF models 
are disabled. This approach improves scalability, 

provides a more level playing field between 
interacting entities, and segregates sensitive or 
classified modeling and data. 

This paper will discuss the origin of the 
Ordnance Server concept and the process of 
integrating an Ordnance Server with ModSAF. 
An analysis of the test implementations will show 
the benefits of this approach. The paper will also 
include a discussion of open issues such as in 
flight guidance input from the launching entity. 
Finally a conclusion that looks ahead to future 
implementations will be provided. 

2. Introduction 

Traditionally the modeling of a weapon's 
physical and behavior characteristics was done in 
the model that was responsible for launching the 
weapon. This arrangement was the natural 
environment in systems that were designed to 
execute as a monolithic simulation on a single 
host. This type of system is highly limited in a 
number of important areas including scalability 
and multiplicity of reuse. 

The ModSAF system was designed to address 
some of the problems in monolithic computer 
generated forces (CGF) systems. It uses 
distributed interactive simulation (DIS) protocols 
to allow multiple simulation hosts to 
cooperatively interact in a unified synthetic 
battlespace. However the concept of retaining 

' This paper is declared a work of the US Government and is not subject to copyright protection in the 
United States. 
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ownership of all simulation attributes spawned by 
the ModSAF application was retained. 

To further enhance the capabilities of CGF 
systems such as ModSAF, it is necessary to allow 
hand-off of simulation entities and attributes to 
other more specialized simulators. While this is 
explicitly addressed in the new Department of 
Defense (DoD) High Level Architecture (HLA), 
it is also possible to gain the benefits of using 
validated munition models with ModSAF in a 
DIS environment. The use of an Ordnance 
Server can provide this capability. 

3. Technical Overview 

The Ordnance Server extends the idea of 
distributed simulation by separating the 
simulation of the launching vehicle from the 
munition simulation. The concept could be 
applied to any pairing of munition and launch 
vehicle simulations.    However this paper shall 

consider the ModSAF launcher only. In order to 
understand how the Ordnance Server can be used 
with ModSAF it is necessary to first discuss it's 
internal workings. 

The Ordnance Server operates using only 
standard DIS protocol data units (PDUs). When 
a cooperating launch vehicle simulation wishes 
to fire a munition, it issues a fire PDU as it 
normally would. The Ordnance Server, having 
been previously configured to look for fire PDUs 
from a specific (site, application, entity), will try 
to match the weapon type and fusing data to a 
weapon it is configured to simulate. If a match is 
found, the Ordnance Server will instantiate a 
simulation of that weapon using target data from 
the fire PDU. The Ordnance Server issues entity 
state PDUs for the instantiated munition during 
it's delivery to the target. When the fuse model 
indicates the termination of the munition, the 
Ordnance Server generates a detonation PDU. 

Ordnance Server 

Figure 1: Ordnance Server Interfaces 

3.1 Special Interfaces 

The Ordnance Server supports two interfaces to 
external objects. These interfaces and there 
relationship to the rest of the Ordnance Server is 
illustrated in figure  1.    The first is a Model 

Interface Adapter (MIA). This is a code wrapper 
that goes around an external weapon model and 
provides all the translation services needed to 
make the model look like an internal simulation 
to the server executive. At the same time, the 
MIA simulates the environment the external 
model   was   designed   to   operate   in.      This 
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architecture provides a mechanism for interfacing 
nearly any legacy model. In particular, validated 
models from accepted training systems can be 
used to support a DIS exercise. 

The second interface is the ground truth database 
interpreter. This provides the OS with a 
consistent representation of ground truth 
regardless of the actual format used in the 
underlying terrain database. The only parameter 
that is important to most weapon models is the 
height above the terrain at the point where the 
munition is currently flying. Other parameters 
could be included in this interface if a particular 
model required them for normal operation. 

3.2 Configuration Parameters 

The Ordnance Server must be configured to 
operate with a "parent" launch entity. The parent 
entity is denoted by the (site, application, entity) 
triplet. The Ordnance Server can serve multiple 
hosts by allowing the entity or entity/application 
identifiers to be wild cards. The entity type of 
any munitions to be surrogated must also be 
specified and mapped to a specific weapon 
model. Any weapon model loaded can be 
mapped    to    any    munition    type. Other 
configuration information that must be supplied 
includes the terrain database file name, DIS 
exercise and IP numbers, and types of runtime 
feedback desired. There are model specific 
parameters associated with each weapon 
simulation as well. 

4.0 Integrating ModSAF with the OS 

Integration with the Ordnance Server first 
required that the ModSAF internal weapon 
dynamics models be disabled. This resulted in 
relatively simple modifications because of 
ModSAF's highly modular design. To suppress 
entity state and detonation PDUs, libmissile was 
modified so ModSAF would only issue the Fire 
PDU. This allows the Ordnance Server to 
describe the trajectory and detonation event of 
the munition. A command line switch "Generate 
Missiles" was added to the ModSAF executable. 
When "-nomissiles" is specified, ModSAF's 
missile simulations are suppressed. Also, 
libmlauncher was modified to removed the 
munitions ID number from an internal list of 
local entities in ModSAF. Without the id 
number in it's local list, ModSAF will recognize 
the Ordnance Server's missile as a viable remote 

entity. Otherwise ModSAF would still act as if 
the entity were local, resulting in no icon display 
for the munition on the Plan View Display. 

Another problem was that the designated target 
id was not originally specified in the Fire PDUs 
produced by ModSAF. This information is 
needed for the Ordnance Server to work 
correctly. The intended target was originally 
kept internally in ModSAF, so the change 
consisted of simply passing this data to the 
routine used to broadcast ModSAFs Fire PDUs. 

Next a ground truth database interpreter based on 
the ModSAF libctdb services was added to the 
Ordnance Server. This allows both applications 
to share identical representations of ground truth. 

4.1 Ordnance Server Advantages 

The ordnance server can be used to provide 
models, that are accepted by the subject mater 
experts in a given exercise, with no penalty to the 
ModSAF application's processor load. These 
accredited models can be classified (if required) 
without affecting ModSAF's unclassified status. 
Maintaining multiple models for a particular 
munition at different levels of detail or different 
classification levels is also facilitated by this 
approach. Additionally a well designed network 
topology can reduce latency impacts on entity 
interactions, by collocating ordnance servers with 
the targets they are likely to engage. 

The ordnance server has successfully been used 
to complement CGF systems in many large scale 
exercises. These exercises include the Strategic 
Theater of War (STOW) Engineering Demos, 
Navy Kernel Blitz fleet training event, and 
I/TTSEC 95 DIS Demo. In its earliest use, a 
single ordnance server was used by one site to 
simulate only Air-to-Air missiles initiated by a 
single man in the loop system. Since then, many 
additional validated models have been added to 
the ordnance server and CGF systems have been 
modified to allow the ordnance server to simulate 
their munitions. As more applications use the 
ordnance server to simulate their munitions, the 
benefits to the goal of a fair fight become more 
apparent. Simulations that use the ordnance 
server will not create munition simulations with 
unrealistic flight or guidance attributes. 

Due to the large number of entities simulated in a 
STOW exercise, the ordnance server's ability to 
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further distribute processing load is especially 
useful and even necessary if high fidelity, real 
time munition models are an exercise 
requirement. The flexibility of the manner in 
which the ordnance server can be used to do this 
has been demonstrated. A local ordnance server 
has been used to simulate munitions launched by 
an application located at a remote site. Multiple 
ordnance servers have been used by one 
application, each one simulating different types 
of munitions for the same set of entities. This 
characteristic of being flexible to the needs of a 
particular exercise scenario or hardware 
configuration has proven to be especially useful 
due to the variant nature of DIS exercises. 

4.2 Open Issues 

There are still open issues to be resolved with 
this approach. One of the major concerns 
regards tightly coupled systems, where the 
launch platform and the munition depend on 
either a one way or bi-directional link to function 
properly. An example is the Navy's SM-2 which 
receives steering input throughout flight from the 
launcher based on the launcher's radar track. 

One solution to this would be to implement the 
link data via signal PDUs. This would increase 
the fidelity of the simulation. However it would 
also cost network bandwidth. Another solution 
would be to locate the sensor model on the 
Ordnance server. It is not clear how this could 
be facilitated under current DIS protocols, but 
the HLA fully supports this method. 

Another issue is the loading of prelaunch data 
from the launching platform into the weapon 
model. Currently this is accomplished via the 
graphical user interface (GUI). The signal PDU 
is not a natural choice for this data as it would be 
passed via internal busses on the actual platform. 
One possible solution is the set data simulation 
management PDU. It could be used to initialize 
a weapon that requires this type of data prior to 
launch then the weapon would simply be 
attached to the launch platform until the fire 
PDU. This would require more extensive 
modification of ModSAF to support. 

5. Conclusions 

The ordnance server approach answers the 
problem of providing validated models for 
ModSAF by using an external host to take over 

the flyout of weapons launched by the 
application to the intended target. This allows 
ModSAF to use appropriate weapon models for 
the exercise event with no additional 
configuration management or piecemeal code 
integration. The models integrated in this 
manner do not have to be reengineered to fit 
within the ModSAF architecture, and multiple 
models of the same munition can be substituted 
easily. 

The concept of the use of an ordnance server to 
supplement CGF applications has evolved into a 
tested, working product. The benefits of such an 
approach have been demonstrated through 
multiple DIS exercises. As more munition 
models are added to the ordnance server and the 
existing models capabilities are further refined, 
the munition simulations for all applications that 
use the ordnance server are improved. 

Further research should provide answers to the 
open issues discussed in this paper. It is apparent 
that the advantages of this solution warrant 
continued development. 
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1.  Abstract 

The Distributed Interactive Simulation (DIS) 
protocols (IEEE 1995) allow heterogeneous 
applications to share exercise information. As DIS 
applications mature and transition to the High Level 
Architecture (HLA), their utility can be increased by 
integrating them with external decision processes. 
External decision processes comprise a wide range of 
applications such as inference methods, learning 
algorithms, and collaborative planning tools. There 
are several possible approaches to accomplishing 
such an integration. We analyze various criteria to 
identify the best architectural approach for a specific 
set of requirements. The criteria discussed are 
distribution of processes, data representation, 
interprocess communication, and quality of service. 
This paper describes three approaches and presents 
two case studies in constructing interfaces to the 
Modular Semi-Automated Forces (ModSAF) CGF 
simulation. By conducting a more formal analysis of 
the interface design process, we provide system 
designers with the basis to make a more informed 
choice when designing an interface. 

2.  Introduction 

DIS-compliant simulations have been extensively 
utilized in recent automated warfighting exercises. 
Interfacing external decision processes to these 
simulations can improve their behavior and make 
them more widely applicable. The interface of an 
external decision process to a DIS-compliant 
simulation may take one of several forms. We have 
identified several criteria for designing such an 
interface of non-DIS applications to DIS 
simulations: 

1) distribution of processes — describes the degree 
to which the processes are distributed, ranging 
from a single centralized executable to processes 
distributed over a network. 

2) data representation — determines the format the 
processes use to communicate information. 

3) interprocess communication — the method that 
the processes use to communicate, for example, 
shared memory or message passing. 

4) quality of service factors — describe 
requirements for distributed system latency, 
security and robustness. 

Section 3 covers these issues in detail. From these 
criteria we identify three general approaches to 
interfacing external decision processes to a DIS 
application. Sections 4 describes two case studies as 
examples of two of the approaches. In these case 
studies, the DIS application with which we 
integrated our external processes was ModSAF. 
Further details about ModSAF are given in Section 
4.1. We compare our approaches with related work 
in Section 5 and analyze the impact of the HLA on 
our integration methods. Conclusions are presented 
in Section 6. 

3.  Interface Design Issues 

Several issues must be considered when interfacing 
an external process to a DIS application. Among 
those are the four criteria enumerated above. In 
addition to these technical factors, another factor 
that may influence design decisions is the existence 
of components, such as libraries implementing an 
Application Program Interface (API). Such 
components constrain the choices available for the 
architecture, however their use can also save 
considerable time and effort. For example, 
COMPASS provides libraries for performing a 
Remote Procedure Call (RPC) between a client 
application (ModSAF in our case) and the 
COMPASS server. 

Table 1 lists the issues that need to be addressed with 
possible options based on the quality of service 
factors. 
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Issue Option 
f Degree of Process Single process 

Distribution Multiple processes, single 
host 
Multiple hosts, single subnet 
Multiple hosts, multiple 
subnets 

Data Representation Standard format 
Ad hoc format 

IPC Shared Memory 
Remote Procedure Call 
Message Passing 

Table 1: Design Issues and Options 

3.1  Degree of Process Distribution 

One of the most fundamental decisions that must be 
made when designing the software architecture for 
an integrated application is the degree of distribution 
of the constituent processes. The level of 
distribution will have a great effect on the other 
issues of the design, particularly the IPC mechanism. 

The two applications can be integrated into a single 
process (Figure 1), eliminating the need for 
interprocess communication, or the integrated 
application can be split into multiple processes 
(Figure 2), providing additional flexibility, but 
necessitating interprocess communication. If these 
processes reside on a single host, then this additional 
flexibility is limited, but there is a wide selection of 
interprocess communication mechanisms and several 

data representation issues can be avoided because a 
homogeneous environment is guaranteed. 

If the processes reside on multiple hosts, then the 
characteristics of the intervening network become an 
issue (Figure 3). The network may be a local area 
network (LAN) in which case there will be high 
reliability and little latency, but the geographic scope 
of any DIS exercise run using the integrated 
software will be severely limited. On the other hand, 
the application may be distributed across a wide area 
network (WAN), in which case there will be less 
reliability and increased latency, but the geographic 
scope of an exercise will be virtually unlimited. 
These characteristics may vary depending on 
whether the WAN is private (and can be dedicated to 
the DIS exercise in question at the time it is running) 
or public (and having to support a great deal of 
unrelated traffic at the same time the exercise is 
running). 

3.2  Data Representation 

Data representation is an important issue because the 
external process and the DIS application need to 
share information. Given the fact that these 
applications may reside on different types of 
hardware, any solution should accommodate 
heterogeneous environments. There are two ways to 
allow information sharing: 1) converting one of the 
applications to the other's data representation or 2) 
using a standard format as an intermediate language. 

Single Host 

\ 
Single Process 

process #1      Single Host 

Process #2 

Figure 1: Single Process on a Single Host Figure 2: Multiple Processes on a Single Host 
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Figure 3: Processes on Multiple Hosts on a 
Network 

The first option is often taken. The process of 
converting one application's data representation is 
often tedious and error-prone. Using a standardized 
format, such as the DIS protocols, does require 
changes to both applications and additional encoding 
and decoding effort at runtime. However, once an 
application has been modified to allow it to use the 
standard format, it can interoperate with any other 
application conforming to the standard as well. 

With both options, the data must either be initially 
represented in both applications in some common 
format, or translated into a common format that both 
applications can interpret and manipulate. The 
common data format may be either a standardized 
format (e.g. the DIS protocols or the External Data 
Representation (XDR) standard used to transfer data 
between different machine architectures (Sun, 
1987)), or an ad hoc format. 

3.3  Interprocess Communication 

As noted above, if the integrated application is 
composed of multiple processes, some form of 
interprocess communication (IPC) will be necessary 
in order to allow the processes to share data. The 
choice of an interprocess communication mechanism 
will follow largely from the choice of a process 
architecture (single process vs. multiple processes, 
distributed over a network, etc.). The need for IPC 
presents a design challenge because of the real-time 
requirement imposed by the DIS component of the 
integrated application.    This requirement usually 

necessitates the use of either non-blocking IPC or a 
timeout mechanism. A non-blocking IPC would 
allow the DIS application to continue executing 
while the external process services the request. 

The two fundamental forms of IPC are shared 
memory and message passing. Shared memory is 
known to be faster in most circumstances (Stevens 
1990), but its use is limited to applications running 
on a single host. Therefore, message passing will 
often have to be used. A popular paradigm for 
message passing is the Remote Procedure Call 
(Birrell and Nelson, 1984), in which the message 
passing primitives are hidden from an application 
programmer in linkable libraries, allowing the 
programmer to call both local and remote functions 
using the same semantics. A case study of an RPC 
interface is given in section 4.1. 

Another possibility for interprocess communication 
is the distributed object technology embodied in the 
Object Management Architecture (OMA). Central 
to the OMA is the Common Object Request Broker 
Architecture (CORBA), which provides for 
transparent communication between distributed 
application objects (Yang and Duddy, 1996). The 
prototype implementation of the HLA's Run Time 
Infrastructure (RTI) uses CORBA. The RTI's API is 
specified in CORBA's Interface Definition Language 
(IDL) (Calvin and Weatherly, 1996). 

3.4  Quality of Service 

Integrated applications with a DIS component are 
likely to have special requirements in one or more of 
the following areas: 

Latency. The integration of an external decision 
process with a DIS application implies a real-time 
requirement for the composite application. Meeting 
this requirement may be a challenge, because the 
external process may not have been designed with 
real-time performance in mind. However, if the DIS 
application is utilized in a mode where it is not 
operating in real-time, such as generation of 
simulation scenarios, then latency does not need to 
be considered. Examples are given in Section 4. 

Correctness. In order to maintain the consistency of 
a distributed simulation it is necessary that all 
participants receive similar data about the simulated 
virtual world. This implies a requirement that some 
simulation data be transmitted reliably. In general, 
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DIS applications are designed to handle the loss or 
corruption of an entity state PDU, because they are 
sent with great frequency and each new entity state 
PDU supersedes previous ones. However, there are 
other, individual PDUs which represent important 
events such as collisions and must therefore be 
received reliably in order to ensure the consistency of 
the distributed simulation. Since reliable 
transmission of data contributes to latency, a balance 
needs to be struck between correctness and latency. 

Robustness. Unlike a traditional centralized 
application, a distributed application can continue to 
exist after the failure of a host on which parts of the 
application are executing. This may entail the 
relocation of simulated entities (or an external 
decision process) to other hosts, or it may be 
sufficient for the simulation to continue without the 
entities in question and without interaction with the 
decision process. 

Security Issues. When an application is distributed 
across multiple hosts, the intervening network 
increases vulnerability, especially if the constituent 
processes reside on multiple subnets separated by a 
wide-area network that is outside the administrative 
domain of those organizations conducting the 
exercise. Encryption and/or other forms of security 
may be required. The interface will need to be 
designed with this and other administrative concerns 
in mind. 

Concurrent Access. It may be necessary or desirable 
for multiple clients to access resources managed by 
the integrated application concurrently. This is 
especially likely to be true for the external decision 
process portion of the application if it is 
implemented as a separate process. A need for 
concurrent access to resources will impose additional 
design constraints on the interface. 

4.  Case Studies 

In this section, we first describe three basic 
approaches to interfacing an external decision 
process to a DIS application and then present 
detailed case studies of two of these approaches. The 
three basic interface approaches that we have 
identified are to 1) create a single executable, 2) 
utilize existing IPC mechanisms for distributed 
processes, and 3) use DIS PDUs to implement the 
interface. 

The first approach requires integrating the DIS 
application and the decision process into a single 
executable. The Soar/Intelligent Forces (IFOR) 
architecture is an example of this approach. Soar 
provides the reasoning capabilities of intelligent 
automated agents for ModSAF (Laird et al, 1995, 
Soar/IFOR, 1996). The advantage of this approach 
is that no DPC is required between the two 
components, resulting in minimal latency. However, 
the disadvantages of this approach are 1) the lack of 
concurrency between the two components may result 
in an application with unacceptable performance due 
to the real-time demands of the DIS component, and 
2) the complexity resulting from the combination of 
two control flows into a single flow. 

The second approach is to use system-provided 
communication facilities for the required 
interactions. One of the most common interprocess 
communication paradigms, RPC, is supported by 
many underlying systems, meaning that special non- 
standard interfaces to the external applications need 
not be constructed. The advantage of this method is 
that the application components can be distributed 
across multiple heterogeneous platforms. The 
disadvantages of this method include additional 
latency introduced by local-area or wide-area 
network connections between the application 
components and the possible degradation of 
performance in the face of network or host failures. 
In addition, distributed approaches require greater 
attention to security. 

An example of this architectural style is our interface 
between ModSAF and the COMPASS system (SAIC, 
1995, SAIC 1996). COMPASS is the Common 
Operational Modeling, Planning and Simulation 
Strategy. The ModSAF-COMPASS interface allows 
planners to evaluate collaborative mission plans by 
using ModSAF simulation capabilities. 
Implementing this interface involved creating a new 
ModSAF library that uses the API provided by the 
COMPASS client library. This client library 
encapsulates the application-level protocol that 
enables the exchange of overlay and route 
information between the COMPASS server and 
ModSAF via RPC. Additional details are given in 
Section 4.1. 

The third integration approach is to utilize DIS 
protocol data units (PDUs) to exchange information 
between application components. To do this, new 
PDU types must be defined and additional software 
to generate and process these new PDUs must be 
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Figure 4: Mission Planning and Evaluation with 
COMPASS 

written for both systems. In the HLA, this approach 
would use the RTI to communicate between the two 
processes. The advantages of this approach are that 
the application components can be distributed and 
that the DIS application's basic flow of control need 
not be disrupted. Some disadvantages of this method 
are that the integration is more complex than the 
first two approaches, and that additional software is 
required to make it reliable. 

The DIS PDU approach is the one we have taken in 
interfacing the Virtual Commander (VCDR) 
learning functions to ModSAF. VCDR is a Lisp 
program that uses Disciple to perform learning for a 
ModSAF instructable agent (Hieb, Tecuci & Pullen 
1996). In this case, we constructed an interface using 
experimental PDUs that transport the data necessary 
for the instruction process. Existing ModSAF library 
functions are used to send/receive the new PDU and 
register the appropriate callback. A DIS front end 
was implemented in Lisp for Disciple. The front end 
call functions to send and receive PDUs during the 
instruction process. Additional details of this 
integration are given in Section 4.2. 

4.1  ModSAF-COMPASS Interface 

In this section, we discuss the interface developed 
between COMPASS and ModSAF. COMPASS is a 
collection   of   distributed   collaborative   planning 

(DCP) services that allow legacy mission planning 
systems to interoperate with other COMPASS- 
compliant mission planning systems and DIS 
simulation systems. COMPASS is implemented as 
a collection of servers providing DCP session 
management, shared map overlay exchange, 
composite route preview, and DIS-based composite 
mission preview. COMPASS currently supports 
several air operations planning systems, such as the 
Coordinated Adaptive Planning System (CAPS), the 
Special Operations Force Planning and Rehearsal 
System (SOFPARS), and the Tactical Air Mission 
Planning System (TAMPS). 

ModSAF is a DIS-compliant simulation system 
consisting of a graphical user interface, one or more 
simulators, and an optional logger (Ceranowitz, 
1994). ModSAF simulates entity-level actions and 
provides realistic terrain reasoning capabilities. 
ModSAF uses the DIS protocols to share 
information with other DIS-compliant simulation 
systems (Loral, 1995). 

The interface constructed illustrates the potential for 
linking virtual simulations such as ModSAF to the 
COMPASS architecture. This linkage allows a 
collection of heterogeneous mission planning 
systems to access ModSAF (through COMPASS) in 
order to evaluate collaborative mission plans. Figure 
4 shows the iterative mission planning and 
evaluation process using heterogeneous mission 
planners, the COMPASS servers, and simulators. 
Users of heterogeneous mission planning systems 
can collaborate, each using a system that is familiar 
to them, and create composite missions. These 
missions are then exported to the COMPASS servers 
and retrieved and executed by a variety of simulation 
systems. The simulation results can be fed back in 
the form of DIS PDUs and viewed by the 
participants in the DCP session. The results can be 
evaluated and the mission restructured to take 
advantage of the feedback obtained from the 
simulation. 

4.1.1   Design Issues 

We will now consider the design of the COMPASS- 
ModSAF interface in the context of the issues raised 
in section 3: data representation, degree of process 
distribution,    interprocess    communication,    and 
quality of service requirements. 
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Figure 5: COMPASS Interface Architecture 

As stated above in section 3.3, the choice of 
interprocess communication mechanism is very 
much based on the prior choice of the degree of 
process distribution. In this case, binaries for 
linkable libraries that implement the API function 
described in the COMPASS ICD were made 
available to us. The API functions provide an RPC 
facility, allowing interaction with the COMPASS 
servers without explicit use of message passing 
primitives. 

The Interface Control Document (ICD) for the 
COMPASS Architecture (SAIC 1995) provides a 
detailed description of a data structure and 
representation to be used by COMPASS-compliant 
applications when communicating with the 
COMPASS servers. This document also describes 
the API through which application programs must 
communicate with the COMPASS servers. As these 
API functions expect arguments in a specific data 
format, the choice of data representation was 
predetermined.    Similarly, the document describes 

Figure 6: Remote Procedure Call in COMPASS 
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an interface architecture, shown in Figure 5, in 
which the COMPASS servers are separate processes 
and the collaborative planning applications 
communicate with them through the COMPASS 
libraries. Therefore, we chose the architectural 
approach in which ModSAF and COMPASS reside 
on separate hosts and communicate via a network. 

An example of RPC as used in COMPASS is shown 
in Figure 6. Two of the COMPASS libraries, libsom 
and libsmgt, are linked with ModSAF at compilation 
time. When a ModSAF user invokes a libcompass 
function requiring a remote function be executed on 
one of the COMPASS servers, e.g. the SOM server, 
(1) libcompass calls a function in libsom. This 
function (2) is responsible for packaging the 
arguments for the server routine into one or more 
RPC messages along with a code indicating which 
remote function is to be executed and sending the 
message to the SOM server. When the server 
receives the RPC message (3), it unpacks it and 
determines which function to call based on the 
aforementioned code. The function is called with the 
arguments received in the message. When the server 
function has completed (4), the results are passed 
back to the dispatch function in the SOM server. (5) 
The results are packed into a reply message and sent 
back to libsom. (6) Upon receiving the reply 
message, libsom unpacks the results and returns 
them to its caller, a function in libcompass. Thus, 

from the perspective of libcompass, the remote 
procedure has been invoked through a simple 
function call without the explicit use of message- 
passing primitives. As shown Figure 6, the same 
process occurs when remote functions are executed 
on the SMGT server. 

In the absence of multiple threads of execution 
clients block or poll for results after sending an RPC 
request to the server. This makes RPC difficult to 
integrate into a real-time application's existing 
control flow, especially if the application needs to 
perform other tasks (such as simulating entities) and 
is instead waiting for data, effectively freezing the 
entire simulation. To address this problem, the 
client stub may timeout after not receiving a reply in 
a specified period of time, causing the RPC to fail. 
Still, although RPC serves to abstract away message 
passing primitives, it cannot be said that the message 
passing is truly transparent to the client application, 
as new forms of failure are now possible beyond 
those that could occur if the server procedure were 
being called locally. 

Our interface design addresses the quality of service 
issues described in section 3.4. Since ModSAF is a 
DIS application, low latency is a very important 
requirement. Communication between ModSAF and 
the COMPASS servers takes time, especially if the 
COMPASS servers are located on a remote subnet. 
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Because the interaction between ModSAF and 
COMPASS is used to establish a ModSAF 
simulation scenario, it takes place before any 
simulation activity occurs. In this case, additional 
latency is not a consideration because the system 
need not meet real-time latency requirements. 

In this interface, we did not consider communication 
reliability or security issues because all message 
passing was encapsulated within the COMPASS 
libraries that were provided to us. Both the 
COMPASS servers and ModSAF are robust. 
ModSAF has facilities to shift entities from host to 
host if a host goes down via the PO database, and 
COMPASS maintains similar databases from which 
servers can recover if they crash. 

4.1.2  Architecture 

COMPASS Interface Editor 
A 

v 
Iibcompass 

A 

f 
libsom libsmgt 

f 
ModSAF 
Libraries 

Network 

Figure 8: ModSAF-COMPASS Interface 
Architecture 

We now describe the architecture of the COMPASS- 
ModSAF interface as pictured in Figure 8. ModSAF 
has been designed with modularity and ease of 
expansion in mind, and for this reason, it consists of 
over 450 libraries. We decided that the best way to 
add to the ModSAF architecture without disrupting 
existing components was to create a new COMPASS 
interface library, Iibcompass, to isolate changes 
within this library 

The ModSAF GUI provides several editors that 
allow the user to perform various tasks such as 
creating new entities, and adding graphical images 
to the map overlay. Among the additions to 
ModSAF found in Iibcompass is a new ModSAF 
editor, developed in Motif, that is accessed by 
pressing a new COMPASS button on the ModSAF 
GUI, as shown in Figure 7. The editor provides a list 
of users who are currently participating in the DCP 
session and a list of other COMPASS services these 
users are currently subscribed to. The editor also 
provides a list of shared overlays that currently 
reside in the COMPASS Shared Overlay 
Management (SOM) server's database. This 
information is obtained by Iibcompass through the 
COMPASS API functions provided in the 
COMPASS libraries, libsmgt and libsom, compiled 
with ModSAF. The editor allows a user to select an 
overlay. This causes Iibcompass to obtain a list of 
route objects contained within the selected overlay 
from the SOM server. The user can then click on 
the route object corresponding to the route to be 
simulated. 

A COMPASS route consists of an entity description, 
a set of waypoints comprising the route, flight 
characteristics which indicate when the entity arrives 
at each waypoint, and a set of events (each of which 
is associated with a waypoint). 

Once a route is selected, Iibcompass maps the 
COMPASS entity described in the route to the most 
appropriate available ModSAF entity. This is done 
via a mapping function that makes use of an 
extensible mapping file that can be modified without 
recompilation of ModSAF. After the mapping is 
complete, the coordinates of the entity's starting 
location are converted from latitude/longitude format 
to topocentric coordinates (TCC) for use by 
ModSAF. The ModSAF entity is then created at the 
initial waypoint though the utility functions in 
libunitutil, another ModSAF library. 

Then, all other waypoints are converted to TCC 
format and placed in ModSAF's persistent object 
(PO) database by using the functions in libpo, a 
ModSAF library relating to the PO database. A chain 
of tasks is then created, by using the utility functions 
in libtaskutil along with some additional code, 
tasking the entity to fly from waypoint to waypoint, 
one after another. This task is placed "On Order", 
meaning that simulation of the route does not begin 
immediately, but is pending and will begin at the 
time the user invokes the task. 
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4.2  Virtual Commander Interface 

The second case study we present is an 
implementation of an interface between ModSAF 
and Disciple (Tecuci, 1988) for the Virtual 
Commander System. Disciple is a machine learning 
system written in Lisp that runs on a typical Unix 
workstation. It employs multistrategy learning, 
combining explanation-based, analogical, and 
example-based methods with knowledge acquisition 
to learn from a subject matter expert (SME). 

VCDR Editor 

libdisciple 

ModSAF 

Network 
DIS PDUs 

Disciple 

VCDR API 

DIS Front-end 

DIS PDUs 

As CGF technology advances sufficiently to allow 
CFORs to be created and deployed, knowledge 
acquisition will become a critical issue. The Virtual 
Commander system is an approach to solving the 
problem of knowledge acquisition for CFORs. 
VCDR is an instructable agent which utilizes 
Programming by Demonstration (Cypher, 1993) and 
Machine Learning techniques to allow a SME to 
teach an agent. Programming by Demonstration 
systems give an end user the ability to create 
programs by demonstrating their action. 

We have prototyped this approach with the Captain 
system (Hieb et. al. 1995) which consisted of a file- 
level integration of the apprenticeship learning 
system Disciple and ModSAF. In order to integrate 
Disciple fully with ModSAF we expanded upon the 
Captain interface in two areas. Rather than utilizing 
a textual interface for the training/learning process, 
we are developing VCDR ModSAF editors that 
allow the use of the terrain map interface (plan view 
display) in ModSAF. To convey the data from the 
ModSAF editors, we are interfacing the learning 
functions of Disciple to ModSAF using an 
experimental DIS protocol data unit (PDU). 

4.2.1   Design Issues 

Our design and implementation is driven by three 
significant factors: real-time performance, data 
representation, and control of the learning cycle. 
The initial concern addressed in this implementation 
was the difficulty of integrating an application that 
relies on real-time delivery of data (ModSAF) and 
one that does not (Disciple). 

The performance or latency issue was important 
since ModSAF, a DIS application, typically requires 
real-time transmission of data. The 
ModSAF/Disciple interface does not require this type 
of service. In fact, due to the algorithms involved in 

Figure 9: Virtual Commander Architecture 

the various learning phases of Disciple, it would be 
difficult to achieve real-time response from Disciple. 
Therefore, the concern about real-time performance 
is how to construct a non-real-time communication 
that does not cause perceptible delay in ModSAF. 
We implemented this non-real-time communication 
by distributing the processes over a network allowing 
each process to utilize the full resources of their 
respective workstations, since both applications are 
very computationally intensive. 

To construct this interface we delivered messages via 
DIS PDUs. Integrating this message passing scheme 
into ModSAF was done using the extensive libraries 
that ModSAF makes available, namely the PDU API 
and PDU Processing libraries. By using these 
libraries our messaging was integrated into the 
ModSAF control structure such that ModSAF 
executed normally. In other words, ModSAF does 
not block while waiting for our message, which 
would disrupt the flow of ModSAF's execution. 
This was achieved by using functionality provided by 
the ModSAF library, libpduproc, to register a 
callback to handle the message upon ModSAF 
receiving it. When ModSAF receives one of these 
messages it will call the registered handler function. 
Integrating a message passing facility into Disciple 
required implementing a front-end to Disciple in C 
that was callable from Lisp via its foreign function 
interface (Harlequin, 1994). 

A second issue was the format in which the data 
would be communicated between the applications. 
While ModSAF stores its data in a Persistent Object 
(PO) database, Disciple represents its data in the 
form of a semantic network. In order for the two 
systems to communicate, a common format was 
constructed, described in the PDU in Table 2. The 
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Description Size 
(bits) 

DIS 2.03 header 96 
Message ID 32 
Fragment number 32 
Learning phase 32 
Message type 32 
Message length 32 
Message 8*length 

Table 2: Virtual Commander 
Experimental DIS 2.03 PDU Format 

message within the PDU is data extracted from 
either the PO database or from Disciple's semantic 
network. The experimental PDU format was 
developed and introduced into ModSAF. By 
utilizing DIS PDUs to perform the messaging for the 
VCDR system, we can use a messaging 
infrastructure already established for DIS. 

The final issue was the need to move the control 
interface from Disciple to ModSAF. Originally, the 
Steps taken by the SME to teach Disciple were 
selected from a menu presented by the Disciple 
software in Lisp, based on which phase of the 
learning process was being executed. When 
introducing the GUI editor into ModSAF, the control 
mechanism was transferred to ModSAF. A new 
library, libdisciple, was built into ModSAF to 
implement the control features needed. The resulting 
interface is much more natural to its intended user. 

4.2.2  Architecture 

Figure 9 depicts the architecture of Virtual 
Commander consisting of ModSAF, Disciple, a new 
library for ModSAF called libdisciple, a DIS front- 
end for Disciple, and an API for Disciple. 

The front-end developed for Disciple to send and 
receive DIS PDUs implements three API functions: 
vcdr_init(), GetVCDRPDUf), and SendVCDRPDU() 
as shown in Figure 10. The initialize function is 
called once when Disciple is started. It creates a 
socket with a well-known port to receive incoming 
messages. The GetVCDRPDUf) function performs a 
blocking read of the socket. This is the state 
Disciple is usually in, waiting for the next request 
from the SME via ModSAF. Upon receiving a PDU 
the message contents are returned to Disciple. The 
SendVCDRPDU() function, on the other hand, 
packages and sends a message as a VCDR PDU to 
ModSAF. 

In the newly created ModSAF library, libdisciple, 
several functions were added to perform the VCDR 
functions. These components and their interaction is 
shown in Figure 11. An editor was created, and is 
initialized in discip_init_gui(), for the GUI to accept 
commands from the SME. The learning data and 
phase of the learning cycle is packaged in the PDU 
and sent directly to Disciple's socket as a unicast 
message by discip_done(). (This is a departure from 
the use of ModSAF-provided functionality of 
broadcasting or multicasting.) 

Disciple Control Loop 

VCDR 
API 

vcdr_init() 

Encoded 
VCDR 

Message 

Decoded 
VCDR 
Message 

Send VCDRPDU() 

GetVCDRPDUQ 

Foreign Function Interface 

VCDR PDU 

DIS Front-end 

Network 

VCDR PDU 

DIS PDUs 

Figure 10: Disciple VCDR Components 
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VCDR PDU 
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DIS PDUs 

Figure 11: ModSAF VCDR Components 
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When the VCDR PDU is received by ModSAF it 
passes it to the callback function, 
vcdr_pdu_handler(), that was registered earlier. 
From this point, one of several procedures is called 
based on the value of the phase field in the PDU. If 
appropriate, the plan view display or the Disciple 
editor in ModSAF will be updated to reflect the 
message in the last VCDR PDU received. 

Although we have considered the fact that the 
messages between ModSAF and Disciple need to be 
delivered reliably, the current implementation does 
not guarantee that. It is common in situations like 
this for the application to take on the responsibility 
of ensuring successful transmissions where the 
network protocol is unreliable, such as with UDP. In 
the future, the use of a protocol such as the proposed 
Selectively Reliable Transport Protocol (SRTP) 
(Pullen and Laviano, 1995), which provides varying 
levels of reliability would allow the application to 
choose the degree of reliability necessary. 

5.   Related Work 

With the advent of Command Forces (CFORs) and 
Intelligent Forces (IFORs) it has become necessary 
to add many more external reasoning and learning 
processes to their agent architectures. Some of these 
methods are already under development 

MITRE is developing a Command and Control 
Simulation Interface Language (CCSIL) to provide 
a common language for CFORs (Salisbury et. al. 
1995). CCSIL represents a language, a set of 
vocabulary and terminology, that is used to 
communicate between command entities and 
subordinate entities or vehicles. The interface is 
implemented by transporting the CCSIL messages 
within a DIS Signal PDU. This corresponds to the 
third approach that was described earlier. 
Additional effort is necessary to interface existing 
applications to DIS Simulations. 

The Soar/IFOR research group also is developing an 
architecture to provide intelligent forces. The 
interface of Soar and ModSAF represents the first 
approach we described earlier. Soar is a general 
cognitive architecture that provides intelligent 
agents. The Soar architecture combines with the 
graphical interface, network interface, and scenario 
creation and execution tools of ModSAF to provide 
an architecture for intelligent forces.  Currently, the 

group is integrating the CCSIL command language 
(Hill 1996). 

The RTI of the HLA presents another integration 
approach. The RTI will provide a set of services 
which facilitates integration of simulations, C*I 
systems, and engineering models. The RTI will 
utilize a more reliable transport mechanism than 
DIS and the RTI APIs will be more standardized, 
which will eliminate some of the disadvantages of a 
DIS interface, which lacks a standardized API. 

6.   Conclusions 

The choice of interface approach may be determined 
partially by external factors (as with COMPASS, 
where a client library was provided that facilitated 
RPC calls). However, there is always latitude in 
some aspects of the implementation. The crucial 
factors that will determine the best choice are 1) 
Data Representation; 2) Distribution of Processes 
and Associated Communication Issues; and 3) 
Transport Mechanism. Consideration of the issues 
raised above will allow a more informed design 
when constructing the interface between a DIS 
application and an external process as demonstrated 
in the case studies above. 
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1. Abstract 

One of the facets of realistically representing 
individual vehicles within Computer Generated 
Forces (CGF) systems is the targeting behavior of 
vehicles in the battlefield. Target analysis and 
selection involve several components, such as target 
detection and identification, as well as, threat analysis 
and selection. This paper describes a threat analysis 
algorithm based on Fuzzy Set Theory developed 
within the Modular Semi-Automated Forces 
(ModSAF) CGF system. Fuzzy Set Theory expresses 
ambiguous and complex situations, such as those that 
arise in real life threat analysis. IST's threat analysis 
algonthm produces, for each target, a membership 
value in the Threatening set by calculating and 
aggregating the membership values of the sets 
representing nine threat factors. 

2. Threat Analysis 

The target selection process is one of the many 
entity/vehicle behaviors that are challenging to 
simulate realistically. It consists of several facets: 
line of sight determination, target detection and 
identification, threat analysis, and target selection. 
This research concentrates on one facet of the 
targeting process: threat analysis. Threat analysis in 
CGF systems determines the threat level of an entity's 
detected targets. It features factors modeled after real 
life factors considered by soldiers in the battlefield. 
For the remainder of the report, "platform" means the 
entity doing the threat analysis, while target means 
the entity being analyzed. 

The simplicity of the rule-based system allows for 
ease of modification and maintenance. However, this 
simplicity doesn't account for many complex 
situations. The factors considered by this approach 
are: 

• Vehicle   type:   Infantry   Fighting   Vehicle 
(JPV), main battle tank, etc. 

• Target status: alive, damaged, flaming, or 
destroyed. 

• Target actions: moving or stationary. 
• Target type: IFV, main battle tank, etc. 
• Vehicle's weapons' ranges. 

All these factors, in rule form, are combined to obtain 
a threat value for a given target (Smith et. al. 1992a). 

2.1.2 ModSAF 

ModSAF's approach is more elaborate. It combines 
rules encoded in C-code and multipliers to scale a 
target's initial threat value. The initial threat value is 
based on the distance from the platform to the target 
and the target's acquisition level1 (Loral 1994a). 

2.1.3 CCTTSAF 

From information that has been obtained, it appears 
that the CCTT SAF uses an approach similar to 
ModSAF's. 

2.1 Threat Analysis Background 

Although threat analysis has complex and ambiguous 
situations in real life, it is simulated simplisticly in 
CGF systems. Some of the better known CGF 
systems are: the 1ST CGF Tested, ModSAF, and 
CCTT SAF. 

2.1.1 The 1ST CGF Testbed 

The 1ST CGF Testbed performs threat analysis by 
using a simple rule-based system encoded in C-code. 

ModSAF uses the NVEOL (Night Vision and Electronic Optical 
Laboratory) model to perform target acquisition. This model 
establishes that each sensor has a list of vehicles that are or could 
be detected. Each entry in the sensor's sensed list is coded by the 
acquisition level. Levels include: [N_FOV (target in sensor's field 
of view [FOV], but not detected), DETECTED (observer knows 
target has some military significance). CLASSIFIED (observer 
can distinguish general type, i.e. tracked vs. wheeled), 
RECOGNIZED (observer can distinguish function, i.e. APC vs. 
tank), IDENTIFIED (observer can distinguish model, i.e. T72 vs. 
T80). 
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2.2 Other Approaches To Perform Threat 
Analysis 

There are other approaches that can be used to 
perform threat analysis such as Rule-based Systems, 
Neural Networks, and Fuzzy Set Theory. 

2.2.1 Rule-based Systems 

The 1ST CGF Tested and to some extent ModSAF 
use a simplistic rule-based system encoded in C-code. 
This approach is attractive because it is a natural way 
to express decision making, but these rules do not 
handle ambiguity well because they have to check 
hard boundaries. Rule-based systems can become 
complex and hard to maintain as factors and 
situations are analyzed in finer details (Charniak et. 
al. 1987). The analysis of finer details prompts the 
creation of more rules, increasing the complexity of 
the rule-based system. As additional factors are 
considered, the rule base tends to grow exponentially. 

2.2.2 Neural Networks 

Neural networks (NN) are typically organized in 
layers. Layers are made up of a number of 
interconnected nodes, which contain an activation 
function. Patterns are presented to the network via the 
input layer, which communicates to one or more 
hidden layers, where the actual processing is done via 
a system of weighted connections. The hidden layers, 
then, link to an output layer where the answer is 
produced (Hertz et. al. 1992). 

Neural networks are in a sense the ultimate "black 
boxes." Apart from defining the network architecture, 
designing the training set, and seeding the 
interconnection weights with random numbers, the 
user has no other role than to input the training set, 
and wait for the NN to become trained (i.e. learn the 
training set). The learning itself progresses on its 
own. The final product is a trained network that 
provides no equations or coefficients defining a 
relationship (as in regression) beyond its own internal 
mathematics. The network is the final equation of the 
relationship. To this date, there is no obvious way to 
understand the meaning or even verify the correctness 
of the interconnection weights that come from the 
training. 

2.2.3 Fuzzy Set Theory 

Fuzzy Set Theory (FST) has provided a consistent 
and proven means to model many real world 
environments (King (1988) and Gupta (1988)). 

FST does not sharply define sets as traditionally done 
in set theory. Set theory is governed by binary 
principles, such that a variable either belongs to a set 
(membership equals 1), or it does not belong to the 
set (membership equals 0). FST does not restrict set 
membership to complete (1) or none (0). Instead, it 
permits membership to be defined over the interval 
[0,1]. Membership expresses the degree an element 
belongs to a fuzzy set, and expresses the imprecision 
of many real world situations. 

Membership functions are a characteristic of the data 
set under analysis, and can take on many forms. 
Several geometric mapping functions have been 
developed, including S, n, trapezoidal, triangular, and 
wedge shaped functions. Most of the membership 
functions that will be used in this experiment will be 
trapezoidal-shaped functions. The trapezoidal 
membership function is used to represent a set that is 
expected to exhibit a linear relationship. In this 
instance, there is not an optimal point or value which 
has complete membership. Rather, there is a range of 
values which have complete membership in the set. 

The nature of FST makes it useful for handling a 
variety of imprecise or inexact cognitive conditions. 
"Inexactness" in cognitive information may arise due 
to a number of situations. To differentiate between 
these situations, or classes of problems associated 
with the use of FST, Kandel (King 1988) has 
subdivided the categories within which most 
problems assessed by FST fall. These include: 
generality, ambiguity, and vagueness. 

1. Generality is the use of FST for specifying a 
general condition which can apply to a 
number of different states. A variety of 
situations can be characterized in this 
manner where the defined universe is not 
just a point (Gupta, Knopf, and Nikiforuk 
1988). 

2. Ambiguity is the use of FST to describe a 
condition where more than one 
distinguishable sub-concept can 
simultaneously exist. 

3. Vagueness is the use of FST to present those 
cases whose precise boundaries are not well- 
defined. The boundaries in this case may be 
described as non-precise or non-crisp. 

All of these types of fuzziness (i.e., generality, 
ambiguity, and vagueness) are present in real world 
applications, and can be represented mathematically 

456 



by a fuzzy set. This capability of FST prompted its 
use in IST's approach to threat analysis. 

3. Threat Analysis using Fuzzy Set Theory 

The perceived threat posed by various targets, in real 
life scenarios, is situation dependent, and a function 
of a variety of circumstances or factors, such as, 
emotional state, fatigue, attention, perceived 
operational activity of target, commander's intent, 
etc. For this project, IST's Subject Matter Expert 
(SME) isolated nine factors involved in threat 
analysis. These nine factors correspond to a mixture 
of high and low importance factors. The nine factors 
are: 

1. Aggregate Threat Assessment. 
2. Near Counter Threat. 
3. Target's Effective Range. 
4. Target Firing Status. 
5. Aspect Angle. 
6. Relative Elevation of Target. 
7. Target Movement. 
8. Target Type. 
9. Sector of Fire. 

3.1 Aggregate Threat Assessment 

Ignoring other factors, a target in a threatening unit is 
more threatening than one in a non-threatening unit. 
For example, a target in an assaulting unit is more 
threatening than one in a unit doing a road march. 
The factors considered in the aggregate threat 
assessment are: 

3.1.1 Formation 

A visible target and the visible targets within a "unit 
radius" of the first target are considered to be a 
"unit." The position and spacing of the targets in the 
"unit" relative to the platform are analyzed to 
determine one of six formations: none, wedge, 
staggered line, column, line, and vee (Cisneros et al. 
1995). Formation "none" has a value of 0; the others 
have a value of 1.0. 

3.1.2 Distance 

The distance from the platform to the target's unit has 
obvious importance; if the platform is within 
weapons' range of the unit, the target poses a threat. 
The weapons' range has been divided into 4 threat 
levels to indicate the threat level of the target's unit: 
minimal, marginal, lethal, and deadly. 

• Formation. 
• Distance. 
• Heading. 
• Aiming status. 
• Closing speed. 
• Percentage of stationary targets. 

The effect of the six unit factors is brought together to 
estimate the unit's level of threat. This is 
accomplished by performing an union operation of 
the factors, and is given by the equation: 

Aggregate Threat Assessment = 

V unit facton 
;=i 

Number of unit factors 

The value of each unit factor is in [0,1]. 

Figure 1: Lethality Areas. 

The value of the distance factor is the degree of 
membership in (Figure 2). 

Membership degree 

2.0 - (distincc/FER)' 

LM * (2.0 - (dlsuncc/ER)') 

MM • (2.0 -(disuncc/MR)') 

Minimal 

Figure 2: Weapon's Range of the Unit Fuzzy Set 
divided into four Fuzzy Sets. 
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where: 
FER: Fraction of the weapon's effectiveness 

range. 
EF:   The weapon's effective range. 
MR: The weapon's maximum range. 
LM: The lethal area membership (parametric 

data). 
MM: The      marginal      area      membership 

(parametric data). 
S:     Exponent to select the steepness of the 

line (parametric data). 

3.1.3 Heading 

The target's unit direction of travel is used to estimate 
its threatening behavior. An enemy unit traveling 
towards a platform is considered more threatening 
than one moving away. A trapezoidal membership 
function centered on the line connecting the target 
and the platform with a parametric width supplies the 
membership value. 

1.0- 

0 

Unit Bearing 

Figure 3: Membership function for Unit Heading 

3.1.4 Aiming Status 

The aiming status expresses the aiming behavior of 
the target's unit. A trapezoidal membership function 
centered on the line connecting the aggregate bearing 
of the guns in the target's unit and the platform with a 
parametric width supplies the membership value. 

3.1.5 Closing Speed 

The speed at which the unit is approaching the 
platform determines this factor's membership value. 
A wedge membership function centered on the target- 
platform line determines the threat value (Figure 4). 

Membership degree 

1.0-- 

(unit's average speed / unit's maximum speed) 

o Maximum speed of the unit 

Unit Speed 

Figure 4: Speed Fuzzy Set. 

3.1.6 Percentage of Stationary Targets 

The percentage of stationary targets determines the 
number of unstabilized weapons that can be fired. 
The greater percentage of stationary targets, the 
greater the threat. 

This completes the discussion of aggregate threat 
assessment. The remaining factors call for pairwise 
target-platform threat assessment. 

3.2 Near Counter Threat 

The threat level of a target decreases if there are 
friendly vehicles nearby that can destroy the target. 
This factor is modeled by: 

H(x) = 1.0-0.1 l/x 

where: 
x: number of near counter threats. 

Notice that as the number of nearby counter threats 
grows very large, the membership value does not go 
down to zero. Having many counter threats around 
does not mean that the target stops being a threat to 
the platform. 

3.3 Target's Effective Range 

A platform is in danger when it is within weapons' 
range of a target. To measure the threat level and 
model this factor, the weapons' maximum and 
effective ranges are used to create a set of ranges, 
corresponding to four threat levels: minimal, 
marginal, lethal, and deadly (see Section 3.1.2). 
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3.4 Target Firing Status 

A target's firing behavior effects its threat level. A 
target that is engaging or preparing to engage the 
platform is quite threatening. A target that has fired 
at a friendly vehicle is less threatening, while a target 
that is scanning for vehicles is even less threatening. 
This factor considers four sub-factors, two crisp and 
two fuzzy factors, organized in decreasing threat 
order. The sub-factors are: 

• Target has fired at the platform. 
• Target is aiming at the platform. 
• Target has simply fired. 
• Target is scanning. 

3.4.1 Target has fired at the platform 

A target that has fired at the platform represents an 
enormous threat to the platform's survival. Direct 
fire at the platform, then, gives the highest 
membership value in the fuzzy set to the target. 
LibVEnemy (a ModSAF library) implements a task 
which accumulates incoming impacts near a vehicle, 
in order to determine whether the vehicle is under 
attack. Information about the number of rounds and 
the targets shooting those rounds is maintained. 
Query interface functions are provided to ask whether 
the platform thinks it is under attack, and if so, by 
whom (Loral 1994b). To avoid using ground truth, 
IST's threat analysis is performed only on targets that 
have been identified, that is, targets that can be found 
in the list of Spotted Targets. Therefore, determining 
if a target has fired at a platform can only be made if 
the platform "crew members" have seen the target fire 
at them. This is a crisp factor (the value is 0 or 1.0) 
represents no ambiguity about whether a target is 
attacking the platform. 

3.4.2 Target is aiming at the platform 

A target aiming at a platform is indicative of a target 
preparing to fire at the platform. Thus, a target 
aiming at a platform is more threatening than one that 
is aiming its main gun in some other direction. A 
trapezoidal membership function, based on the 
bearing of the gun relative to the platform, determines 
the value. 

3.4.3 Target has simply fired 

If a target has fired, it is presumably attacking 
friendly forces. This behavior increases the threat 
level of the target.   LibVEnemy provides a way to 

determine whether a local target has fired within a 
specified time. The limitation exists because fire 
PDUs are not monitored for non-local vehicles. To 
avoid misusing ground truth, only spotted targets are 
considered. The nature of the information provided 
by LibVEnemy is factual, so this factor is a crisp 
factor. 

3.4.4 Target is scanning 

A target demonstrates a threatening behavior if it is 
actively searching for vehicles to engage. Thus, a 
target that is estimated to be scanning for vehicles 
poses an obvious threat. This fuzzy factor is based on 
the degree of membership of the target's approximate 
scanning rate in the Scanning fuzzy set. 

3.5 Aspect Angle 

The aspect angle is the direction an aircraft is aiming 
its weapons. This factor is considered for aircraft 
only because aircraft don't have turrets or "main- 
guns" as ground vehicles do. The threat value of a 
target aircraft increases if it is lined up to perform an 
attack. To determine if a target aircraft is in position 
to carry out an attack, the bearing of the target aircraft 
is calculated. Then, the degree of membership is 
determined by a trapezoidal membership function: 

3.6 Relative Elevation of Target 

The relative elevation of a target is of importance 
because high ground gives an advantage to a target. 
This factor has less importance than others and was 
introduced to have a mixture of low and high 
importance factors, which is a reflection of real 
combat scenarios. The degree of membership in the 
Relative Elevation of Target fuzzy set is determined 
by a set of trapezoidal membership functions 
representing "below," "level," "above," and 
"definitely above." 

3.7 Target Movement 

This factor attempts to predict whether a target is 
becoming more threatening by moving closer to the 
platform. To make such prediction, the target's 
direction of movement is determined. Then, based on 
the direction of movement, the lethality area (see 
Figure 1) in which the target is attempting to move is 
estimated. The prediction is only good at the time of 
the analysis because this is a dynamic environment. 
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3.8 Target Type 

The target type plays an obvious role in threat 
analysis. One way of organizing target types is by 
using an ordered list, as seen in ModSAFs Rules of 
Engagement Editor. However, this approach does not 
capture the fact that some target types are equally 
threatening. For example, a T80 may be as 
threatening as a BMP-2 carrying anti-tank missiles. 
IST's approach organizes targets types in three sets, 
corresponding to high, medium, low, and no priority 
sets. The target types in the same set share the same 
priority. This factor is modeled by giving full 
membership in the Threatening fuzzy set to targets in 
the High Priority Set, while giving partial 
membership to targets in the Medium and Low 
Priority Sets. 

3.9 Sector of Fire 

Typically, a unit commander assigns a portion of the 
battlefield to every vehicle in a unit. This portion of 
the battlefield is a vehicle's sector of fire. Vehicles 
use their sectors to scan and engage targets in an 
attempt to cover the unit's combat area. If a platform 
can estimate that it is within a target's sector of fire, 
the target's threat level increases because the platform 
will be engaged by the target. 

the significance of every factor with respect to the 
others. This process starts by filling in a comparison 
matrix or AHP matrix, similar to the one given in 
Table 1 (F, means Factor^: 

Fl F2 F3 F4 F5 F6 F7 F8 F9 
Fl 1 3 1 5 5 5 3 5 5 
F2 1 3 3 7 7 5 3 3 
F3 1 5 5 5 3 5 5 
F4 1 9 9 7 1 3 
F5 1 1 3 9 3 
F6 1 3 9 3 
F7 1 9 3 
F8 1 3 
F9 1 

Table 1: Comparison (AHP) matrix. 

The meaning of the numeric values, the AHP ratings, 
assigned to each factor with respect to the others is 
explained below: 

• Equally important: 1. 
• Weakly more important: 3. 
• Strongly more important: 5. 
• Very strongly more important: 7. 
• Absolutely more important: 9. 

The degree of membership within the Sector of Fire 
fuzzy set is determined by using a trapezoidal 
membership function with full membership for being 
in a pie-shaped area centered on the target's heading. 

3.10 Determination of Threat Value 

Fuzzy Set Theory provides a way to bring together 
the effects of different fuzzy sets. This operation is 
known as an aggregate operation on fuzzy sets. The 
aggregate operation that was selected to bring 
together the effect of all nine factors is: 

Threat Value   =   V weights *facton 
i =1 

Every factor, has a weight, associated with it. A 
weight, is used to determine the relative significance 
of each factor, within a mission, and to understand the 
interdependencies among the factors. Previous 
research has shown that this aggregation function is 
effective in simulation because it accounts for the 
contribution of every factor in the final result. In 
order to obtain the weights, Analytic Hierarchy 
Processing (AHP) (Saaty (1980)) was used to identify 

Once the AHP matrix is filled by a Subject Matter 
Expert (SME), the AHP Analysis is performed with 
the Expert Choice Software (Saaty 1980). This tool 
enhances the ability of the SME to consider how 
various alternatives of weighting would affect the 
outcome. This process produces weights for all the 
factors considered in the threat analysis (Table 2). 

Factor Weight 
Aggregate threat assessment 0.079 
Near counter threat 0.079 
Target's effective range 0.158 
Enemy firing status 0.301 
Aspect angle 0.301 
Relative elevation of target 0.021 
Target movement 0.301 
Target type 0.301 
Sector of Fire 0.158 

Table 2: Resulting weights. 

The weights can be mission dependent, and they are 
specified prior to an exercise as parametric data. 
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4. Results 

The threat analysis algorithm was implemented and 
tested in ModSAF version 1.5.1. Several scenarios 
were used to test the algorithm and the different 
factors. The scenario set included scenarios that 
were pathological to ModSAF's threat analysis. 
Based on SME evaluation, the FST threat analysis 
showed consistently realistic threat analysis. Cisneros 
(1995) describes a scenario used to test the threat 
analysis algorithm. 

The platform was an M1A2 main battle tank. Four 
enemy targets and units were used: 

• being able to change, dynamically, the 
relative importance of the factors, as changes 
take place in the battlefield, and 

• using cooperative behavior and doctrinal 
tactics in the target selection process so that 
BLUEFOR and OPFOR forces perform 
differently in their targeting processes. 

This research has shown FST to be a powerful 
technique for efficiently expressing ambiguous and 
complex battlefield situations. FST can be used in 
modeling many of the vehicle/unit behaviors, 
especially those that involve ambiguous and complex 
situation awareness. 

• stationary BTR-80 facing the M1A2, 
• retreating T72, 
• a T72 platoon assaulting the M1A2 but 

starting much further than the above two 
vehicles, and 

• a stationary T80 facing the M1A2 and 
located the farthest from the M1A2. 

Even though the T72 platoon was farther than the 
BTR-80 and the retreating T72, it was considered the 
most threatening and was fired upon by the M1A2. 
After the platoon was destroyed, the farthest T80 was 
selected as the highest threat because it was stationary 
and aiming at the M1A2. Of the remaining capable 
targets in the scenario, the M1A2 picked the 
retreating T72 as the most threatening. After it was 
destroyed, the BTR-80 was selected and destroyed. 

5. Conclusions 

Threat analysis is an essential component of the 
targeting process. The Fuzzy Set Theory approach 
described in this report mirrors the human decision 
process, by taking into account the ambiguities and 
complexity of real life threat analysis. This approach 
performs threat analysis by considering nine factors, 
derived from information that was provided by a 
Subject Matter Expert (SME). This FST threat 
analysis approach provides an easily extendible and 
flexible mechanism for representing the complex 
threat analysis process in CGF systems. 

There are several opportunities for future work within 
this area. It is possible to increase the realism of the 
threat analysis by: 

• adding more factors, 
• improving the analysis of some factors, e.g. 

unit formation, 
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1. Abstract 

Micro Resolution Terrain Processor (MRTP) is 
computer program being developed by Raytheon 
Company under the US Army Soldier Systems 
Command's (SSCOM) Dismounted Infantry Support 
System (DISS) contract. This program is designed to 
be a terrain processor that can be incorporated into 
simulations such as the Integrated Unit Simulation 
System (IUSS) to provide extremely high resolution 
simulation of individual soldier visual search, target 
detection, and target tracking. It is designed to use 
0.3 meter resolution terrain and feature data, plus 
simulate the effects of a full range of obscurants and 
battlefield illumination. MRTP has been designed to 
accept Defense Mapping Agency (DMA) formatted 
data for at least a 5 kilometer by 5 kilometer area and 
perform its calculations at faster than real time speed 
to support analytic Distributed Interactive Simulation 
(DIS) exercises. 

2. Introduction 

The US Army Soldier Systems Command's 
(SSCOM) mission is to develop, integrate, acquire 
and sustain soldier and related support systems in 
order to modernize, balance and improve the soldier's 
warfighting capabilities, performance and quality of 
life. SSCOM also performs similar functions for other 
services and customers. In developing equipment and 
clothing, SSCOM is taking a revolutionary approach 
to the oldest and most basic item of warfare by 
looking at the individual soldier as a complete 
weapons platform. 

In order to assess the potential worth and 
contributions of proposed items on the soldier's 
performance and survivability, SSCOM has turned to 

extremely high resolution modeling and simulation 
tools. These tools are applied early in the 
development cycle prior the construction of the first 
prototype. Initially, these tools use theoretical 
descriptions of proposed items in tools using first 
principle math and physics models combined in an 
integrated simulation architecture. 

As prototype items are designed, built and tested the 
results of the early analytic simulations are reviewed 
and, where necessary, corrected and reanalyzed. 

Recent use of simulation approach to support the 
design of the Force XXI Land Warrior has 
highlighted a requirement for a model that can 
recreate the individual soldier's visual search, target 
detection, and target tracking. Historical target 
detection models have demonstrated an inability to 
differentiate between the various individual vision 
devices and the soldier's unaided vision. This 
problem is further compounded by the fact that an 
individual human can be effectively obscured by 
terrain features as small as one foot in elevation, or 
horizontal width. 

Members of the Soldier System user community have 
postulated that such a model must have the ability to 
use terrain databases having a 0.3 horizontal and 
vertical resolution. 

MRTP was developed to meet these user and analytic 
needs. 

3. Background 

Analytic simulation of the incremental effects of 
addition/modification of individual soldier equipment 
on  soldier performance and  survivability requires 
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simulation of terrain at a level that replicates terrain 
and its uses by soldier in the real world. Terrain 
variations as small as those occurring in a 0.3 meter 
block of terrain will frequently have significant 
impact on the performance and survivability of 
individual soldiers. Therefore, terrain data and 
simulation at this level of fidelity are required to 
support analysis of proposed soldier system 
equipment. 

The Integrated Unit Simulation System (IUSS) has 
been designed to model the effects of terrain, 
environment, load, battlefield challenges, and mission 
on the soldier's and small unit's mission performance 
and survivability. It uses available SIMNET 
Maneuver Control Console (MCC) or Janus format 
terrain data bases to accomplish this simulation and 
runs on Personal Computers (PCs) under Windows 
3.11, Windows 95, and Windows NT operating 
systems. 

The best currently available MCC or Janus format 
terrain data bases have a resolution of one meter grid 
spacing, the longitude and latitude distance between 
the elevation measurements. There are few readily 
available MCC or Janus format terrain data bases 
with this one meter resolution. One of these data 
bases, the Interservice/Industry Training Systems and 
Education Conference (I/ITSEC) terrain database of 
Ft Hunter Ligett, requires over 32 megabytes (MB) to 
store the 10 kilometer by 10 kilometer 1 meter 
resolution area. Increasing the resolution of this 10 
kilometer by 10 kilometer area to 0.3 meter resolution 
would result in the 1.8 billion bytes of data just for 
the elevation data. 

The addition of vegetation, roads, rivers, and other 
man made structures significantly increases the data 
that the computer must store and manipulate. For 
instance, during the development of the MRTP 
system software specification the number of trees in a 
500 meter by 500 meter area located in Chelmsford, 
Massachusetts was surveyed. The area was selected 
due to its accessibility (it is the backyard of the 
Raytheon Company DISS Project Manager). The 
survey was accomplished by dividing the area into 10 
meter squares and the trees within each square were 
counted. Approximately 11,400 trees of varying sizes 
were found in the surveyed area. 

4. MRTP Functional Overview 

MRTP has been designed to address the following 
general requirements. 

• Load and use 0.3 meter Defense Mapping 
Agency (DMA) format terrain data bases, 

• Load and use feature data bases, 

• Operate at faster than real-time, 

• Interoperate with IUSS, and 

• Perform   search,   detection   and   tracking 
simulation for dismounted soldiers 

MRTP has been designed to be a module that runs on 
a workstation connected to a network. It 
communicates with IUSS or other simulations 
connected to the network using UNIX socket 
communications protocols. The prototype provides 
the capability to provide simulation of the vision, 
search, tracking and target detection for a friendly 
and opposing dismounted infantry squad and 
seventeen other DIS entities. The interface to DIS is 
provided by IUSS or other DIS application. 

Figure 1 provides an overview of a simulation's 
DETECT process. Initialization includes loading 
scenario data, processing command line arguments, 
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Figure 1:    Host Simulation DETECT Process 

opening log files, and establishing socket connections 
MRTP. 

On each iteration of the main loop, the simulation 
time is advanced by 1 second, DETECT gets 
command, control and updated entity state data for all 
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simulated entities. DETECT sends a subset of the 
entity state data (time stamp, entity type, position, 
velocity, orientation) to MRTP. DETECT performs 
its own detection function while MRTP operates in 
parallel. At the end of each iteration, detection 
statistics are updated and results written to the output 
log files. When the detection function is finished, a 
status report is sent and the detection results are 
factored into subsequent command and control 
decisions, weapon assignment and engagement logic. 

When the simulation time advances to the user 
specified scenario end time the simulation is finished 
and the main loop is exited, the log files and 
communication sockets are closed, and the DETECT 
process terminates. 

Figure 2 illustrates a host simulation's detection 
function which is invoked from the DETECT main 
routine. As shown, this function iterates over the set 
of all simulated entities. If an entity is not "active" it 
is skipped and the next entity is processed. 

For each "active" entity, detection processing is 
performed to determine if the sensors attached to the 
entity can detect the other simulated entities. While 
this is being performed MRTP does its own detection 
processing in parallel and sends the results to 
DETECT. Note, MRTP only performs detection 
processing for dismounted infantry soldier entities. 

Figure 3 is an overview of the MRTP process. As 
shown, initialization includes reading a specification 
file which specifies the socket and host identification 
for MRTP to use when communicating with the 
DETECT process. It also specifies pathnames for the 
0.3m resolution terrain database and the optional 
feature database. After reading the file, MRTP 
connects to the host simulation's DETECT process 
via a network protocol socket and then opens the 
terrain and (optional) features databases. 

i 
For Each 

Entity 

Do Detection 
Processing 

Get MRTP 
Detect Results 

I 
Integrate 

Dectect Results 

N 

Figure 2:   The Host Simulation's Detection Function 

MRTP then enters its main processing loop where it 
gets current entity state information for each active 
simulated entity from the DETECT process. This 
occurs once for every simulation interval or 1 second. 

The entity state data transmitted to MRTP at the start 
of each simulation time step is a stream of bytes of 
sufficient length to represent the state of all currently 
active simulated entities. First in the bytes stream is a 
header which is defined as follows. 

typedef struct { 
PacketSize Size; 
PacketType Type; 
} MRTP_PacketHeader; 
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The Type field contains the enumeration value 
EntityState=2 indicating the data is entity state 
information. The Size field specifies the number of 
bytes to follow and should be a multiple of size 
of (MRTP_EntityState). The rest of the byte 
stream is a sequence of bytes formatted as 
MRTP_EntityState structures which are defined 
as follows. 

typedef struct { 
Entity_ID 
LONG 
LONG 
XYZ_Vector 
XYZJVector 
XYZ_Vector 

} MRTP_EntityState; 

ID; 
Kind; 
Time; 
Velocity; 
Position; 
Orientation; 

Close Socket to 

Host Simulation 

Perform LOS 
Processing 

Figure 3:   Overview of MRTP Process 

ID is an identification number assigned by the host 
simulation system. It is assumed this number is 
unique and will not be reassigned to another entity or 
that the entity will not be assigned a different number 
during the simulation. It is not required that an entity 
be assigned the same identification number from one 
simulation run to another. The Kind field is a bit 
vector indicating whether the entity is a SOLDIER or 
NON-SOLDIER, FRIENDLY or HOSTILE. The 
Time field is the current simulation time. The 
Velocity, Position and Orientation fields 
are Earth Centered Inertial (ECI) vectors with double 
precision X, Y and Z coordinate values. 

MRTP organizes entity state data into a linked list of 
MRTP_Entity structures. These are similar to the 
previous structures and are defined as follows. 

typedef struct { 
Entity_ID ID; 
LONG Kind; 
LONG Time; 
LONG Step; 
XYZ_Vector Velocity; 
XYZJVector Position; 
XYZ.Vector Orientation; 
DOUBLE Rotation[9]; 
struct MRTP Track TrackList; 
struct MRTP_Entity *Next; 
} MRTP_Entity; 

There are several new fields in this structure. The 
Step field counts how many time steps the entity has 
been active. This is not necessarily identical to the 
current simulation time since an entity does not have 
to be active at the beginning of a simulation. The 
Rotation[9]field is a double precision array 
used to rotate target vectors from ECI to body frame 
coordinates. The *Next field points to the next 
MRTP_Entity record in the list. The 
*TrackList field is a pointer to a (possibly NULL) 
list of track records. Track records model a soldier's 
ability to remember previously detected entities and 
are defined as follows. 

typedef struct { 
Entity_ID 
LONG 
struct MRP_Track 
} MRTP_Track; 

ID; 
LastSeen; 
*Next; 

The ID field is the number of the entity being 
tracked. The LastSeen field is the simulation time 
when the entity was last detected. The Next field is 
a pointer to the next record in the list. 

An important performance requirement of MRTP is 
being able to perform Line Of Sight (LOS) 
processing in less than 1 second of real time for each 
simulation time interval. This will enable MRTP to 
participate successfully in DIS. 
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MRTP is designed to handle a maximum of 18 
dismounted infantry soldiers (in any combination of 
enemy or friendly) and up to 17 other entities, 
simultaneously. The collection of entities do not have 
to be identical from one simulation time step to the 
next. Entities may appear and disappear dynamically. 
Entities for which state data appeared in the previous 
step but not in the current step are "inactive" and are 
purged from the list while new entities are added to 
the list. Track records for targets that have not been 
seen for a specified period of time are also purged. 
These list maintenance actions are performed at the 
start of each simulated time step prior to performing 
LOS processing. 

Figure 4 illustrates MRTP LOS processing. For each 
soldier entity, MRTP performs LOS processing with 
respect to every other entity. A non-soldier entity can 
only be a target viewed by a soldier in LOS 
processing. The non-soldier is never the viewing 
entity in MRTP. Of course, soldier entities don't 
attempt to detect themselves. 

The first step in LOS processing is to compute the 
distance to the target. If the target is beyond the 
soldier's maximum viewing range it is classified as 
out of range and no further processing is done with 
respect to that target. If the target is within range, the 
target vector is computed and converted from ECI to 
body frame coordinates. This target vector is then 
used to compute the azimuth and elevation angles 
from the soldier to the target. 

The next step is to select the soldier's field of view 
(FOV). This defines the viewing area in terms of 
minimum azimuth, maximum azimuth and elevation 
angles relative to the soldier. The FOV depends on 
target distance, the soldier's search pattern and 
whether the target is being tracked. 

A narrow FOV (34 degrees or user input) is used to 
search for targets at distances of 25m to the maximum 
viewing range. The FOV shifts left and right over 
time through the 8 step search pattern depicted in 
Figure 5. The completed search pattern covers a total 
of 170 degrees and is repeated every 8 seconds. 

A wide FOV (3 x 34 = 102 degrees) is used to search 
for targets at less than 25m. The search pattern is the 
same as for the narrow FOV except the FOV is wider. 
The complete search pattern with the wide FOV 
covers a total of 238 degrees every 8 seconds. The 
rationale for the wide FOV is that entities at close 
range are hard to miss and can be seen in the viewer's 
peripheral vision.   The wide FOV is also used for 
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Figure 4:   MRTP Line of Sight Processing 

targets up to 100m distance that are being tracked. 
This reflects the fact that targets are more likely to be 
detected when the viewer knows where they are. 

Figure 5:   Field of View Scanning Pattern 

If the range and FOV tests are passed then MRTP 
determines if the LOS is masked either by features or 
by the terrain itself. If the optional features database 
is present then MRTP determines if trees or other 
features block the LOS from soldier to target. If this 
test is passed, then MRTP goes on to determine if the 
terrain itself blocks the LOS. 

To determine if a LOS is feature masked, the ECI 
positions of the two entity are first converted to 
latitude / longitude. The LOS from one entity to the 
other is then walked at approximately 0.3 meter 
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intervals. Whenever another 10m x 10m square is 
entered the linked list of trees in that square is 
traversed. For each tree, the point along the LOS 
closest to the tree is found and the terrain database 
consulted for the elevation of that point. If the 
elevation of the point on the LOS falls between the 
Max and Min elevations of the tree's cylinders and 
the distance from the tree to the LOS is less than the 
radius of the tree cylinder, the LOS is considered to 
be feature masked. Figure 6: Current Tree Model 

When LOS processing for a soldier is complete, 
MRTP sends detection status for that soldier to the 
host simulation. The detect status is a stream of bytes 
of sufficient length to represent all the current targets. 
As with entity state data, the detection status is 
preceded by a header in which the Type field 
contains the enumeration value DetectStatus=3 
indicating the data is detection status data. The Size 
field specifies the number of bytes to follow and is a 
multiple of size of (MRTP_DetectStatus) . 
The rest of the byte stream is a sequence of bytes 
formatted as MRTP_DetectStatus structures 
which are defined as follows. 

typedef struct { 
EntityJD Source; 
Entity_ID Target; 
LONG Time; 
SHORT Status; 

} MRTP_DetectStatus » 

5. MRTP Feature Database 

A simple template based algorithm is used to 
populate the database. It uses four template types; 
heavy (12 trees per 10m square), medium (10 trees 
per 10m square), light (4 trees per 10m square) or 
none (0 trees per 10m square). Although different 
size trees are supported in the design, the prototype 
implementation uses only a single type of tree. 

The feature database is organized as a 500 x 500 grid 
overlaid on the 5km x 5km terrain. Each cell in the 
grid corresponds to a 10m x 10m area. Trees are 
planted in each square using one of the above 
templates. The database generator can be easily 
modified so trees are planted in any desired patterns. 

The database has a 500 x 500 element header 
followed by an varying array of tree records. Each 
500 x 500 header element corresponds to a 10m x 
10m square and contains an index into the tree array 
to the first in a list of trees planted in that square. All 
the trees planted in the same square are linked 
together in a linked list. 

At the present time the feature database only contains 
trees. Each tree is modeled as three stacked cylinders 
which are referred to as elevation bands. As shown in 
Figure 6, each elevation band has a height, radius and 
density attribute. The height is the height in meters 
from the base of the cylinder. The base of the lowest 
cylinder is sitting on the surface of the earth. The 
radius is the radius of the cylinder in meters. The 
density is not yet used but is intended to represent the 
density of foliage. It can be used to represent trees in 
different seasons and as a LOS masking probability 
factor when the LOS intersects the cylinder. 
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1.   Abstract 

We have developed an experimental system that 
allows a human fireteam leader to direct a CGF 
fireteam using voice and gesture commands. This 
capability allows a small unit leader to be a 
participant in a simulation exercise rather than just an 
operator who controls CGF. This paper describes the 
interpretation of a simple set of voice commands and 
gestures by simulated individual soldiers. It briefly 
presents the recognition and encoding of commands 
into symbols. It next describes the architecture of the 
CGF system and the behaviors that implement the 
commands. The paper concludes by discussing the 
challenges posed in interpreting commands: 
understanding them in terms of the current situation 
and using common sense to fill in unstated 
information. 

2.   Introduction 

We have developed an experimental system that 
allows a human fireteam leader to direct a computer 
generated forces (CGF) fireteam using voice and 
gesture commands. Such an interface to simulated 
entities addresses two shortcomings in existing CGF 
systems. First, command and control of CGF has 
generally focused on formatted orders, maps, and 
military symbols (e.g. Salisbury 1995). At the level of 
individual combatants, leaders do not generally 
collect radio reports and issue battle plans; instead 
they perceive the situation directly and give 
commands for immediate execution. Leaders point to 
objectives, locations, enemy forces, etc. that both the 
leader and his squad can see, rather than refer to 
named objects on a map. The language in which 
soldiers are trained uses spoken words and arm 
signals rather than text and graphical symbols on 
maps and overlays. 

The second shortcoming of existing infantry CGF is 
that they are semi-automated: they must be 
controlled by a human operator with a computer 
keyboard and mouse (e.g. Franceschini 1994). The 
operator thus has an unnatural interface to the virtual 

battlefield and cannot really participate in an exercise 
as a trainee. From the point of view of other trainees 
an opposing forces, the operator is an invisible leader 
who issues orders via an undetectable radio. The 
leader should be both visible and audible to friendly 
and enemy forces and vulnerable to destruction. 

The experimental system constructed at 1ST consists 
of a leader interface component and a CGF 
component connected with a DIS interface. Gestures 
and sounds are encoded into symbols in the leader 
component. This paper describes how the encoded 
commands are interpreted by the CGF in the context 
of the current tactical situation. It does not describe 
the gesture or sound recognition in detail. After an 
overview of the entire system, the paper describes the 
CGF architecture, the command implementing 
behaviors, and the challenges posed in interpreting 
commands that may be ambiguous or incomplete. 

3.   System Overview 

3.1   Requirements 

The goal of this project was to build a prototype 
simulation system that would allow an individual in 
the role of a small unit leader to control a CGF squad 
and helicopter with gestures and spoken commands. 
The system was to use a limited set of standard 
military gestures. The voice commands were to use a 
natural set of sentences—avoiding any artificial use 
of coordinate systems or other artifacts of the CGF 
system—but use only a simple grammar to avoid the 
complexities of natural language understanding. 
Communication between the leader and the CGF 
system was to use the DIS (2.0.3) protocol as far as 
possible. By using this standard protocol, the system 
could function correctly if either the sender or 
receiver of commands were a trainee or CGF. 

3.2   Command Set 

The voice commands were composed from seven 
words using the following grammar: 
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START => "move" WHERE | 
"shoot" WHERE 

WHERE => WHEN | "there" WHEN 

WHEN => "now" | "when_he" COND 

COND => "moves"   "shoots" 

In the above production rules the capitalized words 
are symbols that must be expanded and the quoted 
words are terminals that are actually spoken ("when 
he" is treated as a single word). The phrases 
separated by "I" are alternate definitions of the name 
on the left. For example, grammar can produce the 
following phrases: 

move now 

shoot there when he shoots 

move when he shoots 

This grammar can produce 12 valid phrases. 

Fourteen gestures are recognized the system. 
Thirteen of these are commands which are recognized 
and encoded as symbols, and one is simple an arm 
azimuth angle which is encoded as a numerical value. 
The arm azimuth is used in conjunction with voice 
commands and the Change Direction command to 
indicate locations, targets, etc. The command 
gestures include the following: 

FORM_COLUMN 
FORM_WEDGE 
OPENJJP 
INCREASE_SPEED 
ADVANCE 
CEASE_FIRE 
CHANGE_DIRECTION 

FORM_LINE 
DISPERSE 
CLOSE_UP 
DECREASE_SPEED 
HALT 
COMMENCE_FIRE 

Helicopter landing signals were also implemented, 
but they will not be discussed here. 

3.3  System Architecture 

Figure 1 shows the overall architecture of the system. 
The trainee station includes everything except the 
CGF component. A personal computer running 
DragonSpeak software accepts voice input and 
recognizes words. These are encoded and sent over a 
serial line to the workstation. Position information 
from three sensors (one on each hand and the back) is 
also sent to the workstation, where gestures are 
recognized from the data. The workstation hosts a 
DIS simulation which maintains the trainee's position 
in the virtual world (movement is directed with a 
joystick) and produces the visual output for a head 
mounted display. Encoded gestures and words are 
added to the DIS Entity State packet and broadcast on 
the network. Arm azimuth can also be added to the 
Entity State packet as an articulated part parameter. 

The CGF system receives Entity State PDUs and 
extracts the gesture and voice information just as with 
all other state information. The CGF soldiers can 
observe the leader and see that he is making a gesture, 
and hear the leader's spoken words. Each CGF 
soldier must parse the spoken words to determine if 
the leader gave a valid command. 

3.4  Gesture Recognition 

Gestures are represented as a network of static poses. 
A pose is one hand's orientation and position relative 
to the body. Inputs to the network are "sensors" 
which detect when the hand moves to the position 
defining a pose. The network specifies sequences of 
poses, combinations of poses, and rates of pose 
changes that must be detected to recognize the 
gesture. As the hands are moved, all gesture 
networks   are   updated    until    one    produces    a 

Netwak- augmented EXS 20.3 

GCF 
(PQ 

ESS Simulation 
(SQWcdstaticn) 

EtagonSpeak 

voice recognition 

(PQ \ 
rfead mounted 

display 
Hock of Birds 

tracking device 

Figure l.S ystem architecture for expei imental voice and gest ure input system. 
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"recognized" output. Further detail on the gesture 
recognition system can be found in (Abel 1995). 

4.  The CGF System 

4.1   Basic Functions 

The CGF used in this experiment is based on the 1ST 
CGF system. This system is a complete DIS simulator 
node that covers functions from network interface to 
behavior generation. Basic functions in the CGF 
system include the following: 

Distributed Simulation Support—interface to the 
terrain database, including derived representations of 
buildings; dead reckoning of ground truth for all 
entities; translation between internal and DIS 
representations of entities. For voice and gesture 
recognition, the representation of human entities was 
extended to include the gesture currently being made 
and the word currently being spoken. 

World Physical Model—line of sight calculations; 
probability of kill lookups for munition impacts; and 
movement updates with terrain surface and obstacle 
collision constraints. 

Entity Physical Model—sighting (detection) model; 
hearing model; probability of hit calculation; fuel or 
energy expenditure model; control of weapon firing; 
and feedback controlled movement. For this voice 
and gesture project we deliberately simplified the 
problem by not requiring CGF soldiers to be looking 
at the leader in order to see gestures; thus the 
physical model was not extended. 

Internal World Model—maintenance of list of 
detected, visible, and previously detected but 
currently invisible entities; local map of movement 
obstacles. 

Behavior—situation assessment and action selection; 
selection of precomputed cover locations; movement 
route planning; formation movement; target selection 
(based on threat, mission priority, and fire 
distribution); environment scanning. Behavior is 
generally encoded in hierarchies of tasks. Within 
each task, current internal and external conditions 
determine what subtask should be performed to 
accomplish the task. All levels of task are 
reexamined every second or so in order to respond to 
changing situations. The words and gestures of a 
commander are observable phenomena in the 
environment just as the terrain and other aspects of 

entities are. As part of the periodic situation 
assessment, the CGF soldier considers what word is 
being spoken or gesture given. He also considers 
what commands he is currently obeying. These 
inputs, along with threats, terrain, etc., help determine 
what action is to be taken. 

While the 1ST CGF system can act as a semi- 
automated force (SAF), for this and other projects 
the entities are completely autonomous. When an 
individual combatant entity is created it begins a 
general behavior which includes following a mission, 
responding to threats, etc. 

4.2   Incorporating Leader Commands 

While the general concept of initiating a CGF 
behavior in response to a command is simple, the 
actual implementation requires specific details of 
timing and information sharing to be considered. 
Such details include the initial information given to 
CGF entities, the timing of commands, and the use of 
pointing gestures with certain commands to provide 
command parameters. 

The CGF entities must be initialized before 
commands are given. This initialization parallels the 
unit knowledge that a soldier would receive in 
training. The steps are as follows: 
1. Designate commander for each soldier. Use DIS 

entity ID. 
2. Assign soldiers to a role in a unit. The role 

determines their position in a formation. 
3. Give the soldiers their mission, which causes 

them to respond to their commander, react to 
threats, etc. 

DIS and computer simulations in general model 
continuous phenomena with periodic updates. This 
fact forces us to define rules for the timing of 
commands: 
• Commands must be held for about a second to 

guarantee that they are recognized. This is 
because the CGF soldier only checks the 
commander's appearance about once a second. 
For this project the trainee station continues to 
send out the last recognized command forever so 
this requirement is always met. 

• "No command" must be used between repeated 
commands to separate them. 

Several commands use parameters. When giving the 
"change formation direction" command, the 
commander must point to the direction of desired 
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movement.     Voice  commands  also  use  pointing 
gestures, as follows: 
• When speaking the first word, the commander 

must face soldier who is to receive command. If 
more than one soldier is aligned, then both will 
receive the command. 

• When saying "there," the commander must point 
to a location or target with his arm. 

• When saying "when he," the commander must 
point to the trigger entity, who must be friendly. 

4.3  Parsing Voice Commands 

A voice command has several components: a type, a 
target or location, a condition, and a trigger entity. 
The target and condition/trigger are optional. Figure 
2 shows the states of the parser that interprets 
commands and fills in command components. This 
parser corresponds to the grammar given in Section 
Error! Reference source not found.. 

4.4  CGF Behavior 

In order to understand what to do when after 
command is received, a CGF soldier must maintain 
several pieces of state information. These include the 
active   commands,    the    subtask,    the   rules    of 

engagement, and the formation movement 
parameters. 

We found that for the command set used in this 
project, it was necessary for the CGF soldier to 
remember two simultaneously active commands: a 
"movement" command and a 'Tire" command. For 
example, a soldier might be following 'Tire there 
when he fires," and at the same time executing a 
number of different movement commands. New 
movement or fire command always supersede the 
current ones. For a more extensive command set, it 
might be necessary to remember more than two active 
commands, or a history of recent commands; in 
addition, the developing situation might determine 
which commands remained active. In the present 
case conditional commands expired when the 
conditions were met. 

CGF soldiers start the exercise in a top level task that 
has them follow orders and respond to threats. They 
begin in a subtask called "Wait." Commands and 
threats cause them to transition to other subtasks in 
which they move to cover, move in formation, move 
to a commanded position, or engage the enemy. The 
conditions that cause the transitions between these 
subtasks are shown in Figure 3.. 

A number of assumptions were made during the 

START 

"Fire", "M ove" 

Set COMMAND 
TYPE 

"When he" 
Get arm azim uth; 
compute and set 
TRIGG Efl man. 

"The X "When he"   / 

Get arm azimuth; 
compute and set 

TABG BT/LOCATIO N. 

"Now " "Now" 
/ 

"Fire", "M ove" 

Set CONDITION to 
"none" Sei CONDITION TYPE 

Return com plete 
command 

Figure 2. Voice parser states and actions. In all states, a "no word" input keeps the parser in the same state; a 
timeout or any word not listed returns the parser to the Start state. 
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Form col", line 
or wedge 

^ At destination 

"Fire there now" OR 
"Fire there when he" and 

condition met 

"Form col", 
wedge, or line 

"Move there now" OR 
"Disperse" 

Move in 
formation 

Move by 
command 

Wait 

"Fire there now" OR 
"Fire there when he" and 

condition met OR 
Threats visible and weapon free 

Cease fire OR 
No targets OR 
Weapon tight OR 
No ammo... 

In formation 

Not in formation 

"Move there now" OR 
"Disperse" OR 
"Move there when he" and 

condition met 

"Move now" OR 
"Move when he" and 

condition met 

"Move there now" OR 
"Disperse" 

Seek cover 

Engage target 

"Fire there now" OR 
"Fire there when he" and 

condition met OR 
New threat visible and 

weapon free 

"Move there now" OR 
"Move there when he" and 

condition met 

 "Form col", 
At chosen covered     wedge, or line 
location 

'Fire there now" OR 
"Fire there when he" and condition met 
OR 
Threats visible and weapon free 

Figure 3. CGF Soldier subtasks. Commands containing "...when he..." are conditional; in this figure, "condition 
met" means that the "when he" condition has be satisfied. 

design of the subtask selection conditions described 
in the figure. For example, when the CGF soldier is 
in formation movement, and there is an opportunity 
for it. to fire at a threat, it is not obvious whether the 
soldier should stop formation movement and engage 
the threat. As the figure shows, we decided to allow a 
soldier in such a condition to engage the threat. On 
the other hand, if the soldier is moving in response to 
a "move..." voice command, it is not allowed to 
engage the target until the destination is reached. 

The third important aspect of the CGF soldier's state 
is rules of engagement. Various commands and 
conditions change the rules from "tight" to "free" 

(allowed to fire) and back. When the exercise starts, 
the soldier is in "weapon tight" state. "Commence 
fire," 'Tire now" and 'Tire there now" free the soldier 
to fire. "Fire there when he..." frees the soldier to fire 
when the condition is met. These commands free the 
weapon even if the soldier does not fire because there 
are no targets. The soldier only transitions to weapon- 
tight again if a cease fire command is given. Thus 
after the soldier is told to fire at one target, he may 
later engage other threats without a specific command 
if the opportunity presents itself. 

The fourth piece of state information is the formation 
status. The CGF soldiers know whether they are 
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currently moving in formation, and know the current 
parameters of the formation including type (wedge, 
column, or line), scale (how spread out it is), and 
speed. These parameters are adjusted by commands. 
In order to move in formation, CGF soldiers also 
must remember information given to them about their 
unit. At the beginning of the exercise, a CGF 
operator must list the identity numbers of all soldiers 
in the fireteam. The operator also designates a role 
for each soldier in the fireteam. Each CGF soldier 
remembers this information.. 

A CGF soldier recognizes the following formation 
commands: 
FORM_COLUMN FORM_LINE 
FORM_WEDGE DISPERSE 
OPEN_UP CLOSE_UP 
INCREASE_SPEED DECREASE_SPEED 
ADVANCE HALT 
CHANGE_DIRECTION 

The "Form_X" commands cause the CGF soldier to 
start formation movement activity. The other 
commands are ignored if the soldier is not in 
formation. Only a "Disperse" command or an 
individual movement command by voice breaks the 
soldier out of formation (although soldiers may 
temporarily break formation to engage threats). 

One of the roles in the formation is always designated 
"point." Generally, the other fireteam members key 
their movement off of the point man. The "Change 
direction," "Advance," and "Halt" commands are 
only acted on directly by the point man; other 
fireteam members react to the point man's action. 

4.5  Inferring Target Points 

Several commands, especially voice commands, leave 
exact target locations or entities unspecified or 
indicated only with a pointing direction. The exact 
location or target entity must be inferred by the CGF 
soldier. This is done as follows: 

MOVE THERE... The commander indicates "there" 
by pointing with his arm. If there is a feature 
providing cover (in our scenarios, a building) in the 
indicated direction and within 100 meters, the soldier 
moves to the building. Otherwise, the soldier moves 
to a point 20 meters from the commander in the 
indicated direction. 

FIRE THERE.... The CGF soldier identifies the 
nearest hostile entity within 5 degrees of the angle in 
which the commander is pointing. 

MOVE NOW. When no destination is indicated, the 
soldier finds the nearest covered location and moves 
there. 

FIRE NOW. When no target is indicated, the CGF 
soldier fires at the highest priority target. 

WHEN HE... The CGF soldier identifies the nearest 
friendly entity within 5 degrees of the angle in which 
the commander is pointing. 

DISPERSE. When told to disperse, the soldier finds 
the direction directly away from the center of the fire 
team formation. If there is a covered position in this 
direction, that is chosen as the destination. Otherwise 
the soldier moves to a point 25 meters away from the 
fire team center. 

5.   Discussion 

One of the important system lessons learned was that 
while commands may seem simple, their exact 
meaning in all circumstances is not obvious. For 
example, if a fireteam is moving by command and 
receives a fire command, can it stop and fire? If a 
soldier stops to fire, what do the other soldiers in the 
formation do? If a soldier receives a command to 
move here and then immediately after a command to 
move there, does it move here first and then there, or 
just ignore the first move command? If a fireteam 
moving in formation receives an order to change 
direction 180 degrees, how do the soldiers move to 
reorient the formation? Some of these questions can 
be answered with a little explanation from a subject 
matter expert; others require more extensive 
descriptions of behavior in different tactical 
situations; others require identifying and encoding 
common sense knowledge or common doctrine and 
incorporating it into the CGF soldier; and others 
require establishing constraints on the sequence of 
commands or the parameters for certain commands. 
In our behavior implementation we created active 
rule, subtask, engagement rule, and formation 
parameter states (that were not part of the gesture 
descriptions) to help define CGF soldier reactions to 
commands. In general system designers must be 
aware of the complexity of specifying command 
semantics. 

The second lesson concerning the CGF system is that 
CGF soldiers must have adequate common sense, 
tactical skills, doctrinal and unit knowledge in order 
to execute commands properly. As mentioned above, 
doctrinal knowledge may be required to understand 
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the semantics of a command—e.g., how to change the 
formation direction. Tactical skills such as use of 
cover and concealment while moving, selection of a 
firing position, or direction of cover fire are necessary 
to act as a trained soldier. Common sense is 
necessary along with the tactical knowledge to 
understand the leader's intent and thus identify 
unstated or imprecisely indicated movement and fire 
targets. Unit knowledge is necessary so that the 
soldier knows who his commander is, who is in his 
unit, what his own role in the unit is, what the chain 
of command is, and who his parent unit is. 
Knowledge of the mission and unit tasks may be 
necessary to carry out orders according to the 
commander's intent. These requirements can lead to 
an extensive initialization process; for example, for a 
10-man squad, each of 10 men must be told the 
identity and role of all 10 members of the squad— 
100 items of squad-role information. It is this body 
of knowledge that allows the squad to be controlled 
with a small set of simple commands. 

Representation. Institute for Simulation and 
Training. 

Salisbury, M. (1995) "Command and Control 
Simulations Interface Language (CCSIL): Status 
Update, in Proceedings of the 12th Workshop on 
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Simulations, Institute for Simulation and Training. 
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6.   Conclusions 

Voice and gesture based communication are 
important for inserting individual combatants into 
virtual battlefields. We have describe an experimental 
system in which a small set of squad level command 
gestures and natural voice commands were used to 
control a CGF fireteam. While the commands all 
seemed simple, implementing realistic behaviors was 
challenging because the operational semantics of the 
commands had to be defined for the many command 
combinations and a variety of situations. 
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1. Abstract 

A major requirement for conducting effective 
command group training, tactical analyses, or 
weapon system evaluation within advanced 
distributed simulation (ADS) is the ability to 
exercise against realistic opposing forces 
(OPFORs). When soldiers are not available to 
command these opposing forces, we must rely on 
synthetic forces (SFs) to play their role. 
However, today's SFs do not always act with 
the variety and credibility of behavior associated 
with soldiers operating under the stress of battle. 
Consequently, the results of an exercise may not 
be completely valid for real world application. 
This situation is aggravated further by another 
fact: While the virtual environment and other 
conditions in an ADS exercise are becoming 
more and more representative of actual battlefield 
trauma, current SFs remain "insensitive" to 
these developing virtual battlefield conditions. 
This paper reviews a general theory of human 
performance under stress, efforts to use that 
theory as a basis for a taxonomy of human 
behavior, and an application of the theory and 
taxonomy to model the effects of suppressive fire 
on the behavior of virtual infantry teams. 

2. Introduction 

To further the integration of combatant behaviors 
into SFs and to make them more "sensitive" to 
simulated battle trauma, Objective 4 of the 
Department of Defense (DoD) Modeling and 
Simulation Master Plan (MSMP) requires the 
development of authoritative representations of 
the typical behaviors of combatants and teams 
engaged in hostilities and operations other than 
war (OOTW). This paper reports on the 
development of a unified theory of human 
behavior (UTB) and the behavioral taxonomy 
called out by Objective 4 of the MSMP. In 
addition, this paper describes an application of 
the model and taxonomy to the development of 
SFs that are sensitive to the effects of suppressive 
fires.    As with other efforts described in  the 

MSMP, the overall purpose of this work was to 
enhance interoperability and reuse of the human 
behavior models and data developed to populate 
the behavioral taxonomy. In support of the 
objective of interoperability, the UTB allows the 
developer to "store" his human behavior model 
in its appropriate place relative to other 
contributions and to understand how his efforts 
relate to other models. 

3.  Toward a Unified Theory and Taxonomy 
of Behavior 

The research team conducted a search of the 
literature on behavior theory, behavioral/task 
taxonomies, and the effects of suppressive fire on 
dismounted infantry that was published from 
1960 through 1995. We identified 75 journal 
articles, books, and corporate reports and selected 
60 studies for in-depth analysis, adding eight 
citations from other sources along the way. The 
American Heritage Dictionary of the English 
Language, 1992 edition, defines taxonomy as 
"the science, laws, or principles of classification; 
systematics." Within the behavioral sciences, 
the definition has been vague. DeGreene (1970) 
defined a taxonomy entry as a "verbal 
description using an object-verb format." In his 
view, taxonomies are essentially lists of verbs in 
hierarchical order that reduce behavior from 
higher level—observable and measurable 
behaviors—down to a fine level of "meaningless 
abstraction from the real world." Other authors 
(e.g., Levine 1971 and Meister 1985) have 
expanded the definition to include another idea: 
In formulating the structure of a taxonomy, it is 
crucial to understand and make explicit the 
model or theory of behavior underlying that 
structure. A taxonomy then, is not merely a list 
of labels with semantic definitions, it also must 
have syntactic structure. 

The need to develop a unified behavioral theory 
and taxonomy that can be used across 
individuals and groups for multiple analytical 
purposes is a common thread that runs through 
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much of the research reviewed for this project. 
Such a taxonomy would allow behavioral 
scientists, computer scientists, engineers, 
trainers, and operational users to exchange data 
within a common framework and would 
eliminate the need to develop a new taxonomy 
for each new situation. Meister (1985) states that 
such a behavioral theory and taxonomy are 
required to analyze behavior to determine its 
constituent elements, to compare or relate two 
sets of tasks by their common underlying 
characteristics and behaviors, and to serve as the 
common basis for managing behavioral data. 

3.1. The Theory 

In response to this need, the first step in the 
construction of our taxonomy was to synthesize a 
unified theory of behavior (UTB) from past 
attempts to understand the relationships among 
the factors that underlie behavior under stress. 
The UTB shown in Figure 1 provides a context 
for the operation of the human behaviors to be 
classified and operationally defined in the 
taxonomy discussed later. It links the behaviors 
to their antecedents—through individual and 
team preparation for combat—and to their 
consequences in terms of battle performance 
measures. 

The UTB is based on the work of several authors 
in the fields of human performance measurement 

Antecedents 

and stress research beginning with Cannon 
(1932) and Selye (1952, 1955, 1956) through the 
more recent efforts of Alluisi (1982), Lazarus and 
Folkman (1984), Gal (1985), Fineberg et. al. 
(1991), Conroy et. al. (1992), and Deitchman 
and Fineberg (1994 and 1995). The UTB 
bridges the gap between battlefield stress such as 
suppressive fire; the sensory, psychomotor, 
cognitive, social, and emotional responses to 
such trauma (stress symptoms); and the 
performance decrements as manifested in 
individual or team tasks associated with 
dismounted infantry operations and command 
and control (C^). 

The UTB suggests that the antecedent 
conditions of generic battle stress (Dl) and the 
specific combat tasks associated with particular 
scenarios (D2) interact to create an environmental 
demand on the individual soldier or team. 
Battle stress is influenced by variables such as 
combat intensity, weather, terrain, threat 
characteristics, force ratio, environmental toxins, 
wounds, and disease. The combat tasks to be 
accomplished influence demand through 
attributes such as number and duration of outputs 
required, continuous workload, difficulty of goal 
attainment, precision required, response rate, and 
procedural complexity (Fleishman and 
Quaintance 1984). 

Mediating Variables Consequences 

Solder/ 
Squad KSA's 

(R1) 

Sensation of 
Environmental 

Stimuli 

General and 
Specific Stress 

(D1) 

Mission/Task 
Requirements 

(D2) 

Time 

Rumors, 
"Fog and 
Friction" 

Mediation: 

Situation 
Appraisal 

COA 
Alternatives 

Probabi lity of 
Success 
Survival 

Hi Lo 

Development 
of Stress 
Symptoms 

Effective COA 

Return Fire 
Seek Cover 

Retreat 

Selection 
of Behaviors: 

Actions 
Interactions 

Implement COA 

Effective 

Not Effective 

Ineffective COA 

Erratic Fire 
Freeze 
Panic 

Figure 1: A Unified Theory of Combatant Behavior Under Stress 
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This resulting demand is met by another 
antecedent condition: the level of readiness to 
perform. Readiness is a complex function of an 
individual's knowledge, skills, abilities (KSA) 
and experience (Rl) and interpersonal factors 
resident in his team and unit (R2). Abilities and 
traits include comprehension, expression, fluency 
of ideas, originality, memory, problem 
sensitivity, math reasoning, induction and 
deduction, and flexibility (Fleishman and 
Quaintance 1984). Interpersonal factors resident 
in the team include leadership, cohesion 
(horizontal bonding among personnel), 
commitment (vertical bonding to some ideal), 
role in the organization, and personal well-being 
(Blades 1986). 

Demand and readiness are compared (either 
consciously or unconsciously) and the result 
yields an initial estimate of one's own ability to 
meet the perceived demand. For example, if 
readiness greatly exceeds demand, no negative 
effects on performance are perceived. As time 
passes, readiness may degrade, while demand 
may remain steady or grow. In any case, when 
the demand begins to approach the remaining 
readiness level, individuals use reserve capacity 
to meet the demand as predicted by the General 
Adaptation Syndrome (Selye 1956). At this 
stage, additional demands may cause the system 
to break down. The size of the readiness deficit 
and the individual's predisposition determine the 
character, prevalence, and magnitude of the 
performance decrement. This perception or 
estimate of one's ability to meet further 
demands, together with knowledge of the tactical 
situation on the ground and prevailing rumors 
and confusion, feeds into the mediation process 
in which appraisal of the situation and 
formulation of a course of action occur. 

During mediation, the soldier forms a subjective 
estimate of his chances of survival and success. 
This estimate is based not on the situation per 
se, but on what the combatant tells himself about 
that situation. One is tempted to conclude that a 
low probability of perceived success will inhibit 
behavior, but risk-seeking behavior cannot be 
discounted. Perceived probability of survival 
and success, combined with adherence to 
appropriate tactics and doctrine, influence the 
selection and implementation of effective 
behaviors. If the perceived probability of 
survival and success is high, the soldier or team 
will use its training to select and employ the 
most appropriate behaviors in a course of action 
designed to resolve the situation. If this 
probability  is  perceived as  low,  selection of 

behaviors will be "detoured" through a set of 
stress symptoms that tend to reduce the 
appropriateness and effectiveness of the behaviors 
and interactions selected relative to the task at 
hand. 

The effect of the decrements in behavior modifies 
the initial capability of the individual or team by 
some percentage, leaving a residual capacity to 
perform. This residual capacity, as influenced by 
stress responses, translates to performances that 
are adaptive (advance or retreat) so long as they 
are not overly influenced by the stresses that 
drive them. Performance becomes maladaptive 
(panic and decisional paralysis) when the stress 
level exceeds some internal, idiosyncratic 
threshold. 

3.2.  The Taxonomy 

The taxonomy is described in detail in Fineberg 
(1995). It is based on the behavior description 
and requirements approach described by 
Fleishman and Quaintance (1984) and on an 
information    processing    paradigm. The 
taxonomy contains four major taxons or classes 
of behaviors labeled Sensation, Mediation, 
Reaction, and Interaction. These major classes 
are analyzed further into 11 lower level categories 
that are populated by 188 action verbs. These 
action verbs are seen by the authors as building 
blocks of human behavior. 

Taxon A, Sensation, contains the first two sub 
classes, that is, automatic and volitional 
behaviors that serve to collect, filter, condition, 
and retain data from the outside world for short 
periods. These data are passed on to Taxon B, 
Mediation, whose behaviors are sub-divided into 
three categories; preparing information fir 
assessment, solving problems, and making 
decisions. Taxon B also includes the capability 
to revise decisions based on of knowledge of 
results. Taxon C, Reaction, implements the 
selected course of action by way of three 
additional categories of behavior; physical, 
psychomotor, and conceptual responses. It also 
keeps track of the results of these responses 
relative to task accomplishment. The behaviors 
in Taxon D, Interaction, communicate, 
coordinate, and advocate the selected course of 
action to superiors and implement this course of 
action by accessing three sub-categories of 
behavior designated; controlling, organizing, and 
leading. After developing the taxonomy, 
Fineberg (1995) constructed operational 
definitions for each behavior that  specify the 
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meaning of a behavior by denoting its measuring 
operations. 

4. Applying the UTB to Predicting the 
Effects of Suppressive Fires 

Dupuy (1987) observed that "There is probably 
no obscurity of combat requiring clarification and 
understanding more urgently than that of 
suppression." This is supported by battlefield 
data and anecdotal reports suggesting that the 
attrition aspect (casualties typically < 10%) of 
combat power alone does not determine battle 
outcome    (Hughes    1995). Rather,    the 
psychological and spiritual effects of combat 
power, the most measurable of which is 
suppression, will often have a far greater effect. 

The phenomenon of suppression has been most 
recently defined (Hughes 1995) as "a non-lethal 
decrement in enemy combat performance from 
firepower that disappears when the battle is 
over." Similarly, Dupuy (1984) saw suppression 
as the effect of fire on the behavior of hostile 
personnel, reducing, limiting, or inhibiting their 
performance of combat duties. The US Army 
Field Artillery School (1980) viewed 
suppression as the temporary degradation in 
combat effectiveness due to the terminal effects of 
explosive munitions. Finally, JCS PUB-1 
defines suppression as a temporary or transient 
degradation of the performance of a weapons 
system below the level needed to fulfill its 
mission objectives.   Rarely has there been so 

much agreement on the definition of a 
psychological construct. This agreement, 
together with the acknowledged importance of 
suppression, reinforced our choice of suppression 
as the object of our current modeling effort. 

4.1. Results from the state-of-the-art review 

The effects of suppression have long been noted. 
Sun Tsu implied that the best battle is the one 
you don't fight. Napoleon asserted that "the 
moral is to the physical as three is to one." 
Clausewitz likened battle to walking upstream, 
that is, "action in war is like movement in a 
resistant element." An unnamed Union general, 
when told that his artillery bombardment was off 
target, was quoted as saying, "Damn the effect' 
It's the sound I want!" Throughout the history 
of warfare, the greatest military tacticians have 
been victorious by domination and control, not 
bloodshed and destruction. Perhaps the 
"smartest" weapons and tactics are those that 
most disrupt the morale and effectiveness of the 
enemy. If we can quantify the relationship 
between the parameters of suppressive fires and 
the behaviors of the troops at "ground zero," 
suppression indeed may be "a good bargain at 
the price" (USAFAS 1980). 

Our first step in quantifying those relationships 
was to characterize and operationally define the 
phenomenon of suppressive fire (see Table 1). 

Table 1: Sources and Signatures of Suppressive Fire 

Suppressive Fire Sources 

Direct Fire Weapons 
Small arms 
Machine guns 
Tank mounted 
Antitank weapons 
Characteristics 

Small area effect 
HI or miss 
Point accuracy 
Lower fear factor 

Indirect Fire Weapons 
Artilery 
Air Strike 
Characteristics 

Wide area effect 
Collateral damage 
Higher fear factor 

Suppressive Fire Signatures 

Stimuli 

Visual: 
Flash 
Smoke 
Debris 
Wounds 

Aural: 
Bang 
Whine 
Whiz 
Ricochet 
Screams 

Tactile: 
Heat 
Pressure 
Debris 
Wind 

Variables 

Duration 

Magnitude 

Nurrber 

Frequency 

Proximity 

Uncertainty 

Pattem 
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The stimuli and associated variables of 
suppression manifest themselves in changes in 
the behavior of combatants. These changes are 
mediated by constructs including radius of effect, 
troop deployment and posture, intensity of 
bombardment, and several miscellaneous 
variables (USAFAS 1980). Radius of effect can 
be expressed as: R    = 69.3(W 

Table 3: Rounds per Minute for Two Levels 
of Suppression 

)]n where R m hekg 
is the radius in meters, 69.3 is a constant 
determined by a least squares regression, and W 
is the weight of high explosive in kilograms. 
This equation can be used to calculate equivalent 
areas for a given level of suppression. The area in 
which half of those under fire will not return fire 
(Ps=5) is 2160 m2 for 5 rounds of 50-caliber 
shells, 35,300 m2 for one 155-mm shell, and 
211,800 m2 for one 8-inch shell. 

With respect to deployment and posture on area 
of suppression, we find that troops in the open 
are suppressed by an artillery shell landing 
within a circle of 1000 to 2000 m2 around their 
position. Troops in emplacements are not 
affected by suppression unless a shell lands 
within a circle of 300 to 500 m2, and troops in 
armored personnel carriers (APCs) are not 
suppressed until the fire is within a circle of 120 
to 140 m2. Suppression also can be measured in 
terms of simple proximity of the burst to one's 
own position. Table 2 shows proximity in 
meters for several types of weapons relative to a 
desired level of suppression. 

Table 2: Proximity Necessary to Result in 
Two Levels of Suppression 

^-r^supp 5 .9 
Weaoon^v 

M-16 1-3 

M-2 24-26 5-8 

105 How 51-118 21-55 

155 How 104-144 63-77 

8 in How 257-392 126-169 

Another predictor of suppression is the volume 
or intensity of fire. Table 3 indicates the number 
of shells per minute for various weapons 
necessary to achieve suppression at two 
probabilities. 

N. p 
.5 .9 

Weaponx, 

M-16 88-128 293-413 

M-2 23-25 75-100 

105 How 5-10 15-25 

155 How 4-10 12-25 

8 in How 2-5 5-10 

The delay in return fire resulting from 
suppression lasts either about 10 seconds or from 
30 to 100 seconds, depending on whose data one 
accepts. Similarly a defender's return fire appears 
to be reduced by 80 to 90 percent for 15 to 30 
minutes after heavy artillery bombardment. M- 
60 machine gun fire results in a 61 percent 
increase in tracking time of ATM gunners, and 
an interval of 4 seconds between M-60 bursts 
appears to cause the most suppressive 
eflfect.(USAFAS 1980) 

Many other intervening variables have been 
noted in the studies we reviewed. Random 
distribution of fire throughout the target area is 
more suppressive than systematic patterns of fire. 
Those who are knowledgeable about the lethality 
of weapons are 40% more suppressed than those 
who are not. Soldiers operating alone are from 
43% to 115% more suppressed than those who 
are with others. Those in a frontal parapet 
foxhole are 62% less suppressed than those in a 
conventional foxhole. The most suppressive 
fires occurred directly in front of the soldier, the 
least suppressive occurs directly behind him 
(USAFAS 1980). 

4.2. Constructing a suppression-sensitive 
dismounted infantry(DI) team 

Using the UTB to derive mathematical 
relationships and the parameters of suppressive 
fires from the literature as source terms, we began 
the process of representing the psychological 
phenomenon of suppression in Modular Semi- 
Automated Forces (ModSAF). We chose 
ModSAF 2.1 as the developmental tool for 
suppression-sensitive DI because of its capability 
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to create and control unmanned entities in the 
Distributed Interactive Simulation (DIS) 
environment. The suppression-sensitive infantry 
team is being constructed within a version of 
ModSAF 2.1 modified with indirect fire 
routines. This version was developed by the 
Leathernet support group at NRaD. Through the 
use of the DIS network, combat scenarios that 
include fire suppression effects will be played out 
and analyzed. The DIS environment allows 
manned and unmanned simulators to interact on 
a virtual battlefield through a network of 
computers. Our intention here is to describe the 
underlying principles that we used to implement 
suppression-sensitive performance into ModSAF, 
specifically for DI entities. 

Computerized battlefield simulation exercises 
typically consist of combatants operated and 
controlled by manned and unmanned systems. 
To recreate accurate and realistic scenarios within 
the computer-generated environment, algorithms 
are required that model the effects present in live 
and actual battle situations. Extensive time and 
effort are spent on modeling the weapon 
characteristics and their performance capabilities. 
Military tactics and doctrine also are modeled to 
determine autonomously what actions will take 
place under various conditions that may be 
presented to the entity. Modeling how the 
human performs, however, has proven to be quite 
difficult 

4.2.1   ModSAF Characteristics 

ModSAF contains synthetic entities designed to 
appear as though they are being maneuvered by 
human crews rather than computers. These 
entities can interact with each other and with 
manned individual entity simulators to support 
training, combat development experiments, and 
test or evaluation studies. Improving how each 
entity emulates the performance characteristics of 
its simulated human operator results in improved 
realism added to ModSAF. This improved 
realism results in an improved training 
capability. As implied in the UTB, ModSAF's 
computer generated forces will be modeled in a 
manner consistent with humans performing the 
identical task. DIs that encounter suppressive 
fire, while incorporating proper doctrine and 
tactics, will emulate appropriate (not necessarily 
perfect) human performance. That is, their 
selection of which tasks to perform next and their 
response time and accuracy in performing those 
tasks will be degraded in a manner consistent 
with known effects of suppressive fire on real 
troops. 

Implementing suppressive fire phenomenology 
into ModSAF requires an understanding of its 
architecture. Today's ModSAF models all 
weapons, vehicles, and DIs as entities. That is, 
a common library of constructs is used to model 
a dismounted soldier and an Ml tank. Each 
entity has a set of parameters that describe its 
structure and they each use the same set of 
algorithms to describe their performance. In 
other words, both the tank and the DI use the 
same software routines to "know" how fast they 
can travel and how to follow a road. Although 
not all entities use and follow all the same 
algorithms, the current architecture does allow 
several different types to exhibit the same 
behaviors. Thus, modification of a behavior fa- 
one entity will affect other entities using that 
behavior. 

Therefore, similar to an M1 tank, a ModSAF DI 
can move and turn in place, and each virtual 
soldier can carry and fire a weapon whenever a 
line-of-sight exists. Each DI can assume three 
postures: standing (in place or moving), 
kneeling, or prone with orientation determined 
by the terrain under him. A DI can mount 
appropriate vehicles (such as IFVs), ride to 
another location, and dismount. While 
mounted, DIs are not visible. In ModSAF 2.1, 
DI teams can consist of two or more individual 
DI entities. One member of a team may be 
configured with an anti-tank (AT) missile that 
can fire at tanks or aircraft (STINGER, SA-16). 
In addition, teams can move and/or "keep 
station" with each other. Indirect fire simulation 
currently includes the proper orientation of the 
gun and/or vehicle for particular fire missions. 

When the ModSAF DI makes contact with an 
enemy entity, it executes a unit level reactive 
task that monitors enemy activity and reacts to 
the contact. A DI constantly checks to see if 
enemy entities are spotted. If so, the ModSAF 
DI reacts by executing an appropriate set of 
responses. The response sets that are currently 
supported are: Contact Drill, Assault, Withdraw, 
Occupy Position, and No Action. 

If Contact Drill is chosen, the unit continues to 
execute its primary task while shooting at the 
enemy. If Assault is executed, the ModSAF DI 
creates an assault objective at the computed 
enemy location. If Withdraw is executed, 
ModSAF creates a point far from the enemy in 
the opposite direction where the unit can go. If 
Occupy Position is executed, ModSAF creates 
an objective facing the enemy and chooses 
logical    target    reference    points    with     the 
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engagement area at the enemy location. All of 
these programmed sets of behaviors are 
predicated on the nature of the contact with the 
enemy and the predispositions input at the 
beginning of the engagement. They are not now 
subject to any intermediate influence of simulated 
battlefield trauma. 

422 Developing the Suppression  Sensitive 
ModSAF Dismounted Infantry CDT) Team 

We used a proof-of-concept approach to 
implement into ModSAF the effects of 
suppressive fire. For subject variables, we 
assumed two levels of readiness. Level one is 
high in which the troops are well trained, have 
good leaders, and are fully equipped with the 
latest gear. Level two is low in which the troops 
are not so well trained, are plagued with poor 
leadership and low morale, and have older, 
poorly maintained equipment. To scope the 
effort, we chose three independent suppression 
variables to represent soldier interaction with 
suppressive fire: intensity of bombardment in 
terms of rounds per minute, proximity of 
detonation, and the location of the detonation 
(i.e., in front, to the side, or in back of the 
troops). The caliber of the round remained 
constant at 155 mm. The first step in the 
modeling process was to hypothesize a logical, 
defensible relationship among these variables. A 
multiplicative function was selected as a 
plausible first approximation. We know that as 
explosions get nearer, happen more frequently, 
and last longer (up to a half hour) the effects of 
suppression increase and the probability of 
selecting the best set of actions declines. 
Therefore, if a ModSAF DI is to emulate a 
soldier responding to suppressive fire, we believe 
the first effect to model is the decrement in the 
probability of selecting the best course of action 
(COA) for a particular set of conditions. 

Assume for this discussion that the ModSAF 
entity experiencing suppressive fire is executing 
one and only one of a set ofN CO As, such as an 
assault or withdrawal. In the baseline case, that 
is, without suppressive fire, the ModSAF entity 
periodically comes to a decision point and either 
continues its present COA or switches to one of 
the alternate COAs. At each of these decision 
points, the entity makes a rule-based choice that 
is always doctrinally correct. That is, at a 
decision point, the entity chooses the rule-based 
COA with probability 1 and chooses each of the 
alternate COAs with probability 0 when there is 
no suppressive fire. 

The following approximate model of the effect of 
suppressive fire on the "appropriateness" of the 
choice of COA is based on the concept of a 
suppression index S that ranges from 0 to 1. 
The index S is calculated from the combined 
characteristics of the suppressive fire as perceived 
by the entity. The baseline value of S in the 
absence of suppressive fire is 0. Under this 
condition, the entity makes the correct rule-based 
choice at all times as above. When 5 = 1, the 
entity makes a random choice among COAs, 
thereby choosing the doctrinally correct COA 
with a probability of only \/N. All COAs are 
equally likely. This phenomenon may be 
represented mathematically as follows. 

Let Pcor(S) be the probability that the entity 
makes the doctrinally correct choice of COA. 
The following formula for Pca^S) is based on the 
assumption that Pcor depends linearly on S when 
S is between 0 and 1: 

fcW „,_(£=!),. 
The overall probability of an incorrect choice is 
Pi«(S) = 1 - P«*(S). Let p be the individual 
probability of each incorrect COA. Then 

To improve the model in the future, either data 
or the judgment of subject matter experts could 
be used to weight the alternate COAs when S is 
large. 

The independent variables that determine the 
suppression index S are the intensity / of the 
suppressive fire in rounds per minute, the radial 
distance R from the entity to the impact point of 
the rounds in meters, and the azimuthal angle <p 
of the impact point relative to the entity's 
forward direction. 

The suppression index S is assumed to be the 
product of individual functions of I, R, and <p: 

S = j(I)g(R)K<t>). 
The functions j, g, and h each range from 0 to 1. 
With this choice, any one of the independent 
variables can reduce the effectiveness of fire 
suppression, as is reasonable. For example, if 
the distance to the point of impact of the 
suppressive round(s) is very large, then g(R) will 
be 0 and the suppressive index S will be 0 no 
matter how intense the bombardment The three 
functions are defined in the following subsections 
for the case of 155 mm artillery fire. 
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Intensity of Fir? 

The influence of intensity of fire on the 
suppression index is given by the function 

y(/)=min[0.20V/,L0]. 
As / increases,j increases as the square root of/ 
until it reaches its maximum value of 1. 

Proximity of Fire 

The effect of the  proximity  of fire  on  the 
suppression index is given by the function 

63 
8 = min[Wmyl0]- 

The function g varies inversely with R until it 
maximizes at the limit 1.0 when R is less than 
63 m. (The increment of .01 is added to R to 
prevent calculational difficulty if R is set to 0. It 
has little effect when R is greater than 63 m.) 

Pearine of Fire 

The bearing or direction of round impact relative 
to the forward direction of the unit afreets the 
suppression index through the function 

/i(0) = O.75+O.25cos(j). 

With this choice of the function h, suppressive 
fire is most effective in front of the entity and 
least effective behind, with equal effectiveness on 
left and right. Note that direction alone cannot 
reduce the suppressive index to 0. The largest 
effect is a 25% reduction in the index. The 
coefficients in these equations will be different for 
weapons other than 155-mm artillery. 

Due to the modular architecture of ModSAF, the 
capability exists to remove one module and 
replace it with a modified one. For this project, 
two modules or libraries received most of the 
attention, libwreactif and libuactcontact. 
Libureactif deals with unit level reactions to 
indirect fire tasks, and libuactcontact focuses on 
unit level actions on contact tasks. Both deal 
with behaviors of entities when fired upon by 
weapon systems. Modification of the logic that a 
DI entity takes when fired upon by indirect fire is 
represented    in    these    libraries. Further 

development and integration of the methodology 
and equations produced in this effort will allow 
known deficiencies in ModSAF's representation 
of soldier performance to be corrected. Dealing 
with these shortcomings using this methodology 
will provide increased realism and appropriate 
uncertainty in DI performance prediction. 

4.3 ModSAF Dismounted Infantry Team 
Operations on the DIS Battlefield 

To understand how the suppression-sensitive 
synthetic infantry team would operate on the DIS 
battlefield, we produced the operations model in 
Figure 2 that illustrates how a DI might respond 
to suppressive fires given the mathematical 
argument above. 

The first step in exercising the suppression 
sensitive ModSAF is to initialize various 
parameters of the simulation. These parameters 
are extracted from a scenario and include the 
mission to be accomplished, the enemy 
disposition, threat characteristics, the terrain, the 
weather conditions, and the critical mission 
times. As an example, consider the following 
scenario: 

The action takes place on rolling 
wooded hills, on an overcast day with 
intermittent rain. The time is dusk. A 
Red company size force moves along the 
route of passage. Red scouts detect a 
Blue infantry platoon encamped on 
high ground commanding the route of 
passage. Red opens fire on the 
unsuspecting Blue force. Blue first 
localizes the Red position 2000 m off 
and begins a hasty defense calling in 
artillery on Red position. Red comes 
under direct and indirect fire from Blue 
artillery   and    small    arms. The 
engagement lasts for 10 to 15 minutes 
and ends when the Red force breaks off 
contact. 

Variations on this scenario could be 
developed based on the duration, 
accuracy, and intensity of Blue indirect 
and direct fires. 
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Figure 2: ModSAF DI Response to Suppressive Fires 

The combination of parameters in the scenario 
establishes the initial generic "demand" on the 
ModSAF DI entity that corresponds to the 
demand in the UTB. The critical mission times 
are then input by setting the various clocks in 
the ModSAF entity. These times include 
mission start, beginning of suppressive fires, 
duration of fires, rate of fires, time of cessation of 
fire, and the time of residual suppressive effects 
(dependent on the rate and volume of fire). 

The initial state of readiness of the ModSAF DI 
would also be set before the exercise begins. 
Readiness, as discussed earlier, is a product of 
individual and unit factors including level of 
training, role in combat, personal well being, 
cohesion, commitment, and leadership. Some of 
these factors are seen as "dials or gauges" on the 
ModSAF graphical user interface (GUI). Their 
values, or intensities, can be set in any number 
of possible combinations. Once the initial state 
of our suppression-sensitive ModSAF infantry 
team is set, the simulated suppressive fire can 
begin. Suppressive fires are initiated by a 
ModSAF artillery battery that sends out protocol 
data units (PDU) containing code that represents 

the   shell   characteristics,   initial 
trajectory, and ending coordinates. 

coordinates, 

The latest development in ModSAF, made by 
the Leathemet support team at NRaD, represents 
suppressive fires by allowing virtual artillery to 
fire at predetermined points on the ground rather 
than only at targeted entities. These PDUs, 
which contain information on the point of impact 
relative to target position and the burst radius of 
the round are read by the sensitive ModSAF 
infantry team (SMIT). From these characteristics 
the SMIT calculates a figure of merit (FOM) that 
combines the intensity, duration, and proximity 
of the barrage and compares this FOM to a set of 
criteria that describe the minimal threat to the 
SMIT given its disposition, cover, and 
concealment. If the SMIT does not register the 
barrage as a threat, it goes back into its 
observation mode waiting for other stimuli. If it 
does register a threat, the SMIT calculates its 
own residual capability to continue its mission, 
given the level of the initial demand and the 
level of suppressive fire added to the initial 
demand. This calculation is made by comparing 
the combined demand on the SMIT to its initial 
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readiness. Demand is defined as the sum of all 
generic stress (environmental stress, mission 
workload, and specific stress from suppressive 
fires), and readiness is the total of all individual 
and social factors that make up a unit's 
capability. 

The difference between readiness and demand 
defines residual capability (RC). If the demand 
is extremely high (mission impossible, bitter 
cold, high winds, mountainous terrain, and 
withering direct fire combined with intermittent 
artillery) it will exceed readiness no matter how 
well prepared troops are. This results in the 
development of "stress responses" in the SMIT 
whose analogues in real soldiers include such 
symptoms as inability to make decisions, 
stomach distress, panic reaction, etc. These 
"virtual symptoms" interfere with, disrupt, or 
impede the selection of behaviors that are 
appropriate to the task at hand. In the case of 
suppressive fires, behaving effectively, could 
mean taking protective cover until the barrage is 
over. The extremely high demand increases the 
probability that the behaviors chosen by the 
SMIT will npj be appropriate to the task, may 
be carried out inaccurately if at all, and may take 
so long that they are ineffective. The outcome of 
this interference with the selection and 
implementation of combat behaviors will be to 
decrease mission performance in terms of 
lethality and survivability of the SMIT. On the 
other hand, if the demand is very low, there will 
be no noticeable decrement in performance with 
regard to implementing the proper course of 
action as dictated by the level of suppressive fire. 

5.  Conclusions 

We developed a conceptual model of human 
behavior to explain relationships among 
behaviors in support of a taxonomy for synthetic 
entities. The taxonomy provides not only a 
classification scheme for abilities, tasks, and 
behavior descriptions but also a common 
language and syntax for representation of human 
behavior in synthetic forces within ADS. This 
taxonomy is compatible with DMSO's 
Conceptual Model of the Mission Space, 
STRICOM's combat instruction sets, the 
Integrated Unit Simulation System, and other 
ongoing behavior representation efforts. As a 
proof-of-concept, some of the behaviors of the 
phenomenon of suppression are being 
implemented in ModSAF DI. When completed, 
the suppression-sensitive ModSAF DI will 
provide the distributed  interactive  simulation 

environment with the first synthetic entities that 
are responsive to the effects of weapons other than 
kinetic and blast injury. This accomplishment 
will open the door to representing other 
psychological phenomena such as fatigue and 
combat stress, in addition to the impact of 
radiological, chemical, and biological weapons. 
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L_ Abstract 

The Centre for Defence Analysis, a division of the 
Defence Evaluation and Research Agency, has been 
researching the potential benefits of using Computer 
Generated Force (CGF) techniques within War 
Games and simulations, using its Divisional War 
Game (DWG) and the DRA's Generic knowledge- 
based Flexible Enemy (GEKNOFLEXE). 

The DWG is a large scale, Divisional level, War 
Game running on VAX hardware. During a study, it 
is operated by approximately thirty military and 
civilian staff. 

GEKNOFLEXE is an autonomous simulation running 
on Sun hardware which has achieved widespread 
recognition for its ability to credibly model 
Command and Control up to Divisional level using 
cooperating knowledge-bases. 

The product of this research is the Command Agent 
Support for Unit Movement Facility (CASUM) 
which currently supports the DWG in all aspects of 
unit movement. Its principal function is to 'form up' 
a column of units from dispersed starting locations 
and then move them in single file to a specified 
destination while maintaining the order of march and 
unit spacing. 

The aim of this paper is to provide an exposition of 
the following project issues: 

• Aim & Objectives. 
• Approach. 
• Specification of Role. 
• System Functionality. 
• Benefits & Effectiveness. 
• Potential Future Development. 

2s. Aim and Objectives 

The overall aim of the Project may be concisely 
stated as 

"To investigate and report on the potential benefits of 
applying Computer Generated Force techniques 
within War Games and simulations." 

This aim has been fulfilled by successfully 
completing a number of phased objectives. The 
Project has progressed from a simple demonstrator 
through to a CGF Facility supporting the DWG: 

Phase 1 Simulation Interaction 

Demonstrated a bi-directional interface between the 
two simulations including run-time consistency and 
reactive control of DWG units by GEKNOFLEXE. 

Phase 2 Credible Control in Complex Task 

Developed a Red Divisional Recce knowledge-base 
for GEKNOFLEXE and demonstrated credible control 
of Divisional Recce withdrawal within the DWG. 

Phase 3 Capability in the Selected Role 

Developed a unit movement knowledge-base and 
demonstrated credible movement of large groups of 
units within the DWG by GEKNOFLEXE under actual 
game conditions. 

Phase 4 Release Version 

Enhanced the unit movement knowledge-base to 
incorporate additional functionality and produced a 
release version of the CASUM Facility. 

Phase 5 Game Support 

Successfully provided game support for the 1996 
game series. 

The success of the Project was assisted greatly by 
building functionality incrementally, and by 
establishing confidence in the system through the 
series of demonstrators. 

i_ Approach 

The technical approach was formulated to meet two 
basic requirements: 
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• Construction of a general framework to support the 
reliable interaction of the two simulations. 

• Development of a CGF Facility capable of 
supporting the DWG across a broad range of tasks 
at all levels of command. 

3.1   Framework 

The general design was developed from a 
consideration of the constraints to be applied to the 
framework and its desirable features. 

3.1.1 Constraints 

Discussion with all interested parties resulted in a 
number of design constraints for the framework: 

• The DWG should not rely on the CGF Facility to 
fulfil its task. 

• Failure of the CGF Facility should not disrupt the 
operation of the DWG. 

• Modifications to the DWG functionality should be 
avoided if possible. 

• The CGF Facility should be linked to the DWG 
using existing interfaces. 

3.1.2 Features 

Consideration of the design constraints and the 
functionality of both systems led to a number of 
design decisions: 

• A file based communications system should be 
adopted to preserve data integrity and support 
recoverability after a failure. 

• Terrain and unit updates should be obtained from 
the DWG output files. 

• Orders to be issued to the DWG should be sent via 
the same interface as for the existing DWG player 
terminals 

• The level of representation of terrain and units 
within GeKnoFlexE should be made consistent 
with those of the DWG, to enable credible 
command of units and consistent route planning. 

3.1.3   Design 

Figure 1 shows the generic framework for the CGF 
Facility. It is based on the use of two Sun 
SPARCstations and the DWG VAX Mainframe. 
Discussion of the exact purpose of each process 
within the framework is given below. 

Sun Sun 

Figure 1 Data Flows and Processes 

Communications within the system are supported by 
a number of distinct file types: 

• Player Orders - contains each order issued at the 
CASUM screen by the DWG Player. 

• GEKNOFLEXE Orders - contains each order issued 
by GEKNOFLEXE. 

• Occurrences - contains a record of all DWG update 
events. 

• DWG Updates - contains each relevant DWG 
update event. 

The functionality of the system is effected by a 
number of distinct processes: 

• DWG Player - validates move orders, and writes 
them to the Player Orders file on the VAX. 

• Command Repeater - translates each Player Order, 
writing it to the Player Orders file on the Sun. 

• GEKNOFLEXE - processes updates from the DWG 
Updates file, processes orders from the Player 
Orders file, and writes any orders to the 
GEKNOFLEXE Orders file. 

• Orders Translator - translates each order in the 
GEKNOFLEXE Orders file and writes it to the 
GEKNOFLEXE Orders file on the VAX. 

• DWG Player - reads each order in the 
GEKNOFLEXE Orders file and sends it to the 
DWG. 

• Occurrence Translator - translates each Occurrence 
in the Occurrence file writing the relevant ones to 
the DWG Updates file. 

3.2   CGF Facility 

A consideration of the nature of the two simulations 
and   their   supporting   technologies   led   to   the 
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formulation of a simple development philosophy for 
the construction of a CGF Facility for the DWG. The 
relevant issues are presented in the following sub- 
sections. 

i2J_ GEKNOFLEXE 

The original purpose of GEKNOFLEXE was to 
provide a generic system for the representation of a 
two-sided ground-based conflict at Divisional level 
and below. The intention was to develop a library of 
knowledge-bases which would enable efficient 
response to C3I study questions against the 
background of a conflict anywhere in the world and 
involving any two military forces. 

Thus the emphasis of GEKNOFLEXE development 
was focused on the realistic representation and 
interaction of higher and intermediate level 
Command Cells. The level of unit aggregation, the 
degree of interaction modelling and the resolution of 
the terrain were all defined to serve this purpose and 
were fairly rudimentary. 

For GEKNOFLEXE, the general approach to the 
development of a set of knowledge-bases would 
necessarily be top down. Representation would start 
with the highest level of command and be extended 
in depth and breadth until sufficient C3I modelling 
detail was incorporated into the system. Interactions 
between forces would be approximated 
algorithmically. 

It is important to note that GEKNOFLEXE 

developments have always made full use of 
Command Agent Technology and, at lower levels 
where partial use of the technology would be valid, 
algorithmic approximations have tended to be used. 

3.2.2  Command Agent Technology 

Command Agent Technology is founded on the 
object oriented approach to the decomposition of a 
problem domain and supports an explicit 
representation of military command and control 
structures. It allows individual perceptions of the 
battlefield to be developed by each Command Cell 
modelled within a scenario. Systems employing 
Command Agent Technology can achieve high 
degrees of realism in the execution of the Command 
Cell function, and the interaction between Command 
Cells. 

It must be stressed that the purpose of Command 
Agent Technology is to provide an appropriate 
framework within which to model C3I structures, and 
that, at the lower levels of command, the modelling 
of such structures may not require all the 
functionality provided by the technology. Hence a 
system may employ Command Agent Technology 
without fully exploiting its functionality. Further, 
within the paradigm of this technology, every entity 
on the battlefield is capable of being an 'agent of 
command' whether it is employed as one or not. 

There is therefore, a distinction between the concept 
of Command Cells and Command Agents. Any 
entity modelled within a scenario can be a Command 
Agent - not all are Command Cells. The functional 
advantages provided by Command Agent 
Technology become more important as the level of 
command to be represented becomes higher. This 
does not however preclude lower levels of command 
(even sections) being developed using the same 
technology. In fact it is of advantage to do this since 
it facilitates extension and development of a system 
to include higher levels of command subsequently. 

3.2.3 DWG 

The DWG software is a single process simulation 
written in C which runs on VAX hardware. At the 
core of the DWG is the Simulator process which 
performs all the modelling and evaluation during the 
execution of a game. Game data are held in a DEC 
RDB database. 

DWG players interact with the Game via individual 
player processes, separate from the Simulator 
process, which also run on VAX hardware. The 
player processes transmit orders to the DWG via 
Global Sections. 

While the DWG and GEKNOFLEXE both address 
questions at the Divisional level, the DWG is not 
autonomous and supports a very low level of 
modelling detail. Further, this level of modelling 
detail is invariant and effectively defines the level of 
interaction with the system. In effect there is very 
little 'intelligence' built into the system and almost 
every task executed in the game needs to be micro- 
managed by the DWG players. 

3.2.4 Development Approach 

Given these issues it is clear that development of a 
CGF Facility must begin by applying control at the 
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lower levels of representation within the DWG. 
Successful implementation at this level has several 
potential advantages: 

• Reduction of DWG manpower requirements 
through the removal of low level data-processing 
tasks. 

• More efficient use of available manpower by 
allowing them to concentrate on higher level 
issues. 

• Increasing confidence in the applicability of the 
approach to address higher level control functions. 

• Subsequent, more sophisticated knowledge-bases 
will be able to utilise the work already done. 

Consideration of these advantages led to a simple 
development approach for the CGF Facility, namely: 

• Build the system and confidence incrementally. 

• Address the simplest most time consuming tasks 
first. 

• Provide 'Assistance' before 'Control' 

4_ Specification of Role 

Promoting military enthusiasm for a CGF Facility to 
support the DWG was key to the success of the 
programme. It was therefore considered appropriate 
in the first trial to demonstrate the ability of CGF 
techniques to undertake a relatively complex task in 
addition to providing low level assistance. For the 
first demonstration of capability therefore, a Red 
Recce withdrawal was chosen and the military staff 
of the game were used to specify the knowledge 
base. 

4.1 Extent of Support 

During the initial trial the military staff quickly 
recognised the potential of the system, but observed 
that most benefit would be obtained by addressing 
the more tedious and time consuming tasks first. 
This view was consistent with the development 
approach and it was agreed that the correct course of 
action was to initially limit the role of the Facility to 
that of an 'Assistant' to the DWG players. 

In addition to meeting the development requirements 
this approach has some additional advantages: 

• As an 'Assistant', the CGF Facility would have less 
responsibility and hence be less likely to adversely 
affect a game in the event of a serious failure. 

• 'Assistant' level functionality would not require the 
representation of cognitive processes, hence 
making it easier to develop. Further, higher level 
'Command' functionality would need to make use 
of'Assistant' level functionality anyway. 

• The DWG players would be free to address the 
more strategic and tactical aspects of their work. 

4.2 Application Area 

During the initial trial it became clear that the 
demonstrator was able to effect unit movement in a 
much more credible fashion than the DWG could by 
itself. Further investigation of the associated 
problems indicated that the most appropriate, initial 
role for the CGF Facility should be to 
comprehensively support the DWG in the execution 
of unit movement. 

This decision was consistent with the general 
development approach because fairly low level 
reactive functions are undertaken during a recce 
withdrawal. Additionally, the need for recce to 
maintain maximum coverage of potential lines of 
enemy advance during withdrawal presented the 
opportunity to demonstrate higher level capability. 
The subsequent trial proved to be very successful and 
revealed a number of areas where a CGF Facility 
could provide valuable support to the DWG. 

As a result, discussion with the military staff then 
focused on the most appropriate, initial application of 
the Facility. The rationale for the subsequent 
decision is developed in the following sub-sections. 

The background and rationale for this decision are 
presented in the following sub-sections. 

4.2.1   DWG Movement 

Within the DWG, a unit is moved from its current 
position to a specified destination using a DWG 
move order. This order allows the user to specify the 
required destination of the unit, whether or not to use 
available roads, a method for breaching minefields 
met, and a method for crossing rivers met, etc. 

There is also a facility within the DWG for 
requesting a unit to follow a predefined route. A unit 
can be ordered to follow a particular route, but can 
only join or leave the route at a specified 'node'. The 
advantage of routes is that a number of them can be 
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identified and created before the game begins, 
removing the need for entering large numbers of 
move orders for units travelling along the routes. 

However there are several inherent limitations within 
the DWG connected with unit movement, namely: 

• Naive Route Planning 

The DWG plots a straight line route between 
specified points. This takes no account of the 
intermediate terrain, so the route is not necessarily 
the fastest available, and it can pass through 
difficult terrain, possibly causing the unit to suffer 
casualties or halt. To get around this problem, the 
DWG player may nominate a number of 
waypoints, but this is a time-consuming and 
tedious process, especially in areas of inhospitable 
terrain. 

• Preparation of Predefined Routes 

Specific nodes along the routes must be identified 
prior to game start, and paths between these nodes 
must be planned. Routes are sometimes created 
during the game, incurring a further overhead in 
terms of data preparation time. There is also the 
chance that routes created during the game will 
accidentally pass through unfriendly terrain, 
leading to further time wastage. 

• Lack of Simple Movement Coordination 

If a DWG player wishes to make use of a 
predefined route, he still has to move all the units 
he requires in the convoy to appropriate entry 
nodes. These moves can encounter problems due 
to naive route planning. Once the convoy is in 
place, maintaining its momentum and Order of 
March is difficult due to units queuing. 

• Harsh Queuing Model 

If a unit attempts to move into a quadrant already 
occupied by another unit, then the moving unit 
may queue if the capacity of the quadrant is not 
sufficient to contain both units. If the obstructing 
unit does not move on, then the queuing unit will 
queue indefinitely. The DWG does not allow 
'obstructing' units to be 'bulldozed' out of the way 
or simply bypassed. 

• Boomeranging 

This is a random effect in which a unit that has 
been 'magic moved' by an umpire may return to a 
previous location later in the game. 

4.3-2  Rationale 

Given the problems outlined above, and their effect 
on game realism and manpower requirements, it is 
clear why unit movement was chosen as the area to 
be addressed. A Facility to assist with unit 
movement would significantly reduce the workload 
of both players and umpires, and would lead to a 
greater emphasis on strategic and tactical thinking 
during the game. 

5i_ Functionality 

The primary function of CASUM is to provide a 
simple mechanism for DWG players to move large 
numbers of units around the battlefield in a 
coordinated manner. The overall functionality of the 
Facility however is much more comprehensive. 

CASUM enables DWG players to move groups of 
units of any level in a coordinated fashion, with the 
minimum of effort. Movement orders given to a 
commander will automatically include all of his 
subordinates (not just immediate ones). Units that 
are not wanted on the move can be exempted from 
the move, and units that would not normally be 
amongst the commander's subordinates can be added 
to it. The single file convoy created from these units 
has a doctrinally correct Order of March (OOM) and 
units in the convoy are spaced appropriately 
depending on their size. A terrain-safe route planner 
that can accept a number of waypoints ensures that 
the movement of all units is not jeopardised by transit 
through difficult terrain. 

Dispersal criteria can be specified that determine the 
circumstances under which the convoy should 
disperse when attacked. Units that disperse will head 
for cover and then camouflage. If an unexpected 
obstacle (e.g. a minefield or uncrossable river) is 
encountered, the convoy will halt and pass command 
back to the DWG player. If the convoy disperses or 
encounters an obstacle, it becomes suspended, and 
the DWG player can take any action necessary to 
resolve the problem (e.g. eliminate the enemy threat, 
or bring up an engineering unit to clear the 
minefield). The convoy move can then be resumed, 
and coordinated movement continues as before. 
DWG players also have the option to suspend the 
convoy voluntarily. 

When a convoy has reached the end of its route, each 
of its constituent units deploys to cover in a 
formation that reflects the structure of the OOM. 
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When the whole convoy has deployed, command is 
passed back to the DWG player. The entire convoy 
move, or individual units on it, can be cancelled at 
any time. 

The progression of the convoy from the initial 
forming up stage to the final deployment is 
conducted without the need for further involvement 
from the DWG player, unless an exception occurs. 
The amount of supervision required during the move 
is therefore minimal. 

fL Benefits and Effectiveness 

This section presents an evaluation of the 
effectiveness of CASUM in supporting the DWG 
task. Evaluation has included an assessment of DWG 
permanent staff comments, performance measures, 
and the overall effect on the DWG model. 

6.2  DWG Player Workload 

The DWG players benefit from CASUM because 
they are now able to move large numbers of units 
easily without having to engage in extensive terrain 
analysis to determine suitable routes. As a result, 
they now have more time to deal with the tactical 
aspects of their roles rather than acting as traffic 
policemen. 

The extra elements of realism introduced into the 
DWG by CASUM are of great benefit to the DWG 
players in that they replicate more closely the 
movement procedures on a real battlefield. The unit 
aggregations used in the DWG now resemble the unit 
aggregations used in real life. This helps to make the 
whole gaming environment appear less artificial, and 
enables the DWG players to apply familiar doctrines 
within the DWG. 

6.1   Umpire Workload 

Prior to the introduction of CASUM, the umpires' 
most time consuming task was solving queuing 
problems. With the introduction of CASUM umpires 
now have little to do bar monitoring of the game and 
providing advice to the DWG players. 

It is clear from the games played so far that the role 
of the umpire has been significantly reduced by the 
use of CASUM. This reduction in role is sufficiently 
great to reduced the number of umpires. 

Figure 2 shows the workload associated with the 
movement of a Brigade before and after the 
introduction of CASUM. 

Umpire Day 
| Player Day 
DWG Day 

CASUM DWG 

Figure 2 Effort Comparison 

Convoys can now be assumed to be moving correctly 
until such time as the convoy commander reports 
back to the DWG player reporting otherwise. A 
convoy coming under fire can now be relied upon to 
disperse to cover if the dispersal criteria are met. 
Consequently, units will not suffer excessively if an 
attack goes unnoticed. It is this extra 'intelligence' 
that helps alleviate the DWG players' workload. 

6.3  Movement Realism 

As well as removing much of the burden that the 
unassisted DWG previously imposed on the DWG 
players, the CASUM system has improved the 
realism of the movement model in the DWG. This 
improvement in realism is due to several aspects of 
CASUM functionality. These essentially provide 
default behaviour for units that in real life would do 
something sensible, but in the DWG do nothing. 

6.3.1   Queuing Units 

The solution of queuing problems was a major issue 
in the pre-CASUM DWG, and indeed constituted the 
primary part of the work of the umpires. CASUM 
deals with queuing in the DWG in a credible fashion 
- this is especially beneficial for units that are moving 
in convoy, which are particularly prone to queuing. 

The existing queuing model is clearly at odds with 
reality, as a blocking unit would either move to the 
side of the road or be bulldozed out of the way. 
CASUM deals with this problem by forcing the unit 
into the next quadrant  on  receipt  of a  queuing 
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occurrence. This removes the requirement for 
umpire intervention. 

6.3.2   Military Realism 

CASUM also adds military realism to the DWG by 
allowing movement orders to be given to a 
commander only - his subordinates are automatically 
included in the move. This contrasts sharply with the 
previous state of the DWG where, say, a Brigade 
movement entailed the issuing of move orders to 
even' unit in the Brigade individually. 

The inclusion of different types of units (e.g. recce, 
armour, etc.) in convoy entities is more 
representative of the situation in reality, in that on the 
battlefield there are Brigade commanders, Battle- 
group commanders, and so on, not an artillery 
commander who deals with all artillery, or an 
engineer commander who deals with all engineers. 
Though the DWG is still based on this 'desk' 
approach, CASUM is forcing the various desks to 
cooperate in such a way that aggregated moves that 
would occur in reality are possible (and indeed 
encouraged) in the game. 

The CASUM route planner prevents units moving 
into unfavourable terrain. This eliminates casualties 
due to going, which are extremely rare in real life but 
were common in the DWG previously because of the 
DWG route planner's penchant for moving units in 
straight lines, irrespective of the terrain. 

6.4   Performance 

Care is needed when trying to assess the impact of 
CASUM on the DWG. For example, when 
considering the efficiency of the system as a whole it 
is not sufficient to compare the amount of game time 
played with and without CASUM - if you moved one 
unit around the battlefield for an entire game, you 
would achieve a vast amount of game time but 
nothing in the way of useful results. In assessing the 
impact of CASUM more subtle measures of the 
effectiveness must be used. For instance, the total 
amount of ground covered during a game or the total 
number of events processed is a more appropriate 
measure of efficiency of the system. In the final 
analysis the important factor is whether CASUM 
adds military credibility to the development of a 
scenario and provides a more realistic environment 
for the DWG players. 

6.4.1 Credibility 

The introduction of CASUM has made the movement 
of all groups of units a much simpler exercise, and 
one which is more intuitive to the DWG players. 
This has freed up more of the DWG players' time for 
tactical thinking, with the result that the equipment 
being modelled in the DWG is being deployed and 
operated in a more realistic manner. This inevitably 
leads to more credible results being extracted from 
the system. Umpire intervention has been reduced 
drastically, which again improves the integrity of the 
system. 

6.4.2 Movement Quality and Quantity 

The quality of the movement conducted under 
CASUM is unarguably better than that conducted 
previously in the DWG. Units under CASUM 
control will never voluntarily go into terrain in which 
they may take casualties, and queuing will not bring 
numbers of units to a halt. Convoys will adopt a 
doctrinally correct OOM, and units will head for 
cover when under significant attack or when 
deploying. 

The quantity of the movement conducted under 
CASUM is also unarguably greater than that 
conducted previously in the DWG. Comparisons 
with the last series reveal that approximately the 
same number of units have been moved but these 
units have covered twice the distance under CASUM. 

LL. Potential Future Development 

The CASUM Facility is consistent with the approach 
to the development of an entry level CGF Facility for 
the DWG. Subsequent development must build 
incrementally on this. As stated previously, in its 
current form CASUM is considered to provide 
'assistance' to the DWG player by undertaking his 
more mundane activities. For this reason CASUM is 
said to adopt the role of 'Commander Assistant', i.e. it 
assists the Commander in the execution of his task, 
but does not execute it for him. 

It should be noted that to increase the level of 
CASUM functionality to that of a Command Cell, a 
great deal of lower level functionality must first be 
provided. It is therefore asserted that a wide range of 
'Commander Assistants' should be available before 
the system is developed to support the more 
sophisticated aspects of command and control. 
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Consequently the recommended approach is to 
continue to develop 'Commander Assistants' for the 
DWG until enough have been implemented to 
warrant a shift to the development of Command 
Cells. At this point the Command Agent Technology 
will begin to be used to its fullest extent. 

7.1 Commander Assistant Roles 

Commander Assistant roles could address the 
following tasks: 

• Artillery 

The selection of deployment areas, allocation of 
guns to targets, specification of targets, and 
movement to new deployment locations. 

• Engineering 

Minefield laying/clearing, crater filling, and bridge 
building/blowing. 

• Reconnaissance 

In defence, coverage of all potential routes of the 
enemy advance until the main ones are established, 
withdrawal whilst monitoring these routes, 
suppression of the enemy at choke points by calls 
for artillery fire, RDM falls, and air strikes. In the 
advance, coordination of the movement of 
Reconnaissance forces to provide the optimal 
coverage of the enemy. 

• Air Defence 

Provision of an air defence screen around the front 
and flanks of a convoy and selection of suitable 
weapon states for the air defence units. 

• Aviation 

Plotting of routes that avoid enemy forces, radar 
searches at key points on a route, and identification 
and engagement of appropriate targets. 

7.2 Unit Movement 

Manoeuvre warfare is currently viewed as key to the 
achievement of military objectives, and hence 
development of the unit movement knowledge-base 
should be considered as an ongoing activity. Specific 
areas for development are: 

• Route Congestion 

Coordinate route usage to avoid congestion caused 
by a number of independent convoys reaching a 
river crossing point at the same time, or where 
terrain forces the canalisation of routes. 

• Dynamic Route Planning 

Re-assess the viability of routes as a result of 
bridge-blowing or cratering, constructing an 
alternative if necessary. 

• Selection of Start-point 

Select the start point for a convoy from a 
consideration of terrain, convoy length and 
position of constituent units. 

• Response to Obstacles 

Clear obstacles encountered by a convoy using 
convoy resources if possible. 

• Deployment 

Provide additional deployment pattern options to 
the DWG player at move specification. 

• Orders of March 

Provide additional OOM options to the DWG 
player at move specification. 

7.3  Command Cells 

Previous areas of suggested development are limited 
primarily to the role of 'Commander Assistant'. At 
some point however the sophistication of these 
'Assistants' becomes sufficient that the C3I function 
of Command Cells themselves may be represented. 
Command Agents would be used to explicitly 
represent Command Cells, drawing on the 
Commander Assistant functions present within 
CASUM. At this level it is expected that the 
permanent Commanders would have the ability to 
specify sophisticated operations orders. The precise 
functionality that could be offered by such Command 
Cells would draw heavily on the experience gained 
from the Command Agent Research (CARE) project 
and GEKNOFLEXE work already undertaken by 
DERA. 

&_ Conclusions 

In its current form the CASUM Facility is 
contributing considerably to the execution of the 
DWG task. There is significant potential for 
broadening the scope of the assistance provided and 
in the long term there is every reason to believe that 
the facility could be extended to fully automate 
divisional C3I functions. Further, the system has 
been received with much enthusiasm by the DWG 
military staff and is considered to have improved the 
credibility of gaming significantly. 
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In conclusion, the results achieved to date are 
considered to confirm that CGF techniques, 
particularly Command Agent Technology, have great 
potential to assist War Game simulations. 
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1. Abstract 

Communications is an essential factor of command 
and control. The effective representation of the 
communications process is therefore key to achieving 
a realistic command and control model for Computer 
Generated Forces (CGFs). 

Experiment number five of the Aviation Warfighting 
Cell (AWC) program (U.S. Army Program Executive 
Office Aviation, Ft. Rucker, Alabama, February 
1996) provided a vehicle to develop and integrate 
representative command and control communications 
into CAE's Interactive Tactical Environment 
Management System (ITEMS•). 

2. Introduction 

The involvement of CAE Electronics Ltd. in the U.S. 
Army Aviation Warfighting Cell (AWC) program 
provided a vehicle in which to integrate 
representative command and control communications 
into CAE's Interactive Tactical Environment 
Management System (ITEMS•). 

This paper describes the design issues involved in 
generating this communications capability through 
ITEMS• Computer Generated Forces (CGF) support 
of the AWC experiment. 

A description of the AWC program is provided and is 
followed by a description of ITEMS•. 

Emphasis is placed on the representation of 
communications networks within conceptual 
organizations such as teams, zones and commands. 
These organizations overlay one another in order to 
allow for: 1) individual players to talk to each other 
within a team; 2) teams of players to talk to other 
teams; as well as 3) commanders to talk to specific 
team leaders. This approach is aimed at providing a 
more representative model of the communications 
flow between command hierarchies on the CGF 
battlefield. 
A  discussion   considering   the   characterization   of 

specific messages follows. 

Basic messages such as spot and free-text reports 
provide an ability for CGF players to report threats 
detected by their sensors and to send, receive and act 
upon fixed message sequences. 

The ability to implement command and control is 
supported by various status request messages such as 
position reports, fuel/ammunition inventories and 
"shot-at" reports. Other basic messages include move- 
to commands as well as target/control measure 
handoffs. 

Control of CGFs is taken a step further with fire 
mission messages. These request/command based 
messages provide for coordination between players or 
between players and a manned simulator cockpit in 
order to establish laser designation and missile firing 
sequences. 

Issues encountered which are particular to the 
simulation of communications in CGFs are described. 
They include the handling and correlation of threats 
reported by a manned cockpit, the acquisition of 
threats and the interaction, through free-text 
messages, of a pilot with his CGF counterparts. 

Finally, applications of this technology are presented 
which   include more robust training as well as an 
ITEMS TM CGF     simulation     with     increased 
effectiveness   in   representing 
command and control. 

communications   in 

3. Aviation Warfighting Cell 

The Aviation Warfighting Cell (AWC) (Holmes et. 
al. 1996, Larkin et. al. 1996) program is run by the 
U.S. Army Program Executive Office, Aviation. Its 
goal is to provide high fidelity distributed simulation 
of army aviation forces. The level of simulation will 
help to identify and study aviation issues into the next 
century. 

To this end, the program focuses upon the creation of 
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Figure 1:   AWC Architecture 

two full flight simulators: An Apache Longbow and a 
Comanche. The program studies interoperability 
issues affecting the communications between the two 
platforms. Experiment five of the Anti-Armor 
Advanced Technology Demonstration (A2ATD) 
experiments is referred to in this paper. 

AWC consists of the two aforementioned simulators 
which are referred to as the Longbow Player Station 
(LPS) and the Comanche Player Station (CPS), 
respectively (see figure 1). ITEMS• provides Cell 
Management functions including overall control of 
the exercise and the provision of virtual forces to 
interact with the manned cockpits. Finally the Army 
Airborne Command and Control Vehicle (A2C2V) 
station introduces a man-in-the-loop command and 
control capability. All elements are networked via 
Distributed Interactive Simulation (DIS). 

The simulation fidelity achieved on both the LPS and 
CPS is concentrated on several aspects of military 
aviation. These include flight dynamics, weapons 
procedures and performance as well as digital 
communications. 

As the Cell Manager, the principal role of ITEMS• 
is to provide the AWC tactical environment. 
ITEMS• seamlessly integrates manned cockpits to 
its environment of computer generated forces. 
ITEMS• also provides session control allowing for 
data recording functions, after-action reviews and 
stealth view capability. 

vehicle simulation is A   command   and   control 
supported by the A2C2V. This ITEMS'M based 
station acts as a battalion commander and is capable 
of  communicating   with   the   rest   of  the   tactical 

environment via digital messages. A2C2V visibility 
of the battle area is not global but is based upon 
information which it has gathered using its sensors 
and intelligence. 

4. ITEMS• Overview 

CAE's Interactive Tactical Environment Management 
System (ITEMS•) (Siksik et. al. 1994) provides 
simulations with an environment in which entities are 
closely modeled with respect to both systems and 
intelligence, allowing them to interact with each other 
and with their environment in a realistic manner. 

The tactical environment provided by ITEMS• is 
both controlled and created by the user. Through the 
use of a database management system (DBMS), 
scenario files, each of which represent a complete 
tactical environment, may be individually created, 
modified or downloaded to the host-simulation 
computer to be run in real-time. 

The scenario design function of ITEMS• is an off- 
line process involving the ITEMS• Database 
Management System (DBMS). During scenario 
design, the user provides the DBMS with the 
information required to simulate the tactical scenario. 
In order to hold large amounts of data efficiently, the 
DBMS is divided into individual libraries. 
Information about scenarios, players, systems, 
intelligence, etc. is stored in respective libraries as 
individual records. The libraries are organized in a 
hierarchical format so that high level libraries can 
reference the lower level ones. For example, the 
specifications defined for a Hellfire missile in the 
missile library may be referenced by an AH-64 
helicopter within the Player Library. The helicopter 
may then be referenced by a scenario within the 
Scenario Library. Any scenario in this library may be 
executed. 

Players represent the basic elements of a tactical 
scenario and are defined as any entity which has 
tactical importance. A player could represent 
elements such as tanks, trucks, installations, SAM 
sites, infantry, fixed wing, rotary wing, stealth craft, 
ships, submersibles, etc. 

The ITEMS• scenario combines players within a 
terrain and visual database in which they may interact 
realistically with each other as well as with such 
environmental elements as weather or ground 
features. 

In   order   to   achieve   realistic   player   interaction, 
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ITEMS• implements representative modeling of: 5. Communications Networks 

Dynamics 
Navigation 
Ballistics 
Systems 
Intelligence 

This modeling is based upon detailed knowledge of 
physical player data. For its definition, a player 
references numerous low level library records within 
DBMS. These represent its platform and various 
systems. Platform definition is made with respect to 
physical characteristics, dynamic envelope and 
vulnerability. Systems libraries provide specification 
data for modeling and include: active and passive 
sensors (radar, FLIR, RWR, LWR, etc.), weapons 
(guns, rockets, missiles, bombs, etc.), 
countermeasures (flares, smoke, jammers, etc.), 
communications (voice, data, visual, etc.) and laser 
(designator, range finder). By combining platform 
and systems references, a large variety of computer 
generated players are created. 

The creation of lifelike player behavior and reaction, 
however, requires the modeling of player intelligence 
and this, in turn, is based upon knowledge of player 
tactics (military doctrine). Tactics, whether used in 
air, ground or naval applications, require a 
specialized range of expertise. ITEMS• exploits the 
ability of expert systems to carry out tasks of an 
expert nature thereby providing tactical capability to 
players. 

Within the ITEMS• expert systems, such tactical 
knowledge as mission, opponent selection, 
coordination and specialized combat is represented. 
This knowledge is represented by rules and provides 
control over the actions of individual players as well 
as over the summary actions of groups, such as a 
change of formation. Doctrines, like player data, are 
organized into libraries within the DBMS and are 
referenced by players within the scenario. This 
organization allows the user to assign different 
behaviors to players which share similar physical 
characteristics. 

With the use of ITEMS•, a tactical environment in 
which players interact realistically is provided. It is 
desirable, via DIS, to network the tactical 
environment to both manned simulators and to other 
tactical environments. 

Simulation of tactical communications in a virtual 
environment is a complex problem. The model has to 
be physically correct by respecting the physical laws 
inherent to the communications medium (RF, optical, 
written, acoustic, etc.). Conversely, it must be 
tactically correct. Tactical organization of military 
communications is such that messages must only be 
received by the relevant military entities. 

Directability of tactical messages is desirable for 
efficiency and for operational reasons. It reduces the 
communications traffic going through the onboard 
communications devices of the military vehicles and 
provides a basis to perform command and control as 
well as coordination. 

By contrast, untargeted messages produce intense 
communications traffic which may result in mingled 
unintelligible messages, information overload or 
disruptive information analysis and the requirement 
of filtering by recipients. 

Untargeted messages also introduce responsibility 
ambiguity which is antagonistic to military command 
and control. Recipients of a message cannot take 
direct responsibility for it, given that many other 
equally qualified entities may have received it as well. 
A targeted message, however, may be tailored to the 
abilities of the recipient. This facilitates the 
expedition of message interpretation by the CGF in 
the same way as it does in the real battlefield. 

All ITEMS• messages are transmitted and received 
through the simulation of the vehicle's RF onboard 
communications suite. Communications apparatus 
include analog/digital radios and direct links. These 
systems may be defined with encryption and 
eavesdropping capabilities. The models representing 
these devices take into account such factors as the 
emitter power, the antenna gain, the presence of 
jamming and the range between the transmitter and 
the receiver. This simulation is therefore physically 
representative and meets the first requirement of a 
tactical communications model. 

The AWC program introduced an additional 
simulation layer to the ITEMS• model by 
introducing the concept of tactical radio networks. 
Prior to AWC, ITEMS• radio broadcasting was 
rendered directional via specific frequency selection 
on the radios of the entities that were meant to 
communicate together. Given physical radio 
connectivity, an entity could listen to the messages 
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Figure 2:   Communications Networks 

transmitted on specific frequencies as assigned by its 
mission. The AWC experiment required ITEMS• to 
expand on this functionality by providing for tactical 
networks. Messages were transmitted through Team, 
Command and Zone networks (see figure 2). 

5.1 Team Network 

The Team network is used to broadcast messages 
within a team eg. a vehicle unit, a formation or a 
platoon. The main application of this network is to 
facilitate intra-team cohesion and coordination. A 
team leader typically uses it for point to point 
communications with his subordinates in order to 
resolve the specifics of their mission. In turn, the 
subordinates use this network to report to their 
superior and to help him gather tactical intelligence. 

5.2 Zone Network 

The Zone network is used to transmit information to 
all teams within a contained geographical area. This 
network typically channels general broadcasts whose 
goal is to maintain uniform tactical awareness 
amongst the entire force in the zone. 

5.3 Command Network 

The Command network is used to network the team 
commanders so they can coordinate themselves for 

specific inter-team tasks (eg: time on target fire, 
maneuver and support team coordination, observation 
and attack, etc.). 

The integration of these networks within ITEMS• 
makes it possible to simulate the real world 
communications methods that the A2ATD 
experiments required in order to study the 
interoperability between the AH-64 and the RAH-66. 
The networks map themselves to actual military chain 
of command. By doing so, they provide a 
communications infrastructure that allows 
information to flow to the proper entities or groups of 
entities. 

From a CGF perspective, the simulation of networks 
enhances realism, directability and interpretability of 
messages. All of these qualities are required in order 
to have realistic CGF interoperability with manned 
cockpits. Moreover they help to represent more 
accurately the decision making process taking place 
on the battlefield. It is one thing to have virtual 
players take the appropriate action by performing 
good situational reasoning. It is another to achieve 
the same effect through the coordination of their 
subordinate counterparts. 

The simulation of communications flow and of the 
decision centers is important to interoperability 
experiments such as A2ATD. It is likely to be more 
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important to future experiments that would analyze it 
at run time for intelligence gathering purposes. 
Command posts and observation posts can be 
recognized based on the volume of communications 
they generate and thus can be targeted first. 

6. Communications Messages 

AWC not only introduced the simulation of networks 
to ITEMS• but also increased the number and 
variety of messages that ITEMS• can handle. 

6.1 Pre-AWC Messages 

Prior to AWC, ITEMS• radio messages were used 
to communicate battlefield information whose content 
facilitated uniform tactical awareness among the 
forces. From a content point of view, the messages 
are grouped into two categories: variable situational 
content messages and fixed tactical content messages. 

Variable situational information content messages 
contain information about detected threats. These 
type of messages communicate such information as 
positions, velocities, level of acquisition, friend/foe 
status, etc. 

Fixed tactical content messages typically report 
tactical events that other players can respond to. The 
nature of the event is not explicit in the message and 
must be interpreted in the behavior rules of the 
players receiving the message. These messages may 
be considered as coded since the receiver must have a 
prior knowledge of what to expect. Fixed tactical 
content messages do not include variable fields for 
the purpose of parametrization. 

A sender of the types of messages described above 
has no control over how they will be interpreted by 
the receivers. A contact report details potential 
targets. It is not explicit about what should be done 
with them. A fixed tactical message is functional if 
both the sender and the receiver have the exact same 
understanding of what is implied. 

The more explicit a message is on how to interpret 
the information it conveys, the better its chances of 
achieving efficient inter-player coordination. AWC 
experiment five was in many ways a coordination 
experiment. It had to demonstrate, given the 
communications bandwidth of the AWC digital 
messages, how well two helicopters with different 
missions and of separate manufacture (one of them a 
prototype) could coordinate between themselves and 
with their ITEMS• generated virtual counterparts. 

6.2 AWC Messages 

Among the AWC messages used for experiment five 
are messages very similar to the ITEMS• messages 
described above. 

Spot reports are equivalent to the ITEMS• contact 
report, with the exception that groups of vehicles 
(spots) are reported rather than a list of individual 
vehicles. 

Free text messages are the equivalent of the 
ITEMS• fixed tactical messages. As indicated by its 
name, free text message content is left to the sender to 
formulate as the specific need for communications 
arises. Its format is free and it therefore cannot be 
parametrized. It consists of a character string that a 
pilot can type in and transmit to other pilots or 
players. It is typically used to signal very specific 
mission events such as reaching a position or flagging 
the beginning of an action. 

Usage of the free text messages, implies that both 
pilots and virtual players must have briefing 
knowledge about which free text messages to use 
under specific circumstances. As with the ITEMS• 
tactical messages, interpretation of free text messages 
by virtual players is described by their behavior rules. 

Message introduced to ITEMS• by AWC convey 
information required for the command and control of 
virtual players from the manned cockpits. 

Information query messages are used to obtain 
information from virtual players about their own 
state. Players respond automatically to these 
messages. Query messages include status reports (fuel 
level, ammunition), present position reports and shot- 
at reports (list of weapons fired to date along with the 
targets). 

Since query messages are explicit about the action to 
perform, an automatic response can be formulated. 

Newly developed messages included requests for 
which automatic behaviors were modeled. An 
example is the move command which requests a route 
change from ITEMS• players. 

An additional message capability integrated to 
ITEMS• provides for the interpretation of control 
measures. The fire / no fire zones messages are 
examples. Based upon their opponent selection rules, 
the receptivity of virtual players towards selecting 
opponents inside or outside of specific areas may be 
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Figure 3:   Coordination of Laser Designation and Missile Launch for Fire Mission Message 

varied. 

A level of complexity above those already mentioned, 
is a family of partially automatic interpretation 
messages. Partially automatic messages imply that the 
receiver is subjected to a bias towards acknowledging 
the request. This bias is introduced via the opponent 
selection process. In this way, a designated target, 
provided via communications, may be selected or 
rejected, based upon the bias. 

ITEMS• players can therefore base their receptivity 
to these messages upon tactical context. Once 
selected, however, the actions to perform with respect 
to the target are fully automatic. These actions do not 
need to be described within the player's rules since 
they are explicitly detailed in the message. The target 
handover and fire mission messages are messages in 
this category. 

The target handover message describes which target 
to engage and which weapon to fire. Automated 
responses include the maneuvering (approaches, 
unmasks, etc.) required to attain a firing position as 
well as the request for fire itself. 

target in the last seconds of missile flight only (see 
figure 3). Provision was made for this message to be 
used as an artillery request when required. It should 
be noted that because of a lack of time, the fire 
mission and artillery request messages were only 
integrated within ITEMS• and not to the AWC 
cockpits. 

In order to consider communications failures and the 
uncertainty they may cause, an automatic 
acknowledge message has been implemented. The 
user may select a mode that will enable all players to 
expect an acknowledge when they send a message. A 
player will re-issue a message up to three times to 
players that did not acknowledge reception of his 
message. 

7. Integration Issues 

The integration of manned simulators with any CGF 
always raises correlation issues. These are typically 
related to such considerations as the difference in 
fidelity for sensors and weapons, inconsistencies 
between different scoring models, the lack of 
correlation between separate terrain databases, etc. 

The fire mission message is a multi-step 
communications protocol which permits the 
coordination of laser designation and missile launch 
between two helicopters. This protocol addresses the 
time delay problems, the maneuvering, the laser code 
transmission and target reporting in order to lase the 

During the AWC experiment, the use of U.S. Army 
approved algorithms addressed most typical 
correlation issues. This section will focus on the 
correlation issues related to communications and their 
impact on the simulation of command and control. 
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The correlation issues discussed pertain to message 
data, effects and interpretation, the use of 
acknowledge messages in order to achieve better 
situational correlation for pilots and the necessity of 
using free text messages to address mission details 
which ;ire too specific to parametrize. 

In order to achieve interoperability with manned 
cockpits, ITEMS• was required to be able to 
correlate the data received by players via messages 
with data that players had collected individually, via 
their sensors. As an example of a possible lack of 
correlation, a spot report might report one too many 
vehicles or may contain errors in the attributes of the 
reported threats. 

In order to solve this problem, ITEMS players 
associate reported entities with their closest currently 
detected threats via a weighting mechanism that 
would increase in certainty based upon the amount of 
data that could be matched (ie: positions, speeds, 
player types, level of acquisition, etc.). Entities that 
cannot not be matched with already detected threats 
will then be matched to possible yet undetected 
threats. If ITEMS• determined that no matches were 
possible (eg: an impossible position is reported), the 
information is discarded. In all cases, the receiving 
player preserves the most recent information about 
the reported threat. 

An example considers a player receiving information 
about a threat it does not yet detect with its own 
sensors. This player will use the message data in 
order to build its own internal image of the threat. As 
soon as the player detects the threat with its onboard 
sensors it refreshes this image with its own data. For 
specific data, if the message information proves to be 
more accurate, it will be retained. 

Another data correlation issue arises as data 
contained in messages starts to age. Players reported 
some time ago may have been killed or simply 
changed location. A solution to this kind of problem 
is to extend the life of the data by extrapolating it 
over time. ITEMS• extrapolates the location of the 
threats based upon the speed at which they were last 
reported or detected. This solution is valid for a 
limited time, however, and for this reason, ITEMS• 
also tags the information with a validity timer 
(specific to the player type) beyond which the 
reported data is discarded. Data describing a slow 
moving threat such as a tank will be extrapolated for 
a longer period of time than data representing a 
fighter aircraft since magnitude of the potential 
extrapolation errors increases dramatically over time 

for the latter. 

The network discussion in section 5 highlighted the 
effect of the directability of messages on their 
interpretation. For the sake of both command and 
control simulation as well as interoperability with 
manned simulators, the correlation of the meaning of 
the messages themselves is also very important. 

A distinction must be drawn between the effect that a 
message will have on the battle and the reason for 
which it was sent. The variability of the effect of a 
message depends upon the design of a player's 
mission. 

A player having a very precise mission can operate on 
its own and although it could accept command and 
control messages it may not require them in order to 
achieve its goals. A simple threat report may be the 
only triggering event required for its mission actions 
to begin. 

Conversely a player with no precise mission will 
essentially do as it is instructed. This situation is far 
more demanding from the command and control point 
of view as it implies that explicit requests are required 
from command. 

Integration of players with both high and low levels 
of mission detail is a delicate task which depends 
upon the command and control abilities of the 
scenario builders as well as their coordination with 
the pilots of the manned cockpits. The pilots require a 
clear understanding of how to inter-operate with the 
virtual players during missions just as they must know 
how to inter-operate with real forces in real life. 

One focus of an ITEMS• mission description is the 
opponent selection and mission rules associated to 
players. These rules automate the reactions of players 
based on events. Consequently, for the case of 
messages that are fully explicit about the nature and 
sequence of actions to undertake, it became evident 
that correlation errors could be avoided by removing 
their interpretation from the rules. The concept of 
macro rules was introduced in order to fully automate 
message responses, thus relieving the rule creator 
from having to repeatedly enter rules to handle the 
event of message reception. In order to deal with 
cases for which the correlation of the message and the 
action required is not as straightforward and must be 
resolved differently depending on the tactical context, 
the interpretation was left in the rules. 

There exists a need for virtual players to correlate the 
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content of the messages they receive with their vision 
of the battlefield and with the way they intend to 
achieve their mission. This needs exists equally for 
pilots of manned cockpits. The pilots' sole link to 
their virtual partners is the family of digital messages 
they can exchange. During the integration of the 
cockpits to the ITEMS•, it was apparent that the 
pilots required confirmation that their messages had 
been received by their virtual partners. For this 
reason, the acknowledge message was implemented. 
This message gives tactical confidence to the pilots 
that everything was under control on the virtual side. 
The pilots could even assess casualties in their team 
when a subordinate player would fail to acknowledge 
the reception of its messages. 

As mentioned earlier, the use of the AWC free text 
messages implies that both the pilots and the virtual 
players must be briefed about which free text 
messages to use under specific circumstances prior 
the exercise. The potential for correlation problems is 
therefore very large. A simple typing error from a 
pilot would result in virtual players failing to decode 
the message. For this reason, it was decided at the 
early stage of AWC integration that ITEMS• would 
not support the reception nor the expedition of free 
text messages both to and from the manned cockpit. It 
soon became evident, however, that in order to 
handle very specific scenario details, the use of these 
messages was indispensable. Virtual players 
transmitted free text messages to signal their leader (a 
manned cockpit) that they had reached their fire 
position. They then received free text messages from 
the pilot as final confirmation before firing. 

8. Conclusions 

Through the use of ITEMS•, the AWC experiments 
have provided for significant improvement in the 
ability of man-in-the-loop simulators to interact with 
computer generated forces through command and 
control communications. 

The implementation of networks, such as team, zone 
and command, allows for better directability of 
battlefield data. 

Although issues involving correlation of message data 
and interpretation remain, the work achieved for 
AWC experiment five provides a strong foundation 
for an increased representation of command and 
control in ITEMS• as well as for an improved 
training capability for man-in-the-loop simulators. 
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1. Abstract 

The Advanced Distributed Simulation Research 
Team (ADS RT) at SAIC-Orlando has been 
conducting experiments with the interoperability of 
simulations. Two of these experiments and their 
common architecture are discussed in this paper. The 
first of the experiments involves a linkage between 
Command Forces/Command & Control Simulation 
Interface Language (CFOR/CCSIL) and Combined 
Arms Tactical Trainer - Semi-Automated Forces 
(CATT-SAF). 

Close Combat Tactical Trainer (CCTT) SAF and 
CFOR Command Entities communicate using CCSIL 
messages making CATT-SAF a player in CFOR 
activities and allowing a wide variety of doctrinal 
CATT-SAF behaviors to be available to CFOR. The 
focus here was to employ commanders using CCSIL 
to command and control CATT SAF entities. The 
proof-of-concept implemented consisted of a 
translation of the CCSIL Execute Directive message 
and the actions it could elicit as of version 3.1.1. A 
full mapping of CCSIL messages to CATT-SAF 
behaviors and a capability of sending reports from 
CATT-SAF to CFOR is the next step in this research 

The second experiment explored interoperability 
between SAF simulations and live Command, 
Control, Communications, Computers and 
Intelligence (C4I) systems, such as Phoenix. The 
proof-of-concept implemented shows CATT-SAF 
units commanded from Phoenix via US Message 

Text Format (USMTF) messages. This capability 
allows a common Command and control (C2) 
interface employed in the Army's Battle Labs 
(Phoenix) to be utilized as a front-end to CATT-SAF. 
The version of Phoenix used did not have the 
command order capability that is present in Phoenix 
version 1.1 which will need to be examined before a 
proper mapping of Phoenix messages to CATT-SAF 
behaviors can be completed. Also a capability of 
transmitting reports from CATT-SAF to Phoenix 
should also be pursued. 

The architecture used CORBA technology to provide 
common services for command language 
communications among the simulations. This paper 
provides an explanation of the experiments and a 
description of the architecture involved. 

2. Introduction and Background 

The ADS RT at SAIC-Orlando has been conducting 
experiments involving the interoperability of 
simulations. For each of these experiments in 
interoperability, an approach was taken based upon a 
common architecture. The experiments discussed in 
this paper involved the integration of additional C2 
capabilities into dissimilar simulations. The 
integration of these capabilities involved the 
development of a common architecture through 
which the command and control information is sent, 
received, and translated into the format used by a 
given simulation. 
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The common architecture for each of these 
experiments is based upon the Seamless 
Interoperable Simulation Environment (SISE). SISE 
was developed for our interoperability experiments in 
order to provide the object-oriented plug-&-play 
environment necessary for the interoperability and 
reuse of legacy simulation components. The use of 
SISE also provides insight into interoperability issues 
leading to a roadmap for the interoperability of future 
simulations. Each interoperability experiment uses 
some subset of SISE. Although portions of SISE 
have been implemented, it is currently a paper 
concept. 

Interoperability in simulation can be achieved by 
adhering to common industry standards. Standards 
which encourage or require object oriented design are 
important not only for purposes of interoperability 
but also for the purposes of reusability. Distributed 
Object Technologies (DOTs) typically provide such a 
standard through a common framework for 
distributed objects. The interoperability experiments 
described in this paper make use of DOT technology 
as well as other standards. 

The goal of the first interoperability experiment 
involving C2 was to provide a mechanism by which 
CCTT-SAF can receive and interpret CCSIL 
messages. This allows for the control of CATT-SAF 
entities by a CFOR commander or any commander 
with the capability of sending CCSIL messages. 

The second interoperability experiment involving 
command and control provides the capability for 
CATT-SAF to receive command and control 
information which was sent in USMTF by a 
commander at a Phoenix console. This capability 
demonstrates not only interoperability but also the 
reuse of this common C2 interface. 

2.1 SISE 

SISE (pronounced size) offers two distinct 
capabilities. First, it offers a library of legacy 
simulation component services that have been 
wrapped for reuse. SISE allows these simulation 
pieces to be connected together to form a whole 
simulation or to be linked into an existing simulation. 
Second, SISE offers a mechanism for allowing 
simulations of different types (live, virtual, 
constructive) to interoperate. To support these two 
capabilities, different standards and different 
representations will need to be arbitrated. Hence, 
SISE contains the following arbitrators: semantic, 

protocol, temporal, and spatial. These arbitrators will 
be elaborated in subsequent publications. 

SISE is composed of three distinct parts: the core, the 
plug, and the GUI. Together, these parts allows a set 
of simulations and/or simulation components to 
interoperate. For the research presented in this paper, 
SISE provided a testbed for interfaces with CCSIL 
Signal PDUs and CORBA technology. 

The SISE core consists of the SISE infrastructure and 
an object model. It is anticipated that SISE will one 
day be conversant with the High Level Architecture 
Run-Time Infrastructure (HLA RTI) thus providing a 
means by which legacy simulations can participate in 
HLA exercises. 

A SISE plug is a client interface to a simulation, or a 
simulation component. The plug allows a simulation 
component to talk to the SISE core and to other 
simulation components participating in the exercise 
(participants). The plug contains an interface to the 
core which includes registration services, services for 
synchronization with the simulation clock, and 
queues for sending and receiving messages from 
other participants. 

The SISE GUI provides the user with an interface to 
the library of services that have registered in or are 
defaulted with SISE. The GUI receives descriptions 
of simulation components via the core. The user may 
then use the Simulation Integrator portion of the GUI 
to construct a simulation. Once the simulation is 
constructed the user may activate components and 
start the simulation. Through the GUI, the user can 
create entities, examine the status of entities, monitor 
events, and control the simulation clock. 

Through the SISE GUI, any combination of point-to- 
point simulation component connections can be 
emulated without having to write specific conversion 
routines every time for every combination. Also, 
when new simulations are added with SISE plugs, 
little work needs to be done to previously connected 
simulations to allow them to participate. 

Portions of SISE that have been wholly or partially 
developed and tested to date are the GUI and parts of 
the infrastructure that allow plug-&-p!ay, semantic 
arbitration, and protocol arbitration. 

2.2 Distributed Object Technology 
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Unlike traditional distributed simulations that use 
distributed processes exchanging messages, object- 
oriented simulations are concerned with distributed 
objects and use them to provide the communication 
between heterogeneous distributed environments via 
remote method invocations. Interoperability is 
possible because the objects conform to the 
representation and interfaces needed by the host 
application, regardless of whether the object is local 
or remote. 

Object Request Brokers (ORBs) provide facilities 
that allow applications to invoke object methods and 
receive responses from objects created and owned by 
remote servers. All ORBs define an interface such as 
the CORBA Interface Definition Language (IDL) 
that allows remote objects to be seen in an identical 
fashion to the application as a local object, without 
regard to the object's true location. 

As mentioned previously, all ORBs must define an 
interface for interoperability. The Common Object 
Request Broker Architecture is designed to do just 
that (OMG 1995). It separates the interface of an 
object from its implementation using an IDL. The 
ORB will generate proxy objects for every remote 
instantiation of an object needed from a server. The 
ORB processes an object method invocation by first 
locating the object, invoking it (starting a server), 
converting the data as necessary, invoking the 
corresponding object method, and processing the 
return data. For example, an application may request 
pointers to remote objects and then use these pointers 
to call the remote services of the objects. The ORB 
provides a reliable communication path between 
heterogeneous applications using the same objects. 

The use of object-oriented technology in the DIS and 
CGF simulation domains is a relatively new concept. 
However, some previous work has been done in the 
area. SimCore uses CORBA objects to encapsulate 
PDUs for internal communication using ORBs and 
ODBMSs(Lander 1995). Kuhl also has encapsulated 
PDUs and used these objects via an ORB for air 
traffic control (Kuhl 1994). The ORB was used to 
provide the service needed by the Entity Update 
Service of the DIS protocol. The Entity Update 
service of the ORB provides the publish and 
subscribe service needed by the SISE GUI mentioned 
previously. Object-oriented technology is being used 
in a different aspect by Sureshchandran to manage 
dynamic changes in the environment (terrain, 
weather, etc) to provide real-time, high fidelity 
environments on demand (Sureshchandran 1995). 

The Tri-service Advanced Countermeasures and 
Threats Integrated Combat Simulation (TACTICS) 
also uses an object-oriented environment to allow 
high fidelity simulations to interact across distributed 
platforms. (Peck 1995). Similar to the SISE plug 
concept, TACTICS provides for the migration of 
existing simulations to the object-oriented model but 
focus on simulations that assess ground combat 
vehicle survivability. 

The Joint Precision Strike Demonstration program 
(JPSD) is using advanced real-time ODBMS 
technology to facilitate the logging and analysis of 
DIS PDUs, tactical messages, and audio/visual data. 
The logged information can be accessed during run- 
time or during an After Action Review. 

2.3 CATT-SAF 

Close Combat Tactical Trainer (CCTT) is a 
distributed training system that simulates battlefield 
aspects of the US Army SAF, man-in-the-loop 
simulators, and indirect fire and logistics 
components. The SAF component of the CCTT, 
referred to here as Combined Arms Tactical Training 
SAF (CATT SAF), simulates US Army and Soviet 
Army tactical behaviors for dismounted infantry, 
vehicle, platoon, company and battalion echelons. 
These behaviors are developed from documented and 
validated Combat Instruction Sets (CISs) and, as 
such, are useful for training, mission rehearsal, 
acquisition, and Test and Evaluation (T&E) 
environments. 

As part of the object-oriented design, CATT SAF 
uses a SAF Entity Object Database (SEOD) which 
contains representations for units, task organizations, 
overlay symbols, execution matrices, commanders' 
orders, and subordinates' reports. It is through the 
SEOD that this research influences the CATT-SAF 
simulation. 

2.4 Phoenix 

The Phoenix Battle Command and Control Decision 
Support System (BCDSS) is increasingly being used 
in the U.S. Army Battle Labs. This system has been 
successfully used to provide a user friendly human 
interface for the voluminous amount of information 
received by high echelon military personnel. This 
live, go-to-war system aids the decision maker in 
managing data sources so that more rapid command 
of forces may be effected. 
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Phoenix is intended to link with a number of systems 
such as IVIS. The primary interface employed in this 
research is an email capability that uses USMTF 
messages. These messages are used to convey reports 
to the commander as well as track enemy and 
friendly forces. The version of Phoenix used in this 
research did not have an Operational Order 
(OPORD) capability used to generate and transmit 
orders to subordinate units. Therefore, USMTF 
freetext messages were used for this purpose. 

2.5 CFOR 

Command Forces (CFOR) is a program under the 
Synthetic Theater of War (STOW) effort sponsored 
by the Defense Advanced Research Projects Agency 
(DARPA) that is intended to emulate high echelon 
commander reasoning and decision making using a 
variety of information sources including sensory 
capabilities in the synthetic battlefield. These 
command entity reasoners communicate with 
simulations as well as other reasoners by using the 
Command and Control Simulation Interface 
Language (CCSIL). CCSIL provides reports and 
orders information for all aspects of military 
operations including ground, air, and sea. These 
messages are communicated across a Distributed 
Interactive Simulation (DIS) network encoded within 
Signal Protocol Data Units (PDU). A number of 
CCSIL messages have been defined and an interface 
to ModSAF have been provided by The Mitre 
Corporation that allows an automated commander to 
control units in ModSAF. 

The work performed in this research adapted CCTT 
SAF to accept CCSIL messages and therefore 
provides an additional simulation capability for 
CFOR. This proof of concept used the CCSIL 
Execute Directive message to convey commands to a 
CCTT unit using CORBA technology. 

3. Common Architecture 

Both of the experiments make use of a common 
architecture based conceptually upon SISE. A plug 
was built for each of the simulation components in 
the experiments. The plugs in this architecture do 
not contain all of the features required of a SISE 
plug, e.g. the registration mechanism was not 
included for each plug. Although this is the case, the 
SISE plug concept is still intact.   Each plug is in 

essence a client interface between a simulation and 
SISE. The plug sends simulation information to SISE 
or SISE may grab this information from the DIS 
network as in the case with CCSIL Signal PDUs. 
SISE then communicates this information to various 
services via an ORB. These services are translators to 
a generic command and control format. Upon 
reaching their destination component(s), the 
messages in the generic format are converted into the 
components' native formats. In the case of CCTT 
SAF, the native format would be SEOD format. 

This architecture allows any compliant simulation to 
send and/or receive command and control 
information from any other compliant simulation. 
Compliance only requires the construction of an 
interface plug and a translation service (if a 
translation service does not already exist). When 
linking many components, this approach is much 
simpler than providing direct linkages between each 
component, requiring only O(n) translations versus 

O(n^) translations. 

3.1 Generic Format 

The generic command and control information 
format used is based upon a small subset of 
command and control information. The command 
and control information sent in these experiments is a 
subset of the CCSIL execute directive message. This 
message contains orders for change formation, 
execute action drill, contact drill, halt, resume, and 
others. This set of orders was chosen because it 
consisted of a small set of messages that would be 
simple to implement while yielding practical, visible 
results. 

4. Phoenix to CATT-SAF Implementation 

The first experiment involved linking both Phoenix 
and CATT-SAF to allow a commander at a Phoenix 
console to send orders to CATT-SAF units without 
learning the CCTT SAF Workstation GUI. The 
intent of this experiment is to demonstrate the 
reusability of the Phoenix console and the 
construction of a "proof of concept" of using an ORB 
to provide the interoperability between simulation 
components in a manner correlating to SISE. The 
ORB used was a COTS implementation called Orbix 
by Iona Technologies. A diagram of the 
implementation can be seen in Figure 1. 
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Figure 1: Phoenix Linkage 

The Phoenix mechanism used for sending command 
and control information in this experiment was a 
USMTF message sent via e-mail. When the e-mail 
message is received, a process is executed which uses 
the message as input. This process is the SISE plug 
for Phoenix. It is implemented as an ORB client and 
calls a translator service which translates the USMTF 
into the generic command and control format. After 
performing the translation into the generic format, 
the information is placed into an order object. The 
order object is stored in the ORB until it has been 
delivered to its destination(s). 

On the other end is a SISE plug for CATT-SAF. 
This plug is responsible for the reception of all 
command and control messages intended for CATT- 
SAF entities. This process theoretically should 
receive a callback when the generic order is placed in 
an Object-Oriented Data Base Management System 
(OODBMS). Since this portion of the architecture 
was not implemented, the process ticks the ORB 
periodically to see if there is an order for its entities 
stored in a generic order object. If there is, then the 
order is translated into the equivalent CATT-SAF 
order and placed into the SEOD appropriately for use 
by the current execution of CATT-SAF. 

At the time of implementation, there was no Ada 
ORB implementation available. Thus, for purposes 
of translation, the CATT-SAF plug was implemented 

in Ada with the ORB client portion implemented in 
C++. Thus, an Ada main program was executed with 
an interface to the C++ ORB client routines. This 
prevents the C++ runtime libraries from being 
initialized upon execution of the process. This is also 
why the plug was implemented to tick the ORB 
periodically rather than having a callback function 
associated within the ORB to appropriate messages 
to the CATT-SAF plug upon reception. 

5. CCSIL to CATT-SAF Implementation 

The second experiment involved the linkage of 
CCSIL messages to CATT-SAF, thus allowing 
CATT-SAF to play in CFOR exercises. Once again, 
the only CCSIL message that was used in these 
experiments was the execute directive message. This 
implementation is illustrated in Figure 2. Note that 
almost all components from the previous experiment 
were reused. 

A CCSIL capability was implemented within SISE 
which pulls Signal PDUs off of the network and 
strips out the CCSIL messages. The CCSIL messages 
are sent out through an interface that is part of the 
SISE-GUI. The plug then calls the translator service 
to translate the messages into the generic format 
discussed previously. The generic message is then 
forwarded to the CATT-SAF plug in the same 
manner as the first experiment. 
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The CATT-SAF plug used in this linkage is identical 
to that of the Phoenix to CATT-SAF linkage. Thus, 
the CATT-SAF plug communicates with the ORB 
and with CATT-SAF in the same manner as in the 
previous experiment. This means that the source of 
the order is transparent to the CATT-SAF end. 

6. Results and Conclusion 

These experiments were performed with Phoenix, the 
SISE GUI (used as a CFOR commander), and 
CATT-SAF executing simultaneously. This allowed 
orders to be sent from both Phoenix and the SISE- 
GUI to the same CATT-SAF exercise. The 
verification methodology for the experiments 
consisted of visually inspecting, after each order was 
sent, the changes to the CATT-SAF execution matrix 
and to the entities on the CCTT SAF Plan View 
Display. 

Through these two experiments, we have 
demonstrated both interoperabiliy and reusability of 
simulation components. Interoperability has been 
demonstrated at the command and control level 
across several different simulations. This was 
accomplished with minimal effort due to the common 
architecture design shared by all components and by 
the use of ORB technology. 

In theory, a representation of the CCSIL standard 
could be the generic command and control format 
used in this architecture. A full linkage of CATT- 
SAF to CCSIL  would  allow a wide  variety  of 

doctrinal command and control capability to be 
utilized among CFOR simulations while providing 
the platform interactions that are normally allowed 
via DIS PDUs. This will be accomplished through a 
planned linkage to ODBMS middleware such as 
Object Design's ObjectStore which will allow the 
storage of orders in a generic format resembling an 
object-oriented version of CCSIL. 
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Abstract 
While Western military doctrine stipulates that of- 
ficers at all levels must weigh-together many dis- 
parate factors in their decision-making, whether 
reacting or planning, it is well-known that ex- 
isting techniques for simulating such battlefield 
decision-making are generally rather poor at bal- 
ancing these various disparate influences. There- 
fore it is not entirely certain whether even a semi- 
automated force having close human supervision of 
small groups of computer-controlled entities, could 
provide a realistically challenging opposition for in- 
dividual humans. This is of particular concern in 
training or mission-rehearsal contexts if the low- 
level reasoning of individual simulated entities is 
so simplistic and inferior to that of the humans 
with which they must contend. We have therefore 
sought to develop algorithmic techniques that are 
better able to support rational artificial decision- 
making in complex non-stereotyped situations. An 
implemented application of these techniques to the 
versatile control of small numbers of simulated 
tanks moving in rich randomly-generated topogra- 
phy, without relying on numerous inflexible rules, 
will also be discussed. Thereby we will indicate 
how our algorithm is inherently able to balance the 
requirements of route-planning, enemy avoidance 
and force cohesion as circumstances dictate. 

© British Crown Copyright 1996/DERA. Published with 

the permission of the controller of Her Britannic Majesty's 

Stationery Office. 

1.  Introduction 
The impressive recent developments in creat- 
ing virtual environments for military applica- 
tions do much to support the substantial replace- 
ment of highly costly large-scale field exercises 

by simulator-based alternatives. Even consider- 
ing the, often underestimated, computational ex- 
pense of transcribing a plethora of real-world phys- 
ical phenomena (e.g. vehicle dynamics, inter- 
particle collisions, wind effects, and visual and 
sonic phenomena) into a computer model, the ben- 
efits of versatility, controllability and accessibility 
are quite persuasive. However, as the scale of ex- 
ercises becomes greater, the extent to which train- 
ing must be focussed on a relatively tiny set of the 
participants in order to be effective, becomes very 
marked. Clearly, the interest in minimizing the 
staffing requirements of such exercises by replac- 
ing as many, purely ancillary, staff by computer- 
generated forces (CGFs) is understandable, but 
makes extreme demands of the artificial forces if 
they are to be able to interact closely with humans 
practising and polishing their own skills. 

1.1. Fidelity and Verisimilitude 
It may seem that the many simulation systems 
used for operational analysis must provide some 
important universal paradigms in battlefield mod- 
elling. However, this would be to ignore some rel- 
evant general principles that are highly pertinent 
to the successes of modelling in general. Perhaps 
foremost amongst this are the concepts of univer- 
sality and self-averaging (Fischer and Hertz 1991), 
whereby as the scale at which a system is observed 
increases, the sensitivity to the precise characteris- 
tics of the lowest-level dynamical laws and micro- 
scopic details diminishes. Hence, to a large extent 
the usefulness and temptation of such simulations 
rests on the ability of relatively crude modelling of 
entity-level physics to yet provide plausible macro- 
scopic force behaviour. So, provided one is care- 
ful how one analyses the results from such sys- 
tems (taking due account of random fluctuations, 
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and the depth to which the results can be trusted) 
the occasional failings and fortuitousnesses of their 
simplistic lowest-level behaviours may well can- 
cel out on average. This means that producing 
statistically-correct large-scale models of collective 
behaviour can be greatly facilitated by exploiting 
this tolerance in the fidelity required at the lowest 
level of detail, even though this lower-level mod- 
elling is often the most convenient way of mod- 
elling the effective behaviour of larger composites 
(Richardson 1994). Furthermore, one should rec- 
ognize that it is often very difficult even to deter- 
mine whether individual entities are making sensi- 
ble decisions when their behaviour is only observ- 
able on a plan-view display. Again, the larger-scale 
plausibility of force behaviour, when seen in plan- 
view, does not mean that individual entities are 
acting in a way that a human, in a similar posi- 
tion, would not consider crass. 

Even though, when carefully used, relatively crude 
battlefield models can be generally instructive, it 
would clearly be cavalier to assume that such tech- 
niques are necessarily sufficiently accurate in their 
low-level details to be able to support human par- 
ticipation. The great fluency with which humans 
adapt to, and exploit, the peculiarities of a situ- 
ation means that, far from being nullified on av- 
erage by other random factors, the human's skills 
could potentially undermine the credibility of the 
simulation as a whole. For example, a failure of 
computer-generated tanks to be able to hide be- 
hind ridge-lines or manoeuvre collectively while 
covered from a moving enemy, would give hu- 
man tank commanders an anomalously high kill- 
rate against such an opposition, that could dras- 
tically skew the outcome of an exercise. Indeed, 
such weaknesses are not simply avoided by the 
semi-automated force (SAF), unless their human 
controller has access to entity-level perceptions. 
Given the many conflicting military factors, such 
as Mission, Enemy, Time, Terrain, Troop (METT- 
T), that humans recognize as important to effec- 
tive operations, these must surely be reflected in 
the decision-making of artificial forces if they are 
to form an effective opposition. Moreover, how- 
ever facile all humans find spatio-temporal rea- 
soning tasks such as hiding and moulding forma- 
tions to context, it would be extremely naive to 
believe that these abilities can be emulated with- 
out highly computationally-intensive calculations. 

Indeed, this human ability is primarily a reflection 
of the wealth of intuition and common-sense that 
underpins domain-specific expertise; hence the em- 
phasis on using doctrinal rules as the foundation 
for CGF systems is rather questionable if any real 
flexibility is expected. Certainly it is possible to 
regulate exercises and predetermine some of the 
likely circumstances within it, but given the grow- 
ing emphasis on initiative and creativity in mil- 
itary doctrine it seems unrealistic not to expect, 
at least significant variations on the anticipated 
courses of action, to occur. Individual CGF enti- 
ties have to be able to adapt to these variations 
autonomously, if they are to be of any real value 
in reducing staffing requirements in synthetic en- 
vironments. Yet in order to adapt reliably to vari- 
ations and combinations of stereotyped situations, 
it is not sufficient for agents to treat conflicting sit- 
uational influences separately; more rational com- 
promises must be found. 

1.2.  Divide and Contort 
If one measures existing CGF technologies against 
these requirements, there are grounds for concern 
(e.g., Meliza and Vaden 1995), however impressive 
the progress that they may represent. In general 
the weakness of existing systems can be largely 
attributed to the discretization and compartmen- 
talization that are so pre-eminent. For example, 
it is commonplace to find route-planning to be 
considered separately from mission-planning1 and 
from formation-keeping, while clearly these prob- 
lems are only independent in the most sterile of 
situations (c.f. Campbell et al 1995). There is 
indeed a tendency for unit behaviour to be gen- 
erated as an isolated whole, without considering 
how this should be influenced by the behaviour 
of other units, or the implications for the con- 
stituents of single units (Ourston et al 1995, Har- 
mon et al 1994). For example, planning a con- 
cealed route for an atomic tank troop does noth- 
ing to prevent the individual tanks straying out 
from behind ridge-lines through taking naive ac- 
tion to keep in formation; an issue that may 
or may not have wider implications according to 
context.   Similarly the style of Combat Instruc- 

1This is particularly relevant as route-planning tech- 
niques seem focussed solely around finding routes between 
•pre-specified endpoints, while taking scant account of the 
time-dependence in the extraneous factors influencing the 
choice of route. 
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tion Sets (Ourston ei al 1995) almost forces one 
into a finite-state-machine (Dougherty and Giar- 
dina 1988) formulation of behavioural modelling. 
For example, for a tank troop responding to indi- 
rect fire, it may have to commit either to hastily 
retracing its steps or to scattering into nearby cov- 
ered positions, or to continuing with the mission 
regardless. However, even though all these options 
sound sensible, to assert that they are exhaustive, 
can all be clearly distinguished, and are each un- 
ambiguous, is somewhat unrealistic — there could 
manifestly be situations where a small change in 
the intended route ahead would allow the troop to 
continue with the mission while having the bene- 
fits of cover. While this slight generalization of a 
basic principle is utterly obvious to a human, too 
naive a transcription of the basic set of options 
into software would totally prevent natural gener- 
alization when circumstances represent a mixture 
of the stereotyped cases. Moreover, merely decid- 
ing which of a limited set of options to adopt must 
be dependent on how these options will actually 
be enacted, and yet such information, as well as 
general contextual factors, are extremely difficult 
to include in this style of formulation. 

In view of the ramifications of the apparently in- 
evitable limitations of some of the more popu- 
lar CGF techniques, we have sought to develop 
a novel formulation of artificial decision-making 
that avoids some of these weaknesses. In view 
of our scepticism of compartmentalization of be- 
haviour, utter dependence on situation-specific ex- 
pert knowledge, and too crude entity-level be- 
haviour, we have aimed for a unified and intrin- 
sically flexible entity-level planning algorithm. In 
the next sections we will indicate how a func- 
tional optimization process can be used to generate 
plausible entity-level behaviour for a small num- 
ber of tanks moving in rich terrain features, when 
provided with only quite rudimentary knowledge. 
Given that (time-dependent) route-planning, force 
cohesion and enemy avoidance are thereby emer- 
gent phenomena of a single process, we will indi- 
cate how our system is able to respond to quite 
a broad range of situations without relying on nu- 
merous prescriptive rules, and when given only the 
most limited of prescribed knowledge. 

2.  Conceptual Overview 

Absolutely central to flexible behaviour genera- 
tion, in any autonomous agent, is the ability to 
make rational choices between possible actions, 
and rational compromises between competing ac- 
tions. This inevitably requires that agents have 
sufficient information at their disposal to be able 
to make these choices; there is no sense in expect- 
ing a context-sensitive decision to be achieved if 
an agent has an inadequate picture of its circum- 
stances. Although some popular CGF technologies 
may have great strengths in the lucidity or speed 
of their reasoning systems, and have functional- 
ity that is analogous to human military thinking, 
when analysed more closely it is clear that they 
typically inherently base their entities' behaviours 
on far narrower information than is important to 
human adaptability. Most notably, they often 
expect to make decisions based on single snap- 
shots of a battlefield situation, or to have semi- 
automated entities execute their operator's orders 
without any idea what factors lay behind his choice 
of those orders. 

We have already mentioned the importance of in- 
tuition in fitting expert knowledge into context, 
but it should be apparent that the doctrinally- 
based branch-points in the pandemic rule-based 
systems or finite-state machine architectures sim- 
ply decree certain actions be taken; it thereafter 
being the responsibility of each triggered action 
to adapt, alone, to the prevailing situation. How- 
ever, in complex environments it is optimistic in 
the extreme to assume that the outcome of a 
course of action can, with any generality, be reli- 
ably determined without some form of simulation, 
whether performed computationally, mathemati- 
cally or cerebrally. If it is not realistic to predict 
the outcome of a course of action without a sim- 
ulation, then it is surely unrealistic to determine 
which of a set of courses of action to adopt with- 
out some similarly elaborate evaluation of each of 
them. Yet this appears to be exactly what Combat 
Instruction Sets, Finite-State Machines and rule- 
based systems are attempting to do. For example, 
determining whether one should instruct a subor- 
dinate to defend a particular corridor of retreat 
must depend on one's expectations about how a 
preceding assault may develop over time, and the 
likelihood that that particular mode of retreat will 
be helpful. It would be a very crude assumption to 
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assert that there is any intrinsic value to sending 
out orders that an arbitrary manoeuvre pathway 
should be defended. Moreover, pre-processing a 
pre-scripted exercise to identify 'strategically im- 
portant' corridors seems anathema to flexibility 
and to the idea that a CGF system can be a chal- 
lenging, yet labour-saving, opposition to a human 
force. 

While directly useful in strongly stereotyped sit- 
uations, doctrinal knowledge itself should be seen 
as reducible to, and justifiable in terms of, some 
underlying principles. Put crudely, one might 
say that the simplest principle was 'avoid death', 
with expert wisdom providing good suggestions of 
how to achieve this in particular circumstances, 
given known mechanical properties of vehicles, ter- 
rain etc. As such, the principles behind doctrinal 
knowledge provide not only a way of validating it 
against a given context, but also equip one to deal 
with novel situations to which no familiar maxim 
really applies. So it is helpful to see doctrine as a 
set of suggestions, that when evaluated can often 
be seen to be viable, rather than as a set of pre- 
scriptions. Indeed, as suggestions, they should also 
be seen as mere sketches that may be combined 
with existing strategies, and which will inevitably 
need fitting into context on the basis of the ba- 
sic principles of which the doctrine is a heuristic 
assemblage. 

Having already noted that flexibly making ratio- 
nal context-dependent decisions must rely on some 
form of mental extrapolation of the current situ- 
ation, it is clear that intelligent behaviour cannot 
simply be a process of continually deciding what 
to do next — the consequences of actions may take 
time to emerge, may obviously be affected by ac- 
tions one takes in the interim, and could well be 
influenced by the activities of other entities. More- 
over, it is seldom the case that the effects of actions 
are confined to instants in time — for example, the 
act of shooting an enemy affects the viability of the 
entire future period that this enemy could have 
posed a threat. Similarly, fuel costs, or the expo- 
sure suffered during an advance, accrue over time 
rather than at isolated instances. Therefore, the 
process of evaluating a plan is not easily reduced 
to a simple evaluation of an end-state, rather it 
involves an assessment of the entire history of that 
plan, taking due account of the time dependences 

in the exercise beyond one's own control. 

To summarize, the principles we see as fundamen- 
tal to achieving flexible autonomous agents for 
complex environments such as virtual battlefields, 
are as follows: 

• the use of low-level knowledge as the discrim- 
inant for all decisions; 

• doctrine being used to provide suggestions 
of advantageous behaviour, to be evaluated 
against low-level understanding; 

• the use of mental simulation to assess an 
intended course of action in its effects over 
time; 

• an intrinsic mechanism for exploring varia- 
tions on a course of action, which may be 
used to adapt doctrine to context, or to gen- 
erate new behaviour; 

• the unification of all decision making into one 
mechanism, so that compromises between 
competing aspirations can be achieved ratio- 
nally, rather than by decree. 

3.  Analytic Formulation 
Having highlighted the importance of intuition to 
human adaptability, and the inescapable computa- 
tional expense of implementing skills that almost 
any human would consider trivial, it is hazardous 
to formalize an artificial decision-making system 
through only a linguistic description (c.f. Hieb 
et al 1995). However plausible such a description 
may appear, when interpreted by a human undue 
allowance for its omissions, assumptions, and am- 
biguity may well be perpetrated. Given that nei- 
ther computer hardware, nor electronic hardware 
in general, is fundamentally capable of performing 
more than purely arithmetic operations, it behoves 
one to formulate one's problem in similar mathe- 
matical terms, if one is not to be seduced by mere 
analogies between one's expectations and what is 
genuinely implementable2. 

3.1.  Cost-functions and basic knowledge 
With this need for a fairly reductionistic formula- 
tion of autonomous-agent behaviour in mind, we 

2 Indeed, part of the magical power of human intelli- 
gence is this ability to see analogies between rather different 
things, yet this makes modelling intelligence difficult even 
to confront seriously. 
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now turn to a brief specification of how our agents 
choose their behaviour. Fundamental to this is a 
cost-function £ that is to embody the low-level 
knowledge that we see as central to flexibility. Al- 
though this cost-function is to provide a means 
of assessing each instant within the course of an 
exercise against a given entity's aspirations, this 
by itself is not enough to allow rational choices 
of courses of action. The importance of visualizing 
the consequences of each entity's actions over time, 
i.e. mental simulation, means that the viability of 
a course of action (starting at to) is determined 
not by £ itself but by a time integral 

-r £dt. (1) 

(S is therefore a functiona/ of the future course of 
events.) Given that this is a process of mental sim- 
ulation, it must be an artifice of a single entity's 
mind, and hence involve not only that entity's in- 
tended activities, but also hypotheses about how 
other entities will act. (The rich geometry of ter- 
rain alone means that mathematically non-trivial 
hypotheses will be necessary even to allow extrap- 
olation of entities' trajectories around rudimentary 
terrain features.) 

As a simple example, suppose that in a particular 
entity J'S mind, there are a set of phantom entities 
{j = I... N} (one of which will represent the phys- 
ical entity i itself), and that each of these phantom 
entities has a hypothetical trajectory r}(<) in the 
x^plane. Given a terrain surface z(r), there will 
be a term in the cost-function due to the rate at 
which entity i consumes fuel; 

£t-i{y/(ri)* +{«)*+&(«) (2) 

wherein 

9(x) = { x    x > 0 
0    x <0 

and    Zi = fi.Vz(fi).   (3) 

When integrated over time, this part of the cost- 
function represents the total fuel consumed during 
the vehicle's motion, through work done against 
friction and gravity by motion up gradients. It 
is therefore clearly dependent on the topography 
traversed and not solely determined by the end- 
points of the route followed. 

Similarly, one could discourage entities from mov- 
ing too close to enemies by a term in £ of the form 

£ death 2^ vi exP ( ~       jT ! (4) 

in which i/j is the notional firing-rate of entity j, 
and Xij is a representative lethal range (perhaps 
depending on the existence of line-of-sight between 
entities i and j). Here again, the viability of a 
particular route r,(<) is not solely a reflection of 
the exposure suffered at isolated instances, nor 
is it uninfluenced by the motion of the hostile 
forces. This term captures more flexible knowledge 
through taking account of the separation between 
entities, and being more clearly motivated in terms 
of a mechanical model of shell-firing, rather than 
enemy avoidance simply being treated as a con- 
straint based on fixed enemy locations (c.f. Karr 
et al 1995, Longtin et al 1995). 

One can also encourage formation keeping by in- 
cluding terms such as 

- group 2_j exP 1        77" 
ro 

-l>,  (5) 

where £,7 represents that range of attraction be- 
tween entities of the same force and ro reflects 
the minimum safe inter-vehicle separation. That 
this term only encourages friendly forces to re- 
main together means that they are not simply tied 
together and incapable of acting independently 
or separating when situations favour this. Once 
again, the accumulation of the cost-function into 
a figure-of-merit 5 for an entire trajectory ri(<), 
allows groups of entities to fragment when neces- 
sary while anticipating that they will re-group at a 
later stage. This seems a very necessary ability for 
groups of entities that must cooperate while per- 
forming differing roles, such as when executing a 
two-pronged attack. 

3.2. Striking Compromises 
Now, by simply adding together the component 
cost-functions (2, 4 & 5), and evaluating their 
time-integral (1), one has quite a rich assessment 
not only of the specifics of a course of action, but 
also its context. For example, the viability of re- 
joining one's colleagues can be assessed against the 
need to cross intervening terrain, and the expected 
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motion of enemy forces as well as any expected mo- 
tion of the friendly forces. This clearly equips the 
entities to make a far more sensible judgement of 
whether re-joining their formation is actually ad- 
vantageous, rather than blindly being attracted to 
a point in a template formation sited at a fixed 
location. 

Similarly, because fuel-costs (2) and enemy- 
avoidance aspirations (4) are part of the same as- 
sessment process, there is automatically an incen- 
tive for entities to avoid enemies without crossing 
awkward terrain. Hence, enemy avoidance is not 
dependent on an entirely separate mechanism pro- 
viding a protective location, to which a route is 
found by yet another mechanism (which generally 
will not take into account the motion of the en- 
emy). In the present formulation, there is much 
more of a pliable compromise between adopting a 
safe retreat and conserving fuel3, and situations 
where an inaccessible covered location is selected, 
or where the nearest covered location is not the 
most appropriate, are less likely to occur. 

Indeed, it seems quite reasonable that considera- 
tion of ways of avoiding an enemy force need not 
be restricted to simply taking up static covered 
positions. Moreover, when entities' plans are gen- 
eralized to include hostile actions such as firing 
shells, entities are then equipped to make some 
rational choice between reducing such threats ei- 
ther by confronting or by avoiding them. When 
shooting is seen as a separate behaviour, perhaps 
through being purely reactive, then entities can- 
not easily adjust other aspects of their behaviour 
to make best use of their shooting abilities. 

3.3.  Plain Optimization 
So far we have discussed some of the implications 
of a decision-making process based around (1), 
in terms its favouring certain sensible courses of 
action over others, especially in non-stereotyped 
situations. However, to be able to function au- 
tonomously, entities must be autonomously able to 
think of courses of action (or plans) prior to being 
able to make any rational choice amongst them. 
Hence, behaviour-generation is essentially an op- 

timization problem, where rather than optimizing 
a simple function, it is a model of the future evo- 
lution of an exercise (1), that is the object being 
optimized. 

Clearly the space of all possible plans is enormous 
and it would be absurd to expect to be able to 
find strictly optimal plans. Conventionally this is 
seen as a motivation not only for compromising the 
scrupulousness of the search for a good plan, but 
also for compromising the evaluation of all plans 
(c.f. Hoff et al 1995). Hence, in order to make 
(relatively) complete examination of the range of 
plans possible, the space of plans is often coars- 
ened through some form of discretization that in- 
evitably subverts the evaluation of the phenomena 
produced by each plan, and hence reduces context- 
sensitivity. However, as well as having weaknesses 
in terms of the crudity of the evaluation of a plan4, 
discretization is likely to obfuscate the broad range 
of lengthscales and timescales over which battle- 
field phenomena occur. For example, one would 
like it to be a fairly simple matter not only to con- 
sider small perturbations to a trajectory to better 
negotiate motion up a slope, but also to make com- 
parison of alternative routes either side of a hill 
similarly natural. It is not easy to achieve both 
these benefits with an artificial discretization of 
the terrain (such as into a grid of vertices), while 
still preserving the ability to refine a plan as events 
unfold on the (real) battlefield. Nor, given what 
we have said earlier about the consequences of ear- 
lier decisions taking time to emerge, is it wise to 
consider committing to the early stages of a course 
of action without even the vaguest notion of how 
it may conclude. 

Although it will be illustrative to consider the pro- 
cess of behaviour-generation as one of optimiz- 
ing simply the trajectories Fj(t) of a set of enti- 
ties (within a particular entity's mind), in general 
these should be thought of as metaphors for all 
their actions. Hence plans may include shooting 
events (which in general may affect the population 
of live entities or intact bridges etc.), communica- 
tion events, and other actions that have observable 
influences on the development of an exercise. As 
such, perhaps together with other sources of time- 

3Although we will refer to 'fuel costs' as though they 
were solely due to some economic value, more generally they 
can capture related notions of general expediency while in 
transit. 

* There is also a tendency for an unrealistically short 
planning horizon to be chosen, or for the effects of a plan 
to cease when a particular objective is expected to have 
been met. 
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Figure 1: A schematic indication of the effect on a vehi- 
cle's trajectory of a simple transformation of the vertices, 
replacing part of the trajectory between to and fi by its 
resultant. 

dependence such as weather, they provide a means 
by which an entity can form a hypothesis about 
any instant in the future of the exercise3. 

Given the status of a set of plans as a means of 
describing the anticipated evolution of an exer- 
cise, it is helpful to formulate them so that they 
can describe the state of the exercise at any time, 
even when the plans are in their most rudimen- 
tary incarnations. In addition, to reflect the range 
of lengthscales and timescales over which relevant 
phenomena may occur, plans should have an ex- 
pressive form that allows alterations on various 
scales to be effected concisely. For example, one 
may consider a trajectory to consist of a series of 
line-segments, with the coordinates of the vertices 
being events within a plan. Simply by inserting 
or deleting events within such an event-list, or by 
altering the locations of the vertices, one can make 
natural distortions of the induced trajectory on 
whatever lengthscale is desired. Such a represen- 
tation allows one to have certain sections of a plan 
refined in great detail while still allowing crude 
sections of a trajectory to be described concisely 
and in a form that allows the effects of following 
the entirety of such a trajectory to be examined. 
For example, figures 1 and 2 illustrate some repre- 
sentative transformations of a trajectory that form 
part of the plan-optimization process, and can be 
effected by simple adjustments to the events within 
a plan. 

Given that it is not tenable to expect to find truly 

sIt would be highly desirable if one could confine atten- 
tion solely to relevant moments in the hypothesised future, 
but this is highly non-trivial to achieve with worthwhile 
flexibility in domains of any complexity. 

Figure 2: Illustration of a series of trajectory- 
transformations that together add a detour to the initial 
route. 

optimal plans, and our reluctance to sacrifice the 
evaluation of a candidate plan, it is natural to use 
some form of stochastic optimization process to re- 
fine entities' plans. For example, simulated anneal- 
ing may provide an effective means of affordably 
exploring a representative sample of the space of 
all possible plans. Just as complete, deterministic, 
search methods rely on a judicious choice of the 
order in which the points in the search space are 
examined (for example Gray-coding or A* search), 
stochastic optimization relies on a careful choice of 
a dynamics on the search space. Conveniently, a 
set operators that produce simple deformations of 
a plan can be used as the basis of such a dynam- 
ics. Hence, the style of distortions shown in fig- 
ures 1 and 2, together with simple rotations, reflec- 
tions and addition or removal of shooting events, 
form a major part of the means by which effective 
plan-refinement can occur. Moreover, because the 
character of these operators is dictated primarily 
by their geometrical appeal, rather than the rep- 
resentation used to describe plans, they can to- 
gether operate on a wide range of lengthscales and 
timescales, rather than all always having to make 
the smallest changes to a plan. 

Given such a set of plan-adjustment operators, 
which provide a stochastic dynamics on the space 
of plans, plan optimization proceeds by continually 
making tentative adjustments to a plan, evaluat- 
ing the cost-functional of the new plan (1), and 
accepting the alteration according to the change 
in cost-functional. In simulated annealing this is 
done on the basis of favouring moves to plans of 
lower cost, but tolerating moves that increase the 
cost by amounts similar to the scale provided by 
the annealing temperature. By progressively re- 
ducing this temperature, from an initially warm 
level,   the intention is that more subtle refine- 
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ments to a plan are made generally only after its 
grossest features have been established. There is 
also the considerable advantage that the optimiza- 
tion is not absolutely dependent on the environ- 
ment remaining constant as the optimization is in 
progress, because the process centres around com- 
parisons between only pairs of plans, rather than 
expecting to be able to refine the later stages of a 
plan without its earlier stages being invalidated as 
events unfold. This offers the possibility of allow- 
ing entities to continually refine their plans con- 
currently with acting upon them, without having 
either to think only once for each set of orders or 
to have to stop and deliberate whenever circum- 
stances change. While a convenient paradigm with 
which to compare our actual optimization process, 
there are nevertheless some significant differences 
from classical simulated annealing, which we will 
not discuss here. (Further details may be found in 
Penney 1996.) 

Two further roles for the operators at the basis 
of the stochastic dynamics, are worth alluding to. 
The first relates to the fact that the battlefield 
situation in which each entity is refining its own 
plan is constantly evolving, both through making 
observations and also through developing its hy- 
potheses about how other entities will act. Hence, 
it is extremely helpful if entities are able to make 
rapid initial refinements to their plans in response 
to changing circumstances, before more consid- 
ered changes can occur. The human ability to 
be able to visualize bending trajectories around 
terrain features, or deforming these to keep a set 
of trajectories closer together, is one that is ex- 
tremely powerful. Something of this ability can 
be captured by including amongst the stochastic 
plan-dynamics an operator that uses gradient in- 
formation within the space of plans. For exam- 
ple, if a plan is described by a set of parameters 
£Q, then the gradients dS/d£,a provide suggestions 
how to adjust each parameter so as to reduce the 
cost-functional S- Moreover, by careful choice of 
the representation used to describe plans, one can 
conveniently exploit the expression 

dS =1 " d£   dr      d£   dr 
+ —r-.-^rr + 

dr ' d£a      df' d£a . dt.    (6) 

to allow efficient calculation of these derivatives 
concurrently with the same mental simulation used 
to evaluate the plan itself. 

The second additional aspect of the plan- 
refinement operators is in supporting expert 
knowledge without this being prescriptive. As the 
conditions on the set of operators are relatively 
weak (such as an aspiration for ergodicity (Re- 
ichl 1980)), it is quite legitimate to extend these 
operators to allow distortions of a plan in accor- 
dance with strategies or behaviours known to be 
generally beneficial. For example, entities can 
be encouraged to consider keeping in formation 
through an operator that suggests distortions to 
their trajectory such as to bring parts of it closer 
to those of their colleagues. However, because this 
advice is given through mechanisms that as sub- 
jected to the same plan-evaluation as are tenta- 
tive adjustments that are made purely at random, 
it is not treated as infallible advice, and can be 
judged against the prevailing context. Once ac- 
cepted, even if representing only relatively crude 
advice, the effects of expert-operators can then be 
better fitted into context by the basic stochastic 
plan-dynamics that are central to the general effi- 
cacy of the optimization. 

4.  Simulation Results 
Now that we have given a brief overview of the 
way in which our entities' behaviour is generated, 
and the motivation for this, we can now discuss 
some of the phenomena this mechanism actually 
produces. In order to test whether the process 
exhibits the. flexibility desired, and is able to be- 
have rationally in a complex environment with- 
out depending on copious human-supplied rules, 
we have constructed a rarefied military scenario 
on a randomly-generated terrain surface. By in- 
sisting that our entities are able to contend with a 
terrain that is realistically undulating, and is not 
artificially easily debased into a collection of sim- 
ple hills and valleys, their 'understanding' of ba- 
sic concepts in spatio-temporal reasoning is being 
much more powerfully tested than by a scenario al- 
ways conducted on an unvarying terrain. Together 
with the need to reason about the motion and ac- 
tions of both friendly and hostile forces, the cho- 
sen scenario captures some of the more demanding 
characteristics of an exercise subject to human par- 
ticipation, especially its variability and only loose 
dependence on template terrain features. 

With the profile of a fresh instance of the terrain 
known to all entities (to avoid having to update 
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Figure 3: An indication of ground-truth two seconds into 
a simulation. Terrain contours are shown at 2.5m intervals, 
with line-of-sight between vehicles shown in the hexago- 
nal icon (arrow-headed solid lines indicating the existence 
of line-of-sight, which in general need not be symmetric). 
Shells are marked as short thin two-tone lines, with the 
white part showing the direction of travel. 

Figure 4: (Red) tank 4's mental image of the exercise, 
after twenty seconds. Vehicles' anticipated trajectories are 
shown as thin white lines emerging from them. The full 
circular line denotes tank 4 's belief that the blue force will 
try to attack the region (shown by the dotted circular line) 
that it is to defend. 

their beliefs about such a geometrically subtle ob- 
ject), the scenario opens (figure 3) with a force 
of three (blue-force) tanks 1-3 towards the south, 
with an opposition of three (red-force) tanks 4-6 
split between the north-east and south-west. Once 
again, this scenario is chosen in the interests of ex- 
posing the entities to challenging situations quali- 
tatively similar to the more demanding aspects of 
real military exercises, rather than being intended 
to be militarily realistic in a more ostentatious 
sense. The tanks have varying aspirations, em- 
bodied by their respective cost-functions, but all 
are concerned with conserving fuel, avoiding live 
enemies (perhaps by shooting them), and remain- 
ing close to friendly forces. The opening positions 
of the entities means that tanks 2 and 3 have each 
already seen tank 5, and decided to opened fire. 
(Here shells follow parabolic trajectories and have 
finite times of slight, which the firers attempt to 
allow for when shooting at a moving target.) At 
this time, tank 1 is still unaware of tank 5, and also 
of its colleagues' actions against this opponent. All 
the blue tanks are oblivious to the existence of the 
other red tanks to the north-east. 

By twenty seconds into the simulation, tank 4's 
picture of the battlefield situation is plausible, but 
not wholely accurate (figure 4). Before its col- 
league, tank 5, was destroyed by t = 4s, the latter 

had communicated its sightings of tanks 2 and 3 
(tank 1 having been occluded by the terrain). The 
figure shows that tank 4 still believed tank 5 to be 
alive, that the latter would proceed north-easterly 
to join it and tank 6, and that tanks 2 and 3 would 
remain to the south. (It is not clear whether it 
thought that tank 3 would move to attack tank 5 
while en route, or whether it was expecting to seek 
cover in a depression after tank 5 had moved fur- 
ther away.) The defensive goal shared by all red 
tanks is also shown as the dotted circle in figure 4, 
and they all assume that any blue tanks have an 
incentive to assault this region, as indicated by the 
solid circular line in the figure. At this time, tank 6 
has also started to form hypotheses about the in- 
tentions of the other tanks, but although quali- 
tatively similar, this tank presumes that tank 5 
will proceed east before turning northerly to join 
it and tank 4, while the two blue tanks of which it 
is aware retreat northerly. 

In figure 5, tank l's mental picture of reality is 
shown for thirty seconds into the exercise. This 
tank has been given two successive rendez-vous 
goals, shown as open circles. However, neither 
of its colleagues has any direct incentive to move 
through these regions; that they should do so at 
all is a reflection of their desire to remain close to 
their colleague. (This is intended to establish that 
entities are able to cooperate even when not per- 
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Figure 5: (Blue) tank l's view of the exercise, after thirty 
seconds, by when tanks 2 and 5 are known to have been 
destroyed. Tank l's two rendez-vous goals are shown as 
open circles. 

Figure 6: Ground truth after two hundred seconds. The 
black trails show tanks' motion during the last hundred 
seconds. Tank 4 has retreated to the east of the figure, 
while tank 6 has been killed. 

forming identical functions; an important ability 
of any unit that must sub-divide and yet still act 
in coordination.) Tank 1 has clearly identified a 
sensible route through its two goals, while taking 
account of intervening terrain and the presence of 
tank 6 (which was first seen at about this time). 
Tank 1 also believes that tank 3 will take an alter- 
native route, and one that keeps slightly further 
away from tank 6 while exposed in the valley to 
the east, but still rejoining tank 1 after a period 
out of sight of both it and tank 6. Indeed, tank 3's 
intended trajectory clearly represents a compro- 
mise between keeping close to tank 1 as it moves, 
minimizing fuel costs through attention to the ter- 
rain traffickability, and avoiding an enemy (which 
itself is expected to be in motion). Before tank 2 
had been destroyed by tank 5 (at about t = 4s), 
tank 1 thought that it too would follow the rest of 
the blue force. Tank 6 was expected to retreat in 
the face of this strong presence. 

Shortly before tank 1 reached his first rendez-vous 
position (figure 6), it and tank 3 had seen that 
there were in fact two red tanks to the north-east, 
and had revised their routes to take advantage of 
cover provided by the northerly range of moun- 
tains in the centre of the figure. (The discontinu- 
ity in tank 3's trajectory is particularly evident as 
tank 4 was sighted as they emerged from a moun- 
tain pass.) Believing the entire blue force still to be 
intact, and with tank 6 by now destroyed, tank 4 
decided to retreat further north-east behind an- 

other range of hills, leaving the two blue tanks 
to proceed to tank l's second rendez-vous unhin- 
dered. 

This simulation history, which although chosen 
for its illustrative merits is qualitatively similar to 
most other runs of the simulation, is fundamentally 
a reflection of very sparse knowledge that is sup- 
plied to the entities through their cost-functions. 
Given only a handful of terms in their respective 
cost-functions, together with a few expert opera- 
tors (to assist in not wasting shells on dead tar- 
gets, in keeping in formation, and in providing a 
vertex in their trajectory near a rendez-vous goal) 
they show some very encouraging adaptability. In- 
deed, they show pleasing response to the terrain, 
as both an obstacle and as cover, without any need 
for this to be pre-processed to identify 'significant' 
features. 

While with careful construction the simulation 
runs only a few times slower than real-time on a 
relatively modest multi-processor workstation, and 
shows the techniques not to be impossibly expen- 
sive, it is clear that the price of such adaptability 
is not inconsiderable. Certainly there is much rel- 
evant cognitive functionality that is not supported 
within our current implementation, nor is likely to 
be affordable. However, one of the serious hazards 
of a more intuitive and less mathematical approach 
than we have advocated, is that the computational 
costs of rational adaptation to an ordinary range of 
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circumstances will be drastically underestimated. 
Hence, whilst pragmatism must play some part in 
the design of computer-generated forces in general, 
it is unlikely that the problem domain admits any 
expedient solution that does not have very serious 
pathologies when measured against humans' abil- 
ity to 'muddle through' under a wealth of differing 
circumstances. 

5.  Conclusions 

We have argued that, despite some impressive 
achievements, conventional CGF technologies tend 
to rely too heavily on an artificial segmentation 
of a strongly coupled problem, and on intrinsi- 
cally imprecise linguistic descriptions of military 
decision-making. While such technologies can be 
capable, affordable, and accessible, their inherent 
weaknesses are often not appreciated. Indeed, it 
appears that segmentation of behaviour cannot 
help but undermine an ability to strike the com- 
promises that are so important in complex environ- 
ments, and that a conceptual description of human 
decision-making is not precise enough, and too 
reliant on an underlying intuition, to be directly 
transcribed into versatile computer software. 

With these reservations in mind, we have con- 
structed a unified decision-making system for in- 
dividual CGF entities that is based on low-level 
knowledge. We have indicated how, through a pro- 
cess of mental simulation and an optimization pro- 
cess, this mechanism is intrinsically able to strike 
context-dependent compromises between compet- 
ing aspirations, such as conserving fuel, avoiding 
enemies and remaining near friendly forces. So, 
rather than being separate areas of functionality, 
the classical behaviours of route-planning, enemy 
avoidance, and formation-keeping, are emergent 
phenomena of a single mechanism when viewed 
in particularly simplified situations. We have 
shown that this mechanism can be affordably im- 
plemented in quite a rich scenario, and indicated 
how quite capable behaviour of small numbers of 
tanks can emerge in a randomly-generated terrain 
surface without reliance either on pre-processing 
or on copious human-supplied rules. 

Nevertheless, although our techniques are not un- 
workably expensive, through advocating a fairly 
mathematical formulation of CGF functionality, 
we have  argued  that  the  complex geometrical 

and dynamical structure of military environments 
means that even semi-automated adaptable be- 
haviour cannot be achieved reliably without con- 
siderable computational power. We have therefore 
sought to caution against overlooking the basis 
of military expertise upon intuition, and against 
believing that the ordinariness of such intuition, 
amongst humans, means that it is not exceedingly 
subtle to emulate on machines that can scarcely 
do arithmetic. 
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1. Abstract 

The Improved Computer Generated Forces Terrain 
Database (ICTDB) project, a joint effort between 
TASC and SAIC, is one of the four ARPA/TEC 
Advanced Distributed Simulation Synthetic 
Environments projects. Its goal is to design and 
implement the next generation terrain database 
representation for Computer Generated Forces (CGF) 
systems. One of the areas that ICTDB is focusing on 
is the representation of multiple elevation surfaces. 
These include features with multiple elevations that 
are integrated with the terrain surface, such as bridges, 
tunnels, caves, and building interiors with multiple 
floors. These features are necessary to allow ModSAF 
vehicles to traverse multiple elevation terrain, such as 
highway overpasses and underpasses, drive into 
buildings, caves, and tunnels for concealment and 
other purposes, and allow individual combatants to 
move within buildings, which is especially important 
for Military Operations in Urban Terrain (MOUT). 

In this paper, we describe the extensions that the 
ICTDB project has made to ModSAF in order to 
provide support for these multiple elevation surfaces. 
A new volume feature type has been added which 
represents these multiple elevation surface (MES) 
structures as both abstract features and full three 
dimensional models. MES structures are represented 
with enclosures and apertures. Enclosures are defined 
by solid surfaces used to represent walls, floors, and 
ceilings. Apertures are the areas that allow movement 
between enclosures, and include door and window 
openings, cave and tunnel entrances, and holes caused 
by battle damage or demolition. Topological 
information between enclosures is provided for 
movement    and    planning    purposes.     A     three 

dimensional virtual grid was implemented to spatially 
organize the polygons that represent the surfaces and 
apertures. ModSAF terrain algorithms, including 
elevation lookup and intervisibility, have been 
modified to work with these MES structures. For 
example, a new multiple elevation lookup function 
has been developed which returns a list of all surfaces 
and their elevations and surface types, which can be 
used by the place entity function to explicitly place 
an entity on a specific surface. 

2. Design 

2.1   Overview 

One of the tasks of the ICTDB project is to expand 
ModSAF to represent multi-level buildings, bridges, 
caves, and tunnels. Because there are similarities in 
the geometry and line of sight characteristics of all of 
these types of features, a unified representation was 
created for any multi-elevation surface structure. The 
libCTDB functionality was extended so that vehicle 
placement, intervisibility, and elevation lookup 
calculations work within multi-elevation surface 
structures as well as terrain. 

Multiple elevation surface (MES) structures are 
represented as a new volume feature subclass in 
libCTDB. These features contain a roof outline and a 
reference to an MES data structure. The data structure 
for an MES structure consists of a header, a list of 
enclosures, a list of apertures, a list of triangles, and a 
hierarchy of grid-boxes. 

The header specifies the origin of a local coordinate 
system  for the  MES,   in   the   Global   Coordinate 
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System (GCS) developed earlier in this program 
(Evans, 1995). The origin can be chosen to be in any 
relation to the MES, i.e. it is not required to be at the 
southwest corner. The header also specifies a 
transformation matrix from the "world" space of the 
terrain database containing the MES to the MES 
space. This allows the creator of the MES to generate 
all information in terms of a local coordinate system. 
The origin and transformation matrix can be used to 
translate between MES local space and the world 
space. Modification of the origin and transformation 
matrix also allows the simple reuse and relocation of 
any MES structure, allowing MES structures to be 
instantiated in multiple locations on a database. 
Finally, the header also specifies a fixed point basis 
(meters/unit), which is the unit in which all 
coordinates in the MES are stored. MES structures 
utilize a grid box organizational structure, which is 
used for efficiency in the algorithms that operate on 
them. 

2.2  Enclosures 

An MES structure contains a set of "enclosures". As 
its name suggests, an enclosure is essentially an 
enclosed volume. Enclosures are created so that their 
contents are logically grouped together. An enclosure 
can be convex or concave, but must be a single level. 
That is, along each vertical line which intersects the 
enclosure, there may be at most one positive normal 
surface (e.g. a floor) and at most one negative normal 
surface (e.g. a ceiling). This allows route planning to 
retain some of its two dimensional outlook. 

Any two enclosures may be placed arbitrarily with 
respect to each other, except that one enclosure may 
not overlap or be contained within another. Typically, 
enclosures within a building will be grouped by 
stories. A stairway is an enclosure which connects 
one story to another. Some examples of enclosures 
would be the rooms in a building, the hollow of a 
cave, or a tunnel. The enclosure data structure also 
contains a floor outline of the enclosure and the 
average height of the enclosure. 

Enclosures are made up of "walls", which are 
triangulated surfaces in which mobility and line-of- 
sight are both blocked. Each enclosure has a list of 
wall triangles and a list of apertures, with each 
aperture individually triangulated. The union of all 
those triangles is required to completely bound the 
enclosure, so that there is no path from the interior of 

the enclosure to its exterior which does not cross at 
least one (wall or aperture) triangle. The only 
exception to this is the exterior enclosure of the MES 
structure. 

2.3   Apertures 

Two adjacent enclosures may be connected by one or 
more "apertures". An aperture is a planar polygonal 
object of uniform, non-zero transparency, which 
connects exactly two enclosures. The degree of 
transparency/visibility is stored in the aperture data 
structure. Each aperture is triangulated, and any 
aperture can permit or deny mobility, as determined 
by the modeller. 

Consider the example of a single pane window. Since 
an MES aperture is required to be planar, the MES 
aperture corresponding to the window consists simply 
of the glass portion of the window. The window's 
casing and sill are triangulated with one or both of the 
adjacent enclosures. Similarly, a bay window would 
be represented as several distinct apertures, one for 
each flat glass area of the bay window. 

Apertures have two distinct functions. They describe 
some of the possible mobility connections between 
enclosures (i.e., they are the edges of the mobility 
topology). Also, they group together transparent or 
semi-transparent triangles of similar transparency. 
This saves some storage space, since 
transparency/visibility is stored once for each 
aperture, not once for each triangle of the entire MES. 

An aperture cannot have internal structure. It must 
have the same transparency over its entire surface. If 
an aperture has sub-areas with different transparencies, 
it may be broken down into smaller apertures to 
maintain uniformity of transparency. However, the 
topology will not recognize the size of the overall 
aperture in that case. 

An aperture forms an interface between two distinct 
adjacent enclosures, where one of the enclosures may 
be the exterior enclosure of the MES structure. For 
each of the two enclosures adjacent to a given 
aperture, the aperture has a field specifying whether 
there is a non-zero "step" from the lower edge of the 
aperture to the floor of the enclosure, as shown in 
Figure 1. It is used at run-time as an optimization in 
determining whether a unit can traverse the aperture. 
The "step", or discontinuity, need not be immediately 
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adjacent to the aperture. For example, a window with 
a flat window-sill, ten feet above the floor, would 
probably be deemed to have a step discontinuity. 

the angle is too steep. The triangle data structure also 
contains a material type, which can be one of the 
Material Composition Category FACC attribute 
values. 

Step 2 

Aperture 

Enclosure 

Stepl 

Figure 1: Step Discontinuity at Apertures 

In conjunction with the step discontinuity flag, each 
aperture stores the thickness of the surrounding wall, 
to allow the run-time code to calculate the height of 
the step. In the example above, the thickness would 
be the width of the window sill. 

For higher resolution apertures, such as "mouse 
holes" that result from a detonation, the cost of 
triangulation may be prohibitive. For these cases, the 
capability to associate a 32 by 32 bit array with an 
aperture has been provided, where the values in the 
array specify the location of the actual aperture. The 
aperture is still triangulated, but only two triangles, 
which define the area of extent of the bit array, are 
used. The algorithms that operate on apertures check 
these triangles first, and then check the bit array if the 
aperture is of interest. 

2.4   Triangles 

The data structure of every triangle (wall and aperture 
triangles) in an MES structure contains three vertices, 
specified in the MES's local coordinate system. The 
vertices are ordered counterclockwise when viewed 
from the triangle's outward face. Triangles also 
possess a normal vector, so that the direction that the 
triangle is facing (such as the "top" of the floor) is 
easily recognizable. Also, the angle between the 
triangle's normal and the gravity vector can be used to 
determine if an entity can reside at that triangle, or if 

Figure 2 shows the relationships between the various 
MES data types. MES structures are stored as 
templates, which contain the apertures, enclosures, 
and triangles that define the structure. These templates 
are used to create instances of the structures at specific 
locations in the database. These instances are stored in 
the volume data structure. When an instance of an 
MES structure is changed during run time, a new 
template is created for the changed structure, which is 
then referenced by the volume data structure for the 
changed MES structure. 

Figure 2: MES Data Hierarchy 

2.5   Topology 

The relationship between enclosures and apertures, 
where apertures are the only gateways between any 
two enclosures, provides sufficient information to 
generate a connectivity graph for any MES structure. 
In such a graph, the nodes of the graph represent the 
enclosures of the MES structure and the edges 
represent the apertures. This connectivity graph can 
be used for route planning inside or through MES 
structures. For example, to plan a route between two 
points in an MES building, the enclosures that those 
two points lie within are found, and then a route is 
generated utilizing the network of enclosures and 
apertures. A lower level path planner could then plan 
the actual path inside an enclosure between the 
apertures of the higher level route. 
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The topology defined by this connectivity graph 
yields all possible routes within an MES. However, 
some of those connections may not be feasible for a 
given entity. For example, an individual combatant 
should not be able to enter an MES building through 
an aperture that is 20 meters off the ground, unless 
special equipment is used. Therefore, MES structures 
were designed to provide a feasible topology. 
Candidate paths can be filtered to disallow movement 
through closed/blocked apertures, to prevent routing 
through apertures that require rises in elevation greater 
than a climb threshold, or to prevent routing through 
apertures that require a decline in elevation greater 
than a fall threshold. This filtering is based on 
information recorded with each aperture: the step 
discontinuity flag, and the wall thickness flag. If the 
step discontinuity flag is set for an aperture, the 
topology traversal routines will check the height on 
each side of the aperture. This is done by looking up 
the elevation at a point "wall thickness" away from 
the aperture, and subtracting the elevation at that 
point from the elevation of the aperture. This 
difference is compared to the maximum climb or fall 
height for the specified entity, as appropriate for 
entering or leaving the aperture. If the elevation 
difference is within the limitations of the entity, then 
that aperture is considered a topological edge. 
Otherwise it is ignored for the purposes of the 
specified entity. 

3. ModSAF   Modifications 

The changes made to ModSAF to support MES 
structures were mostly made within the Compact 
Terrain Database library (libCTDB). We also modified 
other portions of ModSAF in order to demonstrate the 
use of MES structures in route selection and 
planning. 

3.1   Compact Terrain Database 

Many changes were made to the Compact Terrain 
Database (libCTDB) data structures and algorithms in 
order to support MES structures. These changes 
include implementation of the various MES data 
structures discussed in the previous section, 
modifications of the libCTDB algorithms to work 
with MES structures, and the addition of new 
functions to the API for use of the MES structures by 
the ModSAF application. 

3.1.1 MES Data Structures 

Besides the enclosure and aperture data structures 
previously described, other data structures were added 
to libCTDB in order to support MES structures. 
Most of these are internal to libCTDB, but one data 
structure, the MESKEY, is used in the libCTDB API 
for MES structures. The MESKEY is an aggregate 
data structure that contains the unique ID of an MES 
structure, as well as an identifier for a unique 
enclosure within that MES. The MESKEY is used in 
route planning to identify those route points that are 
within an MES structure, and exactly where those 
points are within the structure. 

3.1.2 MES Algorithms 

The approach taken for dealing with MES structures 
within libCTDB algorithms was to modify the 
existing algorithms, such as intervisibility, elevation 
look-up and ground intersection, to identify when an 
MES structure was intersected, and branch to routines 
that were written specifically for MES structures 
while within them. For example, when a line of sight 
calculation is performed from outside an MES 
building into it, the existing intervisibility routine is 
used until the line of sight ray intersects the bounding 
volume of the building. At that point, the MES 
intervisibility algorithm is used until either the ray is 
blocked by something within the building or it leaves 
the building. If the ray leaves the building without 
being blocked, the processing continues using the 
non-MES intervisibility algorithm. 

The line intersection algorithm is the basis for several 
of the MES functions used in the intervisibility, 
elevation look-up, and ground intersection routines. 
This algorithm calculates the intersection points of a 
line segment with the triangles which define the MES 
shape and orders the intersections along the line 
segment. The algorithm can be limited to finding the 
first intersection point along the line segment. 

In order to calculate these intersections points, the 
algorithm, in theory, would have to test the 
intersection of the line segment with each MES 
triangle. The use of grid boxes has been introduced to 
significantly reduce the number of these intersection 
tests. The grid boxes are a hierarchy of boxes, each of 
which contains a subset of the MES triangles. Each 
box either contains two or more grid boxes or is a 
lowest level grid box. The line intersection algorithm 
determines the sequence of lowest level grid boxes 
intercepted by the line segment and then, in this 
sequence, tests each of the triangles contained within 
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these lowest level grid boxes. Since triangles often 
are located in more than one lowest level grid box, 
the algorithm keeps track of which triangles have 
been tested so that no triangle is tested more than 
once. 

All of die grid boxes are contained within the outer 
most grid box, which spans the entire MES structure. 
As discussed elsewhere, MES structures use an 
internal coordinate system in which coordinates are 
allowed to vary between -2A30 and 2A30; the x, y, and 
z dimensions of the outermost grid box are chosen to 
be the smallest powers of 2 which allow it to contain 
the entire structure (the reason for this will become 
apparent in the following discussion). 

When the MES structures are added to the database, 
the corners of the outer most box are determined, and 
an iterative process is used to subdivide the boxes. 
The process is driven by the number of triangles 
overlapping each box. If this number is more than a 
specified constant (nominally 12) and the box's 
longest side is greater than one, the box is subdivided 
by splitting each of the long sides by two. If the box 
has two equal length sides that are longer than the 
third, the box is split into two equally sized boxes 
along the longest side. If the longest side of the box 
is longer than one of the other sides, the box is split 
into four equally sized boxes along the longest two 
sides. If all sides of the box are equal, the box is split 
into eight equally sized boxes. Since the side 
dimensions of the outer most box are powers of two, 
the splitting process eventually leads to cubic boxes. 

Testing whether a triangle is in a grid box begins 
with testing its three vertices. If any of these vertices 
is in the grid box, the triangle is in the grid box. If 
all of the vertices are outside the grid box, the 
intersection of each side of the box with the triangle 
is tested. If any side intersects the triangle, the 
triangle is in the grid box. 

The line intersection algorithm calculates the 
intersection points of a line segment with the 
triangles which define the MES shape and orders the 
intersections along the line segment. The line 
segment is defined by the start and end points, Eo and 
£,, either of which can be inside or outside of the 
outer most grid box. A point E on the line segment 
is defined in terms of the parameter a. 

P = Eo + a ( E, - Po), where 0 < a < 1 

The line intersection algorithm first determines 
whether Eo is inside or outside the outer most grid 
box. If the point is inside this box, the algorithm 
finds which lowest level grid box (one which is not 
subdivided) contains this point. If the point is outside 
the outer most grid box, the algorithm determines if 
the line segment intersects it. If it does, the point of 
intersection closest to point Eo is determined and the 
lowest level grid box at that point is found. If the 
segment does not intersect the outer most grid box, 
the line segment does not intersect the MES. 

Finding the intersection of the line segment with the 
outer most grid box is accomplished by testing the 
intersection of the line segment with all six sides of 
the box and then calculating which of those 
intersections is closest to point Eo. 

Finding the lowest level grid box starting with a 
point in a subdivided grid box is an iterative process 
as the algorithm first calculates which of the 
subdivided boxes contains the point. If this box is 
further subdivided, this calculation is repeated. 
Otherwise, the lowest level box is found. 

Once a lowest level grid box is found, the intersection 
of the line segment with all triangles that intersect 
that grid box is determined. If the line segment 
intersects a triangle, the normalized distance to the 
intersection, c^, is used to order the intersections. 

A record of each triangle tested for intersection is 
maintained so no triangle is tested twice. Having 
tested all of the triangles that intersect a lowest level 
box, the next lowest level box through which the line 
segment passes is found. First the intersection of the 
line segment with all sides of the current lowest level 
box (except the entry side) is calculated. The distances 
to these intersections are calculated for the (infinite) 
surfaces of the sides, not taking into account the 
extent of the sides. Whichever distance is smallest 
determines the intersected side. If the normalized 
distance to this side (a) is greater than one, point Ei 
is in the current lowest level grid box and the 
algorithm is complete. 

The algorithm then examines the "parent" grid box 
containing the current lowest level box to determine 
if the side through which the line segment is passing 
is also the side of this box. If this side is not part of 
the "parent" grid box, the next grid box in the 
sequence for the "parent" grid box is chosen. If this 
side is part of the "parent" grid box, the process is 
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repeated for the "parent" of the "parent" grid box. 
When the "parent" grid box is the outer most grid 
box, the algorithm is complete. Once the next grid 
box is found, if it is not a lowest level grid box the 
process of finding the lowest level grid box (described 
above) is repeated. Having found the lowest level grid 
box, testing the triangles it contains is also repeated. 
This process continues until either point P^ or the 
side of the outer most grid box is reached. 

The calculation which determines if the line segment 
intercepts a triangle uses the two points that define 
the line segment, the triangle unit normal, n and the 
vertices of the triangle, V„, V,, and Vj (Figure. 3). 
First, the normalized distance, d, to the plane of the 
triangle along the line segment is calculated. 

d = n.(E0-Y0)/[n'(P,-Eo)] 

Then, the intercept point of the line segment is 
calculated. 

P, = d(P,-P0) + P0 

Note that normalized distance, d, must be between 0 
and 1 for the line segment to intercept the triangle. 
Once the distance is calculated, a vector in the plane 
of the triangle, pointing into the triangle from the 
side connecting vertices i and j (and normal to it) is 
computed for each side. 

Dq = [ n x (Yj - v,) ] 

Note that one normal can be computed more 
efficiently from the other two. 

D20 = Hoi + D.12 

If the intercept point P, is inside the triangle, the dot 
product of the vector n.ij and the vector from vertex i 
to the intercept point must be positive. That is: 

!V(P,-YJ^0 

The algorithm tests this criteria for all three sides, i.e. 
(i,j) = (0,l),(l,2)and(2,0). 

Figure 3: Triangle Intersection 

The intervisibility and the ground intersection 
functions directly use the line intersection algorithm 
with the wall triangles and those aperture triangles 
with non-zero transparency. The intervisibility 
function directs the line intersection algorithm to 
calculate a specified number of intercepts. The ground 
intersection function directs the line intersection 
algorithm to calculate one intercept. 

The multiple elevation lookup function uses the line 
intersection algorithm with only the wall triangles. 
The line segment is defined using the specified x,y 
point and a point above the outermost grid box and a 
point below the outermost grid box. The direction of 
the normal relative to the vertical line segment does 
not affect the triangles being tested. The number of 
intercepts per enclosure is limited to two by the 
layout of the MES. 

3.1.3   MES API Routines 

A number of new routines have been added to the 
libCTDB API. These routines allow qualified 
elevation lookup for multiple elevations (Stanzione, 
et. al. 1996), as well as access to the MES geometry 
and topology information. Table 1 lists these new 
functions. 

3.2   Route  Selection  and   Planning 

The order that the triangles are intercepted along the 
line segment is based on the value of d. 

The modifications to ModSAF to demonstrate route 
selection and planning within MES structures were 
based on a depth first thread that allows placement of 
an individual combatant on the terrain or inside of an 
MES structure and tasking of that entity to move 
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into, within, and out of that structure. The challenge 
in this approach was to implement three dimensional 
(X,Y,Z) motion in an essentially two dimensional 
movement environment. 

The PointDescription object in the persistent object 
(PO) database library (libpo) was modified to store 

MES enclosure and aperture data. This object is used 
by the LineClass PO object, which is used to store 
routes. This change allows route information within 
MES structures to be stored in the persistent object 
database. 

Table 1: MES API Functions 

ctdb_lookup_elevation_mes Elevation lookup that takes MES structures into account 
ctdb_lookup_qual_elevation Generic elevation lookup routine 
ctdb_elev_data_to_string Converts elevation data into ASCII text 
ctdb sort elev data Sorts a variable length list of elevation data 
ctdb mes_get topology Returns the topology of the outside node 
ctdb__mes_get connected_edges Returns a list of edges that connect to a node 
ctdb_mes_filtered_connected_edges Filtered version of ctdb_mes_get_connected_edges 
ctdb mes connected nodes Returns the two nodes that are connected by an edge 
ctdb_mes_get_fiItered_connected_nodes Filtered version of ctdb_mes_get_connected nodes 
ctdb mes find mes Finds the MES that is closest to a point within a radius 
ctdb_mes xy in_enclosure Determines if the point (X, Y) is contained in the enclosure 
ctdb_mes_find_enclosure 
ctdb mes find node 

Finds the enclosure id or node for a given (X,Y,Z) and 
MES id 

ctdb_mes_get_enclosure 
ctdb_mes_get node info 

Returns the outline of the enclosure and average height 

ctdb_mes_get_edge_info Returns the outline of the aperture (edge) 
ctdb_mes_get_aperture_centroid Returns the centroid of an aperture 
ctdb_mes_get_mes Returns the roofline vertices that define the MES volume 

Figure 4: Multiple Elevation Widgets 
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In order to allow placement of an entity anywhere on 
the terrain, the user interface was modified to allow a 
user to select the elevation surface onto which an 
entity is to be placed. This was achieved by 
modifying the PLACE and LINE widgets to 
understand and accept three dimensional inputs, as 
shown in Figure 4. 

When an elevation lookup is initiated from the 
ModSAF user interface, elevation information for all 
terrain and volume features at the specified (X,Y) 
location is determined. All intersections with 
elevation surfaces are then presented to the user. The 
user then has the option to select a specific elevation. 
If the user chooses not to select an elevation surface, 
the default behavior is to use the elevation of the 
terrain surface. For example, if the user is specifying 
a LineClass point, such as a route waypoint, and the 
terrain elevation is selected, the two dimensional 
point information (x, y) will be encoded in the 
SP_Location variant of the PointDescription. If the 
user selects an MES elevation surface, however, the 
MES identifier, enclosure identifier, and the two 
dimensional point information (x, y) will be encoded 
in the SP_Enclosure variant. In both cases the 
elevation information can be determined explicitly, 
since the SPJLocation variant is assumed to use the 
terrain surface, and the SP_Enclosure variant specifies 
an enclosure, which is defined to have a single 
elevation at every location. 

The route generation utilities were modified to 
support routes within MES structures. The LineClass 
object is expanded into a route list, as before, and 
then is post processed for MES structures. If the route 
contains any waypoints that are inside of MES 
structures, the route is modified to allow the entity to 
move within the MES structure. The enclosure 
information is stored for each waypoint that is inside 
an MES structure. This enclosure information, along 
with the MES topology, is used to generate specific 
route segments within the MES to allow the entity to 
move from the previous waypoint, which may be 
outside or inside of the MES structure, to the 
waypoint that is inside the MES structure. Similarly, 
if a waypoint is outside of an MES structure, but the 
previous waypoint was inside the structure, a route 
segment is generated to move out of the building 
from the previous waypoint. As an example, Figure 5 
shows a route with one of the waypoints within an 
MES structure. The final route generated by the route 
planner is shown, with intermediate waypoints within 
each enclosure that must be traversed to get to the 
selected waypoint. 

The vehicle move task uses the waypoints in this 
expanded route as goals which are provided to the 
lower level path planner (libmovemap). The 
movement goals and the obstacles in the movemap, 
however, must be unambiguous in elevation, since 
the movemap library only plans in (X,Y,T(time)). 
Since each enclosure is defined to have only one 
positive (normal up) and one negative (normal down) 
elevation surface, (x,y) locations within an enclosure 
are unambiguous, and libmovemap can be used as 
long as the movement planning is done within each 
enclosure separately. 

User Specified Route 

Added Waypoints 

Generated Route 

Actual Path Followed 

Figure 5: Route Planning in MES Structures 

Obstacles generated for placement into the movemap 
obstacle map are generated by the libvterrain library. 
This library is being modified to support on demand 
map generation and MES enclosure obstacle 
generation. Since the time required to travel between 
enclosures is relatively short (when compared to the 
outside terrain movement) rapid, on demand movemap 
planning is required. It is expected that the time to 
generate an obstacle map for a single enclosure will 
be short since the region of interest is small. 

The libvterrain library is also being modified to 
support MES obstacle insertion into a vehicle short 
term movement map. If the movement is outside of 
an MES structure, obstacle generation remains 
unchanged. When planning for movement inside of an 
MES structure, the obstacle generation code will 
insert MES related impediments to movement (e.g. 
walls) into the vehicle's movemap as obstacles. The 
obstacles inserted into the movemap are the set of 
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obstacles that are interesting in the enclosure to be 
traversed. This processing will occur as soon as each 
new enclosure is entered. In addition to adding static 
obstacles to the movemap, moving obstacles will 
also be added if they are contained within the 
enclosure being traversed. Figure 5 shows the actual 
path taken by an entity within an MES structure, 
based on the previously generated route and MES 
structure as input to movemap. 

3.3   Other  ModSAF  Modifications 

The libCTDB terrain viewer and libxcig tools were 
also modified to work with the MES structures. 
These modifications allow the developer to test the 
MES functionality and visualize the MES structures 
in both two and three dimensions. 

In order to get MES structures into CTDB databases 
quickly, the recompiler correction file mechanism was 
expanded to support the definition of MES structures 
outside of the SI000 toolkit. Two new operators are 
now supported within correction files. 
ADD_MES_TEMPLATE allows an MES structure 
to be defined, and ADD_MES_INSTANCE allows 
the instantiation of the structure in the database. 
When one of those two operators is encountered in a 
correction file, the compiler creates a data structure for 
an MES template or volume as appropriate, and 
passes it to the compiler back end for processing. In 
the correction file, each MES volume is linked to its 
template by a unique ID, chosen by the modeller. 

The following format is used in the correction file to 
add a new MES template: 

The viewer was modified to allow rendering of MES 
volumes in the plan view and the three dimensional 
view. In the plan view, intervisibility and elevation 
lookup options were both modified to work with the 
MES structures. The intervisibility option allows the 
intervis ray to extend inside of an MES structure. The 
elevation lookup option provides a list of the 
elevations of all of the surfaces at the selected (x,y) 
location. 

(ADD_MES_TEMPLATE <template-name> 
(type <type>) 
(meters_per_unit <real>) 
(roofline <vertex> <vertex> <vertex>...) 
(floorline <vertex> <vertex> <vertex>...) 
(enclosures <enclosure> <enclosure>...) 
(apertures <aperture> <aperture>...) 
) 

The ability to visualize MES structures was 
integrated into libxcig. In addition to the extraction 
and display of the polygons of an MES structure, the 
expanded material identifiers were used to provide 
easier visualization of the different surfaces of the 
MES structure. For example, the walls of the MES 
and the floor are displayed in different colors. 

The XCIG demonstration software was modified to 
allow movement through MES structures. Movement 
through physical obstacles in an MES, such as the 
walls, is prevented. In addition, the command line 
options of the demonstration software were enhanced 
to allow the specification of a multiple elevation 
starting location. 

The following format is used to add a new MES 
volume, such as a building, a bridge, or a tunnel. 
<template-name> is the link between the new volume 
and its corresponding template: 

(ADD_MES_VOLUME <template-name> 
(origin <real x> <real y> <real z> 

<integer cell-id>);; GCS 
(mes_to_world_rotation_matrix 

<real> <real> <real> 
<real> <real> <real> 
<real> <real> <real>) 

) 

4. Compiler   Modifications 

Support for compiling MES structures into CTDB 
terrain databases has been added to the recompile 
and slkctdb compiler programs. These changes will 
be present in CTDB format 6 databases. 

where <enclosure> is: 

(<enclosure-name> 
(average_height <real>) ;; meters 
(footprint <vertex> <vertex> <vertex>...) 
(apertures <aperture-name> <aperture-name>...) 
(triangles <triangle> <triangle> <triangle>...) 
) 
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and <aperture> is: 

(<aperture-name> 
(visibility <real>)     ;; 0 <= visibility <= 1 
(mobility <real>)      ;; 0 <= mobility <= 1 
(connects_to <connection> <connection>) 

;; exactly two connections 
(outline <vertex> <vertex> <vertex>...) 
(triangles <triangle> <triangle>„.) 

)• 

<triangle> is defined as: 

((material <integer>)   ; FACC MCC 
(vertices <vertex> <vertex> <vertex>) 

; exactly three vertices 

) 

with <vertex>: 

(<real x> <real y> <real z> 
; local MES coordinates 

) 

and <type> is one of: 

unknown 
building 
cave 
tunnel 
bridge 
other. 

<template-name>, <enclosure-name>, and operture- 
name> are arbitrary, non-quoted strings. 

We are currently working with the SI000 developers 
to add support for MES structure information within 
S1000, which would allow the MES data structures 
to be populated directly from S1000. This would 
include not only three dimensional models 
(buildings), but also multiple elevation terrain 
features, such as caves and tunnels. We have 
developed preliminary algorithms for extracting MES 
information for simple models, such as bridges. 

5. Conclusion 

The multiple elevation surface structures described in 
this paper are planned for integration into ModSAF in 
July 1996. The MES representation provides 
capabilities to ModSAF that will allow more realistic 

vehicle and individual combatant behaviors to be 
developed that utilize multiple elevations. 
Particularly, the use of building interiors will now be 
possible. 
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1.   Abstract 

Two areas of increasing interest to the military 
training community are individual-level simulators 
and urban environments. For the purposes of trainee 
platforms, buildings may be represented as sets of 
polygons in a format suitable for commercially 
available image display software and hardware. This 
representation is inadequate for Computer Generated 
Forces (CGF). A CGF soldier simulator must check 
visibility, determine height, and detect collisions—all 
potentially expensive computations. In addition, CGF 
soldiers must plan and control movement, perform 
basic spatial reasoning, and make tactical plans. The 
raw polygonal representation is unsuitable for these 
tasks. 

In this paper we describe our efforts to take a raw 
polygonal building description and automatically 
process it to produce new representations. The new 
representations provide an efficient organization of 
polygons for visibility and height calculations, 
simplified obstacle models for other geometric 
calculations, and semantic information for reasoning 
tasks. Such automatic processing tools will be 
valuable for rapidly generating urban databases for 
simulation exercises involving CGF. 

2.   The Need for CGF Building Representations 

The Institute for Simulation and Training (1ST) is 
developing autonomous computer controlled hostiles 
and neutrals (CCH/N) to populate a virtual battlefield 
as part of the Team Tactical Engagement Simulator 
(TTES) project. This project, which is sponsored by 
the Naval Air Warfare Center Training Systems 
Division in Orlando, will develop a system to train 
small infantry units to fight in urban terrain. The 
terrain database used for TTES is in a format 
designed for image generators with no organization or 
semantic information suitable for CGF. While this is 
not a big problem for the ground surface, for 
buildings—of which there are many in TTES—it is. 
In this paper we describe our efforts to deal with the 
building part of the TTES terrain database.  First we 

discuss the characteristics of the source data and 
buildings and review some of the needs of CGF with 
respect to terrain. Next we present the data 
representation that we have developed so far to 
support these needs; in particular we discuss the 
height and intervisibility functions. Finally we 
describe the algorithms used to extract the CGF 
building representation from the source data. 

2.1  Source Representation 

The source data for a TTES building is simply a set 
of polygons. The polygons are contained in a file in 
Multigen Flight format. This is a very common 
format for visual databases as it is supported by 
common visualization hardware and software (i.e. 
Performer running on SGI workstations). 

In Flight files, polygons can be grouped, and the 
groups can be arranged hierarchically. While it is 
possible to build a file whose structure maps well to, 
for example, the topology of a building's rooms or 
the structure of its walls, in practice it is common for 
the groups to correspond to polygons that have 
something else in common. For example, if all 
windows of the building look the same, the database 
designer might construct one window frame, then 
replicate it around the building and put all window 
frames in a group. The TTES buildings files have no 
groupings useful for a CGF database. 

The raw polygonal representation lacks semantic 
information that one would intuitively expect to be 
useful for operating in a building. People commonly 
see buildings as collections of rooms and hallways 
joined together by doorways; windows and doors 
connect the inside with the outside. Buildings have 
levels, and stairs (and elevators, etc.) connect them. 
Buildings can also be viewed as spaces partitioned by 
structural walls. The raw polygonal database 
contains none of this information. Of particular note 
is the lack of aperture information; in the raw data, 
an aperture is the lack of polygons. 
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2.2  CGF requirements 

In order to determine what representation was needed 
for CGF, we first had to examine the functional 
requirements of CGF with respect to terrain. This 
section reviews some of these requirements. The first 
two, height and intervisibility, are common to many 
CGF systems; the remainder of the requirements are 
based on functions in the TTES CCH/N system, but 
are similar to functions in other CGF systems. 
• Height of terrain. Since gravity pulls entities 

down to the surface of the terrain, it is necessary 
to determine the surface elevation of any (JC, y) 
point. Clearly, buildings can have multiple 
surfaces at each (x, y). 

• Intervisibility. Basic CGF behavior are based on 
whether or not an entity can see another entity. 
Thus CGF must be able to determine if a line 
segment from them to anther entity intersects any 
terrain polygons. 

• Collision detection. As entities move, they must 
not penetrate any impenetrable obstacles. In our 
CCH/N system, entities are approximated by a 
two-dimensional (2D) bounding curve, and they 
are checked for intersections with line segments 

•  that represent obstacles. 
• Dynamic movement control. Dynamic 

movement control has similar requirements to 
collision detection: as the entity moves, it 
monitors the relative positions of obstacles 
(moving and static) and makes corrections to its 
speed and direction of movement. Obstacles are 
again represented by line segments. 

• Movement planning. The CCH/N system 
includes a mode of movement that involves pre- 
planning a route in clear space between static 
obstacles from one point to another. Route 
planning is done in 2D; this is a good abstraction 
for ground-based entities because it captures most 
movement constraints and makes computation 
much simpler. Planning can be done by searching 
a movement grid upon which obstacle line 
segments have been drawn. The grid cells can be 
marked to indicate a cost based on trafficability, 
exposure to threat, etc. Apertures in or adjacent 
to a cell can just be treated as a factor increasing 
the cost to enter the cell. Our first goal for 
extracting information for movement planning is 
thus to provide a list of obstacle and aperture 
locations (line segments). 
Rather than searching a large movement grid, it is 
more efficient to plan first in an abstract space. In 
a building such an abstract search is most easily 
constructed by assuming that apertures separate 

and connect clear spaces; the movement planner 
can then first search a graph of apertures and 
secondly search the free space between apertures. 
Our second goal to support movement planning is 
therefore to build a graph of apertures and clear 
spaces. 

• Tactical reasoning. The above requirements 
address how a CGF entity moves. Beyond this, 
the CGF entity must decide (f and where to move. 
Most of this reasoning can be performed just by 
knowing the movement points between points and 
whether one point is visible from the other. An 
entity could use this information to answer such 
questions as "Where can I move to to see point 
PI What location is near cover but allows me to 
fire at PI Extra information allows heuristics to 
be used to narrow the search for tactically good 
positions: the boundaries of apertures, the 
locations of inside and outside corners, etc. 

2.3  TTES Buildings 

The TTES database is a representation of the Combat 
Training Village in Quantico, Virginia (QCTV). It 
contains about 16 buildings typical of those that 
might be found in a small town. The largest are three 
stories tall and about 20 meters on a side. 

While the obvious way to represent buildings might 
be as a box divided into levels and further into rooms, 
we have found numerous characteristics in the TTES 
buildings that make simple representations and 
algorithms problematic. Some of these characteristics 
are as follows: 
• Apertures. The TTES buildings have "normal" 

doors and windows, but also "loopholes" the size 
of a cinder block (20cm x 40cm), windows with 
low sills that a person can walk through, high 
windows above a person's head, and low 
windows by a person's feet. There are also 
apertures in floors. 

• Porches. Many exterior doorways exit the 
buildings onto porches which have stairs to the 
ground. These porches are open to the outside 
on one or more sides and are effectively part of 
the terrain surrounding the building, but their 
polygons are part of the building definition. 

• Balconies. Several buildings have balconies that 
are partly enclosed, like the porches described 
above. One balcony is cantilevered over the 
ground. An entity can thus be under a building 
floor polygon but be standing on the ground 
surrounding the building. 
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Crawl spaces. There are crawl spaces under 
some buildings where entities can move. These 
are about a meter tall. 
Varying ground height The ground around the 
buildings varies in height. In many cases the 
ground is below the level of the first floor; hence 
the need for porches with stairs. The distance 
below a ground floor window is therefore 
different on either side. There are buildings for 
which it is possible to enter the ground floor 
from some apertures and the basement from 
others. 
Concentric rooms. Figure 1 shows a building, 
the "Hotel," in the QCTV with a hallway that 
follows the perimeter of a rectangle. Inside this 
rectangle is a stairway that follows three sides of 
a rectangle.     Inside the stairway there is an 

glir.rev• 

Figure 1. Blueprint of TTES building with 
porches, concentric rooms and partially 

enclosed entryway. 

elevator shaft. This building also has two 
porches and an entryway that is open to the 
outside on one side. 

• Rubble. Several buildings have been constructed 
to appear partially destroyed. These buildings 
are missing large sections of walls, ceilings, or 
whole levels. The remaining partial walls have 
uneven tops; some are traversable, some are 
effectively full walls, and some vary 
continuously between the two extremes. Several 
apertures have very ragged edges. 

The one characteristic of the buildings that makes 
terrain algorithms easier is that they are made up of 
mostly orthogonal polygons. In the local coordinates 
of the  building, the polygons are normal to the 

coordinate axes.  This characteristic allows us to use 
2D computations in many parts of the algorithms. 

3.   Representation 

3.1  Symbolic Information 

The goal of building analysis is to construct a 
building database that uses data representations 
suitable for efficient computation of the information 
described in 2.2. We have chosen the following 
representations to meet the needs of CGF: 
• Two dimensional representations of Movement 

Spaces. 
• Multiple 2D Movement Spaces. At the very 

least, Movement Space must provide an 
unambiguous height for every (JC, y) location, so 
multi-story buildings require multiple Movement 
Spaces that generally correspond to the building 
floors. We will outline how we are extracting 
room representations so that in the future we may 
use a separate Movement Space for each room. 

• Outdoor Movement Space. Since in general the 
ground outside a building does not correspond to 
a Movement Space inside the building, a separate 
Movement Space is required for entities moving 
outside the building. 

• Polygon floor maps. The 2D floor area of a 
Movement Space is tessellated into rectangular 
polygons which are attached to the Movement 
Space. These polygons, along with a range of 
elevation values for the Movement Space, are 
used to organize the polygon search when 
mapping an (x, y, z) location to a Movement 
Space. 

• Obstacle list. Obstacles to movement in a 
Movement Space are encoded as a list of line 
segments and stored with the Movement Space. 
These are used both for movement planning and 
for collision detection. 

• Aperture list. Apertures contain fields for class, 
geometry, and connected Movement Spaces. 
Class indicates the type of aperture, such as 
transition point, doorway, window, loophole, etc. 
Transition points are boundaries between 
Movement Spaces, regardless of whether there is 
a spatial constriction also present. Geometry 
information contains the bounding box, and 
relative height to the surrounding ground or 
floors. Apertures are linked to the Movement 
Spaces they connect. Since we currently use 
entire levels for Movement Spaces, Movement 
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Spaces may include apertures that do not connect 
to other Movement Spaces. 
Polygons. As we describe below, all original 
polygons describing the building are kept in our 
building representation. Eventually we intend to 
keep a list of wall, floor, and ceiling polygons 
with each Movement Space. However, we have 
not yet implemented this step. 

3.2  Polygon Organization 

All polygons in the source file are also kept as part of 
the building representation. As we describe below, 
we take advantage of the fact that most of the 
polygons are oriented normal to coordinate axes in 
the local coordinate system of the building. To make 
these algorithms easier, polygons are stored in four 
groups according to their orientations—xy, xz, yz, 
and "other." Furthermore, the polygons in each 
group are sorted along their common normal 
direction. 

4.   Terrain Attributes from Location 

4.1   Terrain Height 

One of the most common requests from the terrain 
database is the height of the terrain at a location (x, 
y). This is generally a unique value on the ground; in 
a building, however, there may be many support 
surfaces at a given (x, y). Our system defines a 
function Entity_Height which determines the height 
of the terrain for an entity. This function is the same 
as the basic Height function when the entity is over 
the ground, but uses the multiple height values and 
the old elevation to determine the new height in a 
building. 

When (x, y) is inside a building, the Height function 
basically searches through the building polygons to 
see which ones intersect a vertical line that passes 
through (x, y). This procedure is essentially the same 
as searching through the polygons of a ground patch 
to find the one under (x, y). If it is inside, then the z of 
the polygon at {x, y) is computed. 

Since the polygons in our building representation are 
organized into orthogonal sets, the Height function 
can ignore all polygons in the xz and yz sets. These 
polygons are vertical and cannot be support polygons. 

The Entity_Height function is similar to Height but 
takes an old z value as a parameter.   The function 

assumes some coherence in space to disambiguate 
between multiple possible z values at an (x, y). In 
addition, the function is able to prune away many 
polygons by taking advantage of the fact that the xy 
polygons are sorted in z.. The algorithm works as 
follows: 

I.    Given (x, y), zout. and xy polygon set S ordered 
in increasing z; 

Let 

ZTCSI — Hclimb + 2oW . 

where Hctimh is the maximum step up an entity can 
make during nominally horizontal movement. 

3. Let i = N, the number of polygons P, in 5; 
decrement i until 

z value of P, <zr«f • 

4. Let/' = /', determined above; decrement/' until 

(x, y) is inside of the projection of Pj 
onto the xy plane. 

5. Determine z for (x, y) in Pj. 

This algorithm generally works well for the two 
dimensional movement abstraction commonly used 
for ground entities; it finds the first support polygon 
underneath of the entity. The HcUmb adjustment 
allows the entity to traverse a stair riser without 
causing the algorithm to drop the entity down to a 
polygon below the step. This adjustment can lead to 
a problem, however, if the minimum height of a 
ceiling (in a crawl space, for example) is smaller than 
Hclimb. 

4.2   Movement Space Identity 

Since movement in a building is regulated by 
Movement Spaces, it is necessary to be able to 
identify the Movement Space containing a point (x, y, 
z). Each Movement Space contains a set of 
rectangular polygons describing the shape of its floor. 
The algorithm for identifying Movement Spaces is 
much like the Entity_Height function, except that 
Movement Space polygons are examined. When a 
candidate Movement Space is identified, the input z is 
compared to the elevation range of the Movement 
Space to determine if the point is part of that 
Movement Space. 
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The algorithm above is not very efficient in theory. In 
practice, we can use one floor polygon describing the 
bounding box of the Movement Space. The only case 
in which this simplification doesn't work is for non- 
rectangular Movement Spaces combined with an 
input z that is not on a support surface. Eventually, as 
mentioned above, we will link the source building 
polygons to Movement Spaces and so determine 
Movement Space membership directly during the 
height calculation. 

Within each of the orthogonal polygon sets, the 
algorithm takes advantage of the sorting to skip over 
polygons that are outside the range of the candidate 
line of sight. For example, if the candidate LOS goes 
from point A to point B, and 

LOSMinZ = Mm(Az,Bz) 

then in the xy set the algorithm skips over all 
polygons P for which 

5.  Visibility 

The second major algorithm for CGF is 
intervisibility, or clear line of sight (LOS) 
determination. In our system, this algorithm simply 
returns a Boolean value indicating whether there is a 
clear LOS. Our LOS algorithm takes advantage of 
the fact that most of the building polygons are normal 
to one of the coordinate axes in local building 
coordinates. Our building data structure stores these 
polygons separated into different sets and sorted 
within the set. The algorithms can treat each set of 
polygons as a separate case and perform calculations 
in only the appropriate two dimensions. Since the 
polygons are sorted, the algorithm can quickly prune 
some irrelevant polygons. Furthermore, the algorithm 
uses heuristics to order the sets. To do all of this, the 
algorithm must of course transform the endpoints of 
the candidate line of sight from world coordinates to 
local building coordinates. This is done using 
transformation parameters stored with the building. 

5.1   The Line of Sight Algorithm 

For lines of sight that begin and end outside of a 
building, the LOS algorithm first test to see if the line 
intersects the bounding box of the building. If so, the 
building polygons are checked. The points where the 
candidate LOS pierce the bounding box are 
calculated and then transformed to local coordinates. 

The four sets of building polygons are checked in 
order of decreasing component length of the 
candidate line of sight. In other words, if the z 
component of the candidate LOS is the longest, the xy 
polygons are checked first, and so on. This heuristic 
is intended to maximize the likelihood of finding an 
intersecting polygon in the first set. The set of 
polygons not orthogonal to a coordinate axis are 
always checked last because the general three 
dimensional intersection test is the most expensive. 

Pz < LOSMinZ 

Similarly, the algorithm always stops examining the 
xy set when 

Pz > LOS, MaxZ 

For those polygons in the range to be tested, the 
algorithm first tests to see if the bounding box of the 
polygon (computed on the fly) overlaps the bounding 
box determined by A and B. If so, the algorithm 
computes the point T where AB pierces the plane of 
P. This calculation is fairly simple since the plane of 
P is orthogonal to a coordinate axis. A further check 
is made to see if T is in the bounding box of P. If so, 
then a two-dimensional Inside_Polygon test is made 
to see if T is inside P. This test checks to see if the 
sign of the cross product 

(T-PdX(PM-Pd 

is the same for all /', where P< is the i"1 vertex of P. 

The polygons in the last set are not sorted and cannot 
be pruned as readily. The algorithm uses a three 
dimensional bounding box check between the LOS 
and the polygon to see if the polygon must be tested 
further; a three dimensional line-polygon intersection 
check is then made. This check again requires that 
the point T where AB pierces the plane of P be 
computed; in this case it is computed in full three- 
dimensional generality. However, the test to see if T 
is in P is performed in two dimensions using the 
projection of P and T on the xy plane. In the 
infrequent case that P is vertical, then T and P are 
project onto another coordinate plane. The two 
dimensional Inside_Polygon test is much cheaper 
than a three-dimensional version. 

5.2  Experiments 

We conducted several experiments to determine the 
value of using various heuristics and checks described 
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above. In one experiment we generated 10,000 point 
pairs randomly distributed inside a building and timed 
how long it took to check the line of sight between 
each pair. In one case we used a general, three- 
dimensional line-polygon intersection calculation; in 
the other case we used the algorithm described above. 
The first case took 49 seconds (60 MHz Pentium PC), 
while the second took 7 seconds. This result confirms 
that our intervisibility algorithm is significantly more 
efficient than general LOS algorithm. 

We considered dividing the building volume up into 
three-dimensional grid cells, each containing a list of 
the polygons that intersected it. This should make 
searches for polygons intersecting a line more 
efficient. However, the irregular and sparse nature of 
the polygon distribution in a building would seem to 
require a more sophisticated structure (such as an 
octree) to make the search efficient. We believe that 
our polygon organization allows an efficient pruning 
of polygons during the intersection search. We would 
like to compare the algorithms experimentally 
sometime in the future. 

6.  Building Analysis 

The goal of our building analysis algorithms is to 
generate the building representation described in 
section 3.1. In all steps of this analysis we make tests 
to determine where clear space is and where solid 
surfaces are. In order to avoid many expensive 
geometric computations, we first convert the 
polygonal representation into a three dimensional 
image representation and analyze this volume. We 
digitize the volume in steps of 0.1 meters so that any 
geometric information that the analysis produces will 
be accurate enough for the simulation. 

6.1   Preliminary Steps 

6.1.1   Creation of a Volumetric Image 

The terrain and building databases are first scanned 
into a three dimensional (3D) volumetric image. The 
size of the 3D volumetric image is 1 meter larger than 
the bounding box of the building so the ground 
surface can be included in the 3D image. Each 
volume element, or voxel, in the 3D volumetric image 
represents a 0.1 meter cube. Each voxel may have one 
or more of the following attributes: 
• Occupancy: SPACE or SOLID 
• Ground        relation:        GROUND_SURFACE, 

BELOW_GROUND, or ABOVE_GROUND 

• TRANSmON_POINT 
• APERTURE 
• STANDABLE 

In the following algorithm description, we will refer 
to a function V(i, j, k); this is the access function for 
the type of voxel (i, j, k). 

All voxels are initialized as SPACE type, which 
indicates free space, prior to scan converting building 
polygons and ground polygons. A voxel is set to 
SOLID type if its bounding box intersects any 
building polygons. The resulting 3D volumetric 
image is the approximate miniature of the actual 
building described by the polygonal database. 
Dimensions of apertures in the volume image are 
always smaller than the actual dimensions. 

After scan converting the building polygons, the 
ground surface polygons around the building are 
converted. A voxel is set as GROUND_SURFACE 
type if its location is at the height of any ground 
polygons. A voxel is set as BELOW_GROUND type 
if it is below any ground polygons. A voxel is set to 
ABOVE_GROUND type if it is above any ground 
polygons. The GROUND_SURFACE voxels are 
later used to identify the characteristics of the 
perimeter of the building. 

Figure 2 is one horizontal slice of the 3D image of the 
Hotel. The dark lines are SOLID voxels indicating 
walls. 

I. 

=8 

Figure 2: A horizontal slice of the volumetric 
image showing walls with spaces for apertures. 
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6.1.2  Filling in Walls 

Since the building polygons represent the surfaces of 
the walls, our algorithm attempts to fill in the core of 
the walls in the 3D image. This prevents later stages 
of the algorithm from identifying the space between 
the walls as a room. The algorithm sets every 
SPACE voxel to SOLID voxel if it is directly 
between two SOLID voxels. With a voxel size of 0.1 
meters, this procedure will fill in walls that are 
between 0.1 and 0.2 meters thick. The result of 
filling process on the Hotel is shown in Figure 3. 

6.2  Finding Movement Spaces 

6.2.1   Standable Voxel Extraction 

The first step in identifying Movement Spaces is to 
find those voxels on which an entity could stand. 
These    are    the    STANDABLE    voxels. A 
STANDABLE voxel is defined as a SOLID voxel 
with a certain number of SPACE voxels directly 
above it, i.e. 

V voxels (i, j,   k) , 

if V(i,   j,   k)   = SOLID and 
V(i,   j,   k+t)=  SPACE, 1 < t < 

then V(i,   j,   k)   <=   STANDABLE. 
N, 

6.2.2  Movement Space Identification 

The identification of Movement Spaces has two 
primary steps. In the first, all standable voxels that 
are "adjacent" are linked into regions. In the second 
step, these regions are split so that no region has two 
standable voxels at the same (i, j). 

The standable voxel linking step is essentially a three 
dimensional version of a standard two dimensional 
region labeling algorithm for image processing. The 
one notable difference is that standable voxels are 
considered adjacent if they are adjacent in the x and y 
directions and within HMmt of each other in z- HMme is 
a threshold height such that an entity can climb this 
height during horizontal movement with no penalty. 
This is just an approximation, but at any rate HMmt is 
intended to be much smaller than the Hciimb used in 
section 4.1 above. 

We recognize that the use of such thresholds makes 
the analysis of buildings entity dependent. However, 
this is appropriate; the information we are extracting 
from the building is intended to be used by individual 
combatants. Armored vehicles, for example, would 
view buildings differently so the representation we 
are extracting would not be very useful anyway. 

The second step of Movement Space identification is 
the division of the standable regions into new regions 
that do not overlap. Each standable region is 
considered in turn. It is examined from minimum k to 
maximum k. At each k, if voxel (i, /, k) in the region 
is standable, then (i, j) in a two-dimensional region 
map is annotated with the value of k. This process 
continues until at some k, for all voxels (i, j, k) in the 
region, the 2D map is already marked at (J, j). At this 
point the 2D map is saved as the movement area for a 
Movement Space and the voxels corresponding to 
this area are cleared from the region under 
consideration. The boundary voxels between 
Movement Spaces are marked as TRANSITION 
POINTS. The minimum and maximum k values of 
the area are found and stored for use in the Movement 
Space Identity function (described in Section 4.2). 
The examination of the standable region then 
continues with a new 2D map. Figure 4 shows one of 
these 2D maps for the Hotel. 

N is the number of voxels corresponding to ffcwuatMm 
the minimum height of a ceiling over a 
STANDABLE voxel. In our implementation, 
HceiimfMin is 0.5 meter, so the definition of 
STANDABLE voxels admits places where crawling 
is required. 

6.2.3   Polygonal Floor Map 

We currently generate only a single rectangular 
polygon to describe the footprint of the Movement 
Space.    This is determined easily by finding the 
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Figure 4: Movement areas. The dark region 
shows the movement area corresponding to one 

Movement Space. 

extreme  points  of  the  2D  movement  area just 
computed. 

6.3   Characterizing the Outside Movement Space 

The Movement Space for the outside is generated 
much the same as the others, except that ground 
surface voxels are used instead of STANDABLE 
building voxels, and the outer boundary of the 
movement area is not considered. The algorithm 
must identify obstacles between the building 
Movement Spaces and the outside, and transition 
points where an entity can walk freely between them. 

Obstacles are formed by walls on the perimeter of the 
building, where building and ground voxels meet. 
Voxel (i, j, k) is an obstacle if 
1. there is an adjacent voxel (/, m, n) that is of type 

GROUND_SURFACE, where k - n > N, and 
2. V(i, j, h) = SOLID for n<h<k 

where N is the number of voxels in HMme. 

Transition points from the outside to an interior 
Movement Space may identify doors or windows, but 
also places where a person can just walk onto a 
building polygon. Porches are the common example 
of features that give rise to non-aperture transition 
points. The definition of transition points for the 
outside Movement Space is a voxel (i, j, k) that has a 
GROUND.SURFACE voxel adjacent in (i, j) and 
within HMme in k. 

6.4  Finding Apertures 

Apertures are essentially boundaries where 
Movement Spaces join, but across which entities 
cannot move without a cost (if at all). They are 
characterized by a spatial constriction. 

6.4.1   Detecting apertures 

The aperture extraction algorithm looks for voxels 
that are in doorways and windows by checking to see 
if there are SOLID voxels on either side of it (at the 
same z) within distance WApemre. However, if the wall 
found on either side is SOLID for less than a 
thickness WWaUMin, then the constriction is assumed to 
be part of a hallway and not an aperture. This 
condition is illustrated in Figure 5. All voxels 
meeting the aperture criteria are marked as 
APERTURE type. The result for the Hotel is shown 
in Figure 6. 

Aperture 
detected 

No aperture- 
surrounding 
wall not thick 
'enough here 

Figure 5. Wall thickness criterion for labeling 
voxels as APERTURE. 

After the APERTURE voxels have been marked, a 
3D connected component algorithm is run over the 
3D image to connect together voxels into apertures 
regions. The bounding box is extracted. Since the 
aperture regions are as thick as the wall they are in, a 
center point is computed (depthwise). Finally, an 
aperture list is created and filled with all of the 
geometric information. 

In a similar manner, all TRANSITION_POINT 
voxels are grouped together. These are two 
dimensional features so do not carry the same 
geometric information as apertures. However, they 
still have the connectivity information. 
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Figure 6. Extracted aperture areas (dark) 
overlaid on top of the wall of Figure 3 (light). 

Note that the boundary cells include locations that 
have windows. Thus the extracted obstacles will 
include areas of the walls with windows. This 
inclusion is deliberate. The extracted obstacles are 
used as is to detect the collisions of walking entities, 
which is the most common case; we desire a collision 
result at a window if the entity is walking. If the 
entity is climbing instead of walking, then the 
collision detection algorithm must consider the wall 
obstacle only while the entity is below the sill of the 
window being climbed through. Windows with very 
low sills, i.e. < //„„v„ are already part of the 
movement area of the movement space and so need 
no special treatment (they are effectively doorways). 
For movement planning purposes, the terrain features 
are written into a grid overlaid on the terrain; the 
gridding algorithm must simply overwrite wall 
obstacles with the appropriate aperture and transition 
point features and the grid will represent the desired 
mobility characteristics of the wall. 

6.4.2   Connecting Apertures to Movement Spaces 

As the apertures placed on a list, they are connected 
to the Movement Spaces that they adjoin. The 
aperture has two pointers to its adjacent Movement 
Spaces and the Movement Spaces have lists of 
pointers to adjacent apertures. The connection 
process is straightforward: the (x, y) location just to 
the sides (depthwise) of the aperture are computed, 
and the Movement Space Identity function is called at 
(x, y, z) where z is the elevation of the bottom of the 
aperture. As Section 4.2 described, the Movement 
Space corresponding to that point can be obtained by 
comparing the z with the range of elevations covered 
by the Movement Spaces. 

6.5  Finding Obstacles 

The major operational component of Movement 
Spaces is the list of obstacles. The building analysis 
algorithm takes the 2D movement map for each 
Movement Space and identifies all cells that are not 
in the movement area but are adjacent to a cell that is. 
These identified cells form the boundaries of the 
movement area. The cells are obstacles, with the 
following exception: for each of these cells (i, j), the 
algorithm looks at voxel (i,j,k), where k is the value of 
cell (i, J) from the map generation process. If this 
voxel is not solid, then the boundary cell is cleared 
and the adjacent movement area cells are marked as 
transition points (this is a place where the floor drops 
off to another Movement Space). All of the remaining 
marked boundary cells are clustered into line 
segments and stored in a list. 

6.6  Future Work 

In the future it may be desirable to create smaller 
movement area objects corresponding to rooms. 
These room objects intuitively would correspond to 
topological building features that humans think about 
when they describe buildings. As such, room objects 
would be useful for writing terrain reasoning 
functions for CCHs. The smaller regions represented 
by rooms could also provide a form of spatial 
indexing into the building database to allow faster 
search of obstacles, apertures, etc. during the various 
terrain functions. We have already experimented 
with extracting rooms; the main part of the algorithm 
is connected component analysis, shows a slice of the 
Hotel after such an analysis. The resulting regions 
could be treated as Movement Spaces. 

p^^^ I J 
i 

I ''• • 

Figure 7. Movement Space subdivided int a rooms. 
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Another useful piece of information to add to the 
building representation would be the list of polygons 
associated with each Movement Space. Since the 
building source files are not constructed with 
polygons associated with only one floor or room, 
there could be a many-to-many assignment of 
polygons to Movement Spaces. Nevertheless, the 
spatial indexing provided by the Movement Spaces 
would allow faster access to the building polygons for 
the functions that require them (e.g. height and 
intervisibility). 

7.   Conclusions 

We have presented a set of algorithms for taking an 
unstructured set of polygons describing the surfaces 
of a building and extracting topological and 
geometric information useful to a CGF human. 

Early in the TTES CCH project we were faced with a 
choice of building a CGF building database by hand 
or building tools to do it semi-automatically. We 
experimented with editing the source files by hand 
and creating semantic databases from scratch. 
However, not only would this have been tedious to do 
once for all buildings, but we received several 
updated databases during the course of the project. 
We would have had to re-extract all of the geometric 
information from each new version. We thus opted 
for the automatic conversion tools. 
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We believe that, suitably developed, such tools will 
be useful beyond TTES for creating representations 
of buildings for other CGF databases (e.g. Stanzione 
1995). Purely polygonal representations for image 
generators are very common and seem to be the 
standard format for objects created or recreated on 
CAD systems. Automatic conversion tools would 
avoid the time consuming, tedious process of 
extracting the CGF-specific information from these 
polygonal representations. Urban databases could 
thus be constructed more easily and rapidly. 
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1. Abstract 

The Improved Computer Generated Forces Terrain 
Database (ICTDB) project, being developed jointly by 
TASC and SAIC, is one of four projects in the 
ARPA/TEC Advanced Distributed Simulation 
Synthetic Environments program. The goal of this 
project is to design and develop the next generation 
terrain database representation for Computer Generated 
Forces (CGF) systems. The ICTDB project is 
focusing on a number of areas of improvement for 
CGF terrain representations. One of the areas that 
ICTDB is addressing is the representation of multiple 
elevation surfaces. These include features that can be 
overlaid onto the terrain surface, such as water 
surfaces over the ocean floor, river, and stream beds. 
Another area is the identification and representation of 
advanced features and attributes, including all features 
and attributes normally found in operational terrain 
sources, such as Interim Terrain Data (ITD) and 
Tactical Terrain Data ('ITD). Features and attributes 
necessary to support dynamic terrain representations 
will be provided, as well as a mechanism for easily 
expanding the feature and attributes represented. 
ICTDB is providing additional support for dynamic 
terrain. The ICTDB representation is being designed 
to be updated in real-time based on information from 
the DIS network. This capability will allow ICTDB 
changes based on input from the other ARPA 
Synthetic Environment programs. 

In this paper, we describe the extensions that the 
ICTDB project has made to ModSAF in each of these 
areas in order to provide a higher fidelity ocean 
representation. The sea floor is being explicitly 
represented within the ModSAF Compact Terrain 
Database (CTDB) data structures. Soil types are being 

expanded as appropriate to provide meaningful values 
for the sea floor. The sea surface representation is 
being handled as a second surface feature overlying the 
sea floor. Tidal height variations are also supported. 
Ocean attributes will be dynamically updated with 
data made available through interaction with other 
Synthetic Environment programs, namely the 
Weather in DIS/Total Atmosphere and Ocean System 
(WTNDS/TAOS) and Dynamic Virtual Worlds 
(DVW), and derived from authoritative sources, as 
available, including the Master Environmental 
Library. 

Additional support for the representation of the surf 
zone is also being provided. This includes support of 
a triangulated irregular network for the coastline, with 
use of higher resolution hydrography and bathymetry 
data than may be available in the deeper ocean. This 
will facilitate modeling the transition from land to 
sea, without large elevation discrepancies along the 
shore. ICTDB also supports surf zone attributes of 
surf height and water temperature, and man-made 
features in the surf zone, such as jetties, oil rigs, 
breakwaters, wharves, and piers. 

Future work includes expanding the ICTDB 
representation to provide a higher fidelity ocean and 
surf zone representation. The ocean will be treated as 
a number of volumetric features with similar 
attribution. New surface and subsurface features will 
be added to represent more of the ocean 
characteristics. More explicit modeling of the surf 
zone will be provided. Ocean subfloor characteristics 
will also be represented. 
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In order to support Navy and Marine Synthetic Forces 
simulations (Tracor, 1996), the Compact Terrain 
Database (CTDB) used by ModSAF has been 
expanded to include a representation of the ocean floor 
along with a more complete representation of the 
ocean surface. Table 1 shows the various ocean 
characteristics that are represented. 

The ocean bottom is represented using the existing 
terrain representation (i.e., grids, TINs, and 
microterrain) (Stanzione, et. al. 1996), and additional 
supported soil types. Many ocean "features" are really 
abstractions describing pieces of the terrain. As such, 
the physical representation of such features can be 
adequately handled by incorporating their structure 
into the polygonal representation of the ocean 
bottom. Abstract notions such as "this area of the 
terrain is a reef can be explicitly stored as abstract 
features using existing CTDB mechanisms. 

The representation supports tidal variation of the 
ocean surface. In the coastal regions, the absolute 
elevation of the water's surface is specified, subject to 
some maximum x-y bounds. Within the specified 
region, any area where the water elevation exceeds the 
land elevation is covered by water, and any area where 

this is not the case is dry (or perhaps moist) land, as 
shown in Figure 1. The bounding polygons for water 
bodies are defined by high tide position, so that the 
surface elevation can be decreased to represent lower 
tide levels. In order to allow for changing tides in 
real-time, all water polygons reference a tidal zone. 
Each zone stores an offset, which is added to the 
surface elevation stored for the polygon. Thus, 
changing the tide in a region is simply a matter of 
changing that region's tidal offset. 

In most areas, the ocean surface is represented by 
single square polygons that correspond to the size of a 
CTDB terrain patch. The representation can not be 
too coarse because in databases that use the Global 
Coordinate System (GCS) (Evans, 1995) the ocean 
surface is curved. On the other hand, the 
representation can not be too fine or it will use much 
more memory. The patch size is the largest size at 
which integration into existing intervisibility 
algorithms is straight forward, since the 
intervisibility code already performs a patch traversal. 
The representation consists of a single elevation value 
for water in the patch, and a reference to additional 
surface characteristic data. It is assumed that there will 
be few unique sets of surface characteristics relative to 
the number of patches. 

Table 1: Ocean Representation Characteristics 

Multiple   Elevation 
Surfaces 

Advanced Features 
and  Attributes 

Dynamic Terrain 

Ocean  Floor • Bathymetry data 
• Extended soil types 

infrastructure to include 
bottom characteristics 

Ocean 
Surface 

• Patch and Wet TIN surface 
• Sea State attributes (primary 

and secondary wave height, 
period, speed, direction) 

• Surface Temperature 

•  Dynamic sea state 
and surface 
temperature 

Surf Zone •  Tidal Zone with offset for 
surf height 

•  Man made features 
(wharves, piers, etc.) 

•  Variable tidal zone 
offset 

Rivers •   Wet TIN surface 
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Figure 1: Tidal Variation 

For areas where patches are simply too big, such as 
along the coastlines, a triangulated irregular network 
(TIN) of polygons is used to represent the surface. 
These "wet TINs" contain elevation data, as well as a 
characteristic reference and tidal zone as described 
above. This representation is also used to represent 
most river surfaces. 

For areas where multiple water polygons overlap, the 
highest one is assumed to be correct. Consider the 
case shown in Figure 1. At high tide, the water level 
is above the ridge in the middle, while at low tide it 
is below it. As the tide recedes, water is trapped 
beyond the ridge. Thus, when the tide is below the 
level of the ridge, the water level to the right of the 
ridge will stay at the level of the ridge, but when the 
tide is higher, the water level everywhere will be the 
tidal level. We can handle this by placing additional 
wet TIN polygons to the right of the ridge at the level 
of the ridge, and also having a tidal polygon that 
covers that region. 

A number of existing CTDB data structures were 
modified to support this representation. A flag was 
added to the patch group header for each patch 
specifying whether that patch represented a water 
surface. Within each patch data structure, a water 
elevation field was added, which is only valid if the 
patch water flag is set in the header. Also, pointers 
were added for soil type and water characteristic 
attributes. 

To support the additional soil types needed for the 
ocean bottom, we have added a level of indirection by 

storing a soil table reference per patch or patch group. 
Most soil tables have 16 entries, since microterrain 
and grid posts only support 4 bit soils. However, the 
CTDB TTNs representation supports 8 bit soils, so 
256 entry soil tables are supported as well, allowing 
greater flexibility for TINed regions. 

An additional microterTain type was added in order to 
support the wet TINs. A characteristic reference word 
was added to the microterrain data structure in CTDB, 
which points to a new data structure that contains the 
water characteristics for the wet TIN polygons. These 
water characteristics include sea state, temperature, 
and tidal zone index, which is an index into an array 
of tidal zones. The tidal zone reference was put in 
with the other characteristics, since it is expected to 
be constant over large regions. A reference was used 
rather than storing the data directly to minimize the 
number of places in which tidal data actually resides, 
since this is something that may be modified 
frequently at run-time, and localization is critical. 

3. ModSAF   Modifications 

The scope of the ModSAF modifications was limited 
to the terrain database library libCTDB. The general 
design principle was to add a representation that 
would support tidal variant water surfaces and support 
the basic terrain utilities, intervisibility and elevation 
lookup, to function above and below the water 
surface. 
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3.1 Variable Water Surface 

A variable water surface was added to ModSAFs 
libCTDB to allow modeling of the dynamic ocean 
surface for Naval and Littoral operations. The first 
phase of development, integrated into ModSAF 2.1, 
was to add the infrastructure to support water surfaces 
and ocean bathymetry. The bathymetry was integrated 
into the original TIN topology and the water surface, 
added via patch water or wet TINs, was placed at the 
mean high tide level and a tidal attribute was 
referenced to determine the actual tide level of the 
water surface. In any regions where water anomalies 
may occur (e.g. captured water) the water surface 
representation was augmented to allow this region to 
contain multiple water surfaces each referencing a 
different set of tidal attributes. 

3.2 Elevation   Engine 

The "elevation engine" is the core utility behind all 
vehicle placements and soil and elevation queries. 
Prior to variable surfaces, the terrain database 
optimized its elevation query scheme by enforcing a 
hierarchy of features classes and subclasses. By 
knowing that one feature class always superseded the 
other in elevation, the elevation lookup processing 
could terminate once the first feature surface was 
intersected. For example, if both a canopy and 
building reside at the same (x,y) location, then the 
building elevation is always returned, even if the 
canopy elevation is above the building. 

With the addition of dynamic elevation features (ocean 
surface) and multi-elevation surfaces (Stanzione, et. 
al, 1996 (2)) the database can no longer guarantee that 
the first intersection found is the intersection of 
interest. This requires that the elevation engine 
acquire information about all feature surface 
intersections before returning the correct elevation. 
For example, if the water surface is modeled via patch 
water (separate feature class from terrain), then a point 
(x,y) that resides in the littoral region would be 
interested in the terrain elevation at low tide 
(assuming that the water revealed the terrain) and the 
water surface at high tide. This determination would 
be possible only after all terrain surfaces (grid and 
TIN) and all water surfaces (patch water and wet TIN) 
were inspected. 

Requiring that all features and terrain at a point (x,y) 
be  included in  the  elevation  query   increases   the 

amount of time to find an elevation. In order to limit 
this additional processing, two new elevation query 
routines were added to libCTDB to allow more 
targeted elevation queries and thereby allow the user 
to reduce the types of features inspected. It is 
important to note that some profiling tests were 
performed on the standard elevation lookup routine to 
determine if the changes made for multiple elevation 
queries significantly affected its performance. The 
result was that the performance was slightly degraded, 
by less then 6%. It was determined that this was an 
acceptable expense for the improvement to the 
elevation lookup functionality. 

3.2.1   ctdb lookup qual elevation 

This routine is a hybrid of the following routines: 

ctdb_lookup_elevation(_ml) 
ctdb_lookup_soil(_mI) 
ctdb_lookup_max_elevation 

These routines look for a single elevation that is the 
maximum or the closest surface at or below the input 
reference surface. Ctdb_lookup_qual_elevation pulls 
all of the above functionality together into one 
function by the addition of an elevation qualifier and 
an elevation data structure. The elevation qualifier is 
an enumeration that allows control over the feature 
classes (e.g. volume, linear, canopy) and terrain 
classes to include in the elevation lookup (e.g. land, 
water), and surface information (material/soil type) to 
be returned. Table 2 shows the defined elevation 
qualifier values. 

Ctdb_lookup_qual_elevation can also be used to 
determine if a feature class or terrain class exists at a 
certain point. For example, the libCTDB routine 
ctdb_point_within_canopy could be replaced with the 
following call: 

ctdb_lookup_qual_elevation (ctdb, x, y, 
(CTDB_INCL_CANOPY I 
CTDB_RETURN_MAX), 

0, CTDB_ELEV_DATA *) 

This again stresses the new flexibility added to the 
core elevation lookup functionality. 

In addition to the qualifier interface to elevation 
lookup, the user has the option of getting 
comprehensive information about the terrain 
intersection through a new output data structure 
CTDB_ELEV_DATA.  If a non-NULL   address   is 
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Table 2: Defined Elevation Qualifier Values 

CTDB_USE_DEFAULT Same result as ctdb_lookup_elevation 
CTDB_INCL_MICRO_ML Include multi-level microterrain in the search 
CTDB_INCL_VOLUME Include all volumes in the search (e.g. buildings, multi-elevation structures, 

etc.) 
CTDB INCL LINEAR Include all linears in the search (e.g. treelines, dragon teeth, etc.) 
CTDB INCL CANOPY Include all canopies in the search, not including treelines 
CTDB INCL LAID LINEAR Include laid linears in the search (e.g. roads, rivers, etc.) 
CTDB INCL MATERIAL Include the surface material in the search (i.e. soil) 
CTDB INCL TERRAIN SKIN Include the terrain skin (grid and or TIN surfaces) 
CTDB_INCL_MICRO_DEF_BASE Include default or base microterrain in the search 
CTDB_INCL_MICRO_WATER Include water microterrain in the search 
CTDB INCL VEHICLES Include individual vehicles in the search 
CTDBJNCL_SINGLE_TREES Include individual tree models in the search 
CTDB_INCL_PATCH_WATER Include patch water in the search 
CTDB_RETURN_MAX Return only maximum elevation 
CTDB RETURN MIN Return only minimum elevation 
CTDB INCL WATER Include anything that is considered to represent water surfaces 
CTDB INCL MICRO Include any type of microterrain (default, multi-level, base and water) 
CTDB_INCL_LAND Include all elements in the terrain database that are considered to constitute 

the terrain surface (terrain skin) 
CTDB ALL FEATURES Include all classes of features in the search 
CTDB LAND AND WATER Include all land and water 
CTDB MAX LAND AND WATER Include all land and water and return only the maximum 
CTDB MAX LAND NO WATER Include all land and return only the maximum 

provided, the elevation routine will populate the data 
structure with the elevation, feature class, subclass 
and the surface information, as shown in Table 3. 

Table 3: Elevation Data Structure 

z Elevation 
Class Terrain class (e.g. Linear, 

Volume, etc.) 
Subclass Terrain subclass (e.g. Terrain 

Skin, Building, Treeline, etc.) 
Material FACC Material Attribute Code 
Normal Vector 
(X, Y, Z) 

Normal vector of elevation surface 

3.2.2  ctdb lookup elevation mes 

This new CTDB function is similar to the 
ctdb_lookup_qual_elevation routine but returns all of 
the intersected elevation surfaces, as specified by the 
input qualifier. The output of this routine is an array 
of CTDB ELEV DATA data structures. The list is 

terminated by a feature class of CTDBJFCJOLLEGAL 
which denotes an illegal feature class. 

3.3   Intervisibility   Engine 

LibCTDB uses an "intervisibility engine" to perform 
a number of tasks. The intervisibility engine 
implements a linear traversal along the terrain surface, 
noting all terrain and feature edges crossed. This 
functionality is used to implement line of sight 
calculations, generation of terrain profile vectors, and 
high ground calculations along a linear path. 

Prior to the addition of the ocean representation, an 
intervisibility query always assumed that terrain 
blockage was from below. To allow intervisibility 
from below the water surface, the ModSAF 
intervisibility algorithm needed to be modified to 
support blockage from below and above the terrain, 
possibly simultaneously. Depending on which 
intervisibility algorithm is used (profile, high ground, 
ground intersection, etc.), the desired effect of water 
surfaces may be different. For the profile vector the 
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user may wish to know all terrain edge crossings 
without taking the water surface into account (e.g. 
when implementing a submarine behavior), but a 
tank behavior would always take the combination of 
land and water into account. Greater control has been 
added to the intervisibility routines through the 
passing of an elevation qualifier to provide more 
control over the features to be taken into account. 

Currently, as shown in Figure 2, the ocean surface 
always blocks intervisibility from either above or 
below. The ocean volume has the same affect on 
intervisibility as air. It is anticipated that the 
intervisibility through the ocean volume, as well as 
the atmosphere, will be modified by environmental 
models utilizing the WTNDS/TAOS atmospheric and 
ocean databases, when this system is available 
(Whitney, 1996). 

Figure 2: Ocean Intervisibility 

3.4   Ocean   Attributes 

As mentioned above, the dynamic water surface is 
managed through a tidal attribute. By changing the 
tidal attribute,  all  of the water  mapped  to   that 

attribute is modified. In addition to the tidal attribute, 
the other ocean attributes added to ModSAF 2.1 
include surf height, temperature, and primary and 
secondary wave characteristics, which are period, 
speed, amplitude and direction. 

In order to access or modify these attributes, a simple 
read and write interface was added to the libCTDB 
API, with expectations to enhance the functionality 
in future releases. The point read and write routines 
contain variable list interfaces which allow easy 
attribute access (single or multiple in a single query) 
and attribute expandability without requiring a change 
to the published API. 

3.5   Global   Coordinate   System 

To support the global coordinate system, the patch 
water processing was modified to account for the 
curvature that occurs at the extreme edges of cell 
databases. With flat patch water, where each patch 
uses a single elevation for the water surface in the 
patch, potentially large step discontinuities could 
exist between patches, as shown in Figure 3. To 
better model the water curvature and facilitate tidal 
variation, the patch elevation is mathematically 
modeled using the WGS-84 ellipsoid. The tidal 
variation is applied to the ellipsoidal elevation to 
determine the true water elevation. To optimize the 
computational load when determining the WGS-84 
ellipsoidal elevation, intermediate results for a 
specific GCS cell are cached. Both the elevation 
lookup and intervisibility engines were modified to 
lookup the adjusted elevation when analyzing surfaces 
or edge intersections. 

Flat Patch Water in GCS Curved Patch Water in GCS 

Patch Extent 
WGS 84 Ellipsoid 

Tidal Range 

Patch Extent 

WGS 84 Ellipsoid 

Constant elevation patch water 
produces step discontinuities 

Variable elevation patch water 
produces no discontinuities 

Figure 3: Patch Water Elevations in GCS 
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4. Compiler   Modifications 

In order to generate databases using the ICTDB ocean 
representation, modifications were made to both of 
the existing CTDB database compilers. The 
recompile program is used to convert old format 
CTDB databases to newer formats and vice versa, and 
also supports addition of user specified terrain data to 
an existing database. This program was modified to 
optionally generate synthetic bathymetry in water 
covered areas and to allow user input of multi-level 
water features. The slkctdb program generates a 
CTDB format database from SI000 data. This 
program was also modified to generate synthetic 
bathymetry data, as well as correctly compile multi- 
level source data when available. These modifications 
allowed us to successfully generate databases making 
full use of the multi-level ocean representation, and in 
the process highlighted some deficiencies in current 
source data representations. 

Since very few datasets exist that include both 
bathymetric and surface data in formats that can be 
easily converted to CTDB, it is important to allow 
compile time modification of existing datasets to 
include synthetic bathymetry data. This facilitates 
testing both by developers and by the user 
community. For this purpose, a relatively simple 
conversion mechanism is adequate. With this in 
mind, we chose to duplicate each water polygon found 
in an existing database, "push" it down a user- 
specified distance, and change its soil type, typically 
to "sandy". This generates an ocean "bottom" with 
constant depth. While this does result in 
discontinuities at the ocean-shore boundary and hence 
does not allow for realistic surf zone simulation, the 
result is adequate for simple deep water usage. This 
mechanism has been successfully implemented in 
both the recompile and slkctdb programs. We 
have experimented with more sophisticated 
bathymetry generation algorithms that attempt to 
generate more bowl shaped ocean bottoms with some 
success, but have not attempted to perfect them as we 
believe that users who require realistic bathymetric 
data would be better served by using real world 
datasets as they become available (see discussion of 
the experimental Camp Pendleton dataset below). 

In addition to supporting the generation of synthetic 
bathymetry data, the recompile program has been 
modified to allow users to add multi-level ocean data 
by hand. This is supported via three mechanisms, all 

of which read data from user-generated ASCII files at 
database compilation time. The first allows the user 
to add microterrain to a database by specifying a list 
of terrain triangles to add. This allows the user to 
replace the existing flat ocean data with a 
representation of the ocean bottom that is as complex 
and accurate as needed. The second mechanism allows 
the addition of patch water over broad areas or in 
specific patches. This allows rapid generation of 
ocean surface data in regions of deep water. Finally, 
the user may also specify wet TIN polygons as a list 
of triangles, allowing detailed specification of the 
water surface in the surf zone or other areas where 
patch water polygons are too coarse. Together, these 
mechanisms support the addition of multi-level ocean 
data to support each user's needs without requiring 
changes or additions to existing source datasets. 

The mechanisms described above allow a great deal of 
flexibility. However, it is important that CTDB also 
support the use of multi-level ocean data in existing 
source formats where available. During the course of 
ocean representation development, we were able to 
obtain a preliminary SI000 dataset for the Camp 
Pendleton region that included explicit 
polygonalization of both the ocean surface and the 
ocean bottom. Using this dataset for testing, we 
modified the slkctdb program to correctly handle 
source data that includes both bathymetric data and 
ocean surface data. To take advantage of the efficiency 
of the patch water representation, water surface 
polygons are converted to patch water wherever 
possible. In cases where this cannot be done, for 
example in patches that are only partially covered by 
water, wet TINs are used. 

While we were able to successfully generate a useable 
CTDB format database from multi-level SI000 
source, we did encounter some difficulties. Like 
CTDB, SI000 has historically been used to represent 
terrain with only a single surface at any given (x,y) 
point. As such, it provides only limited support for 
the types of queries a multi-level CTDB compiler 
needs to make. For example, the CTDB ocean 
representation treats water surface polygons which 
have corresponding bottom data below them 
fundamentally differently than "standalone" water 
polygons which do not. Thus, it is important to be 
able to query each polygon to determine whether or 
not there exist other polygons covering the same area 
but representing other surfaces, a query which is not 
currently supported. Similarly, SI000 provides an 
elevation lookup query that returns a single elevation 
at a given (x,y). As discussed earlier, we found it 
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necessary to augment such interfaces in CTDB, and 
believe that this should be done for other formats as 
well. 

features, as well as other attributes, could be obtained 
from the TAOS ocean database, which is being 
developed as part of the WINDS/TAOS program. 

5. Future Work 6. Conclusion 

The work that has been done to date has been to 
develop an initial implementation of an ocean 
representation. This representation can be further 
expanded to support a more realistic ocean 
representation by adding the characteristics shown in 
Table 4. These include more dynamic characteristics, 
as well as additional features and attributes. A 
significant addition over the initial implementation 
would be the representation for features and surfaces 
within the ocean volume, such as areas of high 
turbidity and thermal layers. The boundaries of these 

The ocean representation described in this paper has 
been integrated into ModSAF 2.1, including the API 
routines to change the ocean attributes and the 
compiler modifications to generate databases from 
source data with and without bathymetry data. The 
ocean representation is compatible with all of the 
coordinate systems currently in use within ModSAF, 
including GCS. Future work will expand this 
representation to produce an even higher fidelity ocean 
representation for use by a variety of CGF behavior 
developers. 

Table 4: Future Ocean Representation Characteristics 

Static   Representation Dynamic   Representation 

Ocean Floor •   Subfloor characteristics •   Dynamic subfloor 
characteristics 

Ocean 
Surface 

• Expanded sea state (salinity, 
turbidity) 

• Currents 
• Ice 

•  Dynamic expanded sea state, 
currents, and ice 

Ocean 
Subsurface 

• Volumetric features 
(temperature, density, 
salinity, turbidity) 

• Underwater surfaces (thermal 
layer) 

•  Dynamic volumetric features 
and surfaces 

Surf Zone • Natural features (reefs, rocks) 

• Mobility characteristics 

• Variable boundaries of 
features 

• Dynamic mobility 
characteristics (possibly 
breaking waves) 

Rivers •   Variable height for flooding 
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1. Abstract 

The Improved Computer Generated Forces Terrain 
Database (ICTDB) project, being developed jointly 
by TASC and SAIC, is one of four projects in the 
DARPA/TEC Advanced Distributed Simulation 
Synthetic Environments program. The goal of this 
project is to design and develop the next generation 
terrain database representation for Computer 
Generated Forces (CGF) systems. One of the major 
technology developments undertaken by the ICTDB 
team is the design and implementation of a Global 
Coordinate System (GCS) for CGF systems. GCS 
starts with a tiling of the Earth's surface into cells 
compatible with the GEOREF tiling. Within each 
cell, a local Cartesian frame of reference is defined 
whose axes furnish a secant plane to the Earth's 
surface and a normal vector at the center of the cell. 
This amounts to an offset and a rotation of the DIS 
GCC coordinate system. The benefits of moving to 
GCS include: elimination of projection anomalies, 
natural ity to the application developer, fast 
conversion to and from GCC and true global 
scaleability. At the same time, the compactness of the 
data representation is maintained. A more complete 
description of the design of GCS is contained in a 
paper by Evans and Stanzione presented to the 13th 
DIS Workshop. 

In the current paper, the details of the ModSAF 
implementation of GCS are elaborated. To date, the 
implementation of GCS exists in ModSAF, as 
additions to the CTDB representation, together with 
several new libraries to support the tiling scheme and 
coordinate translations. This GCS framework has in 

fact been integrated into ModSAF 2.1, together with 
changes to the Persistent Object Protocol which 
support the extra coordinate used by GCS, the cell 
ID. We then discuss in detail some issues of 
scaleability which argue for the use of the Global 
Coordinate System. Our analysis shows that for the 
upcoming STOW ACTD, use of GCS seems a strong 
requirement. Finally, we outline future work needed 
to make the implementation of GCS complete. This 
includes changes to the database production process 
needed to fully support GCS. Currently multi-celled 
GCS databases have been produced from the Area 2 
dataset for demonstration purposes. 

2. Overview and Implementation Progress 

First, we give an overview of the problems addressed 
by the Global Coordinate System and list the CGF 
requirements. We also survey the progress to date on 
design and implementation. 

2.1   Overview 

In a paper presented to the simulation community at 
the 13th DIS Workshop, Evans and Stanzione 
outlined the arguments for switching to a Global 
Coordinate System (GCS) representation of the 
synthetic world for internal use by CGF systems 
(Evans and Stanzione, 1995). This paper dealt 
primarily with issues relating to the local faithfulness 
of the representation, as well as the space 
optimizations deemed necessary to achieve 
acceptable real-time system performance. The current 
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paper looks more carefully at some of the issues 
related to scaleability of the internal CGF model of 
the synthetic world. 

GCS is based on a tiling of the Earth's surface into 
cells. In each cell, a local Cartesian coordinate 
system is used which is offset and rotated from GCC, 
Geocentric Cartesian Coordinates. The resulting 
frame of reference has its origin at the center of the 
cell, with X and Y pointing North and East, 
respectively, and the Z axis normal to the Earth's 
surface at the center of the cell. A location in GCS is 
four-dimensional, specified by X, Y and Z in the cell 
frame of reference together with a cell ID . In the 
current paper, we first review the requirements which 
led to the design of GCS. We then look at progress to 
date on the GCS implementation, and try to 
understand why current coordinate representations of 
the synthetic world are inadequate to achieve the 
objectives of STOW, as well as future programs. We 
close with a series of recommendations on what 
should be done next to complete the implementation 
of GCS in the ModSAF-derived family of CGF 
models. 

2.2   Requirements 

The following are the fundamental requirements 
which argue for the adoption of GCS: 

• Scaleability - As simulations grow larger in 
scale, it is crucial that a representation be used 
internally which supports arbitrarily large 
exercise areas, perhaps even the entire surface of 
the Earth. 

• Compactness - Storage must make efficient use 
of storage space. This requirement is, of course, 
closely related to the scaleability requirement. 

• Faithfulness - The coordinate representation 
should be free of anomalies such as curvature 
effects. 

• Ease of translation to and from GCC - For 
efficiency reasons, an internal coordinate 
representation should support fast conversion 
both to and from GCC, since this translation 
must occur for every location vector which is 
read from or written to the network in a DIS 
exercise. 

• Naturality - The coordinates values returned to 
software components simulating platforms and 

command elements must be natural in the sense 
that they must have an intuitive relationship to 
the real world for the benefit of developers of 
this code. 

In the paper cited above by Evans and Stanzione, it 
was shown how GCS was designed to satisfy these 
requirements. 

2.3  ICTDB Implementation Progress 

An implementation of the Global Coordinate System 
now exists in ModSAF. The fundamental idea is to 
produce one CTDB database per cell, with some 
overlap at the edges to insure consistency. Over the 
past four months, framework libraries have been 
integrated into ModSAF to support GCS. The 
additions to ModSAF include two new libraries: 
libgcs and libworld. Libgcs provides the inter-cell 
coordinate transformations required by 
libcoordinates , as well as the 4D vector algebra 
required by the application, while libworld 
implements the tiling scheme and handles 
initialization of the playbox in GCS. Also, 
modifications have been made to libctdb which make 
the intervisibility code aware of cell transitions. In 
essence, when a line of sight (LOS) crosses cell 
boundaries, the intervis engine is invoked recursively 
using the features and elevation data of the new cell. 
In actuality, any LOS used in simulation in the near- 
ground environment would not intersect more than 
three cells, since LOS calculations are typically much 
shorter than the cell size of 100 km. This extreme 
case could occur at a vertex joining four cells. 
Eventually as simulations of imaging radar and other 
high-flying sensors are incorporated, LOS 
calculations involving many cells may occur. Finally, 
changes have been made to the Persistent Object 
Protocol to incorporate the cell ID required by GCS 
into all PO data structures which contain positional 
information. 

Furthermore, several Proof Of Principle 
demonstrations have illustrated the use of the 
framework modifications. The most important 
demonstration was a depth-first modification of the 
slice of behavioral and planning support routines 
necessary to fly simple FWA missions on multi-cell 
GCS databases. None of the changes in behavioral 
libraries needed to make the application GCS aware 
have as yet been checked in to baseline ModSAF 
code. 
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Finally, when it comes to generating GCS databases, 
the tiling algorithms have been added to the ModSAF 
compiler which takes SI000 source data and 
produces CTDB format data. This process can be 
switched at run-time to either output a true multi-cell 
GCS product or a single-cell product which contains 
GCS. data. The latter is reminiscent of earlier 
"curved Earth" databases used in experiments and 
trade shows. 

3. Issues of Coherence and Scale 

In this section, the core issues related to scaleability 
and coherence of the GCS cell framework are 
examined. Specific attention is paid to the system 
requirements of the STOW ACTD. 

3.1   Vertical Deflection 

GCS solves a fundamental problem inherent with 
projected coordinate systems. It restores the local 
faithfulness of a real-world coordinate system. In 
other words, straight lines in a GCS cell frame of 
reference correspond to straight lines in the real 
world. However, there is a trade-off which leads to 
another kind of distortion as the extents of the 
playbox increase. In a single cell, the Z axis is normal 
to the Earth's surface at the center of the cell. 
Moving away from the center of the cell, the vertical 
deflection , or the angle between increasing Z and the 
normal to the Earth's surface, becomes non-zero. For 
a cell of 100 km by 100 km, this vertical deflection 
would be about 0.7 degrees at the corners of the cell. 
Current plans call for a playbox in STOW 97 of 5.5 
degrees by 7.0 degrees. This means that for a single 
cell GCS database, the vertical deflection at the 
periphery of the playbox would grow to between 2.5 
and 3.5 degrees, which could begin to be significant 
for ground platform models. While the vertical 
deflection is provided to the application by libgcs, 
modifying all the ModSAF ground platform models 
to account for the vertical deflection is not appealing. 
Thus, to limit the size of the vertical deflection as 
databases increase in scale, multi-cell GCS is 
necessary. We should add that for a playbox of this 
size, it has long been recognized that UTM databases 
are unacceptable. This is due to compatibility 
problems in spanning multiple map zones, datum 
inconsistencies and the slowness of coordinate 
conversion from one projected UTM frame of 
reference to another. 

3.2 Effective Slope 

In a GCS database, the values of Z on the reference 
ellipsoid decrease as one moves away from the center 
of a cell. This decrease is the result of the curvature 
of the Earth, and is a natural corollary of the fact that 
GCS is faithful to the 3D geometry of the real world. 
However, the platform models of current CGF 
systems are calibrated in a local vehicle frame of 
reference. Relative to his coordinate system, the 
terrain in a GCS database will appear to be sloped. 
This effect increases towards the cell periphery. 
Assume that cells are about 100 kilometers square 
and that the cell is subdivided into patches, with each 
patch 500 meters square. A simple calculation with 
the equation of the WGS 84 ellipsoid shows a 
decrease in Z values of between four to six meters, 
moving from the inner patch boundary to the outer 
patch boundary for patches around the periphery of a 
cell. On average, this means that the slope of the 
ground in such patches would be about 0.6 degrees, 
exclusive of local terrain morphology, or that driving 
towards the cell periphery, one would appear to be 
going slightly downhill. We emphasize that this 
effect is relative to vehicle frame of reference. The 
underlying GCS cell data correctly model the Earth's 
curvature. Our estimate is that this "effective slope" 
would have no significant impact on ground vehicle 
dynamics for single-cell GCS databases of 100 km 
square or less. However, the effective slope would 
increase proportionately as the size of the cell 
increased to as much as two degrees on a database 
with the extents expected in STOW 97. This would 
begin to affect mobility calculations based on 
defragmented slope values, and may lead to 
unacceptable changes in simulation behaviors. 

3.3 Accuracy Limits 

While the effects of vertical deflection and effective 
slope described in the previous two sections may be 
important, a more convincing argument for using 
multi-cell GCS databases in STOW 97 revolves 
around the implementation in ModSAF's CTDB. In 
CTDB, elevation values are stored using a fixed point 
basis which reserves twenty-one bits for Z values. As 
is well known, this leads to an accuracy greater than 
a centimeter over a vertical range of 10,000 meters. 
However, a simple calculation with the equation of 
the WGS 84 ellipsoid shows that in a GCS database 
with cells of 100 km by 100 km (approximately one 
degree by one degree), the range of Z values will at 
least 500 meters from the center of the cell to the cell 
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boundary, which would be about 70 km distant at the 
corner of the cell. If the size of a cell increases to five 
degrees or more (350 km from cell center to the 
corner), as is anticipated in STOW 97, over a quarter 
of the range of Z values at the standard accuracy in 
CTDB will be used in modeling the curvature of the 
Earth alone. When surface morphology is added in 
mountainous areas of the world, we see that the 
storage capacity of the ModSAF CTDB will be 
strained, forcing a decrease in accuracy. The only 
alternative would be to restructure the bit fields used 
to store elevation values. This would be an 
unappealing alternative from an engineering 
standpoint. The obvious conclusion is that multi-cell 
GCS databases are necessary to support exercises on 
the geographic scale of STOW 97. One might argue 
that this conclusion would be invalid if appropriate 
modifications were made to the CTDB 
representation. However, as exercise scale increases 
further in the future, it is safe to assume that any 
modest increase in accuracy so achieved would 
eventually be made obsolete. 

3.4   2D Anomalies and the User Interface 

With the integration of GCS into the ModSAF 
framework, an important change occurred in the way 
the synthetic battlefield is presented to the user. 
Previously, the Plan View Display (PVD) used the 
internal UTM or SIMNET coordinates, converted to 
MGRS (Military Grid Reference System) to render a 
view very much like an actual map projection on the 
workstation desktop. With GCS, cell coordinates in a 
single-cell database are mapped directly to screen 
coordinates. In a multi-cell database, all coordinates 
are transformed to the frame of reference of the cell 
containing the point in the center of the screen, then 
converted to screen coordinates. The overall effect is 
as if the user were looking down at the Earth's 
surface from an aerial viewpoint, instead of looking 
at a map. MGRS grid lines are rendered on top of the 
map, and at very high zoom levels, the lines will 
appear to be slightly curved. 

The fact that GCS models the curvature of the Earth 
means that at high zoom levels, some behaviors of 
the ModSAF GUI have changed. An areal feature 
which maps to an image of U square units in screen 
coordinates, when rendered at the center of the PVD, 
will take up less than U square units when it appears 
towards the edge of the window, and will actually 
appear smaller to the human viewer. This is of course 
what the human eye would see when looking down at 

the Earth from above. It is not what you would see 
when panning across a map with its projected view of 
the world. This foreshortening does have some effect 
on the software which does high-level motion 
planning. Since the planning libraries such as 
libroutemap reason about 2D locations only, they are 
essentially working with the projection of cultural 
and terrain features onto the GCS secant plane. 
Relative locations of features are preserved, but the 
absolute sizes of derived features, such as mobility 
corridors and avenues of approach, are decreased 
slightly towards the periphery of a cell. Our estimate 
is that such effects are negligible, but more 
quantitative study would be useful. 

In addition to the intra-cell 2D concerns cited above, 
there are inter-cell problems when using 2D data. For 
motion planning, a 2D location (X,Y) is really a line 
parameterized by Z. When a transition is made to an 
adjacent cell, it is not obvious what the 
corresponding 2D location (X\ Y') should be. If the 
point (X,Y,0) is simply transformed to the adjacent 
frame, the resulting point (X',Y',Z') will have Z' non- 
zero. Projecting onto the secant plane will give a 2D 
location in the new secant plane which is actually at a 
different location in the database. This is in fact what 
libcoordinates does now. This 2D inter-cell 
coordinate conversion is used on routes spanning cell 
boundaries, but is subject to the same small 
anomalies discussed above. After a number of 
experiments, the ICTDB team came to the conclusion 
that these anomalies could be ignored. In general 2D 
conversions must be applied often to PO database 
objects near cell boundaries, since the PO protocol 
now supports the GCS tiling in addition lo(X,Y) but 
does not support Z. 

4. Future Work 

The fundamental technical problem of designing and 
building a Global Coordinate System which satisfies 
the requirements of Section 2.2 has been solved. The 
full realization of this part of the STOW 97 system 
still requires significant engineering efforts. Looking 
to the future, the DoD goal is to build unified SAF 
architecture. We briefly discuss the following four 
areas: 

• Full ModSAF GCS awareness 
• Service SAFs and GCS 
• Database production process and source data 
• SAF Integration 
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4.1 Full ModSAF GCS awareness 

In order to make ModSAF GCS-aware, all of the 
behavior and platform model libraries will be 
affected. This integration task has been estimated by 
the ICTDB team to require on the order of 12 staff- 
months of effort for the existing models in the Army 
SAF baseline. Some initial design work on adding a 
Relative Coordinate System (RCS) for ModSAF 
platform models has already taken place. RCS will 
support highly localized frames of reference, down to 
the level of vehicle components and articulated parts. 
The intention is to add support for RCS and GCS at 
the same time. Some further design work on RCS is 
needed. The OpenSAF GCS integration is tentatively 
planned to take place just prior to ED2. 

4.2 Service SAFs and GCS 

If we assume that multi-cell GCS becomes the 
database framework for STOW 97, then the Service 
SAF models (AF SAF, FastFleet, MC SAF) will need 
to be made GCS-aware as well. This integration task 
has been estimated to require on the order of six 
staff-months of effort. 

4.3 Database Production Process 

would require less initial investment, but would lead 
to duplicative, hence less maintainable code. 

4.4  CCTT and SAF Integration 

The CCTT Environmental CSC makes the same 
assumptions about coordinates that ModSAF did 
prior to the integration of GCS. A location in the 
synthetic environment is specified by two 
independent coordinates, X and Y, together with a 
third coordinate Z, all in a Cartesian frame of 
reference. The surface of the Earth is a two-manifold 
with Z dependent on X and Y for HOT (Height Of 
Terrain) queries. The CCTT terrain database 
production process makes the same use of UTM 
projections as the process which takes DMA and 
other source data, producing first SI000 and then 
CTDB in the ModSAF environment. We have 
discussed above the effort expended to date to add 
the GCS framework to ModSAF. SAF Integration 
work is slated to provide a common service for 
modeling the terrain for ModSAF and CATT SAF 
later this year. We recommend (1) that this 
framework be required to support GCS, and (2) that 
the full integration of the GCS framework into the 
objective Integrated SAF system be incorporated into 
SAF Integration planning. 

The run-time databases used by ModSAF currently 
are derived from S1000 data. The tiling algorithm 
necessary to turn a single-cell database into multi-cell 
GCS has been added to the ModSAF compiler which 
produces CTDB from SI000. Currently, since SI000 
databases are in UTM coordinates, the CTDB 
compiler is forced to resample the elevation grid in 
converting to even a single-cell GCS product. 
However, SI000 is also used to compile run-time 
databases for IG systems. The implicit grid 
triangulation in SI000 derivatives means that these 
other products are non-interoperable with single-cell 
GCS CTDB. The current compromise is to resample 
the grid and TIN, using SI000 elevation queries to 
populate the TIN. The result is interoperable with the 
non-GCS IG run-time products. However, the 
increased storage required and decreased 
performance could be avoided if the UTM 
projections were removed from the SI000 production 
process. For STOW compatibility, the consumers of 
SI000 data will be made GCS-aware. Clearly the 
tiling algorithm should eventually be integrated into 
the SI000 production process. Adding the tiling to 
other  compilers  of SI000  into  run-time  formats 

5. Conclusion 

The Global Coordinate System framework has been 
integrated into ModSAF 2.1. A number of technical 
reasons argue for the use of GCS in STOW. Future 
work will complete the integration of GCS into 
ModSAF, its service SAF derivatives and make GCS 
an integral part of the database production process. 
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1. Abstract 

Different models may be appropriate to model a 
system under conditions of changing environments. 
In fact, under a fixed environment several models may 
be appropriate with different degrees of beliefs attached 
to them. As the environment changes, the degrees of 
belief change too. Some of the models represent the 
system's possible malfunctions while other models 
might be possible models of normal performance. 
External events take place which may cause a 
probabilistic change in the environment. In the 
present work we will like to model this situation and 
find an estimate of the probability that the system 
continues to function at any specified point in the 
evolution of the environment. 

2. Introduction 

The main purpose of this work is to provide a 
mechanism for automated commanders of CGF to 
make, change, and refine the assessments on the 
opposing forces upon the new information received. 
This information might be a change in weather, in 
terrain conditions or in forces. Assessments of 
opposing forces or more generally of prevailing 
conditions are of extreme importance and have been 
studied in numerous works, Handley et. al. (1995), 
Hille et. al. (1995), Holmes (1995), Pandari et. al. 
(1995), and Yin et. al. (1995). 

More specifically, we will use Fuzzy Sets (see Zadeh, 
1968), the Dempster-Shafer Theory of Evidence (see 
Shafer, 1976), Norton's (1988) work connecting 
Dempster-Shafer masses to Markov Chains and other 
works to set a framework for estimating the 
probability of changing one assessment to another or 
to stick with the same assessment. Also, we will 
develop estimates of the probability of going from a 
fuzzy assessment to a crisp evaluation and this should 
have a clear impact on what course of action to take 
as a consequence. 

Fuzziness comes in naturally because sensors and/or 
reports are far from being precise in most battle 
situations. The Dempster-Shafer Theory of Evidence 
comes in because we have different sensors to measure 
different features, naturally generating masses on 
subsets of possible alternatives. We need to combine 
the information yielded by the different 
sensors/reports.     A   key  notion   which   helps  to 

develop the above result is the notion of degree cf 
equality between two fuzzy sets. 

The emphasis in this work is on the construction cf 
the transition probabilities rather than on decision 
making. However, we perceive this work as an 
important first step for decision making with vague or 
imprecise information in the context of policy making 
as in Kleyle and de Korvin and in other applications 
for example, de Korvin et. al. 

The concept of defining probabilities on fuzzy sets 
originated with Zadeh (1965). Klement et. al. (1981) 
formally define fuzzy probability measures over fuzzy 
cr-fields, which extend the basic a -algebra to the 
fuzzy domain. Smets (1990) also deals with fuzzy 
probability measures using an axiomatic approach, 
while Piasecki (1985) further extends the theory to 
probability measures on "soft a -fields" using the 
concept of a weak separation. 

In this paper we consider a Markov chain whose 
states are fuzzy sets defined on some finite state space 
X. Although an infinite number of fuzzy sets can be 
defined on X, we consider chains having only a 
finite number of fuzzy states. Since we restrict our 
attention to the finite case, we avoid the measure- 
theoretic problems that can arise when dealing with 
probabilities on fuzzy sets. 

In a recent paper, Kleyle and de Korvin, it has dealt 
with Markov chains involving fuzzy transition 
probabilities. Fuzzy transition probabilities arise 
naturally when the transition from one state to 
another is described by such mathematically 
imprecise phrases as very likely, likely, unlikely, etc. 
Procedures for decision making under this type cf 
uncertainty which combine fuzzy set theory with the 
classical theory of Markov chains have been proposed 
by Kleyle and de Korvin. In the present work we in 
some sense "reverse the process" and describe a 
method of obtaining crisp transition probabilities 
when the states themselves are finite fuzzy sets. 
Fuzzy states are relevant to situations in which, due 
to ambiguity in the data itself, the exact state of the 
system cannot be pinpointed with certainty. 

Norton (1988) has related the Dempster-Shafer rule of 
combination to Markov chains whose states are finite 
crisp (i.e. non-fuzzy) sets. In so doing he is able to 
construct an expression for computing the transition 
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probability from one set-state to another. We first 
present some special cases in which Norton's formula 
can be extended directly to fuzzy set valued states. 
We then use the concept of the degree to which two 
fuzzy sets are equal to provide a general extension. 
Lastly, we employ a modification of a result due to 
Smets (1982) to compute transition probabilities 
from a fuzzy state to a crisp state which is a member 
of*. 

To enhance the readability of this paper, the more 
technical details are relegated to two appendices. A 
simple numerical example illustrates the procedure. 

3. Background 

To make this paper accessible to the reader without a 
background in fuzzy set theory, we now introduce 
some of the most basic concepts of fuzzy sets. A 
fuzzy set A on space X is defined by its membership 
function 

A:X->[0,1]. 
The membership function is a generalization of the 
characteristic function of a crisp (i.e. ordinary) set. 
For each x € X, A(x) denotes the degree to which 
element x is a member of fuzzy set A. For a crisp 
set, of course, 

fl    iff    x € A 

0   iff    xeA 

For fuzzy sets 0 < A(x) < 1. Those x 's for which 
A(x) > 0 constitute the support of fuzzy set . For 
notational convenience, we do not distinguish 
between the membership function and the fuzzy set 
itself. In effect, the membership function is the fuzzy 
set. 

When the domain A"« {xx,x2,...,xn} is finite, we 
represent fuzzy set A by the notation 

A= J.O/fx, 

where a, = A(xt) denotes the degree to which x, 
belongs to A. 

3.1 Notation 

Finite fuzzy sets are sometimes written as ordered 
pairs {(a,,x,),( a2 ^),...,(a„,;cn)}, but we find the 

above notation more convenient. In this paper the X 
operator will be used in both the usual summation 
sense as well as to define finite fuzzy sets. The usage 
will usually be obvious from the context. Whenever 
possible confusion may occur, as when X is used in 
both senses in the same formula, the explicit usage 

will be specified in the text. Also, to avoid further 
notational confusion, we use the + symbol to denote 
division and reserve / to separate the membership 
from the support of a finite fuzzy set. 

The operations of fuzzy union, intersection and 
complementation are defined in terms of the 
membership functions as follows: 

(AvBXx) = Max{A(x),B(x)} 
(AAB\X) = Mm{A(x),X(x)} 
-^A(x) =   \-A(x) 

For a more detailed Account of Fuzzy Sets refer to 
Zadeh (1965), Dubois and Prade (1980), and Klir and 
Folger(1988). 

We conclude this section with a brief discussion of 
Dempster-Shafer mass functions and the Dempster- 
Shafer (D-S) rule of combination. The D-S masses 
can be successfully applied to the problem of object 
recognition. Let J be a set of objects 
xt,x2,...,xn.    Assume that we look at a particular 

feature F which has possible values fi,f2,••-,/„• 

Assume also that sensors report the values of feature 
F with some uncertainty, e.g., the sensors may 
indicate that F has value /, with probability p, 

and value f2 with probability p2. This assessment 
generates a natural mass m defined by 

m(Al)=pl,    m(A2)=p2 

where Ax and A2 are subsets of X; Ax 

corresponding to all objects whose feature F has 
value /, and A2 corresponding to all objects whose 

feature F has value f2. 

We now look at several features Fl,F2,...,Fm. where 

fk   denotes possible values of Fk.     Each sensor 

(geared to one particular feature) then generates a mass 
m, (l< t<m) on subsets of X. The D-S rule of 
combination allows us to combine the information 
yielded by all the sensors. Each mass m, must have 
the following properties: 

(0           m,(A) >0 

(ii)           „t(0) = 0 

(iii)     I m,(A) 
A €2* 

= 1 
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The sets A for which ml(A)>0 are called the focal 

elements of m, Mass /n, and m2 can be combined 

into one mass mx 2 and can be defined by 

ml2(A) = n\ ®m2{A) 

=    I   m1(B)m2(C)+    I    m,(5)m2(C)        (1) 
BnC= A BnC=0 

The focal elements of the composed mass function 
/n, 2 (.)  are the intersections of the focal elements of 

/»,(.)   and  m2(.).     An improper composition  is 
given by 

rn^jiA)   =        m, © rr^iA) 

=       I    ^(5)^(0 
BrC=A 

(2) 
which is simply the numerator of (1) and allows 
positive mass to be assigned to 0. 

The D-S rule of combination can be extended to any 
finite composition, 

mx2...n(.) = m]@m2®-®mn(.) 
(3) 

by induction. Furthermore, the computation can be 
simplified by using an improper composition in the 
intermediate stages, and then defining 

^2..«(0)=O 
(4a) 

(4b) 

This result has been stated and proved by Norton 
(1988), Th. 1. 

In the process of establishing the link between set- 
valued Markov chains and the D-S rule of 
combination, Norton obtains an expression for the 
transitional probability of going from state Ai to 

state A, in terms of the mass function: 

P(Ai->AJ)=       I      m(Ak) 

(5) 

where the Ak 's are the focal elements of /«(.). 

We will apply Norton's limit theorems to estimate 
the probability of changing one assessment when 
facing enemy forces. The way our mechanism works 
we may either stay with our original assessment or 
narrow further our evaluation, making it more 
specific. We will come to a natural stopping point 
where we can not narrow down any more on the 
information from the reports and/or sensors that we 
have available. It may happen that we deduce the 
information to an empty set, meaning that the 
information was inconsistent. The limiting set of 
information refinement will correspond to an 
absorbing set in the sense of Markov chain. 

4. The Direct Extension 

Since reports and information acquired during combat 
conditions are typically not precise we would like to 
introduce fuzzy sets as focal masses. For example, 
consider a large enemy force, we might have a 
situation which we believe with strength 0.7 that we 
are facing a large enemy force while believing with 
strength 0.3 that we have a large enemy force backed 
up by a large number of tanks. We now introduce 
the general notations. 

Suppose the focal elements of a mass function are 
fuzzy sets defined on finite space X which consist of 
the "generating focal elements" Ax, A1,...,An and all 
possible intersections of these focal elements. We 
find it convenient to index these intersections with 
subscript notation. That is, 

A(ii,i2,...,ip)= Aii A A^A—AA, , (6) 

where !</, </2 <• •<i.<n,    p = 2,3,...,n. 

There are such focal elements assuming (as we do) 
that 

A\ A A2A.---/^An *0 
This last assumption would be rather restrictive for 
crisp sets, but fuzzy set intersections are non empty 
unless two (or more) of the focal elements have 
disjoint supports. To have a convenient terminology 
for later discussions we refer to focal elements 
obtained from a p -fold intersection as in eq. (6) to be 
p th order states. 

REMARK: Suppose n mass functions all having the 
same n fuzzy focal elements are composed by the D- 
S rule as given in eqs. (1) and (3). This w-fold 
composition will have focal element having precisely 
the hierarchical intersection structure described above. 
Explicit formulas for a mass function defined by (3) 
and having this hierarchical structure that can defined 
as follows: Let 
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ik = j\or j2 or ... or j   for all k = l,2,...,n and 

each possible value of ik must appear in the n -tuple 

at least once). 
Then the mass in the n -fold composition is given by 

(ji,/2,..A)€5„Oi,..,y,)isi&.+i 

For a proof see Kleyle and de Korvin. However, the 
direct extension of Norton's eq. (5) to fuzzy focals 

will hold whenever there are 2" -1 focal elements 
with the above structure, whether or not the mass 
function is formed by an n -fold composition. 

General formulas for the transitional probabilities 
defined by eq. (5) with a mass function having the 
hierarchical intersection structure defined above can be 
defined as follows:  Clearly 

/>(/*(/,,/2 ,...,/„)) -» A(JX J2,-Jg)) = 0 if q <P 

If q >p, we define 

S(q - p, v) = {(r,, r2,..., rq _p+v): 

where q - p  of the /; 's are the q - p indices not 

equal to  A , A, >•••>./*    and the other v   indices 

constitute    a    subset    of    v     of   the     indices 

Jkl'Jk2<--'Jkpl- 

It then can be shown that 

P{A(Jx,i2,...,ip)) -> A(jx,j2,...Jg)) 

=   I   {      I I     m(A(r\,...,rq_p+v))}. 
OSvSp (rlr..,r,.^v)sS(9-p.v) 

For a proof see Kleyle and de Korvin. These general 
expressions are rather complicated, so in order to get 
an intuitive feel as to how these transition 
probabilities are computed, we consider a simple case 
in which n = 3 and there are only 7 focal elements: 

4,/= 1,2,3;    AiJ = AiAAJ,    1 < / < y < 3; 

where Ax represents a large enemy force, A2 

represents artillery vehicles, and A3 represents 

weapons. 

Then using (5) directly we can show that 

P{AX ->4) = m{Ax); 

P(Ax^Aj) = 0,y = 2,3 

P(AX -> AXj) = m(Aj)+ miA.j),; = 2,3; 

/>(,*,->43) = 0 

/>(/*,->423) = m(A23)+m(Am) 

Clearly, 

S/S3 J        l£;</£3 ' 15/53 

+ />(/<, -*/J123)=l 

Similar transition probabilities are obtained from 
states A2 and A3 to the other states. 

REMARK: The transition probability from any first 
order state into itself is the positive mass associated 
with that state, but the transition probability from a 
first order state into any other first order state is zero. 
This means the probability of staying with the 
assessment that the object is a large enemy force is 
positive, but the probability of changing the 
assessment from a large enemy force to either artillery 
vehicles or weapons is zero. The transition 
probability from a first order state into second order 
state having one of its indices equal to that of the first 
order state is positive, but the transition probability 
from a first order state into a second order state not 
sharing an index with the first order state is zero. 
That is the probability of changing the decision from 
a large enemy force to a large enemy force and 
artillery vehicle or a large enemy force to a large 
enemy force and weapons is positive, but the 
probability of changing the decision on a large enemy 
force to artillery vehicles and weapons is zero. The 
transition probability from a first order state into the 
highest order state (third order in this particular 
situation) is always positive, i.e. the probability cf 
changing the evaluation from a large enemy force to a 
large enemy force, artillery vehicles and weapons is 
positive. 

We now compute the transition probabilities for 
second order state Al2. 

P(Ai2^A,)      =   0,fbr / = 1,2,3 

P(Al2->Al2)    =   m(Ax )+m(A2)+m(A12) 

P(AI2^> Ay)     =   0, for i * 1 or/ * 2 

P(Al2^Al2i)   =   m(A3) + m(Al3)+m(A23) 

+m(/f]23) 
Similar transition probabilities are obtained for the 
other two second order states. 

REMARK: The transition probability from a second 
order state to a first order state is zero, and this is true 
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in general. That is, with the above hierarchical 
structure on the focal elements, the transition 
probabilities from a higher to a lower order state is 
always zero. The transition probability from a 
second order state into itself is positive, but the 
transition probability into any other second order 
state is zero. This pattern is also true in general. The 
transition probability from a second order state into 
the highest order state (third order in this situation) is 
always positive. This means the probability of 
changing the decision on a large enemy force and 
artillery vehicles to either a large enemy force, 
artillery vehicles or weapons is zero, but the 
probability of reassessing the decision from a large 
enemy force and artillery vehicles to a large enemy 
force, artillery vehicles and weapons is positive. 

Finally we note that: 

^123^ 4 23> 

0, for/= 1,2,3 

0, for 1 < / < j < 3 

=   1 

REMARK: The transition probability from the 
highest order state to any lower order state is always 
zero, and this is also true in general. The transition 
probability of the highest order state into itself is 
always 1. That is, the highest order state in this 
hierarchical structure of intersecting fuzzy states is an 
absorbing state. In some sense this result is a finite 
analog of Norton's limit theorem (TH. 4). The 
interpretation is that once the evaluation is a large 
enemy force, artillery vehicles and weapons which is 
the high order state, the probability of changing this 
assessment to other evaluations is zero. 

The above remarks make intuitive sense if the mass 
function is constructed by a n -fold composition as in 
eq. (3). Each successive term in the composition 
represents new information from an independent 
source. As information accumulates, it is impossible 
to go back to states associated with less information. 
(Second order states represent two sources of 
information, while 3rd order states represent 
combined information from 3 sources, etc.) The 
highest order state, representing all accumulated 
information, is therefore absorbing. 

The situation described above represents a 
hierarchical structure of intersections of fuzzy states in 
which a D-S type mass function can be used to 
construct transitional probabilities via eq. (5). This 
structure is that of the focal elements of an n -fold 
application of the D-S combination rule, so it is 
natural that Norton's transition formula, eq. (5), 
which was derived in the context of the D-S rule 
works   for   fuzzy   states   having   this   hierarchical 

structure. However, the above structure is quite 
restrictive when states (i.e. focal elements of the mass 
function) are fuzzy. Furthermore, it is not unique. A 
much simpler nested structure in which eq. (5) 
produces valid transition probabilities is given 
below. 

Suppose 
A„<zAn_l(Z-<zA2(zAi 

With this nested structure it is easy to show that eq. 
(5) implies: 

PiA^Aj)   =   0     for all; >j 

P(A,->A,)    =     I »(4) 
l£*£l 

Clearly 

f(4-»4)   =   m(Aj)    i<j 

I   P{Ai-^A.)    =   1      for all;, 
MjSn J 

and An is an absorbing state. However, the structure 

of this model is so restrictive as to make it 
uninteresting in practice. Other structures on the 
fuzzy states involving nesting and intersections of the 
"generating states" can be found for which eq. (5) 
gives valid transition probabilities, but in general it 
will not work for fuzzy states (focal elements) as the 
following simple example illustrates. 

Suppose set of aircrafts Jf = {F-14, F-16, A-10, 
RAH-66} and the fuzzy states are 

A\ =.8/F-14+.6/F-16+3/A-10 

^2=2/F-14+i/F-16f.7/RAH-66 

(7a) 

(7b) 

/43=.6/F-16+.4/RAH-66 

/«(/*,) =5   m(A2)=A   m(Aj)=.\ 

Ak/\Al= Ax if and only if k = 1 

so P(AX^AX)=5 

But for any 
Ak A At * A^ for any k 

& Ak A At * A3 for any k 

Thus 
P(A} -> Aj )= 0 for./' = 2 or/' = 3 

Consequently, 
I  P(Ax-*Aj)   =   5<\ 

REMARK: A{ represents the decision from an expert 

that the object might be .8  F-14,  .6  F-16, or .3 
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RAH-66. And the probability of decision Ax is 5. 

Similarly, the probability from an expert's assessment 
that the object might be 2   F-14, .5 F-16, or .7 
RAH-66 is .4 ; and the probability from an expert's 
assessment that the object might be .6 F-16, or .4 
RAH-66 is .1. 

5. The General Situation 

As the above example clearly illustrates, eq. (5) will 
not give meaningful results when the mass function is 
defined on fuzzy states (i.e. fuzzy focal elements) 
unless these focal elements have a hierarchical 
intersection structure, a nested structure or some 
combination of these structures. There is, in fact, no 
reason to expect eq. (5) to extend to a situation 
involving an arbitrary mass function defined on 
arbitrary fuzzy states, since the Markov chain that 
Norton works with is related to mass functions 
obtained by the improper version of the D-S rule 
given by eq. (2). 

Nevertheless, eq. (5) has an intuitive appeal even 
when the states are fuzzy. Given that we are currently 
in fuzzy state At, the likelihood of going to state A, 

when the new information indicates state Ak is the 

degree to which Ai A Ak = A}..   Of course, the new 

information does not specify state    Ak  specifically, 

but gives a mass (i.e. probability) to each state in the 
chain. A weighted sum over these masses in which 
the weights indicate the degree to which 
^ A Alc = Aj is an intuitively appealing measure of 

the likelihood of transition from state A! 
t0 state Aj 

given the new information. What is needed, 
therefore, to generalize eq. (5) to fuzzy states is a 
measure of the degree to which two fuzzy sets are 
equal. 

The degree to which two finite fuzzy sets are equal 
can de defined in various ways. The definition that 
seems to best fit our purpose is 

d[A = B]=\A A B\+ Max{|4,|5|} 

(8) 
where | A\ denotes the scalar cardinality of fuzzy set 

A . That is, 

14- 14*) 
xeX 

The above definition of degree of equality is based on 
Ogawa and Fu's (1985) definition of the degree to 
which fuzzy set A is a subset of fuzzy set B , which 
is 

I[ACB]=\AAB\ + \A\ 

= lMia{A(x),B(x)} + J,A(x) 
xeX xeX 

(9) 
Our definition of degree of fuzzy set equality is 
simply 

4A= B] = Min{I[Ac B],I[B <zA)} 

where I[A c B] is given by eq. (9). 

Using the definition in (8) we now generalize 
Norton's eq. (5) to the situation in which an arbitrary 
mass function is defined on fuzzy states. 

P( A,,-m.)-    I    d[AlAAk = A)m(Ak) 
miAt )>0 

+1    I    d[AiAAk = A/]m(Ak) 
J m(Ak)X) 

(10) 
We can think of the numerator of (10) as the degree of 
belief that the process moves from fuzzy state A, to 

fuzzy state Aj.   The denominator is a normalizing 

factor that converts these transitional beliefs into 
transitional probabilities. 

5.1 Example 

Let us now return to the example given above in eqs. 
(7a) and (7b). Note that 

^,A^2=2/F-14+5/F-16 

Ax A/*3=.6/F-14+.5/A-10 

A2 A/f3=5/F-16 

Ax A A2 A Ay = 0 

X44 AAk =Axyn(Ak) 
IS* £3 

= d[Ax =A1]m(A])+d[Al A/^ = Ax]m(A2) 

+ d[Ax AAZ =Ax]m(A3) 

NOTE: 

So 

d[Ax = Ax] = l 

d[Ax = A2]=\AX A A2\*\AX^7 + 17 

d[Ax = A3] =| Ax A AJ(*\4,1= 9 + 17 

^d[AxAAk = Ax] 

=5+ (7+ 17)x.4 +(9+ 17)x.l =.7176 

Similarly we compute: 
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£44 A4 =/y = (7 + I7)x5+(7 + 14)x.4 
If* £3 

=4059 
NOTE: 

Thus, 

d[At /\A3 = A2]=\A1AA2 A,43|+|/12|=0. 

ld[AXAAk = y4j] = (9 + 17)x.5+(9+10)xl 

=3457 
NOTE: 

c/[^4, A A3 = A3]=\AX AA2 A A3\-t\ A3\= 0. 

Finally, we compute 

I     X  d[AiAAt = /iy]=.7176+.4059+3457 

= 1.4692 

/>(/*,->/!,) = .7176 + 14692 = 489 

P(AX -» /42) = .4059 +1.4692 =276 

P{A^A3)   =   3457 + 1.4692=235 

Similarly we compute 

P(A2 -» Ax) =293   P(A2 -» A2) =554 

^(4 ->/43)=.153 

/>(/i3 -> /!,) =255    /'(^ -» /42) =.143 

^(4 -»/l3)=.602 

REMARK:   For example,  P{A2-^ Ax)=293 is the 

probability of changing the decision from ^  to >4, 
is 293 , i.e. the probability of changing the decision 
from the object most likely be RAH-66 to most 
likely be F-14 is 293. 

6. Transition Probabilities From Fuzzy to Crisp 
States 

This will correspond to making a final assessment 
while our information still yields a fuzzy picture. 
Thus P(A-*j) may denote the probability that we 
go from assessment A (say a large force) to the crisp 
statement, the size of the force is the number j 
(where j has some membership in  A).   We shall 
implement the technique developed by Smets for this 
problem. The conversion formula is 

/>(4->/> 

where j denotes a crisp state in state space X . Note 
that 

jeX 
J) 

=   ZP(A,->Ak){AkU)MAk\} 

(ID 

=   lP(A,^Ak)ZiAkUWAll\} 

=   lP(A,^Ak) = l 
\<,k&> 

To illustrate the use of eq. (11) we return to our 
example of the previous section. In this example the 
crisp state space is X= {F-14, F-16, A-10, RAH- 
66}, so that 

Pi4 -* F-14) = P(Ai -> A, ){A,(F- 14)+M,|} 

+ P(A}-^A2){A2(F-14)MA2\} 

+ P(Al^A3){A3(F-l4)MA3\} 

=.489x(J8+1.7)+276x(.2+1.4) =270 
Recall that /43(F-14) =0   since state F-14 is not in 

the support of A3. 

In a similar manner we compute: 

P(A] -> F-16)=.489x(.6+1.7)+276x(5+1.4) 

+235X(J6 + 1.0)=.412 

P(AX -> A-10)=.489x(.3 + 1.7)+235x(.4+1.0) 

=.180 

P(At -»RAH - 66) =276 x (.7 +1.4) =.138 
Similarly: 

/>(/42^F-14) =217 

P(A2 -> F-16) =393 

/>(/*2-»A-10) =.113 

PiAj ->RAH-66) =277 

PiA^^ F-14) =.140 

/'(^3->F-16) =.502 

P(A3^A-\0) =286 

P^-* RAH-66) =.072 

REMARK:   For example,  P(A2 ->F-14) =217  is 

the probability of changing the decision from A2 to 
F-14 is 217 , i.e. the probability of changing the 
decision from the object most likely be RAH-66 to 
definitely be F-14 is 217 . 

7. Summary 

We have used a modification of a procedure defined 
by Norton (1988) to be able to estimate the 
probability of staying with our original assessment or 

579 



changing it by incorporating information refinement 
We also have estimated the probability of going from 
a fuzzy assessment to a definite crisp evaluation. Our 
procedure yields naturally a "limiting set" which 
represents the limit of attainable assessment using the 
sources of information available. (If that set is empty, 
the information is found to be inconsistent.) 
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1. Abstract 

In this paper we present a battlefield simulation 
model which uses a set of partial differential 
equations, called reaction diffusion equations, to 
model the behavior of each army on the battlefield. 
The model is used to simulate the attack of a 
stationary red force by a blue force. In this 
simulation, the blue army is divided into three 
smaller forces. Two of the blue forces envelop the 
red army while the third force conducts a 
diversionary frontal attack. We use the reaction 
diffusion equation based model to study the effects of 
variation of model parameters on the overall battle 
dynamics. 

2. Introduction 

The purpose of this paper is to present an aggregate 
level computer generated force model which uses a 
family of parabolic partial differential equations 
called reaction diffusion equations (RDEs) to model 
the movement and interactions of the troops on the 
battlefield. The primary assumption of an RDE based 
battlefield simulation is that troops tend to move and 
act as groups rather than individuals. The behavior 
of these groups is described by a system of RDEs 
similar to those used in other fields to describe the 
movement, spread, and interaction of biological or 
chemical species. 

We are developing RDE based battlefield 
simulations to use a parametric analysis tools in the 
study of weapon concepts for the battlefield. 
Preliminary    work    on    RDE    based    battlefield 

simulation is described in the papers of Fields 
(1993), Azmy (1991), Protopopescu et al. (1989), 
and Santoro et. al. (1989). 

In this paper, we describe the RDE battlefield 
simulation model in general. We apply this model to 
a scenario in which a stationary red force is attacked 
by a blue force. In the simulation, the blue force is 
subdivided into two enveloping forces and a third 
force that conducts a diversionary frontal assault. 

3. An Overview of the RDE Battlefield 

Simulation Model 

Let B be a region of 9?2 representing the battlefield 
and A;, 1 < i < n , be the armies involved in the 
battle. In this paper, the term army refers to a 
homogeneous force of at least battalion size. A 
general RDE describing the movement and 
interaction of the army A., is given by: 

in which a; (x,y,t) measures the strength of the army 
A; at the point (x,y) at time t. Strength may be either 
a measure of the number of troops in a given area of 
the batdefield or a measure of the combat power of 
those troops as described by Dupuy (1987). In this 
paper , strength measures the number of units (or 
troops) at each point (x,y). 

Movement of the army Ait as modeled by an RDE 
has two components: diffusion and convection. The 
more important of the two, convection, determines 
the primary direction of movement for the army. In 
many cases, it also determines the speed of that 
movement, are least to a first order approximation. 
In Equation 1, the coefficient functions Vix and V: 
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control the convective movement of the army in the 
x and y directions, respectively. These coefficients 
are functions of several factors including the 
operational orders of the army, the terrain, and the 
distribution of other armies on battlefield. The 
coefficient functions Vix and V- will be discussed 
in greater detail in the next section. 

The second component of movement in the RDE, 
diffusion, models the natural tendency of troops to 
move randomly . Diffusion of army A; is controlled 
by the coefficient functions Dix and D: . Large 
diffusion coefficients model scenarios in which 
troops spread out while traveling. Variations in 
Dix and D; as functions of the terrain, can be used 
to simulate battlefields containing marshes or other 
regions in which the troops have a natural tendency 
to spread out. In model presented in this paper, the 
diffusion coefficients are set to a small constant 
value simulating tightly controlled movement. 

On the battlefield, troops are generally lost through 
attrition and gained through reinforcement. The last 
term on the right hand side of Equation 1,1-, models 
the net gain or loss of army Aj as a function of 
time, space and the other armies on the battlefield. 

4. Simulating an Envelopment Maneuver 

In this paper, we simulate an envelopment maneuver 
involving three blue armies (armies Av Aj. and A3) 
and two red armies (armies A4 and A5). In this 
simulation, we assume that the red army has had 
time to prepare offensive positions and mat it is 
"dug-in", so these forces do not move. The red 
army is subdivided into two forces to simulate a front 
line force which have direct contact with the enemy 
and a artillery force which does not have direct 
contact with the enemy. Army A4 has direct line-of- 
sight with the enemy forces. Army A, is a non-line- 
of-sight force which responds to calls for fire from 
army A4. The blue army is divided into three 
armies, each with a different mission. Armies Aj 
and  A,     envelop  the red  force  from  different 

directions while army A3 conducts a diversionary 
frontal attack. 

The RDE system which models the envelopment 
maneuver is 

alt =Dalxx + Dalyy + Fxalx +Fyaly -I1(a4,a5) 
a2, =Da2„ +Da2yy +Ec*a2x +ECya2y -I2(a4,a5) 
a3t 

=Da3» +D%yy 
+Eccxa3x +Eceya3y -I3(a4,a5) 

a4t =-I4(a1,a2,a3) 
a5t =-I5(a1,a2>a3). (2) 
The diffusion coefficients for the attacking armies 
are set to a small positive number, simulating tight 
formations. The name of the convective coefficients 
in the first three equations indicates the type of 
maneuver used by each army. The first army is the 
frontal attack force, the second army envelops the 
red army in a clockwise direction, the third army 
envelops the red army in a counterclockwise 
direction. The two red armies are "dug-in" so that 
they cannot move. However, they can lose troops 
through attrition. 

The net loss for an attacking army Aj (i = 1,2, or 3) 
at the point (x,y) is given by the 

Ii(x,y) = ai(x,y)}|3lfi4(a4) + fi5(a4,a5)d3(. (3) 
where ^ is a region of the battlefield centered at 
(x,y). In this model, ^.is a circular region whose 
radius is determined by the maximum range of the 
weapons involved. The functions f, , (k = 4 or 5) 
determines the effectiveness of the army Ak against 
army A; as a function of range. 

It is possible to simulate communication and 
cooperation among the red forces. In particular, we 
can simulate a "call-for-fire" by having the rear 
forces respond to what the front line forces see. 

Our previous work with the RDE battlefield 
simulation model focused on developing the 
convective coefficient functions to model various 
types of movement on the battlefield. We developed 
models of troop movement on realistic terrain. We 
use work in this paper but, we will concentrate on 
three types of movements used in offensive 
operations -   movement to a specific point on the 
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battlefield, a frontal attack and an enveloping attack. 
A more complete discussion of terrain related 
aspects of the coefficient functions Vix and Viy is 
given in Fields (1993) and Fields (1995) . 

The terrain used throughout this paper is an artificial 
surface referred to as the variable resolution terrain 
(VRT) model. It is continuously differential surface 
constructed by summing several hill functions, 
(similar to bivariate normal functions) of various 
sizes. We use it in conjunction with the RDE 
battlefield simulation model because it is 
continuously differentiable and because we can 
design terrain surfaces to test specific features of the 
RDE model. VRT can also be used to fit actual 
terrain data sets. By its nature, VRT is a complex 
surface with non uniformity at any desired level of 
detail. Consequently, it can supplement an actual 
terrain data set with realistic micro terrain features. 
For applications such as infantry combat 
simulations, the micro terrain features add necessary 
realism to standard terrain data sets in which 
elevation posts are often 100 meters apart. For more 
information on the VRT model, the reader is referred 
to the report by Wald and Patterson (1992) and the 
paper of Wald (1994). 

4.1 Movement to a Rendezvous Point 

In this section, we model a simple operational order 
which directs the troops to move to the military 
objective such as rendezvous point. We want the 
simulation to be as flexible as possible so we do not 
want to stipulate and initial position for the troops. 
Instead, we develop coefficients so that troops can 
reach the rendezvous point from almost any position 
on the battlefield. It is helpful to visualize V, x and 
Vj as components of a velocity vector, v, and to 
discuss the velocity vector field generated by v. This 
vector field is similar to a magnetic or electric field 
and governs the movement of troops at any position 
on the battlefield. 

Figure 1 shows a velocity vector field that directs the 
troops to the black circle in the upper right section of 

the figure. The vector field is oriented so that the 
variable x changes in the horizontal direction and 
the variable y changes in the vertical direction. The 
figure also shows ten equally spaced contours. The 
height of some points of the battlefield have been 
labeled to aid the reader. The length and width of 
the battlefield are both 10 kilometers. 

Figure 1. A Velocity Vector Field. 

The direction of each arrow on the battlefield is    a 
function of   terrain characteristics such steepness 
and elevation  and the operation orders of the army 
Aj. The vector function is given by 
v = wdd + wt(act£+cta.t£.) + wss (4) 
The vector d is determined by the operational orders 
for the army and by the army's ability to respond to 
obstacles on the battlefield. In this example, the 
orders direct the troops to move to the rendezvous 
point indicated by the black circle shown in Figure 
1. Suppose the rendezvous point is at (x0, y^, then 
at any point (x,y) on the battlefield , 

d(x,y) = - 
(x- 

(5) 
e+A/(x-x0)

2+(y-y0)
:; {y yo 

If e is small, then speed of the troops will be close to 
v nearly everywhere on the battlefield. This vector 
uses only local information to determine the 
direction  of troop  movement.     By incorporating 
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"regional" information, the troops can respond to 
obstacles in the distance. 

The vectors t^ and t£. are functions of terrain of the 
battlefield. The gradient of the terrain, which gives 
the direction of steepest ascent from the point (x,y), 
is t(x,y) = (Tx, T) where T(x,y) is the terrain 
surface. The vectors t£ and t£. are orthogonal to t. 
By following t^or t£., troops travel along a contour 
of the surface in a clockwise or counterclockwise 
direction, respectively. 

The vector s is derived from the steepness of the 
terrain. Let the steepness of a point (x,y) be defined 

as 5(x,y) = X(T)f+Ty)> which is one half the square 
of the length of the terrain gradient vector at the 
point (x,y), then the steepness gradient is defined as 

s(x,y) = 
+ TT )i'n       y y* 

T T   +TT (6) 

The weights wd, wt and ws are functions of the 
steepness of the terrain. Each point (x,y) on the 
battlefield is categorized as easy, moderate, difficult 
or impassable as a function of the steepness of the 
terrain. For each of these category, a different vector 
dominates the movement vector field. For instance, 
in regions of the battlefield categorized as "easy", the 
vector d dominates the vector field. The weights are 
sigmoidal or bell-shaped functions which turn "on" 
for certain steepness values and "off' for other 
values. 

The weights are also functions of the movement 
characteristics of the simulated armies. By varying 
the weighting functions, it is possible to increase or 
decrease the army's sensitivity to the terrain. In this 
paper, we shall use weights which allow the troops to 
move freely throughout most areas of the battlefield. 
Near the two large hills in the center of the 
battlefield, troops must adjust their movements to 
avoid the steep regions. 

4.2 Frontal Attack 

In this section, we design a vector field to simulate 
the frontal attack on a stationary force. Suppose in 
this simulation the army A; is the attacker and the 
army Ak is the defender. In designing this field, we 
want to consider the following elements. First, this 
is a planned attack so the army A, has orders to 
attack the army Ar The frontal attack vector field 
depends on vectors similar to those in Equation 3 to 
directs troops to a military objective within the 
terrain occupied by the army Ak while avoiding 
obstacles in the terrain. In this vector field, we also 
need to control the attack so that it is realistic. The 
frontal attack vector field is a function the position 
and strength of both armies. 

In the RDE battlefield simulation model, the armies 
are represented by continuous, non-negative, 
distribution functions \ and a^ respectively. Let 
us define a local force ratio function, Tt ,for the 
attacking army A; as the ratio of the strength of A, 
to the strength of Ak within a neighborhood 9£ 
around the point (x,y) 

ri(x,y) = wk- (7) 
Jj^d^ + S 

The term 8 is a small positive constant therefore Tt is 
defined at all points on the battlefield. If wk is a 
constant, the force ratio is independent of the actual 
number of combatants within the neighborhood N. 
For realism, the force ratio is only important if there 
is enough of the enemy force in the neighborhood 7<l 
to attack. Let 

wk(x,y) = 
eP(JJ*akoX-at) 

1 + eP(J^akd^-at) (8) 

Then for values of U^akdrA£ < at, the force ratio is 
near zero; for values of jj^a.k(&t > a, the force 
ratio reflects the relative strength the armies. 

The vector field for the frontal attack is given by 
v = wdd + wt(act^+acct^) + wss + 

W* +fa<r,)< +f3(r,)ai .      (9) 
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The first three vectors on the right hand side are 
similar to those used in Equation 3. The gradient 
vector ak points in the direction of increasing 
strength for the army Ak; a^ and a^ are 
orthogonal to the gradient of Ak. The functions flt fj 
and f3 , which are functions of the steepness of the 
terrain as well as functions of the force ratio, 
determine the weight of the attack vectors in the 
overall vector field. There may be points on the 
battlefield at which the force ratio may dictate an 
attack at a given point on the battlefield, but terrain 
features are too severe to allow the attack. By 
adjusting the weights on the attack vectors, the army 
responds to the terrain rather than to the opposing 
army at those points. 

The vector field generated by a frontal attack 
scenario changes continually as forces move on the 
battlefield. When the attacking force is far away 
from the red force, the changes in the field are slight. 
However, as the blue force begins to make contact 
with the red force, the local force ratio starts to 
decrease, changing the vector field. As more of the 
attacking force begins to make contact with the 
enemy, units of the attacking force adjust their paths 
to maintain a force ratio. Figure 2 shows four paths 
generated by an attack scenario. The location of the 
red armies are indicated on the contour map, the 
blue army starts its advance at the bottom center of 
the figure. Each of the paths are generated at a 
different time in the scenario. Path #1 shows the 
initial contact with the red army, paths #2-#4 show 
later contacts with the enemy.  

43 Envelopment 

Constructing a vector field to describe an 
envelopment of a stationary army is very similar to 
constructing a vector field to describe a frontal attack 
of a stationary army. In an envelopment, the 
attacking army bypasses the front line and attempts 
to attack the army from the rear. In our example 
there are two envelopment - one in a clockwise 
direction, the other in a counterclockwise direction. 
In functional form, the vector field describing the 
enveloping attack is the same as the vector field 
describing the frontal attack given in Equation 6. 
The functions fp f, and f3 are different. 

An example of an envelopment is shown in Figure 3. 
The attacking army envelopes the stationary army in 
a clockwise direction. Since a hill is blocking the 
way, the army also proceeds clockwise around the 
hill. 
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Figure 2. A Frontal Attack 

Figure 3. An Envelopment Maneuver. 

4.4 Simulating the Attack 

By combining using the vector fields generated in 
the previous sections as the convective coeffiecient 
functions for the equations controlling the attacking 
army, it is possible to simulate an envelopment 
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scenario. The general attack direction for each blue 
army is given in Figure 4. 

Figure 4. An Envelopment Scenario. 

At the present time, the simulation is implemented 
on a multiprocessor computer. The equations 

controlling each of the five armies are solved by 

different group of processors. As the complexity of 
the vector fields increase, the number of processors 

needed to solve the equations efficiently increases. 

5. Movement as a Function of Terrain Resolution 

In this section, we illustrate a possible use for the 
RDE model as a tool for parametric analysis of battle 

parameters. In this example, we examine the 

sensitivity of our troop movement model to terrain 

resolution. Troop movement, as modeled by the 
RDE battlefield simulation, is sensitive the steepness 

of the terrain. Steepness for a digital terrain data set 
is a function of the resolution of the data set. Even 
if the steepness is known exactly at the elevation 

posts of the data set, it must be interpolated in 

between those posts. In general, higher resolution 

data sets have more variation in steepness than lower 
resolution data sets. 

Figures 4 and 5 show the same VRT surface sampled 

at two different resolutions. The VRT surface 

represents a 10km x 10km battlefield. The figures 

show ten equally spaced contours and the highest 

and lowest elevations on the battlefield. In Figure 4, 

elevation posts were 10 meters apart. In Figure 5, 

elevation posts are 100 m apart. Although the 

figures show the same large features, many of the 

smaller features shown in Figure 4 are missing or 

distorted in Figure 5. 

The paths shown in Figures 5 and 6 illustrate the 

effect of terrain resolution on the movement of the 

simulated forces. The paths in Figure 5 are longer 

than the corresponding paths in Figure 6, indicating 

that our movement model is sensitive to the 
resolution of the battlefield. 

Figure 4. Movement on a 10m resolution battlefield. 
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Figure 5. Movement on a 100m resolution 
battlefield. 

6. Conclusion 

In this paper, we have developed a battlefield 
simulation model based on RDEs. By incorporating 
terrain and battlefield intelligence information in the 
coefficient functions, we have shown that the RDE 
model is flexible enough to simulate a complex 
attack scenario. In the example scenario presented , 
we simulate an enveloping attack of a stationary red 
force by a blue force. The blue army is subdivided 
into two enveloping forces and a frontal attack force. 
The red army is divided into forces which have 
direct line-of-sight to enemy forces and non line-of- 
sight forces. 

RDE based battlefield simulation offer a method to 
mathematically study the dynamics of a battlefield 
simulation in a controlled setting. Using methods 
for the qualitative analysis of differential equations, 
we can study the sensitivity of the model to its 
parameters. At the present time, this will help us 
build a more realistic simulation tool. In the future, 
after we have matched our parameters to real data, 
we can use the RDE model to investigate weapon 
system concepts for the battlefield, particularly at the 
early stages of the development process. 
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Abstract 
Flexible teamwork among synthetic agents is a critical ca- 
pability in advanced distributed combat simulations. Such 
teamwork is more than a simple union of agents' simultane- 
ous execution of individual plans, even if such execution 
pre-coordinated. Indeed, uncertainties in complex, dy- 
namic combat simulations often obstruct pre-planned co- 
ordination, with a resultant breakdown in teamwork. The 
central hypothesis in this paper is that for durable team- 
work, agents should be provided explicit team plans and 
an underlying model of teamwork that explicitly outlines 
their commitments and responsibilities as participants in 
team activities. Such a model enables team members to 
flexibly reason about coordination activities. The underly- 
ing model we have provided is based on the jointintentions 
framework; although we present some key modifications 
to reflect the practical constraints in (some) real-world do- 
mains. 

This framework has been implemented in the context 
of a company of synthetic helicopter pilot agents; some 
empirical results are presented. 

1   Introduction 
The Soar-IFOR(Tambe et al. 1995; Tambe, Schwamb, & 
Rosenbloom 1995) project has been developing intelligent 
automated pilots for participation in advanced distributed 
combat simulations. Since July 1994, we have been devel- 
oping pilot agents for synthetic rotary-wing aircraft (RWA), 
specifically, synthetic AH-64 Apache attack helicopters. In 
our previous work, reported in the proceedings of this con- 
ference last year(Tambe, Schwamb, & Rosenbloom 1995), 
we focused pilot agents for individual attack helicopters. 
This paper goes beyond by focusing on a company of attack 
helicopters, which may involve upto eight pilot agents. 

The key issue addressed in this paper is enabling flex- 
ible teamwork within such a team of synthetic agents.1 

Such teamwork is not merely a union of simultaneous, 
coordinated individual activities(Grosz & Sidner 1990; 
Cohen & Levesque 1991).   For instance, ordinary auto- 

'in this paper, the word "team" should be interpreted in its 
general sense, as referring to units such as a company, a platoon, 
a section, etc. 

mobile traffic is not considered teamwork, despite the si- 
multaneous activity, coordinated by traffic signs(Cohen & 
Levesque 1991). On the contrary, driving in a convoy, even 
if sometimes uncoordinated is considered teamwork. In- 
deed, our commonsense notion of teamwork involves more 
than simple coordination, e.g., the American Heritage Dic- 
tionary defines it as cooperative effort by the members of a 
team to achieve a common goal. 

Yet, to sustain such cooperation in complex, dynamic 
combat simulations, agents must be flexible in their coor- 
dination and communication actions, or else risk a break- 
down in teamwork. To achieve such flexibility we apply 
one key lesson from the arena of knowledge-based sys- 
tems — an agent must be provided explicit "deep" or 
causal models of its domains of operation (Davis 1982). 
The key here is to recognize that when an agent partic- 
ipates in a team activity, teamwork is itself one of the 
domains, and hence the agent must be provided an ex- 
plicit model of teamwork. Unfortunately, among imple- 
mented agents in advanced distributed combat simula- 
tions, team activities and the underlying model of team- 
work are often not represented explicitly(Jennings 1994; 
1995). Instead, individual agents are often provided in- 
dividual plans to achieve individual goals, with detailed 
precomputed plans for coordination and communication. 
However, in real-world combat simulations unanticipated 
events often disrupt preplanned coordination, jeopardizing 
the team's joint effort (the next section provides detailed 
examples). 

The recent formal theories of collaborative action have 
begun to provide the required models for flexible rea- 
soning about team activities(Cohen & Levesque 1991; 
Grosz & Sidner 1990; Kinny et al. 1992; Jennings 1995); 
although few multi-agent implementations have built up 
on them(Jennings 1995). In contrast, this paper describes 
an implemented, real-world multi-agent system that builds 
upon one such model. Our central hypothesis is that for 
effective teamwork in complex, dynamic domains, individ- 
ual team members should be provided team goals/plans, 
that explicitly express a team's joint activities — although 
these may hierarchically expand out into goals/plans for 
an individual's role in the team. To execute such team 
plans, team members must be provided an explicit model 
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of teamwork — their commitments and responsibilities as 
team members — so they can flexibly reason about coor- 
dination and communication. In our work, this model is 
the formal joint intentions framework(Cohen & Levesque 
1991), which we have modified in key ways to accommo- 
date the constraints that appear typical in (some) real-world 
dynamic domains. 

Before describing team plans in detail, we first con- 
cretely motivate their need by describing our initial expe- 
riences in designing a company of helicopter pilot agents. 
While we focus on a helicopter company, the lessons 
learned here appear general enough to be applicable to 
other agent-teams in advanced distributed combat simula- 
tions. All our implementations are based on the Soar ar- 
chitecture(Newell 1990; Rosenbloom era/. 1991). We as- 
sume some familiarity with Soar's problem-solvingmodel, 
which involves applying an operator hierarchy to states to 
reach a desired state. 

2   Initial Experiences 
Figure 1 shows a typical attack mission for a company of 
attack helicopters. The company may fly 25-50 kilome- 
ters at varying altitudes, to halt at a holding point. One or 
two scout helicopters in the company fly forward to check 
the battle position, i.e., the location from where the com- 
pany will attack enemy forces. Once the battle position 
is scouted, other members of the company move forward, 
each hovering in its own designated subarea of the battle 
position. Here, an individual pilot agent hides/masks its 
helicopter. To attack, the pilot has his helicopter "popup" 
(rise high), to shoot missiles at enemy targets. The heli- 
copter then quickly masks and moves as protection against 
return fire, before popping up again. When the mission 
completes, the helicopters regroup and return to base. 

•ME BASE F     „+"^S) /ENEMY GROUND 
JH&) BA-rn.fl    /VEHICLE 

POSITION/I   MOVEMENT 

Figure 1: A company of helicopters in simulated combat. 
The ridge line is ideal for masking. 

In our first implementation of the helicopter company, 
each pilot agent was provided an operator hierarchy to exe- 
cute its mission(Tambe, Schwamb, & Rosenbloom 1995). 
Figure 2 illustrates a portion of this operator hierarchy (at 
any one time, only one path in this hierarchy from the 
root to a leaf node is active). Each operator consists of (i) 
precondition rules, to help select the operator; (ii) applica- 
tion rules to apply the operator once selected (a high-level, 
non-leaf operator may subgoal); (iii) termination rules, to 
terminate the operator. 

To coordinate among multiple pilot agents we used tech- 
niques quite comparable to previous such efforts, including 

our own, in the synthetic battlefield domain(Tambe et al. 
1995; Rajput & Karr 1995; Tidhar, Selvestrel, & Heinze 
1995). In particular, each individual was provided specific 
plans to coordinate with others. For instance, when at the 
holding point, the scout first executed an operator to fly 
to the battle position, and then another operator to inform 
those waiting at the holding point that the battle position 
is scouted. Similarly, to fly in formation, each agent was 
assigned a "partner" agent to follow in formation (unless 
the agent was leading the formation). Eventually, all coor- 
dination within a group was accomplished by each agent 
coordinating with its partner. 

EXECUTE-MISSION 

Fly —hgtit <»ptOT 

As Fly Select S*L_. 
awt pouK route s^>*^ \ 

^ r ~     \ Iraualize    Moartom        Soleel-    7J Popup &* 
^        Low     comow   X hover        BOMIJ        **M*        Goto 

Figure 2: A portion of the operator hierarchy for an indi- 
vidual helicopter pilot agent. 

The resulting pilot agents each contained about 1000 
rules, and the company was tested in October 1995 in 
the three-day ED-1 exercise (with upto 400 agents in the 
synthetic battlefield).2 While the helicopter company ex- 
ecuted helicopter tactics adequately, the exercise revealed 
some key problems in teamwork — see Figure 3 for some 
illustrative examples. 

While a programmer could add specialized coordination 
actions to address the above failures once discovered, an- 
ticipating such failures is extremely difficult, particularly 
as we scale-up to increasingly complex team missions. In- 
stead, the approach pursued in this work is to focus on 
the root of such teamwork failures — that as with other 
multi-agent systems, individual team members have been 
provided fixed coordination plans, which break down when 
unanticipated events occur. In particular, the team goals 
and/or team plans are not represented explicitly. Further- 
more, an underlying model of teamwork, spelling out team 
members's commitments and responsibilities towards oth- 
ers when executing a team activity, is absent. That is why, 
for instance, an agent ends up abandoning its team mem- 
bers in a risky situation (Item 2, Figure 3). That is also why 
the company cannot recover when the scout crashes (Item 
1, Figure 3) — there is no explicit representation of the 
company's team goal at the holding point and the scout's 
part in it. 

3   Explicit Model of Teamwork 
To provide agents with an explicit model of teamwork, we 
rely on the joint intentions framework(Cohen & Levesque 

2The ED-1 test for Soar/IFOR helicopter pilot agents was 
itself a team effort, led by Paul Rosenbloom; Karl Schwamb and 
the author were the other members involved in the test. 
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1. Upon reaching the holding area, the company waited, while the 
scout started flying forward. Unfortunately, the scout unex- 
pectedly crashed into a hillside. Hence, the rest of the company 
just waited indefinitely at the holding area, waiting to receive 
a message from the (crashed) scout that the battle position was 
scouted. 

2. Upon recognizing that the mission was completed, one com- 
pany member (the commander) returned to home base, aban- 
doning others at the battle position. The commander's "part- 
ner" agent was unexpectedly shot down, and hence it failed to 
coordinated with others in its company. 

3. While attacking the targets from the battle position, only one 
member of the company could see the targets. Thus, only one 
member engaged the targets; the others returned without firing 
a single shot. 

4. Some company members failed to recognize that they had 
reached a waypoint — the agent leading the formation had 
reached the waypoint, but those trailing in formation concluded 
they had not individually done so (despite tolerance ranges in 
measuring distances). 

Figure 3:   Some illustrative examples of breakdown in 
teamwork. 

1991; Levesque, Cohen, & Nunes 1990), since currently 
it is perhaps the most well-understood framework. In this 
framework, a team 0 jointly intends a team action if team 
members are jointly committed to completing that team 
action, while mutually believing that they were doing it. A 
joint commitment in turn is defined as a joint persistent goal 
(JPG). A JPG to achieve p, where p stands for completion 
of a team action, is denoted JPG(0, p). JPG(0, p) holds 
iff three conditions are satisfied3: 
1. All teammembers mutually believe that p is currently false. 
2. All teammembers mutually know that they want p to be even- 

tually true. 
3. All teammembers mutually believe that until p is mutually 

known to be achieved, unachievable or irrelevant, they mutu- 
ally believe that they each hold p as a weak goal (WG). WG(^, 
p, 0), where \i is a team member in 0, implies that // either 
(i) Believes p is currently false and wants it be eventually true 
(i.e., p is a normal achievement goal); or (ii) Having privately 
discovered p to be achieved, unachievable or irrelevant, n has 
committed to having this private belief become 0's mutual 
belief. 
Two important issues should be noted. First, there is a 

change in expressiveness of plans — in this framework, 
an entire team can be treated as jointly committing to a 
team plan. For example, when a company of helicopters 
flies to a waypoint, it is a team jointly committing to a 
team activity — each individual is not flying on its own 
to that waypoint, while merely coordinating with others. 
Thus, it is sufficient if the team reaches the waypoint, each 
individual need not do so individually4. Such a change in 

3JPG(0, p) also includes a common escape clause q, omitted 
here for the sake of brevity. 

4This may mean that the first or some pre-specified percentage 
of vehicles reach close to the waypoint. 

plan expressiveness alleviates concerns such as the fourth 
item in Figure 3. 

Second, to establish a joint intention, agents must hold a 
WG (weak goal) which ensures that members cannot freely 
disengage from their joint commitment at will. In particu- 
lar, while a JPG(0,p) is dissolved when a team member \i 
privately believes that p is either achieved, unachievable 
or irrelevant, /i is left with a commitment to have this belief 
become mutual belief. To establish mutual belief, an agent 
must communicate with other team members. While this 
communication is an overhead of team activity, it enables 
an individual to ensure that its teammates will not waste 
their time or face risks unnecessarily. This alleviates dif- 
ficulties such as the second example in Figure 3, where 
an individual disengaged from the joint commitment with- 
out informing other team members, and exposed them to 
unnecessary risks. 

This framework provides an underlying model of team- 
work, enabling flexible reasoning about coordination ac- 
tivities. For instance, there is an explicit justification for 
communication, enabling agents to reason about it. The 
following now presents some key theoretical modifications 
to the framework to accomodate the complexities of real- 
world combat simulations. 

3.1    Modifying Commitments 

Fulfilling the requirements in WG(/i,p,0) requires a team 
member to unconditionally commit to communicating with 
other team members, whenever it drops p as a normal 
achievement goal. However, in synthetic battlefields com- 
munication can be costly, risky or otherwise problem- 
atic. For instance, communication may break radio si- 
lence, severely jeopardizing a team's overall joint activi- 
ties. Therefore, the unconditional commitment to commu- 
nication is modified to be conditional on communication 
benefits to the team outweighing costs (to the team). Also 
included in this modification is an agent's commitment to 
search for alternative lower-cost methods of communica- 
tion (e.g., the agent may travel to personally deliver the 
message, if using the radio is risky). Nonetheless, in some 
cases, benefits will be outweighed by costs, and hence no 
commitment to communication will result. In other ex- 
treme cases, an agent may be simply disabled from com- 
munication even after dropping its normal achievement 
goal (e.g., a pilot may be shot down). 

Such communication difficulties require that other team 
members take up some of the responsibility for attaining 
mutual belief. In particular, a team member must attempt 
to track the team's beliefs in the status of their joint goal. 
For instance, if a company of helicopters reaches a well 
specified waypoint, the team can be tracked as recognizing 
its achievement, and thus unnecessary message broadcasts 
can be avoided. 

A second modification focuses on the dissolution of a 
joint commitment (JPG). In particular, currently, if an indi- 
vidual /i is known to drop the normal achievment goal, the 
joint commitment is automatically dissolved. Yet, such an 
automatic dissolution is often inappropriate. For instance. 
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if one helicopter p in the company of eight is shot down 
during an engagement, the helicopter company does not 
automatically dissolve its joint intention to execute its mis- 
sion; that would waste the team's jointly invested efforts 
in the mission and render the company highly ineffective 
in combat. Therefore, if a team member p. is known to 
drop its normal achievement goal, the JPG's dissolution is 
modified to be conditional on: (i) p's role being critical 
to the continuation of the joint intention (as discussed in 
the next section); or (ii) pre-specified conventions. How- 
ever, if p communicates achievement, unachievability or 
irrelevance, then the JPG is dissolved as usual. 

3.2    Complex Teams, Individual Roles and 
Failures 

While not defined in terms of individual intentions, a joint 
intention leads individuals or subteams in the team to intend 
to do their "share" (role) of a team activity (subject to the 
joint intention remaining valid)(Cohen & Levesque 1991). 
In our work, a role constrains an individual or a subteam to 
undertake certain activities in service of the joint intention, 
and the role may vary with the joint intention. 

One key issue here is that in complex teams, that involve 
multiple subteams, the success or failure of an individual's 
role performance does not directly determine the achieve- 
ment or unachievability for the team's joint venture. As a 
result, an individual may succeed or fail in its role, yet com- 
munication may not necessarily result. Hence agents must 
communicate their role success or failures to other partici- 
pants (should others be banking on this role performance). 
Furthermore, since agents may be unable to communicate 
(e.g., because costs exceed benefits), team members must 
track other agents' role performance. Based on informa- 
tion about others' role non-performance, team members 
can determine the viability of the team's joint intention or 
their own role. Two heuristics may be used: 

1. Critical expertise heuristic: If the success of the team's 
joint intention is solely dependent on the role of an in- 
dividual agent, then the agent's role non-performance 
(failure) implies that the team's joint intention is un- 
achievable. 

2. Dependency heuristic: If an agent's own role perfor- 
mance is dependent on the role of the non-performing 
agent, then the agent's own role performance is un- 
achievable. 

4   Implementing the Modified Joint 
Intentions Framework 

To implement the modified joint intentions framework the 
concept of team operators has been defined. For the team 
0, a team operator OP will be denoted as OP Q. The usual 
operators as seen in Figure 2 will henceforth be referred 
to as individual operators. As with individual operators, 
team operators also consist of: (i) precondition rules for 
selection; (ii) application rules (complex team operators 

will lead to subgoals); and (iii) termination rules. How- 
ever, unlike individual operators, team operators encode 
the expressiveness and commitments of joint intentions. 

4.1   Team Operators: Expressiveness 

Team operators express a team's joint activity rather than 
an agent's own activity. Thus, while individual operators 
apply to an agent's own state, a team operator applies to a 
"team state". The team state is an agent's (abstract) model 
of the team's mutual beliefs about the world, which include 
identities of members in the team, information about their 
joint tasks etc. For instance, for a helicopter company, 
the team state may include the routes to fly to the battle 
position. Figure 4 shows the new operator hierarchy of 
helicopter pilot agents where operators shown in boxes 
such as Engage Q are team operators (the non-boxed ones 
are individual operators). These team operators are not 
tied to any specific number of agents within a team. 

* Low     CenkM   X 

Figure 4: A portion of the new operator hierarchy, executed 
by an individual pilot agent. 

To establish a joint intention OPje, each team member 
individually selects that team operator. Typically, this se- 
lection is automatically synchronized, since the selection 
is constrained by the team state (the team operator's pre- 
conditions must match the team state). Thus, since agents 
track their team state, visually and also via communication 
for terminating the previous team operator, it is usually un- 
necessary to explicitly communicate prior to the selection 
of the next team operator. 

There are situations, however, where the agents' tracking 
of team states is not fully synchronized, so that their se- 
lection of team operators may be unsynchronized. In such 
cases, agents execute the "agree-and-execute" algorithm 
from (Kinny et al. 1992). In this algorithm, the leader 
(commander) broadcasts a message to all team members, 
seeking their commitment to the team operator to be ex- 
ecuted next. Once it obtains everyone's commitments, it 
broadcasts another message to the team to begin the ex- 
ecution of that team operator. The execution of "agree- 
and-execute" is triggered if a team operator is executed in 
a subgoal after the completion of at least one individual 
operator in that subgoal. This ensures automatic synchro- 
nization among team members. 

Note that in general, the subgoal of a team operator may 
lead to either a team operator or an individual operator to 

594 



be applied. Thus, a joint intention may lead to either an- 
other joint intention or to individual intentions in a subgoal 
(subject to the parent joint intention remaining valid). For 
instance, while the children of Engage e are all individual 

Fly-flight-plan 9 are all team operators, the children of 
operators. 

4.2    Team operator: Communication 
Once selected, a team operator can only be terminated by 
updating the team state (mutual beliefs) to satisfy the team 
operators termination rules. Updating the team state may 
lead to a communicative goal. In particular, if an agent's 
private state contains a belief that makes a team operator 
achieved or unachievable, and such a belief is absent in 
its team state, then it automatically creates a communica- 
tive goal, i.e., a communication operator. When executed, 
this operator leads the agent to broadcast the information 
to the team. For instance, suppose the team is executing 
Engage 9, which is achieved if the team state contains the 

belief Completed(Engagement). Now, if a (commander) 
pilot agent's own state contains Completed(Engagement), 
and this is absent in its team state, then a communication 
operator is proposed to inform team members (the com- 
mander cannot just head back to home base alone). 

To alleviate communication costs, certain safeguards are 
already built into the proposal of a communication opera- 
tor. In particular, a communication operator is not gener- 
ated if the private belief does not contribute to the achiev- 
ment or unachievability of any active team operator, or if 
the team state is already updated,i.e., the team is already 
aware of the belief. Furthermore, based on the modi- 
fications discussed previously, even if a communication 
operator is proposed, it is not implemented immediately. 
Instead, the agent first evaluates the cost and benefits of the 
communicative operator. For instance, if radio is the cur- 
rent means of communication, and if the mission requires 
radio silence, communication over the radio is prohibited. 
An agent instead attempts to reduce communication costs 
via alternative communication methods, e.g., travelling to 
personally deliver the message. If the agent finally satisfies 
its communicative goal, the sender and the receivers then 
update their team state (we assume that communicated in- 
formation reaches other agents securly). This then causes 
the team operator to be terminated (either because it is 
achieved or unachievable). If a high-level team operator 
is achieved or unachievable, its children are automatically 
assumed irrelevant. 

43   Team Operators: Roles, Failures and 
Recovery 

For team operators, roles are instantiated via suboperators 
in the operator hierarchy. If an OP 9 has Tl roles, denoted 

I OP|e< 7i,..,7/e >, then 0's R sub-teams, <7|...erfl, 
must undertake each of these roles. Many team operators, 
however, can be defined via multiple role combinations. 

between two to eight agents, some of them attack heli- 
copters and some scouts. A separate representation of 
OP |e< 71,..., -)R > for each role combination would re- 

sult in a large number team operators. 
To alleviate this concern, constraints are specified to 

only implicitly define role combinations. For instance, for 
Engage 9, the constraints specify that the allowable role- 

For instance,  Engage e may be performed by anywhere 

performing subteams are individual team members, i.e., 
the role performing subteam <ii = I where l€ 0; without 
any constraints on the number of participants. Each agent 
instantiates the constraint relevant to itself, to know if it 
is expected to act alone or as part of a subteam. The ac- 
tual role an agent undertakes is based on this allowable 
subunit, and any static specification of the subunit's role 
in the current situation (e.g., an agent may be specified 
to be a scout). This role specification is in turn based on 
the subunit's or individual's capability. For a company of 
helicopters, a specific individual may be the commander 
(capability depends on the chain of command), a scout (ca- 
pability depends on training), or the leader of a formation 
(every team member possess this capability). 

As mentioned earlier, it is useful for an agent to moni- 
tor other agents' role performance. This is accomplished 
in one of three ways. First, the other agent may it- 
self communicate. Second, it is possible to track the 
other agent's role performance, via techniques such as 
RESC(Tambe & Rosenbloom 1995; Tambe 1996; 1995; 
Tambe & Rosenbloom 1996), that dynamically infer other 
agents' higher-level goals and behaviors from observation 
of that agents actions. Given its expense, however, such 
detailed tracking is performed selectively — instead, an 
agent often only monitors the participation of other team 
members. Third, other heuristics can also be applied, e.g., 
an agent cannot perform two conflicting roles simultane- 
ously. Thus, if a scout is scouting the battle position, it 
cannot participate in any other role at the holding area 
(e.g., to fly in formation). 

The following describes the overall recovery algorithm, 
should an agent determine that \i € 9 is simply unable to 
perform any role (e.g., ^'s helicopter crashes): 

1. Let 7Z.= {r r^} be the set of currently known roles of p. 

2. For each (OPJB in currently active hierarchy and for each r, 
€ TL apply critical expertise heuristic to determine if [OPJ9 
unachievable. 

3. If some |OP L unachievable, due to critical role tc 

(a) Terminate |OP|e and its active children. 
(b) If self capable of performing rc. Communicate takeover of 

rc to 0; Re-establish | OP |s. 
(c) If self incapable of performing rc, Wait for another agent to 

takeover rc; Re-establish | OP |s- If wait too long, |OP|e 
unrepairable. 

4. For each r, € 72. apply dependency heuristic to determine if 
unachievable; apply domain-specific recovery strategies. 

5. For all t} € ft, r, 5^ rc, If self capable of performing r,, 
Communicate takeover of r, to ©. 
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6. While n disabled from performing any roles, check every 
future |OP|e via critical expertise heuristic. 

One key reason this recovery procedure works is the ex- 
plicit representation of team operators. In particular, step 
2 applies the critical expertise heuristic. To operationalize 
this heuristic, the agent compares the achievement con- 
dition of an OP 9 with the achievement condition of p's 
role. If identical, p was solely responsible for achievement 
of OP 9, and hence OP 9 is now unachievable. Thus, if 
p is a scout, this test indicates that it is critical to the scout- 
ingof the battle position. In Step 3-a, the agent terminates 
OPje only if p plays a critical role in OP 9. In step 3-b, 

the agent attempts to substitute itself for ps critical role 
if capability exists, or else it waits for someone else to fill 
in the role (step 3-c). Otherwise the implicated [OP]g is 
irreparable. 

In step 4, the agent attempts to recover from any individ- 
ual operator dependencies (step 4). Here, to operationalize 
the dependency heuristic, the agent checks the achieve- 
ment condition of its own role for p's role. For instance, if 
an agent is to trail p. in formation, its achievement depends 
on p. Non-critical roles are examined later, as they may be 
critical in the future (step 5). It is possible that one agent 
does not possess all of p's capabilities, and hence may 
takeover only one of p's roles, while other agents takeover 
p's other roles. Not all of p's roles may be known imme- 
diately; and hence any new operator is also checked for 
critical dependency on p (step 6). 

Interestingly, aspects (step 3-b and 3-c) of the above 
recovery procedure can also be cast as team operators, 
such that the communication in step 3-b and 3-c arises as 
a result of achieved or unachievability status of the team 
operator. 

To see the above procedure in action, consider a com- 
pany of five helicopters, Cheetah 1 through Cheetah5, with 
the role and capabilities as shown: 

Current roles: 
Cheetah 1 <— Commander, Scout 
Cheetah2, Cheetah3,Cheetah4, Cheetah5 <— Attack 
Current capabilities: 
Cheetah 1 ,Cheetah3 <— Scout 
Cheetah2, Cheetah3,Cheetah4, Cheetah5 <— Attack 
Chain of command: Cheetah l->Cheetah2->Cheetah3... 

Suppose,      the     team     is     currently     executing 
wait-while-bp-scouted 9.   In service of this team oper- 

ator, the scout (Cheetah 1) is moving forward to scout the 
battle position, while the rest of the company is waiting at 
the holding area. Now if the scout crashes (as in Item 1 in 
Figure 3),  wait-while-bp-scouted 9 is deemed unachiev- 
able (critical expertise heuristic). Two changes will then 
take place. First, Cheetah3 will take over the critical role 
of the scout — it has the capability of becoming a scout. 
This enables the wait-while-bp-scouted 9 operator to be 

5   Experimental Results 
Agents based on our new approach each currently contain 
1000 rules, with roughly 10% rules dedicated our explicit 
model of teamwork. This new implementation addresses 
three basic types of problems seen in our previous imple- 
mentation: 

• Recovery from incapabilities of key individuals, such as 
a commander or a scout (e.g., addresses Item 1, Figure 
3). 

• Better communication and coordination within the team, 
as members recognize responsibilities (e.g., addresses 
Items 2 and 3, Figure 3). 

• Improved tracking of own team state due to improved 
expressiveness (e.g., addresses Item 4, Figure 3); also 
possible to track team's high-level goals and behaviors, 
not possible before. 

Figure 5 illustrates that our current implementation pro- 
vides significant flexibility in the level of coordination 
among team members. The figure attempts to plot the 
amount of coordination among team members (y-axis) over 
simulation time (x-axis). The percentage of team operators 
in a pilot agent's operator hierarchy (which consists of team 
and individual operators) is a rough indicator of the amount 
of coordination. In particular, a lower percentage of team 
operators implies a higher percentage of individual oper- 
ators and hence low coordination among members; while 
a higher percentage of team operators indicates tighter co- 
ordination. Time is measured in simulation cycles, with 
9475 cycles in this run. 
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re-established for execution. Next, Cheetah2, the next in 
command, will replace Cheetah 1 as the commander. 

Figure 5: Percent team operators in an individual's operator 
hierarchy (FFP = Fly Flight Plan). 

The varying percentage of team operators over the run 
indicates the flexibility in the level of coordination. Thus, 
for the first 500 cycles, when the agents are flying a flight 
plan (FFP) in close formation, they are tightly coordinated, 
an individual'soperator hierarchy has 80% team operators. 
For the next 50 cycles, the company halts, and then resumes 
flying its flight plan. At cycle 1875, the company reaches 
the holding area, where the scout files forward to scout the 
battle position — the scout's percentage is shown sepa- 
rately by a dashed line. Basically, the scout is now only 
loosely coordinating with the rest of the company (33% 
team operators). After scouting, the company moves the 
battle position at cycle 4336, and until cycle 7154, engages 
targets. The 33% team operators in engaging targets in- 
dicate that the team members are to a large extent acting 
independently. Nonetheless, the team operator percentage 
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is never zero, i.e., these agents never act completely alone. 
Later the company returns to base. 

Figure 6 illustrates the reduction in communication 
due to our modifications to the joint intentions frame- 
work. It shows results from a single test run of our 
implementation. Figure 6-a projects percentages of op- 
erators, had the agent worked with the original joint in- 
tentions framework. In this case, there are 25% team 
operators; and among the approx 75% individual opera- 
tors, there are 25% communication operators and the rest 
execute the agents' actions. Figure 6-b shows the per- 
centage from an actual run with the modified joint inten- 
tions framework. Communication percentage decreases 
more than 10-fold (just about 2% on communication). In- 
stead, there is more emphasis on agent- and team-tracking, 
performed using RESC(Tambe & Rosenbloom 1995; 
Tambe 1996), with about 8% operators. 
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(b)    MODIFIED FRAMEWORK 

Figure 6: Reduction in percentage of communication op- 
erators. 

6   Related Work 
Few other research efforts have implemented theories of 
joint action. Jennings's implementation of the joint in- 
tentions framework in an industrial multi-agent setting is 
one notable exception(Jennings 1995). Huber and Durfee 
describe a similar implementation, although in a smaller 
scale testbed(Huber & Durfee 1995). There are several 
key differences in our work. First, in both these efforts, 
agents' collaborative activity appears to involve a two level 
hierarchy of a joint goal and a joint plan, with individuals 
engaged in specific roles in the plan. When the joint goal 
is accomplished, the collaborative activity is terminated. 
In contrast, our work focuses on complex, long-term team 
activities, involving the execution of a dynamically chang- 
ing team operator hierarchy. A high-level mission leads to 
the execution of a whole variety team operators. It thus 
becomes essential to maintain and track an explicit team 
state, and manipulate it via team operators — else agents 
will lose track of the next team action. Second, the above 
efforts typically involve two-three agents in the joint inten- 
tion. The scaleup from two-three agent to five-eight agent 
per teams (as in our work) creates new possibilities. More 
specifically, even if a single agent is incapacitated, the team 
operator hierarchy does not completely fall apart. How- 
ever, agents have to explicitly check if lower-level team 
operators are unachievable, and recover from failures. Re- 
covery is important, else the entire team effort will go to 
waste. Finally, in (Jennings 1995) issues of communica- 
tion risk are not considered (although they are considered 

in (Huber & Durfee 1995)). 
Our recent work on team tracking(Tambe 1996) — 

which involves inferring other team's joint goals and in- 
tentions based on observations of their actions — is the 
predecessor to the work reported here. However, given 
its focus on tracking other teams, issues such as commu- 
nication, recovery from unachievable team operators were 
all explicitly excluded from consideration. The domain of 
focus there was tracking the behaviors of a team of enemy 
fighter jets. 

7   Summary and Discussion 
For improved realism of advanced distributed combat sim- 
ulations, teamwork among team members is critical. Yet, 
given the uncertainity in this domain, preplanned coordi- 
nation cannot sustain such flexible teamwork. To alleviate 
this problem, we have provided individual agents with 
an explicit representation of team goals and plans, and 
an underlying explicit model of team activity, which has 
already substantially improved agents' flexibility in their 
teamwork. Further contributions of this paper include: (i) 
Detailed illustration of an implementation of the modified 
joint intentions framework(Cohen & Levesque 1991) in a 
real-world multi-agent domain; (ii) key modifications to 
the joint intentions framework to reflect important con- 
straints in the domain; (iii) techniques for recovery from 
failure of team activities. As an important side-effect, 
agent development has speeded up, since once agents are 
equipped with such a model of teamwork, the knowledge 
engineer can specify higher-level team plans, and let the 
individual agents reason about the coordination activities 
and recovery. 

The key lessons in this work are that as we build agent 
teams for increasily complex combat simulations, agents 
should be provided (i) explicit representations of team ac- 
tivities, and more importantly (ii) some core common- 
sense knowledge of teamwork, separate from the agent's 
domain-level expertise (e.g., helicopter tactics). These 
lessons appears applicable to other agents within advanced 
distributed combat simulations, as well as to agents in non- 
military applications of advanced distributed simulations. 
Indeed, to test these lessons, we have begun implementing 
this framework for players in the RoboCup virtual soccer 
tournament(Kitano et al. 1995). 
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1. Abstract 

The paper is describing a project aimed at parallel 
and distributed modeling of cooperative behavior of 
intelligent autonomous entities. The simulation 
technology used is based on mobile cooperative 
agents which can freely migrate between computers 
and carry with them their states, operations to be 
executed and local data, thus providing the most 
natural mapping of dynamic scenarios with moving 
and interacting objects onto distributed computer 
networks. Some basic space navigation and mutual 
coordination mechanisms for cooperative behavior of 
distributed computer generated forces are described 
with their implementation in a compact agent- 
producing and coordinating WAVE language. A brief 
description of WAVE and a summary of application 
projects based on it are also provided. 

2. Introduction 

Computer generated forces (CGF) are both the heart 
and brain of a distributed simulation, and the level of 
their intelligence usually determines the intelligence 
and effectiveness of the whole simulation and training 
process. Of particular interest is the modeling of 
collective behavior of CGF, where group solutions of 
complex problems in a distributed space may be used 
for both friendly and opposing forces effectively 
complementing or competing with human-driven 
(simulated or live) entities. Due to the internal 
flexibility and self-organization, the latter often 
exhibit productivity which is much higher than a mere 
sum of their components, which explains the usual 
superiority of human teams over (distributed) 
computer models. 

2.1 The Project's Objectives 

The objective of the project described in this paper is 
to investigate and design new efficient methods of 
modeling and coordination of a collective behavior of 
intelligent   autonomous   entities   propagating   and 

interacting in space and pursuing complex common 
goals. Research is being done into parallel and 
distributed algorithms showing various forms of 
collective behavior and having the following main 
characteristics: 

• They should be implemented in a flexible 
distributed manner over a computer network and 
should be capable of exhibiting elements of 
robustness with respect to the failure of any 
number of computing nodes. 

• The majority of interactions between entities 
should be at a local level: no centralized data base 
or controlling mechanism should be invoked for 
the basic operations within the groups of 
communicating entities. 

• A multi-layer parallel, distributed and dynamic 
coordination structure should be designed, with 
automatic classification, pattern recognition and 
inferencing techniques on higher behavioral levels. 

• Entities may incorporate elements of self-leaming 
behavior and adaptiveness, leading if necessary to 
a considerable change of their own functionality, in 
order to improve performance with experience. 

• Communication between entities should be 
minimized, remaining however sufficient to 
support main interaction patterns for collective 
operations. 

2.2 Mobile Agents 

A simulation technology chosen for this project is 
based in the ideology of mobile intelligent agents. 
Mobile agents have become a hot topic in recent 
years (Appleby & Steward 1994, Atkinson et. al. 
1995, Gray 1995, Johansen et. al. 1994, Lingenau & 
Drobnik 1996, Di Marzo et. al. 1995, Ordille 1996, 
White 1994, and others) whereas code mobility is 
also an important factor in the latest development of 
conventional languages, like Java (Gosling & 
McGilton 1995). 
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As an extension of the client-server paradigm, an 
agent program can start from any computing node and 
travels independently through the network using the 
appropriate infrastructure. Such an infrastructure 
supports general services and openness of the 
network whereas local decisions, hops between 
computers, data processing and different kinds of 
interactions are carried out by the agent's program 
individually while visiting computing nodes along its 
itinerary. The currently pursued direction of these 
technologies is focused mainly on applications like 
remote information retrieval and electronic commerce 
(White 1994), where an agent is regarded as a 
monolithic autonomous program following some 
route. Agents can establish direct communication 
between themselves in some point (called a "meeting 
place"), or they can share information in the places 
while visiting them at different times. 

2.3 WAVE 

With a longer history than mobile agents and being 
functionally more diverse, is the WAVE paradigm 
(Sapaty 1988 and 1996, Sapaty & Borst 1996) which 
combines full mobility of special recursive code with 
dynamic creation and processing of arbitrary 
knowledge networks in a distributed space in a 
parallel pattern-matching mode. In WAVE, 
autonomous moving agents are produced only on the 
implementation level as a reflection of different 
branches of a recursive self-evolving navigational 
program. As integral parts of the same spatial 
algorithm, these agents may range from arbitrary 
large programs to elementary operations, and the 
WAVE language embeds special mechanisms for 
interactions between agents, between agents and the 
environment, and for the global control over their 
populations. Such control may also be fully mobile. 

Experiments of using WAVE for simulation of 
dynamic systems (Sapaty et. al. 1994 and 1996) have 
shown its high flexibility for the creation of 
distributed virtual worlds and for organizing 
movement in these worlds of simulated entities with 
any interaction and coordination patterns between 
them. The latter may not be fixed in advance and can 
evolve in time and space. Having special spatial 
coordination mechanisms allowing control over 
societies of mobile agents, not present in other 
languages, WAVE may effectively complement other 
programming paradigms allowing migration of an 
interpreted program code, like Java (see Vuong 
1996). 

Based on full program code mobility, the WAVE 
paradigm can easily model existing mobile agent 
systems. As WAVE dynamically creates, activates 
and processes any graphs and networks arbitrarily 
distributed in computer networks, it can effectively 
implement any other computational models with the 
interpreted moving tokens and any functions in nodes, 
like petri nets, dataflow, actors, neural networks, 
object-oriented approaches, etc. (Sapaty 1996). 
Moreover, such WAVE-based networks may evolve 
in space and change their topology at runtime which 
other existing models usually cannot do. These 
features may enable WAVE to be used efficiently in 
distributed parallel inference, automated planning, 
machine learning, situation recognition and 
assessment, expert systems, network management, 
virtual reality, etc. All this may be quite useful in 
designing and implementing intelligent computer 
generated forces, with some ideas on that matter 
presented in this paper. 

2.4   Further Structure of the Paper 

The rest of this paper is organized as follows. In 
Section 3 elementary examples of programming in 
WAVE are shown and a brief description of the 
language is given in which main ideas of the paper 
will be subsequently demonstrated. Section 4 reveals 
basic mechanisms of navigation by mobile entity 
models of a discrete space represented, for simplicity, 
as a regular grid arbitrarily distributed between 
processors. In Section 5, examples of some higher- 
order space functions are described which may be 
used by moving and cooperating models for making 
autonomous decisions and organizing their group 
self-recovery after damages. Section 6 summarizes a 
number of projects written in WAVE which exhibit 
collective behavior of moving objects in distributed 
computer networks. Section 7 concludes the paper 
and is followed by acknowledgments, references and 
a short author's biography. 

3. WAVE Language 

WAVE treats any modeled world as a knowledge 
network (KN) with an arbitrary topology where nodes 
and links may associate with any information (as 
arbitrary long strings). This network may be 
arbitrarily distributed between processors and the 
topology of a computer network may correspond to or 
may be quite different from the knowledge network 
topology. Wave programs (also called waves) may 
process such abstract knowledge networks directly, 
regardless of their distribution in a physical computer 
network. 

600 



3.1 Elementary Programming Examples 

3.1.1 Creation of Network Topologies 
In Fig. 1, a WAVE program is shown which 
incrementally creates a simple network while 
physically moving in space and discarding its worked 
parts. In this program, CR stands for CReate rule, "#" 
is a hop operator with its left and right operands 
setting up a link-node pair to be passed (here created, 
in the context of the CR) during movement. "@" 
identifies an associative, or "tunnel", link to a node, 
"=" is an assignment operator, F is a moving, or 
frontal, variable accompanying the mobile wave. The 
latter carries an address of the created node "a" 
(symbolically shown in square brackets), to be 
accounted later in a cycle. A is an environmental 
variable always lifting address of a node in which 
wave currently stands, and period separates program 
parts which should be executed one after another. The 
CR rule, applied at the beginning to the whole 
program, is automatically inherited by the remaining 
mobile wave templates. The underlying interpretation 
system will distribute this network between as many 
processors as possible (here three), or to particular 
processors, if this is explicitly stated in the program. 

processor 2 
stage 1: 

CR(p#b.q#c. 

processor 

initial wave: 
CR(@#a.F=A 
p#b.q#c.r#F) 

stage 2: 

CR(q#c.r#F) 

stage 3. 
CR(r#F) 
F=[a] 

Figure l: Distributed Network Creation in WAVE 

3.1.2 Solving Tasks in a Navigation Mode 
After creation, a KN (like the one above) may be 
navigated by other waves directly, to solve any 
distributed problem on it. For example, finding all 
direct neighbors of node "b" and printing their names 
in parallel on terminal(s) associated with these nodes, 
may be done as shown in Fig. 2a, where the rest of 
the program (or its "tail") replicates into two copies 
after broadcasting from "b" ("#" with missing 
operands means "any links" or "any nodes", or both, 
and results in local multicasting or broadcasting). T is 
a special read-write environmental variable which 
represents a terminal accessible from a KN node in 
which wave currently stands (the terminal may be 
different   at   different   nodes),   and   C   is   another 

environmental variable always lifting a content of the 
current node. While spreading in KN, wave transfers 
elementary operations to nodes which are executed in 
them using only local environment and variables 
associated with these nodes. 

In Fig. 2b, a modification of this program is shown 
which first returns the neighbors' names back into "b" 
(using a predecessor address in the environmental 
variable P in both "a" and "c"), collects them as one 
list (in a shared, nodal variable N), and subsequently 
prints this list from "b". The SQ (SeQuence) control 
rule is used to activate the second branch of the wave 
only after full completion of the first one (which itself 
dynamically splits into parallel branches along links 
"p" and "q"). To simplify the picture, only data 
movement in frontal variables, and not the wave code 
it accompanies, is depicted. Character "," is used here 
as a separator between the two sequential branches. 

@#b.#.T=C 

a;c 

c 

T=C 1 
w terminal(s) 

a c 

T=C 

SQ((#.F=C.#P.N&F),T=N) 

X       terminal 

©——© 
a) Distributed Output    b) Collecting in One Point 

Figure 2: Printing All Neighbors of Node "b" 

Different waves, originating from the same or 
different users, may be launched independently and in 
parallel on the same KN. For example, the two 
neighbors-printing programs shown above may be 
activated in parallel as: 

or 
(@#b.#.T=C), (@#b.SQ((#.F=C.#P.N#F),T=N)) 

@#b.(#.T=C), SQ((#.F=C.#P.N#F),T=N), 

as they have the same starting node. Nodes, links or 
any variables may also hold procedures (as strings) 
which may be dynamically injected into main waves 
and executed. Waves may also modify the very KN 
they move through, while renaming, deleting and 
creating its nodes and links. 

3.2 General Structure of the Language 

The top level syntactic structure of a WAVE 
program, or wave, is shown in Fig. 3 where braces 

601 



mean zero or more repetitions (with a given delimiter 
at the right, if more than one), square brackets denote 
an optional construct, and vertical bar separates 
alternatives. Period delimits sequential parts and 
comma separates independent or parallel parts of a 
wave called moves. The latter may be simple, 
consisting of one or more elementary operations, or 
acts (like assignments, hops, condition checking 
filters, etc.) over information units, or again be waves 
in parentheses optionally prefixed by control rules. 
The latter impose a variety of constraints over 
distributed development of waves in KN. Starting 
from some node in KN, a move brings the wave into a 
new set of current nodes, or Goal Set, GS (which may 
include the initial one as well), to all of which the tail 
of wave is applied; waves thus being interpreted 
incrementally in KN. In general, many waves from 
the same program or from different ones may spread 
in KN in asynchronous wavefront mode. 

wave -> {{ move ,}.} 
move -> unit { act unit} [ rule ] ( wave ) 

Figure 3: WAVE Language Recursive Structure 

3.3 Basic Information Unit 

The basic information unit of the language is vector - 
a dynamic sequence of arbitrary length values 
generally defined as strings, concrete interpretation of 
which depends on the operations involved. 
Syntactically, vector elements are separated by a 
semicolon. This simple data structure with special 
operations on it, together with the recursive syntax of 
the language, proved to be sufficient for representing 
arbitrary network creation and processing algorithms 
in a distributed environment. No explicit type 
descriptions are used in the language: automatic type 
conversions are activated depending on the 
operations. 

3.4 Spatial Variables 

Information units in a WAVE program can also be 
expressed by spatial variables dynamically 
distributed throughout KN by mobile waves. They 
may be of the three types: nodal (prefixed by N or 
M) dynamically attached to KN nodes and shared by 
different moving waves, frontal (prefixed by F) 
moving with waves and providing local information 
exchanges between different nodes of KN, and 
environmental, accessing currently available 
resources related to KN nodes and links. The latter 
are named as: C - node content, A - node address, L 

- incoming link content, S - incoming link sign, P - 
predecessor node address, T - user terminal (or one 
of them if they are distributed throughout KN), and I 
- "individuality" (color) of the mobile waves 
(suffixing all their M-named variables). 

3.5 Acts 

Basic acts are selective or broadcasting hops in the 
KN (for which the two units keep information about 
links and nodes to be passed and also set up different 
sorts of local and global broadcasting), condition 
checking filters (halting if false), data processing 
(arithmetic and string operations), explicit halts with 
a repertoire of echoing termination conditions, and an 
external call permitting an access and exchange of 
information with other systems distributed in 
networks. Hops (the "#" act) identify by the left 
operand the links to be passed, and by the right 
operand the nodes these links should lead to (nodes 
may be given by contents or addresses). Omitting the 
right operand makes any destination nodes acceptable 
with the given links. Omitting the left operand leads 
to neglecting of the link contents and broadcasting to 
certain, if names are provided, otherwise to all, 
neighbors. The special name "@" used as the link 
operand triggers direct (tunnel) jumps between any 
(including non-neighboring) nodes, and provides 
broadcasting to all other nodes of KN if the right 
operand is empty. If more than one link with the 
given name is associated with a node, all of them may 
be passed in parallel. 

Filters ("=" - equal, "/="- not equal, "<" - less, "<=" 
- less or equal) allow for the further wave propagation 
if their result is TRUE, and cause halts if FALSE. 
Data processing includes arithmetic acts ("+", "-", 
"*", "/"), splitting string into a vector ("I") and 
merging vector into a string ("%") with the given 
delimiters, appending vectors ("&"). 
finding/recording a content by an index (":"), finding 
an index by a content or recording by a content ("::"). 
Act "?" makes an access to other systems on the host 
(via its operating system) and "!" is a programmed 
halt with the operands establishing different halting 
conditions (right hand operand), or switching off the 
special control track mechanism while launching 
uncontrolled waves with an established life time 
(specified by the left operand). Act "=" means a mere 
assignment of the result obtained on the right to the 
variable on the left. In its absence, the result of the 
data processing operations is assigned to the leftmost 
unit (a variable) in the move. For example, N=N+F-1 
is equivalent to N+F-l, thus making expressions 
more compact. 
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3.6 Rules 

The main rules and their abbreviations are: SeQuence 
(SQ), Or Sequential (OS), Or Parallel (OP), And 
Sequential (AS), And Parallel (AP), RaNdom choice 
(RN), Repetition (RP), WaiTing (WT), InDivisible 
(ID), and CReate (CR). The rules split waves into 
branches (by their heads consisting of parts separated 
by comma or being single hops producing 
multicasting or broadcasting, with replicating and 
attaching common tail) and coordinate their 
cooperative (parallel or sequential) development in 
the KN (SQ, OS, OP, AS, AP), provide distributed 
logical synchronization (WT) and indivisible access 
to shared resources (ID), repeated application of the 
wave (RP), enable the wave to extend (including from 
nought) the KN it moves through (CR). The control 
points triggered by rules dynamically appear in 
different KN nodes and make distributed coordination 
of the propagating waves to a proper depth, using 
tracks with a variety of backwareded through them 
and merged control echo signals. The control points 
cease to exist after the termination of waves they 
oversee. 

3.7 Dynamic Code Injection 

It is possible to inject new strings into the moving 
wave as procedures (kept and processed as string 
contents of variables) which accompany the waves (in 
frontal variables) or are picked up in nodes of KN 
during navigation of the latter (by nodal and 
environmental variables). This provides high 
flexibility in the network creation and navigation 
processes where the evolving spatial program may be 
additionally fed from the distributed environment it 
moves through. Syntactically this is expressed by a 
move consisting of a single unit (a variable), without 
any act, which causes injection of its content into the 
wave with immediate execution of this code. Such 
injection may be recursive to an arbitrary depth. 

3.8 WAVE Language Implementation 

A distributed WAVE interpreter has been 
implemented in C and operates via Internet (Sapaty 
& Borst 1996). A copy of this interpreter must be 
installed in each computer, and the interpreters may 
communicate with each other while forming a 
parallel spatial machine driven by mobile waves. 
Parts of the KN and dynamic track forests (used for 
checking termination conditions of multiple 
distributed processes and also serving as logical 
channels for further spreading "waves" of waves), 
located   in  different  interpreters,  form together a 

seamless distributed and dynamic information & 
processing space. In this space, waves (accompanied 
by moving data variables) and echoes (backwarded 
through tracks), are propagating either within the 
memory of the same machines, or are automatically 
forwarded to other interpreters on other machines. 

4. Basic Distributed Coordination Mechanisms 

In this section we will consider some basic space 
navigation and mutual coordination mechanisms for 
moving objects and their expression within the 
mobile agents philosophy. These mechanisms will be 
formally presented in WAVE language (with a 
preliminary explanation in English) as WAVE is a 
very dense machine-level language oriented on a 
direct interpretation in networked hardware within a 
program flow mode. As WAVE programs are moving 
in a physical space and parallel wave algorithms are 
highly communication-intensive, the program code 
must be very compact in order to reduce traffic in 
networks. 

4.1 Representation of Space 

As we are investigating here the use of mobile 
program code propagating between computers for 
simulation of dynamic systems with collective 
behavior, the main concern will be a discrete, rather 
than analog, model of space. The simplest one, 
however general enough to explain the main ideas of 
this paper, may be a regular grid. We will consider a 
two-dimensional grid with "x" and "y" coordinates, 
organized as a network of nodes having a combined 
"x-y" name each and connected with each other by 
oriented links named as "x" and "y" and directed 
towards the increasing values of these coordinates 
(see Fig. 4, where one of nodes 3-2, with incident 
links, is zoomed). 

The WAVE model, oriented on a direct processing of 
arbitrary networks, can be easily used for creation and 
distribution of a regular grid between any number of 
processors, which may amount from one to the total 
number of grid nodes, while in the latter case each 
node may be located on a separate processor. The 
WAVE program for creating a 5 x 5 grid may look 
like the following (given here without explanations, 
only as an example of its compactness, as it is outside 
the main interest of this paper). 

FX=5.FY=5.Fs=A.Fy=1. 
RP( SQ( ( FA=NA.Fx=1.N=Fx&Fy%-.CR(@#N). 

RP( FAN&A. 
(CR(+y#FA:Fx.!3),. 
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Fx==FX.@#Fs.NA=FAN.!3 ), 
( Fx<FX.Fx+1.F=Fx&Fy%-. 
CR(+x#F)) ).!3), 

(Fy<FY.Fy+1))) 

4.2 Elementary Movement 

Let us start with the most basic procedure: movement 
through the discrete space (regular grid, as we 
defined it). As mobile programs may be fully 
autonomous, self-contained objects carrying with 
them their states and local data (the latter hereinafter 
will be named with prefix "MOVING"), the 
movement through grid may be expressed as 
straightforwardly as: 

Set up destination coordinates X and Y 
Apply in starting node 
Repeat 

Append current node to MOVING_PATH 
If current node is the destination 

print MOVING_PATH and halt 
otherwise 

If, by random choice between coordinates, 
it is possible to decrease distance to 
the destination, hop through 
the proper link to a new current node 

otherwise do nothing and stay in current node 
endRepeat 

During the movement (see Fig. 4), this mobile 
algorithm also accumulates and carries with it the 
passed path in MOVING_PATH which is output at 
the destination point. Looking at first sight like a 
conventional data processing procedure, this 
algorithm however operates only with the local 
environment connected to the current grid node it 
stands at, and changes its own location in space each 
time it moves to a new node, in which the whole 
Repeat-body is applied again. 

The corresponding WAVE code will be as follows 
(where frontal variable FR is for MOVING.PATH, 
and the moving procedure separating "x" and "y" 
coordinates recorded in nodes with a hyphen 
between them is kept in frontal variable Fd): 

FX=4.FY=2.@#'2-4'. 
Fd='FD=CI-.Fx=FD:1.Fy=FD:2'. 
RP( FR&C.Fd. 

OS( (Fx==FX.Fy==FY.T=FR.!), 
RN( ((Fx<FX.+x#),(FX<Fx.-x#)), 

((Fy<FY.+y#),(FY<Fy.-y#))),)) 

The randomly chosen and passed path will be printed 
in node 4-2, and may be as: 2-4;3-4;3-3;3-2;4-2. 

/Yy      ./ 
node / link 
markings 

start 

destination 

1^^2 3 K 4 5 

2-4;3-4;3-3;3-2;4-2 

Figure 4: Movement through Space 

4.3 Vision of Space to a Proper Depth 

Another basic and very important procedure, while 
moving through space, may be vision of this space, 
say, to a proper depth, to assess the situation and 
make a proper decision. The following algorithm, 
starting from some grid node, dynamically creates a 
depth-first search tree to a given depth, in a maximum 
parallel mode, and then uses this tree for backwarding 
and stepwise assembling in one final list names of all 
the objects seen (together with names of the nodes 
they occupy). The algorithm is based on a self- 
invoking recursive MOVING_PROCEDURE, and 
the collected information is subsequently output at the 
start node. 

Define MOVING_PROCEDURE as: 
Increment MOVING_COUNTER by 1 and 
continue only if MOVING.COUNTER is less 

than MOVINGJLIMIT 
Hop to all neighbors in parallel 
If node is not marked, mark it 
otherwise halt this branch 
If there is an object in the node, put it together 

with the node's name into NODAL_LIST 
Do sequentially from the same node 

1) Apply MOVING_PROCEDURE 
2) Put NODAL_LIST into MOVING.LIST 

Hop to predecessor 
Append MOVING_LIST to NODAL_LIST 

end MOVING_PROCEDURE 
Begin in the proper start node 
Put search_depth into MOVING_LIMIT 
Mark current node 
Do sequentially from the same node 
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a) Apply MOVING_PROCEDURE 
b) Print NODALJLIST 

WAVE code for this algorithm, applied in node 3-4 
and searching the grid for a depth of 2, will be as 
such: 

F= 'Fd+1.Fd<=FD.#.N==.N=1. 
OS( ( Ni/=.Nn=Ni&C%':'),). 
SQ( F, (F=Nn.#P.Nn&F))\ 

@#'3-4'.FD=2.N=1.SQ( F, T=Nn) 

where MOVING_PROCEDURE is in F, and marking 
of nodes is performed by assigning 1 to the 
stationary, nodal, variable N in each node. It makes, 
as indivisible in each node, checking if the reached 
nodes are not marked yet and marking them 
(sequences of elementary condition checking and 
assignment operators are indivisible in WAVE and 
lock all nodal resources for other waves during their 
execution). 

initiator 
node 

collected result:    b:2-3; c:5-4 

breadth-first 
spanning tree •) 

12 3        4        5 

Figure 5: Breadth-First Parallel Space Search 

In case of a success in a node, the program 
propagates further in parallel to all neighbors in 
which it is applied again. As operator "#" broadcasts 
generally to more than one node, the waves are self- 
replicating when navigating the network, passing 
nodes only once due to marks. This process is fully 
asynchronous and nondeterministic; however it 
always guarantees to receive a spanning tree covering 
the whole network. One of possible such trees is 
shown in Fig. 5 with the returned result to "a" as: 
b:2-3;c:5-4 or c:5-4;b:2-3, as the system is 
asynchronous and parallel. 

4.4 Competition for Space 

So far we were considering only one-object 
movement. Let us imagine that many objects are 
independently moving through the same space, and 

let them not occupy the same grid node at the same 
time. So we come now to a concept of competition 
for space. When making a hop through the grid, now 
each object must win the right to occupy the new 
node, which may be described without details as: 

Find a prospective hop to a new node 
If the node is not marked, 

mark it and move to this node 
Hop to predecessor and remove the mark 

otherwise abandon this attempt 

The WAVE program putting objects "a", "b", "c", 
and "d" into proper positions in the grid, each having 
the same destination 5-5, may be written as (having 
the main same body for each object, which will be 
automatically replicated): 

WT( (@#'1-5*.F=a), (@#'2-5'.F=d), 
(@#'2-4'.F=b), (@#'3-5'.F=c).N=1 ). 

FX=5.FY=5. 
Fd='FD=CI-.Fx=FD:1 .Fy=FD:2'.Fd. 
RP( OS( RN( ((Fx<FX.+x#),(FX<Fx.-x#)), 

((Fy<FY.+y#),(FY<Fy.-y#)). 
N==.N=1.(#P.N=.!3), Fd),)) 

Some possible snapshots of a collective movement 
of these four objects through a grid are shown in Fig. 
6. As the destination node 5-5 may be occupied by 
only one object (here "b" succeeded first), others will 
be busy-waiting in the neighboring nodes forever, 
unless the objects are (self-) removed from the 
destination node, which may be programmed in their 
bodies. 

,— blocked from- 
further 

— movement    - 

1       2       3 

b) Final Stage 

Figure 6: Competitive Movement 

destination 
a) Initial / Intermediate 

Having forbidden any two objects to be present in the 
same nodes simultaneously, we therefore established 
a minimum allowed distance between them in a grid 
as one. To make a two-step minimum distance the 
following should be done while moving: 
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Find a prospective hop to a new unmarked node 
and mark it 

If all neighbors of the new node 
(excluding the current node) are not marked 

Move to the new node 
Hop to predecessor and remove mark in it 

otherwise abandon this attempt and remove mark 
from the new node 

The corresponding cyclic part of the previous WAVE 
program should be rewritten for this case as: 

RP( OS( RN( ((Fx<FX.+x#),(FX<Fx.-x#)), 
((Fy<FY.+y#),(FY<Fy.-y#)).N=.N=1. 

OS( AS( AP(#.N=.!3), 
(#P.N=.!3), Fd), 

(N=.!4))),)) 

Any other threshold distance between objects can be 
established, where the general solution may be based 
on the breadth-first space search to a proper depth 
described earlier. 

4.5 Pursuit 

Let us consider another basic scenario where one 
moving object (let us call it "pursuer") is chasing 
another moving one (or "escaper", not escapee), say, 
in order to destroy it. The escaper's mobile algorithm 
may generally look like: 

Start from proper node 
Put escaper's name into MOVING_NAME 
Repeat 

Mark current node by MOVING_NAME 
Make time delay 
If the node is not marked by MOVING_NAME 

(i.e. marking changed by somebody else) 
print "killed" in this node and halt 

otherwise make next hop 
endRepeat 

If starting from node 2-2 with the escaper's name "a", 
and its route along the "x" coordinate towards the 
east, the wave may be as follows: 

@#'2-2'.Fi=a. 
RP( Ni=Fi.2?sleep. 

OS( (Ni/=Fi.T=killed.!3), (Ni=.+x#))) 
Pursuer's full algorithm will combine repeated 
parallel space search to the allowed depth, followed 
with a hop towards reducing the distance between 
pursuer's current position and escaper's coordinates in 
the grid found in the search: 

Start from proper node 
Put pursuer's name into MOVING_NAMEl 
Put escaper's name into MOVING_NAME2 
Repeat 

Mark current node by MOVING_NAMEl 
Put current node address into 

MOVING.ADDRESS 
Do sequentially from the same node: 

1) Repeat 
Increment MOVING.COUNTER by 1 
If MOVING.COUNTER is less than 

search_depth and node is not marked, 
mark the node 

If node holds an object identified by 
MOVING_NAME2 

Return the node's coordinates to initiator 
by MOVING_ADDRESS and halt 

otherwise hop to all neighbors in parallel 
endRepeat 

2) Find, by a random choice between x and y 
coordinates, a hop reducing distance to the 
escaper and move to a new current node 

endRepeat 

With the pursuer's name "b", starting node 2-5, and 
escaper's name "a", WAVE code for this will be: 

@#'2-5'.Fi=b.Fesc=a. 
Fd='FD=CI-.Fx=FD:1.Fy=FD:2'.Fd. 
RP( Ni=Fi.Fs=A. 

SQ( (WT( RP( Fc+1.Fc<4.N==.N=1. 
OS((Ni==Fesc.Fd. 

@#Fs.NX=Fx.NY=Fy.!3), #))).!3), 
OS( RN( ((Fx<NX.+x#),(NX<Fx.-x#)), 

((Fy<NY.+y#),(NY<Fy.-y#)).Fd),))) 

pursuer 

escaper 

killed 

12        3        4        5 

Figure 7: Pursuit of "a" by "b" 

Taking into account that pursuer moves faster than 
escaper (the latter having an embedded time delay), it 
will eventually reach the escaper and kill it (actually, 
in the model, escaper discovers that his position is 
occupied by another object than  itself, and  self- 
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terminates). Different stages of movement of the both 
objects (numbered in bold) are depicted in Fig. 7. 

4.6 Chaining by a Bilateral Agreement 

Another than chase, common movement in space may 
be based on a mutual agreement between two objects 
where the first one, or leader, cannot move further 
unless the other, or follower, is close enough to it. 
The follower, in its turn, can move only if the leader 
releases its current position in space, to move into it. 
Leader's algorithm may be: 

Define follower's name in MOVING_FOL 
Make initial recording of the follower's address 
Repeat 
Do sequentially from the current node 

1) Hop to predecessor node and wait until 
it becomes marked with MOVING.FOL, 

halt this branch 
2) Perform time delay and make next grid hop 
3) Lift control over this branch, make time delay, 

put current node's address into NEXT_HOP 
in the predecessor's node and halt this branch 

endRepeat 

This algorithm may be expressed by a wave with "a" 
as a leader, "b" as a follower, and the leader's and 
follower's starting nodes as 2-3 and 1-3 as: 

Fi=a. Ff=b. Fs='2-3'. Fp=' 1 -3'. 
@#Fs.#Fp.#P. 
RP( SQ( (#P.RP(Ni/=Ff).!3), 

(5?sleep.+x#), 
(1!3.1?sleep.#P.Nh=P))) 

The follower may be expressed by the algorithm: 

Define follower's name in MOVING_NAME 
Start m proper node 
Repeat 
Mark current node by MOVING_NAME 
Wait until NEXT.HOP becomes defined, 

remove mark from the current node and 
make grid hop by the recorded NEXT_HOP 

endRepeat 

With the follower's starting location in 1-3 and name 
"b", WAVE code will look like: 

Fi=b.Fs="l-3'. 
@#Fs. RP( Ni=Fi.RP(Nh==).Ni=.#Nh ) 

Two stages of the development of these cohesive 
moving processes are shown in Fig. 8. 

mutual coordination 
I 

mutual coordination 

12      3     4      1 

b) Stage 2 

Figure 8: Bilateral Chaining while Moving 

Any number of entities may be linked in a similar 
way to move cooperatively in space, with any spatial 
coordination patterns established and maintained 
between them. We will consider here, for simplicity, 
chaining objects as a column only, with the route 
being dynamically planned and followed by the 
column's leader. Within such a column, the first and 
the last objects will be organized the same as the 
leader and follower described above. But all 
intermediate objects will integrate some features of 
both leader and follower, as follows: 

Define entity's name in MOVING_NAME and 
the direct follower's name in MOVING_FOL 

Make initial recording of the follower's address 
Repeat 
Mark current node by MOVING_NAME 
Do sequentially from current node 

1) Hop to predecessor node and wait until 
it becomes marked with MOVING_FOL, 

halt this branch 
2) Wait until NEXT_HOP becomes defined, 

remove mark from the current node and 
make grid hop by the recorded NEXT_HOP 

3) Remove NEXT_HOP record in current node, 
lift control over this branch, make time delay, 
put current node's address into NEXT_HOP 
in the predecessor's node and halt this branch 

endRepeat 

United WAVE code for "b" and "c" intermediate 
nodes, the main body of which will automatically 
replicate into two identical copies, with setting up of 
their names and starting positions, will be: 

(Fi=b. Ff=c. Fs='3-3'. Fp='2-3'), 
(Fi=c. Ff=d. Fs='2-3'. Fp=' 1-3'). 
@#Fs.#Fp.#P. 
RP( Ni=Fi. SQ( ( #P.RP(Ni/=Ff).!3 ), 

( RP(Nn==).Ni=.#Nn), 
(Nn=.l!3.1?sleep.#P.Nn=P))) 

The column's movement is depicted in Fig. 9. 
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12     3     4     5 

a) Stage 1 

12     3     4 

b) Stage 2 

Figure 9: Multiple Chaining as a Column 

Any other route, different from the above described 
which followed the "+x" direction only, may be set up 
in a leader. The others in the column will follow it 
exactly. Say, for following the route 4-4 -> 3-4 -> 2-4 
-> 2-3, with the initial position in 4-3 and direct 
follower in 3-3, the leader should be organized as: 

Frou='4-4';'3-4';'2-4';,2-3'. 
Fi=a.Fs='4-3'.Fp='3-3'. 
@#Fs.#Fp.#P. 
RP( SQ( (#P.RP(Ni==).!3), 

(5?sleep.Frou/=.#Frou:1.Frou:1=), 
(1!3.1?sleep.#P.Nn=P))) 

Two snapshots of the movement of the whole column 
along this route are shown in Fig. 10. 

4 <*\^~       4~W^ 

12345        12345 

a) Stage 1 b) Stage 2 

Figure 10: Arbitrary Route Followed by the Column 

5. Some Higher-Order Functions 

The described basic mechanisms of navigation and 
vision of a discrete space may be used for expressing 
higher-order distributed coordination functions of the 
cooperative behavior of computer generated forces. 
They may include, for example, election of a leader 
of a distributed team, spreading commands from 
leader to other team members, accumulating and 
averaging the knowledge acquired by different team 
members, etc. They may also include recognition of 
complex situations on distributed battlefields to make 
autonomous decisions and compete, say, with human- 
controlled simulated entities and their teams. 

5.1 Pattern Recognition 

We will consider here recognition of simple 
situations represented as structures distributed 
throughout the grid by using mobile programs. The 
latter may be launched from any moving entity (being 
itself a mobile program) while replicating into 
multiple copies and navigating in and searching the 
discrete space in parallel. 

5.1.1 Group Recognizer 
Assuming that objects distributed throughout a grid 
are considered linked with each other only if they are 
located in neighboring nodes, the following parallel 
algorithm collects into one list all objects linked by 
such neighborhood relation to an arbitrary depth, 
finding all such groups and printing the 
corresponding lists in parallel. As the same group 
may be recorded from any starting node, it will be 
allowed to be collected and printed as a list only if its 
starting node (kept in MOVING_START) is of the 
smallest (or biggest, as another variant) value in 
comparison with all other nodes, thus solving the 
competition in this simplest way and preventing the 
issuing of duplicates of the lists. 

Define MOVING.PROCEDURE as: 
If node is occupied 

Do sequentially from current node 
If occupant's name is less 

than MOVING.START 
halt with killing all processes 

originated from the start node 
If node is not marked, mark it by putting 

the occupant's name into NODAL_LIST 
otherwise halt 
Do sequentially 

1) Apply MOVING_PROCEDURE 
2) Put NODAL_LIST into MOVING_LIST, 

hop to predecessor and append 
MOVINGJLIST to NODAL_LIST 

end MOVING_PROCEDURE 
Start in originator 
Do sequentially 

3) Hop to all grid nodes, each becoming a start 
Continue if node is occupied, put occupant's 
name into MOVING_START 

and NODAL_LIST 
Do sequentially from a current (start) node 

a) Apply MOVING.PROCEDURE 
b) Append NODAL_LIST to predecessor 

node's FINAL_RESULT 
4) Output FINAL_RESULT 
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WAVE code starting from originator node 2-3 and 
then activating all grid nodes in parallel will be: 

F= ' #.Ni/=.SQ( (NkFs.lO), ).N==.N=Ni. 
SQ( F, ( F=N.#P.N&F ))'. 

@#2-3'.SQ( ( @#.WT( Ni/=.Fs=Ni.N=Ni. 
SQ( F, (Fr=N%-.@#P.Nr&Fr)))), 

T=Nr) 

Result printed in 2-3 may look like: 
p-m-f-o-j-c; I-d-i; n-g-k-b-a-h-e, 

as shown in Fig. 11, where the order in which 
different groups are recorded may be arbitrary as the 
program is not deliberately synchronized and operates 
in parallel ("-" is used as a delimiter within the group 
lists). 

5.1.2 Column Recognizer only 
Let us consider here another mobile algorithm 
recognizing columns spread throughout a grid, where 
columns may be defined as groups in which every 
object has no more that two direct neighbors, and 
objects at the ends of the chain have only one 
neighbor each. The algorithm below first finds 
objects which may be potential ends of a chain, and 
then tries to traverse the chain sequentially. For both 
starting and internal nodes of the chain the same rule 
applies: the node may be included into the growing 
chain only if it has exactly one neighbor not included 
into it yet. Taking into account that columns may be 
chased from both their ends, whereas only one 
solution should be registered, the algorithm will look 
like: 

Start in all grid nodes 
If node is occupied, continue 
Repeat 

Append occupant's name to MOVINGJLIST 
Do sequentially from current node 

1)   Hop to all neighbors 
If node is occupied and 

not in MOVING_LIST 
Hop back to predecessor 
Put the node's address into NEXT_HOP 
Increment COUNTER and halt the branch 

2)   If COUNTER equals 1, hop by NEXT_HOP 
If COUNTER equals 0 and first element 
in MOVING_LIST is greater than its last 
element, print MOVINGJJST and halt 

endRepeat 

a;b;k   a;b;k;g   a;b;k;g;n 

group 

Figure 11: Recognizing Distributed Objects 

Starting from all grid nodes in parallel, and also 
taking into account the necessity of individual nodal 
variables for the each growing chain solution (Mf and 
M are used), the corresponding WAVE code may be: 

@#.Ni/=.l=Ni. 
RP( FR&Ni. 

SQ( (#.Ni/=.FR::Ni==.#P.Mf=P.M+1.!3), ). 
((M==1.#Mf), 
(M==.FR:-1<FR:1.T=Fr.!)))) 

The result will be: 
a;b;k;g;n;h;e   issued in "e", and d;l;i  issued in "i" 

(see Fig. 11). With a slight modification of this wave, 
all results may be easily collected in the same node 
(as it was done in the previous example). 

Any other structures and images, both deterministic 
and fuzzy, with any topologies and any distribution 
between machines, may be efficiently recognized by 
mobile wave agents recursively navigating the 
modeled space in parallel. 

5.2 Self-Recovering Topologies 

The WAVE model dynamically creating and 
processing arbitrary knowledge network topologies in 
a distributed environment may be efficiently used for 
organizing self-recovering control structures in which 
arbitrary failures may be repaired by the remaining 
parts of the control network. We will consider here a 
simplified case where an arbitrary graph node may be 
lost (together with all incident links), with the 
neighbors of this node discovering the damage and 
repairing it. After the repair, the recovered node is 
becoming a full member of the topology again, i.e. 
able to analyze the graph integrity and repair the 
damaged neighbors in its turn. 
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The main idea is as follows. All nodes, regularly 
contacting their neighbors, copy the corresponding 
part of the topology, i.e. the star with themselves as 
the center, and select one of their neighbors as a 
"trustee", i.e. a node which will repair them (with the 
incident links) in case of damage, forwarding the 
copied star to the trustee. Each node periodically 
contacts the nodes to which it is a trustee, and in case 
of their absence creates the missing nodes with their 
links to other nodes, the latter represented by their 
addresses remembered in the recovery star. 

It also loads a complete recovery program into the 
recovered nodes, making them active again and able 
to support their neighbors. All neighbors of the 
recovered nodes are informed about the recovery act 
and subsequently relaunch the copying of their stars 
and updating their trustees, as the address of the 
recovered node (assigned automatically by the 
underlying system) may have changed. Fig. 12 shows 
the situation when node "b" with its links to nodes 
"a", "c", and "d" has been damaged and later repaired 
by its trustee "a" which discovered the loss. 
(Addresses of nodes are symbolically shown as their 
names in square brackets.) 

An active recovery template holding the copied star 
for a node, regularly renewed by every node itself 
(independently and in parallel with other nodes), is 
forwarded to its neighboring trustee and executed in 
the latter at regular intervals. It has the following 
structure: 

If the truster's node is missing 
Create the node by its recorded name in the 
place automatically offered by the system 
or explicitly stated in the program 

Do sequentially from the created node 
a) Create links leading from the node 

to other nodes represented by their addresses, 
mark these nodes to be self-activated later 

b) transfer into the created node a full 
analysis & recovery procedure and activate it 

WAVE code for this recovery template will be like: 

OS( # node_name, 
CR( @# node_name. 

SQ( (link_1 # node_address_1, ... , 
link_m # node_address_m. N=1), 

(1I.FP)))) 

recovery template 

CR(@#b.m#[a],p#[c],o#[d]) 

lost node (star) 

"trustee" of b      n      (cj active nodes 

Figure 12: Automatic Recovery of "b" by a Trustee 

General organization of the whole program making 
an arbitrary distributed graph self-repairing (any node 
at a time) without any central resources is as follows: 

Define MOVING_PROCEDURE as 
Repeat 
Do sequentially 

1) If node is marked, remove the mark, 
create or update the recovery template 
for this node and record it in its trustee 

2) Activate recovery templates for all nodes 
for which the current node is a trustee 

end MOVING.PROCEDURE 
Start in all nodes, mark them, and 
activate MOVING_PROCEDURE 

The complete recovery WAVE program is as 
follows: 

FP= 
'RP( SQ( ( N/=.N=. 

SQ( ( Ns=.#.F=L&A%'#'.#P.Ns&F %','), 
( F= 'OS(#' & C & ',CR( @#' & C & 

'.SQ( (' & Ns & '.N=1),(1!.FP))))'%. 
Fc=C.RN(#). 
OS( (Nk::Fc==.Nk&Fc.Nt&F), 

(Fk=Nk::Fc.Nt:Fk=F))) ).!3 ), 
( Nt.!3 ),))'. 

@#.N=1.FP 

Being applied to all nodes of an arbitrary graph in 
parallel, it makes the graph undestroyable (with an 
assumption of any one node failure at a time). The 
program runs on any number of computers in a 
network, where the repaired nodes may migrate 
between them (eventually the whole self-recovering 
topology may migrate in such a way in a distributed 
environment after multiple node failures and 
recoveries).   The   described   self-recovery   spatial 
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mobile algorithm is extendible to the case where 
multiple nodes and links may be simultaneously 
damaged, while the whole network may self-recover 
in a completely distributed environment if at least a 
single node remains alive. This self-recovery 
technique, based on spreading of the recursive control 
code, many be useful for CGF and live command & 
control systems in many cases, for example, to 
maintain their organizational patterns in highly 
dynamic environments which can be damaged, say, in 
combat operations. 

6. Mobile Programming Applications 

We provide here a summary of some tasks effectively 
implemented in WAVE where mobile interpreted 
code migrating between computers has shown clear 
advantages before traditional stationary and compiled 
techniques. 

6.1 Deaggregated Groups Clashes 

Two groups of entities having different sources and 
destinations propagate independently through a large 
distributed grid and accidentally intersect in space, 
destroying each other's orders. The entities are not 
allowed to occupy the same node of the grid, whereas 
entities from one group (being "lightweight") keep a 
small distance from each other, and from another 
group (or "heavyweight") - a larger one. Lightweight 
entities are deaggregated from a single unit and 
interact with the heavyweight ones, aggregating later 
again having moved through the heavyweight orders. 
Each entity is represented by an independent WAVE 
program (into which the original program replicates) 
physically moving in a distributed environment. 

6.2 Group Propagation Through a Maze 

A group of entities generated at a source moves to a 
destination and meets on its way an arbitrary complex 
maze. Entities both compete for space and cooperate 
to break deadlocks in narrow corridors collectively. 
During their propagation the entities change between 
moving through free space, while reducing the 
distance to the destination, and going around walls. 
Deadlocks are resolved by self-changing the entities' 
functionality in a chain mode where, say, moving 
clockwise becomes dominant. Eventually all entities 
come to ihe proper destination. 

6.3 Digging a Ditch Cooperatively 

A group of entities (say, robots), starting from some 
point, moves towards a certain place and collectively 

digs a ditch of a given size. Entities both compete 
with each other for space and work, and cooperate to 
ensure taking all the soil out, regardless of computer 
speeds and communication delays in a network. For 
this task, as well as for the others mentioned in this 
section, it is possible to create highly robust 
distributed models by using mobile programs which 
are free to move in space, can carry their states with 
them, and make complex decisions themselves. 

6.4 Predator-Prey Games in Networks 

A model has been written and shown in WAVE 
where a distributed computer network may be used 
for the analysis of behavior and pursuit of multiple 
moving objects in space. The objects may be injected 
into the network model at any time and from any 
nodes, and can have complex routes unknown in 
advance (say, being alien cruise missiles). They may 
be seen only from local nodes of a network, due to 
the limitations of physical (for example, radar) 
systems. Mobile waves in the implemented model 
were able to discover such objects and follow them in 
the network. The waves were also able to study 
behavior of the objects, measure and average their 
speeds throughout the network, subsequently 
organizing interactions between different types of 
objects with establishing dynamic predator-prey 
relations between them, with a variety of possible 
practical applications. 

6.5 Dynamic Virtual Reality 

Languages for representing 3D virtual reality in 
computer networks are of growing popularity 
nowadays, like VRML (Bell et. al. 1995). In an effort 
to add dynamics to VRML scenes, a number of its 
extensions have been developed. All these, however, 
base the description of a scene on a rigid hierarchical 
structure known as a "scene graph", which cannot be 
effectively changed from within the VRML programs 
as it reflects the structure of the program text. 
Successful experiments have been made using 
WAVE to provide fully distributed and highly 
parallel multi-user processing of VRML scenes, parts 
of which or the whole could be easily modified at 
runtime by treating scene graphs as WAVE 
knowledge networks, with parallel inference on them. 
The languages like VRML supporting visual 
representations of the modeled worlds and direct 
communications with the users were used on the 
surface of this semantic knowledge processing. 
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6.6 Distributed Dynamic Terrain 

Standard visualization techniques have also been used 
on top of the dynamic distributed semantic worlds 
expressed in WAVE to model dynamic distributed 
terrain. For example, a possible representation of the 
terrain may be a regular grid again, each node 
containing data such as height, surface type, etc. Such 
a grid may be created in WAVE as a knowledge 
network (as described in Section 5) and dynamically 
distributed between any number of computers. 
Mobile wave societies have been created to produce 
on these grids actively changing shapes dynamically 
spreading among computers (e.g. growing craters, 
flooding, or "moving mountains"). This process is 
fully open, i.e. any (multiple) agent activities in these 
worlds can be started in parallel at any time, by 
different users, and from different machines. Other 
terrain representation, like, say, triangular networks 
may also be used. 

7. Conclusions 

On the results of the experimental programming 
presented and discussed in this paper we may say that 
mobile agent technologies may provide realistic 
models of collective behavior of autonomous entities 
which may efficiently operate in arbitrary computer 
networks, in a highly parallel mode, and without any 
central resources. 

Mobile programming may be efficiently used on 
different levels of the description of a collective 
behavior of computer generated forces, ranging from 
elementary procedures of navigation and vision in a 
distributed space, to pattern recognition and 
assessment of dynamic situations distributed 
throughout computer networks. Mobile programming 
models may also exhibit high robustness and 
possibility of full self-recovery after complex failures 
in the underlying system software and hardware. 

The obtained solutions for a discrete space as a 
regular grid may be easily modified and generalized 
for any other expression of a discrete or a combined 
discrete-analog universe. Representing fully 
distributed solutions, such mobile models may 
effectively compete with groups of human-driven 
(simulated or live) entities. They may also have a 
straightforward implementation in multiple live 
(including fully automatic) platforms, to be used on 
battlefields. 
In this paper we have demonstrated a variety of 
mobile algorithms using the extremely compact 
WAVE language which self-migrates and navigates in 

networks. Any other mobile agent techniques, as well 
as conventional languages like C, C++, Java, etc., 
may also be used for the expression of the presented 
collective behavior ideas, however programs in them 
may be up to 50-100 times longer and much more 
complex. The latter is because WAVE embeds 
special mechanisms of parallel navigation, interaction 
and coordination in space, with generalization of the 
distributed states (using tracks, for example) on a 
very high level. Being directly supported by a 
distributed WAVE interpreter, these features, 
however, have to be explicitly programmed for each 
application within most of the other techniques. As 
some support to this statement may also be the fact 
that the full machine programs for all discussed 
parallel and distributed space navigation and 
coordination mechanisms are included into this paper. 

Further activities within the project described 
envisage the design of an intelligent high- 
performance wave chip from which any parallel and 
distributed self-organizing control structures may be 
networked, including the wireless teams of automatic 
platforms propagating and collectively solving 
complex problems in a distributed dynamic terrain. 
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