Resource Management and Its Interaction with Level 2/3 Fusion
From the Fusion06 Panel Discussion

Erik Blasch
Air Force Research Lab
2241 Avionics Cir
WPAFB, OH 45433
erik.blasch@wpafb.af.mil

Ivan Kadar
Interlink Systems Sciences, Inc.
1979 Marcus Avenue
Lake Success, NY 11042
ikadar@SystemsSciences.com

Ken Hintz
George Mason Univ.
Dept. Elect. Eng
Fairfax, VA 22039
khintz@gmu.edu

J. Biermann
FGAN-FKIE
Neuenahrerva 20
53343 Wachtberg, DE
j.biermann@fgan.de

Chee Chong
BAE Systems
Los Altos, CA
WPAFB, OH 45433
chee.chong@baesystems.com

John Salerno
Air Force Research Lab
525 Brooks, RD
Rome, NY 13441
john.salerno@rl.af.mil

Subrata Das
Charles River Analytics, Inc.
Cambridge, MA 02139
sdas@cra.com

Abstract – Sensor Resource Management (or process refinement) is a element of any information fusion system. Common Level 4 sensor management (SM) inter-relations to Level 1 target tracking and identification have been developed in the literature. During Fusion06, a panel discussion was held to explore the challenges and issues pertaining to the interaction between SM and situation and threat assessment. This paper summarizes the key tenants of the discussion to filter vast experiences of the invited panel experts. The common themes were:

1. Addressing the user in system management / control,
2. Determining a standard set of metrics for optimization,
3. Optimizing / evaluating fusion systems to deliver timely information needs,
4. Dynamic updating for planning mission time-horizons,
5. Joint optimization of objective functions at all levels
6. L2/3 situation entity definitions for knowledge discovery, modeling, and information projection
7. Addressing constraints for resource planning and scheduling

Keywords: Fusion, Situational/Impact Assessment, Resource/Sensor Management, User Refinement

1 Introduction

Since the advent of the analytical theory for information fusion (IF), there have been developments in estimation (fusion) and control (sensor management) documented in numerous constructs, such as the Joint Directors of the Labs (JDL) and Data Fusion Information Group (DFIG) models. As IF designs increase in complexity, there is an ever increasing need to understand the interactions among process refinement (Level 4) for L1 object refinement and Level 2/3 situation and impact assessment (SA/IA). In order to explore, elicit and summarize the issues and challenges in resource management (RM) interactions with SA/IA (and L1), an unexplored area of fusion research, an invited panel discussion was organized by Ivan Kadar at Fusion06, with invited leading experts, including:

J. Biermann, “Remarks on RM in Intelligence”
E. Blasch “Sensor, User, Mission (SUM) RM with L2/3”
S. Das, “Resource Management for Net-Centric Environments”
K. Hintz “Fusion and Information Acquisition”
I. Kadar, “Issues in Adaptive and Automatic IF RM”
J. Salerno, “RM: A Necessary and Integral Component to L2/3”

This paper serves as a retrospective and annotated summarized view of the panel discussion, highlighting the key issues and challenges addressed. The reader is referred to the individual panel position papers [www.isif.org] for specific documentation of the panel discussion.

A recent invited panel discussion, entitled “Issues and Challenges in Resource Management with Applications to Real-World Problems” [SPIE-Proc. V6235, April 2006] addressed related areas such as: [1]

1. Formulating utility functions,
2. Distributed attention,
3. Net-centric network and service management bandwidth allocation for L1/2/3,
4. Distributed algorithms with adaptive platforms and sensors,
5. Off-line learning combined with real-time optimization, and
6. Performance metrics.

Early work by Hall and Llinas [2] addressed various surveillance volumes for sensor platforms. In L4, they list the key techniques of Measurement of Evaluation, Measures of Performance, and Utility theory as well as attention to mission management with issues and challenges listed below:

<table>
<thead>
<tr>
<th>Current Status</th>
<th>Challenges and Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robust system for single-sensor systems</td>
<td>Incorporation of mission objectives/constraints</td>
</tr>
<tr>
<td>Operations research formulation</td>
<td>Environmental context for sensor utilization</td>
</tr>
<tr>
<td>Limited approximate reasoning app.</td>
<td>Conflicting objectives (e.g. detection vs. accuracy)</td>
</tr>
<tr>
<td>Focus on MOP and MOE</td>
<td>Dynamic algorithm selection/modification</td>
</tr>
<tr>
<td>Diverse sensors</td>
<td></td>
</tr>
</tbody>
</table>

The key challenges expressed were (1) limited communications bandwidth for data aggregation, (2) context-based approximate reasoning for L3 understanding, and (3) knowledge representation for L2 processing, which were similar issues of the ISIF05 panel discussion for SA processing [3]. The interplay between RM and the various fusion process levels are still evolving as more data becomes available. [1]

In what follows, we address the issues associated with resource management for L2/3 (SA/IA) interaction. [4] As stated above, while SA and IA are less well researched, even further removed is the SA-RM and IA-RM interdependencies. Developments for tracking and control (Level 1/4) have been addressed [5, 6], and communication issues. [7, 8] Also, utility and risk assessments [9] have been posed for SA/IA interactions that could be used in an objective function.
Report Documentation Page

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>JUL 2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. REPORT TYPE</td>
<td></td>
</tr>
<tr>
<td>3. DATES COVERED</td>
<td>00-00-2007 to 00-00-2007</td>
</tr>
<tr>
<td>4. TITLE AND SUBTITLE</td>
<td>Resource Management and Its Interaction with Level 2/3 Fusion</td>
</tr>
<tr>
<td>5a. CONTRACT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5b. GRANT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5c. PROGRAM ELEMENT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5d. PROJECT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5e. TASK NUMBER</td>
<td></td>
</tr>
<tr>
<td>5f. WORK UNIT NUMBER</td>
<td></td>
</tr>
<tr>
<td>6. AUTHOR(S)</td>
<td></td>
</tr>
<tr>
<td>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</td>
<td>Air Force Research Lab, 2241 Avionics Cir, Wright Patterson AFB, OH, 45433</td>
</tr>
<tr>
<td>8. PERFORMING ORGANIZATION REPORT NUMBER</td>
<td></td>
</tr>
<tr>
<td>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</td>
<td></td>
</tr>
<tr>
<td>10. SPONSOR/MONITOR’S ACRONYM(S)</td>
<td></td>
</tr>
<tr>
<td>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</td>
<td></td>
</tr>
<tr>
<td>12. DISTRIBUTION/AVAILABILITY STATEMENT</td>
<td>Approved for public release; distribution unlimited</td>
</tr>
<tr>
<td>13. SUPPLEMENTARY NOTES</td>
<td>10th International Conference on Information Fusion, 9-12 July 2007, Quebec, Canada</td>
</tr>
<tr>
<td>14. ABSTRACT</td>
<td>see report</td>
</tr>
<tr>
<td>15. SUBJECT TERMS</td>
<td></td>
</tr>
<tr>
<td>16. SECURITY CLASSIFICATION OF:</td>
<td></td>
</tr>
<tr>
<td>a. REPORT</td>
<td>unclassified</td>
</tr>
<tr>
<td>b. ABSTRACT</td>
<td>unclassified</td>
</tr>
<tr>
<td>c. THIS PAGE</td>
<td>unclassified</td>
</tr>
<tr>
<td>17. LIMITATION OF ABSTRACT</td>
<td>Same as Report (SAR)</td>
</tr>
<tr>
<td>18. NUMBER OF PAGES</td>
<td>10</td>
</tr>
<tr>
<td>19a. NAME OF RESPONSIBLE PERSON</td>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
2 DFIG Fusion Model

To set the stage, we again show the DFIG model (as the upgrade to the IDL [10, 11, 12] model). What is needed is a pragmatic design interface that captures the various management functions as coupled with estimation needs. The DFIG model core is to realize that differing control functions are based on the spatial/temporal/ spectral difference. The spectral needs are based on the type of sensor needed. The temporal needs are based on the user’s need for timely information to afford action. Finally, the spatial needs are based on the mission goals. The current team diagramed the current process model, shown in Figure 1.

Figure 1. DFIG 2004 model.

In this model, the goal was to separate the IF and RM functions. RM is divided into sensor control, platform placement, and user selection to meet mission objectives. L2 (SA) includes tacit functions which are inferred from L1 explicit representations of object assessment. Since the unobserved aspects of the SA problem can not be processed by a computer, user knowledge and reasoning is necessary. [13, 14, 15, 16] L3 (IA) sense-making of impacts (threats, course of actions, game-theoretic decisions, intent [17] etc) helps refine the SA estimation and information needs for different actions [18]. The current DFIG definitions include:

- **Level 0 – Data Assessment**: estimation and prediction of signal/object observable states on the basis of pixel/signal level data association (e.g. information systems collections);
- **Level 1 – Object Assessment**: estimation and prediction of entity states on the basis of data association, continuous state estimation and discrete state estimation (e.g. data processing);
- **Level 2 – Situation Assessment**: estimation and prediction of relations among entities, to include force structure and force relations, communications, etc. (e.g. information processing);
- **Level 3 – Impact Assessment**: estimation and prediction of effects on situations of planned or estimated actions by the participants; to include interactions between action plans of multiple players (e.g. assessing threat/intent actions to planned actions and mission requirements, performance evaluation);
- **Level 4 – Process Refinement** (an element of Resource Management): adaptive data acquisition and processing to support sensing objectives (e.g. sensor management and information systems dissemination, command/control);
- **Level 5 – User Refinement** (an element of Knowledge Management): adaptive determination of who queries information and who has access to information (e.g. information operations) and adaptive data retrieved and displayed to support cognitive decision making and actions (e.g. human computer interface).

Level 6 – **Mission Management** (an element of Platform Management): adaptive determination of spatial-temporal control of assets (e.g. airspace operations) and route planning and goal determination to support team decision making and actions (e.g. theater operations) over social, economic, and political constraints.

The RM tradeoffs, design attributes, and challenges for instantiating this model include:

Issues for level 2/3 analysis with L4 control include:

1) Level 2/3 tradeoffs in information quantity (throughput)
2) **Timeliness** of process refinement to control sensing needs
3) Level 3 domain knowledge context use to predict future needs
4) Multiple users have differing levels of process needs in a distributed fashion from the same situation.
5) **Varying fidelity of confidence** reporting of impending threats and situations based on uncertainty calculus [19]

The IF challenges includes the development of:

1) Pedegree analysis to backtrack through associations to capture the impending threat
2) Time Horizons of control actions from IA to update the SA (i.e. priority schemes)
3) **Performance models** of L1 analysis to afford L2/3 information needs satisfaction and level 4 RM.
4) Hierarchical cost functions that include risk and utility analysis of L4 processes.
5) Unified set of metrics that afford SA/IA processing that can be optimized in a RM 4 objective function

Coordinated complementary and orthogonal actions are needed over differing timelines and geographical areas. Mission management needs to be addressed as a global control function that helps to determine which sensors, resources, and users are activated in for local control responsibilities and approval for action.

3 Adaptive & Automatic IF RM

Ivan Kadar advocated the need for both (1) adaptive (implies a behavior, which results in reinforcing outcome by optimizing a specific objective function and the ability to modify behavior) and (2) automatic (implies self-acting requiring minimum or no human supervision) attributes of resource management. Both attributes are also part of human perceptual reasoning and control to maximize the expected value of perceived information [20, 21, 22].

In order to examine the issues and challenges of explicit, implicit, or desired interactions among the “Levels” of IF, with focus on L2/3, we decompose the functional elements at each fusion level. Specifically, we address representational and modeling constructs, objective functions, optimization and RM control effects on interacting levels in order to identify future research directions to realize adaptive and automated interacting-levels RM.

3.1 Decomposing functional elements

“Data or Information fusion is the process of combining data to refine state estimates and predictions” [11, 23]. It can be implied from the words “refine” and “estimate” in this definition, that this process is, in part, distributed decision making under uncertainty with a control mechanism objective to minimize uncertainty in estimates and predictions, and maximize the information value gathering in a real-time environment with time constraints.

Issues:

1 Frank White, Otto Kessler, Chris Bowman, James Linas, Erik Blasch, Gerald Powell, Mike Hinnan, Ed Waltz, Dale Walsh, John Salerno, Alan Steinberg, Dave Hall, Ron Mahler, Mitch Kokar, Joe Karalowski, Richard Antony
1) What models and methods are appropriate, such as influence diagrams [24], to represent relationships, uncertainty, decisions and values to optimize objective functions (in commensurate units and same scale, e.g., entropy) at each fusion level or globally to achieve desired performance measures-of-merits (MOMs)?

2) RM controls fusion levels either individually or jointly to optimize a global objective function with a desired performance MOM. The issue of formulation of commensurate unit objective functions, as well as the relationship of individual level control affecting the performance of other levels by their interactions vs. joint optimization of objective functions with low computational complexity needs to be addressed. Potential solutions include game theoretic approaches with multiple players with or without knowing individual players’ objective functions.

3) L1 processes under RM control may optimize kinematic and ID states of entities, but do not necessarily optimize performance at L2/3 (wherein the individual levels have interrelated but necessarily commensurate objectives). Thus individual “Level” or joint optimization is needed at each iteration step.

3.2 Perspectives and Metrics
The measure of effectiveness of situation/threat systems is measured by the ability to rapidly and reliably answer questions such as: What, Who, Whose, Which one, Where is it going and what is its intent? What resource to use? The shorter the response time of the system in accomplishing these functions, the more time is available to formulate effective response strategies. Therefore, response time should be included in objective functions.

These observations usher in a host of issues relating to selection of commensurate objective functions as we seek to optimize the performance at each level while satisfying the global composite objective (utility function) of RM with respect to mission goals, subject to decision making under uncertainty. With several potentially non-commensurate variables involved the utilities can be based on well-known information theoretic measures of relative Shannon entropy, Kullback-Leibler, Renyi and Csiszar divergences [24] to serve as a common denominator. However, it has been shown that [25] the very notion of entropy is non-universal and purpose-dependent in both relative information measures and in divergences. Nevertheless entropy-based “relative performance” is unaffected by the non-universal property, which only effects alternative formulations.

Challenges
1) Most research has focused on sensor and platform management at L1 to optimize kinematic and ID objective functions based on commensurate information measures, which necessitates non-commensurate utility functions.

2) Many RM systems operate in open loop (e.g., cross cueing sensors) to improve kinematic and ID MOMs. The resultant interaction with L2/3 do not necessarily yield improved MOMs. What is needed is a closed loop design.

3) There has been minimal research in managing L2/3, and selecting SA and IA specific objective functions. Possible approaches could be based upon fuzzy-sets based models, mapping fuzzy outcomes to probabilities to compute commensurate entropy-based objective functions providing a common framework for interactions among levels. Issues include model representation fidelity, mapping accuracy, response time dependence, and computational complexity.

4) A related general issue with optimizing at each level separately is the possibility of conflicting objectives and not achieving a global optimum with respect to system mission objectives.

3.3 Model for planning, interactions modeling and decision-making
Additional issues of the foregoing construct include:

- Do not incorporate human thought processes, perceptual reasoning under uncertainty and essence of response time,

- RM systems minimally anticipate (short planning horizons) and thus not able to plan far ahead,

- RM systems do not adaptively update world models,

- Imply use of limited a-priori information,

- At most imply potential for new knowledge capture to maximize knowledge of current and future events.

That is, one needs the ability to control L1-4 processes for optimum L1 processing and for knowledge capture at L2/3. In addition, L2/3 is to establish relationships (not necessarily hierarchical) and associations among entities, it should anticipate with a priori knowledge in order to rapidly assess, interpret and predict what these relationships might be; it should plan/pre-plan, predict, anticipate again with updated knowledge, adaptively learn, and control the fusion processes via RM for optimum information-knowledge capture and decision making. These attributes are similar to the characteristics of human perceptual reasoning embodied in an adaptive anticipatory closed loop feedback information control mechanism known as the Perceptual Reasoning Machine (PRM) paradigm [20-22], information flow is shown in Figure 2. Viewed as a “meta-level information management system”, PRM consists of a feedback planning/resource management system whose interacting elements are: “assess”, “anticipate” and “preplan/act. That is:

- Gather/Assess current, Anticipate future (hypotheses), and Preplan/Act (predict) on information requirements and likely threats,

- Plan the allocation of resources and acquisition of data through the control of a separate distributed multisource sensors/systems RM,

- Interprett and Act on acquired (sensor, spatial and contextual) data in light of the overall situation by interpreting conflicting/misleading information.

The PRM construct also highlights the issue of the expected effects of RM on input/output changes at each Level, and local objective function optimality changes effecting RM control itself in a human perceptual reasoning framework [20-22]: in order to perceive one needs to: (1) sense and deliver stimuli to the “system”; (2) the “system” when “properly stimulated” delivers a feedback (“reinforcement”) to the “system” in order to modify its output and optimize objectives.

4 Information Acquisition and Fusion
Ken Hintz details that the there are multiple types of information that can be extracted from sensor actions which affect sensor data fusion. Some information can be anticipated in the form of predicting which information will maximally reduce our uncertainty about a random variable, and some of it is after-the-fact and can be used to change the quality of fusion by, for example, selecting different state estimator process models. The
next level of improving fusion is by actively determining which information for a sensor system [26] to obtain and therefore taking a proactive role in the fusion process, rather than simply performing the best fusion of data that is provided.

The general problem of resource allocation in a heterogeneous, multi-sensor system is closely tied to its requirements to be adaptive and operate in real time as well as to assess and estimate processes in a non-cooperative environment. [27] It is easy to associate data rate with information rate and think that because we meet a sample rate requirement, that we are maximizing the information flow into our state estimate. It should be remembered that the primary objective of a sensing system, and hence the associated fusion process, is to minimize the valued uncertainty about our ownship’s situation. Valued uncertainty has two components. The second component is the reduction of uncertainty which is calculable in the form of information gain. The first is the importance of that information to the mission of the sensing platform. Process refinement should include the acquisition of information, namely a reduction in our uncertainty about a process.

4.1 Sensor Information

It is a common misconception that sensor information applies only to target kinematics however this is far from being true. There are at least five types of sensor-based computable information about a process:

- **Kinematic state information** is based on the reduction of the norm of its associated error covariance matrix. While the amount of this reduction is of interest by itself, it is often the derived products of this state estimation, as presented later, that are of more interest and value to the mission. The target’s intent can often be inferred from target temporal and spatial behavior.

- **Search information** which is based on the entropy reduction of the search probability mass function represents the uncertainty of where targets are as a function of spatial position. By populating a search PMF with a priori target location probabilities and then updating this representation as a result of all searches and tracking dwells one can maintain a map of the axis to point a sensor which will yield the highest probability of detecting a target based on their expected locations and the uncertainty reduction through sensor actions.

- **Target identification** differentiates one target from among a set of possible target types. Various signal processing methods can be used to determine target type or class and it is a simple calculation to determine the amount of information gained.

- **Cuer information** is gained by detecting a target with one type of sensor or operating mode and handing that detection off to a more capable sensor or sensor operating mode. Combinations of sensors are usually required to provide an effective all-weather capability and special processing modes can determine the presence of a target even though it may take another mode or sensor to localize it.

- **Situation information** reduces our uncertainty about the “intent” of an adversary which may include non-traditional information types.

Issues and Challenges

The fundamental purpose of a sensing system is to acquire information about a process in order to infer something about the process intent or the entity that is directing it. [28] L2 is a vital component of data fusion since it allows us to decide what information we need and how to best allocate our resources to obtain that information. In a non-stressing environment, resource allocation is not a problem as there usually are adequate resources to effectively search for new targets while maintaining tracks on targets already detected and of interest. It is when the environment becomes stressing that a sensor manager must decide how to most effectively use its assets.

1) Data fusion should not be considered independently of the data acquisition process, but rather it should be thought of as the binding element of the fusion process since it is the need to search to detect target which starts the sensing process. Resource allocation is what starts the process; it is not merely a function which needs to be applied after the fact.

2) It is not enough to do the best job of fusing data since it is as important, to the overall operation of the sensing system to decide what information to acquire (L4).

3) While one can directly see the reduction in uncertainty about the state of a process being estimated, there are second level effects which can further enhance the process of information acquisition. There is inferential information which can be obtained by analyzing the results of a sensing action. For example, an analysis of track data and the target’s kinematic state can infer target intention and produce situation information based on whether the target is inbound or outbound or maneuvering to get into an offensive position relative to ownship (Level 2).

4) It is also common for a target to be detectable with one type of sensor but not trackable with the necessary degree of precision. This may be a function of not only sensor type but also the mode in which a sensor is operating. Cuer information can allow us to improve tracking of a target by handing it off to other sensors which can provide reduced kinematic error covariance or add feature aided tracking to allow us to differentiate among merging or crossing targets and continue to track them as independent tracks even though they may not be resolvable in space.

5) Proper situation information assessment can allow resources to be allocated to more valued data acquisition. Of significant importance in SRM is the best use of the sensors to insure early detection since early detection yields the longest lead time within which to deal with a potential adversary. Longer dwell times can yield this increased sensitivity based on signal to noise improvement, but this result is at the cost of coverage. Information based management is independent of particular scenarios.

Acquisition of some types of information can affect the other components of the data acquisition process, therefore we need to start treating the sensor and the acquisition of information as part of the fusion process itself. Fusion should go beyond the best processing of data and the associated state estimation and data association but also be performed with the interest in maximum information extraction.

5 RM of Intelligence Information

Joachim Biermann addresses the role of intelligence. Up to now, the processing of intelligence is uncoupled from its sources and their underlying information collection and data acquisition processes. We suggest that L2/3 fusion procedures which are based on knowledge e.g. about the behaviour of an adversary, can be used to improve the tasking of the collection efforts initiated by a changed RM for intelligence.

5.1 Intelligence Cycle

Intelligence processing is an important part of Command and Control (C2) in defense and security because the provision of the most accurate situational awareness and understanding to the commander is an essential prerequisite for all decision-making and for other activities. Within network centric operations and the global information environment of asymmetric threats, the growing challenge is to rapidly manage the large volumes of data and information that are available and to portray the results in a timely and appropriate manner. A wide variety of information produced by the full spectrum of sensors and human sources has to be collected, filtered, processed, and disseminated. This is normally done in a structured and systematic series of operations which is called the “Intelligence Cycle” (IC).

The Processing phase within the Intelligence Cycle is the series of actions where the information, which has been collected in response to the directions of the commander, is converted into intelligence products. The representation of the military intelligence process in Figure 3 shows the interrelation between
the Command and Control Cycle and the Intelligence Cycle [29].

The decision process of the OODA Loop interfaces with the Direction phase of the IC.

RM used for the production of intelligence has to take into account concurrency requests from mission planning and operation procedures. An improved, direct interaction between L2/3 intelligence fusion functions and information management acquisition is required for these procedures.

In conventional processing, the selection of indicators that are appropriate to the operational situation will depend on the abilities of the Intelligence staff. The nature of the indicators that they select will drive the choice of sources and agencies which will be tasked to collect the information and intelligence they require. For template-based IF these indicators are part of the underlying world model and incorporated into the fusion procedures.

Issues and Challenges

1) We suggest that this specific domain knowledge, e.g. about the intention and typical behavior of opposing forces and hostile factions, is fundamental to the L 2/3 fusion template based fusion methods [31], should be used to detect deficiencies in the provided information (e.g. not precise enough or not comprehensive enough information) causing inabilities to make sufficient deductions in analysis and integration for SA/IA.

2) The detection of revealing gaps in the available information and knowledge is well supported by the unification method, a generally applicable fusion method from computer science which can be combined with Feature-Valued-Matrices. These matrices are not only a standard representation form in the field of computational linguistics, they also have at least two additional advantages. First, they can be easily notated in XML (allowing for L2 interoperability). Second, they can store incomplete information. [33]

3) It will be necessary to investigate how L2/3 fusion procedure should interact with the tasking and management of conventional resources of the intelligence process to focus the collection efforts on revealing gaps in quality and availability of information to extend the understanding of the notion of “resources” to analyse the benefit of L2/3 fusion results.

4) Besides these advantages, taking into account the information flood which has to be processed in intelligence cells, automatic support in defining information requests not only is more comprehensive and faster than human information processing, it also is more unbiased and impartial. Human SA/IA depends on subjective aspects. Knowledge based information fusion relying on accepted models of the operational domain (schemas or templates) is unprejudiced in its detection of lacking information and alternatives of possible situation development (estimated future situation).

This RM would establish a changed RM not in respect to optimizing the planning for the allocation and scheduling of resources but would improve the definition of tasks to be scheduled in an integrated decision support system.
6 Decision-theoretic Sensor RM

Chee Chong advocates that sensor resource management (SRM) is usually formulated as an optimization problem under uncertainty. A decision-theoretic model shows that the objective function should not be just tracking or target ID performance. Instead, it should represent the expected value of the outcome from the collected data. This outcome depends on how the collected data and fusion results are used in making other RM decisions such as weapon-to-target assignment. We argue the need for considering the integrated sensor/weapon management problem and propose a decomposition to make the solution feasible.

The SRM goal is to support better decisions, and not just better sensor data or fusion results because information by itself has no intrinsic utility. Since IF results are used to make weapon or other decisions that impact outcome such as the survival of own assets or destruction of threat, we need a framework for representing the relationship between decisions, uncertainty, and utility. Decision theory provides such a framework.

6.1 Decision-Theoretic Model

In a decision-theoretic formulation of SRM, sensor decisions are selected to optimize an expected utility in the presence of uncertainty. Figure 4 shows an influence diagram for such a model for the first two time steps.

The threat state may represent the position/velocity and type of multiple targets as well as their intent. Own state includes the location and status of the assets. Outcome includes both status of threat and own assets. Thus the value to be maximized may reflect either threat destruction or own asset survival. The threat estimate is generated by L1/2 fusion. Predicting the outcome given the own state and threat estimate is impact assessment (L3). However, predicting outcome requires more than just own state and threat estimates. One also needs to know how the threat estimate is used to generate other response decisions (e.g., weapon) that affect the threat state and own state and eventually the outcome. Weapon decisions affect the threat state while moving away from a threat affects the own state. Figure 4 shows an influence diagram that includes the response decision. It is similar to the sensor influence diagram in [34]. In order to solve the SRM problem, the response decision has to be provided by an external algorithm (weapon resource manager) or an approximation computed internally by the sensor resource manager.

6.2 Problem Decomposition

The sensor and response RM problems are tightly coupled as seen in Figure 4. Consider weapons as the main response resource. Weapon management prioritizes targets and decides which targets to shoot at and the weapons to use. SM does not need to observe targets that are not of interest to the weapon manager. Similarly, the weapon manager needs to know future sensor data availability in order to plan weapon actions. Thus, the optimal approach to SM is to solve the integrated sensor/weapon RM problem. However, each problem by itself is difficult enough to be solved exactly [4, 26, 35, 36]. Thus, we need a way of providing an approximate coupling between the two problems. One approach is to assume that nominal policies are available at each planning interval. A nominal weapon policy specifies the mapping of threat estimates (and own states) into weapon decisions. This is equivalent to specifying the weapon decisions in Figure 4. Similarly, a nominal sensor management policy specifies the sensor decisions. Given the nominal policies, the integrated RM problem decomposes into independent sensor and weapon management problems.

Finding good approximate nominal policies is crucial in making this approach work. Since the nominal policies have to be updated at each planning time, they should be efficient to compute. One approach is to take the weapon manager’s output as the reference and use sensitivity analysis to look at the benefit of getting additional information for tracking and target ID. This information value will be provided to the sensor manager as the optimization problem objective. Note that this objective is different from just information gain because the latter is not related to the expected value of the outcome.

Similarly, the current SM policy can be used to compute the predicted track quality and target identity probability in the future. This information is provided to the weapon manager to specify the nominal data that will be available. Figure 5 shows the information exchange between the weapon and sensor RM. Basically, the weapon resource manager provides an objective function for the SM problem while the sensor manager specifies the available information for the weapon management problem.

6.3 Sensor RM Issues and Challenges

SRM requires knowing the value of the information generated by fusion from the collected data. This information value is generally different from information-theoretic measures since it depends on how the information is used to make response decisions such as assignment of weapons to targets, or taking other defensive actions. The decision-theoretic approach models the relationship between information, decision and value and involves both sensor and response RM. While the integrated RM is difficult to solve exactly, it is possible to decompose the problem into sub-problems by defining appropriate interfaces. In addition to techniques of solving the decomposed weapon and RM problems, research issues for SM include how to compute the information value efficiently, and predicting the performance of sensor decisions.

1) Tighter integration of sensor and weapon resource management that support resource management response.
2) Use of nominal policies or strategies to decompose the two problems for approximate solutions are needed.
7 Coupling RM to L2/3 Capabilities

John Salerno advocates that RM is a necessary and integral component to any L2/3 capability. Process Refinement or feedback is a key component of any closed loop system. It is important to explore what process refinement means in terms of the higher levels of fusion. In doing so we further refine the existing definitions of the various levels and based on these definitions we discuss how each of these levels interacts with each other.

A group is “a number of things (entities, to include individuals) being in some relation to each other” while an event is “something that takes place; an occurrence at an arbitrary point in time”.

Both entities and groups can be associated with a specific event or events. An activity is “something done as an action or a movement” Activities are composed of entities/groups related by one or more events over time and/or space. (Wikipedia-37)

Thus by definition an event, group and activity can be considered as a more complex entity and can be tracked and identified. Activities and the aggregation of these activities (which we refer to as the situation) is both a part and a result of L1. Models or a priori knowledge is necessary for L1 to be capable of identifying the object, group or activity. This a priori knowledge (i.e., the relationships or associations) that can be learned through Knowledge Discovery and validated by an operator or provided directly. Here we note that Knowledge Discovery techniques can only learn statistically relevant occurrences. As such, new or novel ideas cannot be learned and require knowledge elicitation.

L2 is then the SA at that snapshot in time. This includes the interpretation or meaning of what is happening with respect to context and time while L3 is the determination of whether there exists a threat or impact – is there an entity, group, event or activity that we should care about? Specifically, situation assessment is a quantitative evaluation of the situation that has to do with the notions of judgment, appraisal, and relevance. Roy [38] provides a description of a number of questions/products that are developed under what they call Situation Analysis. In our case, we believe a number of these products are created at L1 while others are L2. L1 attempts to answer such questions as Existence and Size Analysis (How Many?), Identity Analysis (What/Who?), Kinematics Analysis (Where?), and When, while L2 provides: Behavior Analysis (What is the object doing?), Activity Level Analysis (Build up, draw down?), Intent Analysis (Why?), Salience Analysis (What makes it important?), and Capability/Capacity Analysis (What could they/it do?). We can also argue that L2/3 are a result of analysis of current data. After this assessment, the next step would be to forecast or project the current situation and threat into the future. We specifically call this function as projection (as defined by Endsley [39]) which takes the situation and projects or forecasts it to time t + n, where n is some number of time steps. Figure 6 summarizes what we have presented thus far.

7.1 Addressing Level 2/3 Fusion

There continues to be a debate as to what Levels 1 (L1) and L2 represent. One belief is that L1 deals only with the tracking and ID of individual objects while L2 is the aggregation of the objects into groups. For example, L1 objects could be various equipments (tanks, APCs, missiles, etc). At L2, equipment along with personnel can be aggregated into a unit or division based on time and space. But if we consider this separation then several questions arise; how do we account for concepts or non-physical objects and can’t we track a group or activity like an object? What is a situation? How does the system acquire the necessary a priori knowledge (or relationships) to perform aggregation? What is the difference between models to identify an object, group, or activity? To begin to answer these questions we must adddress definitions and the use them to refine what we mean by L1/L2.

- An entity as “something that has a distinct, separate existence, though it need not be a material existence. In particular, abstractions and legal fictions are usually regarded as entities. In general, there is also no presumption that an entity is animate. The word entity is often useful when one wants to refer to something that could be a human being, a non-human animal, a non-thinking life-form such as a plant or fungus, a lifeless object, or even a belief”

- An object is “a physical entity; something within the grasp of the senses” “something perceptible by one or more senses, especially by vision or touch” (The Free Dictionary). What if the entity is not a physical object? Generally speaking, an abstract entity still can be associated with a time or existence of an abstract concept.

![Figure 6. Proposed Refinement of JDL Model](image-url)
next and thus can provide positional information for sensor collection.

Level 2/3 is concerned with current situation ID, adversary’s capabilities, strengths, and weaknesses. This understanding of the adversary is packaged into what is called an adversarial model [40]. In today’s environment, models as defined by current doctrine consist of: (1) Doctrinal Templates (illustrate the employment patterns/dispositions preferred by an adversary when not constrained by the operational environment effects); (2) Description of Adversary Tactics and Options (a written description of an opponent’s preferred tactics) and (3) High-Valued Target IDs (those assets that the adversary commander requires for successful mission completion).

Projection, Anticipation, or Forecasting is accomplished by the analyst and supports the development or analysis of possible (1) adversary intent; (2) Courses of Action (COA) – to include a prioritize list identifying the most likely and most dangerous and (3) a set of collection requirements. As part of the process that an analyst performs while developing their SA/IA, they may develop a collection of requirements and identify new relationships (and in turn update their model(s) of the world).

Internal processes also need to be monitored to ensure that the information processing system is performing as designed. At the object level one can suggest, possibly based on environmental inputs, which source is “better” at that time for tracking or identifying the object or sending the same sensor data to multiple algorithms (running in parallel), coming up with possibly different answers and combining the results in some manner. Similar concepts can be used at the activity level. As previously mentioned a second area is the update of a priori knowledge or models. As new information comes in and new knowledge is developed through the assessment and projection process, the analyst may update existing models or add create new models (regardless of whether it is a new/modified object, group or activity).

7.3 Issues and Challenges

1) Better understand the definitions and interactions between Levels 4 and 2/3,
2) Establishing definitions of Level 1 and 2 in hopes to better clarify each of their roles.
3) Level 2/3 concepts such as projection and situation/threat assessment and how they can jointly exist.

8 RM for Net-centric Environments

Sabrata Das utilizes constraint programming (CP) to address RM and L2/3 processing. The military RM problem involves timely distribution and placement of materiel, personnel, and sensor assets to accommodate mission requirements. Moreover, the problem is highly dynamic in nature in the sense that requirements are changing almost at every moment due to changing situations in the underlying missions. The traditional solution using mass-based hierarchical distribution of resources. This modern RM problem needs to be considered within a network centric environment (NCE), and hence the term “sense and respond logistics” (S&RL) [41]. Given this paradigm, issues of effective node communication and coordination within a NCE replace the complexity of a centralized and monolithic search problem for traditional RM.

RM is intimately related to the problem of planning and scheduling of tasks, that is, one cannot effectively reason with resources in isolation. In the data fusion domain, this view translates to consideration of the collection management process during SA/IA and COA generation processes. Within a NCE, a node must proactively determine mission requirements based on the current situation and threat, and then coordinate with other nodes to meet those requirements via some communication mechanism (e.g. publish and subscribe) on the underlying infrastructure. The specific algorithmic approach advocated for dynamically managing resources is essentially based on CP techniques, where constraints are declaratively stated and placed on the types and quantities of resources at hand, dynamically added or retracted from the system, and amendable for dynamic RM environment. The approach distinguishes between consumable and non-consumable resources. Here, we illustrate the CP approach to RM in NCE in terms of two examples. The first example is related to surveillance asset management and the second is related to logistics.

8.1 Constraint Programming

CP offers a declarative and flexible modeling environment with complex constraints, and incorporates dynamic changes through constraint propagation. A constraint is simply a logical relation among several unknowns (or variables), each taking a value in a given domain. For instance, the constraint “air sensor asset A can use only runway R” relates two objects temporarily without precisely specifying their working time intervals, which are variables taking values from the time interval domain. Now, working time intervals of A for data dissemination or tracking will be restricted by the working time intervals of R due to the constraint. From an analytical perspective, CP is about solving problems by stating constraints which must be satisfied by the solution. This is an effective software technology for declarative description and solution of combinatorial problems with complex constraints, especially in areas of planning and scheduling. A constraint satisfaction problem (CSP) [42, 43] consists of:

- A set of variables \(X = \{x_1, ..., x_n\} \),
- For each variable \(x_i \), a finite set \(D_i \) of values (its domain),
- A set of constraints restricting the values that the variables can simultaneously take

A solution to a CSP is an assignment to every variable of a value from its domain in such a way that every constraint is satisfied. It is usually preferable to determine an optimal solution, according to some objective function defined in terms of some or all of the variables.

![Figure 7. Constraint Network for Sensor Asset Management](image-url)

Solutions to CSPs can be found by searching systematically through the possible assignments of values to variables. For example, the generate-and-test method systematically generates each possible assignment and then it tests to see if it satisfies all the constraints. A more efficient approach uses the backtracking method that incrementally attempts to extend a partial solution toward a complete solution, by repeatedly choosing a value for an unsolved variable. The major disadvantage of these search methods is their late detection of inconsistency; the inconsistency should be detected as soon as possible.
An important feature of CP that helps to detect inconsistency at an early stage is constraint propagation over finite domain variables. Intuitively, CP is a deductive activity that allows the extraction of new information from a constraint, which may reduce the search space that needs to be explored. A very simple example of constraint propagation is the handling of disequalities like “air asset A cannot be assigned to runway R2”.

Various constraint propagation techniques that work on binary constraint networks (i.e. all constraints relate two variables) of variables and constraints have been introduced to prune the search space. These range from simple node-consistency to popular arc-consistency to complete but expensive path-consistency. It is possible to convert a CSP with n-ary constraints to another equivalent binary CSP. A binary CSP can be depicted by a constraint graph in which each node represents a variable, and each arc represents a constraint between variables represented by the end points of the arc. A unary constraint is represented by an arc originating and terminating at the same node. An example binary constraint network is shown in Figure 7. The network represents one possible scheduling of two air and space surveillance assets (resp. UAV and Satellite) for a tactical area known to have been interdicted by some adversarial units. The required surveillance will take place for a period of at least 12 hours starting at the time point t\text{start} and ending at t\text{end}. Each node of the network in the figure is a variable representing either the start time or the end time of the scheduling of an asset. Each arc represents a constraint involving the two nodes joining the arc.

Constraint networks can be built from hierarchical representations of tasks [44, 45] where each such representation of a task consists of precondition which needs to be satisfied before the task can be executed, the subtasks or atomic actions that constitute the task, and finally effects after the task is executed. These representations are unfolded during the resource planning and scheduling process.

8.2 Net-centric Environments

RM within an NCE can be effectively realized via Sense and Respond Logistics (S&RL), which is different from the classic, mass-based approach to logistics. S&RL identifies relevant operational evolutions that are likely to affect the logistics status, projects changes at the operational level onto the logistic level to assess and prepare for any resource requirements, and finally compares the projected requirements with currently allocated resources to determine additional logistic needs. Figure 8 illustrates a small-scale scenario explaining the functioning of S&RL.

Two armored vehicles A and B that are to be used as part of the operation must be fully functional for the mission, and thus need to be inspected before the offensive action begins. The two vehicles’ inspection must be done in sequence as there is only one inspector. The inspector recommends changing the battery and the wheels in vehicles A and B respectively. These two changes can be made in parallel as there is more than one mechanic available at the base, but the inspection that will follow the repair still has to be done in sequence. The recommended repairing process thus prolongs the expected time interval. Consequently, there will be a shortage of ammunition from this extended firing; this will be recognized early and project additional resource requirements.

The CSP paradigm can effectively implement the above line of reasoning. The planned course of action is represented in a constraint network, and additional constraints are inserted as soon as the inspector discovers faults. The network is then transformed to another network by adding the new repair tasks and their dependencies to the existing inspection tasks. As a result, the new network becomes inconsistent due to the additional resource requirements. Existing constraints must be relaxed (e.g. results in accumulating more ammunition) to generate a feasible schedule of the actions and resources.

9 Summary of Panel Discussion

The purpose of this paper was to summarize the results of panel discussion on resource management interaction with L2/3 (and L1) fusion. Thus cognizance of the interactions facilitates user desires information needs presentation, control, and satisfaction to support effective and efficient proactive decision making. RM issues, are (1) designing for users, (2) determining a standard set of metrics for cost function optimization, (3) optimizing / evaluating fusion systems to deliver timely information needs, (4) dynamic updating for planning mission time-horizons, (5) joint optimization of objective functions at all levels, (6) L2/3 situation entity definitions for knowledge discovery, modeling, and information projection, and (7) addressing constraints for resource planning and scheduling.

10 References

(Level 2) fusion’, Journal for Advances in Information Fusion, 2006.

