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EXECUTIVE SUMMARY 

 
Fatigue is the most frequently cited physiological factor contributing to the occurrence of US Naval Aviation 

flight mishaps (Naval Safety Center, 2006).  The Navy and other military services have invested significant 
resources in the development of means to manage and mitigate fatigue in operational settings.  Foremost among 
these investments is the development of fatigue modeling/scheduling tools, the primary function of which is to 
inform mission scheduling to minimize fatigue and improve safety and operational effectiveness.  Although 
generalized fatigue modeling tools, such as the Fatigue Avoidance Scheduling Tool (FAST), are increasingly used 
in military settings, currently there is no established tool available to assess an individual aviator’s actual real-time 
level of fatigue or general physiological readiness.  Recent evidence suggests large individual differences in fatigue 
resistance exist (Van Dongen, Caldwell, & Caldwell, 2006; Killgore, Grugle, Reichardt, Killgore, & Balkin, 2009), 
pointing to the need to supplement general models of fatigue with individualized fatigue measurement and 
modeling.  Accordingly, the Naval Safety Center (NSC) has identified the need for a quickly-administered 
individualized fatigue assessment tool to determine a pilot or aircrew member’s readiness-to-fly.  

 
In response to this need, NAMRL was funded by the Bureau of Medicine and Surgery (BUMED) Medical 

Development Program to conduct validation research of several cognitive and physiological test instruments for 
their potential to serve as individualized fatigue detection tools.  The instruments evaluated included Flight Fit, a 
brief (appx. 7 to 8 minute) computer-based cognitive test battery. Flight Fit is composed of tasks measuring 
cognitive abilities crucial for handling heavy mental work load and sensitive to the effects of fatigue (e.g., time-
estimation, decision-making, short-term memory).  The second primary instrument evaluated was PMI Fit 2000, 
which measures several oculometric characteristics putatively sensitive to the effects of fatigue, including, pupil 
diameter, pupil constriction amplitude and latency, and saccadic velocity.   In addition to the two main instruments, 
the Psychomotor Vigilance Task (PVT), a gold standard in detecting fatigue; Synthetic Work for Windows 
(SynWin), a test of working memory and cognitive load; simulated flight performance with X-Plane 9, an 
ecologically valid, aviation-specific, measure of vigilance; and the Stanford Sleepiness Scale, a subjective 
assessment of sleepiness were evaluated  For purposes of secondary analysis, performance  was predicted using 
fatigue and performance modeling software, the Fatigue Avoidance Scheduling Tool (FAST).  Subjects’ baseline 
sleep/wake data were collected via actigraphy and entered into the FAST models. 

 
Fifteen study participants were observed over a three day period.  During days one and two, baseline test 

performance data were collected, in addition to actigraphic data on participants’ sleep/wake patterns.  Day three 
consisted of a 25 hour period of continual wakefulness (0300 hours to 0400 hours), during which test and 
performance data were collected at three hour intervals. It was hypothesized that over the course of 25 hours of 
continual wakefulness, participants would exhibit decrements on cognitive (Flight Fit) and physiological (PMI FIT 
2000) measures. Additionally, it was hypothesized that secondary validity indices would demonstrate concomitant 
performance decrements due to sleep loss, evidenced through performance on the PVT, SynWin, and X-Plane flight 
simulator, and through reports of subjective sleepiness on the SSS.  Although it was anticipated that group 
performance decrements would be predicted by FAST modeling, it was hypothesized that some measures of fatigue 
would exhibit significant individual differences, and that the addition of these measures would incrementally 
improve the prediction of fatigued task performance over FAST alone. 

 
Analyses and results are discussed in detail in three Stages. Stage 1 establishes the relation of significant 

measures to decrement across time spent without sleep, and therefore fatigue. Stage 2 further explores significant 
Stage 1 relations as predictors of fatigue-related performance (PVT lapses) at group and individual levels. Stage 3 
uses results from Stages 1 and 2 to inform the construction of optimal group scoring algorithms to predict fatigue-
related performance. Aspects of Flight Fit and PMI Fit 2000 showed significant predictive ability across all three 
Stages of analysis, with individual variability playing a significant role when examined in Stage 2. The findings 
suggest that basic cognitive and physiologic tasks can successfully measure fatigue, and that both are necessary for 
optimal measurement. Further, scores on subsets of these same tasks can differentiate an individual’s personal level 
of fatigue susceptibility above and beyond the current industry standard tool. Finally, combining the individual 
diagnostic power of Flight Fit and PMI Fit 2000 with established group measures such as FAST elicits greater 
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predictive ability of fatigued performance than either approach alone. These results are based on analysis of raw 
data from Flight Fit and PMI Fit 2000; normative scores provided by the manufacturers’ algorithms did not yield 
significant results. Therefore, the current algorithms used to score Flight Fit and PMI Fit 2000 must be adjusted to 
reflect use in a Naval Aviation population. With that adjustment, both Flight Fit and PMI Fit 2000 show promise as 
valid real-time readiness-to-fly assessment tools in Naval Aviation squadrons. Follow-on studies to address scoring 
adjustment, as well as validation in a wider array of fatigue conditions (i.e., chronic, cumulative sleep debt) are 
discussed. 
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INTRODUCTION 

 
 

The negative impact of fatigue is well known. Fatigue due to sleep loss causes slowed physiological and 
cognitive reaction time, memory problems, and increased mistakes during even routine decision making (Caldwell 
et al, 2009).  Pilots and aircrew routinely report feeling fatigued in the cockpit (e.g., Belland & Bissell, 1994), and 
on an objective level, pronounced neurological and physiological decrements have been associated with both 
chronic (Van Dongen, Rogers, & Dinges, 2003) and acute (Caldwell, 2005) sleep loss. The Navy has documented 
fatigue issues in relation to aviation for over 50 years (see Graybiel, Brown, & Crispell,1943; Graybiel, Horwitz, & 
Gates, 1944).  Today, fatigue is the most frequently cited physiological factor contributing to the occurrence of US 
Naval Aviation flight mishaps (Naval Safety Center, 2006), costing hundreds of millions of dollars in lost equipment 
and the incalculable cost of lost human life.  
 

Accordingly, the Navy and other military services have invested significant resources in the development of 
means to manage and mitigate fatigue in operational settings. Mitigation techniques have largely focused on 
pharmacologic countermeasures, for example, caffeine and dextroamphetamine. Pharmacologic interventions 
continue to improve, increasing efficacy while decreasing adverse side effects. An excellent example of such an 
intervention is the drug modafanil and its extended action formulation, armodafanil (Phillips, Arnold, Strompolis, & 
Simmons, 2009). Modafanil and its variant have demonstrated many of the benefits of traditional stimulants already 
used by military communities without severely affecting normal sleep patterns or appetite. Modafanil also appears to 
have a lower potential for abuse than currently used stimulants (Lyons & French, 1991; Myrick, Malcom, Taylor, & 
LaRow, 2004). Even with the advancement of mitigation techniques, prevention of the fatigue state remains ideal. 
Efforts at prevention are centered on fatigue management through the use of predictive modeling and scheduling 
tools. These include duty hours, rotations and flight times used to inform mission scheduling to minimize fatigue 
and improve safety and operational effectiveness. In a position paper recently adopted by the Aerospace Medical 
Association, Caldwell and colleagues (2009) outline two major types of fatigue management technologies: 1) on-
line real time assessment, and 2) off-line fatigue prediction algorithms. 
 

On-line, real-time assessment of fatigue focuses on continuous tracking of physiologic markers sensitive to 
fatigue to calculate when an individual falls below an acceptable level of alertness. For instance, the Percentage of 
Eye Closure (PERCLOS) metric assesses the frequency and duration of slow eye blinks, a behavior strongly linked 
to drowsiness and sleep loss-related fatigue (Dinges, Mallis Maislin, & Powell, 1998). The PERCLOS metric is 
employed in several currently available commercial fatigue detectors that all operate similarly. Once an undesirable 
level is reached in the PERCLOS metric, the operator is notified that the subject has reached an unsafe fatigue level, 
usually by an alarm. The alarm is intended to reorient the individual long enough to take effective countermeasures. 
Other physiologic indicators, such as eye gaze, head position, actigraphy, and EEG have been employed in real time 
monitoring systems to good effect (Caldwell et al, 2009). However, the difficulty of positioning and maintaining 
these systems in high tempo operational environments makes their transition to military application problematic. For 
example, PERCLOS and other oculometrics rely on relatively stable head positioning for accuracy, a functionally 
impossible condition in the cockpit. Further, detection of fatigue at its onset is not operationally ideal; by the time 
deficits are detectable, performance is already compromised. This consideration has driven the development of 
fatigue prediction algorithms, so that performance deficits may be anticipated before they occur. 
 

The use of off-line fatigue prediction algorithms is well illustrated by the Fatigue Avoidance Scheduling 
Tool (FAST), a program designed to measure, estimate, and manage performance changes induced by sleep 
restriction or deprivation and time of day. The performance predictions are based on the Sleep, Activity, Fatigue, 
and Task Effectiveness (SAFTE™) Model,  extensive field data, and sleep deprivation studies (Hursh et al., 2004).  
The output for FAST includes a prediction of performance effectiveness represented as a relative departure from 
baseline functioning across the course of a day. For ease of interpretation, the performance scores given by FAST 
can be equated to blood alcohol level (BAL), a metric with well-known cognitive and physiological performance 
correlates.  The FAST software can be used with actigraphy or data can be entered from a self-report of the 
individual’s sleep/wake cycle. Performance prediction by FAST includes a few key assumptions, most notably that 
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all individuals have highly similar circadian rhythms and fatigue responses. While these assumptions are based on 
group normative data, recent evidence suggests large individual differences in fatigue resistance exist (Van Dongen, 
Baynard, Maislin & Dinges, 2004), and that these differences may be connected to aspects of basic cognitive 
functioning (Killgore et al., 2009).  
 

Inter-individual variations in fatigue response highlight the need to supplement general models of fatigue, 
such as the SAFTE™ Model, with individualized fatigue measurement and modeling using a combination of 
cognitive and physiological factors. Currently there is not an established tool available to assess an individual 
aviator’s actual real-time level of fatigue or general physiological readiness in this capacity. Accordingly, the Naval 
Safety Center (NSC) has identified the need for a quickly-administered individualized fatigue assessment tool to 
determine a pilot or aircrew member’s readiness-to-fly. The current report documents testing of two potential 
instruments to fill that need, the Flight Fit cognitive fatigue assessment and the PMI FIT 2000 physiological fatigue 
assessment tools.   
 
 

METHOD 
 
 

Subjects 
 

Fifteen active duty military personnel from the Naval Aviation Preflight Indoctrination (API) program 
volunteered as test subjects. The study protocol was approved by the Naval Aerospace Medical Research Laboratory 
Institutional Review Board in compliance with all applicable Federal regulations governing the protection of human 
subjects.  Descriptive statistics for the subjects are presented in Table 1.  

No specific groups were excluded.  However, certain factors identified via a medical history form (Appendix 
B), served to exclude individual participants, due to their potential confounding effects.  These included excessive 
alcohol use within the previous 48 hours (>3 drinks), greater than 400mg of routine daily caffeine consumption, 
habitual use of tobacco products within the previous six months, and history of significant medical, neurological, 
psychiatric, or sleep-related problems (Killgore, et al., 2009).   
 
 

Table 1. Descriptive Statistics 
 Age (years) Height (in)     Weight (lbs) 
 Mean SD Mean SD Mean SD 
Male (n = 13) 24.7 2.1 71.2 3.3 186.6 20.0 
Female (n = 2) 21.5 0.7 66.5 3.5 142.5 17.7 
Total  24.3 2.3 70.5 3.6 180.7 24.6 
 
Ethnicity 

 
White 

 
Black 

 
Asian American 

 
Hispanic/Latino(a) 

 
Other 

 
 11 2 0 2 0 
 

 
Fatigue Assessments 
 

Flight Fit.  The Flight Fit cognitive test battery is an abbreviated (7 to 8 minute) version of the CogniFit 
assessment battery (full version is approximately 30 minutes) (Cognifit Inc., Yoqneam Ilit, Israel).  The test 
measures cognitive performance on various components of mental work load sensitive to the effects of fatigue.  
Specifically, Flight Fit (FF) measures raw reaction time (FF_rawRT), visual scanning reaction time (FF_vsRT), 
visual scanning accuracy (FF_vsACC), divided attention reaction time (FF_daRT), divided attention accuracy 
(FF_daACC), shifting reaction time (FF_SRT), attention shifting accuracy (FF_shiftACC), focus reaction time in 
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the presence of distracters (FF_fdRT), and short-term memory (FF_STM) (see Appendix A for a complete listing 
of variable abbreviations).  

 
PMI Fit 2000.  The PMI FIT 2000 (PMI Inc., Rockville, MD) uses eye-tracking and pupillometry to identify 

impaired physiological states due to fatigue and other factors, such as alcohol or drug use.  The test requires less 
than one minute to complete.  The system employs an algorithm that compares an individual’s established baseline 
to present state on 4 variables (i.e., pupil diameter, pupil constriction amplitude, pupil constriction latency & 
saccadic velocity). The baseline is established by the average of 10 trials taken during non-impaired conditions.  
After the baseline trials, each subsequent trial provides the user with scores on the four test components plus a 
composite score, the FIT Index. The PMI FIT 2000 has been used in multiple fatigue and impairment studies in 
other contexts, such as motor vehicle operation, and has been demonstrated to be both reliable and valid (e.g., Russo 
et al., 1999).  

  
Psychomotor Vigilance Task.  The PVT-192 (Ambulatory Monitoring Inc., Ardsley, New York) is a brief 

vigilance and attention task, and is considered the gold standard instrument for assessment of the effects of fatigue 
(Balkin et al., 2004).  During each 10 minute trial, subjects are required to attend closely to a stimulus window and 
respond by pressing a response button.  Subjects are instructed to respond as quickly as possible.  PVT scores of 
interest include mean reciprocal reaction time of the slowest 10% of responses (Mean S RRT), and lapses (responses 
to stimulus presentations taking longer than 500 ms). 
 

SynWin.  SynWin is a computer-based test module that simulates a work environment by presenting up to 
four tasks on the screen simultaneously.  These tasks include versions of the Sternberg Memory Task, mathematical 
calculation, gauge monitoring, and auditory vigilance.  Each 10 minute trial is scored individually, and combines the 
participant’s performance on all administered tasks into a single proficiency score.   

 
Flight Simulation (X-Plane 9).  Simulated flight performance was measured using the X-Plane 9 (Laminar 

Research) flight simulator.  Because fatigue impairs basic attentional processes, simple tasks which are subject to 
more reliable measurement were the focus of simulated flight performance.  Specifically, subjects were given a 
simple flight profile, with instructions to fly “straight and level” at a specified altitude, airspeed and heading (i.e., 
2000 ft, 140 knots, due North).  Deviations from these specified flight parameters were assessed.   
 

Stanford Sleepiness Scale.  Subjective sleepiness was assessed with the Stanford Sleepiness Scale (SSS), 
(Hoddes, Dement & Zarcone, 1972).  The available scores for the SSS range from 1 (“Feeling active, vital, alert, or 
wide awake) to 7 (“No longer fighting sleep, sleep onset soon; having dream like thoughts”).  There is also a means 
to denote if the subject is “Asleep”, with the score of “X”.  The SSS is a widely used, easy-to-administer paper-and-
pencil measure and has demonstrated excellent sensitivity to the effects of fatigue (Balkin et al., 2004).    

 
Fatigue Avoidance Scheduling Tool.  The Fatigue Avoidance Scheduling Tool (FAST; Nova Scientific 

Corporation, Fairborn, OH) is software designed to measure, estimate and manage performance changes induced by 
sleep restriction or deprivation and time of day.  The primary use of FAST is to optimize the operational 
management of aviation crews and to design work schedules and mission-critical events in a manner that will reduce 
fatigue and fatigue induced errors.  The performance predictions are based on the Sleep, Activity, Fatigue, and Task 
Effectiveness (SAFTE™) Model, numerous laboratory collaborations, field data collection, and sleep deprivation 
studies (Hursh et al., 2004).  The output for FAST includes a prediction of performance effectiveness, which can 
also be used to extrapolate a blood alcohol level (BAL).  The FAST software can be used with actigraphy or data 
can be entered from a self-report of the individual’s sleep/wake cycle.   
 
Design  
 

The experiment employed a repeated measures design to investigate the effects of sleep deprivation on 
physiological state and task performance over time.  The experiment consisted of two phases, (1) the Practice Phase 
and (2) the Experimental/Sleep Deprivation Phase.  
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Procedures 
 

Practice Phase.  Up to four (4) volunteers were recruited during each week of the study.  After receipt of 
participants’ informed consent, the Practice Phase of the experiment began. This phase was executed Monday and 
Tuesday morning and required approximately 90 minutes of participation each day.  Practice Phase data was used 
for each of the measures to establish performance asymptote and to mitigate practice effects during the 
Experimental/Sleep Deprivation phase.  Each day participants completed: 5 trials of the PMI FIT 2000, 2 trials of 
Flight Fit, 2 trials of the PVT, three 10-minute trials of SynWin, one 15-minute trial of the X-Plane Flight Simulator 
and the SSS.  Prior to departing Monday morning, each subject was outfitted with a Motionlogger Microsleep Watch 
(Ambulatory Monitoring, Inc., Ardsley, New York), which was used to monitor sleep and wake periods while not 
under observation.   
 

Experimental/Sleep Deprivation Phase.  Upon completion of Tuesday morning Practice Phase, subjects 
were released with instructions to return at 0530 Wednesday morning.  Subjects were instructed to sleep according 
to their normal schedules, and to awaken at 0300 Wednesday, remaining awake until the 0530 report time.  
Compliance was gauged by actigraphy.  Subjects were also re-familiarized with the protocol for the sleep 
deprivation phase of the study.  Beginning at 0600 subjects were assessed on Flight Fit, PMI FIT 2000, PVT, 
SynWin, SSS and the flight simulator task once every three (3) hours, as follows: 1 trial of PMI FIT 2000, 1 trial of 
Flight Fit, 1 trial of PVT, 1 administration of SSS, 1 trial of the simulated flight profile and 1 trial of SynWin.  Trials 
began at 0600, 0900, 1200, 1500, 1800, 2100, 0000 (Thursday), and 0300.   Upon completion of the final trial, 
subjects were debriefed and driven to the Bachelor Officers’ Quarters (BOQ) with instructions to obtain adequate 
sleep prior to check out.   

 
 

ANALYSES AND RESULTS  
 

Overview 
 

Three stages of data analysis were conducted in order to examine group and individual patterns of fatigue-
related performance decrements. In Stage 1, a series of Repeated Measures ANOVAs was conducted for each 
criterion and predictor variable over the 8 Experimental Phase trials to determine which variables exhibited change 
across time. Significant change in predictor variables across time established their sensitivity to fatigue on a group 
level. Displaying change across time for criterion variables, such as PVT Lapses, is necessary in order to establish 
those variables as fatigue-related, and therefore appropriate as outcome measures for Stage 2 predictive models. In 
Stage 2, a series of Hierarchical Linear Models (HLMs) was conducted to predict performance decrements 
associated with fatigue, and to simultaneously examine any individual differences that were not evident at the group 
level analyses. Bivariate and multiple predictor models were examined. In Stage 3 we constructed several multiple 
predictor General Linear Models (GLMs) from significant Stage 2 predictor variables to formulate optimum group-
based scoring algorithms for fatigue-related performance decrements using Flight Fit and PMI Fit 2000 components. 

 
 

Stage 1 
 

Stage 1 analyses were performed using SPSS version 16.0 for Windows (SPSS Inc., Chicago, IL).  A series 
of Repeated Measures ANOVAs was conducted for each dependent variable over the 8 Experimental Phase trials.  
The 0600 trial of the Experimental/Sleep Deprivation Phase was established as baseline performance.  A value of p 
≤ 0.05 was considered statistically significant.  The following section describes each measure, and the variables 
assessed. 
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Predictor Variables 
 
Flight Fit.  There were 9 sub-scores for each trial of Flight Fit: FF_rawRT, FF_vsRT, FF_vsACC, FF_STM, 
FF_daACC, FF_SRT, FF_shiftACC, FF_fdRT, and FF_daRT. Results indicate that four Flight Fit sub-components 
detected significant fatigue effects across trials, including, FF_rawRT, FF_STM, FF_daACC and, FF_shiftACC.  
Post-hoc analyses revealed significant decreases in performance on these four measures indicative of fatigue effects, 
with the most dramatic detriments occurring during the last two assessment periods (0000 and 0300 hours). ANOVA 
results are presented in Table 2, and mean performance scores over assessment times for each significant sub-score 
are presented in Figures 1 – 4. Significant sub-components were retained in Stage 2 analyses to be evaluated as 
predictor variables. 
 

Table 2.  ANOVA results for Flight Fit Sub-Scores  
 F df p ηp

2 

FF_rawRT 2.86 (7, 98) .009 .17 
     
FF_fdRT †   .82 (4.60, 64.52) .533 .06 
     
FF_vsACC † 1.64 (4.36, 60.97) .172 .11 
     
FF_vsRT 1.71 (7, 98) .114 .11 
     
FF_STM 2.45 (7, 98) .023 .15 
     
FF_daACC  
 
FF_daRT † 
 
FF_shiftACC  
 
FF_SRT  

2.41 
 
1.69 

            
3.49 

 
1.72 

(7, 98) 
 

(3.60, 50.34) 
 

(7, 98) 
 

(7, 98) 

  .026 
 

.172 
 

.002 
 

 .113 

.15 
 

.11 
 

.20 
 

.11 
† Geisser-Greenhouse correction used due to violation of sphericity 
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* * * *

Figure 2. Mean Flight Fit Divided Attention Accuracy (FF_daACC) scores in 
percent correct at each test trial across time. Post-hoc analyses revealed 
significant differences between T1 and T4 – T8; T5 and T1, T7, and T8; T6 
and T1, T7, and T8; T7 and T1, T5, and T6; T8 and T1, T5, and T6. As with 
FF-rawRT, the most operationally significant differences, between T6 and T7 
– T8, are noted (*).  
 

 Figure 1. Mean Flight Fit Raw Reaction Time (FF_rawRT) scores in 
milliseconds at each test trial across time. Post-hoc analyses revealed 
significant differences between T1 and T4 through T8; T5 and T1, T7, and 
T8; T6 and T1, T7, and T8; T7 and T1, T3, T4, T5, and T6; T8 and T1, T3, 
T4, T5, and T6. The most operationally significant differences, between T6 
and T7 – T8, are noted (*).  
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 Figure 4. Mean Flight Fit Shifting Accuracy (FF_shiftACC) scores in percent 
correct at each test trial across time. Post-hoc analyses revealed significant 
differences between T4 and T7, T8; T8 and T2, T3, T4, T5, and T6, indicating that 
FF_shiftACC performance declined significantly and steadily from the T4 time slot 
until the final test trial (*). 
 

 
 
 

Figure 3. Mean Flight Fit Short Term Memory performance (FF_STM) in 
number of successfully memorized items at each test trial across time. Post-
hoc analyses revealed significant differences between T8 and T1, T2, and T6, 
indicating that FF_STM performance was relatively stable until a significant 
decline at the 24 mark of continual wakefulness (*). 
 

 
 
PMI Fit 2000.  There are four components of the FIT Index: pupil diameter, pupil constriction amplitude, 

pupil constriction latency and saccadic velocity.  Results are displayed in Table 3 and Figures 5-9.  Although the FIT 
Index failed to detect fatigue effects across the experimental time points, one subcomponent of the FIT Index, 
saccadic velocity, appears especially sensitive to the effects of fatigue (Figure 9).  While significant effects were 
present for amplitude as well, examination of post-hoc tests revealed patterns that do not suggest that effects were 
associated with fatigue (Figure 6). As a result, only saccadic velocity was retained as a predictor variable in Stage 2 
analyses.   
 
 

Table 3.  ANOVA results for PMI 2000  
 F df p ηp

2 

Diameter†     .613 (3.79, 53.10) .647 .042 
     
Amplitude 4.93 (7, 98)   .000* .260 
     
Latency 1.41 (7, 98) .211 .091 
     
Saccadic Velocity† 8.88 (3.24, 45.34)   .000* .388 
     
FIT Index †     .774 (2.70, 37.76) .503 .052 
     
† Geisser-Greenhouse correction used due to violation of sphericity 
* Mean difference significant at the .05 level  
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* *

 Figure 5. Mean PMI Fit Index Scores at each test trial across time. The 
omnibus test of the effect was not significant (Table 3); therefore, post-
hoc analyses were not conducted. 
 

Figure 6. Mean PMI Pupil Constriction Amplitude in millimeters at each 
test trial across time. Post-hoc analyses revealed significant differences 
between T1 and T2 – T6; T2 – T5 and T1, T7, and T8; T6 and T1; T7 and 
T2, T3, T4, and T5; T8 and T2, T4, and T5. The most operationally 
significant differences, between T5 and T7 – T8, are noted (*). 
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 Figure 8. Mean PMI Pupil Constriction Latency in milliseconds at each 

test trial across time. The omnibus test of the effect was not significant 
(Table 3); therefore, post-hoc analyses were not conducted. 
 

Figure 7. Mean PMI Pupil Diameter in millimeters at each test trial across 
time. The omnibus test of the effect was not significant (Table 3); therefore, 
post-hoc analyses were not conducted. 
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 Figure 9. Mean PMI Saccadic Velocity (PMI_SV) in millimeters per 
second at each test trial across time. Post-hoc analyses revealed significant 
differences between T1 and T7, T8; T2 and T6, T8; T3 and T6 – T8; T4 
and T7, T8; T5 and T7, T8; T6 and T2, T3, T7, and T8; T7 and T1 – T6; 
T8 and T1 – T7, indicating that PMI_SV speed dropped significantly and 
steadily from the T3 trial until the T7 trial. The most operationally 
significant drop, from T6 to T7, is noted (*). 
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Criterion Variables  

 
Psychomotor Vigilance Task.  There were two variables of interest from the PVT: Mean S RRT and the 

number of lapses per trial.  Results indicate significant fatigue effects for lapses and Mean S RRT, see Table 4 and 
Figures 10 and 11 for details. As lapses are both a fatigue literature gold standard and an operationally relevant 
vigilance analogue, it was included as the primary criterion variable in Stage 2 and 3 analyses. 
 
 

Table 4.  ANOVA results for PVT 
 F df p ηp

2 

PVT Lapses† 6.88 (1.45, 20.28) .009* .329 
     
Mean  S RRT 9.36 (7, 98)  .000* .401 
     
† Geisser-Greenhouse correction used due to violation of sphericity 
* Mean difference significant at the .05 level 
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 Figure 10. Mean PVT Lapses at each test trial across time. Post-hoc 
analyses revealed significant differences between T8 and all other 
trials, indicating a distinct point at which group vigilance began to 
fail (*). 
 

Figure 11. Mean reciprocal reaction time of the slowest 10% of responses (Mean 
S RRT) for the PVT at each test trial across time. Post-hoc analyses revealed 
significant differences between T1 and T8; T2 and T8; T3 and T7, T8; T4 and 
T7, T8; T5 and T6, T7, and T8; T6 and T5, T8; T7 and T3, T4, T5, and T8; T8 
and T1 – T7. This pattern is extremely similar to PVT lapses, with the final trial 
significantly slower than all other trials (*).  

 
         
 
 
 SynWin.  Results revealing significant differences across time for the composite scores are displayed in Table 
5 and Figure 12.  Although significant effects were found for assessment time, these effects appear to be 
associated with dramatic performance variation from assessment to assessment as opposed to effects that can 
be clearly explained by fatigue (see figure 12). Though a marked performance decrement does appear from 
2100 to 0300, the lack of consistency across time makes SynWin unsuitable as an outcome measure for further 
analyses.    
 

Table 5.  ANOVA results for SynWin composite score 

F df p ηp
2 

4.70 (7,98) .000* .251 
* Mean difference significant at the .05 level 
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Figure 12. Mean SynWin Composite Score at each test trial across time. Post-hoc 
analyses revealed significant differences between T1 and T2, T4, and T6; T2 and T1, 
T7, and T8; T3 and T4, T6; T4 and T1, T3, T5, T7, and T8; T5 and T4, T6; T6 and T1, 
T3, T5, T7, and T8; T7 and T2, T4, and T6; T8 and T2, T4, and T6. The pattern of 
differences, though statistically significant, was not operationally interpretable in this 
context due to lack of consistency across time. 
 

 
Flight Simulation (X-Plane 9).   
 

Calculation of Total Lapse Time.  Deviations from the specified flight parameter goals for heading (due North), 
airspeed (140 kts), and elevation (2000 ft) were calculated separately.  Lapse times were calculated for each 
parameter as the number of seconds during a simulator trial that subjects deviated from the flight goal by greater 
than one standard deviation (determined at baseline).  Total lapse time was the sum of lapse times for each 
parameter. The analysis revealed dramatic and significant effects of assessment time on total lapse time suggesting 
that total laps time is sensitive to fatigue effects.  Results are displayed in Table 6 and Figure 13. These initial results 
suggest that it is possible to construct an ecologically valid measure of vigilance using low cost, commercially 
available flight simulation. Though promising, these are preliminary results only; further validation across time and 
varying situations is needed before Flight Simulator lapses can be used as an outcome measure with the same 
confidence as PVT lapses. 
 
 

Table 6.  ANOVA results for Flight Simulator Total Lapse Time† 

F df p ηp
2 

2.53 (7, 98) .02 .15 
† Geisser-Greenhouse correction used due to violation of sphericity 

 
 
Stanford Sleepiness Scale (SSS).  Results for the SSS scores show that there was a significant main effect of 

assessment time.  Post hoc comparisons showed significant differences between levels, the most revealing between 
Trials 6, 7, and 8 and all other Trials (see Table 7 and  Figure 14), with individuals reporting greater sleepiness 
linearly across time. However, any self-reported subjective state has significant drawbacks as a performance 
criterion variable, including the possible influences of demand characteristics, variability in individual interpretation 
of the question, and intentional misreporting or deception.  
 

Table 7.  ANOVA results for Stanford Sleepiness Scale 

F df p ηp
2 

26.30 (9, 126) < .000001* .653 
* Mean difference significant at the .05 level 
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 Figure 13. Mean Total Lapse Time on Flight Simulator Performance in seconds 
at each test trial across time. Post-hoc analyses revealed significant differences 
between T8 and all other trials, indicating a distinct point at which group 
vigilance began to fail (*). Notably, this pattern is highly similar to PVT lapses 
(Figure 10). 
 

Figure 14. Mean Stanford Sleepiness Scale (SSS) score at each test trial across time. 
Post-hoc analyses revealed significant differences between T6, T7, and T8 and all 
other trials, indicating that participants felt significantly sleepier as time awake 
increased. The most operationally significant differences, between T6 and T7 – T8, 
are noted (*).    
 

 
 
 
 
Stage 1 Summary 
 

Stage 1 analyses were conducted in order to establish the sensitivity of each predictor and criterion variable 
of interest to change across time, allowing inference of the relation of group averages on those variables to time 
spent without sleep, and hence fatigue. These results suggest that the prospects for development of a squadron-level 
tool to detect aviator fatigue state (i.e. “readiness-to-fly”) in real time are good. However, the predication of Stage 1 
analyses on a repeated measures design does not provide information on the causal relation between predictor and 
criterion variables. Group average based analyses, such as those performed in Stage 1, also mask any potential 
individual differences in fatigue response. We therefore constructed a series of predictive Hierarchical Linear 
Models (HLMs) in Stage 2, using the framework provided by Stage 1 to examine any potential individual 
differences in fatigue response as well as the ability of each variable to predict a criterion measure of performance, 
PVT lapses. Among the available performance markers, PVT lapses were deemed most appropriate for this 
application due its extensive validation in the fatigue literature as well as its operational relevance. For instance, 
vigilance of display change on the PVT response box can be likened to vigilance of display change on a radar 
screen. Stage 2 analyses are introduced in more detail in the next section. 
 
 

Stage 2  
 

Stage 1 longitudinal analyses revealed significant cognitive and physiological decrements attributable to 
fatigue on a group level. When group results were visually inspected at the individual level, two distinct clusters in 
the data emerged, suggesting the possibility of important individual differences in responses to fatigue. In order to 
statistically examine individual variability in fatigue-related performance decrements, a series of two-level 
Hierarchical Linear Models was performed. An exploratory bivariate analysis examined the ability of all significant 
Stage 1 predictors to explain PVT lapses during the test day. FAST scores were included in this analysis series, for 
their potential ability to predict performance on a group level as well as any possible individual differences within 
that ability. The results of the bivariate analyses informed subsequent moderation and multiple predictor models. 
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Bivariate HLMs 
 

For all bivariate HLMs, fixed (level 1 equations) and random (level 2 equations) effects of the predictors 
were included, allowing determination of an overall effect of each predictor, as well as whether the relation was 
consistent or varied across subjects. Significance at level 1 indicates a group effect, while significance at level 2 
indicates significant individual differences within that overall effect. If the random effect was not significant, 
indicating that there was no significant inter-individual variability, the model was refitted without the random effect 
of the predictor in order to focus on the group effect. Any variables that exhibited a significant bivariate relation at 
level 1, level 2, or both with PVT lapses are identified in Table 8. These include Time, FF_rawRT, FF_daRT, 
FF_shiftACC, PMI Fit 2000 Saccadic Velocity (PMI_SV), and FAST. The nature of these effects, including graphs 
of the individual slopes for each significant relation, is presented next. 
 

Time. Level 1 and level 2 equations were significant for Time predicting PVT Lapses. The group effect 
replicated the longitudinal relation of PVT lapses across time established in Stage 1 analyses. The effect at level 2, 
indicating significant individual differences about the group slope, is an excellent illustration of the application of 
HLM to these data and the importance of considering individual fatigue responses when predicting performance. 
Visual inspection of Figure 15 reveals at least two distinct groups in the data when viewed as individually plotted 
lines. For some subjects, lapses increase at a much faster rate across time than for other subjects. Conceptualizing 
this difference in terms of fatigue susceptibility, individuals with high fatigue-susceptibility can be identified by 
their steep slopes. Low fatigue susceptible individuals exhibit the opposite trend, with little to no change in PVT 
lapses in relation to Time. The difference between the steepness of the two most extreme subject slopes and the rest 
of the group would not be evident if one line was fitted based on a group average. In this case performance 
decrement would be under-predicted for individuals who were actually most fatigue susceptible, and over-predicted 
for those who were not. Operationally this could lead to over-utilization of performance compromised individuals 
and under-utilization of mission-ready individuals.  
 
 

Table 8. Bivariate HLMs Relations with Outcome = PVT Lapses 
 Level 1  Level 2 

Variable Equation t df p  Equation χ2 df p 

Time Y = B0 + B1*(Time) + R 2.47 14 0.03  
B0 = G00 + U0 
B1 = G10 + U1 

 
50.76 14   0.00 

FF_rawRT Y = B0 + B1*(FF_RAWRT) + R 2.65 118 0.01  
B0 = G00 + U0 
B1 = G10 + U1 
 

11.38 14 > 0.50 

FF_daRT Y = B0 + B1*(FF_DART) + R 2.10 118 0.04  
B0 = G00 + U0 
B1 = G10 + U1 
 

13.97 14 > 0.50 

FF_shiftACC Y = B0 + B1*(FF_shift) + R  -2.76 14 0.01  
B0 = G00 + U0 
B1 = G10 + U1 
 

38.88 14      0.001 

PMI_SV Y = B0 + B1*(PMI_SV) + R  -1.99 14 0.07  
B0 = G00 + U0 
B1 = G10 + U1 
 

25.36 14     0.03 

FAST Y = B0 + B1*(FAST) + R  -2.82 14 0.01  
B0 = G00 + U0 
B1 = G10 + U1 
 

276.37 14     0.00 

Note. PVT = Psychomotor Vigilance Task, FF = Flight Fit, rawRT = Reaction Time, daRT = Divided Attention 
Reaction Time, shiftACC = Shifting Accuracy, PMI = Pulse Medical Instruments, SV = Saccadic Velocity, and FAST 
= Fatigue Avoidance Scheduling Tool. 
 
 
Flight Fit Raw Reaction Time (FF_rawRT). Although visual inspection of Figure 16 may appear to suggest 

that there is a significant effect of the predictor at level 2, there is not enough variability among individual slopes to 
constitute a significant random effect. In other words, visual variability does not translate into statistically significant 
individual differences in this case. This underscores the importance of conceptualizing potential individual 
differences both visually and statistically within the context of the variable  
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under consideration. Because the level 2 equation was not significant using a random effect, the level 1 equation 
reported  here consists of a re-estimation of the model without the random effect (see Table 8). The re-estimated 
model was significant at level 1 for FF_rawRT predicting PVT lapses, such that as reaction time increases, PVT 
lapses increase. The presence of a significant level 1 effect in the absence of a significant level 2 effect indicates that 
decline in FF_rawRT is best conceptualized on a group level, with the relation between FF_rawRT and PVT lapses 
tracking similarly for all subjects in this study sample.  
 

Flight Fit Divided Attention Reaction Time (FF_daRT). As with FF_rawRT, there was no significant 
random effect of FF_daRT at level 2. Re-estimation of the model without the random effect produced a significant 
relation of FF_daRT to PVT lapses at level 1, such that as divided attention reaction time increases, PVT lapses 
increase (Figure 17). This pattern, similar to what was observed with FF_rawRT, indicates that no statistically 
significant individual differences exist in our sample in terms of performance on FF_daRT, and that all subject 
performance suffers similarly under fatigued conditions.  
 

Flight Fit Shifting Accuracy (FF_shiftACC). Level 1 and level 2 equations were significant for 
FF_shiftACC predicting PVT lapses. The significant level 1 relation indicates that as shifting accuracy decreases, 
PVT lapses increase. Visual inspection of the significant inter-slope variability at level 2 shows that some 
individuals exhibit a much broader range of both PVT lapses and FF_shiftACC scores than others, with those 
exhibiting a broader range of scores displaying the greatest fatigue-related decrement as well. That is, individuals 
with a relatively short plot line also tend to have flat slopes, while those with longer lines tend to have steeper 
slopes. Practically, this means that individuals who show more variability in their performance also tend to perform 
worse overall. The strong clustering of plot line end points in the lower right quadrant of Figure 18 also indicates 
that high shifting accuracy almost always translates to a low number of PVT lapses for both high and low fatigue 
susceptible individuals.  
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 Figure 15. Individual subject slopes for PVT Lapses across trial time 
(group mean centered values). There was a significant group effect (*) 
and significant individual differences (+) such that, on average, lapses 
increased as time spent without sleep increased; however, the nature of 
that relation varied significantly from subject to subject.  
 

Figure 16. Individual subject slopes for PVT Lapses in relation to 
FF_rawRT in milliseconds (group mean centered values). There was 
a significant group effect (*), but no significant differences were 
observed among individual slopes, indicating that the relation 
between FF_rawRT and PVT Lapses is similar for all subjects in the 
sample. 
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Figure 17. Individual subject slopes for PVT Lapses in relation to 
FF_daRT in milliseconds (group mean centered values). There was a 
significant group effect (*), but no significant differences were observed 
among individual slopes. As with FF_rawRT, this indicates that the 
relation between FF_daRT and PVT Lapses is similar for all subjects in 
the sample.  

Figure 18. Individual slopes for PVT Lapses in relation to 
FF_shiftACC in percent (group mean centered values). There was a 
significant group effect (*) and significant individual differences (+) 
such that, on average, lapses increased as shifting accuracy decreased; 
however, the nature of that relation varied significantly from subject to 
subject. 
 

 

 
 
 
PMI Saccadic Velocity (PMI_SV). The level 1 equation was significant for PMI_SV such that as saccadic 

velocity decreases, PVT lapses increase. There was also a significant random effect of the predictor at level 2. 
Visual inspection of the significant inter-slope variability at level 2 reveals a similar pattern to FF_shiftACC, though 
the dichotomy between high and low fatigue susceptibility is not as clear. Individuals who show more variability in 
their performance tend to perform worse overall, though this trend is not as strongly tied to low scores in the 
predictor variable as it is with FF_shiftACC. Some individuals with relatively slow saccadic velocity commit few 
lapses. The presence of these individuals, who contrast the general relation of slow saccadic velocity equaling more 
lapses, highlights the dynamic role of performance baseline and individual variation in saccadic velocity in relation 
to fatigue progression. In terms of baseline performance, individuals who start with few to no lapses tend to stay that 
way; graphically these are the plot lines with low intercepts. Individuals with higher intercepts, and therefore poorer 
baseline performance, tend to get worse across trials. The possible role of baseline performance on a measure as a 
predictor of fatigue-related decline across time will be discussed in more detail in the section Moderation HLMs 
using Baseline PVT Performance. In terms of individual variation, the fact that slow saccadic velocity can be, but 
isn’t always, associated with a high number of lapses further emphasizes the need for establishing individual 
baselines in physiological fatigue measures (Figure 19).  

 
FAST. The level 1 equation was significant for FAST, indicating that as FAST predicts a drop in 

performance, a drop in PVT vigilance occurs. There was also a significant random effect of the predictor at level 2. 
As with Time, this significant inter-slope variability at level 2 reveals some distinct groups: 1) those for which 
fatigue related decrement is well predicted, 2) those for which it is over predicted, and 3) those for which it is under 
predicted.  Group 1 can be seen in the plot lines grouped around the center of Figure 20, where an incremental 
change in FAST relates to a relatively equal incremental change in PVT lapses. Group 2 is represented by the flat 
lines across the bottom of Figure 20, where performance decrements predicted by FAST do not materialize. Group 3 
is the most striking, represented by the steep sloped lines running distinctly separate from the other plot lines. Here, 
actual performance suffers at a much greater rate than what is predicted by FAST. Operationally, the only acceptable 
predictive ability is for individuals in Group 1. As previously noted, over-prediction can result in inefficient use of 
manpower, and under-prediction can create a hazardous working environment.  
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 Figure 19. Individual slopes for PVT Lapses in relation PMI_SV in 
millimeters per second (group mean centered values). There was a 
significant group effect (*) and significant individual differences (+) 
such that, on average, lapses increased as saccadic velocity decreased; 
however, the nature of that relation varied significantly from subject to 
subject. 
 

Figure 20. Individual slopes for PVT Lapses in relation to predicted 
performance in FAST (group mean centered values). There was a 
significant group effect (*) and significant individual differences (+) 
such that, on average, a predicted drop in performance by FAST 
translated into an increase in PVT Lapses; however, the nature of that 
relation varied significantly from subject to subject.  
 

 
 
 
 
The Relation between the SSS and PVT Lapses 
 

The final bivariate relation examined was between two conceptual outcome variables, PVT lapses and the 
SSS. While not defined as outcome and predictor a priori, this relation is theoretically interesting in that it allows 
determination of whether an individual’s subjective evaluation of their fatigue state from the SSS is predictive of 
their objective fatigue-related performance on the PVT. Level 1 and level 2 equations were significant for the SSS 
predicting PVT lapses, indicating that, in general, subjective sleepiness is predictive of PVT vigilance, but there are 
significant individual differences in that general relation (see Figure 21). Visual inspection of Figure 21 reveals that 
all subjects report getting progressively more tired. However, for the individuals represented by lines with flat 
slopes, increasing sleepiness does not correlate with an actual drop in performance. For subjects with relatively steep 
slopes subjective sleepiness is related to performance decrements. Again, we are presented with low and high 
fatigue susceptible subjects. The operational impact of this relation is the clearest of the Stage 2 analyses: asking 
someone how sleepy they are holds variable diagnostic value in terms of predicting subsequent performance. 
Operationally this emphasizes the importance of objective fatigue measurement, such as with the metrics currently 
evaluated in this report. 
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Figure 21. Individual slopes for PVT Lapses in relation to SSS scores 
(group mean centered values). There was a significant group effect (*) 
and significant individual differences (+) such that, on average, as 
subjective sleepiness increased, PVT Lapses increased; however, the 
nature of that relation varied significantly from subject to subject. 
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Moderation HLMs using Baseline PVT Performance 
 

Examining the bivariate relations as a group, the largest effects of fatigue, as well as the largest relations of 
predictors explaining fatigue, appear to be among subjects who had the largest number of lapses. This trend suggests 
that variability in the relations may be explained by the participants’ average baseline PVT performance from the 
Practice phase. Using the bivariate analyses that had a significant random effect of the predictor, a series of analyses 
in which average number of PVT lapses during the Practice phase was included as a level 2 variable. A significant 
effect of Practice phase PVT lapses at level 2 would indicate a moderating influence of baseline performance on 
subsequent performance when predicted by the level 1 variable. For example, prediction of PVT lapses by 
FF_shiftACC while fatigued can be partially explained by an individual’s baseline PVT performance (see Table 9), 
such that a higher number of baseline lapses is significantly predictive of a steeper slope representing the relation 
between FF_shiftACC and PVT lapses while fatigued. The same pattern is true when baseline PVT lapses are used 
as a moderator between FAST and PVT lapses while fatigued (see Table 9). Practically, this means that the worse a 
person’s vigilance is when rested, the more extreme their negative reaction to fatigue will be when subjected to sleep 
loss. Operationally, this means that a warfighter’s vigilance while fatigued can be predicted, at least in part, by their 
vigilance while rested, above and beyond the considerable predictive ability of FF_shiftACC and FAST.  

 
 

Table 9. Moderating Effects of Baseline Lapses on Performance Outcome = PVT Lapses 
 Level 1  Level 2 

Variable Equation    t df     p  Equation     χ2 df     p 

FF_shiftACC Y = P0 + P1*(FF_shiftACC) + E -2.06 116 0.04  

P0 = B00 + B01 
*(BLAPSAVG) + R0 
P1 = B10 + B11 
*(BLAPSAVG) + R1 
 

29.01 13 0.01 

FAST Y = B0 + B1*(FAST) + R -3.876 116 0.00  

B0 = G00 + G01 
*(BLAPSAVG) + U0 
B1 = G10 + G11 
*(BLAPSAVG) + U1 
 

230.14 13 0.00 

Note. PVT = Psychomotor Vigilance Task, FF = Flight Fit, RT = Reaction Time, shiftACC = Shifting Accuracy, and FAST = 
Fatigue Avoidance Scheduling Tool. 

 
 
Multivariate HLM 
 

Bivariate analyses established the significant relations of six individual predictors and one outcome variable 
to PVT lapses. Many of the significant predictors are conceptually related, such as FF_shiftACC and PMI_SV, and 
may share statistical explanatory variance. A multivariate HLM using all significant bivariate predictors except 
Time was therefore constructed. Time was excluded as it is assumed to be theoretically and statistically collinear 
with the other predictors. PVT lapses were used as the outcome. The purpose of this analysis was to determine 
which, if any, variables possessed unique predictive ability above and beyond the others. Results indicate that out of 
FF_rawRT, FF_daRT FF,_shiftACC, PMI_SV and  FAST, FF_daRT, FF_shiftACC, and FAST remained significant 
predictors of PVT lapses at level 1, while FF_rawRT and PMI_SV dropped out. This suggests that the significant 
predictive ability of FF_rawRT and PMI_SV may already be captured by aspects of FF_daRT, FF_shiftACC, and 
FAST. 
 
Stage 2 Summary 
 

Stage 2 analyses were conducted to establish the ability of significant Stage 1 variables to predict 
performance on the PVT. HLM was used in order to observe significant relations at the group and individual levels 
simultaneously. Three aspects of Flight Fit (FF_rawRT, FF_daRT, and FF_shiftACC), one of PMI Fit 2000 
(PMI_SV), and FAST were able to significantly predict PVT lapses at the group level. Of these,  
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FF_shiftACC, PMI_SV, and FAST also displayed significant individual differences in their relation to PVT 
lapses. There was also significant inter-individual variability in the relation between SSS scores and PVT lapses, 
uncovering a disconnect between subjective self-report of fatigue and its objective consequences. Moderation 
analyses revealed that baseline PVT lapses can be used to predict the relation between shifting accuracy and PVT 
lapses, and a comprehensive multivariate HLM demonstrated that divided attention reaction time, shifting accuracy, 
and FAST predict significant systematic variance in PVT lapses above and beyond raw reaction time and saccadic 
velocity. These results clarify two important points for the development of an individualized readiness-to-fly fatigue 
measure. First, fatigue measurement must take individual differences into account. This cannot be accomplished 
using group norms as the comparison baseline for individual prediction. Though a group-based approach will give 
successful approximations for most people, the statistical outliers are actually the most critical to capture when 
trying to predict fatigue-related performance in an operational context. The most efficient way to capture these 
outliers would be to establish individual baselines of performance and then track changes from that baseline much in 
the same way the PMI Fit 2000 does, with focus on the significant predictors found in this stage. The moderation 
results suggest that an individual’s rate of decline due to fatigue could be predicted while establishing baseline 
vigilance ability. Second, the results of the multivariate HLM demonstrate the need to carefully balance predictive 
power and practical application. While raw reaction time and saccadic velocity do not explain systematic variance in 
PVT lapses above and beyond the other significant predictors, they are the fastest assessments and least obtrusive of 
the performed tests. To further inform the balance between predictive power and practical application, Stage 3 
consisted of an incremental validity analysis to evaluate the predictive ability of different conceptual combinations 
of variables with respect to operational utility. 
    
 

Stage 3 
 

The multivariate HLM from Stage 2, including group and individual difference effects, is difficult to 
translate into a single fatigue prediction algorithm. Ideally, accurate prediction would be based on an individual 
equation for each subject in which the respective beta weights for each variable change according to inter-individual 
slope variability. The individualized algorithm approach is beyond the scope of this report, though the significant 
level 1 equations from the Stage 2 multivariate HLM are further examined here. Using level 1 results from Stage 2 
analyses, a group-based scoring algorithm was constructed. It is important to note that this approach has the same 
strengths and weaknesses as other currently used group- based prediction algorithms. However, its conceptual use 
for this report is not necessarily in creating a mission-ready fatigue prediction algorithm; rather, it is in examining 
the interaction and respective contribution of cognitive and physiological measures of fatigue in an incremental 
fashion in a single equation. To further explore the incremental validity of each significant Stage 2 predictor at the 
group level, a series of enter-method General Linear Models (GLMs) was constructed. Because an established 
group-based scoring algorithm is already included in this report (FAST), the first analysis compared variance in 
PVT lapses explained by FAST alone with total variance explained when significant Flight Fit and PMI predictors 
were included with FAST. Results are presented in Table 10. As in the Stage 2 analysis, FAST was able to explain a 
significant amount of variance in PVT lapses, about 14% (R-square = .138), at the group level. Addition of raw 
reaction time, divided attention reaction time, shifting accuracy, and saccadic velocity increased the amount of 
variance explained to about 36% (R-square = .357), a significant change statistically and conceptually.  



 21
 

Table 10. Incremental Ability of FAST, Flight Fit Subscores, and PMI FIT 2000 Subscores to 
Predict Variance in PVT Lapses  

Model Variables Equation 
R 

Square 
Δ F df1 df2 p 

1 FAST 
PVT_Lapses = FAST * -.371 
 

.138 18.863 1 118 .000 

2 

 
FAST 
FF_rawRT 
FF_daRT 
FF_shiftACC 
PMI_SV  

PVT_Lapses = (FAST * -.126) + 
(FF_rawRT RT * .029) + 
(FF_daRT * .03) + (FF_shiftACC * 
-.424) + (PMI_SV * - .211) 

.357   9.688 4 114 .000 

Note. FAST = Fatigue Avoidance Scheduling Tool; FF_rawRT = Flight Fit raw reaction time; FF_daRT = Flight Fit 
Divided Attention Reaction Time; FF_shiftACC = Flight Fit shifting accuracy ; PMI_SV = PMI Saccadic Velocity. 
All equation values assumed to be group mean centered. 

 
 

GENERAL DISCUSSION 
 
 

The results of the current investigation underscore four main points: fatigue measurement and prediction 
must take individual differences into account, optimal fatigue measurement requires considering objective cognitive 
and physiological aspects, operational utility is promising for aspects of both Flight Fit and PMI FIT 2000, and 
additional research is needed to establish potential for implementation of these test instruments. 
 
Individual Differences in Measuring and Predicting Fatigue 

 
The results strongly suggest that individual differences in fatigue susceptibility must be taken into account when 

measuring and predicting fatigue. Individual differences are central to conceptualizing fatigue in operational 
contexts where understanding a service member’s strengths and weaknesses is key to optimizing task assignment 
and safety. Other fatigue researchers have posited that fatigue susceptibility is a trait-like characteristic (Caldwell, 
2005), which has systematic, identifiable neurobiological and physical underpinnings (Caldwell et al., 2005; Rétey 
et al., 2006; Killgore et al., 2009) that may be modified through training (Klingberg, Forssberg, & Westerberg, 
2002). Though performance prediction based on a group average accounts for most individuals, those who are not 
properly categorized under such an approach are theoretically and practically the most critical to capture. For 
instance, those who are highly susceptible to fatigue may require additional training, or more tailored scheduling, 
similar to physical readiness training. Those who are highly resistant to fatigue may be better suited to situations in 
which sustained vigilance is routinely required, such as in Air Traffic Control (ATC) – much like assigning certain 
duties according to physical strength. 

Practically, these results suggest that quantifying individual differences can be easily accomplished by 
establishing individualized baselines of performance, as illustrated by the PMI Fit 2000. By taking 10 rested 
baseline readings prior to sleep deprivation, the PMI system was able to calculate each subject’s performance in 
terms of a departure from that subject’s own record, no matter where that record began and no matter the rate at 
which that departure proceeded.   
 
Measuring and Predicting Fatigue with Objective Cognitive and Physiological Aspects 
 

Cognitive (e.g., tests of vigilance, working memory) and physiological (e.g., fMRI, EEG) measurements have 
been used previously to track fatigue-related changes, and previous results verify that they are similarly affected by 
sleep deprivation (Berka et al., 2007). Biomathematical models of sleep deprivation and performance emphasize that 
cognitive and physiological aspects of fatigue are numerous, interdependent, and complex (Dinges, 2004; Rétey et 
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al., 2006). The results from the current study confirm that the predictive ability of an already biomathematically-
based model, FAST, was significantly improved by adding additional individualized cognitive (Flight Fit) and 
physiological (PMI FIT 2000) measures. Operationally, the measures tested were fast, effective, and adaptable to 
fatigue vulnerability across and within individuals. Future individualized fatigue detection tools should incorporate 
individualized cognitive and physiological measurements to maximize predictive ability and successful 
categorization.  

Results also suggest that these individualized cognitive and physiological measurements should be as objective 
as possible. The design included the SSS as a subjective, self-report measure of fatigue to observe the relation 
between an individual’s feelings of fatigue and their actual performance while fatigued. While it doesn’t include a 
self-rating of performance or performance potential per se, and therefore excludes an analysis of an individual’s 
ability to perceive or predict their actual performance, it does quantify an individual’s perception of their general 
fatigue state. Results reveal a closely clustered group average for SSS across time, such that all subjects reported 
getting more tired as time awake increased. However, the individual differences in performance remain, meaning 
that fatigue resistant individuals still get sleepy - they just continue to perform at baseline levels despite their 
sleepiness. These results suggest that, simply put, asking an individual whether they are too tired to perform has 
little diagnostic value for actual performance, especially for the individuals who would most likely do well. This 
point further emphasizes the need for multi-dimensional, objective evaluation and prediction of performance while 
fatigued.  
 
Usability and Recommendations 

 
Aspects of Flight Fit and PMI FIT 2000 are promising for use as valid real-time readiness-to-fly assessment 

tools in Naval Aviation squadrons, but key adjustments need to be made to the manufacturers’ current scoring 
algorithms. For both instruments, the manufacturers’ current scoring algorithms are inadequate for fatigue detection 
in a Naval Aviator population. In order to detect significant results, analyses had to be performed using raw scores 
from both tests. 

Flight Fit. Initial analyses for Flight Fit, presented in an interim report to the sponsor, were based on the 
program’s standardized output. This output was presented to subjects at the end of each testing session as a 
percentile rank of performance in relation to established norms (i.e., 90th percentile for shifting accuracy, etc.) 
Unfortunately, the Flight Fit test battery was normed by the manufacturer using a sample of truck drivers, not Naval 
Aviators. Observed percentile rank scores in the present Naval Aviator sample clustered near the high end of truck-
driver derived normative scores. The resulting restriction in range of observed normed scores resulted in no 
measurable fatigue effects. When raw scores were used, as in the analyses presented in this report, highly significant 
fatigue effects were exposed on multiple component subtests of Flight Fit. Before Flight Fit or any test battery can 
be utilized as a readiness-to-fly screener for Naval Aviators, new scoring norms based on Naval Aviator 
performance for significant component subtests  must be established. 

PMI FIT 2000. For PMI FIT 2000, the failure to predict fatigue using the manufacturer’s scoring algorithm 
may be due to deviation from the instrument’s primary intended use: detection of impairment due to drugs and 
alcohol. Analysis of the raw data revealed saccadic velocity to be especially sensitive to fatigue effects. However, 
the instrument’s other pupillometric indices and overall “FIT Index”, which are known to be sensitive to the effects 
of drugs and alcohol, were unrelated to fatigue in our sample. The manufacturer has developed alternate setting 
since the start of this study called Fatigue Analyzer mode that is based heavily on saccadic velocity. Future studies 
are planned using the Fatigue Analyzer mode to further validate the use of the PMI Fit 2000 as a readiness-to-fly 
screener in Naval Aviation. 
 Though NAMRL cannot recommend use of Flight Fit and the PMI FIT 2000 instruments in their current 
form, additional testing designed to re-norm Flight Fit with a Naval Aviation population using only the significant 
component subtests reported here, and further testing with the PMI FIT 2000 in Fatigue Analyzer mode, are both 
highly recommended.     
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Next Steps / Future Directions 

 
 The current results suggest that aspects of Flight Fit and PMI FIT 2000 warrant further investigation in order 
to better determine their usefulness to the Fleet as individualized, readiness-to-fly screeners. Beyond the need to 
adjust or modify the scoring algorithms currently provided by the manufacturers, there are additional questions to 
examine in regard to the operational utility of these tools. For instance, sleep deprivation is not always encountered 
in a sustained, acute manner. Gradual, chronic sleep restriction, in which a service member may only get a few hours 
of sleep a night during intensive training or in high-tempo operations, must also be considered.  
 
Summary 

 
Over the course of 25 hours of continual wakefulness in a laboratory setting, occulometric measures of 

saccadic velocity and cognitive performance on a multi-faceted test battery were significantly sensitive to fatigue. 
More importantly, these tools were able to identify an individual’s susceptibility to performance decrements 
associated with fatigue, a capability not available with tools based on average group performance. While these 
results are promising, further evaluation across a wider array of individuals, settings, and fatigue durations is needed 
prior to military implementation. The ultimate goal is a comprehensive and field-expedient tool for transition to the 
Fleet, capable of providing an accurate assessment of specific fatigue states at the level of the individual warfighter. 
This would reduce the negative impact of fatigue on performance and inform a commander’s decision-making on 
manning and mission readiness. 
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APPENDIX A. List of Abbreviations 

 

FF_rawRT- Flight Fit Reaction Time 

FF_vsRT- Flight Fit Visual Scanning Reaction Time  

FF_vsACC- Flight Fit Visual Scanning Accuracy 

FF_daRT- Flight Fit Divided Attention Reaction Time 

FF_daACC- Flight Fit Divided Attention Accuracy 

FF_SRT– Flight Fit Shifting Reaction Time 

FF_shiftACC- Flight Fit Shifting Accuracy  

FF_fdRT- Flight Fit Focus Reaction Time in the Presence of Distracters 

FF_STM- Flight Fit Short Term Memory 

PMI_SV - PMI FIT 2000 Saccadic Velocity 
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APPENDIX B. Confidential Medical Questionnaire 

 

Screening Number:____________ Participant Number: ___(for office use only) Date: _____________ 

Gender (check one):  Male      Female     Age: _____________ Height: ______________ Weight: ____________ 

      
Directions:   Circle “Yes” or “No”.  These questions are being asked to ensure your safety in this study. 

 
 

Do you have a current flight physical? Yes 
 

No 
 

  
Have you ever been diagnosed with any significant medical problems? (e.g., heart/circulatory disease) 
 

Yes No 

  
Have you ever been diagnosed with any neurological syndrome, disorder, or injury? (e.g., migraines, epilepsy, or 
traumatic brain injury) 
 

Yes No 

  
Have you ever been diagnosed with any psychiatric disorder? (e.g., depression or anxiety) 
 

Yes No 

  
Have you ever been diagnosed with any sleep related disorders (e.g., sleep apnea, insomnia, narcolepsy, sleep 
walking) 
 

Yes No 

  
Have you used any tobacco products in the last 6 months? 
If yes, please list quantity, frequency and type of product: _____________________________ 
 

Yes No 

  
Do you take any prescribed medication on a regular basis? 
If yes, please list :  __________________________________________ 
 

Yes No 

  
Have you consumed any caffeine within the past 48 hours? 
If yes, how much? ___________________________________________ 
Is this your normal amount? ___________________________________ 
 

Yes No 

  
Have you consumed any alcohol within the past 48 hours? 
 

Yes No 

  
 
Indicate all medication you have used in the past 24 hours.  
(circle all that apply) 
 

  

 a. None 
 

d. Antihistamines 
 

  

 b. Sedatives/Tranquilizers 
 

e. Decongestants 
 

  

 c. Aspirin/Tylenol/any analgesic 
 

f. Other (please specify) 
 

___________________________ 

  
How many hours did you sleep last night? ___________ 
Was this amount sufficient? 
 

Yes No 

  
Females: Are you currently pregnant or lactating? 
 

Yes No 
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