STATUS OF SHIP WAKES IN SAR IMAGERY

J.K.E. Tunaley

London Research and Development Corporation,
114 Margaret Anne Drive,
Ottawa, Ontario K0A 1L0
(613) 839-7943
Status Of Ship Wakes In Sar Imagery

The original document contains color images.
Contribute to Maritime Domain Awareness
- Extraction of Independent Target Parameters
- Confirmation/Validation of other Data (AIS)

Need better Understanding of Ship Wakes

Program of Study started at RMC, Kingston
- RADARSAT-2 Images
- AIS Traffic Pattern Analysis
 - Compare Open Ocean with Lake Ontario/Seaway
RADAR WAKE

- Ship
- Kelvin Arm
- Azimuth Shift
- Turbulent Wake
- Transverse Waves
- Range

London Research and Development Corporation
INTERNAL WAVE WAKES

Georgia Strait

Ship

Range

London Research and Development Corporation
OPTICAL WAKE

Kelvin Wake Divergent Waves

Turbulent Wake

Vancouver Island Ferry

Kelvin Wake Transverse Waves
Wavelength about 65 m.
OUTLINE

- Information from Wakes
- Gravity Wakes (Deep and Shallow Water)
 - Kelvin
 - Internal
 - Unsteady (Surface and Internal)
- Turbulent Wake
- Surface Scattering
- SAR Effects
WAKE INFORMATION

- Ship Course
- Ship Speed
 - From Wake Offset
 - From Kelvin Transverse Wavelength
- Potential for Information about:
 - Propulsion System
 - Hull Form/Damage
KELVIN WAVELENGTHS

Transverse Wavelength

Wavelength (m)

Ship speed (kts)

London Research and Development Corporation

8
SIMULATED KELVIN WAKE

Point Source

Cusp Waves

Transverse Waves

Divergent Waves
SIMULATED INTERNAL WAKE

Plot of Horizontal Wake Velocity

- Speed = 15 m/s
- Layer Depth = 15 m
- Fractional Density Change = 0.01
REAL AND SIMULATED
UNSTEADY GRAVITY WAKES

- Sinusoidal (or Random) Excitations
- Excitation due to
 - Heave and Pitch
 - Screws (Blade Frequency)
 - Reflection of Ambient Waves from Hull
- Wake Angle may be much Larger/Smaller than Kelvin Angle (39 degrees)
- Wave Crest Patterns can be Novel
UNSTEADY SINUSOIDAL

Omega = ΩU/g; Critical Omega = 0.25

Wake for Omega = 1.0
PROPELLER WAKE

Soloviev et al, 2008
TURBULENT WAKE

- Comprises Random Vortices
- May contain Steady Flows
- Broadens slowly with Distance Astern, \(x \)
- Width, \(b = Cx^{1/n} \)
- Exponent \(1/n \) depends on Environment and Propulsion
T-WAKE AND PROPULSION

<table>
<thead>
<tr>
<th>Reciprocal Exponents, n</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Large linear momentum in wake. Under sail.</td>
<td>3</td>
</tr>
<tr>
<td>Large angular momentum (swirl). Small linear momentum. Single screw.</td>
<td>4</td>
</tr>
<tr>
<td>Negligible mean linear/angular momentum but linear momentum variance high. Under sail at low speed or non-screw propulsion.</td>
<td>≥4</td>
</tr>
<tr>
<td>High swirls. Small mean linear and angular momenta. Two contra-rotating screws.</td>
<td>≥5</td>
</tr>
</tbody>
</table>
AMBIENT SEA

Sea State = 4
RADAR SCATTERING

- Bragg Scatter
 - Wright, 1968
- Wave Breaking
- Slope Modulation
- Surface Flows
 - Modify Bragg Waves and Trigger Breaking
- Surfactants
SAR EFFECTS

- Speckle
- Velocity Bunching
- Synthetic Aperture Time (in Ultrafine)
- Often Insufficient Resolution
 - Moire Fringe Effects due to Aliasing
- Bragg Wave Velocities (in Ultrafine)
TRAFFIC FROM AIS

Aug 6th, 2008
6:58LT
CONCLUSIONS

- Wake Theory to be Validated and Completed
 - Basics, Simulations and Visibility
- Inverse Problem Unexplored
- Significant Potential for MDA in Cross-Validation
 - Ship Velocity
 - Low Grade but Valuable Information for Fusion
 - Does not compensate for no AIS Fusion

Tel: (613) 839-7943
Email: jtunaley@rogers.com