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Abstract: Prior to committing personnel to investigate a 
building or suspicious site such as a cave, it is 
imperative to determine the importance and current 
danger of the site. To this end, sensors on a robotic 
platform can interrogate the site prior to sending in 
personnel.  This paper investigates methods to exploit 
multiple sensor modalities in order to automatically 1) 
detect human presence, and 2) detect human 
infrastructure and recent human activity.  The paper 
describes 10 experimental scenarios to support these two 
tasks, demonstrates what type of inference each 
modality can make, and shows how to fuse the 
information from all sensors.  Experimental results are 
also provided for the detection of the presence of 
humans. 
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1 Introduction 
During security sweeps, it is essential that the scout is 
able to determine whether or not a building is occupied, 
and whether an unoccupied building has accommodated 
recent human activity or is simply abandoned. Such 
situational awareness is essential for scouts to safely enter 
buildings relevant to their mission.  Similarly, scouts may 
need to gather intelligence, surveillance and 
reconnaissance (ISR) information about tactically 
important sites such as caves, tunnels, and other hard to 
reach locations. The scout must understand if it actually 
includes human infrastructure such as electrical wiring, 
man-made vents, presence of electrical utilities, 
generators, cooking utensils, etc. If the site does support 
human activity, the scout then must  know if the site is 
presently occupied, recently used, or abandoned.  
 
The ability for the scout to obtain information about 
human presence or recent human activity via the use of 
mobile sensors would be most advantageous. This paper 
discusses possible multi-sensor solutions for the automatic 
detection of human presence and recent human activity.  
The technology to detect the presence of humans is much 
more mature than the technology to detect recent human 
activity after the people have vacated the area.  For 
instance, researchers are developing sensors systems that 

detect footfalls (or gait) [1, 2], speech, the spectral 
response of human skin, etc [3]. Little work has focused 
on the detection of human infrastructure in remote sites 
and the indirect detection human activities.  Fortunately, 
when people perform activities, they leave behind many 
clues that can be exploited by forensic sensor systems. For 
instance, if the people used any machinery, the machine 
could still be warm. It is possible that the concentration 
levels of human pheromones in a room may reveal the 
prior presence of people.  
 
This paper is organized as follows.  Section 2 lists the 
different modalities that are being considered, and 
Section 3 lists different data collection scenarios that have 
been executed to test multi-sensor human presence and/or 
human activity detection.  Section 4 details a fusion  
experiment for the detection of human presence, and 
Section 5 discusses a proposed approach for human 
infrastructure and activity detection.  Finally,  Section 6 
concludes the paper and discusses further research.  

2 Sensors 
In order to detect human infrastructure and activity, 
several common sensor modalities are considered. 
Because mission requirements change, these sensors 
cannot be deployed at fixed locations.  Rather, they must 
fit on a mobile platform so they can travel inside the 
building or other tactical sites. As a result, the form-factor 
of the sensors must be small enough to fit on a robotic 
platform.  Figure 1 shows a model of a prototype robotic 
system that includes the requisite suite of sensors1. 
Sensors that can meet the detection functionality and size 
requirements are listed below.  Figure 2 provides pictures 
of many of these sensors and the descriptions of these 
sensors are given below. 
  
• Acoustic sensors used are the piezo electric 

microphones and can be used to detect speech, sounds 
generated by machinery, etc. 

• Seismic sensors are 3-axis sensors that can detect the 
vibrations in the ground. They are used to detect 
footfalls, vibrations caused by machines being operated, 

                                                 
1 The actual robotic prototype will be available before 
publication of the final version of this paper. 
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Figure 1: Mobile platform (Packbot) with mockup model 
of senor packages. 

etc. Accelerometers can also detect vibrations in pipes 
that are produced by the flow of water. 

• RF detectors can detect any RF activity such as the use 
of cell phones. 

• Magnetic (B-field) sensors can be used to detect 
ferromagnetic materials carried by people, e.g., keys, 
firearms, and knives. These sensors may also detect the 
usage of computer monitors. 

• Electrostatic (E-field) sensors can be used to detect the 
built-up electric charge on personnel. Together with 
magnetic sensors, they can also detect electrical activity 
in the vicinity such as the usage of computer keyboards.  

• Chemical sensors can be used to detect the presence of 
different kinds of chemicals in the atmosphere such as 
pheromones and household chemical vapors. 

• Passive infrared devices are very inexpensive sensors 
that detect the nearby presence of a warm body, e.g., a 
human, within a cone shaped field of view.  

• Visible imagers can capture color or grayscale video 
for human gait detection and object recognition. 

• Infrared imagers can detect and localize hot bodies 
and warm surfaces, including the vents in tunnels. They 
can also provide thermal profiling of buildings, where 
warmer rooms are indicative of current or recent human 
inhabitation.  

• Micro Radars can detect and track people in short 
ranges.  Low frequency radars can even see through 
walls. 

3 Data Collections 
Multi-sensor data was collected for a number of different 
scenarios.  Most of the data collection occurred in a 
remote building that contains some machinery.  For most 
scenarios the following sensors collected data: visible 

camera, infrared camera, magnetic, electrostatic, acoustic, 
seismic, and chemical. Some scenarios were designed to 
evaluate multi-sensor systems for detection of human 
presence, and the other scenarios were designed for 
sensing prior human activity.   

E Field

Acoustic

Seismic

Passive
Infra Red

Small 
Radar

Uncooled FLIR

Chemical sensor
 

Figure 2: Acoustic (piezo electric microphone), 
Seismic (accelerometer), Passive Infrared (motion 
detector), small Radar (2.5W, 5.8 GHz Radar), E-
Field (Quasar 3-axis), Forward looking infrared 
camera, 10 compound chemical sensors for human 
activity detection. 

Sensors 

Packbot 

 
The scenarios to evaluate direct human presence detection 
include: 
• Corridor Scenario: The suite of sensors is placed at 

the center of a hallway.  A persons walks down the 
hallway.  The goal is to determine the range from the 
sensors at which the person is detected.  

• Human Walking and Talking Scenario:  The 
sensors are observing people walking and talking in a 
room.  The goal is to determine how many modalities 
can detect the standard human activities. 

 
Other experiments are designed to indirectly detect 
humans by detecting signals that humans create while 
using machinery.  These scenarios include: 
• Cell Phone Scenario: Sensors are observing the 

ringing and usage of a cell. Cell phones are very 
prevalent nowadays, especially in the third world 
countries where the wired-telephone infrastructure is 
rather limited. The goal is to detect their usage using 
multiple modalities, such as RF detectors and 
acoustic sensors.  



• Bathroom Scenario: A person flushes a toilet, and 
sensors are located in-situ and remotely to detect the 
flushing event.  The goal is to determine which 
sensors can remotely detect the water flow through 
the pipes as a result of the flushing event.  For 
instance, an accelerometer attached to the pipes far 
away from the bathroom should detect the event. 
Also, the opening of the bathroom door can be 
detected by magnetic, seismic, electrostatic, and both 
IR and visible cameras.  

• Computer Keyboard Scenario: The goal is to detect 
the usage of the keypad using several sensor 
modalities. In this information age, computer keypads 
are used for a very large number of applications 
including planning, information downloads, 
communications, etc.   

• Computer Monitor Scenario: The sensors are 
observing the usage of a computer monitor: The goal 
is similar to that of the keypad usage. 

 
The final class of scenarios is used to determine the 
feasibility of sensors to determine either current or prior 
human activities. Sensors, for example, could detect 
signals radiating from residual materials and energy 
directly due to human activity or due to human 
infrastructure to support the activity. The scenarios 
include: 
• Machine Shop Scenario: Sensors observed a drill 

press in a secluded building.  The press was used to 
drill a bore in a wooden plank. The goal here is to find 
how many sensor modalities can detect the machine 
while in-use and determine how long after the machine 
is turned off that the residual information can signify  
prior usage.  

• Conference Room Scenario: In this scenario, people 
sat around a table and talked to each other. Some of 
them were smoking cigars and some were drinking 
coffee. After a period of time, they left the conference 
room, leaving behind burning cigars and unfinished 
coffee. The sensors observe the room after the people 
leave. The goal for the sensor is to determine that the 
conference room was recently used by some people 
due to the warm seats and chemical scents left behind. 
It is also important to determine how long the sensors 
can continue to detect prior human presence.  

• Vent Scenario: A cave or tunnel that is currently 
supporting human activities will require vents to 
circulate in fresh air.  The goal of this scenario is to 
determine which modalities can distinguish man-made 
air circulation from natural air movement, e.g., wind.  

• Portable Generator Scenario: In a cave or a tunnel, 
it is most likely that a portable generator will be used. 
The goal is to detect this man-made object, both while 
it is being used and a few hours after its operation.  

 
 

4 Detection of Human Presence 
The detection of personnel may be accomplished either by 
directly detecting the person or by indirectly detecting the 
actions or objects associated to a human being. Direct 
means of detecting personnel include the usage of 
chemical, electrostatic, passive infrared (PIR), and 
imagers (visible and infrared).  For instance, the chemical 
sensor is used to detect human pheromone by producing 
appropriate sensing outputs. Algorithm development for 
the chemical sensor is still in progress. Electrostatic 
sensors detect changes to the ambient electric field caused 
by static charges on the human skin. The output of the 
electrostatic sensor produces a detectable signal when a 
person is walking near the sensor (see Figure 3), and a 
simple threshold detector can detect the presence of a 
body.  The PIR generates an output that is proportional to 
the body temperature of a person. A simple threshold  
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Figure 3: Different sensor outputs in Bathroom scenario 

 
above the ambient noise would detect the presence of a 
hot body within the vicinity of the PIR sensor.  Imagers 
can distinguish the silhouette of the human being when 
there is sufficient contrast from the background. 
Furthermore, it can be possible to segment human skin 
from an image based upon color [4]. Finally, when the 
human walks, the change of the human’s silhouette due to 
his/her gait produces a unique signature [13]. Indirect 
means of detecting personnel include the usage of 
acoustic, seismic, magnetic, passive infrared (PIR), and 
chemical information collected through the respective 
sensors. Acoustic sensors can capture human speech, and 
one can exploit speech processing algorithms to determine 
whether or not human speech can be extracted from the 
background noise. In order to detect the presence of 
people, the acoustic signal spectrum between 50 Hz to 
2000 Hz is analyzed. An algorithm [1] has been 
developed to detect personnel based the statistical analysis 
of the energy content in at least three of the four bands, 
where each band is roughly 500 Hz. A seismic sensor 
detects the closing of the door, if it is slammed against the 
frame. It also detects the footfalls of a walking person. 



We have developed an algorithm to detect the gait 
frequency of humans [1, 2] using seismic sensor data. The 
typical gait frequency lies between 1.8 to 2.2 Hz. If these 
frequency components and their harmonics are present in 
the seismic data, then it is likely that there is a person 
present in the neighborhood of the sensor. Figure 4 shows 
the output of a seismic sensor.  In the figure, the signature 
of the footsteps appears as a spike that repeats at a 
characteristic frequency.  A magnetic sensor detects the 
opening and closing of a door through the changes in 
magnetic flux. If a person carries any ferromagnetic 
material, such as keys or short-guns, the magnetic sensor 
also generates an output that can be threshold to detect the 
presence of such a material. An algorithm for tracking the 
movement of ferromagnetic material [5] can be used as an 
indirect indication of the presence of a person.  
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Figure 4: Foot falls identified in the seismic sensor output 
 
The remainder of this section demonstrates  the fusion of 
acoustic, PIR, and seismic sensors for the direct detection 
of humans walking through a hallway.  The whole fusion 
system is evaluated over data collected in support of the 
Corridor Scenario. It consists of determining the 
likelihood of human presence via the signal level of each 
sensor, and then, combining these likelihoods via 
Bayesian fusion to obtain the posterior probability of 
human presence given the signal levels of all three 
sensors. 
 
Figure 5 shows the output of the signal levels of the three 
sensors, and Figure 6 shows the ground truth location of 
the person in the hall.  The hall is x meters long so that a 
location of 0 and X means that the person is located at one 
end of the hall or the other.  The sensors are located at Y, 
which is near the center of the hallway.  The person is 
walking over the interval between 70 and 130 seconds.  
The acoustic and seismic signals indicate footfall 
signatures when the person is passing close to the sensors. 
Furthermore, the PIR sensor provides a bipolar response 
when the person passes within the field of view.  The 
seismic signal also includes significant background noise. 
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Figure 5: Output of Acoustic, PIR and Seismic Sensors 

 

 
 

Figure 6: Corridor experiment – Ground truth 
 

To detect people, the acoustic and seismic data is 
processed to form spectral and gait features, respectively, 
as described in [1].  For the PIR data, the signal 
magnitude forms the features. Next, the distribution of the 
features conditioned on the different hypotheses is 
determined.  Specifically, we define H0 and H1 as the null 
and human present hypotheses. The likelihood of each 
hypothesis is defined as the probability of the observation, 
i.e., feature, conditioned on the hypothesis,  
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for i =1,2 and s ∈ S, where S ={acoustic, PIR, seismic}. 
The conditional probability is modeled as a Gaussian 
distribution, 
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The statistics of the distribution of the signal data for a 
given hypothesis is determined by using the sample mean 
and variance of training data.  Let xs,j represent the time 
series associated to the s sensor. Then, 
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where H0 and H 1 represent the time indices that a person 
is absent and present in the time series, respectively.  
 
Now, (1) – (2) can be used to determine the posterior 
probability of human presence given a single sensor 
observation.  Namely,  
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where p(H0) and p(H1) represent the prior probabilities for 
the absence and presence of a human, respectively. This 
paper assumes an uninformative prior, i.e., p(H0)= 
p(H1)=0.5.  Figure 7 shows the posterior probabilities of 
the three sensors as function of time for the corresponding 
signal data in Figure 5. The closest point of approach of 
human to the sensor package occurs at t = 90 sec, which 
corresponds to the case where the posterior probability 
approaches 1 in figure 7. 
 
The fusion of the sensors can easily be implemented via 
Bayes rule by making the reasonable assumption that the 
sensor data for different modalities are statistically 
independent when conditioned on one of the two 
hypotheses.  The posterior probability of human presence 
given data from all three sensors is, 
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where x = [xacoustic, xPIR, xseismic]T is the concatenation of 
features from all three sensor modalities.  Figure 7 also 
shows the posterior probability that is the result of the 
data fusion. In the end, a detector is simple declaring a 
human if the posterior exceed a threshold. Clearly, the 
PIR is the best single sensor for detecting personnel. The 
fusion is able to maintain a high posterior probability 
when the PIR is able to detect the human. One downside 
to the PIR is its limited field of view.  Fortunately, the 
fusion given by (6) provides the advantage of detecting a 
human when the human fails to cross through the field of 
view of the PIR.  
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Figure 7: Posterior probabilities of Acoustic, PIR, and 
Seismic sensors and after Fusion  

 
The performance of this detection system can be enhanced 
by considering the temporal signature of the target due to 
footfalls.  Furthermore, imagers can be used to collect a 
feature based upon gait. Future work will investigate the 
performance gains by using better features.  

5 Detection of Human Activity and 
Infrastructure  

This section discusses human activity and infrastructure 
detection. A number of scenarios described in Section 3 
are applicable. This section will focus on the Machine 
Shop scenario to illustrate how sensor data can be used to 
distinguish patterns caused by human activities from those 
caused by natural phenomena. The scenario covers all 
aspects of the human activity and infrastructure detection 
that we would like to address. 
 
The Machine Shop scenario consists of data collected 
from sensors observing a secluded room that includes a 
drill press. A color video camera and a long-wave infrared 
(LWIR) camera were aimed at the drill press from a 
distance of 20 feet with similar field-of-views. An 
acoustic sensor (microphone), a chemical sensor, a 
seismic sensor, a magnetic sensor, and an electrostatic 
sensor were placed within 10 feet of the drill press. An 
identical suite of sensors was placed outside the room. An 
electrostatic sensor was placed near an electrical power 
distribution box that is far away from the room. During 
the operation of the drill press, the door to the room was 
closed. Prior to the actual experiment, all sensors were 
allowed to collect background noise for about 3 minutes. 
Then an operator opened the door, went into the secluded 
room, closed the door, and walked to the drill press, and 
turned on the drill press. After that, the operator drilled a 
wooden plank for about 3 minutes and then left the room. 
The infrared camera was on for another three hours after 
the drill press was turned off. Some of the sensors used in 
this experiment are shown in 2.  Figure 



 
The ultimate goal is to design a robotic sensor system that 
can roam a site and automatically determine that the site 
contains man-made equipment, i.e., human infrastructure, 
which currently support (or recently supported) human 
activity.  To this end, the sensors must monitor the site 
and determine if the output signals are consistent with the 
usage of man-made machinery as opposed to a benign 
background. 
 
Various sensors can be used to detect infrastructure. In the 
Machine Shop scenario, magnetic and electrostatic 
sensors can easily detect when the drill press is active. 
Successful monitoring is accomplished by considering the 
sensor outputs from different locations, including the 
sensor suites near the drill press and outside of the 
secluded room, as well as those away from the room at the 
electrical distribution box of the building.  
 
Figure 9 shows the magnetic and electrostatic sensor 
outputs before and during when the drill press is turned 
on.  When the drill press is off, the ambient E and B fields 
include a dominant 60Hz harmonic due to radiation from 
outside power lines.  Furthermore, the 60Hz E and B field 
harmonics are 90 degrees out of phase. Because the power 
lines are not in the vicinity, the 60Hz signal is noisy.  
When the drill press is on, the higher resulting signal 
amplitudes and the fact that the phase shift between the E 
and B fields are no longer 90 degrees offer clues that 
some sort of man-made machine is currently operating. 
 
Visible cameras provide good clues about the presence of 
the man-made object.  Pattern recognition technology may 
some day allow for the automatic detection and 
recognition of different machines for imagery collected by 
visible cameras. For the near term, automatic techniques 
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Figure 8: Seismic sensor output when the drill press is 
turned on during the machine shop experiment. 
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Figure 9 : Output of E and B-Field Sensors 
 
can exploit the fact that man-made objects tend to be 
composed of canonical geometric shapes that have 
smooth edges and sharp corners.  On the other hand, 
natural object tend to be rough and jagged.  
 
We are currently developing algorithms to segment out 
man-made objects from a visible image by analyzing the 
contour of the objects.  First, the image is segmented 
using techniques based on edges [7] and unified regions 
[8].  Then, the contour associated to each segment is 
analyzed.  Specifically, features such as fractal dimension 
via box counting [14] and curvature [15] will be 
extracted. The features will be used to develop a Bayesian 
man-made object detector similar to how amplitude 
features are used in the human presence method of 
Section 4.   
 
Let Ho,0 and Ho,1 represent the hypotheses that the  i-th 
contour is natural and man-made, respectively. The set of 
features for the i-th contour is represented by the vector fi. 
Training data will be used to determine the likelihoods of 
the two hypotheses as 
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The likelihoods may be modeled by Gaussians as in (2) or 
by other distributions if necessary. Similar to (5),   the 
posterior probability for Ho,1 is computed as 
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The man-made object that leads to the detected contour 
could be abandoned. It is crucial to determine if the 
contour represents a recently used object. When a man-
made machine is used, heat will be generated at the 
friction points. This means that the object will radiate heat 
at concentrated location.  On the other hand, if the object 
has been turned off for a long time, the only heat is 
created by solar loading, which tends to distribute the heat 
evenly over the object.  Thus, the distribution of heat over 
an object contour can provide inference about recent 
human activity.   Furthermore, the decay of the heat over 
time may indicate whether or not the heat source is man-
made or natural. 
 
The heat distribution over an object contour requires 
registration of the visible and infrared imagery. There are 
a number of difficulties in registering the outputs from 
these cameras due to their differences in focal length, 
field-of-views, lens characteristics, image resolution, as 
well as viewing aspect and height, We are developing 
algorithms to register images from visible and IR cameras 
based on geometric transformations and stereo techniques, 
see  [9], [11], [12]. 
 
Once the images from IR and visible cameras are properly 
registered, we will use them to detect certain human 
activities. In the case of the machine shop scenario, we 
may detect recent human activities based on the thermal 
footprint of the drill press, even when the drill press has 
been idle for a period of time. Both spatial and temporal 
features describing the distribution of the heat may 
provide inference.  For instance, we plan to derive spatial 
features v that represents the spread of the distribution 
over the interior of the contour, e.g., variance or entropy. 
We also plan to derive a temporal feature t that represents 
the “average” decay of heat as function of time over the 
interior of the contour.   
 
Once the features are defined, the activity detector 
consists of the calculation of the posterior probability of 
the human activity hypothesis Ha1 over the entire scene 
given the activity and contour features for the entire 
scene. To this end, training data will be used to derive the 
likelihoods of the no activity Ha,0 and human activity Ha,1 
hypotheses for each of the Nc contours. The likelihoods 
associated to the i-th contour are derived only when the 
object under analysis is man-made so that the likelihoods 
are 

 

la1 (vi, ti) = p(vi, ti | Ha1, Ho1),   

la0 (vi, ti) = p(vi, ti | Ha0, Ho1). 
 

( 9 ) 

Again, the likelihoods may be modeled as Gaussians or 
some other distribution if necessary. The likelihoods for 
the i-th contour conditioned on the contour features are 
simply the likelihoods defined in (9) multiplied by the 
posterior probability that the contour is man-made. The 
likelihoods that the entire scene does or does not contain 
evidence of human activity assume that the features for 
each contour are independent, conditioned on the activity 
hypothesis, i.e.,   
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( 10 ) 

where Nc is the number of contours in the scene.  

The human activity likelihood due to imagers will be 
combined with similar likelihoods computed from 
acoustic and seismic sensors. As in Section 4, the direct 
presence of humans will be obtained by spectral S and 
gait features G for acoustic and seismic sensors, 
respectively, and the likelihoods for the Ha0 and Ha1 
hypotheses are derived by (1). Other features will be 
derived for the acoustic and seismic sensors to pick up 
60Hz harmonics due to the machinery. Let’s label these 
machinery features as Ha and Hs for the acoustic and 
seismic sensors respectively.  Given that all sensor 
features are statistically independent when conditioned on 
either hypotheses, then the likelihoods for the two 
hypotheses using all features is 
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( 11 ) 

where X is the concatenation of all the features. Finally, 
the posterior probability that the scene contains human 
activity is  
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Figure 10 provides a flow graph to illustrate the multi-
sensor processing to calculate the posterior probability 
given in (12).  The detector declares the existence of 
human activity if the posterior probability in (12) exceeds 
a threshold.  Future work will develop the modules in 
Figure 10, and evaluate the receiving operating 
characteristic (ROC) curves associated to the 
corresponding detector. 
 



 
Figure 10: Fusion for human activity detection 

 

6 Conclusion 
We presented schemes to directly detect the presence of a 
human or to detect human activity and infrastructure.  
Both schemes take advantage of multiple sensor 
modalities through the use of Bayesian fusion. 
Experimental results demonstrate the utility of the fusion 
for human presence detection. The method can be further 
improved by incorporating video data and accumulating 
evidence temporally. Future work will center around the 
development of the modules consisting of the human 
activity detection scheme and enhancing the human 
presence detection scheme. Once both schemes are fully 
developed, they can be used to determine the threat level 
that exists in urban terrains, tunnels, caves and other 
remote sites.   
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