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Abstract 1. Introduction

Mobile is an extension of the .NET Common Intermediate Lan- Language-based approaches to computer security have employed
guage that supports certified In-Lined Reference Monitoring. two major strategies for enforcing security policies over untrusted
Mobile programs have the useful property that if they are well- programs.

typed with respect to a declared security policy, then they are )

guaranteed not to violate that security policy when executed. ® Low-level type systems, such as those used in Java bytecode
Thus, when an In-Lined Reference Monitor (IRM) is expressed  [21], .NET CIL [9], and TAL for x86 [23], can enforce im-

in Mobile, it can be certified by a simple type-checker to eliminate ~ Portant program invariants such asemory safetyand con-
the need to trust the producer of the IRM. trol safety, which dictate that programs must access and trans-
Security policies in Mobile are declarative, can involve un- fer control only to certain suitable memory addresses through-

bounded collections of objects allocated at runtime, and can re- ~ Out their executions. Proof-Carrying Code (PCC) [24] general-
gard infinite-length histories of security events exhibited by those  izes the type-safety approach by providing an explicit proof of
objects. The prototype Mobile implementation enforces proper-  safety in first-order logic.

ties expressed by finite-state security automata—one automaton e Execution Monitorindechnologies such as Java and .NET stack
for each security-relevant object—and can type-check Mobile pro-  inspection[[T4][21L, 11.22.11], SASIT11], Java-MAC [20], Java-
grams in the presence of exceptions, finalizers, concurrency, and  MOP [4], Polymer [[1], and Naccid [12], use runtime checks
non-termination. Executing Mobile programs requires no change o enforce temporal properties that can depend on the history

to existing .NET virtual machine implementations, since Mobile of the program’s execution. For example, SASI Java was used
programs consist of normal managed CIL code with extra typing  to enforce the policy that no program may access the network
annotations stored in .NET attributes. after it reads from a filé [10]. For efficiency, execution monitors

are often implemented ds-lined Reference Monitors (IRM’s)
Categories and Subject DescriptorsD.1.2 [Programming Tech- [27], wherein the runtime checks are in-lined into the untrusted
niques]: Automatic Programming; D.2.1 [Software Engineer- program itself to produce self-monitoring program.

ing]: Requirements/Specifications; D.4.6 [Operating Systems]: . )

Security and Protection—Access controls; F.3.1 [Logics and _ TheIRMapproach is capable of enforcing a large class of pow-
Meanings of Programs]: Specifying and Verifying and Reasoning ©rful security policies, including ones that cannot be enforced with
about Programs—Specification techniques; K.6.5 [Management Purely static type-checking [17]. In addition, IRM's can enforce

of Computing and Information Systeéim8ecurity and Protection a flexible range (_)f poli_cies, often aIIowir_lg the _code recipient to_
choose the security policy after the code is received, whereas static

type systems and PCC usually enforce fixed security policies that
are encoded into the type system or proof logic itself, and that there-
fore cannot be changed without changing the type system or certi-
Keywords program rewriting, reference monitors, execution mon-  fying compiler.

itoring, in-lined reference monitoring, security automata But despite their power and flexibility, thewriters that au-
tomatically embed IRM’s into untrusted programs are typically
trusted components of the system. Since rewriters tend to be large

* Supported in part by AFOSR grant F49620-03-1-0156, National Sci- and complex when efficient rewriting is required or complex secu-
ence Foundation Grants 0430161 and CCF-0424422 (TRUST), ONR Grant ity policies are to be enforced, the rewriter becomes a significant
N00014-01-1-0968, and a grant from Intel Corporation. The views and con- addition to the system’s trusted computing base

clusions contained herein are those of the authors and should not be in- . . .

terpreted as necessarily representing the official policies or endorsements In this paper, we present MOb”.e’ an ext_enSIOH ’to th_e NET C.”‘

either expressed or implied, of these organizations or the U.S. Government.‘that makes it p055|_ble to al’!tomat'ca”y Vgrlfy IRM’s using a static
type-checker. Mobile (MOnitorable BIL with Effects) is an exten-
sion of BIL (Baby Intermediate Languagé) [15], a substantial frag-
ment of managed .NET CIL that was used to develop generics for
.NET [12]. Mobile programs are CIL programs with additional typ-
ing annotations that track an abstract representation of program
execution history. These typing annotations allow a type-checker
to verify statically that the runtime checks in-lined into the un-
trusted program suffice to enforce a specified security policy. Once
type-checked, the typing annotations can be erased, and the self-
monitoring program can be safely executed as normal CIL code.
This verification process allows a rewriter to be removed from the

General Terms Security




Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
JUN 2006 2. REPORT TYPE 00-00-2006 to 00-00-2006
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Certified In-lined Reference Monitoring on .NET £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Cornell University,Department of Computer Science,lthaca,NY,14853 REPORT NUMBER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Proceedings of the 2006 Programming L anguages and Analysisfor Security Workshop (Ottawa, Ontario,
Canada, June 10, 2006), ACM, 2006, 7-16. U.S. Government or Federal RightsLicense

14. ABSTRACT
seereport
15. SUBJECT TERMS
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Same as 10
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



trusted untrusted fore not enforceable by 4 or Anist. FOr example, the policy that
every opened file must be closed by the time the program termi-
unannotated, nates is not enforceable by eithks or Anist when the number of
managed CIL code file objects that could be allocated during the program’s execution
is unbounded. In object-oriented languages such as the .NET CIL,
policies concerning unbounded collections of objects arise natu-
rally, so it is not clear howh 4 or Anist can be extended to such set-
security policy—— tings. Mobile enforces policies that are universally quantified over
objects of any given class, and therefore allows objects to be treated
as first-class in policy specifications.
PCC has been proposed as a framework for supporting certify-
type-c@ii Magg%%ge(?e ing rewriting using temporal logi¢ [3]. The approach is potentially
powerful, but does not presently support languages that include ex-
ceptions, concurrency, and other features found in real program-
ming languagesd [2, p. 173]. It is therefore unclear whether proof
size and verification speed would scale well in practical settings.
CQual [13] and Vault[[[7] are C-like languages that enforce
execute history-based properties of objects by employing a flow-sensitive
type system based on alias typesl|[29]. Security-relevant objects in
CQual or Vault programs have their base types augmented with
Figure 1. A Mobile load path type qualifiers, which statically track the security-relevant state of
the object. A type-checker then determines if any object might
enter a state at runtime that violates the security policy. Vault’s
type system additionally includes variant types that allow a runtime
value to reflect an object’s current state. The Vault type-checker

oo reject

yes

trusted computing base and replaced with a (simpler) type-checker.

Even when the rewriter is smaII_ and ther_efore comparable in size identifies instructions that test these state values to ensure that those
to the type-checker., type-checking constitutes a useful level of e tests will prevent security violations when the program is executed.
dundancy that provides greater assurance than ’trustl_ng th‘? rewriter Fuguel[8] is a static verifier based on Vault that uses programmer-
alone. Mobile thus leverages the power of 'RMS. while using the supplied specifications to find bugs in .NET source code. It verifies
typejsafety approach to keep the trusted computing base small. policies that constrain the use of system resources or that perscribe
Flgure[:]r’sum.marl.zes a typlcal load path on a system that ex- protocols that constrain the order in which methods may be called
ecutes IRM's written in Mobile. Untrusted, managed CIL code is objects. Fugue supports any source language that compiles to

first automa:ictaltljy re\|/¥ritten.tac‘cording toa seft:turity p&"%’.’l yi(_el_lg- managed .NET CIL code, but it does not support exceptions, fi-
Ing an annotated, seli-monitoring program writtén in VIoblle. 1n€ 55, 6rg - or concurrency. It additionally lacks a formal proof of

rewriting can be perfgrmed by either a code producer or by @ soundness for its aliasing analysis and type system.

client machine receiving the pntrusted code. Sl_nce the rewriter, Inspired by CQual, Vault, and Fugue, our work scales these
and thergfore the self-mqnltorlng program, remains untrusted, theideas up to a large existing programming language—the full man-
self-mon_lt_orlng program IS then passed to a t_rusted type-che_ckeraged .NET CIL (minus reflection)—while providing a formal proof
that certifies the code with respect to the original security policy. of <5 ndness. In scaling up to a larger-scale language, we adopt
C':)dekthat Sgt.'Sf'ﬁS thfe secufrlty policy will be dapphrov_ed by theiltype- 42 Somewhat different approach to tracking object security states
checker, and s therefore sale to execute; code that is not well-typed, ¢, type level. CQual, Vault, and Fugue assign linear types to

will be rejected and would indicate a failure of the rewriter. security-relevant objects (and, in the case of Vault, to runtime state
In t.h's paper we _focus on FObUSt certification of Mobile code. values), and use aliasing analyses to track changes to items with
Techniques for efficient rewriting are left to future work, but we oo atvnes However, it is not clear how such analyses can be ex-
f:ies_cr_lbe a nae rewriter ar_ld suggest some strategies for_optlmlz- tended to support concurrency or to support an important technique
ing it in §3, Our prototype implementation of Mobile consists of & 1 m4niy used by IRM's to track object security states, wherein
typg-_checker that verifies sound rewriting with respect to security security-relevant objects are paired with runtime values that record
policies expressed as-regular expressions. The implementation —,qi siates, and then such pairs are permitted to leak to the heap.
can _venfy both smgle-threaded and multi-threaded managed CIL Existing alias analyses cannot easily track items that are permitted
applications, and it supports language features beyond those modyy, o4k to the heap arbitrarily, or that are shared between threads.
eled by BIL, such as exceptions and finalizers. We therefore take the approach of [22], wherein linearly-
typed items are permitted to leak to the heap by packing them into
2. Related Work shared data structures with limited interfaces. These shared object-
state pairs, callegackages, can be aliased arbitrarily and are not
tracked by the type system. Mobile provides trusted operations for
packing and unpacking linear-typed items to and from shared pack-
age objects. To perform any (security-relevant) operation that might
change a value with linear type, it must first be unpacked from any
package that contains it. As with ownership tyges [6, 5], packing
and unpacking operations are implemented as destructive reads, so
that only one thread can perform security-relevant operations on a
given security-relevant object at a time. Mobile’s type system and
the CLI permissions system are both leveraged to maintain invari-

Type-systems\ 4 [31] andAnist [28] enforce history-based security
policies over languages based on #iealculus. In both, program
histories are tracked at the type-level using effect types that repre-
sent an abstraction of those global histories that might have been
exhibited by the program prior to control reaching any given pro-
gram point.

Mobile differs from\ 4 and Anist by tracking history on a per-
object basis. That is, boths andis; represent a program’s history
as a finite or infinite sequence of global program events, where the
set of all possible glot_)al program events Is always finite. Policies ants linking an object to an accurate runtime representation of its
that are only expressible using an infinite set of global program ..
events (e.g., events parameterized by object instances) are there-



3. Overview be unpacked. While unpacked, Mobile allows only limited alias-
ing of security-relevant objects—none of their aliases can escape
to the heap. To enforce this restriction, thepack operation is
implemented as a destructive read, preventing the package from
being unpacked again before it is re-packed. Packages, however,
are permitted to escape to the heap and to undergo unlimited alias-
ing. These restrictions allow the type-checker to statically track
histories of unpacked objects and to ensure that packed objects are
always paired with a value that accurately reflects their state. When
an object is packed, it is safe for the type-checker to forget whatever
information might be statically known about the object, keeping the
type-checking algorithm tractable and affording the rewriter a dy-
namic fallback mechanism when static analysis cannot verify all

A Mobile security policyidentifies a set of security-relevant object
classes and assigns a set of acceptahlgesto each such class.

A trace is a finite or infinite sequence of security-relevargnts—
program operations that take a security-relevant object as an argu
ment. Our implementation expresses security policies-esgular
expressions over the alphabet of events, but the formalisms pre-
sented in this article can be leveraged to support alternative policy
languages as well. A Mobile prograsatisfieghe security policy if

for every complete run of the program, (i) if the run is finite (i.e., the
program terminates), the sequence of security-relevant events per
formed on every object allocated during that run is a member of the
set of traces that the security policy has assigned to that object’s . .
class; and (ii) if the run is infinite (i.e., the program does not ter- SEcurity-relevant operations. .
minate), at each step of the run the sequence of security-relevant, Whenpack and unpack are implemented as atomic opera-

events performed so far on each security-relevant object is a prefix 10N, Mobile can also enforce security policies in concurrent set-
of a member of the set of traces assigned to that object's class. tings. In such a setting, Mobile’s type system maintains the invari-

; S ; ant that each security-relevant object is either packed or held by
webizg;:;:mg; [:?asps f?)]r wﬁiﬁﬁs[?;;efig:gtgigct)(l;cga;rl\ﬁ;/;ng a at most one thread. chked objects are _always policy-adherent (or
method to acquire the resource, thetPage method to use the re- their flnallz.ers.must bring them to a pohcy-adheyent state at pro-
source, and thelose method to release the resource. A Mobile 9ram termination; segf), whereas unpacked objects are tracked
policy that requires programs to open web pages before reading?y the type system to ensure that they return to a policy-adherent
them, allows at most three reads per opened page, and requireState before they are relinquished by the thread.

programs to close web pages before the program terminates (but . MPlementingpack andunpack as atomic swaps is a some-
allows them to remain open on runs that never terminate), might What blunt approach, butit is still powerful enough to support use-

assign(0 (G U G2 U G%) C)* as the set of acceptable traces for class ful and effective rewriting strategies. Using the above operations, a
WebPageFetcher (Whereo, G, andC denotelpen, GetPage, and naive rewriter can implement state-based histories by simply repre-
Close events respectivel;yl r;uwl denotes finite 6r infinite ‘repeti- senting security-relevant objects as packages. Whenever a security-
tion). Note thét this policy ’can only be enforced by a mechanism relevant operation is to be performed, the rewriter would insert code
that iracks events at a per-object level to first unpack the package and test the object’s runtime state, then
Although Mobile security policies model events as operations perfor_m the sc_acunty-relevan_t operation only if the test succe_eds
performed on objectglobal eventshat do not concern any par- (possibly terminating otherwise), and finally repackage the object

ticular object can be encoded as operations gtohal objectthat wnk_:_;:_pda;te? state.ﬁ_ 0 iml t tate-based historv but
is allocated at program start and destroyed at program termination. IS strategy Suflices to impiement any state-based history bu

Thus, Mobile policies can regard global events, per-object events might result in inefﬁc@ent code if security-relevant operatior_ls are
and c‘ombinations of the two ' "frequent. Thus, Mobile’s type system also makes it possible to

For example, one might modify the example policy above by ad- avoid some of these dynamic operations when policy-adherence
ditionally requiring that at most ten network sends may occur dur- can be. proved statlcall)_/. For example, a more sophisticated rewriter
ing the lifetime of the program. In that case, the global object would could in some cases insert _code to perform numerous security-
additionally be identified as a security-relevant objectSead relevant operations consecutively W'thOUt any dy”am'c checks: In-
method call performed on aiSysten. Net . Sockets . Socket ob- stead of dynamic checks, the rewriter could add typing annotations
ject would be identified as a security-relevant event for the global that prove to th? type-chec_ker_that_the omltted c_hecks are unneces-
object, and the global object would be assigned the set of tracesSa"y fof preventing as_ecurlty_wolatlon. SubSt'tl.Jt'ng annotations for
denotéd by USUS2U--- US (wheres denotes &end event) dynamic checks in this way is often possible in straight-line code

A rewriter that produces self-monitoring programs from un- or tight loops that d_o not leak security-relevant objects to the heap:
trusted CIL code is expected to produce well-typed Mobile code, Hotvve\]/cre_r,_ Wi:len objecftsl tdotesci(atpr)]e to thz Zeap, t_he Lypi systerlr(; 1S
so that the policy-adherence theorem can be used to guarantee that®® SUlciently powerful to track them and dynamic Checks wou
it is safe to execute. For this rewriting task to be feasible, Mobile’s usually be necessary |n’ order to prove that a securlty V|0Iat|_on can-
type system must be flexible enough to permit rewriters to insert not occur. Thus, Mobile’s type system is sufficiently expressive that

runtime security checks—well-typed code that tracks the state of rewgters_ caln av0|cti st,_ome ?uﬁﬂn%t'ﬁ” dyn;rrlc checl_<ts. lici
security-relevant objects at runtime, testing aspects of the state that, . urt |{np eme_r; a 'O? 0 . OT;].e mogels hsc_scun Y pl(') 'C'%S as
cannot be verified statically. To that end, Mobile supportsaak Inite-state security automata. This approach IS appealing because

operation that pairs a security-relevant object with a runtime value itis simple, prac_tical, it introduces minimal extra state to untrusted
(e.g., an integer) representing an abstraction of the object’s cur- programs, an_d It seems to cover most of the enforceable_secu-
rent state, and that encapsulates them into a two-field package ob! Y poI|C|es_ d|sr_:ussed in the literature. However, .the formalisms
ject. Mobile’'sunpack operation can be used to unpack a package, presenteq In th'.s paper do not assume any particular method of
yielding the original object that was packed along with the runtime EPresenting object states at runtime. Rather, we parameterize the
value that represents its state. Mobile programs can then test thiSframework in terms of arbitrary state representations and state tests

runtime value to infer information about the associated object's >° that alternative implementations can be realized in the future.
state. Bothpack and unpack are implemented as CIL method For example, future implementations might track object states us-

calls to a small trusted library (about ten lines of C# code). ing LTL expre.ssions or even .by fecofd"‘g an object's complete
To keep type-checking tractable, Mobile does not allow security- MStOTY at runtime. Thus, Mobile constitutes a framework general

relevant operations on objects that are packed. A package class’ nough to reason about many different in-lining strategies used by

two fields are declared to rivate so that, to access a security- RMs.

relevant object directly and perform operations on it, it must first
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11 I> while
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ldarg n
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I Iostld p C:: f

lTevte

HU‘TL)
... I, callvirt C::m.Sig

newpackage C
1 Iy I3 pack

I unpack n

integer constant
conditional
while-loop
sequence
method argument
store into arg
make new obj
method call
load from field
store into field
exhibit event
make new package
pack package
unpack package

Types

Untracked types

Class names

Object identity variables
History abstractions

Tu=p| C)

p = void | int32 | C(7) | Rep(H)

C

14

H:=¢c|e|H1Hy | HHUH2 | H¥ |
0| HiN Hs

History abstraction variables 6

Method signatures

Typing contexts
Object history maps
Local variable frames

Sig ::=Vlin.(Vin, Fri,) —o
Elrouf,~(\llouta FTva T))

Tu=-|T,6C|T, :C(7)|T,0
Ua=1|Ux(l— H)
Fr o= (10,...,7n)

Figure 3. The Mobile type system

I, I I3 condst C, k test state

I ... In newhist C, k state constructor T=T

values HCH

I ret method return Rep(H) = Rep(H')

T = Til Vi€ 0..n
Figure 2. The Mobile instruction set (10, -+ Tn) =2 (s oyTh)
Dom(¥) = Dom/(¥) W (¢) C ' (0) Ve € Dom (V)

4. A Formal Analysis of Mobile U=

4.1 The Abstract Machine

Figure[2 gives the Mobile instruction set. Like BIL, Mobile’s syn-
tax is written in postfix notation. In addition to BIL instructidﬂi,
Mobile includes

Figure 4. Mobile subtyping

variables. The type€(?) of packed classes and security-irrelevant
classes do not include object identity variables, and their instances
are therefore not distinguishable by the type system. We consider
Mobile terms to be equivalent up to alpha conversion of bound
variables.

The typesRep(H) of runtime state values are parameterized
both by the class typ€' of the object to which they refer and by a
history abstractionrH—anw-regular expression (plus variables and
intersection) that denotes a set of traces. In such an expression,
denotes finite or infinite repetition.

Closed (i.e., variable-less) history abstractions conform to a
subset relation; we writdl; C H, if the set of traces denoted
by H; is a subset of the set of traces denotedy This subset
relation induces a natural subtyping relatigngiven in Figurd §.
Observe that the subtyping relation in Fig[ife 4 does not recognize
class subtyping of security-relevant classes. We leave support for
subtyping of security-relevant classes to future work.

Type variables in Mobile types are bound by typing contexts

These abstract instructions model real CIL instructions. For ex- T, which assign class or package types to object identity variables
ample, if calls to methodn are security-relevant operations, the ¢ and declare any history abstraction variatde©bject identity
CIL instruction that invokesn on objecto is modeled by the variables can additionally appear in object history mé&psvhich
Mobile instruction sequence:evt e, ; o callvirt C::m.Sig,,. A associate a history abstractiéhwith each object identity variable
description of how our implementation models other CIL instruc- that corresponds to an unpacked, security-relevant object. Since
tions is given ing5| object identity variables uniquely identify each object instance,

Figure[3 provides Mobile’s type system. Mobile types consist object history maps can be seen as a spatial conjunction_(x) [25]
of void types, integers, classes, dmidtory abstractiongthe types of assertions about the histories of the various unpacked objects in
of runtime state values). The type of each unpacked, security- the heap.
relevant objecC(¢) is parameterized by asbject identity variable A complete Mobile program consists of:
£ that uniquely identifies the object. All aliases of the object have
types with the same object identity variable, but other unpacked
objects of the same class have types with different object identity

e instructionevt e, which performs security-relevant operation
on an object (whereis some unique identifier, such as “open”,
that we associate with each security-relevant operation),

e instructionsnewpackage and newhist for creating pack-
ages and runtime state values,

e instructionspack andunpack for packing/unpacking objects
and runtime state values to/from packages,

e instruction condst, which dynamically tests a runtime state
value, and

e the pseudo-instructions| and ret, which do not appear in
source code but are introduced in the intermediate stages of the
small-step semantics presente. (Instructiorf] is a term
that has been reduced to valugand instructionret pops the
current stack frame at the end of a method call.)

Class names C

Field types field : (Cx f) — u

Class methods  methodbody : (C::m.Sig) — I
Class policies policy : C — H

1For simplicity, we omit BIL's value classes and managed pointers from
Mobile, but otherwise include all BIL types and instructions.



Vo= result

0 void E :=[]|E Iz I3 cond | E; I, | E starg n |
4 integer for] ... om] E 11 ... In newobj C(p1, ..., mtnt1) |
£ heap pointer .. om|E L ... I callvirt C::m.Sig | E ret |
repe(H) runtime state value E1Ad p C::f | E I stfld p C::f | for] E stfld p O f |
0= - heap elements Eevte|E Iy I3 pack | [ui| E I3 pack | E pack |
objc{fi = wvi}*® object E unpack C, k | E I5 I3 condst C, k |
pkg (¥, repC(H)) filled package E I ... I, newhist C, k
pkg(+) empty package
hu=4; — o0; heap Figure 6. Mobile Evaluation Contexts
a = (vo,...,vn) arguments
s == (ag,...,an) stack
Y i:= (h,s) small-step store ¥, ldc.i4 4 ww, 1)
. . w: I ~ W: I/ (2)
Figure 5. The Mobile memory model &, E[l] ~ 4/, B[]
if i4 =0thenj=3elsej=2 @)
w,lg I3 cond ~~ 9, I;
We also use the notatiofields(C) to refer to the number of fields . .
in classC'. Method signatureSig will be described irfid.3. o, Iy Iy while~>, I (Io; (I I while)) [0 cond  (4)
U, ) Iz ~> 1, Iz (5)
4.2 Operational Semantics 0<j<n ®)
Unlike [15], we provide a small-step operational semantics for (h, s(vo, - - -, vn)),1darg j ~>(h, s(vo, - - -, vn)), vyl
Mobile rather than a large-step semantics, so as to apply the policy 0<j<n
adherence theorems presented{#hq to programs that do not . X O]
terminate or that enter a bad state (h, 8(vo, ., vn)) [ starg j ~
. : . . h,s(vo,...,vjfl,v,vj+1,..‘,vn) ,@
In Mobile’s small-step memory model, presented in FigUre 5,
objects consist not only of an assignment of values to fields but also £ & Dom(h)  n = fields(C) ®)
atracee that records a history of the security-relevant operations (h, s), . newobj C(u1, ..., un) ~>
performed on the object. Although our model attaches a history e — objo{fi = vili € 1~-n}5},8),
trace to each object, we prove §.4 that it is unnecessary for the methodbody(C::m.Sig) = I ©
virtual machine to track and store object traces because well-typed . -
- o . . . ... fup|call mm. , Sy Un)),
Mobile code never exhibits a trace that violates the security policy. (h,5), callvirt Ctm.Sig ~(h, s(vo vn)), I ret
The small-step operational semantics of Mobile, given in Fig- (h, sa), ] ret ~(h, s), [ (10)
ured$ anfl]7, define how a given stgrand instruction/ steps to a h(€) = obje{ .. f=v,..}©
new store))’ and instruction’’, written, T~ ', I'. Rule e a1
model the behavior of the new instructions introduced by Mobile. (h, S),ldﬂd p Ci:f ~(hy ),
Rule[I3 appends eveni to the sequence of events exhibited on h(t) = obje{....f=v,..}7
object?. Rule[I4 introduces a new package object to the local con- ; : = / (12)
text. Ruld 15 assigns an objettand runtime state valuep,,(H) (hy ), ]| stAd s C::f ~(hlE > obj o[ — ']], 5[0
to the fields of packagé. Rule[I§ yields the object and runtime h(6) = obj{.. }©
state value stored in packagiand erasegs fields. ; : — (13)
Ruled Iy anfi 18 use notation not previously defined and there- (h,s),[evt er ~(hlt = objc{...} 1], 5),[0
fore deserve special note. Runtime operatitfsc , andhcc ¢ & Dom(h) (14)

test runtime state values and construct new runtime state values, (h, 5), newpackage C ~(h[£ — pkg(-)], )
respectively. Rather than fixing these two operations, we allow »oo p & AN

Mobile to be extended with unspecified implementations of them. h(¢) = pkg(...) (15)
Different implementations ofestc , andhcc , can therefore be Aot /

used to allow Mobile to support different collections of security (R, s)’paCk (hlE = pko(t ’fePC(H))]’S)’@
policies. For example, a Mobile system that supports security poli- h(€) = pkg(t',rep(H))  0<j<mn (16)
cies expressed as DFA's might implement runtime state values as (h, s(uvy, . . . ,vn)),unpackjw

32-bit integers and might support tests that compare runtime state (h[e — pkg()], s(vo, ..., vj—1, repe, (H),vjt1, . .- ,on)),
values to integer constants (to determine which state the DFA is

in). In that case, one could define for edck 0..2°, heo i () = k if testo,x (rep, (H)) =0thenj =3 elsej =2 (17)
andtestc (i) = {1if ¢ = k, else0}. A more powerful (but more b, I I3 condst C, k~1, I;
computationally expensive) Mobile system might implement run- arity(hco ) =n

time state values as dynamic data structures that record an object’s (18)
entire trace and might provide tests to examine such structures. In ¥,fo1] - .. fon] newhist C, k ~ 1,

this paper, we assume only that a countable collection of state value

constructors and tests exists and that this collection adheres to typ- Figure 7. Small-step Operational Sematics for Mobile

ing constraints 19, 20, 21, ahd]22 presente@@id.



1 (newobj C()) starg 1; of the object to be packed. This is accomplished viartherhist
2 (ldarg 1) evt e instruction, which is described in more detail below. (3) Finally,
Z Eldarg 1)1(:"'3 2,2) . . the pack operation is used to store the object and the runtime
: (ﬁf:;pa; g ~) Share & , state value into the package. Lines 4 and 5 of the sample program
g 2) (ldarg 1) (newhist C,0) pack; ; .
6 (...) (darg 2) std ...; illustrate these three steps. Line 4 creates a new package and stores
7 ((ldarg 2) unpack 4) starg 3; it in local register 2. Line 5 then fills the package using the object
8 (Idarg 3) ((1darg 4) evt e1) (...) condst C,0 in local register 1 along with a newly created runtime state value.
- - In order for Mobile’s type system to acceppack operation,
Figure 8. Sample Mobile program it must be able to statically verify that the runtime state value

is an accurate abstraction of the object being packed. That is, if
the runtime state value has typep(H), then the type system
The operational semantics given in Figije 7 are for a single- requires that¥ (/) C H where is the object identity variable

threaded virtual machine without support for finalizers. To model of the object being packed. Additionally, since packed objects are
concurrency, one could extend our stacks to consist of multi- yntracked and therefore might continue to exist until the program
ple threads and add a small-step rule that non-deterministically terminates, packed objects must satisfy the security policy. That is,
chooses which thread to execute next. Finalizers could be modeledwe require thatl (¢) C policy(C).
by adding another small-step rule that non-deterministically forks  packages that contain security-relevant objects can leak to the
a finalizer thread whenever an object is unreachable. Our imple- heap, as illustrated by line 6 of the 5amp|e program, which stores
mentation supports concurrency and finalizers, but to simplify the the package to a field of some other object. Since only packed
presentation, we leave the analysis of these language features t@bjects can leak to the heap, the restriction that packed objects must

future work. be in a policy-adherent state is a potential limitation of the type
system. That is, it might often be desirable to leak an object that is
4.3 Type System not yet in a policy-adherent state to the heap, but later retrieve it and

Mobile’s type system considers each Mobile term to be a linear op- restore it to a policy-adherent state before the program terminates.
erator from a history map and frame list (describing the initial heap " §5we show how Mobile implementations can use finalizer code
and stack, respectively) to a new history map and frame list (de- to avoid this restriction and leak objects to the heap even when they
scribing the heap and stack yielded by the operation) along with a are not yet in a policy-adherent state. S
return type. That s, we writg I I : (¥; FF') —o JI".(¥'; = ) After apack operation, the type system removes object identity
if term I, when evaluated in typing contekt takes history mag variablel fr9m t_he hlsto_ry map. Hence, gfter line 5 of the sample
and frame lisEF (in which any typing variables are bound in con- Program,¥’(¢) is undefined and the object that was packed be-
text ') to new history mapl’ and new frame lisEF’. and yields comes inaccessible. If the program were to subsequently attempt

I e : : ; _ to load from local register 1 (before replacing its contents with
a vaI.ue Qfﬂper (If, It termmate;). Any ne/w typing vangbles ap something else), the type-checker would reject the code because
pearing inFr” andr’ are bound in context’. A method signature

Fi is the t ianed to the t eing its bod that register now contains a value with an invalid type. Object iden-

(see Figurg]3) is € lyp€ assigned fo the term compr|.5|r)g Its body. tity variable ¢ can therefore be thought of as a capability that has
Below, we provide an informal description of Mobile’s typing been revoked from the local scope and given to the package

rules by walking the type-checking algorithm through the sample '

Mobile brogram aiven in Fi 8. A comolete list of tvping rules In order to perform more security-relevant events on an object,
Mobile program given in Figuri|8. plete yping ru a Mobile program must first reacquire a capability for the object by
is stated formally in the appendix.

Line 1 of the sample program creates a new object of class unpacking the object from its package viawanpack instruction.
C and stores it in local register 1. When a new security-relevant Line 7 of the sample program unpacks the package in local regis-

obiect is created Mobile's tvbe svstem assians it a fresh obiect ter 2, storing the extracted object in local register 3 and storing the
object 1S cr ' lies type sy Igns 1 ! OBJECL \ntime state value that was packaged with it in local register 4.
identity variablel. The return type of the newly created object is

: ) - - . Since packages and the objects they contain are not tracked by the
g‘,uzc@ ar‘?htgte i';e"r‘l’ hxtgkgye?tngrlglidn?tcijatl)ly tgg ?psézt'ﬁhnesgﬁf'tes type system, the type system cannot statically determine the history
traE:e) - » e ) y assig PY ofa freshly unpacked object. All that is statically known is that the

A fitv-relevant events ar rformed on the obiect. th runtime state value that will be yielded at runtime by thepack
S security-rélevant events are performed o € object, € struction will be an accurate representation of the unpacked ob-

type system tracks these changes by statically updatl_ng its h'StorY'ect’s history. To reflect this information statically, the type system
.Taﬁ. t? append st;he]:se new e\llentsftto the seq_uenlc_:e It ;e%or??g : ssigns a fresh object identity varialffleto the unpacked object
'S history map. S0 for eéxampie, after processing Ines 2-35 OTNE 5,43 fresh history variableto the unknown history. The unpacked
sample program, which perform (?veraﬁsandeg on the object In object and runtime state value then have type&) and Rep .(0),
Ios:(:;l)reglster L f:e typﬁ-chgcketrf new h'Sthy mlap would Sat'-Sfy respectively, and the new history map satisfiég¢’) = HCThe
) = ejez. At each point that a security-relevant event is o\ it o .
performed, the type system ensures that the new trace satisfie ype C(7) of a package can hence be thought of as an existential

a prefix of the security policy. For example, when type-checking ype binding type variables and. . . .
line 3, the type-checker would verify thates C pre(policy(C)), | If thf samgle p{ﬁgram Iwere at lih';’ pkc)J_lntttoMpebr_floyrmt security-
wherepolicy(C') denotes the set of acceptable traces assigned by{e evan f&'en. OPb € new y_tunpa::d% 0 Je(t:){ to 'tets y|||oe Sys-
the security policy to class', andpre(policy(C)) denotes the set tﬁg;ewog rfjecc ecause | ;ﬁpu ; et l:_na” eko sta 'Ct‘;" yt\;]e_rlfy
of prefixes of members of spblicy(C). e C policy(C) (since nothing is statically known about his-

Security-relevant objects of typ@(¢) are like typical objects tory #). However, a Mobile program can perform additioeait

except that they are not permitted to escape to the heap. That iS’operatlons on the object by first dynamically testing the runtime

they cannot be assigned to object fields. In order to leak a security->.oc V?"”ﬁ yielded by tl mlpfaCk operation. If ﬁ Mobile program
relevant object to the heap, a Mobile program must first store it in dYnamically tests a value of typep (0), Mobile’s type system
a package using pack instruction. This requires three steps: (1) c?nhstatmally.mfelr information Iabqut h'StOW'.V'th'n th.e brgnches
A package must be created vimawpackage instruction. (2) A Of the conditional. For example, if eondst instruction is used
runtime state value must be created that accurately reflects the statd® test a value with typeep(0)) for equality with a value of type



Rep(e1ez), then in the positive branch of the conditional, the type be tested and an integer constant. Thus, we define
system can statically infer thét= ey ez. If policy(C) = (e1e2), .
then a Mobile program could executeevt e; within the positive tester (rep. (0)) = 4 - if repe,(0) = k
branch of such a conditional (whefeis the object that was un- ' © 0 otherwise
packed), becauseiezer C pre((erez)”); but the type-checker + .
would reject a program that é)gecut(){dlvt ez in the positive ety (0,0) = V[0 — 0 N Hy]
branch, sinceezes € pre((e1e2)®). ctrg ,(0,V) = V[0 — 0N (UizrH;)]
Mobile supports many possible schemes for representing histo- . 32 . .
fies at runtime and for testing them, so rather than fixing particular for €ach integek < 0..2°" — 1, whereH, is a closed history ab-
operations for constructing runtime state values and particular op- Straction statically assigned to integer constarithe assignments
erations for testing them, we instead assume only that there exists &/ closed history abstraction; to integersk are not trusted, so
countable collection of constructonewhist C, k and condition- this mapping can be defined by the Mobile program itself (e.g., in
alscondst C, k for all integersk, that construct runtime state val- ~ S€ttings where self-monitoring programs are produced by a com-
ues and test runtime state values (respectively) for objects of classMON rewriter or where separately produced programs do not ex-

C. We then abstractly definC (.. .) to be the typerep..(H) change objects) or by the policy-writer (in settings where the map-
of a history value constructed using constructofor security- ping must be defined at a system global level for consistency).
relevant clas¥, and we define:t:zg’k(H, ¥) and cto, (H, V) The above scheme allows a Maobile program to represent object

security states at runtime with a security automato2éfstates or
less. Each state of the automaton is assigned an integer cohstant
and history abstractioff;, would denote the set of traces that cause
the automaton to arrive in stake

to be the object history maps that refifrén the positive and nega-
tive branches (respectively) of a conditional that performsktest

a history value of typeRep(H). Mobile supports any such refine-
ment that is sound in the sense that

testex(H) = 0 = U < ctag, ,(H, ¥)(0) (19) 4.4 Policy Adherence of Mobile Programs
The operational semantics of Mobile presentedfhg permit
and untyped Mobile programs to enter bad terminal states—states in
which the Mobile program has not been reduced to a value but
testo,(H) # 0 => U < ctaf; , (H, ) () (20) no progress can be made. For example, an untyped Mobile pro-
’ - ’ gram might attempt to load from a non-existent field or attempt to
We further assume that each history type construBt6ic. (. . .) unpack an empty package (in which case no small-step rule can
accurately reflects its runtime implementation, in the sense that be applied). Mobile's type system presentedfdnd prevents both
for all history value typeskep,, (Hi), ..., Rep., (Hn) such that policy violations and bad terminal states, except that it does not
n = arity(HCc.1,), there exists som#& such that preventunpack operations from being performed on empty pack-

ages. This reflects the reality that in practical settings there will
HCC,k(K?pCI< Hi),..., Rep,, (H,)) = g(epc< H) (21) always be bad terminal s_tates that are not statical!y preventable.
" We prove below that Mobile programs well-typed with respect to
and a security policy will not violate the security policy when executed
even if they enter a bad state.
Formally, we define well-typed by

Definition 1. A methodC'::m.Sig with Sig=VTsn.(Vin, Frin) —o

In the sample program, suppose that history value construc- 3T ,,:.(Wout, Frout, 7) is well-typedif and only if there exists a
tor newhist C, 0 takes no arguments and yields a runtime value derivation for the typing judgment,, + I : (¥, Friy,) —o
that represents history,ez; and suppose that conditional test 3T ,u:.(Vout, Frou, 7) Wherel = methodbody(C::m.Sig).
condst C, 0 compares a runtime state value to the value that repre-
sents hlftor)elez' Formally, suppose thEHC.’c,o() N KKPC<6162> for all C::m.Sig € Dom(methodbody), methodC'::m.Sig is
and cta(, (0, ¥) = V[0 eiea]. Thus, in the positive branch  e|.typed, and (2) there exists a methO8ain ::main.Sig, .., €
of such atest, the type-chec_kers object hlstory map can be ref'”edDom(methodbody) with Sig, . = VL. (Uin, (T1, ..., Tn)) —o
py substltutlngele_Q fqr any |nstanceswof the h|§tory variable be- 00wt (U out, Frout, Tour) SUCh that for all substitutions : § —
ing tested. Then ipolicy(C) = (e1e2), a Mobile type-checker =z anq all object identity variablesC' € (Tin, Tout), if Wout (€) =
would accept the sample program. In the positive branch of the H theno (H) C policy(C).
conditional in line 8, the type-checker would infer that the object in -
local register 4 has histomy; eo, and therefore it is safe to perform ~ Part 2 of definitiorf P captures the requirement that a Mobile pro-
evente; on it. However, ifpolicy(C) = eiezes, then the type- gram’s entry method must have a signature that complies with the
checker would reject, becausgeae; is not a prefix ofe; ezes. security policy on exit.

In the negative branch of this conditional the type-checker can  Policy violations are defined differently depending on whether
infer that the object in local register 4 has a history represented by athe program terminates normally. If the program terminates nor-
state value other than the one that it was tested against. The historynally, Mobile’s type system guarantees that the resulting heap will
map could therefore be refined by substituting history varigble be policy-adherent; whereas if the program does not terminate or
with the union of all of the history abstractions associated with all enters a bad state, Mobile guarantees only that the heap at each
of the other possible runtime state values defined for that object’s evaluation step will be prefix-adherent, where policy- and prefix-
class. adherence are defined as follows:

Our implementation of Mobile implements history abstraction
values as integers. Thus, it provida¥ newhist operations for
each security-relevant clag$, defininghccx() = k forall k €
0..2°2 — 1. Testscondst of runtime state values are implemented ~Definition 4 (Prefix Adherent). A heaph is prefix-adherentf, for
as equality comparisons between the integer runtime state value toall class object®bj{...} ¢ € Rng(h), € C pre(policy(C)).

th,k(repcl (H1),- .., epe (Hy)) = repe, (H) (22)

Definition 2. A Mobile program iswell-typedif and only if (1)

Definition 3 (Policy Adherent). A heaph is policy-adherentf,
for all class objectebj - {...} ¢ € Rng(h), € C policy(C).



To formalize the theorem, we first define a notion of consistency

- - . class Package {
between a static typing context and a runtime memory state. We say

private object obj;

that a memory stor@ respectsan object identity contex¥ and a private int state;

list of framesFT , written T - ¢ : (W; FT) if all object fields and

stack slots in) have values of appropriate types, and the heap in public void Pack(object o, int s) {
is prefix-adherent. (Seg[116] for a formal definition.) The following lock (this) { obj=o; state=s; }

two theorems then establish that well-typed Mobile programs do

not violate the security policy. public object Unpack(ref int s) {

Theorem 1 (Terminating Policy Adherence). Assume that a lock (this) {

Mobile program is well-typed, and that, as per Definitjgh 2, its object o=obj;

main method has signatutgig, ., = VTin-(Vin, (T1, ..., Tn)) —0 if (o==null) throw new EmptyPackage();

I out-(Vout, Frout, Tout). If Tin = b+ (Wi; Fr) holds and if °bi-ml11§ s=state;

¥, methodbody(Cmain::main.Sig) ~* (', s"), [ holds,thenh’ is } return o3

policy-adherent. }

Proof. Omitted for brevity. See [16]. O }

Theorem 2 (Non-terminating Prefix Adherence). Assume that Figure 9. Implementation opack andunpack

a Mobile program is well-typed, and assume tHat+ T
(W;FF) — 3. (U;FF';7) andT + (h;s) : (¥;F7) hold. If
h is prefix-adherent andh, s), I ~"(h’,s’), I’ holds, thenh’ is

prefix-adherent tractable in general, the task is simplified by observing that real

Mobile code only introduces history variables at the beginnings
0 of expressions (when an object is unpacked) and only introduces
intersections that involve a variable and a closed history abstraction

An important consequence of both of these theorems is that (when a runtime state value is tested). The resulting sub-language
Mobile can be implemented on existing .NET systems without €a&n be decided using a simple regular expression subset algorithm
modifying the memory model to store object traces at runtime. (Proof omitted for brevity). _ _

Since a static type-checker can verify that Mobile code is well-  Our type-checker also recognizes method annotations attached
typed, and since well-typed code never exhibits a trace that violatesto finalizers of security-relevant classes. A finalizer's precondition
the security policy, the runtime system need not store or monitor MUSt be satisfied whenever an object of its class escapes to the

object traces to prevent security violations. heap (i.e., when it is packed), since at any point after that, its
package object could become orphaned and then garbage-collected.

. By the time a program terminates, all of its objects are guaranteed
5. Implementation to satisfy their finalizers’ postconditions, since at that point any
Our prototype implementation of Mobile consists of a type-checker remaining objects will be garbage-collected. This allows an IRM
for Mobile’s type system extended to the full managed subset of to leak security-relevant objects to the heap (in packages) even
Microsoft's .NET CIL (minus reflection). The type-checker was when they are not yet in a policy-adherent state, as long as the
written in Ocaml (about one thousand lines of code) and uses object’s finalizer suffices to restore it to a policy-adherent state once
Microsoft's .NET ILX SDK [30] to read and manipulate .NET garbage-collection occurs.
bytecode binaries. Mobile programs are .NET CIL programs with To test our implementation, we wrote a simple rewriter like that
typing annotations encoded as .NET method attributes. The Mobile described in§3, and used it to enforce a security policy that al-
type-checker reads these (untrusted) annotations and verifies thentows each .NET network socket object to accept at mosbn-
in the course of type-checking. nections during the program’s lifetime (whereis a parameter
Our implementation allows security policies to identify method specified by the policy-writer). Such a policy might be used, for
calls as security-relevant events. Thus, security policies can con-example, to force applications to relinquish control of network
strain the usage of resources provided by the CLR by monitoring ports after a certain amount of activity. We applied this policy to
CLR method calls and the objects they return. Our type-checker a small multithreaded webserver written in C#. The original appli-
can, in principle, regard any CIL instruction as a security-relevant cation binary was 20K in size and rewriting did not alter its size.
event, but we leave practical investigation of this feature to future (Padding introduced by the CLI binary format masked the small
work. overhead introduced by additional instructions and annotations.)
Operationspack and unpack are implemented as method Hand-counting the material inserted by the rewriter revealed ap-
calls to the (very small) trusted C# library given in Fig[ife 9. Ob- proximately 83 bytes in additional instructions and 117 bytes in
serve that C#'slock construct is used to make both operations annotations. Rewriting took 0.12 seconds and type-checking took
atomic. History abstraction values are implemented as integers.0.09 seconds on a 1.8GHz Pentium. We benchmarked both the orig-
Thus, ournewhist operation is simply ddc.i4 instruction that inal and rewritten webservers by using WebStone to simulate two
loads an integer constant onto the evaluation stack. Policies canclients retrieving five webpages ranging in size from 500 bytes to
statically declare for each integer constant a closed history abstrac-5 megabytes. WebStone reported that the rewritten webserver ex-
tion that integer represents when used as a runtime state value. Testkibited an average throughput rate that was 99.97% of the original
of runtime state values consist of equality comparisons with inte- webserver's.

Proof. Omitted for brevity. See [16].

ger constants in the manner describefdrg. As described if4.3, The aforementioned test is obviously not a definitive evaluation
this implementation suffices to support IRM’s that model security of the feasibility of automated rewriting; much work remains to
policies as finite-state security automata. be done in terms of evaluating the approach on richer policies and

The type-checker must verify subset relations over the language applications. However, we consider it to be preliminary evidence
of history abstractions given in Figyrg 3. Although deciding subset that rewriting can be automated in a way that produces acceptable
for w-regular expressions with variables and intersection is not annotations.
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Appendix
The following is a formal statement of Mobile’s typing rules.
- - (23)
I'Fldc.idn: (U;F7) —o (U; F7; int32)
LIy (U;FF) —d0.(Pg; Fry;int32)
LTy b I s (U FPy) —o 307 (U FPs 7) Vi € {2,3) (24)
TH I Iy I3 cond : (U;FF) — 30, IV.(U; FF'; 1)
I,I' - I1 Iy [0]cond : (¥;FF) —o 3I".(¥; FF'; void) (25)
[,T + I; I> while : (¥; FF) —o 307.(F; FT; void)
L1 : (U;FF) —d0;.(Wg; Fry; void)
I,y b Ip: (Uq;FP1) —o 309 (W F7'; 7) (26)
Tk Iy I (U FF) —o 30, T (W, FF'5 7)
¢ € Dom(¥) field(C, f) = p
DI () —30.(8; ' 0w) @7)

THI1dAd g C::f : (U5 FF) —o 30V (W FF'; )

k1 (0;FT) —oHFl.(\Ifl;Ff’l;C(/é)) ¢ € Dom/(¥)

rry F1p: (\IINFF)l) _OHFQ-(\II,§ FF) ;M) ﬁeld(C, f) =K (28)
CHI IpstAd p Cuf : (U;FF) —o 30, Ta. (/s FF'; void)

0<j<n

I'+ldarg j : (U;FF (70,...,7)) —o (¥; FF (10, . . .,

Lk 1:(;FF) —o 30.(¥;FF (ro, . .
'+ Istargj: g\IJ,FF)) —o

A (U (T0s oo Ty Ty T L, - -

Il Dima B L (W15 FP 1) —o
n = fields(C) €& Dom(T',T1,...,I'y) € € pre(policy(C))

1 ... Innewobj C(u1,...,4n):
(Ug;FFg) —0 3T, ..., I, £:C. (U, * (£ — €); FT 13 C(0))

(29)

)i 7j)

5T);7) 0<j<n

(30)

Tn); void)

@1

F(), ey F]' = Ij : (\I/j, FF)]) —OElF]'+1.(\I’j+1, FF)]'+1, Tj) VJGOTL
70 =C{) L€Dom(Vp4y1) C:m.Sige€ Dom(methodbody)

Fo, ey I, Sig <: (‘I/m, (To, . ,Tn)) AOHFom.(\I/Dut, FTDut,T)
\I/nJrl = \I’unused * \I]in
TobFIo ... Iy callvirt C::m.Sig :
(‘1107 I71)) _OEIFL ceey Fn-&-ly Fout-(\llunused * \I/ouh m-&-ly 7')

(32)
He C pre(policy(C))
THI:(U;FF) — 3l (V « (£— H);FF'; C(e)) (33)
T'Flevte: (U;FF) — 3r.(V « (£ — He); FF';void)
L & Dom(T") (34)
I' - newpackage C : (¥; FF) —o 36:C(?).(¥; FF; C(?))
H C H' C policy(C)
Tk Iy (O FF) —o 3. (U Frp; C(7))
D, 01k Ip: (W13 FT 1) —o 3. (Wa; FTo; C(4))
LI, T b Ig : (W FPa) —o30s. (W' (6—H); FP; Rep (H')) (35)
T+ I I I3 pack : (¥;FF) —o 3Ty, T2, T'3.(¥/; FF'; void)
£ & Dom(¥) 0 & Dom(T")
D1 (0F) —o 30 (W (10,...,m); C(2)) (36)
I I unpack j : (¥; FT') —o 30V, 4:C, 6.
(W', 0 0; Fr (105, Tj—1, Rgpc<9), Tj41,---,Tn); C{E))
T Iy (U FF) —o 30 (1 PPy Rep(H))
DTy b Iy : (ctad,  (H,W1);FFy) —o 307 (W FF5 )
D0y b I3 : (ctog  (H,1);FF1) —o 307 (W, FF'; 7) @)
THI Iy I3 condst k: (U;FF) —o 30y, TV.(W; FF'; 1)
DI (W13 P 1) —o30. (Wis FU 45 Repy, (Hi)) Viel.n @8)
I'1I1 ... In newhist C,k : (Ug;FFo) —3T,..., .
(U FUn; HC o, (Repe, (H), - - Repe, (Hn)))
[, IV F1:(Up;FT1) —o 3. (Wa; Fra; 7)
Wi X0y FPy P Wp W R R 727 g
Dy, T T: (W4 FP) —o 0o, IV.(Bh; FPo; /)
(40)
I @ : (U5 FF) —o (¥; FT'; void)
(41)
T Fig]: (U;FF) —o (U;FF; int32)
U= % (l— H) 42)
T, ¢0CH : (U5 Fr) —o (F; Fr; CU))
(43)
T, 6:0(7) ] (05 FF) —o (3 FF; C(7))
(44)
T+ frepe ()| - (W3 FF) —o (W3 FF'; Rep(H))
THI:(U;FF) —3r (V;FF Fro;7) (45)

L+ Iret: (V;FF) — 307 (W;FF'; 1)

Judgment - Sig, <: Sig, in rule[32 asserts thafig, alpha-
varies toSigs.
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