LONG-TERM COUNTERINSURGENCY STRATEGY: MAXIMIZING SPECIAL OPERATIONS AND AIRPOWER

BY

COMMANDER JOHN JAMES PATTERSON VI
United States Navy

DISTRIBUTION STATEMENT A:
Approved for Public Release.
Distribution is Unlimited.

USAWC CLASS OF 2010

This SRP is submitted in partial fulfillment of the requirements of the Master of Strategic Studies Degree. The views expressed in this student academic research paper are those of the author and do not reflect the official policy or position of the Department of the Army, Department of Defense, or the U.S. Government.
The U.S. Army War College is accredited by the Commission on Higher Education of the Middle State Association of Colleges and Schools, 3624 Market Street, Philadelphia, PA 19104, (215) 662-5606. The Commission on Higher Education is an institutional accrediting agency recognized by the U.S. Secretary of Education and the Council for Higher Education Accreditation.
The rapid, decisive campaign conducted against the Taliban by U.S. Special Operations Forces (SOF) in conjunction with the Northern Alliance and supported by U.S. airpower in the opening phases of Operation Enduring Freedom (OEF) captured the attention of military professionals throughout the world – allies and potential adversaries alike. Heralded as a template for future military transformation by the most enthusiastic proponents, even the less sanguine observers were forced to acknowledge an impressive synergy and economy of force in the SOF–airpower combination. In this paper, the author will examine the unique suitability of SOF to meet strategic objectives in Afghanistan, explore the synergistic relationship between SOF and airpower, and assess the strategic utility of this combat proven combination in an irregular warfare environment.
LONG-TERM COUNTERINSURGENCY STRATEGY: MAXIMIZING SPECIAL OPERATIONS AND AIRPOWER

by

Commander John James Patterson VI
United States Navy

Colonel Gerald Goodfellow
Project Adviser

This SRP is submitted in partial fulfillment of the requirements of the Master of Strategic Studies Degree. The U.S. Army War College is accredited by the Commission on Higher Education of the Middle States Association of Colleges and Schools, 3624 Market Street, Philadelphia, PA 19104, (215) 662-5606. The Commission on Higher Education is an institutional accrediting agency recognized by the U.S. Secretary of Education and the Council for Higher Education Accreditation.

The views expressed in this student academic research paper are those of the author and do not reflect the official policy or position of the Department of the Army, Department of Defense, or the U.S. Government.

U.S. Army War College
CARLISLE BARRACKS, PENNSYLVANIA 17013
ABSTRACT

AUTHOR: Commander John James Patterson VI

TITLE: Long-Term Counterinsurgency Strategy: Maximizing Special Operations and Airpower

FORMAT: Strategy Research Project

DATE: 10 February 2010 WORD COUNT: 5,542 PAGES: 28

KEY TERMS: Irregular Warfare, Close Air Support

CLASSIFICATION: Unclassified

The rapid, decisive campaign conducted against the Taliban by U.S. Special Operations Forces (SOF) in conjunction with the Northern Alliance and supported by U.S. airpower in the opening phases of Operation Enduring Freedom (OEF) captured the attention of military professionals throughout the world – allies and potential adversaries alike. Heralded as a template for future military transformation by the most enthusiastic proponents, even the less sanguine observers were forced to acknowledge an impressive synergy and economy of force in the SOF–airpower combination. In this paper, the author will examine the unique suitability of SOF to meet strategic objectives in Afghanistan, explore the synergistic relationship between SOF and airpower, and assess the strategic utility of this combat proven combination in an irregular warfare environment.
LONG-TERM COUNTERINSURGENCY STRATEGY: MAXIMIZING SPECIAL OPERATIONS AND AIRPOWER

The rapid, decisive campaign conducted against the Taliban by U.S. Special Operations Forces (SOF) in conjunction with the Northern Alliance and supported by U.S. airpower in the opening phases of Operation Enduring Freedom (OEF) captured the attention of military professionals throughout the world – allies and potential adversaries alike. Heralded as a template for future military transformation by the most enthusiastic proponents, even the less sanguine observers were forced to acknowledge an impressive synergy and economy of force in the SOF–airpower combination. Nearly eight years later, the International Stabilization Forces Afghanistan (ISAF) Commander, General Stanley McChrystal, issued a tactical directive seeking, among other things, to limit the use of Close Air Support (CAS) by NATO troops in Afghanistan.1 This action follows several high profile incidences of collateral damage caused by airstrikes in support of ISAF forces and signals a broader shift in theater strategy toward a counterinsurgency (COIN) centric approach similar to that successfully employed in conjunction with the “surge” in Iraq. While comparisons are inevitable, such a strategy must confront significant additional challenges posed by the unique cultural and geographical characteristics of Afghanistan which could in effect make an unexamined restriction of airpower as significant a danger to the achievement of strategic objectives as the collateral damage that it seeks to avoid. One prominent dilemma is presented by the central role that SOF continue to play in performing many of the key strategic functions, such as counterterrorism (CT) and counterinsurgency operations, and the paradox posed by the fact that the characteristics which render SOF an ideal choice for
Afghanistan’s dispersed and geographically isolated rural insurgency also engender increased reliance upon the mobility, responsiveness, and firepower provided by airpower. In this paper, the author will examine the unique suitability of SOF to meet strategic objectives in Afghanistan, explore the synergistic relationship between SOF and airpower, and assess the strategic utility of this combat proven combination in an irregular warfare environment.

Putting the “Special” in Special Operations

Special Operations Forces share a number of uniquely defining qualities which serve to distinguish them from their conventional counterparts. However, despite a broad consensus that SOF have a distinct military culture with distinctive capabilities, no universally accepted, definitive work exists codifying the character of special operations. There is, however, a substantial amount of published material on the subject, to which the author intends to contribute yet another example in an attempt to build a platform for further analysis by synthesizing the key elements of several notable contemporary special operations theorists.

Adaptability, Flexibility, and Versatility. In his 2002 analysis of the decisive characteristics of SOF, following in the wake of the now iconic tactical and operational successes of U.S. SOF teamed with the Northern Alliance over Taliban forces in late 2001 and early 2002, Colonel John Jogerst notes “You don’t know what you need until you need it. A wide range of capabilities in effective quantities is a good hedge against tomorrow’s threat.”2 Admiral Eric T. Olsen, Commander, United States Special Operations Command (USSOCOM), similarly posits: “We need to be responsive enough to adjust rapidly to what the enemy throws at us, and we need to have the agility to transcend the spectrum of conflict.”3 Colin Gray affirms the innovative nature of
special operations, further noting that successful SOF units such as the British Special Air Service have institutionalized the ability to “reinvent” themselves as national security interests require. Building upon Gray’s work, Australian Squadron Leader David Jeffcoat identifies “unorthodox means” as one of his proposed characteristics of SOF, which are “required to adapt their approach to each operation and come up ‘with a distinctive theory of victory’.” In short, SOF are traditionally (as they must be in order to retain their unique effectiveness) selected for innate adaptive ability which is further cultivated in training. They are employed with the assumed capability to respond with agility to diverse, ever-changing, unforeseen threats from unpredictable enemies, often employing their own strengths asymmetrically while seeking to deny a similar advantage to their adversaries. Present-day SOF counterinsurgency and counter-terrorist operations in Afghanistan embody the sort of unconventional challenge in which the United States must capitalize on such adaptability, versatility, and flexibility in order to achieve success.

Speed, Agility, and Stealth. Jeffcoat asserts that unique to SOF is “the expectation of commanders borne out of historical examples of SO [Special Operations] that SF [Special Forces] will invariably achieve relative superiority over a larger enemy and therefore win.” Achievement of tactical surprise is often cited as one of the keys to victory in the face of a numerically superior foe. Specifically, however, in terms of special operations forces themselves it is the characteristics of speed, stealth, and agility (with a healthy dose of technology) which enable this critical principle. It is the ability of SOF to appear on the battlefield at an unexpected place and time of their
choosing which, coupled with an offensive mindset, enables them to retain the initiative and achieve surprise.

Implicit in the need for speed is the requirement to travel light and leverage technology for mobility and firepower. Of the former, Lieutenant Colonel Eugene McFeely, referencing the counterinsurgency manual, U.S. Army Field Manual 3-24, asserts that U.S. forces in Afghanistan “must lighten their combat loads and enforce a habit of speed and mobility to gain maneuver parity with the lightly equipped insurgent.”\(^8\) Jeffcoat articulates the requirement for “high relative speed to swiftly reach the objective despite the actions of the adversary,” which, he tellingly adds, “invariably translates to a dependency on aircraft.”\(^9\) Agility, similarly, implies the ability to respond faster than the enemy once engaged. More than heavy conventional forces, SOF can “operate and maneuver in the face of enemy action.”\(^10\) Finally, SOF achieve stealth, or the ability to remain undetected by the enemy until the moment of decisive engagement, through the effective application of signature management, optimized by SOF’s small footprint and extensive training as well as through dedicated, effective intelligence and “intensive and comprehensive study of their targets.”\(^11\) Thus, speed, agility, and stealth are critical enablers for SOF in countering the asymmetric advantages of experienced, elusive insurgent fighters with extensive early warning networks and local terrain knowledge who seek to deny such decisive engagement.

Cultural Awareness, Maturity, and Interoperability. Counterinsurgency, together with unconventional warfare (UW), foreign internal defense (FID), counterterrorism and stability operations comprise irregular warfare (IW), a SOF core competency, the successful prosecution of which requires what Squadron Leader Jeffcoat refers to as
“assimilation.” He further explains: “Without a high degree of cultural awareness, it is unlikely SF will be able to gain the required level of trust and cooperation from sympathetic local elements....” Admiral Olsen emphasizes the lineage of the Special Operations Command in uniquely positioning SOF to succeed in IW:

Since the Army officially established its Special Warfare Center in 1956 for the purpose of training its servicemembers in counterinsurgency operations, unconventional warfare and psychological operations, the officers and noncommissioned officers assigned to these specialty areas are drawing on five decades of experience in developing the doctrine for, and conducting, insurgent and counterinsurgent warfare.

In addition to this institutional experience base, cultural awareness is cultivated through training, regional specialization, and habitual international partnerships which focus on international military capacity building in the traditional SOF mission of foreign internal defense. “On a typical day,” notes Admiral Olsen, “the operational forces of the U.S. Special Operations Command can be found in 60 to 70 countries, primarily conducting foreign internal defense (FID) and civil affairs operations.”

Cultural awareness, and the maturity imparted by the greater age and experience level of the individual special operator (the average age of an Army Special Forces soldier is nearly 32 years old as compared with 19 years old for the average Marine, for instance) combine to enhance effective mission execution in the complex, nuanced COIN environment. U.S. Air Force Major General Charles Dunlap underscores the value of maturity in counterinsurgency, asserting that COIN “is not just manpower-intensive; it requires a particular kind of manpower that is difficult to recruit, train and maintain.” He further notes that while the U.S. Army has continued to meet its recruiting goals despite the strain of a conflict entering its eighth year, it has done so in part by increasing waivers granted for troops without high school diplomas as well as
“moral waivers,” for troops with juvenile or criminal records, noting: “While such recruits may make competent general-purpose forces, they are not the prized counterinsurgency professionals described in FM 3-24.” With all respect to General Krulak’s “strategic corporal,” perhaps the “strategic sergeant first class” of a Special Forces Operational Detachment Alpha (ODA) or the “strategic chief petty officer” of a Navy SEAL team is a better match for the complex challenge of COIN.

Additionally, Special Operations Forces exhibit a uniquely high level of interoperability in both the joint and combined force environment. The “jointness” of SOF derives in part from the fact that SOF “depends on a range of specialized military capabilities and assets to achieve their mission.” This, in turn, has led to the recognition that “interoperability comes by interoperating regularly, routinely, and often” with the result that “SOF personnel jointly conduct virtually all training above the individual skill level.” Prime examples of habitual training relationships exist between Army Special Forces, Navy SEALs, and Air Force Special Tactics Squadron personnel and key aviation enablers in the Army’s 160th Special Operations Aviation Regiment and the Air Force’s 1st Special Operations Wing. Additionally, regular fire support exercises such as Jaded Thunder and Known Battle fold in conventional aviation and fire support assets from all the services in realistic SOF-centric training scenarios. The end result is a mature, experienced, culturally aware, and interoperable force that is uniquely equipped to perform successfully in a complex operating environment.

Hyper-competence and Independence. Special operations forces, regardless of service or specialty, are the product of highly selective training and accession processes, often selected from among the most successful ranks of existing
conventional forces. Service in SOF units is voluntary and selection is a continuous process. It has been said that the only task more difficult than earning a place in special operations is retaining that place. This institutional self-selection, coupled with exceptionally rigorous training standards, combines to produce an environment of hyper-competence, or what Jeffcoat calls “purposefulness,” which he defines as the “strong and unrelenting desire to achieve the objective.”22 Colin Gray regards the assumption of superior tactical competence among SOF as being “so obvious that it requires no particular emphasis.”23

Another hallmark of SOF related to a high degree of tactical competence is independence. Jogerst asserts that special operators are perhaps uniquely equipped to successfully achieve the ideal of decentralized, or network-distributed mission execution:

The lesson from Afghanistan is that, with clear mission orders and appropriate technology, each tactical element can become a command, control, and execution node, greatly shortening the OODA [Observe-Orient-Decide-Act] loop while still allowing the passing of information on tactical actions and results to higher levels for operational and strategic analysis.24

Combining their high degree of tactical competence, network-distributed command and control, and practiced interoperability with airpower, “special forces (SF) teams with embedded Air Force air-control elements provide a tactical force with a broad range of skills and the maturity to execute mission orders without detailed oversight.”25

In short, special operations forces possess a repertoire of capabilities and attributes which impart them with unique strategic utility. “That utility reposes most essentially in two qualities, economy of force and expansion of strategic choice,” asserts Colin Gray, adding: “In the most general of terms, special operations forces (SOF) offer
the prospect of a favorably disproportionate return on military investment.” As of this writing, the United States is entering its ninth year of conflict in Afghanistan amid waning domestic support, increasing economic strain, and increasingly persistent questions about Afghan governmental legitimacy. Presented with a continuum of less than palatable strategic options between abandonment of U.S. regional objectives and a massive counterinsurgency effort requiring burgeoning conventional force levels and nearly open-ended force commitments, “economy of force” and “expansion of strategic choice” enabled by “favorably disproportionate return on military investment” would seem to represent the *sine qua non* for success.

Decisive Characteristics of Air Support to Special Operations

Recognition of the utility of airpower to the successful prosecution of irregular warfare dates nearly to the origins of combat airpower itself. A U.S. Air Force sponsored study by RAND Corporation published in 1964 examining the role of air support in the conduct of counterinsurgency and unconventional warfare included case studies ranging from allied unconventional warfare operations against Japanese forces on Luzon and in support of Chindit partisans in Burma to British and French counterinsurgency operations in Malaya and Algeria, respectively. Most notably, this early RAND study identified the unique challenges posed by the use of airpower in an IW environment:

In the counterinsurgency and unconventional warfare cases where close air support was available, the potential targets were generally small groups of the enemy in areas that also contained friendly civilians, thus constraining close support air attacks to avoid killing, injuring, or alienating civilians. With the problem thusly framed, it is useful to examine three key characteristics of airpower which, coupled with advances in technology, tactics, techniques, and
procedures (TTPs) have both increased the efficacy of airpower in support of special operations forces and served to mitigate the inherent challenges posed by the application of airpower in an IW environment.

Precision. Perhaps no aspect of modern airpower has received more attention or been the subject of more prolific discussion and publication than the precision of modern air delivered weapons. Recognition of the revolution of precision in the application of modern airpower has come (if grudgingly) from even the most unlikely sources. In 2008, Human Rights Watch senior military analyst Marc Garlasco admitted that “airstrikes probably are the most discriminating weapon that exists.”

Most of the relevant discussion of airpower’s precision has centered around the development and proliferation of modern Precision Guided Munitions (PGMs). Arguably beginning with the first combat usage of Paveway I Laser Guided Bombs (LGBs) against the “Dragon’s Jaw” bridge in North Vietnam in 1972, the PGM revolution has continued unabated, finding its most recent expression in the use of Global Positioning System (GPS) aided and Inertial Navigation System (INS) guided weapons such as the Joint Direct Attack Munition (JDAM). Furthermore, the JDAM’s specified delivery accuracy in the very low double digit number of meters (given appropriate target coordinate accuracy), while lagging the single digit meter accuracy of a modern Paveway II or Paveway III LGB, can nevertheless be achieved in any weather condition and with no requirement for the delivery platform to optically acquire the target. Besides delivery accuracy, recent efforts to tailor warhead effects for increased target discrimination have led to the development of low collateral damage warheads such as the BLU-126, which has been employed in LGB configuration (as the GBU-51) as well
as in a JDAM variant (GBU-38v3/4). Even the creative use of fuse functioning delays on PGMs with conventional high explosive warheads and PGM guidance kits on inert warheads have been employed to mitigate weapon effects to personnel and structures surrounding legitimate targets. In the case of PGMs, weapon delivery accuracy and warhead discrimination are factors which, in addition to facilitating efficient target destruction, mitigate the risk of fratricide and collateral damage posed by air-delivered weapons. Both are largely characteristics of the weapons themselves (although aircraft integration and delivery profile are also contributing factors). As such, both contribute to mission success only if the weapon in question is delivered against the correct target. Equally important, though less often discussed, are concurrent developments in technology and TTPs which facilitate target location, marking, correlation, and confirmation in order to ensure that the correct target is attacked.

While advances in weapons technology have increased the likelihood of desired effects on the target and the mitigation of undesired effects on personnel and structures in proximity to the target, advancements in situational awareness of delivery aircrews, facilitated by both technology and TTPs, have had similar impact by improving the likelihood of destroying the correct target. On the technological side of the equation, the proliferation of advanced, high resolution Infrared/Electro-Optical (EO/IR) sensors on aircraft have increased the level of image resolution available to aircrews, facilitating better target discrimination, even from tactically significant stand-off ranges. Concurrently, the proliferation of “coordinate seeking” weapons such as JDAM removes the requirement for aircrew to visually acquire the target at all (though it can be effectively argued that the result merely shifts the mechanism of target assurance from
visual means to coordinate generation accuracy). Increasing availability and usage of Laser Spot Trackers (LSTs) on board strike aircraft to confirm target location in conjunction with both ground based and airborne Laser Target Designators (LTDs) used by Joint Terminal Attack Controllers (JTACs) and Forward Air Controllers (Airborne) [FAC(A)s] have significantly enhanced the speed and accuracy of target acquisition and confirmation in addition to their traditional role in guiding laser-guided PGMs. Perhaps even more significant has been the proliferation of Laser Target Markers (LTMs). Increasingly integral to advanced aircraft targeting pods and almost ubiquitous among ground based JTACs owing to their impressive power to size ratios (a 1 watt LTM, visible from over 5 nautical miles slant range under nominal conditions is about the size of a “C” cell flashlight), LTMs are employed in a similar role to cue aircrews equipped with Night Vision Devices (NVDs). Concurrently, employment of small laptop computer and even Personal Data Assistant (PDA) hosted, imagery based precision coordinate generation software such as Precision Strike Suite (for) Special Operations Forces (PSS-SOF) and Precision Fires Image Generator (PFIG) have brought similar benefit to the employment of GPS/INS targeted weapons.

The net result of these advances in technology and the TTPs which support their effective employment has been an exponential increase in the target discrimination and weapon effectiveness of air delivered weapons. Coupled with the skill of SOF JTACs - such as U.S. Air Force Combat Controller Teams (CCT) and Tactical Air Control Parties (TACP) - and facilitated by the level of interoperability previously outlined, the inherent precision of modern airpower makes a significant contribution to overcoming the daunting challenges facing SOF in a counterinsurgency environment. First, the
precision of modern airpower enables the delivery of timely and accurate overwhelming firepower in support of light, agile forces which, though highly skilled, lack significant organic firepower. Secondly, precision enables effective and efficient engagement of targets in close proximity to friendly forces and non-combatants while minimizing the risks of fratricide and collateral damage.

Persistence. The second revolution of modern airpower is the revolution of persistence. With advanced expeditionary basing (including sea basing), modern aerial refueling capability, and advancements in aircraft endurance, airpower today is capable of a more profound operational footprint on the battlespace than at any time in its history. Nowhere has the persistence revolution been more apparent than in Intelligence, Reconnaissance, and Surveillance (ISR) aircraft, of both the manned and unmanned varieties. Further, there is perhaps no more poignant example of the impact of persistent ISR than in support of SOF engaged in counterterrorism. In an impressive monograph summarizing the historical development of the manhunting methodology of counter-network operations employed by CT forces, George Crawford of the Joint Special Operations University notes “persistence pays” in the application of the Find-Fix-Finish-Exploit-Analyze (F3EA) targeting cycle employed by CT forces. The proliferation of airborne ISR assets in Iraq and Afghanistan has enabled an unprecedented level of “pattern of life” intelligence collection against High Value Individual (HVI) targets. In fact, ISR in both theaters is quantified in terms of numbers of 24 hour “orbits” of both imagery intelligence (IMINT) and signals intelligence (SIGINT) capability, affording the opportunity for a true “unblinking eye” on multiple targets
simultaneously. Such capability is of course subject to priority of asset allocation, as demand continues to exceed supply of these vital assets.

In the more indirect role, SOF can use persistent ISR in a force protection role, securing the “flanks” and acting as a virtual cavalry screen on a 360 degree battlefield consisting of small teams widely dispersed to geographically remote locations conducting rural counterinsurgency operations. In this role, airborne ISR assets can be used for early warning and overwatch, cueing friendly forces to enemy activity and later supporting battle hand-over and target designation to strike aircraft as needed, or even performing limited kinetic strikes from the (armed) ISR aircraft themselves.

Skeptical of the feasibility of achieving the required force level for a broad, doctrinal counterinsurgency campaign consistent with the 20 to1000 troop-to-insurgent ratio prescribed by FM 3-2431, Colonel Dunlap suggests that the persistence of modern airpower combined with a small SOF footprint on the ground serves as a necessary economy of force measure in COIN: “The United States has to develop technology capable of substituting for ‘boots-on-the-ground’ in order to provide future decision makers with broader options. Pragmatism drives this approach, not any deficiency in the valor or dedication of US ground forces.”32 Colonel Dunlap joins fellow strategist Phillip Meilinger in suggesting that such a SOF and airpower centric approach to COIN “is imperative…to completely recast America’s approach to COIN in an effort to achieve ‘politically desirable results with the least cost in blood and treasure.’”33 Furthermore, the smaller footprint of SOF enabled by the persistence of supporting airpower may actually remove a significant source of fuel from an insurgency. Dunlap further supports this observation, contending that “the notion that American COIN or nation-building efforts
can be executed by infusing the host state with large numbers of US troops is fundamentally flawed. In fact, the deeply entrenched view of US troops as an occupation force is now the main rallying point for anti-American feelings….”

It is also important to note that persistent modern airpower can be employed clandestinely and covertly in a permissive COIN environment. While some of the more obvious examples are clandestine intelligence collection and overwatch of an infiltrating assault force on a clandestine direct action mission, clandestine and covert applications of airpower include persistent on-call “finish” capability for kinetic time sensitive targeting of fleeting high value targets as well. Such covert applications may even occur in areas denied to U.S. ground forces, as in the case of the increasingly publicized and controversial Predator unmanned aerial vehicle (UAV) kinetic strikes in Pakistan’s Federally Administered Tribal Areas. Further, persistent airborne ISR and strike capability provide a risk-mitigating – and even potentially deniable – means of support to SOF engaged in covert, denied area operations, should the emergence of an especially lucrative target set justify the diplomatic and political risk of such missions.

Conversely, the persistence of modern airpower affords significant strategic benefits when overtly employed, as well. Colonel Dunlap asserts that the overt use of persistent ISR has significant psychological impact on the enemy, arguing “airpower can now inflict on insurgents the same kind of disconcerting sense of vulnerability that the enemy sought to impose upon US troops via improvised explosive devices,” perhaps the most iconic embodiments of asymmetry employed in the Iraqi and Afghan insurgen\[...blended accounts,
The New York Times captures the sense of helplessness of an Afghan insurgent resultant from his encounters with airpower: “We pray to Allah that we have American soldiers to kill… [but]…these bombs from the sky we cannot fight.” In particular, the recent employment of long range bombers as general support on-call close air support assets provides a previously unknown level of persistent firepower to counterinsurgent forces. The author’s own anecdotal experience as a SOF fire support officer in Afghanistan demonstrated that a single centrally located B-1 bomber orbit, occupied nearly around the clock, repeatedly proved capable of responding to coalition forces engaged in troops-in-contact situations throughout Regional Command East, or nearly the eastern half of Afghanistan, in 20 minutes or less, providing a dizzying array of all-weather firepower in various warhead and fuse configurations. Combined with regular air tasking order “lines” of direct and general support CAS fighter sorties, the persistence of coalition airpower approaches that of conventional artillery, but with the added firepower and precision of modern air-delivered PGMs.

Reach. The expansive reach of modern airpower constitutes a third revolution in its effectiveness as a strategic enabler. As a powerful mitigator of the perennial twin tyrannies of distance and terrain, the global reach of airpower is perhaps most poignantly demonstrated in the synergy of the SOF-airpower relationship. In this regard, it is airpower’s contributions to SOF’s mobility and access to precision fires which are most notable.

Mobility is more than a mere logistical enabler for SOF. Rather, it defines, in combination with the aforementioned SOF attributes of speed, agility, and stealth, what could more properly be considered a core competency. The mobility afforded to SOF by
fixed and rotary-wing aircraft – both organic and inorganic - together with their fire support analogs discussed below convert the potential liabilities of “lightness” and small footprint into decisive asymmetric advantages. In addition to maximizing agility and stealth on the ground, the small size and light nature of SOF permit the decisive air movement of entire SOF tactical formations throughout the battlespace. Additionally, they render practical the existence of a separate organic air arm of specialized SOF specific aircraft whose arsenal includes USAF MC-130 Combat Talon, AC-130H/U Spectre/Spooky and CV-22 Osprey aircraft of the Air Force Special Operations Command (AFSOC) as well as the MH-47Chinook, MH-60K/L Blackhawk and Direct Action Penetrator (DAP), and MH-6/AH-6 “Little Bird” transport and attack variants of the 160th Special Operations Aviation Regiment. These organic air assets enjoy a level of interoperability developed through the aforementioned habitual training and operating relationship with their SOF “customers” which enhances the effectiveness of all joint operations and facilitates a level of specialized capabilities unique to SOF, including specialized insertion techniques such as fast-rope helicopter assault and military free-fall parachute operations (both the High Altitude Low Opening [HALO] and High Altitude High Opening [HAHO] varieties) which uniquely position SOF to maximize the mobility potential of airpower.

With a long history of irregular warfare conducted from the forbidding geographical sanctuary of the Hindu-Kush Mountains which dominate eastern and southern Afghanistan, Afghan insurgents have grown both accustomed to and reliant upon unilateral access to this terrain as an asymmetric advantage over traditionally road-bound and heavily mechanized adversaries. Whether by means of now
conventional vertical envelopment by heliborne assault first demonstrated effectively in
combat in the Ia Drang Valley in 1965, fast-rope insertion to mountainous objectives
without suitable landing zones (LZs), or one of the specialized variations of military free-
fall insertion, SOF supported by organic air mobility and effective multi-source ISR
represent a means to significantly neutralize the key insurgent advantage of terrain in
Afghanistan. Using suitably tailored SOF elements and radar-equipped aircraft in terrain
following flight profiles (even in adverse weather), stand-off ISR for threat and detection
avoidance, and offset LZs to minimize auditory and visual signature of the assault force,
for example, the preservation of SOF’s characteristic stealth can be compounded by the
speed and access afforded by air mobility to secure the critical advantage of tactical
surprise. In addition to the increased access provided by air mobility, the small footprint
and organic aviation of SOF help to neutralize another asymmetric insurgent advantage:
the improvised explosive device (IED). Far less dependent upon road-bound vehicular
transport for logistic support than their conventional counterparts, SOF are inherently
less susceptible to what has proven statistically to be the deadliest of insurgent tactics
first in Iraq and, more recently, in Afghanistan as well.

In addition to the advantages which mobility has brought to bear against the
challenging terrain in Afghanistan, SOF have benefitted from technological advances in
PGMs which have extended the reach of effective fire support as well. The advent of
INS/GPS weapons such as JDAM and GBU-39 Small Diameter Bomb (SDB) with
programmable attack azimuth and impact angle capabilities independent of delivery
platform and profile has virtually eliminated the existence of defilade from a fire support
perspective. Thermobaric warheads, now employed in weapons ranging from hand
grenades to Hellfire missiles, as well as advanced “penetrator” warheads such as the
BLU-109 and BLU-116 have combined with the proliferation of targeting quality
coordinate generation technologies (some of which are of the tactical hand-held variety
and available to SOF-embedded Air Force Combat Control Teams) to effectively solve
even the most challenging targeting problems such as caves, bunkers, and “box”
canyons posed by Afghanistan’s forbidding terrain.

In addition to extending the reach of SOF combat power with respect to terrain,
airpower, in terms of both mobility and fire support, has recently demonstrated an
impressive mastery over imposing distances. In one of the most demonstrative
examples of the former, the opening stages of OEF featured historically significant
helicopter assaults by SOF based aboard the aircraft carrier USS Kittyhawk in the
Indian Ocean over unprecedented distances against high value targets in Afghanistan.
Similarly, the trans-continental bombing missions of USAF B-2 Spirit bombers from
Whiteman Air Force Base in central Missouri to strike targets in Afghanistan has
become a strategically emblematic demonstration of the global reach of kinetic
airpower. Moreover, the apparently straightforward nature of such missions belies an
equally impressive mastery of logistic and aerial refueling capability. Such examples,
combined with carrier based aircraft as effectively demonstrated by the aforementioned
USS Kittyhawk example, effectively underscore a diminishing dependence upon access
to regional basing which is not trivial. As Australian David Jeffcoat notes:

The preponderance of US unique capabilities …such as large numbers of heavy bombers, carrier based aircraft and extensive air-to-air refuelling
[sic] capability, demonstrate the ability to deliver levels of concentration of force, payload and reach to such an isolated area that is beyond the
capabilities of any other air force.39
In short, the global reach of airpower provides the ability to deliver significant tactically tailored SOF combat power at the decisive place and time, preserving tactical surprise, and increasingly independent of the tyranny of distance and terrain.

Conclusion

The manifest operational benefits of modern airpower’s key characteristics of precision, persistence, and reach have combined with the unique characteristics of SOF to impart a strategically significant synergistic effect. The speed and mobility afforded by the reach of airpower is abetted by the “lightness” and small footprint of SOF, while its persistence and precision concurrently compensate for the lack of organic mass and firepower engendered by these same characteristics. In other words, airpower, most particularly in the context of its uniquely synergistic relationship with SOF, constitutes perhaps the single most effective asymmetric U.S. advantage in the operational environment of irregular warfare. Though many reasons for the effectiveness of this combination are articulated above, the asymmetric nature of the airpower-SOF combination with respect to COIN in particular is equally worthy of emphasis. Fortified by this belief, the author risks the potentially banal observation that the nature of the COIN fight is almost by definition a permissive one with respect to airpower. While COIN presents innumerable difficult political and military challenges on the ground, insurgents by their very nature typically lack the “high end” anti-access capabilities (such as an air force or integrated air defense system) which constitute a credible counter to modern airpower. And while it is both necessary and proper to acknowledge the potential for the deleterious strategic effect of collateral damage incurred through the (often improper) use of airpower to the successful conduct of COIN (exhaustively documented elsewhere), the author’s primary contention is that the maturity,
interoperability, and tactical competence of SOF combined with on-going technological and procedural innovations effectively mitigates such risk to a degree well below the level of nullifying the constructive contribution of the SOF-airpower team in the calculus of strategic effects. Finally, it is worth noting that technological and procedural advances that contribute to the combat effectiveness of airpower (e.g. the precision revolution) often equally serve to mitigate the risk of collateral damage caused by airpower, contributing to the likelihood that future prospects for the strategic calculus will continue to improve.

Entering a second decade of war, the United States is faced with the probability of a future characterized by persistent conflict. Unable to challenge U.S. conventional military strength, adversaries such as Al Qaeda and the Taliban in Afghanistan will continue to seek the asymmetry of irregular warfare, and will further seek to open new fronts in a global landscape filled with failed or failing states, rogue states, and ungoverned spaces within states. The global demands of U.S. interests on the military in the “Long War” offer the distinct possibility of exceeding the means available, particularly amid the likelihood of shrinking defense budgets resultant from continued economic strain. Further compounding the problem, potential adversaries will likely be emboldened by the perception of U.S. military overextension. Such an environment will require difficult choices for U.S. policy makers - choices which will require a potentially painful prioritization of efforts in determining which interests are to be resourced and which interests must conversely be deferred or addressed by other means. Necessarily, this environment will require the extraction of maximum strategic efficiency from the means available. In this regard, the SOF-airpower team provides a uniquely high level
of strategic return on investment across the spectrum of irregular warfare which remains unrivaled within the military element of national power.

Endnotes

6 Ibid, 5.

7 Ibid.

10 Ibid.

11 Gray, “Handfuls of Heroes on desperate ventures: When do special operations succeed?”

13 Ibid.

15 Ibid.

18 Ibid.

21 John Jogerst, “What’s so special about special operations?: Lessons from the war in Afghanistan.”

23 Gray, “Handfuls of Heroes on desperate ventures: When do special operations succeed?”

24 John Jogerst, “What’s so special about special operations?: Lessons from the war in Afghanistan.”

25 Ibid.

26 Gray, “Handfuls of Heroes on desperate ventures: When do special operations succeed?”

28 Ibid, 5.

30 George A. Crawford, Manhunting: Counter-Network Organization for Irregular Warfare, (Hurlburt Field, FL: Joint Special Operations University, 2009), 4.

31 Based on the FM 3-24 ratio and an estimated Afghan population of 29 million, a counterinsurgent force of 580,000 troops would be required.

33 Ibid.

34 Ibid.
According to joint DoD doctrine, clandestine operations focus on concealment of the operations themselves whereas in covert military operations (Title 10, USC as distinguished from Title 50 Foreign Intelligence authorities) the emphasis is on deniability of association with the U.S. Government.

