Some New Developments in Active Noise Control

Felix Rosenthal, Signal Separation Technologies Inc.

DARPA Air-Coupled Acoustic Sensor Workshop at Crystal City, Virginia, August 24-25, 1999
1. REPORT DATE
24 AUG 1999

2. REPORT TYPE
N/A

3. DATES COVERED
-

4. TITLE AND SUBTITLE
Some New Developments in Active Noise Control

5a. CONTRACT NUMBER
-

5b. GRANT NUMBER
-

5c. PROGRAM ELEMENT NUMBER
-

5d. PROJECT NUMBER
-

5e. TASK NUMBER
-

5f. WORK UNIT NUMBER
-

6. AUTHOR(S)
Signal Separation Technologies, Inc.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Some New Developments in Active Noise Control

8. PERFORMING ORGANIZATION REPORT NUMBER
-

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
-

10. SPONSOR/MONITOR’S ACRONYM(S)
-

11. SPONSOR/MONITOR’S REPORT NUMBER(S)
-

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
DARPA, Air-Coupled Acoustic Microsensors Workshop held on August 24 and 25, 1999 in Crystal City, VA., The original document contains color images.

14. ABSTRACT
-

15. SUBJECT TERMS
-

16. SECURITY CLASSIFICATION OF:
<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
18

19a. NAME OF RESPONSIBLE PERSON
-

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Two Kinds of Cancellation:

- **Signal Separation:**
 Example: Army HMMWV Noise Canceller

- **Active Cancellation:**
 (Noise or Vibration)
 Example: Cancel Interior Noise in Aircraft
Dr. Martinez’s

Commonly Asked Questions (and our answers)

• What are we trying to accomplish?
 Effective multichannel noise cancellation.

• How is it done now, and with what limitations?
 SFR-SVD algorithm. Robust, effective but > computing.

• What is truly new in this approach which will remove current limitations and improve performance? By how much?
 Eliminates redundancies, ill-condition, permits accurate solution to filter equation, hence effective cancellation. Gain 15 - 20 dB vs. noise across band.

• If successful, what difference will it make?
 Has greatly improved noise cancelling performance.
“Active control of noise and vibration has received a great deal of attention and achieved a certain level of practicality. However, active control methods have some limitations and drawbacks that additional research and development efforts are needed . . .

“Most important, current control strategy needs to be extended to off-resonant, and broadband vibration and acoustic control.”
“Active Noise Control has advanced significantly in recent years, but most applications to date have addressed physical systems with relatively limited spatial or temporal complexity.

“For example, noise is reduced at a single headset location or only for small numbers of sources contributing narrowband or perhaps multi-tonal input.”
Excerpts from 1993 Army SBIR Solicitation:

“Weapon platform and own-vehicle interference tend to degrade passive aero-acoustic sensor performance . . .

“ANC (Automatic Noise Cancellation) techniques such as the classic Widrow algorithm have been considered for cancellation of such interference, but . . . have not offered the degree of cancellation needed . . .”
Proof of Concept

HMMWV Instrumentation

- Primary Microphones
- Wheel well Ref. Mics.
- Engine Ref. Accels.
Signal Separation: How It Works

Signal Sensors
(Roof Mounted Microphones)

Noise Ref. Sensrs.
1. Accelerometers in engine compart.,
2. Microphns in wheel wells for road noise

Wiener Filters

Filter Correction Algorithm (SFR-SVD)

Raw Signal

Corrected Signal
Proof of Concept

HMMWV Idling Using 5 Noise References

Power spectral density (dB)

Noise References:
- Transmission fluid accelerometer
- Valve Cover accelerometer
- Tailpipe accelerometer
- Starter motor microphone
- Alternator microphone

Signal:
- 82 Hz tone from loudspeaker
- 30 yards away

Signal Separation Technologies
Proof of Concept

HMMWV Moving at 10 mph, 5 Noise References

Power spectral density (dB)

Noise References:
- Transmission fluid accelerometer
- Valve Cover accelerometer
- Tailpipe accelerometer
- Starter motor microphone
- Alternator microphone

No Signal:

Signal Separation Technologies
SVD Calculations

Filter Equation: \[R \begin{bmatrix} w \end{bmatrix} = \begin{bmatrix} p \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} w \end{bmatrix} = R^{-1} \begin{bmatrix} p \end{bmatrix} \]

Diagonalize \(R \) with unitary \(U \),

where \(D \) is diagonal.

\[D = \begin{bmatrix} \text{diag} \end{bmatrix} \; \begin{bmatrix} d_{\text{big1}} & 0 \\ \text{0} & d_{\text{big2}} \\ \text{0} & d_{\text{small}} \end{bmatrix} \]

Pseudo-inverse: \(D^{-1} = \begin{bmatrix} \text{diag} \end{bmatrix} \; \begin{bmatrix} 1/d_{\text{big1}} & 0 \\ 1/d_{\text{big2}} & \text{0} \end{bmatrix} \)

Calculate \(w \) using pseudo-inverse of \(D \):

\[\begin{bmatrix} w \end{bmatrix} = U \begin{bmatrix} D \end{bmatrix}^{-1} U^\dagger \begin{bmatrix} p \end{bmatrix} \]

This information is covered by U.S. Patents 5,209,237, 5,917,919, and foreign patents.
SFR-SVD Cancelling Algorithm

Ref. Sensor Measurements can be Redundant:
- Occurs when noise references exceed no. of effective noise sources

Such redundancies must be eliminated:
- Failure to do so degrades noise canceling performance.

SFR-SVD Method Eliminates Redundancies.

SFR-SVD has been thoroughly tested off-line:
- Army HMMWV Acoustic System: Engine, road noise reduced 20-30 dB;
- NASA aircraft Interior (active) Noise Reduction: 30 dB reduction;
- Navy towed array sonar: Accelerometers cancel vibration effects;
- Fetal electrocardiography: Maternal heartbeat removed.

Army HMMWV Project is First time realtime:
- Developing world’s most capable multi-channel cancellation computer.

This information is covered by U.S. Patents 5,209,237, 5,917,919, and foreign patents.
Summary

- The LMS and FXLMS (for active control) algorithms do not work well in a multi-channel control scenario, either for signal separation or for active control.

- The SFR-SVD algorithm has been shown to overcome the problems of redundancy and ill-condition.

- A real-time signal separation controller built for the Army has been found to be extremely effective.

- Use of SFR-SVD for active control was tested off-line for NASA; work on a real-time active vibration controller continues under an NSF SBIR grant.
Feed-Forward Active Cancellation: How It Works

- Noise Sources
- Plant Xfr F. (Unknown)
- Wiener Filters
- Act.
- Error Sensor Inputs to Wiener F.
- Plant Path
- Σ
- Err. Sens. Outputs

Control Path
SFR-SVD Computer is Proven Technology

Proof of Concept

1997: Laboratory and HMMWV Field Tests Successful; Noise Canceller Performance Exceeds All Expectations; Final Report is Issued.

NSF Phase I SBIR: Application of SFR-SVD to Active Control of Vibrations.

1998: NSF Phase II SBIR: Active Control of Vibrations

Proof of Concept

The Graphic User Interface

This information is covered by U.S. Patents 5,209,237, 5,917,919, and foreign patents.
Active Control of Noise/Vibration

Active Noise Control in an Aircraft Fuselage
Experimental Setup

Actuator Speakers
Error Microphones

Source Speakers
Noise Reference Microphones
Active Control of Noise/Vibration

Active Noise Control in an Aircraft Fuselage
Comparison of Gains Achieved

Gain Against Noise When Using Classical LMS:

Gain Against Noise When Using SFR-SVD Method: