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Introduction 
 
In recent years a lot of attention has been paid to the analysis of the structures and parts 
operating under extreme thermal and mechanical loads. Special interest has arisen in the 
high temperature turbine parts which subject to long term viscoplastic deformations as 
well as time independent inelasticity caused by high level of mechanical stress. This 
combination of creep and plasticity leads to the damage nucleation and growth and a 
significant reduction of the part expected service life.  Accurate prediction of material 
response for combined creep and plasticity deformations is a complex problem greatly 
compounded during cyclic loading.  During the air foil service the strain controlled cyclic 
elastic-plastic deformations corresponding to airplane maneuvers are combined with so-
called dwell times causing viscoplastic effects such as creep and/or stress relaxation. The 
development of unified creep – plasticity model capable of predicting cyclic non-
isothermal loading conditions is of extreme importance. 
 
Our constitutive models are based on state variables representing creep, plasticity and 
damage evolution. The basic physical mechanism of the inelastic deformation analyzed in 
this paper is dislocation glide or so-called crystallographic slip.  We study the Ni-based 
superalloy PWA 1484 having L12 crystallographic structure. Deformation occurs along 
12 octahedral slip systems {111}<110> and along 6 cube slip systems {001}<110>.  
Since the cube systems slip resistance is higher than the octahedral systems, the cube 
systems activity is limited. However, at high temperature and for initial crystallographic 
orientations close to <111> the ’ particles are sheared by cube systems. (C. Allan 1995,  
Stouffer and Dame 1996). Please see Table 1 for the slip system nomenclature in a single 
crystal superalloy. 
 
Because of the wide temperature range the parts have been exposed during the service the 
inelastic deformation might be decomposed into creep and plasticity parts. At high 
temperatures the creep is a dominant mode of deformation and due to stress re-
distribution the applied stress level remains at moderate levels and does not cause plastic 
deformation. The description of the creep model is given in Staroselsky and Cassenti 
(2008).  However, when the part is being cooled down creep simply disappears and 
inelastic deformation takes place by crystallographic slip which does not vary with 
temperature as strongly as creep. Our creep experiments show that creep rates follow 
Arrhenius type relationship with the value of the activation energy varying in the range 

from  1997.6001  EQ  to atom
JEQ 1930.7111  with some stabilization 

(decrease of the activation energy) for the temperatures below 700 C. Plasticity plays the 
major role in residual stress generation during the cooling stage of TMF process.   
 
In a rate dependent approach a constitutive law for the slip rate is assumed, usually in the 
power law form (for example, Asaro R.J. 1983, Asaro R.J. , Needleman, A. 1985, 
Kalidindi et al. 1992). This means that slip systems are active even before the resolved 
shear stress reaches critical values. The rate of inelastic deformation is proportional to the 
power of the effective resolved shear stress and the corresponding boundary value 
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problem has a unique solution. The higher the exponent in the power law the closer this 
approach gets to the classical plasticity theory.  However, the price one has to pay for this 
is the increase in computational stiffness of the problem and an increase in the 
computational time.   Nevertheless rate-dependent power law has demonstrated its 
efficiency and has been widely applied for both monotonic and cyclic problems of 
plasticity. However, when plastic analysis is combined with creep predictions, the rate 
dependent nature of the plastic part of the flow rule might cause some problems.  A very 
good example is the inelastic analysis of single crystals of Ni-based superalloys which 
has a high creep rate at stresses of the order of two thirds of the yield. Let us consider a 
typical (Nissley, D. et al 1991, Staroselsky and Cassenti, 2008) rate depended model 
where the set of calibration parameters are as follows:  

m

s 







 


  0 , where 1

0 sec0001.0  and m=30.  It is important to note that there are 

only two independent parameters in such a formulation: 
ms
0 and the exponent m. 

Calibration is based on the computational predictions of plastic response to be in a good 
accord with experimental observations.  Then, after 100 hours of creep at the stress level 
of 80% of yield the rate depended plastic term will predict the “creep” of  approximately 
5% , which is more than a quarter of total observed inelastic deformation  to failure.  The 
plastic term predictions interfere with creep prediction the closer the applied load is to 
yield.  This problem might be eliminated by increasing the exponent to the level of 80 
and higher, as shown in (Kalidindi and Anand, 1994) but this leads to its greater 
computational difficulties. Therefore there is a need for the further development of rate-
independent crystal plasticity and combination with viscous terms.  Also, it is important 
to note that rate sensitivity of Ni-based superalloys is small, which in turn leads to high 
values of the exponent. 
  
We use two approaches to describe the rate independent behavior of single crystal 
materials.  The first one is based on the concept of the potentially active systems and is 
reduced to the system of linear equations for the slip shear increments. The trial elastic 
increment is used to select the potentially active slip systems and to construct the linear 
equations. The idea of the method was originally formulated for the slip systems in FCC 
crystals under monotonic loading conditions by Anand and Kothari (1996) and 
generalized for combination of slip and twin systems by Staroselsky and Anand (1998). 
The second, more general approach uses the idea that the plastic strain rate is 
proportional to the total energy rate. Basically, by cancelling the derivatives, we come to 
the rate-independent formulation. Some of the earliest possible formulations were 
proposed by Kremple (1976), Valanis (1976), and Walker (1980).  Later an isotropic 
version developed by Cassenti (1983) was shown to reduce in the limit to classical 
plasticity.  The formulation required only two new temperature dependent material 
parameters.  One was the yield stress and the other was a curvature parameter that can 
provide a gradual transition form a smooth uniaxial stress-strain curve to a stress-strain 
curve with a sudden change from the elastic slope to a perfectly plastic response.  Both 
isotropic and kinematic hardening were included using the time dependent creep 
formulation. We generalize the formulation of Cassenti to single crystal materials and  



3 

add an appropriate power law to make the formulation agree exactly with a perfectly 
plastic formulation described in the first method.  In this paper we focus on the 
development of generic rate-independent crystal plasticity models suitable for cyclic non-
isothermal elastic-plastic-viscoplastic analysis. 
 
The plan of the paper is as follows: We start section 2 with generalization of the rate-
independent crystal plasticity model developed by Anand and Kothari (1996) to cyclic 
deformations. Then, we formulate the new rate-independent model which combines the 
advantages of both rate-dependent power method and with a rate-independent approach. 
We will compare the computational results obtained by all of these approaches for corner 
(symmetric) and a non-corner (single slip) initial crystal orientations. We will discuss slip 
system activities for different crystallographic orientations including octahedral and cube 
slip systems in the section 4.  In the next section we will apply the developed rate-
independent plasticity approach to the modeling of simple tension specimen and compare 
texture evolution, numerical stability, and necking effects with homogeneous numerical 
solutions and available experimental results. Section 6 provides results of model 
predictions of cyclic deformations of Ni-based superalloy and compares them against 
coupon testing results. We close the paper with some concluding remarks. 
 

2. Governing Equations 
 
The overall plastic response is taken as a sum of responses from small regions of a single 
crystal playing the role of representative volume elements (RVE). The deformation of a 
crystal is taken as the sum of contributions from overall elastic distortion and plastic 
deformation.  
 
The governing variables in the constitutive model are as follows:  the Cauchy stress 
tensor T  and the deformation gradient F .  Each crystal slip system is specified by a unit 
normal to the slip plane 

0n and a unit vector along the slip direction 
0m . 

The total deformation gradient is multiplicatively decomposed on elastic and plastic parts 
as 

peFFF      and  .1det pF        (1) 
 The elastic deformation gradient )0(det, eFF e  describes elastic distortion and gives 
rise to the stress T . The constitutive equation for the second Piola-Kirchoff stress tensor 
is taken as a linear relation: 

 eL ET*  †;  where  ICE ee  )()( 2
1  ; and eeTe FF(τC )   (2) 

at the current moment of time denoted, . 
The Cauchy stress tensor is the work conjugate stress corresponding to the Cauchy –
Green elastic strain measure and is calculated as follows: 

                                                 
† Generally speaking the elastic relation looks as follows:   ,0 AET* eL  where A is thermal 

expansion tensor,  is current temperature and  is the reference temperature. All results we report in this 
paper are valid and derived general formulae and algorithms do not change when we add this thermal strain 
term. For the sake of simplicity we will use formula (2) in this paper. 
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eT*e
e FTF

F
T

)det(

1
       (3) 

The evolution equation for the viscoplastic deformation gradient is given by the flow 
rule: 
 

αααα nmSSLFLF 
systemsslip

pppp and  where     (4) 

The shear rate along each slip system  is given in terms of the resolved shear stress 

(RSS) α* ST  , slip systems resistances and equilibrium back stress. Evolution of 
crystallographic texture is explicitly defined by the elastic part of deformation gradient. 

α
0

Teα
t

α
0

eα
t

nFn

mFm





       (5) 

 
In order to complete the calculations one has to be able to calculate slip systems shear 
rate or slip systems shear increment in an incremental formulation. In rate-dependent 
model this problem has been resolved by defining a power law viscoplastic relation with 
a back stress: for the inelastic strain rate along th slip system:  

   





 


 



 sgn

)1(

*
0

n

v

s

d
 ,    (6) 

where 0  is a temperature dependent time constant, and  s  is the deformation resistance 

of  -th slip system; 
  is resolved shear stress,   is the slip system back stress, n is 

the creep exponent which is very high (~80) to simulate plastic response,  dv is the void 
related damage parameter,  and )   (  is the rate of change with respect to time.   
Next, latent hardening evolution has been described by modifying Asaro’s (1983) 

hardening rule 






  







 h

s

s
hs

p

*0 1 , with hardening matrix 

  )1( qqh   for temperature dependent 0h  and *s .  We model cyclic effects by 

defining for each slip system a specific internal equilibrium, or back stress .  The back 

stress has a limiting saturation value 
2

1

c

c
 , corresponding to the   stabilization of the 

equilibrium portion of the stress (i.e., the portion of the stress that has not yet contributed 
to the inelastic strain) and evolves according to the following relationship (Nissley, D., et 
al, 1991, Voyiadjis, G.Z., Huang, W., (1996), Stouffer, D.C.,  and Dame, L.T (1996)):   

   21 cc        (7) 

 Equation (7) requires two additional coefficients 1c  and 2c  that are explicit functions of 
temperature.  The effect of voids on the slip rate can be calculated through a correction of 
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the effective stress: 








 


 

*

)1(

s
vd (an effective increase in the resolved shear stress). This 

is equivalent to a Kachanov-type damage parameter (Kachanov 1986, Lemaitre 1996) .  
For the sake of simplicity we will not consider the effects of voids in this paper.  
 

3. Generalization of incremental linear system formulation to cyclic 
plasticity. 
 
One of the major problems of crystal plasticity is to determine the unique set of the active 
slip systems and their corresponding shear rates at each time increment. At each strain 
increment, only five strain components can be uniquely prescribed. Because the number 
of slip systems for FCC systems are 12 and for L12 structures are 18, the problem of 
selecting active ones is crucial. In a power law model all slip systems are active just the 
value of slip rate might be infinitesimal if the resolved shear stress is small. If the value 
of exponent is small (from 3 to 5), which is the case for creep phenomena, then the slip 
systems with significant but not the largest values of the resolved shear stress ( RSS) are 
still active and the total shear along these “second order” slip systems could be 
significant. In the rate independent (RI) model, the system might be active only if the 
effective RSS is equal to slip resistance (i.e., the yield stress).  Then 
 

   s  ifonly  and if0 .     (8) 

In this section we will reduce the problem to the systems of the linear equations with 
respect to shear increments. This system should be solved at each incremental step using 
any numerical method minimizing errors for example, the method of singular value 
decomposition (SVD), which will define the unique solution for the plastic strain in L2 
norm sense (Anand and Kothari 1996) or penalty functions (Staroselsky and Anand 
1998).  
 
We use an incremental formulation where we define all parameters at the end of the time 
increment tt   based on state in the beginning of the increment at time t. 
Expression (4) has the incremental form as follows: 
 

)()()()()( 0 ttppp pFS1FLF 


      (9) 

We need to express elastic Cauchy-Green tensor through total and plastic deformation 
gradients using equations (1) and (2) as: 
 

1)  pTp FFFF(τC Te        (10) 
 
Numerical integration is taken using a forward Euler integration scheme. In order to 
perform it within this RI model, we define a trial step where we assume that the whole 
increment is elastic. The stress overshoot is compensated for by crystallographic slip. The 
constitutive relations for the trial step are taken as follows:  
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 )(trtr L eE*T  , 

 ICE ee  )()( 2
1  trtr , and      (11) 

trtrtr eTee FF(τC ) . 
 
Where  

1)()()(  ttr pe FFF         (12) 
 
and the trial resolved shear stress along each slip system is  

α
0

tr S*T tr .         (13) 

Substituting (12) into (11)  and using expressions (9) and (10) one can obtain the 
relationship between true and trial stress tensors (Kalidindi, et al 1992), which already 
accounts for the amount of incremental shear, as:  
 

   



   0SCsymL tretr*TT*      (14) 

and similarly for the resolved shear stresses 
 

  
    



















trtretr

tretr

signsymL

symL

α
0

β
0

α
0

β
0

SSC

SSC

                             
  (15) 

 At the next step, following the idea of Anand  & Kothari (1996) we assume that during 
small strain increment, changes in the slip directions defined as 

   )()(sign)(sign      would:  
(i) be the same for the  true and trial increments  

   trtr    signsign , and 
(ii) the effect of change in back stress values during one increment does not affect 

the slip direction:     )()(sign)()(sign tt    . 
 
We need these assumptions in order to compute absolute values of the effective resolved 
shear stress used for the yield criteria  

   s        (8) 

The systems for which trial values of effective shear stress are less than slip resistance in 
the beginning of increment s(t)  are called inactive and are not analyzed during the 
increment. For the other or so-called “potentially active” slip systems, the absolute value 
of the effective shear stress can be calculated through the resolved shear stress trial value. 
 

      



    signsignsymL tretr α
0

β
0 SSC)(     (16) 

By the use of the incremental formulation for the back stress (7): 
 

     )()()()( 21 tCsignCt  
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We immediately obtain that  
 

       )()()()( 21 tsigntCCt trtrtr      (17) 

 

And finally, using the latent hardening evolution equation      


  htss  

we reduce the problem of finding absolute values of slip increments determination to a 
solution of the linear system, 
 

bΔγB          (18) 

 
where  

             trtrtretr signsignsymLtsigntCChB β
0

α
0 SCS)()(21

   tstb tr    .        (19) 

 
This system has a number of variables equal to the number of “potentially active” slip 
systems, however not all of the linear equations are always linearly independent. The 
system might be solved using any appropriate approximation scheme from linear algebra. 
One of the “proven” and effective algorithms is SVD which gives the least square 
solution. We do not discuss the advantages and disadvantages of different linear algebra 
algorithms and use that numerical approach throughout this paper. 
 

4. Time-independent formulation 
 
In the previous section we have described the rate independent plasticity calculations by 
using approximate solution of a linear system. This is the limiting case when the yield 
surface is well-defined. However, there is still a need to combine the advantages of a 
continuous rate independent plastic behavior description.  This is especially true for 
cyclic non-isothermal conditions present in thermal mechanical fatigue (TMF).  Such a 
formulation would automatically include the characteristic variation in yield surfaces 
between materials. In this section we formulate our new rate-independent flow rule and 
compare the deformation and slip activities model predictions against classical power law 
as well as the linear system rate-independent method described above.   
 
We include a time independent inelastic strain by an additive decomposition of the 
deformation velocity gradient into three parts: elastic, the time dependent creep strain 
rate, and a time independent plastic one. We can insure that the plastic strain rate is time 
independent by making it proportional to another rate.  Let us consider the example, a 
plastic strain rate that is proportional to the plastic work rate, pW , then  

   
dt

dW
WfWWf

dt

d p
ppp

p
ijp

ij
 


                  (20) 

and the differentials will cancel each other in an integration to yield 
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 p
p

p
ij Wf

dW

d 


.             (21) 

Equation (21) makes p
ij  a function of pW  independent of any rates, and subsequently 

the model is rate-independent. Now, let us apply this concept to formulate a crystal 
plasticity rate-independent flow rule. 
 
 For each of the slip systems the inelastic strain rate,  , is a function of the effective 

stress for that slip system,    , and we could choose, 

 





pW
2



                (22) 

where x  is the unit ramp function of x and   is a temperature dependent material 

parameter.  Expression (22) is deficient since a slip system will be active with noticeable 
shear rate even for relatively moderate values of the effective resolved shear stress, which 
is much less than one for actually active slip systems.  This can be corrected by 
modifying equation (22) through the use of a power law in the effective resolved shear 
stress as follows: 

p

m

W
s




 

 



2

.                    (23) 

Here we used the fact that power function with the argument varying from zero to unity 
behaves almost like a switch function for high powers where the closer to ideal switch 
(Heaviside function) the higher the exponent is. In our case we use values of the exponent 

30m which guarantees good selection of slip activities and free of the computational 
problems specific for power models with very high values of the exponent values. 
  
Equation (23) has assumed that only the plastic work contributes to the plastic strain, but 
the total work rate may also be an important variable.  Since ep WWW   , we can use a 
weighted sum of the total and elastic work rates by replacing the plastic work rate with a 
weighted sum in equation (23) in the following way: 

 p

m

WWkW
s

 






 




2
                   (24) 

where k  is a temperature dependent material parameter.  The total work rate is given by 

ijij
ji

ijijW    
,

,       (25) 

and the plastic work rate is  
      




   pW .      (26) 

Substituting equation (26) into equation (24) for the plastic work rate and 
solving equation for pW  yields 
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 
m

m

p

s
k

s
Wk

W




























 










 











2

2

2

2

1

1 

 .       (27) 

Substituting equation (28) into equation (24) yields  

 
m

m

s
k

s
Wk





























 











2

2

2

1

1 

 .           (28) 

Identifying   with s  in the equation (28) and assuming that state variable s  might be 
different for different slip systems we get the final form for the rate independent plastic 
strain rate, we can write 

 































2

1

1

1

m

m

s
k

ss

W
k



 .      (29) 

Thus, we formulated the rate-independent flow rule and introduced one more parameter 
10  k  .  If the value of this parameter is close to zero, yield values change gradually 

as it usually observed during the deformation hardening. In the limiting case of 1k  (in 
Eq. 29) there will be a sudden change in the plastic strain rate when   s , and, 
hence, s can be interpreted as a yield stress. Interestingly enough that graduate 
hardening behavior is correlated to the partial amount of dissipated energy proportional to 
the yield strain increment.  Typical stress-strain curves with different values of parameter 
k are shown in Fig. 1. 
 

5.    Model Implementation and Evaluation of the Parameters 
 
In this section we compare the predictions obtained by our new rate independent 
plasticity model against predictions obtained by a power law, and the solution of the 
linear system described in section 2, with available experimental data. We discuss single 
crystal Ni-based superalloy constitutive behavior at relatively high temperatures where 
the loading applied along one of the corner orientation <001> or <111> and along an 
internal orientation of  362  and  231 . 
 
Anisotropic elastic properties are defined by three different moduli that are changed with 
temperature and shown in Fig. 2.  The fourth order elasticity tensor has the form specific 
for orthotropic materials with cubic symmetry: 
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)3,1,(;44

)3,1,(;12

)3,1(;11






jiCC

jiCC

iCC

ijij

iijj

iiii

 

We consider single crystal Asaro hardening behavior 






  







 h

s

s
hs

p

*0 1  where 

the parameters 0h  and initial value of slip resistance 0s  for both octahedral and cube 

systems are also functions of temperature. Results of slip resistance calibration against 
experimental data are shown in Fig 3. Due to low strain hardening of PWA1484 for some 
example calculations we use a non-hardening model. 
 
Using the developed constitutive models we perform simulations of displacement 
controlled simple tension tests. We use ANSYS ET 185 8-node brick elements for both 
single element and 3744-element cylinder simulations. Single element simulations satisfy 
homogeneous uniaxial stress and strain distribution. Analysis shows that two types of 
boundary conditions provide the required uniaxial stress-strain distribution. We will call 
the single element with the following boundary conditions: upper and lower surfaces 
remain parallel and orthogonal to the displacement direction, the element type A. The 
element with two vertical sides parallel to the loading direction will be called the element 
type B. Both elements and sketches illustrating the deformation of each type are shown in 
Fig. 4 (from Dieter, 1988).  
 
There is no numerical difference between predictions of single elements for A or B types 
subject to  simple tension of high symmetry corner orientation <001> and <111> due to 
highly homogeneous deformation.  Moreover, the single element prediction is exactly the 
same as the numerical predictions obtained from cylinder calculations. Crystal orientation 
does not change during the numerical tests in both corner orientations. There are eight 
equally active octahedral systems for <001> crystallographic orientation tests. The 
normalized stress-strain curves obtained by methods described above and also 
experimentally measured for 980 C are shown in Fig  5a.  There are six equally active 
octahedral slip systems ]011)[111( ,  ]101)[111( , ]011)[111( , ]110)[111( , ]110)[111(  

and ]101)[111(  as well as  3 identically active cube slip systems ]011)[100( ,  

]110)[010( , and ]011)[001(  observed during simulations of simple tension along a 
<111> crystallographic orientation. State variables have been calibrated in such a way 
that cube slip system shear is two orders of magnitude larger than octahedral slip shear.  
The normalized stress-strain curves for this crystallographic orientation at 980 C are 
shown in Fig 5b.  
 
When loaded along a central direction inside the primary stereographic triangle the single 
crystal deforms initially along a single slip system with the highest value of resolved 
shear stress (i.e., with the highest value of Schmidt factor). Usually such a deformation is 
very unstable. We conducted simple tension simulations (type A) of a single crystal along 

 362 crystallographic direction.  The stress-strain curves for  
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980 C are shown in Fig 6. The slip system activity is shown in Fig. 7. Deformation starts 
with a single octahedral slip system ]011)[111( , then when the strain reaches about 8% 

the second conjugate slip system ]011)[111(  becomes active. It is important to note that 

the cube slip system ]011)[001(  is also active from the beginning, as can be seen from 
the plots in Fig. 7, but the total amount of cube slip system shear is much less than due to 
octahedral slip systems. The slip resistance of the conjugate slip system is bigger than the 
slip resistance of the active one due to latent hardening. The effective resolved shear 
stress reaches the critical value at deformation levels slightly larger than for the non-
hardening case‡ and subsequently the re-orientation slightly overshoot the stereographic 
triangle boundary ]111[]001[  . After activation of the conjugate slip system ]011)[111(  

the lattice rotates toward the ]111[  pole along the triangle boundary. The prediction of 
our rate-independent model is indistinguishably close to the predictions obtained by the 
solution of the linear system and by the power law (rate-dependent model) with the 
exponent higher than 80. It is important to note that the rate-dependent power law with 
small values of exponent specific for creep (3 to 5) predicts that more slip systems are 
active leading to more homogeneous deformation and slower crystal re-orientation. For 
example, for creep along  362  crystallographic orientation slip systems ]101)[111(  

and ]101)[111(  are also active, however total slip along these systems is significantly 
smaller than along the primary and the conjugate ones.  
 
Deformation along  362  is very sensitive to the boundary conditions.  The stress-
strain relationship obtained under different types of boundary conditions, such as Type A 
as was reported above, type B loading as well as numerical results from the cylinder 
specimen model is shown in Fig. 8.  Deformation takes place along the single  

]011)[111(  slip system till collapse occurs by excessive deformation. Crystal 
reorientation is rotated slightly toward the ]001[  pole from the boundary conditions as 
shown in Fig. 9 together with prediction obtained for type A loading. We evaluated the 
one element prediction by comparing the numerical results against our 3744-element 
cylinder specimen model. The top and bottom of the numerical specimen are rigidly 
prevented from rotation and absolutely symmetric. In order to eliminate end-effects the 
last 2 layers of finite elements from each end are made elastic. We use 35 elastic-plastic 
central layers of finite elements and 96 elements in each cross-section as shown in Fig 10. 
Deformation is very sensitive to a minor variation of boundary conditions and starts 
necking at deformation levels of about 7-10% as shown in Fig 11. An increase in the 
number of elements at least within the same order of magnitudes does not change the 
character of deformation which appears to be very inhomogeneous.  The central elements 
deform almost according to loading scheme A, while surface and near surface elements 
clearly deforms as type B elements. Due to inhomogeneities in the deformation the 
crystal lattice reorientation of the central element is different than type A results but 
reasonably close to it as can be seen from Fig. 9.  Due to the lack of the symmetry during 
the deformation the model predicts noticeable ovalization of the cross-section as shown 

                                                 
‡ We performed modeling for the “theoretical” non-hardening case and the conjugate slip system became 
active exactly on the boundary of stereographic triangle. 
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in Fig. 12. Such an ovalization is specific for any non-corner crystallographic orientation 
and might be used for specimen life prediction as has been shown by D. Shah et al 
(2004). 
 
Most of the RI models used deal with monotonic loading response, but here we apply our 
approaches to cyclic loading schemes and verify our simulation predictions against test 
results obtained on PWA 1484 Ni-based superalloy at isothermal conditions.  There are 
several well known observations that should be modeled while analyzing the cyclic tests:  

(i) Bauschinger effect –initial reduction of the reverse proportional limit and  
(ii) Cyclic softening- reduction of initially high hardening rate due to cyclic 

transient effects (Watanabe et al 2002, Xu and Jiang 2004).   
The Bauschinger effect is controlled by the evolution equation for the back stress )(t  
(see the eq. 7). During the reverse cycle the back stress is still not yet steady and the 
absolute value of the effective stress    reaches the critical value earlier than during 

the initial “forward” loading step. Experimental results (C.C Lin 1995) indicate that the 
cyclic softening effects are active only during transient regime which is approximately 
equal to the time needed for the back stress to change sign. We simulated this effect by 
adding a latent cyclic softening term proportional to the terms depended on  )(  sign  
as follows: 

 
 )(22

1    sign       (30) 

 
where the parameter   has to be adjusted to reflect the intensity of cyclic softening. In 
our calculations, we used 1 , which means that there is a non-hardening plateau during 
transient unloading. The latent hardening law has been modified as follows:     

                        






   







 h

s

s
hs

p

*0 1      (31) 

 
If the back stress and the effective RSS have the same signs the dislocation 
microstructure deforms in a similar to monotonic loading and the parameter 1 . 
Otherwise, if the signs of the back stress and slip shear rate are opposite the dislocation 
cells structure is dissolving and the hardening rate slows down. It is important to note that 
during any monotonic loading parameter 1  and Eq. 31 becomes the classical Asaro 
hardening rule again. 
 
Results of the model implementation against test data are shown in Figs 13-15. Figure 13 
(a, b, c) shows a comparison of model prediction against experimental data for <001> 
single crystal  PWA1484  cyclically loaded up to 1% of strain amplitude  at a temperature 
of  870 C. Due to strain hardening the overall loops shift up in the stress-strain plane and 
the hysteretic loop is getting narrower. We present the modeling results together with 
measured test data for the first cycle (Fig 13 a) and cycle #10 (Fig 13 b), as well as cycle 
# 30 (Fig. 13 c) where the cyclic loop is stabilized. One can see that simulation results are 
extremely close to the test observations. Fig.14. shows stress-strain relations for <111> 
oriented single crystal cyclically deformed using strain control to the mechanical strain 
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range of 0.8% (actual magnitude is 0.41%) at temperature of 870 C. Due to the high 
Young’s modulus the yield is more pronounced along the <111> orientation and the loop 
is wider open than at the similar loading conditions along the <001> crystallographic 
direction. Comparison of predicted vs. measured data demonstrates high quality of the 
model.  Modeling results obtained for   231  single slip orientation compared against 
test data are shown in Fig. 15 for the isothermal conditions of 870 C and strain range of 
0.8%.with R=-1.  The deformation starts with ]101)[111(  single slip system. The loop is 
extremely wide due to relatively low yield value for the single crystal along single slip 
crystallographic direction. Error of the numerical prediction is less than 10% which is 
good for a single slip crystallographic orientation. Model predictions can be improved by 
refining tension-compression asymmetry properties in the model. We did not pay 
attention to this issue in this work. The numerical results demonstrate that our developed 
elastic-plastic model is capable of obtaining extremely good predictions for both the 
monotonic and the cyclic plastic response of a L12 single crystal. 
 

6.       Concluding Remarks 
 
The constitutive model developed has been implemented in the commercial finite 
element software ANSYS as a material user routine to predict yield anisotropy and yield 
–thermal dependence. The equations governing the mechanical response have been 
calibrated using existing experimental data.  The model predicts the crystallographic 
lattice rotation during deformation, which is important during material processing and 
cyclic ratcheting, especially around geometrical features such as cooling holes in single 
crystal turbine blades. Our rate-independent cyclic crystal plasticity formulations are 
designed for cyclic and non-isothermal loading conditions. They can uniquely determine  
the amount of shear along active slip systems at each increment. The approaches 
developed are numerically robust and efficient, allowing numerical analysis of tens and 
even hundreds cycles providing a working tool for low cycle fatigue (LCF) and thermal 
mechanical fatigue (TMF) prediction analysis.   
 
We have developed a rate independent model that can be readily applied to TMF over an 
extremely wide range of conditions which naturally reduces to our SVD approach as a 
limiting condition. 
Based on our modeling results and their comparison with experiments it is possible to 
conclude the following: 

(1) The major deformation mechanisms of high temperature creep of Ni-based single 
crystal superalloy are octahedral {111}(110) and cube {001}(110) 
crystallographic slip. 

(2) Single slip crystallographic orientations deform mostly non-homogeneously, 
which leads to necking and subsequently shorter life.  

(3) Ovalization of the plastically deformed single crystal specimen might be 
correlated with time to failure 

(4) Strain hardening and cyclic softening can be accurately predicted. 
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The combined theoretical-numerical-experimental study of single crystal PWA 1484 Ni-
based superalloy reported here represents the steps at understanding the difficult and 
important topic of visco-plastic deformation in L12 systems; it holds substantial promise 
through future work and through further refinement. In particular, the model will be used 
to more accurately account for the thermal-cyclic effects and for creep-plasticity 
interactions.  
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Table 1. 
 

Slip systems operative in  PWA1484 at high temperature 

Octahedral 
 
     mn  
1 ]101)[111(  
2 ]011)[111(  
3 ]101)[111(  
4 ]110)[111(  
5 ]101)[111(  
6 ]110)[111(  
7 ]011)[111(  
8 ]110)[111(  
9 ]011)[111(  
10 ]110)[111(  
11 ]101)[111(  
12 ]101)[111(  
 
Cube 
     mn  
13 ]011)[100(  
14 ]101)[100(  
15 ]101)[010(  
16 ]110)[010(  
17 ]110)[001(  
18 ]011)[001(  
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Figure 1.  Typical stress-strain curves obtained with rate-independent model with 
different values of parameter k0. 
 
 

Figure 2.  Variation of Elastic Properties with Temperature. 
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Figure 3. Variation of Initial slip resistances for octahedral and for cube slip systems with 
Temperature. 
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Figure 4.  Elements of disturbed lattice without constraint and with stiff constraint (from 
Dieter 1988)  and two types of boundary conditions applied to single elements to simulate 
simple tension. 
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Figure 5. Stress-strain relations for simple tension along  (a) <001> and for  (b) <111> 
crystallographic orientation 
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Figure 6. Stress-Strain relations for simple tension along  362  crystallographic 
orientation obtained by both reported methods of rate-independent plasticity. 
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Figure 8. Stress-Strain relations for simple tension along  362  crystallographic 
numerically orientation obtained by applying different boundary conditions (single 
element type A and type B) and for an element in the 3744 –element cylinder model. 
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Figure 7. Slip systems activity for simple tension of  single crystal PWA 1484 
along  362  crystallographic orientation. 
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Figure 9. Crystal lattice re-orientation of the single L12 crystal due to 
simple tension along  362  crystallographic axis; (a) Type A 
boundary conditions, (b) Type B loading conditions, and (c) central 
element of the cylinder model. 
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Figure 10. Cylinder FEM used for the simulation of single crystal tensile sample 
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Figure 11.  Stereographic view of the necked  362  single crystal 
specimen after overall tension to 20%. 

Figure 12. Elliptical cross-section in the necked part of the specimen 
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     (c ) 
 
 
 
 
 
 
 
Figure 13. Predicted stress-strain relations against experimental data for strain-controlled 
cyclic test up to 1% strain along <001> crystallographic direction at 870 C. Results are 
shown for the first cycle (a), cycle  10 (b), and cycle 30 (c). 
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Figure 14. Predicted stress-strain relations against experimental data for strain-controlled 
cyclic test up to 0.8% strain range along <111> crystallographic direction at 870 C.  
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Figure 15. Predicted stress-strain relations against experimental data for strain-controlled 
cyclic test up to 0.8% strain range along  231  crystallographic direction at 870 C.  
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