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Abstract - In this paper, a previously introduced
data mining technique, wutilizing the Mean Field
Bayesian Data Reduction Algorithm (BDRA), is ex-
tended for use in finding unknown data clusters in a
fused multidimensional feature space. In the BDRA
the modeling assumption is that the discrete sym-
bol probabilities of each class are a priori uniformly
Dirichlet distributed, and where the primary met-
ric for selecting and discretizing all relevant fea-
tures is an analytic formula for the probability of
error conditioned on the training data. In extending
the BDRA for this application, notice that its built-
in dimensionality reduction aspects are exploited for
isolating and automatically sorting out and mining
all points contained in each unknown data cluster.
In previous work, this approach was shown to have
comparable performance to the classifier that knows
all cluster information when mining a single fea-
ture containing multiple unknown clusters. There-
fore, the primary contribution of the work presented
here is to demonstrate that this approach can be ex-
tended to cases where the features are fused and
contain more than one dimension. To illustrate
performance, results are demonstrated using simu-
lated data containing multiple clusters, and where
the fused feature space contains relevant classifica-
tion information.
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1 INTRODUCTION

In [7, 8], the problem of classifying all points in an
unknown data cluster was investigated, where the do-
main of the observed data, or features, describing each
class was obscure and highly overlapped. However,
within difficult domains such as these it was also dis-
cussed that in some situations the target class of in-
terest (e.g., data that produce a desired yield and are
thus categorized as the target class) can contain iso-
lated unknown clusters (i.e., subgroups of data points),
where the observations within each cluster have simi-
lar statistical properties. Notice that in this problem
yield represents the primary variable to separate target
and nontarget data points, and where stronger yielding
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points are more desirable. In general, a variable such
as the yield is only known for the training data and
not the test data. Thus, an important goal in classify-
ing the test data is to choose data points that produce
a strong and consistent average yield.! Within these
situations it turns out that classification performance
(i.e., through a minimum probability of error, or high
average yield) can be significantly improved if one de-
velops a classifier to recognize, or mine, observations
within the clusters as the target class, and where all
other nonclustered observations (i.e., both with and
without a desired yield) are considered the alternative
class (the nontarget class).? As was shown previously
for the case of mining a single unknown data cluster, a
benefit of such a classifier is that subsets of target data
points, producing a consistent desired average yield,
can be recognized with a minimum probability of error
(see the figures in [7, 8]). This was further shown to
be in contrast to what is obtained using a traditional
supervised learning classification approach, where this
latter case produced a much higher probability of error
and a lower average yield.

2 Review of mining unknown
clusters in a single dimension

Figure 1 illustrates a straightforward example of the
problem of interest with a plot containing one thou-
sand samples of one dimensional domain data (a single
feature). The data for this figure was generated, for
each dimension of each class (i.e., except those within
the cluster), to be uniform, independent, and identi-
cally distributed. However, with respect to the fea-
tures each data cluster was generated as Gaussian dis-
tributed, with a randomly generated mean, and con-

1As an intuitive example, consider financial data where the
variable yield represents the return on investment. Often in such
data, and with respect to the known features (i.e., economic in-
dicators used to predict the value of an investment) both high
(good) and low (bad) yielding data are indistinguishable. How-
ever, in such a case there might be small groups of investment
possibilities in the training data that if invested in would always
produce good consistent yields (and yet not necessarily the best).
Thus, the goal of this work is to effectively mine these common
data points.

2For more information on various approaches to mining data
see [2].
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Range(yield values)
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Figure 1: Illustrating the problem of interest with a
straightforward example containing one thousand sam-
ples of one dimensional domain data (a single feature).
In this figure, the ordinate that defines the yield of each
data point is plotted versus the domain, where a yield
value of 0.5 is used to separate and define the five hun-
dred samples of the target class (i.e., yield > 0.5), and
the five hundred samples of the nontarget class (yield
< 0.5). It can clearly be seen that the two classes con-
tain many commonly distributed points with respect
to the range of the single feature: meaning that they
are almost indistinguishable with respect to domain
observations. However, notice that three clusters of
data points also exist in the target class. Thus, the
problem investigated here is to develop a classifier for
this data that can essentially mine and recognize all of
the points within the positive yielding clusters from all
other data points contained in both classes.

strained to be located around the specified “center”
yield value. In this case, the ordinate that defines the
yield of each data point is plotted versus the domain,
where a yield value of 0.5 is used to separate and define
the five hundred samples of the target class (i.e., yield
> 0.5), and the five hundred samples of the nontarget
class (yield < 0.5).

It can clearly be seen in Figure 1 that the two classes
contain many commonly distributed points with re-
spect to the range of the single feature. In fact, it was
shown in [8] for the single cluster case that traditional
supervised classification approaches with this data pro-
duce nearly a 0.5 probability of error, and an overall
average yield of just slightly more than 0.5. However,
notice in Figure 1 that in this case three clusters of
data points exist within the target class containing ac-
tual respective yields of 0.6, 0.75, and 0.9 (for two clus-
ter results in Tables 1 and 2 below the 0.75 cluster is
not used). In this case, each data cluster was ran-
domly placed to be centered somewhere between the
yield values of 0.5 and 1, where, as stated previously,
the focus of this paper is on extending and refining the
classifier developed in [7, 8] to mine multiple clusters
in multi-dimensional feature space.

To demonstrate the effectiveness of the algorithm
for the problem of Fig. 1, emphasis is placed on il-
lustrating that the new method of mining for each
unknown data cluster can obtain an error probability
that is comparable to the classifier that knows the to-
tal number of clusters, and all data points within each
cluster. Further, it will be of interest to show that this
performance capability persists given the data contains
both relevant and irrelevant features. In this case, the
data used to demonstrate all performance results will
be simulated based on a multi-dimensional extension of
the example shown in Figure 1. This extension is use-
ful because typical real-world problems often involve
complicated multi-dimensional feature spaces, where
determining the location of any hidden clusters by in-
spection is nearly impossible. In general, it will be
shown that the automatic techniques developed here
to find any number of data clusters can easily be ap-
plied in higher dimensional feature spaces. However,
the drawback with increasing numbers of dimensions
is that computational costs also go up.

3 Review of the basic approach
to solving the problem

The approach taken in [7, 8] to solve this problem was
based on an extension to Mean-Field Bayesian Data
Reduction Algorithm (Mean-Field BDRA). The Mean-
Field BDRA was developed to mitigate the effects of
the curse of dimensionality by eliminating irrelevant
feature information in the training data (i.e., lower-
ing M), while simultaneously dealing with the missing
feature information problem. The algorithm is based
on the BDRA that was first introduced in Ref. [10],
and which assigns an assumed uniform Dirichlet (com-
pletely noninformative) prior for the symbol probabil-
ities of each class [4]. In other words, the Dirichlet is
used to model the situation in which the true proba-
bilistic structure of each class is unknown and has to
be inferred from the training data. For more infor-
mation on the Mean-Field BDRA algorithms see Ap-
pendix A of [7, 8], and notice that because of its su-
perior performance with difficult unsupervised train-
ing situations the modified version of the Mean-Field
BDRA will be used here. In this case, the Mean-Field
BDRA is trained with a very fine initial quantization
on the feature space (i.e., twenty initial thresholds per
feature) to better determine final threshold values for
locating each cluster.

The development of an algorithmic approach, or
new training method, for this problem depended on
adapting the Mean-Field BDRA to automatically sort
and “mine” the data points contained in multiple un-
known clusters. In this case, the built-in dimension-
ality reduction aspects of the Mean-Field BDRA are
exploited for isolating each data cluster. Additionally,
as the Mean-Field BDRA is a discrete classifier it natu-
rally defines threshold points in the feature space that
isolate the relative location of all clusters. Before pro-
ceeding with the algorithm developed for multiple clus-



ters, the approach to solving the single cluster case in
[7, 8] is discussed next.

3.1 The single cluster case

In general, the automatic cluster mining algorithm de-
veloped in [7, 8] to locate a single data cluster strongly
relies on the Mean-Field BDRA’s training metric, P(e)
(as shown in Equation (2) of [7, 8]). The idea is that
because the Mean-Field BDRA discretizes all multi-
dimensional feature data into quantized cells any data
points that are common to a cluster will share the same
discrete cell, which also assumes that appropriately de-
fined quantization thresholds have been determined by
the Mean-Field BDRA. Therefore, given that all, or
most, cluster data points can be quantized to share
a common discretized cell they will all also share a
common probability of error metric. In other words,
locating an unknown cluster, and all of its data points,
was based on developing a searching method that looks
for data sharing a common P(e). In this case, it is ex-
pected that this common error probability value, for
all points within a cluster, will be relatively small with
respect to that computed for most other data points
outside of the cluster. This latter requirement should
be satisfied in most situations as data clusters should
tend to be distributed differently with respect to data
outside of the cluster. As a final step in training, the
validity of this cluster can be checked by computing
the overall average yield for all points within the clus-
ter (i.e., any grouped data points producing the largest
average yield are chosen as appropriately mined data
clusters).3

3.2 Extension to the multiple cluster
case

To extend the idea described above to finding multiple
unknown clusters, it was required for the algorithm to
have the ability to intelligently sort through and sep-
arate data points having common error probabilities.
In this case, both the total number of clusters and the
number of samples per cluster are assumed unknown
to the classifier. Therefore, with multiple data clus-
ters each error probability value was thought of as an
indicator to each point within each cluster. Typically,
as in the single cluster case, it was expected that with
multiple clusters all common error probability values,
that is, for all points within each cluster, would be rel-
atively small with respect to that computed for most
other data points outside of any cluster. In general,
the degree to which this latter requirement was satis-
fied depended on how differently the clusters tended to
be distributed with respect to the non-clustered data.*

3Typically, data outside of a cluster will have a more random
distribution of error probability values that will not necessarily
associate with a common yield value.

4Intuitively, as data within a cluster becomes distributed
more like the data outside of the cluster it obviously becomes
less distinguishable. On the other hand, it is reasonable then to
conclude that if unknown clusters exist within a data set they
will be distinguishable by being distributed differently with re-
spect to all other data points outside of the clusters. Notice that

Therefore, a proper data mining algorithm of multi-
ple clusters, and one that is based on the Mean-Field
BDRA, will tend to have a higher likelihood of finding
leading cluster candidates by focusing on the largest
groups of data points that cluster around smaller com-
mon error probability values. As the sorting, or min-
ing, continues in this way any data points associated
with small error probabilities and that have no other,
or a small number of, common data points are rejected
as cluster members. The algorithm was designed to au-
tomatically stop when all unknown data clusters were
found, or when the training error begins to increase.
Finally, and as in the single cluster case, the validity
of each cluster with respect to the training data was
checked by computing the overall average yield for all
points within the cluster.

3.2.1 New algorithm training steps

The steps shown below were developed for training a
new multiple cluster algorithm using the Mean-Field
BDRA, that is, in such a way that all unknown data
clusters can be identified with a minimum probabil-
ity of error. For each of these steps training proceeds
in a semi-unsupervised manner in that all target data
(yield > 0.5) is utilized without class labels (i.e., no
class information at all), and all nontarget data (yield
< 0.5) is utilized with class labels (full class infor-
mation). The motivation for training in this way is
to force the Mean-Field BDRA to readily recognize
the contrast between target cluster data points and all
other data points in both classes that are not like the
cluster. Therefore, when adapting class labels for the
target class the Mean-field BDRA is more likely to la-
bel any cluster data points as target, while grouping
most other noncluster “target” data points with the
nontarget. The new method of training proceeds with
the following steps.

1. Using all available training data (i.e., with all tar-
get points unlabeled and all nontarget points la-
beled), separately train the Mean-Field BDRA by
incrementally varying the initial number of dis-
crete levels to be between two and twenty levels.?

2. From the separate training runs in the previous
step choose the initial number of discrete levels to
use for each feature as that producing the least
training error (see Equation (2), Appendix A of
[7, 8]). Notice that the idea of steps 1 and 2 is
to find the best initial number of discrete levels to
use for each feature prior to looking for individual
clusters. Typically, it is desired to train with as
many initial levels as the data will support for best
results.

3. Sequentially, label each target data point with
the correct target label and separately re-train

this important assumption about the distribution of the clusters
is what has been exploited in developing the methods presented
here.

5In this case, for the results shown here “all available” train-
ing data means 50% of the entire data set.



the Mean-Field BDRA, where all remaining tar-
get data points are unlabeled as above.® This step
produces a set of Nigrger computed training runs
equal to the number of target training data points.
For each separate run in this step compute a set
of “cluster-training” errors by using the training
data as a “test” set in which every data point, ex-
cept for the single correctly labeled target point,
is labeled a nontarget.”

4. From the set of N¢grget computed cluster-training
errors in the previous step sort and group all data
points according to those having common error
values. The final list of separate cluster-training
errors should proceed from the smallest to the
largest, and for each value find all data points that
share this same error. Observe that this step helps
to reveal those data points that are sharing a sim-
ilar region in quantized feature space.

5. Begin a cluster search and look for the first data
cluster using the list obtained in step 4 above. To
do this, choose as the best candidate, for data clus-
ter 1, as the one having simultaneously the small-
est cluster-training error and the largest number
of common data points.® In this case, call the er-
ror associated with all points of this first cluster
candidate P(el0).

6. After selecting the first cluster candidate in the
previous step retrain the Mean-Field BDRA with
all data points within this cluster labeled as
the target class, and where the remaining target
data points are unlabeled. Call this new cluster-
training error that is computed simultaneously for
all data points within cluster 1 P(e|1). The impor-
tant point of this step is to determine how statis-
tically similar the selected group of training data
points are with each other, or, on the other hand,
how different this group is with respect to the non-
target class (which now includes all other “target”
data points outside of the cluster).

7. Compare P(e|l) and P(e|0) from steps five and
six above. If P(e|]l) < P(e|0), as it should be
in most cases containing data clusters, conclude
that cluster 1 is a valid first data cluster and pro-
ceed to step eight. Otherwise, conclude that no
substantial data clusters exist, and terminate the
algorithm.

8. Proceeding as in step five, proceed to the next
most likely candidate on the list and select a sec-
ond potential cluster (i.e., excluding all points
in the first cluster). This new group of points

6In this important step of training the multi-dimensional
fused features are reduced for each target data point, which de-
termines the best subset of fused quantized features for that
configuration of data.

"This error is computed based on counting the number of
wrong decisions made under each hypothesis.

8Typically, the first error value on the list has both the ab-
solute smallest error and the largest number of common points.
However, because the algorithm is suboptimal this does not have
to always be the case.

will have simultaneously the next smallest cluster-
training error and the largest number of common
data points.

9. Retrain the Mean-Field BDRA with all data
points within cluster 2 (and cluster 1 if selected
above) labeled as the target class, and where the
remaining target data points are unlabeled. Call
this new cluster-training error that is computed si-
multaneously for all data points within these two
clusters P(e|2). Again, if P(e|2) < P(e|l), con-
clude that all clusters in this group are valid data
clusters and proceed to the next step. Otherwise,
conclude that no more substantial data clusters
exist, and terminate the algorithm.

10. Repeat the previous step sequentially for the ¢t
cluster and until all remaining potential clusters
have been evaluated from the cluster list. It is
important to note that this step always utilizes
and trains with all previously determined clusters
from the previous steps. As a final step to validate
the clusters, compute the average yield for each
cluster and, if applicable, select those producing
the largest overall yield.

11. Finally, terminate the algorithm when P(e|c) >
P(e|c—1), meaning all potential clusters have been
evaluated.

4 Review of previous results

The tables appearing in this section illustrate previ-
ously obtained (see [7]) performance results with the
Mean-Field BDRA using one dimensional data of the
type shown in Fig. 1. Before describing these results,
the following list describes in more detail the items
appearing in the tables below.

Supervised-Unclustered (Sup.-Unclust.) This
represents the BDRA classifier that knows the
true class labels of each point in the training
data, and which is trained in the traditional
supervised manner. In this case, and referring
to Figure 1, training occurs with all data points
above the yield threshold of 0.5 labeled as target,
and all points below the threshold of 0.5 labeled
as nontarget. In the analogy to financial data,
this classifier is utilizing all of the data and is
trying to learn how to predict investments that
produce a good yield form those that do not.

Supervised-Clustered (Sup.-Clust.) This repre-
sents the BDRA classifier utilizing supervised
training and that knows which data points are
contained in clusters. In this case, only data
points contained in clusters above the threshold
of 0.5 in Figure 1 are labeled as target. Notice,
that all data points above the 0.5 threshold that
are not in a cluster, and every data point be-
low this threshold, are labeled as nontarget. In



the financial data analogy, this classifier is try-
ing to learn how to predict good consistent invest-
ments (i.e., those having similar statistical prop-
erties and cluster in feature space) from all other
investments (i.e., both good and poor yielding
investments that are indistinguishable in feature
space).

Unsupervised-BDRA (Unsup.-BDRA) This
represents the semi-unsupervised Mean-Field
BDRA classifier that utilizes the eleven training
steps listed above, and where all data points
above the 0.5 yield threshold of Figure 1 are not
assigned any class labels. Further, recall that all
training data points below the 0.5 threshold are
labeled as nontarget (i.e., poor yielding data).
Returning to the financial data analogy, as in
the previous case this classifier is trying to learn
how to predict good consistent investments (i.e.,
those that cluster in feature space) from all other
investments (i.e., both good and poor yielding
investments that are indistinguishable). However,
the difference in this case is that the Mean-Field
BDRA has no prior knowledge about any clusters
in the data. The goal is to adaptively mine each
cluster and its associated location, that is, with
respect to the feature space and yield values.

As a final note before describing results, observe
that Figure 1 contains more than one cluster indicating
that possibly more than one class exists in the data. In
general, and in all results presented here, it is assumed
that only two classes exist. That is, a target class rep-
resented by data above threshold and a nontarget class
represented by data below threshold. However, a fu-
ture extension of the methods developed in this paper
will be to determine if performance can further be im-
ported by assuming that individual data clusters are
separate classes.

Table 1 (see the caption above) illustrates interest-
ing aspects with regard to classifying data that con-
tains isolated clusters. Observe in this table that aver-
age classification results are poor when all of the train-
ing data are labeled correctly, and training proceeds in
a supervised manner (see the unclustered results col-
umn), given the classifier has no knowledge about any
data clusters. However, it can also be seen (see the
clustered results column) that performance improves
dramatically when the classifier is given precise knowl-
edge about the location of all points within the data
clusters.

The error probabilities in Table 1 indicate that there
is only a slight difference in the results if the data
contains respectively either two or three clusters. For
example, in the unclustered results column the three
cluster case is slightly better as more clusters are pro-
viding information to help discriminate the classes (as
a comparison to this, [7, 8] single cluster results us-
ing supervised training produced an error probability
of near 0.5). On the other hand, in the clustered col-
umn the two cluster case appears to perform slightly
better. In this situation, with three clusters an increas-

Table 1: Classification performance results for the
Mean-Field BDRA (i.e., w/o a cluster mining algo-
rithm applied) with supervised training (i.e., data with
yields greater than 0.5 are called target and those with
yields less than 0.5 are called nontarget), for two and
three cluster data of the type shown in Fig. 1. Appear-
ing in this table is the average probability of error com-
puted on an independent test set (50% training/50%
test), for the respective number of unknown clusters
shown. In this case, supervised training results appear
for both unclustered the classifier has no knowledge
about the data clusters (i.e., see Sup.-Unclust. defi-
nition above), and the clustered classifier which knows
all data points in each cluster that are labeled as target
(i.e., see Sup.-Clust. definition above). In producing
these results the Mean-Field BDRA trains with twenty
initial discrete levels of quantization.

‘ # of clusters | Sup.-Unclust. ‘ Sup.-Clust.

2 0.400 0.104
3 0.388 0.126

ing number of isolated quantized cells also causes more
false positive classifications to occur in the regions con-
taining all clusters.

As a final observation in Table 1, notice that the
initial number of discrete levels per feature was chosen
to be twenty by the Mean-Field BDRA. For the super-
vised training case shown in this table the initial num-
ber of discrete levels used for each feature was chosen
to be consistent with that used below in obtaining the
modified results of Table 2. In all cases, when obtain-
ing these results the actual number of initial discrete
levels per feature was incrementally varied between two
and twenty by the Mean-Field BDRA. The final value
of ten shown was determined by the Mean-Field BDRA
to be that producing the smallest cluster-training error
with the clustering algorithm applied.

Table 2: Classification performance results appear for
the Mean-Field BDRA (i.e., with a cluster mining al-
gorithm applied) and unsupervised training (i.e., us-
ing the algorithmic steps described above), for two and
three cluster data of the type shown in Fig. 1. Appear-
ing in this table is the average probability of error com-
puted on an independent test set (50% training/50%
test), for the respective number of unknown clusters
shown. Notice, that for comparison the error probabil-
ities are repeated for the supervised clustered case of
Table 1.

‘ # of clusters | Unsup.-BDRA | Sup.-Clust.

2 0.110 0.104
3 0.134 0.126




Observe that the utility of the data clustering algo-
rithm developed here can clearly be seen in the results
of Table 2. In this table, and observe for both the two
and three cluster cases, that the error probability of
the cluster mining algorithm is only about one percent
higher than it is for the clustered supervised classifier
that knows everything. This is significant because the
cluster mining algorithm used here has no prior infor-
mation at all about the clusters.

Table 3: Average yield results for the multiple clus-
ter cases of Tables 1 and 2, and for comparison pre-
viously obtained single cluster results are also shown.
In each of these cases, the actual average yield for all
data clusters is 0.75. Appearing for two and three clus-
ters are computed average yields for the unsupervised
Mean-Field BDRA based classifier of Table 2, and the
Supervised unclustered classifier of Table 1. For the
single cluster case, yield values are based on averaging
the one-dimensional results for actual cluster yields of
0.6 and 0.9.

# of clusters | Unsup.-BDRA | Sup.-Unclust. ‘

1 0.666 0.512
0.608 0.555
3 0.622 0.588

In Table 3 it can be seen that the cluster mining
algorithm developed here is improving the overall av-
erage yield for all numbers of clusters over that of the
Supervised classifier. This implies that the new algo-
rithm is improving the quality of the decisions in that it
is declaring a proportionately larger ratio of high yield-
ing data points as the target. However, notice also that
as the number of clusters increases yield performance of
the supervised classifier improves with respect to that
of the unsupervised Mean-Field BDRA. Intuitively, as
more clusters appear in the data classification perfor-
mance with supervised training should improve as each
cluster provides additional information. This implies
that in some cases it might be best for an algorithm
such as the Unsupervised Mean-Field BDRA to mine
for clusters individually, as opposed to collectively as
a group.

5 Extension for mining multi-
dimensional data

In this section, results with multi-dimensional data are
presented, where the one dimensional case shown in
Figure 1 is extended in Figure 2 by utilizing two fused
features to mine unknown data clusters.

The results in Table 4 indicate that the cluster min-
ing algorithm developed here can be effectively ex-
tended to mine data clusters in multi-dimensional fea-
ture spaces. For example, it can be seen in this table
that with respect to the performance metrics of the av-
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Figure 2: Illustrating the problem of interest by ex-
tending the example shown in Figure 1 to mining un-
known data clusters in a two dimensional fused feature
space. Notice, and as shown in Figure 1, the ordinate
defining the yield of each data point is plotted versus
the domain, where a yield value of 0.5 is used to sepa-
rate and define the five hundred samples of the target
class (i.e., yield > 0.5), and the five hundred samples
of the nontarget class (yield < 0.5). However, in this
case observe that separate plots also appear for each
feature under both classes. It can clearly be seen that
amongst the commonly distributed data three unique
clusters exist in the target class for each dimension,
where each cluster contains an equal number of points
(i.e., they represent the same data points). Therefore,
the goal for this problem is to extend previous results
and develop a classifier that can mine and recognize
all points within the two dimensional positive-yielding
data clusters contained in the target class. In other
words, the overall objective is to illustrate the impact
that feature level fusion has on the performance of the
algorithm developed here.

erage probability of error and average yield, the Mean-
Field BDRA outperforms the Supervised Classifier.”
It is also apparent, and as expected, that relative to
the one dimensional case shown above (see Tables 1,
2, and 3), performance has improved for both classi-
fiers when utilizing two fused features in the training
data. In other words, for the three cluster case results
shown in Table 4 all error probabilities are now lower,
and all associated yields higher than that previously
shown above. This, of course, is a direct result of the
additional information provided about the target class
by having more than one relevant feature in the data.

As a final observation, it should be pointed out that
computational time substantially increased when min-
ing clusters in two dimensions, that is, as compared
to the one dimensional case. Thus, it can be expected
that in higher dimensional spaces the computational
costs will increase much more significantly when uti-

9Recall, the supervised classifier knows the correct class labels
for each fused feature vector.



Table 4: Classification performance results using two
dimensional data appear for the Mean-Field BDRA
(i.e., with a cluster mining algorithm applied) and un-
supervised training (i.e., using the algorithmic steps
described above), for the three cluster data of the type
shown in Fig. 2. As with previous tables, shown in this
table is the average probability of error computed on
independent test data (50% training/50% test), for the
respective number of unknown clusters shown. Also,
in parenthesis the average yield is given with each re-
spective error probability. Notice, that for comparison
results are also shown for the supervised unclustered
classifier.

’ # of clusters ’ Unsup.-BDRA ‘ Sup.-Unclust. ‘
| 3 | 0.121(0.643) | 0.308(0.612) |

lizing the methods developed here. However, to signif-
icantly improve these computational costs it is possible
to first independently mine and train each dimension
separately. This is then followed by jointly training on
the reduced joint quantized feature space. As an ex-
ample, prior work in [9] demonstrated that this tech-
nique can not only reduce computational costs but can
also improve classification performance. This will be a
topic of future research for the methods contained in
this paper.

6 Summary

In this paper, a previously developed data mining tech-
nique based on the Mean-Field Bayesian Data Reduc-
tion Algorithm (BDRA) has been extended to mine
multiple unknown clusters in fused multi-dimensional
feature spaces. The new method employs an intelli-
gent search through the feature space by sorting and
separating out data points having common error prob-
abilities. In other words, the algorithm works by find-
ing commonly grouped cluster data points that are in
the same quantized region of the feature space. For
the simulated data shown, finding all clusters was typ-
ically based on estimating and lowering the false de-
cision rate of the training data, given all candidate
points within each cluster are labeled as a target. In all
cases, classification results revealed that the new clus-
tering algorithm was able to find all significant clusters
within the data. Further, and as expected, the algo-
rithm was able to improve performance over the single
dimensional case by utilizing the additional informa-
tion contained in two relevant fused features.
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