AWARD NUMBER: W81XWH-06-1-0338

TITLE: Characterize RAP80, a Potential Tumor Suppressor Gene

PRINCIPAL INVESTIGATOR: Xiaochun Yu, M.D., Ph.D.

CONTRACTING ORGANIZATION: University of Michigan
Ann Arbor, MI 48109

REPORT DATE: April 2009

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Characterize RAP80, a Potential Tumor Suppressor Gene

Xiaochun Yu, M.D., Ph.D.
E-Mail: xiayu@umich.edu

The University of Michigan
Ann Arbor, MI 48109

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

To examine the molecular mechanism by which BRCA1 participates in breast tumor suppression, we have identified that RAP80 is a BRCA1-associated protein by protein affinity purification. Here, we show the evidence that RAP80 controls BRCA1’s relocation to DNA damage sites and regulates BRCA1-dependent DNA damage checkpoint function. Moreover, we have generated RAP80-deficient mice and analyzed the tumor phenotypes of the mice. In addition, we have screened RAP80 gene mutations in breast cancer cell lines. Our results indicate that RAP80 is a functional partner of BRCA1 in response to DNA damage. RAP80 is an important regulator to maintain genomic stability. However, mutations of RAP80 have not been identified to be associated with breast cancers. Our results have been published in Science (Vol. 316, 1202-1205) and Nature Structural and Molecular Biology (Vol. 14, 716-720).

BRCA1, RAP80, CCDC98
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Body</td>
<td>4-13</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>13-14</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>14</td>
</tr>
<tr>
<td>Conclusion</td>
<td>14</td>
</tr>
<tr>
<td>References</td>
<td>15</td>
</tr>
<tr>
<td>Appendices</td>
<td>15</td>
</tr>
</tbody>
</table>
Introduction:

Women carrying **BRCA1** (Breast cancer susceptibility gene 1) mutations are predisposed to breast cancer. The gene product of BRCA1 is an 1863-residue polypeptide that contains C-terminal BRCT domain. Interestingly, clinically relevant missense mutations identified in BRCT domain abolish the tertiary structure of BRCT domain, suggesting that the BRCT domains are important for the tumor suppressor function of BRCA1\(^1\). Thus, to understand the molecular mechanism of BRCA1 BRCT domain is important for decoding the breast tumor suppression function of BRCA1 and breast neoplasia induced by BRCA1 BRCT domain. In the preliminary results of this grant application, we have used a two-step affinity purification approach, and identified a new binding partner of BRCA1 BRCT domain---RAP80. When we initiated this project, the biological function of RAP80 is not known. Since BRCA1 participates in the DNA damage response, we wonder whether RAP80 is also involved in the DNA damage response. In our preliminary results of this grant application, we have shown that RAP80 colocalized with BRCA1 at DNA damage sites following ionizing radiation. Thus, it is likely that BRCA1 and RAP80 function together in the same pathway in DNA damage response. Also like BRCA1, RAP80 may stabilize genomic integrity and prevent tumor formation. To explore the *in vivo* function of RAP80, we had set up a plan to generate *RAP80* gene knockout mice to investigate the role of RAP80 in tumorigenesis, especially breast cancer formation *in vivo*. Since mutations of BRCA1 are associated with familial breast cancer, and downregulation of BRCA1 is often observed in sporadic breast tumors. It is likely that RAP80, like BRCA1, is mutated or downregulated in breast cancers. Of note, during initial cloning of RAP80, we found a point mutation in *RAP80* gene caused a truncated product existing in an ovarian adenocarcinoma. This mutant RAP80 failed to translocate to the DNA damage sites following ionizing radiation treatment in our initial observation, suggesting that this mutant RAP80 is defective in certain DNA damage responses. To this end, we have proposed to screen RAP80 mutations and downregulation in breast cancer samples in our project.

Taken together, we have proposed a comprehensive plan to characterize RAP80 both *in vivo* and *in vitro*. There are three tasks in this project. We have finished all the proposed experiments and our new research findings are explained in detail as listed below.

Body:

Aim1. Investigate the role of RAP80 in DNA damage response.

Recently, we have identified RAP80 as a new binding partner of BRCA1 BRCT domain. However, the function and molecular mechanism of RAP80 are still unknown. Accumulated evidence suggested that BRCA1 participates in DNA damage response. Thus, as proposed, we have analyzed the role of RAP80 in BRCA1-dependent DNA damage signal transduction and cell cycle checkpoint activation.

1) Does BRCA1 BRCT domain bind phosphorylated RAP80?

Since BRCA1 BRCT domain is a phosho-protein binding domain and associates with RAP80, we have examined whether BRCA1 BRCT domain recognized phospho-RAP80. There are three potential binding sites of BRCA1 BRCT domain on RAP80. However, we have found that BRCA1 BRCT domain did not recognize phospho-RAP80, suggesting that BRCA1 BRCT domain may not directly interact with RAP80. We have continuously purified RAP80 and BRCA1 BRCT domain-associated proteins by tandem affinity purification, and found that
CCDC98 was the liker between BRCA1 BRCT domain and RAP80. By co-immunoprecipitation assay, we have confirmed that CCDC98 associated with both BRCA1 and RAP80 (Figure 1).

Moreover, since BRCA1 BRCT domain recognizes phospho-protein, we have examined CCDC98 and found that BRCA1 BRCT domain interacted with phospho-Ser406 of CCDC98, and CCDC98 associated with RAP80 through multiple regions (Figure 2). These results suggest that CCDC98 bridges BRCA1 and RAP80 together in one complex.

Figure 1 CCDC98 associates with BRCA1 and RAP80. 293T cells were treated with or without ionizing radiation (10Gy). Cell lysates were immunoprecipitated and blotted with indicated antibodies. (a) CCDC98 associates with BRCA1 endogenously. (b) CCDC98 associates with RAP80 endogenously. Both interactions are DNA damage independent. Whole cell lysates were blotted with indicated antibodies for protein loading controls. Irrelevant IgG was used for immunoprecipitation controls.
Thus, we have not only characterized the interaction between BRCA1 and RAP80, but also identify a new protein CCDC98 in this BRCA1/RAP80 complex. These findings were published in Nature Structural and Molecular Biology (Vol. 14, 716-720) by our group recently (please see Appendices).

2). Does DNA damage induce BRCA1/RAP80 complex formation?

BRCA1 participates in DNA damage response\(^2\). Moreover, we have found that BRCA1 and RAP80 colocalized at DNA damage-induced nuclear foci (DNA damage sites). Thus, we wonder whether DNA damage may regulate the interaction between BRCA1 and RAP80. As proposed, cells were treated with ionizing radiation to induce DNA double strand breaks. And co-immunoprecipitation assays were performed. However, we found that the interaction between BRCA1 and RAP80 was DNA damage independent (Figure 3).

Figure 2. Mapping the interaction domains of BRCA1, CCDC98 and RAP80. (a) BRCT domain recognizes phospho-CCDC98. 293T cell lysates were treated with or without TFPase and/or PPase inhibitors. Endogenous CCDC98 was pull-down by GST-BRCT domain. Whole cell lysates were also blotted with anti-pS406 antibody to illustrate phosphorylation status of CCDC98. A blot with anti-CCDC98 Ab was used as protein loading control. (b) The BRCA1 BRCT domain recognizes phospho-Ser406 motif of CCDC98. Both wild type CCDC98 and S406A mutant were expressed in 293T cells. GST-BRCT was used to pull-down expressed CCDC98. Cell lysates were immunoprecipitated and/or blotted with antibodies for examining phosphorylation status of Ser406 motif and protein expression. (c) RAP80 were deleted either UIM motif (\(\Delta N\)) or Ring finger domain (\(\Delta C\)). Both wild type RAP80 and mutants with Flag tag were expressed in 293T cells. GST-CCDC98 clearly interacts with wild type RAP80 but not the mutants. The protein expression level was examined by blotting with anti-Flag antibody. (d) Both wild type CCDC98 and a series of internal deletion mutants with nuclear localization sequence (NLS) and a Flag tag were expressed in 293T cells. GST-RAP80 pull down wild type CCDC98, but weakly associated with D1 and D3 mutants, and not interacts with D2 mutant. All the constructs were expressed equally by examining with anti-Flag Ab.

Figure 3. The interaction between BRCA1 and RAP80 does not change following treatment with or without ionizing radiation. 293T cells were exposed to 0 or 10 Gy of ionizing radiation and the exposed cell lysates were immunoprecipitated with anti-BRCA1 antibody. The immunoprecipitates were separated by SDS-PAGE and immunoblotted with anti-RAP80 antibody (top panel). The level of the immunoprecipitated BRCA1 was analyzed by Western blot with anti-BRCA1 antibody (second panel). The amount of the added endogenous RAP80 is shown in the third panel.
In addition, since CCDC98 is the linker between BRCA1 and RAP80, we have examined and found that both the interaction between BRCA1 BRCT domain and pS406 of CCDC98 and the interaction between CCDC98 and RAP80 were DNA damage independent. BRCA1, CCDC98 and RAP80 formed a stable complex. These results have been included in Appendices (please see the published manuscripts in Science (vol. 316, 1202-1205) and Nature Structural and Molecular Biology (Vol. 14, 716-720)).

3). Is RAP80 required for BRCA1 nuclear foci formation following DNA damage?

The BRCA1 BRCT domain targets BRCA1 to DNA damage site\(^3\). Since RAP80 is a BRCA1 BRCT domain interacting protein, we reasoned that RAP80 might regulate BRCA1’s translocation to DNA damage site. As shown in the Figure 4, knockdown RAP80 by siRNA abolished BRCA1 foci formation following DNA damage, suggesting that RAP80 is required for BRCA1 nuclear foci formation following DNA damage.

![Figure 4](image.png)

These results demonstrate that RAP80 is a functional partner of BRCA1 in the DNA damage response.

4). Does BRCA1/RAP80 complex regulate downstream Chk1 kinase activity following DNA damage?

Chk1 is a downstream kinase of BRCA1 in response to DNA damage\(^4\). And Chk1 activation is important for intra-S phase and G2/M phase checkpoint activation. Since Ser345 phosphorylation is critical for Chk1 activation, we have used this phosphorylation event as a surrogate marker to examine Chk1 activation. As shown in the Figure 5, downregulation of RAP80 by siRNA disrupted downstream Chk1 kinase activation following DNA damage.
These results suggest that RAP80 plays an important role in the DNA damage-induced signal transduction and checkpoint activation.

In summary, we have finished all the proposed experiments listed in Aim1. These experimental results have been included in two papers published in Science and Nature Structural and Molecular Biology (please see Appendices).

Aim2. Study whether RAP80 is involved in breast cancer genesis in vivo.

To explore whether RAP80 is a breast cancer suppressor gene, we have planed to generate RAP80 knockout mice, and examined whether loss of RAP80 would increase breast cancer incidence in mice.

An ES cell line, RRN158, was purchased from Bay Genomics. In RRN158 ES cell line, RAP80 gene was disrupted by a neo gene selection cassette inserted between exon 1 and exon 2 of RAP80 (Figure 6A). The insertion site has been mapped by DNA sequencing and corresponding primers have been designed (Table 1).

Table 1. Primers to examine KO mice

<table>
<thead>
<tr>
<th>KO primers:</th>
<th>Size of DNA fragment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward: 5’CCAATTTCTTGGATCCTTCCAG</td>
<td>687 bp</td>
</tr>
<tr>
<td>Reverse: 5’AAAAGGTCCTTGAGCACAGAGG</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WT primers:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward: 5’CCAATTTCTTGGATCCTTCCAG</td>
<td>383 bp</td>
</tr>
<tr>
<td>Reverse: 5’ACTAGGTCCTCAGTGGTACACAAAC</td>
<td></td>
</tr>
</tbody>
</table>
The ES cells were injected into C57BL/6 blastocysts to generate chimeric mice. The chimeric mice were then crossed back with C57BL/6 mice to obtain RAP80 +/- mice. RAP80 +/- mice were intercrossed, and RAP80 –/– mice were obtained. We have confirmed that RAP80 was not expressed in RAP80 –/– mice (Figure 6B and C). RAP80 –/– mice are viable, and we have not found any obvious developmental defects yet. Although the viability phenotype of RAP80 –/– mice is different from BRCA1 null mice that die in early embryogenesis\(^5\), it resembles that of BRCA1 BRCT domain deletion mice which are viable too. Since BRCA1 BRCT domain deletion mice develop spontaneous tumors, especially breast tumors in their late life stage\(^6\), we have established a cohort with 63 +/-, 24 +/- and 41 –/– mice and monitored tumor development in these mice. The mice were maintained in the animal core facility of the University of Michigan (IACUC #09477).

![Figure 7](image.png)

Figure 7. RAP80 null mice are tumor prone. (A) Survival rate of RAP80-deficient mice. (B) Tumor penetrance of RAP80-deficient mice in two years. (C) The summary of tumors identified in RAP80-deficient mice. (D) Typical lymphomas in RAP80 +/- mice. HE staining of lymphomas was included.

In this cohort, 2 out of 63 +/+, 5 out of 24 +/- and 21 out of 41 –/– mice died within two years (Figure 7A). We euthanized all the animals when they reached two years old. And we have found that two wild type animals developed lung adenocarcinoma; whereas 33% +/- and 66% –/– mice developed tumors (Figure 7B). We have analyzed tumors in RAP80-deficient mice and found that most tumors were T-cell and B-cell lymphomas (Figure 7C and D). No breast tumor has been observed in RAP80-deficient mice. The tumor spectrum of RAP80-deficient mice is similar to that of p53 +/- mice, suggesting that RAP80 may be involved in DNA damage response pathway *in vivo* to guard genomic integrity. Since no breast tumor was observed in RAP80 –/– mice, it is not clear whether RAP80 is a breast tumor suppressor gene *in vivo*. To date,
it is not clear why knockout tumor suppressor genes in mouse always induce lymphomagenesis; whereas human beings bearing similar mutations often develop solid tumors. Different tumor spectrum observed in mouse and human may increase the difficulty for us to interpret mice tumor analysis. Therefore, conditional knockout RAP80 in mouse mammary gland may illustrate the role of RAP80 in breast tumorigenesis in future.

Aim3. Examine whether RAP80 is downregulated or mutated in human breast cancer samples.

During initial cloning RAP80 gene, we found a missense mutation in RAP80 cDNA from an ovarian adenocacinoma cDNA library. This mutated cDNA encodes an N-terminal truncation product, which disrupts the interaction with BRCA1 and fails to localize to nuclear foci following DNA damage. Therefore, it is possible that RAP80 may be mutated or deregulated in human cancers and thus contributes to the development of sporadic breast cancer.

1) Screen RAP80 mutations in sporadic breast cancer.

To identify RAP80 gene mutations in breast cancers, we have designed 15 pairs of primers (Table 2) and screened 14 coding exons of RAP80 gene in 50 breast cancer cell lines. Human RAP80 gene has total 15 exons. Since the start cordon is at the end of exon1, we did not screen mutations in exon1.

<table>
<thead>
<tr>
<th>Exon No.</th>
<th>Sequence</th>
<th>Size of DNA Fragment</th>
<th>Annealing Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exon 2 F</td>
<td>GGCAACAAGGAGCAGACCATCTCAA</td>
<td>62 bp</td>
<td>62</td>
</tr>
<tr>
<td>Exon 2 R</td>
<td>GGCATTAAGGTAAGTCAGTCAGC</td>
<td>370 bp</td>
<td>62</td>
</tr>
<tr>
<td>Exon 3 F</td>
<td>AATCACCAATTCCTCAGAGGCCTC</td>
<td>299 bp</td>
<td>62</td>
</tr>
<tr>
<td>Exon 3 R</td>
<td>GAATCTATCAGAGCCTAAGAATGCAAC</td>
<td>325 bp</td>
<td>62</td>
</tr>
<tr>
<td>Exon 4 F</td>
<td>GTGGTCTGTTAGTGTCTTCAGTTG</td>
<td>252 bp</td>
<td>62</td>
</tr>
<tr>
<td>Exon 4 R</td>
<td>TACAGCTAGTTCTAATGCAACACTAAC</td>
<td>504 bp</td>
<td>62</td>
</tr>
<tr>
<td>Exon 5 F</td>
<td>CCTCCCATTTTGTCCTCTCGTGA</td>
<td>255 bp</td>
<td>62</td>
</tr>
<tr>
<td>Exon 5 R</td>
<td>AGCATGAGATCCTGTCGTCAGT</td>
<td>520 bp</td>
<td>62</td>
</tr>
<tr>
<td>Exon 6a F</td>
<td>CCCAAAAGGAGGCTTCTTACC</td>
<td>520 bp</td>
<td>62</td>
</tr>
<tr>
<td>Exon 6a R</td>
<td>AGGGCAGAATTGAATACCACCAGAA</td>
<td>504 bp</td>
<td>62</td>
</tr>
<tr>
<td>Exon 6b F</td>
<td>TGGAGAGGAGGCCAGTTCCTTG</td>
<td>173 bp</td>
<td>62</td>
</tr>
<tr>
<td>Exon 6b R</td>
<td>TTATGCTGCGACAACCACATCAGAGG</td>
<td>170 bp</td>
<td>58</td>
</tr>
<tr>
<td>Exon 7 F</td>
<td>GGCTTTGTGAGTGACTCACCATTG</td>
<td>262 bp</td>
<td>62</td>
</tr>
<tr>
<td>Exon 7 R</td>
<td>CCTCCAGAGGACCTGAGATCG</td>
<td>170 bp</td>
<td>62</td>
</tr>
<tr>
<td>Exon 10 F</td>
<td>GGAGTCTCTTGCAGTTTCGTTGAGT</td>
<td>195 bp</td>
<td>62</td>
</tr>
<tr>
<td>Exon 10 R</td>
<td>AGTAAGAATTTGCTGTCCTGCTG</td>
<td>262 bp</td>
<td>62</td>
</tr>
<tr>
<td>Exon 11 F</td>
<td>CAGAGTCTACTGGGCAGCTAATGTG</td>
<td>170 bp</td>
<td>62</td>
</tr>
<tr>
<td>Exon 11 R</td>
<td>ATACAAGAGTCCTCGTGAAGCTAG</td>
<td>170 bp</td>
<td>58</td>
</tr>
<tr>
<td>Exon 12 F</td>
<td>GCCCAAGAGCCAAGGCAACTCCTTA</td>
<td>195 bp</td>
<td>62</td>
</tr>
<tr>
<td>Exon 12 R</td>
<td>CCTCTTACAACTGACACCCAGGA</td>
<td>291 bp</td>
<td>62</td>
</tr>
<tr>
<td>Exon 13 F</td>
<td>TGTGATCTGGCCTGCGAAGCTTGT</td>
<td>195 bp</td>
<td>62</td>
</tr>
</tbody>
</table>
We have planned to use denaturing high pressure liquid chromatography (DHPLC) to screen RAP80 mutations, and then using DNA sequencing to confirm mutations. Due to moving our laboratory from Mayo Clinic to the University of Michigan, we are unable to access to any DHPLC facility. Instead, we have directly used DNA sequencing to screen RAP80 gene mutations in 50 breast cancer cell lines, which is a more reliable approach. As listed in Table 3, we found several RAP80 gene variants that cause amino acid exchanges.

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Nucleotide change</th>
<th>Amino acid change</th>
<th>rs number</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT20 c.134</td>
<td>4A>C</td>
<td>None</td>
<td>rs365132</td>
</tr>
<tr>
<td>BT474 Non</td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BT549 c.228T</td>
<td>>C</td>
<td>None</td>
<td>rs1700490</td>
</tr>
<tr>
<td>CAL51 c.130</td>
<td>4C>T</td>
<td>p.Pro435Leu</td>
<td>rs3733876</td>
</tr>
<tr>
<td>T-47D Non</td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCF7 None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDA-MB231 c.169</td>
<td>0T>C</td>
<td>p.Tyr564His</td>
<td></td>
</tr>
<tr>
<td>Hs343T Non</td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hs739T Non</td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hs574T Non</td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hs578T c.228T</td>
<td>>C</td>
<td>None</td>
<td>rs1700490</td>
</tr>
<tr>
<td>Hcc1937 c.108</td>
<td>9G>A</td>
<td>None</td>
<td>rs6865575</td>
</tr>
<tr>
<td>SUM52 Non</td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUM1315 Non</td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hcc1143 c.134</td>
<td>4A>C</td>
<td>None</td>
<td>rs365132</td>
</tr>
<tr>
<td>Hcc1599 Non</td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hcc2157 Non</td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUM102 c.153</td>
<td>1T>C</td>
<td>p.Cys511Arg</td>
<td>rs13360277</td>
</tr>
<tr>
<td>SUM159 c.381</td>
<td>C>T</td>
<td>None</td>
<td>rs72813116</td>
</tr>
<tr>
<td>SUM185 N</td>
<td>one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAMA1 Non</td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK-BR-3 c</td>
<td>2052C>T</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>MDA-MB468 N</td>
<td>one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hs274T Non</td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hs319T Non</td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hs190T Non</td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV5-24 c.134</td>
<td>4A>C</td>
<td>None</td>
<td>re365132</td>
</tr>
<tr>
<td>Hs905T Non</td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DU4475 c.134</td>
<td>4A>C</td>
<td>None</td>
<td>re365132</td>
</tr>
<tr>
<td>Hs479T Non</td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDA-MB453 N</td>
<td>one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDA-MB435 c.178</td>
<td>7G>A</td>
<td>p.Gly596Glu</td>
<td>re10475633</td>
</tr>
<tr>
<td>MDA-MB361 N</td>
<td>one</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Most of these RAP80 gene variants are heterozygous SNP. However, we identified two homozygous missense mutations in SUM149 (c.1531T>C) and SUM229 (c.1304C>T) respectively. Since these are homozygous variants that cause amino acid exchange, we have compared these variants with wild type RAP80. Unfortunately, both variants associate with BRCA1 and translocate to DNA damage site following ionizing radiation. Till now, we have not observed any functional defects of these variants. Meanwhile, several other groups have screen RAP80 mutations in familial breast cancer patients\(^7-9\). However, most of RAP80 gene variants are likely to be benign polymorphisms. These results together indicate that RAP80 gene mutations may not play an important role for breast tumorigenesis.

2) Examine RAP80 expression in sporadic breast cancer.

To examine whether RAP80 expression level is associated with breast tumorigenesis, we have examined RAP80 mRNA level in 50 breast cancer cell lines. Instead of performing traditional semi-quantified RT-PCR, we used real-time PCR to examine mRNA level of RAP80, which allow us quantitatively measure the abundance of RAP80 mRNA in breast cancer cells. We extracted RNA from breast cancer cell lines, amplified and analyzed RAP80 mRNA by using Applied Biosystem 7300 Real-Time PCR System. In this assay, GADPH was used as mRNA input control, and we used RAP80 mRNA in BT20 cells as the standard to compare RAP80 levels in breast cancer cells (Figure 8).
As shown in Figure 8, we did not observed any dramatic upregulation or downregulation of RAP80 in these breast cancer cells, indicating that RAP80 expression level may not be associated with breast cancerogenesis.

In summary, we have not found any RAP80 mutation or expression downregulation that is associated with breast cancer.

KEY RESEARCH ACCOMPLISHMENTS:

- We have identified that CCDC98 is the linker between BRCA1 and RAP80. The BRCA1 BRCT domain recognizes phospho-CCDC98.

- We have found that BRCA1/CCDC98/RAP80 complex formation is DNA damage-independent.

- We have demonstrated that RAP80 is a functional partner of BRCA1 in the DNA damage response. RAP80 targets BRCA1 to DNA damage sites.

- We have identified that BRCA1/CCDC98/RAP80 complex regulates Chk1 kinase activity following DNA damage.
We have generated RAP80 knock-out mice and analyze the tumor phenotypes of these mice. RAP80-deficient mice develop T-cell and B-cell lymphomas, but not breast cancer.

We have screened RAP80 gene mutations and examined RAP80 expression in breast and cancer cells. Our results indicate that RAP80 gene mutation and expression are not associated with breast tumorigenesis.

REPORTABLE OUTCOMES:

Two manuscripts have been published as listed below.

1. “Ubiquitin-Binding Protein RAP80 Mediates BRCA1-Dependent DNA Damage Response”
 (* co-corresponding authors)

2. “CCDC98 targets BRCA1 to DNA damage sites”

One Conference Presentation:

CONCLUSION:

We have finished the proposed experiments listed in the original Statement Of Work. In Aim1, we have found that BRCA1 interacts with RAP80 through CCDC98. BRCA1 BRCT domain recognizes phospho-CCDC98. This BRCA1/RAP80/CCDC98 complex is DNA damage-independent. Moreover, RAP80 targets BRCA1 to the DNA damage sites and regulates downstream Chk1 kinase activity. These results demonstrate that RAP80 is a functional partner of BRCA1 in response to DNA damage. We have published our findings in *Science* and *Nature Structural and Molecular Biology* respectively (please see the manuscripts in Appendices). In Aim2, we have generated RAP80 knock-out mice and found that RAP80 null mice developed lymphomas but not breast cancer. These results indicate that RAP80 is important for keeping genomic stability. However, due to different physiological conditions between mouse and human, directly knock-out RAP80 from germ cells won’t induce breast tumorigenesis. To mimic physiological and pathological conditions in human, conditional RAP80 knock-out in mouse mammary gland could be better for us to explore breast tumor development. In Aim3, we have screened RAP80 gene mutations in breast cancer cell lines. We could not identify obvious deleterious mutations. In addition, RAP80 expression was not significant variable in breast cancer cell lines. Thus, although RAP80 participates in the DNA damage response *in vitro* and maintains genomic stability *in vivo*, RAP80 gene mutation unlikely contribute to breast tumorigenesis. But in a separate study, we have found a new truncation mutation in an ovarian cancer cell line, indicating that RAP80 gene mutations are involved in other cancers, such as ovarian cancer. Finally, we greatly appreciate the support from the Department of Deference for our research.
References:

APPENDICES: Please see attached papers.

SUPPORTING DATA: Supporting data have been incorporated in the Body.
Ubiquitin-Binding Protein RAP80 Mediates BRCA1-Dependent DNA Damage Response

Hongtae Kim,† Junjie Chen,* and Xiaochun Yu*†

Mutations in the breast cancer susceptibility gene 1 (BRCA1) are associated with an increased risk of breast and ovarian cancers. BRCA1 participates in the cellular DNA damage response. We report the identification of receptor-associated protein 80 (RAP80) as a BRCA1-interacting protein in humans. RAP80 contains a tandem ubiquitin-interacting motif domain, which is required for its binding with ubiquitin in vitro and its damage-induced foci formation in vivo. Moreover, RAP80 specifically recruits BRCA1 to DNA damage sites and functions with BRCA1 in G2/M checkpoint control. Together, these results suggest the existence of a ubiquitination-dependent signaling pathway involved in the DNA damage response.

Despite developing various DNA lesions generated during DNA replication or after exposure to environmental agents, cells normally maintain their genomic integrity and prevent neoplastic transformation because of the existence of several cell cycle checkpoints and DNA repair systems (1–3). Many proteins [including the protein kinase ataxia-telangiectasia mutated (ATM), γ-H2AX, mediator of DNA damage checkpoint protein 1 (MDC1), Nijmegen breakage syndrome 1 (NBS1), BRCA1, and checkpoint kinases 1 and 2 (Chk1 and Chk2)] are involved in the ionizing radiation (IR)–induced DNA damage response pathway (4). ATM is recruited to and activated at the sites of DNA breaks. Activated ATM transduces DNA damage signals to downstream proteins, including BRCA1. BRCA1 encodes a tumor suppressor gene that is mutated in ~50% of hereditary breast and ovarian cancer patients (5, 6). The human BRCA1 protein contains an N-terminal RING finger domain that has intrinsic E3 ubiquitin ligase activity and tandem BRCA1 C-terminal (BRCT) domains at its C terminus, which are phosphoserine- or phosphothreonine-binding motifs (7–9). Many disease-causing mutations are detected within these two regions of BRCA1.

Although BRCA1 is recruited to the sites of DNA breaks and participates in cell cycle checkpoint control, it remains obscure how the recruitment of BRCA1 is controlled in the cell. We purified BRCA1-BRCT domains from human leukemia K562 cells stably expressing this protein with N-terminal S-tag, Flag epitope, and streptavidin-binding peptide (SBF) triple tags (SBF-BRCA1-BRCT). We detected three specific bands that eluted with the SFB-BRCA1-BRCT domain but not with the SFB-BARD1-BRCT domain (Fig. 1A), where BARD1 signifies the BRCA1-associated RING domain protein 1. Mass spectrometry analysis revealed that these three proteins (respectively) are BRCA1-associated C-terminal helicase (BACH1), C-terminal binding protein–interacting protein (CdIP), and RAP80.

BACH1 and CdIP are two known BRCA1 BRCT domain-binding proteins (9, 10). RAP80 was originally identified as a retinoid-related testis-associated protein (11). The physiological function of RAP80 is unknown. We first confirmed the association between RAP80 and BRCA1 both in vitro and in vivo (Fig. 1B and fig. S1) (12). The interaction between BRCA1 and RAP80 remained the same before or after DNA damage (Fig. 1C).

BRCA1 relocates to sites of DNA breaks in cells exposed to IR. Immunostaining showed RAP80 to be evenly distributed in the nucleus in normal cells (Fig. 2A). However, after exposure of cells to IR, RAP80 relocated to foci that colocalized with γ-H2AX and BRCA1 (Fig. 2, A and B). RAP80 also associated with chromatin only in cells exposed to IR (Fig. 2C). Together, these data indicate that the localization of RAP80, like that of BRCA1, is regulated in response to DNA damage.

RAP80 isolated from irradiated cells migrated more slowly during SDS–polyacrylamide gel electrophoresis (SDS-PAGE) than did RAP80 isolated from unirradiated cells. Moreover, phosphatase treatment reversed the slow mobility of RAP80 prepared from irradiated cells (Fig. 2D), indicating that RAP80 may be phosphorylated in cells exposed to IR. We confirmed this using a phosphospecific antibody raised against a phosphorylation site that we identified (see† fig. S2). The ATM protein kinase is activated in response to DNA damage and phosphorylates many proteins involved in the DNA damage response. Treatment of cells with different ATM kinase inhibitors, wortmannin and caffeine, abolished the IR-induced mobility shift of RAP80 (fig. S3A). The mobility shift of RAP80 was only observed in cells expressing wild-type (WT) ATM but not in ATM-deficient cells (Fig. 2E). These data suggest that ATM is required for damage-induced phosphorylation of RAP80.

The accumulation of RAP80 to the sites of DNA breaks depended on MDC1 and γ-H2AX (Fig. 2, F and G) but not on NBS1, p53 binding...
Fig. 1. Identification of RAP80 as a BRCA1-binding protein. (A) Silver staining of affinity-purified BRCA1-BRCT complexes. The cell extracts prepared from K562 cells stably expressing SFB-BRCA1-BRCT or SFB-BARD1-BRCT were subjected to two rounds of affinity purification. Final elutes were analyzed by SDS-PAGE. (B) The interaction between endogenous BRCA1 and RAP80. We performed immunoprecipitation (IP) reactions using preimmune serum or antibody to BRCA1. The immunoprecipitates were subjected to immunoblotting analyses with antibodies to BRCA1 or RAP80. (C) The interaction between BRCA1 and RAP80 before and after exposure of cells to IR. Lysates prepared from mock-treated or irradiated 293T cells were immunoprecipitated with antibody to BRCA1. The immunoprecipitates were separated by SDS-PAGE and visualized by silver staining. The specific bands were excised from the silver-stained gel, and the peptides were identified by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. Lines indicate protein bands corresponding to BACH1, CtIP, and RAP80. (D) Immunoprecipitation and immunoblotting were performed as described in (D). The immunoprecipitates were separated by SDS-PAGE and visualized by immunoblotting with indicated antibodies (top two lanes). The amount of endogenous RAP80 in cells before and after radiation was shown in the bottom lane.

Fig. 2. Localization and phosphorylation of RAP80 in cells exposed to IR. DNA damage–induced RAP80 foci formation and its colocalization with γ-H2AX (A) and BRCA1 (B) are shown. DAPI, 4,6-diamidino-2-phenylindole. Mock-treated or irradiated 293T cells were fixed and stained with monoclonal antibodies to γ-H2AX or BRCA1 and polyclonal antibody to RAP80. (C) Association of RAP80 with chromatin after DNA damage. The soluble and chromatin fractions were prepared from mock-treated or irradiated 293T cells and subjected to Western blot analysis with antibodies to RAP80 (top lanes), phosphorylated H2AX (p-H2AX) (middle lanes), and H2AX (bottom lanes). (D) Phosphorylation of RAP80 after DNA damage. Lysates prepared from control or irradiated HeLa cells were immunoprecipitated with antibody to RAP80 and then incubated with or without λ-phosphatase for 1 hour at 30°C. λ-PPase, λ protein phosphatase. The samples were subjected to immunoblotting with antibody to RAP80. (E) Requirement of ATM for IR-induced phosphorylation of RAP80. ATM-deficient FT169A cells and cells reconstituted with WT ATM (Y25) were exposed to IR. Immunoprecipitation and immunoblotting were performed as described in (D). (F and G) Dependence of DNA damage–induced RAP80 foci formation. MDC1−/− and MDC1−/− mouse embryo fibroblasts (MEFs) (F) and H2AX+/+ and H2AX−/− MEFs (G) were exposed to IR. The immunostaining experiments were performed as described in (A). (H) Requirement of RAP80 for damage-induced BRCA1 foci formation. Control (con) or RAP80 siRNA-transfected 293T cells were exposed to IR. Immunostaining was conducted with monoclonal antibodies to BRCA1, MDC1, 53BP1, or γ-H2AX and polyclonal antibody to RAP80.

When we reduced endogenous RAP80 expression using RAP80 small interfering RNAs (siRNAs), we still detected damage-induced foci formation of MDC1, γ-H2AX, and 53BP1. However, no BRCA1 foci were present in these RAP80-depleted cells (Fig. 2H), suggesting that RAP80 acts upstream of BRCA1 and is required for the accumulation of BRCA1 to sites of DNA breaks.

We also determined which regions of RAP80 are important for its focus localization. Full-length and several internal deletion mutants of RAP80 localized to nuclear foci in cells with DNA damage, whereas RAP80Δ1 and RAP80Δ2 did not (Fig. 3A and fig. S4A). Because RAP80Δ1 and RAP80Δ2 are the only two internal deletion mutants that lack the two putative ubiquitin-interacting motifs (UIMs) (13), these results imply that the region containing UIMs may be required for RAP80 localization to DNA damage foci. The putative UIMs in RAP80 largely match with the UIM consensus sequence (fig. S4B). To determine whether the tandem RAP80 UIMs indeed bind to ubiquitin, we used a ubiquitin–
glutathione S-transferase fusion protein (Ubi-GST). Ubi-GST specifically bound to the WT RAP80 but not to RAP80 lacking the two putative UIMs (RAP80D1; Fig. 3B). We also tested the binding of WT or mutant RAP80 UIMs [mutation of Ala88Gly (A88G) (14) and S92A in the first UIM and A113G and S117A in the second UIM] with Ubi-GST. The Ubi-GST specifically interacted with RAP80 UIM but not with the UIMs containing point mutations (Fig. 3B). We further checked whether point mutants within RAP80 UIMs would disrupt RAP80 foci formation in vivo. WT RAP80 and the RAP80P4 mutant (mutation of the linker region between two UIMs) formed detectable damage-induced nuclear foci, whereas the RAP80P1, RAP80P2, and RAP80P3 point mutants did not (Fig. 3C and fig. S4A). RAP80P1, RAP80P2, and RAP80P3 contain mutations within the first UIM (A88G and S92A), the second UIM (A113G and S117A), or both UIMs (A88G, S92A, A113G, and S117A), respectively. Therefore, the ubiquitin-binding activity of RAP80 correlates with its ability to localize to damage-induced foci in vivo. Like RAP80, the Homo sapiens DnaJ1A (HSJ1A) protein localizes to nuclei and also contains two UIMs. However, full-length HSJ1A or a construct containing the HSJ1A UIM region did not form nuclear foci in cells with DNA damage (fig. S4C). Thus, the ability to form nuclear foci is specific for the RAP80 UIM region. Notably, RAP80 UIMs bind specifically to Lys48-linked but not to Lys63-linked polyubiquitin chains in vitro (fig. S5).

Cells carrying BRCA1 mutants display increased sensitivity to IR and defective G2/M checkpoint control (15). We examined whether the loss of the RAP80 would result in similar defects in the DNA damage response. Both RAP80 siRNAs that we synthesized efficiently decreased RAP80 expression in cells (Fig. 4A). Using a previously established G2/M checkpoint assay (16), we showed defective G2/M checkpoint control in RAP80-depleted cells (Fig. 4B). Similar G2/M checkpoint defects were also observed in BRCA1- or CtIP-depleted cells (fig. S6). The protein kinase Chk1 is required for the G2/M checkpoint control (17, 18) and acts downstream of BRCA1 in response to IR (19, 20). If RAP80 functions upstream of BRCA1, we would expect a defective Chk1 activation in RAP80-depleted cells. This is indeed the case (Fig. 4C). RAP80-depleted cells were also more sensitive to radiation than control cells (Fig. 4D). These data together indicate that RAP80 acts upstream of BRCA1 and specifically regulates BRCA1 functions after DNA damage.

Exactly how RAP80 is recruited to DNA damage sites is still unknown. Because RAP80 UIMs bind directly to ubiquitin in vitro, we reason that one or several ubiquitinated proteins might bind RAP80 and recruit RAP80 to the DNA damage sites. There are several proteins known to be ubiquitinated and localized to the sites of DNA damage (21–23). One of them is Fanconi anemia complementation group D2 (FANC D2). However, RAP80 foci still form normally after irradiation in FANC D2-deficient cells (fig. S7), suggesting that there may be other as-yet- unidentified ubiquitinated proteins that act...
early in DNA damage response and regulate RAP80 localization.

Many cell cycle checkpoint proteins, including ATM, Chk2, BRCA1, and p53, play critical roles in the maintenance of genomic stability. Their mutation often results in increased tumor incidence, highlighting the importance of the integrity of DNA damage pathways in tumor suppression. As a BRCA1-associated protein involved in DNA damage checkpoint control, RAP80 may also function as a tumor suppressor and be dysregulated or mutated in human patients. Future genetic studies will allow us to test this possibility.

References and Notes

12. Materials and methods are available as supporting material on Science Online.
14. Single-letter abbreviations for the amino acid residues are as follows: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr.
24. We thank J. Wood for proofreading the manuscript; J. Hofeld and B. Horazdovsky for providing constructs encoding H531A and Ubi-GST, respectively; and A. D’Andrea for providing FANCD2-deficient and FANCD2-reconstituted cells. This work was supported by grants from NIH (grant number R01CA89239 to J.C.), the Ovarian Cancer Research Fund (X.Y.), the University of Michigan Cancer Center Developmental Fund (X.Y.), the U.S. Department of Defense (DOD) Era of Hope Scholars Award (J.C.), and the DOD Breast Cancer Research Program Idea Award (X.Y.).

Supporting Online Material

www.sciencemag.org/cgi/content/full/316/5828/1202/DC1

Materials and Methods

Figs. S1 to S9

References

5 January 2007; accepted 10 April 2007

10.1126/science.1139621

How Synaptotagmin Promotes Membrane Fusion

Sascha Martens,1 Michael M. Kozlov,2 Harvey T. McMahon1*

Synaptic vesicles loaded with neurotransmitters are exocytosed in a soluble N-ethylmaleimide–sensitive factor protein receptor (SNARE)–dependent manner after presynaptic depolarization induces calcium ion (Ca2+) influx. The Ca2+ sensor required for fast fusion is synaptotagmin-1. The activation energy of bilayer-bilayer fusion is very high (∼40 k_B T). We found that, in response to Ca2+ binding, synaptotagmin-1 could promote SNARE-mediated fusion by lowering this activation barrier by inducing high positive curvature in target membranes on C2-domain membrane insertion. Thus, synaptotagmin-1 triggers the fusion of docked vesicles by local Ca2+-dependent buckling of the plasma membrane together with the zippering of SNAREs. This mechanism may be widely used in membrane fusion.

At the synapse, neurotransmitter release is mediated by the Ca2+-induced fusion of transmitter-loaded synaptic vesicles with the presynaptic plasma membrane. The plasma membrane–localized target (t)-SNAREs ([soluble N-ethylmaleimide–sensitive factor attachment protein (SNARE)]–dependent manner after presynaptic depolarization induces calcium ion (Ca2+) influx. The Ca2+ sensor required for fast fusion is synaptotagmin-1. The activation energy of bilayer-bilayer fusion is very high (∼40 k_B T). We found that, in response to Ca2+ binding, synaptotagmin-1 could promote SNARE-mediated fusion by lowering this activation barrier by inducing high positive curvature in target membranes on C2-domain membrane insertion. Thus, synaptotagmin-1 triggers the fusion of docked vesicles by local Ca2+-dependent buckling of the plasma membrane together with the zippering of SNAREs. This mechanism may be widely used in membrane fusion.

1Medical Research Council–Laboratory of Molecular Biology, Hills Road, CB2 0QH Cambridge, UK.
2Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel.

*To whom correspondence should be addressed. E-mail: hmm@mrc-lmb.cam.ac.uk

pockets on one end of each of the C2A and C2B domains (3, 10) (Fig. 1A). We used a syt1 construct lacking the transmembrane domain but having the double C2 domain module (C2AB) (11). Ca2+ binding allows the C2A and C2B domains to interact with negatively charged phospholipids such as phosphatidylserine (PtdSer) and phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] (12, 13) (fig. S1). This interaction results in the insertion of four loops (two from each of the C2 domains) into the lipid bilayer (14, 15). M173, F234, V304, and I367 (16) located on the tips of the membrane-binding loops (Fig. 1A) penetrate to a third of the lipid monolayer depth (15). This kind of hydrophobic-loop insertion should generate a tendency for the monolayer to bend to relieve the tension created by the insertion. If syt1 contributes to spontaneous membrane curvature (8), the closer the membrane curvature is to that preferentially produced by syt1, the stronger the syt1 affinity for membrane binding should be. Conversely, addition of syt1 to initially flat membranes should induce a positive curvature.

We incubated liposomes of different sizes, and, consequently, of different curvatures, with syt1 C2AB domains in the presence and absence of 1 mM Ca2+. The binding of syt1 C2AB domains in the presence and absence of 1 mM Ca2+ is to that preferentially produced by syt1, the stronger the syt1 affinity for membrane binding should be. Conversely, addition of syt1 to initially flat membranes should induce a positive curvature.
CCDC98 targets BRCA1 to DNA damage sites

Zixing Liu, Jiaxue Wu & Xiaochun Yu

Breast cancer-1 (BRCA1) participates in the DNA damage response. However, the mechanism by which BRCA1 is recruited to DNA damage sites remains elusive. Recently, we have demonstrated that a ubiquitin-binding protein, RAP80, is required for DNA damage–induced BRCA1 translocation. Here we identify another component, CCDC98, in the BRCA1–RAP80 complex. CCDC98 mediates BRCA1’s association with RAP80. Moreover, CCDC98 controls both DNA damage–induced formation of BRCA1 foci and BRCA1-dependent G2/M checkpoint activation. Together, our results demonstrate that CCDC98 is a BRCA1 binding partner that mediates BRCA1 function in response to DNA damage.

BRCA1 is a nuclear polypeptide of 1,863 amino acid residues. It contains a ring domain at the N terminus and a BRCT domain at the C terminus. The ring domain associates with the BARD1 ring domain, forming a heterodimer that functions as an E3 ubiquitin ligase1–6. We and others have demonstrated that the BRCT domain is a phosphoprotein-binding domain7–13.

Mutations of the BRCA1 gene account for more than 50% of familial breast cancers and 20%–30% of inherited ovarian cancers. The accumulated evidence suggests that BRCA1 participates in the DNA damage response and protects genomic integrity after both endogenously and exogenously induced DNA damage, especially double-strand breaks14–19.

In response to DNA double-strand breaks, a group of evolutionarily conserved phosphatidylinositol-3 kinases, including ATM, ATR and DNAPK, are activated. The activated kinases initiate signal cascades to stop cell-cycle progression, allowing DNA lesions to be repaired20,21. BRCA1 has been shown to participate in this process, known as the DNA damage checkpoint. Upon DNA damage, BRCA1 is phosphorylated by ATM and ATR22–25, and it regulates the downstream CHK1 kinase, whose activity controls the progression of S phase and the G2/M transition during the cell cycle26,27. The role of BRCA1 in the DNA damage response is further supported by its subnuclear localization. In the presence of DNA double-strand breaks, BRCA1 forms nuclear foci that colocalize with phosphorylated histone H2AX (γH2AX)28–30, a marker of DNA damage sites31. Notably, a truncated form of BRCA1 without the C-terminal BRCT domain does not form DNA damage–induced foci, suggesting that the BRCT domain is required for BRCA1 subnuclear localization30.

Previously, we and others have characterized two BRCA1-BRCT domain–binding proteins, BACH1 and CtIP7,32–39. However, neither of them is required for formation of BRCA1 foci in response to DNA double-strand breaks. Here, by using protein affinity purification, we identify another BRCA1-BRCT domain–binding protein, CCDC98. CCDC98 is a 409-residue polypeptide with an N-terminal coiled-coil domain and a nuclear localization sequence. This protein not only targets BRCA1 to DNA damage sites but also bridges BRCA1 and its functional partner RAP80, which we and others have recently characterized40–42. Moreover, CCDC98 participates in the BRCA1-dependent G2/M checkpoint after DNA damage. Thus, our results further delineate the molecular mechanism by which BRCA1 functions in DNA damage checkpoint control.

RESULTS

CCDC98 binds the BRCA1-BRCT domain

Recently, we and others have reported that RAP80 functions as a partner of BRCA1-BRCT in response to DNA damage40–42. Although endogenous RAP80 associates with BRCA1 to form a complex, we could not detect direct binding between these two proteins in vitro (data not shown). Thus, we hypothesized that mediators link BRCA1 and RAP80. To identify potential mediators, we added S–Flag–streptavidin-binding peptide (SBP) triple tags to both the BRCA1-BRCT domain and RAP80. Using sequential chromatography, we identified nine CCDC98 peptides, covering 21% of CCDC98’s sequence, among purified BRCT domain–binding proteins. In a similar screen for RAP80-associated proteins, we found 18 CCDC98 peptides that covered 30% of its sequence.

To confirm the association among CCDC98, BRCA1 and RAP80, we performed coimmunoprecipitation assays. As expected, endogenous CCDC98 coimmunoprecipitated with BRCA1 and with RAP80 (Fig. 1), suggesting that the three form a complex. As the BRCA1–RAP80 complex is important in the DNA damage response, we examined whether DNA damage induces association of CCDC98 with BRCA1 or RAP80. However, we found that both CCDC98–BRCA1 and CCDC98–RAP80 association were DNA damage independent (Fig. 1).
The only pSXXF motif in CCDC98’s sequence is at the C-terminal end. Using mass spectrometry to screen for phosphorylated sites in BRCA1-BRCT domain–associated CCDC98 (55 CCDC98 peptides covering 85% of its sequence), we confirmed that CCDC98 Ser406 is phosphorylated in vivo (data not shown). We raised a polyclonal antibody against a CCDC98 peptide containing pSer406 that recognized only phospho-CCDC98 and not the unphosphorylated form (Fig. 2a). Phosphorylated CCDC98 peptide, but not unphosphorylated peptide, blocked recognition of CCDC98 by the antibody to pSer406 (data not shown), supporting the phosphorylated state of CCDC98 in vivo. Finally, mutation of Ser406 to alanine almost abolished the interaction with the BRCA1-BRCT domain (Fig. 2b).

To map the regions where CCDC98 and RAP80 interact, we deleted either the ubiquitin-interacting motif (UIM) or zinc-finger domain of RAP80. Recombinant CCDC98 interacted with wild-type RAP80 but showed almost no interaction with the RAP80 deletion mutants, suggesting that both the UIM and zinc-finger domain are important for RAP80’s interaction with CCDC98 (Fig. 2c). We also generated a series of internal deletion mutants of CCDC98 on the basis of its structural fold, without disrupting its nuclear localization. Similarly, RAP80 strongly recognized wild-type CCDC98 but weakly associated with CCDC98 D1 and D3 mutants and did not interact with the D2 mutant, suggesting that multiple regions in both proteins are required for the RAP80-CCDC98 interaction (Fig. 2d).

As CCDC98 interacts with both BRCA1 and RAP80, we examined whether CCDC98 is the mediator between BRCA1 and RAP80. We designed short interfering RNAs (siRNAs) to specifically target CCDC98, RAP80 and BRCA1, respectively (Fig. 3a). With a control siRNA treatment, RAP80 associated with BRCA1 (Fig. 3b). However, downregulation of CCDC98 by CCDC98 siRNA disrupted the BRCA1–RAP80 complex (Fig. 3b), suggesting that CCDC98 is the mediator that bridges the association between BRCA1 and RAP80. In contrast, RAP80 was dispensable for BRCA1–CCDC98 interaction,

Figure 1 CCDC98 associates with BRCA1 and RAP80. (a,b) 293T cells were treated with ionizing radiation (10 Gy) or untreated. Cell lysates were subjected to immunoprecipitation (IP) and analyzed by blotting with indicated antibodies to show that CCDC98 associates endogenously with both BRCA1 (a) and RAP80 (b). Both interactions are DNA damage independent. Whole-cell lysates were analyzed by blotting with indicated antibodies as protein loading controls. Irrelevant IgG was used as immunoprecipitation control (Con).

Figure 2 Mapping the interaction domains of BRCA1, CCDC98 and RAP80. (a) The BRCT domain recognizes phospho-CCDC98. 293T cell lysates were treated with λ-phosphatase and/or PPase inhibitors, or untreated. Endogenous CCDC98 was pulled down by GST–BRCA1–BRCT. Whole-cell lysates were also analyzed by blotting with anti-pSer406 to assess the phosphorylation status of CCDC98. A blot with anti-CCDC98 was used as a loading control. (b) The BRCA1–BRCT domain recognizes pSer406 of CCDC98. Wild-type CCDC98 or S406A mutant was expressed in 293T cells and pulled down with GST–BRCA1–BRCT. Cell lysates were analyzed by immunoprecipitation and/or blotting with indicated antibodies to examine phosphorylation status of Ser406 and protein expression. (c) RAP80 UIM and zinc-finger domain are important for the interaction with CCDC98. Either UIM motif (ΔU) or zinc-finger domain (ΔC) was deleted. Flag-tagged wild-type or mutant RAP80 was expressed in 293T cells. GST–CCDC98 interacts with wild-type RAP80 but not the mutants. Protein expression was examined by blotting with anti-Flag. (d) Wild-type CCDC98 and a series of internal deletion mutants, each with a nuclear localization sequence (NLS) and a Flag tag, were expressed in 293T cells. GST–RAP80 pulled down wild-type CCDC98 from cell lysates, but weakly associated with the D1 and D3 mutants and did not interact with D2 mutant. All the constructs were expressed equally, as shown by anti-Flag blotting.

Figure 3 a) Expression and nuclear localization of BRCA1 and RAP80 deletion mutants. b) siRNA disrupted the BRCA1–RAP80 complex. c) As CCDC98 interacts with both BRCA1 and RAP80, we examined whether CCDC98 is the mediator between BRCA1 and RAP80. We designed short interfering RNAs (siRNAs) to specifically target CCDC98, RAP80 and BRCA1, respectively (Fig. 3a). With a control siRNA treatment, RAP80 associated with BRCA1 (Fig. 3b). However, downregulation of CCDC98 by CCDC98 siRNA disrupted the BRCA1–RAP80 complex (Fig. 3b), suggesting that CCDC98 is the mediator that bridges the association between BRCA1 and RAP80. In contrast, RAP80 was dispensable for BRCA1–CCDC98 interaction,
and BRCA1 was not required for CCDC98-RAP80 interaction (Fig. 3c,d). Collectively, our results indicate that CCDC98 is a crucial linker between BRCA1 and RAP80.

CCDC98 targets BRCA1 to DNA damage sites

After cells are exposed to ionizing radiation, BRCA1 translocates to DNA damage sites, colocalizing with γH2AX31. We next explored whether the BRCA1-BRCT–binding protein CCDC98 also participates in the DNA damage response. In cells treated with ionizing radiation, CCDC98 formed nuclear foci and colocalized with both γH2AX and BRCA1 (Fig. 4a), suggesting that the DNA damage response does involve CCDC98. As the BRCA1-BRCT domain is required for the formation of BRCA1 foci after DNA damage9,30, we hypothesized that CCDC98 has a key role in targeting BRCA1 to damage sites. Cells without BRCA1 expression retained DNA damage–induced foci of both RAP80 and CCDC98 (Fig. 4b), suggesting that both RAP80 and CCDC98 are upstream of BRCA1 in the DNA damage response pathway. When cells were treated with CCDC98 siRNA to downregulate CCDC98, only BRCA1 foci, and not RAP80 foci, were disrupted (Fig. 4b), suggesting that CCDC98 directly loads BRCA1 onto DNA damage sites. Upon treatment with RAP80 siRNA, both CCDC98 and BRCA1 failed to form DNA damage–induced foci (Fig. 4b), further suggesting that CCDC98 is the mediator in the complex between RAP80 and BRCA1 during the DNA damage response. Moreover, mutant CCDC98 bearing an S406A substitution, which abolishes the BRCA1-CCDC98 interaction (Fig. 2b), did not target BRCA1 to DNA damage sites (Supplementary Fig. 1 online), suggesting that the direct interaction between BRCA1 and CCDC98 is required for BRCA1 focus formation after DNA damage.

Figure 3 CCDC98 mediates BRCA1-RAP80 association. (a) Our siRNAs specifically target CCDC98, RAP80 and BRCA1. HeLa cells were treated with control siRNA or siRNA targeting CCDC98, RAP80 or BRCA1. Cell lysates were analyzed by blotting with indicated antibodies. The protein loading control was examined with anti-RAP80. (b-d) siRNA knockdown results show that CCDC98 is the linker between BRCA1 and RAP80 (b); that RAP80 does not affect the interaction between BRCA1 and CCDC98 (c); and that BRCA1 is dispensable for the interaction between CCDC98 and RAP80 (d). HeLa cells were treated with indicated siRNAs to specifically downregulate target proteins, and cell lysates were examined by blotting with indicated antibodies.

Figure 4 CCDC98 targets BRCA1 to DNA damage sites. (a) CCDC98 relocates to DNA damage–induced foci and colocalizes with γH2AX and BRCA1 after induction of DNA double-strand breaks. HeLa cells were treated with ionizing radiation (10 Gy) or untreated, then stained with antibody to γH2AX, BRCA1 and CCDC98. (b) CCDC98 is required for BRCA1, but not RAP80, focus formation after DNA damage. HeLa cells were transfected with indicated siRNAs, then treated with 10 Gy ionizing radiation and stained with antibody to γH2AX, BRCA1, CCDC98 or RAP80.
CCDC98 participates in G2/M checkpoint activation
As BRCA1–RAP80 complex controls damage-induced G2/M checkpoint activation, we examined whether CCDC98 also participates in G2/M checkpoint activation. After ionizing radiation treatment, normal cells are arrested in G2 phase, before entry into mitosis, allowing DNA lesions to be repaired. We monitored the mitotic fractions of cultured cells using a mitotic marker, phosphorylated histone H3. When cells were transfected with a control siRNA, their mitotic population was greatly reduced after the induction of DNA double-strand breaks. In contrast, cells treated with either BRCA1 siRNA or RAP80 siRNA entered into mitosis regardless of DNA damage (Fig. 5 and Supplementary Fig. 2 online), suggesting that both BRCA1 and RAP80 are required to stop cell-cycle progression and activate the G2/M checkpoint after DNA damage. Like BRCA1 siRNA- or RAP80 siRNA–treated control cells, cells treated with CCDC98 siRNA also showed no G2/M checkpoint after exposure to ionizing radiation (Fig. 5 and Supplementary Fig. 2), suggesting that CCDC98 has functions similar to those of BRCA1 and RAP80 in DNA damage checkpoint control. Together, these results further strengthen the evidence that BRCA1, CCDC98 and RAP80 form a functional complex and participate in the DNA damage response.

DISCUSSION
BRCA1 is important in the response to DNA damage. In this study, we have identified a new BRCA1-BRCT domain–binding protein, CCDC98, that serves as a functional partner of BRCA1 upon the induction of double-strand breaks in DNA. Another group has also recently identified CCDC98 as a BRCA1-associated protein, calling it Abraxas42. Here, we have not only demonstrated that CCDC98 is a BRCA1-associated protein, calling it induction of double-strand breaks in DNA. Another group has also discussed the BRCA1–CCDC98–RAP80 complex in detail. The BRCA1-BRCT domain interacts with pSer406 of CCDC98 (ref. 42 and Fig. 5), while RAP80 forms a heterodimer with CCDC98 via the BRCA1-BRCT domain that is crucial for loading BRCA1 onto DNA double-strand breaks. In contrast, cells treated with either BRCA1 or RAP80 were all cloned into pGEX 4T-1 vector (Amersham) to generate GST fusion proteins. The siRNA sequences targeting BRCA1, CCDC98 and RAP80 are 5′-GGAAACCUCUGUCACACCAGdTdT-3′, 5′-GUAAAAGUGAAGCCACAGdTdT-3′ and 5′-GAAGGAGUUGGAAACCCACGdTdT-3′, respectively.

Protein affinity purification. BRCA1-BRCT domain (residues 1599–1863) and full-length RAP80 were cloned into pFlag-SBP vector. K562 cells stably expressing BRCA1-BRCT or RAP80 were selected. Cells were harvested from 11 of culture and lysed with 30 ml NETN buffer (0.5% (w/v) Nonidet P-40, 50 mM Tris-HCl (pH 8.0), 2 mM EDTA, 100 mM NaCl). The bound proteins were analyzed with SDS-PAGE and mass spectrometry. To search for phosphorylation sites of CCDC98, we analyzed a 50-kDa band from the BRCA1–BACH1 and BRCA1–GIP complexes are involved in the DNA damage response33,35. In contrast with these two BRCA1-binding partners, CCDC98 functions upstream of BRCA1 after DNA damage and directly targets BRCA1 to DNA damage sites through its interaction with RAP80. Our results are consistent with previous findings indicating that the BRCA1-BRCT domain is required for BRCA1 focus formation9,30. Notably, the UIM of RAP80 is important for formation of foci containing the BRCA1 complex, suggesting that a ubiquitinated protein may recruit the BRCA1 complex to DNA double-strand breaks40–42. Nevertheless, targeting of BRCA1 to foci at DNA damage sites could be CCDC98’s role in the DNA damage–induced G2/M checkpoint.

In summary, we have identified a complex between CCDC98 and the BRCA1-BRCT domain that is crucial for loading BRCA1 onto DNA damage sites and participates in the DNA damage response. As breast cancer–associated mutations in BRCA1 abolish the C-terminal BRCT domain, this complex could be a target for future tumor-prevention studies.

METHODS
Cell culture, antibodies, complementary DNA and short interfering RNA. Cells were maintained in RPMI 1640 media with 10% (v/v) FBS. For ionizing radiation treatment, cells were irradiated using a JE Shepherd 137Cs radiation source at indicated doses. Cells were then returned to the same culture conditions for further analysis. Mouse monoclonal antibody to BRCA1 (SD118) was purchased from Oncogene. Mouse γH2AX-specific monoclonal antibody (JBW301) and rabbit antibody to phospho–histone H3 were from Upstate. Anti-Flag (M2) was from Sigma. Rabbit anti-RAP80 was raised against glutathione S-transferase (GST)-fused RAP80 (residues 1–354). Rabbit antibodies to CCDC98 and pSer406 were raised against a CCDC98 peptide (CGKFGYSR-pS-PTF). Full-length CCDC98 cDNA from IMAGE clone 6045433 was subcloned into pS-Flag-SBP vector encoding an IRES-EGFP fluorescent tag. Full-length RAP80 was also cloned into pS-Flag-SBP vector, as described40. BRCA1-BRCT domain, CCDC98 and RAP80 were all cloned into pGEX 4T-1 vector (Amersham) to generate GST fusion proteins. The siRNA sequences targeting BRCA1, CCDC98 and RAP80 are 5′-GGAAACCUCUGUCACACCAGdTdT-3′, 5′-GUAAAAGUGAAGCCACAGdTdT-3′ and 5′-GAAGGAGUUGGAAACCCACGdTdT-3′, respectively.

Immunoprecipitation, GST pull-down assay and western blotting. Cells were lysed with NETN buffer. The soluble fraction was incubated with 50 μl streptavidin-conjugated beads, and associated proteins were eluted with 2 mM biotin and further incubated with 50 μl S beads (Novagen). The bound proteins were analyzed with SDS-PAGE and mass spectrometry. To search for phosphorylation sites of CCDC98, we analyzed a 50-kDa band from the BRCA1-BRCT domain purification by mass spectrometry. For further details, see Supplementary Methods online.

Immunoprecipitation, GST pull-down assay and western blotting. Cells were lysed with NETN buffer. The soluble fraction was treated with λ-Papse and/or Pase inhibitors as described7, or left untreated. Immunoprecipitation, GST pull-down assays and western blotting were done as described7.

Immunofluorescence staining. Cells were treated with or without 10 Gy ionizing radiation. Two hours after treatment, cells were fixed with 3% (w/v) paraformaldehyde, permeabilized with 0.5% (v/v) Triton-100 and stained with the indicated antibodies. To study the dominant-negative effects of the 5406A mutant, S-Flag-SBP–tagged wild-type CCDC98 or 5406A mutant was transiently expressed in HeLa cells. We monitored EGFP expression to identify positive transfectants.

G2/M checkpoint assay. Cells were transfected with the indicated siRNAs twice. Forty-eight hours after the second transfection, cells were treated with
2 Gy ionizing radiation. One hour later, cells were fixed with 70% (v/v) ethanol and stained with anti-phospho-histone H3 (Ser10) and propidium iodide. Cells were analyzed by FACScan. The assay was repeated three times. We quantified FACS results by comparing the mitotic fraction of cells with and without DNA damage treatment, setting the mitotic population without ionizing radiation to 100%.

Note: Supplementary information is available on the Nature Structural & Molecular Biology website.

ACKNOWLEDGMENTS

We thank C. Chen and L. Ye for technical support, and L. Lu for manuscript proofreading. This work was supported by the US Department of Defense Breast Cancer Research Program, the Ovarian Cancer Research Fund and the University of Michigan Cancer Center. X.Y. is the recipient of an American Association for Cancer Research–Susan G. Komen for the Cure Career Development Award for Breast Cancer Research.

AUTHOR CONTRIBUTIONS

X.Y. purified proteins and identified the BRCA1–CCDC98–RAP80 complex. Z.L. and J.W. analyzed the protein interactions of this complex. Z.L. and X.Y. examined the role of CCDC98 in the formation of DNA damage–induced protein foci and G2/M checkpoint activation. X.Y. drafted the manuscript. All the authors read and approved the final manuscript.

COMPETING INTERESTS STATEMENT

The authors declare no competing financial interests.

Published online at http://www.nature.com/nsmb/
Reprints and permissions information is available online at http://npg.nature.com/reprintsandpermissions

41. Sobhian, B. et al. RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science 316, 1198–1202 (2007).