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In this paper, we develop tractable mathematical models and approximate solution algorithms
for a class of integer optimization problems with probabilistic and deterministic constraints, with
applications to the design of distributed sensor networks that have limited connectivity. For a
given deployment region size, we calculate the Pareto frontier of the sensor network utility at the
desired probabilities for d-connectivity and k-coverage. As a result of our analysis, we determine
(i) the number of sensors of different types to deploy from a sensor pool, which offers a cost
vs. performance trade-off for each type of sensor, (ii) the minimum required radio transmission
ranges of the sensors to ensure connectivity, and (iii) the lifetime of the sensor network. For gen-
erality, we consider randomly deployed sensor networks and formulate constrained optimization
techniques to obtain the localization performance. The approach is guided and validated using
an unattended acoustic sensor network design. Finally, approximations of the complete statis-
tical characterization of the acoustic sensor networks are given, which enable average network
performance predictions of any combination of acoustic sensors.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Distributed
networks; G.1.6 [Numerical Analysis]: Optimization—Constrained optimization, convex pro-
gramming, integer programming, nonlinear programming; G.3 [Probability and Statistics]:
Experimental design

General Terms: Algorithm, Design, Performance.

Additional Key Words and Phrases: Bayesian experimental design, dynamic programming, sensor
networks.

1. INTRODUCTION

The design and operation of sensor networks are rich with integer and combinatorial
optimization problems. Some of these problems concern (i) the dynamic assignment
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2 · V. Cevher and L. M. Kaplan

of a subset of already deployed sensors for target tracking to minimize sensor net-
work power consumption, [Liu et al. 2003; Subhlok et al. 1999; Sinha and Chandrakasan 2001],
(ii) the automatic placement of a given set of sensors to guarantee coverage and
connectivity, [Cowan and Kovesi 1988; Isler et al. 2004], and (iii) the optimal move-
ment strategies for mobile sensors on a graph in the context of probabilistic pursuit
evasion games, [Vidal et al. 2002; Isler et al. 2004]. Despite the advances that have
been made, many difficult issues remain to be solved. The common theme of these
sensor network problems is that the available resources are already spent on a set
of sensors. Consequently, it is desired to obtain the best knowledge about a state-
of-nature with minimum effort given the available sensors.

In this paper, we provide statistical models and mathematical programming so-
lutions to determine the optimal sensor choices for deployment from a given sensor
pool under a limited budget. Therefore, we focus the available resources on a set of
complimentary sensors for the deployment purpose before the sensors are deployed.
Optimality is obtained by simultaneously maximizing three criteria under a desired
minimum connectivity level of the sensors. These criteria are (1) a desired utility
of the sensor network deployment, (2) a desired minimum lifetime of the sensor
network, and (3) a desired sensor coverage on the deployment area. For generality,
we assume random sensor deployment, where each sensor’s position comes from
a homogenous Poisson point process over an area. We refer to the multi-criteria
optimization as the network design strategy (NDS) problem.

In [Cevher and Kaplan 2008], we develop a theory to predict the localization
performance of randomly distributed sensor networks consisting of various sensor
modalities when only a constant active subset of sensors that minimize localization
error is used for estimation. The characteristics of the modalities include mea-
surement type (bearing or range) and error, sensor reliability, FOV, sensing range,
and mobility. We show that the localization performance of a sensor network is a
function of a weighted sum of the total number of each sensor modality. We also
show that the optimization of this weighted sum is independent of how the sensor
management strategy chooses the active sensors.

In this paper, we define a sensor network’s localization utility in a Bayesian ex-
perimental design framework [Chaloner and Verdinelli 1995]. We then employ our
results in determining the localization performance of heterogenous sensor networks
in [Cevher and Kaplan 2008] to justify the form of the localization utility. We then
discuss and summarize how the sensor network’s lifetime depends on the connec-
tivity of the sensors and what coverage implies for collective parameter estimation.
Different from [Cevher and Kaplan 2008], we also provide continuous relaxation so-
lutions that alleviate the computation and provide insight to the final form of the
NDS. While the focus of [Cevher and Kaplan 2008] is the derivation of the localiza-
tion accuracy of sensor networks, this paper focuses on the design aspects of sensor
networks and how they can be efficiently obtained.

Our approach is guided and validated by the design of acoustic sensor networks
connected with wireless links. Acoustic sensor networks use single microphone
sensors and tethered acoustic arrays to detect, track, and classify acoustically loud
targets and events such as ground vehicles, helicopters, and sniper fire. Target
detection and parameter estimation performance of the acoustic sensors increase as
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Acoustic Sensor Network Design for Position Estimation · 3

the number of microphones in the sensor is increased [Johnson and Dudgeon 1993;
Cevher 2005]. Hence, it is possible to create a sensor pool using acoustic sensors
with different number of microphones.

Our specific contributions are as follows:

(1) We provide approximations to the statistical characterization of acoustic sen-
sors. These approximations enable average performance predictions for sen-
sor networks that consist of any combination of acoustic sensors. In contrast,
in [Cevher and Kaplan 2008], we use generic sensing models.

(2) We provide analytical solutions based on branch-and-bound relaxations that
can upper and lower bound the integer programming solutions. These approx-
imations enable quick calculations of optimal sensor network designs.

(3) We provide theorems that underlie the elements of the optimal sensor network
design: concentration of resources and dominating sensor pairs. These condi-
tions reduce the search space for the optimization problems and enable fast
calculations. Specifically, we prove that given a total of Nu objectives, the op-
timal sensor network design chooses at most Nu different sensor types in the
solution. We also prove that under conditions described in Section 3.3, there
exists sensor pairs which automatically eliminate other sensors in the Pareto
frontier.

(4) We extend the dynamical programming formulation in [Cevher and Kaplan 2008]
to account for multiple utilities.

The organization of the paper is as follows. In Sect. 2, we describe the NDS prob-
lem in the context of Bayesian experimental design, d-connectivity, and k-coverage
problems. In Sect. 3, we describe optimization solutions to the NDS problem. In
Sect. 4, we derive the performance metrics for acoustic sensor networks. In Sect. 5,
we demonstrate the NDS solution for acoustic sensor networks for position estima-
tion where we determine the Pareto frontier for utility and lifetime of the sensor
network.

2. THE SENSOR NETWORK DESIGN OBJECTIVES

The sensor network design simultaneously optimizes multiple objectives that sum-
marize various performance criteria related to wireless sensor networks. These
objectives are formulated as a function of the characteristics and quantities of each
feasible sensor type and how the sensor network is managed. Typical characteris-
tics of the sensor types include measurement modality (bearing or range) and error,
sensor reliability, field-of-view, sensing range, and mobility. The design output is a
vector n = [ n1 n2 . . . nT ]′, whose elements consist of the number of each sensor
type from a catalogue of T -sensors, denoted as s = {st|t = 1, . . . , T}, for deploy-
ment. Each sensor type has a different monetary cost and only a finite budget is
available to purchase and operate these sensors. The sensor costs are expressed as a
T -dimensional vector c, whose t-th element ct corresponds to the cost of st. Hence,
a valid sensor design must satisfy the budget constraint c′n ≤ $.

The sensor network design relies on the ability to use the characteristics of the
sensor types to predict the localization accuracy, lifetime, coverage, and reliability
of the sensor network for any given combination of sensor types and deployments
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4 · V. Cevher and L. M. Kaplan

satisfying the budget constraint. This mapping involves three entangled aspects
of sensor networks: deployment plans, operational choices, and sensor choices. In
order to make the problem tractable, we assume that the sensors are deployed ran-
domly over a coverage area A of size A via a uniform distribution. By ignoring
boundary effects, we assume that the node positions are realizations of a homoge-
nous Poisson point process (PPP) [Ross 2007]. For the operation of the sensor
network, a sensor management strategy based on selecting a total of q-sensors to
minimize the localization error is assumed. Furthermore, the t-th sensor type has
an effective sensing range of R∗

t , which is important in obtaining expressions for
k-coverage. Finally, the transmission of data is the dominant user of battery re-
sources, and the transmission range rtran is determined based upon the density of
the nodes to ensure a desired d-connectivity of the network. It should be noted
that the objectives (or utilities) are defined to be non-negative real numbers where
larger numbers represent higher performance.

2.1 Localization Accuracy

The purpose of the a sensor network is to exploit the disparate data collected from
the various nodes in order to better infer the state of the objects (or targets) θ

comprising a scene, e.g., position, velocity, appearance, physical structure, pitch
frequency, loudness, etc. Before the actual deployment of the sensor network, tar-
gets are assumed to be or to appear within the area A, and their states have a prior
distribution p(θ), e.g., targets have certain speed distributions, time-frequency and
loudness characteristics. After deployment, the sensor network provides noisy ob-
servations of θ via the sensory outputs, making it possible to judge the amount of
information provided by the sensor network over the prior knowledge of θ. In this
paper, our primary focus is the localization accuracy of the sensor network on A.

After deployment, the location of the sensor nodes can be represented as the set
ζ = {ζt|t = 1, . . . , T}, where ζt = [ ζt,1 ζt,2 . . . ζt,nt

] is the matrix of the loca-
tions of all nt sensors of type-t and ζ is the 2-D vector of actual sensor locations.
Each sensor provides data y = {yk,t|k = 1, . . . , nt; t = 1, . . . , T}, e.g., acoustic mi-
crophone recordings within some dynamic range. The characteristics of the sensors
determine a probability density function (PDF) of the measurements as a function
of the sensor/target geometry, i.e., p(y|ζ,θ,n). Then, the measurements can be

used to provide an estimate of the target state θ̂. Note that θ̂ can be viewed a
function of the measurements y, where the shape of the function is dictated by the
measurement PDF p(y|ζ,θ,n). As the data is not observed before n is chosen and
an arbitrarily large number of real-world realizations is possible, it is meaningful
to choose n to minimize the average estimation error of the target state over all
random realizations

ε(n) =

∫ ∫ ∫
p(θ̂(y)|ζ, θ,n)p(θ)p(ζ)ǫ(y, ζ, θ,n)dydθdζ, (1)

where ǫ(y, ζ,θ,n) represents the accuracy of the state inference:

ǫ(y, ζ, θ,n) =
(
θ − θ̂(y)

)T

Λ

(
θ − θ̂(y)

)
, (2)

and Λ is a positive definite weighting matrix. In this work, we consider the mean
squared error (mse) so that Λ = I, where I is the identity matrix.
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Acoustic Sensor Network Design for Position Estimation · 5

When the relationship between y, θ, n, and ζ is nonlinear, approximations
based on Taylor series expansions are typically used to avoid the complicated inte-
gral in (1) [Berger 1993; Chaloner and Verdinelli 1995; Tierney and Kadane 1986].
These approximations use the expected Fisher information matrix or the matrix of
the second derivatives of the log likelihood function and are extremely accurate even
for small data sample sizes. Hence, assuming (i) a network design that guarantees
υ ≥ 3 sensors contributing to the estimation at any spatial location (k-coverage),
(ii) a network with high connectivity (d-connectivity), and (iii) that each sensor has
sufficiently large number of data samples, we can use the following normal approx-
imation for the data likelihood in (1) (N (mean, variance) is the Gaussian density):

p(θ̂(y)|θ, ζ,n) = N
(
θ,
[
H + F(θ, ζ,n)

]−1
)
, (3)

where θ is the mode of the posterior distribution, H is the Hessian of the loga-
rithm of the prior density p(θ) (precision matrix of the prior), and F(θ, ζ,n) is the
expected Fisher information matrix (FIM) [Chaloner and Verdinelli 1995]. When
the prior for the target state is uninformative, e.g., uniform, H = 0. While some
domain knowledge such as a road may lead to the use of an informative prior,
this paper assumes that no such knowledge is available: H = 0 and p(θ) = 1/A.
With the normal approximation (3), the expected utility (1) can be expressed as
follows [Chaloner and Verdinelli 1995]:

ε(n) =
1

A

∫∫
tr
{
F

−1(θ, ζ,n)
}
p(ζ)dθdζ. (4)

We define the localization utility as the reciprocal of the expected MSE as defined
in (3). Typically, the MSE expression is too complex to compute in closed form.
Because the targets and sensor nodes are distributed uniformly over A, we model
the sensor/target geometry using 2-D PPP. As a result, the actual MSE scales with
the density of the network normalized to the quality of the sensor measurements.
As shown in [Cevher and Kaplan 2008; Kaplan and Cevher 2007], when the sensors
are stationary, the localization utility (within a linear scale factor) is given by:

U(n) =

(
T∑

t=1

ftnt

)γ

, (5)

where ft depends on the inherent reference sensing accuracy σt, field-of-view αt ∈
(0, 1], and reliability probability βt ∈ (0, 1] of the sensor type-t:

ft =
αtβt

σ
2/γ
t

. (6)

The derivations of (5) and (6) assume that only q-active sensors are used for esti-
mation at each snapshot. The scale factor of (5) depends on the number of active
sensors q and what objective the sensor management optimizes in active sensor
selection. In [Cevher and Kaplan 2008], utility expressions including mobile sen-
sors are also provided. The parameter γ > 0 depends on the signal propagation
loss factor of the medium. For the case of no sensor management where all nodes
within the sensing range to the target participate in the localization given that the
obtain at detections, the MSE is approximately inversely related to (5). Monte
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6 · V. Cevher and L. M. Kaplan

Carlo experiments in Section 5 demonstrate that the reciprocal of (5) is indeed a
good approximation to the MSE. Therefore, we use (5) as the localization accuracy
utility. The specific weights for acoustic sensors are obtained computationally in
Section 5.

2.2 Effects of Connectivity and Lifetime

Connectivity (C) is an important property of multi-hop wireless networks, where
each sensor cooperates in routing each other’s packets. In distributed sensor net-
work operation, it is desirable that the sensors do not communicate raw data and
the communication among the sensors has a constant bandwidth to maximize the
sensor lifetime and to minimize interference among the receivers sharing the same
wireless channel when the sensors are communicating or when the network is queried
for information [Akyildiz et al. 2002]. In addition, the network estimates are based
on local sensor observations, which can determine the parameter of interest θ after
fusion. For example, when bearing and range sensors are used, determining the
target position relies on collective observability, which requires connectivity.

In graph theory terms, the network is d-connected (with connectivity degree
C = d) if, for any given pair of sensor nodes, there exists at least d mutually
independent paths connecting them [Bollobás 1998]. Each sensor usually has a
fixed transmission range rtran, which is significantly smaller than the dimensions of
A. A communications link can be created between two sensors only if their physical
distance is less than their transmission range (Fig. 1(a)). Hence, given transmission
range rtran, the probability of creating links between sensors increase as the number
of sensors in the field increases.

rtran

(a)

0 100 200 300 400 500
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(b)

Fig. 1. (a) A sensor node (vertices) can connect to its neighbors by creating links (edges) only if
other nodes are within its transmission range rtran. Then, to connect to any other node in the
network, the sensor can multi-hop its information using its neighboring nodes. (b) Approximate
connectivity probability vs. the number of sensors for a sensor network (7) with the following
parameters: A = 1000m×1000m and rtran = 100m.

Under the random deployment assumption, it is possible to show that the pdf
of the nearest neighbor sensor distance ρ is given by p(ρ) = 2πλρ exp

(
−πλρ2

)
,
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Acoustic Sensor Network Design for Position Estimation · 7

where λ = N
A is the spatial node density, and N =

∑T
t=1 nt (total number of

sensors) [Bettstetter 2002]. Hence, the probability that each sensor has at least
d-neighbors within the transmission range rtran (node degree D = d) on a toroidal
surface is given by the following [Bettstetter 2002]:

P (D ≥ d|n, ζ) = exp

{

N log

(

1 −
d−1∑

k=0

(
πλr2tran

)k

k!
exp

(
−πλr2tran

)
)}

. (7)

Figure 1(b) gives example plots of the node degree. It is shown in [Penrose 1999]
that in a graph, as the number of vertices increase, the node degree D converges to
the connectivity degree C with probability one. In this paper, we approximate the
connectivity of the sensor network by (7). In general, the connectivity probability
should be simulated for the specific geometry of A (e.g., see [Bettstetter 2002] for
simulations on square A). It is important to note that the connectivity probability
monotonically increases as a function of N . Hence, to maximize the connectivity
probability at any given degree, the total number of sensorsN in the sensor network
must be maximized.

Impacts of Connectivity on Power : Note that the connectivity can always be
increased by increasing the sensor transmission range rtran. However, the choice of
rtran also affects the lifetime (L) of the sensor network.1 A sensor consumes power
for (A) transmitting data, (B) receiving data, (C) sensing, (D) aggregating/fusing
information, (E) idling, and (F) coping with radio interference/communications
overhead/etc. [Heinzelman et al. 2002; Bhardwaj et al. 2001; Zhang and Hou 2004]
[Bhardwaj and Chandrakasan 2002; Feeney and Nilsson 2001; Lindsey et al. 2002].
The sensor transmission range rtran directly affects A and also indirectly affects F .

In [Bhardwaj et al. 2001], A-C are assumed to derive geometry-independent tight-
bounds for the lifetime of a sensor network, where L ∝ N . The reason for this
proportionality is that the total energy of the sensor network scales with the total
number of sensors. If the communication protocols are smart enough to minimize
losses, then the actual lifetime should follow the same trend. The bound is not
tight when the number of sensors is small as the characteristic distance, needed
to make the cost of transmitting a bit linear with distance, cannot be realized.
In [Bhardwaj and Chandrakasan 2002], D is also assumed, and an improved bound
is given which is also geometry dependent. In [Zhang and Hou 2004], A-E is as-
sumed for randomly deployed sensor networks and it is shown that the lifetime is
also almost linear with the total number of sensors when algorithms that can adap-
tively turn on/off sensors for energy conservation are used. In [Giridhar and Kumar 2005],
it is shown that message passing among the nearest neighbors yields nearly optimal
lifetime.

The explicit dependence of the sensor network lifetime on rtran and N is beyond
the scope of this paper. This is because the analysis requires an underlying network
model, which can quantify the MAC collision and communication delay issues.
Without focusing on the specifics of the network models, we argue that the typical
MAC collision and communication delay issues have negligible effect on the sensor
network lifetime in our case because we only use q ≪ N active sensors per target

1The lifetime can be defined in various ways such as the time to first node failure due to battery
depletion or the time to appearance of the first connectivity brake-down.
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8 · V. Cevher and L. M. Kaplan

for localization at any given time. Moreover, we assume that the sensor network
queried at random sensor locations, that is, there is no fixed base station; hence,
the traffic load and the energy consumption per sensor are uniformly distributed
across the sensor network. Then, based on the results from the literature, we can
expect have a monotonic behavior for L as a function of N .

In the acoustic sensor network design, when pC = 1− ǫ (ǫ≪ 1), we assume that
the maximum network lifetime has approximately the following form:

L ∝ Nδ , (8)

where δ > 0 for generality and the proportionality is independent of rtran. This
form is motivated by the idealized case where the sensor batteries are depleted only
by the rp-propagation loss (p ≥ 4): if pC is high, then L ∝ C−1(N) × r−p, where
C(N) is the average hop count. For a square A, the average hop count increases
approximately proportional toN−1/2 with N , whereas r−p ∝ Np/2 (see footnote 2).
Hence, L ∝ N (p−1)/2. Other forms for L can be assumed, which result in tractable
solutions, e.g., L ∝ exp (δN). In general, we emphasize again that the lifetime has
a monotonic (quasiconvex) form for any given pC for efficient solutions.

r2

r1 r3

N1 N2

N3

N

pc2

pc1

pC

r1 > r2 > r3

(a)

r2 r1r3
L(N)@pc2

L(N)@r1

N1

N2

N3

N

L

pC ≥ pc2

pC ≥ pc1

pC < pc1

(b)

Fig. 2. (a) Connectivity probability pC as a function of N and rtran. (b) Sensor network lifetime
L as a function of N and rtran.

Figures 2(a) and (b) roughly illustrate the interplay between the sensor network
lifetime and connectivity. As the total number of sensors is increased, the desired
connectivity probability pC can be achieved with smaller sensor transmission ranges
rtran. For a given transmission range that allows high connectivity, the lifetime
of the sensor network linearly increases with the total number of sensors in the
network as the total energy of the network is linearly increased (assuming efficient
communication protocols that can minimize losses). Since the connectivity can be
preserved with smaller transmission ranges as the number of sensors is increased,2

2As an example, if pC = 1 − ǫ (ǫ ≪ 1), then from (7) with d = 1, we have rtran =√

−
log

(
1−p

1/N
C

)
|A|

πN
≈
√

− |A| log ǫ−log N
πN

∝ N−1/2 for |log ǫ| ≫ |logN |, which is satisfied for
typical N .
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Acoustic Sensor Network Design for Position Estimation · 9

the actual lifetime of the sensor network grows faster than the growth obtained by
increasing N while keeping rtran fixed.

2.3 Effects of Coverage

The coverage (V ) problem in sensor networks aims to quantify how well the area
of interest A is monitored. The coverage problem has been extensively studied in
the literature, see Sect. 2 in [Lazos and Poovendran 2006] for a survey. Given a
planar A and random sensor network deployment, one can determine the number
of sensors so that any given point in A is sensed by at least k-sensors with a given
probability (k-coverage). For the sensor network design, the k-coverage probability
is quite complicated as each sensor can have a heterogeneous sensing range.

In [Altman and Miorandi 2005], a Poisson approximation is given for the k-
coverage probability for randomly deployed sensor networks with heterogeneous
sensing ranges:

P (V ≥ k|n, ζ) =
∑

l≥k

υle−υ

l!
, where υ =

T∑

t=1

κtnt, κt =
πR∗

t
2

A
. (9)

Note that the coverage probability is a monotonically increasing function of υ. To
increase k-coverage probability to a desired level pV , υ in (9) must be maximized.

3. OPTIMIZATION PROBLEMS

The goal of NDS is to maximize three competing objectives: 1) localization accu-
racy, 2) lifetime, and 3) coverage. The exact form of these three objectives were
discussed in the previous section. NDS is basically a multi criteria optimization
problem over the simplex N defining the feasible set of network designs, i.e., the
vectors n whose elements are non-negative integers and also satisfy the budget con-
straint c′n ≤ $. Because of the integer nature of the network design vectors n, the
number of elements in the simplex N is finite, albeit a very large number. In gen-
eral, the objectives (or utilities) are expressed as an Nu dimensional vector u whose
elements represent the Nu different utility values. For NDS, Nu = 3. Furthermore,
u1, u2, and u3 represent the localization accuracy, lifetime, and coverage utilities,
respectively.

The following subsections describe general multiple-objective optimization, exact
integer programming methods to find the “optimal” designs, and approximate non-
integer optimization methods to quickly determine a “nearly optimal” design.

3.1 Multi-Objective Optimization

Multi-objective problems are typically addressed using Pareto optimality. In other
words, an optimal network design is one such that one cannot find another sensor
design in N where one or more of the objectives increase but none decrease. The
locus of all possible optimal network designs forms the Pareto frontier, i.e, the trade-
off surface for the utilities. In other words, the Pareto frontier is the collection of
feasible utilities that cannot be uniformly dominated by any other feasible utility.
In general, enumeration of all possible parameter choices that satisfy the constraints
is required to explore the Pareto frontier. However, in the end, some preference
must be made to choose an operating point.

ACM Journal Name, Vol. V, No. N, Month 20YY.



10 · V. Cevher and L. M. Kaplan

Many points on the Pareto frontier can be determined via scalarization (or weight-
ing), where one simply maximizes a weighted sum of the utilities λTu for any λ

whose elements are non-negative [Boyd and Vandenberghe 2004]. The scalarization
concepts also hold for the maximization of a product of utilities

Nu∏

i=1

uλi

i , (10)

because the log operator is monotonically increasing. Figure 3 illustrates an exam-
ple Pareto surface for two objectives. If the Pareto frontier happens to be concave,
then all the points can be determined via scalarization.

N2

N1

N3

logU

logL

λ
′

λ1

λ2
Feasible region

logU1

Fig. 3. An example efficient frontier between logU and logL is shown. Shaded region is the
feasible region for the problem that can be achieved by increasing rtran. The dashed part of the
Pareto frontier cannot be determined using scalarization as there is no supporting plane to the
set of feasible U and L values. Among the supporting planes, λ

′ maximizes U × L.

We consider four general optimization problems relevant to the NDS:

—Problem 1: Determine the Pareto frontier for the Nu objectives,

—Problem 2: Maximize one objective over N without regard to the values of the
other Nu − 1 objectives,

—Problem 3: Maximize the product scalarization of the utilities for a given λ,
and

—Problem 4: Maximize one objective while constraining the other objectives to
exceed a threshold.

Once Problem 1 is solved, it is straightforward to solve the other three single
objective problems. For Problems 2-3, one simply determines the point on the
Pareto frontier that maximizes the scalar quantity of interest. Finally, Problem 4

searches for the maximal point on a subset of the Pareto frontier where the con-
straints are satisfied.

In general the relationship between the utilities and the network design is a
vector of nonlinear functions, i.e., u = h(n1, . . . , nM ). As shown in Section 2, all
three NDS objectives can be expressed as a monotonically increasing function of a
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weighted sum of sensor type populations for a given network design, i.e.,

ui = hi

(
T∑

t=1

ωi,tnt

)
, for i = 1, . . . , 3. (11)

Note that the weights ωi,t are all non-negative.

3.2 Integer-Programming

In this section, we discuss a dynamic programming solution to enumerate the pa-
rameter values comprising the Pareto frontier, thereby solving Problem 1. Note
that the Pareto frontier is a subset of the surface of the feasible region (see Figure 3)
where the feasible region is the locus of utility values corresponding to all sensor
designs in the simplex N . It is useful to tabulate the associated network design and
cost to a given utility in the feasible region. Therefore, we define the feasible triple
as the set of triplets describing the utility, NDS vector, and cost for each point in
the feasible region as follows

F = {(utility: h(n), design: n, cost: c′n) : n ∈N }. (12)

Clearly, the feasible triple as given by (12) can be generated by considering each
network design in N , and the feasible region is simply Fu = F .utility, i.e.,

Fu = {f.utility : f ∈ F}. (13)

The finite cardinality of the simplex N leads to a finite cardinality for Fu and F .
Fortunately, the relationship between the network designs and the utilities is

given by (11), and one need not resort to an exhaustive search over the simplex
N . Many of the triples in the feasible region are redundant in the sense that
they can be removed in F without affecting the feasible region Fu given by (13).
Formally, a triple f1 ∈ Fu is redundant if there exist another triple f2 such that
f1.utility = f2.utility but f1.cost > f2.cost. The observation that the design n1

leads to a redundant triplet (h(n1),n1, c
′n1), i.e., there exist another design n2

such that h(n1) = h(n2) but c′n2 < c′n1, instantly distinguishes many other
network designs as also redundant. For instance, the network design n1 +∆, where
the elements of ∆ are non-negative integers, leads to a triplet that is redundant in
light of the triplet associated to the design n2+∆. Algorithm 1 is a dynamic integer
program to determine the feasible region that exploits the redundancy property to
prune the search space.

In Algorithm 1, 0 is a column vector of zeros and et is the unit vector whose
t-th element is one and whose other elements are zero. Parameter Nf,max is the
feasible design with the most number of sensors, and n represents the total num-
ber of sensors associated to the network designs being analyzed. The sets C0 and
C1 represents the set of triples associated to network designs of n − 1 and n sen-
sors, respectively, that are currently non-redundant, and the set C accumulates the
non-redundant triples. For each non-redundant design consisting of n sensors, the
algorithm sequentially adds one sensor of type t to the design in line 6 and tests if
such a design leads to a redundant utility vector via lines 7 and 8. If the design is
currently non-redundant and meets the cost constraint, its triple is added to C1 and
C. Furthermore, the redundant triple is removed from C. Note that the redundancy
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test is performed before applying the nonlinearity in (11). Therefore, C accumu-
lates the minimal set of network designs to generate the feasible set, and line 17
transforms this set into the minimal feasible triple by incorporating the nonlinear
function h(·).

Algorithm 1.

(1) Determine Nf,max =
⌊

$
c∗

⌋
where c∗ = mint ct.

(2) Initialize C0 = {(0Nu×1,0T×1, 0)}, C = ∅, C1 = ∅.
(3) for n = 1, . . . , Nf,max,

(4) for t = 1, . . . , T,

(5) for all f∗ ∈ C0,
(6) f+ = (f∗.utility+ Ω̃et, f

∗.design+ et, f
∗.cost+ ct);

(7) if ∃f ∈ C such that f+.utility = f.utility,

(8) if f+.cost < f.cost,

(9) remove f from C and insert f+ into C and C1;
(10) elseif f+.cost ≤ $,

(11) insert novel f+ into C and C1;
(12) end;

(13) end;

(14) C0 ← C1;
(15) C1 = ∅;
(16) end;

(17) F = {(h(f.utility), f.design, f.cost) : f ∈ C} forms the minimal triple.

Algorithm 1 requires that the relationship between the utilities and the network
design is given by (11), but it does not assume any more structure regarding the
utilities. For the NDS, the second element of the utility vector is the lifetime
objective, which is equivalent to the total number of sensors. Thus, the second
element of the utility vectors associated to C0 and C1 are always n − 1 and n
respectively. The test in line 7 can only be positive if f ∈ C1.

Before the application of Algorithm 1, the weighting elements ωi,t should be
transformed into integers by an appropriate scaling within a desired level of accu-
racy. Integer ωi,t’s in turn lead to integer values for f.utility. Furthermore, these
values can be bounded by Nb = Nf,max maxωi,t. In other words, the localization
accuracy and coverage utilities form N2

b unique values and the existence and non-
existence of these N2

b unique utility values in C0 and C1 can be stored in Nb × Nb

matrices. This replaces the implicit search in line 7 with a table look-up. As a
result, the overall complexity of Algorithm 1 is O(Nf,maxTN

2
b ).

Once the non-redundant feasible triple is determined by Algorithm 1, it is straight-
forward to determine the Pareto frontier. The Pareto frontier P is simply the max-
imal subset of Fu such for any u ∈ P .utility and any u† ∈ F .utility with u 6= u†,
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then it is not the case that ui ≤ u†i for all i ∈ {1, . . . ,M}, i.e., u is not pointwise
less than u†. A simple method to compute P is to exhaustively remove any point
in Fu that is pointwise less than another. Let Pi represent the surface formed by
maximizing the i-th objective over points in Fu whose other objectives are equal.
In other words, if u ∈ Pi.utility, u† ∈ Fu, and uj = u†j for j 6= i, then ui ≥ u†i .

Clearly, if one arbitrarily selects a utility u from F .utility there exist an utility u†

from Pi.utility that is pointwise greater than or equal to u. Thus, Pi is a superset of
P . As demonstrated in Section 5, this feasible surface is not necessarily equivalent
to the Pareto frontier. As mentioned at the end of Section 3.1, once the collection
of points forming the Pareto frontier is known (Problem 1), then the solutions to
Problems 2-4 are straightforward.

3.3 Non-integer Optimization

The optimal NDS solution to Problem 1 determines the Pareto frontier where
feasible designs occupy a simplex N in the T -dimensional integer lattice Z

T . By
relaxing the simplex N in the T -dimensional real space R

T , optimization algorithms
can become more computationally efficient. The solutions obtained by continuous
relaxations are usually not optimal. However, when the total budget $ is rather
large, optimal solutions select the key sensor types in great numbers. Then, the
difference between the solutions obtained by continuous relaxations and the optimal
integer solutions become negligible. Continuous relaxations also allow us to gain
further insights into the other NDS problems, as we will see this section.

For the ease of notation, we define the following transformations: ñm = cmnm/$,
ω̃i,t = ωi,t/cm, and [Ω̃]it = ω̃i,t so that the NDS problem is equivalent to

Find the Pareto frontier of Ω̃ñ subject to 1′ñ ≤ 1 and ñ � 0, (14)

where 1 is a T dimensional column vector of ones. The following three theorems
alleviate the search for the optimal points on the Pareto frontier.

Theorem 1. (Concentration of Resources) The optimal NDS design ñ∗ asso-
ciated with the Pareto frontier of the multi-objective optimization problem in (14)
expense the available resources in at most Nu different sensor types.

Proof. The Pareto frontier is a subset of feasible utilities in the positive orthant
of the Nu-dimensional space. Within the feasible region, any point can be viewed
as a unit vector times a scale factor. A point in the feasible region where the scale
factor is maximized for a given direction is located on the Pareto frontier of (14).
Let us consider the an arbitrary unit vector in the positive orthant, i.e., e such that
e � 0 and e′e = 1. Then, consider the following the linear program

min 1′ñ subject to Ω̃ñ = e and ñ � 0. (15)

This linear program has Nu equality constraints; hence, the optimal solution ñ∗

contains at most Nu nonzero elements (Theorem 20.1) [Moon and Sterling 2000].

Let $̃∗ = 1′ñ∗ be the minimum objective value of the linear program in (15) at the

optimal parameter value ñ∗. Then, a network design sñ∗ where s = 1/$̃∗ meets the
cost constraint of (14) and leads to a feasible point se that lies on the boundary.
Otherwise, if there was another design ñ1 that leads to a feasible point in the same
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direction but larger scale factor, then ñ∗ could not solve the linear program in (15).
Namely, if Ω̃ñ1 = s1e where s1 > s and 1′ñ1 ≤ 1, the NDS design ñ2 = 1/s1ñ1

would solve the constraint in (15) at a cost of

1′ñ2 = 1/s11
′ñ1

≤ 1/s1,

< 1/s = $̃∗ = 1′ñ∗,

which creates a contradiction because ñ∗ is the optimal solution of (15).
The proof is true for any direction in the positive orthant; hence, any network

design associated with the Pareto frontier has at most Nu nonzero elements. This
result reduces the NDS sensor search space from 2T =

∑T
t=1

(
T
t

)
to Nsc =

(
T

Nu

)

sensor combinations.

Theorem 2. (Dominating Sensor Pairs–1) Consider two indices (j, k) ∈ [1, T ]
and j < k for which the row vectors forming the matrix Ω̃ in (14) are locally
strictly convex ∀m ∈ (j, k), i.e., ω̃i,m < k−m

k−j ω̃i,j + m−j
k−j ω̃i,k, ∀i. Then, no sensor m

is assigned any resources on the Pareto frontier. That is, sensors j and k dominate
any sensor m in the solution.

Proof. Assume a feasible ñ∗ for which ñ∗
m > 0 and define a new resource

distribution where ñj = ñ∗
j +βñ∗

m, ñk = ñ∗
k +(1−β)ñ∗

m, and ñm = 0 while keeping

all other elements the same from ñ∗, where β = k−m
k−j . The utilities associated to

these two designs are u∗ = Ω̃ñ∗ and u = Ω̃ñ, and (ui − u∗i ) /ñ∗
m = βω̃i,j + (1 −

β)ω̃i,k − ω̃i,m. Thus by the convexity, ui > u∗i for all objectives i. Hence, on the
Pareto frontier u∗m = 0, otherwise it is always possible to increase all the objectives
in the multi-criteria optimization problem.

If the dominating sensor pairs are on the boundary of the sensor book, then the
final solution of the sensor network design has at most three configuration choices:
only sensor type t = 1, only sensor type t = T , or a combination of sensor types
t = 1 and t = T .

Theorem 3. (Dominating Sensor Pairs–2) Consider two indices (j, k) ∈ [1, T ]
and j < k for which Nu − 1 row vectors forming the matrix Ω̃ in (14) are locally
strictly convex ∀m ∈ (j, k) with respect to the ordering of remaining row vector,

i.e., ω̃i,m <
ω̃i′,k−ω̃i′,m
ω̃i′,k−ω̃i′,j

ω̃i,j +
ω̃i′,m−ω̃i′,j
ω̃i′,k−ω̃i′,j

ω̃i,k, ∀i 6= i′. Then, no sensor m is assigned

any resources on the Pareto frontier. That is, sensors j and k dominate any sensor
m in the solution.

Proof. The proof is similar to that of Theorem 2, and it is omitted.

The difference between Theorem 2 and Theorem 3 is the ordering of the feasible
sensors. Whereas the ordering of the sensors in Theorem 2 is arbitrary, Theorem
3 requires that they are sorted with respect to the order of one of the rows of
Ω̃. Theorems 1-3 provide the following simplifications of the NDS problems in
Section 3.1:

3.3.1 Solution of Problem 2. In light of Theorem 1, the solution of Problem 2

simply assigns all the resources to a single sensor type because Nu = 1, i.e., ñ = et
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for some t. The sensor modality that maximizes the utility is given by

t∗ = arg max
t
ω̃1,t. (16)

Hence, one simply chooses the modality that provides the biggest bang for the buck.

3.3.2 Solution of Problem 3. The solution to Problem 3 also assigns resources
to at most Nu sensor types due to Theorem 1. Theorems 2 and 3 can be used to
further decrease Nsc by removing sensors that are dominated in the feasible sensor
set. Subsequently, given each sensor combination, one must maximize the utility
over the resource allocation into each of the Nu sensor types.

Let us further examine the solution of Problem 3 to see how further simplifi-
cations can be achieved in the resource allocation of the sensor combinations using
Karush-Kuhn-Tucker (KKT) conditions. Without loss of generality, we specifically
consider the case the overall utility is the product of the localization accuracy (5)
and lifetime (8) utilities (Nu = 2). Then, an equivalent problem is solve the objec-
tive product where λ = [1 ρ 0] , and ρ , α/γ > 0. The overall utility is

K(ñ) =

(
T∑

t=1

ω̃1,tñt

)(
T∑

t=1

ω̃2,tñt

)ρ

. (17)

We start by noting that the following is a necessary KKT condition for the op-
timal solution ñ∗ to satisfy over its simplex [Bertsekas 2003; Epelman et al. 2005]:

ñ∗
m > 0, ⇒ ∂K(ñ)

∂ñm

∣∣∣∣∣
ñm=ñ∗

m

≥ ∂K(ñ)

∂ñl

∣∣∣∣∣
ñl=ñ∗

l

∀ l and m, (18)

which implies that at the optimum point, it is not possible to move resources from
any non-zero um to any other ul without decreasing the utility K(ñ). Using the
derivative of (17), it is straightforward to see that the necessary condition (18) can
be explicitly written as follows:

ñ∗
m > 0, ⇒

T∑

t=1

Gmtñt ≥
T∑

t=1

Gltñt ∀ l and m. (19)

where Gjk = ω̃1,jω̃2,k + ρω̃1,kω̃2,j . Then, the optimal resource allocation solution
is given below without a detailed derivation:

ñ∗
j =






1 Gjj ≥ Gkj ;
0 Gkk ≥ Gjk;

(ω̃1,j−ω̃1,k)ω̃2,k+ρ(ω̃2,j−ω̃2,k)ω̃1,k

(1+ρ)(ω̃1,j−ω̃1,k)(ω̃2,j−ω̃2,k)
Gjj < Gkj and Gkk < Gjk

(20)

where ñ∗
k = 1 − ñ∗

j , and ñ∗
m = 0 for m 6= j, k. Hence, when Nsc =

(
T
2

)
possible

combinations of the sensors in s are considered, (20) can be used to determine the
optimal resource allocations. In the general case, (18) can be exploited to facilitate
the resource allocation computations.

3.3.3 Solution of Problem 4. Using similar arguments in Theorem 1, the solu-
tion to Problem 4 assigns resources to at most Nu sensor types. For this problem,
the optimization problem is a linear program where there are Nu linear constraints
(Nu − 1 constraints are from objectives and one cost constraint). Therefore, it is
straight forward to solve Problem 4.
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dr

θv

θh

ψ

ϕ

R
v

Target

Sensor

Fig. 4. This figure illustrates the geometry of the sensor-target configuration for a monopole
acoustic source moving along the horizontal direction with a speed of v. The dashed lines represent
the acoustic wave-fronts, which create the interaction between the target and the sensor.

Lastly, once the NDS ñ∗ to Problems 2, 3, or 4 is obtained via continuous
relaxations, it is converted to an integer solution via

n∗
t = floor

(
$
ñ∗

t

ct

)
. (21)

For large budgets, the NDS solution n∗ can be slightly different from the solutions
via integer programming as the support of the integer solution may be greater than
Nu. In the integer solution, most of the resources are used in Nu sensor types, but
a few other sensor types help achieve a network cost as close to the budget $ as
possible. In a sense, the rounding error in (21) allows for a few number of sensors
outside of the dominant Nu to appear in the NDS solution.

4. ACOUSTIC SENSOR NETWORKS

In this section, we focus on the expressions that will lead to the localization utility
of acoustic sensor networks for position estimation. We first provide data models,
then give expressions for the Fisher information matrices (FIM) and the sensor re-
ceiver operating characteristics (ROC) curves for position estimation using acoustic
sensors. We assume that the target and the sensors are on the same ground plane,
measured in horizontal (h) and vertical (v) coordinates. The target position is de-

noted as θ =
[
θh, θv

]′
and the position of the sensor is denoted as ζ =

[
ζh, ζv

]′
.

The target bearing φ is measured counterclockwise with respect to the sensor’s
h-axis (sensor orientation: ϕ) and the target range R = ||θ − ζ|| is defined as the
Euclidian distance between the target and the sensor (Fig. 4).

Our results use the analytical signal representations because time-shifts in real
signals correspond to phase shifts in their analytical representations. We de-
note s(t), x(t), ni(t), and yi(t) as the complex envelopes of the source signal,
the source signal at the array, the ith microphone additive noise, and the ith
microphone output signal, respectively. To calculate target bearing or range, N
snapshots of the observed acoustic data, taken at times t1, . . . , tN , are used. We
note that if the time samples are sufficiently apart, then successive samples of
the source and the noise samples are uncorrelated [Davenport II and Root 1958;
Weiss and Weinstein 1983]. We model the source signal samples as i.i.d., zero mean,
complex circularly symmetric Gaussian random variables with variance σ2

s and the
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noise samples with i.i.d., zero mean, complex circularly symmetric Gaussian ran-
dom variables with covariance σ2I.

4.1 Range Sensors

We first discuss the range estimation of a narrow-band source using an omni-
directional microphone in an isotropic medium. We assume that there are no
multipath effects. Assuming spherical propagation, we write the envelope of the
microphone output signal at the target narrow band frequency fw as follows,
[Morse and Ingard 1968; Johnson and Dudgeon 1993]:

y(t) = x(t) + n(t) =
s(t)√
βR

e−j 2πfwR
βc + n(t), (22)

where β(t) = 1 + v
c cosψ is called the Doppler shift factor and c is the speed of

sound. Based on our signal and the noise signal assumptions, it is straightforward to
prove that the microphone output signal y(t) also has an i.i.d. zero mean circularly

complex Gaussian distribution with variance σ2
y = σ2

x + σ2, where σ2
x =

σ2
s

βR2 . Now,
we denote the N -sample root-mean-squared microphone output as ε:

ε =

√√√√ 1

N

N∑

i=1

|y(ti)|2 =
σy√
2N

√√√√
N∑

i=1

(
y2
real(ti)

σ2
y/2

+
y2
imag(ti)

σ2
y/2

)

=
σy√
2N

z, (23)

where we define z as the second square-root summation term in (23). The variable
z has a Chi distribution pZ(z) with 2N degrees of freedom [Evans et al. 2000].

Although we now have an analytical expression for ε, we apply the Laplacian ap-
proximation to further facilitate the derivations of the ROC curves. The Laplacian
approximation uses the mode and the Hessian of the log likelihood at the mode to
approximate it with a Gaussian. The resulting approximation is (N ≫ 1)

ε ∼ p(ε) = N
(√

2N − 1

2N
σy ,

σ2
y

4N

)
≈ N

(√
σ2

x + σ2,
σ2

x + σ2

4N

)
. (24)

The Fisher information matrix F is defined as follows [Lehmann and Casella 1998]:

F (θ) =

∫
p(ε|θ)

[
∂ log p(ε|θ)

∂θ

] [
∂ log p(ε|θ)

∂θ

]T

dε. (25)

We use p(ε) in (24) to determine an approximate FIM of the target position estimate
given below without a detailed derivation:

F 1(θ) =
4N(σ2

s/σ
2)2

R2 (σ2
s/σ2 +R2)2

[
cosψ
sinψ

]
×
[

cosψ sinψ
]
, (26)

where ψ is the sensor bearing with respect to the target (see Fig. 4) and it is
assumed that

√
β ≈ 1.

In the case of wideband sources, if the observation period of the N samples is
much larger than the inverse bandwidth of the source signal s(t), but short enough
so that the target is approximately stationary, then the discrete Fourier transform
(DFT) coefficients of the signal are statistically uncorrelated, [Davenport II and Root 1958;
Weiss and Weinstein 1983; Chow and Schultheiss 1981]. Using the properties of
the FIM, [Van Trees 1968], the wideband FIM is a summation of the individual
narrow-band FIM’s.
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To derive the receiver operating characteristics (ROC) curves of the range sensors,
we start with (24). Note that when N ≫ 1, we can write ε ≈ σy +

σy√
4N
N (0, 1) ≈

σye
N(0,1)√

4N . Hence, a multiplicative noise model on the envelope is more appropriate
than an additive model. Denoting E = log ε, we have

E ∼ N
(

log σy,
1

4N

)
(27)

with the following hypotheses:

H0: σy = σn,

H1: σy =
√
σ2 + σ2

x > σn.
(28)

In this case, likelihood ratio test is equivalent to a simple linear threshold detector:

E
H1

≷
H0

η′, (29)

and this detector is also uniformly most powerful (UMP) [Van Trees 1968; Lehmann and Casella 1998].
It is easy to verify that the ROC curve is determined by

Pd = Φ
(
Φ−1 (Pf ) −

√
N
(
log(σ2 + σ2

x) − log σ2
))
, (30)

where Φ(·) is one minus the cumulative distribution function of theN (0, 1)-random
variable, Pd and Pf are the detection and false alarm probabilities, respectively.

4.2 Bearing Sensors

Bearing sensors determine the direction-of-arrival (DOA) of a target by exploiting
the time-delay information present in the elements of the acoustic array [Johnson and Dudgeon 1993].
When the number of acoustic data samples used to calculate the bearing are
sufficiently high, the estimated bearing has the following Gaussian distribution,
[Bell et al. 1996; Liu et al. ; Johnson and Dudgeon 1993]:

φ = tan−1

(
θv − ζv

θh − ζh

)
+ nφ, (31)

where the bearing noise nφ depends on the actual microphone noise on the array
elements.

To determine the relationship between the bearing noise to the additive mi-
crophone noise, consider a narrow-band plane wave signal impinging on an m-
microphone planar acoustic array. We first derive the Fisher information ma-
trix for the bearing φ and approximate the variance of nφ using the inverse of
the FIM, [Johnson and Dudgeon 1993; Stoica and Nehorai 1989; Stoica et al. 2001;
Bell et al. 1996]. The wavenumber vector k is given by

k =
2πfw

c
u, u =

[
cosφ sinφ

]′
, (32)

where fw is the narrow-band source temporal frequency, c is the speed of propa-
gation, and u is the Cartesian bearing. The microphone locations in the acoustic
array are given by the matrix D defined as follows:

D =
[

d1 . . . dm

]
=

[
dh,1 . . . dh,m

dv,1 . . . dv,m

]
, (33)
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where di has the location of the ith microphone (i = 1, . . . ,m) in the Cartesian
coordinate system. The time delay at the ith microphone relative to the origin of

the array is given by τi = uT di

c . Then, the array output can be written as

y(t) = a(u)x(t) + n(t), (34)

where y(t) =
[
y1(t) . . . ym(t)

]′
, n(t) =

[
n1(t) . . . nm(t)

]′
, a(t) =

[
e−j2πfwτ1 . . . e−j2πfwτm

]′
.

Under stationarity and Gaussian assumptions, it can be shown that the Fisher in-
formation matrix for a narrow-band source is given by [Bell et al. 1996]:

F (u) =
2N

m

(
mσ2

s
R2σ2

)2

1 +
mσ2

s
R2σ2

(
2πfw

c

)2

D

(
I − 1

m
11

T

)
D

T , (35)

where the matrix term involving the position matrix can be shown equal tom(a2/2)I
for uniform circular arrays where a is the array radius. Then, it is straightforward
to determine the Fisher information matrix for the bearing φ via the following
transformation, e.g., see [Van Trees 1968]:

Fφ(φ) = (∇φu)T
F (u) (∇φu) . (36)

Note that when the acoustic array has a uniform circular geometry, Fφ(φ) does
not depend on φ. Using (31) and (36), we present the array FIM’s for the target
position without a detailed derivation (see Fig. 4):

F m(θ) =
Fφ(π + ψ − ϕ)

R2

[
sinψ
cosψ

]
×
[

sinψ cosψ
]
. (37)

The wideband version for the bearing sensors is a summation of the corresponding
narrowband FIM’s similar to the range sensors.

To derive the ROC curves for bearing sensors, we use the following detector:

max
m

Em

H1

≷
H0

η, (38)

where Em = log εm for the mth sensor. Probability that the maximum of m statisti-
cally independent Gaussian random variables Em with the mean log σ2 and variance
1

4N exceeds the threshold η is given by

Pf = 1 −
m∏

k=1

[
1 − Φ

(√
4N

(
η − 0.5 log σ2))] . (39)

Similarly, the detection probability is given by

Pd = 1 −
[
1 −Q

(
Q−1

(
(1 − Pf )

1
M

)
−

√
N
(
log(σ2 + σ2

x) − log σ2))]m

. (40)

5. SIMULATIONS

5.1 Example Dynamic Programming and Approximate Branch-and-Bound Solutions

Using a synthetic example, we demonstrate the dynamic programming solution
of the NDS problem and also compare them with the approximate solutions to
establish their closeness. This comparison is quite important as the approximate
solutions obtained by continuous relaxations sometimes fail to be useful in finding
a branch-and-bound solution [Nemhauser and Wolsey 1988]. We use the following
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synthetic problem: T = 6, ct = 1 + t, ft = t2, δ = 1.2, γ = 2.2, $ = 500, and
R∗ = [ 1, 2, 2, 2, 3, 3 ]′. With these parameters, sensor type 6 has the maximum
ω̃1,t, whereas sensor type 5 has the maximum ω̃3,t.

Figures 5(a) and (b) show the evolution of the dynamic programming solution
for Problem 1 and the Pareto frontier surface. In Fig. 5(a), u1 is maximized at
N = 72 where n = [ 0 1 0 0 0 71 ]′ (Problem 2). When N ≤ 71, the optimal
n consists of only s6 (see Fig. 5(c) (bottom)). Due to the integer nature of the
problem, N = 72 gives slightly better result, because, when N = 71, the cost
c = 71×7 = 497 ≤ $ results in l = 71×62 = 2556, whereas, when N = 71+1 = 72,
c = 71 × 7 + 1 × 3 = 500 ≤ $ results in l = 71 × 62 + 1 × 22 = 2560. Note
that this is less than l = (71 + 3/7) × 62 = 2571.4 if it were possible to buy
fractional sensors. However, most resources are only spent on the best performing
sensors for their cost as expected. In Fig. 5(a), u3 is maximized at N = 84 where
n = [ 1 0 0 0 83 0 ]′. As expected, most of the resources are spent on sensor type
5. Figure 5(c) demonstrates the distribution of the resources (top) at a constant
coverage V while trading lifetime L for localization utility U starting from maximum
utility, (middle) at a constant lifetime while trading coverage V for utility U starting
from the maximum coverage, and (bottom) at the boundary of the F solutions where
the lifetime L is traded for coverage V . In all cases, sensor type 3 rarely gets assigned
any resources. This is because the rows of Ω̃ are locally convex around sensor type
3, hence sensor type 3 gets dominated by the combinations of sensor types 2 and
4. In fact, on the whole Pareto frontier, n3 ≤ 1, where it is only assigned resources
due to the integer nature of the problem. Hence, for all practical purposes, sensor
type 3 could have been eliminated before any solution is attempted.

For the solution of Problem 3, it is straightforward to see that the convexity
conditions for the approximate solutions are satisfied. Analytical formula (20) for
the solution of Problem 3 results in u1 = 0.1321 and u6 = 0.8679 with um = 0 for
m = 2, . . . , 5. The continuous resource variables um’s correspond to n estimates as
n1 = 33.0317, n6 = 61.9910, and nm = 0 for m = 2, . . . , 5 via nm = um$/cm. The
dynamic programming solution in Algorithm 1 results in n∗ = [ 33 0 0 0 0 62 ]′,
which closely exhibits the boundary effect phenomena as predicted by the branch-
and-bound solution.

Figures 6(a) and (b) illustrate the evolution of the dynamic programming so-
lution and Fig. 6(c) plots the Pareto frontier for the solution of Problem 3. In
Fig. 6(b), the solution of Problem 3 is shown, where N = 95, where we decrease
the maximum utility by 1.305 times to increase the lifetime by 1.418. In Fig. 6(c),
we show other operating points on the Pareto frontier. For example, to increase the
lifetime 3.47 times, the utility needs to be decreased 10 times. Finally, we observed
that all the points on the Pareto frontier exhibit the boundary behavior similar to
what we expected for the solution of Problem 3.

5.2 Acoustic Sensor Network Design

In this section, we use our results to design an acoustic sensor network for position
estimation. Typical target acoustic time-frequency signatures are shown in Fig. 7.
Based on the typical vehicle time-frequency characteristics, we model the power of
a vehicle as wideband with flat spectral characteristics between 0 − 300Hz. The
intersensor spacing of the uniform circular acoustic arrays is determined using the
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Fig. 5. (a) The dynamic programming solution via Algorithm 1 for Nu = 3. (b) Pareto efficient
frontier is shown with different operating points. The utility U and the lifetime L are plotted in
logarithmic scale and are normalized. The maximum U is −1. Also, L(Nf,min) is 1. (c) Resource
distribution is shown for various paths on (a). Darker colors imply more resources. Note that
sensor type 3 is rarely assigned resources.
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Fig. 6. (a) The dynamic programming solution via Algorithm 1 for Nu = 2. (b) Corresponding
solution of Problem 3 is illustrated (c) Pareto efficient frontier is shown with different operating
points. The dashed line shows the supporting line with the maximum slope going through the
origin.

bandwidth of the source signals. We constrain the sensor sizes to be less than or
equal to 1m for practical reasons.
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Fig. 7. Time frequency images in dB scale for (a) a compact vehicle (b) a sports utility vehicle
(SUV), and (c) a truck, each moving at approximately 40km/h. The sampling rate for the micro-
phone is Fs = 44100Hz. The microphone has flat spectral response up to 1000Hz. A notch filter
is used to minimize the electrical interference at 60Hz. At moderate vehicle speeds, most of the
vehicle signal energy lies within 0-300Hz region. Moreover, most of the energy is approximately
uniformly distributed in addition to the concentration around engine cylinder firing frequencies.

To characterize the typical vehicle signal power levels, we use the published mea-
surements of the U.S. Department of Transportation Federal Highway Administra-
tion [Department-of-Transportation ]. For vehicles, a functional form of the vehicle
noise power is given by

σ2
s = 10 log10

(
10(C/10) + v(A/10)10(B/10)

)
+ 10 log10

(
152) , (41)

where v is the vehicle speed in units of km-per-hour, A = 41.74, B = 1.149, and
C = 50.13. In (41), the second logarithmic term accounts for the measurement
distance, which is 15m. Hence, (41) illustrates the average vehicle signal power
for automobiles, medium trucks, heavy trucks, buses, and motorcycles. The signal
power has a flat level at σ2

s ≈ 73dB when v ≤ 10km/h due to the engine and ex-
haust, then has a linear increase when v ≥ 10km/h (σ2

s ≈ 107dB at v = 100km/h)
attributed to the tire and pavement noise. For our example design in this section,
we exclude the heavy trucks, e.g., 18-wheelers, and assume that the average sig-
nal power over the ambient noise is uniformly distributed between 50-80dB (i.e.,
10 log10

(
σ2

s/σ
2
)
∼ U (50, 80)).

We use c1 = 5 and ct = 25 + 5t to design an acoustic sensor network using a
budget of 10K units to cover a surveillance region ofA = 1500m×1500m and impose
that the connectivity probability pC of the network to be greater than 0.99. In
cost schedule, acoustic arrays are more expensive than range only sensors because
(i) they require special deployment mechanisms and (ii) they require additional
orientation calibration. It is easy to see that the convexity assumption is satisfied
for ω̃2,t.

To determine ω̃1,t, we first estimated a target’s position situated at the center of
a disk of radius maxR∗

t over 1000 Monte Carlo realizations to determine estimation
variances σ2

h and σ2
v for each sensor type by varying nt. To estimate the position

variances for range only sensors, we generated acoustic data using (22) with v = 0,
used range estimates from the sensors with positive detections according to (29),
then used a Newton-Raphson recursion with the known sensor positions and esti-
mated a target position. We used R∗

1 = 50m as the operational range of the range
only sensors. To estimate the position variances for bearing only sensors, we used
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the inverse of the wideband version of the FIM3 in (36) to generate bearing esti-
mates for each array, a Newton-Raphson recursion with the known sensor positions
and estimated a target position (R∗

t = 300m). We then took the inverse of σ2
h + σ2

v

for each sensor type to estimate the ft and γ via (4).
Figures 8(a)-(f) show some system simulations using the single sensor and pair-

wise sensor combinations (solid curves). In the figures, the dashed lines represent
the results of our approximation in (5), where we have estimated γ = 2.1842.4 The
corresponding ft estimates are shown in Fig. 9(a) and (b). In Fig. 9(c), we plot
the performance per cost curve ω̃1,t = ft/ct for the assumed cost structure. Unfor-
tunately, ω̃1,t does not have a convex form, however, it can be closely upper and
lower bounded by straight lines as marked with stars and squares in Fig. 9(c).
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Fig. 8. System simulations (solid lines) and the solution of (5) (dashed lines). (a) s1 alone. (b)
s5 alone. (c) s10 alone. (d) s1 and s2. (e) s3 and s6. (f) s1 and s11.

Figures 10(a) and (b) illustrate the evolution of the dynamic programming solu-
tion and Fig. 10(c) plots the Pareto frontier for the acoustic sensor network design
along with the solution of Problem 3 and the corresponding upper and lower
bounds using (20). Figure 10(d) shows the resource allocation on the Pareto fron-
tier. The dynamic programming solution of Problem 3 results in n1 = 720,
n11 = 80 and zero for the rest of the sensor types. These numbers correspond

3The wideband version uses a flat spectrum assumption and is a summation of (36) at each FFT
frequency determined by the sampling rate. This FIM is known to be tight for bearing errors
when the number of data samples is high, which is the case here. For example, MUSIC algorithm
achieves this bound, e.g., see [Stoica and Nehorai 1989].
4The value of the parameter γ depends on the target SNR range. When the SNR decreases, γ
increases and vice versa.
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to approximately 2.5-s1 and 10.05-s11 sensors in areas of size πR∗
1
2 and πR∗

11
2,

respectively. Hence, each point on A is well covered at least by 3 sensors. The
minimum radio transmission range should be chosen as r∗tran = 100.51m via (7)
to guarantee a connectivity probability of pC = 0.99 (d = 1). The lower bound
results in u1 = 0.3549 and u11 = 0.6451 via (19) corresponding to n1 = 709.7365
and n11 = 80.6415. If the resources for 0.6415-s11 sensors are spent on sensors of
s1 type, the approximate design results in n1 = 720 and n11 = 80, which inciden-
tally coincides with the dynamic programming solution. The upper bound results
in u1 = 0.4098 and u11 = 0.5902 via (19) corresponding to n1 = 819.5500 and
n11 = 73.7781.
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Fig. 9. (a) It is instructive to plot fγ
m as it demonstrates the relative performance of the sensor

networks that consist of only one sensor type sm. There is approximately a cubic increase up to
s11, where the arrays hit the radius limit of 1m. After s11, the increase is approximately m1.4.
The cubic increase can be explained by (i) the aperture gain due to the a2-term in the FIMs, and

(ii) SNR gain in the FIMs. At any single SNR, only the aperture gain is present. (b) Inherent
performance fm is shown. (c) Performance per cost ω̃1,t for the given cost structure is shown.
Convex upper and lower bounds are marked with squares and stars. The dynamic programming
solution uses the 10 times the values of the dots, which are integer, that approximate κm.

6. CONCLUSIONS

In summary, we presented mathematical programming and approximation algo-
rithms for the NDS problem for acoustic sensor networks using position estimation
as an example. We provided approximation algorithms that can bound the results
as well as methods to identify dominated sensors to alleviate computation. For a
given deployment region size, our dynamic programming solution can calculate the
exact integer Pareto frontier of the sensor network utility at the desired probabil-
ities for d-connectivity and k-coverage. However, the continuous relaxations are
shown to be quite useful in obtaining quick solutions to the problem.

To the Pareto problems in this paper, other linear matrix inequalities can be
added without changing the solution strategies. As an example, the total weight of
the sensor network might also be constrained in space exploration, where a mobile
robot carries the sensors for deployment. This results in an affine constraint, which
can be treated as convex or concave as required.

As future work, we will extend the formulation in this paper to hypothesis test-
ing. Suppose that based on the state-of-nature, the binary classification problem is
linear, where we choose H0, when bT θ > 0, and H1 otherwise [Duda et al. 2001].
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Fig. 10. (a) and (b) Dynamic programming solution of the NDS problem with the minimum cost
are plotted. (c) Pareto efficient frontier is shown with different operating points. Due to the
non-convexity of ω̃1,t, not all the point on the Pareto frontier can be determined by scalarization.
The obtained upper and lower bounds (the square and the star, respectively) are quite close to
the dynamic programming solution. (d) The resource distribution on the Pareto frontier is shown.

In this case, it can be shown that the Bayesian design criteria becomes the fol-

lowing [Toman 1996]: U(n) ∝ −tr
{
bbTΛF

−1(n)
}
. For sensor networks with

acoustic and video modalities, the discriminant features can be the acoustic am-
plitude and the object size to classify vehicles, e.g., into compact vs. SUV cate-
gories [Cevher et al. 2007; Cevher et al. 2007]. We plan to investigate Pareto fron-
tiers for joint parameter estimation and classification. The resulting NDS problems
will then address to a broader class of sensor network problems and present further
intellectual challenges for mathematical programming.
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