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PURPOSE

This report presents the proceedings of the Sixth
Conference on Computer Generated Forces (CGF)
and Behavioral Representation (BR). The
Conference is scheduled from 23 - 25 July in
Orlando, Florida and is hosted by the Institute for
Simulation and Training (IST). IST is a component
of the Division of Sponsored Research at the
University of Central Florida.

OBJECTIVES

The objectives of this conference are to:

* Provide a forum for information exchange on
CGF and BR modeling research.

» Identify gaps in CGF and BR research.

* Present upcoming research programs and
opportunities.

*  Present technology demonstrations to the CGF
and BR community.

Attendees will have an opportunity to participate in
discussions of Service User needs, CGF systems
issues, and technical presentations on the components
of a CGF.

BACKGROUND

Under the sponsorship of the Defense Modeling and
Simulation Office (DMSO, the U.S. Army,
Simulation, Training & Instrumentation Command
(STRICOM), and the Institute for Simulation and
Training of the University of Central Florida is
conducting this Sixth Conference on CGF and BR.

UCF/IST has hosted five previous CGF & BR
symposia. An indication of the success of these
interest group meetings is reflected in the steady
attendance, rising from 84 attendees in Oct. 1990 to
128 in May of 1991, to 310 in March of 1993, to 323
in May of 1994 and 281in May of 1995.

Following the topics outlined in the Second BR
symposium, IST is tasked by DMSO and STRICOM
to host a continuing series of CGF and BR
conferences. These conferences will provide a
continuing ability to promote and focus research in
this important area. Most attendees at previous
conferences expressed an interest in continuing in a
dialogue with developers on future requirements in
order to justify their own internal research and
development participation and commitment to this
emerging technology.

Other conference topics which merit consideration
forresolution by the community of military, industry,
and academic researchers in BR include:

» Interoperability Standards for Behavioral
Representation in Defense Simulations;

» Validation, Verification and Accreditation of
Behavioral Representation models;

*  Functional Specification rationale for Behavioral
Representation models in Design, Testing and
Training Simulations;

* Interoperability issues for classified modeling in
Behavioral Representation;

» Behavioral Representation in Virtual Reality.

GENERAL

This report is presented in one volume. Wherever
possible, the papers are arranged in the order of
presentation.

Alist of attendees will be distributed to all registered
attendees at the conclusion of the conference.
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Next Generation Computer Generated Forces

David R. Pratt
Joint Simulation System Joint Program Office
12249 Science Dr. Suite 260, Orlando, FL 32826
prattd@stricom.army.mil

1. Abstract

Computer Generated Forces (CGF) originated with
the advent of the computer wargames to support train-
ing and analysis. CGF really came into its own in
the late eighties as part of the Simulation Networking
(SIMNET) Semi-Automated Forces (SAF) program.
Since then CGF have been an integral part of almost
all Distributed Interactive Simulation (DIS) Exer-
cises. The next major evolutionary step occurred
when the Command Forces (CFOR) program incor-
porated Command and Control capabilities. The
CGF community is now ready for the next major step
forward. In this paper we will present a brief taxon-
omy of CGF and some of the inspirations and chal-
lenges for the next generation of CGF systems.

2. Disclaimer

This is an academic paper. The information and ideas
are not part of - or used in the evaluation of the
Joint Simulation System (JSIMS) Integration and
Development Contractor Request For Proposal
(RFP).

3. Introduction

As the computer matured and uses beyond straight
number crunching were found, the military developed
Computer Aided Training (CAT) war gaming. These
first wargames were the automated equivalent of the
“Risk” strategy game. This formed the basis of the
constructive combat models in the years to come.
More than anything else they kept track of the
strength and location of the forces and resolved the
engagements the users instigated. From these simple
games, the roots of Computer Generated Forces
emerged. The forces represented in these games
tended to be aggregated and useful only for high level
staff training due to the low resolution and fidelity of
the models. The resolution and fidelity were limited
by the available hardware resources and training audi-
ences needs.

The major advance in CGF came about with the ad-
vent of the microprocessor. This provided the founda-
tion for the development of the first virtual simulation
system. It was quickly realized that it was not cost
effective to build simulators for all the Battlefield

Operating Systems (BOS)'. To round out the simu-
lator units and add the Opposing Force (OPFOR),
the Semi-Automated Forces (SAF) systems were
developed. Currently, SAF represents the state of the
art in CGF. However, we are starting to see pushes
toward the next major evolutionary generation of
CGF, the Autonomous Forces.

It is important to realize some of the tradeoffs that
must be accomplished when developing a system.
As shown in Figure 1, the developer and, in turn, the
user must exercise tradeoffs between four important
parameters. Resources - the number and type of peo-
ple and equipment. Fidelity - How accurate are the
models used to represent the cognitive and physical
processes. Resolution - What level (platform, unit,
etc.) is the battle space modeled. Execution Time -
Speed of the model and execution of the model (faster
/ slower than real time). The determination of these
tradeofTs is dictated by the exercise. It is here where
the generations of CGF fit in, each has a niche on the
overall spectrum of CGF possibilities.

Execution Time

Boundary of

Model Space T e

Fidelity

Resolution

Resources held constant
Figure 1: Tradeoffs in the Model Space
We have organized this paper into roughly two parts.

In the first part we take a look back and develop a
taxonomy for CGF systems. The second part looks

' More commonly called entities, but are sometimes
represented as functional units.




to the future and tries to characterize what the next
generation of CGF is going to be like. It is important
to note that when we look into the future we see what
might be, not what will be.

4. Generations of CGF

Like most taxonomies the categories can be parti-
tioned in various ways and called different things. For
the sake of this paper, we have chosen to develop a
taxonomy based upon the cognitive processes used in
the CGF systems. While this does not lend itself to a
strict hierarchical breakdown, the generations can be
seen in Table 1. This allows us to talk about general
characteristics of each of the generations. One of the
reasons why this is not a strict generational system is
the current generation has not replaced the previous
ones. This is due to the large number of requirements
that the CGF systems fill. As a result, the genera-
tions tend to fill a niche requirement even after they
have been supplanted technically.

Generation Cognitive Process
1 None
2 Detection and engagement
3 Task interruption and execution
4 Multilevel Command and Control
S Goal Selection and Leaming

Table 1. The CGF Taxonomy

4.1 First Generation

The first generation of CGF is characterized by their
complete lack of any cognitive process. As such,
there is no deviation from the script that is laid down
for them. While this might seem like a useless gen-
eration of entities, in reality they are some of the
most instrumental and common CGF Systems. The
data logger playback and traffic generator systems are
typical of this generation. The data logger allows a
prerecorded exercise to be repeated, observed, and
analyzed over and over again. This provides the basic
functionality for an After Action Review system. The
exercise is recorded as it occurs, then it is analyzed
after it is over to provide insight into what happened.
More complex scenarios can be constructed by laying
down new track over the existing ones or splicing
pieces of existing tracks together. Likewise, the very
definitive tracks are used in analytic evaluations since
the paths and timing can be held constant over a large
number of runs.

The noise generation systems are used to populate
the battle field with a large number of low fidelity
entities. The use of such a system is the track gen-
erator for a J-STARS like system, or to test a net-
work’s connectivity and throughput. At the Naval

Postgraduate School, we used a noise generator ex-
tensively when giving demonstrations to kids. The
entities provided ample simple targets for them to
shoot at.

The advantage to this generation of the CGF is that
they are simple to use and require a minimum of re-
sources to run. This allows a large number of enti-
ties to be placed on the battlefield with a minimum of
resources.

4.2 Second Generation

The second generation of CGF added the ability for
the entities to execute simple reactive behaviors that
do not interfere with the planned actions. These be-
haviors are normally limited to detection, targeting,
and engagement of hostile forces. The paths and
routes are laid out by a user before or during the exer-
cise; the reactive actions occur along these paths.
Typical of these actions are for a unit to follow the
route at all costs; the unit will charge on despite all
of its peers getting killed, until it is killed, or until it
reaches the end of the predetermined path. The com-
plete lack of behavior reprogramming requires that the
user pay close attention to the entities to ensure that
they do not do something counter to common sense
and doctrine.

The advantages of the second generation CGF are
exemplified in the majority of current constructive
models. These models are used for both training and
analytical purposes. They tend to be manpower in-
tensive to set up and run, but they are predictable.
Some of them, particularly those used for analytical
purposes, have a batch capability that allow multiple
runs without operator interaction to determine the
solution space for a given set of parameters. The
rigidness of the behaviors limits the number of vari-
ables and aids in the analytic process.

4.3 Third Generation

With the advent of the virtual training systems came
the realization that the aggregate Second Generation
CGF systems could not adequately portray the indi-
vidual entities on the battlefield. To satisfy this need
the next generation of CGF was developed. This gen-
eration, commonly called Semi-Automated Forces
(SAF), are the result of this work. These systems are
typically a collection of preprogrammed tasks. The
tasks themselves are made up of either a rule-based or
state machine-based systems. What makes these sim-
ple behaviors so powerful is the nesting of the behav-
jors into task frames. The task frames are in tum
nested within other task frames.

Missions are made up of a series of task hierarchies.
This was a major advancement in the state of the art.




The hierarchy of tasks allows for complex reactive
behaviors by creating a task queue. While not able to
do goal selection, the second generation of CGF is
capable of building complex missions with compli-
cated reactive behaviors. The creation of the task
frame sequences allows the user to create complex
missions for the entities and, in some cases, simple
units. More complex unit relationships can be built
by linking the frames together in parallel.

4.4 Fourth Generation

The Third Generation CGF was a great step forward
in the emulation of platform level entities. What is
lacking is a representation of the Command and Con-
trol (C2) process. At its most simplistic level, the
C2 process can be broken down in order to decide
what the unit and subordinate units are suppose to
do, and ensure it is carried out. While seemingly
simple, it is one of the hardest tasks on the battle-
field. The defining characteristic of the Fourth Genera-
tion CGF is the ability to replicate this process.

While there are many ways to insert C2 into an exer-
cise, we shall limit our discussion to systems that
represent the Headquarters unit in software. Even
with this limitation there is a further limitation that
we will make which is to ignore the majority, if not
all, of the staff functions outside of the combat opera-
tions. This is a very valid assumption since very few
of the CGF systems support any of the staff functions.
As a result, only the commander is represented. This
reduces the problem space to having to model the
decision, or cognitive, processes, and the communi-
cation, or information gathering and order dissemina-
tion, process.

Typical of the Fourth Generation of CGF is
DARPA’s Command Forces (CFOR) program.
CFOR models the C2 process by representing it as a
series of interactions and behaviors of command enti-
ties. This results in the C2 process being primarily
an information flow process among command entities
problems. To address this, the Command and Con-
trol Simulation Interface Language (CCSIL) was cre-
ated to represent the information exchanges between
commanders. CCSIL messages are then passed
through the command’s communication structure to
emulate the real battlefield information flow. This
limits the information to those commanders who
would really have it.

Even with a realistic information content and flow,
the decision making is done at the individual com-
mand entities. These are the originator and recipient
of the data. To simplify the generation of the orders
and taskings from the user developed behaviors,
CFOR uses a layered architecture where the develop-
ers only concem themselves with the top layer, the

Command Entity Application. The developer inter-
acts with the lower layers by means of a well defined
API. Once the orders are created and distributed they
are interpreted by a Third Generation CGF system. In
the case of the CFOR, Modular Semi-Automated
Forces (ModSAF) executes the orders.

5. Where are we now?

Roughly equal numbers of people cheer the success of
the various CGF programs and deride them. The
reason for this is quite simple, the systems are suffer-
ing from their success. By this, we mean that the
highly successful programs are being put in a situa-
tion to do something that they were never designed
to do, and are being criticized because they cannot
perform the tasks with ease. Starting at the entity
level, the state of CGF mirrors the current state of
Distributed Interactive Simulation (DIS), both work
well at the company and below level. Once the entity
counts and command structures start getting above
that, they start to break down. From the aggregate
level, it is the opposite. The higher level units can be
reasonably portrayed, but the individual platforms
have problems. To compensate for these problems we
have seen a series of aggregate level models interfac-
ing with the platform level models with varying de-
grees of success. This is not necessarily a limitation
on part of the systems’ developers, rather it is a com-
bination of modeling paradigms, resource limitations
and funding, and research and development profiles.

One of the major problems with the government fund-
ing system is that it is much easier to incrementally
add a capability to a system than it is to re-engineer
it. This results in systems that are large and mono-
lithic, since the funding agency “just wanted to add
one feature, not redesign the system.” Due to the
growth pattern and architectural age, the current CGF
system have become resource intensive since almost,
if not all, of the capabilities are in every version of the
system.

One of the major problems of a system architecture
having a long life span is the clean interfaces and
modular nature of the first version erodes as features
are added. This makes it very difficult to find the core
features of the system and as a result the system be-
comes hard to maintain and adapt.

Those who have gotten us here have accomplished a
Herculean task. In doing so, they have overcome a
large number of hurdles. However, if we are to satisfy
the customers who have grown to expect miracles, it
is time to bring on the next generation.



6. Challenges for the Next Generations of CGF

Given all that it has taken to get to where we are
now, there is as much, if not more, to go before there
is a CGF system that can repeatedly pass a Turing
test. With that in mind, the remainder of this paper
deals with some of the critical technologies that will
have to define the next generation of the CGF.

6.1 Changing and Adding Behaviors

The true value of a CGF is the behaviors that are part
of the model. Likewise, these are some of the hardest
things to model. The reason for this is quite simple,
it is very hard to express any cognitive process in a
clear, unambiguous manner. Given that is the case,
we are presented with the first of the major challenges
- standardization and codification of processes and
cognitive models. There are currently several tasks
under way by the Joint Staff and the various services
to do this. The outcome of these efforts could then be
merged and encoded into a common conceptual
model. It is this encoding, expressed in terms that
the operators can understand and agree to, that could
then be compiled to generate the behaviors of the
entities on the battlefield. By compiling the behav-
iors straight from the operators’ task list to a runtime
format, we can save significant time and resources in
the generation, modification, and validation of the
behaviors that make up the model.

The development of a common compatible specifica-
tion language resolves some of the needs of the be-
havior generation of the next generation of CGF;
however, it does not solve all the problems. The user
of the CGF systems needs to be able to generate new
behaviors to represent the unique training objectives
of the particular exercise. The behaviors and taskings
need to be tunable to represent the human conditions.
If the CGF entity has been in combat for the last
twenty-four hours, the decision cycle is going to be a
little longer and they might not be as aggressive.

6.2 Reduce Required Resources

With a few exceptions, the CGF have been developed
for use by dedicated operators or gaming cells. This
is roughly equivalent of fighting the war through an
interpreter. The next generation CGF system will
interact directly with the war fighter using their or-
ganic systems. This is a fairly broad statement that
most people interpret to mean that the CGF will be
controlled by the Command, Control, Communica-
tion, Computer, and Intelligence (C4I) systems.
That is a part of it, but there are many more means of
communication that are used. To explore the new
interface paradigms, the CGF developers are going to

have to interact to new communities. For example,
the use of speech as both an input and output mecha-
nism is starting to reach a point of maturity where it
is robust enough to be useful in a fielded system.
This opens up the possibilities of the synthetic radio
network where the software scout can send a spot
report back to the human commander and the com-
mander can give him a new tasking. In order for this
to happen, natural language processing will have to
evolve to a point where the messages can be parsed
and understood with some degree of reliability. The
new interfaces are not limited to speech; gestures and
image understanding also play a part. In a field exer- -
cise, the commander or the operations staff will mark
up a map as they develop the plan. After this, an op-
erations order is developed and briefed. By under-
standing the meaning of the overlays, the text of the
order, and the gestures used in the briefing, the basis
of the CGF operations of the exercise has been cre-
ated. In small unit operations, the use of formal ges-
tures, such as hand and arm signals, can represent a
majority of the communication bandwidth between
entities. Since one of the major functions of the CGF
is to flesh out units, they should be able to take di-
rection in the same manner as their real life counter-
parts.

The reduction in resources is not just in the set up on
an exercise, the next generation runtime system has
fundamentally changed from the current monolithic
systems. The new systems take full advantage of the
network computing paradigm that allows the process-
ing of the data to migrate from one processor to an-
other. The user’s concern with the CGF is primarily
- “is it doing what I want it to”, not - “what is the
CGF computing model and where are process execut-
ing.” This only becomes a concern when the CGF is
not providing the user with the responses in a timely
and realistic manner. Taking advantage of this, the
next generation CGF is based on the paradigm that
there are services that are available on the simulation
network, so use them. The existence of processing
modules allows the system to dynamically alter
where computations are done. The ability to do load
shedding and balancing is central to the systems abil-
ity to reduce the number and power of machines re-
quired for the system to operate efficiently. By
segmenting the CGF tasks into functional modules,
they can be optimized and parallelized to increase the
flexibility and scalability of the system. This way if
there are no ships in the scenario, that capability will
not have to have resources allocated to it even though
they will not be used. This takes the “Dial a War”
concept used in DIS down to the functional level.




6.3 Model Forces at a User Selected Level Of
Resolution / Fidelity

The current state of CGF lends itself to the large
monolithic systems geared to a particular level of
forces. The next generation system will be built
much more along the lines of the layered system
shown in Figure 2. The foundation of these systems
will be a common set of core Support Services.
These are the parts of a CGF system that are intro-
duced as simulation artifacts rather than models of
real life processes. This includes such modules as the
computer communication network interface (i.e. Run
Time Infrastructure (RTI) interface), the process
scheduler, and persistent object storage and manage-
ment. This foundation is the most universal of the
three layers and, as such, the most reusable.

Coms
Level

'Battﬂionv". .":Plaffomi
Lewel Level

Simulated Representation

- Common Services
: Support Services

Figure 2: Interactions of Modules in a multifidelity
CGF System

The remaining two layers of the next generation CGF
system represent where the differentiation between
CGF systems exists. At these layers, the Common
Services and the Simulated Representation, the de-
veloper has to make the tradeoffs shown in Figure 1.
This leads to differing implementations of the same
military entity. For example, if a CGF system needs
to run on a single workstation much faster than real-
time, it will have lower fidelity and resolution than
one that runs across a network of machines in real-
time. However, if both systems had a consistent
interface to the object, it would then be possible to
replace one object with the other. This, in turn,
gives the user the ability to select the object that they
need for a particular exercise from a repository.

The next logical step is to have a single object that
has multiple fidelities and resolutions internal to it.
This would allow the ability of an object to be con-
sistent within itself regardless of the echelon it is
operating at. Using the terrain as an example, a plane
is flying high overhead, it can see a large area of ter-
rain, but at a fairly low level of resolution. As the
plane comes in for a close air support mission the
terrain changes resolution to match the fidelity needed
for the ground targets to operate in. As the plane rolls
out, the terrain is relaxed once again to allow the
large area visualization. While the scenario above is
done easily with level of detailing on a single station
visualization system, it is much harder to do in a
dynamic multiplayer system and in a system where
the CGF has to reason about the terrain.

The middle layer of Figure 2, Common Services, is
where the echelon modeling starts to make a differ-
ence in the types and the functionality of the modules
in the simulation system. At this level the common
services are those modules that help establish the
common operating environment for the CGF, or are
modules that apply across a wide range of CGF sys-
tems. This layer is comprised of such modules as
the Synthetic Environment, mobility models, Line of
Sight (LoS) processes, and the interconnections to
the user’s organic equipment.

The top layer contains the Simulated Representa-
tions, or physical and cognitive processes, of the
CGF. As in the layer below it, the objects are repre-
sented by either a multifidelity object or a family of
objects having the same interfaces. Once again, this
allows the user to perform tradeoffs to compose the
CGF mix that is appropriate for the exercise. How-
ever, at this level of abstraction and encapsulation the
consistent interfaces also allows for the insertion of
the human player at various echelons. The big advan-
tage of the multi-resolution object representation is
that the units are internally consistent with them-
selves. As a result the need for external aggregation /
disaggregation no longer exists, since the object per-
forms it internally.

6.4 Goal and Mission Selection

Perhaps, one of the greatest differences between hu-
mans and the rest of the animal kingdom is our abil-
ity to set goals, rationalize them, and make plans to
achieve them. In order to reduce the number of con-
trollers, the next generation CGF needs to have this
capability as well. A goal, such as taking a hill, can
be assigned to an object by internal or external forces.
Externally, it can simply be told to take the hill.
Internally, it has to rationalize the larger context be-
fore it decides that taking the hill is to its advantage.
The reasoning process is the hard part. To determine
if the hill should be taken, several questions need to




be answered and tradeoffs need to be done in the an-
swer space. In many ways, this is what the battlefield
commander does as a matter of course, set the goals
of the unit in the context of the overall mission.

Once the goal has been set, the next step is to plot
out a mission, or how the goal is going to be
achieved. Once again tradeoffs will have to be done.
For example, the variables of expected number of
friendly / enemy / neutral casualties, amount of terrain
covered, types of equipment needed and available,
possibility of future actions, etc.. all have to be con-
sidered. The next generation of CGF will have to be
able to make these types of determinations if we ex-
pect them to represent forces at different levels while
reducing the amount of human controllers.

Perhaps the biggest challenge is the reprioritization of
the goals and mission. Current Third Generation
CGF Systems have the ability to interrupt what they
are doing to respond to external stimuli, such as
mine fields and air attacks. Once the stimuli induced
event is over, the mine field breached or the planes fly
off, the original mission resumes. What is lacking is
the ability to reprogram the goal based upon what
just happened. In the case of the air attack, the enemy
now knows where the CGF units are, so surprise is
lost. As a result, the mission parameters have
changed and the tasking and goals need to reevalu-
ated, and possibly altered, in light of the new infor-
mation.

6.5 Learning

The final of the characteristics of the next generation
of CGF system that we are going to discuss, know-
ing that there are others, is the ability of the CGF to
learn. If we take a look at the rationale for building
the majority of the CGF programs, we see that they
were used to support training. The training that has
been done has been completely on the human side.
At the end of the exercise, it is the same CGF as that
which started the evolution. The CGF should be
able to learn from the exercise as well. For example,
if one of its units runs into a minefield and gets hit
with artillery fire, it might be a coincidence. The
second time it happened, the CGF should see a pat-
temn developing. The third time the CGF hit a
minefield, it should be expecting the artillery fire and
react accordingly. The ability to find trends and ex-
ploit them is a characteristic of a good commander.
Likewise, repetitive actions and tactics allows the
enemy to predict what is going to happen next and
react to it. As the CGF assume the role of a battle-
field commander, it needs to learn how to fight the
war as well.

7. Conclusion

In this paper, we have presented three key topics: (1)
How we arrived at the current state of CGF; (2) The
fact that there are niches for many different kinds of
CGF and no one monolithic system can satisfy all
needs; and (3) There is still a lot of work to be ac-
complished, but we are poised to take the next great
step. The next generation will be one step closer to
the objective CGF system that is capable of plotting
goals, strategies to achieve them, taking advantage of
the opponent’s mistakes, and exhibiting those human
traits that make us individuals. At this point in
time we will have a true Autonomous Force.

8. Author’s Biographies

Dr. David R. Pratt is serving as the first Technical
Director of the Joint Simulation System (JSIMS)
Joint Project Office in Orlando, Florida. He holds
this position concurrently with an appointment as a
tenure track faculty member at the Department of
Computer Science, Naval Postgraduate School (NPS)
in Monterey, California. Prior to joining the faculty
at NPS, Dr. Pratt was a Data Processing Officer in the
United States Marine Corps. He holds a Ph.D. and
M.S. in Computer Science from NPS and a BSEE
from Duke University. He has an extensive publica-
tion record with over thirty published articles cover-
ing a wide range of computer topics.




Session la: Command Forces Simulation

Salisbury, The Mitre Corporation

Calder, SAIC
Goldman, Hughes Research Labs

Gratch, ISI/USC







Command Forces (CFOR) Program Status Report

Susie M. Hartzog
NCCOSC RDT&E Division, code 44205
53140 Systems Street
San Diego, CA 92152-7560

1. Abstract

The command forces (CFOR) program is implement-
ing a new aspect of warfare simulation: explicit
modeling of command and control. The program
adds three major elements to the corpus of combat
simulation: (1) an architecture where software simu-
lation of command and contro! interacts with the
simulated battlefield through a set of common serv-
ices; (2) a common language for information between
and among command entities and human participants;
and (3)a development strategy that integrates the
efforts of multiple developers to produce a function-
ing multi-service command forces simulation.

The CFOR program has passed through the concept
and planning phases and is being implemented. This
paper presents a brief overview of the three major
elements along with a description of the current status
of the program and its near term objectives.

2. Background

The Command Forces (CFOR) project is a part of the
Synthetic Theater of War (STOW) program, an Ad-
vanced Concept Technology Demonstration (ACTD)
that is jointly sponsored by the United States Atlantic
Command (USACOM) and the Defense Advanced
Research Projects Agency (DARPA). The STOW
program is scheduled to support a USACOM exercise
in 1997 where entities from each US armed service
will interact with each other and with credible oppos-
ing force objects in a virtual simulation environment.
The STOW ACTD will be the first large-scale dem-
onstration of a High Level Architecture (HLA) simu-
lation Federation supported by the HLA’s Run Time
Infrastructure.

The STOW ACTD requires the representation of
larger-scale and more diversified military operations
in virtual simulation. A key element in achieving this
goal is the ability to represent both fighting forces and
their commanders in software. CFOR extends the
current entity level simulation architecture to incorpo-
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rate explicit, virtual representation of command
nodes, C2 information exchange, and command deci-
sion making.

3. CFOR History

The CFOR concept and program was born in the Fall
of 1993 in response to DARPA’s concern with the
vertical scalability of entity-level simulations.
DARPA'’s goal in the Advanced Distribution Simula-
tion project was to provide a high resolution, high
fidelity battlefield simulation that would support Joint
Task Force level training. The modeling techniques
being applied at that time did not seem likely to
achieve realistic simulated behavior for larger and
more complex force structures. After studying the
problem we determined that the vertical scalability
problem might be solved by focusing on the com-
mand and control entities that synchronize and direct
the activities of the forces applied in a battle. Our
theory was that the basic actions of an individual tank
or airplane are fairly straightforward. Complexity
arises from the organization of platforms into units
that can execute temporally and spatially sophisti-
cated actions to accomplish goals. The key tasks of
organizing platforms into units and directing and
controlling their actions are accomplished in the real
world by battlefield commanders.

4. CFOR Contributions

The CFOR program adds three major elements to the
corpus of combat simulation. These three elements
are described here.

4.1 CFOR Architecture

The CFOR architecture was devised to allow for ex-
perimentation in the application of cognitive model-
ing techniques to the problem of simulating battle-
field commanders. The architecture is flexible in that
it allows multiple developer teams to explore differ-
ent technical approaches for developing sophisticated
models of battlefield commanders and necessary de-
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Figure 1: CFOR Technical Reference Model

cision-makers and to link those models to the existing
entity-level simulations. In the CFOR program, these
models of commanders and decision-makers are
called Command Entities.

The CFOR architecture is portrayed best by the tech-
nical reference model (TRM). This TRM (see Figure
1) promotes interoperability and coherent C2 activity
by providing a shared infrastructure, a common set of
information and computing services, accessible
through a well-defined applications interface.

The TRM is composed of three layers: Application
Layer, Information Services and Utilities Layer, and
Baseline Infrastructure Layer. This layered approach
provides three specific benefits: 1) it provides a
means of centralizing control over the baseline of
doctrinal knowledge needed by the command entity
applications; 2) it reduces command entity develop-
ers' efforts by providing common reusable software;
and 3) it shelters the command entity developers from
technology and functional enhancements in the base-
line applications (e.g., ModSAF) and allows them to
focus on command decision behavior.

* The Command Entity Application layer is where
the command decision-making processes reside.
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Command Entity Applications may be fully auto-
mated software or C2 workstations operated by
human command entities. All details about the ac-
tual implementation of a software command entity
are under the purview of the simulation developer
organizations; they are free to implement their own
approach to making command decisions. Likewise,
the adaptation of C2 workstations to the CFOR ar-
chitecture is dependent only on the interface speci-
fication to selected modules with the Information
Services layer. Workstation developers are free to
decide how to display, massage, or augment the
simulation data available via the Information Serv-
ices layer.

The Information Services layer contains services
and utilities that provide the information needed to
support command decisions. These services im-
pose few restrictions on how to model the decision
process. They avoid making any inferences or
judgments that are the proper purview of command
entities.

Access to the services and utilities is specified by
an Application Programmer’s Interface (API) writ-
ten in Interface Definition Language (IDL).

Services available include the following:

Platform Behaviors provide a generic interface
to a command entity's physical representation on
the battlefield. A command entity is associated
with a vehicle or a set of vehicles (e.g., a command
post). For example, an Army Company com-
mander may ride in a tank, a Bradley Fighting Ve-
hicle, a helicopter, or a HMMWYV. Services pro-
vided mimic the commander’s ability to sense from
his vehicle, move his vehicle around the battlefield,
and employ his weapons. In the past two years the
platform behaviors have been extended as the un-
derlying application responsible for modeling the
commander’s vehicle has become more capable.
For example, a command entity can now request in-
formation about the atmospheric conditions ob-
servable or discernible from his vehicle.

Communications offer an application interface to
Command and Control Simulation Interface Lan-
guage (CCSIL) message utilities. (see below for a
discussion of CCSIL)

C2 Utilities represent the background knowledge
and rote reasoning capability of the commander—
"routine” knowledge, shared by every human com-




mander, that does not depend on subjective judg-

ments. This is important for several reasons:

» To prevent redundant and potentially inconsis-
tent knowledge acquisition and engineering ef-
forts by the command entity developers.

» To help focus the activities of the command en-
tity developers on addressing the difficult issues
in modeling subjective, context-sensitive judg-
ments and decisions.

 To localize the encoding of doctrinal information
within the CFOR family of application software
for two reasons: 1) to facilitate CFOR testing and
evaluation; and 2) to minimize the effort needed
for future enhancements or modifications for
particular exercises or scenarios.

Services include
Environmental Utilities which provide the ability
to compute mobility corridors, control measures,
reverse slopes, routes, travel time and speed.
(Environment includes terrain, ocean, and atmo-
sphere.)
Unir Info which provides access to static data
about units (own and enemy) and the ability to
make basic inferences (e.g., combat power) from
the raw data.
Missions and Tasks which provides doctrinal
decision templates to help interpret an ordered
mission and to devise a plan.
Tactics, Techniques, Procedures which provides
templates to help fill out orders and implement a
plan.

» The Baseline Infrastructure Layer contains the ba-
sic platform representation and general DIS inter-
face utilities. These capabilities are accessed by
command entity applications indirectly through the
Information Services layer. For the STOW ACTD
the baseline infrastructure layer includes the four
Synthetic Force applications: Army SF, Navy SF,
MC SAF, and AFSAF.

4.2 CCSIL

The Command and Control Simulation Interface Lan-
guage (CCSIL) is a special language for communicat-
ing between and among command entities and small
units of virtual platforms generated by computers for
the STOW ACTD environment. CCSIL includes a
set of messages and a vocabulary of military terms to
fill out those messages. It was developed to facilitate
interoperability between different implementations of
command entities and platform entities (vehicles) in
an HLA Federation.

13

C2 Workstation
. Development
Ry

Ent
Devebpment

Knowledge
Acquiskion

Figure 2: Activity Relationships

A common language designed for interpretation by
software is needed to allow all three implementation
approaches (workstation, automated command entity,
and SAF) to work together in one environment. By
using the structured format of CCSIL messages, hu-
mans at real world command and control worksta-
tions can send orders and directives to software
command entities and expect them to react appropri-
ately. Likewise, software command entities can ex-
change messages with each other.

Without a common language and communications
services, every new element added to a Federation
would need to be iteratively retrofitted to interoperate
with every other existing element of the virtual simu-
lation Federation. CCSIL serves as a unifying thread
among diverse implementations of command entities,
computer generated forces, and command and control
workstations.

4.3 CFOR Development Process

The process for developing a fully operational CFOR
system is depicted in Figure 2 and described in the
following paragraphs.

The process is being applied to each of the Services
independently, although oversight over the entire
program is being applied by the program System En-
gineer.

* Requirements Definition. The first step in imple-
menting CFOR is deciding and documenting which
C2 elements will be represented in simulation,
which missions they should perform, and how each
of them will be implemented (human, automated




commander, or SAF). This concept is developed in
close coordination with Service representatives.

Knowledge Acquisition. Experts in each field and
for each military Service gather information about
the command process. Particular emphasis 1is
placed on planning, decision-making, monitoring,
and revising plans. After initial gathering and
documenting by contractors, the Services will as-
sume responsibility for maintenance of the knowl-
edge base.

CCSIL Development. CCSIL is based on the prod-
uct of knowledge acquisition—on the documented
C2 process and the identity, format, and content of
relevant message exchanges. The CCSIL devel-
opment team works closely with the knowledge ac-
quisition team to assure clarity and completeness.

C2 Workstation Adaptation. Selected C41 Systems
will be integrated with the Modular Reconfigurable
C4l Interface (MRCI) to enable the warfighter to
participate in the virtual simulation via their real
world system. To the extent possible, the MRCI
project is adopting the CCSIL message set as a
starting point for defining the standard for informa-
tion exchange between real world C41 devices and
simulations.

SAF Adaptation. ModSAF is being enhanced to
model new vehicles and small units and to model
new behaviors for entities and small units. This
version of ModSAF is then adapted to properly
carry out CCSIL orders and requests and to gener-
ate CCSIL reports. The CCSIL adaptation has
been integrated into the ModSAF 2.1 baseline.

Command Entity Development. The CFOR pro-
gram plan calls for multiple contractors, each de-
veloping a software implementation of a command
entity. For each command entity, the contractor
builds the required mission behaviors. After a suit-
able period of development, the implementations
are evaluated. Subsequently, the developers con-
tinue to deliver additional mission areas and new
command entities on an approximate schedule of
every three months until the 1997 demonstration.

Infrastructure Building. The CFOR infrastructure
software provides services to the command entity
simulation and the real world C2 systems based on
information provided by the knowledge acquisition
process. An initial delivery of this software was
made in January 1995; new versions are issued
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every one to three months, accommodating new
CCSIL messages and modifications needed by
Command Entity developers.

* Testing and Integration. The nature of the CFOR
program dictates steps beyond the normal testing
process. Technical integration testing is needed to
assure that all components communicate correctly.
Also Command entity behavior must be evaluated
against reasonable behavior standards, initially by
the knowledge acquisition teams and ultimately by
Service experts.

5. CFOR Development Status

The majority of the CFOR development work ac-
complished to date has been in the Army domain.
However, some work has been completed for the
other military Services. Using the general outline
described in Section 3 for the CFOR Development
Process, the following paragraphs briefly describe
the status of the CFOR effort.

5.1 Army

Army requirements definition started in October
1993. Based on the requirement for the Army to
simulate a heavy brigade as part of the Joint Task
Force for STOW 97, we determined that the initial
command entity to be developed would be an Ar-
mor/Mech Company Team Commander. Additional
command entities to be developed include the Com-
pany FIST, the Company Trains Commander, the
Engineer Platoon Leader, and the Battalion Com-
mander. In order to support ground maneuver opera-
tions for a Mech Heavy or Armor Heavy Brigade
Task Force, the mission areas being developed are
Attack, Defend (including defense in sector, defense
of a battle position, and reserve unit in the defense),
and Movement to Contact. The overall goal is to
provide a combined arms capability with emphasis on
maneuver and fire support. To address Rotary Wing
Air (RWA) requirements, RWA Company and Battal-
ion Commanders are being developed that will be
capable of performing Attack, Reconnaissance, and
Security missions.

Logicon RDA has the responsibility of providing
Army CFOR knowledge acquisition (KA). Based on
the above requirements, Logicon’s approach has been
to identify key elements in the decision process based
on Army doctrine. In particular, the KA team has
used the Army Training Evaluation Program
(ARTERP) collective tasks with particular attention to



C2. These individual ARTEP tasks combined with
descriptions of higher order decision making to col-
lectively provide the basis of the knowledge for the
command entity development.

The current CCSIL Ground Operations message set
consists of about 39 messages that cover Orders and
Directives, Unit Situation and Status Reports, Fire
Support Messages, Engineer Messages, Air Defense
Messages, and Combat Service Support Messages.
Currently, the majority of messages being used fall
into the Orders and Directives and Unit Situation and
Status Reports categories.

Science Applications International Corporation
(SAIC) has the responsibility for developing Army
Ground Maneuver command entities. Initial devel-
opment started with the Company Team Commander
in January 1995. SAIC demonstrated the Company
Team Commander performing an Attack mission in
the STOW Engineering Demonstration 1 in October
1995. Since then, their focus has been on the Defend
mission area, enhancing the Attack mission area, and
on developing command entity to command entity
communications so that eventually all companies will
be able to operate and communicate effectively as
part of a battalion. SAIC is also building the FIST
command entity along with the interactions
(guidance) that occur between the Company Team
Commander and the FIST. SAIC initiated the Battal-
ion Commander effort in May 1996.

The SAIC team’s approach to automated decision
making is based upon a Constraint Satisfaction Tool.
Planning and replanning is performed by a Combina-
torial Constraint Satisfaction (CCS) procedure which
acts as an interpreter for high-level behaviors ex-
pressed as Constraint Sets (CS). Execution and
monitoring 1s performed by Autonomous Control
Logic (ACL+).

Information Sciences Institute (ISI) has the respon-
sibility for developing RWA commanders. The ini-
tial effort to develop a RWA Company Commander
capable of performing an Attack mission is well un-
derway. Using the SOAR technology, ISI has built an
RWA Company Commander that can plan for and
direct a force of RWA pilots also built in SOAR.

The Army CFOR testing methodology has been to
test the command entities in several virtual Situa-
tional Test Exercises (vSTXs) and virtual Field
Training Exercises (vFTXs) which, collectively,
make up the unit level testing of the command enti-
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ties. The main purpose of the vSTXs and vFTXs is to
assess the reasonableness of behaviors within the
ARTERP construct.

SAIC’s and ISI's Army command entities will be
further tested in STOW’s Combined Behaviors Test 1
in July 1996. The Army portion of this multi-Service
test will occur at the National Simulation Center
(NSC) at Fort Leavenworth, Kansas. Army Service
experts will be present to evaluate behaviors.

5.2 Navy

Navy CFOR requirements definition started in Febru-
ary 1995 and continues. The Navy CFOR effort has
focused on Navy CCSIL development in support of
both sea and air operations.

The current CCSIL Sea Operations message set con-
sists of about a dozen messages that cover Sea Mis-
sion Control, Anti-Air Warfare (AAW), and Anti-
Surface Warfare (ASuW) components of the Navy's
mission space. Additionally, Link 11, OTH Gold,
and ATP-1 message sets have been identified. The
Navy Synthetic Force entity development team has
adapted their simulation to send and receive CCSIL
messages and has developed an initial implementation
of Link 11.

The current CCSIL Air Operations message set,
which supports both Navy and Air Force air opera-
tions, consists of about 45 messages that cover Close
Air Support (CAS) Mission Control, Brevity Codes,
and Air Mission Control.

BMH Associates has the responsibility of providing
Navy KA. To provide a CCSIL capability within the
Navy, BMH has developed two storyboards that will
closely tie in sea assets being represented by Navy SF
and air assets being represented by Soar Fixed Wing
Air Intelligent Forces (IFOR). These two storyboards
will demonstrate Close Air Support (CAS) and Anti-
Air Warfare (AAW) missions.

The Link 11 message as well as the CAS storyboard
and its supporting messages will be tested in STOW'’s
Combined Behaviors Test 1 in July 1996. The Naval
sea component will be tested from NRaD in San Di-
ego, California and the Air component will be tested
from the WISSARD lab at NAS Oceana, Virginia.




5.3 Marine Corps

Marine Corps CFOR requirements definition started
in February 1995 and continues. Because a major
thrust of the Marine Corps Synthetic Force program
is to develop the Individual Combatant, we decided
that the first command entities to be developed would
be an Infantry Platoon Commander and an Infantry
Company Commander. To support the Marine Corps
role in STOW 97 in the areas of ground maneuver
and amphibious operations, the mission areas being
developed are attack, link-up, movement to contact,
and hasty defend. The overall goal is to provide a
combined arms capability with emphasis on being
able to flexibly task organize Marine Corps assets
into the force packages necessary for the mission.

BMH has the responsibility of providing Marine
Corps knowledge acquisition (KA). BMH’s ap-
proach has been to provide KA based upon Marine
Corps doctrine. In particular, the Mission Perform-
ance Standards (MPS) from the Marine Corps Com-
bat Readiness Evaluation System (MCCRES) and the
Battle Drills established by Marine Corps Order have
been collectively used to provide a framework to
guide development and testing.

To support Dismounted Infantry, several of the mes-
sages in the CCSIL Ground Operations message set
were enhanced. New CCSIL tasks and enumerations
were provided to support Marine Corps lifeforms and
munitions. Currently, the majority of message types
being used fall into the Orders and Directives and
Unit and Status Reports categories.

Hughes Research Laboratories (HRL) has the re-
sponsibility for developing Marine Corps Infantry
Platoon and Company Commanders. HRL’s initial
effort was in developing an Army Company Team
Commander in 1995. This was done simultaneously
with SAIC’s Army Company Team Commander ef-
fort in order to mitigate risk. HRL demonstrated the
Company Team Commander performing an Attack
mission in December 1995. Since January 1996,
HRL has been entirely focused on developing the
Marine Corps Infantry Platoon Commander. An at-
tack mission capability will be provided first. HRL
will soon begin developing the platoon commander to
platoon commander interactions and communications
so that the Company command entity can be realized.

The HRL team calls their implementation the Ca-
nonical Commander Model (CCM). The CCM com-
prises several distinct modules: a mission ana-
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lyzer/planner, a friendly and enemy situation
analyzer, and a terrain analyzer. A major technology
component of the CCM is an inference engine that
works over a set of fuzzy logic tables containing spe-
cific military decision making knowledge.

The unit level testing for the Marine Corps command
entities will follow the methodology used in the Army
program, namely to run through several virtual Situa-
tional Test Exercises (vSTXs) and virtual Field
Training Exercises (vVFTXs) where reasonableness of
behaviors will be assessed in accordance with Mis-
sion Performance Standards (MPS) and the Battle
Drills framework.

HRL'’s Marine Corps command entities will be fur-
ther tested in STOW’s Combined Behaviors Test 1 in
July 1996. The Marine Corps component of this test
will occur at NRaD in San Diego, CA. In the future
the Marine Corps CFOR work will be integrated into
the LeatherNet facility which is being used for train-
ing and mission rehearsal at 29 Palms, CA.

5.4 Air Force

Air Force CFOR requirements definition started in
December 1994. The initial concept was to build an
Airborne Control Element (ACE). However, this has
been superseded by a requirement to develop an
automated Wing Operations Center (aWOC). The
automated WOC will receive an Air Tasking Order
(ATO) in CCSIL and generate most of the necessary
data to launch simulated aircraft on missions. This
data will be forwarded to the Soar exercise editor and
stored in a database accessed by the Soar FWA pilot
entities. We expect that the aWOC will have a limited
capability and that a human will be required to pro-
vide the detailed routing information needed to exe-
cute a mission. However, this initial capability will
greatly ease the burden of the STOW operators in
sortie generation. This effort is expected to start in
July 1996.

Many of the existing CCSIL Air Operations messages
will be reused to support the exchange of C2 infor-
mation between Soar FWA pilots and other command
decision makers that may be represented in software
or played by humans, such as Forward Air Control-
lers.

6. Summary

CFOR is implementing explicit modeling of com-
mand and control by adding three major elements to




combat simulation: (1) an architecture where simula-
tion of command and control interacts through a set
of common services; (2) a common language for in-
formation among command entities and human par-
ticipants; and (3) a development strategy to integrate
the efforts of multiple developers to produce a multi-
service command forces simulation.

CFOR has completed the concept and planning
phases and is being implemented. This paper pre-
sented an overview of the three CFOR elements and a
description of the status of the program and its near
term objectives.
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1._Abstract

Representing command and control decision-making
in software is a critical and challenging task
confronting the simulation community. As the focus
of Distributed Interactive Simulation shifts towards
larger-scale, higher-fidelity exercises, there is an
increased requirement for software implementations of
intelligent command entities at higher-level military
echelons. Current computer generated forces systems
have achieved the reasonable simulation of individual
platforms and small units. The Command Forces
project endeavors to realistically model the complex
command and control decision-making process of
higher-level unit (i.e. company and above)
commanders in the military hierarchy.

This paper presents the software architecture of a
CFOR command entity which has been designed and
implemented to achieve the goal of simulating this
high-level decision-making behavior.  The first
application of this architecture is aimed at modeling
the behavior of various Army commanders at the
company and battalion levels. Descriptions of the
key components of the system and details of the
interactions which occur among these components are
presented.

2. CFOR Overview

The Command Forces (CFOR) project is a part of the
Synthetic Theater of War (STOW) program, an
Advanced Concept Technology Demonstration
(ACTD) that is jointly sponsored by the U.S.
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Atlantic Command (USACOM) and the Defense
Advanced Research Projects Agency (DARPA). The
STOW ACTD is focused on training commanders at
multiple levels up to the joint task force level, and
therefore requires the ability to represent large-scale,
diversified military operations in simulation. A key
element in achieving this goal is the ability to
represent both fighting forces and their commanders
in software. Current computer generated forces
(CGF) systems provide the simulation of individual
platforms and small units. CFOR extends the basic
DIS architecture to incorporate explicit, virtual
representation of command nodes, command and
control (C2) information exchange, and command
decision-making.

The CFOR concept and technical reference model are
described in full detail in [Salisbury, et al, 1995].
This paper focuses on the software architecture of a
simulated commander, called a Command Entity
(CE), which is capable of performing the planning,
execution, tracking, and replanning of missions for
various military commanders.

3. CE_Application A

The CE architecture presented below has been
designed to support the modeling of C2 decision-
making for commanders at various echelon levels in
multiple service areas. The initial application of this
architecture has been the modeling of an Army Armor
Company Team commander.




3.1 Army Armor Company Team

Command Entity Capabilities

The Army CFOR program has devised a CE
capability assessment model in terms of Mission,
Enemy, Terrain, Troops, and Time Available (METT-
T). This model is used to define the behavioral
capabilities of the CFOR CE, and as a basis for
determining test plans for the CE. The missions and
behaviors which the CE can perform are based on
published Army doctrine, and are traceable back to the
Army Training and Evaluation Program (ARTEP)
tasks defined for a given unit type.

Using the METT-T model, the capabilities of the
Army Armor Company Team CE include:

Mission: The CE plans and executes offensive and
defensive missions as part of a battalion task force. It
plans and performs attack, defend, and reserve
missions utilizing the appropriate company-level
ARTERP tasks. It plans and performs explicit tasks
which were specified in the battalion operations order,
and also identifies, plans, and performs implicit tasks
which were not specified by the battalion, but are
required for successful execution of the mission. It
properly handles a variety of unplanned events, such
as encountering unexpected enemy ground or air units
and encountering obstacles.

Enemy: The CE incorporates expected and actual
enemy units and enemy force ratios into its planning
and execution.

Terrain: The CE operates on open, desert terrain and
rolling, wooded terrain. It incorporates expected
visibility and mobility into its planning process.

Troops: The CE constructs plans for an Armor
Company Team, which can consist of any mix of
tank and mechanized infantry platoons, ranging from
two to five platoons.

Time Available: The CE considers the time available
to perform its mission during the planning process.
This affects various factors of how the mission can be
accomplished, such as route selection.

4. Command Entity Architecture

A high-level block diagram of the required
components for a CFOR simulation is shown in
Figure 1. Within the context of this architecture, the
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CE software exists as a separate process which
models the C2 decision-making of one or more
simulated commanders.

In addition to the CE simulation process, Figure 1
shows a higher echelon commander (either human or
simulated) which must be present to perform the role
of the commander to which the CE is responsible.
The role of this higher echelon commander may be
filled by a human at a C2 workstation or another
CFOR CE simulation process. Currently, this role
is filled by a human operating a menu-driven C2
interface. The primary function of this interface is to
allow the operator to send and receive messages on
simulated radio networks.

Figure 1 also shows a small unit forces simulation
which must be present to perform the simulation of
the subordinate units and entities which the CE is
commanding. The role of these units may be filled
by any CGF system which fully supports the CFOR
applications programmer interface (API). Currently,
this role is filled by a modified version of the
Modular Semi-Automated  Forces (ModSAF)
program, called Adapted ModSAF, which fully
supports the CFOR APL

All communication between the CE, higher echelon
commander, and small unit forces is via the
Command and Control Simulation Interface Language
(CCSIL). CCSIL includes a set of messages and a
vocabulary of military terms for filling out those
messages. The definition and implementation of the
CCSIL message set allows different implementations
of CE’s, C2 workstations, and CGF systems to
communicate via a common language. CCSIL
messages are sent in DIS signal PDUs over simulated
radio networks. Examples of Army CCSIL
messages are the Operations Order, Fragmentary
Order, Situation Report, and Status Report.

As shown in Figure 1, the CE application interfaces
with the CFOR infrastructure utilities via direct
function calls and Remote Procedure Calls (RPC).
The C2 Utilities and Environmental Utilities are
libraries which are linked directly into the CE
application and are therefore invoked via direct
function calls. The Communications and Platform
Behavior Services are libraries which are linked into
the Adapted ModSAF and are therefore invoked via
RPC.
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Figure 1: CFOR Simulation Component Block-Diagram

The architecture of the CE software has been designed
to support the modeling of command and control
decision-making for software commanders at multiple
echelon levels in various service areas. It is organized
such that general knowledge is contained in generic
base classes and domain-specific knowledge is isolated
in well-defined derived classes. This provides for
maximum reuse of previously developed software,
while not prohibiting implementations where specific
knowledge is needed. The CE is designed utilizing an
object-oriented methodology, and the software is
implemented in C++. A high-level, object-oriented
component diagram of the CE is shown in Figure 2.
Figure 2 also shows critical data flows between the
key components.

The following sections describe each of the major CE
components in detail. These descriptions may have
an Army bias, as that is the first application area to
which this architecture has been applied, but the
components presented are applicable to a CE in any
service area.

4.1 Commander Class

A single CE process is capable of simulating
multiple commanders simultaneously. The
commanders simulated can be of similar or different
echelons and roles. For example, multiple armor
company team commanders, or a mix of armor
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company team and fire support team commanders, can
be simulated in a single process.

This capability is facilitated by encapsulating all of
the components shown in Figure 2 inside of a
commander class, and instantiating a separate
commander object for each commander to be
simulated. A non-interruptible, round-robin
scheduling mechanism is used to give each
commander object its slice of processor time. In
order to ensure that each commander object gets its
slice of the processor in a timely fashion, the planner
class is constructed such that it returns control to the
main scheduling loop if it utilizes the processor for
more than a pre-specified amount of time. This is
essential since the construction of an initial plan can
take on the order of a few minutes. If the system
allowed a single commander’s planning to proceed
uninterrupted for several minutes, it would cause all
of the commanders being simulated to lose touch
with the state of the simulated world. The approach
implemented ensures that each commander, including
the one which is performing the complex planning,
will have timely access to events occurring in the
simulated world.

The base commander class has derived classes for each
of the different types of commanders which the CE
application can simulate. Most components shown
in Figure 2 also have similar derived classes.
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Figure 2: Command Entity Components and Data Flows
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4.2 External Communications

The CE does not have a direct connection to the DIS
network, and therefore does not read any DIS PDUs.
Instead, it has two mechanisms for effecting changes
in the simulated world and obtaining information
about the entities and environment in the simulated
world: 1) commands and queries of the platform,
weapons, and sensors of the commander’s vehicle, and
2) transmission and receipt of CCSIL messages.
Both of these interfaces are implemented via RPC
from the CE application to the CFOR infrastructure
services.

The CE utilizes the Platform Behavior Service
component of the CFOR infrastructure to interface to
its own vehicle. The CE moves its vehicle, employs
its weapons, and controls its sensors via this
interface. This interface is also utilized by the CE to
find out its location, speed, weapon status, and sensor
status.

The CE communicates with other entities in the
simulation via CCSIL messages. It receives CCSIL
orders and intelligence messages from its higher
echelon commander, and sends CCSIL situation and
status reports to its higher echelon commander on a
simulated radio network. It sends CCSIL orders to its
subordinate units, and receives CCSIL situation and
status reports from its subordinate units on a separate
simulated radio network.

Each CCSIL message is a well-defined data structure.
However, many CCSIL messages are complex data
structures which contain sub-structures, optional
fields, and variable length lists. In order to ease
access to incoming CCSIL messages and
construction of outgoing CCSIL messages, all of the
CCSIL structures and messages have been
encapsulated into C++ classes in the CE software.
Each C++ CCSIL class has methods to access and set
all of the CCSIL structures and fields within that
CCSIL structure. Therefore, the CE components
which access and manipulate CCSIL information
never operate directly in the CCSIL message format.
Instead these components access and manipulate the
C++ CCSIL class objects. Each C++ CCSIL class
has a method which converts an incoming CCSIL
structure into its corresponding CCSIL C++ object.
Additionally, each C++ CCSIL class has a method
which converts it into its cormresponding CCSIL
structure. This encapsulation approach provides the
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advantages of object-oriented programming for the
entire CCSIL message set.

4.3 Event Processor

Each CE’s execution thread is event-driven. The
individual components of a command entity are
responsible for identifying and registering all Events
(discussed below) that are potentially relevant to their
operation.

The Event Processor maintains a queue of all such
events, and is responsible for identifying when any
event on the queue has occurred, and triggering the
desired response.

4.3.1 Events

Events are objects that define something that can
occur in the system that requires that the system react
in some way. They are implemented as instances of
classes derived from the abstract Event base class.
The Event base class defines a generic interface for
each event, which includes three critical components:
how to determine whether the event has occurred;
what, if anything, is expected to be true about the
state of the world when it occurs; and what to do
when it has occurred.

Each subclass of Event defines its own Boolean
“Occurred” function, which returns true when the
conditions for the event have been met, and false
when they have not. This function can then be
queried by the Event Processor to determine when the
event has occurred. For example, the “CommEV”
event is considered to have occurred whenever a new
CCSIL communication is received.

4.3.1.1 Expectations

Each event has associated with it a list of zero or
more Expectations. Each expectation encodes the
desired set of values for some characteristic of the
world when an event occurs. For example, if the
event is “Unit A crossed phase line Alpha,” an
expectation might be that this occurred before time T.
Expectations, which are primarily used by the
Tracker, are used to determine whether the mission is
progressing according to the plan, based on a
mission-specific set of parameters and tolerances.




4.3.1.2 Callbacks

Each event also contains a list of zero or more
Callbacks. Each callback object encapsulates an
action which should take place when the event occurs,
such as informing the Tracker when a subordinate has
crossed a phase line. As with events and
expectations, callbacks are implemented using a base
class which defines a generic interface, and subclasses
which define actual functionality. = The Event
Processor is responsible for triggering each callback
of each event that occurs. Note, however, that the
functionality of each individual callback is completely
hidden from the Event Processor.

4.3.2 CCSIL Message List

Incoming communications, representing orders and
intelligence from the CE’s superior, as well as status
and situation reports from the CE’s subordinates,
account for many of the events handled within each
CE. In order to efficiently handle this message
traffic, the Event Processor is responsible for pulling
messages off of the incoming communications queue,
and storing them in a manner that renders them easily
accessible by interested events.

4.4 Situational Awareness

In order for the CE to perform its mission planning,
execution, and tracking, it must have a representation
of its perception of the current state of the world.
The Situational Awareness (SA) class provides this
representation. In the Army context, C2 decision-
making is performed based on the factors of Mission,
Enemy, Terrain, Troops, and Time Available (METT-
T). The SA class performs processing to build and
store data regarding mission, enemy, troops, and time
available. Due to the complexity of processing and
the volume of data required for terrain processing, the
CE architecture represents processing and knowledge
of the terrain as a separate class, which is described
below.

SA processes information from multiple sources,
including CCSIL orders and intelligence messages
from the higher echelon commander, CCSIL reports
from subordinate units, and sensory data from queries
via the platform behavior services. It uses this
reported and sensed information directly, and also
generates derived data from this information, to build
the picture of the commander’s view of the world.
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SA registers with the Event Processor to receive all
CCSIL messages which are sent on the commander’s
radio nets. As it receives each message, it extracts
the information relevant to the commander and
updates the corresponding SA data. SA also
periodically queries the CFOR platform behavior
services to obtain sensory information from the
commander’s vehicle and updates this data in the SA
state.

A difficult problem encountered when building up
state information from multiple sources is the proper
handling of repeated or contradictory data in reports.
SA handles this to some degree by performing simple
fusing of data from multiple reporting sources, such
as merging spot reports from multiple subordinates
which overlap on the same enemy units. SA does
not currently implement a sophisticated sensor data
fusion algorithm, but the CE architecture supports
the implementation of one.

In order to allow other CE component objects to
retrieve SA state data, SA provides accessor functions
to all of its information. To improve efficiency and
reduce the computational load, the calculation of
derived information in SA is mostly demand-driven;
that is, it is only computed when asked for.

Examples of the types of information contained in
SA include: the mission objective(s); location,
strength, and type of known and suspected enemy
units; location, strength, and composition of
subordinate and peer units; location and type of all
battalion and company control measures; location of
known obstacles; and time remaining to complete the
current mission.

4.5 Terrain and Environment

Terrain analysis is one of the most complex and
critical components involved in C2 decision-making.
In order for the CE to perform effective mission
planning, execution, and tracking, it must continually
evaluate the terrain and environment in which it is
operating. The Terrain classes provide services to aid
this evaluation and build the representation of the
commander’s perception of the environment.

The services provided by the Terrain classes are built
on top of the CFOR Infrastructure’s Environmental
Utilities (EU) library. This library contains a set of
basic terrain related services, and is based on a




tessellation of the underlying polygonal terrain. The
EU utilizes this terrain tessellation to provide services
which perform analysis of trafficability, fields of fire,
cover and concealment, and line of sight. In addition,
the EU provides services which allow access to the
basic terrain data such as elevation, soil type, feature
type, and coordinates.

The Terrain classes utilize the EU library to provide
services to other CE components for analyzing the
terrain at the individual vehicle and aggregate unit
level. These services are used primarily by the
constraint sets (described below) in the process of
constructing a plan.

The Terrain services utilize information from SA to
support their analysis. For example, known and
suspected enemy locations are needed to generate
covered and concealed routes, and a unit’s
composition is needed to compute the size of a battle
position. In addition, the Terrain services utilize
information from the CFOR Infrastructure’s C2
utilities to support their analysis. For example, the
range of a unit’'s weapons system is needed to
generate attack by fire positions.

The services provided by the Terrain classes adhere to
all control measures which have been specified in the
order by the commander’s higher echelon. This
includes such control measures as unit boundaries,
axes of advance, routes, assembly areas, and battle
positions. In addition, known obstacles and other no-
go areas are considered by these services. For
example, if a unit is to defend in sector, then the
sector boundaries must be honored in the generation
of defensive battle positions and routes to subsequent
battle positions.

Examples of terrain analysis services provided by the
Terrain classes are the computation of: mobility
corridors, based upon a unit’s composition; avenues
of approach, based upon an objective, a unit’s
boundary lines, and a unit's composition; routes,
based upon enemy locations, a unit’s composition,
and time available to traverse the route; overwatch
positions, based upon an objective location, enemy
locations, weapons ranges, and a unit’s composition;
defensive battle positions, based upon an objective
location, enemy locations, weapons ranges, and a
unit’s composition; assault positions, based upon an
objective location, enemy locations, and a unit’s
composition; and attack positions, based upon a line
of departure, objective location, enemy locations, and
a unit’s composition.
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4.6 Planner

The Planner is the CE component which generates,
evaluates, and selects a course of action that satisfies
the mission objectives within the guidance specified
by the higher echelon commander. It is invoked
when a new order is received, or whenever the
situation warrants a change in the course of action.
The CE software uses an approach based upon
constraint satisfaction to perform its planning. The
following sections describe the critical components
which are involved in the planning process.

nstraint Set

The objects in the CE software which encode all of
the knowledge required to plan a given task are called
Constraint Sets (CS). Each CS is a C++ class which
specifies how to make a coherent set of decisions.
For a given type of operation, a CS specifies the
relevant decisions to be made and generates options
for each. The decisions can be sequential or parallel,
and in any order. In contrast, finite state machines
specify how to perform a temporal sequence of
actions. The CE software utilizes two types of CSs:
component CSs and composite CSs.

A component CS is used to evaluate alternatives and
generate a feasible solution to an individual
component of an overall mission. Each component
CS contains specific knowledge to generate a plan for
a particular task. There are many component CSs
defined in the CE software, with each one typically
corresponding to a single ARTEP task. For instance,
there is a component CS which plans unit-level
tactical movements, and another component CS
which plans obstacle breaches. An instantiated
component CS is a plan for executing a specific
behavior given the current or expected tactical
situation.

A composite CS is a collection of component CSs
which are dynamically linked at run-time to form a
mission. There is only one composite CS defined in
the CE software, and it has no task-specific
knowledge associated with it. Each mission will
construct and generate a unique composite CS at run-
time, which is capable of planning the mission at
hand. The component CSs in the composite CS are
linked together spatially by each of their start and end
points.  The composite CS also handles the
allocation of mission-critical resources, such as time



and forces, across the component CSs. An
instantiated composite CS is a plan for executing an
entire mission over the course of time and space.

Both component and composite CSs have a common
set of characteristics, as they are derived from a base
class CS. All CSs have four basic components: a
set of minimum input variables, a set of derived
variables, generator functions, and prioritizer
functions.

The set of minimum input variables are those pieces
of information which are required to construct a plan
for the given CS, and are supplied to the CS when it
is initially constructed. These typically include the
unit’s name, the unit’s composition, the known and
suspected enemy locations, the start and end points,
and the current order from the higher echelon
commander.

The derived variables are those pieces of information
which are computed by the constraint set. Each
derived variable corresponds to a tactical choice which
must be made by the CE. Once a set of consistent
values have been generated for all derived variables in
a CS, the CS represents a feasible plan for
accomplishing the task at hand and is said to be
instantiated. Examples of derived variables are the
allocation of subordinate forces, route selections,
tactical position selections, formation selections, and
speed selections. The derived variables are ordered
such that a given derived variable depends only on the
previous derived variables.

Each derived variable has a corresponding generator
function. A generator function produces a list of
candidate values for a given derived variable. The
values generated are consistent with the choices for
previous derived variables and with the current battle
state. Each value represents a different option for
satisfying that derived variable. A variable can be of
a simple type (such as a floating point number
representing a speed) or a complex type (such as
another constraint set). The generators invoke terrain
analysis and situational awareness services as needed
to support relevant decisions.

Each derived variable may also have a corresponding
prioritizer function. A prioritizer function orders the
values generated for a given derived variable in a best-
first or least-constraining order.

As mentioned above, in some CSs a derived variable
may be another CS, which returns different feasible
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solutions to its parent CS. In this case, the CS is
itself a generator function since it is dynamically
generating multiple instances of itself as candidate
values for the current variable.

The process of instantiating a constraint set involves
exercising the generator and prioritizer functions until
a consistent set of values for all derived variables has
been found (e.g. a feasible set of firing positions,
routes, etc. for an assault; a set of formations, sub-
routes, and overwatch positions for a move). To
develop a CS, a software engineer must specify in
code the relevant variables, in what order they are to
be matched, on which previous variables they are to
depend, and how to generate candidate values for a
variable given the current values of previous variables

(if any).

4.6.2 Orderto Constraint Set Decomposition

The CE software must examine the current order to
determine what component CSs are needed to fully
accomplish a given mission in accordance with the
higher echelon commander’s guidance. This function
is performed in the CE by a class which decomposes
CCSIL orders into an appropriate composite CS.

This decomposition software is based on concepts
developed by Logicon RDA which break down Army
missions into categories of tasks which can be
performed to accomplish each mission type [Kleiner,
et al, 1995]. Each mission which the CE can
perform has a set of applicable ARTEP tasks which
fall into one of the following categories: Achieve
Tactical Disposition, Reduce Enemy Posture,
Achieve Culminating Task, Consolidate, and Perform
Situational Interrupt.

The CE software utilizes these concepts to decide
which tasks, both explicit in the order and implied by
the order, are to be performed to successfully execute
the mission. It then maps these tasks into their
corresponding component CSs and constructs a
composite CS which contains these component CSs.

4.6.3 Constraint Satisfaction Tool Planner
4.6.3.1.1 Combinatorial Constraint Satisfaction

The Combinatorial Constraint Satisfaction (CCS)
class is the CE component which invokes the
generator functions of the CSs during the



instantiation process. It acts as an interpreter for
CSs. handling the interactions between choices by
searching the implicit space of possible choices. It
successively calls the generator functions for each
variable of each CS in the mission. If no values can
be generated for a given variable which are consistent
with the values selected for previous variables, then
CCS backtracks to reconsider other values of the prior
variables. Once CCS successfully instantiates a
composite CS, the planning is complete.

The ability to embed CSs within one another, as
mentioned above, is facilitated by the fact that CCS
can recursively invoke itself. This, combined with
the capability to dynamically link CSs together at
run-time into a variable length composite CS, avoids
a combinatorial explosion of the number of CSs to
be developed. If this were not the case, pre-defined
CSs for all mission possibilities would be required.
Additionally, encoding the CSs as C++ classes
allows for inheritance among common behaviors at
multiple echelons, which lessens the number of
required CSs and the amount of code duplication.

4.6.4 Replanner

When replanning is needed, CCS is invoked to plan
reactions. When the reaction is complete, CCS is
invoked to replan the remainder of the mission from
the correct re-entry point. Reactive planning is
complete on the order of seconds because the search
space required for terrain analysis is small.

4.7 Plan

A plan in the CE is an object which consists of three
component objects: the set of instantiated constraint
sets, an execution matrix, and an operations order.

The plan will be followed by subordinates, and
progress will be measured against it by the Tracker.
It contains information which indicates the
constraints which were used to generate particular
nodes of the plan, for use in replanning and new
OPORD evaluation.

4.7.1 Instantiated Constraint Sets

Once the planning process has been successfully
completed as described above, a fully instantiated
composite CS with fully instantiated CSs results.
However, this representation of the plan as a set of
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variables with corresponding values is not sufficient
to describe the entire mission which has been planned
for the commander’s unit. It does not describe all
details of the tasks which need to be assigned to
subordinate units, only those characteristics which
needed complex planning due to dependencies upon
other values. Additional representations with more
detailed information are needed and are described
below.

However, these instantiated CSs contain the context
in which the choices for the derived variable were
made, and are therefore useful to save for future
reference. In particular, their primary use is to assist
the CE in performing partial replanning of the
mission as the situation warrants.

4.7.2 Execution Matrix

After the CSs are fully instantiated, each CS
generates its part of an object in the CE called the
Execution Matrix. The Execution Matrix is a time-
phased list of the company- and platoon-level tasks
which the unit will perform as it carries out the plan.

Information contained in the Execution Matrix is the
equivalent of that contained in an Army operations
order execution matrix, plus detailed segmenting
information needed for mission tracking and additional
information required for execution of the plan by the
CE. The Execution Matrix is designed to represent
the flow-down definition of the mission from the
form it takes in the instantiated CSs to a detailed,
quantitative sequence that can be easily monitored and
executed. As all tactical decisions were previously
made by the CSs, the primary function of the
Execution Matrix is to organize these decisions in
such a way that they can be easily communicated to
subordinate units and ensure synchronization.

The Execution Matrix representation is a hierarchy,
the root of which is the mission itself. Lower levels
of the hierarchy decompose the mission successively
into phases, tasks, and segments. A data structure is
also assembled in the Execution Matrix for the CE to
use in monitoring events and issuing commands to
subordinate units.

As each CS builds its part of the execution matrix, it
also creates the segments that are part of each phase
of the matrix. This segmentation scheme was
inspired by the Autonomous Control Logic system
[Glasson, 1992]). Segments are defined as portions of




a mission phase which have homogeneous attributes.
Phases can be segmented in any way desired, but are
typically segmented spatially or temporally. Each
segment contains one or more transition arcs to other
segments and may also contain expectations which
embody the attributes of the segment. Some example
segment attributes are: nominal times for beginning
and end of segment; exposure state; likelihood of
enemy contact; and unit formation.

4.7.3 Operations Order

After the Execution Matrix has been generated, it is
turned into a CCSIL C++ class operations order or
fragmentary order. This order is then converted into
CCSIL for transmission to the subordinate units.
This is the third and final component of the Plan. It
is useful to save in order to perform simple
replanning where the CE needs to make minor
modifications to the previous order, such as changing
a speed or formation. Having access to the order for
reference allows for easy composition of fragmentary
orders.

4.8 Mission Tracker

The Mission Tracker monitors the progress of the
commander’s unit as it executes its planned mission.
It continuously compares actual states with expected
states and initiates requests for replanning when
corrective action is needed. It is also responsible for
responding to or forwarding incoming messages from
the CE’s superior; relatively simple orders, such as
Execute Directives, are handled by the Tracker
directly, while more complex ones, such as
Operations Orders, are forwarded to the Planner.

The Mission Tracker makes use of segments,
described previously, to measure the unit's progress
against the Plan. The Mission Tracker maintains the
current segment for each subordinate, the unit as a
whole, and the unit commander. Transitions between
segments are detected using events, described above.
When a segment transition event occurs, the Mission
Tracker first checks that all execution state
expectations (as described above, in the discussion on
events) have been met. If they have, the Mission
Tracker then queries the Plan for the next segment,
transition events, and expectations for the affected
unit(s). The new transition events are then registered
with the Event Processor. Note that some segment
transitions may require that the CE take specific
actions (e.g., sending an Execute Directive to a
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subordinate).  This is handled by attaching an
appropriate callback to the transition event. If all
execution state expectations have not been met, the
Mission Tracker invokes the Replanner to adjust the
plan accordingly.

5. _Future Work

Army CFOR CE development is currently in
progress, and a variety of tasks are scheduled for the
near future. These include continued expansion of the
Army Armor Company Team CE, development of
additional Army CE’s (with horizontal expansion at
the company level and vertical expansion to the
battalion level), and refining and improving the basic
CE architecture. In addition, the application of this
CE software and architecture to a non-Army command
entity 1s a mid-term goal.

5.1 Expansion of Army Armor Company
Team CE Capabilities

The following additional Army Armor Company
Team CE capabilities are planned to be developed in
support of the STOW 97 exercise:

-Expansion and improvement of capabilities in attack
and defend missions.

- Integration with an Army Fire Support Team
(FIST) CE to plan and execute indirect fires in the
offense and defense.

- Development of capabilities for planning and
executing movement to contact missions.

- Integration with an Army Company Trains CE to
plan and execute combat service support operations.

- Integration with an Army Rotary Wing Aircraft
Company CE to plan and execute combined arms
coordination.

- Development of capabilities for planning and
executing engineer operations.

5.2 Additional Army Command Entities

The following additional CE’s are planned to be
developed in support of the STOW 97 exercise:



- Development of an Army Fire Support Team
(FIST) CE.

- Development of an Army Battalion Cdr/S2/S3 CE.

- Development of an Army Battalion Fire Support
Element (FSE) CE.

- Development of an Army Company Trains CE.

6. Conclusions

The architecture presented herein currently serves as
the basis for a successful implementation of the C2
decision-making of an Army Armor Company Team
Commander CE. This CE is capable of performing
mission planning, execution, monitoring, and
replanning. It has been successfully demonstrated at
various STOW program events, and continues to be
expanded and improved as software development
proceeds. As the CE’s capabilities are increased, the
quality of its tactical decisions are also being
improved. This CE architecture is rich and flexible
enough to be applied to CE’s at multiple echelons, as
well as CE’s in other service areas.
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1. Abstract

In this paper, we discuss our general approach to
knowledge acquisition and delivery and how we have
applied it to the construction of intelligent software
command entities as embodied in our work on the
CFOR (Command Forces) and MC IC (Marine Corps
Individual Combatant) DARPA programs. There are
five key issues to address when integrating
knowledge products with traditional software models:
1) Modularity - we don’t want to have to get all the
knowledge before the rest of the code can be
developed, 2) Validation - the expert must be able to
verify the acquired knowledge, 3) Scoping - we must
be able to specify default parameters as place holders
until the requisite knowledge can be acquired, 4)
Reusability - decisions should be captured at the
appropriate level of abstraction within and across
domains, 5) Deliverability - the knowledge must be
accessible to the software clients but independent.
Each of these issues will be discussed in detail,
together with examples of the knowledge bases
derived for these DARPA CFOR and MC IC
programs.
2._Introduction

For the past 18 months, we have been working on the
DARPA CFOR (Command Forces) and MC IC
(Marine Corps Individual Combatant) programs. In
1995, the CFOR team was tasked to develop a
software command entity to model an Army Tank
Company Team Commander. The MC IC team was
tasked to develop a smart Rifle Squad leader within
the ModSAF simulation environment. In 1996, the
MC IC work continues and the CFOR team is tasked
to develop a Marine Rifle Platoon Commander and a
Marine Rifle Company Commander. There are many
differences between the two programs but they share
a common need for intelligent decision making to
guide planning and behaviors. We have a great deal
of experience in building complex knowledge based
systems for a variety of applications (e.g., traveling
wave tube design, financial analysis and investment).
The current programs offered new challenges: to
acquire the knowledge from a variety of sources (e.g.,
interviews with a subject matter expert (SME),
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military training documents, documents compiled by
the SME), and to make this knowledge available to a
decision making process embodied in either the
ModSAF simulation environment or our command
entity software.

To meet these challenges, we have developed a
mechanism called fuzzy tables, based upon our
Modular Knowledge Acquisition Toolkit (M-KAT)
methodology. The M-KAT methodology differs from
traditional expert system construction techniques by
emphasizing a very tight interview - implementation -
feedback cycle. The knowledge acquisition process
and supporting software environment facilitate rapid
prototyping of the expertise so that the SME can
quickly explore the knowledge within the overall
domain framework. Fuzzy tables are an abstraction of
some of the most commonly used parts of M-KAT.
We expect that with training in the construction of
fuzzy tables, domain experts will be able to
knowledge engineer themselves and produce
knowledge bases that can be integrated in a variety of
applications.

Fuzzy tables are used in a variety of ways: 1) they
direct the knowledge acquisition process and keep it
focused, 2) they provide a declarative representation
of the SME’s decision making process, and 3) they
serve as input to the fuzzy table runtime engine
which provides client applications with access to the
SME’s knowledge via a query/response interface.
Fuzzy tables are modular, verifiable, expandable,
reusable and deliverable. Each of these properties is
addressed below using examples from our CFOR and
MC IC work. All the examples are drawn from the
context of the appropriate military units conducting
an attack. At the conceptual level, the doctrine for
attack 1s not significantly different for an army tank
company versus a marine rifle squad. Both units are
concerned with finding good positions to launch the
attack, finding good support positions for suppressing
the objective, and responding to unexpected enemy
encounters or to obstacles such as minefields.




3. Modularity

Divide and conquer is a well known technique in
problem solving. Decomposing a problem into small,
manageable pieces and combining the results
produces a more robust solution which is easier to
validate and maintain. In addition, the smaller pieces
are potentially useful in solving other problems. We
have applied the same concepts in our development
of fuzzy tables. Each table documents a single
decision made by the SME. Table 1 depicts the
decision concerning the time constraints imposed by
linking up with the main force at a particular rally
point.

10min : slightly-constrained
10min 2hr not-constrained
“10min .| >S5hr | not-constrained -
30min <30min not-possible
-30min - 2br |slightly-constrained
30min >5hr not-constrained
" 2hr | <30min ‘| mnot-possible
2hr 2hr not-possible
“2br | " >5hr  |slightly-constrained

Table 1: Rally Point Time Constraint

Fuzzy tables consist of a series of input columns
followed by a single output column. Each column
represents a factor that the SME considers in making
the decision represented in the final column. In this
example, the decision is called new-rp-time-
constraint and has one of the following values:
slightly-constrained, not-constrained, or not-possible.
The decision is based upon two factors: 1) how long
will it take to get to the new rally position and 2) how
much time is left in the mission. Based upon these
two factors, a decision is reached which will then be
used to make other decisions as we shall see below.

A key feature of fuzzy tables is that both the inputs
and outputs need not be absolute values but can
instead be fuzzy values. For example, the time to the
new rally position might be one hour. In this case, the
one hour will get translated into a fuzzy value of 70%
30min and 30% 2hr. To paraphrase, one hour is
mostly like thirty minutes and a little bit like two
hours. If the time remaining is two hours then the
result from the table will be 70% slightly-constrained
and 30% not-possible.
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Where does the knowledge come from, how do we
map the absolute values to fuzzy values? The
knowledge is elicited from the SME through one or
more interviews. In our original implementation of
fuzzy tables, the mapping from absolute values to
fuzzy values was represented by a separate series of
rules. Maintaining a separate knowledge source was
cumbersome and led to inconsistencies over time.
Therefore, we augmented the fuzzy table
representation to include not only the knowledge of
how to map absolute values to fuzzy values but also
the enumeration of legal fuzzy values for each
column of the table. We still use rules to perform the
actual mapping but these are generated automatically
when the fuzzy tables are parsed. In this way, all the
knowledge required for a particular decision is
represented by a single fuzzy table. We shall see
examples of this below.

How do we combine fuzzy tables to make more
complex decisions? The output column for a fuzzy
table can be linked to an input column of other fuzzy
tables. Thus, decisions can be used as inputs for other
decisions. For example, the output from Table 1 is
used as input in deciding the method of attack for the
rifle squad.

The decision of how a rifle squad should attack an
enemy has the following possible outcomes: na -
cannot carry out the attack, ab - abort the mission (the
costs are too high), mv - move to a new location and
reconsider, fr - conduct a frontal assault, se - conduct
a single envelopment by establishing a suppressive
base of fire (BOF) position. Entries in the output
column separated by slashes indicate alternatives that
cannot be distinguished by this table. Additional
knowledge 1s required to choose one outcome over
the other.




2-or-3 yes no not- fr/ab
constrained

TTET s, W b

2-or- yes |constrained

2-or-3 no yes not- mv
constrained

Table 2: Rifle Squad Method of Attack

We see in Table 2 that one of the input columns is the
output from Table 1: Rally Point Time Constraint.
Decisions can thus be decomposed into a sequence of
easier decisions. This modularity facilitates the
acquisition, testing, and maintenance of complex
decisions.

4. Validation

So where does the input come from when it is not
from other tables? The answer depends upon how the
tables are being used. Because the knowledge
engineer must write code to implement the answers to
questions relevant to the problem, this code generally
requires information from the client application.
When the tables are being used by the client
application, the code for a particular column is
executed, the result returned by the client is then used
as the input for the column. Returning to Table 1, the
first column is the time required to get to the new
rally point (RP) from base of fire position (BOF).

This datum must come from the client application.
The client application must supply a callback routine
which computes this value. The knowledge engineer
then writes a small piece of code (glue) to call this
routine with the appropriate parameters, in this case,
the parameters are the BOF and the RP.

If the tables are being used to debug the knowledge
acquisition process, then instead of calling back to the
client application, we want to ask the expert (SME) to
provide the required data. Our fuzzy table
implementation provides tools that support both
modes of operation. The knowledge engineer can
write glue routines that will either callback to the
client application or ask the expert depending upon
the context.

One of the drawbacks of our initial implementation
was that many of the details were hidden from the
expert; the tables did not contain sufficient
information by themselves. The knowledge engineer
had to do some programming to make the tables
operational. Since some of the knowledge was
embedded in the code, validation was more difficult.
We have addressed this issue by expanding the
column headers for the table so that they include all
the information necessary to operationalize the tables
without programmer intervention. This does not free
the knowledge engineer from writing the glue
routines; however, it does make explicit the
parameters to those routines and the legal values they
may return.

Table 3 shows the decision of what formation the
tank company should use. An asterisk in a cell
indicates that the answer doesn’t because other
factors control the outcome. To provide better
information, the column headers have gotten a bit
more complicated. They now contain information
about permissible values and how they are to be
computed. Each header consists of three elements: a
name for the decision, the value specification, and the

flank-securty * echelon
E movement = L kel e TR R O el
movement possible wedge

Table 3: Company Formation




path. The last column in Table 3, which provides the
outcome of the decision is:

name: company-formation

value spec: (line echelon column wedge vee)

path: (:movement-module
:company-formation ->unit)

The value spec for company-formation limits the
output to be: line, echelon, column, wedge, or vee.
No other values are permitted. The path specifies how
this table 1s invoked and the parameters it requires.
Parameters are indicated by names beginning with -
>*. The company formation table requires only a
single parameter, the unit name of the company. For
the inputs of Table 3, the first column is:

name: current-action
value spec: (movement assault flank-security)
path: (Icfor:current-action| ->unit)

When the first element of the path is enclosed in
vertical bars, that indicates a callback to the client
application. In this case, the fuzzy table determines
the current action of the unit by asking the client
application to compute the value and provides the
name of the unit as a parameter. During validation,
the user would be prompted to select one of the
possible values.

The second column is also a callback, asking the
client application to determine the likelihood of
enemy contact for the unit:

name: enemy-contact
value spec: (likely possible unlikely)
path: (Icfor:enemy-contact! ->unit)

In most circumstances, this question probably
requires additional knowledge and more reasoning.
However, it can be initially implemented as a
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callback to facilitate development of the client
application. When additional knowledge acquisition
yields more details concerning this decision, new
tables can be built and used in place of this callback.
This ability to incrementally expand the scope of the
reasoning capabilities of the knowledge base is
crucial, and is one of the features of M-KAT.

S. Scoping

In our experience, constructing a command entity
requires concurrent development of the knowledge
base and the client application. It is essential to
minimize the interdependence of these development
paths. We use a top-down knowledge acquisition
process to achieve this goal. When interviewing the
SME, we attempt to identify the major high-level
decision points that guide the planning process. With
these decisions in place, the client application can
continue testing and development while we work with
the SME to elicit the lower level decisions which feed
the high-level decisions.

This approach serves us well for two reasons: 1) as
stated above, the impact upon development of the
client application is minimized, and 2) access to the
SME is often restricted to discrete intervals. As the
SME becomes familiar with the fuzzy tables and our
methodology, we can perform knowledge acquisition
interviews over the phone in a short amount of time.
Fuzzy tables can be generated by the interview
process and then sent to the SME to be filled out.

Scoping also helps keep the SME focused on the
particular decision at hand instead of becoming
distracted by the details of the input parameters. For
example, if one of the columns deals with how far
away the unit is from the objective, we can simply
characterize the distance as: near, medium, or far.
Later on, we will ask the SME to specify how those
fuzzy values relate to actual distances.
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very-close small poor
" close 1 medium __poor__
far large unacceptable

Table 4: Dismounted Assault Position Viability

The mapping from absolute to fuzzy values is
expressed in the value spec part of the header.

name: distance

value spec: ((very-close 0 200)
(close 250 1200)
(far 1500 :+infinity))

path: (Imodsaf:distancel ->ap-loc ->ep-loc)

For column 2, distance, very-close is anything
between 0 and 200 meters, close is between 250 and
1200 meters, and far is anything more than 1500
meters. Notice that the values don’t fully cover the
range of numbers which raises the question of how is
225 meters going to be represented? The fuzzy table
software automatically interpolates and assumes that
the point halfway between two values will be half one
fuzzy value and half the other. Thus, 225 meters is
50% very-close and 50% close.

6. Reusability

At the lower echelons, such as tank companies and
rifle platoons, the doctrine for conducting an attack
on an objective is very similar. We would like to be
able to exploit this aspect and reuse some of the
tables developed for one application in another. If the
decisions and their inputs are indeed shareable, there
is still one aspect that will almost certainly be
different, the value specifications in the tables. These
specifications determine the mapping from absolute
values to fuzzy values. Using the example from Table
4, the values used to convert absolute distances to
fuzzy distances would be different for a rifle squad
compared to a tank company. Infantry traveling on
foot will consider 1000 meters to be much farther
than if they were mounted in a tank.

For now, we lack an elegant solution to this problem.
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The simple solution is to copy the table and change
the values appropriately. At least the work of
validation and acquisition are capitalized upon. An
alternate solution would be to leave it up to the client
application to compute the fuzzy values. This places a
large burden on the application developer and
requires more knowledge to reside in the client
application. A more satisfactory solution is to
augment the value spec representation to include a
reference to the client for each mapping. This would
permit using the same tables for different clients and
have the values mapped properly. This is probably
the approach we will take when this issue gets
addressed.

7. Deliverability

The current fuzzy table environment is implemented
in Common Lisp and runs on Macintoshes, Suns, and
SGlIs. The Lisp environment provides easy interactive
debugging of the knowledge as it is acquired. Clients
connect to a knowledge server running in Lisp using
TCP/IP sockets. While the Lisp environment is
essential to the acquisition/development cycle, it is
too limiting during execution of the client application.

We have looked at various ways to deal with the issue
of providing the knowledge to the client application
in an efficient manner. Ideally, the client developer
should be able to link the knowledge base into the
application directly or communicate with a
knowledge server somewhere on the network. We are
building a version of the fuzzy table runtime engine in
C using a Common Lisp to C translator. In this
approach, the knowledge engineer acquires and
debugs the knowledge using the Lisp fuzzy table
development environment, translates the Lisp code to
C, and then compiles the C code into a library to be
linked with the client application or run as a




standalone server process.

The knowledge engineer will deliver a compiled
knowledge base along with the specification of all the
queries (fuzzy tables) that can be handled together
with the required callback that must be supplied by
the client application. The application developer can
access the knowledge base directly by linking it with
the application or over the network by running it as a
Server.

This solution still requires that the knowledge
engineer (fuzzy table developer) still have access to a
Lisp environment. While it is possible to develop a
complete user interface to the compiled knowledge
base, we feel it is important to maintain the flexibility
provided by the Lisp development environment. The
knowledge engineer can quickly write code to modify
the results of tables if necessary. For example, rather
than build a new table to disambiguate the
inconclusive outcomes from Table 2: Rifle Squad
Method of Attack (e.g., mv/fr, mv/ab), it is often
simpler to write a small piece of code to resolve the
ambiguity. This applies during the knowledge
acquisition and development process. In the final
version, the disambiguation should in fact be done
with a table.

8. Conclusions

Fuzzy tables provide a compact representation for
knowledge captured from a domain expert. Their
modularity makes it easy to break down the decision
making process into manageable parts. Our ability to
rapidly make the tables operational provides the SME
with quick feedback and facilitates the validation
process. In addition, the augmentation of the column
headers provides explicit documentation of all the
knowledge for a particular decision. Incremental
expandability enables us to model the decision
making process in a top-down manner, capturing the
big picture decisions at first and later on focusing in
on the details. This speeds up the development
process and keeps the SME focused on the decision at
hand. With some additional development work, we
should be able to reuse tables easily where the
decisions and their inputs are the same across
applications and the variations are restricted to the
mapping of absolute to fuzzy values. Finally, fuzzy
tables can be delivered as C code which can be either
compiled into an application or executed as a
standalone knowledge server providing a high degree
of portability and performance.
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1. Abstract

Developing synthetic command entities requires
addressing a host of issues not normally faced by
more traditional unit_level agent models.
Commanders must reason over a broader scope and
about events unfolding over long periods of time.
Key amongst this is the ability to reason about and
control unit interactions: coordinating the behavior
of subordinates, meshing with the intentions of ones
superiors, and managing the interactions with enemy
forces who are intent on disrupting the commander's
intentions. We describe the implementation of a
rotor_winged aircraft (RWA) company command
entity implemented in Soar and simulated within
DIS. The command entity adopts planning
techniques to manage the issues of coordination,
control, and replanning that arise in this domain.

2. Introduction

As work in computer generated forces has developed,
it has become more ambitious in its scope. A recent
important effort is the development of so_called
command forces or CFORs (Salisbury et al. 1995).
The goal of the command forces project is to
explicitly model command and control decisions in
simulation. In contrast to the issues faced by vehicle
or platoon level units, CFORs must model the
decision making from a broader perspective and over
longer time scales. Whereas vehicle_level decision
making tends to be more reactive in nature,
higher_echelon units must deliberate about
alternative courses of action, project effects into the
future, and detect harmful (or beneficial) interactions
between subordinate units and enemy forces.

In this paper, we describe the Soar/CFOR command
forces project currently under implementation as part
of the CFOR effort. Soar/CFOR extends the the
Soar/IFOR capabilities to higher echelons and
incorporates the communication and command
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functions necessary to operate at these levels. The
project is associated with the Synthetic Theater of
War (STOW) program and is being developed in
conjunction with the Soar/IFOR project (Laird et al.,
1995, Rosenbloom, et al., 1995). Soar/IFOR is an
implemented system for controlling intelligent pilot
agents for participation in simulated battlefield
exercises. Soar/IFOR has already participated in
simulated combat exercises with expert human
pilots, including the STOW_E and ED_1 exercise
and will participated in the upcoming STOW97.

The initial implementation of Soar/CFOR has
focused on the command functions of an AH-64
Apache attack helicopter company commander.
Subsequent work will extend this functionality to the
battalion level. Command behaviors include the
ability to receive orders from one's superiors (live or
simulated), plan missions for subordinate units,
develop a situational awareness of the battlefield,
monitor the execution of plans, and perform
replanning whenever the situation dictates.

Soar/CFOR is developed within the Soar architecture
which also serves as the system underlying
Soar/IFOR agents. The demands of command
decision making have led to considerable differences
in the higher_level organization of CFOR agents
when compared with Soar/IFOR agents. The greater
focus on temporal and interaction reasoning has led
us to draw substantially from the AI planning
literature in the course of the command entity
development. In particular, the Soar/IFOR entities,
though they do have deliberation capabilities, are
more focused on reaction than planning.
Vehicle_level behavior is not guided by an explicit
representation of the situation, but is rather implicit
in rules that key off of the content of the current
situation.  This makes Soar/IFOR efficient and
responsive to dynamic changes, but makes it more
difficult to reason about interactions and changes
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Figure 1: Antack Helicopter Bn attacks to destroy the 501 MRR in EA DULUTH

over time. In contrast, the command entity
incorporates a reasoning style known in the planning
community as  hierarchical task-decomposition
planning (Stefik 1981, Erol, et al.,, 1994, Ambros-
Ingerson and Steel, 1988). Task-decomposition
planners view a plan as a sequence of tasks, with
dependency information that records the interactions
and causal connections between tasks. Planning
proceeds by taking individual tasks and
decomposing them into a partially ordered sequence
of more specific tasks, in response to the current
situation. Task-decomposition planning meshes well
with the hierarchical flavor of military decision
making as well as the hierarchical structure of the
Soar/IFOR agents which the Soar/CFOR entity
commands.

3. Command and Control Requirements

The responsibilities of a command entity differ
markedly from those of lower_echelon units. This
can be seen clearly by considering a typical mission
flown by an Apache attack helicopter company. This
example is based on the virtual Situational Training
Exercise (vSTX 2) provide by Logicon, which served
as the basis of a recent evaluation of our CFOR
effort. The exercise has been generalized slightly to
include capabilities we are expected to provide in
STOW97. Figure 1 illustrates the operation overlay
for a deep strike mission against enemy units.
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In this mission, the helicopter company receives a
mission from its battalion commander. In this case,
the 1-155th Attack Helicopter Battalion is ordered to
destroy the 501st Motorized Rifle Regiment as it
passes through engagement area Duluth. This is a
phased attack with company A moving along axis
Mankato and company B moving along axis Anoka.
This i1s a deep operation, meaning it is well beyond
the forward line of our own troops (FLOT).
Company A must pass through a known group of
enemy forces and an artillery strike will be called to
create suppression of enemy air defense (SEAD).
Each company will proceed along their respective
axes to a holding area. On orders from the battalion
commander they will enter the battle position and
commence the attack. Company A will attack first,
and then coordinate a transfer of the engagement area
over to Company B. Companies should report the
crossing of all phase lines, bypass all enemy units,
and report units of company size or greater.

The battalion commander transmits this mission to
his company commanders. In our simulation,
missions are communicated using the Command and
Control Simulation Interface Language (CCSIL)
developed by Mitre (Salisbury er al. 1995). CCSIL
provides a structured language to facilitate all
communication between CFOR entities. The mission
includes information necessary for the company
commander to perform mission planning: the goal of
the mission (attack to destroy the 501 MRR); the
actions to be performed by the battalion and brigade;



expected actions of enemy forces, plans for each
company; and the operation overlay. Each
company's plan is specified by a sequence of tasks.
These are to be interpreted as high_level guidance or
constraints on how the company commander
develops his course of action. In this case, Company
A is ordered to 1) move to and occupy battle position
Viking along axis Mankato; 2) on order, destroy
targets in engagement area Duluth, and 3) return to
FAA and prepare for future operations. The mission
also includes reporting requirements (e.g., report
crossing of all phase lines) and coordinating
instructions (e.g., coordinate SEAD).

3.1 Abstract and Implied Tasks

The tasks in the company orders are quite different in
character from those typically given to simulated
forces. The first difference is that the tasks are
specified too abstractly to be directly executed. For
example, moving to and occupying a battle position
involves multiple tasks. Since the axis crosses the
FLOT, the commander must coordinate a passage of
lines with friendly ground forces. Different
formations and speeds will be chosen for different
points along the axis. The axis itself is an abstract
construct and must be refined into a route based on
characteristics of the terrain. Firing positions must
be selected within the battle position, flanking
positions selected, etc.

A second key difference is that the mission may
contain many implied tasks. As a simple (but
common) example, the axis may not go completely
from the FAA to the holding area. The command
entity must recognize whatever gaps exist and plan
routes to fill in these missing pieces. More generally,
the commander must deal with a whole host of issues
involved in interpreting the mission statement and
that are resolved by the principles of METT-T, but
also involve considerable ‘“common sense"
reasoning. As another brief example, in one of the
missions in which we participated, the axis of
advance was specified in the reverse direction from
what we were expected to fly. A human command
would easily recognize that the direction should be
reversed. Simulated command agents must be able to
handle similar complications.

3.2 Managing Interactions

A large portion of the commander’'s planning focuses
on managing interactions with other entities. With
friendly units, the commander must insure proper
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coordination: in the above mission, the commander
of Company A must plan coordinate activities with
ones superiors, with other friendly units and between
elements of his company. Coordinating with
superiors requires reasoning about activities of
higher_echelon units.  Other outside interactions
include the coordination of passage of lines with
ground forces, coordination of SEAD with division
artillery, and the transfer of the engagement over to
Company B. Each of these interactions places
constraints on his mission planning, particularly
timing constraints, which may influence how the plan
is developed (e.g., what formations and speeds to use
at different points of the mission).

Within his company, the commander coordinates
interactions between subordinates. Scouts must be
overwatched; rally points must be established if the
company becomes separated. During the attack,
several coordination issues arise. The commander
must insure that units distribute their fires across the
engagement area and adjust the company's position if
units are interfering with each other or are coming
under effective counterattack.

Perhaps the most complex interactions involve
enemy forces. At the very least the commander must
ensure his forces reach the battle position when the
enemy is in the engagement area. Beyond this, the
commander must recognize and manage potential
threats the successful completion of his mission.
This can be preplanned to some extent (e.g., planning
secondary battle positions, rally points, etc.) but also
may require replanning during mission execution
(e.g., developing a route to bypass unanticipated
enemy forces).

3.3 Replanning

As just alluded to, one of the most difficult
requirements on command entity behavior is the need
to handle unanticipated contingencies. The
battlefield is a dynamic environment. Unanticipated
contingences can be handled with local reactions
only to an extent. Often a plan has tight constraints
and avoiding an unexpected enemy force early in the
plan may have consequences for subsequent
execution. Changes might be as minor as changing
speed to as demanding as replanning the mission
from scratch based on new information enroute. A
command entity must recognized the
interdependencies of plan steps in order to respond to
such dynamic changes.
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Figure 2: Hierarchical task network for (part of) the niission in Figure 1

4. Command and Control in Soar/CFOR

The above requirements place several constraints on
the development of a command entity. The company
commander must reason about interactions between
his subordinates as well as with other forces. Besides
constructing the initial plan, the commander must
track the interdependencies between tasks, recognize
how the changing situation effects these
dependencies, and repair the plan whenever these
dependencies are violated. @ To address these
requirements, we adopted a plan representation
known as hierarchical task_networks (HTN)
(Sacerdoti, 1977; Tate, 1977; Wilkins, 1988).
Planning in Soar/CFOR is accomplished through a
combination of techniques developed for HTNs and
techniques developed in the partial_order planning

paradigm (Chapman, 1987; McAllester and
Rosenblit, 1991). First we will describe the plan
representation.

4.1 Plan Representation

Figure 2 illustrates a hierarchical task network for the
ingress part of the mission. The egress part of the
mission is left out for simplicity. The network
represents a hierarchy of tasks. At the top of the
hierarchy is the abstract task “destroy the 501st
MRR." This is broken down into a partially_ordered
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sequence of subtasks, two of which are to be
performed by Company A and one of which
corresponds to the actions of the enemy regiment.
Subtasks may be further subdivided into more
subtasks. The intended interpretation of the network
is that subtasks represent a. more detailed
specification of how a task is accomplished. A task
with subtasks is said to be an abstract rask, and the
subtasks are said to be a decomposition of the
abstract task.  Tasks that cannot be further
decomposed are referred to as primitive tasks. These
typically correspond to actions that can be directly
executed by the agent. (Note that a primitive task at
one echelon may be an abstract task at lower
echelons. Primitive tasks for the company
commander are converted into a set of task by the
Soar/IFOR entities.) In Figure 2, tasks are
represented as rectangles. Shaded rectangles
correspond to primitive tasks.

Much like other plan representations, tasks in a
hierarchical task network may have preconditions
and effects. Preconditions are facts which must be
true in the world to execute the task. Effects are
those facts that are added or deleted by executing the
action. In our plan representation, preconditions and
effects may be predicates with an arbitrary number of
variables. Currently, we do not implement variable
quantifies in.
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preconditions. In Figure 2, preconditions and effects
are represented as ovals.

Typically the network will include two “dummy"
tasks. The *init* task asserts all the facts of the
initial state as its effects. The *goal* task has the
overall purpose of the mission (destroy the 501st
MRR) as its preconditions.

Dependency information is represented as links
between preconditions and effects in the network,
which are represented as arrows in the network. For
example, for the enemy to be destroyed, the company
must perform the engage task at the same time that
the 501st is in the engagement area. This is indicated
by a dependency of the destroyed precondition and
the effects of these two tasks. Links between
preconditions and effects are a special_case of a more
general concept of a protection constraint. If taskl
asserts fact A which is a precondition to task2, the
commander must ensure that fact A remains true
from the end of taskl to the beginning of task2. This
can be stated as a constraint that A must remain true
from taskl to task2. Note that these protection
constraints also force orderings between tasks: the
asserting task must precede the the task whose
precondition it establishes. The planner may also
impose ordering constraints directly between tasks.
The hierarchical task network representation makes it
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Task-decomposition operator

easy to express a variety of constraints on the plan
structure.

4.2 Plan Generation

Planning is accomplished in a fashion similar to the
IPEM architecture (Ambros-Ingerson and Steel,
1988). A final plan is developed though a process
called refinement search (Kambhampati et al., 1995).
Initially one will start with a partial task network
probably consisting of a few abstract tasks (in the
mission described above, the commander receives the
top node in the hierarchy and the first level of
subtasks in the operations order). Typically, the
initial plan cannot be executed. It may contain
non_primitive tasks or tasks may have unsatisfied
preconditions. The limitations in the initial plan are
addressed by applying operations that modify the
plan structure and, hopefully, result in a complete
sequence of primitive tasks that achieve the goals of
the mission. These planning operations are called
refinements and can be classified by the type of
limitations they address.

Task_decomposition: Non_primitive tasks are
addressed by a refinement called task_decomposition.
Task_decomposition operators specify how an
abstract task might be broken down into a partial
sequence of subtasks. Such an operator is illustrated



in Figure 3 (the syntax *“<x>" denotes a variable
named x). This rule checks if a movement task goes
along a route that intersects the FLOT. If so, it
creates three subtasks, the first moves along the route
up to the FLOT, the second performs the passage of
lines, and the third moves along the remainder of the
route. This rule also augments the subtasks with
movement techniques and formations appropriate to
the crossing of a FLOT. Note that the decomposition
involves more than simply asserting a set of subtasks;
it may additionally assert ordering and protection
constraints to the plan structure.

Establishment: Unsatisfied preconditions are
addressed by two different refinements. The first is
called simple establishment. This operation looks for
some effect already in the plan structure that satisfies
the precondition. If such an effect exists, a
dependency link is created between this effect and
the precondition. The effect is said to establish the
precondition.  This also enforces a protection
constraint on the plan - no other task may delete this
effect until after the task whose precondition is
established by it.

If no existing effect in the plan can establish the
precondition, an alternative method of establishment
can be used called step_addition. This operation
adds some task to the plan that has an effect which
unifies with the precondition. A link is then drawn
between the effect of this new task and the
unsatisfied precondition.

Protection Violation: A final class of refinements
addresses potential violations to the protection
constraints in the plan. For example, consider that
effect At(HoldingArea) is protected from taskl to
task2, that task3 deletes At(HoldingArea), and that
task3 can possibly occur between task1 and task2. In
this case, there are two ways to refine the plan to
remove this potential conflict. Promotion asserts an
ordering constraint which forces task3 to occur after
the protection interval (after task2). Demotion asserts
an ordering constraint which forces task3 to occur
before the protection interval (before task1). Finally,
separation asserts a binding constraint which states
that <x> cannot equal <y>.

Planning proceeds by incrementally applying
refinements until a complete plan is discovered.
Alternative refinements can be explored by
depth_first search. If no refinements can be applied
or there is an unresolvable flaw in the plan, the
planner is forced to backtrack. Multiple courses of
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action can be entertained by exploring different
refinement sequences in parallel. Typically
task_decomposition refinements are applied first, to
sketch out the basic structure of the plan. Next,
simple establishment, promotion, demotion, and
separation are considered, Finally one considers
step_addition.

4.3 Plan Execution

In addition to refinements, we implemented two
other planning options. The command entity can
initiate the execution of a task or terminate the
execution of an executing task. Tasks may be
executed if their preconditions are satisfied and no
other unexecuted task precedes them. Tasks may be
terminated if some prespecified termination criteria
has been reached (e.g., a movement task terminates
when the movement objective has been attained).
The command entity may interleave execution and
termination with the other refinements and thus
achieve an interleaving of planning and execution.

4.4 Replanning

Replanning occurs in much the same way as the plan
was Initially developed. During the course of plan
execution the current state may change in ways that
violate or potentially violate the dependencies in the
plan structure. For example, the execution of a task
may not have the expected effects, or some
unanticipated event may occur, such as a change in
the location of the target. When such situations arise
they are interpreted by the planner as limitations in
the current plan, and are addressed by the same
refinements used in plan generation. When
preconditions become unsatisfied the planner will try
to reestablish them through simple establishment or
step addition. When that fails the planner will be
forced to backtrack across the refinements that
introduced the unsatisfied preconditions. When all
else fails the commander can contact his superiors for
further instructions.

5. Company Organization

In our simulation, we have made a distinction
between the Soar/CFOR command entity, which does
mission planning/replanning and the Soar/IFOR
vehicle entity which implements the vehicle level
behaviors. A human company commander must play
both roles; he or she must plan the mission and
control the vehicle, often both at the same time. We
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have addressed this problem by essentially dividing
the commander's brain in two. Although they are
separate processes, the Soar/CFOR entity is
associated with a particular Soar/IFOR vehicle and
has special information links to it.

Figure 4 illustrates the basic organization of a RWA
company as simulated within DIS. The command
entity is controlled by Soar/CFOR. Each RWA in
the company is controlled by Soar/IFOR. The
command entity is associated with a particular RWA
and gains access to that vehicle's sensors through the
CFOR  infrastructure  provided by  Mitre.
Communication between the command entity and the
vehicles of the company (including his own) occurs
via CCSIL messages. Vehicles may communicate
directly to each other via CCSIL or simulated radio.
The commander mediates all communication with
units outside the company.

Initially the company commander receives a mission
in the form of a CCSIL operations order.
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Soar/CFOR develops a plan, backbriefs it to the
battalion commander, and if approved, broadcasts the
plan, via CCSIL, to the company. At this point all
entities have a consistent representation of the
mission. As the mission progresses, new information
may become available: new information may arrive
in the form of new orders, vehicle sensors, or
situation reports (in CCSIL) from other units. It is
the responsibility of individual vehicles to inform the
command entity of relevant new information. If this
information invalidates the current plan, the
command entity will regenerate a new course of
action and broadcast the new mission to the
company.

An issue raised by this organization is how to model
transfers of command, as when the commander is
killed during the mission. The Soar/IFOR entities
model a chain of command: when it becomes know
that the commander is dead, the next vehicle in the
chain assumes the commander's role. What this
means in our company organization is that the new



commander acquires the interface to the command
entity. Currently, we are not planning on modeling
the loss of information and expertise that
accompanies such a change.

6. Project Status

As of the writing of this article the Soar/CFOR
command entity has been in development for eight
months. The basic plan generation capabilities are in
place and performed successfully during a recent
evaluation based on a reduced version of the scenario
described in Section 3: no SEAD was involved; only
one company flew at a time; and CCSIL
communications were strictly vertical (the company
commander only communicated with his battalion
commander and with his.company through the
medium of operations orders and situation reports.).
The planner currently considers only one course of
action and does not, as of yet, have to capability to
evaluate the strengths and weakness of alternative
courses of action. Another key limitation is that
replanning capabilities are not fully implemented. It
1s likely that some details of execution and
replanning will change as we gain more experience
with these new capabilities.

We plan to expand the repertoire of behaviors
available to the command entity and broaden the
project to include higher levels of command.
Currently, the commander plans for attack missions.
We will soon broaden this to include missions of
security and reconnaissance. These tasks appear to
place more reliance on recognizing and adapting to
changes in the situation, and we expect the explicit
dependency information in our plan representation
will be invaluable in providing these capabilities. By
STOW97 we intend to have implemented a battalion
level command entity.
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1. Abstract

The end of the Cold War has led to major changes in
the world strategic environment which in turn have
led to major revisions of NATO defence policies.
Whilst the core role is still national defence, there is
now a greater emphasis on the capabilities needed for
regional conflict and on the requirement for
Operations Other Than War (OOTW).

Wargames and simulations, which have been
developed for defence applications, can provide
excellent environments for the examination of para-
military operations such as peace keeping and peace
making (i.e. Operations Other Than War).

By peace keeping and peace making operations we
mean such operations as operational planning, tactics,
training, mission rehearsal, resource management,
conflict resolution, crisis management and studying
the complex decisions required for long and short
term states of stability within the community.

2. Introduction

The Defence Evaluation and Research Agency
(DERA) is a government owned research and
technology organisation whose aim is to provide
independent, high-quality, cost-effective scientific
and technical services to its customers, primarily the
Ministry of Defence (MOD).

The Centre for Defence Analysis (CDA), a division
of DERA, provides advice and analysis of defence
systems, procedures and operations, primarily to
MOD. Operational Analysis (OA) forms a key
element in the underpinning role of CDA in the
decision making process for defence equipment
procurement, defence planning and formulation of
defence policy.

In order to meet these changing requirements, the
CDA Land Studies Department at DERA, Fort
Halstead, is enhancing a combination of wargames
and simulations ranging from one-on-one to
divisional and corps battles. One such development
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is the Close Action ENvironment (CAEN), which can
be run as either a wargame or a simulation. At the
CDA, CAEN is used for operational analysis and
weapon system evaluation. The UK Police may use
CAEN for operational planning, tactics and training
of officers in law enforcement and small arms
situations.

3. CAEN

CAEN is a highly detailed model of the close combat
battle. It is both a means of simulating weapons
effects and an interactive wargame between opposing
forces of up to platoon level strength. The area
covered is typically 5-by-6 km and the terrain is
represented at 10m resolution. Both urban and rural
areas can be modelled with detailed representation of
buildings and ground cover. Up to 200 entities are
usually modelled and consist of either infantrymen
and their personal weapons or vehicles such as
armoured personnel carriers and main battle tanks.

CAEN can operate either as an automatically
replicated simulation with no user intervention, or as
an interactive game in which two or more
independent players control the actions of their own
forces.

The overall system comprises:

Terrain editor facility.

Interactive on-line gaming system.
Deployment system.

Game replay facility.

Replication system.

3.1 Terrain Features

Terrain features include roads, rivers, minefields and
obstacles. Vegetation can be represented as simple (a
height and density) or complex (density varies with
height) culture. CAEN represents complex culture as
a number of different layers of varying density
vegetation at different heights.  Buildings are
represented in higher resolution than other culture
and include multiple storeys, sloping roofs and
windows.




3.2 Interactive Gaming

The interactive system enables players to issue orders
to allow them to change routes, arcs, activities etc.
during the course of play. In this way the player can
react to events in the game which are considered to be
of military significance. The player does not have to
control the actions of all the entities all of the time.
Instead each entity or group of entities will follow an
initial set of orders provided at the start of the game
unless overridden by an interactive command. The
wargame system also contains acquisition, movement,
engagement and tactical models which are processed
automatically.

The players can interrogate any entities under their
control for relevant information such as damage
status, ammunition remaining, etc.

The interactive gaming system is supported by a
sophisticated colour graphics facility which allows
each player a realistic view of the ongoing scenario,
but constrained by the knowledge available to his
own forces.

A savelrestart facility allows players to save the state
of the game at any time during play.

3.3 Movement

Movement is between nodes. Routes can be specified
for groups or individual entities. Speed is limited by
terrain. Infantry can change posture which may
further limit speed (for example crawling). Infantry
can be carried by vehicles and debussed from them.

3.4 Tactical Model

A major feature of CAEN is the tactical model which
enables the player to set up tactics for entities or
groups of entities. Objectives, aim zones and triggers
can be set up to initiate or suspend activities (or
behaviours) by entities or groups. Some triggers (for
example suppression or cut wire) automatically
initiate certain activities while others are set up by the
player. Activities are either simple or complex. A
complex sequence of activities is made up of simple
activities which succeed or trigger one another.
Group members may carry out different activities (for
example fire and movement).

3.5 Detection

Detection occurs as follows:
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e Random search detection methods use line-of-
sight and target acquisition calculations; the
models used depend upon whether the sight is
optical, thermal or image intensifier.

e Detection using weapon signature is based on
firing weapon, observer’s sight and range.

o Detection is based on the noise made by the
weapon being fired; it is also range dependent.

3.6 Engagements

Engagements are carried out using:

e Aimed fire. This is the same as direct fire in
most models. Once a target(s) has been
acquired, the entity will select a target.

e  Suppressive fire. This is also direct fire, but it is
directed at an area/object with the aim of
suppressing any entities/objects in that area. It
may incidentally cause casualties.

e Indirect fire. Missions are player directed or set
up using aim zones and triggers.

3.7 Engagement Models

Engagement models include:

e Small arms. This model calculates the
trajectories of rounds to determine casualties.
Any hit by a bullet on a person is considered to
have incapacitated the person.

e Fratricide. This models the accidental shooting

of own troops.

Explosive munitions. The mean area of effect is

used to determine effects.

Other munitions, for example armour piercing

rounds. Hit probability and lethality are used.

3.8 Other Modelling Capabilities

Other effects of rounds modelled include:

¢ Suppression. This varies depending upon both
the recipient and the incoming fire. Its effect is
to cause the recipient to take cover.

e Obscuration (smoke) uses the COMBIC model.
The smoke clouds drift across the map. They
vary in size and shape, and depend primarily
upon the type of round and meteorological
conditions.

¢ Illumination. This modifies the (night) ambient
luminance for a given area. The area will drift
with the wind, and depends upon the ammunition

type.

Minefields are defined by type and density of mine.




A “weapon sharing” model enables men to pick up
key weapons whose operators have become
casualties.

3.9 Fighting Within Buildings

Fighting within buildings, at the moment, is carried
out using look-up tables. Entities of opposing sides
enter combat once they are within a building and in
the same 10m square. The fighting in buildings
model then determines casualties with time. Entities
can be added during the combat. Combat will
continue until all of one side is killed or withdraws.

3.10 Other Facilities

A number of facilities are available to assist the
player during planning the deployment. The most
important of these is the ability to get a view of the
battlefield from any given location (during the game
the player can only get views from his entity’s current
locations).

Day, night, and various meteorological conditions can
be modelled.

4. Virtual Reality

Virtual Reality (VR) offers the capability to model
and visualise 3-dimensional objects in real-time. A
natural application of this enabling technology has
been applied with great success to CAEN.

The VR facility within CAEN includes:

e A pre-game set-up facility. This allows players
t0 move to any position and mimic entity
viewpoints, thus helping validate line-of-sight
assumptions and permitting a reconnaissance of
the terrain.

e An interactive facility. This is achieved by
networking and synchronising both gaming and
VR environments. Thus, when a player displays
a sensor view, the viewpoint data are transferred
to the VR environment and the corresponding
view displayed in the virtual world.

e A post-run analysis facility. This makes use of
CAEN output to drive the virtual world. The
analyst is able to move around the battlefield,
view all static features, and monitor the
unfolding battle from different perspectives
without interacting with any of the entities.
Alternatively, the analyst can clamp the
viewpoint to a selected entity in order to check
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for accuracy of modelling, orders and for desired
behaviour

5. Operations Other Than War

Events which threaten life, property, the community
or the environment, make particular demands, both
financial and human, on those responsible for
decision making when controlling and co-ordinating
resources in response to those events.

The most critical period following such an event can
be the time taken to respond, restore normality and
take control of the situation, especially when initially
there is incomplete information available.

This is especially the case where certain events have
increasing economic, as well as national impact on
the forces involved. Whilst  organisational
procedures, skills and drills exist, those with
responsibility for decision making also need well
developed human skills and knowledge in order to
make them effective, even under stress. Operational
officers (i.e. commanders) need to manage their
doctrinal, organisational and leadership skills and
then plan, exercise and test their theories in order to
clearly see and understand how these situations
evolve from initiation through to a successful
achievement of the desired state.

To achieve this requires an approach which combines
theory with practice. The theory can be encapsulated
within products such as the Surrey Police Leadership
Evaluation Action and Development (LEAD) product
and the practice exercised and simulated within the
CAEN environment.

Leadership training of operational officers, who are
expected to take command and lead teams, is critical
for mission accomplishment in operations such as:
Terrorism.

Hostage/Siege.

Environmental disasters - fire, flood, etc.
Explosions - natural, accidental, deliberate.
Incidents - natural, accidental, deliberate.
Industrial hazards.

Public order, law enforcement, riot control.
Movement control.

5.1 Modelling Methodology

A key requirement for modelling these events is the
behavioural representation of neutral factions, non-
combatants and crowds. This can be achieved by




aggregating numbers of people and representing them
as single entities. For example, an entity may
represent an individual trouble-maker within a crowd,
whilst another entity may represent a group of people.
Then taking advantage of the multi-screen, multi-
sided capabilities within the wargame/simulation
environment, it is possible to model and game a
multi-national peace keeping force together with
neutrals and non-combatants consisting of agitators,
demonstrators, bystanders, the press, the police and
any other interested party.

Other important components which need to be
considered include how entities respond to noise, the
realisic modelling of command and control
(communications), the use of Command Agents, user
interface issues, visualisation and object based
(dynamic) terrain.

These components, when incorporated within a
wargame or simulation, will provide a powerful
generic environment for creating, testing and
exercising plans in order to achieve a more positive
outcome in the possible event of a major crisis or
incident.

5.2 Behavioural Representation

Non-combatants are those entities who are present in
the tactical area of interest but are not seeking to
influence events. From a military point of view, these
entities may represent refugees, evacuees, prisoners
of war or members of non-military organisations. For
non-military applications, they may represent the
utility services, elements of a crowd, casualties,
detainees, criminals, the news media or any other
interested party. The emergency services, who are
dealing with the crisis are the equivalent of
combatants in a war game.

The presence, attitudes, activities and requirements of
neutral factions, non-combatants and crowds can have
a significant effect on the outcome of a major crisis or
incident. If they are to be modelled, then the
gaming/simulation environment must provide entity
attributes such as:

e Disablement or injury, be it temporary or partial.
This may include bodily functions such as sight,
arms, legs, etc. The injury may affect mobility
and posture.

e  An entity may die from the wounds if not treated
within a given time. Alternatively, the entity may
be treated and recover from the injury.

e  Effects of non-lethal weapons such as CS gas.
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e Fear and aggression could be triggered
dynamically by firearms, riot control equipment,
agitators, noise, injury, etc. and would make an
entity behave differently.

e Use of roman tactics during a scuffle, such as
kicking and punching. Weapons such as boots,
fists, batons and bricks would be made available.

e Dynamically changing clothing and weapons,
such as the police having to change into riot gear,
or the disarming of military personnel.

¢  The formation of wedges to break up crowds.

e Pushing activities such as aggregating individual
entity strengths to move a vehicle.

e Making arrests, causing injury, detaining,
removing or transferring injured entities from the
tactical area.

o Individual entities could be identified and tagged
for periods of time.

Within CAEN, these behavioural representations are
activated by rules, triggers and data.

5.3 Multi-Screen

A multiple screen environment allows more than one
player per side to participate in the interactive game
sessions at the same time. By having several players
per side, each side can be structured to represent
several levels of command and control. This will
allow investigations into communications problems
between different levels of command.

Within CAEN each side can be divided into
“command forces”. A “commander” would be
nominated for each side. Each commander may have
additional players on his side so that more than one
command force is represented for each side. The
default would be one command force and one player
per side.

5.4 Multi-Sided

A multi-sided system will allow more than two sides
to participate in an engagement. This will allow non-
combatant sides to be present, sides of unknown
hostility, combat forces enforcing a cease fire or a
UN peace keeping/peace making force. The multi-
sided system will also allow for terrorists, criminal
elements or different crowd factions to be
represented.

CAEN allows each side to be deployed separately in
the same manner detailed for separate forces in the
multi-screen environment.




5.5 Noise

The modelling of noise and its effects on entities
{(noise may cause crowds t6 panic) needs to be
considered. Noise may be broken down into
background and foreground. Background noise is
generally ignored, such as noise from lorries and cars,
but the ambient level is significant. Foreground noise
is generally sudden noise that may be heard above the
ambient background; typical examples include a
gunshot or a car backfiring.

5.6 Communications

Communications addresses the passing of information
gathered by deployed entities throughout the chain of
command.  Current wargaming and simulation
environments tend to have a perfect communications
network. If communications are to be made more
realistic, it is necessary that information is delayed,
degraded or lost during the message passing process.

Decisions, orders and actions will then have to be

made upon imprecise information. Within CAEN,

the communications network will exhibit the
following characteristics:

e Errors in entity positions. The positions of
entities on the screen will represent the last
position at which a report was made to the
operations officer. As more entities acquire a
target, the target’s position will tend towards its
actual position.

e Delays in communication. Existing out of date
information will be retained until an update is
successfully communicated.

e Failure to communicate information. There may
be situations where the information is not
considered important.

5.7 Command Agents

Command Agents are used to represent decision
making nodes within a command hierarchy. Each
Command Agent represents a command post which is
able to make decisions and interact with other
Command Agents and entities within a wargaming,
simulation environment. Command Agents therefore
control operations within the tactical area of interest.

At the heart of a Command Agent is a knowledge
based system containing explicit knowledge which
describes sets of tactics and behaviours required by a
command post to perform its particular role during
the operation.
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Facilities need to be provided for a human controller
to take on the role of a Command Agent. This means
that the human controller will perform all the decision
making processes of that agent, thus replacing an
existing agent or work independently alongside other
agents within the command structure.

In a multi-screen, multi-sided environment, the use of
Command Agents will reduce manning levels and
hence the running cost of the simulated exercise.

Command Agents have been demonstrated with great
success during a game at divisional level. These
Command Agents are very sophisticated and
contained a large number of rules. Individual entity
Command Agents will not require very sophisticated
knowledge bases.

5.8 User Interface

A human computer interface is that combination of
physical components and software which combine to
allow the user to issue commands to the computer,
and allow the computer to present information to the
user.

A user friendly interface is an essential requirement to
ensure rapid acceptance of any system. A generic
user interface is therefore required with a consistent

look-and-feel for all application views. The user
interface has to be intuitive, easy to use,
reconfigurable and individually customised for

specific applications. A graded “ help” facility,
which is activated by the user and based on the user’s
familiarity with the system, is a useful additional
feature.

5.9 Visualisation

Virtual Reality (VR) provides an additional
dimension to visualisation. The rapid creation of new
terrain and objects, full immersive facilities for
training people in leadership qualities under
stressful/chaotic conditions, the smoothing out of
movement between frames during gaming and replay,
provide an important role in the decision making
process.

5.10 Object Based Terrain

The requirement is to develop an overlay terrain
structure so that terrain objects can be placed upon
the terrain without being restricted by the grid
structure of the current underlying terrain.




The proposed CAEN object terrain will allow a
higher degree of detail to be represented in selected
areas of interest. It will also provide a more realistic
modelling environment for general terrain areas. This
will provide the following benefits:

e Any size of terrain object will be possible, so a
more realistic representation of features such as
buildings, rubble, fox holes and trees can be
modelled.

e The defining of terrain objects in terms of
constituent elements will allow for a greater
variation in the shape of buildings, trees, etc.

e The enabling of objects to be positioned on the
terrain overlapping grid square boundaries will
remove the uniformity observed in the existing
terrain feature representation.

The current representation of a terrain area based on
regular squares will be replaced by irregular triangles.
This will provide a direct mapping to the VR
implementation which uses flat irregular triangles for
terrain representation. In the future, objects will be
created within the VR environment and mapped
directly into CAEN, thus considerably reducing the
gaming set-up time for new geographical locations.
However, additional processing may be required for
terrain areas with complex contour detail.

6. Applications

Wargames and simulations, such as CAEN, can be
customised to game and simulate threat management.
By threat management we, mean ‘“the positive
management of any event which is a threat or
potential threat to a state of stability”. Public order
operations, emergency planning operations and
mission planning are examples of threat management.

The rapid creation of specific terrain and culture is an
essential requirement for threat management. If data
is not readily available, then a generic environment,
such as a generic town, will suffice as an interim
solution. This town might contain a railway station,
town centre, county court, police station, sports town
by-pass.

A typical operation might address the tactics and
resources required to police elements of a crowd
moving from one part of a town to another. Police
cars would be used to shepherd people along main
roads whilst additional police cars and police officers
would also be allocated to strategic positions to
cordon off parts of the town. Potential application
areas include the control of football crowds, the
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policing of the annual carnivals or the containment of
riots following an unpopular event or decision.

Another operation might be concerned with the co-
ordination of the emergency services following a

major incident in a built-up area.

A typical incident report may read as follows:

SCENARIO

Date: 20 June 1996

Time: 09.30 am

Weather: Overcast - outlook rain
Wind direction: NNE speed 5 mph
INCIDENT

At 09.30 am a fully laden tanker, travelling EAST
through the village of Copehill has overturned
whilst manoeuvring around a tight corner.
Immediately behind the tanker is a group of foreign
tourists ina car.

The tanker explodes and the tanker driver is killed.
The driver of the tourist car is killed and one of his
party is injured.

The person in the house next to where the tanker
explodes tries 10 help the driver, but is killed in the
attempt.

The remainder of the family in the house have

walking injuries and are able to move to a safe

location, but do require urgent medical assistance.

Wargames and simulations such as CAEN can be

used to create the above incident and encourage

operations officers to take control of the situation and

restore normality within a constructive, virtual

environment.

It has been observed that the most critical period

following any incident can be the time taken to

respond, restore normality and take control of the

situation at the scene of the incident, especially when

initially there is incomplete information available.

Typical questions that may need to be addressed are:

e How quickly can the emergency services arrive
at the scene of the incident?

e  What is the quickest route to the incident?

e  What resources are required to restore order and
take control of the situation?

e What measures are required to
escalation?

e Where are the most suitable
establishing command posts?

prevent

locations for



7. Safety Management

Analysis of the major incidents reported within the
European Community indicates that, in the majority
of cases, management error was the underlying cause.
This error can manifest itself as deficiencies of
organisation, inadequate training, or simply failing to
take into account the possibility of human error.

The cost of running live exercising in order to
minimise these errors is excessive. For example,
when Eurotunnel decides to close down one of their
railway tracks for such a live exercise, the loss of
revenue could be excessive especially when trains are
scheduled to run through the Channel Tunnel at 3
minute intervals.

The cost of such live exercise$, excluding manpower
costs, may range from £15K to in excess of £150K
(for example, a 3 hour exercise at a provincial airfield
costs in the region of £100K). When the Control Of
Major Accident Hazards (COMAH) legislation
becomes law, the number and frequency of running
different types of live exercises may increase.

7.1 COMAH

COMAH is a major European accident prevention
policy which will set out in writing an operator’s aims
and principles for the control of major hazards in an
establishment, and in particular, the safety
management system which is controlled by that
operations officer.

Operations officers will have to prepare emergency
plans and explain how they will respond should a
major incident occur. They will have to provide
sufficient information to the authorities to enable
them to draw up off-site emergency plans. Part of
the plan will be the requirement to inform the public
within the vicinity of the incident what actions
should be taken.

Wargames and simulations such as CAEN could
help validate the quality risk assessment procedures
required when the COMAH legislation becomes
law.

7.2 Safety Exercises

The testing of an emergency plan may prove to be
pointless as it has been observed that these exercises
tend to be repetitive and may not necessarily test the
critical components of the plan. Existing wargames
and simulations could provide the solution.

The real business behind training and exercises is to
test the foundations of corporate, organisational and
personal responsibility.  Distributed Interactive
Simulation (DIS) techniques and protocols would
provide a multi-agency approach to the planning,
exercising and testing of emergency plans. A
distributed system would consist of workstations
which are located at various sites and linked together
over a wide area network. This system architecture
would enable operational officers, who are sited at
various geographical locations, to communicate,
game, simulate and exercise their plans together in a
realistic virtual environment.

8. Conclusion

Wargames and simulations, such as CAEN, provide
excellent environments for gaming and simulating
para-military operations such as:

e Operational Analysis (OA) on such topics as
Close Combat, Military Operations in Built-up
Areas (MOBA) and Key Point Defence.

e  Operational planning and training.

e Reviewing command and control.

¢  Evaluating human performance.

Training personnel for given emergencies.

The fiexibility of CAEN and the very fine detail of its

modelling  capability provide an  excellent

environment for Operations Other Than War. Within
reason, anything that moves on land can be modelled
and gamed within CAEN. This is illustrated by the

ease with which CAEN has been used for creating a

variety of different scenarios for both defence and

non-defence applications.

There are many potential uses of CAEN for peace
keeping, peace making and paramilitary activities.
These include operational planning, tactics, training,
mission rehearsal, resource management, conflict
resolution, crisis management and studying the
complex decisions required for long and short term
states of stability within the community.

The benefits of using wargames such as CAEN

include:

e A distributed computer environment to visualise,
interact with and rapidly re-configure complex
events and disorder.

e The ability to plan, practice and test a variety of
responses to emergency and critical situations in
a tailored environment.

e A facility for pre-operational and post-
operational analysis on such topics as threat




analysis, vulnerability analysis and risk
assessment.

e A substantial reduction .in the costs incurred
when an organisation sets up “real” situations to
simulate complex events and disorder.

e  Reduction in the costs and damage to reputation
which occur when organisations “get it wrong” in
an emergency and find that they are the victims
of damage litigation.

In summary, wargames like CAEN offer forums to
explore the synergy between the terrain, the
environment, and the man-in-the-loop for both
defence and non-defence applications.
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1. Abstract

Dramatic improvements are needed to increase the
level of medical readiness in the Department of
Defense, FEMA, and other medical services. These
improvements can be achieved through innovative
application of simulation technology. We have
developed a vision for simulation support to medical
readiness based on medical extensions to, and linkages
among virtual and constructive combat simulations,
command and control systems, advanced patient MIS
systems, and medical training simulators.

As a first step in implementing our vision, we have
developed a prototype Medical Semi-Automated
Forces (MedSAF) system based on medical
extensions to the Modular Semi-Automated Forces
(ModSAF) combat simulation system. We have also
developed a modem-line linkage between MedSAF
and the Human Patient Simulator (HPS), a scenario-
based, parameter driven mannequin-style simulator
developed by the University of Florida School of
Medicine. We can demonstrate a fully integrated
medical scenario that includes combat, generation of
infantry casualties, simulation of first care treatment,
evacuation to higher echelons of care via combat
ambulances and evacuation helicopters, and models of
treatment at a Battalion Aid Station and Evacuation
Hospital. Casualty models have been developed that
change state over time, including vital sign
degradation (e.g. pulse, blood pressure, blood loss)
based upon casualty type.

In this paper, we describe the design and
implementation of these MedSAF extensions to
ModSAF. This publication is a follow-on to our
previous report and it updates the status of our
development since that publication and provides more
detail relevant to the DIS and CGF communities.

2. In ion: 0 rov

Medical Readiness

As we have reported in our previous paper
(Courtemanche et al. 1996), the tri-service medical
community is currently focused on meeting the
medical readiness challenges imposed upon it by the
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digitized battlefield requirements, including training,
mission rehearsal, leadership development, doctrine
evaluation, materiel solutions, and the need to test
and evaluate a system’s readiness for fielding. The
medical community is attempting to accomplish
these goals in the face of decreasing budgets and
increasing technical, personnel, medical, and threat
challenges.

In the past, many of these challenges have been met
through direct training on live systems and through
live simulation exercises, approaches that are
becoming increasingly expensive and which suffer
from the liability that they are non-repeatable,
uncontrollable, and, in many cases, medically
deficient. As has been amply demonstrated for
combat forces, simulation offers key technology to
help meet many of these challenges. Unfortunately
little has been done to date to support medical
readiness through the use of Advanced Distributed
Simulation (ADS), and this has prompted the
development of our vision for improving medical
readiness through simulation linkages.

3. Improved Medical Readiness Through
imulati i

SAIC’s ASSET and Health Care Technology Group
organizations have put together a vision for how the
goals of medical readiness can be achieved by
extending current simulation systems to play medical
processes, and then linking them to live medical
equipment to support military medical training,
system evaluation, and procedure validation.

The key components of this vision are:

1. linking different types of simulations,

2. exploiting the synergy provided by
linkages, and,

3. extending the systems with medical play.

such

Sections 3.1 through 3.5 describe the types of
simulations we envision linking together to provide a
superior solution to the challenges of medical
readiness.



3.1 Virtual Simulations

An example of virtual simulators are Semi-
Automated Forces (SAF) applications and the crewed
simulators that these applications interact with. One
such example is ModSAF (Courtemanche &
Ceranowicz 1995). ModSAF, or Modular Semi-
Automated Forces, is a Computer Generated Forces
(CGF) system that researchers can build upon and
extend. It is fully compatible with DIS network
protocols. Its development has been funded by the
Defense Advanced Research Projects Agency
(DARPA) and the Army’s Simulation Training and
Instrumentation Command (STRICOM). The latest
version, ModSAF 2.1, was released in May 1996, and
it contains over 750 thousand lines of software
written in C.

One of the current users of ModSAF is DARPA’s
Synthetic Theater of War (STOW) program. STOW
has the objective of demonstrating the use of ADS for
large scale exercises at the Joint Task Force level
distributed over many sites, including linkages to
constructive simulations and live players (Aronson
1996). The STOW program is currently enhancing
ModSAF in the areas of service-specific synthetic
forces, synthetic environments, and simulation
networking, leading to the STOW ’97 training
exercise.

3.2 Command & Control Systems

An example of Command and Control (C2) systems
is the Army’s Phoenix system, formerly know as the
Battle Command Decision Support System
(BCDSS). Phoenix, developed by Mystech
Associates, is a real world command and control
system that allows commanders to organize, analyze,
display, and manipulate information about their forces
on the battlefield. It is one of a group of systems
that are attempting to revolutionize the way in which
command decisions are made and combat data is
disseminated. Phoenix is not a simulation, but is
used extensively in training exercises and is integrated
with existing training simulations. The system
provides a relational database, tactical maps,
communications tools, decision support tools, and
command matrices on a computer. The computer
system increases the speed at which information can
be generated, exchanged, .and understood by
commanders. As such, it is a force multiplier,
making U.S. forces more responsive and effective
against their enemies.

3.3 Advanced MIS Systems
An example of an advanced medical MIS system is

the Trauma Care Information Management System
(TCIMS). Under sponsorship by DARPA, TCIMS
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is being developed by various consortium members as
the next generation medical MIS system for the DoD.
It provides unprecedented levels of accurate patient
information to various echelons of care, starting at
level 1 (medics treating individual soldiers at incident
sites) up to levels 3 and 4 (military hospitals treating
large groups of casualties).

3.4 Patient Simulation

An example of patient simulation is the Medical
Education Technologies Inc./University of Florida
Human Patient Simulator (HPS). The HPS is a full
scale, life-like simulator that is model-driven and
script controlled (Lampotang et al. 1995 and van
Meurs et al. 1993). This hybrid system allows users
to optimally and creatively take advantage of both
types of control. The cardiovascular features of the
HPS include palpable radial and carotid artery
pulsations, heart sounds (normal and abnormal), 5-
lead electrocardiogram, non-invasive blood pressure
measurements, and invasive arterial, central venous,
pulmonary artery, and wedge blood pressure. All
these measurements are made using standard
monitoring equipment.

Simulation scenarios can be constructed for individual
patients. This allows for the implementation of
specific script driven events (e.g. a certain amount of
blood loss from an injury). The physiologic data will
respond to those events in a realistic manner as
dictated by the physiologic model.

Scenarios including combat casualties such as wounds
causing blood loss, pneumothorax, and insufficient
oxygen uptake caused by chemical weapons or smoke
inhalation are possible. Development of the HPS is
still ongoing and currently work is underway to add
brain, eye, and neurological features to the HPS. The
modular design of the HPS and the ability to program
different patients via the scenario editor makes the
HPS the ideal human model to be used in combat
simulation.

Medical

3.5 Simulation for

Readiness

Linkages

Each of the above systems excels in its respective
domain. The ModSAF combat simulation provides
valid representations of combat activity and can
populate a virtual battlefield with large numbers of
simulated entities. Phoenix, as part of the Army’s
Maneuver Control System (MCS), can receive,
manipulate, and send a wide variety of command and
control messages, including reports and orders.
TCIMS holds the promise of dramatic improvements
in collecting, maintaining and retrieving accurate
patient data. The HPS provides a simulation and
training environment that allows medical practitioners



to practice medical procedures using actual medical
equipment.

Our vision for linking the above simulations and
systeins to improve medical readiness can be
summarized in Figure 1.

Combat SAF Patient Simulator

Medical SAF

Vital Signs Vital Signs

Patient Records Patient Records

Figure 1: Simulation Linkages

We propose development of a medical training system
that includes representation of the combat mission.
As casualties are generated in combat SAF
simulations such as ModSAF, these casualties can
populate patient MIS systems. Given a Medical SAF
capability that can accurately model the medical
logistics as well as maintain a suitable representation
of casualties and their treatment at the multiple
echelons of care, training of medical evacuation
logistics can be performed. When linked to patient
simulators such as the HPS, training for care
providers can be accomplished in the same scenario.
Properly linked to the advanced patient MIS as well
as actual command and control equipment, a seamless
training scenario that exercises all aspects of the
medical mission is possible.

The benefits of this proposed linkage are that it
allows multiple uses of individual simulations in a
combined fashion. Simultaneous training at varying
resolutions and levels of care becomes possible.

Since doctrine dictates that the medical mission must
support the combat mission, we stress that it is
crucial to extend accepted combat simulations with
medical play rather than to develop them in stand-
alone mode.
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4. The MedSAF Prototype

As a first step in implementing our vision, we have
developed a prototype Medical Semi-Automated
Forces (MedSAF) system based on medical
extensions to ModSAF. MedSAF was then
integrated to interoperate with the HPS. We call the
combined MedSAF and its linkage to the HPS,
MedSIM (Medical Simulator).

The remainder of this paper describes the capabilities
and implementation of MedSAF and linkage to the
HPS. This integrated MedSIM capability can be used
to demonstrate a fully integrated medical scenario that
includes combat, generation of infantry casualties,
simulation of first care treatment, evacuation to
higher echelons of care via combat ambulances and
evacuation helicopters, and models of treatment at a
Battalion Aid Station and an evacuation hospital.
Casualty models have been developed that change
state over time, including vital sign degradation (e.g.
pulse, blood pressure, blood loss) based upon casualty
type.

A remote linkage to the Human Patient Simulator
allows substitution of a life-like simulator for
MedSAF casualties, just as tank simulators may be
substituted for ModSAF tank entities in a distributed
simulation. Much as virtual tank simulators allow
platoon leaders and tank crewmen to train in the
combat context represented by ModSAF, the HPS
allows medical professionals to train on a human-like
simulator in the combat context represented by
MedSAF. The HPS provides a powerful environment
for training in triage and treatment of casualties
throughout the course of the simulation.  Our
prototype system can be made fully compatible with
existing DoD standards for DIS or DMSO’s emerging
High Level Architecture (HLA).

4.1 Extensions to Medical
Simulation

Support

The extensions developed to produce a medically
credible MedSAF from the ModSAF combat
simulation system are described below.  These
extensions were specifically developed to support the
execution of the demonstration scenario described in
section 5.1

4.1.1 Medical Support Vehicles

The first development task under the MedSAF project
was to ensure that the proper entities existed to
populate the synthetic battlefield in the demonstration
scenario. Refinement of the scenario revealed the
requirements for a M113 combat ambulance and an
evacuation helicopter, as described in the following



sections. In addition, a generic individual combatant,
enhanced to support casualty modeling was created.

4111 MII3 Combat Ambulance

ModSAF already contained a baseline version of a
M113 ambulance; however no medical modeling
capabilities or patient transportation were available
for that vehicle. The MedSAF project enhanced the
baseline ModSAF MI113 ambulance by adding the
specific transportation behaviors described later in the
paper. This was easily accomplished by updating the
M113 ambulance configuration files to include the
capabilities to execute the specific unit level task
described in section 4.1.2

4.1.1.2 UH-53 Evacuation Helicopter

To implement air evacuation from the Battalion Aid
Station (BAS) to the evacuation hospital, a specific
UH-53 air evacuation helicopter was created in
MedSAF. This was accomplished by creating a
parameter file for the UH-53. This helicopter was
extended with transportation behaviors in the same
manner as the M113 combat ambulance.

4.1.1.3 Dismounted Infant,

A generic infantry entity was created (again using
ModSAF’s ability to define new entities via data
files) to implement casualty generation and modeling
of wounded patients. For the purposes of the
demonstration, this infantry had no specific weapons.
This infantry entity was extended with the casualty
generation algorithm, casualty transportation and
casualty representation modeling described in the
following sections.

4.1.2 Casualty Transportation

To support the transportation of wounded casualties
across the battlefield, the ModSAF behaviors that
already allow dismounted infantry to mount vehicles
were investigated. An analysis of the existing
ModSAF mount and dismount behaviors revealed
serious limitations that would restrict the ability for
combat ambulances to transport arbitrary casualties to
and from arbitrary echelons. At the time, ModSAF's
capabilities to allow soldiers to mount and dismount
vehicles and to be transported across the battlefield
were limited to infantry that were task organized as
part of integrated vehicle/individual combatant combat
units. In this form, this implementation would
unacceptably limit the transportation of casualties.
For example, the ability to transport enemy or non-
aligned casualties would not be supported.

A design for flexible “mounting” and “dismounting”
of wounded from ambulance vehicles (both the M113
combat ambulance and the UH-53 evacuation
helicopter) was developed to overcome the ModSAF
shortcomings. This design relies on message passing
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between the ambulance vehicle and the patient to
coordinate the pickup and delivery of the wounded, as
shown in Figure 2. This message passing is
accomplished via encoded DIS Signal Protocol Data
Units (PDU’s) that allow different entities in a
networked simulation to communicate with each
other.

The contents of the “Board Me” message indicate the
DIS entity ID of infantry being commanded to board
the ambulance, and the entity id of the ambulance to
board. The contents of the *“Boarded” message
provides a positive acknowledgment that the boarding
occurred, also by indicating the respective entity ID’s.
The implementation of the ‘DeBoard” and
“DeBoarded” messages are similar.

Ambulance  Infantry Ambulance  Infantry

._ Board Me | DeBoard Me

Figure 2: Messages and Timelines for Casualty
Pickup and Delivery

This approach of wusing DIS messages to
communicate and acknowledge the boarding and
deboarding process allows potential future
interoperability with the boarding and deboarding of
non-CGF individual combatants onto non-CGF
vehicles.

The boarding capabilities were implemented by a pair
of ModSAF tasks, as described below.

4.1.2.1 Vehicle Board

A ModSAF vehicle level behavior called VBoard was
created for the wounded infantry to monitor requests
from ambulances to be picked up or dropped off. As
in all vehicle level ModSAF behaviors, this behavior
has direct access to the vehicle it supports. This
access enables the behavior to directly cause the entity
to deactivate (leave the DIS exercise) or reactive
(rejoin the DIS exercise).

Based loosely on the baseline behaviors for the
mounting and dismounting of DI Groups, VBoard
continually examines incoming radio messages for
requests to be picked up, or, if already boarded, to be



dropped off. If a request from an ambulance to board
is received, the infantry deactivates itself, leaving the
DIS exercise, and it becomes dormant. When a
request from the ambulance to deboard is received, the
infantry entity reactivates at a location near the
ambulance vehicle. This gives the appearance that as
the vehicle moves, the boarded infantry has moved
along with it.

4.1 nit Ev jon

A unit level behavior, UEvac, was created for
transportation vehicles to initiate the request to
pickup or deliver wounded infantry. This behavior
was based loosely on the behavior to pick up DI
Groups. As a unit level behavior, it can be directly
assigned to a unit or vehicle from the ModSAF GUIL
The operator assigns an Evacuation mission to either
an ambulance or Medevac helicopter. The operator
must supply a location at which to perform the
evacuation or delivery. Depending on the type of
vehicle (ground or RWA), the UEvac behavior (task)
that is part of the Evacuation mission (taskframe)
spawns the appropriate movement sub-behaviors to
move the vehicle to the evacuation or delivery point.

Once the vehicle arrives at its destination, if the
operator has configured the mission for pickup, the
vehicle searches an operator-controlled search radius
for wounded infantry. Once located, “Board Me”
messages are sent to the wounded infantry. If the
mission has instead been configured for delivery of
the wounded, the behavior instead sends ‘DeBoard
Me” messages to all the infantry that have previously
boarded.  Receipt of ‘“Boarded” or ‘“DeBoarded”’
messages allows the unit behavior to positively track
the current number of infantry it is carrying.

The fact that the behavior is sensitive to whether it is
running on a ground vehicle or RWA vehicle (and
that it determines which particular movement sub-
behaviors to invoke based on vehicle type) is a unique
design in the domain of ModSAF behaviors. It is
possible and desirable in this case because evacuation
by air or ground is extremely similar at this
resolution of modeling.

4.1.3 Casualty Representation

The most significant development activity in the
MedSAF project was the development of credible
medical models. This was accomplished via the
development of a flexible modeling language, and the
use of subject matter experts to help develop models
within that language, as described in sections 4.1.3.1
through 4.1.3.3.

4.1.3.1 State Interpreter
In the MedSAF project, we developed a flexible
interpreted computer language called the State
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Interpreter Language (SIL). The high level purpose
of SIL is to represent physical and behavioral models
in a data driven interpreted fashion to facilitate
development and debugging. SIL was specifically
used in this project to model the evolution of human
casualty states.

SIL allows the declaration of state variables of
integer, floating-point and string types. These
variables can be initialized and updated through the
actions of a full suite of mathematical operators.
Through the use of defined states and control-flow
statements, conditional expressions can be defined.
The basic SIL language is interpreted via a SIL
interpreter.  The SIL interpreter can run a SIL
program stand-alone as well as imbedded within
MedSAF. The SIL interpreter has been designed to
allow easy extension of the SIL language through the
registration of named primitives. External
applications can interface with SIL through shared
variables or primitive extensions.

The advantage of the SIL language for the
implementation of medical models and behaviors is
that it allows the rapid addition of models and
behaviors into the MedSAF system without
recompilation. For example, we were able to easily
add new medical sub-models without code
compilation, such as a model of diastolic and systolic
blood pressure derived as a function of mean arterial
pressure (MAP). This facilitates development and
explorations into new behaviors or models.

4 n jologi

In MedSAF, we used SIL to implement several
prototype medical models to represent the time-
evolving state of human casualties. The use of SIL
in MedSAF was dictated by the requirements to easily
create MedSAF models. Given that the proper state
variables that define a human casualty were unknown
until late in the development cycle of the project, it
was essential to develop a system that facilitates
model development without compilation. As the
models become more refined and gain stability in
implementation, these models can be implemented in
ModSAF’s compiled Finite State Machine (FSM)
language (Calder er al. 1993), for efficiency of
execution.

Our current medical model was created with medical
subject matter advice provided by medical modeling
experts from the University of Florida Department of
Anesthesiology. The model represents a human
patient via several coupled sub-models, which include
a cardiovascular model and a model of blood
oxygenation. A model of brain death based on blood-
pressure and blood oxygenation determines the health
of the patient.




4.1.3.3 Treatment Modelin

In order to feed medical treatment inputs to the
MedSAF human physiological models, the SIL
language had to be extended with primitives to
determine if the patient has a healthy buddy available
to treat wounds, whether the patient was in an
ambulance, whether the patient is at the Battalion Aid
Station, or whether the patient is at the evacuation
hospital. Because of SIL’s ability to accept named
extensions via code registration, these extensions
were straightforward to implement. Each of the
primitives used ModSAF search primitives to
determine the nearness of other DIS entities (healthy
buddies) or certain graphical objects (BAS or
evacuation hospital). A primitive to determine
whether or not the infantryman is in an ambulance
was also added.

Based on the results returned from these primitive
extensions, the SIL-encoded casualty model will
dispatch to appropriate treatment logic, such as a
change in blood oxygenation due to intubation and
ventilation. In this manner, we have demonstrated
how to provide “echelons of care” to simulated
casualties within a DIS combat simulation.

4.1.4 Casualty Generation

Prior to the transportation and treatment of casualties
in MedSAF, casualties must be generated as a result
of combat. In support of the development of high-
resolution casualty generation-in MedSAF, a limited
survey of casualty generation data sources was
performed. The results of the limited survey were
disappointing, in that the only available documented
models deal with human injuries at a very high level,
consistent with the aggregate vehicle-level damage
states of mobility kill, firepower kill, and
catastrophic kill.  Clearly this level of injury
representation was too coarse to be used in a medical
scenario. Recent contacts within the Army medical
community indicate that higher resolution human
injury models are available, and these will be
examined as part of follow-on MedSAF development.

As a result of the limited injury-modeling
information available at the time of development, a
new ModSAF damage library was created. This
library generates injury events as a result of direct or
indirect fire, according to the datafiles and algorithms
described in sections 4.1.4.1 and 4.1.4.2.

4.1.4.1 Direct Fire Casualty Generation

Taking ModSAF’s direct fire model as an example
(Courtemanche & Monday 1994), the following data
structure was used in the casualty library to determine
whether an infantryman has sustained an injury due to
a small-arms direct fire event.
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("No Injury" 0.05)
("Severed Limb" 0.05)
("Flesh Wound" 0.40)
("Chest Wound" 0.30)
("Head Wound" 0.10)
("Death" 0.10)

)

This data specifies that there is a 5% chance of “No
Injury”, 40% chance of “Flesh Wound”, etc. The
probabilities must add up to 1.0. A different set of
probabilities can be associated with different targets
and different weapons impacting the target. Being
data driven, the statistics can be easily changed to
correlate with empirical data.

The benefit of this data representation is that the
damage events are completely data-driven. For
example, a new damage event such as “Abdominal
Wound” can be added to the data file without
recompilation. As these damage events are routed
directly to the SIL-encoded human physiological
models, completely new damage events and resulting
human patient outcomes can be created just by
augmenting data files.

4.1.4.2 Indirect Fire Casualty Generation
For indirect fire (that is weapons impacts directed at a
location as opposed to a specific vehicle), a slightly

modified damage file is used:
(
(107::0' 5.0 (("Death" 1.0)))
(5.0 10.0 (("Head wound" 0.1)
("Death" 0.9)))
(10.0 25.0 (("Head wound" 0.1)
("Chest Wound" 0.1)
("Death" 0.8)))
(25.0 50.0 (("Head Wound" 0.1)
("Chest Wound" 0.1)
("Flesh Wound" 0.2}
("No Injury" 0.1)
("Death" 0.5)))
(50.0 100.0 (("Chest Wound” 0.1)
("Flesh Wound" 0.2)
("No Injury" 0.7)))

)

This data file contains damage probabilities as in the
direct fire case; however these probabilities are
associated with different range bands. For example,
between O and 5 meters away from the indirect fire
impact, this data file indicates 100% chance of
“Death”.




4.2 Linkage to the HPS

MedSAF was envisioned not as a standalone system,
but as a system capable of being networked with
other simulations to provide multi-level medical
combat training. An example of this is the
demonstrated linkage of MedSAF with the HPS,
which was prototyped under the HPS Pilot Study, as
described below.

The overall concept of linking MedSAF and the HPS
is based on current ADS training environments, in
which manned combat simulators (i.e., tanks, APC'’s,
etc.) are linked to SAF combat forces. Likewise,
medical combat training requires a high resolution
manned simulation interface (the HPS), as well as
semi-automated forces (MedSAF). The simulator
portion (i.e., HPS) can be used to model certain
MedSAF casualties at a sufficiently high resolution
that effective “team training™ (i.e., training of medical
practitioners) can take place.

File
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Figure 3: MedSAF Display of HPS Data

4 uman Patient Simulator Pilot Stud

In the HPS Pilot Study, we prototyped a linkage
between the HPS and MedSAF. Under the Pilot
Study, modem-based serial communications was used
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to communicate patient data from the HPS in
Gainesville, Florida to MedSAF running in Orlando,
Florida. Due to the limited schedule for the Pilot
Study, a very rudimentary linkage was designed and
implemented. The HPS communicates scalar (non-
waveform) data, such as breath-rate, via the modem
link. A standalone communications program co-
located with the MedSAF system receives the data
from the HPS and displays it graphically over time,
as in Figure 3.

The current linkage is two-way in that a standalone
program communicates commands to the HPS to
initiate the linkage, load up the patient with a pre-
planned patient scenario, and receive vital sign data
back from the HPS. However, the linkage is limited
in that the particular patient configuration is pre-
planned and not a reflection of the particular state of a
particular casualty in MedSAF. This extension is
planned in the next version of MedSAF.

4.2.1.] MedCOM Serial Communications

Serial modem communications between the HPS and
MedSAF was accomplished using a reliable
communications protocol specifically designed to
transmit physiologic data over modem connections.
This protocol, named MedCOM, uses data packets of
variable length, a checksum and a positive
acknowledge algorithm for reliability. This protocol
was tested with data generated by the HPS over a
telephone link between Gainesville, Florida and
Orlando, Florida. Link interruption tests show that
the protocol is reliable and that it has the ability to
resynchronize a connection when synchronization is
lost.

Although the normal linkage to the HPS is currently
over amodem line, we have demonstrated the ability
to maintain a direct serial line linkage in the case
where the HPS and the MedSAF workstations are co-
located. Also, we believe that the MedCOM protocol
can be easily adapted to DIS via the encapsulation
within Signal PDU’s or the use of the Simulation
Management Protocol. In the future, as HLA
implementations become prevalent, the MedCOM
communications model can easily be converted to a
Run Time Infrastructure (RTI) which can
communicate changing attribute values (vital signs)
with specified reliability characteristics.

4.2.1.2 Remote Interface 1o HP

To facilitate remote control and remote data collection
from the HPS, the HPS software has the ability to
run one or more remote controls that are connected to
one of the multiplexer serial ports contained within
the HPS. To connect the HPS to the MedSAF
communications program and data display, a gateway



was designed that communicates as a remote control
to the HPS and on the other side connects to a
modem and transmits the data that the MedSAF

communications program wants to receive. All
communication is via the MedCOM protocol. The
HPS-MedCOM  gateway software requests

physiologic data from the HPS every five seconds and
sends it on via the modem with the MedCOM
protocol. Commands coming from the MedSAF
communications program are translated and validated
and sent on to the HPS. An example of a command
is “start patient”, which will cause the HPS to start
loading a specific patient scenario.

4.2.1.3 Data Grapher

In order to display real-time remote patient state from
the HPS to the MedSAF operator, an X-Windows and
Motif based display subsystem was created to
graphically display time-changing MedSAF and HPS
data. This system, called Data Grapher, can plot
multiple synchronized waveforms, as in an
EKG/respiration monitor. This display system was
integrated with the standalone MedSAF HPS
communications program to plot returning HPS
variables, as in Figure 3. In the future, this display
system will be integrated directly into MedSAF to
plot the state variables of the low resolution MedSAF
medical models.

5. Project Status and Results

The MedSAF and HPS Pilot Study were sponsored
by SAIC’s Independent Research and Development
program. Successful demonstration of the
capabilities described in this paper was given in the
first quarter of 1996. A fully integrated scenario
including combat, generation of casualties, treatment
of the casualties at different echelons of care,
transportation of casualties to different echelons of
care, and linkage to the HPS has been demonstrated
and briefed to several representatives of the
Department of Defense Simulation, Training, and
Medical communities. This demonstration scenario

1s described below.
5.1 MedSAF Scenario

A mech infantry platoon, part of a Mech Infantry
Company Team, is attacked, and casualties are
sustained to a dismounted infantry squad. First care
to the wounded is provided by an M113A3 Combat
Ambulance, which had already been task organized to
the Company Team from the Battalion Medical
Platoon. The Combat Ambulance moves forward,
from its normal position with the Company trains
1000 meters behind the front line of the Company
team, to assist the wounded squad. The casualties are
transported by combat ambulance rearward to a patient
collection point behind the Company Team defenses.
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Unable to treat all the casualties, the Company 1st
sergeant requests ground evacuation of the wounded to
the Battalion Aid Station (BAS). The BAS
dispatches one of its un-tasked M113A3 ambulances
to retrieve and transport the wounded from the
Company to the BAS.

At the BAS, care is given to the retrieved wounded by
the Battalion surgeon. A critically wounded
infantryman with chest trauma is stabilized prior to
evacuation by air via UH-53 medical evacuation
helicopters. The infantryman is transported to the
Evacuation Hospital for treatment, including
intubation for general anesthesia during chest surgery.

Figure 4 below is a graphical representation of the
scenario.

Figure 4: MedSAF Scenario

5.2 MedSAF Scenario Execution

During the course of the execution of this scenario,
all of the capabilities of MedSAF and the linkage to
the HPS are exercised. This is graphically depicted in
Figure 5.

The basic capabilities of ModSAF are used to lay
down the forces for this scenario, including the
dismounted infantry, combat vehicles, medical
platoon, evacuation helicopters, and map annotations
(graphical Persistent Objects) to represent the
Battalion Aid Station and the evacuation hospital.

When the infantry come under indirect fire, the
MedSAF casualty generation algorithms dynamically
produce a statistical distribution of casualty types.
These casualties execute the MedSAF patient and
treatment models. For example, an injured



infantryman can receive positive treatment for certain
medical problems if a healthy infantryman is nearby
to provide aid.
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Figure 5: MedSAF Architecture

The MedSAF operator chooses where and when to
dispatch the Company and Battalion ambulances to
evacuate casualties. Using the MedSAF patient
transportation capabilities, casualties are moved to
higher echelons of care, including the Battalion Aid
Station or the evacuation hospital. All the while, the
MedSAF patient and treatment models execute,
reacting to the types of treatment available in the
different echelons of care. If the casualty is severe
enough, or if the operator fails to evacuate the
casualty fast enough, the patient may lapse into
unconsciousness, sustain irreversible brain damage,
and ultimately die.

In parallel with these MedSAF scenario activities, the
HPS may be remotely connected to MedSAF.
Commands over the modem connection can initiate
communications and initialize the HPS in a given
treatment scenario. Medical practitioners can provide
treatment to the HPS in the form of intubation,
anesthesia, and injection of drugs. In conjunction
with this, real-time vital sign data from the HPS is
transmitted over the modem connection and displayed
to the MedSAF operator via the Data Grapher.

6. Future Work

There are many applications of our medical
simulation capabilities. ~ While our prototype is
directly applicable to the areas of combat medical
readiness for all services in the Department of
Defense, including combat medical training and
supporting a materiel development environment for
evaluation of different medical doctrines, other
applications are also possible. For example, training
for mass casualty triage and tfeatment could greatly
benefit from validated simulations that can generate
realistic casualties based on realistic scenarios. Other
examples of potential future applications are described
below.
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6.1 2-Way HPS Linkage

A complete two-way linkage between MedSAF and
the HPS is the next logical developmental step.
Under this linkage, particular casualties generated in
MedSAF will be downloaded to the HPS over the
modem communications link.  Sufficient medical
state must be forwarded to the HPS to load it with a
useful medical training scenario that correlates
between the MedSAF representation of the casualty
and the HPS. Also under this complete linkage, the
MedSAF DataGrapher should be integrated into
MedSAF so that the operator can direct the display of
MedSAF casualty vital-signs as well as HPS
communicated vital-signs. This facility would aid in
performing validation scenarios which would be used
to comrelate the MedSAF and HPS medical models.
In addition, a continuous linkage concept could be
provided, which would allow one MedSAF scenario
to generate multiple casualties which are transported
to various treatment locations on the synthetic
battlefield. Certain casualties could be downloaded to
the HPS on demand by a scenario controller to
provide medical training to trainees co-located with
the HPS. As part of triage training, multiple HPS’s
could be used to represent multiple casualties, with
medical personnel deciding whether to treat a high
priority patient immediately or to move on to the
next patient. This evolves naturally into a mass
casualty training and experimentation laboratory.

6.2 Enhanced Medical Scenarios

The MedSIM system provides opportunities for
enhanced medical scenarios. ModSAF supports
environmental modeling that includes battlefield
smoke and may ultimately include chemical and other
environmental agents (Schaffer 1994).  Treating
casualties inflicted with injuries due to smoke or
chemical warfare is already possible using the HPS;
slight extensions are needed to MedSAF to play NBC
and smoke.

Another possible direction for new medical scenarios
include simulation of mass casualties due to man-
made accident (such as a passenger plane crash) or
natural disasters (such as earthquake). Appropriate
statistical distributions of casualty type could be
modeled, and MedS AF capabilities of dispatching care
and evacuation and HPS capabilities of simulating
triage and accepting clinical treatment can be used to
train coordinators, medics, and clinicians in a mass-
casualty scenario.

6.3 Other Linkages
As described in our previous report, a linkage to

TCIMS® Mobile Medical Monitor (MMM) is
possible. The MMM could be attached to the HPS to




monitor real-time vital-sign data. The combination
would be used by selected medical personnel to assess
and subsequently treat the HPS. This scenario would
provide a proof-of-concept ‘of several integrated
capabilities: (1) improved training, with real time
feedback and response; (2) algorithm validation; (3)
integration of medical teams into synthetic combat
exercises; and (4) real time testing and evaluation of
medical readiness using the HPS to supply realistic
test data.

7. n ion

We have presented our vision for using simulation
linkages to improve medical readiness, and discussed
the prototypes used to prove the viability of the
concept. We have described how these capabilities
can be implemented within the DIS and CGF
paradigm. The success of our work so far has
convinced us that this approach is sound. Although
many challenges still face us in the development of
synthetic medical environments, we believe this
work has helped to establish a clear roadmap to a
mass casualty training system using integration
approaches developed for the combat community.
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1. Abstract

The response to large-scale emergencies can involve
large numbers of personnel, vehicles, and other
resources. Such responses are controlled and managed
during and after an emergency by emergency managers.
The Plowshares project enhanced Janus, a military
constructive simulation, to produce TERRA, a
simulation that can be used to train emergency
managers in a command post exercise format. An
important activity during a large-scale emergency is the
evacuation of the civilian populace in the affected area.
This paper describes the design and implementation
status of the evacuation model designed for
Plowshares.

2. Introduction

This section provides background on the Plowshares
project, which was the context for the evacuation model
that is the subject of this paper, and briefly surveys
some previous research in evacuation modeling.

2.1 The Plowshares project

Large-scale emergencies, such as earthquakes and
hurricanes, require massive responses, involving large
numbers of personnel, vehicles, and other resources.
Emergency managers are charged with managing and
allocating resources and coordinating the many actions
taken in response to an emergency. The Plowshares
project applied military constructive simulation
technology to produce a simulation intended to train
emergency managers. In particular, the U. S. Army’s
Janus entity-level constructive simulation model (Titan
1993) was enhanced with emergency management
features. The resulting simulation, called TERRA,
simulates an emergency and the actions taken in
response to it, allowing emergency managers to
practice their skills. TERRA is used in a command
post exercise mode, where the command hierarchy and
communications channels of emergency managers
remain unchanged, except at the lowest level, where
actual disaster events (such as fires) and response units
(such as fire trucks) are replaced with the computer

simulation. The initial version of TERRA simulated
the effects of hurricanes, fires, tornadoes, chemical
spills, and other hazards, and response actions such as
fire fighting and road clearing.

More information on the Plowshares project can be
found in any of the following:
1. Project overview (Petty 1996) (Petty 1995b)
2. CGF

capabilities needed for emergency
management simulation (Petty 1995a)
3. Emergency management training using
simulation (Slepow 1995)
4. Mathematical models of disaster events
(Wood 1995)

For many types of emergencies, the large-scale
evacuation of citizens is a major factor. Thousands of
people fleeing a hurmricane completely occupy the
transportation network in the affected area. Controlling
and facilitating that evacuation requires communication
and coordination among all emergency response
agencies. Effective training of emergency managers
with a simulation requires that the large-scale
evacuation of citizens be modeled. This paper presents
the evacuation model designed for TERRA and reports
the status of its implementation,

2.2 Evacuation modeling

A number of models have been proposed and

developed to cover different types of evacuations,

employing a variety of different modeling methods.

References to some of that work are listed below:

1. Common characteristics of evacuation models
(Banz 1991)

2. Optimal egress modeling as a state dependent

finite closed queuing network (Bakuli 1991)

3. Building evacuation, based on network flow
(Choi 1991)

4. Regional evacuation on roads (Newsom 1991)

5. Evacuation decision support (Kisko 1991)

6. Evacuation around a nuclear power station,

based on network flow on roads (Hobeika 1991)

7. Survey of evacuation models and methods
(Lovas 1993)
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8. Mine evacuation during a mine fire, based on
network flow (Unger 1993)

9. Evacuation of a geographical area in advance of

a hurricane, based on network flow on roads

(Tufecki 1993)

‘Improved calculation of travel speed along arcs

in network flow evacuation models

(Bakuli 1993)

Evacuation movement of human flow modeled

as particle systems (Bouvier 1995)

10.

I1.

3. Evacuation model design

This section presents the evacuation model design.
3.1 Design overview

The Plowshares evacuation model does not represent
individual persons and their specific locations. Rather,
it represents the geographic area to be evacuated as a
two dimensional array of square cells, each 100x100
meters. An attribute of each cell is the number of
persons in that cell. During execution, persons flow
from cell to cell at discrete time intervals according to
the constraints of the underlying terrain, moving away
from hazards (such as fires or hazardous chemicals)
and towards safety (such as shelters). This familiar
finite element method for modeling continuous flows
has been widely used in applications as diverse as heat

flow (Jacoby 1980) and tornado winds (Davies-
Jones 1995).

3.2 Assumptions

The evacuation model design makes certain

assumptions, which are listed here. Essentially, each
assumption is a reflection of what information the
underlying emergency management simulation must
provide to the evacuation model.

1. Presence of hazards. The emergency
management simulation must set hazard flag(s) in
affected cells to note the presence of fire, obstacles, and
hazardous materials, and change those flags over time
as the extent and location of the hazards change.

2. Presence of shelters. The emergency
management simulation must note the presence and
capacity of a shelter in a given cell and its capacity.

3. Initial cell population. The emergency
management simulation must initialize each cell with an
initial  population and maximum  capacity.

4. Presence of roads. The emergency management
simulation must initialize each cell with or without the
presence of roads.

5. Casualty parameters. The probabilities of each
hazard causing casualties must be given as parameters.
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6. Discrete cell updates. The state of all grid cells’
attributes are assumed constant during any given
evacuation time interval. Although an attribute could
change value many times during the time step; only its
final value is used for the evacuation model. This
assumption applies onlyif the evacuation model uses a
time step that is different from the underlying
emergency management simulation.

3.3 Terrain grid cell attributes

The citizen evacuation model relies heavily on the
database design of the Plowshares TERRA software.
In the TERRA, citizens are made an attribute of the
terrain. The terrain map is divided into cells of 100
square meters. The size of the terrain map determines
the number of cells; a 60 square kilometer map has a
600x600 grid of cells.

Each cell is one of three feature types: generic urban,
vegetation, or generic areas. Each area feature type has
seven classes. Each cell's value of type and class
determine an initial population for that cell. In addition
to the feature type/class and initial population, several
other attributes will be used in the citizen evacuation
model. They are listed in Table 1; the table also shows
how each attribute is initially set and whether the
attribute is dynamic or static.

3.4 Preprocessing

Preprocessing refers to all processing that takes place
before the evacuation model begins execution. Note
that the emergency management simulation execution
begins prior to the start of the evacuation model, during
which time the initial effects of the disaster (e.g.
hurricane) are calculated. The preprocessing steps are
as follows:

1. Initialize feature type and class.
2. Initialize presence of buildings, fences, rivers,

obstacles, roads, and shelters.
3. Initialize population and maximum capacity.
4. Hurricane enters the area.
5. Update presence of hazards (fire, obstacles,

hazardous materials) and shelters.
6. Assess casualties and wupdate population.

7. Hurricane leaves the area (the hurricane can has
moved for enough away to begin the exercise;

however, it can still cause damage).
8. Initialize population for evacuation model with
each cell’s current population

9. Initialize basic flow rate of citizens.



3.5 Feature type/class and roads

Each cell’s feature type and the presence of roads are
established in the terrain database. These attributes are
predefined before the simulation ever begins and never
change. Global variables identify a cell’s feature type
and the presence of primary or secondary roads. Bit
masks are used to determine the presence of roads and
the associated feature type.

3.6 Number of citizens

The initial number of citizens per cell is also
preprocessed; however, each cell’s initial value to be
used by the citizen evacuation model is calculated after
the hurricane leaves the area and the training exercise
begins. As mentioned previously, each cell has an
initial population based on it’s feature type and class.
As the hurricane moves through the population of
affected cells will decrease. Once the hurricane leaves
the area, the resulting population of each cell becomes
the initial value to be used by the evacuation model.
Casualties inflicted by the hurricane are tracked
separately from those resulting from the evacuation.

3.7 Hazards

Hazards are created by the hurricane and the state of
any hazard can change over time. Models will set/reset
flag(s) to note the presence of a hazard in a given cell;
bit masks are used to determine each hazard’s presence.

3.8 Flow rate

Each cell will have an associated flow rate of citizens
across that cell. This flow rate determines how many
citizens can move across the cell in one time step. A
cell's basic flow rate is a function of its feature type;
the basic flow rate is dynamically modified by cell
attributes to calculate at each time step an adjusted
flow. Table 2 shows the basic flow rate for cells based
on their feature type. Table 3 shows the general effect
of each cell attribute on the cell’s adjusted flow rate.
The adjusted flow rate will take into account the
presence of hazards, roads, and police, and will be the
rate that is used to move citizens. The number of
citizens to move is the adjusted flow rate times the
number of time steps since the last cell update.
However, the number of citizens to evacuate can not
exceed the cell’s current population and can not exceed
the maximum population of the cell being evacuated to.

¢

current cell' s population (citizens)
¢

cell to evacuate to' s population (citizens)
m, = cell to evacuate to' s max population (citizens)
n = number of citizens to evacuate (citizens)

r, = cell's basic flow rate (citizens per minute)

r, = cell’' s adjusted flow rate (citizens per minute)
At

1

time since last cell update (minutes)

n=MIN[r,-At, c;,, my -c, ]

3.9 Population capacity and shelters

The maximum population capacity attribute limits the
number of persons that may be present in a cell. A
cell’s maximum population will be a function of the
cell’s feature type, class, and the presence of a shelter.
The cell’s feature type and class will determine a
maximum population assuming no shelter exists in the
cell. The presence of a shelter adds to the maximum
population capacity. It should be noted that since
shelters can be destroyed at any time during the
exercise, the cell’s maximum population can change. If
the cell population exceeds the cell’s maximum shelter
population, it is assumed that the shelter is full and the
others are unsheltered.

3.10 Attraction index

Each cell will have an associated attraction index which
determines its likelihood to attract citizens. Citizens
move towards cells with larger attraction indices.
Population to or from any area can be caused by a
variety of factors. (Banz 1991) lists some of those and
notes that some cause movement away from a location
(e.g. hazards) and others cause movement towards a
location (e.g. safety). This general idea is extended to
the concept of attractors and repellors. As previously
mentioned, each cell has an associated attraction index;
and citizens move toward cells with larger attraction
indices. Each cell's attraction index is a function of
nearby repellors and attractors. Citizens move away
from repellors and towards attractors; see Table 5.

Table 6 shows the effect of repellors on a cell’s
attraction index, based on the current cell's distance
from the repellor source. The numbers O - 5 indicate
the number of cells (range) away from the repellor
source. A range of O indicates the effect of a repellor
located in that cell; a range of 5 indicates the effect of a
repellor located 5 cells away. Table 7 shows the effect
of attractors on a cell’s attraction index, based on the
current cell’s distance from the attractor source.
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Grid Cell Attribute

Initialization

Dynamic?

Feature Type / Class
- Genenc Urban
- Vegetation
- Generic Areas

Preprocess

No

Road
- Primary
- Secondary

Preprocess

No

Hazard(s)
- Fire
- Obstacle
- Hazardous matenals

By hurricane | Yes

Number of citizens Preprocess Yes
Maximum population capacity | Preprocess Yes
Flow rate Preprocess Yes
Shelter capacity Preprocess Yes
Attraction index None Yes

Table 1. Grid cell attributes.

Feature Type Basic Flow Rate
Generic Urban 1000
Vegetation 2000
Generic Areas 1500

Table 2. Basic cell flow rate.

Attribute Effect Comment

Feature Type Positive Vegetation (relative to generic)
Negative Urban (relative to generic)

Number of Citizens Negative Crowded cells slow movement

Presence of Hazards Negative

Presence of Roads Positive

Presence of Police Positive Police assigned to traffic control
Negative Police cordon around hazard
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Attribute Presence Adjustment
Factor
Fire No 1.0
Yes 0.5
Obstacle No 1.0
Yes 0.7
HAZMAT No 1.0
Yes 0.5
Road None 1.0
Primary 1.8
Secondary 1.6
Police to 0 1.0
increase flow
1-2 1.5
3-5 2.0
>=6 2.2
Police to 0 1.0
block flow
1-2 .5
83-5 .3
>=6 2
Citizens 0-1/4 Full 1.0
1/4 - 1/2 Full .8
1/2 - 3/4 Full 5
3/4 - Full 3

Table 4. Flow rate adjustment factors (notional).

Repellors

Attractors

Hazards

Shelters

Crowded Cells

Uncrowded Cells

Cells with Roads

Table 5. Repellors and attractors.

Repellors Range (in cells)

0|l 1] 2] 3| 4| 5
Fire 7| -4] -1 0| 0] O
Rubble 6|-3] 0] 0] O} O
Obstacle 6| -3] 0] 0y Of O
HAZMAT 6| -4]-2]| -1 ol O
Crowded cell -6 -3] 0 0] O] O

Table 6. Repellors’ effect on a cell attraction index.

Attractor Range (in cells)
0]1]2|3]4]5
Shelter 2 |1 0 {0 [0 |O
Primary road 2 |1 0 |0 |O |O
Secondaryroad [2 |1 |0 |O [0 [O
Uncrowded cell 2 |1 0 |O |0 ]O

et

Table 7. Attractors’ effect on a cell attraction index.




Similar to Table 6, the numbers 0 - 5 indicate the
number of cells (range) away from the attractor source.
The parameter values chosen in Tables 4, 6, and 7 are
notional. The actual values of these parameters will be
determined with the aid of subject matter experts data
collected from actual disaster evacuations.

A cell’s attraction index is the cumulative effect of all
attractors and repellors within range. The calculation
is:

I = Attraction Index

na = Number of Attractors Within Range
np = Number of Repellors Within Range
a; =Value for Attractor i

pj =Value of Repellor j

na np
I=2a,-+2pj
j=1

i=1

3.11 Algorithm overview

During each time step of TERRA:

(1) As hazards are created/removed, update cell.
(2) For each cell, assess casualties.

(2.1) For each hazard present in the cell,
casualties = number of citizens *

probability of casualty
number of citizens = number of citizens -
casualties

During each time step of the evacuation model:

(1) For each cell, calculate it adjusted flow rate.
(2) For each cell, calculate its attraction index.
(3) For each cell, move citizens to adjacent cells

(if possible and necessary).

Rules for movement:

(3.1) Citizens will move to the cell with the
greatest attraction index.

(3.2) If all cells have the same attraction index,
the citizens will not move.

(3.3) Citizens can not move to a cell whose
maximum population capacity would be
exceeded.

(3.4) The number of citizens to move is the
minimum of the cell’'s current population,
the maximum number of citizens that could
move via the calculation of n, and the
available space in the cell to move to.

(3.5) If 2 or more cells have the same largest

attraction index,

If one of the cells under consideration is the
citizens’ current location,

then the citizens will not move,

else the citizens will move to the least
crowded cell first, the second least crowded
cell next, and so forth until all citizens are
moved or all cells under consideration are
full. Any remaining citizens will not move.

3.12 Training characteristics

With this evacuation model, the emergency managers
are challenged to allocate police to control traffic and
optimize the evacuation flow. They must also reduce
casualties during the evacuation by eliminating the
hazards (e.g. using fire trucks to extinguish fires) and
using police to direct evacuation flow away from and
around hazards. The emergency managers can be
measured quantifiably based on the number of
casualties versus total population and the number of
sheltered versus unsheltered citizens.

4. Evacuation model implementation

This section details the initial implementation of the
evacuation model into the Plowshares TERRA
software. The initial implementation was completed
under tight time constraints and includes only limited
functionality; however, it serves as a basis for further
development. The design and implementation of the
initial evacuation model are discussed, as well as
suggested improvements for subsequent development
iterations.

4.1 Chemical cloud hazard

A single chemical cloud is the only hazard used in the
initial evacuation model implementation. The chemical
model incorporated within the TERRA software, which
was not modified from Janus, is used to update the
chemical cloud’s location, radius, and toxicity. These
parameters are dynamic and can change with each
chemical model update.

4.2 Flow rate calculation

The evacuation model uses a cellular approach,
dividing the terrain into a grid of cells, each with an
associated feature type occupying 100 square meters.
The terrain editor is used to associate different terrain
feature types with the population density, measured in
citizens per square kilometer, basic flow rate of citizens
across the cell, measured in citizens per minute,
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Terrain feature types include urban, vegetation, and
generic areas. As noted in Figure 1, all cells that lie
within 0.5 kilometers of the chemical cloud boundary
are evacuated. All other cells are assumed to be within
a safe distance and evacuation is unnecessary. The cell
center is used for all calculations. The distance of 0.5
kilometers is a notional number that can be revised as
deemed necessary. For those cells that lie within the
radius of the cloud, the flow rate of citizens increases
by 25% in order to allow for increased movement due
to citizen panic. This increase is also notional and can
be revised as necessary. Finally, the number of citizens
to evacuate can not exceed the cell's current
population.

Determining if a cell lies within the evacuation area is
done based on simple Euclidean distance. We begin
with the following variable definitions:

(x,,¥, )= coordinate of cloud center

( x5,y )= coordinate of cell center

r = radius of cloud

d, = distance from cell center to cloud center (km)

d, =distance from cell center to cloud boundary (km)
¢ = cell's current population (citizens)

n = number of citizens of evacuate (citizens)

r, = cell’s basic flow rate (citizens per minute)

r, = cell's adjusted flow rate (citizens per minute)

At = time since last cell update (minutes)

Using the diagram in Figure 2 as a reference, d, and d,
are calculated using Equations (1) and (2), respectively.

d =\/(x2 ‘Xl)z '*'()’2 = }’1)2 M
d,=d,-r €3

In summary, the pseudocode for calculating the
adjusted flow rate and number of citizens to evacuate
for each cell is:

if(d, <05)

{
if(d, <0)r,=1.25-r,
elser, = r,

n= MIN[r, - At,c]

/

4.3 Evacuation movement direction

Each cell is examined in relation to the cloud center
and the wind direction. For analytic purposes, the cell
center and chemical cloud center are used for all
calculations. As shown in Figure 3, each cell and the
wind direction can lie in 1 of 8 regions. Each region
occupies a portion of the terrain spanning an arc of 45°
from the chemical cloud center with the size of each
region dependent on the location of the chemical cloud
within the terrain boundary. The direction in which the
citizens evacuate is determined by the cell’s region and
the chemical cloud’s region. Evacuation movement of
citizens is modeled as movement from cell to cell.
Citizens will evacuate to one of the surrounding cells to
the north, northeast, east, southeast, south, southwest,
west, or northwest. In certain circumstances (i.e. for a
cell in the corner), not all eight directions are available
for evacuation. See Table 8.

The chemical cloud’s region is determined by the
direction of the wind. The direction is merely an angle
measured from the +x axis, referred to as q; in the
diagram in Figure 2. For example, a wind direction of
225° degrees places the chemical cloud in region 6.
The cell’s region is also determined with a direction, q;
; but this direction is dynamic and varies from cell to
cell. Angle q; is the angle measured from the cloud
center to the cell center (measured from the +x axis).
Using the diagram in Figure 2 as a reference, one can
calculate q, using Equation (3). For instance, a cloud
center to cell center direction of 45° places the cell in
region 2. Assuming this cell lies within the evacuation
area and the chemical cloud is in region 6, citizens will
move to the cell to the northeast.

®2=TAN'1(y2-y') 3)

X2 =X

If the chemical cloud’s region and the cell’s region are
identical, the evacuation direction is determined by
noting which direction (angle) is larger. See Table 8.
It should be noted, however, that Table 8 provides only
one evacuation direction. If for some reason, this
direction is unavailable, the citizens can not evacuate.
In subsequent development iterations, the tabl<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>